
ALL APPLICATIONS
DIGITAL COMPUTER

DATA PROCESSING
ELEMENT

(DPE)

PROGRAMMER'S
REFERENCE

'MANUAL

BR-8184

30 SEPTEMBER 1974

BR-8184

UNCLASSIFIED

ALL APPLI~.TIONS DIGITAL COMPUTER (AADC)

DATA PROCESSING ELEMENT (DPE)

PROGRAMMERS REFERENCE MANUAL

30 September 1974

Prepared for

Naval Air Development Center

Warminster, Pennsylvania 18974

PREPARED BY

RAYTHEON COMPANY
MISSILE SYSTEMS DIVISION

BEDFORD. MASSACHUSETTS

BLANK

ii

TABLE OF CONTENTS

PREFACE

1.0 INTRODUCTION

2.0 SYSTEM ARCHITECTURE

2.1 System Components

2.2 Data Processinq Element Components

3.0 DATA FLOW

3.1 Primary Bus

3.1.1 Transmission Types

3.1.2 Sequence Number Field

3.1.3 Data/Instruction Field

3.1.4 Source/Destination Field

3.2 Channel

3.2.1 Input Queue

3.2.2, Output Queue

4.0 PROGRAM MANAGEMENT 'UNIT (PMU)

4.1 PMU Registers

PAGE

xviii

1-1

2-1

2-1

2-5

3-1

3-1

3-6

3-9

3-9

3-10

3-11

3-12

3-13

4.1.1 Addressable Registers 4-1

4.1.1.1 General Scratchpad Registers 4-1

4.1.1.2 Program Address Register 4-2

4.1.1.3 Interval Timer Register 4-3

4.1.1.4

4.1.1.5

4.1.1.6

4.1.1.7

4.1.1.8

4.1.1.9

Source Registers

Halt Indicator

Trap Level Register

Parity Error Inhibit Indicator

Procedure Kernel Register

Data Kernel Register

iii

4-3

4-4

4-4

4-4

4-4

4-5

4.1.1.10

4.1.1.11

4.1.1.12

4.1.1.13

4.1.1.14

Upper Bound Register

Lower Bound Register

Executive Mode Indicator

Data Addressing Mode Indicator

Replacement Algorithm Register

PAGE

4.1.2 Non Addressable Registers

4-5

4-5

4-5

4-6

4-6

4-6

4.1.2.1 Procedure Page Register 4-6

4.2 Modes of Operation 4-7

4.2.1 Problem Solving 4-7

4.2.2 Executive Mode 4-7

4.2.2.1 Entrance Into Executive Mode 4-7

~.2.2.1.l Programmed 4-8

4.2.2.1.2 Channel Interrupt 4-9

4.2.2.2 Executive Mode Capabilities

4.2.2.2.1 Emergency
Commands

4-10

4.2.2.2.2 Security System

4.2.2.3 Exit From Executive Mode

4.3 Detailed Instruction Performance

4-10

4-11

4-11

4-12

4-12

4-13

4-14

4.3.1

4.3.2

4.3.3

External Instructions

Emergency Commands

Internal Instructions

4.3.3.1 Virtual Addressing
Modification

4.3.3.2 Normal Instruction Fetch

4.3.3.2.1 Program Counter

4.3.3.3

Operation

4.3.3.2.2 Page Carry

Procedure Page Fetch

4.3.3.3.1 Kernel Entry Word

4.3.3.3.2

4.3.3.3.3

Resident Procedure

Non Resident
Procedure

4-15

4-16

4-16

4-17

4-17

4-18

4-20

4-20

4.3.3.3.4 Replacement Algorithm 4-21

iv

4.3.3.4 Non Standard Procedure
Page Fetch

4.3.3.5 Examples of Instruction
Fetch

4.3.3.5.1 Resident Paged
Procedure

4.3.3.5.2 Non Resident Paged
Procedure

4.3.4 Instruction Word Interpretation

4.3.4.1 Instruction Format

4.3.4.2 Parity

4.3.4.3 Addressing Modification

4.3.4.3.1

4.3.4.3.2

4.3.4.3.3

Indexing

Indirect Addressing

Chaining of Address
Modification

4.3.4.3.4 Examples of Address
Modification

4.3.4.4 Operand Cycle

4.3.4.4.1 Memory Operand
Fetch

4.3.4.4.2 Non Memory Operand
Fetch

4.3.4.4.3 Instruction Trace

4.3.4.4.4 Examples of Non
Resident Full Word
Operand Fetch

4.3.4.4.5 Pipeline

4.3.5 Instruction Execution

4.3.5.1 Operand Destination

4.3.5.1.1 Destination is AP

4.3.5.1.2 Destination is PMU

4.3.5.2 PMU Word Formats

4.3.5.2.1 Half Word Arithmetic
Format

4.3.5.2.2 Full Wor.d Arithmetic
Format

v

PAGE

4-23

4-23

4-24

4-24

4-28

4-28

4-30

4-30

4-30

4-30

4-32

4-32

4-38

4-39

4-44

4-45

4-45

4-45

4-51

4-51

4-51

4-52

4-53

4-53

4-53

4.3.5.2.3 Half Word L~gical
Format

4.3.5.2.4 Full Word Logical
Format

PAGE

4-53

4-53

4.3.5.2.5 Shift Count Format 4-54

4.3.5.2.6 Data Transmission
Word Format 4-54

4.3.5.2.7 Instruction
Transmission Word
Format 4-55

4.3.6 Operand Types

4.3.7 Overlapped Fetch Cycle

4.4 PMU Instruction Definitions

4.4.1 PMU Arithmetic Instructions

(BO) Add

(B4) Add Full

(B3) Subtract

(B7) Subtract Full

(CO) Multiply Half to Half

(C3) Multiply Half to Full

(D3) Divide Half by Half

(D2) Divide Full by Half

4.4.2 PMU Logical Instructions

(Ao') AND

(A4) AND Full

(90) D And R

(94) D And R'Full

(C2) D And R

(C6) D And R Full

(B2) OR

(B6) OR Full

(Bl) D Or R

vi

4-55

4-57

4-60

4-62

4-62

4-64

4-66

4-68

4-70

4-72

4-74

4-76

4-78
4-78

4-80

4-82

4-84

4-86

4-88

4-90

4-92

4-94

PAGE

(BS) D Or R Full ' 4-96

(A3) D Or R 4-98

(A7) D Or R Full 4-100

(93) NAND 4-102

(97) NAND Full 4-104

(Cl) NOR 4-106

(CS) NOR Full 4-108

(92) XOR 4-11'0

(96) XOR Full 4-112

(AI) XNOR 4-114

(AS) XNOR Full 4-116

4.4.3 PMU Shift Instructions 4-118

(EO) Shift ARHO 4-118

(E1) Shift ARFO 4-120

(E2) Shift ALHO 4-122

(E3) Shift ALFO 4-124

(FO) Shift LRHO 4-126

(F1) Shift LRFO 4-128

(F2) Shift LLHO 4-130

(F3) Shift LLFO 4-132

(DO) Shift LRHC 4-134

(D1) Shift LRFC 4-136

4.4.4 PMU Skip Instructions 4-138

(62) Skip If Equal To 4-138

(66) Skip If Equal To Full 4-140

(71) Skip If Not Equal To 4-142

(75) Skip If Not Equal To Full 4-144

(61) Skip If Greater Than 4-146

(65) Skip If Greater Than Full 4-148

(72) Skip If Not Greater 4-150

vii

PAGE

(76) 'Skip If Not Greater Than Full 4- 152
(70) Skip If Less Than 4-154

(74) Skip If Less Than Full 4-156

(63) Skip If Not Less Than 4-158

(67) Skip If Not Less Than Full 4-160

(83) Skip On Bit N 4-162

4.4.5 PMU Data Instructions 4-164

(91) Convert 2's To SM 4-164

(95) Convert 2's To SM Full 4-166

(A2) Convert SM To 2's 4-168

(A6) Convert SM To 2's Full 4-170

(D6) Round 4-172

(D7) Binary Normalize 4-173

4.4.6 PMU Transfer Instructions 4-175

(40) Transfer Unconditional 4-175

(42) Transfer If R Is Zero 4-1 it=)

(46) Transfer If R Zero Full 4-178

(41) Transfer If R Negative 4-180

(45) Transfer If R NEG Full 4-182

(43) Transfer If Not Equal 4-184

(50) Transfer On Incremented SP 4-186

(37) Transfer To Executive 4-188

(51) Transfer And Stack 4-192

(54) Transfer And Stack Kernel 0 4-196

(55) Transfer And Stack Kernel 1 4-196

(56) Transfer And Stack Kernel 2 4-196

(57) Transfer And Stack Kernel 3 4-196

(E4) Escape 0 4-197

(E5) Escape 1 4-197

(E6) Escape 2 4-197

viii

PAGE

(E6) Escape 2 4-197

(E7) Escape 3 4-197

(F4) Escape 4 4-197

(F5) Escape 5 4-197

(F6) Escape 6 4-197

(F7) Escape 7 4-197

4.4.7 PMU Load/Store Instructions 4-198

(12) Load SP 4-198

(10) Load High SP 4-200

(16) Load SP Full 4-202

(20) Load Left Byte 4-204

(22) Load Right Byte 4-206

(30) Load Absolute Value 4-207

(34) Load Absolute Full 4-209

(31) Load Negative 4-211

(35) Load Negative Full 4-212

(80) Mask Load 4-214

(84) Load Control Bits 4-216

(86) Load Multiple 4-217

(44) Load Data Kernel 4-218

(64') Load Page 4-221

(13) Store SP 4-223

(11) Store High Scratchpad 4-225

(17) Store SP Full 4-227

(21) Store Byte Left 4-228

(23) Store Byte Right 4-230

(85) Store Control Bits 4-232

(87) Store Multiple 4-233

(77) Store Page 4-235

(19) Move Half to Half 4-237

(lD) Move Full To Full 4-239

(IF) Move Full And Stack 4-241

ix

4.4.8 PMU Control Instructions

(01) Proceed

(27) Execute

(32) Interval Timer Control/Halt

(33) Store Interval Timer

(52) Return Stack to P

(53) Return Stack to P And Proceed

(81) Reset Bit N

(82) Set Bit N

(29) Set Task Parameters

(25) Set System Parameters

(28) Initiate New Task

(36) Test and Reset

(47) Command Subsystem/Address
Modificatiun

(4F) Command Subsystem/Immediate
Execution

4.4.9 PMU Input/Output Instructions

(00) Test And Reset To Output

(02) Read Word To Output

(03) Write Word From Input

(60) Single Word I/O Command

(73) Two Word I/O Command

(7B) Two Word I/O with Indexing

(04) Read Operand To Output

(06) Read Page To Output

(OC) Read Array To Output

(OE) Read Indirect Word To Output

(05) Write Operand From Input

(07) Write Page From Input

(OD) Write Array From Input

x

4-243

4-243

4-244

4-245

4-247

4-248

4-25.0

4-252

4-254

4-256

4-258

4-263

4-266

4-268

4-272

4-276

4-276

4-277

4-278

4-279

4-281

4-284

4-287

4-289

4-290

4-291

4-292

4-294

4-296

5.0 THE ARITHMETIC PROCESSOR

5.1 AP System Components

5.1.1 The AP Fanout Box

5.1.2 AP Input Formats

5.1.3 AP Input Instruction/Data Queue (APQ)

5.1.4 The AP Arithmetic unit (APAU)

5.2 Basic AP Instruction Sequence

5.3 Basic AP Instruction Set

5.3.1 AP Arithmetic Instructions

(Cl) Addition

(C4) Reverse Subtract

(C2) Subtract

(EO) Multiply

(D8) Reverse Divide

(DO) Divide

(D4) Divide Residue

(DC) Reverse Divide Residue

(D2) Divide Short

(DA) Reverse Divide Short

(C5,) Load Accumulator

(CA) Load Negative

(ce) Negation

(CF) Absolute Value

(BO) Signum

(E4) Floor

(E5) Ceiling

(E2) Square Root

(F4) Normalize

xi

PAGE

5-1

5-1

5-3

5-6

5-8

5-10

5-14

5-15

5-16

5-16

5-19

5-21

5-23

5-25

5-27

5-29

5-31

5-33

5-35

5-37

5-38

5-39

5-40

5-41

5-42

5-43

5-44

5-45

5.3.2 LOAD/STORE Instructions

(E8) Store and Halt

(EA) Store and Proceed

(31) Load Memory Word

(32) Store Packed

(33) Load Deferral

(34) Store Deferral

(B8) Unpack

(B9) Load Word to Accumulator

(35) Push Data

(36) Stone Operand

5.3.3 Compare and TVD Instructions

(92) Compare Less Than Destructive

(91) Compare Equal Non Destructive

(93) Compare Less Than or Equal
Non Destructive

(94) Compare Greater Than Destructive

(95) Compare Greater Than or Equal
Non Destructive

(96) Compare Not Equal Destructive

(97) Set TVD Non Destructive

(98) Reset TVD Non Destructive

(99) Compare Equal Destructive

(9A) Compare Less Than Non Destructive

(9B) Compare Less Than or Equal
Destructive

PAGE --
5-46

5-56

5-47

5-48

5-49

5-50

5-51

5-52

" 5-54

5-55

5-56

"5-58

5-58

5-59

5-60

5-61

5-62

5-63

5-64

5-65

5-66

5-67

\ 5-68

(9C) Compare Greater Than Non Destructive 5-69

(9D) Compare Greater Than or Equal
Destructive

(9E) Compare Not Equal Non Destructive

(9F) Set TVD Destructive

(90) Reset TVD Destructive

(B2) Minimum

(B4) Maximum

xii

5-70

5-71

5-72

5-73

5-74

5-75

5.3.4 Transfer Instructions

(AO) or (AS) No Transfer

(AI) or (A9) Transfer on Equal To Zero

(A2) or (AA) Transfer on Greater
Than Zero

(A3) or (AB) Transfer on Greater Than
or Equal to Zero

(A4) or (AC) Transfer on Less Than Zero

(A5) or (AD) Transfer on Less Than or
Equal to Zero

(A6) or (AE) Transfer on Not Equal
to Zero

PAGE

5-76

5-76

5-77

5-78

5-79

5-80

5-S1

5-S2

(A7) or (AF) Unconditional Transfer 5-83

(BC) Transfer on Test Valid Set 5-S4

(27) Execute 5-85

5.3.5 Shift Instructions

(FO) Shift Open

(Fl) Shift Cyclic

(FS) Shift Single Open

(F9) Shift Single Closed

5.3.6 Boolean and Logical Instructions

(70) Boolean Zero

(71) Boolean AND

(72) Boolean Less Than

(73) Boolean Odd Even

(74) Boolean Greater Than

(75) Boolean Load

(76) Boolean Not Equal

(77) Boolean Inclusive OR

(78) Boolean NOR

(79) Boolean Equals

(7A) Boolean Load Complement

(7B) Boolean Less Than or Equal

(7C) Boolean NOT

xiii

5-86

5-86

5-S7

5-SS

5-S9

5-90

5-90

5-91

5-92

5-93

5-94

5-95

5-96

5-97

5-98

5-99

5-100

5-101

5-102

PAGE

(7D) Boolean Greater or Equal 5-103

(7E) Boolean NAND 5-104

(7F) Boolean One 5-105

(80) Logical Zero 5-106

(81) Logical AND 5-107

(82) Logical Less Than 5-108

(83) No Operation 5-109

(84) Logical Greater Than 5-110

(85) Logical Load 5-111

(86) Logical Not Equal 5-112

(87) Logical Inclusive OR 5-113

(89) Logical Equals 5-114

(88) Logical NOR 5-115

(8A) Load Complement 5-116

(8B) Logical Less Than or Equal 5-117

(8C) Logical NOT 5-118

(8D) Logical Greater or Equals 5-119

(8E) Logical NAND 5-120

(8F) Logical Set 5-121

5.3.7 Array Storage 5-122

5.3.8 Array Operations 5-124

5.3.9 Parenthetical Control 5-125

5.3.10 Arrays 5-126

5.3.11 Array Storage Area 5-127

5.3.12 Dimension Word 5-127

5.3.13 Indirect Dimension Words 5-129

5.3.14 Complex Numbers 5-131

5.3.15 Array Instructions 5-132

(37) Load Op Code 5-133

(61) Polynomial 5-135

xiv

PAGE

(51) Dimension 5-137

(60) Index Generator 5-138

(50) Ravel 5-139

(62) Outer Product Reduction 5-140

(63) Expand Along Column 5-142

(64) Catenate Rows 5-144

(65) Transpose 5-146
(66) Reversal Along Rows 5-147
(67) Laminate Rows 5-148
(68) Rotate Row 5-15'0
(69) Reshape 5-152
(6A) Take 5-153
(6B) Drop 5-156 .
(6C) Inner Product 5-157
(6D) Outer Product 5-160
(6E) Reduction Along Row 5-162
(6F) Compression Along Columns 5-165

5.3.16 Generalized Array Operations 5-167
5.3.17 Reductions on Null Elements 5-169

6.0 TRAP STRUCTURE 6-1

6.1 Trap Levels 6-2

6.2 Trap Mechanism 6-3

6.3 Parity Error Trap (No. 19) 6-5

6.4 Interval Timer Trap (No. 18) 6-5

6.5. AP Deferral Overflow Trap (No. 17) 6-5

6.6 AP Deferral Underflow Trap (No. 16) 6-5

6.7 Kernel Protect Trap (No. 15) 6-6

6.8 Read Protect Trap (No. 14) 6-6

6.9 Write Protect Trap (No. 13) 6-6

6.10 Command Protect Trap (No. 12) 6-7

6.11 Page Error Trap (No. 11) 6-7

6.12 Kernel Out of Bounds Trap (No. 10) 6-7

xv

PAGE

6.13 Illegal Ins~ruction Trap (No. 9) 6-8

6-8

6-8

6-9

6-9

6-9

6-9

6-10

6-10

6-10

6-11

6.14 AP Underflow Trap (No. 8)

6.15 AP Overflow Trap (No. 7)

6.16 AP Store Error Trap (No. 6)

6.17 PMU Arithmetic Overflow Trap (No. 5)

6.18 AP Domain Error Trap (No. 4)

6.19 AP Length Error Trap (No. 3)

6.20 Instruction Trace Trap (No. 2)

6.21 Kernel Trace Trap (No. 1)

6.22 Instruction Abort

6.23 Computer Failure Signal

Appendix A - Glossary A-l

Appendix B - Numerical Listing of PMU Op Codes B-1

Appendix C - Numerical Listing of AP Op Codes C-l

Appendix D - Alphabetical Listing of PMU Op Codes D-l

Appendix E - Alphabetical Listing of AP Op Codes E-l

Appendix F - Considerations in Preparing Programs

for the DPE F-l

Appendix G - PMU Instruction Attributes G-l

Appendix H - AP Instruction Attributes H-l

Appendix I - Channel Interrupt Conditions I-l

xvi

LIST OF ILLUSTRATIONS

Figure 1 - AADC Baseline Configuration

Figure 2 - Data Processing Element

Figure 3 - Bus Word Format

Figure 4 - Virtual Addressing - Resident Paged
Procedure

Figure 5 - Virtual Addressing - Non Resident Paged
Procedure

Figure 6 - General Instruction Format

Figure 7 - Address Mod EXl

Figure 8 - Address Mod EX2

Figure 9 - Address Mod EX3

Page

2-2

2-6

3-7
4-25

4-26

4-28

4-34

4-36

4-37

Figure 10 - Virtual Addressinq - Non Resident Full Word 4-46
Operand

Figure 11 - AP Block Diagram

Figure 12 - Instruction LOok-Ahead Mechanism (APQ)

Figure 13 - The Deferral Mechanism

xvii

5-2

5-10

5-12

PREFACE

This reference manual is intended to satisfy the

contractual requirements for Contract N62269-73-C-0660 for the

Naval Air Development Center, Warminster, Pennsylvania. It

is expected that the material contained in this document will

become a substantial part of a future document to be entitled

"Principles of Operation."

This manual is the reference manual for the Data

Processing Element (DPE) of the All Application Digital

Computer System (AADC). It provides a comprehensive description

of the system and of the DPE instruction set. Because the DPE

is comprised of two computational elements, the PMU and AP,

that have separate instruction sets, a prefix, A-, will be used

with the op code number of an AP instruction for purposes of

differentiation within this manual. This manual is intended

to be self-teaching for a reader that has a basic knowledge of

data processing systems.

xviii

1.0 INTRODUCTION

The AADC System employs an advanced, powerful

general purpose digital system concept. Its concept

embraces the computer applications spectrum from the mini­

computer at one end to the powerful multiprocessor system

at the other end. To accomplish this, the AADC defines

modular elements which may be combined to whatever complexity

is required by a given application. The modularity is not

confined to the assembly of Processing Elements, Memories

and I/O Controllers. The Data Processing Element (DPE)

itself is separable into two components. One component is

a stand alone mini-computer (Program Management Unit) while

the other is a powerful Arithmetic Unit.

Salient features of the DPE are:

• Data Insensitive Arithmetic Structure

• Stack oriented accumulator structure to

directly e~ecute expressions in infix notation

(parenthetical control)

· Implementation of APL primitives

• Virtual Addressing Support

· Pipeline Architecture

• Debugging and Performance Monitoring

· Executive and Security Support

• Efficient Interprocessor Communications

1-1

BLANK

1-2

2.0 SYSTEM ARCHITECTURE

2.1 System Components

The block diagram (Figure 1) of an AADC configuration

shows the system concept and the manner in which the elements

interrelate. It should be noted that this is not the only

configuration of an AADC.

There are three types of memories available in an

AADC, the Block Oriented Random Access Memory (BORAM) which

is used for storage of procedure, the Random Access Main

Memory (RAMM) which is used for the storage of variables,

and the Task Memory (TM) which is used as the local DPE

memory.

There are two types of interface units available,

the channel which is an AADC internal interface unit, and

the Data Communicator Module (DCM) which is an external

interface unit.

There are two additional AADC components. One

component is a stand alone mini-computer (Program Management

Unit) and the other is a powerful Arithmetic Unit (AP).

2-1

I--' .

()
o
!Z:
t-Ij
H

8
g;
1-3
H

@

CHANNEL

BORAM

I I
RAM DCM

PMU • RAM

CHANNEL PMU

CHANNEL

PRIMARY BUSES

r - I- -- -- - - - -.,

I I
I CHANNEL I
I I
! PMU f-- TM I

I AP I

r-- r-- -----,

I I
I CHANNEL I
I PMU - TM I
I I
I AP I

r- -- - -----,
I I
I CHANNEL I
I PMU I--- TM I
I AP I
I I

I
~P~ ______ J' ~PE _______ J L?~ ______ J

I} BORAM (Block Oriented Random Access Memory) -

Stores procedure and constants for all programs in pages of

256 words each. Each program segment (or task) may require

a number of pages of storage which may or. may not be

consecutively located in memory. During execution of a

particular task, pages will be transferred to the TM of

the executing DPE as needed on a demand basis. Transfers

are via the primary bus at an uninterrupted rate of 150

nanoseconds per word. Access to the first word of a page

is a maximum of two microseconds. In tactical operational

use, this memory will function in the read only mode. The

write mode will be provided for non-tactical or non-critical'

applications ..

2) RAM.1I1 (Random Access Main Memory) - Constitut'es

the main data storage for the system. The RAMM typically

consists of a series of modules, each 8 or 16K words (K=1024),

36 bits per word. Each RAMM has an associated PMU and channel

unit which interfaces it with the remainder of the AADC

subsystems. Data contained in RAMM can be addressed by any

DPE on a single word or multi-word basis. The DPE can use

this data directly, or hold it for later use in the TM.

Data access time is 250 nsec though transfers are made over

the primary bus at 150 nsec per word rate, and access time

per word for blocks of data is 150 nsec.

3) TM (Task Memory) - Is a local direct access

memory to the mini-computer (PMU) and is considered part of

the DPE. The TM typically has 4K of 36 bit words, but could

be as large as 64K words. Data transfers are made at 150 nsec

per word rate.

2-3

4) Channel Unit - Is the common interface between

elerrents of the AADC and the primary bus. It performs the

queueing and transfer of information, and coordinates all

internal bus transfers.

5) DCM (Data Communicator Module) - Is the interface

unit to external devices. It contains serial to parallel

converters, and packing and unpacking circuitry. It acts

through the channel in the DPE configuration for communications

with the computer.

6) DPE (Data Processing Element) - Is a general

purpose, programmable processor capable of performing logic

and arithmetic operations necessary for handling sequentially

organized tasks. The DPE contains a PMU (Program Management

Unit), an AP (Arithmetic Processor), a channel and a TM

(Task Memor~. Procedure pages of program segments or tasks

are stored in the TM for execution. Part of the TM is also

used for temporary data storage. Control functions of the

DPE, including normal instruction and operand fetching,

executions of program management type instructions, and

interfacing with the other elements via the channel and the

primary bus, are handled by the PMU. Arithmetic and logical

computations are performed in the AP. This separation of

computational functions and control functions permits a

highly parallel operation of the two subsystems. Additionally,

the PMU is used as a front end memory controller for the RAMM.

2-4

2.2 Data Processing Element Components

As indicated earlier, the DPE is a powerful' general

purpose digital computer which has the property that its

sophisticated arithmetic logic may be separated from the

computer proper leaving a simple mini-computer. Some

factors which highlight the advantages of the DPE over

other powerful data processors are:

1) The DPE handles fixed point, floating point

and complex arithmetic automatically.

2) The DPE operates on arrays and matrices

automatically.

3) 'I'he DPE solves algebraic expressions automatically

through its ability to interpret parenthetical notation.

The biock diagram in Figure 2 shows the DPE internal

structure. The DPE contains four major components. They

are the arithmetic processor (AP), the Program Management

unit (PMU), the Task Memory (TM) and the Channel.

2-5

INPUT
QUEUE

OUTPUT
BUFFER.

. CHANNEL

- - - - - - - - - - - -- --- - - - - - - - --
TM

TASK
MEMORY

MINI
COMPUTER

PMU

- - - - --- - - - - - - -- - - - - - - -I- - -

DEFERRAL

AP
QUEUE

ARITHMETIC
LJNIT

AP
CONTROL

ARRAY
CONTROL

FIGURE 2. DATA PROCESSING ELEMENT

2-6

AP

The AP

The AP or Arithmetic Processor, is a data insensitive

execution unit which performs arithmetic operations requiring

full word precision at high speed. These instructions include

Add, Subtract, Multiply, Divide, and Square Root. All

operations are performed in floating point. The AP responds

to inputs of two kinds. The first type involves receipt of

an operation code and operand on which the AP acts according

to its instruction set. A second is used in array operations

and places the PMU under c?ntrol of the AP Array Controller,

addressing operands and operating as instructed by the AP. ,

Additionally, the AP may interrupt the PMU during scalar-real

instruction sequencing for servicing of store conditional trans­

fer instructions, and exception conditions (e.g., exponent over­
flow) .

To implement parenthetical notation, the AP contains

a last-in/first-out (LIFO) deferral unit in which information is

held for later ·operation. The operation of 'this deferral

stack will be discussed in section 6.3.9 "Parenthetical, Control. "

To permit the PMU and AP to run asynchronously in

normal operations, ~ queue (AP Queue) is placed between them.

This Queue is a simultaneous read/write scratchpad element

that operates on a first-in/first-out basis. It is wide

enough to contain an operation code, an operand, and certain

necessary control and sequencing information. The queue

length visible to the programmer is 13 words in length.

In normal operation, the PMU fetches an instruction

(from TM) and an associated operand (from RAMM), and places

the necessary data into the Queue. At the other side of the

2-7

Queue, the AP sequentrally removes these instructions, and

executes them. The AP can perform some instructions, such

as ADD, faster than the PMU can complete a full fetch;

certain other instructions, such as MULTJPLY, take longer

than the fetch takes. Use of a Queue tends to average out

these differences by permitting the PMU to stockpile

instructions during periods when the AP is executing long

instructions against the time when a series of short

instructions will begin to deplete the queue.

The PMU

The PMU is a mini-computer in that it has its own

arithmetic logic and instructions, and may in some

applications be a stand alone machine. In the DPE, the PMU

acts as the controlling subsystem. It fetches all instructions,

performs address translation when necessary and obtains an

appropriate operand. It executes its own instruction set

and prepares others for transmission to the AP. It formats

data requests to outside devices if required and controls

the TM. During array processing, the PMU is controlled by

the AP.

The TM

Task Memory is a small high speed memory which forms

part of the DPE. This memory contains 4096 words of 36 bit

length and provides the program which is executed by the DPE.

The TM is subdivided into 16 pages of 256 words each. All

programs are executed in modules of up to 256 words each.

2-8

As program pages are executed and new pages are required,

they are brought in as needed and written over current pages.

The decision as to which of the current pages are to be

written over is decided in accordance with a number of

algorithms which are mechanized by the PMU hardware.

The Channel

The Channel is the common interface between

elements of the AADC and the primary bus. It performs the

queueing and transfer of information, and coordinates the

primary bus transfers. The primary buses are bi-directional

buses which handle all data and control information transfers

between the various computer system elements on a 50 bit

parallel basis. Each word is transferred during a 150

nanosecond time slot. The primary bus control scheme

assigns non-dedicated time slots on a rotational priority

basis. Each c~annel in the system contains a circuit which,

when tied in a closed chain, provides the rotational priority

control. A channel desiring the bus, raises an internal

demand line and waits notification of bus assignment.

Channels having no demand are skipped so all time slots can

be used. No element, except when specifically programmed

to do so (i.e., BORAM) , is pe~mitted to hold on to the bus

for more than two time slots. The BORAM locks the bus for

one whole page transfer (256 words). Three fuuses-

are used to allow for efficient communication between channels

as well as to provide redundancy. Two buses are programmatically

identical while the third bus is not normally attached tb a .

2-9

DPE channel. This third bus is dedicated to other system

functions. Any element desiring to communicate with another

can use either bus when free. To make most efficient use of

the primary buses, each channel contains an input queue

on its input interface with the bus. This makes the destination

channel effectively always available to receive data for it

on the bus.

2-10

3.0 DATA FLOW

The inte~nal flow of data and procedures within

an AADC is between the DPE, primary buses and

other components. Each of these facets of the system

can be explained somewhat independently, but will not

be clear outside of the context of a complete system

description. The following sections describe the

operation and data flow between the primary bus, DPE,

and other AADC system components.

3.1 Primary Bus

The system employs a time slotted bus. The

time slots are non-dedicated. A distributed equal

priority bus controller is used. The system is provided

with automatic error retry. In order to allow this

system to operate efficiently, the channels in the

system are designed with a wide address and are almost

always available to receive information.

Bus usage is assigned by the bus controller

to a channel. This channel puts its information on the

bus for a fixed period of time and then releases it

unless the bus has been re-assigned to the same channel.

A synchronizing clock is provided which is common to

all channels. The time slots are said to be non­

dedicated because they are assigned to channels which

have asked to send a word, as the requests occur,

rather than in a fixed sequence.

The bus controller decides which channel

will use a certain time slot during the preceeding one,

so that no time is lost for this determination. The

'assignment is said to be equal priority because no

3-1

channel has easier access to the bus than any other.

Some channels may send more words in consecutive slots

than others according to fixed rules, but do not have

any greater ability to obtain the bus.

The controller is distribu~ed among the channels

in a daisy chain fashion. That is, each channel receives

a signal representing status of channels physically

before it in the chain. According to preset logic,

this signal is passed on to remaining channels. Other

information on the bus is in a party line form. That

is, the same wires are used for input to and output from

every channel in the system. This type of bus is

bi-directional.

Each channel which is capable of receiving

information is supplied with an input queue buffer which

is eight instruction words in length.

This means that all information sent to a channel

will almost always be accepted by the receiver. In fact,

the receiver can be executing an instruction while

receiving and accepting a group of others which will

wait their turn to be proc~ssed. The receiving channel

is said to be essentially "always available". Sending

channels will ordinarily await an indication of its

instruction's being processed before attempting to

continue sending to the same channel.

In order to ensure correctness of receipt of

the information, parity checking is performed by the

receiver on received words, but in order to avoid overly

long time slots, this checking is done during the next

3-2

time slot after receipt. The errcr, i f c:,c~ ccc':'.:rreci, is

signaled in the second time slot ~itcr rC~clpt on a

separate cable. Correct receipt to

account for the absence of the indicated r~ccivjng unit.

That is, correct receipt is positive!::-' l;]cplalcd.

Furthermore, irregular, but possiblc" conditicns such

as receiver input queue full can be sisn~led.

When an error or receiver l:;usy is signalled,

the sender, which is constrained to maintain sent

information in its Output Queue~retries the transfer.

In order to maintain proper sequencing of messages, a

receiving channel once'it has rejected 0 word due to

parity error or busy condition, it will reject with the

'busy' code all the words that may be received by it

in the two time slots following the arrival of the first

rejected word.

When the first rejected word is retried, if

a second paFity error is detected by the receiving

channel, an emergency Transfer and Stack Kernel 0 (Op Code 54)

instruction addressed to the Executive will be gener~ted by

the receiving channel and sent through its Output Queue

to the Internal Bus.

A transmitting channel receiving a parity

error Status Return for the second time for the same

word will:

send an emergency Transfer and Stack

Kernel 0 (Op Code 54) instruction addressed

to the Executive, passing through it~ Output

Queue to the Primary Bus.

3-3

- Keep retrying the transmission of the

rejected word until either the word is

accepted or the channel receives an

emergency reset command from the Executive.

In the system described, a channel wishing to

send information raises an internal control line indicating

this and signalling its portion of the bus controller.

Some time later, this channel is granted the bus. It

sends its information during the indicated time slot,

then releases the bus if required.

A channel maintains three address counters

associated with its output queue.

1) the next queue location to be filled

2) the next queue location to be transmitted

3~ the queue location after the last validated

transmission

When an error or busy signal is received, no

further transmission is permitted. If the channel continues

to possess the bus, it transmits the No Transmission Code.

The channel may now obtain the bus for purposes

of error or busy retry. Retry is made for only one word

at a time. A second parity error Status Return received

is signalled to the executive. Busy signals repeat the

retry until accepted. When the queue validation counter

equals the next queue location to be transmitted counter,

normal continuous operation may be resumed. The Error Retry

bit is set if the nature of the error was parity error.

3-~

If several words were sent with one having an

error, only the incorrect or busy words need to be re­

tried. If one word of a two word instruction which was

sent is signalled as being an error, both words must

be retried. Thus, the first word of a two word instruc­

tion is only considered as sent and validated when the

second word of the instruction has also been received

and validated.

Channels are provided as three bus units or

as two bus units with extension capability to three

buses.

The bus system described can run continuously

with a transfer taking place in each time slot and will

sometimes only degrade temporarily, when errors occur.

A further enhancement to the bus system is the

AADC wide address. In this system, instructions placed

on the bus are steered by their address field to the

proper receiving element. The source element identifies

itself using the source field provided as part of each

transmission. Thus, any command request to an element

may be placed on the bus with a destination address,

and be certain that the element will pick up the request

and process it. The element addressed can be anything

from a main memory to a simple peripheral. The word

addressed can be a register, a bank of switches or a

word in a memory.

As an additional possibility, some elements

may be designed so that they can be instructed to

request channel transmission on only some of the avail­

able buses, so that an element can be given a bus

continuously or so that a bad bus can be removed from the

system, allowing further error free operation with reduced

tota~ throughput.

The word formats for the tW9 word types, command

and data, which are transmitted on the bus are illustrated

in Figure 3 and are discussed in the following paragr'aphs.

3.1.1 Transmission Types (Commands and Data) (Bits 37-39")

The channels use the bus to transmit both

commands and data to other subsystems. Presently, the

bus system can specify the following types of transmission

through 3 coded lines.

a No Transmission

Bit Pattern

000

There is no valid transmission on the bus.

Receivers are to ignore the remainder of the bus content.

The transmitting device possesses the bus, but did not

want it.

1 Continue Interrupted Process 001

This is a special transmission code which will

be discussed elsewhere in detail. The command normally

causes immediate activation of the receiving device to

initiate an operation previously suspended.

2 Data 010

The bus contains data. The receiving subsystem

must be expecting this data. It is placed in the data queue.

3-6

WIDE ADDRESS

I "" , ~ Q." .;:,
'"
~

"- ~<
I"!j
1-'"

LQ
OPCODE VARIABLE DESTINATION SUPPLEMENTARY SOURCE

ADDRESS ADDRESS ADDRESS

C
t-i °j'1 7 1314 1'1 6I' 81 9 1101" '2i'31'4I'5I'61"1 '8 I'9 20 \211"\ n 1'4\25126\27128129130 I 3' 32133134 35 36 37138139 401"1421431'414514614' 4S149

CD COMMAND WORD

w

to
w C
I en

-.,J

~
0
t-i
0..

I"!j
0
t-i
;3
QJ

IT

OPERAND
DATA DESTINATION
TAG ADDRESS

01' 1213141516\ '1819-r ''I''1'2FI''I,5j'61171'81'91201211''123124125126127128129j3'1 3' 32133134 35 36 37138139 40141142143['41451"'147 48 149

DATA WORD

3 Data and End· of Block

Bit Pattern

011

Same as 2, with the additional information that

is the last word of a variable block transfer. This code

is generated by a transmitting subsystem under defined

conditions.

4 Single Word command 100

This indicates an instruction interrupt is

on the bus.

5 Two Word Command 101

This code identifies the next word on the bus

as being destined for the same device as this one. All

other devices must unconditionally refuse the next word.

Similarly, this device must unconditionally accept

the next word and place. it in the input instruction

queue.

6 Single Word Emergency Command 110

This code identifies that this command is to

be the next to be executed. Normal processing is inter­

rupted and will not necessarily continue correctly.

7 Two Word Emergency III

This code identifies that this command is to

be the next to be executed. As with 5, the next word

should be accepted as well. As with 6, normal pro­

cessing is interrupted.

3-8

3.1.2 Sequence Number Field (Bits 48 and 49)

This 2-bit field can be set at 00, 01

or 10 and must be returned with the data requested by

the source element. The source channel transmits this

number any time its controlling element expects a data

reply. When the source element does not expect a reply,

as in the case of a single word write command, the chan­

nel transmits the currently valid transmission number.

This means that a channel can issue up to 3 commands

with data returns pending, and properly sequence the re­

turns. If the returned data has the correct transmission

number, the data is accepted. If the data has the correct

number and ,is also EOB, then the expected sequence number

register contained in the channel may be moved up to the

next expected sequence number. Any data received in the

incorrect sequence will be rejected by the channel with

a busy signal. The fourth combination of the sequence

number bits (11) is used only by elements placing

commands in the channel output queue to indicate to the

channel that the element is expecting a reply. The

current sequence number incremented by one is to be

used as the sequence number when this command is sent

out on the AADC Internal Bus.

3.1.3 Data/Instruction Field (Bits 0-35)

The format of the 36 bits correspond to the

Data or Instruction formats of the DPE.

3-9

3.1.4 Source/Destination Field (Bits 40-47)

Elements ~re specified by an 8 bit number.

The 8 bit number is identical to the high order 8 bits

of a standard AADC 20 bit wide address. When commands

are sent to an element, the address i~formation con­

tained within the 36 bit instruction word contains the

Destination information to specify the Receiving element.

The element address is specified by bits 12-19 in the

command word.

Since commands require an eventual return of

information to the originating element, the 8 bit field

associated with a transmission command specifies the

Source Subsystem in bits 40-47.

Data is transmitted only to an element which

requested the data. Elements which request data from

other elements must be ready to receive the returned

data when it is provided. When a bus contains data,

the associated 8 bit field contains the destination

information (bits 40-47).

3-10

Each channel has two names, physical and logical.

The physical name is wired in by the channels physical position

in the AADC housing. Upon system reset, the logical name is

made to be the physical name. The AADC Executive can, via the

Set System Parameter (Op Code 25) instruction, determine the

logical name of the channel. Independent of the logical name,

all Emergency Commands are sent to the physical name of the

channel.

One channel code has been reserved for specifying the

executive system wherever it resides in the system. This is

code FF (hexadecimal notation).

3.2 Channel

The channel control must perform sequencing of

queue addressing output buffer selection, as well as decisions

about the function to be performed as a result of information

sent on the bus..

The channel unit contains four major parts which are the

bus itself including' the drivers, a bus controller circuit, the

input queue, and an output queue. The bus and bus controller were

discussed in Section 3.1. The Input and Output Queues will be

discussed in the following sections.

3-11

3.2.1 Input Queue

The input queue is divided into two parts

conceptually. These are Command and Qata. The physical

component is 16 words in length, with commands using

8 words and data using 8 words.

Information is stored into these queues in a

first-in/first-out fashion. Of the information on the

bus only the retried bit is stripped off. All other

information is placed into the queue.

The queue will be considered empty when the

next word to be read equals the next word to be written

and the last operation was a read from the queue. The

queue will be considered full when the next word to be

read equals the next word to be written and the last

operation was a write into the queue.

The queue full signal is used to refuse further

information from the internal buses.

The routing of data and command is a function

of the transmission field. In the case of the second

word of a two word command, the information is always

placed in the command queue.

Two deviations from this are the no transfer

and continue bus tags. No transfer indicates that the

device which has the bus has nothing to send. This

word is ignored by the receiving channel unit.

3-12

Continue,. when received, should be used by the

element to format as a data word and is placed in the

data queue.

An Emergency command is allowed to interfere

with any operation in progress and will be passed through

after validation.

Emergency commands bypass all commands presently

waiting in the input queue, appearing immediately at the

front of the queue.

As soon as the words received by the channel

are validated and placed in the Input Queue attempts

are made to send them out to the DPE one after another.

3.2.2 Output Queue

Before sending the information out on the AADC

Internal Bus, the channel unit first places all command

words and data words received from the DPE

into the Output Queue. Up to 16 words mixed, command

and/or data, can be entered into the queue in the sequence

of arrival.

3-13

The main purpose of the Output Queue is' to provide

a variable depth word buffer between the DPE, capable of sending

a continuous stream of data words during burst mode, and the

AADC Primary Bus with its automatic error retry requirement.

3-14

4.0 PROGRAM MANAGEMENT UNIT (PMU)

The PMU is a digital data processor with a 36 bit

word le?gth. It is capable of performing operations using

half-word (16 bit), and full word (32 bit) operands. It

performs arithmetic operations using sign magnitude integer

arithmetic. The most significant bit of an operand is the

sign bit: 0 means positive, 1 means negative.

4.1 PMU Registers

4.1.1 Addressable Registers

The registers in the following subparagraphs are

addressable for the specified PMU operations.

4 1.1.1 General Scratchpad Registers

The PMU has one general scratchpad register set,

consisting of 32 16-bit registers designated SP [0] through

SP on. Each SP register is capable of holding a half-word

operand for arithmetic, shift and logical functions, and as

temporary storage. SP [0] - SP [15] are directly addressable

by designators in the instruction words. SP [1] through SP [7J

may also be used as index registers, addressable by another

set of designators in the instruction words.

For half-word operations SP [0] - SP [15] are each

selectable as a l6-bit accumulator. For those operations in

which a full word accumulator is required. a 32 bit register

4-1

is made available by concatenating one register selected

from SP [0] - SP [15]'with the corresponding register

selected from SP [16] - SP [31] , respectively. The low

bank of 16 registers will contain the most significant portion

of the operand while the high bank, SP (16] - SP [31] , will

contain the least significant portion of the operand.

Within the general scratchpad set, all are available

as pointers and operand registers. However, the following

registers are dedicated to automatic functions in the DPE

configuration and any programmatic contents may be destroyed.

4.1.1.2

SP [15]

SP [16]
SP [17]

SP [18]
SP [19]
SP [20]
SP [21]
SP [22]
SP [23]
SP [24]
SP [25]

SP [26]

SP r 2 7]

SP [28]

SP [29]

SP [30]

SP [31]

Interrupt Stack Pointer

Used for Array Control in DPE
Configurations

Array Stack Deferral Pointer

Deferral Overflow/Underflow Stack Pointer

Address of Indirect Dimension Word

P Counter Temporary Storage

Internal Registers Temporary Storage

Parameter Stack Linkage

Program Address Register

The PMU has a 16 bit program 3ddress register which

is designated P. The contents of P specify the address of

the. next instruction. The computer increments by one the

4-2

contents of P for each instruction. Instructions·which cause

program jumps enter P with ~he address of the instruction to

which program control is transferred. When the operations

specified by the current instruction are completed, the

contents of P are then used to obtain the next instruction.

4.1.1.3 Interval Timer Register

The PMU has a 16 bit Interval Timer Register. When

enabled, the contents of the Interval Timer Register decrement

at an interval of 307.2 microseconds. The Interval Timer

Trap Signal is generated when the contents of the Interval

Time.r Register equals zero. The Interval Timer Register is

loaded and the decrementing sequence is enabled under program

control. The total elapsed time capacity for the Interval

Timer Register is approximately 20.1314 seconds.

4.1.1.4 Source Registers

The PMU contains two source registers. The Program

Source register (P-source) contains the 8 bit code of the

external system element that requested the presently running

program. The Interrupt Source register (I-source) contains

the 8 bit code of the external system element that supplied

the most recent external instruction. If the PMU is processing

an external instruction, the I-source register is defined as

containing the active source for that instruction. If the PMU

is processing an internal instruction, the P-source register

holds the active source.

4-3

4.1.1.5 Halt (HALT) Indicator

When the Halt Indicator is set (HALT = I), the PMU

will not perform program operations, but will only respond to

externally generated instructions or internal traps. The

Halt Indicator is set when bit 11 in either an Interval Timer

Control/Halt instruction (Op Code 32) or a Transfer to Executive

instruction (Op Code 37) is set and the instruction is executed,

or the indicator is set by the Reset line. The Halt Indicator

is reset (HALT = 0) by the execution of a Proceed instruction

(Op Code 01), or a Return Stack to P and Proceed instruction

(Op Code 53) , or a Transfer and Stack instruction (Op Code 51) .

4.1.1.6 Trap Level Register

The PMU contains a five bit register which maintains

the trap priority level of the presently running program

(see section 6.0).

4.1.1.7 Parity Error Inhibit (PEl) Indicator

When this indicator is set (PEl = I), the parity

error trap signal will not be generated and no response will

be made to a parity error. This indicator is set or reset by

bit 9 of the Set System Parameter instruction (Op Code 25).

4.1.1.8 Procedure Kernel Register

This two-bit register indicates which of the four

lowest page areas of memory that the current program is

referenced in.

4-4

4.1.1.9 Data Kernel Register

This two-bit register indicates which of the four

lowest page areas of memory that is referenced for the data

being used for current program.

4.1.1.10 Upper Bound Register

This four-bit register is used to designate the

highest page area, within the 16 least significant page areas

of local memory which are subject to automatic page replacement

(see Section 4.3.3.2). This register is set with bits 8-11

of the Set Task Parameters instruction (Op Code 29).

4.1.1.11 Lower Bound Register

This two-bit register is used to designate the

highest page area, within the four page areas normally reserved

for kernel inf9rmation, which are not subject to automatic

page replacement (see Section 4.3.3.2). This register is set

with the least significant bits (bits 14-15) of the Lower

Bound field (bits 12-15) of the Set Task Parameters instruction

(Op Code 29).

4.1.1.12 Executive Mode Indicator

This indicator, when set (= 1), designates that the

PMU is in the executive mode and capable of performing all

privileged functions. When this indicator is clear (= 0),

the PMU is not in the executive mode. (See Section 4.2.2.)

4-5

4.1.1.13 Data Addressing Mode Indicator

This indicator, when set (= 1), designates that the

data is to be accessed virtually, through references located

in the Data Kernel. When clear (= 0), this indicator designates

that the data is to be accessed directly from local memory.

This indicator is set or reset by bit 23 of the Set Task

Parameters instruction (Op Code 29).

4.1.1.14 Replacement Algorithm Register

This two-bit register contains the code for the

presently operational replacement algorithm (see Section 4.3.3.2).

This register is set with the contents of bits 18-19 of the

Set Task Parameters instruction (Op Code 29).

4.1.2 Non-Addressable Registers

The ~egister in the following subparagraph is not

directly addressable by the programmer, but is included here

for definition. It is referenced later in the manual in the

discussion of virtual addressing.

4.1.2.1 Procedure Page Register

This non-addressable eight-bit register contains the

direct local memory address of the page of procedure currently

being executed. The contents of this register are appended

to the eight least significant bit of the program counter P,

the displacement field, to obtain the direct local memory

4-6

address of the next instruction to be executed. This·

register is set with the contents of bits 0-7 of the procedure

kernel word during a procedure page fetch. (See Section 4.3.3.2.)

4.2 Modes of Operation

A DPE can operate in either one of two modes, Problem

or Executive.

4.2.1 Problem Mode

In this mode of operation, the Executive Hade Indicator

is cleared to zero. This is the normal mode for interpret~ng pro­

cedure. All security protect mechanisms involved with virtual

addressing are invoked. (See Section 4.2.2.2.2).

4.2.2 Executive Mode

In this mode of operation, Executive Mode Indicator

set to one, a DPE posse~ses capabilities that would otherwise

be illegal when there is an attempt to use them. The following

description is in three parts.

· Entrance to Executive Mode

· Executive Mode Capabilities

· Exit from Executive Mode

4.2.2.1 Entrance into Executive Mode

There is only one way to enter the Executive Mode,

the receipt of an external Transfer and Stack Kernel 0

instruction (Op Code 54) addressed to the channel which

4-7

recognizes the resource name hex "FF." The Transfer and

Stack Kernel 0 instruction in this structure is a two word bus

command. The first word, the instruction itself, invokes the

Executive at a fixed entry point, a transfer to the instruction

located at the virtual address hex "FFOO." The Executive,

once invoked, must obtain the interrupt mask data word from

its channel by executing a Write Word From Input instruction

(Op Code 03). This mask word contains the necessary information

for the Executive to determine what actions to perform.

(Note: Further interrupts are inhibited until the interrupt

mask word is fetched.)

The two word Transfer and Stack Kernel 0 instruction

is transmitted to the Executive in the normal course of

computation by one of two possible mechanisms: programmed or

channel interrupt.

4.2.2.1.1 Programmed

When a DPE wishes to interrupt the Executive, it

executes a Transfer to Executive instruction (Op Code 37).

This instruction causes the creation of the two word Transfer

and Stack Kernal 0 command. The first word of the Transfer

and Stack Kernel 0 instruction has been described in Section

4.2.2.1. The second word has the following format:

RESOURCE
NAME o 0 INTERRUPT MASK

4-8

Bits 0-7 contain the resource name of the resource

performing the Transfer to Executive instruction. The contents

of this field are derived from the Resource Name field (bits 16-23)

of the Set System Parameter instruction (Op Code 25).

Bits 8-15 are cleared to zeroes, which indicates

that this interrupt was due to the execution of a Transfer to

Executive instruction.

Bits 16-31, the interrupt mask, are the effective

address field of the Transfer to Executive instruction (normally

instruction bits 16-31 as an immediate). The meaning of the

interrupt mask will be established by system software conventions.

4.2.2.1.2 Channel Interrupt

The channel, in response to ·certain conditions that

are described below, sends an interrupt to the executive. The

channel creates a two word Transfer and Stack Kernel 0 command.

The first word has the same format as an interrupt generated

as a result of the execution of a Transfer to Executive instruction.

The second word has the following format.

STATUS P
L BUS SEND RECEIVE -.2""':::'f-,.
ERROR ERROR ERROR (}:'<$',,-~~
~~~'" i" 

RESOURCE 
NAME 0 1 #1 #2 #3 #1 112 #3 #1 #2 #3 o 0 0 0 0 

011121314151617 81.1 10 1"1"1'"1 14 115 16 17 18 19 20 21 22 23 24 25 26 27] 28129130131 

4-9 



Bits 16-26 signify the occurrence of various interrupt 

conditions that the channel has detected. These conditions are 

independent and more than one may occur simultaneously. It 

should 'be noted that once a condition is detected by the 

channel and transmitted to the executive, subsequent occurrences 

of the same condition will not cause another executive interrupt 

unless the channel received a Set System Parameter instruction 

(Op Code 25) in the interim. (See Appendix I). 

Bits 8-15 signify the interrupt originates from the 

channel. Bits 0-7 are the resource name for the originating 

channel. 

It should be noted, nothing prevents an executive 

from sending an interrupt to itself. 

4.2.2.2 Executive Mode Capabilities 

When, a DPE is in the executive mode of operation, 

it possesses capabilities not present in the problem mode. 

These capabilities involve two areas: the security system and 

emergency commands. 

4.2.2.2.1 Emergency Commands 

When a DPE is in the executive mode, two word 

emergency commands can be transmitted to an AADC resource 

via the Command Subsystem instructions (Op Codes 47 and 4F). 

If bit 8 of the Command Subsystem instruction is set to one, 

a two word command is transmitted that has a transmission tag 

designating emergency commands. See Section 4.3.2 for a 

description of emergency commands. 

4-10 



4.2.2.2.2 Security System 

When the DPE is in the executive mode, all security 

violations involving the protection mechanisms for the kernel 

area cannot occur, i.e., read, write and. command protect. 

Security violations that result due to an improper data structure 

still occur in the executive mode. For example, transferring 

to word data or attempting to execute the load page instruction 

with word data. 

The kernel protect violations do not occur in the 

executive mode. It should be noted that this is true whether 

the executive is attempting to access the kernel in its own 

task memory, or is attempting to access a kernel area in a 

remote resource. 

4.2.2.3 Exit From Executive Mode 

The ~xecutive exits from the executive mode by 

executing a Return Stack to P instruction (Op Code 52) or a 

Return Stack to P and Proceed instruction (Op Code 53). Upon 

completion of this instruction, the DPE is either in the problem 

mode or a previous level of the executive. It is not possible 

to return to the executive mode when a return stack instruction 

is executed in the problem mode. There is a hardware override 

which leaves the DPE in the problem mode. 

4-11 



4.3 Detailed Instruction Performance 

Instructions for the DPE are of three types: external. 

emergency, and internal. External instructions and emergency 

.commands are received by the DPE over the primary bus system. In­

lternal instruction~ are obtained_from local m~~~_r:t' either as the 

result of a trap or a normal program counter instruction fetch 

or they are obtained from the primary bus specifically as the 

word following a Command Subsystem/Address Modifications (Op 

Code 47). 

4.3.1 External Instructions 

Any pending external instruction is processed immediately 

at the conclusion of the instruction currently being processed. 

External instructions are received over the primary bus system 

in a 50-bit format (see Section 3.1). The external instruction 

is the 36-bit high order (bit positions 0-35) portion of the 

incoming 50-bit .transmission word, and hds the following format. 

OP CODE SPA XXXX ADDRESS M AP X X 

01'1'1314151617 8 I 9110 III "1"1"1 15 '61'71'81'9 !20 121! "123! "125126127128129130131 32 33 34 35 

Bits 0-7 specify the operation to be performed. 

Bits 8-11 specify a particular scratchpad register or 

specify a special purpose function depending upon the op code. 

Bits 12-5 are unused. 

4-12 



Bits 16-31 specify the operand or the addr~ss of 

the operand. 

Bit 32 define whether a memory reference is to be 

made or not. 

Bit 33 define whether this is a PMU or an AP instruction. 

Bit 34-35 are unused. 

The above defined fields have the same meaning as 

for internal instructions,(see Section 4.3.4.1 for further 

definition of these fields). 

Address modification (bits 12-15) and parity (bit 35) 

checking are not performed by the PMU for external instructions. 

The instruction trace (bit 34) trap also is not generated for 

any external instruction. 

4.3.2 Emergency Commands 

An "emergency command" is.a mechanism to enable the 

executive processor (or any other permitted device, such as the 

control panel) to interrupt a channel and cause the "emergency 

command" to be the next thing transmitted via its secondary bus. 

Identified by the Transmission Code "111" the emergency 

command is a two word instruction. Although any two~word instruc­

tion can theoretically be sent, the present AADC design contains 

a mechanism for producing the emergency transmission code only in 

conjunction with either of the COMMAND SUBSYSTEM instructions. 

4-13 



This, the first word received by the channel will be a routing 

word, and the second will specify the action to be performed. 

As previously mentioned, the channel, when receiving 

an emergency command addressed to one of its secondary bus 

devices, transmits the word, with it emergency code, as its next 

transmission. This 1S the only type of command information 

that takes precedence over data, and the integrity of the program 

of the addressed processor cannot be maintained -- the emergency 

command will interrupt an array being read or, in the case of 

the DPE, a pipeline of data requests. Recovery from these 

interruptions will probably be impossible. Sending a HALT 

command prior to the emergency command will not necessarily be 

effective in alleviating this problem unless sufficient time is 

allowed to ensure that the HALT was accepted. 

Emergency commands may also effect other subsystems 

connected to the same channel. When the channel places the first 

word on the secondary bus, it begins to count the clock pulses. 

If 4096 clock pulses pass and the receipt of the command has 

not been acknowledged, the channel raises its SYSTEM MASTER 

RESET line and resets all the subsystems on the secondary bus. 

When'the Channel is known to be reset, the first sub­

sequent instruction must not be an emergency instruction. After 

receipt of this first instruction, emergency instructions can be 

properly received. 

4.3.3. Internal Instructions 

Internal instructions are obtained either in response 

to a trap, a Command Subsystem/Address Modification instruction 

(Op Code 47) or by a program counter reference of memory. Such 

a reference to memory will occur when no external instruction is 

pending, the HALT indicator is zero and no trap of higher priority 

than the present trap register value is pending. In such 

circumstances, the contents of P are used to obtain an instruction. 

4-14 



4.3.3.1 virtual Addressing Mechanism 

In normal operation, a processing element operates 

on a single segment of a program until completion. It then 

performs another. Each of these segments.is termed a program 

module. Associated with each program module is a "kernel 

area" which may contain a maximum of 4 kernel tables and which 

normally remain resident in TM throughout the running of the 

program module. This kernel typically contains, among other 

information, the direct BORAM addresses of the relllainlng pages 

of the program module. It may also contain RAMM data addresses, 

and control information necessary to run the program. Kernels 

associated with other program modules (as well as the Executive 

kernel, if required) may also be resident in task memory. The 

remainder of TM is used to hold currently running program 

pages, subject to dynamic replacement; and also is used to hold 

the parameter stack and array data required by the arithmetic 

processor. 

TASK 
MEMORY 

ARRAY DATA, PARAMETER STACK 

CONTAINS PROGRAM DATA AND 

PROCEDURE PAGES SUBJECT 

TO DYNAMIC REPLACEMENT 

KERNEL TABLES 
~------------~------------~--.~.-

UPPER BOUND 

_ _ LOWER BOUND 

The virtual addressing mode is the normal mode in 

the AADC system. In this mode, a fetch cycle is implemented 

to access procedure or word data from BORAM or RAMM respectively. 

via the Channel. When data is absolutely addressed, procedure 

is virtually addressed and all data is resident in Task Memory 

(kernel data entry not accessed). 

4-15 



The Virtual Addressing Mechanism's 

'Jltimate objective is to calculate the absolute address of 

the operand referenced by the effective virtual address of 

the in&truction executed. The effective virtual address is 

used in this description to mean the 16 pit address obtained 

after indexing and all modes of indirection are completed. 

4.3.3.2 Normal Instruction Fetch 

If the present instruction does not specify a transfer 

or escape, and if a Page Carry condition (see Section 4.3.3.2.2) 

does not exist, and if a pending trap is not about to be honored, 

the PMU will obtain its next instruction in the following manner. 

4.3.3.2.1 Program Counter Operation 

The Program Counter P has the following format: 

PAGE DISPLACEMENT 

To fetch an instruction, an address is formed by 

~ppcnding the Procedure Page Register (see Section 4.l.2.l) 

to the displacement field of P. 

PROCEDURE 
PAGE REGISTER DISPLACEMENT 

4-16 



This address is used as an absolute local memory 

address of the instruction to be fetched and executed. After 

this instruction is fetched, P is incremented by one to point 

to the next sequential instruction. If the instruction thus 

obtained does not specify a transfer or an escape and if the 

contents of the displacement field (bits 8-15) of P were hex FF, 

a Page Carry condition exists. 

4.3.3.2.2 Page Carry 

Upon completion of the fetch of an instruction, P 

is incremented by one. If a carry from bit 8 to bit 7 occurs 

during this process, a page carry exists. A page carry 

indicates that the instruction just fetched was located at 

word 255 of the present page. Since the process of incrementing 

P also incremented the page field of P, the procedure kernel 

must be accessed to determine if the next sequential procedure 

page is resident in local memory. Thus, a page carry condition 

results in a cQntrol sequence being entered which unconditionally 

transfers to the instruction indicated by the incremented P. 

For example, if the present P indicates page 10, 

location 255, incrementing P results in P indicating page 11, 

location O. The Procedure Kernel entry associated with page 11 

is accessed to determine if page 11 is resident in local memory. 

4.3.3.3 Procedure Page Fetch 

When a Page Carry condition exists, or when the 

instruction just executed was a Transfer causing a change in P, 

or an escape instruction, a procedure page fetch is performed. 

4-17 



The contents of the page field (bits 0-7) of the program 

counter are appended to th~ contents of the Procedure Kernel 

Register (see Section 4.1.1.8) to form a local memory address 

of a kernel entry word. 

PROCEDURE 
KERNEL REGISTER 

P COUNTER 
PAGE FIELD 

It should be remembered that the Procedure Kernel 

Register is a 2-bit register. Therefore, in the above format 

these two bits occupy bit positions 6 and 7 with zeroes in 

bits 0-5. 

4.3.3.3.1 Kernel_Entry Word 

The Kernel Entry Word accessed has the format: 

4-18 



A kernel entry word consists of 36 bits, 32 of 

which are directly used in processing. The remaining 4 bits, 

the least significant byte, contains certain security-oriented 

control'information. These bits are interpreted as follows: 

a) Read-Protect (Bit 32) - When this bit is set, 

the program is not permitted to read the 

desired information unless the PMU is in the 

executive mode. If this bit is discovered 

set in the kernel in the course of a normal 

virtual Read fetch cycle, the PMU halts and sig­

nals the Executive if the trap routine so indi­

cates. 

b) Write-Protect (Bit 33) - When this bit is set, 

the program is not permitted to write into the 

indicated virtual segment unless the PMU is in 

the executive mode. If this bit is discovered 

set in the kernel in the course of a normal 

·Store type command, the PMU halts and signals 

the Executive if the trap routine so indicates. 

c) Command Protect (Bit '34) - This bit, when set, 

indicates that the associated kernel word 

contains a command to be interpreted by another 

sUbsystem. Certain PMU instructions permit a 

program to issue commands to other sUbsystems. 

These instructions may only issue those commands 

located in the kernel and marked by this bit. 

d) Parity Check (~it 35) - This bit assures an 

odd parity within the 36 bit word if no single 

error exists. 

4-19 



If the kernel entry indicates word oriented data 

(bit 11 is zero), a Command Violation trap occurs. All 

procedure must be page oriented. (Note: An Execute instruction 

interprets data as an instruction and therefore uses the 

Operand Kernel Page.) 

4.3.3.3.2 Resident Procedure 

If the Command Protect (Bit 34) bit of the kernel 

entry word is one or if the Page/Word (bit 11) bit is zero 

(indicating word data), the Command Protect Trap is generated and 

the remainder of the procedure fetch is aborted. If bit 34 is 

zero and bit 11 is one (indicating paged procedure), the contents 

of the Resident (bit 10) bit is examined. If the page is shown 

as being resident (bit 10 is one), the contents of the TM Page 

Field (bits 0-7) are placed in the Procedure Page Register (see 

Section 4.1.2.1) and the next instruction is fetched according 

to a normal instruction fetch (Section 4.3.3.2). 

4.3.3.3.3 Non-Resident Procedure 

If the kernel entry word indicates paged procedure 

(bit 11 is 1), not resident (bit 10 is zero), and the Command 

Protect bit (bit 34) is a zero, a standard Instruction Transmission 

Word (see Section 4.3.5.2.7) is created with an Op Code 06 (Read, 

Page to Output instruction) and transmitted on the primary bus 

system. The 20-bit System Address of the transmission word is 

equal to bits 12-31 of the kernel entry word. At this point, 

the PMU prepares to accept a page transmission by determining 

the appropriate local memory location in which to place the 

first word of the received page. The page replacement sequence 

that is performed is described in Section 4.3.3.3.4. The page 

4-20 



location in which the incoming page will be stored' is placed 

into bits 4-7 of the kernel ,entry word (bits 0-3 are always 

zero because of the maximum 4K size of the task memory), the 

residency bit (bit 10) is set to one and the kernel entry word 

is rewritten in the local memory location" from which it was 

read. The PMU also places the contents of bits 0-7 of the 

updated kernel entry word in the Procedure Page Register and 

writes the incoming page into sequential local memory locations 

beginning with the address formed by augmenting the contents of 

the Procedure Page Register with hex 00. In addition, the PMU 

locates the kernel entry word, if any, that referred to the 

contents of the page being overlayed and clears the residency 

bit~ (bit 10) to zero. At this point the page replacement 

sequence is complete and the next instruction is fetched according 

to a normal instruction fetch (Section 4.3.3.2). 

4.3.3.3.4 Replacement Algorithm 

Whenever non-resident paged information is brought 

in, the selection of a local memory page location must be made. 

The DPE allows a selection from four different types of algorithms. 

A pair of registers, Lower Bound Register and Upper Bound Register, 

are provided which maintain the bound of the local memory area 

which is subject to replacement. It is within this area that 

the automatic algorithms work.' The algorithm to be used is 

contained in the Replacement Algorithm Register and is set, along 

with the two boundary registers, by the execution of the Set 

Task Parameter instruction (Op Code 29). The four replacement 

algorithms are: 

· Programmer Specified 
· First In/First Out 
· Random 
· Sequential Fill/Random 

4-21 



4.3.3.3.4.1 Programmer Specified 

If the contents of the Replacement Algorithm Register 

are 00, the starting location for the page store is the contents 

of bits 0-7 of the kernel entry word augmented by hex 00. In 

this case, the residency bit (bit 10) of the kernel entry word 

is set to one and the kernel entry word is rewritten into the 

local memory location from which it was read. 

Also, if bits 0-3 of the referenced kernel word are 

not 0000, the page to be replaced is determined by bits 0-7 of 

the just read kernel word (regardless of the specified replacement 

algorithm). In the last case it should be noted that eventhou<Jh 

the replaced page was not generated by the automatic replacement 

logic, the automatic replacement logic assumes that it has. Conse­

quently, the call of successive page replacements via this means may, 

for example, make the replaceable area look filled (Sequential Fill/ 

Random Algorithm) even though a page was never replaced in the 

dynamically replaceable area. 

4.3.3.3.4.2 First In/First Out 

If the contents of the Replacement Algorithm Register 

are 01, the page location in which the new page is to be stored 

is determined in the following manner. Immediately after an 

Initiate New Task instruction (Op Code 28), the new page' is placed 

in the page location immediately abov'e that specified by the 

Lower Bound Register. Thereafter, successive pages are placed 

in the next sequential higher page locations, until a page has 

been placed in the page location specified by the Upper Bound 

Register. Subsequent pages are placed in the location immediately 

above that specified by the Lower Bound Register, and successive 

pages are stored in successive locations as before. 

4.3.3.3.4.3 Random 

If the contents of the Replacement Algorithm 

Register are 10, the random algorithm is used and th~ page 

location is determined in the following manner. The internal 

counter that is used to determine the page location according 

to the first in/first out algorithm is allov¥(;d to continuously 



count in the range from one plus the contents of the Lower 

Bound Register to the value of the Upper Bound Register. 

Whenever the counter reaches the value of the Upper Bound 

Register, it is reset to its lower value. For each page 

replacement according to the random algorithm, the current value 

of the counter is used as the page location for storing the 

incoming page. 

4.3.3.3.4.4 Sequential Fill/Random 

If the Replacement Algorithm Register contents are 

11, the Sequential Fill/Random algorithm is used. Immediately 

after an Initiate New Task instruction (Op Code 28), the new 

page is placed in the page location immediately above that 

specified by the Lower Bound Register. Thereafter, successive 

pages are placed in the next sequential higher page locations, 

until a page has been placed in the location specified by the 

Upper Bound Register. Subsequent pages are then replaced 

according to the random algorithm described in section 4.3.3.3.4.3. 

4.3.3.4 Non Standard Procedure Page Fetch 

In honoring a trap, the PMU performs a Procedure 

Page Fetch according to Section 4.3.3.3 except that Word 255 of 

the Procedure Kernel is used as the kernel word for all cases. 

4.3.3.5 Examplex of Instruction Fetch 

Figures 4 and 5 are illustrative diagrams of 

the steps which occur during the instruction fetch cycle for 

resident paged procedure and non resident paged procedure, 

respectively. Hexadecimal notation is used in these examples, 

where applicable. 

4-23 



4.3.3.5.1 Resj.dent Paged Procedure (Figure 4) 

In this example the current contents of the Program 

Counter "P" indicate that the last instruction (number 255 

decimal) of virtual page OA is to be fet~hed. The local memory 

address of this instruction (llFF) is obtained by catenating the 

contents of the Procedure Page Register (11) to the displacement 

field of P (FF). After this instruction is fetched, P is 

incremented by one which results in a page carry from bit 8 to 

bit 7. As a result, the Procedure Kernel Page Register contents 

for this program module are appended to the page field of P to 

obtain the local address of the kernel word. This kernel word 

inpicates resident paged procedure which is located in local 

memory page 06. This local memory page 06 is loaded into the 

Procedure Page Register and appended to the displacement field 

of P (00) to obtain the local memory address (0600) for the 

virtual address (OBOO) contained in P. 

4.3.3.5.2 Non-Resident Paged Procedure (Figure 5 ) 

For this example it is assumed that the same 

conditions and steps were followed as in the previous example 

up to the examination of the Kernel Word located in local 

memory address 020B. In this example the kernel word indicates 

that the paged procedure is non-resident (bit 10 is zero). 

Therefore, a "Read Page To Output" instruction is created 

and transmitted over the internal bus to the BORAM. For this 

example the PMU address is 00 and the BORAM address is 03. 

The required procedure page is located in address 4D6 in the 

BORAM. Upon receiving the "Read Page To Output" instruction, 

4-24 



PROGFAM COUNTER "P" 

ABSOLUTE ADDRESS 
ItJ TASK MEMORY 
Of VIRfUAL PAGE OA 

FETCH INSTRUCTION 
AT TASK MEMORY 
LOCATION 11 FF 

INCREMENT P BY ONE 
CARRY FROM BIT 8 TO BIT 7 
RESULTS IN PAGE CARRY 

PROCEDURE KERNel PAGE 
REG ISTER - SET BY BITS 
10 - 11 OF OP CODE 28 
'INITIATE NEW TASK' 

TASK MEMORY ADDRESS 
OF KERNEL WORD 

CONTENTS OF I>DDRESS 
02 Oil (KERNEL WORD) 

ABSOLUTE ADDRESS 
IN TASK MEMORY 
OF VIRTUAL PAGE OB 

rETCH INSTRUCTION 
AT TASK MEMORY 
LOCATION 0600 

INCREMENT 
P BY ONE 

Figure 4. 

PROCEDURE 
PAGE REGISTrR 

Virtual Addressing Resident Paged Procedure 

4-25 



r 

~~ .. ~,~f:.~S· ~~J~F 
~ t '·.~l ',', ORD) 

~I~ P~tvIOUS 
t tA',q'~E. 

~.:O~,J ;,rSIDENT 
CC~DITION "READ 
if.(:: TO 
CLi?UT" 
,,,,!RlJCTION 

f'f?tACEMENT 
AL(,CrITHM 
iiEG15TER 

CHANNEL 
TRM,SMI5510N 
WORD SENT 
10 SORAM 

htWORD 
~E(EIVED 
FROM 
SORAM 

256.1, WORD 
PECE!Vf~ 
FROM 
S0RAM 

CONTfNTS OF 
J...:)Df.:ESS0211 
Kl ~NE L WORD Of 
F[PLACED PAGE 
WITH BIT 10 RE,ET 
fOR NON RESIDENCY 

CONTfNTS Of ADDRESS 
Ol.)~ f...lPN[l WORD 
Of t,;E,'/ PAGE 
\',11>, BIT 10 SET fOR 
t£~\DENT PROCEDURE 

A!'SOLUTE ADDRESS 
IN T .. \$K MEMORY 
Of VIRTUAL PAGE OB 

HTCH INSTRUCTION 
hT 1A5~ '''[MORY 
LGet. nOt, 0600 

I'NCHMENT 
'r" BY ONE 

Q(J 
~------------------9~~~'------------------~~--------------------~ 

~ ~ -< STORED IN TASK MEMORY LOCATION 06FF 

PROCEDURE 
PAGE REGISTER 

;';'~~o~ 
{j.{f~Q.'V: WIDE ADDRESS 

Figure 5 .. Virtual Addressing Non-Resident Paged 
Procedure Programmer Specified Replacement 

4-26 



the BORAM executes the instruction by accessing its location 

4D6 and causing the transmission of the full 256 word page 

to the PMU. Upon receiving the words from the BORAM, the 

PMU stores the words in consecutive locations in local memory 

page 06, as determined by the page field' of the Kernel Word 

because the replacement is programmer specified. The kernel 

word for the paged procedure which formally was stored in page 

location 06 is tagged non-resident (bit 10 is reset to zero). 

In this example, this kernel word is located in memory location 

0211. The kernel word, memory location 020B, for the page 

just read into memory is marked resident. From this point on 

the same procedure as described in the previous example is followed 

to obtain the final instruction. 

4-27 



4.3.4 Instruction Word Interpretation 

4.3.4.1 Instruction Format 

The general format for both PMU and AP instructions 

are essentially the same and is given in Figure 6. 

Bits 0-3 are termed the HI-OP bits, bits 4-7 are 

termed the LO-OP bits. HI-OP and LO-OP values are specified 

in hexadecimal notation. These two bytes, in combination, 

are termed the Operation Code (or Op Code), and specify the 

operation to be performed. 

When ·bit 33 equals zero, indicating a PMU instruction, 

bits 8-11 indicate the scratchpad register (SPA) (or register 

pair in the case of full word instructions) which is to be 

used as the accumulator. When bit 33 is set to one, indicating 

an AP instruction, bits 8-11 are termed the parenthetical 

field. Bit 8 is an arithmetic precision bit and bits 9-11 

specify parenthetical action. ' 

OP CODE 

SCRATCHPAD 
ADDRESS OR ADD RESS 

PARENTHETICAL MODIFICATION 

FIELD ~LD 
r ".... 

'\~ :~~~~'< 
HI-OP LO-OP I X OPERAND ADDRESS MAT P 

P 

011 12 13 41 5 16 17 819110 111 12 IJ J 14 1 15 16117118119120121 122123124125126127128129130131 32 i 33 34 35 

FIGURE 6 GENERAL INSTRUCTION FORMAT 

4-28 



Bits 12-15 specify requisite address modification. 

Bit 12 specifies whether the address derived by this instruction 

is the effective address of the operand or the address of 

another address. When bit 12 is set, an. indirect addressing 

cycle is performed. Bits 13-15 specify one of seven index 

registers (Sp [ 1 ] - [ 7 ] ) to be used to index the instruction. 

If no indexing is desired, an index code of "000" is specified. 

Indexing occurs prior to Indirect Addressing. 

Bits 16-31 specify the address of the operand. The 

PMU will typically be in "virtual Address Mode," and this field 

thus specifies the virtual address of the operand. In this 

case, bits 16-23 specify the location of the RAMM segment address 

in the kernel, and bits 24-31 specify the displacement of the 

particular operand in that segment. In cases where direct 

addressing of task memory mode has been specifjed, bits 

20-31 give the direct address. When both bit 12 and bit 32 

are zero, the contents of bits 16-31 are taken as an immediate 

operand. 

Bit 32, when set, specifies if a memory access is 

to be made. 

Bit 34, when set, will cause the instruction trace 

trap to be raised upon completion of the execution sequence. 

Bit 35 specifies odd parity for the instruction 

word. 

4-29 



4.3.4.2 Parity (Bit 35) 

Parity of the instruction word (bit 35) is checked 

after the instruction is read from local memory. If parity 

does not check, the Parity Error Trap is.enabled. Parity is 

generated on all local memory writes. Thereafter, bit 35 is 

ignored in instruction processing. 

4.3.4.3 Addressing Modification (Bits 12 thru 15) 

In all internal instructions, the address portion 

of the instruction word may be modified by indexing or indirect 

addressing or both. Indexing precedes indirect address 

modifications. 

4.3.4.3.1 Indexing (Bits l3 thru 15) 

The Index field (bits 13-15) specifies one of 

seven index re~isters (scratchpad registers 1-7) or the Index 

field (000) specifies that indexing is not to be performed. 

If indexing is required, the contents of the specified index 

register is added to the contents of bits 16-31 of the instruction 

word. The sum replaces the bits 16-31 of the instruction word. 

INDEX 

4.3.4.3.2 Indirect Addressi~Bit 12) 

The process of indirect addressing entails replacing 

bits 12-32 of the original instruction word. Bit 12 of the 

4-30 



original instruction, when a one, specifies that indirect 

addressing is to be performed. m1en bit 12 is a 0, no 

indirect addressing is performed. (See Sectim 5.3.13 for indirect 

addressing in regard to Dimension Words) 

I M 

oT I] 2 13 1 • 1 5 1 61 7 I sl 91 10 I" 17 131141151161~71Isll;12012l122123124125r26127128129130131 32 3313.135 

~en bit 12 is a one, bit 32 specifies one of two 

indirect modes: Memory or Register Indirect Addressing. 

4.3.4.3.2.1 Memory Indirect Addressing (Bit 32 is ONE) 

I INDEX ADDRESS 1 

'-1' 12 I' 1"1 5 I 61 7 I s191 'o I" 12 13114]15 161'7118119120121 122123124125126127128129130131 32 33134135 

~~n bit 32 is one, and indirect addressing is to 

be performed (bit 12 is one), bits 16-31 are used to directly 

!;pecify an indirect word. The fetch of this indirect word is 

accomplished as in Section 4.3.4.4. The contents of bits 12-32 

of the fetched indirect word replace bits 12-32 of the original 

instruction word. 

i tJrlored. 

The remaining bits of the indirect word are 

4.3.4.3.2.2 Register Indirect Addressing (Bit 32 is zero) 

r . '<' 

! OLD NEW 

! 
1 INDEX M UNUSED REGISTER I INDEX 0 

FIELD FIELD 

[ : I ' I 2 13 I. I 5 I 6 1 7 I sl 91 10 I" 12 13114115 16 17 18119120121!22 231 " 125 126127 28 29130]3J 32 

4-31 



When bit 32 is zero, and indirect addressing is to 

be performed (bit 12 is one), bits 12-32 of the original 

instruction word are replaced as follows: 

4.3.4.3.3 

Bits 28-31 replace bits 12-1"5 

Bit 17 replaces bit 32 

The contents (bits 0-15) of the scratchpad 
register specified by bits 23-27 replace bits 16-31 

In addition, bit 16, if a one, indicates a 
Replacement operation (see Section 4.3.4.3.3) 

Chaining of Address Modification 

If indirect addressing was required, the process 

of indexing is again performed and indirect addressing may 

be repeated. If the Replacement operation was specified from 

the previous register indirection, bits 16-31 of the modified 

instruction word (after indexing) are written back into the 

register specified by the preceding register indirect cycle 

(4.3.4.3.2.2). In all cases, bit 12 of the modified instruction 

word is then checked. If bit 12 is a one, the process of 

indirect addressing .is repeated as before. If bit 12 is a 

zero, the operand cycle will commence. 

4.3.4.3.4 Examples of Address Modification 

Figures 7 through 9 are illustrative examples of 

the various forms of address modification discussed in section 

4.3.4.3. The digits used in these examples are either binary 

or hexadecimal and may be discerned by the field length when 

the digit(s) are used. Although the normal addressing mode is 

virtual, it has been assumed for simplicity that the addressing 

mode in these examples is absolute. 

4-32 



4.3.4.3.4.1 Exa~le_ No.1 (Figure 7 ) 

This example indicates the steps involved during 

address modification of a half word PMU instruction 

(bit 33 = 0) using indexing and direct'memory fetch of the 

operand. In the original instruction word the index field 

(bits 13 - 15 ) indicates that the contents of Index Register 

No. 2 are to be added to the contents of the address field 

(bits 16-31). This addition results in a new address of 

1170 for the modified instruction word. No indirection is. 

required (bit 12 is zero) and because bit 32 is a ONE, a 

memory access is to be made for the operand. Because this 

instruction contains a half word op code the address 

field of the modified instruction word is shifted right one 

bit and a leading zero added to the high order bit position 

to obtain the actual memory location (08B8) of the operand 

(see section 4:3.4.4.1). Bit 31 of the modified instruction 

word was a zero which sbecifies that the left half of the 

32 bit operand read from memory is to be used for the 

execution of this instruction. 

4-33 



ORIGINAL 
INSTRUCTION 
WORD 

INDEX 
REGISTER 
(SCRATCH PAD) 
NO.2 

MODIFIED 
INSTRUCTION 
WORD AFTER 
INDEXING 

MEMORY 
LOCATION 
08BS 

SHIFT RIGHT ONE BIT 

TO OBTAIN MEMORY ADDRESS 

OPERAND 
(SPECIFIED BY BIT 31 OF 
MODIFIED INSTRUCTION) 

CONDITIONS - PMU INSTRUCTION (BIT 33 IS 0) 
HALF WORD OP COD E 
INDEXING, MEMORY OPERAND 
FETCH NO INDIRECTION 

FIGURE 7 Address Modification Example 1 

4-34 



4.3.4.3.4.2 Example No.2 (Figure 8) 

In this example, a half word PMU instruction 

(bit 33 = 0) is modified by memory indi~ection and indexing 

prior to a memory fetch of the operand. Indexing always 

precedes indirection, however, in this example the index 

field of the original instruction word is zero resulting 

in no index modification. Bit 12, being one, and bit 32 

set to one, indicates that memory indirection occurs. The 

indirection process results in bits 12-32 of the original 

instruction word being replaced by bits 12-32 of the contents 

of, the memory location (015D) as specified by the address 

field of the original instruction. The resulting modified 

instruction now specifies that the contents of Index Register 

No. 1 are to be added to the contents of the address field 

in order to obtain the new operand address. Again, as in 

Example No.1, this instruction involves a half word 

op code. Howe~er, because bit 31 = 1, the right half of 

the 32 bit operand read from memory is used for the execution 

of this instruction. (See Section 4.3.4.4.1) 

4.3.4.3.4~3 Example No.3 (Figure 9) 

For this example it is assumed that the instruction 

is a .full word PMU instruction calling for register 

indirection, indexing and an immediate operand. Bit 12, of 

the original instruction word, being set to one with bit 32 

set to zero specifies register indirection, with bits 23-27 

specifying Register No. 20. The contents of this register 

4-35 



r---

ORIGINAL 
INSTRUCTION 
WORD 

'MEMORY 
LOCATION 
0150 

1 r 
r ----'\r~--------- -------------,\~ 

MODifiED 
INSTRUCTION 
WORD AfTER 
MEMORY 
INDIRECTION 

r 
INDEX 
REGISTER 
(SCRATCHPAD) 
NO.1 

MODifiED 
INSTRUCTION 
WORD 
AfTER 
INDEXING 

,------
T 

r 

CONDITIONS - PMU INSTRUCTION (BIT 33 IS 0) 
HALf WORD OR CODE 
MEMORY INDIRECTION, INDEXING, 
MEMORY OPERAND fETCH 

OPERAND 
(SPECIFIED BY BIT 31 OF 
MODifiED INSTRUCTION) 

'INDIRECTION IS TO A fULL WORD 
EV[ N If OP CODE IS fOR 1/2 WORD 

FIGURE 8 Address Modification 

4-36 

Example 2 



INAL ORIG 
INSTR 
WORD 

UCTION 

tHPAD SCRAT 
RWIS 
NO. 

TER 
,0 

IFIED MOD 
INSTR 
WORD 
REGIS 
INDIR 

UCTION 
AFTER 

TER 
ECTION 

INDEX 
REGIS 
(SCRA 
NO. 

t 
TER 
TCHPAD) 
2 

SCRA 
REGIS 
NO. 

(REPLA 
81T 12 

TCHPAD 
lER 
20 
CEMENT 
~ 1) 

FlED MODI 
INSTR 
WORD 
INDEX 

UCTION 
AFTER 
ING 

OP CODE SPA 

FULL WORD· I 1 I 0 0 0 II 0 
NOT 
USED 

REGISTER 

O~ o 
ti 

9' .< INDEX , 

1 0 1 ~O:OIO;O o 0 I Tip 

101'1'1'1'1'1'1 71'1'1 10 1" 1ZllJlf"I'SI16 1718119120121122 "I "I ,< I" i "I" 129 '" I" 32331 34 135 

, 

, 

\ 

r I 
''--.,r-' '"---~ 

o 0 A 4 I 
01' 1'1'1' 1'1 '1 71 '1'1'01"1" I'J I" 1"1 

T 

1 
OP CODE SPA 

J [0 
o I' 1'1'1'1'1' 171 ' I '1'01"1" 

T 

o 0 1 3 

oJ'J'J' j '1')' 171 'I '1 10 1"1" 

1 

i 
o 0 8 7 

01' 1'1'1' 1'1 ' 17 I ' I • 1'01"1" 

. 
1 

OP CODE SPA 

I 10 

.J ,), j 'I 'I 'l'17J' I • 110 H 12 

o 0 0 0 

• I' 1'1' I ' I' I ' I 71 a I • I '·1 "I" 
'-" 

OPERAND 
FOR SPA 

I 
1 

INDEX v ADDRESS 

o 1 0 o 0 A 4 010 TI p 

'~I"I"I "1"1" l"I~}'I"I"I"I"I30I" 
.. -

"1"1" "1"1" I" 

IJI 14 11S 

I 

~ 

1Jll~J15 

ADDRESS ,,-'"'-1 
X X X o 0 8 7 010 + 
"1"1" "1 17 1"1"1"1"1"1" "1"1"1"1"1"'1'01" "1"1"1"1 

IMMEDIATE 
OPERAND 

00 8 7 

lJI141J5 "1"1" I" 1"1" I "1"1 "1"1"1"1 "I" 1'·1" 
A I 

~ 

OPERAND 
FOR SPA. 16 

CONDITIONS· PMU INSTRUCTION (BIT 33 IS 0) 
FULL WORD OP CODE 
REGISTER INDIRECTION WITH 
REPLACEMENT, INDEXING, 
IMMEDIATE OPERAND 

FIGURE 9 Address Modification - Example 3 

4-37 



are then used for the address field of the modified instruction. 

At this point indexing is called for and proceeds in the same 

manner as the previrus examples. However, bit 16 of the 

original instruction was set to one, calling for replacement, 

so the contents of Register 20 are replabed by the results of 

the indexing operation. The modified instruction after indexing 

specifies no indirection, bit 12 = 0, and no memory access, 

bit 32 = 0, resulting in an immediate operand. Because the 

instruction calls for a full word operand the the immediate 

operand is only 16 bits, the high order portion of the final 

operand is filled with zeros. (See Section 4.3.4.4.2) 

4.3.4.4 Operand Cycle 

The operand cycle determines the operand for use 

with bits 0-11 of the original instruction word. The state 

of bit 32 of the modified instruction word (after all indexing 

and indirect addressing operations have been accomplished) 

determines whether the operand is contained in memory (bit 32 

is l) or is the actual contents of bits 16-31 of the modified 

instruction word (bit 32 is a). If the operand is to corne from 

memory, the contents of bits 16-31 of the modified instruction 

word are used to address memory to obtain a 36 bit operand. 

Bits 0-15 (left half) or bits 16-31 (right half) of the addressed 

location are selectable, should a half word be required. 

All operands for use by external devices are full 

36 bit operands. For these cases, the 16 bit address is used to 

access up to 65K of memory. 

4-38 



Operands for use by a PMUare half word operands 

(16 bits) or full word operands (32 bits). The word size is 

determined by the op code field (bits 0-7) of the instruction. 

In cases where a 16 bit operand is required, the least significant 

bit of the address for the half word instructions specified 

the left half (bit 31 of the modified instruction word equals 

zero) or the right half (bit 31 of the modified instruction 

word equals one) of the full word addressed by the remaining 

15 address bits. A 16 bit address with the most significant 

bit being zero is sent to memory to retrieve the desired operand. 

For those PMU instructions which require full word 

operands all 16 address bits of the instruction word are us~d 

for accessing full word operands from memory. 

Memories always read and deliver full words. The 

PMU selects the referenced half word (if appropriate) when 

the operand is received. 

4.3.4.4.1 Memory Operand Fetch 

4.3.4.4.1.1 Virtual Address Mode 

The normal address mode for DPE operations is virtual, 

which is indicated when bit 23 of the Set Task Parameter Instruction 

(Op Code 29) is set to one. The first step in calculating the 

absolute address of the referenced operand is to access the 

entry in the kernel indicated by the Page Field of the effective 

address of the modified instruction. The local memory location 

of this kernel entry word is formed by appending the Data Kernel 

Page Register to the Page field. The resulting 16 bit address 

has the following format. 

4-39 



If the addressed operand is full word (32 bits), 

the address of the kernel entry is: 

DATA KERNEL PAGE FIELD 
PAGE REG ISTER (BITS 16- 23) 

OJ 1 1'J3HSI 617 81 9 t 10 I" I 12113 1141 15 

If the instruction addresses a half word (16 bits) 

the address of the kernel entry is: 

DATA KERNEL PAGE FIELD 
PAGE REGISTER 0 (BITS 16-22) 

OJ'I'131 41s1 617 8 9 I 10 I" 1"1" 114 1'5 

The kernel entry word has the format as indicated 

below and depending upon whether the data is paged or word 

oriented. 
PAGED DA:.TA 

J:ill <JS 1617 
WIDE ADDRESS IR W C P 

8 9 10 1 J "lUI"1 151 16 1'7 1 ISI'91 201211221231241251261'71781'9130131132 33 34 35 

4-40 



WORD DATA 

-~l r r 

UNUSED 
o 0 WIDE ADDRESS R VI C P 

011 12 3 41 sH7[a 9 10 11 12/13/14115116117118 119120121122123/24/25/26/271281'9/30/31 32 33 34 35 

If the kernel entry indicates word data (bit 11 = 0), 

bits 24-31 of the kernel entry are added to the displacement 

field of the effective address of the instruction and the carry 

from bit 24 to bit 23 inhibited. The resulting 20 bit wide 

address (bits 12-23 of the kernel and the 8 bit sum just 

generated) is the address field of the instruction that is 

created and sent to the channel. The channel instruction 

generated is a function of the type of instruction that is 

being executed, Read or Write. 

For word data, bit 10 of the kernel word indicates 

which set of primary buses are used. With bit 10 equal 0, Bus 1 

or 2 is used. When bit 10 equals 1, Bus 3 is used. It should 

be noted that the availability of the 3 possible primary buses 

is controlled by the Set System Parameter instruction (Op Code 25). 

Should bit 10 be 1 and the DPE is not allowed to use Bus , the 

DPE will hang up. 

For all created transmission intructions, bits 4-7 of 

the referenced kernel becomes bits 8-11 of the created Input/ 

Output bus instruction. 

4-41 



For word data, bit 3 denotes whether the pipeline 

(see Section 4.3.4.4.5) is to be entered for the next sequential 

instruction. If bit 3 is one, the pipeline is entered. If 

bit 3 is zero, the pipeline is exited or terminated. Bit 3 must 

be specified as zero when arrays or complex data type is to be 

encountered. By definition, paged data halts the pipeline and 

therefore the stopping of the pipeline need only be determined 

for word data. 

If the kernel entry indicates Paged Data and not 

Resident, a Read Page to Output instruction (Op Code 06) is 

created and sent to the channel. This is true even if the 

instruction is a Store type: The displacement field of the 

instruction is not added to the 20 bit wide address when data 

is page oriented. Thus the 20 bit wide address of the Read 

Page to Output instruction is bits 12-31 of the kernel entry. 

The PMU, while.awaiting the return of the addressed page, 

performs a page replacement sequence. The sequence for bringing 

in a page is identical to that described for procedure (see 

Section 4.3.3.3). Once the referenced page is loaded, the 

virtual addressing mechanism is re-entered to resolve addressing 

to an operand. 

If the kernel entry indicates paged data, resident, 

and command bit (bit 34) is 0, the Procedure Page register 

is loaded with bits 0-7 of the kernel entry. Then the operand 

located at the local memory location indicated by appending 

the data page register to the Displacement field of the effective 

virtual address is fetched and operated upon. 

4-42 



In all the above cases, if an operand is read, the 

Read Protect bit must be O. If an operand is written into, 

the Write Protect bit must be 0, and if an operand is executed 

the Command Protect bit must be O. If any of the above conditions 

are not true, the appropriate violation is detected and a trap 

occurs. 

4.3.4.4.1.2 Absolute Address Mode 

When bit 23 of the Set Task Parameter instruction 

(Op Code 29) is zero,the operand addressing mode is absolute 

i.e., local memory is directly addressed. It should be noted 

that absolute addressing applies only to operand fetch and not 

to procedure fetch which is always done in the virtual mode. 

For a full word operand, the contents of bits 16-31 

of the modified instruction are used to directly address local 

memory. Bits 0-31 of the contents of the memory location are 

used as the operand. 

For a half word operand, the contents of bits 16-30 

of the modified instruction are shifted right one position and 

a leading zero appended to the high order position to form a 

16 bit direct address in local memory. Bits 0-31 of the contents 

of the memory location so addressed con~ain the desired half 

word operand. If bit 31 of the modified instruction is zero, 

bits 0-15 of the memory word are used as the half word operand. 

If bit 31 of the modified instruction is one, bits 16-31 of the 

memory word are used as the half word operand. 

4-43 



4.3.4.4.2 Non Memory Qpera~d Fetch 

When bit 32 of the modified instruction word is 

zero, the operand is in@ediate and is the contents of bits 16 

thru 31 of the modified instruction word.. If a half word operand 

is required by the op code (bits 0-7) of the instruction word, 

the contents of bits 16-31 is that operand. If a full word 

operand is required by the op code (bits 0-7) and if the contents 

of bits 16-31 are not the contents of a scratchpad register 

obtained by a register indirection addressing operation, then 

the contents of bits 16-31 form the low order portion (bits 16-31) 

of the full word operand and sixteen zeroes are used as the high 

order portion (bits 0-15) of the full word operand. 

If a full word operand is required and the contents 

of bits 16-31 of the modified instruction word are the contents 

of a scratchpad register obtained by a register indirect addressing 

operation, then these contents will form the high order portion 

of the full wor~ operand. The contents of the corresponding 

scratchpad register, whether in the high (Sp [l~ - [31 ]) or 

low (Sp [0 ] - SP [15 ]) bank, will form the low order portion 

of the full word operand. 

It should be noted that register to register operations 

are accomplished, whether with half or full word operands, through 

the use of register indirect addressing with immediate access 

(bit 32 is zero). 

4-44 



4.3.4.4.3 Instruction Trace (Bit 34 lS One) 

Bit 34 of an internal instruction word, when set 

to one, causes a Trace Interrupt to be generated at the conclusion 

of PMU involvement with the instruction. The instruction trace 

trap will also be generated whenever bit 34 of the second 

instruction word of the Two Word I/O with Indexing instruction 

(Op Code 7B) is one. 

4.3.4.4.4 Example of a Non Resident Full Word Operand Fetch {l:i.q .. wlG) 

In this example it is assumed the PMU is operat.ing 

in the virtual addressing mode so that the address field (bits 

16-31) of the instruction is partioned into a page field (bits 

16-23) and the displacement field (bits 24-31). The first step 

in obtaining the operand is to catenate the contents of the 

Data Kernel Page Register with the contents of the page field 

to determine the local memory address (in this case, 0301) of 

the kernel word for the page which contains the operand. In 

this example, the kernel word indicates word data (bit II is zero). 

Therefore, a "Read Operand to Output instruction 

(Op Code 04) is created and transmitted over the primary bus to 

the RA}.1.~L In this example, the address of the RAMM is assumed 

to be 02 and location within the RAMM of the desired operand is 

assumed as 3EC. 

4.3.4.4.5 Pipeline 

The DPE overlaps data requests to RAMM with instruction 

fetching, and provides up to 13 levels of instruction look ahead. 

4-45 



_ .. ~-----, 
! 
! 

·.1;~(j'C'N 
., '. ~~. ,.\:='T( j;> 

.l. • r.: :iECTION 
I.'.: 1:.::fllrJG 
t ... _~ .. i-'~fTED 

~)ATA fERf"lEL 
r AC,.E ~tGISTER 

CONTENTS OF 
~DD"SS 0301 
IDATA KERNEL WORD) 

\'.O~D DATA 
(OtmITtON 
OtAnS 
, READ OPERAND 
TO OUIPUT" 
INSTRUCTION 

CHANNU 
l'Jrl..NSMISSION 
Y,CRD SEtH 
10 "M,f,MON 
<uS I OR SUS 2 

v.cw 
Ofctl"f:) FROM 
ftMVI. 

t"~I(At 
~ v!"A' .. j 
..... M t:::~D 

.'. ' ... P~!lIAl 
:t.':nCTlCN 

EFFECTIVE VIRTUAL ~ t:;-
ADDRESS .f $ 6' t-

AMF '---P-A-G-E--~ ~-D-IS-P-LA-CE-M-E-N-T-~' ~ {- ~'< "-~ 
r-~~~--'-~~-~~-'-

\ 

FIGURE 10 

~ 
c,tf 
tf~ 

WIDE ADDRESS q<t S'~.\f? 
r---------~ '--------~\:l.£ 8l 

Virtual Addressing 
Full Word Operand 

4-46 

Non-Resident 



The facilities which provide these capabilities are the APQ 

and the AADC channel. 

The APQ is a FIFO stack which holds scalar, real 

operands and instructions awaiting execution by the AP. The 

APQ is configured in a manner that allows the queue to act as 

two independent stacks, for the control part (bits 0-11 of an 

instruction) and the referenced operand. Information is also 

placed in the operand queue to designate the precision of the 

loaded operand. In the absence of any address modification, the 

control part of the APQ is loaded every two internal cycles. 

The fetch cycle pipeline utilizes the APQ and channel 

functions in a basic two step sequence loop. Step 1 of the 

sequence decodes the instruction that has been read out on the 

previous step, reads the data kernel location associated with 

the virtual address of the decoded instruction, sets up various 

internal indicators, and, in the absence of any address modifica­

tion specifications or pipeline obstruction conditions, (to be 

described), adv~nces to step 2 of the basic pipeline sequence. 

On step .2 of the pipeline sequence, security 

interrogation is performed on the data kernel word just read 

out, and in the absence of security violations, but in the 

presence of word declared data, a Read Operand request is placed 

in the Channels input queue, the control half of the present 

instruction is placed in the APQ, the next sequential instruction 

is read, and a transfer to step I of the basic two step sequence 

is executed. 

4-47 



On step I of this sequence, in addition to 

those actions described above, the input secondary bus is 

monitored for data. When data is present, it is routed to the 

operand,half of the APQ thereby completing the fetch of the 

referenced operand and providing sufficient information for the 

AP to execute the instruction with its operand from the APQ. 

The conditions that interrupt this two step sequence 

can be di~ed into two classes: 

and pipeline obstructions. 

address modification specification 

Address modifjcation specifications involves 

instructions which declare indexing, indirection, and literal 

operands. When indexing is specified, step 2 of the basic 

pipeline sequence cannot be entered until the indexing is performed. 

Indirection involves entering a sequence which obtains an indirect 

word. This involves transmitting a Read Indirect Word to Output 

to a RAMM if word data is declared in the data kernel word 

referenced by the virtual address of the instructions, or 

referencing Task Memory if the data is paged and resident. 

In either case, the pipeline is halted until 

indirection is no longer specified, and a final cperand reference 

is obtained, which results in re-entering the basic pipeline 

sequence. In the case of a word declared indirection, the 

fetch cycle loops awaiting the return of the indirect word 

referenced by the Read Indirect Word to Output instruction 

transmitted to the RAMM. During this looping process, the 

operand part of the APQ is being loaded with the operand requests 

made before the indirection was specified. 

4-48 



If a literal (immediate) is encountered during 

the instruction decoding on step 1, a test is made to determine 

the state of the pipeline. If no data requests are outstanding, 

the APQ control part and operand part are simultaneously loaded 

and step 1 re-entered. If the pipeline "is not empty, the APQ 

control half is loaded, and the specified literal is placed in 

the channels input queue. The channel sequence number mechanism 

maintains the proper association between literal and instruction 

control part. 

Pipeline obstructions involve the decoding of an 

instruction whose execution must be delayed until some pipeline 

condition is satisfied. Otherwise an ambiguous association of 

operand to op code or some machine state change may occur that 

would not be anticipated. 

The DPE pipeline obstructions are: An AP transfer 

in the APQ and a second AP transfer detected)or a PMU instruction 

detected. When an AP transfer is detected, program counter 

sequencing progresses as if no transfer was taken. To ensure 

recoverability of the machine state, when a second AP transfer 

or a PMU instruction is detected, the fetch cycle loops awaiting 

the completion of the pending conditional transfers by the AP. 

An AP Store and Halt instruction (Op Code E8) is 

detected. The fetch cycle loops awaiting the completion of 

the pending store by the AP. 

A PMU instruction or AP instruction executed within 

the PMU is decoded. The fetch cycle must await the return of 

the word requested by the decoded PMU instruction. Simultaneously, 

the AP fetch cycle is loading the data part of the APQ. Once 

4-49 



the word requested by the Pl1D instruction is obtained, the 

instruction is executed, and the basic fetch cycle re-entered. 

It should be noted, that PMU and AP instructions can be 

executed simultaneously. 

Resident Data (as indicated by the reference 

Data Kernal Word) is decoded and the pipeline is not empty. 

The fetch cycle loops awaiting the pipeline to clear to maintain 

the proper association of data with instructions. 

Block Mode Operations - The fetch cycle ceases to 

function ln an overlapped manner when non-scalar, or complex 

operands are manipulated. This condition is signalled by bit 3 

of the reference data kernel word being 0, when word structured 

4-50 



f 

4.3.5 Instruction Execution 

The operation code, determined by bits 0-7 of the 

original instruction word, determine the specific operation to 

be performed by the PMU. Hexadecimal notation is used to designate 

the contents of the operation code field, with one hexadecimal 

digit representing bits 0-3 and another, bits 4-7. 

4.3.5.1 Operand Destination 

Bit 33 of the original instruction word, which was 

unaffected by indirect replacement, specifies whether or not 

this instruction is to be sent to the AP. 

4.3.5.1.1 Destination is AP 

When bit 33 is a ONE, the Arithmetic Processor 

is defined as the recipient of the instruction and the operand. 

In the case of an operand fetched from memory, bits 0-11 of the 

original instruction word and the 36 bit memory operand are sent 

to the AP as follows: 

h~~-~,-;-~;:.:c.~~~~~--r-r--I-~ 

The AP will interpret bits 0-7 of the original 

instruction word as an operation code, and bits 8-11 as the 

Parenthetical Field. Bits 32-34 of the memory operand are 

interpreted as a data type tag, defining bits 0-31 of the 

operand. These fields are defined in detail in conjunction 

with AP operations (see Section 5.0). 

4-51 



If an AP destined operand was immediate, bits 0-11 

of the original instruc~ion word, interpreted as shown above, 

are sent to the AP. In addition, bits 16-31 of the modified 

instruction word are sent to the AP where they will be interpreted 

as a 32 bit logical operand with ZEROs in.bits 0-15 and the 

immediate value in bits 16-31. 

OP CODE PF 

oj 1 J 2l3J 4[51 6 17 sJ9[10 1" 

4.3.5.1.2 Destination is PMU 

If bit 33 is zero, the instruction will be executed 

by the PMU. Bits 0-7 of the original instruction word specify 

an operation that the PMU is to perform, and bits 8-11 typically 

specify a scratchpad register (except for TIMER instructions). 

Unless the operation specifies a high-bank register, bits 8-11 

specify SP [0] .:. SP [15]. (If full word operations are used, 

the corresponding register for full word operations, as specified 

in Section 4.1.1.1, is also implied by this field.) If the 

operation does specify a high-bank register, these bits specify 

SP [16J - SP [31) In most cases, a 16 bit operand, received 

during operand fetch, is also used for this operation. Thus, 

typical PMU computer operations will use the following formats: 

The computer then executes the instruction. 

4-52 



4.3.5.2 Pl>1U Word Formats 

4.3.5.2.1 Half Word Arithmetic Format 

This is a 16 b{t format held in a single 16 bit 

register. It represents a sign and magnitude integer number. 
~ 

.f 

Bit 0 is the only unweighted bit; it carries the 
15- . 

sign (0=+, 1=-). All other bits are weighted as +2 J 

where j is the bit position. The numbers +0 and -0 are algebraic 
equivalents 

4.3.5.2.2 Full Word Arithmetic Format 

This is a 32 bit format held in two 16 bit registers. 

It represents a sign and magnitude integer number. 

& 
~.r---------------------~ 

Again, bit 0 is unweighted and treated as a sign 

bit (0=+, 1=-). All other bits (1-31) are weighted as +2 31- j 

where j is the bit position. The numbers +0 and -0 are algebraic 
equivalents 

4.3.5.2.3 Half Word Logical Format 

This is a 16 bit format held in a single register. 

All bits are unweighted. 

4.3.5.2.4 Full Word Logical Format 

This is a 32 bit format held in two 16 bit registers. 

,\11 bits are ~nweighted. 

4-53 



4.3.5.2.5 Shift Count Format 

In shift operations, an 8 bit N field (least 

significant 8 bits of the operand) is defined as the SHIFT 

COUNT. 

These bits are executed as a positive integer value, 

'th b't 8 1'- f th d' ht d 2 l5 - j h " h W1 1 S - Joe ope ran we1g e + were J 1S t e 

bit position. 

4.3.5.2.6 Data Transmission Word Format 

Instructions that call for data to be transmitted 

to an External Subsystem format a 50 bit Data Transmission 

Word with the format: 

Bits 0-35 are the operand fetched from memory. 

Bit 36 is odd parity for bits 0 - 47 (even parity for bits 

36-47) . Bits 37-39 are the transmission code. For data, 

this code is weighted 011 (single word or end of block) or 

4-54 



010 (another word to follow). Bits 40-47 are the 8 bit contents 

of the active source register. Bits 48-49 are the sequence 

number which is set to be identical to bits 48-49 of the 

incoming instruction transmission word that requested the data 

transmission. 

4.3.5.2.7 Instruction Transmission Word Format 

In operations that call for the PMU to read or 

write data to or from an external subsystem, the PMU informs 

the external subsystem by formatting a standard instruction 

transmission word. The format of this word is shown in Figure 3 

as the Command Word format. Bits 37-39 designate the transmission 

code which, for an instruction transmission word may be either 

100 or 101. Code 100 designates a single word command. Code 101 

designates a two word command. 

4.3.6 Operand Types 

When the PMU responds to an "operand" instruction, 

l.c., "Read Operand to Output" (Op Code 04) or "Write Operand 

Prom Input" (Op Code 05), the actual number of memory words 

to be transmitted or received is determined primarily by a 

three bit field, bits 32-34, of the first operand word. 

(See section 5.3 for a complete description of this field.) 

If this three bit field is 000, 010, 011, 100 or 111, a single 

word is involved. If the field is 101, or 110, two memory 

locations are to be read or written. If the code is 001 

(dimension word - see section 5.3.12 for a complete description), 

the number of words to be read or written is determined by 

the word associated with this code. 

4-55 



The meaning of the dimension word data tag (bits 8-11) J_S: 

0000 - Single Precision 

0001 - Double Precision 

0100 - Complex 

1000 - Packed Binary (1 bit) 

1001 - Packed Quaternary (2 bits) 

1010 - Packed Hexadecimal (4 bits) 

1011 - Packed Byte (8 bits) 

1100 - Packed Half-Word (16 bits) 

The number of words to be transferred is a function 

of the rank of the array, the number of elements in each 

di~c~sio~, ~nd rhe data type of each element. 

The total number of elements in an array is either 

equnl to the low order dimension if the rank is 0000 (vector) 

cr.- the product of the low order and high order dimensions if 

the rank is 0001 (matrix). Once the number of elements is 

dc,tennined, the number of words must be calculated. If the 

{'It:!:.ents are single ;precision, the number of words transferred 

l~~ ('qual to the number of elements. If the elements are 

Ie precision or complex, the number of words is equal to 

t~ice the number of elements. If the elements are packed, 

:,' !l:.Jmber of words is equal to the quotient obtained by 

dividing the number of elements by the number of operands that 

can fit into a 32 bit word. The quotient obtained is then 

rou!1ded up to the next highest integer. Thus, a 4 x 4 packed 

blnary matrix occupies one word. 

4-56 



4.3.7 PMU Fetch Cycle (Overlapped Fetch ~cle) 

One of the features to the fetch cycle is that a 

hierarchy of action is evaluated after each prior action to 

determine whether to wait for some external event to occur, i.e., 

honor an instruction interrupt, honor a trap, etc. 

Once an action has been decided upon, it will be 

performed to completion or until it reaches a point where it 

must wait before returning to this decision logic. 

There are 16 levels of action defined for the DPE. 

They are presented in hierarchal order. Lower actions will 

only be performed if no higher action has been selected. 

1) The control panel indicates its desire to 

take control of the DPE. Control is relinquished 

to it. 

2) An instruction interrupt has been received and 

validated and is in the input instruction queue. 

The DPE data pipelin~ is empty or the instruction 

is declared an emergency. This causes the 

instruction interrupt to be honored. 

3) An AP deferral overflow is detected. A transfer 

to a control sequence which empties the deferral 

is executed. 

4-57 



4) An AP deferral underflow is detected. A transfer 

to a control sequence which re-establishes a 

deferral identity is executed. 

5) A trap of higher priority than that of the 

presently running program 1S pending and the 

DPE data pipeline is empty. This causes the 

trap to be honored. 

6) An AP interrupt is pending. This is caused 

by either a store or transfer instruction being 

executed. The appropriate control sequence 

is entered. 

7) The fetch cycle is halted due to the previous 

decode of an AP store instruction (Op Code A-E8) 

or an attempt to execute a PMU instruction or 

an AP transfer when an AP transfer is in the APQ. 

8) The existance of pipeline status conditions: 

one or two pending operands that have not been 

received and one data entry remaining in the 

pipeline and data present on the input bus, or 

no pending operands and no data entries remaining 

in the pipeline. The occurrence of any of these 

conditions results in the entering of a control 

sequence determined by a pipeline return indicator. 

9) The existance of none or one pending operand 

instruction interrupt, or trap interrupt indicators 

without their other satisfiable conditions. 

A control sequence is entered which performs the 

necessary pipelining functions so that a satisfiable 

condition is obtained. 

4-58 



10) A page carry is detected. A transfer to the 

contents of the program counter i~ performed. 

11) The Halt indicator is set. A control sequence 

which performs the next function is entered. 

Exit from this sequence occurs when one of the 

higher priority next actions occur. 

12) A non-scalar or complex operand is decoded 

when an attempt to load the APQ data part is 

performed. A sequence is entered which 

manipulates this type of operand. 

13) The DPE 1S in block mode and the pipeline is 

empty. Step 1 of the basic two step fetch 

cycle is entered. 

14) The DPE is in Block mode and the pipeline is 

not empty. A control sequence is entered 

which mointors the input bus for the next data 

entry. 

15) The APQ data or operand half is full. A control 

sequence is entered which awaits the absence of 

the full indication. 

16) Step 1 of the basic two step fetch cycle is 

entered. 

4-59 



4.4 PMU Instruction Definitions 

For the purposes of instruction definition, the 

following designations are used. 

OP 

D Represents the effective address or a holf word 

operand after all address modifications and/or 

operand fetching. 

DD Represents a full word operand after all address 

R 

modifications and operand fetching. 

Represents low scratchpad register (SP [oJ through' 

SP [15] ) determined by the SPA field of instruction 

word. 

(R) Represents co~tents of R. 

S Represents low order part of full word register pair 

when required for full word operations. This register 

shall be determined as described in 3.3.2.1. 

(S) 

RS 

(RS) 

H 

(H) 

E 

MD 

(MD) 

P 

(p) 

SPA 

CODE 

Represents contents of S. 

Represents register Rand S treated as a single 

full word register. 

Represents contents of RS. 

Represents high scratchpad register (Sp t16] through 

[31] ) determined by SPA field of instruct~on word. 

Represents contents of B. 

Represents external subsystem specified by contents 

of active source register. 

Represents the memory location referenced by the 

effective address. 

Represents contents of MD. 

Represents program counter. 

Represents contents of P. 

Field of bits 8 through 11 of instruction word. 

Bits 0 through 7 of instruction word, designated in 

hexadecimal notation. 

4-60 



Wherever, in an instruction definition, the memory is 

"read", "referenced", written", or "stored", unless otherwise 

noted, the memory operation is performed in the data addressing 

mode of the DPE, that"is, absolute or virtual as determined 

by the Set Task Parameter instruction. 

4-61 



4.4.1 PMU Arithmetic Instructions 

INSTRUCTION NAME: Add 

OP CODE: BO 

FUNCTION: (R)+D ~ R 

MACHINE FORMAT: 

B 0 SPA I INDEX ADDRESS MO T P 

01' 1 2 1 3 4 Is I 61 7 81 91 10 i 11 12 IJ \14115 '61171'81'912012'1" 123124125126127128129130 131 32 33 34 35 

DEFINITION: The algebraic sum of the contents of the scratchpad 

register specified by the SPA field of the instructlon 

and the contents of the memory word location 

specified by the effective address replaces the 

contents of the scratchpad register. The contents 

of memory remain unchanged. When bit 31 is zero, bits 

0-;-15 of (MD) are used as the operand, am when 

bit 31 is one, bits 16-31 of (MD) are used as the 

operand. 

If bit 32 of the instruction word is zero, then 

the operand is immediate, i.e., the contents 

of bits 16-31 of the instruction w~rd are added 

to the contents of the scratchpad register 

specified by the SPA field of the instruction. 

If an overflow occurs, the Overflow Interrupt 

(Trap No.5) is enabled. 

4-62 



EXAMPLE 1 Bit 32 = 1, Bit 31 = 0 

(R) (MD) 

I CONTENTS BEFORE EXECUTION 271C OD244A13 

I CONTENTS AFTER EXECUTION 3440 OD244A13 

EXAMPLE 2 Bit 32 = 0 

(R) BITS 16-31 
OF INSTRUCTION 

I CONTENTS BEFORE EXECUTION 271C 4A13 

I CONTENTS AFTER EXECUTION 712F 4A13 

4-63 



INSTRUCTION NAME: ADD Full 

OP CODE: B4 

FUNCTION: (RS )+DD~ RS 

MACHINE FORMAT: 

B 4 SPA I INDEX ADDRESS MO T P 

01' 12 13 41 5 1617 81 9110 I" 12 13114115 '61'71181'912012'12212312412512612712812913013' 32 33 34 35 

DEFINITION: The algebraic sum of the contents of the 

full word sc~atchpad register pair specified 

by the SPA field of the instruction and the 

contents of the memory word location specified 

by the effective address replaces the contents 

of the scratchpad register pair. The contents 

of memory remain unchanged. 

If bit 32 of the instruction word is zero, then 

the operand is immediate. The contents of 

bits 16-31 of the instruction are added to the 

contents of the low order portion of the register 

pair with carry, if necessary, to the high 

order portion of the register pair. 

If an overflow occurs the Overflow Interrupt 

(Trap No.5) is enabled. 

4-64 



EXAI1PLE 1 Bit 32 = 1 

(RS) 

(R) (S J (MO) 

I CONTENTS BEFORE EXEClJTION 271C 0351 00244A13 

I CONTENTS AFTER EXECUTION 3441 1064 OD244A13 

EXAMPLE 2 Bit 32 = 0 

(RS) 

(RJ (S J BITS 16-31 
OF INSTRUCTION 

I CONTENTS BEFORE EXECUTION 271C D351 4A13 

I Cm~TENTS AFTER EXECUTION 2710 1064 4A13 

4-65 



INSTRUCTION NAME: Subtract 

OP CODE: B3 

FUNCTION: (R)-D~. R 

M]\CHINE FORMAT: 

B 3 SPA I INDEX ADDRESS MO T P 

o 11 12 13 4 Is I 61 7 "1 9 jwJIl 12 131 14115 161171181191201"122123124125126127128129130131 32 33 34 35 

DEFINITION: The algebraic difference between the contents 

of the scratchpad register specified by the SPA 

field of the instruction minus the contents of· 

the memory word location specified by the 

effective address replaces the contents of the 

scratchpad register. The contents of memory 

remains unchanged. When bit 31 is zero, bits 0-15 of 

(MD) are used as the operand, and when bit 31 lS 

one, bits 16-31 of (MD) are used as the operand. 

If bit 32 of the instruction word is zero,. then 

the operand is immediate, i.e., the contents of 

bits 16-31 of the instruction word are subtracted 

from the contents of the scratchpad register 

specified by the SPA field of the instruction. 

If an overflow occurs, the Overflow Interrupt 

(Trap No.5) is enabled. 

4--66 



EXAMPLE 1 Bit 32 = 1, Bit 31 = 1 

(R) (MQl 

I CONTENTS BEFORE EXECUTION 271C 119(2108 

I CONTENTS AFTER EXECUTION 0614 119(2108 

EXA.tvlPLE 2 Bit 32 = 0 

(R) BITS 16-31 
OF INSTRUCTION 

I (ONTEt-..JTS BEFORE EXECUTION 27lC 2108 

I CONTENTS AFTER EXeCUTION 0614 2108 

4-67 



INSTRUCTION NAME: Subtract Full 

OP CODE: B7 

FUNCTION: (RS~DD~ RS 

MACHINE FORMAT: 

B 7 SPA I INDEX ADDRESS MO T P 

011 12 13 41 5 1617 81 9110 I" 12 IJ 114115 161171181,9120121 122123124125126127128129130131 32 33 34 35 

DEFINITION: The algebraic difference between the contents 

of the full word scratchpad register pair 

specified by the SPA field of the instruction 

minus the contents of the memory word location 

specified by the effective address replaces the 

contents of the scratchpad register pair. The 

contents of memory remain unchanged. 

If bit 32 of the instruction word is zero, then 

the operand is immediate. The contents of 

bits 16-31 of the instruction are subtracted 

from the contents of the low order position of 

the register pair. 

If an overflow occurs, the Overflow Interrupt 

(Trap No.5) is enabled. 

4-68 



EXi\MPLE 1 Bit 32 = 1 

(RS) 

(R) (S) (MD) 

I CONTENTS BEFORE EXI:CUTION 7653 ABCD 0031987A 

I CONTENTS AFTER EXECUTION 7622 1353 0031987 A 

EXAMPLE 2 Bit 32 = 0 

(RS) 

(R) (S) BITS 16-31 
OF INSTRUCTIO",", 

I CONTENTS BEFORE EXECUTION 7653 ABCD 987A 

I CONTENTS AFTER EXECUTION 7653 1353 987A 

4-69 



INSTRUCTION NAME: Multiply Half to Half 

OP CODE: CO 

FUNCTION: Dx(R) -) R 

HACHINE FORMAT: 
-

c 0 SPA I INDEX ADDRESS MO T P 

o l' 12 13 41 s /t/7 8 1 9110 I" 12 13114115 161"1181'9120121 122123124125126127128129130 131 32 33 34 35 

DEFINITION: This multiply instruction utilizes a 16 bit 

multiplier coutained in the scratchpad register 

specified by the SPA field of the instruction 

and a 16 bit multiplicand located in the memory 

word location specified by the effective address 

of the instruction. Execution of this instruction 

produces a 16 bit lower order algebraic product 

in the scratchpad register specified by the SPA 

field of the instruction. The contents of 

memory remain unchanged. When bit 31 is zero, bits 

0-15 of (MD) are used as the multiplicand, 

and when bit 31 1.S one, bits 16-31 of (MD) are used 

as the multiplicand. 

If bit 32 of the instruction word is zero then 

the operand is immediate. The contents of bits 

16-31 of the instruction are used as the multiplicand. 

If an overflow occurs, the Overflow Interrupt 

(Trap No.5) is enabled. 

4-70 



EXAMPLE 1 Bit 32 = 1, Bit 31 = 1 

(R) (MO) 

! CONTENTS BEFORE EXECUTION OOOA OOllQOAO 

I CONTENTS AFTER EXECUTION 0640 OOllOOAO 

EXAMPLE 2 Bi t 32 -- 0 

(R) BITS 16-31 
OF INSTRUCTION 

I CONTENTS BEFORE EXECUTION OOOA OOOA 

I CONTENTS AFTER EXECUTION 0064 OOOA 

4-71 



INSTRUCTION NM1E: Multiply Half to Full 

OP CODE: C3 

FUNCTION: Dx (R) -4 RS 

I-ll,.CHINE FORMAT: 

C 3 SPA I INDEX ADDRESS MOT P 

o I' I 2 13 415 I 61 7 81 91'0 I" 12 lJ 114j15 '61'71'81'9120 I" 1221231241"1261271281'9130131 32 33 31, 35 

DEFINITION: This multiply instruction utilizes a 16 bit 

multiplier contained in the scratchpad register 

specified by the SPA field of the instruction 

and a 16 bit multiplicand located in the memory 

word location specified by the effective address 

of the instruction. Execution of this instructIon 

produces a 32 bit algebraic product. The high 

order portion of the product (bits 0-15) is 

p.laced in the scratchpad register specified 

by the SPA field of the instruction. The low 

order portion of the product (bits 16-31) is 

placed'in the corresponding scratchpad register 

of the full word register pair (R+16). 

The contents of memory remain unchanged. When 

bit 31 is zero, bits 0-15 of (MD)are u3ed as the 

multiplicand, and when bit 31 is one, bits 16-31 of 

(HD) are used as the multiplicand. 

If bit 32 of the instruction word is zero then 

the operand is immediate. The contents of bits 

16-31 of the instruction are used as the multiplicand. 

4-72 



EXAMPLE 1 Bit 32 = 1, Bit 31 = 0 

(RS) 

(R) (~) (MD) 

I CONTENTS BEFORE EXECUTION 03E8 XXXX 006457B2 

I CONTENTS AFTER EXECUTION 0001 86AO 006457B2 

EXAMPLE 2 Bit 32 = 0 

(RS) 

(R) (S) BITS 16-31 
OF INSTRUCTIOf'\; 

I CONTENTS BEFORE EXECUTION 03E8 XXXX 0064 

I CONTENTS AFTER EXECUllON 0001 86AO 0064 

4-73 



INSTRUCTION NAME: Divide Half by Half 

OP CODE: D3 

FUNCTION: (R)7 D --- R, Remainder --- S 

MACHINE FORMAT: 

D 3 SPA I INDEX ADDRESS MO T P 

011 12 13 4 15161' 81 9110 1" 12 13114115 16117118119120121122123124] 2512612'128129130131 32 33 34 35 

DEFINITION: This divide instruction utilizes a 16 bit dividend 

contained in the scratchpad register specified by 

the SPA field of the instruction and a 16 bit 

divisor located in the memory word location 

specified by the effective address of the 

instruction. Execution of this instruction 

performs an algebraic division and produces a 

16 bit quotient in the scratchpad register 

specified by the SPA field of the instruction. 

The remainder is stored in the corresponding 

scratchpad register of the full word 

pair (R+16) with the sign of the remainder 

identical to that of the dividend. The contents 

of memory remain unchanged. When bit 31 is 

zero, bits 0-15 of(MD) are used as the divisor, 

and when bit 31 is one, bits 16-31 of(MD) are us.ed 

as the divisor. 

If bit 32 of the instruction word is zero then 

the operand is immediate. The contents of bits 

16-31 of the instruction are used as the divisor. 

4-74 



If an overflow occurs, the Overflow' Interrupt 

(Trap No.5) .is enabled and the result is not 

stored. SPR and SPS will remain unaltered. 

Overflow occurs if the divisor equals zero. 

EXAMPLE 1 Bit 32 = 1, Bit 31 = 1 

(RS) 

(R) (5) (MD) 

I CONTENTS BEFORE EXECUTION 800A XXXX 7 A128003 

I CONTENTS AFTER eXECUTION 0003 8001 7A128003 

EXAMPLE 2 Bit 32 = 0 

(RS) 

(R) (S) BITS 16-31 . OF INSTRUCTIOr-; 

r COI-,JTENTS BEFORE EXECUTION 800A XXXX 0003 

I CONTENTS AFTER EXECUTION 8003 8001 0003 

4-75 



INSTRUCTION NAME: Divide Full by Half 

OP CODE: D2 

FUNC'l'ION: (RS)';" D - R, Remainder - S 

}'lACHINE FORMAT: 

D 2 SPA I INDEX ADDRESS MOT P 

oi' 1 2 13 4[5 H 7 8\ 9\10 \" 12 lJJ.I411S 1611711sl'9120 121 122123124125126127128129\30 \31 32 33 34 35 

DEFINITION: This divide instruction utilizes a 32 bit dividend 

contained in the full word scratchpad 

register pair specified by the SPA field of the 

instruction and a 16 bit divisor located in the 

memory word location specified by the effective 

address of the instruction. Execution of this 

instruction performs an algebraic division and 

produces a 16 bit quotient in the scratchpad 

register specified by the SPA field of the 

instruction. The remainder is stored in the 

corresponding scratchpad register of the 

full word pair (R+16) with the sign of the 

remainder identical to that of the dividend. 

The contents of memory remain unchanged. When 

bit 31 is zero, bits 0-15 of (MD) are used as the 

divisor, and when bit 31 is one, bits 16-31 of 

(MD) are used as the divisor. 

If bit 32 of the instruction word is zero then 

the operand is immediate. The contents of bits 

16-31 of the instruction are used as the divisor. 

4-76 



EXAMPLE 1 

If an overflow occurs, the Overflow Interrupt 

(Trap No.5) is enabled and the result is not 

stored. SPR and SPS will remain unchanged. 

Overflow occurs if the divisor equals zero or 

if the quotient exceeds the capacity of SPR. 

Bit 32 = 1, Bit 31 = 0 

(RS) 

(R) (5) (MDl 

I CONTENTS BEFORE EXECUTION 0001 86AO 006457B2 

I CONTENTS AFTER EXECUTION 03E8 0000 006457B2 

EXAMPLE 2 Bit 32 = 0 

(RS) 

(R) (5) BITS 16-31 
OF INSTRUCTIOI'-: 

I CONTENTS BEFORE EXECUTION 8001 86AO 8064 

I CONTENTS AFTER EXECUTION 03E8 8000 8064 

4-77 



4.4.2 PMU Logical Instructions 

INSTRUCTION NAME: AND 

OP CODE: AO 

FUNCTION: D·(R)-R 

!1ACHINE FORMAT: 

A 0 SPA 

01' 12 13 4 I 51 61 7 8 I 9110 I J1 

DEFINITION: 

I INDEX ADDRESS 

12 13J14J 15 161"1'8119120 121 12212312412~ 12612712812913~131 

MOT P 

32 33 34 35 

The contents of the scratchpad register specified 

by the SPA field of the instruction are logically combined bit 

by bit, according to the truth table below, with the contents 

of the memory word location specified by the effective address. 

If both bits are ONE, the corresponding bit of the scratchpad 

register is set to ONE. If not, the corresponding bit is cleared 

to ZERO. 

D 0011 

(R) 0101 

Result 0001 

The contents of memory remain unchanged. When bit 31 

is zero, bits 0-15 of (MD) are used as the operand, and when bit 31 

is one, bits 16-31 of (MD) are used as the operand. 

If bit 32 of the instruction word is zero, then the 

operand is immediate. The contents of bits 16-31 of the instruction 

word are logically "anded" to the contents of the scratchpad 

register specified by the SPA field of the instruction. 

4-78 



EXAMPLE 1 Bit 32 = 1, Bit 31 = 0 

(R) (MO) 

I CONTENTS BEFORE EXECUTION 271C OD244A13 

I CONTENTS AFTER EXECUTION 0504 • OD244A13 

EXAMPLE 2 Bit 32 - 0 

(R) BiTS 16-31 
OF INSTRUCTION 

I CONTENTS BEFORE EXECUTION 271C 4A13 

I CONTENTS AFTER EXECUTION 0210 4A13 

4-79 



INSTRUCTION NAME: AND Full 

OP CODE: A4 

FUN'eTION: DD ·(Rs)- RS 

NACHINE FORMAT: 

A 4 SPA I INDEX 

01' 12 13 .1 5 H 7 81 91 '0 I" 12 131 J4115 

DEFINITION: 

ADDRESS MO T P 

'61171'81'912012'12212312'12512612712812913013' 32 33 34 35 

The contents of ~he full word scratchpad 

register pair specified by the SPA field of the instruction are 

logically combined bit by bit, according to the truth table 

below, with the contents of the memory word location specified 

by the effective address. If both bits are ONE, the corresponding 

bit of the scratchpad registers is set to ONE. If not, the 

corresponding bit is cleared to ZERO. 

DD 

( RS) 

Result 

0011 

0101 

0001 

The contents of memory remain unchanged. If bit 32 

of the instruction word is zero, then the operand is immediate. 

'1'he contents of bits 16-31 of the instruction are logically "anded" 

to the contents of the lower order portion of the register pair. 

TI1e contents of the higher order portion of the register pair are 

cleured to ZERO. 

4-80 



EXAf1PLE 1 Bit 32 = 1 

(RS) 

(R) (S) (MD) 

I CONTENTS BEFORE EXECUTION 271C 58A2 OD244A13 

I CONTENTS AFTER EXECUTION 0504 4802 OD244A13 

EXAlJlPLE 2 Bit 32 = 0 

(RS) 

(R) (S) BITS 16-31 
OF INSTRUCTIOr--; 

I CONTENTS BEFORE EXECUTION 271C 58A2 4A13 --
I CONTENTS AFTER EXECUTION 0000 4802 4A13 

4-81 



INSTRUCTION NAME: D AND R 

OP CODE: 90 

FUNCTION: _ 15 .(R) -- R 

1>lACHINE FORMAT: 

9 0 SPA I INDEX 

01' 12 J 3 4 IS 1617 8 I 9110 I" 12 13114/15 

DEFINITION: 

ADDRESS MO T P 

'61'71'6/'9120/2'122123124125126127128129130131 32 33 34 35 

The contents of ~he scratchpad register specified by 

the SPA field of the instruction are logically combined bit by. 

bit with the logical complement of the contents of the memory 

word location specified by the effective address, according to 

the truth table below. If the complemented bit of D is ONE and 

the bit of (~ is ONE, the corresponding bit of R is set to ONE. 

If not, the corresponding bit of R is cleared to ZERO. 

D 

(R) 

Result 

0011 

0101 

0100 

The contents of memory remain unchanged. When bit 31 

is zero, bits 0-15 of (MD) are used as the operand, and when bit 31 

is one, bits 16-31 of (MD) are used as the operand. 

If bit 32 of the instruction word is zero, then the 

operand is immediate. The contents of bits 16-31 of the instruction 

word are logically combined, as above, to the contents of the 

scratchpad register specified by the SPA field of the instruction. 

4-82 



EXAMPLE 1 Bit 32 = I, Bit 31 = 1 

(R) (MO) 

I COl'-lTENTS BEFORE: EXECUTION 271C 00244A13 

I CONTENTS AFTER EXECUTION 250C 00244A13 

EXAMPLE 2 Bit 32 = 0 

(R) 
BITS 16-31 
OF INSTRUCTION 

l CONTENTS BEFORE EXECUTION 271C 4A13 

I CONTENTS AFTER EXECUTION 250C 4A13 

4-83 



INSTRUCTION NAME; D And R Full 

OP CODE: 94 

FUNCTION: ,DD-(RS --- RS 

f-lACHINE FORMAT: 

9 4 SPA I l~mEX ' ADDRESS 

o I' 12 13 4 15 1617 81 91 10 I" 12 lJ I 14! 15 '61'71'81'9120121 1221231"125126127128129 i 30 131 

DEFINITION: 

MO T P 

32 33 34 35 

The contents of ~he full word scratchpad 

register pair specified by the SPA field of the instruction are 

logically combined bit by bit with the logical complement of the 

contents of the memory word location specified by the effective 

udclress, according to the truth table below. If the comple'mented 

bit of DD is ONE 'and the bit of (RS) is ONE, the corresponding bit 

of (RS) is set to ONE. I f not, the corresponding bit of (RS) 

is cleared to ZERO. 

DD 

(RS) 

Result 

0011 

0101 

0100 

The contents of memory remain unchanged. 

If bit 32 of the instruction word is zero, then the 

operand is immediate. The contents of bits 16-31 of the instruction 

are logically combined, as above, to the contents of the lower 

order portion of the register pair. The contents of the higher 

order portion of the register pair remain unchanged. 

4-84 



EXAMPLE 1 Bi t 32 -. 1 

(RS) 

( R) (S) (MD) 

l CONTENTS BEFORE EXECUTION 271C 58A2 OD244A13 

l CONTENTS AFTER EXECUTION 2218 10M OD244A13 

EXi\MPLE 2 Bit 32 = 0 

(RS) 

(R) (S) BITS 16-31 
OF INSTRUCTION 

I CONTENTS BEFORE EXECUTION 271C S8A2 4A13 

I CONTENTS AFTER EXECUTION 271 C lOAO 4A13 

4-85 



INSTRUCTION NAME: D And R 

OP CODE: C2 

FUNCTION: DiR)--- R 

MACHINE FORMAT: 

C 2 SPA 

011 12 13 41 s H' 819110 111 

DEFINITION: 

I INDEX 

12 13114/15 

ADDRESS MO T P 

16117118119120121 122123124125126127128129130 131 32 33 34 35 

The logical complement of the contents of the 

scratchpad register specified by the SPA field of the instruction 

are logically combined bit by bit with the contents of the memory 

word location specified by the effective address, according to 

the truth table below. If the complemented bit of (R) is ONE and 

the bit of D is ONE, the corresponding bit of R is set to ONE. 

If not, the corresponding bit of R. is cleared to ZERO. 

Re.su1 t 

0011 

0101 

0010 

The contents of memory remain unchanged. When bit 31 

is zero, bits 0-15 of (MD) are used as the op~rand, and when bit 31 

is one, bits 16-31 of (MD) are used as the operand. 

If bit 32 of the instruction word is zero, then the 

operand is immediate. The contents of bits 16-31 of the instruction 

word are logically combined, as above, to the contents of the 

scratchpad register specified by the SPA field of the instruction. 

4-86 



EXAMPLE 1 Bit 32 = 1, Bit 31 = 1 

(R) (MD) 

I CONTENTS BEFORE EXECUTION 271C OD244A13 

I CONTENTS AFTER EXECUTION 4803 OD244A13 

EXAMPLE 2 Bit 32 = a 

(R) BITS 16-31 
OF INSTRUCTION 

I CONTENTS BEFORE EXECUTION 271C 4A13 

l CONTENTS AFTER EXECUTION 4803 4A13 

4-87 



INSTRUCTION NAME: D And R Full 

OP CODE: C6 

FUNCTION: DD .(RS) -- RS 

MACHINE FORMAT: 

C 6 SPA 

011 12 I 3 4151 61 7 81 9110 111 

DEFINITION: 

I 

I INDEX ADDRESS 

12 1J 114115 16117118119120121122123124125126127128129130131 

MO T P 

32 33 34 35 

The logical complement of the contents of the 

full word scratchpad register pair specified by the SPA field of 

the instruction are logically combined bit by bit with the contents 

of the memory word location specified by the effective address, 

according to the truth table below. If the complemented bit of 

(RS is ONE and the bit of D is ONE, the corresponding bit of 

RS is set to ONE. If not, the corresponding bit of RS is 

cleared to zero .. 

DD 

(RS) 

Result 

0011 

0101 --
0010 

The contents of memory remain unchanged. 

If bit 32 of the instruction word is zero, then the 

operand is immediate. The contents of bits 16-31 of the instruction 

are logically combined, as above, to the contents of the lower 

order portion of the register pair. The contents of the higher 

order portion of the register pair are cleared to zeros. 

4-88 



EXANPLE 1 Bit 32 = 1 

(RS) 

(R) (S) (Mo) 

I CONTENTS BEFORE EXECUTION 271C 58A2 00244A13 

l CONTENTS AFTER EXECUTION 0820 0211 00244A13 

EXAMPLE 2 Bit 32 = 0 

(RS) 

(R) (S) BITS 16-31 
OF INSTRUCTION 

I CONTENTS BEFORE EXECUTION 271C 58A2 4A13 

I CONTENTS AFTER EXECUTION 0000 0211 4A13 

4-89 



INSTRUCTION NAME: OR 

OP CODE: B2 

FUNCTION: _ DV~) - R 

MACHINE FORMAT: 

S 2 SPA 

0\' \2 \3 41 5 1617 81 91 10 I" 

DEFINITION: 

I INDEX ADDRESS MO T P 

12 13114115 '61'71'81'912012'1221231241"12612712812913013' 32 33 34 35 

The contents of the scratchpad register specified 

by the SPA field of the instruction are_ logically combined bit. 

by bit, according to the truth table below, with the contents 

of the memory word location specified by the effective address. 

If both bits are ZERO, the corresponding bit of R is cleared 

to zero. If not; the corresponding bit of R is set to ONE. 

D 

(R) 

Result 

0011 

0101 

0111 

The contents of memory remain unchanged. When bit 31 

is zero, bits 0-15 of (MD) are used as the operand, and when bit 31 

is one, bits 16-31 of (MD) are used as the operand. 

If bit 32 of the instruction word is zero, then the 

operand is immediate. The contents of bits 16-31 of the instruction 

word are logically combined, as above, with the contents of the 

scratchpad register specified by the SPA field of the instruction. 

4-90 



. 
EXAI>1PLE 1 Bit 32 = 1, Bit 31 = 0 

(R) (MDl 

I CONTENTS BEFORE EXECUTION 271C. OD244A13 

I CONTENTS AFTER EXECUTION 2F3C OD244A13 

EXAMPLE 2 Bit 32 = 0 

(R) 
BITS 16-31 
OF INSTRUCTION 

r CONTENTS BEFORE EXECUTION 271C 4A13 

I CONTENTS AFTER EXECUTION 6F1F 4A13 

4-91 



INSTRUCTION NAME: OR Full 

OP CODE: B6 

FUNCTION: DD~S)--- RS 

MACHINE FORMAT: 

B 6 SPA I INDEX ADDRESS MOT P 

011 12 13 4 I 5 I 6 I 7 8 I 911O! 11 12 IJ 114115 16117118119120 I" 1"1 23 1"1" 126127128129130 131 32 33 34 35 

DEFINITION: 
The contents of the full word scratchpad 

register pair specified by the SPA field of the instruction are 

logically combined bit by bit, according to the truth table belm'J, 

with the contents of the memory word location specified by the 

effective address. If both bits are ZERO, the corresponding bit 

of RS is cleared to ZERO. If not, the corresponding bits of 

RS are set to ONE. 

DD 

(RS) 

Result 

0011 

0101 

0111 

The contents of memory remain unchanged. 

If bit 32 of the instruction word is zero, then the 

operand is immediate. The contents of bits 16-31 of the instruction 

are logically combined, as above, with the contents of the lower 

order portion of the register pair. The contents of the higher 

order portion remain unchanged. 

4-92 



EYJVvlPLE 1 Bit 32 = 1 

(RS) .. 

(R) (S) (MD) 

I CONTENTS BEFORE EXECUTION 271C 58A2 OD244A13 

I CONTENTS AFTER EXECUTION 2F3C 5AB3 OD244A13 

EXAMPLE 2 Bit 32 = 0 

(RS) 

(R) (S) BITS 16-31 
OF INSTRUCTION 

I CONTENTS BEFORE EXECUTION 271C 58A2 4A13 

I CONTENTS AFTER EXECUTION 271C 5AB3 4A13 

4-93 



INSTRUCTION NAME: D OR R 

OP CODE: Bl 

FUNCTION: 15 '-\R) - R 

!·mCHINE FORMAT: 

B 1 SPA 

; II 12 13 4 I 51 61 7 8 I 91 10 I" 

DEFINITION: 

I INDEX 

12 lJ!14!J5 

ADDRESS MO T P 

161171 ~ 8119120 I" 122 123 1 " 125 126 1'; 128 129 130 131 32 33 34 35 

The contents of the scratchpad register specified by 

the SPA field of the instruction are logically combined bit by 

bit with the logical complement of the contents of the memory 

word location specified by the effective address, according to 

the truth table below. If the complemented bit of D is ZERO 

and the bit of (R) is ZERO, the corresponding bit of R is cleared 

to ZERO. If not, the corresponding bit of R is set to ONE. 

D 

(R) 

Result 

0011 

0101 

1101 

The contents of memory remain unchanged. 

is zero, bits 0-15 of (MD) are used as the operand, 

is one, bits 16-31 of (MD) are used as the operand. 

When bit 31 

and when bit 31 

If bit 32 of the instruction word is zero, then the 

operand is immediate. The contents of bits 16-31 of the instruction 

word are logically combined, as above, to the contents of the 

scratchpad register specified by the SPA field of the instruction. 

4-94 



EXAMPLE 1 Bit 32 = 1, Bit 31 = 1 

(R) (MD) 

I CONTENTS BEFORE EXECUTION 271C OD244A13 

I CONTENTS AFTER EXECUTION B7FC OD244A13 

EXAMPLE 2 c Bit 32 = 0 

(R) BITS 16-31 
OF INSTRUCTION 

I CONTENTS BEFORE EXECUTION 271C 4A13 

I CONTENTS AFTER EXECUTION B7FC 4A13 

4-95 



INSTRUCTION NAME: D OR R Full 

OP CODE: B5 

FUNCTION: DD~RS) ---: RS 

1>1ACHINE FORMAT: 

B 5 SPA I INDEX ADDRESS MOT P 

o I I I 2 13 4 I 5 I 6 I 7 al 9110 I" 12 13]14]15 161 J71 1al 19110121122123124125126127128129130131 32 33 34 35 

DEFINITION: 

The contents of the full word scratchpad 

register pair specified by the SPA field of the instruction are 

logically combined bit by bit with the logical complement of the 

contents of the memory word location specified by the effective 

address, according to the truth table below. If the complemented 

bi t of DD is ZERO and the bit of (RS) is ZERO, the corresponding 

bit of RS is cleared to ZERO. If not, the corresponding bit 

of RS is set to ONE. 

DD 0011 

(RS) 0101 

Result 1101 

The contents of memory remain unchanged. 

If bit 32 of the instruction word is zero, then the 

operand is immediate. The contents of bits 16-31 of the instruction 

word arc logically combined, as above, to the contents of the lower 

order portion of the register pair. The contents of the higher 

order portion of the register pair are set to ones. 

4-96 



EXAMPLE 1 Bit 32 = 1 

(RS) 

(R) (5) (MD) 

I CONTENTS BEFORE EXECUTION 271C 58A2 OD244A 13 

I CONTENTS AFTER EXECUTION F7DF FDEF OD244A13 

EXA1vlPLE 2 Bit 32 = a 

(RS) 

(R) (5 ) BITS 16-31 
OF INSTRUCTION 

I CONTENTS BEcFORE EXECUTION 271C 58A2 4A13 

L CONTENTS AFTER EXECUTION FFFF FDEF 4Ai3 
--'-- -------- -_._-_. __ .----

4-97 



INSTRUCTION NAME: D OR R 

OP CODE: A3 

FUNCTION : D~) - R . 

HACHINE FORMAT: 

A 3 SPA 

011 12 13 _1 5 H 7 81 _1 10 III 

DEFINITION: 

I INDEX 

12 13114115 

ADDRESS MO T P 

16117118119120121 122123124125T26T2~281 2913Of31 32 33 34 35 

The logical complement of the contents of the scratchpad 

register specified by the SPA field of the instruction are logically 

combined bit by bit with the contents of the memory word location 

specified by the effective address, according to the truth table 

below. If the complemented bit of(~ is ZERO and the bit of D is 

ZERO, the corresponding bit of.R is cleared to ZERO. If not, 

the corresponding bit of R is set to ONE. 

D 

(R) 

Result 

0011 

0101 

1011 

The contents of memory remain unchanged. When bit 31 

is zero, bits 0-15 of (Mn) are used as the operand, and when bit 31 

is one, bits 16-31 of (Mn) are used as the operand. 

If bit 32 of the instruction word is zero, the the 

operand is immediate. The contents of bits 16-31 of the instruction 

word are logically combined, as above, to the contents of the 

scratchpad register specified by the SPA field of the instruction. 

4-98 



EXAMPLE 1 Bit 32 = 1, Bit 31 = 1 

(R) (MD) 

L CONTENTS BEFORE EXECUTION 271C OD244A13 

I CONTENTS AFTER EXECUTION DAF3 OD244A13 

EXAMPLE 2 Bit 32 =: a 

(R) BITS 16-31 
OF INSTRUCTION 

!cONTENTS BEFORE EXECUTION 271C 4A13 

l CONTENTS AFTER EXECUTION DAF3 4A13 

4-99 



INSTRUCTION NAME: D OR R Full 

OP CODE: A7 

FUNCTION: DDv(RS) - RS 

MACHINE FORMAT: 

A 7 SPA I INDEX ADDRESS 

011 12 13 4 15 I 61 7 8 I 9110 111 12 lJ 114115 1611711811912012112212312' 125126127128129130 131 

DEFINITION: 

MO T P 

32 33 34 35 

The logical complement of the contents of 

the full word scratchpad register pair specified by the SPA 

field of the instruction are logically combined bit by bit with 

the contents of the memory word location specified by the 

effective address, according to the truth table below. If the 

complemented bit of ~S) is ZERO and the bit of DDis ZERO, the 

corresponding- bit of RS is cleared to ZERO. If not, the 

corresponding bit of RS is set to ONE. 

DD 0011 

(RS) 0101 

Result 1011 

The contents of memory remain unchanged. 

If bit 32 of the instruction word is zero, then the 

operand is immediate. The contents of bits 16-31 of the instruction 

are logically combined, as above, to the contents of the lower 

order portion of the register pair. The contents of the higher 

order portion of the register pair are logically complemented. 

4-100 



LXi"\}lPLE 1 Bit 32 = 1 

(RS) 

( R) (S) (MD) 

I CONTENTS BEFORE EXECUTION 271C 58A2 OD244A 13 

I CONTENTS AFTER EXECUTION DDE7 EF7F OD244A13 

Bit 32 = 0 

(RS) 

(R) (S) BITS 16-31 
OF INSTRUCTION 

I CONTENTS BEFORE EXECU110N 271C 58A2 4A13 --I CONTENTS AFTER EXECUTION D8E3 EF5F 4A13 

4-101 



INSTRUCTION NAJ'.1E: NAND 

OP CODE: 93 

FUNC'I'ION: ' fj~) - R 

MACHINE FORMAT: 

9 3 SPA 

011 12 13 4J 5 [6[7 8[9[10 [" 

DEFINITION: 

I INDEX 

12 13 j 14/15 

ADDRESS MO T P 

16[17[,8/,9[20[2'[2212312.[251261271281'913013' 32 33 34 35 

The logical complement of the contents of the scratchpad 

register specified by the SPA field of the instruction are logically 

combined bit by bit with the logical complement of the contents 

of the memory word location specified by the effective address, 

according to the truth table below. ~f the complemented bits 

of both D and ~)~re ZERO, the corresponding bit of R is cleared 

to ZERO. If not, the corresponding bit of R is set to ONE. 

is zero, 

is one, 

D 

(R) 

Result 

0011 

0101 

1110 

The contents of memory 

bits 0-15 of (M D) are used 

bits 16-31 of (MD) are used 

remain unchanged. When bit 31 

as the operand, and when bit 

as the operand. 

31 

If bit 32 of the instruction word is zero, then the 

operand is immediate. The contents of bits 16-31 of the instruction 

word are logically combined, as above, to the contents of the 

scratchpad register specified by the SPA field of the instruction. 

4-102 



Bit 32 = 1, Bit 31 = 1 

(R) (MD) 

I CONTENTS BEFORE EXECUTION 271C OD244A13 

I CONTENTS AFTER EXECUTION FDEF' OD244A13 

EY.A11PLE 2 Bit 32 = 0 

(R) BITS 16-31 
OF INSTRUCTION 

I CONTENTS BEFORt EXECUTION 271C 4A13 

I CONTENTS AFTER EXECUTION FDEF 4A13 

4-103 



INSTRUCTION NAME: NAND Full 

OP CODE: 97 

FUNCTION: DDv(RS)- RS 

H}\CIIINE FORMAT: 

9 7 SPA 

011 12 1 3 , 1 5 1 61 7 81 9110 1" 

DEFINITION: 

I INDEX 

12 13[14115 

ADDRESS MO T P 

16117118119120121 1221231"125126127128129130 131 32 33 34 35 

The logical complement of the contents of the 

full word scratchpad register pair specified by the SPA field 

of the instruction are logically combined bit by bit with the 

logical complement of the contents of the memory word location 

specified by the effective address, according to the truth table 

below. If the complemented bits of both DD and (RS) are zero 

the corresponding bit of RS is cleared to ZERO. If not, the 

corresponding bit of RS is set to ONE. 

DD 

(RS) 

Result 

0011 

0101 --
1110 

The contents of memory remain unchanged. 

If bit 32 of the instruction word is zero, then the 

operand is immediate. The contents of bits 16-31 of the instruction 

are logically combined as above, to the contents of the lower 

order portion of the register pair. The contents of the higher 

order portion of the register pair are set to ones. 

4-104 



EZAHPLE 1 Bit 32 = 1 

(RS) 

(R) (S). (MD) 

I CONTENTS BEFORE EXECUTION 271C 58A2 OD244A13 
I CONTENTS AFTER EXECUT ION FAFB B7FD OD244A13 

EYJ\MPLE 2 Bit 32 = 0 

(RS) 

(R) (S) BITS 16-31 
OF INSTRUCTION 

I CONTENTS BEFORE EXECUTION 271C 58A2 4A13 

I CONTENTS AFTER EXECUTION FFFF B7FD 4A13 

4-105 



INSTRUCTION NAME: NOR 

OP CODE: Cl 

FUNCTION: 15 .(R}- R 

MACHINE FORMAT: 

C I SPA 

01' 1213 415 1 61 7 81 9 110 1" 

DEFINITION: 

I INDEX ADDRESS MO T !' 

12 13J14115 '61'71'81'912012'12212312412*612712812913013' 32 33 34 35 

The logical complement of the contents of the scratchpad 

register specified by the SPA field of the instruction are logically 

combined bit by bit with the logical complement of the contents 

of the memory word location specified by the effective address, 

according to the. truth table below. If the complemented bits of 

both D and ~)are ONE, the corresponding bit of R is set to ONE. 

If not, the corresponding bit of R is cleared to ZERO. 

D' 

R 

Result 

0011 

0101 

1000 

The contents of memory remain unchanged. When bit 31 

is zero, bits 0-15 of MD are used as the operand, and when bit 31 

is one, bits 16-31 of MD are used as the operand. 

If bit 32 of the instruction word is zero then the 

operand is immediate. The contents of bits 16-31 of the instruction 

word are logically combined, as above, to the contents of the 

scratchpad register specified by the SPA field of the instruction. 

4-106 



EXAMPLE 1 Bit 32 - 1: Bit 31 = 1 

r-

(R) (MO) 

I CONTENTS BEFORE EXECUTION 271C 00244A13 

I CONTENTS AFTER EXECUTION 90 to 00244A13 

EXAMPLE 2 Bit 32 = 0 

(R) BITS 16-31 
OF INSTRUCTION 

I CONlENTS BEFORE EXECUTION 271C 4A13 

l CONTENTS AFTER EXECUTION 90EO 4A13 

4-107 



INSTRUCTION NAME: 

OP CODE: C5 

FUNCTION: DD -(RS) 

Hl\CHINE FORMAT: 

C 5 

0\1 12 13 4 15 I 61 7 

DEFINITION: 

NOR Full 

RS 

SPA I INDEX ADDRESS MO T P 

81 91 10 III 12 13jl4115 16[1711;ll;l20121122123124125126127128I,9130 131 32 33 34 35 

The logical complement of the contents of the 

full word scr~tchpad register pair specified by the SPA field of 

the instruction are logically combined bit by bit with the logical 

complement of the contents of the memory word location specified 

by the 

If the 

bit of 

RS is 

effective address, according 

complemented bits of 

RS is set 

cleared to 

to ONE. 

ZERO. 

DD 

(RS) 

Result 

both DD 

If not, 

0011 

0101 

1000 

to the truth table 

and (RS) are ONE, 

the corresponding 

The contents of memory remain unchanged. 

below. 

the "corresponding 

bit of 

If bit 32 of the instruction word is zero, then the 

operand is immediate. The contents of bits 16-31 of the instruction 

are logically combined, as above, to the contents of the lower 

order portion of the register pair. The contents of the higher 

order portion of the register pair are complemented. 

4-108 



EXAMPLE 1 Bit 32 == 1 

(RS) 

(R) (S) (MO) 

I CONTENTS BEFORE EXECUTION 271C 58A2 00244A13 

I CONTENTS ArTeR EXECUTION DOC3 A54C 00244A13 

EXAMPLE 2 Bit 32 = 0 

(RS) 

(R) (S) BITS 16-31 
OF INSTRUCTION 

I CONTENTS BEFORE EXECUTION 271C 58A2 4A13 

I CONTENTS AFTER EXECUTION 03E3 A54C 4A13 

4-109 



INSTRUCTION NAME: XOR 

OP CODE: 92 

FUK'CTION: DED(R) - R 

l'1ACHlNE FORMAT: 

9 2 SPA 

01' 1,1 3 415 1617 81 9110 I" 

DEFINITION: 

I INDEX ADDRESS MO T P 

12 JJ 114115 161171'81'912012'12212312121261212812913013' 32 33 34 35 

The contents of the scratchpad register specified 

by the SPA field of the instruction are logically combined bit 

by bit with the contents of the memory word location specified 

by the effective address, according to the truth table below. 

If both bits are ONE, or if both bits are ZERO, the corresponding 

bit of R- is cleared to ZERO. If not, the corresponding bit 

of R is set to ONE. 

D 

(R) 

Result 

0011 

0101 --
0110 

The contents of memory remain unchanged. When bit 31 

is zero, bits 0-15 of MD are used as the operand, and whe~ bit 31 

is one, bits 16-31 are used as the operand. 

If bit 32 of the instruction word is zero, then the 

operand is immediate. The contents of bits 16-31 of the instruction 

word are logically combined, as above, to the contents of the 

scratchpad register specified by the SPA field of the instruction. 

4-110 



EXAMPLE 1 Bit 32 = 1, Bit 31 = 0 

(R) (MD) 

I CONTENTS BEFORE EXECUTION 271 C; OD244A13 

I CONTENTS AFTER EXECUTION 2A38 OD244A13 

EXAMPLE 2 Bit 32 = 0 

(R) BITS 16-31 
OF INSTRUCTION 

I CONTENTS BEFORE EXECUTION 271C 4A13 

I CONTENTS AFTER EXECUTION 6DOF 4A13 

4-111 



INSTRUCTION NAME: XOR Full 

OP CODE: 96 

FUNCTION:' DDED~S) -- RS 

IvlACHINE FORMAT: 

9 6 SPA 

01 '1213 415 1'1 7 81 91 '0 111 

DEFINITION: 

I INDEX 

12 13114115 

ADDRESS MO T P 

'61'71'81'912012'12212312412512612712812913013' 32 33 34 35 

The contents of the full word scratchpad 

register pair specified by the SPA field of the instruction are 

logically combined bit by bit with the contents of the memory 

word location specified by the effective address, according to 

the truth table below. If both bits are ONE, or if both bits 

are ZERO, the corresponding bit of RS is cleared to ZERO. 

I f not I the corresponding bit of RS is set to ONE. 

DD 

(RS) 

Result 

0011 

0101 

0110 

The contents of memory remain unchanged. 

If bit 32 of the instruction word is zero, then the 

operand is immediate. The contents of bits 16-31 of the instruction 

are logically combined, as above, with the contents of the lower 

order portion of the register pair. The contents of the higher 

order portion remain unchanged. 

4-112 



EXAMPLE 1 Bit 32 = 1 

(R5) 

(R) (5) (MO) 

I CONTEN15 BEFORE EXECUTION 271C 58A2 00244A13 

I CONTENTS AFTER EXECUTION 2A38 12B1 OD244A13 

EXAMPLE 2 Bit 32 = 0 

(R5) 

(R) (5) BITS 16-31 
OF INSTRUCTION 

! CONTENTS BEFORE EXECUTION 271C 58P,2 4A13 

I CONTENTS AFTER EXECUTION 271C 12B 1 4A13 

4-113 



INSTRUCTION NAME: 

OP CODE: Al 

FUNCTION: DE9~) 

Nl\CHINE FORMAT: 

A 1 

01' 12 13 41 51·T7 

DEFINITION: 

XNOR 

R 

SPA 

81 9TIOT" 
1 INDEX ADDRESS MO T P 

12 IJ 114115 '.1'71'81'912012112212312412512.127128129130131 32 33 34 35 

The contents of the scratchpad register specified by 

the SPA field of the instruction are logically combined bit by 

bit with the contents of the memory word location specified by 

the effective address, according to the t:r'uth table below. If 

both bits are ONE, or if both bits are ZERO, the corresponding 

bit of R is set to ONE. If not, the corresponding bit of R 

is cleared to zero. 

n 
(R) 

Result 

0011 

0101 

1001 

The contents of memory remain unchanged. When bit 31 
is zero, bits 0-15 of (Mn) are used as the operand, and when bit 31 

is one, bits 16-31 of (MD) are used as the operand. 

If bit 32 of the instruction word is zero, then the 

operand is immediate. The contents of bits 16-31 of the instruction 

word are logically combined, as above, to the contents of the 

scratchpad register specified by the SPA field of the instruction. 

4-114 



EXAMPLE 1 Bit 32 = 1, Bit 31 = 0 

(R) (MD) 

I CONTEt~T5 BEFORE EXECUTION 271C OD244A13 

I CONTENTS AFTER EXECUTION D5C7 OD244A13 

EXAMPLE 2 Bit 32 = 0 

(R) BI1S 16-31 
OF INSTRUCTION 

I CONTENTS BEFO~E EXECUTION 271C 4A13 

I CONTENTS AFTER EXECUTION 92FO 4A13 

4-115 



INSTRUCTION NAME: XNOR Full 

OP CODE: AS 

FUNCTION: PD$~9 ~ RS 

MACHINE FORMAT: 

A 5 SPA 

01' 12 /3 4 / 5 /6/7 8/ 9/10111 

DEFINITION: 

I INDEX 

12 13/14115 

ADDRESS MO T P 

'6/'71'8/'9120/2'122123124125126127/28129/30/3' 32 33 34 35 

The contents of the full word scratchpad 

register pair specified by the SPA field of the instruction are 

logically combined bit by bit with the contents of the memory 

word location specified by the effective address, according to 

the truth table below. If both bits are ONE, or if both bits 

are ZERO, the corresponding bit of SPRS is set to ONE. If not, 

the corresponding bit of SPRS is cleared to ZERO. 

DD 

(RS) 

Result 

0011 

0101 

1001 

The contents of memory remain unchanged. 

If bit 32 of the instruction word is zero, then the 

operand is immediate. The contents of bits 16-31 of the instruction 

word are logically combined, as above with the contents of the 

lower order portion of the register pair. The contents of the 

higher order portion are complemented. 

4-116 



EXAMPLE 1 Bit 32 = 1 

(RS) I 
(R) (S) (MD) 

I CONTENTS BEFORE EXECUTION 271C 58A2 OD244A13 

I CONTENTS AFTER EXECUTION D5C7 ED4E OD244A13 

EXAMPLE 2 Bit 32 = 0 
(RS) 

(R) (S) BITS 16-31 
OF INSTRUCTION 

I CONTENTS BEFORE EXECUTION 271C 58A2 4A13 

I CONTENTS AFTER EXECUTION D8E3 ED4E 4A13 

4-117 



4.4.3 PMU Shift Instructions 

INSTRUCTION NAME: Shift ARHO 

OP CODE: EO 

FUNCTION: (R)x2-N ---R 

MACHINE FORMAT: 

E 0 SPA 

011 I' 13 41 5 1617 al9110 1" 

DEFINITION: 

I INDEX 

12 lJ 114115 

ADDRESS 

16117118119120121122123124125126127128129130131 

MO T P 

32 33 34 35 

Bits 1-15 of the scratchpad register specified by 

the SPA field of the instruction are algebraically shifted right N 

places, where N is determined by bits 8-15 of the_ ?perand specified by 

the effective address. The result is placed in the specified 

scratchpad register. Bits shifted beyond bit position 15 are 

lost. Vacated bit positions are filled by zeroes. The contents 

of memory remain unchanged. N is treated as an integer value. 

When bit 31 is zero, bits q-15 of (MD) are used as the 

operand (N = bits 8-15), and when bit 31 is one, bits 16-31 of (MD) 

are used as the operand (N = bits 24-31). 

If bit 32 of the instruction word is zero, then the 

operand is immediate, and N is determined by bit positions 24-31 

of the instruction word. 

4-118 



EXAMPLE 1 Bit 32 = 1, Bit 31 = 0 

(R) (MD) 

r CONTENTS BEFORE EXECUTION E3D7 5103 F202 

r CONTENTS AFl ER EXECUTION SC7/!: 5103 F202 

EXAMPLE 2 Bit 32 = 0 

(R) 
BITS 16-31 
OF INSTRUCTION 

I CONTENTS BEFORE EXECUTION E3D7 F202 

r CONTENTS AFTER EXECUTION 9SF5 F202 

4-119 



INSTRUCTION NAME: Shift ARFO 

OP CODE: El 

FUNCTION: (RSx2-N -- RS 

.r.1ACHINE FORMAT: 

E 1 SPA 

01' 12 13 4 15 I 61 7 81 9 1'01 II 

DEFINITION: 

I INDEX 

12 lJ J 14j 15 

ADDRESS MO T P 

16117118119120121122] 23124125126127128129130131 32 33 34 35 

Bits 1-31 of the full word scratchpad re9ister pair 

specified by the SPA field of the instruction are algebraically shifted 

right N places, where N is determined by bits 8-15 of the operand 

::;F'ecified by the effective address. The result is placed in 

the specified register pair. Bits shifted beyond bit position 31 

are lost. Vacated bit positions are filled by zeroes. The 

contents of memory remain unchanged. N is treated as an integer 

value. 

When bit 31: is zero, bits 0-15 of (MD) are used as the 

operand (N = bits 8-15), and when bit 31 is one, bits 16-31 of 

(HD) are used as the operand (N = bits 24-31). 

If bit 32 of the instruction word is zero, then the 

operand is immediate and N is determined by bit positions 24-31 

of the instruction word. 

4-120 



EYAMPLE 1 Bit 32 = 1, Bit 31 = 1 

(RS) 

(R) (5) (MD) 

I CONTENTS BEFORE EXECUTION E3D7 OA42 5103 F202 

I CONTENTS AFTER EXECUTION 98F5 C290 5103 F202 

EXAMPLE 2 Bit 32 = 0 

(RS) 

(R) (5) BITS 16-31 
OF INSTRUCTION 

I CONTENTS BEFORE EXECUTION E3D7 OA42 5103 

I 
---~-

CONTENTS AFTER EXECUTION 8C74 E148 5103 

4-121 



INSTRUCTION NAME: Shift ALHO 

OP CODE: E2 

FUNCTION: (R)x2N -- R 

HACHINE FORMAT: 

E 2 SPA I INDEX ADDRESS 

011 12 13 4 151 61 7 81 9 110 I" 12 lJ 114115 16117118119120121122123124125126127128129130131 

DEFINITION: 

MO T P 

32 33 34 35 

Bits 1-15 of the scratchpad register specified by the SPA 

field of the instruction are algebraically shifted left N places, 

where N is determined by bits 8-15 of the operand specified by 

the effective address. The result is placed in the specified 

scratchpad register. Bits shifted beyond bit position 1 are lost. 

Vacated positions are filled by zeroes. The contents of memory 

remain unchanged.' N is treated as an integer value. 

When bit 31 is zero, bits 0-15 of . (Mn) are used as the 

operand (N = bits 8-15), and when bit 31 is one, bits 16-31 of (Mn) 

are used as the operand (N = bits 24-31). 

If bit 32 of the instruction word is zero, then the 

operand is immediate, and N is determined by bit positions 24-31 

of the instruction word. 

4-122 



EXAMPLE 1 Bit 32 = 1, Bit 31 = 0 

(R) (MD) 

I CONTENTS BEFORE EXECUTION E3D7 • 5103 F202 

I CONTENTS AFTER EXECUTION 9EB8 5103 F202 

EXAMPLE 2 Bit 32 = 0 

(R) BITS 16-31 
OF INS1'RUCTION 

I CONTENTS BEFORE EXECUTION E3D7 F202 

I CONTENTS AFTER EXECUTION 8F5C F202 

4-123 



INSTRUCTI~N NAME: Shift ALFO 

OP CODE: E3 

FUNCTION: (RS):x2 N -- RS 

MACHINE FORMAT: 

E 3 SPA I INDEX ADDRESS 

011 12 13 4 I 5 1617 81 9110 III 12 J31 14115 161171181191201,,1,,123124125126127128129130131 

DEFINITION: 

MOT P 

32 33 34 35 

Bits 1-31 of the full word scratchpad register pair 

specified by the SPA field of the instruction are algebraically shifted 

left N places, where N is determined by bits 8-15 of the oIJerand 

specified by the'effective address. The result is placed in 

the specified register pair. Bits shifted beyond bit position 1 

are lost. Vacated bit positions are filled by zeroes. The 

contents of memory remain unchanged. N is treated as an integer 

value. 

When bit 31 is zero, bits 0-15 of (MD) are used as the 

operand (N = bits 8-15), and when bit 31 is one, bits 16-31 of (MD) 

are used as the operand (N = bits 24-31). 

If bit 32 of the instruction word is zero, then the 

operand is immediate and N is determined by bit positions 24-31 

of the instruction word. 

4-124 



EXAMPLE 1 Bit 32 = 1, Bit 31 = 1 

(RS) 

(R) (5) ("~D) 

I CONTENTS BEFORE EXECUTION E3D7 OA42 5103 F202 

I CONTENTS AFTER EXECUTION 8F5C 2908 5103 F202 

EXAMPLE 2 Bit 32 = 0 

(RS) 

(R) (S) BITS 16-31 
OF INSTRUCTION 

I CON1 ENT5 BEFORE EXECUTION E3D7 OA42 5103 

I CONTENTS AFTER EXECUTION 9EB8 5210 5103 

4-125 



INSTRUCTION NAME: Shift LRHO 

OP CODE: Fa 

FUNCTION: (R) x 2-N _ R 

MACHINE FORMAT: 

F 0 SPA I INDEX ADDRESS 1M o T P 

o l' I 2 13 415 H 7 Sl 9110 I" 12 lJ 1141 15 '61'71'Sl'912012,J 2212312412121212"11913013132 33 34 35 

DEFINITION: 

The contents of the scr~tchpad regis"ter specified by the 

SPA field of the instruction are logically shifted right N places, 

where N is determined" by bits 8-15 of the operand specified by 

the "effective address. The result is placed in the specified 

scratchpad register. Bits shifted beyond bit position 15 are 

lost. Vacated positions are filled with zeroes. The contents 

of memory remain unchanged. N is treated as an integer value. 

When bit 31 is zero, bits 0-15 of (MD) are used as the 

operand (N = bits 8-15), and when bit 31 is one, bits 16-31 of (MD) 

are used as the operand (N = bits 24-31). 

If bit 32 of the instruction word is zero, then the 

operand is immediate, and N is determined by bit positions 24-31 
, 

of the instruction word. 

4-126 



EXAMPLE 1 Bit 32 = 1, Bit 31 =: 0 

(R) (MD) 

I CONTENTS BEFORE EXECUTION E3D7 5103 F202 

I CONTENTS AFTER EXECU110N lQA 5103 F202 

EXAMPLE 2 Bit 32 =: 0 

(R) 81TS 16-31 
OF INSTRUCTION 

I CONTENTS BEFORE EXECUTION E3D7 F202 

I CONTENTS AFTER EXECUTION 38F5 F202 

4-127 



INSTRUCTION NAME: Shift LRFO 

OP CODE: Fl 

FUNCTION: (RS) x 2-N - RS 

MACHINE FORMAT: 

F 1 SPA I INDEX 

011 12 13 41 5 1617 819110 I" 12 13114115 

DEFINITION: 

ADDRESS 

16117118119120121122123124125126127128129130131 

MO T P 

32 33 34 35 

The contents of the full word scratchpad register pair 

specified by the SPA field of the instruction are logically 

shifted right N places, where N is determined by bits 8-15 of 

the operand specified by the effective address. The result is 

placed in the specified register pair. Bits shifted beyond bit 

position 31 are lost. Vacated bit positions are filled by zeroes. 

The contents of memory remain unchanged. N is treated as an 

integer value. 

When bit 31 is zero, bits O-~S of '(MD) are used as the 

operand (N = bits 8-15), and when bit 31 is one, bits 16-31 of 

(MD) are used as the operand (N = bits 24-31). 

If bit 32 of the instruction word is zero, then the 

operand is immediate and N is determined by bit positions 24-31 

of the instruction word. 

4-128 



EY.AI-iPLE 1 Bit 32 = 1, Bit 31 = 1 

(RS) 

(R) (5) (MO) 

I CONTENTS BEFORE EXECUTION E307 OM2 5103 FXJ2 

I CONTENTS AFTER EXECUTION 38F5 C290 5103 FXJ2 

EXAMPLE 2 Bit 32 = 0 

(RS) 

(R) (S) BITS 16-31 
OF INSTRUCTION 

I CONTENTS BEFORE EXECUTION 1'307 OA42 5103 

I COt...JTENTS AFTER EXECUTION lOA E148 5103 

4-129 



INSTRUCTI9N NAME: Shift LLHO 

OP CODE: F2 

FUNCTION: (R) x 2N - R 

MACHINE FORMAT: 

F 2 SPA I INDEX ADDRESS 

011 12 13 415 1617 81 91w 1" 12 lJJ14J15 16JI711811912012112212312412*6127128129130131 

DEFINITION: 

MO T P 

32 33 34 35 

The contents of the scratchp,ad.register specified by the 

SPA field of the instruction are logically shifted left N places, 

where N is dete~mined by bits 8-15 of the operand specified by 

the effective address. The result is placed in the specified 

scratchpad register. Bits shifted beyond bit position 0 are lost. 

Vacated positions are filled with zeroes. The contents of memory 

remain unchanged. N is treated as an integer value. 

When bit 31 is zero, bits 0-15 of (MD) are used as the 

operand (N = bits 8-15), and when bit 31 is one, bits 16-31 of (MD) 

are used as the operand (N = bits 24-31). 

If bit 32 of the instruction word is zero, then the 

operand is immediate, and N is determined by bit positions 24-31 

of the instruction word. 

4-130 



EXJV.1PLE 1 Bit 32 = I, Bit jl = 0 

(R) (MD) 

I CONTENTS BEFORE EXECUTION E3D7 5103 F202 

I CONTENTS AFTER EXECUTION 1 EBB 5103 F202 

EXAMPLE 2 Bit 32 = 0 

(R) BITS 16-31 
OF INSTRUCTION 

I CONTENTS BEFORE EXECUTION E3D7 F202 

I CONTENTS AFTER EXECUTION BF5C F202 

4-131 



INSTRUCTION NJI..ME: Shift LLFO 

OP CODE: F3 

FUNCTION: (RS) x 2N - RS 

I>1ACHINE FORMAT: 

F 3 SPA I INDEX ADDRESS 

o II I 2 13 4 15 161' 8 I 9110 I" 12 IJ [14115 16117\18119120121 1221231 24125J26\27\28\29\30J31 

DEFINITION: 

M 0 T P 

32 33 34 35 

The contents of the full word scratchpad register pair 

specified by the SPA field of the instruction are logically 

shifted left N places, where N is determined by bits 8-15 of the 

operand specified by the effective address. The result is placed 

in the specified register pair. Bits shifted beyond bit position 

o are lost. Vacated bit positions are filled by zeroes. The 

contents of memory remain unchanged. N is treated as an integer 

value. 

When bit 31 is zero, bits 0-15 of (MD) are used as the 

operand (N = bits 8-15), and when bit 31 is one, bits 16-31 of (MD) 

are used as the operand (N = bits 24-31). 

If bit 32 of the instruction word is zero, then the 

operand is immediate and N is determined by bit positions 24-31 

of the instruction word. 

4-132 



EX1\NPLE 1 Bit 32 = 1, Bit 31 = 1 

(RS) 

(R) (S) (MD) 

I CONTENTS BEFORE EXECUTION E3D7 OA42 5103 F202 
r CONTENTS AFTER EXECUTION 8F5C 2908 5103 F202 

r:;r:l~·l P LE 2 Bit 32 = 0 

(RS) 

(R) (S) BITS 16-31 
OF INSTRUCTION 

I CONTENTS BEFORE EXECUTION E3D7 OA42 5103 

r CONTENTS AFTER EXECUTION 1 EB8 5210 5103 

4-133 



INSTRUCTION NAME: Shift LRHC 

OP CODE: DO 

FUNCTION: (R) x 2-N __ R 

MACHINE FORMAT: 

0 0 SPA I INDEX ADDRESS MO T P 

0]1 12 13 415 H7 8 19110 III 12 TJ 114115 16117118119120121122123124125126127128129130131 32 33 34 35 

DEFINITION: 

The contents of the scratchEad, r~gister specified by the 

SPA field of the instruction are logically shifted right N places, 

where N is determined by bits 8-15 of the operand specified by 

the effective address. Bits shifted beyond bit position 15 are 

used to fill corresponding vacated positions. The contents of 

memory remain unchanged. N is treated as an integer value. The 

result is placed in the specified scratchpad register. 

When bit 31 is zero, bits 0-15 of (MD) are used as the 

operand (N = bits 8-15), and when bit 31 is one, bits 16-31 of (MD) 

are used as the operand (N = bits 24-31). 

If bit 32 of the instruction word is zero, then the 

operand is immediate, and N is determined by bit positions 24-31 

of the instruction word. 

4-134 



EXAMPLE 1 Bit 32 = I, Bit 31 = 0 

--
(R) (MD) 

I CONTENTS BEFORE EXECUTION E3D7 5103 F202 

I CONTENTS AFTER EXECUTION FC7A 5103 F202 

EXAMPLE 2 Bit 32 = 0 

(R) BITS 16-31 
OF INSTRUCTION 

I CONTENTS BEFORE EXECUTION E3D7 F202 

I CONTENTS AFTER EXECUTION F8F5 F202 

4-135 



INSTRUCTION NAME: Shift LRFC 

OP CODE: Dl 

FUNCTION: (RS) x 2-N - RS 

MACHINE FORMAT: 

D 1 SPA I INDEX ADDRESS 

+ 1213 _IS H 7 81 .110 I" 12 13114115 16117118119120 121 12212312~T 25126T27128T29T30131 

DEFINITION: 

MO T P 

32 33 34 35 

The contents of the full word scratchpad register pair 

specified by the SPA field of the instruction are logically 

shifted right N places, where N is determined by bits 8-15 of 

the operand specified by the effective address. Bits shifted 

beyond bit position 31 are used to fill corresponding vacated 

positions. The eontents of memory remain unchanged. N is 

treated as an integer value. The result is placed in the specified 

scratchpad register. 

When bit 31 is zero, bits 0-15 of (MD) are used as the 

operand (N = bits 8-15), and when bit 31 is one, bits 16-31 of (MD) 

are used as the operand (N = bits 24-31). 

If bit 32 of the instruction word is zero, then the 

operand is immediate, and N is determined by bit positions 24-31 

of the instruction word. 

4-136 



EXAMPLE 1 Bit 32 = I, Bit 31 = 1 

(RS) 

(R) (5) (MD) 

I CONTENTS BEFORE EXECUTION E3D? OA42 5103 F202 

l CONTENTS AFTER EXECUTION B8 F5 C290 5103 F202 

EXAMPLE 2 Bit 32 = 0 

(RS) 

(R) (S) BITS 16-31 
OF INSTRUCTION 

I CONTENTS BEFORE EXECUTION E3D? OM2 5103 
'~"--_._------l CONTENTS AFTER EXECUTION 5C7A E148 5103 

4-137 



4.4.4 PMU Skip Instructions 

INSTRUCTION NAME: Skip If Equal To 

OP COnE: 62 

FUNCTION: If n = (R), (P) +l-P 

MACHINE FORMAT: 

6 2 SPA I INDEX ADDRESS 

011 12 13 4151 61 7 81 91 10 1" 12 13114115 16117118119120121122123124125126127128129130131 

DEFINITION: 

MO T P 

32 33 34 35 

If the contents of the memory word location specified 

by the effective address are equal to the contents of the scratchpad 

register specified by the SPA field of the instruction, the next 

instruction in sequence is skipped; otherwise, the next instruction 

in sequence is executed. The contents of memory and the scratchpad 

register remain unchanged. 

When bit 31 is zero, bits 0-15 of (Mn) are used as the 

()i)Crand, and when bit 31 is one, bits 16-31 of (,l\1n) are used as the 

operand. If bit 32 of the instruction word is zero, then the 

cpcrand is immediate. 

Bit 32 = 1, Bit 31 = 0 

(R) (MD) (P) 

I CONTENTS BEFORE EXECUTION 15A3 029A15A3 0100 

l CONTENTS AFTER EXECUTION 15A3 029A15A3 OlDl 

4-138 



EXAMPLE 2 Bit 32 - 0 

( R) BITS 16-31 (P) OF ~NSTRUCTION 

I CONTENTS BEFORE EXECUTION lSA3 lSA3 0100 

I CONTENTS AFTER EXECUTION lSA3 lSA3 OlO2 

4-139 



INSTRUCTION NA.t-1E: Skip If Equal To Full 

OP CODE: 66 

FUNCTION: If °DD= (RS), (p) +1- P 

MACHINE FORMAT: 

6 6 SPA I INDEX ADDRESS 

011 12 13 41 51617 S I 9110 111 12 IJ 114115 1611711811912012112212312412512612712S129130131 

DEFINITION: 

MO T P 

32 33 34 35 

If the contents of the memory word location specified 

by th~ effective address are equal to the contents of the 

full word scratchpad register pair specified by the SPA field of 

the instruction, the next instruction in sequence is skipped; 

otherwise, the next instruction in sequence is executed. The 

contents of memory and the scratchpad register pair remain unchanged. 

If bi~ 32 of the instruction word is zero, then the 

operand is immediate. 

EXAMPLE 1 Bit 32 = 1 

(RS) 

(R) (S) (MD) (P) 

I CONTENTS BEFORE EXECUTION 00A3 2100 00A32100 0100 

I CONTENTS AFTER EXECUTION 00A3 2100 00A32100 0102 

4-140 



EXAMPLE 2 Bit 32 = 0 

(RS) 

(R) (S) BIT.5 16-31 (P) 
OF INSTRUCTION 

I CONTENTS BEFORE EXECUTION 00A3 2100 2100 0100 

~TENTS AFTER EXECUTION 00A3 2100 2100 0101 

4-141 



INSTRUCTION NAME: Skip If Not Equal To 

OP CODE: 71 

FUNCTION: If D f (R), (p) +1- P 

MACHINE FORMAT: 

7 1 SPA I INDEX ADDRESS 

011 12 13 41 5 1617 8 I 91 10 III 12 13j 14115 16117118119120121122123124125[261 27f2Bf 29130131 

DEFINITION: 

MO T P 

32 33 34 35 

If the contents of the memory word location specified 

by the effective address are not equal to the contents of the 

scratchpad register specified by the SPA field of the instruction,' 

the next instruction in sequence is skipped; otherwise, the next 

instruction in sequence is executed. The contents of memory 

and the scratchpad register remain unchanged. 

When bit 31 is zero, bits 0-15 of (MD) are used as the 

operand, and when bit 31 is one, bits 16-31 of (MD) are used as the 

operand. If bit 32 of the instruction word is zero, then the 

operand is immediate. 

EXAMPLE 1 Bit 32 = 1, Bit 31 = 1 

(R) (MD) (P) 

I CONTENTS BEFORE EXECUTION 15A3 029A 15A3 0200 

I CONTENTS AFTER EXECUTION 15A3 029A 15A3 0201 

4-142 



EXAMPLE 2 Bit 32 = 0 

(R) BITS 16-31 (P) 
OF INSTRUCTION 

I CONTENTS BEFORE EXECUTION 15A3 029A 0200 

l CONTENTS AFTER EXECUTION 15A3 029A 0202 

4-143 



INSTRUCTION NAME: Skip If Not Equal To Full 

OP CODE: 75 

FUNCTION: IfDD I (RS), (p) +1- P 

MACHINE FORMAT: 

7 5 SPA I INDEX ADDRESS 

o II 12 13 4 15 1617 8 I 91 10 I " 12 13! 141 15 161"1181191201211221231241251261271281'9130131 

DEFINITION: 

MO T P 

32 33 34 35 

If the contents of the memory word location specified 

by the effective address are not equal to the contents of the 

full word scratchpad register pair specified by the SPA 

field of the instruction, the next instruction in sequence lS 

skipped; otherwise, the next instruction in sequence is executed. 

The contents of memory and the scratchpad register pair remain 

unchanged. 

If bit 32 of the instruction word is zero, then the 

operand is immediate. 

EXJ\J.1P LE 1 Bit 32 :::: 1 

• 
,(RS) 

(R) (S) (MD) (P) 

I CONTENTS BEFORE EXECUTION 0012 3456 00133456 0200 

t COI-.lTEN1S AFTER EXECUTION 0012 3456 00133456 0202 

4-144 



EXAMPLE 2 Bit 32 = 0 

(RS) 

(R) (S) BITS 16-31 (P) 
OF INSTRUCTION 

I CONTENTS BEFORE EXECUTION 0000 57A2 57A1 0200 

I CONTENTS AFTER EXECUTION 0000 57A2 57A1 0202 

4-145 



INSTRUC'I'ION NAME: Skip If Greater Than 

OP CODE: 61 

FUNCTION: If D)(R), (p) +1 -P 

MACHINE FORMAT: 

6 1 SPA I INDEX ADDRESS 

o 11 I 2 13 415 1617 81 91 10 III 12 13114T15 16T17T18119 f 20 121 122T23124125126127128129130131 

DEFINITION: 

M 0 T P 

32 33 34 35 

If the contents df the memory word location specified 

by the effective address are greater than the contents of the' 

scratchpad register specified by the SPA field of the instruction, 

the next instruction in sequence is skipped; otherwise, the next 

instruction in sequence is executed. The contents of memory and 

the scratchpad register remains unchanged. 

When bit 31 is zero, bits 0-15 of 

operand, and when bit 31 is one, bits 16-31 of 

operand. If bit 32 of the instruction word is 

operand is immediate. 

EXAMPLE 1 Bit 32 = I, Bit 31 = 1 

(R) (MD) 

I CONTENTS BEFORE EXECUTION 4321 54321098 
l CONTENTS AFTER EXECUTION 4321 54321098 

4-146 

(MD) are used as 

(MD) are used as 

zero, then ·the 

(P) 

OXIO 
OXll 

the 

the 



EXAMPLE 2 Bit 32 = 0 

(R) BITS 16- 31 (P) or INSTRUCTION 

I CONTENTS BEFORE EXECUTION 4321 ABCD 0200 

I CONTENTS AFTER EXECUTION 4321 ABCD 0202 

4-147 



INSTRUCTION NAME: Skip If Greater Than Full. 

OP CODE: 65 

FUNCTION: IfDD>(R~, (P)+l--- P 

MACHINE FORMAT: 

6 5 SPA I INDEX ADDRESS 

-0 11 I 2 I 3 4 1 5 1 61 7 8 1 91 10 111 12 13114115 16117118119120121 122123124125126127128129130131 

DEFINITION: . . 

M 0 T P 

32 33 34 35 

If the contents of the memory word location specified 

by the effective address are greater than the contents of the 

full word scratchpad register pair specified by the SPA 

field of the instruction, the next instruction in sequence is 

skipped; otherwise, the next instruction in sequence is executed. 

The contents of memory and the scratchpad register pair remain 

unchanged. 

If bit 32 of the instruction word is zero, then the 

operand is immediate. 

EXAHPLE 1 Bit 32 = 1 

(RS) 

(R) (S) (MD) (P) 

I CONTENTS BEFORE EXECUTION 1234 5678 12348765 0200 

I CONTENTS AFTER EXECUTION 1234 5678 12348765 0202 

4-148 



EXAMPLE 2 Bit 32 = 0 

(RS) 
f------- r--- --._--'" --

(R) (5 ) BITS 16-31 (P) 
OF INSTRUCTION 

I CONTENTS BEFORE EXECUTION 1234 5678 8765 0200 

I CONTENTS AFTER EXECUTION 1234 5678 8765 0201 

4-149 



INSTRUCTION NAME: Skip If Not Greater 

OP CODE: 72 

FUNCTION: If D «R), (P) +1 -- P 

MACHINE FORMAT: 

7 2 SPA I INDEX ADDRESS 

011 12 13 4 151617 81 9110 111 12 13114115 16 [17\18119120121 122123 1 241251261 27[28129130J31 

DEFINITION: 

MO T P 

32 33 34 35 

If the contents of the memory word location speci~ied 

by the effective address are not greater than the contents of the 

scratchpad register specified by the SPA field of the instruction, 

the next instruction sequence is skipped; otherwise, the next 

instruction in sequence is executed. The contents of memory and 

the scratchpad register remain unchanged. 

When bit 31 is zero, bits 0-15 of (MD) are used as the 

operand, and when bit 31 is one, bits 16-31 of (MD) are u~ed as the 

operand. If bit 32 of the instruction ~ord is zero, then the 

operand is immediate. 

EXAMPLE 1 Bit 32 = 1, Bit 31 = 0 

(R) (MD) (P) 

l CONTENTS BEFORE EXECUTION 3456 3446DFEG 0200 

I CONTENTS AFTER EXECUTION 3456 3446DFEG 0202 

4-150 



EXAMPLE 2 Bit 32 = a 

(R) BITS.16-31 (P) 
OF INSTRUCTION 

I CONTENTS BEFORE EXECUTION 3456 4563 0200 

I CONTENTS AFTER EXECUTION 3456 4563 0201 

4-151 



INSTRUCTION NAME: Skip If Not Greater Than Full 

OP CODE: 76 

FUNCTION: I fDD «RS), (P) + 1-- P 

NACHINE FORMAT: 

7 6 SPA I INDEX ADDRESS 

011 12 13 415 1617 al9110 1" 12 13114115 1611711811912012112212312'12*6127128129130131 

DEFINITION: 

MO T P 

32 33 34 35 

If the contents of the memory word location specified 

by the_ effective address are not greater than the contents of 

the full word scratchpad register pair specified by the 

SPA field of the instruction, the next instruction in sequence 

is skippedi otherwise, the next instruction in sequence is executed. 

The contents of memory and the scratchpad register pair remain 

unchanged. 

If bit 32 of the instruction word is zero, then the 

operand is immediate. 

EXAMPLE 1 Bit 32 = 1 

(RS) 

(R) (S) (MD) (P) 

l CONTENTS BEFORE EXECUTION 1234 5678 12345678 0200 
l CONTENTS AFTER EXECUTION 1234 5678 12345678 0202 

4-152 



EXAMPLE 2 Bit 32 = 0 

(RS) 

(R) (S) BITS 16-31 (P) 
OF INSTRUCTION 

I CONTENTS BEFORE fX[CUTION 1234 5678 5678 0200 

I CONTENTS AFTER EXECUTION 1234 5678 5678 0202 

4-153 



INSTRUCTION NAME: Skip If Less Than 

OP CODE: 70 

FUNCTION: If D «R), (P) +1-- P 

MACHINE FORMAT: 

7 0 SPA I INDEX ADDRESS 

o II I 2 13 41 5 1617 8 I 91 10 111 12 JJ 114115 16117118 119120121 122 123 1 2'125r261271 2812913~31 

DEFINITION: 

MO T P 

32 33 34 35 

If the contents of the memory word location specified 

by the effective address are less than the contents of the scratchpad 

register specified by the SPA field of the instruction, the next 

instruction in sequence is skipped; otherwise, the next instruction 

in sequence is executed. The contents of memory and the scratchpad 

register remain unchanged. 

When bit 31 is zero, bits 0-15 of (MD) are used as the 

operand, and when bit 31 is one, bits 16-31 of (MD) are used as the 

operand. If bit 32 of the instruction word is zero, then the 

operand is immediate. 

EXAMPLE 1 Bit 32 = 1, Bit 31 = 0 

(R) (MD) (P) 

I CONTENTS BEFORE EXECUTION 1234 12345678 0200 
I CONTENTS AFTER EXECUTION 1234 12345678 0201 

4-154 



EXM1PLE 2 Bit 32 = 0 

(R) BITS 16-31 (P) OF INSTRUCTION 

I CONTENTS BEFORE EXECUTION 1234 0123 0200 

I CONTENTS AFTER EXECUTION 1234 0123 0202 

4-155 



INSTRUCTION NAME: Skip If Less Than Full 

OP CODE: ,74 

FUNCTION: If DD«RS), (P) +1 -- P 

MACHINE FORMAT: 

7 4 SPA I INDEX ADDRESS 

01' 12 13 _1 5 1617 SI 9110 I" 12 13/14115 16117[IS[19J2012IJ22J 23[ 241 251261271 2S[29 13013' 

DEFINITION: 

MO T P 

32 33 34 35 

If the contents of the memory word location specified 

by the effective address are less than the contents of the 

full word scratchpad register pair specified by the SPA field of 

the instruction, the next instruction in sequence is skipped; 

otherwise, the next instruction in sequence is executed. The 

contents of memory and the scratchpad register pair remain unchanged. 

If bit 32 of the instruction word is zero, then the 

operand is immediate. 

EXANPLE 1 Bit 32 = 1 

(R5) 

(R) (5) (MD) (P) 

I CONTENTS BEFORE EXECUTION 1234 5678 12348765 0200 

I CONTENTS AFTER EXECUTION 1234 5678 12348765 0201 

4-156 



EXAMPLE 2 Bit 32 = 0 

(RS) 

(R) (S) Blrs 16-31 (P) 
OF INSTRUCTION 

I CONTENTS BEFORE EXECUTION 1234 5678 1234 0200 

I CONTENTS AFTER EXECUT ION 1234 5678 1234 0202 

4-157 



l~STRUCTION NM1E: Skip If Not Less Than 

UP CODE: 63 

FUNCTION: If D '2: (R), (p) +1 -- P 

i.~i\CIIINE FORMAT: 

6 3 SPA I INDEX ADDRESS 

01' 12 13 4 15 1617 81 91 10 I" 12 13114) 15 16/171'81'9120121122123124125126/27/28/29/30/3' 

DEFINITION: 

MO T P 

32 33 34 35 

If the contents of the memory word location specified 

by the effective address are not less than the contents of the 

scratchpad register specified by the SPA field of the instruction, 

the next instruction in sequence is skipped; otherwise, the next 

instruction in sequence is executed. The contents of memory and 

the scratchpad register remain unchanged. 

When bit 31 is zero, bits 0-15 of (MD) are used as the 

operand, and when 31 is one, bits 16-31 of (MD) are used as the 

operand. If bit 32 of the instruction word is zero, then the 

operand is immediate. 

Bit 32 = I, Bit 31 = 0 

(R) (MD) p 

I CONTENTS BEFORE EXECUTION 1234 12345678 0200 

l CONTENTS AFTER EXECUTION 1234 12345678 0202 

4-158 



EXAl1PLE 2 Bit 32 = 0 

(R) BITS 16-31 (P) OF jNSTRUCTION 

I CONTENTS BEFORE EXECUTION 1234 0123 0200 

I CONTENTS AFTER EXECUTION 1234 0123 0201 

4-159 



INS'I'RUCTION NAME: Skip If Not Less Than Full 

OP CODE: -67 

FUNCTION: IfDD>(RS), (p) +1-- P 

!.lACHINE FORMAT: 

6 7 SPA I INDEX ADDRESS 

0]1 1 2 1 3 4 1 5 1 6 I 7 8 ! 9110 I" 12 lJ!14!15 '61171'81'912012'12212312412512612712812913013' 

DEFINITION: 

MOl P 

32 33 34 35 

If the contents of the memory word location specified 

by the effective address are not less than the contents of the 

full word scratchpad register pair specified by the SPA 

field of the instruction, the next instruction in sequence is 

skipped; otherwise, the next instruction in sequence is executed. 

The contents of memory and the scratchpad register pair remain 

unchanged. 

If bit 32 of the instruction word is zero, then the 

operand is immediate. 

EXAMPLE 1 Bit 32 = 1 

(RS) 

(R) (5) (MD) P 

I CONTENTS BEFORE EXECUTION 1234 5678 12348765 0200 

I CONTENTS AFTER EXECUTION 1234 5678 12348765 0202 

4-160 



EXA1>lPLE 2 Bit 32 = 0 

(RS) 

(R) (S) BITS 16-31 (P) 0F INSTRUCTION 

I CONTENTS BEFORE EXECUTION 1234 5678 17.34 0200 r CONTENTS AFTER EXECUTION 1234 5678 1234 0201 

4-161 



INSTRUCTION NAME: Skip On Bit N 

OP CODE: 83 

FUNCTION:' If Bit. = 1 where i ::.0,----,15; {P)+l-P 
1 

}1ACHINE FORMAT: 

8 3 BIT NO I INDEX ADDRESS MO T P 

01' 12 13 41 5\6\7 8\91,0 I" 12 13114115 '61'71'81'9120121\22123\2~2512612712812913013' 37 33 34 35 

DEFINITION: 

The selected bit. within the half word specified 

by the effective address is tested. If it is 0, the next instruction 

in sequence is executed.~ If it is a 1, the next instruction in 

sequence is skipped~ The decimal value of bits 8-11 of the instruction 

specify the bit to be tested. The contents of memory remain unchanged. 

When bit 31 of the instruction is zero, bits 0-15 of 

(1-1D) are used as the operand, and when bit 31 is one, bits 16-31 of 

(Mn) are used as the oper~nd. If bit 32 of the instruction 

word is zero, then the operand is immediate. 

EXAMPLE 1 Bit 32 = I, Bit 31 = 0 

BITS 8 - 11 (M£Y ( p) 
OF INSTRUCTION 

l CONTENTS BEFORE EXECUTION A 029A15A3 0200 

l CONTENTS AFTER EXECUTION A 029A15A3 0202 

4-162 



EYJ\}1PLE 2 Bit 32 == 0 

BITS 8 - 11 BITS 16-31 (P) 
OF INSTRUCTION OF It-.JSTRUCTION 

I CONTENTS BEFORE EXECUTION A 2345 0200 

I CONTENTS AFTER EXECUTION A 2345 0201 

4-163 



4.4.5 PMU Data Instructions 

INSTRUCTION NAME: Convert 2' s to SM 

OP CODE: 91 

FUNCTION: (D - 1)--- R 

MACHINE FORMAT: 

9 1 SPA I INDEX ADDRESS MO T P 

011 12 13 _I 5 16 17 81 9110 I" 12 lJ 114115 16117116119120121122123 i 24125126127128129130131 32 33 34 35 

DEFINITION: The half word specified 

EXAHPLE 1 

by the effective address is converted from two's 

complement to sign and magnitude and placed in 

the scratchpad register specified by the SPA 

field of the instruction. The Overflow Interrupt 

(Trap No.5) is enabled if the smallest negative 

number (_2+15 ) is converted. 

When bit 31 is zero, bits 0-15 of (MD) are used 

as the operand, and when bit 31 is one, bits 16-31 of 

-(MD) are used as the operand. If bit 32 of the 

instTuction word is zero, then the operand is 

immediate. 

Bit 32 = 1, Bit 31 = 0 

(R) (Mo) 

I CONTENTS BEFORE EXECUTION XXXX EOCBA987 

l CONTENTS AFTER EXECUTION 9235 EOCBA987 

4-164 



EXJI..MPLE 2 Bit 32 = 0 

(R) BITS 16-31 
OF INSTRUCTION 

I CONTENTS BEFORE EXECUTION XXXX A987 

I CONTENTS AFTER EXECUTION D679 A987 

4-165 



INSTRUCTION NAME: Convert 2's to SM Full 

OP CODE: 95 
--

FUNCTION: (DD - 1) - 'RS 

MACHINE FORMAT: 

9 5 SPA I INDEX ADDRESS MO T P 

01' 12 13 4 I 5 1 6 1 7 81 9110 1" 12 13114! 15 16 H 18 H 201211221231"1,51,6 I,;r ,;12913°1 31 32 33 34 35 

DEFINITION: The full word specified 

EXAMPLE 1 

by the effective address is converted from two's 

complement to sign and magnitude and placed in 

the full word scratchpad register pair 

specified by the SPA field of the instruction. 

The Overflow Interrupt (Trap No.5) is enabled 

if the smallest negative number (_2+31 ) is 

converted. 

If bit 32 of the instruction word is zero, then 

the operand is immediate. 

Bit 32 = 1 

(RS) 

(R) (5) (Mo) 

I CONTENTS BEFORE EXECUTION XXXX XXXX EDCBA987 

I CONTENTS AFTER EXECUTION 9234 5679 EDCBA987 

4-166 



EXAMPLE 2 Bit 32 = 0 

(RS) 

(R) (S) BITS 16-31 
OF INSTRUCTION 

I CONTENTS BEFORE EXECUTION XXXX XXXX A987 

I CONTENTS AFTER EXECUTION 0000 A987 A987 

4-167 



INSTRUCTION NAME: Convert SM to 2' s 

OP CODE: A2 

FUNCTION: (D + 1) ---\)0- R 

MACHINE FORMAT: 

A 2 SPA I INDEX ADDRESS Mlo 
"I 

T P 

01' 12 13 4 151617 81 91.0 I" 12 IJ 114115 .61171"1.9120 I" 12212312412*612712812913013' 31 133 34 35 

DEFINITION: The half word specified 

EXAMPLE 1 

by the effective address is converted from a 

sign and magnitude representation to a two's. 

complement number and placed in the scratchpad 

register specified by the SPA field of the 

instruction. 

This instruction can be used to load a scratched 

register with a negative 2's complement number for 

loop control using the Transfer On Incremented SP 

rnstruction (Op Code 50). 

When bit 31 is zero, bits 0-15 of (MD) are used as 

the operand, and when bit 31 is one, bits 16-31 of 

(MD) are used as the operand. If bit 32 of the 

instruction word is zero, then the operand is 

immediate. 

Bit 32 = 1, Bit 31 = a 

(R) (MD) 

I CONTENTS BEFORE EXECUTION xxx x 12345678 
I CONTENTS AFTER EXECUTION 1234 12345678 

4-168 



EXAMPLE 2 Bit 32 = 0 

: BITS 16-31 
(R) OF I~~STRUCTION 

I CONTENTS B_EFORE EXECUTION XXXX 5678 

I CONTENTS AFTER EXECUTION 5678 5678 

4-169 



INSTRUCTION NAME: Convert SM to 2's Full 

OP CODE: A6 

FUNCTION: (00 + 1) RS 

MACHINE FORMAT: 

~-~~ -----,---r- ~-

A 6 SPA I INDEX ADDRESS MO T P 

011 12 13 4 Is 1617 8 I 91 10 I " 12 131 !4115 161"1'81'912012' 12212312412sJ 26127128129130 131 32 33 34 35 

DEFINITION: The full word specified 

EXAMPLE 1 

by the effective address is converted from a sign 

and magnitude representation to a two's complement 

number and placed in the full word scratchpad 

register pair specified by the SPA field of the 

instruction. 

If bit 32 of the instruction word is zero, then 

the operand is immediate. 

Bit 32 = 1 

IOC\ 
\ I\'...J I 

(R) (S) (MD) 

I CONTENTS BEFORE EXECUTION XXXX XXXX 12345678 

l CONTENTS AFTER EXECUTION 1234 5678 12345678 

4-170 



EXAMPLE 2 Bit 32 = 0 

(RS) 

(R) (S) BITS 16-31 
OF INSTRUCTIOr-.; 

I CONTENTS BEFORE EXECUTION XXXX XXXX 5678 

I CONTENTS AFTER EXECUTION 0000 5678 5678 

4-171 



INSTRUCTION NAME: Round 

OP CODE: D6 

FUNCTION: (R) -- RROUND' 0 --. S 

1-1AC:HINE FORMAT: 

D 6 SPA XXXXX 

o I, 12 13 , 15 1.1 7 81 91101" 121 131"1'51'.1'71'81'912012' 122123 124125126127128129130131 

X 0 T P 

32 33 34 35 

DEFINITION: The contents of the full word scratchpad 

register pair specified by the SPA field of the 

instruction are algebraically rounded to 16 bits. 

The result is placed in the high order part of 

the scratchpad register pair (SPR) and the low 

order part of the register pair (SPS) is cleared 

'to zero. If an overflow occurs, the Overflow 

Interrupt (Trap No.5) is enabled. 

EXAMPLE 1 

(RS) 

(R) (S) 

I CONTENTS BEFORE EXECUTION 1234 5678 
l CONTENTS AF1ER EXECUTION 1234 0000 

(RS) 

(R) (S) 

I CONTENTS BEFORE EXECUTION FEDC BA98 

l CONTENTS AFTER EXECUTION FEDD 0000 

4-172 



INSTRUCTION NAME: Binary Normalize 

OP CODE: D7 

FUNCTION: IF (RS) Pos, (RS)---RS(2 30 ) } 

IF ( RS ) Neg, (RS ) -- RS ( _ 2 3 0 ) 

MACHINE FORMAT: IF (RS) Zero. 0- MD 

Shift Count-MD 

0 7 SPA I INDEX ADDRESS MO T P 

01' 12 13 4 15 1617 81 9110 I" 12 13114115 16\17\19 \19120121122123124125126127129129130131 32 33 34 35 

DEFINITION: The non zero contents (RS) of the full word sc~atchpad 

register p~ir specified by the SPA field of the in­

struction is scaled to the range 2 30 $ RS if RS is 
. t . RS 2 30 . f S . . h 1 POS1 1ve or < - 1 R 1S negat1ve. T e resu t 

is placed in the same scratchpad register pair. The 

count of the number of shifts required to bring RS 

into range is placed in the memory word location 

specified by the effective address. The shift count 

is stored in bit positions 24-31 with bit positions 

0-23 cleared to zero and a data tag of 010 (integer). 

The maximum shift count that will be stored is 30. If 

(RS) was ZERO, a count of ZERO is placed in memory and 

no shifting occurs. 

Indexing and indirection are allowed with this in­

struction. However, the final modified instruction 

word after all address modification has taken place 

should have its memory access bit (bit 32) reset to a 

zero, indicating an immediate address. Should bit 32 

be set to one, a non required extra clock cycle will 

be expended to read the contents of the memory location 

specified by the effective address. 

4-173 



E:-: .• !,I,J.lPLE 1 

(RS) 

(R) (S) (MD) 

I CONTENTS BEFORE EXECUTION 0024 68AC XXXX XXXX 

I CONTENTS AFTER EXECUTION 48Dl 5800 0000 0009 

EXAMPLE 2 

(RS) 

(R) (S) (MD) 

I CONTENTS BEFORE EXECUTION 8024 68AC XXXX XXXX 

l CONTENTS AFTER EXECUTION C8Dl 5800 0000 0009 

4-174 



4.4.6 PMU Transfer Instructions 

INSTRUCTION NAME: Transfer Unconditional 

OP CODE: 40 

FUNCTION: D --- P 

MACHINE FORMAT: 

4 0 XXXX I INDEX ADDRESS MO T P 

01' 12 13 415 1617 81 91'0 I" 12 13114115 '61'71'81'912012'12212312412512612712812913013' 32 33 34 35 

DEFINITION: The effective address unconditionally replaces 

the contents of the Program Counter. 

EXAMPLE 

Indexing and indirection are allowed with this 

instruction. However, the final modified instruction 

word after all address modification has taken 

place should have its memory access bit (bit 32) 

reset to a zero, indicating an immediate address. 

Should bit 32 be set to one, a non required extra 

clock cycle will be expended to read the contents 

of the memory location specified by the effective 

address. 

0 ( p) 

I CONTENTS BEFORE EXECUTION 0200 0010 

I CONTENTS AFTER EXECUTION 0200 0200 

4-175 



INSTRUCTION NAME: Transfer If R Is Zero 

OP CODE: 42 

FUNCTION: If (R) = 0, D -. P 

}lACHINE FORMAT: 

--,-

4 2 SPA I INDEX ADDRESS MO T P 

01' 12 13 41 5161 7 819J 10J II 12 IJJ 14 1'5 '61'71'81'912012' 122123[241 25J26[27128129 130 131 32 33 34 35 

DEFINITION: If the contents of the scratchpad register 

specified by the SPA field of the instruction 1S 

equal to zero, then the effective address replaces 

the contents of the program counter. If the 

contents of the scratchpad register are not 

1::>:1\].1 P LE 1 

l 
l 

equal to zero, normal operation continues with 

the fetch of the next sequantial instruction. 

Indexing and indirection are allowed with this 

instruction. However, the final modified 

instruction word after all address modification 

has taken place should have its memory access 

bit (bit 32) reset to a zero, indicating an 

immediate address. Should bit 32 be set to one, 

a non required extra clock cycle will be expended 

to read the contents of the memory location 

specified by the effective address. 

(R) D (P) 

CONTENTS BEFORE EXECUTION 0000 0200 0010 
CONTENTS AFTER EXECUTION 0000 0200 0200 

4-176 



EXANPLE 2 

(R) D (P) 

I CONTENTS BE:-ORE EXECUTiON 0001 0200 0010 

I CONTENTS AFTER EXECUTIOr'-l 0001 0200 0011 

4-177 



INSTRUCTION NAME: Transfer If R Zero Full 

OP CODE: 46 

FUNCTION! If (RS) = 0, 'D - P 

MACHINE FORMAT: 

4 6 SPA I INDEX ADDRESS -M o T P 

o I, I 2 I 3 '1 5 H 7 8 I 91'0 I" 12 13TI4T15 16T'7T18 I,; 120121122123124125126/27128129130 131 32 3J 34 35 

DEFINITION: If the contents of the full word s:cratchpad 

register pair specified by the SPA field of the 

instruction is equal to zero, then the effective 

address replaces the contents of the program 

counter. If the contents of the full word 

scratchpad register pair doss not equal zero, 

normal operation continues with the fetch of the 

next sequential instruction. 

Indexing and indirection are allowed with this 

instruction. However, the final modified instruction 

word after all address modification has taken place 

should have its memory access bit (bit 32) reset 

to a zero, indicating an immediate address. Should 

bit 32 be set to one, a non required extra clock 

cycle will be expended to read the contents of 

the memory location specified by the effective 

address. 

4-178 



EXAMPLE 1 

(RS) 

(R) (S) D (P) 

I CONTENTS BEFORE EXECUTION 0000 .0000 OLDO 0010 

I CONTENTS AFTER EXECUTION 0000 0000 OLDO OLDO 

EXAMPLE 2 

(RS) 

(R) (S) D (P) 

I CONTENTS BEFORE EXECUTION 0001 0000 0200 0010 

I CONTENTS AFTER EXECUTION 0001 0000 0200 0011 

4-179 



INSTRUCTION NAME: Transfer If R Negative 

OP CODE: 41 

FUNCTION: If (R) <" 0, D - P 

MACHINE FORMAT·: 

4 1 SPA I INDEX ADDRESS MO T P 

01' 12 13 415 H7 sl 9110 III 12 13114115 '61'71'sl'91201211 nl2312412s12612712s129130131 32 33 34 35 

DEFINITION: If the contents of the scratchpad register 

specified by the SPA field of the instruction 

EXAMPLE 1 

is negative, then the effective address replaces 

the contents of the program counter. If the 

contents of the scratchpad register is not 

negative, normal operation continues with the 

fetch of the next sequential instruction. The 

number, negative 0, is treated as a positive 0, 

that is, non-negative for this instruction. 

Indexing and indirection are allowed with this 

instruction. However, the final modified 

instruction word after all address modification 

has taken place should have its memory access 

bit (bit 32) reset to a zero, indicating an 

immediate address·. Should bit 32 be set to one, 

a non required extra clock cycle will be expended 

to read the contents of the memory location 

specified by the effective address. 

(R) D (P) 

l CONTENTS BEFORE EXECUTION E123 0200 0010 
I CONTENTS AFTER EXECUTION E123 0200 0200 

4-180 



EXAMPLE 2 

(R) D (P) 

I CONTENTS BEFORE EXECUTION 7123 0200 0010 

I CONTENTS AFTER EXECUTION 7123 0200 0011 

4-181 



INSTRUCTION NAME: Tran'sfer If R NEG Full 

OP CODE: 45 

FUNCTION: If (RS) < 0, D --- P 

HACHINE FORI'1AT: 

4 

o 1 J 1 ? 13 

DEFINI'l'ION: 

5 SPA I INDEX ADDRESS M 0 T P 

41 5 1617 8 I 91 10 I" J2 13! 1.:1 ! 15 1611711811912012; 1221231 "125126127128129130131 32 33 34 35 

If the contents of the full word scratchpad 

register pair specified by the SPA field of the 

instruction is negative, then the effective address 

replaces the contents of the program counter. If 

the contents of the full word scratchpad 

register pair is not negative, normal operation 

continues with the fetch of the next sequential 

instruction. The number, negative 0, is treated 

as .a positive 0, that is non-negative for this 

instruction. 

Indexing and indirection are allowed with this 

instruction, However, the final modified instruction 

word after all address modification has taken place 

should have its memory access bit (bit 32) reset 

to a zero, indicating an immediate address. Should 

bit 32 be set to one, a non required extra clock 

cycle will be expended to read the contents of 

the memory location specified by the effective 

address. 

4-182 



EXAMPLE 1 

(RS) --
(R) (S) D (P) 

I CONTENTS BEFORE EXECUTION E123 4567 OZ)O 0010 

I CONTENTS AFTER EXECUTION E123 4567 OZ)O OZ)O 

EXAMPLE 2 

(RS) 

(R) (S) D (P) 

I CONTENTS BEFORE EXECUTION 7123 4567 OZ)O 0010 

I CONTENTS AFTER EXECUTION 7123 4567 OZ)O 0011 

4-183 



INSTRUCTION NAME: Transfer If Not Equal 

OP CODE: 43 

FUNCTION: If D I (R), (S) - P 

-
4 3 SPA I INDEX ADDRESS MO T P 

0[1[21 3 4 151617 81 91 10 111 12 lJ j14J 15 16117118 119120l21122] 23J24125J 26[27128129130131 32 33 34 35 

DEFINITION: The contents of the scratchpad register specified by 

the SPA field of the instruction are compared with 

the half word specified by the effective address for 

equality. If 'they are not equal, the contents of the 

low order part of the full word scratchpad register 

pair specified by the SPA field replace the contents 

of the program counter. If equality exists, . normal 

operation continues with the fetch of the next sequen­

tial instruction. When bit 31 of the instruction 

word, after address modification, is zero, bits 0-15 

of· the memory word location are used as the operand, and 

when bit 31· is one, bits 16-31 of the memory location 

are used as the operand. 

If bit 32 of the instruction word is zero, then the 

operand is immediate, i.e., the contents of bits 

16-31 of the instruction word are used for the equality 

comparison with the contents of the scratchpad register 

specified by the SPA field. 

When used in conjunction with register indirection mode, 

register replacement and non-addressable (immediate) 

operand, this instruction acts as a Transfer on 

Incremented Scratchpad Register instruction where the 

increment is specified in the register used to index 

the immediate operand. 

4-184 



EXAMPLE 1 Bit 32 = 1 Bit 31 = 1 

(R) (S) (MD) (P) 

I CONTENTS BEFORE EXECUTION 1234 0200 1234 5678 0010 

I CONTENTS AFTER EXECUTION 1234 0200 1234 5678 0200 

EXAMPLE 2 Bit 32 = 0 

(R) (S) BITS 16-31 (P) 
OF INSTRUCTION 

I CONTENTS BEFORE EXECUTION 1234 0200 1234 0010 

I CONTENTS AFTER EXE:CUTION 1234 0200 1234 0011 

4-185 



INSTRUCTION NAME: Transfer on Incremented SP 

OP CODE: 50 

FUNCTION: If (R) + 1 f 0, D --- P 

MACHINE FORMAT: 

-
5 0 SPA I INDEX ADDRESS MO T P 

01' 12 13 4 I 5 I 61 7 8 I 'liD 1'1 12 lJl.14! 15 161171'8119120121122123124125126127128129130i31 32 33 34 35 

DEFINITION: The contents of the scratchpad register specified 

by the SPA field of the instruction are incremented 

EXAMPLE 1 

by one. If the incremented contents are equal to 

zero, the next sequential instruction is executed. 

If the incremented contents are not equal to zero, 

the effective address replaces the contents of 

the program counter. The contents of the scratchpad 

register are incremented as a 16 bit unsigned 

binary number. Negative numbers should be specified 

in two's complement notation in order to facilitate 

loop control. Indexing and indirection are allowed 

with this instruction. However, the final modified 

instruction word after all address modification 

has taken place should have its memory access bit 

(bit 32) reset to a zero, indicating an immediate 

address. Should bit 32 bo set to one, a non required 

extra clock cycle will be expended to read the 

contents of the memory location specified by the 

effective address. 

(R) D (P) 

I CONTENTS BEFORE EXECUTION 8002 OXlO 0010 

I CONTENTS AFTER EXECUTION 8003 OXlO OalO 

4-186 



EXAMPLE 2 

(R) D (P) 

I CONTENTS BEFORE EXECUTION FFFF 0200 0010 

I CONTENTS AFTER EXECUTION 0000 0200 0011 

4-187 



INSTRUCTION NAME: Transfer to Executive 

OP CODE: 37 

FUNCTION: Control of Interval Timer, Program Control - EXEC 

-< 

3 7 TIMER 
I INDEX ADDRESS MO T P CONTROL 

01' 12 13 4 15 I 61 7 81 9110 I" 12 131'4115 '61171181'9120121 l"I"I2412512612712B 129130 131 32 33 34 35 

DEFINITION: This instruction may be received by the PMU as an 

external instruction or as an internal instruction 

from the program counter. When received as an 

external instruction no indexing, indirection, 

nor trace (bit 34) will be performed. When 

executed from a program counter fetch (internal 

instruction) indexing and indirection are allowed 

with this instruction. However, the final 

modified instruction word after all address modifi­

cation has taken place should have its memory 

access bit (bit 32) reset to a zero, indicating an 

immediate address. Should bit 32 be set to one, 

a non required extra clock cycle will be expended 

to read the contents of the memory location 

specified by the effective address. 

This instruction loads a two word command to the 

channel and performs control functions of the 

PMU's interval timer. 

4-188 



Upon completion of execution of this instruction 

the Timer Control field (bits 8-11) are used to 

initiate the following actions of the Interval 

Timer. 

Bit 8 - If zero, the interval timer is 

unchanged. If one, the interval 

timer is loaded with bits 16-31 of 

the final modified Transfer To 

Executive instruction word after all 

address modification has taken place. 

Bits 9-10 - If both bits are zero, there is no 

effect on the Interval Timer and it 

will continue to count if it had been 

counting or remain stopped if it had 

been stopped. If bits 9 and 10 are 

"01," the Interval Timer will continue 

to count. If bits 9 and 10 are "10," 

the Interval Timer will stop counting. 

If bits 9 and 10 are "11," the Interval 

Timer will resume counting if it had 

been stopped, or will stop counting 

Bit 11 

if it·had been previously counting. 

- If zero, the next sequential instruction 

will be executed. If one, the HALT 

Indicator is set and the computer will 

respond only to interrupts. 

4-·189 



"The first word loaded by this instruction to the 

channel is a "Transfer and Stack Kernel 0" 

instruction and has the following format. 

5 4 1 1 1 1 F F F 0 0 o 0 0 P 

01' 12 13 4 151617 8[91 10 1" 12T'3 r '41'51'61'71'81'912012'12212312412512612712812913013' 32 133 134 

Bits 0-7 contain the op code number of the 

Transfer and Stack Kernel 0 instruction. 

35 

Bits 8-11 contain the scratchpad register name 

used as the parameter stack pointer. 

Bits 12-31 are the systems wide address to the 

ex~cutive and its entry point. The entry point 

to the ExeGutive is Word 0 of page number 255 

using procedure kernel O. The procedure kernel 

page register is updated to a upon execution of 

the "Transfer and Stack Kernel 0" instruction. 

The previous contents of the procedure kernel page 

register is saved in the parameter stack. 

4-190 



The Executive must execute a "Write Word From 

Input" instruction in order to load the second 

word into a memory location. This second word, 

loaded in the channel by this "Transfer to Executive" 

instruction, has the following format. 

RESOURCE o 0 EEFECTIVE ADDRESS OF 011 p 
NAME TRANSrER TO EXEC INST 

011121314j51617 8 I 91'0 I" 1'21lJ 1'4 1'5 161'71'81'9120121122123124125126127128129130131 32 133134 35 

Bits 0-7 contain the resource name of the PMU 

executing the "Transfer To Executive" instruction. 

This field allows the Executive to determine which 

resource is calling it. 

Bits 8-15 are all zeroes. 

Bits 16-31 contain bits 16-31 of the final modified 

Transfer To Executive instruction word after all 

address modification has taken place. This field 

is intended to be used by the Executive to determine 

the reason for the transfer. For this purpose 

the programmer must code this field according to 

the system wide conventions established by the 

Executive design. The programmer must also remember 

that should he have set bit 8 of the original 

Transfer To Executive instruction this same field 

will be used to load the interval timer. 

Bits 32-34 are set to "011" as the data tag 

indicating logical type data. 

4-191 



INSTRUCTION NAME: Transfer and Stack 

01' CODE: 51 

FUNCTION: 

!-lACHINE FORMAT: 

5 1 SPA I INDEX ADDRESS MO T P 
, 

01' 12 13 41 5 1617 819110 111 12 13-114115 161171181'912oT2112212312412sI2612712812913~31 32 33 34 35 

DEFINITION: This instruction writes two words into memory 

and causes a program branch. These words contain 

the status of the PMU at the time the Transfer 

and Stack instruction is executed. In the 

performance of this instruction, the contents 

of the scratchpad register specified by the SPA 

field of the instruction is incremented by 1. 

WORD 1, as_~efined below, is stored in the memory 

location specified by the incremented contents 

of the scratchpad register. The contents of the 

scratchpad register is then reincremented by 1. 

WORD 2, as defined below, is then stored in the 

memory location specified by the reincremented 

contents of the scratchpad register. The 

reincremented contents of the scratchpad register 

specified by the SPA field of the instruction 

are placed in Scratchpad Register 31 (L-Register). 

The Halt Indicator is cleared to zero and the 

Data Kernel Procedure Page Registers remain un­

changed. The effective address, after address 

modification, is then loaded into the program 

counter. 

4-192 



Indexing and indirection are allowed with this 

instruction. However, the final modified 

instruction word after all address modification 

has taken place should have-its memory access 

bit (bit 32) reset to a zero, indicating an 

immediate address. Should bit 32 be set to one, 

a non required extra clock cycle will be expended 

to read the contents of the memory location 

specified by the effective address. 

If this instruction is the first instruction 

executed in response to an internal interrupt, 

the Trap Level Register (Trap #) is appropriately 

updated to reflect the level of the Trap being 

honored. 

WORD 1 FORMAT 

TRAP OM o H DK PK L-REG 011 P 

0111>1314151617 8 9 10 11 J2113 14! 15 16117118119120121 1221231241251261271281,9130131 3213313435 

Bits 0-7 contain the TRAP LEVEL OF THE PROGRAM 

being branched from. 

Bit 8 is cleared to ZERO (unused). 

4-193 



'Bit 9 contains the present state of the MODE 

indicator. 

Bit 10 is cleared to ZERO (unused). 

Bit 11 contains the present state of the HALT 

indicator. 

Bits 12-13 contain the present state of the Data 

Kernel Page Register. 

Bits 14-15 contain the present state of the 

Procedure Kernel Page Register. 

Bits 16-31 contain the contents of Scratchpad 

Register 31 (L-Register). 

Bits 32-34 contain the field 011 (logical data type). 

Bit 35 is adjusted for ODD Parity. 

WORD 2 FORMAT 

P-SOURCE o 0 P-COUNTER 011 P 

Bits 0-7 are set the present contents of the 

P-SOURCE Register. 

4-194 



Bits 8-15 are cleared to ZERO (unused). 

Bits 16-31 contain the present contents of the 

Program Counter. These contents indicate the 

next sequential instruction that was to have 

been executed. 

Bits 32-34 contain the field all (logical data 

type) . 

Bit 35 is adjusted for odd parity. 

4-195 



INSTRUCTION NAME: Transfer And Stack Kernel N 
(N = 0, 1, 2, 3) 

OP CODE: 54 (N=O) 
55 (N=l) 
56 (N-2) 
57 (N=3) 

FUNCTION: 

MACHINE FORMAT: 

0' CODE SPA I INDEX ADDRESS MO T P 

01'121314151617 8 I 91 10 1 " 12 IJ 114115 ,61,71,81,9120121122123124125126127128129130131 3233 34 35 

DEFINITION: These instructions' perform a PMU-Channel Transfer 

and Stack instruction as defined in Op Code 51 

and sets the procedure kernel page register to N 

as dictated by the op code. The data kernel 

register remains unchanged. 

The procedure kernel page register specified by 

the instruction must be within the task memory 

lower bound as set by the Set Task Parameter 

(Op Code 29) instruction. If not, an out of bound 

trap interrupt is generated and the instruction is 

not executed. 

This instruction 

may be received by the PMU as an external instruction 

or as an internal instruction from the program 

counter. When received as an external instruction, 

no address modification nor trace will be performed. 

4-196 



" .. 

INSTRUCTION NAME: Escape Number N 
(N. = 0,1,--- 7) 

OF CODE: E4 (No. 0) F4 (No. 4) 
ES (No. 1) FS (No. S) 
E6 (No. 2) F6 (No. 6) 
E7 (No. 3) F7 (No. n 

FUNCTION: (P)-33 + 2 x (No. of Escape).DD -B 

32 + 2 :x (No. of Escape) - P 

}1ACHINE FORMAT: 

OP CODE SPA I INDEX ADDRESS MO T P 

011121314151617 81 9110 111 12 13114_115 16117118119120121[22123124125126127128129130131 32 33 34 35 

DEFINITION: The contents of the memory word location specified 

by the effective address are loaded into the 

XJ\!'~PLE OP 

full word scratchpad register pair specified 

by the SPA field of the instruction. The current 

value of the program counter is stored in memory . 
location 33 + 2 x (No. of Escape). The right 

half (bits 16-31) of the word in memory location 

32 + 2 ,x (No. of Escape) then replaces the contents 

of the program counter. 

Returning from a routine entered by use of this 

instruction would be accomplished by executing a 

Transfer Unconditional (Op Code 40) indirecting 

to location 33 + 2 x (No. of Original Escape). 

CODE E6 (R5) 
".~~~~ .. _-----

(R) (5) (MD) LOC 36 LOC 37 (P) 

~2';1 ENTS BEFORE EXECUTION XXXX XXXX 12345678 12340200 XXXX XXXX 0010 

~2fi~TS AFTER EXECUTION 0200 1234 5678 12345678 12340200 0000 0010 

4-197 



4.4.7 PMU Load/Store Instructions 

INSTRUCTION NAME: Load SP 

OP CODE: 12 

FUNCTION: D R 

HACHINE FORMAT: 

1 2 SPA I INDEX ADDRESS MO T P 

~ I' 12 13 4 151 61 7 al9110 I" 12 13114115 16117rI81'912012112212312412512~2if2aI2913or31 32 33 34 35 

DEFINITION: The contents of the memory word location specified 

by the effective address of the instruction are 

placed in the scratchpad register specified by 

EY...A1>1PLE 1 

the SPA field of the instruction. The contents 

of memory remain unchanged. When bit 31 of the 

modified instruction, after address modification, 

is zero, bits 0-15 of the memory word are used 

as the operand. When bit 31 is one, bits 16-31 

of the memory word are used as the operand. If 

bit 32 of the instruction is zero, then the operand 

is immediate. 

Bit 32 = 1 Bit 31 = 1 

(R) (MD) 

I CONTENTS BEFORE EXECUTION FEDC 12345678 
I CONTENTS AFTER EXECUTION 5678 12345678 

4-198 



EX1\.l'1PLE 2 Bit 32 == 0 

BIT:, 16-31 
I 

(R) 
OF INSTRUCTION 

r CONTENTS BEFOR[ EXECUTION FEDC 1234 

r CONTENTS AFTER EXECUTION 1234 1234 

4-199 



INSTRUCTION N~~E: Load High SP 

OP CODE: 10 

FUNCTION: D H 

I-1ACHINE FORMAT: 

1 

° I' I 2 I 3 

DEFINITION: 

EXAl-1PLE 1 

0 SPA I INDEX ADDRESS -M o T P 

41 5J 61 7 81 9110 I" 12 13JI~J15 '61171181'9120121122123] "12512612712812913013' 32 33 34 35 

The contents of the memory word location specified 

by the effective address of the instruction are 

placed in the high scratchpad register 

(SP [16] -SP [31] as determined by the SPA field 

of the instruction. For this instruction, the 

SPA field is interpreted by the computer as being 

the low order part of the full word register pair 

specified by the SPA field. The contents of memory 

remain unchanged. When bit 31 of the modified 

instruction, after address modification, is zero, 

bits 0-15 of the memory word are used as the operand. 

When bit 31 is one, bits 16-31 of the memory word 

are used as the operand. If bit 32 of the instruction 

is zero, then the operand is immediate. 

Bit 32 = 1 Bit 31 = 0 SPA = 3 

(H) 
SP [19J 

(MD) 

I CONTENTS BEFORE EXECUTION FEDC 12345678 

I CONTENTS AFTER EXECUTION 1234 12345678 

4-200 



EXAMPLE 2 Bit 32 = 0 SPA = 8 

(H) BITS 16-31 
SP ~4J OF INSTRUCTION 

~_~.~.Z:TENTS BEFORE EXECUTION FEDC 5678 

CONTENTS AFTER EXECUTION . 5678 5678 

4-201 



INSTRUCTION NN~E: Load SP Full 

OP CODE: 16 

FUNCTION: DD -- RS 

H2\CHINE FORHAT: 

-r--- . -~-.---,-

Mia 1 6 SPA I INDEX ADDRESS T P 

o l' I 2 I 3 415 I 61 7 81 91 '0 1" 12 !3! 14 ! 15 '61'71'8 L'9j20 I" 121 123 H 25j26 j 27] 28j29] 30131 32J 33 34 35 

DEFINITION: The contents of the memory word location specified 

by the effective address of the instruction are 

placed in the full word scratchpad register 

pair specified by the SPA field of the instruction. 

The contents of memory remain unchanged. Bits 0-15 

of the memory word are placed in the scratchpad 

register specified by the SPA field while bits 16--31 

are placed in the corresponding scratchpad register 

of the full word pair (R+16). 

If bit 32 of the instruction word is zero, then 

the operand is immediate. In this case, zeroes 

are loaded into the scratchpad register specified 

by the SPA field, while bits 16-31 of the modified 

instruction word, after address modification, are 

loaded in the corresponding scratchpad register of 

the full word pair (R+16). 

Bit 32 = 1 
(RS) 

(R) (5 ) (MD) 

I CONTENTS BEFORE EXECUTION FEDC BA98 1234 5678 

l CONTENTS AFTER EXECUTION 1234 5678 1234 5678 

4-202 



EXAMPLE 2 Bit 32 = 0 

(RS) 

(R) (S) BITS 16-31 
OF INSTRUCTION 

r CONTENTS BEFORE EXECUTION f-EDC BA98 5678 

I CONTENTS AFTER EXECUTION 0000 5678 5678 

4-203 



INSTRUCTION NAME: Load Left Byte 

OP CODE: 20 

f'UNCTIO~: DO_7 - RO_ 7 ' 0 - R8- 15 
}1ACHINE FORMAT: 

2 0 SPA I INDEX ADDRESS MO T P 

01' 12 13 '15H7 81 91'0 I" 12 lJ \14\15 '61'71'81'912012'12212312412512612712812913013' 32 33 34 35 

DEFINITION: The left byte (bits 0-7) of the operand specified 

by the effective address of the instruction is 

placed into the left byte of the scratchpad 

EXAMPLE 1 

register specified by the SPA field of the instruction. 

Bits 8-15 of the scratchpad register are cleared 

to zero. The contents of memory remain unchanged. 

When bit 31 of the modified instruction, after 

address modification, is zero, bits 0-15 of the 

memory word are used as the operand. When bit 31 

is one, bits 16-31 of the memory word are used as 

the operand". If bit 32 of the instruction is zero, 

then the operand is imm~diate. 

Bit 32 = 1 Bit 31 = 1 

(R) (MD) 

I CONTENTS BE:FORE EXECUTION FEDC 1234 5678 

l CONTENTS AFTER EXECUTION 5600 1234 5678 

4-204 



EXAMPLE 2 Bit 32 = 0 

(R) BITS 16-31 
OF INSTRUCTION 

I CONTENTS BEFORE EXECUTION FEDC 1234 

I CONTENTS AFTER EXECUTION 1200 1234 

4-205 



I~;S'I'RUCTION NAME: Load Right Byte 

or CODE: 22 

IT~;C'l'ION: D8 - 15 - RO_ 7 ' 0 - R8 - 1S 
Ni~CIIr NE FORMAT: 

2 2 SPA I INDEX ADDRESS M 0 T P 

o 11 17 13 415 1617 81 9110 111 J 2 13114115 16117118119120121122123124125126127128129130131 32 33 34 35 

DEFINITION: The right byte (bits 8-15) of the operand specified 

by the effective address of the instruction is 

placed into the left byte of the scratchpad register 

specified by the SPA field of the instruction. 

EY..t'\J;1PLE 1 

Bits 8-15 of the scratchpad register are cleared 

to zero. The contents of memory remain unchanged. 

When bit 31 of the modified instruction, after 

address modification, is zero, bits 0-15 of the 

memory word are used as the operand. When bit 31 

is' one, bits 16-31 of the memory word are used as 

the operand. If bit 32 of the instruction is 

zero, then the operand is immediate. 

Bit 32 = 1 Bit 31 = 0 

(R) (MD) 

l CONTENTS BEFORE EXECUTION FEDC 1234 5678 

l CONTENTS AFTER EXECUTION 3400 1234 5678 

Bit 32 = 0 

(R) BITS 16-31 
OF INSTRUCTION 

I CONTENTS BEFORE EXECUTION FEDC 5678 

l CONTENTS AFTER EXECUTION 7800 5678 

4-206 



INSTRUCTION NAME: Load Absolute Value 

OP CODE 30 

FUNCTION-: I DI R 

I.lACHINE FORMAT: 

3 0 SPA I INDEX ADDRESS M 0 T P 

o 11 I 2 13 4 1 5 1 6 17 81 9110 111 12 13114115 16117118119120121 122123124125126127128129 J 30 j 31 32 33 34 35 

DEFINITION: The absolute value of the half word operand 

EX;',HPLE 1 

specified by the effective address 

of the instruction 1S placed in the scratchpad 

register specified by the SPA field of the 

instruction. If the operand is already positive, 

it is loaded directly. I f the ope rand is negat ive I 

the sign bit is made zero and the result is placed 

in the specified scratchpad register. The contents 

of,memory remain unchanged. When bit 31 of the 

modified instruction, after address modification, 

is zero, bits 0-15 of the memory word are used as 

the operand. When bit 31 is one, bits 16-31 of 

the memory word are used as the operand. If 

bit 32 of the instruction is zero, then the operand 

is immediate. 

Bit 32 = 1 Bit 31 = 1 

(R) (MD) 

I CONTENTS BEFORE EXECUTION FEDC 1234 5678 
I CONTU~TS AFTER EXECUTION 5678 1234 5678 

4-207 



EXAMPLE 2 Bit 32 =-0 

(R) BITS i6--31 
OF INSTRUCTION 

I CONTENTS BEFORE EXECUTION FEDC 8765 

I CONTENTS AFTER EXECUTION 0765 8765 

4-208 



IKSTRUCTION NAME: Load Absolute Full 

OP COnE: 34 

FUNCTION: I DD I -- RS 

MACHINE FORMAT: 

3 4 SPA I INDEX ADDRESS M 0 T P 

o 11 12 13 4 I 5 1617 81 9110 111 12 13114115 16J17 1181 191201211212312j 25126127128129130131 32 33 34 35 

DEFINITION: The absolute value of the full word 

EY.J\MPLE 1 

operand specified by the effective address of the 

instruction is placed in the full word 

scratchpad register pair specified by the SPA 

field of the instruction. If the operand is 

already positive, it is loaded directly. If the 

operand is negative, the sign bit is made zero 

and the result is placed in the specified scratchpad 

r~gisters. The contents of memory remain unchanged. 

If bit 32 of the instruction is zero, then the 

operand is immediate. Zeroes are loaded into the 

scratchpad register specified by the SPA field 

while bits 16-31 of the modified instruction word, 

after address modification, are loaded in the 

corresponding scratchpad register of the full 

word pair (R+16). 

Bit 32 = 1 

(RS) 

(R) (S) (MD) 

I CONTENTS BEFORE EXECUTION FEDC BA98 9234 5678 
l CONTENTS AFTER EXECUTION 1234 5678 9234 5678 

4-209 



EXAMPLE 2 Bit 32 = 0 

...-
(RS) 

1------- ~--

(R) (S) BITS 16-31 
OF INSTRUCTION 

I CONTENTS BEFORE EXECUTION FEDC BA98 9234 

I CONTENTS AFTER EXECUTION 0000 9234 9234 

4-210 



I~STRUCTION NAME: Load Negative 

OP CODE: 31 

FUNCTION: -D R 

MACHINE FORMAT: 

3 1 SPA I INDEX ADDRESS M 0 T P 

011 12 13 41 5 1617 81 9110 111 12 13114115 16117118119120121122123124125126127128129130131 32 33 34 35 

DEFINITION: The half word operand specified 

EY.AJ.l P LE 2 

by the effective address of the instruction with 

the sign bit complemented, is loaded in the 

scratchpad register specified by the SPA field of 

the instruction. The contents of memory remain 

unchanged. When bit 31 of the modified instruction, 

after address modification, is zero, bits 0-15 

of the memory word are used as the operand. When 

bit 31 is one, bits 16-31 of the memory word are 

used as the operand. If bit 32 of the instruction 

is zero, then the operand is immediate. 

Bit 32 = 1 Bit 31 = 1 

(R) (MDl 

I CONTENTS BEFORE EXECUTION FEDC 1234 5678 

I CONTENTS AFTER EXECUTION D678 1234 5678 

Bit 32 = 0 

(R) BITS 16-31 
OF INSTRUCTION 

I CONTENTS BEFORE EXECUTION 1234 FEDC 

I CONTENTS AFTER EXECUTION 7EDC FEDC 

4-211 



INSTRUCTION NAME: Load Negative Full 

OP CODE: 35 

FUNCTION: -DD RS 

MACHINE FORMAT: 

3 5 SPA I INDEX ADDRESS M 0 T P 

o 11 12 1 3 415 1617 819110 111 12 13114115 16117118119120121122123124125126127128129130131 32 33 34 i 35 

DEFINITION: The full word operand specified 

EXAMPLE 1 

by the effective address of the instruction, with 

the sign bit complemented, is loaded in the 

full word scratchpad register pair specified by 

the SPA field of the instruction. The contents 

of memory remain unchanged. If bit 32 of the 

instruction is zero, then the operand is immediate. 

Zeroes are loaded into the scratchpad register 

specified by the SPA field, except bit 0 is set 

to one, while bits 16-31 of the modified instruction 

word after address modification, are loaded in 

the co~responding scratchpad register of the 

full word pair (R+16). 

Bit 32 = 1 

(RS) 
._-- ---

(Mol (Rl (S) 

I CONTENTS BEFORE EXECUTION FEDC BA98 1234 5678 

I CONTENTS AFTER EXECUTION 9234 5678 1234 5678 

4-212 



EXAMPLE 2 Bit 32 == 0 

(RS) 

(R) (5 ) BITS 16- 31 
OF INSTRUCTION 

I CONTEI'HS BEFORE EXECUTION FEDC BA98 5678 

I CONTENTS AFTER EXECUTION 8000 5678 5678 

4-213 



INSTRUCTION NAME: Mask 

OP CODE: 80 

Load 

FUNCTION: D-(S)V (RHs) -- R 

MACHINE FORMAT: 

8 0 SPA I INDEX ADDRESS MOT P 

01' 12 13 4 15 1617 al 9110 I" 12 13114115 '6117llal'912oI21Inl2312412sI2612712aIL913oI31 32 33 34 35 

DEFINITION: The half word operand 

EXANPLE 1 

specified by the effective address of the instruction 

and the contents (S) of the low order part of the 

full word scratchpad register pair specifie~ 

by the SPA field of the instruction are logically 

combined, bit by bit. If the bit of (S) is ONE, 

the corresponding bit of the contents (R) of 

the scratchpad register specified by the SPA field 

i~ made to equal the bit of D. If not, the 

corresponding bit of R is unaltered. The contents 

of memory remain unchanged. When bit 31 of the 

modified instruction, after address modification 

is zero, bits 0-15 of the memory word are used 

as the operand. When bit 31 is one, bits 16-31 

of the memory word are used as the operand. If 

bit 32 of the instruction is zero, then the 

operand is immediate. 

Bit 32 = 1 Bit 31 = 0 

(R) (S) (M D) 

I CONTENTS BEFORE EXECUTION FEDC 3456 1234 5678 

l CON1ENTS AFTER EXECUTION DA9C 3456 1234 5678 

4-214 



EXAMPLE 2 Bit 32 = 0 

(R) (5) BITS 16-31 
OF 1i'~5TRUCTION 

I CONTENTS BEFORE E.XECUTION FEDC 1234 5678 

I CONTEN15 AFTER EXECUTION FEF8 1234 5678 

4-215 



INSTRuc'rION NAME: Load Control Bits 

OP CODE: 84 

FUNCTION: (1'1D) (32-35) - R (12-15) ) 

!>lACHINE FORMAT: 

o - R (0-11) 

8 4 SPA I INDEX ADDRESS MOT P 

o l' 1 2 1 3 , 1 5 1 6 [7 8 [ 9[10 [ " 12 13! 14115 16[17[18[19[20[21[22[231741251261 "I 78129130131 32 33 34 35 

DEFINITION: The control bits (bits 32-35) of the memory word 

location specified by the effective address of the 

instruction are placed in bits 12-15 of the scratchpad 

register specified by the SPA field of the instruction. 

The remaining bits of the scratchpad register 

EXlu'lPLE 

(bits 0-11) are cleared to zero. The contents of 

memory remain unchanged. If bit 32 of the instruction 

is zero, then the control bits of this instruction 

are placed in bits 12-15 of the scratchpad register. 

Bit 32 = 1 

(R) (MD) 

l CONTENTS BEFORE EXECUTION FEDC 70001234B 

I CONTENTS AFTER EXECUTION OOOB 700012348 

4-216 



INSTRUCTION NAME: Load Multiple 

OP CODE: 86 

FUNCTION: (lvlD)-RS, (MD+l)-RS+l, ... '., (MD+lS)-RS + 15 

1>1ACHINE FORMAT: 

8 6 SPA I INDEX ADDRESS MO T P 

01' 12 13 41 516 17 81 9 110 I" 12 lJ 114115 .61.71.81.912012. In 123J 241251261271281'9130 13• 32 33 34 35 

DEFINITION: Sixteen full length words are loaded into the 

set of scratchpad registers in full word 

format. The contents of the memory word location 

specified by the effective address of the instruction 

are placed in the full word scratchpad 

register pair specified by the SPA field of the 

instruction. The effective address of the 

instruction is then incremented by one and the 

c?ntents of this new memory location are loaded into 

the scratchpad register pair specified by SPA+l. 

The process is repeated until all sixteen scratchpad 

register pairs are loaded. Normally the SPA field of 

~his instruction should be 0000, designating 

SP [0] and SP [16J as the first register pair to 

be loaded. However, if a different register pair 

is specified, the load operation will continue 

to SP [15] and SP [31] and then wrap around to 

SP [0] and SP [16l The contents of memory remain 

unchanged. Bit 32 of the modified instruction 

word, after address modification, has no functionality 

in the execution of this instruction. 

4-217 



INSTRUCTION NAME: Load Data Kernel 

OP CODE: 44 

FUNC'I'ION: 

MACHINE FORMAT: 

~I"----ADDRESS---'-j 

4 4 CONTROL I INDEX PAGE DISPLACEMENT 00 T P 

011 12 13 41 5 1617 8 I 91 10 I" 12 13114115 '61'71'81'9120121122123 2'125126127128129130131 32 33 34 35 

DEFINITION: This instruction is primarily intended to be used 

for loading a page of data kernel words in a 

previously reserved kernel area of task memory. 

This instruction may be executed as an external 

instruction or from the program counter. 

When bit 8 of this instruction is set to 1, the 

current contents of the Data Kernel Page Register 

ar~ replaced by the current contents of the 

Procedure Kernel Page Register. The use of this 

instruction in this manner will allow all procedure 

and data accesses through one kernel page. 

When bit 8 of this instruction is zero, the 

current contents .of the Data Kernel Page Register 

are appended to the page field (bits 16-23) of the 

address field of this instruction to obtain the 

address of the Kernel Word for the page of data 

kernel words to be loaded. The residency bit 

4-218 



(bit 10) of this Kernel Word is examined to 

determine if the page is resident or not. If 

bit 10 is a ONE, indicating a resident page, the 

Data Kernel Page Register is updated with the 

contents of bits 6 and 7 of the Kernel Word. If 

bit 10 is a zero, indicating a nonresident page, 

the page is fetched from the remote memory device 

using the Wide Address field of the Kernel Word. 

The fetched page is loaded in the kernel area.of 

local memory defined by bits 6 and 7 of the data 

kernel word and the Data Kernel Page Register 

is updated with the contents of the same two bit 

positions. 

Bits 9, 10, 11 and the displacement field (bits 24-31) 

of the address field for this instruction are 

"don't care" bits and are ignored in the execution 

of the instruction. The memory bit (bit 32) of 

this instruction must always be zero, if not, a 

Read Protect or Kernel Protect Trap Interr.upt 

may be generated since .a legal data kernel word 
entry is read protected. 

The Data Kernel Word must indicate paged data 

(bit 11 set to one) with Kernel Load allowed 

(bit 8 a zero) and the read, write, and command 

protect (bits 32, 33 and 34 respectively) bits 

set to ones. If not, a Kernel Protect security 

violation exists and execution of this instruction 

is terminated. 

4-219 



If a non·resident page is fetched, exactly 

256 words must be received or a Page Error Trap 

is initiated. Before a page is requested, a 

check is performed to see if the referenced data 

kernel area is within the lower bound area. If 

not, no page request is issued and a kernel out 

of bounds trap occurs. 

All updates of the Data Kernel Page Register are 

performed after proper security validation and 

receipt of 256 words (if necessary). The value 

to be loaded into the Data Kernel Register must 

be within the lower bound area defined by the 

Set Task Parameter instruction otherwise a kernel 

out of bounds violation occurs. 

4-220 



INSTRUCTION NAME: Load Page 

OP CODE: 64 

FUNCTION: 

!-1l\.CHINE FORMAT: 

r-I·----ADDRESS ~I 

6 4 XXXX I INDEX PAGE , DISPLACEMENT 00 T P 

01, 12 13 4 151617 8 I 9110 111 12 13[141"15 '61'71'8 1'912012' 122123 24125126127128129130131 32 33 34 35 

DEFINITION: This instruction is used to load a page of data 

into local memory. This instruction may be 
executed as an external instruction or from 

the program counter. 

The contents of the Data Kernel Page Register are 

appended to the page field (bits 16-23) of the 

address field of this instruction to obtain the 

address of the Kernel Word for the page to be 

loaded.' This Kernel word must indicate paged 

data (bit 11 set to one) with read access (bit 32 

a zero) allowed, otherwise ,if both error conditions 
or a read protect exists, a Read Protect Violation 
occurs. If word' declared data exists, a Page 
Violation occurs. 

If the Kernel Word indicates the paged data is 

resident (bit 10 set to one), no further execution 

is performed and the next sequential instruction 

is initiated. 

4-221 



If the Kernel word indicates the paged data is 

non resident (bit 10 is a zero), the page is 

fetched from the remote memory device using the 

Wide Address field (bits l2~3l) of the Kernel 

Word. The fetched page (256 words) is loaded 

into the local memory page indicated by the 

Task Memory Page field (bits 0-7) of the Kerne,l 

Word. If upon reception of the referenced non 

resident page, exactly 256 words are not received, 

a Page Error Trap is initiated. 

The Load Page instruction temporarily overrides 

the replacement algorithm specified by the Set 

Task Parameter instruction. 

This instruction is normally non addressable. 

The memory access bit (bit 32) of the modified 

instruction, after all address modification is 

complete, should be zero. 

4-222 



INSTRUCTION NANE: Store SP 

OP CODE: 13 

FUNCTION: (R)--p MD 

MACHINE FOP1.t./l...T: 

1 1 

14 
3 I SPA l~ INDEX ADDRESS MJa ITlp 

0 3 11 13 15 16 31 32/33 134135 7 8 

DEFINITION: The contents of the scratchpad register specified 

by the SPA field of the instruction are placed in 

the memory location specified by the effective 

address of the instruction. When bit 31 of the 

modified instruction, after address modification, 

is zero, bits 0-15 of the r~mory location are 

used to store the scratchpad register contents. 

When bit 31 is one, bits 16-31 of the memory 

location are used to store the contents of the 

register. The remaining contents of the memory 

location are not affected except that parity is 

adjusted as necessary. 

Indexing and indirection are allowed with this 

instruction. However, the final modified instruction 

word after all address modification has taken 

place should have its memory access bit (bit 32) 

reset to a zero, indicating an iwnediate address. 

Should bit 32 be set to one, a non required extra 

clock cycle will be expended to read the contents 

of the memory location specified by the effective 

address. 

4-223 



EX}\}IPLE 1 Bit 31 = 0 

(R) (MD) 

I CONTENTS BrFORE EXECUTION ABCD 12345678 6 

r CONTENTS AFTER EXECUTIOI>l ABCD ABCD 5678 7 

EY.AMPLE 2 Bit 31 = 1 

(R) (MDl 

r CONTENTS BEFORE EXECUTION ABCD 1234 5678 6 

I CONTENTS AFTER EXECUTION ABCD 1234 ABCD 6 

4-224 



INSTRUCTION NAME: Store High SP 

OP CODE: 11 

FUNCTION: (H)--- MD 

MACHINE FORMAT: 

) 1 SPA I INDEX ADDRESS MO T P 

OJ1\21 3 • 15 1617 81 9110 I" 12 ,311'1,5 161'71181'9170121 122123124125126127128129130 i31 32 33 34 35 

DEFINITION: The contents of the high scratchpad register 

(SP [16] - S:p [31] ) as specified by the SPA field 

of the instruction are placed in the memory 

location specified by the effective address of the 

instruction. For this instruction, the SPA field 

is interpreted by the computer as being the low 

order part of the full word register pair specified 

by the SPA field. When bit 31 of the modified 

instruction, after address modification, is zero, bits 

O~15 of the memory location are used to store the 

scratchpad register contents. When bit 31 ~s one, bits 

bits 16-31 of the memory location are used to store 

the contents of the register. The remaining contents 

of the memory location are not affected except that 

parity is adjusted as necessary. 

Indexing and indirection are allowed with this 

instruction. However, the final modified instruction 

word after all address modification has taken place 

should have its memory access bit (bit 32) reset 

to a zero, indicating an immediate address. Should 

bit 32 be set to one, a non required extra clock 

cycle will be expended to read the contents of the 

memory location specified by the effect.ive address. 

4-225 



EXAMPLE 1 Bit 31 = 0 

(.rJ) (M D) 

I CONTENTS BEFORE EXECUTION ABCD 1234 5678 6 

I CONTENTS AFTER EXECUTION ABCD ABCD 5678 7 

EXAl'-1PLE 2 Bit 31 = 1 

(H) (MD) 

I CONTENTS BEFORE EXECUTION ABCD 1234 5678 6 

I CONTENTS AFTER EXECUTION ABCD 1234 ABCD 6 

4-226 



INSTRUCTION NAME: Store SP Full 
i 

OP CODE: 17 

FUNCTION: (RS)- MD 

MACHINE FORMAT: 

1 7 SPA I INDEX ADDRESS MO T P 

01' 12 13 41 5 1617 sl 91'0 I" 12 TJ 114115 '61'71Isl'912oI2'122123j24i25i26i27i2sL'9i3oj3' 32 33 34 35 

DEFINITION: The contents of the full word scratchpad 

l~X;'.NPLE 

register pair specified by the SPA field of the 

instruction are placed in the memory location 

specified by the effective address of the instruction. 

The data tag (bits 32-34) of the stored word are 

set to 010 and the parity is adjusted as necessary. 

Indexing and indirection are allowed with this 

instruction. However, the final modified instruction 

word after all address modification has taken place 

should,have its memory access bit (bit 32) reset 

to a zero, indicating an immediate address. Should 

bit 32 be set to one, a non required extra clock 

cycle will be expended to read the contents of 

the memory location specified by the effective 

address. 

(RS) 

(R) (5) (MD) 

I CONTENTS BEFORE EXECUTION ABeD EF01 1234 5678 6 

l CONTENTS AFTER EXECUTION ABCD EF01 ABCD EF01 4 

4-227 



INSTRUCTION NAME: Store Left Byte 

OP CODE: 21 

FUNCTION: R(0_7)-MD (0_7)or JvlD (l6-23) 

MACHINE FORMAT: 

2 1 SPA I INDEX ADDRESS MO T P 

01 ' 12 13 41 5 1 61 7 8 I 9110 I" 12 lJ I 14 1 15 '61'71'81'91201211221231"1"1261"1281'913013' 32 33 34 35 

DEFINITION: The most significant byte (bits 0-7) of the 

contents of the scratchpad register specified by 

the SPA field of the instruction is placed in the 

left byte position of the half word specified by 

the effective address of the instruction. When 

bit 31 of the modified instruction, after address 

modification, is zero, bits 0-15 of the memory 

location is the addressed half word with the 

s~ecified byte being placed in bits 0-7 of the 

memory word. When bit 31 is one, bits 16-31 of 

the memory location is the addressed half word 

with the specified byte being placed in bits 16-23 

.of the memory word. The remaining contents of 

the memory location are not affected, except that 

parity is adjusted as necessary. 

Indexing and indirection are allowed with this 

instruction. However, the final modified instruction 

word after all address modification has taken place 

should have its memory access bit (bit 32) reset 

to a zero, indicating an immediate address. Should 

bit 32 be set to one, a non required extra clock 

cycle will be expended to read the contents of the 

memory location specified by the effective address. 

4-228 



EXANPLE 1 Bit 31 =·0 

(R) (MD) 

r CONTENTS BEFORE EXECUTION ABCD 1234 5678 6 

r CONTENTS AFTER EXECUTION ABCD AB345678 7 

EXAMPLE 2 Bit 31 = 1 

(R) (MD) 

I CONTENTS BEFORE EXECUTION ABCD 1234 5678 6 

r CONTENTS AFTER EXECUTION ABCD 1234 AB78 7 

4-229 



INSTRUCTION NAHE: Store Right Byte 

OP CODE: 23 

FUNCTION: R(O_7) MD (8-1S) or MD (24-31) 
MACHINE FORMAT: 

2 3 SPA I INDEX ADDRESS MO T P 

oj 1 1'13 • 15 1617 81 9110 1" 12 lJ t 14! 15 161171181191201"1221231241251261271281,9130131 32 33 34 35 

DEFINITION: The most significant byte (bit 0-7) of the contents 

of the scratchpad register specified by the SPA 

field of the instruction is placed in the right 

byte position of the halfword specified by the 

effective address of the instruction. When bit 31 

of the modified instruction, after address 

modification, is zero, bits 0-15 of the memory 

location is the addressed halfword with the specified 

byte being placed in bits 8-15 of the memory word. 

When bit 31 is one, bits 16-31 of the memory 

location is the addressed halfword with the 

specified byte being placed in bits 24-31 of the 

~emory word. The remaining contents of the memory 

location are not affected, except that parity is 

adjusted as necessary. 

Indexing and indirection are allowed with this 

instruction. However, the final modified instruction 

word after all address modification has taken place 

should have its memory access bit (bit 32) reset 

to a zero, indicating an immediate address. Should 

bit 32 be set to one, a non required extra clock 

cycle will be expended to read the contents of 

the memory location specified by the effective 

address. 
4-230 



EXAMPLE 1 Bit 31 == 0 

(R) (MD) 

r CONTENTS BEFORE EXECUTION ABCD 1234 5678 6 

r CONTENTS AFTER EXfCUTION ABCD 12AB 5678 6 

EXAMPLE 2 Bit 31 = 1 

(R) (MD) 

r CONTENTS BEFORE EXECUTION ABCD 1234 5678 6 

r CONTENTS AFTER EXECUTION ABCD 123456AB 7 

4-231 



INSTRUCTION NAME: Store Control Bits 

OP CODE: 85 

FUNCTIqN: (R)(12-14) - MD (32-34) 

MACHINE FORMAT: 

8 5 SPA I INDEX ADDRESS MO T P 

oJ 1 12 13 41 5 1_1 7 Sl 9110 I" 12 13114115 1611711S119120121122123J24J2SJ26J27J2SJ29J30J31 32 33 34 35 

DEFINITION: The contents of bit positions 12-14 of the 

scratchpad register specified by the SPA field 

of this instruction are placed in bit positions 

32-34 of the memory location specified by the 

effective address of this instruction. The 

remainder of the memory location is unaltered 

except that parity is adjusted as necessary. 

I~dexing and indirection are allowed with this 

instruction. However, the final modified instruction 

word after all address modification has taken place 

should have its memory -access bit (bit 32) 

reset to a zero, indicating an immediate address. 

Should bit 32 be set to one, a non required extra 

clock cycle will be expended to read the contents 

of the memory location specified by the effective 

address. 

(R) (MD) 

I CONTENTS BEFORE EXECUTION 0002 1234 5678 6 

l CONTENTS AFTER EXECUTION 0002 1234 5678 3 

4-232 



INSTRUCTION NAME: Store Multiple 

OP CODE: 87 

FUNCTION: (RS )-MD, (RS+l)-- MD+l , .... , (RS+15 )--MD+15 
MACHINE FORMAT: 

8 7 SPA I INDEX ADDRESS MO 

oJ 1 12J3 415 1617 8 1 9110 III 12 13/14/15 161171181191201" 112/23124125126127128179130131 32 33 

T P 

34 35 

DEFINITION: The sixteen full length words contained in the set 

of scratchpad registers in full word format 

are stored in consecutive locations of memory 

starting with the effective address given in the 

instruction. The first full length word to be 

stored is that word contained in the 

full word scratchpad register pair specified by 

the SPA field of the instruction. Normally, the 

SPA field of this instruction should be 0000, 

designating SP [0] and SP [16] as the first register 

pair to be stored. However, if a different register 

pair is specified, the store operation will continue 

to SP [15] and SP [31] and then wrap around to 

'SP [0] and SP [16]. 

Bits 32 to 34 of the words stored in memory are 

set to all indicating a logical data tag. 

Indexing and indirection are allowed with this 

instruction. However, the final modified instruction 

word after all address modification has taken place 

should have its memory access bit (bit 32) reset 

to a zero, indicating an immediate address. Should 

4-233 



bit 32 be set to one, a non required extra 

clock cycle will be expended to read the 

contents of the memory location specified by 

the effective address. 

4-234 



INSTRUCTION NAME: Store Page 

OP CODE: 77 

FUNCTI -

MACFiINE FORMAT: 

!------ADDRFSS 

7 7 XXXX I INDEX PAGE DISPLACEMENT 00 T P 

01112/3 4 /5/6/7 8/ 9/10 /" 12 13JI4115 16/17/18/19/20/21/22/23 24/25176/27/28/29/30/31 32 33 34 35 

DEFINITION: This instruct,ion is used to store a page (256 

words) of data in an external resource. This 

instruction may be executed as an external 

instruction or from the program counter. 

The contents of the Data Kernel Page Register are 

appended to the page field (bits 16-23) of the 

address field of this instruction to obtain the 

address of the Kernel ~ord for the page to be 

stored in the external resource. This Kernel word 

must indicate paged data (bit 11 set to one) with 

write access (bit 33 is zero) allowed, otherwise 

if both error conditions or a write protect exists, 

a Write Protect Violation occurs. If word declared 

data exists, a Page Violation occurs. 

If the Kernel Word indicates the paged data·is 

non resident (bit 10 is a zero), no further 

execution is performed and the next sequential 

action is initiated. 

4-235 



If the kernel word indicates the paged data is 

resident (bit 10 set to one), the page to be 

stored is fetched from local memory and sent to 

the remote device using the Wide Address field 

(bits 12-31) of the Kernel Word. The fetched 

page is located in local memory using the Task 

Memory Page field (bits 0-7) of the Kernel Word. 

This instruction is normally non addressable. The 

memory access bit (bit 32) of the modified 

instruction, after all address modification is 

complete, should be zero. 

4-236 



INSTRUCTION NAME: Move Ha~f to Half 

OP CODE: 19 

FUNCTION: (MD)-M (R) 

MACHINE FORMAT: 

1 9 SPA I INDEX ADDRfSS MO T P 

011 12 13 41 3 H 7 81 91iO I" 12 IJ 114115 1611711811912012112212312' 12*6127128129130 131 3<' 33 34 35 

DEFINITION: This instruction is used to move a half word from 

one memory location to another. The memory half 

word addressed by the effective address of the 

instruction is stored into the half word memory 

location pointed to by the contents of the 

scratchpad register specified by the SPA field of 

the instruction. The remaining half word of 

memory which as stored into remains unchanged. 

When bit 31 of the modified instruction, after 

address modification, is zero, bits 0-15 of the 

read memory location contain the half word that 

is to be moved. When bit 31 is one, bits 16-31 

·of the read memory location contains the half word 

that is to be moved. 

When bit 15 of t'he designated scratchpad register is 

zero, the half word being moved is placed in 

bits 0-15 of the store memory location. When 

bit 15 of the designated scratchpad register is 

one, the half word being moved is placed in bits 

16-31 of the store memory location. 

When bit 32 of the instruction word is zero, 

bits 16 to 31 of the instruction, afte~ address 

modification, are the operand to be stored in the 

memory location specified by the contents of the 

scratchpad register. 



EXAMPLE 1 Bit 32 = 1 Bit 31 = 0 SPR = 03A5 

(MD) BITS 16 - 31 
OF INSTRUCTION 

I CONTENTS BEFORE EXECUTION 1234 5678 5 FEDC BA98 2 

I CONTENTS AFTER EXECUTION 1234 5678 5 FEDC 1234 2 

EXAM.PLE 2 Bit 32 = 0 PSR = 03A4 

BITS 8 - 11 BITS 16 - 31 
OF INSTRUCTION OF INSTRUCTION 

I CONTENTS BEFORE EXECUTION 1234 FEDC BA98 2 

I CONTENTS AFTER EXECUTION 1234 1234 BA98 2 

4-238 



INSTRUCTION NAME: Move Full to Full 

OP CODE: lD 

FUNCTION: (1>1D )--1>1 ( R) 

MACHINE FORMAT: 

1 D SPA I INDEX ADDRESS MO T P 

o l' I 2 13 415 1617 819110 I" 12 1J 114115 '61171'81'912012'12212312412512612712812913013' 32 33 34 35 

DEFINITION: This instruction is used to move a full word from 

one memory location to another. The word addressed 

by the effective address of the instruction is 

stored into the memory location pointed to by the 

contents of the scratchpad register specified by 

the SPA field of the instruction. The data tag 

field (bits 32-34) of the stored word are the data 

tag bits of the fetched word. 

EXAMPLE 1 

When bit 32 of the instruction word is zero, bits 

16-31 of the instruction, after address modification, 

are the operand to be stored in bit positions 16 

~o 31 of the store memory location. In this case, 

bits 0-15 of the store memory location are reset 

to zeroes. 

Bit 32 = 1 

(MD) MEMORYLOCATION 
POINTED TO BY (R) 

I CONTENTS BEFORE: EXECUTION 123456786 FEDC BA98 2 

I CONlENTS AFTER EXECUTION 12345678 6 1234 '5678 6 

4-·239 



EXAMPLE 2 Bit 32 = 0 

BITS 16-31 MEMORY LOCATION 
OF INSTRUCTION POINTED TO BY (R) 

, CONTENTS BEFORE EXECUTION 1234 FEDC BA98 2 

I CONTENTS AFTER EXECUTION 1234 0000 1234 5 

4-240 



INSTRUCTION NAME: Move Full and Stack 

OP CODE: IF 

FUNCTION: (MD)----M (R) +1' (R) +l-R 

MACHINE FORMAT: 

1 F SPA I INDEX ADDRESS MO T P 

10 3 14 01' 12 13 _1 5 1_1 7 81 9110 I" 12 TJ 114115 '61"1'81'912012'12212312412512612712811913013' 32 33 34 35 

DEFINITION: This instruction is used to move a full word from 

one memory location to a full word stack in memory_ 

The memory word addressed by the effective address 

of the instruction is stored into the full word 

memory location indicated by the incremented value 

of the contents of the scratchpad register specified 

by the SPA field of the instruction. The incremented 

value of SPR is restored to SPR. The data tag 

field (bits 32-34) of the stored word are the data 

tag bits of the fetched word. 

When bit 32 of the instruction word is zero, bits 

16-31 of the instruction, after address modification, 

are the operand to be stored in bit positions 16 to 31 

of the store memory location. In this case, bits 

0-15 of the store memory location are reset to zeroes. 

4-241 



EX;\JvlPLE 1 Bi t 32 ="1 

(R) (MO) 
MEMORY LOCATION 
POINTED TO BY (R) 

I CONTENTS BEFORE EXECUTION 03A5 1234 5678 5 FEOC BA98 2 

I CONTENTS AFTER EXECUTION 03A6 1234 5678 5 1234 5678 5 

EXI'd,1PLE 2 Bit 32 == 0 

(R) BITS 16-31 MEMORY LOCATION 
OF INSTRUCTION POII~TED TO BY (R) 

I CONTENTS BEFORE EXECUTION 03A5 1234 FEDC BA98 2 

I CONTENTS AFTER EXECUTION 03A6 1234 0000 1234 5 

4-242 



4.4.8 PMU Control Instructions 

INSTRUCTION NAME: Proceed 

OP CODE: 01 

FUNCTION: Zero --- HALT 

YJACHINE FORMAT: 

.-
0 1 XXXX I INDEX ADDRESS MOT P 

o I 1 I ' I 3 4 I 5 161 ' 81 91 10 I " 12 131,,115 '61I7r'81'9r,oI2~22123124125j2612;r2812;r3o131 32 33 34 C 

DEFINITION: If the HALT INDICATOR is set, it is reset at the 

conclusion of this instruction and normal processing 

is resumed. 

If the HALT INDICATOR is not set, this instruction 

performs no operation, unless register indirection 

with indexing and replacement is the addressing 

moae. 

This instruction is normally received as an external 

instruction and would therefore be used to resume 

a previously halted operation. 

4-243 



INSTRUCTION NAME: Execute 

OP CODE: 27 

FUNCTION: 

l'.ffiCHINE FORMAT: 

2 7 XXXX I INDEX ADDRESS MO T P 

oJI)21 3 4 151617 81 9110 II' 12 lJ 114115 16117118119120121 Iv 12312412*6127128129130 131 32 33 34 35 

DEFINITION: The contents of the memory location specified by 

the effective address of the instruction are 

treated as an instruction. Instruction sequencing 

will return to normal operation at the conclusion 

of this instruction unless the addressed instruction 

s~ecifies a program control change. 

Virtual addressing requires the read protect 

bit (bit 32) of the kernel word to be equal to 

zero for security purposes. 

The memory access bit (bit 32) of this instruction 

should be set to 0 after all address modification 

has taken place. 

The memory location treated ~s an instruction will 

always be interpreted as a PMU instruction. This 

condition occurs regardless of the state of bit 33 of 

the referenced memory location when treated as an 

instruction. 

See AP instruction OP-27, EXECUTE, for the execution 

of a data word as on AP or PMU instruction. 

4-244 



INSTRUCTION NAME: Interval Timer Control/HALT 

OP CODE: 32 

FUNC'l'ION: 

MACHINE FORMAT: 

3 2 L C R H I INDEX ADDRESS MOT P 

a l' 1 2 13 4 1 5 1617 8 9 '0 J 1 12 IJ! 14! 15 J61 J71'81'9120 12112212312;125126127128129130131 32 33 34 35 

Bit 8 = Load 

Bit 9 = Cease 

Bit 10 ::= Resume 

Bit 11 - Halt 

DEFINITION: This instruction is used for loading and/or 

controlling the interval timer. 

This instruction treats bits 8-11 of the instruction 

word as follows: 

Bit 8 If zero, the interval timer contents remain 

unchanged. If one, the interval timer 

is loaded with the contents of the memory 

location specified by the effective address 

of this instruction. 

Bits 9 - If both bits are zero, there is no effect 
and 10 on the interval timer and it will continue 

to count if it had been counting or remain 

stopped if it had been stopped. If bits 

9 and 10 are "01," the interval timer 

will continue to count. If bits 9 and 10 

are "10," the interval timer will stop 



counting. If bits 9 and 10 are "11," 

the interval timer will resume counting 

if it had been stopped, or will stop 

counting if it had been previously 

counting. 

Bit 11 - If set, the computer will suspend program 

operation at the conclusion of this 

instruction, set the HALT INDICATOR, and 

respond only to interrupts. Bit 11 when 
o causes no action. 

If bit 32 of the modified instruction word, after 

address modification is complete, is set to one 

and bit 31 is zero, bits 0-15 of the addressed 

memory location are used as the operand to load 

the interval timer (when bit 8 is a one). When 

bit 31 is a one, bits 16-31 of the addressed 

memory location are used as the operand to load 

the interval timer. 

When bit 32 is a zero, the operand is immediate. 

4-246 



INSTRUCTION NAME: Store Interval Timer 
OP CODE: 33 

FUNCTION: 

MACHINE FORMAT: 

3 3 XXX I INDEX ADDRESS MO T P 

011 12 13 41 5 1617 8 I 91 10 111 12 lJ 114115 16117118 119120121J 22j nl2412s12612712aj '130131 32 33 34 35 

DEFINITION: This instruction causes the contents of the 

interval time~ to be placed in the half word 

location of memory specified by the effective 

address of the instruction. The counting operation 

of the interval timer is unaffected. 

Indexing and indirection are allowed with this 

instruction. However, the final modified instruction 

wqrd after all address modification has taken place 

should hav~ its memory access bit (bit 32) reset 

to a zero, indicating an immediate address~ Should 

bit 32 be set to one, a' non required extra clock 

.cycle will be expended to read the contents of the 

memory location specified by the effective address. 

If bit 31 of this instruction, after address 

modification, is zero, the timer contents will be 

stored in bits 0-15 of the addressed memory 

location. If bit 31 is set to one, bits 16-31 

will be used to store the timer contents. The 

remaining bit positions of the memory word remain 

unchanged except that parity is adjusted as 

necessary. 

4-247 



INSTRUCTION NAME: Refurn Stack to P 

OP CODE: 52 

FUNCTION: 

MACHINE FORMAT: 

5 2 SPA 0000 \ M o T P 

011 12 13 41 51617 81 9110 I" 12 113 1" 115 16117118119120121122113124125126177128119130131 32 33 34 35 

DEFINITION: This instruction returns the computer to the state 

it was in preceding the execution of the most 

recent Transfer and Stack (OP CODE 51) instruction. 

It should be noted that if the HALT indicator 

was not set prior to executing the most recent 

Transfer and Stack instruction then normal computer 

operation will automatically resume upon completion 

of the execution of this instruction. If the 

HALT indicator was set prior to executing the 

most recent Transfer and Stack instruction, then 

the Proceed instruction (OP CODE 01) must follow 

this instruction when normal computer operation 

.is to be resumed. 

The contents of the memory location specified by 

the contents of Scratchpad Register 31 are placed 

as follows (this word corresponds to Word 2 of 

the Transfer and Stack Instruction, OP CODE 51): 

Bits 0-7 are placed in the P-SOURCE register. 

4-248 



Bits 16-31 replace the contents of the Program 

Counter. 

The contents of Scratchpad'Register 31 are now' 

decremented by 1. The contents of the memory 

location specified by the decremented contents of 

Scratchpad Register 31 are placed as follows 

(this word corresponds to Word 1 of the Transfer 

and Stack Instruction, OP CODE 51): 

Bits 0-7 are placed in the TRAP LEVEL indicator. 

Bit 9 is placed in the MODE indicator, except that 

if the MODE presently is 0 and bit 9 is ONE the 

MODE indicator is left as O. 

Bit 11 is placed in the HALT indicator. 

Bits 12 and 13 are placed in the Data Kernel 

Page Register. 

Bits 14 and 15 are placed in the Procedure Kernel 

Page Register. 

Bits 16-31 are placed in the Scratchpad Register 31 

and SPA. 

4-249 



INSTRUCTION NArvlE: Return Stack to P and Proceed 

OP CODE: 53 

FUNCTION: 

NACHINE FORMAT: 

5 3 SPA 0000 1M a T P 

o 11 I' 13 4 15 16 17 81 91 10 111 1'113114115 161171181'91201" 1"1231'41251'61271'812913013'132 33 34 35 

DEFINITION: This instruction returns the computer to the 

state it was in preceding the execution of the 

most recent Transfer and Stack (OP CODE 51) 

instruction and causes normal computer operation 

to resume. This instruction differs from the 

Return Stack to P Instruction (OP CODE 52) by 

clearing the HALT indicator to zero thereby allowing 

processing to continue regardless of the condition 

of, the HALT indicator prior to the execution of 

the most recent Transfer and Stack (OP CODE 51). 

The contents of the memory location specified by 

the contents of Scratchpad Register 31 are placed 

as follows (this word corresponds to Word 2 of the 

Transfer and Stack Instruction OP CODE 51): 

Bits 0-7 are placed in the P-SOURCE register. 

Bits 16-31 replace the contents of the Program 

Counter. 

4-250 



The contents of Scratchpad Register 31 are now 

decremented by 1. The contents of the memory 

location specified by the decremented contents 

of Scratchpad Register 31 a~e placed as follows 

(this word corresponds to Word 1 of the Transfer 

and Stack Instruction, OP CODE 51): 

Bits 0-7 are placed in the TRAP LEVEL indicator. 

Bit 9 is placed in the MODE indicator, except that 

if the MODE presently is 0 and bit 9 is ONE, the 

MODE indicator is left as O. 

Bits 12 and 13 are placed in the Data Kernel Page 

Register. 

Bits 14 and 15 are placed in the Procedure Kernel 

Page Register. 

Bits 16-31 are placed in Scratchpad Register 31 and SPA. 

-The HALT indicator is cleared to ZERO. 

4-251 



INSTRuc'rrON NAME: Reset Bit N 

OP CODE: 81 

FUNCTION: O---MD(BIT N)' N=O, 1,····,15 

MACHINE FORMAT: 

~- -_ .. - ._- .-

8 1 BIT NO. I INDEX ADDRESS MOT P 

o I' I 2 I 3 , I 5 I 6 I 7 81 91 '0 I" 12 J3114115 16 1"1 '8 1 "1201"1"123124125126 i 27128129130131 32 33 34 35 

DEFINITION: The selected bit within the half word addressed 

by the effective address of the instruction is cleared 

to zero. The decimal value of bits 8 and 11 of the 

instruction specify the bit that is to be cleared. 

After the specified bit is cleared to zero, the 

addressed half word is returned to memory in the same 

memory location. This instruction should always have 

bit 32 set to zero after all address modification has 

been completed. 

If bit 31 of the instruction, after address modifica­

tion, is zero, bits 0-15 of the addressed memory 

location are used as the operand. When bit 31 is a 

one, bits 16-31 of the addressed memory location are 

used as the operand. 

If an operand to be manipulated 1S contained in a 

scratchpad register, the logical operation Not D And 

R (op CODE 90) should be used, where R is the contents 

of the scratchpad register and D is a literal contained 

in the instruction. 

4-252 



EXAMPLE Bit 31 = 1 

BITS 8 - 11 (M D) 
OF INSTRUC.TlON 

I CONTENTS BEFORE EXECUTION B 1234 5678 

I CONTENTS AFTER EXECUTION B 1234 5668 

4-253 



INSTRUCTION NAME: Set Bit N 

OP CODE: 82 

FUNCTION: 1-Mn (BIT N)' N = 0,1, .... ,15 

8 2 BIT NO. I INDEX ADDRESS MOT P 

01' 12 13 4 15 1617 81 91'0 I" 12 Jj 114115 '61'71'81'912012'122123124125126127128129130131 32 33 3' 35 

DEFINITION: The selected bit within the half word addressed by 

the effective address of the instruction is set to 

one. The decimal value of bits 8 to 11 of the in-. 
struction specify the bit that is to be set. After the 

specified bit is set to one, the addressed half word is 

returned to memory in the same memory location. This 

instruction should always have bit 32 set to zero after 

all address modification has been completed. 

If bit 31 of the instruction, after address modifica­

tion, is zero, bits 0-15 of the addressed memory 

location are used as the operand. When bit 31 is a 

one, bits 16-31 of the ?ddressed memory location are 

used as the operand. 

If an operand to be manipulated is contained in a 

scratchpad register, the logical operation D or R 

(OP CODE B2) should be used, where R is the contents 

of the scratchpad register and D is a liteyal contained 

in the instruction. 

4-254 



EXAMPLE Bit 31 = 0 

BITS 8 - 11 (M D) 
OF INSTRUCTION 

I CONTENTS BEFORE EXECUTION 5 1234 5678 

I CONTENTS AFTER EXECUTION 5 1634 5678 

4-255 



INSTRUCTION NAME: Set Task Parameters 

OP CODE: 29 

FuNCTION: 

1.11\CHINE FORMAT: 

~'" 
UPPER LOWER 

2 9 BOUND BOUND X X xxx x x x 0 T P 

o I 1 I 2 I 3 415 H 7 8191'01" '21131141'5'61'7 '81'9 20121122 23241"12612712812913013132 33 34 35 
. _. - '--

DEFINITION: This instruction is used to define the upper and 

lower bounds in memory (see section 4.3.3.3 

Virtual Addressing), specify the replacement 

algorithm to be used (see section 4.3.3.3.4 Replacement 

Algorithm), and to specify whether virtual or 

direct addressing will be used. This instruction 

is illegal when generated from a Program 

Counter fetch. 

The format of the instruction is as follows: 

The Upper Bound, Lower Bound, and Replacement 

Algorithm fields are used to initialize internal 

registers. Bit 23, the Addressing Mode bit, when 

set to one, specifies that further data references 

will utilize virtual addressing. When bit 23 is 

zero, all further data references will utilize 

direct addressing. 

The decimal value contained in the lower bound 

field (bits 12-15) of the instruction should 

never exceed three. I f the lower bound. indica ted 

is loaded with a value less than the present value 

of the Data and Procedure Kernel Page Registers, 

a Kernel Protect trap occurs. 



The Replacement Algorithm is specified by 

bits 18 and 19 of the Set Task Parameter 

Instruction. The algorithms are: 

18 19 

0 0 - Programmer Specified 

0 1 - FIFO 

1 0 - Random 

1 1 - Sequantial Fill/Random 

4 -257 



INSTRUCTION NAME: Set System Parameters 

OP CODE: 25 

FUNCTION: 

MACHINE FOHMAT: 

'" ,------
INTERNAL RESOURCE xio T 2 5 X BUS NAME MASK P 

USAGE 

01 ' 1,1 3 .T5T6T 7 8 9 10 II t 121lJ L14 15 16117118 t 19120121122123 2~ 25126! 2;-r-2~29-r30T 31 ~;r 33 34 35 

DEFINITION: This instruction is used to disable memory 

or channel parity and to initialize the channel. 

This instruction must be received as an external 

i~struction rather than through the Program Counter, 

otherwise, an illegal instruction trap will be 

generated and no operation will occur. The channel 

sensing this instruction will interpret all fields 

except the memory parity designation (bit 9). 

Within the PMU every bit except bit 9 is a don't care. 

The bit fields of the instruction have the following 

meaning: 

Bit 9 - Memory Parity 

When bit 9 is one, the detection of bad 

parity on a local memory read is masked 

out and no parity trap interrupt is 

generated. When bit 9 is zero, the 

detection of incorrect parity on a local 

4-253 



memory read will will result in a parity 
, 

trap interrupt. 

Bit 10 - Time Out Enable 

When bit 10 is one, the Time Out Counter 

is enabled. When bit 10 is zero, the Time 

Out Counter is disabled. An enabled Time 

Out Counter results in a timer being 

initiated every time a new word is placed 

on the secondary input bus by the channel. 

If after 4096 time slots, no acknowledge 

is received, the channel resets its 

secondary input bus controller, notifies 

the Executive of this occurrence and 

activates the reset line of the secondary 

bus. 

Bit 11 ~ Permit Enable 

When bit 11 is one, the channel will be 

allowed to keep the internal bus until 

all transfers are completed. When bit 11 

is zero, the channel can keep the bus 

for the transmission of only one word or 

a two word command. The channel must 

then contend for further internal bus 

accesses. 

4-259 



Bit 12 -

Bit 13 -

Bit 14 -

Bit 15 -

Bus 1 Control 

When bit 12 is zero, further use of bus 1 

is disallowed. When bit 12 is one, 

further use of bus 1 is allowed. 

Bus 2 Control 

When bit 13 is zero, further use of bus 2 

is disallowed. When bit 13 is one, 

further use of bus 2 is allowed. 

Bus,3 Control 

When bit 14 is zero, further use of bus 3 

is disallowed. When bit 14 is one, 

further use of bus 3 is a llm',ted. 

Executive 

When bit 15 is one, the channel will 

recognize the destination code hex "FF," 

designating the Executive, in addition to 

the code indicated by the resouroe name 

and mask fields. When bit 15 is zero, the 

channel will only recognize the destination 

code indicated by the resource name and 

mask fields. Care must be taken when this 
instruction is sent to a previously designated 

Executive. If Bit 15 is zero, the mode 
i~dicator is reset. 

Bits - Resource Name 
16-23 This field designates the resource name 

of the channel. Bit 16 is the most 
significant bit of the name and bit 23 
is the least significant bit. 

4-260 



Bit 24 -'Channel Parity 

Bits 
25-31 

When bit 24 is one, the parity checking 

on all channel receptions is overridden 

and the data received is considered 

validated. When bit 24 is zero, the 

channel performs parity checking on all 

transmissions received and responds to 

incorrect parity. 

- The resource mask is used by the channel 

to determine the number of bits of the 

resource name to be masked out when the 

channel is determining if a transmission 

is addressed to it. When a mask bit is 

one, the checking of the corresponding 

bit of the destination address contained 

on the internal bus against the bit of 

the channel name field (both physical and 

assigned) is disabled. When a mask bit 

is zero, the checking of the corresponding 

bit of the destination address contained 

on the internal bus against the bit of 

the channel name is enabled. 

Bit 0, the most significant bit of the 

destination address is always checked. 

As an example, a mask of 000 00012 and 

an assigned resource name of 10010 allows 

a channel to accept information for 

resource names 10010 and 10110 . A mask 

4-261 



of 100 0000 2 and an assigned resource 

name of 10010 allows a channel to 

accept information for resource names 

3610 and 10010 . 

Note: Set System Parameter (SSP). The instruction MUST 

always be preceded by a COMS immediate instruction. An 

SSP instruction received in any other fashion will result 

in the channel NOT executing the instruction. 

4-262 



INSTRUCTION NAME: Initiate New Task 

OP CODE: 28 

FUNCTION: 

I-1ACHINE FOru1AT: 

'l,'r-""<l. 

2 8 X 
SUBSYSTEM ADDRESS (EXTERNAL) X X X P 

I I INDEX I PAGE I (INTERNAL) MOT 

01' 12 13 4 15 1617 8 9 10 111 1211JI141151'61171'8 1191201211 12123124125126127128129130131 32 33 34 35 

DEFINITION: This instruction is used to initialize the PMU 

to begin a new task. The instruction may be 

received as an external instruction (input) or 

be fetched from local memory and executed from the 

Program Counter (internal). 

When executed as an internal instruction, this 

iqstruction is normally non addressable, bit 32 is a 

zero after,all address modification is completed. 

When the instruction is' fetched from the input 

,instruction queue (external), the following actions 

occur. If bit 8 is 1, indicating resident, the 

procedure and data kernel page registers are 

loaded with bits 10-11, the Program Counter cleared 

to all zeroes, the P-source register loaded with 

the I-source register, and a transfer to the 

instruction located at page 0, location ° ,is 

executed. 

4-263 



If bit 8.is 0, indicating non resident, the procedure 

and data kernel page registers are loaded with bits 

10-11, the Program Counter cleared to all D's, the P­

source register loaded with the I-source register 

and a Read Page to Output instruction (OP CODE 06) 

is generated to the channel. The wide address of 

the Read Page to Output instruction is bits 12-31 of 

the Initiate New Task instruction. After successful 

reception of the addressed kernel page, a transfer 

to the instruction located a page 0, location 0 is 

executed. 

If the Initiate New Task instruction is fetched from 

local memory, the kernel entry word (in the Data 

Kernel) is accessed. If no security violation exists 

and the page is resident, the Procedure and Data 

Kernel Page registers are updated to bits 6-7 of the 

data kernel word and a transfer to the instruction 

10cated at page 0, location 0, is executed. 

If no security violation exists and the page is 

non resident, a Read Page to Output is issued to 

,the channel with the wide address field being bits 

12-31 of the accessed kernel entry word. The 

Procedure and Data Kernal registers are updated with 

bits 6 & 7 of the data kernel word, and upon success­

ful reception of the referenced page, a transfer to 

the instruction located as page 0, location 0 is 

executed. 

The Halt flop is reset independent of both internal 

and external executions. 

4-264 



Bit 8 is a don't care when the Initiate New Task 

instruction is fetched from local memory. 

If the instruction is fetche? from local memory, 

a kernel security check is performed. The kernel 

entry word must indicate paged data, and bits 8, 

32, 33, 34 must be 0111. If this is not true, a 

kernel protect trap is initiated. 

Before a kernel security check is made on internal 

instructions, a lower bound check is performed. 

The indicated Procedure and Data Kernel pages must 

be within the area defined by the lower bound. 

If not, a Kernel Out of Bounds Trap is initiated. 

If a page is received due to an issuance of a 

Read Page to Output instruction, exactly 256 data 

words must be received. If not, a page error trap 

is'initiated. The Procedure Kernel Register is 

updated with data kernel word bits 6 and 7 prior to 

the initiation of a Page Error Trap should one occur. 

The data kernel register is not altered if a page 

error trap occurs. 

4-265 



INSTRUCTION NAME: Test And Reset 

OP CODE: 36 

FUNCTION: (MD) 16-31 --- R, ZERO -- MD 

MACHINE FORMAT: 

3 6 SPA I INDEX ADDRESS MO T P 

01' 12 13 4 151 61 7 81.110 I" 12 lJ I 14115 ,61,71,81,.12012112212312'1251261271281'9130131 32 33 34 35 

DEFINITION: This instruction is normally used to control access 

to queued access data bases. 

The execution of this instruction will store 

bits 16-31 of the contents of the effective address 

ioto the scratchpad register specified by the SPA 

field of the instruction. Bits 0-31 of the contents 

of the effective address are then cleared ·to zero . 

. If the data addressing mode is absolute, the local 

memory location is cleared. 

If the data addressing mode is virtual, the data 

must be word oriented, if not, an illegal instruction 

trap will be generated. 

The accessed, Data Kernel Word must indicate Read 

and Write access allowed. If not, the appropriate 

violation occurs. 

simultaneously. ) 

(Both violations can occur 

4-266 



Indexing and indirection are allowed with this 

instruction. However, the final modified 

instruction word after all address modification 

has taken place should hdve its memory access 

bit (bit 32) reset to a zero, indicating an 

immediate address. Should bit 32 be set to one, a 

non required extra clock cycle will be expended 

to read the contents of the memory location 

specified by the effective address. 

4-267 



INSTRUCTION NAME: Command Subsystem/Address Modification 

OP CODE: 47 

FUNCTION: 

HACHINE FORMAT: 

iP ADDRESS 
~ «J 

4 7 XXX I INDEX PAGE DISPLACEMENT MO T P 

0]1 12 [3 4J SH7 8 9J 10J" 12 13.1.'4115 16117118119120121122123 2412SI26127[2B[29J30 131 32 33 34 35 

DEFINITION: This instruction is used to cause the transmission 

of another instruction to a remote device for 

execution in that device when this instruction is 

fetched from local memory. When this instruction 

is received as an external instruction, transmitted 

by a remote device, the remote device is causing 

the execution of another instruction to occur in 

this DPE. 

As implied above, this instruction may be received 

as an external instruction or from the Program 

-Counter. 

The Command Subsystem/Address Modification is 

essentially a two word instruction. 1~en the 

instruction is executed from local memory through 

the Program Counter, the instruction word is used 

to set up a bus command word for routing the second 

word. The bus command word has the following format: 

Bits 0-7 contain the value hex "47," the op code 

for this instruction. 

4-268 



Bits 8-11 contain the bits 4-7 of the kernel 

word referenced by the effective address 

of this instruction. 

Bits 12-23 contain the bits 12-23 of the kernel 

word referenced by the effective address 

of this instruction. 

Bits 24-31 contain the result of adding bits 24-31 

of the effective address of this instruction 

to bits 24-31 of the kernel word. 

Note that bits 12-31 form the displaced wide address. 

Bit 32-34 are cleared to zero indicating immediate 

addressing, PMU instruction and no tracing. 

Bit 35 is set to indicate odd parity for bits 0-35. 

Bit 36 is set for bus parity. 

-Bits 37-39 is set to indicate a transmission tag 

for a two word instruction. If bit 8, 

Emergency bit, of this instruction is zero, 

this field is set to 101. If bit 8 is 

a one and the PMU is in Executive Mode, 

this field will be set to 111 indicating 

a two word emergency. If bit 8 of this 

instruction is set to 1 and the PMU is 

not in the Executive Mode, an illegal 

instruction trap will occur. 

4-269 



Bits 40-47 will contain the source address 

indicating the channel transmitting 

this word. 

The second word of this two word instruction set, 

which will be transmitted over the bus, is the 

contents of the memory location indicated by the 

next sequential instruction address as indicated 

by the Program Counter. This second word will be 

transmitted with a transmission tag of 011 indicating 

"Data and End of Block." When the Program Counter 

is incremented, page wraparound will occur if 'the 

Command Subsystem instruction was located at word 

255. In this case, the second word will be fetched 

from word 0 of the present procedure page. 

In the above case, whenever the kernel word is 

accessed, bit 8 (Kernel Load) must be one, and 

bit 34 (Command Protect) must be zero; otherwise, 

a Command Protect occurs. 

'When fetched through the Program Counter, indexing 

and indirection are allowed with this instruction. 

However, the final modified instruction word after 

all address modification has taken place should 

have its memory access bit (bit 32) reset to a 

zero, indicating an immediate address. Should 

bit 32 be set to one, a non required extra clock 

cycle will be expended to read the contents of the 

memory location specified by the effective address. 

4-270 



If this instruction, Command Subsystem, is fetched 

from the input queue, the second word of the two 

word command is fetched from the input instruction 

queue and executed. The execution of the second 

word is performed as if it was fetched from memory 

rather than the input queue. Therefore, address 

modification and tracing capabilities are allowed, 

as appropriate, even though the instruction was 

actually fetched as an external instruction. 

4-271 



INSTRUCTION NAME: Command Subsystem/Immediate Execution 

OP CODE: 4F 

FUNCTION; 

MACHINE FORMAT: 

~ 
"'~ 

AD')RESS 

4 F xXX I INDEX PAGE DISPLACEMENT M a T P 

a l' 1 2 13 'Is H 7 
8 9 110 111 12 131141 15 '61171'81'9120 121122123 2'12s12612712B 129130 131 32 33 34 35 

DEFINITION: The use of this instruction is similar to the 

Command Subsys~em/Address Modification (OP CODE 47) 

except that this instruction would typically be, 

used to transmit Set System Parameter COP CODE 25), 

Set Task Parameter COP CODE 29), Initiate New Task 

(OP CODE 28), or other instructions whose bit 

positions 8-15 are control fields and not SPA 

and/or AMF fields. 

The Command Subsystem/Immediate Execution is 

essentially a two word instruction. When the 

instruction is executed from local memory through 

the Program Counter, the instruction word is used 

to set up a bus command word for routing the second 

word. The bus command word has the following format: 

Bits 0-7 contain the value hex "4F," the op code 

for this instruction. 

Bits 8-11 contain 1111. 

4-272. 



Bits 12-23 contain the bits 12-23 of the kernel 

word referenced by the effective address 

of this instruction. 

Bits 24-31 contain the result of adding bits 24-31 

of the effective address of this instruction 

to bits 24-31 of the kernel word. 

Note that Bits 12-31 form the displaced wide address. 

Bit 32-34 are ~leared to zero indicating immediate 

addressing, PMU instruction and no tra.cing. 

Bit 34 is set to indicate odd parity for bits 0-35. 

Bit 36 is set for bus parity. 

Bits 37-39 is set to indicate a transmission tag 

for a two word instruction. If bit 8, 

Emergency bit, of this instruction is zero, , 

this field is set to 101. If bit 8 is a 

one and the PMU is in Executive Mode, this 

field will be set to III indicating a two 

word emergency. If bit 8 of this instruction 

is set to 1 and the PMU is not in the 

Executive Mode, an illegal instruction 

trap will occur. 

Bits 40-47 will contain the source address indicating 

the channel transmitting this word. 

4-273 



The seco~d word of this two word instruction set, 

which will be transmitted over the bus, has the 

format described as follows: 

Bits 0-15 are bits 0-15 of the next instruction 

word fetched by the incremented Program 

Counter. 

Bits 16-31 are bits 16-31 of the kernel entry word 

referenced by bits 16-23 of the second 

word fetched by the Program Counter. 

Bits 32-34 are cleared to zero indicating i~~ediate 

addressing, PMU instruction and no instruction 

tracing. 

Bit 35 is set to indicate odd parity for bits 0-35. 

Bit 36 is set for bus parity. 

Bits 37-39 is set to 011, the transmission tag 

indicating "Data and End of Block." 

Bits 40-47 contain the source address indicating 

the channel transmitting this word. 

When the second instruction word is fetched as a 

result of incrementing the Program Counter, page 

wraparound will occur if the Command Subsystem 

instruction was located at word 255. In this case, 

the second word will be fetched from word 0 of the 

present procedure page. 

4-274 



In the above case, whenever the kernel word is 

accessed, bit 8 (Kernel Load) must be one, and 

bit 35 (Command Protect) must be zero; otherwise, 

a Command Protect will occur. 

If a security violation occurs when the second 

Kernel entry is accessed, a PMU "OR" instruction 

(OP CODE B2) with an address field of all O's 

with immediate addressing specified is created and 

associated with the first bus word transmitted. 

If this instruction, Command Subsystem, is fetched 

from the input queue, the second word of the two 

word command is fetched from the input instruction 

queue and is executed immediately as an external 

instruction. 

4-275 



4.4.9 PMU Input/Output Instructions 

INSTRUCTION NAME: Test and Reset to Output 

OP CODE: 00 

FUNCTION (MD) -- E I ZERO - MD 

MACHINE FORMAT: 

0 0 xxxx I INDEX ADDRESS Mia T p 
j 

01' 12 13 415 H 7 81 91'0 I" 12 13114115 '61'71'81'912012' 122123124125126127128129130 131 32 133 34 35 

DEFINITION: This instruction is received over the Primary 

Bus and causes the contents of the effective address 

to be sent to the external subsystem 

specified by the contents of the Active Source 

Register, which generated this instruction, using 

a standard data transmission word (transmission 

code is 011). Bits 0-31 of the contents of the 

effective address are reset to ZERO. 

This instruction, received as an external instruction 

interrupt, is not subject to address modification 

except if it is received via the COMMAND SUBSYSTEM 

Address Modification Instruction (OP CODE 47). 

This instruction is illegal if generated by a 

program counter operation, and its appearance 

enables the Illegal Instruction Interrupt (Trap 

No.9). No operation of this instruction is 

performed in this situation. 

4-276 



INSTRUCTION NAME: Read Word to Output 

OP CODE: 02 

FUNCTION (~) - E 

MACHINE FORMAT: 

0 2 XXXX I INDEX ADDRESS 1 0 T P 

01' 12 13 4 151 61 7 81 91'0 I" 12 13114115 '61'71'81'912012'122123124125126127128129\3013' 32 33 34 35 

DEFINITION: This instruction is received over the Primary 

Bus and causes the contents of the effective address 

to be sent to the external subsystem 

specified by the contents of the Active Source 

Register, which generated this instruction, using 

a standard data transmission word (transmission 

code is 011). The contents of memory remain 

unchanged. 

This instruction, received as an external instruction 

interrupt, is not subject to address modification 

except if it is received via the COMMAND SUBSYSTEM/ 

Address Modification Instruction (OP CODE 47). 

This instruction is illegal if generated by a 

program counter operation, and its appearance 

enables the Illegal Instruction Interrupt (Trap 

No.9). No operation of this instruction is 

performed in this situation. 

4-277 



INSTRUCTION NAME: write Word From Input 

OP CODE: 03 

FUNCTION: E -1>- MD 

MACHINE FORMAT: 

0 3 XXXX I INDEX ADDRESS MO T P 

01, 12 13 4151 61 7 81 9110 I" 12 13114115 ,61,71,81,91201,,12212312412512612712;12913013, 32 33 34 35 

DEFINITION: This instruction is received over the Primary 

Bus and causes the DPE to receive a second 36 bit 

word over the primary bus which the PMU will 

store into the local memory location directly 

addressed by the address field of this instruction. 

If this instruction is received as an external 

instruction interrupt it is not subject 

to address modification except if it is received 

via the Command Subsystem/Address Modification 

instruction (OP CODE 47) in a PMU with channel 

configuration. 

This instruction is legal if generated by a 

Program Counter operation. The'bus data word 

is ,stored into the memory location directly 

addressed by the effective address field of the 
-instruction. 

4-278 



INSTRUCTION NAME: Single Word I/O Command 

OP CODE: 60 
, 

FUNCTION: (MD) - E 

MACHINE FORMAT: 

IS" 
, 

61 0, 
I' xxx I INDEX ADDRESS MO T P 

01' 12 13 41 sH 7 1s 9110 I" 12 lJ 114115 '6117I'sl'9120 121 12212312412sI2612712sI29130 131 32 33 34 35 

DEFINITION: This instruction is used to send a word to an 

external resource which, is to interpret the 

transmitted word as a single word instruction. 

This instruction will cause the contents of the 

memory location specified by the effective address 

of this instruction, plus a parity bit, a transmission 

tag of 100 (indicating Single Word Command) and a 

source code to be placed on the secondary bus. 

The source'code is hardwired within the PMU. The 

destination of the transmitted word is contained 

within the transmitted word itself. 

If the addressing mode is virtual, a security check 

is performed on the referenced kernel word before 

reading the addressed word. Kernel word bits 8 

(Kernel Protect) and 34 (Command Protect) must be 

zero. If a security violation exists, further 

execution of the instruction is aborted and a 

command protect trap occurs. Although not required, 

normal procedure should have the kernel word bit 33 

set to one. A user program should not be allowed 

to modify the data that is to be interpreted as 

an instruction. 

4-279 



Bit 8 of khe instruction controls the sequence 

number of the transmitted command. If bit 8 is 

I, a reply is expected and the channel applies 

the next available sequence.number to the command. 

If bit 8 is 0, the present sequence number applies. 

Indexing and indirection are allowed with this 

instruction. However, the final modified instruction 

word after all address modification has taken place 

should have its memory access bit (bit 32) reset 

to a zero indicating an immediate address. Should 

bit 32 be set to one, a non required extra clock 

cycle will be expended to read the contents of the 

memory location specified by the effective address. 

4-280 



INSTRUCTION NN~E: Two Word I/O Command 

OP CODE: 73 

FUNCTION: 

MACHINE FORMAT: 

DEFINITION: 

7 3 SN XXX I INDEX ADDRESS MOT P 

o I' I 2 13 4 151617 8 9110 I" 12 13114 j 15 '61171'81'912012'1"1231"125126127128129130131 32 33 34 3S 

This instruction is used to send two words to an 

external resource. The first word is a command 

and the second word is data. The second word is 

never a command. The Command Subsystem instruction 

(OP CODE 47 or 4F) is used to send comm~nds in 

the second word that are to be interpreted as 

commands. 

This instruction is a two word instruction where 

the first word has the format given above and is 

£etched by the Program Counter. The second word 

of the instruction is fetched from the location 

Program Counter ,plus one and has the following format. 

X X X X ADDRESS xxx p 

The execution of the first word of the instruction 

causes a standard data transmission word to be 

placed on the bus. This word consists of 

the full 36 bit contents of the memory location 

4-281 



specified by the effective address of the Two 

Word I/O Command instruction, a bus parity bit, 

the transmission code 101, and the 8 bit source 

code of this PMU. Then, a .second data transmission 

word consisting of the full 36 bit contents of the 

memory location specified by the unmodified address 

of the second word of this instruction, a bus parity 

bit, the transmission code 011, and the 8 bit 

source code of this PMU is placed on the output bus. 

If the addressing mode in the PMU is virtual, a 

security check is performed on the kernel word 

referenced by the address of the first word of 

this instruction before reading the first word 

to be transmitted. Kernel word bits 8 (Kerriel 

Protect) and 34 (Command Protect) must be zero. 

If a security violation occurs, further execution 

of the instruction is aborted and a command protect 

trap occurs. If no security violation exists, 

the first word to be transmitted is read and the 

bus word is formatted. The second word of the 

~instruction is obtained and the address (bits 16-31) 

contained in this second word is used to obtain 

the kernel word for the second word to be transmitted. 

Bit 32 (Read Protect) of this kernel word must be 

zero, otherwise, an instruction which causes no 

operation is placed on the secondary bus. If no 

security violation occurs, the second word to be 

transmitted is obtained and a bus word is formatted. 

4-282 



With virtual addressing mode, word on of this 

instruction should be on an even boundary or 

have an address value less than 254 in the lower 

order 8 bits (bits 24-31 of the instruction). 

If the lower order value is .255, word 2 of this 

instruction set will be read from location zero 

of the same page that the initial instruction was 

read. The next sequential instruction will be 

read from location one of the next sequential 

procedure page. 

Bit 8 of the instruction controls the sequence 

number of the transmitted command. If Bit 8 is 1, 

a reply is expected and the channel applies the 

next available sequence number to the command. 

If bit 8 is 0, the present sequence number applies. 

Indexing and indirection are allowed with this 

in~truction. However, the final modified instruction 

word after all address modification has taken place 

should have its memory access bit (bit 32) reset 

to a zero, indicating an immediate address. Should 

bit 32 be set to one, a non required extra clock 

cycle will be expended to read the contents of 

the memory location specified by the effective 

address. 

4-283 



INSTRUCTION NAME: Two Word I/O With Indexing 

OP CODE: 7B 

FUNCTION: 

MACHINE FORMAT: 

7 B XXXX I INDEX ADDRESS MO T P 

01 '1213 4 I 5 I 61 7 8 I 9110 I JJ 12 13114115 16 1'7 i lsi 19 120 1" 1"1231241''1>6127128129130 I" 32 33 34 35 

DEFINITION: This instruction is similar to the TWO WORD I/O 

COMMAND instruction (OP CODE 73) except that the 

second word of the instruction allows indexing 

in obtaining the second word to be transmitted 

on the bus. 

This instruction is a two word instruction where 

the first word has the format given above and is 

fetched by the Program Counter. The second word 

of the instruction is fetched from the location 

program counter plus one and has the following format. 

X X SPA XXXX ADDRESS XX' T P 

01 I J ' I 3 I ' 15 I 6 I 7 sl9j 101 I I ,12\ UJ14Jl5 16]171 I a I 19 1'0 I" 1221231 " 1251'6127128129130 I" 3;T~3 I--r-
34 35 

The execution of the first word of the instruction 

causes a standard data transmission word to be 

placed on the bus. This word consists of 

the full 36 bit contents of the memory location 

4-284 



specified by the effective address of the Two Word 

I/O Command instruction, a bus parity bit, the 

transmission code 101, and the 8 bit source code 

of this PMU. Then, a secon~ data transmission 

word consisting of the full 36 bit contents of the 

memory location specified by the. indexed address 

of the second word of this instruction, a bus 

parity bit, the transmission code 011, and the 8 nit 

source code of this PMU is placed on the output 

bus. The indexed address of the second word to 

be transmitted is obtained by adding the contents 

of the scratchpad register specified by the SPA 

field of the second word of this instruction to 

the address field (bits 16-31) of the second word 

of this instruction. 

If the procedure addressing mode in the PMU is 

virtual, a security check is performed on the kernal 

word referenced by the address of the first word of 

this instruction before reading the first word to 

be transmitted. Kernel word bits 8 (Kernel Protect) 

~9nd 34 (Command Protect) must be zero. If a 

security violation occurs, further execution of 

the instruction is aborted and a command protect 

trap occurs. If no security violation exists, 

the first word to be transmitted is read and the 

bus word is formatted. The second word of the 

instruction is obtained and the indexed address of 

this second word is used to obtain the kernel word 

for the second word to be transmitted. Bit 32 

(Read Protect) of this kernel word must be zero, 

4-285 



otherwise, an instruction which causes no operation 

is placed on the secondary bus. If no security 

violation occurs, the second word to be transmitted 

is obtained and a bus word is formatted. 

With virtual addressing mode, word one of this 

instruction should be on an even boundary or have 

an address value less than 254 in the lower order 

8 bits (bits 24-31 of the instruction). If the 

lower order value is 255, word 2 of this instruction 

set will be read from location zero of the same 

page that the initial instruction was read. The 

next sequential instruction will be read from 

location one of the next sequential procedure page. 

Indexing and indirection are allowed with this 

instruction. However, the final modified instruction 

word after all address modification has taken place 

should have its memory access bit (bit 32) reset 

to a zero, indicating an immediate address. Should 

bit 32 be set to one, a non required extra clock 

~ycle will be expended to read the contents of 

the memory location specified by the effective 

address. 

4-286 



INSTRUCTION NAME: Read Operand to Output 

OP CODE: 04 

FUNCTION: (MD) - E 

}t-'\CHINE FORMAT: 

0 4 XXXX XXXX ADDRESS 1 0 X p 

01' 12 13 4 15 16 , 7 81 91'0 I" '21'J 1'41'5 ,61,71,81,912012,12212312.12512612712812913013, 32 33 34 35 

DEFINITION: This instruction is received over the primary bus 

and causes the PMU to output a word that is sent· 
to the resource initiating this instruction. 

The data word to be transmitted is contained in 

the memory location specified by the effective 

address of this instruction and is placed in the 

output buffer. The destination of the data word 

is contained in the Active Source Register. If 

the op~rand is two word or complex, a 

second word is read and placed in the output buffer. 
~ 

If the addressed operand is an array, all operands 

associated with the array are read and placed in 

the output buffer. 

This instruction, received as an external instruction 

interrupt, is not subject to address modifications. 

This instruction is illegal if generated by a 

Program Counter fetch. 

4-287 



The appropriate transmission tag is used in the 

formatting of the word to be transmitted on the 

internal bus according to paragraph 3.1.1. 

4-288 



INSTRUCTION NAME: Read Page to Output 

OP CODE: 06 

FUNCTION: 

MACHINE FORMAT: 

0 6 XXXX XXXX ADDRESS 
, 

I 0 X p 

01' 12 13 415 16 17 8 I 9110 I" 121uj '4 1'5 '61'71'8 I .9120121122123124125126127128129130131 32 33 34 35 

DEFINITION: This instruction is received over the primary­

bus and causes the PMU to output a page (256 

words), that is sent to the resource initiating 

this instruction.-

The 256 words beginning with the word directly 

specified by the effective address of this instruction 

are placed into the output buffer using the contents 

of the Active Source Register as the destination. 

If the 255th word of a page is read, the next 

operand read will be the Oth word of the same page 

(Page Wraparound) . 

This instruction, received as an external instruction 

interrupt, is not subject to address modification. 

This instruction is illegal if generated by a 

Program Counter fetch. 

The appropriate transmission tag is used in formatting 

the words to be transmitted on the internal bus, 

according to paragraph 3.1.1. 

4-289 



INSTRUCTION NAME: Read Array to Output 

OP CODE: OC 

FUNCTION: 

MACHINE FORMAT: 

0 c xxxx x xxx ADDRESS , MO T P 

011 12 13 415 1617 SI 9110JII 12 13JI4JtS 16117JISI191 ?OI21122JnJ24J2s[26J2712SJ29130 131 32 33 34 35 

DEFINITION: This instruction is a two word instruction. This 

command is issued by the PMU as a result of a 

dimension word (see paragraph 5.3.12) being 

accessed during an indirection step for all AP 

addressablG instructions. It is issued by the 

PMU to an external source in order to obtain the 

array operands for processing by the AP. 

The first word of this two word instruction has 

the format given above. The second word is the 

dimension word (see paragraph 5.3.12) of the-array) 

to be read. 
~. 

The first word o~ the array to be read is contained 

in the location specified by the effective address 

of the first word of this instruction. The 

structure of the array operand is described by the 

dimension word contained in the second word of 

this command. 

This instruction is executed as an external instruction 
interrupt. This instruction is illegal if generated 
by a program counter operation, and its appearance 

enables the Illegal Instruction Trap (No.9). 

4-290 



INSTRUCTION NAME: Read Indirect Word to Output 

OP CODE: DE 

FUNCTION: 

J.1ACHINE FORMAT: 

0 E XXXX XXXX ADDRESS 001 P 

o II I' 13 ']5 H 7 Sl 9110 I" 12jlJ 114J15 161171ISI191?OI2112212312412sj2612712SI29130131 32133134 35 

DEFINITION: This instruction is received over the primary 

bus and- causes the PMU to output two words that 

are sent to the resource initiating this 

instruction ... 

The contents of the memory location specified by 

the effective address of this instruction are 

transmitted to the destination specified by the 

contents of the Active Source Register. If bits 

32-34 of t~is instruction have the bit pattern 001, 

the contents of the next sequential memory· location 

are also transmitted to the specified destination. 

~oth transfers use a standard data transmission 

word. 

This instruction, received as an external instruction, 

interrupt, is not subject to address modification. 

This instruction is illegal if generated by a 

Program Counter fetch. 

4-291 



INSTRUCTION NAME: Write Operand From Input 

OP CODE: 05 

FUNCTION: E MD 

MACHINE FORMAT: 

0 5 XXXX XXXX ADDRESS XXX P 

~ l' 12 13 4 I 5 I 6 I 7 81 9110 I" 1211J ! 14115 '61171'81'9120 I" 1121231241231201"1281" 130 131 37133134 35 

DEFINITION: This instruction is received over the primary 

bus and causes the PMU to input an operand that 

has been sent by the remote resource which 

initiated this instruction. 

The operand, located in the instruction input 

queue, is stored in the memory location specified 

by the effective address of this instruction. If 

this data word is not tagged with an "End of Block," 

a continue command is sent to the device indicated 

by the active resource register. The data that 

is subsequently returned by the resource addressed 

~is read from the input data queue and stored in 

consecutive memory locations until the EOB is 

received. If an EOB is not received and the least 

significant 8 bits of the address just written 

into were 255, the next word is stored in an address 

whose least significant 8 bits are all zeroes (page 

wraparound) and whose most significant bits are 

unchanged. 

4-292 



This instruction, received as an external instruction 

interrupt is not subject to address modification. 

This instruction is illegal if generated by a 

Program Counter fetch. 

The appropriate transmission tags used in the 

sending of the operands are explained in paragraph 

3.1.1. 

4-293 



INSTRUCTION NAME: Write Page From Input 

OP CODE: 07 

FUNCTION: 

MACHINE FORMAT: 

, 
0 7 XXXX XXXX ADDRESS XXX P 

01, 1213 -1 51617 s\ 9110 I" 12113 1 14 1 15 161171 1s l'91 '01 ':1 ,;r 23]24\2*6\27 \ 'S\2913~31 32133134 35 

DEFINITION: This instruction is received over the primary 

bus and causes the PMU to input a page (256 words) 

that has been transmitted by the remote resource 

which initiated this instruction. 

When the computer has received this instruction 

and is ready to accept the page, a continue command 

is sent to the resource specified by the contents 

of the active source register. The next 256 words 

from the input data qu~ue are written into local 

memory starting with the memory location specified 

~by the effective address of this instruction. 

After writing a word into location 255 of a page, 

the next word received is written into location 0 

of the same page (page wraparound). If an EOB is 

received before 256 words are received or if the 

EOB is received after exactly 256 words are written, 

an error condition is signalled. 

This instruction received as an external instruction 

interrupt, is not subject to address modification. 

This instruction is illegal if generated by a 

Program Counter fetch. 

4-294 



The appropriate transmission tags used in the 

sending of the page are explained in paragraph 

3.1.1. 

4-295 



INSTRUCTION NAME: Write Array From Input 

OP CODE: OD 

FUNCTION: 

MACHINE FORMAT: 

0 D xxxx I INDEX ADDRESS MO T P 

o T 1-T 21 3 .1 5 [617 S I 9110 III 12 13114115 1611711s119120]" 2~2;r 231 2~25f2612712sH30 131 32 33 34 35 

DEFINITION: This word is a single word command and is generated 

as a result of a storage operation involving an 

array, whose starting address was obtained as a 

result of an indirect dimension word (see 

paragraph 5.3.13). 

This instruction is used to write an array into 

local memory. The starting address is indicated 

by the effective address of this instruction. When 

the computer is ready to accept the operand, a 

continue is sent to the active source. Subsequently 

received words are written into local memory until 

~~n End of Block is received. 

4-296 



5. AADC ARITHMETIC PROCESSOR (AP) 



5.0 The AADC Arithmetic Processor (AP) 

The Arithmetic Processor (AP) has the capability to 

process data in a conventional manner and also has the added 

features of processing data arrays with single operators that 

may otherwise be represented by subroutines in conventional 

processors. The "built-in" operators include a matrix algebra 

facility that utilizes memory in an efficient manner by saving 

program instruction steps. 

The architecture of the AP is characterized by "pipe­

line" techniques in which the instructions and operands are 

buffered on input to the AP and by an internal processor stack 

that can hold up to thirteen operator/operand pairs that are 

waiting for execution. 

Deferral operations involving the accumulator stack can 

be extended into the PMU task memory as required. The stack 

mechanism eLiminates the need for many of the LOAD/STORE in­

structions required in conventional digital processor applica­

tions and thus saves program memory and time. 

Figure 11 represents the AP architecture. 

5.1 AP System Components 

The AP has several major components that are referenced 

extensively in the functional description of the instruction 

set; They are: 

• The AP floating-point Fanout Box (FB) 

. The AP Input Instruction/Data Queue or APQ 

5-1 



lT1 
I 
tv 

}-I" 

CARQ.Y {"') 
OUT 



. The AP Arithmetic and Control Unit (ACU) that 

includes: 

· The M Register 

• The A Register (Accumulate r) 

· The Deferral Unit (DU) or Stack 

· The Array Control Logic 

5.1.1 The AP Fanout Box_ (FB) 

The FB converts data received from the Program Management 

Unit (PMU) into the desired internal AP format. After the 

conversion, the data is placed in the APQ. The FB retains 

the data tags in order to identify a double precision or 

complex operand process required for the conversion as 

contrasted with the single precision data. 

The input to the FB is a thirty five (35)' bit word 

with the right most three (3) bits being data tags identifying 

the data type (DT). The type codes in binary are as follows: 

000 - logical variable 

001 - array dimension control word 

010 - integer variable 

all - logical variable 

100 - single precision floating point variable 

101 - double precision floating point variable 

110 - complex floating point variable 

111 - second word of two word variable 

5-3 



When data is passed from the AP to the PMU memory, 

it is reformatted with appropriate data tags appended. This 

occurs with the AP Store instructions as discussed below. 

The reformat device is called a "Select" box and is shown in 

Figure 11. 

The contents of the AP Accumulator are stored in the 

effective address. If the Accumulator is complex or double 

precision, the operand stored is complex or double precision. 

If the Accumulator is single precision, the following actions 

occur: 

If the Accumulator operand is positive, and the exponent 

is all ZERO's, the operand is stored as a logical with a data 

tag of all. 

If the Accumulator operand is negative, the exponent 

is all ZERO's, the sign is negative and the most significant 

Accumulator bit is ZERO, the operand is stored as an integer 

with a data tag of 010. 

If the Accumulator exponent is +1 and the 5 most 

significant Accumulator bits are ZERO, the operand is shifted 

left one hex digit. The shifted operand will either be stored 

as a logical or integer as a function of the sign bit. 

If the Accumulator exponent is not a or +1, and the 

8 most significant Accumulator bits are all ZERO's, the 

Accumulator is stored as a single precision floating point 

number with a data tag of 100. 

5-4 



If the Accumulator exponent is not 0 or +1, and the 

8 most significant Accumulator bits are not all ZERO's, the 

Accumulator is s!1ifted right one hex digit and the exponent 

incremented. T11en, the conditions stated above are applied. 

When the Accumulator is stored in a floating point 

format, the 8 bit Accumulator exponent is converted into the 

7 bit memory exponent format. A Store Error Trap occurs if the 

conversion is not exact. This occurs if the most significant 

two bits of the Accumulator exponent are not equal. The AF 

expands the 7 bit memory word floating point exponent by 

duplicating the most significant bit upon fetching the operand 

from the APQ. This eight bit exponent is used for all subsequent 

internal scaler/real manupulations. 

The PMU may enter a store halt cycle (Store and Halt 

Instruction) after placing the store instruction in the APQ. 

When the AP completes the execution of the store instruction, 

the PMU store hnlt cycle is exited and normal instruction 

fetching is resumed. 

5-5 



5.1. 2 AP INPUT FORMATS 

The following diagrams represent the input formats 

to the FB: 

Logical Variable: 

DATA o 0 0 P 

or 

Where: The DATA is a logical variable. 

Array Dimension Control Word: 

SDSD 
l H 
0 • 

Where: 

UNUSED S DT RANK ROW COL o 0 1 P 

2 13J 4J 5 t 6 7 81 91.0 I" .2113 1 14 1.5 .61171·81·912012:122!23 24 125 ! 26 127 ! 28j 29130 13. 32! 33/34 35 

SDL and SDH are sign bits for the dimension 

word used for Take and Drop operators 

S is a scaler bit for use in indirect dimension 

words only 

DT is the array data type (see para. 5.3.l2) 

RANK is equal to one (1) for matrix and zero 

for vector 

ROW is the Row index (O ••• 255) 

COL is the Column index (0 ... 255) 

P is the word parity 

Integer Variable· 

s 

Where: 

DATA 010 P 

S is the sign bit. S = 1 is negative. 

S = 0 is positive. Data is a 31 bit integer 

justified right in the field. The numbers +0 

and -0 are equivalent ~n all algebraic manipulations. 

5-6 



Floating-Point Single Precision: 

--;--------,--------------------------------~--~~ 

S EXP MANTISSA 100 P 

~ ~·-r-12r I 3-TI--' , 15'1~6'-I' \--r-,---,--.-r 

Where: S is the mantissa sign bit. 

negative. S = 0 is positive 

S = 1 is 

EXP is a two complement exponent 

MANTISSA is an integer justified right in 

the field. 

Floating-Point Double Precision: 

, 
s I EXP MANTISSA 1 0 1 P 

i 

Where: The first word is the sarre as in single 

precision except for the data tags and the 

MANTISSA in the second word is thirty-two (32) 

bi ts long. . The binary point is between the 

Mantissa of the double length operand. 

5-7 



5.1. 3 

Complex Variable: 
-,--------,----------------------------,----,---, 
s 

Where: 

EXP MANTISSA 1 lOP 

The first variable is REAL and the second variable 

is IMAGINARY. The data field are the same as 

Single Precision Floating-Point. 

The AP Input Instruction/Data Queue (APQ) 

The APQ is physically a dual stack of sixteen (16) words 

of FIFO (first in, first out) instructions and operands. The 

figure below represents the APQ format for a pair of entries in 

the dua 1 stack ~ 

w 
o 

15 

For computational purposes, the APQ can look ahead up 

to thirteen (13) instruction/operand pairs. 

5-8 



The Data Tags have the following meaning: 

0000 = single precision operand (includes logical, 

integer and single precision memory data 

tags) 

0001 - double precision operand 

0010 - complex operand 

0100 to 0111 = not used 

1000 = packed bianry with each bit in Mantissa 

representing one array word 

1001 = packed quatenary with each two bits in 

Mantissa representing one array word 

1010 = packed hexadecimal with eight characters 

in the Mantissa 

1011 = four bytes in Mantissa 

1100 = two sixteen (16) bit half words in Mantissa 

1101 to 1111 not used 

The APQ is loaded by the ?MU as two separate parts of the 

dual entry: (I) the operation code and data tags in the left 

half of the queue and (2) the FB converted operands in the 

right half. Each half has a stack pointer to indicate where the 

bottom of the stack is located for PMU loading and a top of stack is 

located for~AP unloading. The data tags tell the AP whether one 

or two operands are required for the operation code. The following 

diagram represents the APQ structure. 

5-9 



a 

2 

12 

13 

full, 

OP3 0001 

OPl 00 00 ---I---~ 

OP2 0000 

OP NEXT SPACE 

OPND NEXT 
SPACE 

TOP OPND 
FOR AP 

TOP OP FOR AP 

OPND 3 

OPND 4 

OPND 1 

OPND 2 

FIGURE 12 Instruction Look-Ahead Mechanism (APQ) 

As the PMU loads the APQ a test is made for APQ full. If 

the PMU is interrupted and notified to halt APQ loading. 

After the top operand OPND 1) is dequeued by the AP, the PMU 

is enabled to continue filling the APQ. 

5.1.4 The AP Arithmetic Unit (APAU) 

The AP Arithmetic Unit performs the arithmetic and 

logical operations on data furnished it by the PMU. The data 

furnished the AP passes through the APQ mechanism for the 

conventional instructions and directly to the AP for the 

array processing instructions. 

5-10 



Elements in the APA U inc lude the M Register (Mantissa), 

the A Register (Accumulator), the Deferral Unit (DU) or Stack, 

and array control logic. 

The M Register, A Register and Stack can be thought 

of as an eighteen register LIFO (last in, first out) stack 

of registers that contain the operators and associated operands 

to be executed. Putting information onto the stack and removing 

it from the Stack is controlled by bits 9-11 in the operator 

fetched from the APQ. These control bits are the "Parenthetical 

Field" bits as observed by the programmer in his application 

text. The Stack control bits 9-11 have the following meaning: 

000 = Execute the operator immediately 

001 = Execute (EX) the operator immediately, pop (p) 

an operator/operand from the Stack, and 

execute (EX) that operator/operand. 

010 = (EX) , P, (EX) , P, (EX) - (two Pops) + (EX) 

all = (EX) , P, (EX) I P, (EX) , P (EX) , - (three 

Pops) + (EX) 

100 = (EX), P, (EX) , P, (EX) I P, (EX) I P, (EX) -
(four Pops) + (EX) 

101 = - (five Pops) + (EX) 

110 = - (six Pops) + (EX) 

111 = Push operator and operand onto Stack from A 

register. The M Register is copied to the A 

Register. 

5-11 



The deferral mechanism is represented by the following 

illustration showing the registers and the Stack pointers. 

REG ISTER 

o 7 8 9 1011 13 14 15 

APQ ENTRY 

55 

where: 

M P 0 0 

A OP 1 P 0 0 

o OP2 P o 0 

• 
• • 
• 

I OP I P I o 0 
i 15 

DT PD 

DT PD 

DT P . 
D 

• • 

I DT I PD I 

OPERAND1 

OPERAND2 

OPERAND3 

OPERAND. 
I 

f-*-.J 

f--

] 

OPERATOR 
BEING 
EXECUTED 
(EX) 

I TOP OF STACK PTR 1 

FIGURE 13 The Deferral Mechanism 

OPERAND is the data (1 bit sign, 8 bit exponent, 32 bit 
mantissa, if double mantissa is 64 bits) 

DT is the DATA TYPE CODE where: 

B~t 11 CP - Deferral contains complex Operand 

Bit 12 AR - Deferral contains Array 

Bit 13 FA - First Array in Deferral 

P is the precision of the operand resultant 

PD is the precision of the data 

OP l is the operator to be executed 

POP is moving contents of TOp of Stack to A Register 

5-12 



Limit ~hecks are made every time the Stack is accessed 

for over-flow or under-flow. When an over-flow condition exists, 

the AP stores the deferral stack in memory and signals this 

occurrence (see Appendix P, Note 8 - Trap Level 17). An under­

flow (empty stack) or too many "Pops" causes the AP to retrieve 

the last contents of the deferral stack from memory, reload the 

deferral and execute the pop. A trap level 16 is initiated to 

signal the occurrence of this condition. 

When the operator is actually being executed, it can be 

thought of as being in the A Register part of the Stack. In the 

hardware implementation, the operator is placed in the OP CODE 

register as shown in Figure 11 and the other control fields are 

gated to their respective registers for decoding in the execution 

process. The operand data in the A Register and M Register are 

then combined according to the OP CODE specified with the results 

saved in the A Register or Accumulator. 

The data field of the Stack is increased from forty 

(40) bits in length to forty one (41) upon execution by ex­

tending (copying the sign bit) the exponent one bit to the 

left. This permits a mUltiple operator sequence to occur while 

reducing the possibility of exponent over-flow/under-flow 

before completing the OP CODE execution. When over-flow/ 

under-flow of the exponent has occurred, the AP signals the PMU, 

completes the function execution, and continues. 

When real double precision data is pushed, bits 0-23 of the 

first push is repeated. The most significant part of the mantissa is 

pushed first. When a complex or array operand is pushed, a single 

precision operand is pushed into the stack. The actual operand is 

pushed into the deferral memory stack maintained by scratchpad 26. 

In this manner, deferral underflQw and overflow checks are maintained 

for complex or array operands. 

5-13 



The A and M registers are the arguments for most of 

the operators executed in the AP. The M Register is a double 

length register of seventy-three (73) bits, while the A Register 

is also double length with seventy-three (73) bits to 

accommodate double precision arithmetic. The AIM Register 

data format is: 

EXP OPERAND PART 1 

where: 

EXP is the eight bit exponent 

S is the sign for the double length operand (OPND) 

5.2 Basic AP Instruction Sequence 

Each basic AP instruction which enters the APAU contains 

an operator code (Op Code), a parenthetical field (PF) and 

an operand (OPND). Th~ operand is moved from the APQ to the 

M Register in the first step. Then the DT bits are examined 

for the double precision flag (bits 12-15 of APQ are 0001). 

The PF Stack functions are then executed as per the PF bits 

9-ii in the OP CODE in the next and subsequent steps. Simul-

taneously with the last step of the execution sequence, the AP 
, 

control fetches the next instruction from the APQ. 

5-14 



5.3 Basic AP Instruction Set 

'The basic AP instruction set has operators that use two 

arguments and are called dyadic functions. Instructions that have 

operators using one argument are called monadic functions. The 

instruction set may be thought of being in seven (7) groups or 

categories: 

1. Arithmetic 

2. Load/Store 

3. Compare 

4. Transfer 

5. Shift 

6. Boolean/Logical 

7. Array 

AP Instructions 

The AP Instructions have two formats. The first format 

is in the PMU memory_ The second format is a result of being 

operated on by the PMU and the AP Fanout Box (FB). In the 

description of the instruction set, both formats will be 

illustrated. For the examples given the following notation 

will be used: 

M = M Register 

(M) = Contents of M Register 

A =. A Register (Accumulator) 

(A) = Contents of A Register 

D = Effective Address 

AP Machine Format represents structure of the instruction 

and data as is appears in the AP Queue. 

5-15 



Wherever in an instruction definition, the memory is 

"read", "referenced", "written", or "stored", unless otherwise 

noted, the memory operation is performed in the data addressing 

mode of the DPE, that is, absolute or virtual as determined by 

the PMU Set Task Parameter instruction. 

The OP CODE field will be hexadecimal notation. 

Examples in the use of the instruction will use the common 

arithmetic operator symbols and those of APL in array functions. 

Care will be taken to avoid using hardware register names in 

sample definitions of data and programs. 

The PMU instruction format is discussed in the sections 

devoted to the PMU. 

5.3.1 AP Arithmetic Instructions 

INSTRUCTION NAME: Addition 

OP CODE: Cl 

FUNCTION: (M) + (A) ___ A 

PMU MACHINE FORMAT: 

C 1 P PF I INDEX ADDRESS Ml T P 

01' I 2 13 4 15 I 61 7 8 9110 I J 1 12 13! 14 ! 15 161'71"1'9120121 1221231241251261271281'91 ~o 131 32 33 34 35 

AP MACHINE FORMAT: 

C 1 P PF DT OPERAND 

01' 12 13 4 I 5 16 17 8 9110 I J 1 '21'31'41'5 161,71"1,9120121 1221231"1251261271281'9130 13 ' 132 1 33 I 34 [35[36J371313"140 [41142143 [ 441 451 46 1 

5-16 



DEFINITION: ~1e contents of the M Register are 

algebraically added to the contents 

of the A Register. The result is 

placed in A. Interrupts to the PMU 

may occur with exponent overflow/ 

underflow. 

If bit 8 (p) is a one (1), the 

function executed results in a double 

precision operand. Otherwise, the low 

order resultant mantissa is cleared 

to zero for single precision. 

The execution of the Addition operator 

is as follows: The exponents (with 

non-zero A or M operands) are comIBred 

and the operand with the larger exponent 

value is shifted left 4 bits at a time 

until a non-zero value appears in the 

left most four bits of the Mantissa, 

or the two exponents become equal by 

decrementing the larger exponent value 

by one for every four (4) bits shifted. 

In the event that the larger value 

becomes "normalized" to 

5-17 



the left in the Mantissa before the 

two operands can be added, then, the 

second operand is shifted right four 

bits at a time, while adding one to 

its exponent for each shift of four 

bits, until the exponents are equal 

in value. Then, the addition is 

performed on the Mantissa with the 

result remaining in the Accumulator. 

If the shifting results in clearing 

any operand register or either operand 

was initially zero, the sum is the 

remaining operand. 

EXAMPLE: 

M REGIS1:ER A REGISTER 

I CONTENTS BEFORE EXECUTION 66 I 0 I 12345678 66101 12345678 

I CONTENTS AFTER EXECUTION 10 1 66 J 01 2468ACFO 

5-18 



INSTRUCTION NAME: Reverse Subtract 

OP CODE: C4 

FUNCTION: (M) - (A) -- A 

PMU MACHINE FORMAT: 

C 4 P PF I INDEX ADDRESS Ml T P 

o l' I 2 I 3 4 I 5 I 6 I 7 8 91'0 I" 12 13 j 14115 '61"1'81'9120 I" 1,,1231241251261,,128129130131 32 33 34 35 

AP MACHINE FORMAT: 

C 4 P PF DT OPERAND 

oJ 1 12 13 4 I 5 I 6 I 7 8 91 '0 I" 12113114-]15 161"I'SI'9I,;T 21 12212312'1251 26127128129130 131 132133134135136137138139140141 142143144 ]';}6 

DEFINITION: The contents of the A Register are algebraically 

subtracted from the contents of the M Register. 

The difference is placed in the A Register. 

Interrupts to the PMU may occur with exponent 

overflow/underflow. 

If bit 8 (p) is a one (1), the resultant operand 

is double precision. Otherwise, the lower order 

mantissa is cleared to zero for single precision. 

The execution of the Reverse Subtract operator 

is as follows: The exponents, if any, are 

compared and the operand with the larger 

exponent value is shifted left four bits at 

a time until a non zero value appears in the 

5-19 



left most four (4) bits of the Mantissa, or the 

two exponents become equal by decrementing the 

larger exponent value by one (1) for every four 

(4) bits shifted. In the event that the larger 

value becomes "normalized" to the left in the 

Mantissa before the two operands can be combined, 

then the second operand is shifted right four (4) 

bits at a time, while adding one to its exponent 

for each shift of four (4) bits, until the exponents 

are equal in value. Then, the function is per-

formed with the result being placed in the 

Accumulator. 

If shifting results in clearing any operand 

register or either operand was initially zero, 

the result is the remaining operand. 

EXAMPLE: 

M REGISTER A REGISTER 

I CONTENTS BEFORE EXECUTION 6610r 2468ACFO 66 I 0 I 12345678 

r CONTENTS AFTER EXECUTION -r 0 I 66 I 0 I 12345678 

5-20 



INSTRUCTION: Subtract 

OP CODE: C2 

FUNCTION: (A) - (M)-A 

PMU MACHINE FORMAT: 

C 2 P PF I INDEX ADDRESS MIT P 

o l' I 2 13 4 15 1617 8 91101" 12 IJ 114115 '61'71'81'912012' 1221231241251'6127128129130131 32 33 34 35 

AP MACHINE FORMAT: 

C 2 P PF DT OPERAND 

o l' I' 13 4 15 I 61 7 8 9110 I" 12IIJ 1'4 1'5 16117118119120121122123124125126127128129130J31132133134 135 H 37138139140 14114'14314+5146 
I 

DEFINITION: The contents of the M Register are algebraically 

subtracted from the contents of the A Register. 

The difference is placed in the A Register. 

Interrupts to the PMU may occur with exponent 

overflow/underflow. 

If bit 8 (P) is a one (1), a double precision 

operand will result. Otherwise, the low order 

mantissa is cleared to zero and results in a single 

precision operand. 

The execution of the Subtract operator is as 

follows: The exponents, if any, are compared 

and the operand with the larger exponent value 

is shifted left four (4) bits at a time until 

a non zero value appears in the left most 

5-21 



EXAMPLE: 

four (4) bits of the Mantissa, or the two 

exponents become equal by decrementing the larger 

exponent value by one (1) for every four (4) bits 

shifted. In the event that the larger value becomes 

"normalized" to the left in the Mantissa before 

the two operands can be combined, then the second 

operand is shifted right four (4) bits at a time 

while adding one (1) to its exponent for each shift 

of four (4) bits until the exponents are equal in 

value. Then the function is performed with the 

result being placed in the Accumulator. If 

shifting results in clearing any operand register 

or either operand was initially zero, the result 

is the remaining operand. 

M REGISTER A REGISTER 

I CONTENTS BEFORE EXECUTION 66 I'OJ 12345678 66 I 0 I 2468ACFO 

I CONTENTS AFTER EXECUTION 101 66 I 0 I 1 2345678 

5-22 



INSTRUCTION NAME: Multiply 

OP CODE: EO 

FUNCTION: (M) x (A)---A 

PMU MACHINE FORMAT: 
~-~ 

E 0 P PF I INDEX ADDRESS Ml T P 

01' 12 13 4 15 1 61 7 8 91 10 1",2 ,,1141,5 ,6111I'8I'9120121InI23124125126127178119130131 37 33 34 35 

AP MACHINE FORMAT: 

E 0 P PF DT OPERAND 

01, 12 13 4 15 1617 8 9110 I" 121,J 1,41,5 '61'71"1'9[2012' 12212312412*6127128129130 13'132133134,351361371381391'0141 1.,1 43 14<\<, 146 

DEFINITION: The contents of the A Register are multiplied 

by the contents of the M Register. The product 

is placed in the A Register. Interrupts to 

the PMU may occur with exponent overflow/underflow. 

If bit 8 (p) is a one (1), the resultant operand 

is double precision. Otherwise, the lower ,order 

mantissa is cleared to zero and the resultant 

operand is single precision. 

The execution of the Multiply operator is as 

follows: The exponents are algebraically 

added and placed in the A Register. The Mantissa 

are then algebraically multiplied four bits 

5-23 



at a time until all multipliers and Multiplicand 

bits are processed with the result being 

placed in the A Register. 

EXAMPLE: 

M REGISTER A REGISTER 

I CONTENTS BEFORE EXECUTION 04l 01 00000002 04 I 0 I 00000002 

I CONTENTS AFTER EXECUTION I I 08 , 0 I 00000004 

5-24 



INSTRUCTION NAME: Reverse Divide 

OP CODE: DB 

FUNCTION: (M) + {A)-A 

PMU MACHINE FORMAT: 

D 8 P PF I INDEX ADDR~SS Ml T P 

0\' I 2 13 , 15 1617 8 91 10 I" 12 1J 114115 '61'71'81'912012'12212312417*6127128129130131 37 33 34 35 

AP MACHINE FORMAT: 

D 8 P PF DT OPERAND 

0,,-[ 2[ 3 4'51 617 8 9110 I" '2113 114 1's '6117I'8I'912012'12212312412517612712812913013'132133134i 35136137138139140 141142143144\,;146 

DEFINITION: The contents of the M Register are divided by 

the contents of the A Register. The quotient 

is placed in the Accumulator. 

I 

If bit B (p) is a one (1), the resultant operand 

is double precision. Otherwise; the ~ower 

order mantissa is cleared to zero and the resultant 

is single precision. 

The execution of the Reverse Divide function 

may result in exponent overflow/underflow or 

division by zero and cause an interrupt to be 

sent to the PMU. 

5-25 



The Reverse Divide operator is executed as 

follows: The exponent of the A Register is 

algebraically subtracted from the exponent 

of the M Register with the result being placed 

in the Accumulator. The Mantissa of the M Register 

is divided by the Mantissa of the A Register 

with the quotient being placed in the Accumulator. 

EXAI-1PLE: 

M REGISTER /1, REG!STER 

I CONTENTS BEFORE EXECUTION 08 101 00000004 04 I 0 I 00000002 

I CONTENTS AFTER EXECUTION I I .FD I a 112 0000000 

5-26 



INSTRUCTION NAME: Divide 

OP CODE: DO 

FUNCTION: (A) (M) -- A 

PMU MACHINE FORMAT: 

~-

D 0 P PF I INDEX ADDRESS 

01'1'1 3 , I 5 I 6 I 7 8 91'0 I" 12 IJ I" 1'5 161 I7TI s-I I9T2~"T?2-I7J 1"1 15 In I" I "J 19 

AP MACHINE FORMAT: 

D 0 P PF DT OPERAND 

01 'T213 4 15 I 61 7 8 9 1,0 I" 121131'41'5 _'6117118119 120 121 1221231241,*61271281291301311 32T33134 i 35 136 1 371 38 1 3+0T"T 42 1 ',++51 46 

DEFINITION: The contents of the dividend in the A Register 

are divided by the divisor in the M Register. 

The quotient is placed in the Accumulator. If 

bit 8 (p) is a one (1), the resultant operand is 

double precision. Otherwise, the lower mantissa 

is cleared and the resultant is single precision. 

The execution of the Divide operator may cause an 

interrupt to be sent to the PMU for exponent overflow 
or an attempt to divide by zero. 

The execution of the Divide operator is as follows: The 

exponent of the M Register is algebraically 

subtracted from the exponent of the A Register 

with the result being placed in the Accumulator. 

The Mantissa of the A Register is divided by the 

Mantissa of the M Register with the result placed 

in the Accumulator. 

5-27 



EXAMPLE 

M REGISTER A REGISTER 

I CONTENTS BEFORE EXECUTION 041 01 00000002 08 I 0 1 00000004 

I CONTENTS AFTER EXECUTION I 0 I FD 10 I 20000000 

5-28 



INSTRUCTION NAME: Divide Residue 

OP CODE: D4 

FUNCTION: (A) 

PMU MACHINE FORMAT: 

0 4 P PF I INDEX ADDRESS Ml T P 

01' 12 13 4 15 1617 8 91'0 I" 12 1.3 114115 '61'71'81'912012'12212312' 125126127128 1,91 30 131 32 33 34 35 

AP MACHINE FORMAT: 

0 4 P PF DT OPERAND I 
01' 12 13 4 15 1.17 8 9110 I" '21131"1'5 '61'71'8 1'912012'12212312412512612712812913013113713313'13513613713BI3~,ol" 1'21431 '+5 H 

DEFINITION: The contents of the A Register, the dividend, 

are divided by the contents of the M Regis~er, 

the divisor. Interrupts are sent to the PMU if 

an atteillpt is made to divide by zero and A is 

negative or there is an exponent overflow/underflow. 

If bit-8 (P) is a one (1), the resultant operand 
is double precision. Otherwise, the lower order 

mantissa is cleared to zero and the resultant 
. 

is single precision. 

The execution of the Divide Residue operator is 

as follows: The exponent of the M Register is 

algebraically subtracted from the exponent of 

the A Register. The result is placed in the 

Accumulator. The Mantissa of the A Register is 

divided by the Mantissa of the M Register. 

5-29 



EXAMPLES: 

The residue (remainder) is normalized with corrected 

exponent in the Accumulator. The residue produced 

will always be a positive number or zero. 

If A is negative, the divisor is added to the 

remainder to produce a positive residue. 

M REGISTER A REGISTER 

! CONTENTS BEFORE EXECUTION 2210 I 00000005 22 I 0 I 00000008 

I CONTENTS AFTER EXECUTION I I FD I 0 I 30000000 

M REGISTER A REGISTER 

I CONTENTS BEFORE EXECUTION 22 101 00000005 22 I 1 I 00000008 

1 CONTENTS AFTER EXECUTION I I FD I 0 I 200000001 

M REGISTER A REGISTER 

I CONTENTS BEFORE EX[CUTlm~ 22 I i I 00000005 22\1 I 00000008 

I CONTENTS AFTER EXECUTION I I FD 10 I 20000000: 

M REGISTER A REGISTER 

I CONTENTS BEFORE EXECUTION 22 11 I 00000005 22 I 0 I 00000008 

I CONTENTS AFTER EXECUTION I I FD I 0 I 30000000 

5-30 



INSTRUCTION NAME: Reverse Divide Residue 

OP CODE: DC 

FUNCTION: (M) + (A); QR-A 

PMU MACHINE FORMAT: 

D C P PF I INDEX ADDRESS Ml T P 

01' 12 13 '[51 617 8 91101" 12 13114J15 16117118119120121122123124125j26127128J291~oL31 32 33 34 35 

AP MACHINE FORMAT: 

D C P PF DT OPERAND 

o l' 12 13 41 51617 8 9110 I" '21'31'41'5 '61'71'8 1'9 1201 211221231241 25 126 1 271 28J19J30131J 321331341351361371381391401411421431"145146 

DEFINITION: The contents of the M Register, the dividend, are 

divided by the contents of the A Register, the 

divisor. The fraction part of the double length quotient, 

the residue, is placed in the Accumulator. Interrupts 

are sent to the PMU if an attempt is made to divide 

by zero or there is an exponent over/underflow. 

If bit 8 (p) is a one (1), the resultant operand 

is double precision. Otherwise, the lower order 

mantissa is cleared to zero and the resultant is 

single precision. 

The execution of the Reverse Divide, Residue operator 

is as follows: The exponent of the A Register is 

algebraically subtracted from the exponent of the M 

Register. The Mantissa of the M Register is divided 

by the Mantissa of the A Register. The residue 

(remainder) is normalized with corrected exponent 

in the Accumulator. The residue produced will always 

be a positive number or zero. If M is negative, the 

divisor is added to, the remainder to produce a 

positive number. 

5-31 



EXAMPLES 

M REGISTER A REGISTER 

I CONTENTS BEFORE EXECUTION 22 J 0 I 00000008 22 I 0 I 00000005 

I CONTENTS AFTER EXECUTION I 1 FD I 0 1 G 0000000 

M REGISTER A REGISTER 

I CONTENTS BEFORE EXECUTION 22 11 I 00000008 22 I 0 I 00000005 

I CONTENTS AFTER EXECUTION I I FD 1 0 I 20000000 

M REGISTER A REGIS1ER 

I CONTENTS BEFORE EXECUTION 22 1 1 I 00000008 22 11 I 00000005 

I CONTENTS AFTER EXECUTION 1 I FD I 0 1 2 0000000 

M REGISTER A REGISTER 

CONTENTS BEFORE EXECUTION 22 0 00000008 22 1 00000005 

CONTENTS AFTER EXECUTION FD 0 30000000 -- ------ r ... _~ ____ ._ • 

5-32 



INSTRUC'I'ION NAME: Divide Short 

OP CODE: D2 

FUNCTION: (A) -;-

PMU MACHINE FORMAT: 

D 2 P PF I INDEX ADDRESS Ml T P 

01'[2]3 4 1 5 1 6 1 7 8 9jlO- r ! 1 12 '31'41'5 161171'81,9120 121122I,;r-241"1261271"129130 131 32 33 34 35 

AP MACHINE FORMAT: 

DEFINITION: The contents of the A Register are divided by the 

contents of the M Register with the integer portion 

of the quotient being placed in the Accumulator. 

If bit 8 (p) is a one (1) I the resultant operand is 

double precision. Otherwise, the lower order mantissa 

is cleared to zero for a single precision resultant 

operand. An interrupt is sent to the PMU if- an attempt 

to divide by zero is made or there is an exponent overflow/ 

underflow. The execution of the Divide Short operator is as 

follows: The exponent of the M Register is algebraically 

subtracted from the exponent of the A Register and 

the result is placed in the Accumulator. The 

5-33 



A Register Mantissa is divided by the M Register 

Mantissa with the result being placed in the 

Accumulator. The quotient is then adjusted such 

that the exponent is equal to zero by shifting 

the Mantissa left or right four (4) bits at a time 

and decrementing or incrementing the exponent for 

each shift. 

EXAMPLE: 

NOTE: 

M REGISTER A REGISTER 

I CONTENTS BEFORE EXECUTION 22 1 0 I 00000008 22 I 0 I 00000010 

I CONTENTS AFTER EXECUTION I I 00 I 0 I 00000002 

If a divide by zero is attempted, an exponent overflow 

condition interrupt is sent to the PMU. The contents 

of the Accumulator Mantissa is unchanged, and the exponent 

of the Accumulator becomes the dIfference between the 

original exponents. The resulting sign bit is formed 

by the exclusive OR between the dividend and the divisor 

sign bits. 

5-34 



INSTRUCTION NAME: Reverse Divide Short 

OP CODE: DA 

FUNCTION: (M) • {A)i QI-A 

PMU MACHINE FORr.1AT: 

0 A P PF I INDEX ADDRESS Ml T P 

0\1 \2 \3 • \5\ 617 891'01" 12 ,JI,'1,5 '6\17I18I'912012112212312'12512612712SI29130131 32 33 301 35 

AP MACHINE FORMAT: 

0 A P PF DT OPERAND 

OTI 1213 415 1617 8 91'01" ,2rlJl,.TJ5 '6T17I'81'912012,122123124125126127128T2913013'13213313+51361 311 3813+0T41T,1T43 1.41" 1.6 

DEFINITION: The contents of the M Register are divided by the 

contents of the A Register with the integer 

portion of the quotient being placed in the 

Accumulator. 

If bit 8 {P} is a one (l), the resultant operand is 

double precision. Otherwise, the lower order mantissa 

is cleared to zero and th~ resultant is single precision. 

An interrupt is sent to the PMU if an attempt to 

divide by zero is made or there is an exponent 

overflow/underflow. 

The execution of the Reverse Divide Short operator 

is as follows: The exponent of the A Register is 

algebraically subtracted from the exponent of the 

M Register and the result is placed in the Accumulator. 

5-35 



The M Register Mantissa is divided by the A Register 

Mantissa with the result being placed in the 

Accumulator. The quotient is then adjusted such 

.that the exponent is equal to zero by shifting 

the Mantissa left or right four (4) bits at a time 

and decrementing or incrementing the exponent for 

each shift. 

EXAMPLE 

M REGISTER A REGISTER 

I CONTENTS BEFORE EXECUTION 22 I oj 00000010 22 I 0 I 00000008 

I CONTENTS AFTER EXECUTION I I 00 I 0 I 00000002 

NOTE: If a divide by zero is attempted, an exponent overlfow 

condition interrupt is sent to the PMU. The contents 

of the Accumulator Mantissa become the dividend Mantissa 

and ~he exponent of the Accumulator contains the difference 

between the dividend the divisor exponents. The resulting 

sign bit is the exclusive OR between the dividend the 

divisor sign bits. 

5-36 



INSTRUCTION NAME: Load Accumulator 

OP COnE: C5 

FUNCTION: (MD ) -M, then (M)--- A 

PMU MACHINE FORMAT: 

C 5 P PF I INDEX ADDRESS Ml T P 

0' 1 , 2 13 4 I 5 I 6 I 7 8 9110 I" 12 13114115 '61171'81 19 1 20 1 21 I " 113 1'4 1251"1271281"130 131 3:2 33 34 35 

AP MACHINE FORMAT: 

DEFINI'l'ION: The contents of the M Register are copied into 

the Accumulator. 

EXAMPLE: 

M REGISTER A REG ISTER 

l CONTENTS BEFORE EXECUTION BB 11 I 76543210 FF 11 1 FFFFOOOO 

1 CONTENTS AFTER EXECUTION BB 11 1 76543210 BB 11 1 76543210 

5-37 



INSTRUCTION NAME: Load Negative 

OP CODE: CA 

FUNCTION: (Mn) - M, then - (M) -- A 

PMU MACHINE FORMAT: 

C A P PF I INDEX ADDRESS 

01' 12 13 41 51617 8 91'0 I" 12 lJ /14115 161171181191201"122123124125126127128/29/30/31 

AP MACHINE FORMAT: 

Ml T P 

32 33 34 35 

DEFINITION: The algebraic negative of the contents of the 

M Register replaces the contents of the Accumulator. 

EXAMPLE: 

M REGISTER A REGISTER 

I CONTENTS BEFORE EXECUTION 88 I 0 I 12345678 66 I 0 I 87654321 

I CONTENTS AFTER EXECUTION 88 I 0 I 12345678 88 I 1 I 12345678 

5-38 



INSTRUCTION NAME: Negation 

OP CODE: CC 

FUNCTION: - (A) - A 

PMU MACHINE FORMAT: 

c c P PF I INDEX ADDRESS 

011 12 13 _Is H 7 8 911~JJ 12 13114115 1611711811912oI2112212312412sI2612;r 2~2;r30131 

AP MACHINE FORMAT: 

!viI T P 

32 33 34 35 

DEFINITION: The algebraic negative of the contents of the 

A Register replaces the contents of the Accumulator. 

EXAMPLE: 

M REGISTER A REGISTER 

I CONTENTS BEFORE EXECUTION BB 10 AABBCCDD 33 I 0 I 33221100 

I CONTENTS AFTER EXECUTION BB I 0 AABBCCDD 3311 I 33221100 

5-39 



INSTRUCTION NAME: Absolute Value 

OP CODE: CF 

FUNCTION: I (A) 1- A 

PMU MACHINE FORMl~T: 

C F P PF I INDEX ADDRESS 

oj 1 12 J 3 4 15 1617 8 9110 I" 17 lJ 114115 '61171'81'9120 I" l"I23124l251261"128129130 131 

AP MACHINE FORMAT: 

Ml T P 

32 33 34 35 

DEFINITION: The contents of the Accumulator are set to a 

positive value. 

EXAMPLE: 

M REGISTER A REGISTER 

I CONTENTS BEFORE EXECUTIOi'l 66 I 0 I 11 223344 44 11 I AABBCCDD 

I CONTENTS AFTER EXECUTION 66 I 0 I 11 223344 44 I 0 I AABBCCDD 

5-40 



INSTRUCTION NAME: Signum 

OP CODE: BO 

FUNCTION: If (A) < 0; -l--A. If (A) == 0; 0 -1--· A 

If (A) > 0; l---A. 

PMU MACHINE FORMAT: 

B 0 P PF I INDEX ADDRESS Ml T P 

o l' 12 13 4 1 5 1 6 1 7 8 91101 11 12 1J114! 15 '61"1'81'9120 I" I" 123124125126127128129130 131 32 33 34 35 

AP MACHINE FORMAT: 

B 0 P PF DT OPERAND ) 
01' 1213 4 I 5 I 6 I 7 8 9110 I" 121131'41'5 161"1'81"120 I" 1221231241251261,,128129130 131 132133134 [ 35136137138139140 141 142 14314414514~-( 

DEFINITION: If the contents of the Accumulator is less than 

zero, the Accumulator is set to minus one (-1). 

If the contents of the Accumulator is equal to 

zero, the Accumulator remains unchanged. 

If the contents of the Accumulator is greater 

than zero, the Accumulator is set to plus one (+1). 

EXAMPLE: 

M REGISTER A REGISTER 

r CONTENTS BEFORE EXECUTION 06 r 0 I 12345678 1111 I 01234567 

I CONTENTS AFTER EXECUTION 06 101 12345678 00 I 1 I 0000000 1 

5-41 



INSTRUCTION NAME: Floor 

OP CODE: E4 

FUNCTION: ~I -1 <. (A) <­
(A) = (AI); 

PMU MACHINE FORMAT: 

If 

If 

E 4 P PF I INDEX 

A . A -l-A 
I' I 

AI-A 

ADDRESS Ml T P 

01' 12 13 4 I 51 617 8 9/10 I" 12 IJ I 14115 '61'71'81'91201" 122123 124125126177128129130131 32 33 34 35 

AP MACHINE FORMAT: 

DEFINITION: If the contents of the A Register are less than 

the integerized value of the Accumulator; then, the 

integerized value minus one (1) is placed in the 

Accumulator. 

EXAMPLE~ 

I 
I 

If the (A) is already integerized, 

there is no change to the Accumulator. 

M REGISTER A REGISTER 

CONTENTS BEFORE EXECUTION AA I 0 I BBCCDDEE FF I 0 I 00000041 

CONTENTS AFTER EXECUTION AA I 0 I BBCCDDEE 00 I 0 I 00000004 

5-42 



INSTRUCTION NAME: Ceiling 

OP CODE: E5 

FUNCTION: If AI +1> (A) > AI; AI +l-A 

If (A) = (AI); AI-A 

PMU MACHINE FORMAT: 

E 5 P PF I INDEX ADDRESS Ml 

01 11213 '1 5 16 17 8 9110111 12 13114115 161 Ii I 18 1 19120121 I " 12312.1251261271281291303 I 32 33 

AP MACHINE FORM.:a.T: 

E 5 P PF DT OPERAND 

T P 

3' 3, 

01 11 213 ,1 5 1 6 1 7 8 91101." 1211311'115 16117118119120121/22/231"125126127128129130131/37 r 33T34 1 351361 371 38139140 1411.,143 I .. 145 146( 

DEFINITION: If the contents of the A Register are greater 

I 

than the integerized value of the Accumulator; 

then, the integerized value plus one (1) is placed 

in the Accumulator. 

EXAMPLE 

I 
I 

If the (A) is already 

integerized, there is no change to the Accumulator. 

M REGISTER A REGISTER 

CONTENTS BEFORE EXECUTION AA I 0 I BBCCDDEE FF 0 00000041 

CONTENTS AFTER EXECUTION AA I 0 I BBCCDDEE 00 0 00000005 

5-43 



INSTRUCTION NAME: Square Root 

OP CODE: E2 

FUNCTION: v7(A)J-A 

PMU MACHINE FORMAT: 

E 2 P PF I INDEX ADDRESS Ml T P 

a 1, I 21 3 4 I 5 1617 8 9110 I" 12 13114! 15 16117[18 L"120 121 1"123124125126127128129130131 32 33 34 35 

AP MACHINE FORMAT: 

E 2 P PF DT OPERAND 
1 

01 112T3 4 15 I 61 7 8 9110 I" 121'31'41'5 161171'81'912012'1221231241251261271281291301311321331341351361,,138139140141142143144145146 

DEFINITION: The square root of the absolute value of the contents 

of the A Register replaces the contents of the 

Accumulator. The resultant sign is zero (positive). 

EYJ\MPLE: 

M REGISTER A REGISTER 

I CONTENTS BEFORE EXECUTION 11 101 EFAB1212 00 I 0 I 00000009 

I CONTENTS AFTER EXECUTION 11 I 0 I EFAB1212 00 I 0 I 00000003 

5-44 



INSTRUCTION NAME: Normalize 

OP CODE: F4 

FUNCTION: (A) Norma1ized-A 

PMU MACHINE FORMAT: 

F 4 P PF I INDEX ADDRESS M 1 T P 

01' 12 13 _15 1617 8 91 '0 1" 12 13114115 '61171'81'912012'12212312412512612712812913013' 32 33 34 35 

AP MACHINE FORMAT: 

DEFINITION: The contents of the Accumulator Mantissa is shifted 

left four bits at a time, while decrementing the 

exponent, until the high order four bits contains 

at least one non zero bit. If the Accumulator 

EXAMPLE: 

I 
I 

is zero, no normalization occurs. An interrupt 

may be sent to the PMU if the exponent underflows. 

M REGISTER A REGISTER 

CON1ENTS BEFORE EXECUTION 32 11 1 87654321 211 01 00445566 

CONTENTS AFTER EXECUTION 32 11 I 87654321 IF I 0 I 44556600 

5-45 



5.3.2 LOAD/STORE INSTRUCTIONS 

INSTRUCTION NAME: Store and Hal t 

OP CODE: E8 

FUNCTION (A) ---. ~ 

PMU MACHINE FORMAT: 

E 8 P PF I INDEX ADDRESS 

01' 1 ' 13 , 1 5 I 6 I 7 B 9110 III 12 lJ 1141 15 ,61,7118119120 I" 122 123 1 "1'*61271281"130131 

AP MACHINE FORMAT: 

Ml T P 

32 33 34 3S 

DEFINITION: The contents of the A Register are formatted for 

the PMU and stored at the effective address 

EXAMPLE 

I 
I 

held in the M Register. 

The formatting rules for the PMU are discussed in 

section 5~.1. The PMU may be sent an interrupt 

if the formatting results in an error. The PMU 

is temporarily halted while the AP performs the 

store function. 

M REGISTER A REGISTER 

CONTENTS BEFORE EXECUTION 00 101 00001FFF 00 I 0 I 12345678 

CONTENTS AFTER EXECUTION 00 I 0 I 00001 FFF 00 I 0 I 12345678 

• When the Store and Halt instruction is executed with an 

Array or complex accumulator, the precision bit (instruction bit 8) 

has no effect. Thus, the accumulator is unchanged. 

5-46 



INSTRUCTION NAME: Store and Proceed 

OP CODE: EA 

FUNCTION: (A)-.· M 
D 

PMU MACHINE FORMAT: 

E A P PF I INDEX ADDRESS MIT P 

01' 12 13 41 5 1617 8 9110 I" 12 IJj14115 16[17[18[19 [20[71122123[2175[26[27[28[79130131 3233 34 35 

AP MACHINE FO~T: 

DEFINITION: The contents of the A Register are formatted for 

the PMU and stored at the effective address 

EXAMPLE: 

I 
I 

held in the M Register. 

The format,ting rules for the P!l1U are discussed in 

section ~l.l. The PMU may be sent an interrupt 

if the formatting results in an error. ~~e PMU 

continues to process information while the AP 

performs the store function. 

M REGISTER A REGISTER 

CONTENTS BEFORE EXECUTION 00 I 0 I 00001 FFF 00 I 0 I 12345678 

CONTENTS AFTER EXECUTION 00 I 0 I 00001FFF 00 I 0 I 12345678 

• When the Store and Proceed instruction is executed with 

an Array or complex accumulator, the precision bit (instruction bit 

8) has no effect. Thus, the accumulator is unchanged. 

5-47 



INSTRUCTION NAME: Load Memory Word 

OP CODE: 31 

FUNCTION: ~ • A 

PMU MACHINE FORMAT: 

3 1 P PF I INDEX ADDRESS MIT 

+1 213 41 5161, 8 9T,+ 12 13114115 '61171'81'912017~ 7~73T7;r 251761,,12812913013, 32 31 34 

DEFINITION: This instruction is normally addressable. 

The first word of the operand addressed by the 

effective address in the PMU format is treated 

as a logical operand arid is loaded into the AP 

Accumulator. During the execution of this 

instruction in the PMU,a Load Word To Accumulator 

instruction (Op Code B9) is created and placed 

in the APQ with the operand for final execution 

by the AP. 

The data tag of the operand is not interpreted. 

Therefore, the first word of a double precision 

number or a dimension word can be treated as a 

single precision logical operand. 

Note: The previous accumulat~r is destroyed. The new accu­

mulator contains a logical real operand. 

5-48 



INSTRUCTION NAME: Store Packed 

OP CODE: 32 

. FUNCTION: (A)- ~ 

PMU MACHINE FORMAT: 

3 2 DATA I INDEX TAG 
ADDRESS 

01' 12 13 4 15 1617 81 91 '0 I" 12 IJ 1141'5 '61'71'8119120121122123124125126127128129 bolll 

Ml T P 

31 33 34 35 

DEFINITION: A dimension word indicating packed data is stored 

away into the location indicated by the effective address of the 

instruction. 

The accumulator is reshaped into a matrix whose num­

ber of rows is a function of the packed array operand. The num­

ber of columns is: 

2 - packed halfword 
4 - " byte 
8 - " hex digit 

16 - " 2 bit 
32 - " binary 

After completion of the new form of Store Packed, the 
instructions transpose, inner product, and then Store would be 
executed to actually pack the accumulator and store the packed 
array away. 

-The purpose of the inner product is to scale the 
accumulator array. For example, if packed byte is required, the 
memory operand is specified as a 4 element vector, with elements, 
(2* 0), (2*8), (2 * 16), (2 *2 4), the opcodes are Add and Multiply. 
The multiplication shifts the desired operand and the Add places 
that operand in the correct space in the accumulator. 

It should be noted that via this approach all packed 
arrays subsequently accessed must use indirect dimension words. 
The correct dimension word was stored via the storepacked instruction 
in the indirect dimension word location. 

It should also be noted that via this technique non­
homogeneous operands can be packed into a word. Thus a table can be 
constructed with packed 6, 10, 4, and 12 bit operand in a word. The 
scaling vector of the inner product would supply the appropriate 
powers of 2. Ths array would however, have to be unpacked via some 
software program. 

5-49 



INSTRUCTION NAME: Load Deferral 

OP CODE: 33 

FUNCTION: ~ - Deferral Stack 

PMU MACHINE FORMAT: 

3 3 SPA I INDEX ADDRESS M f T P 

01' 12 13 4 15 1617 8 I 9110 I" 12 Jj 114115 '61'71"1'912012'122123124125126127128129130131 3? 33 34 35 

DEFINITION: The contents of the scratchpad location referenced 

by the SPA field are decremented by one. The contents 

of the 32 memory locations starting with this new 

value and working backwards are stored into the AP 

deferral stack. The sequence of loading is deferral 

location 15 high order part (24 bits taken from bits 

8-31 of the memory word) deferral 15 lower order (32 

bits), down to deferral 0 low order part. 

The scratchpad location referenced by the SPA will 

be at a value 32 less than when it started upon 

completion of the instruction. This instruction 

is normally non addressable. 

Note: The starting deferral location written into is the 

present value of the AP deferral address pointer. This 

address pointer is decremented 16 times. Wraparound occurs 

when the pointer goes from 0 to 15. Thus, the final value 

~s the initial deferral value. 

5-50 



INSTRUCTION NAME: Store Deferral 

OP CODE: 34 

FUNCTION: (Deferred Stack)---- ~ 

PMU MACHINE FORMAT: 

3 4 SPA I INDEX ADDRESS 

01. 12 13 41 5161718 91.0 I" 12 13114115 .61171.81.912012.1 '112312412512612712s12913013' 

Ml T P 

32 33 34 35 

DEFINITION: The contents of the AP deferral are stored into 

32 sequential memory locations beginning with the 

address pointed to by the scratchpad location 

referenced by the SPA FIELD. The first word 

stored is deferral location 0 low order part (32 

bits), deferral location 0 high order part (24 

bits placed in bits 8-31), up to defeyral 15 high 

order part. Deferral low order part represents 

the mantissa. Deferral high order part represents 

deferral opcode, control; exponent & sign. 

The scratchpad location referenced by the SPA FIELD 

will have a value 32 higher than when it started. 

5-51 



INSTRUCTION NAME: Unpack 

OP CODE: B8 

FUNCTION: Unpack Accumulator 

PMU MACHINE FORMAT: 

B 8 P PF I INDEX ADDRESS Ml T P 

OJ1J 213 • I 5 I 6 I 7 8 ? 110 I" )2 JJ I 14 115 '61171'81'91201211"1231"1 "1261 "128129130131 32 33 34 35 

AP MACHINE FORMAT: 

B 8 P PF DT OPERAND 

01' 12 13 • I 5 I 6 I 7 8 9110 I" 12llJ 1"1 '5 '61'71'81'91201"1221231241'*612712812913013'132133134 i 351361371381391.0 14I1 41 143 144 1·"T0 

DEFINITION: This instruction is generated internally by the 

PMU to the AP when packed data is encountered. 

It causes the AP to take the M mantissa (32 bits) 

and return these bits as collections of 32-bit 

words with a specified number of bits of the M 

mantissa in the lowest order bit positions and 

all ZEROes in the unused positions G Depending 

on control information from the PMU, the AP will 

put 1,2,4,8, or 16 bits of the M mantissa in each 

32-bit word o It treats these groups from· the left 

and places the left-most group of M bits into a 

word which it then returns to the PMU in the form 

of an internal control sequence 0 

5-52 



If this instruction is generated due to a pro­

gram ~ounter fetch, the AP will halt to await 

PMU servicing resulting in both a PMU and AP 

halto 

5-53 



INSTRUCTION NAME: LOAD WORD 'ro ACCUMULA'rOR 

OP CODE: 

FUNCTION: 

PMU MACHINE FORMAT: 
_ ... -

B 9 P PF I INDEX ADDRESS Ml T P 

01' 12 13 , I 5 I 61 7 a 9[10 I" 12 IJl14j15 -
'61'71"1"1'0 I" In 1'3 1 ".I '*61"1281191301" 31 JJ 3435 

AP MACHINE FORMAT: 

B 9 P PF DT OPERAND ) 
01' 1 2 13 '/5 /6/7 8 9110! J J "/13/14/15 16/17/18/19/10121/22123124/2*6/27/28129/30131132 13313'135/36/37i 38139/40 /41/421431441,5146 

DEFINITION: This instruction causes a Logical Load (M mantissa 

to A mantissa, A exponent and Sign cleared to zero) 

of M to A. 

EXAMPLE: 

It is generated by Load Memory. Word instruction 

(see Op Code 31) execution in the PMU. 

If generated by program or interrupt, this instruction 

will cause a Logical Load, identical to Op Code 85. 

M REGISTER A REGISTER 

r CONTENTS BEFORE EXECUTION 00 I 0 I 12345678 32 11 T 87654321 

r CONTENTS AFTER EXECUTION 00 I 0 I 12345678 00 I 0 I 12345678 

• This instruction should never be generated by a program 

or interrupt when the DPE is processing array or complex 

operands. 

5-54 



INSTRUCTION NAME: Push Data 

OP CODE: .35 

FUNCTION: (A)-~ 

PMU MACHINE FORMAT: 

1 4 SPA I INDEX ADDRESS Ml T P 

o I I I 7 I 3 4 Is 1617 81 .1 10 I " \, IJ 114115 '61'7-1'81'917017' I "1 23 1241251761 771281/9130131 37 33 34 35 

DEFINITION: The contents of the scratchpad referenced by bits 

8-11 are incremented by one. The full word operand 

referenced by the effective address is stored in 

the memory location indicated by the incremented 

scratchpad register. If the effective address does 

not reference local memory, a Read Operand instruction 

is formatted to the channel. The incremented value 

of R is restored to R. If more than one operand is 

fetched, as indicated by the data tag field, R 

is reincremented and an operand stored in memory 

for each additional word accessed. The operand 

fetch of this instruction is sensitive to the data 

tag (bits 32-34) of the operand. 

5-55 



INSTRUCTION NAME: Store Operand 

OP CODE: 36 

FUNCTION: (A)-~ 

PMU MACHINE FORMAT: 

-

1 5 SPA I INDEX ADDRESS Ml T P 

011 I 2 13 4 15 1617 81 91 10 111 12 IJ l'~T15 16117118 r 19T20 [21 122 r 23124125126127128129130 131 37 33 34 35 

DEFINITION: The contents of the scratchpad indicated by bits 

8-11 of the instruction is used as an address to 

reference a full word operand. The source operand 

is stored in the memory location indicated by the 

effective address., If the data tag of the source 

operand indicates that more than one word is to be 

stored, the additional words indi~ated are stored 

in consecutive memory locations. 

If the effective address is not local, a WRITE 

OPERAND FROM INPUT is transmitted to the bus. If 

more than one word is to be stored, the originating 

PMU waits for the receipt of a Continue. Upon 

receipt of the Continue, the additional words to be 

stored are transmitted to the channel with the 

tag 010. The last word to be transmitted is tagged all. 

5-56 



The destination of the words to be 'transmitted is 

kept in the ISOURCE register. The ISOURCE register 

is loaded with bits 12-19 of the original WRITE 

OPERAND FROM INPUT INSTRUCTION. 

5-57 



5.3.3 CGMPARE AND TVD INSTRUCTIONS 

INSTRUCTION NAME: Compare Less Than Destructive 

OP CODE: 92 

FUNCTION: If (M) < (A); +l-A, TVD Set 

If (M) > (A); O--A, TVD Reset 

PMU MACHINE FORMAT: 

9 2 P PF I INDEX ADDRESS Ml 

01' 12 13 _Is I 01 7 S 91101" I' lJ 114115 '01.71'sl.912012'I"12312412sI26l27j 2sl 29 130 13 • 37 33 

AP MACHINE FORMAT: 

9 2 P PF DT OPERAND 

T P 

34 35 

DEFINITION: The contents of the Accumulator are algebraically 

compared to the contents of the M Register. If the 

contents of the M Register is less than the Accumulator, 

the Accumulator is set to the integer one (+1) 

EXAMPLE 

I 
I 

and the Test Valid (TVD) flip-flop is set. Otherwise, 

the Accumulator is cleared to zero and the TVD 

flip-flop is reset. 

M REGISTER A REGISTER 

CONTENTS BEFORE EXECUTION 22 I 0 I 12345678 11 I 0 I 12345678 

CONTENTS AFTER EXECUTION 22 I 0 I 12345678 00 I 0 I 00000000 

5-58 



INSTRUCTION NAME: Compare Equal Non Destructive 

OP CODE: 91 

FUNCTION: If (M) = (A); TVD Set 

If (M) I (A); TVD Reset 

PMU MACHINE FORMAT: 

9 1 P PF I INDEX ADDRESS 

+ 1213 4 15 1617 8 9110111 12 IJ 114115 '61'71'81'912012'12212312<1251261271281 '91 30 131 

AP MACHINE FORMAT: 

9 1 P PF DT OPERAND 

Ml T P 

32 33 34 35 

01' 12 13 4 151617 8 9110 III '21'31"1'5 '61171'81'9120 I" 1"123124125126127128129130131 132133134 i 35 136 i 371331391 '0 I" 1'2 i " 

DEFINITION: The contents of the M Register are algebraically 

compared to the contents of the Accumulator. If 

the contents of the M Register are equal to the 

Accumulator the Test Valid (TVD) flip-flop is set. 

Otherwise, the TVD flip-flop is reset. 

5-59 



INSTRUCTION NAME: Compare Less Than or Equal Non Destructive 

OP CODE: 93 

FUNCTION: If (M) < (A); TVD Set 

If (M) > (A); TVD Reset 

PMU MACHINE FORMAT: 

9 3 P PF I INDEX ADDRESS 

01' 12 13 4 15 I 61 7 8 9/10 /11 12 IJ 114115 '6117I'B 1,9120121 [ 22123124125126127 r 2B Il9130T3) 

AP MACHINE FORMAT: 

9 3 P PF DT OPERAND 

Ml T P 

32 33 34 35 

o l' I 2 13 4 151617 B 9110 I" '21'J 1'4115 16 117 [IBl'9-[20121 T2;[ 2312~25T26T27128T29T3013)132133134 i 35136137138139140 141 142 143 H 45146( 
I 

DEFINITION: The contents of the M Register are algebraically 

compared to the contents of the Accumulator. If 

the contents of the M Register are less than or 

equal to the Accumulator, the Test Valid (TVD) 

flip-flop is set. Otherwise, the TVD flip-flop 

is reset. 

5-60 



INSTRUCTION NAME: Compare Greater Than Destructive 

OP CODE: 94 

FUNCTION: If (M) > 
If (M) .5-

PMU MACHINE FORMAT: 

(A); +l-A, TVD Set 

(A); O-A, TVD Reset 

9 4 P PF I INDEX ADDRESS Ml T P 

01 ' I 2 13 4 I 5 I 6 I 7 8 9110 11 J 12 IJ 114115 16\17\18\19120121 1721231",1251261271,,129130131 J2 33 34 35 

AP MACHINE FORMAT: 

DEFINITION: 

EXAMPLE: 

I 
I 

The contents of the Accumulator are algebraically 

compared to the contents of the M Register. If 

the contents of the M Register are greater than 

the Accumulator, the contents of the Accumulator 

are set to one (+1) and the Test Valid (TVD) flip-

flop is set. Otherwise, the Accumulator is cleared 

to zero and the TVD flip-flop is reset. 

M REGISTER A REGISTER 

CONTENTS BEFORE EXECUTION 00 I 0 I 12345678 00 10 I 00112233 

CONTENTS AFTER EXECUTION 00 I 0 I 12345678 00 I oj 00000001 

5-61 



INSTRUCTION NAME: Compare Greater Than or Equal Non Destructive 

OP CODE: 95 

FUNCTION: If (M) 

If (M) 

). 

< 
(A); TVD Set 

(A); TVD Reset 

PMU MACHINE FORMAT: 
~ - -1--

9 5 P PF I INDEX ADDRESS Ml T P 
r- -

01 1/>13 , 15 16 17 8 51 110 I J 1 12 lJ ]14[15 161"1 18 1 "120 I" I " 123 1 " 125 126 1"1 28 1 J9j Jo13J 32 33 34 35 

AP MACHINE FORMAT: 

DEFINITION: The contents of the M Register are compared 

algebraically with the contents of the Accumulator. 

If the contents of the M Register are greater or 

equal to the Accumulator, the Test Valid (TVD) 

flip-flop is set. Otherwise, the TVD flip-flop 

is reset. 

5-62 



INSTRUCTION NAME: Compare Not Equal Destructive 

OP CODE: 96 

FUNCTION: If (M) i (A)i 

If (M) = (A) i 

PMU MACHINE FORMAT: 

+l-A, TVD Set 

O----A, TVD Reset 

9 6 P PF I INDEX ADDRESS Ml T P 

01' 12 13 41 5 16 17 8 9110 I " 12 lJ 114115 16117118 119120121 122123124125' 26 , 27126' 29 , 30' 31 32 33 34 35 

AP MACHINE FORMAT: 

DEFINITION: The contents of the Accumulator are algebraically 

compared to the contents of the M Register. If 

EXAMPLE: 

I 
I 

the contents of the M Register is not equal to the 

Accumulator, the contents of the Accumulator is set 

to one (+1) and the Test Valid (TVD) flip-flop is 

set. Otherwise, the Accumulator is cleared to 

zero and the TVD flip-flop is reset. 

M REGISTER A REGISTER 

CONTENTS BEFORE EXECUTION 00 I 0 I 12345678 001 0 I 87654321 

CONTENTS AFTER EXECUTION 00 I 0 I 12345678 00 J 0 J 0000000 I 

5-63 



INSTRUCTION NAME: Set TVD Non Destructive 

OP CODE: 97 

FUNCTION: TVD Set 

PMU MACHINE FORMAT: 

9 7 P PF I INDEX 

01' 12 13 4J 51617 8 91 JO I 11 J2 lJ \14115 

AP MACHINE FORMAT: 

9 7 P PF DT 

ADDRESS Ml 

'61'71'81'912012'1221231741251261271281'913013' 32 33 

OPERAND 

T P 

34 35 

o I' 12 13 415 1617 8 9110 ill '21'31'41 J5 161171'8J 19120121122123J 24J 25126 I 271 281 29 130]31J32 ]33134 135136[37138139140 141 142 143 H 45 146 

DEFINITION: The Test Valid (TVD) flip-flop is set. 

5-64 



INSTRUCTION NAME: Reset TVD Non Destructive 

OP CODE: 98 

FUNCTION: TVD Reset 

PMU MACHINE FORMAT: 

9 8 P PF I INDEX ADDRESS Ml 

01' 1213 4 I 5 I 617 8 9110 I" 12 IJ 114115 '61'71'sl'91 70 121 1221231241251261271 281'9130 131 3? 33 

AP MACHINE FORMAT: 

9 8 P PF DT OPERAND 

T P 

34 35 

01' 12 13 4 15 161' 8 9110 I" '21'31141'5 '61"1'81'91201"1221231"12512612712812913013'132133134 i:5 !361371 :S! 39!<0 14~'2J31"T4;r4. 

DEFINITION: The Test Valid flip-flop is reset. 

5-65 



INSTRUCTION NAME: Compare Equal Destructive 

OP CODE: 99 

FUNCTION: If (M) = (A); +l-A, TVD Set 

If (M) j= (A); 0 -A, TVD Reset 

PMU MACHINE FORMAT: 
---

9 9 P PF I INDEX ADDRESS Ml T P 

01 'J 2 13 4 I 5 I 61 7 8 9 j 10 111 12 13 I J4j15 ,61171,81,91201211,,123124125I,6127128119130T3I 3233 3435 

AP MACHINE FORMAT: 

DEFINITION: The contents of the Accumulator are algebraically 

compared with the contents of the M Register. 

EXAMPLE: 

I 
I 

If the contents of the M Register is equal to the 

Accumulator, the contents of the Accumulator are 

set to one (+1) and the Test Valid (TVD) flip-flop 

is set. Otherwise, the Accumulator is cleared to 

zero and the TVD flip-flop is reset. 

M REGISTER A REGISTER 

CONTENTS BEFORE EXECUTION 00 I 0 I 12345678 00 I 0 I 12345678 

CONTEI'JTS AFTER EXECUTION 00 1 0 I 12345678 00 I 0 I 0000000 1 

5-66 



INSTRUCTION NAME: Compare Less Than Non Destructive 

OP CODE: 9A 

FUNCTION: If (M) ~ (A); TVD Set 

If (M) > (A); TVD Reset 

PMU MACHINE FORMAT: 

9 A P PF I INDEX I ADDRESS 

oj 1 12 13 4 I 5 I 61 7 8 '1'0 I" 12 lJ 1'41'51'61171'81'91 20 I" I" 1231"1"1 761"1'"129130 I Jl 

AP MACHINE FORMAT: 

9 A P PF DT OPERAND 

MJ T P 

32 33 34 35 

01' I 2 13 4 I 5 I 6 I 7 8 9110 I" "llJ 1'4 1'5 16 117 118 1"1 201211221231"1 7*612712812913013113213~34i 351361371381391,0 1,,1.::1' 

DEFINITION: The contents of the M Register are compared 

algebraically with the contents of the Accumulator. 

If the contents of the M Register is less than the 

Accumulator, the Test Valid (TVD) flip-flop is set. 

Otherwise, the TVD flip-flop is reset. 

5-67 



INSTRUCTION NAME: Compare Less Than or Equal Destructive 

OP CODE: 9B 

FUNCTION: If (M) < (A)i +l----A, TVD Set 

If (M) > (A)i O----A, TVD Reset 

PMU MACHINE FORMAT: 

9. B P PF I INDEX ADDRESS Ml T P 

011 12 13 41 51617 8 9110J 11 12 13114115 ,61171181191201211,212312412*6127128129130131 32 33 34 35 

AP MACHINE FORMAT: 

DEFINITION: The contents of the Accumulator are compared 

algebraically with the contents of the M Register. 

If the contents of the 1>1 Register is less than or 

equal to the Accumulator, the contents of the 

Accumulator are set to one (+1) and the Test Valid 

EXAMPLE: 

(TVD) flip-flop is set. Otherwise" the Accumulator 

is clear€d to zero and the TVD flip-flop is reset. 

M REGISTER A REG ISTER 

l CONTENTS BEFORE EXECUTION 00 1 I 01234567 00 10 I 01234567 

I CONTENTS AFTER EXECUTION 00 1 I 01234567 00 I 0 I 00000001 

5-68 



INSTRUCTION NAME: Compare Greater Than Non Destructive 

OP CODE: 9C 

FUNCTION: If (M) > (A); TVD Set 

If (M) < (A); TVD Reset 

PMU MACHINE FORMAT: 

9 C P PF I INDEX ADDRESS Ml T P 

oFf 21 3 ,1 5161 7 8 91 10 111 12 1J 114115 161"1181'9I?O I ?I 1,,1231 "1251261271"129130131 3, 33 34 35 

AP MACHINE FORMAT: 

DEFINITION: The contents of the M Register are compared 

algebraically with the contents of the Accumulator. 

If the contents of the M Register are greater'than 

the Accumulator, the Test Valid (TVD) flip-flop is 

set. Otherwise, the TVD flip-flop is reset. 

5-69 



INSTRUCTION NAME: Compare Greater Than or Equal Destructive 

OP CODE: 9D 

FUNCTION: If (M) > (A); +l-A, TVD Set 

If (M) < (A); 0 -A, TVD Reset 

PMU MACHINE FORMAT: 

9 D P PF I INDEX ADDRESS Ml T P 

01' 12 13 4 15 1617 8 9110 I" 12 13114115 '61,71'81,912012'1221231241 :512012712812913013' 32 33 J4 35 

AP MACHINE FORMAT: 

9 D P PF DT OPERAND 

1'1213 415 H 7 8 9110 I" '21'1'1'5 '61'71'81'9120121 J 22123124125126127/2812:130131/32/33/34 i 35/36/37/38139/40/41L42143/44145146 

DEFINITION: The contents of the Accumulator are algebraically 

compared to the contents of the M Register. If 

the contents of the M Register is greater than or 

equal to the Accumulator, the contents of the 

Accumulator are set to one (+1) and the Test Valid 

EXAMPLE: 

I 
I 

(TVD) flip flop is set. Otherwise, the Accumulator 

is cleared to zero and the TVD flip-flop is reset. 

M REGISTER A REGISTER 

CONTENTS BEFORE EXECUTION 00 I 0 I 12345678 00 I 0 I 87654321 

CONTENTS AFTER EXECUTION 00 I 01 12345678 00 I 0 I 0000000 

5-70 



INSTRUCTION NAME: Compare Not Equal Non Destructive 

OP CODE: 9E 

FUNCTION: If (M) t (A)i TVD Set 

If (M) = (A)i TVD Reset 

PMU MACHINE FORMAT: 

9 E P PF I INDEX ADDRESS 

01' 12 13 4 15 16 r 7 8 9110111 12 'Jl'4115 .61.71.8119120121 1,,1231241251261271281,9130131 

AP MACHINE FORMAT: 

MI T P 

32 33 34 35 

DEFINITION: The contents of the M Register are compared 

algebraically with the contents of the Accumulator. 

If the contents of the M Register are not equal 

to the Accumulator, the Test Valid (TVD) flip-flop 

is set. Otherwise, the TVD flip-flop is reset. 

5-71 



INSTRUCTION NAME: Set TVD Destructive 

OP CODE: 9F 

FUNC'rION: TVD Set, +l-A 

PMU MACHINE FORMAT: 

9 F P PF I INDEX ADDRESS Ml T P 

o I I I 2 I 3 , I 5 I 6 I 7 8 '110 1" 12 13 I 14j15 161 "1'81 19120 ,;r 2212312~-25126127128129130 131 32 33 34 35 

AP MACHINE FORMAT: 

9 F P PF DT OPERAND 

o 1 I 1 ' /3 '/5/61 7 S 9\ 10 ]1 J "/131'41'5 16/ 17 1 181 1912~ ,;1 ,;1,31 2~ '*6127128/291301311"1331341 3513613713;r 3~43f4~42143144I'5146 

DEFINITION: The contents of the Accumulator are set to one 

and the Test Valid (TVD) flip-flop is set. 

5-72 



INSTRUCTION NAME: Reset TVD Destructive 

OP CODE: 90 

FUNCTION: TVD Reset, O-A 

PMU MACHINE FORMAT: 
~-~ 

9 0 P PF I INDEX M 1 T P 

;Fr213 4 I 5 I 6 17 8 9110 I) 1 12 JJl-J4l15 161"1 18 1 "1 20 1" 12212312412~2612;r28129130131 3233 343') 

AP MACHINE FORMAT: 

9 0 P PF DT OPERAI'-ID ) 

011 I 2 13 4 15 1617 B 9110 I 11 "1'3114115 16117118119120121 1221231,,125126127128129130 131 132133134 f 35136137138139140 I" ! 42 143 1"1 45 1'6 ( 

DEFINITION: The contents of the Accumulator are cleared to 

zero and the Test Valid (TVD) flip-flop is reset. 

5-73 



INSTRUCTION NAME: Minimum 

OP CODE: B2 

FUNCTION: If (A) > (M); (M)-A 

PMU MACHINE FORMAT: 

B 2 P PF I INDEX ADDRESS Ml T P 

01' 12 13 4 Is I 617 8 9110 111 12 lJ TJ4-"[15 16/17/18/19/20/21 /221231 24125126127128129130 131 32 33 34 35 

AP MACHINE FORMAT: 

DEFINITION: 

EXAMPLE: 

r 
I 

The contents of the M Register and the Accumulator 

are compared algebraically. If the contents of the 

Accumulator are greater than the M Register, the 

contents of the Accumulator are replaced with the 

contents of the M Register. Otherwise, the 

Accumulator remains unchanged. 

M REGISTER A REGISTER 

CONTENTS BEFORE EXECUTION 00 I 0 I 12345678 00 lor 87654321 

CONTENTS AFTER EXECUTION 00 I 0 I 12345678 00 I 0 I 12345678 

5-74 



INSTRUCTION NAME: Maximum 

OP CODE: B4 

FUNCTION: If (M) ). (A) i (M)-A 

PMU MACHINE FORMAT: 

8 4 P PF I INDEX ADDRESS 

01, 12 13 4 151617 8 91 '0 I" 12 1J114/'5 161'7118119120/2'/221731 "125126127/28/29130131 

,AP MACHINE FORMAT: 

Ml T P 

32 33 34 35 

DEFINITION: The contents of the M Register are compared 

algebraically with the contents of the Accumulator. 

If the contents of the M Register are greater than 

the Accumulator, the contents of the Accumulator 

are replaced by the contents of the M Register. 

Otherwise, the Accumulator remains unchanged. 

EXAMPLE: 

M REGISTER A REGISTER 

I CONTENTS BEFORE EXECUTION 00 J a I 87654321 00 I 0 I 12345678 

I CONTENTS AFTER EXECUTION 00 I a I 87654321 00 1 oJ 87654321 

5-75 



5.3.4 TRANSFER INSTRUCTIONS 

INSTRUCTION NAME: No Transfer 

OP CODE: AO or A8 

FUNCTION: NOP 

PMU MACHINE FORMAT: 

A 0 P PF I INDEX ADDRESS 

o l' I 2 13 4 I 5 I 6 I 7 8 9110 I" 12 JJ f 14 1 15 161'71'81 19 170 121 12717312~1251 26 r ,;1 22 I 19[30 i J 1 

AP MACHINE FORMAT: 

A 0 P PF DT OPERAND 

r-r--

Ml T P 

32 33 j4 35 

o l' I 2 I 3 4 I 5 I 6 17 8 9! 1011 J 12113114! 15 '61171'81'9170 I" 122 123 1 " I" 126127128129130 131 i ,,1 33 134 i 35[36[37[3813+0 [" , 

DEFINITION: No operation. The PMU recognizes that this AP 

"transfer" fnstruction is present in the APQ. 

Suhsequent fetchcycle sequencing may be affected. 

5-76 



INSTRUCTION NAME: Transfer on Equal to Zero 

OP CODE: Al or A9 

FUNCTION: If (A) = 0; 

If (A) f 0; 

PMU MACHINE FORMAT: 

A 1 P PF I INDEX 

(M)- P 

(P) +1- P 

ADDRESS 

01 1 12 13 • Is I 61 7 a 91 101" 12 1J I J4]15 161171 1al 191201211221231" I 2;-r26127 I 2al1913o 131 

AP MACHINE FORMAT: 

A 1 P PF DT OPERAND 

Ml T P 

32 33 J4 35 

01 1 12 13 • Is 1617 8 911OT1I 1211JTI·T1S 16TI71 lsi ly 120121 12212312'12sI26T2;r2aT29T3~3~3213313;r3s13613713aI391'o 1.11421,31 .. 1 4s1 46 

I 

DEFINITION: If the contents of the Accumulator are equal to 

zero, the contents of the least significant 

16 bits of the M Register are placed in the 

program counter (p). Otherwise, no operation 

is performed. 

5-77 



INSTRUCTION NAME: Transfer on Greater Than Zero 

OP CODE: A2 or AA 

FUNCTION: If (A) > 0; (M)- P 

If (A) < 0; (p) +1- P 

PMU MACHINE FORMAT: 

A 2 P PF I INDEX ADDRESS 

01' 12 13 41 51617 8 "1'0 I" 12 13114115 16 j 171'81'912012' 122123124125126127128129130131 

AP MACHINE FORMAT: 

A 2 P PF DT OPERAND 

Ml T P 

32 33 34 35 

01' 12 13 4 15 1617 8 9110 I" '21'J 1'41'5 1611711811912012112212312412*6127128129130131132133134 i 35136137138139140 1411421431'"'145146 

DEFINITION: If the contents of the Accumulator are greater than 

zero, the contents of the least significant 

16 bits of the M Register are placed in the' 

program counter (p). Otherwise, no operation 

is performed. 

5-78 



INSTRUCTION NAME: Transfer on Greater Than or Equal to Zero 
OP CODE: A3 or AB 

FUNCTION: If (A) >- 0; (M)-P 

If (A) < 0; (P) +l-P 

PMU MACHINE FORMAT: 

A 3 P PF I INDEX ADDRESS 

o l' I 2 13 '15H7 8 9110 III 12 lJ I 14! 15 16117jlB 1'-1201 2~ 221231"12512612712BI29130 131 

AP MACHINE FORMAT: 

A 3 P PF DT OPERAND 

Ml T P 

32 33 34 35 

o l' 12 13 • 151617 8 9110 I" 121'J 1"1 '5 '61'71'81'9120121 12212312412*6127128129 ! 30 131 i 3213313'1351361371381391'0 I" 1"1 43 44 45 4<1 

DEFINITION: If the contents of the Accumulator are greater than 

or equal to zero, the contents of the least 

significant 16 bits of the M Register are placed 
in the program counter (P). Otherwise, no 

operation is performed. 

5-79 



INSTRUCTION NAME: Transfer on Less Than Zero 

OP CODE: A4 or AC 

FUNCTION: If (A) <::: 0; (M)-P 

If (A) > 0; (p) +l--P 

PMU MACHINE FORMAT: 

A 4 P PF I INDEX ADDRfSS M 1 T P 

o l' 12 13 • I 5 1617 8 9110 111 12 lJ 114115 '61171'81'91201211221231 "120 261,;-r20l9130 131 32 33 34 35 

AP MACHINE FORMAT: 

A 4 P PF DT OPERAND 

011 12 13 41 51617 8 9110 111 121'31141'5 '61171'81'91201"122123124125T26]27[28129130 1311321331341 35136137138139140 141142 [431 .. 1451 46 

DEFINITION: If the contents of the Accumulator are less than 

zero, the contents of the least significant 

16 bits of the M Register are placed in the 

program counter (p). Otherwise, no operation 

is performed. 

5-80 



INSTRUCTION NAME: Transfer on Less Than or Equal to Zero 

OP CODE: AS or AD 

FUNCTION: If (A) < 0; (M)-P 

If (A) > 0; (p) +l-P 

PMU MACHINE FORMAT: 

A 5 P PF I INDEX ADDRESS 

o l' I 7 13 415 1617 8 9110 1" 12 lJ I 14jl5 '61'71'81'9120121 1221231"12*6127128129130131 

AP MACHINE FORMAT: 

Ml T P 

32 33 34 35 

DEFINITION: If the contents of the Accumulator are less than or 

equal to zero, the contents of the least significant 

16 bits of the M Register are placed in the 

program counter (p). 

is performed. 

5-81 

Otherwise, no operation 



INSTRUCTION NAME: Transfer on Not Equal to Zero 

OP CODE: A6 or AE 

FUNCTION: I f (A) "I 0; 

If (A) = 0; 

PMU MACHINE FORMAT: 

A 6 P PF I INDEX 

(M) - P 

(P) +l-P 

ADDRESS Ml 

o I I I 2 I 3 ,-r5-l 617 8 91'0 1'1 )2 13 J 14 115 161171'81191201211221231"12512612712812913013' 32 33 

AP MACHINE FORMAT: 

A 6 P PF DT OPERAND 

T P 

34 35 

° l' 1 2 1 3 .1 516 17 8 91'01" 121131'41'5 '61'71'81191201211 "i 231"1251261271281"9130131132133134135136137138T39T40141l'f43 I ',\45}6J 

DEFINITION: If the contents of the Accumulator are not equal 

to zero, the contents of the least significant 

16 bits of the M Register are placed in the 
program counter (p). Otherwise, no operation 

is performed. 

5-82 



INSTRUCTION NAME: Unconditional Transfer 

OP CODE: A7 or AF 

FUNCTION: (M)--- P 

PMU MACHINE FORMAT: 

A 7 P PF I INDEX ADDRESS 

AP MACHINE FORMAT: 

M 1 T P 

A 7 P PF DT OPERAND ) 

o l' I 2 I 3 4 I 5 I 61 7 8 9110111 " 113 114 1'5 '61171'81"120 I" 1"1231"1251'6127128129130131 13213313'i351361371381391'0 I " 1421.31«1451.6 

DEFINITION: The contents of the least significant 16 bits 

of the M Register are placed in the program 

counter (p). Control 1S passed to the instruction 

address specified in P. 

5-83 



INSTRUCTION NAME: Transfer on Test Valid Set 

OP CODE: BC 

FUNCTION: If TVD Set; (M)- P 

If TVD Reset; (P) +1 -- p" 

PMU MACHINE FORMAT: 

B C P PF I INDEX ADDRESS 

01' 12 13 4 I 5 I 61 7 8 91 10 I" 12 lJ [14[15 161 ,,1,,1,9120121 122T231241 "126127128129130131 

AP MACHINE FORMAT: 

Ml T P 

32 33 34 35 

DEFINITION: If the Test Valid flip-flop is set, the contents of 

the least significant 16 bits of the M Register 

are placed in the program counter (p). Otherwise, 

P is incremented by one and control is passed 

to the instruction specified by P. 

5-84 



INSTRUCTION NAME: Execute 

OF CODE: 27 

FUNCTION: 

PMU MACHINE FORMAT: 

2 7 XXXX I INDEX ADDRESS Ml T P 

o l' I 2 13 4 I s I 61 7 8 I 9 110 III 17 I J I H I is "1171181191 20 I " I " 1231241'1761"1"129130 131 32 31 31 }S . __ l_ 

DEFINITION: The contents of the memory location specified by 

the effective address of the instruction are treated 

as an instructi6n. Instruction sequencing will 

return to normai operation at the conclusion of this 

instruction unless the addressed instruction specifies 

a.program control change. 

Virtual addressing requires the read protect bit 

(bit 32) of the kernel word to be equal to zero 

for security purposes. 

The memory access bit (bit 32) of this instruction 

should be set to 0 after all address modification 

has taken place. 

The memory location treated as an instruction will 

be interpreted according to its bit position 33. If 

bit 33 of this memory location is 0, a PMU instruction 

is executed. If bit 33 of this memory location is 1, 

an AP instruction is executed. 

5-85 



5.3.5 SHIFT INSTRUCTIONS 

INSTRUCTION NAME: Shift Open 

OP CODE: FO 

FUNCTION: If (M) :> 0; (A) Left Shifted by Four X l M f-A 

If (M) ..:::::. 0; (A) Right Shifted by Four X J MI--A 
PMU MACHINE FORMAT: 

F 0 P PF I INDEX ADDRESS Ml T P 
o /1 / 2 / 3 415 16/7 

8 91101" 12 13/14/15 16/17/1B119120121J"/23/"12512612712"i2913oj" 32 33 34 35 

AP MACHINE FORMAT: 

F 0 P PF DT OPERAND 

1 oj 1 J 2/3 4 15 / 6/7 8 91101'1 '21'31'41'5 1611711811912o/21/2212312412512612712812~/JoJ3'l32/33134135136/37/38139140141142143144145146 

DEFINITION: The contents of the A Register are shifted left 

if the M Register is positive and right if the 

EXAMPLE: 

r 
I 

M Register is negative by four bit positions for 
each shift as specified by the shift count in the 
M Register. Positions vacated by data are filled 
with zeroes. Data shifted out of the Accumulator 

is lost. The sign bit and exponent of the Accumulator 
are cleared to zero. 

M REGISTER A REGISTER 

CONTENTS BEFORE EXECUTION 00 I 0 I 00000004 44 III 054376AB 

CONTENTS AFTER EXECUTION 00 I 0 I 00000004 00 I 0 I 76ABOOOO 

5-86 



INSTRUCTION NAME: Shift Cyclic 

OP CODE: Fl 

FUNCTION: If (M) f 0; (A) 0-31 are rotated L/R- A 

or 0-63 

If (M) = 0; 

PMU MACHINE FOm~AT: 

(A)-A 

F 1 P PF I INDEX ADDRESS Ml T P 

01' 12 13 4 I 5 I 6 I 7 8 9110 1" 12 U)14[15 ,61,71'81,91 20 1 21 1221231"1"1261271281 29130 131 32 33 34 35 

AP MACHINE FORMAT: 

DEFINITION: If the contents of the M Register are positive, 

EXAMPLE: 

1 

I 

the Accumulator is rotated left; or, if the contents 

of the M Register are negative, the contents of the 

Accumulator are shifted right four (4) bits for each 

shift count of (M). Bits shifted out of the 

Accumulator are placed end-around in positions vacated 

by the shifting. Double precision shift to the 

right does not provide end-around bit rotation and 

positions vacated by the shift are set to zero. 

If (M) are zero, no rotation takes place. The sign 

bit and exponent of the Accumulator are cleared to zero. 

M REGISTER A REGISTER 

CONTENTS BEFORE EXECUTION 00 11 I 00000004 12 11 1 12345678 

CONTENTS AFTER EXECUTION 00 I 1 I 00000004 00 101 56781234 

5-87 



INSTRUCTION NAME: Shift Single Open 

OP CODE: F8 

FUNCTION: If (M) 30-31 I- 0; (A) 0-31 are shifted left X {I·n 30-31 - A 

PMU MACHINE FORMAT: 
~-------

F 8 P PF I INDEX ADDRESS Ml T P 

o I' I 2 13 4 I 5 1 6 1 7 8 91 10 1 " 12 1J! 14 ! 15 ,61,71,81191 20 I" 1221231"1251261"128129130 131 32 33 34 35 

AP MACHINE FORMAT: 

DEFINITION: The contents of the A Register are shifted left 

the number of bits specified in Bits 30-31 of the 

EXAMPLE: 

, 
I 

M Register. Zeros are placed in vacated bit positions. 

Bits shifted past Bit 0 are lost. The sign bit and 

exponent of the Accumulator are cleared to zero. 

M REGISTER A REGISTER 

CONTENTS BEFORE EXECUTION 00 I 01 00000003 66·' 1 I 12345678 

CONTENTS AFTER EXECUTION 00 I 0 I 00000003 00 I 0 I 91A2B3CO 

5-88 



INSTRUCTION NAME: Shift Single Closed 

OP CODE: F9 

FUNCTION: If (M)30-31 I Oi 

PMU MACHINE FORMAT: 

(A)0-31 are shifted left X (M)30_3~A 

F 9 P PF I INDEX ADDRESS Ml T P 

0/1 /2 /3 4/5 H 7 8 91 10 I" 12 lJ 114115 16117118119120121122123/24/25/26/27/28/29130131 32 33 34 35 

AP MACHINE FORMAT: 

F 9 P PF DT OPERAND ) 
0/1 /2 /3 4 /5 /6/7 8 9/10 I" 12 113 1"1 15 161'71'81'912012'122/23/2412512612712812913013'1321 33134i35136137j38j39140 j4'l4~ ~~ 451~1 

DEFINITION: The contents of the A Register are shifted left the 

number of bits specif~ed in Bits 30-31 of the 

EXAMPLE: 

I 
I 

M Register. Bits shifted out of the Accumulator 

are placed end-around in posT£ioris vacated by the 

shifting. The sign bit and exponent of the 

Accumulator""are cleared to zero. 

M REGISTER A REGISTER 

CONTENTS BEFORE EXECUTION 00 I 0 I 00000003 66 J 1 I F2345678 

CONTENTS AFTER EXECUTION 00 I 0 I 00000003 00 I 01 91A2B3C7 

5-:-89 



5.3.6 BOOLEAN AND LOGICAL INSTRUCTIONS 
• 

INSTRUCTION NAME: Boolean Zero 

OP CODE: 70 

FUNCTION: O-A i 0 -TVD 

PMU MACHINE FORMAT: 

7 0 P PF I INDEX ADDRESS 

OTIT2T3 4 151617 B 91'01" 12 1JII4I15 '61'71,al'912012'12212312~125126T2;r2BT2913013' 

AP MACHINE FORMAT: 

Ml T P 

32 33 34 35 

DEFINITION: The contents of the Accumulator are set to zero. 

The Test Valid (TVD) flip-flop is reset to zero. 

EXAMPLE :. 

M REGISTER A REGISTER 

I CONTENTS BEFORE EXECUTION 11 I 0 I 12345678 22 I 1 I 87654321 

I CONTENTS AFTER EXECUTION 11 I 0 I 12345678 00 I 0 I 00000000 

5-90 



INSTRUCTION NAME: Boolean AND 

OP CODE: 71 

FUNCTION: (A) 31· (M) 3~ (A) 3:e-- TVD 
PMU MACHINE FORMAT: 

7 1 P PF I INDEX ADDRESS Ml T P 

011 12 13 4 1 5 1617 8 91 10 I" 12 13 114/15 161171181191201"12212312'125126127128129130131 32 33 34 35 

AP MACHINE FORMAT: 

DEFINITION: The contents of Bit 31 of the A Register and 

Bit 31 of the M Register are logically ANDed 

with the result being placed in Bit 31 of the 

Accumulator and the Test Valid (TVD) flip-flop. 

The other bits in the Accumulator are cleared 

to zero. 

EXAMPLE: 

M REGISTER A REGISTER 

I CONTENTS BEFORE EXECUTION 11 I 0 I 00000001 22 I 0 I 12345678 

I CONTENTS AFTER EXECUTION 11 I 0 I 00000001 00 I 0 I 00000000 

5-91 



INSTRUCTION NAME: Boolean Less Than 

OP CODE: 72 

FUNCTION: If (M)3l = a and (A)3l = 1; a~A, l----A3l TVD Set 

If (M) 31 = 1; a-A, TVD .. Reset 

PMU MACHINE FORMAT: 

7 2 P PF I INDEX ADDRESS Ml T P 

01 ' 1 2 13 4 1 5 1 6 1 7 8 9110 I" 12 13/14[15 161171181'9120 I" 1"123124125126127128129130 131 32 33 34 35 

AP MACHINE FORMAT: 

DEFINITION: If the value of Bit 31 of the M Register is zero 

and Bit 31 of the A Register is one (1), the 

Accumulator is cleared to zero and Bit 31 of the 

Accumulator is set to one (1). The Test Valid (TVD) 

flip flop is set. Otherwise, the Accumulator is 

cleared to zero and TVD is reset. 

EXAMPLE: 

M REGISTER A REGISTER 

I CONTENTS BEFORE EXECUTION 44 J 1 I 12345678 33 I 0 I 12345671 

L CONTENTS AFTER EXECUTION 44 I 1 I 1 2345678 00.101 00000001 

5-92 



INSTRUCTION NAME: Boolean Odd Even 

OP CODE: 73 

FUNCTION: If (A) 31 = 1 i a-A, l-A3l , l-TVD 

If (A) 31 = Oi a-Ai TVD Reset 

PMU MACHINE FORMAT: 
- ,--

7 3 P PF I INDEX ADDRESS Ml T P 

01' /, /3 4 / S / 6 / ' 8 9/'0/ll 12 1J 114115 .6/171.81.9120 I" 1,,1231241,,1261,,12812913013, 32 33 3,1 35 

AP MACHINE FORMAT: 

7 3 P PF DT OPERAND 

o I' I 2 13 4 Is 161' 8 9110 I" .2I ul·4 115 .61.71.81.912012.1221,,12412sI2612712812913013.1321331341 3513613713813+0 1"1421,, /' 

DEFINITION: If the value of (A)31 is a one (1), the Accumulator 

is cleared to zero and Bit 31 of the Accumulator 

EXAMPLE: 

I 
1 

is set to one (1) and the Test Valid (TVD) flip 

flop is set. Otherwise, the Accumulator is cleared 

to zero and TVD is reset. 

M REGISTER A REGISTER 

CONTENTS BEFORE EXECUTION 211 1-112345678 661 01 12345671 

CONTENTS AFTER EXECUTION 21 1 1 1 12345678 00 I 01 00000001 

5-93 



INSTRUCTION NAME: Boolean Greater Than 

OP CODE: 74 

FUNCTION: If (M) 31 > 
If (M) 31 = 

(A) 31; 0 ---A, l-A31 ; TVD Set 

0; O-A; TVD Reset 

PMU MACHINE FORMAT: 

7 4 P PF I INDEX ADDRESS Ml T P 

011 12 13 41 5 16 17 8 9110 I" 12 IJ 114115 16117118119120121122123124125126127128129130131 32 33 34 35 

AP MACHINE FORMAT: 

DEFINITION: If the value of Bit 31 of the M Register is a one (1), 

and the value of Bit 31 of the A Register is a zero, 

the Accumulator is cleared to zero, Bit 31 of the 

Accumulator is set to one, and the Test Valid (TVD) 

flip flop is set. Otherwise, the Accumulator is 

cleared to zero and TVD is reset. 

EXAMPLE: . 

M REGISTER A REGISTER 

r CONTENTS BEFORE EXECUTION 11 I 1 I 12345671 11 I 1 I 12345678 

I CONTENTS AFTER EXECUTION 11 I 1 I 12345671 00 I 0 I 00000001 

5-94 



INSTRUCTION NAME: Boolean Load 

OP CODE: 75 

FUNCTION: If (M) 31 = 

If (M) 31 = 

PMU MACHINE FORMAT: 

7 5 P PF I INDEX 

01' 12 13 4 Is 1617 8 9110 I" 12 lJ 114115 

AP MACHINE FORMAT: 

"7 5 P PF DT 

Ii O-A, 

0; O--A, 

ADDRESS 

l-A31 , TVD Set 

TVD Reset 

Ml T P 

'61'71'81'9170121122123124125126127128119 [30131 32 33 34 35 

OPERAND 

oJ 1 1213 41 5101 7 8 9110111 '21'31141'5 ,61171,81,. j 20j 21j 2;r2312412sI26127128129130131132133134!3sI3613713813914o \41\42\43\44\4S\46( 
I 

DEFINITION: If the value of Bit 31 of the M Register is one (1), 

the Accumulator is cleared, Bit 31 of the Accumulator 

is set to one (1), and the Test Valid (TVD) flip 

EXAMPLE ~ 

flop is set. Otherwise, the Accumulator is cleared 

to zero and TVD is reset. 

M REGISTER A REGISTER 

CONTENTS BEFORE EXECUTION 22 11 I 12345671 55 I 0 I 12345678 

CONTENTS AFTER EXECUTION 22 11 I 12345671 00 I 0 I 00000001 

5-95 



INSTRUCTION NAME: Boolean Not Equal 

OP CODE: 76 

FUNCTION: If (M) 31 f: (A) 31 ; O-A, l-A31 , TVD Set 

If (M) 31 == (A) 31 ; O-A, TVD Reset 

PMU MACHINE FORMAT: 

7 6 P PF I INDEX ADDRESS Ml T P 

01 , 1213 .1 51617 8 91101" 12 131141'5 '61171'81'912~2;-rnl73I24I,,1261271281)9130131 
f-

32 33 34 35 

AP MACHINE FORMAT: 

7 6 P PF DT OPERAND 

o 1, 1 2 I 3 .1 5 1617 8 9110 1" '21'31'41'5 161"1,,1'91201,, 1221231241251261"1"1291301 "1 32 1 33 1341351361 371 3~r 39 1,0 !411421.31441,' 146 

DEFINITION: If the values of Bit 31 of both the M Register and 

A Register are not equal, then the Accumulator lS 

cleared to zero, Bit 31 of the Accumulator is set 

to one (1), and the Test Valid (TVD) flip flop is 

set. Otherwsie, the Accumulator is cleared to 

zero and TVD is reset. 

EXAMPLE ~ 

M REGISTER A REGISTER 

r CONTENTS BEFORE EXECUTION 13 I 0 I 12345678 11111 12345671 

I CONTENTS AFTER EXECUTION 13 10 I 1234:"678 00 I a I 0000000 1 

5-96 



INSTRUCTION NAME: Boolean Inclusive OR 

OP CODE: 77 

FUNCTION: If (M)31 or (A)31 = I, O----A, l----A31 ' TVD Set 

If (M)31 and (A)31 I 1, O----A, TVD Reset 

PMU MACHINE FORMAT: 

7 7 P PF I INDEX ADDRESS MI T P 

o l' 1 2 11 4 I 5 I 6 I 7 8 9jl0 I J 1 12 1J 114115 161171'81'9120 I" 1 "1231"1251261"1281"130131 32 33 34 35 

AP MACHINE FORMAT: 

DEFINITION: If the value of Bit 31 of either the M Register 

or A Register is a one (I), the Accumulator is 

cleared to zero, Bit 31 of the Accumulator is 

set to one (I), and the Test Valid (TVD) flip flop 

is set. Otherwise, the Accumulator is cleared to 

zero and TVD is reset. 

EXAMPLE; 

M REGISTER A REGISTER 

I CONTENTS BEFORE EXECUTION 41 I 0 I 12345678 14 I 1 I 12345678 

I CONTENTS AFTER EXECUTION 41 I 0 I 12345678 00 I 0 I 00000000 

5-97 



INSTRUCTION NAME: Boolean NOR 

OP CODE: 78 

FUNCTION: If (M)31 and (A)31 = 0; O-A, 1-A31 , TVD Set 

If (M) 31 or (A) 31 t- 0; O-A, TVD Reset 

PMU MACHINE FORMAT: 

7 8 P PF I INDEX ADDRESS Ml T P 

011 12 13 4 15 16/7 8 9/10 /11 12 IJ I 14 1 '5 16/17/18 /19/20/21 /22/23/24/25/26/27/28/29/30/31 32 33 34 35 

AP MACHINE FORMAT: 

DEFINITION: If the value of Bit 31 in both the M Register 

EXAMPLE: 

I 
I 

and A Register is zero; then, the Accumulator is 

cleared to zero, Bit 31 of the Accumulator is set 

to one (1), and the Test Valid (TVD) flip flop is 

set. Otherwise, the Accumulator is cleared to 

zero and TVD is reset. 

M REGISTER A REGISTER 

CONTENTS BEFORE EXECUTION 05 1 0 I 12345678 50 111 12345678 

CONTENTS AFTER EXECUTION 05 1 0 1 12345678 00 1 0 1 0000000 1 

5-98. 



INSTRUCTION NAME: Boolean Equals 

OP CODE: 79 

FUNCTION: If (M) 31 = (A) 31; 0 -A, 1-A31 , TVD Set 

If (M)31 f (A)31; O~A, TVD Reset 

PMU MACHINE FORMAT: 

7 9 P PF I INDEX ADDRESS Ml T P 

oj 1 1213 4 1 5 1 6 I 7 8 91 10 I" 12 13 j 14115 '61"1'81'912012,122123124125126127128129130131 32 33 34 35 

AP MACHINE FORMAT: 

DEFINITION: If the value of Bit 31 of both the M Register and 

A Register are equal; then, the Accumulator is 

cleared to zero, Bit 31 of the Accumulator is set 

to one (1), and the Test Valid (TVD) flip flop is 

set. Otherwise, the Accumulator is cleared to 

zero and TVD is reset. 

EXAMPLE ~ 

M REGISTER A REGISTER 

I CONTENTS BEFORE EXECUTION 33 I 0 I 12345678 22 I 0 I 87654324 

I CONTENTS AFTER EXECUTION 33 I 0 I 12345678 00 I 01 0000000 1 

5-99 



INSTRUCTION NAME: Boolean Load Complement 

OP CODE: 7A 

FUNCTION: If (M) 31 = 
If (M) 31 = 

PMU MACHINE FORMAT: 

7 A P PF I INDEX 

011 12 13 4 151617 a 9110 111 12 131 ;4115 

AP MACHINE FORMAT: 

0; 

1; 

O-A, l-A3l , TVD Set 

O----A, TVD Reset 

ADDRESS Ml T P 

16117118119120121122123124125126127128129130131 32 33 34 35 

DEFINITION: If the value of Bit 31 of the M Register is zerOi 

then, the Accumulator is cleared to zero, Bit 31 

of the Accumulator is set to one (I), and the 

Test Valid (TVD) flip flop is set. Otherwise, 

the Accumulator is cleared to zero and TVD is reset. 

EXAMPLE: 

M REGISTER A REGISTER 

I CONTENTS BEFORE EXECUTION 00 J 0 I 00000008 16 I 0 I 12345678 

I CONTENTS AFTER EXECUTION 00 I 0 I 00000008 00 I 0 I 00000001 

5-100 



INSTRUCTION NAME: Boolean Less Than or Equal 

OP CODE: 7B 

FUNCTION: If (M)31 = 0 or (A)31 = li O----A, l----A31 ' TVD Set 

If (M)31 f 0 or (A)31 f li O----A, TVD Reset 

PMU MACHINE FORMAT: 

7 B P PF I INDEX ADDRESS Ml T P 

f- -oj 1 /2/3 41 5J617 a 9 110 I" 12 13j 14115 '6/"/'81 19120 I" 122123124125 126127128129130 131 32 33 34 35 

AP MACHINE FORMAT: 

DEFINITION: If the value of Bit 31 of the M Register is equal 

to zero or Bit 31 of the A Register is equal to 

one (l)i then, the Accumulator is cleared to zero, 

Bit 31 of the Accumulator is set to one (1), and 

the Test Valid (TVD) flip flop is set. Otherwise, 

the Accumulator is cleared to zero and T\W is reset. 

EXAMPLE: 

M REGISTER A REGISTER 

l CONTENTS BEFORE EXECUTION 12 I 0 I 3456789A 12 I 0 I 3456789A 

I CONTENTS AFTER EXECUTION 12 10 I 3456789A 00 I 0 I 00000001 

5-101 



INSTRUCTION NAME: Boolean NOT 

OP CODE: 7C 

FUNCTION: If (A) 31 = 0; a-A, 1- A31 , TVD Set 

If (A)31 = 1; a-A, 'I'VD·Reset 

PMU MACHINE FORMAT: 

7 C P PF I INDEX ADDRESS Ml T P 

01' 12 13 415 1617 8 91101" 12 13114115 '6f'7 f .81. 9120T7. 1221231 2411512612712812913013. 32 33 34 35 

AP MACHINE FORMAT: 

DEFINITION: If the value of Bit 31 of the Accumulator is zero; 

then, the Accumulator is cleared to zero, Bit 31 

of the Accumulator is set to one (1), and the 

EXAMPLE: 

I 
I 

Test Valid (TVD) flip flop is set. Otherwise, the 

Accumulator is cleared to zero and TVD is reset. 

M REGISTER A REGISTER 

CONTENTS BEFORE EXECUTION 22 1 0 1 12345678 11 11 I 67812345 

CONTENTS AFTER EXECUTION 22 I 0 I 12345678 00 I 0 I 00000001 

5-102 



INSTRUCTION NAME: Boolean Greater or Equal 

OP CODE: 7D 

FUNCTION: If (M) 31 = 1 or (A) 31 = 0: O-A, 1_A31' TVD Set 

If (M) 31 = 0 or (A) 31 = 1 : O-A, TVD Reset 

PMU MACHINE FORMAT: 

7 D P PF I INDEX ADDRESS Ml T P 

o I, I 2 I 3 4 I 5 I 6 I 7 8 91 '0 I" J2 JJ /14/ 15 '61'71'81'91201211"12312412512612712812913013' 32 33 34 35 

AP MACHINE FORMAT: 

7 D P PF DT OPERAND ) 
o I' 1 2 1 3 4 15 1617 8 9110 111 12 ! 13 ! 14\15 16117118I'912012'12212312412512612712812913~r 3IT3;r33134T35T3~3;r 38139140141 14214314414S146( 

DEFINITION: If the value of Bit 31 of the M Register is a 

EXAMPLE: 

I 
I 

one (1), or the value of Bit 31 of the A Register 

is a zero; then, the Accumulator is cleared to 

zero, Bit 31 of the Accumulator is set to one (1), 

and the Test Valid (TVD) flip flop is set. Otherwise, 

the Accumulator is cleared to zero and TVD is reset. 

M REGI STER A REGI STER 

CONTENTS BEFORE EXECUTION 09 I 0 I 87654321 08 I 01 12345678 

CONTENTS AFTER EXECUTION 09 I 0 I 87654321 00 I 0 I 0000000 1 

5-103 



INSTRUCTION NAME: Boolean NAND 

OP CODE: 7E 

FUNCTION: If (M) 31 = 0 or (A) 31 = 0; 0- A, l-A31, TVD Set 

If (M) 31 = 1 and (A) 31 = 1; 0 -A, TVD Reset 

PMU MACHINE FORMAT: 

7 E P PF I INDEX ADDRESS Ml T P 

o l' 1 2 I 3 'T s l61 7 8 9110 I" 12 lJ I 14 115 '61171'81 i9 ! 20121 1221731"1251261271" 129130 131 32 33 34 35 

AP MACHINE FORMAT: 

D 
L~ 

DEFINITION: If the value of Bit 31 of the M Register is zero 

or the value of Bit 31 of the A Register is zero; 

then, the Accumulator is celared to zero, Bit 31 

of the Accumulator is set to one, and the Test 
\ 

Valid (TVD) flip-flop is set. Otherwise, the 

Accumulator is cleared to zero and TVD is reset. 

EXAMPLE: 

M REGISTER A REGISTER 

I CONTENTS BEFORE EXECUTION 23 I 0 I 12345678 11 I 01 12345678 

I CONTENTS AFTER EXECUTION 23 I 0 I 12345678 00 10 I 00000001 

5-104 



INSTRUCTION NAME: Boolean One 

OP CODE: 7F 

FUNCTION: 0 - A; 1 - A3l , TVD Set 

PMU MACHINE FORMAT: 

7 F P PF I INDEX ADDRESS Ml 

o l' I 2 I 3 4 I ' I 6 I 7 8 91 10 I" 12 Jj 1141 J5 161171181191201211_22123 1,,125126127128129130 131 32 33 

AP MACHINE FORMAT: 

7 F P PF DT OPERAND 

-Il 
2tj 

01' 12 13 4 I' 1617 8 9jlO I 11 12113 114 115 161171181'912012' 1"1231241251261271281"130131 132 133 T 34 [ 35136137138r3;r4014~42143144145146( 
) 

DEFINITION: The Accumulator is cleared to zero, Bit 31 of the 

Accumulator is set to one (1), and the Test Valid 

(TVD) flip-flop is set. 

EXAMPLE: 

M REGISTER A REGISTER 

I CONTENTS BEFORE EXECUTION AA I 1 I 23456789 12 101 12345678 

I CONTENTS AFTER EXECUTION AA 11 I 23456789 00 I 0 I 0000000 1 

5-105 



INSTRUCTION NAME: Logical Zero 

OP CODE: 80 

FUNCTION 0- AO- 31 

PMU MACHINE FORMAT: 

8 0 P PF I INDEX 

011 12 13 • / 5 / 6/7 8 91 10 I" 12 lJ 114115 

AP MACHINE FORMAT: 

ADDRESS 

16117118119120 I >I 122/23/2'/251261"128129130131 

Ml T P 

31 33 34 35 

DEFINITION: The Mantissa of the Accumulator is cleared to zero. 

EXAMPLE: 

, 
M REGISTER A REGISTER 

I CONTENTS BEFORE EXECUTION 01 101 12345678 1911 1 01234567 

I CONTENTS AFTER EXECUTION 01 J 0 I 12345678 19 1 1 1 00000000 

5-106 



INSTRUCTION NAME: Logical AND 

OP CODE: 81 

FUNCTION: (M)0-31 • (A) 0-31 - AO- 31 

PMU MACHINE FORMAT: 

8 1 P PF I INDEX ADDRESS Ml 

011 12 13 • 151 61 7 8 9110 I" 12 13114115 161171181191201211221231241251261271281'9130131 32 33 

AP MACHINE FORMAT: 

8 1 P PF DT OPERAND 

T P 

34 35 

o II I' 13 • 15 1617 8 9110 I 1 I 121131 14 115 161171181191201211221231'4125126127128129130131132133134 i 35136137138139140 141 l"I43I44I'SI46( 
I 

DEFINITION: The contents of the M Register are logically ANDed 

bit for bit with the contents of the A Register. 

The result is placed in the Accumulator. 

EXAMPLE: 

, 
M REGISTER A REGISTER 

I CONTENTS BEFORE EXECUTION 04 11 1 12345678 03 101 12345678 

I CONTENTS AFTER EXECUTION 04 11 1 12345678 031 0 1 12345678 

5-107 



INSTRUCTION NAME: Logical Less Than 

OP CODE: 82 

FUNCTION: (A) 0-31 > (M) 0-31- AO- 3.1 

PMU MACHINE FORMAT: 

8 2 P PF I INDEX ADDRESS Ml T P 

o 11! 2 13 41'1 617 8 91'0 I" 12 IJ j 14115 '61171'81'9 J20 121 1 "1231241251261271'8129130131 31 33 34 35 

AP MACHINE FORMAT: 

DEFINITION: If the value of each bit position in the A Register 

is greater than the corresponding bit position of 

the M Register; then a one (1) is placed in that 

position in the Accumulator. Otherwise, the 

corresponding bit position of the Accumulator 

is set to zero. 

EXAMPLE: 

Iv'. REGISTER A REGISTER 

I CONTENTS BEFORE EXECUTION 44 101 12345678 55 11 I 87654321 

I CONTENTS AFTER EXECUTION 44 101 12345678 55 11 I 85410101 

5-108 



INSTRUCTION NAME: No Operation 

OP CODE: 83 

FUNCTION: 

PMU MACHINE FORMAT: 

8 3 P I PF I INDEX 

011 12 13 415 1617 8 9110 1" 112 1J 114115 

AP MACHINE FORMAT: 

ADDRESS 

16J17L 18119120121 In] n 124 ]25 I 26J27J2sJ29J 30131 
Ml T P 

32 33 34 35 

DEFINITION: Idle processor for one instruction cycle time. 

EXAMPLE: 

, 
M REGISTER A REGISTER 

I CONTENTS BEFORE EXECUTION AA 10 I 12345678 BB 101 12345678 

I CONTENTS AFTER EXECUTION AA 10 I 12345678 BB 101 12345678 

5-109 



INSTRUCTION NAME: Logical Greater Than 

OP CODE: 84 

FUNCTION: (M) 0-31 > (A) 0-3l--AO-3l 

PMU MACHINE FORMAT: 

8 4 P PF I INDEX ADDRESS 

01' 12 13 41 5 1617 8 9 [,oT" 12 uTJ4115 '61'71'81'912012' Inl2312·12sI2;r 2;r 28129130131 

AP MACHINE FORMAT: 

Ml T P 

32 33 34 35 

DEFINITION: If the value of each bit position in the M Register 

is greater than the corresponding bit position in 

the A Registerj then, a one (1) is placed in that 

position in the Accumulator. Otherwise, the 

corresponding bit position of the Accumulator is 

set to zero. 

EXAMPLE: 

M REGISTER A REGISTER 

CONTENTS BEFORE EXECUTION 44 10 1 12345678 55111 87654321 

CONTENTS AFTER EXECUTION 44 101 12345678 55 11 1 10101458 

5-110 



INSTRUCTION NAME: Logical Load 

OP CODE: 85 

FUNCTION: (M)O-3--r-- AO- 31 

PMU MACHINE FORMAT: 

8 5 P PF I INDEX ADDRESS Ml T P 

o I' / 2 13 4 I 5 I 6 I 7 8 9/10 /" 12 13 j 141 is '1'71'811912012' 122123/"/25/26/27/"129/30131 32 33 34 35 

AP MACHINE FORMAT: 

DEFINITION: The contents of the M Register are copied into the 

A Register. 

EXAMPLE: 

M REGISTER A REGISTER 

I CONTENTS BEFORE EXECUTION FE J 0 1 12345678 1B 01 87654321 

I CONTENTS AFTER EXECUTION FE 101 12345678 1B 01 12345678 

5-111 



INSTRUCTION NAME: Logical Not Equal 

OP CODE: 86 

FUNCTION: If (M) 0-31 I- (A)0-31~ 1- AO- 31 

If (M)0-31 = (A)0-31~ 0-AO_ 31 

PMU MACHINE FORMAT: 

8 6 P PF I INDEX ADDRESS Ml T P 

011 11 13 4 151617 8 91 10 I " 12 JJ I 14 1 15 16117118119120121122123124125126127128129130131 32 33 34 35 

AP MACHINE FORMAT: 

8 6 P PF DT OPERAND ) 
011 12 13 4 151 617 8 9110 I" 1211J 114115 16117118119120121122123124125176127128129130131132 r 33 )34]35136137138139 )4014114714314+5146 

DEFINITION: If the contents of the M Register are not equal 

bit for bit with the A Register, then the corresponding 

bit position in the Accumulator 'is set to one (1). 

Otherwise, the corresponding bit position is set 

to zero. 

EXAMPLE: 

M REGISTER A REGISTER 

I CONTENTS BEFORE EXECUTION 11 101 10101078 22111 98765432 

1 CONTENTS AFTER EXECUTION 11 101 10101078 22111 8866444A 

5-112 



INSTRUCTION NAME: Logical Inclusive OR 

OP CODE: 87 

FUNCTION: If (M)0-31 = 1 or (A)0-31 = 1; 1 ___ AO- 31 

If (M)0-31 = 0 and (A)0-31= 0; 0--AO_ 31 

PMU MACHINE FORMAT: 

8 7 P PF I INDEX ADDRESS Ml T P 

o 1, I 2 [ 3 4151 617 8 9110 ! 11 12 13114115 '61171'~ I 19 120 I 2~2;r 2312~251'6127128129130 131 32 33 34 35 

AP MACHINE FORMAT: 

8 i P PF DT OPERAND 

~l' 1 21 3 41 51 61, 8 9110 I" 121'31141'5 161171'81'91,°1,,1';1'31,;1';1'61271281'913°13,132133 H 35 136137138139140141142143 H 45 146 
I 

DEFINITION: The contents of the M Register are logically 

mapped onto the contents of the A Register bit 

for bit without binary overflow and the result is 

placed in the Accumulator. 

EXAMPLE: 

M REGI STER A REGISTER 

I CONTENTS BEFORE EXECUTION CC 10 2468ABCD 33 11 I 3579BADE 

r CONTENTS AFTER EXECUTION CC 10 2468ABCD 33 11 1 3579BBDF 

5-113 



INSTRUCTION NAME: Logical Equals 

OP CODE: 89 

FUNCTION: If (M)O-3l= (A)O-3l; l---AO_ 3l 

If (M)n-3l ~ (A)O-3l; O---AO- 3l 
PMU MACHINE FORMAT: 

8 9 P PF I INDEX ADDRESS Ml 

oJI1 213 4Ls l61 7 8 9 Jw III 12 lJ /14/15 16117118119120121122123124125126127128129130131 32 33 

AP MACHINE FORMAT: 

8 9 P PF DT OPERAND 

T P 

34 35 

DEFINITION: The contents of the Acctunulator are logically 

compared with the contents of the M Register bit 

for bit. If the bit of the N Register is equal to 

the bit the Accumulator the corresponding bit of 

the accumulator is set to one. Otherwise the 

Accumulator bit is cleared to zero. 

EXAMPLE: 

M REGISTER A REGISTER 

I CONTENTS BEFORE EXECUTION 00 I 0 I 12345678 00 I 0 I 12345678 

I CONTENTS AFTER EXECUTIO~1 00 I 0 I 12345678 00 I 0 I FFFFFFFF 

5-114 



INSTRUCTION NAME: Logical NOR 

OP CODE: 88 

FUNCTION: If (M)0-31 and (A)0-31 = OJ 1--- AO- 31 

If (M)0-31 or (A)0-31 f OJ '0--- AO- 31 

PMU MACHINE FORMAT: 

8 8 P PF I INDEX ADDRESS Ml T P 

01' 12 13 4 15 1617 8 9110 I" 12 13114115 .61171.81.912012'12212312412512612712812913013. 32 33 34 35 

AP MACHINE FORMAT: 

DEFINITION: If the value of the M Register corresponding bit 

for bit with the A Register is a zero, that 

corresponding bit position is set to one (1) in 

the Accumulator. Otherwise, the corresponding 

bit position is set to zero. 

EXAMPLE: 

M REGISTER A REGISTER 

l CONTENTS BEFORE EXECUTION 66 J 1 1 98765432 22101 12345678 

1 CONTENTS AFTER EXECUTION 66 1 1 1 98765432 221 0 1 6589A983 

5-115 



INSTRUCTION NAME: Load Complement 

OP CODE: 8A 

FUNCTION: (M) -- A 

PMU MACHINE FORMAT: 

8 A P PF I INDEX ADDRESS 

011 12 13 41 5 ]61 7 8 91 10 111 12 13114/15 16117118119120121 122123124125126127128129130131 

AP MACHINE FORMAT: 

Ml T P 
-

:!2 33 34 35 

DEFINITION: The ones complement of the M Register is loaded 

into the Accumulator. 

EXAMPLE: 

M REGISTER A REGISTER 

I CONTENTS BEFORE EXECUTION 55 1 0 1 12345678 3311\ 98765432 

I CONTENTS AFTER EXECUTION 55 I 0 1 12345678 3311T EDC9A987 

5-116 



INSTRUCTION NAME: Logical Less Than or Equal 

OP CODE: 8B 

FUNCTION: If (M)0-31 = 0 or (A)0-31.= 1; 

If (M)0-31 = 1 and (A)0-31 = 0; O-A 

PMU MACHINE FORMAT: 

8 B P PF I INDEX ADDRESS Ml T P 

01' 12 13 4 Is 1617 8 '110 1" 1213\14\15 '61'71'81'912012' 1,,1231,,1251261,,1281 29130T31 32 33 34 35 

AP MACHINE FORMAT: 

1-- AO- 31 

DEFINITION: If the value of the M Register, bit for bit, is 

EXAMPLE: 

I 
I 

a zero or the corresponding bit of the A Register 

is a one (1), then the corresponding bit of the 

Accumulator is set to one (1). Otherwise, the 

corresponding bit is set to zero. 

M REGISTER A REGISTER 

CONTENTS BEFORE EXECUTION a 1 I 0 I FEDCBA98 Fa 11T 23456789 

CONTENTS AFTER EXECUTION a 1 I 0 I FEDCBA98 FO I 11 2D4767 EF 

5-117 



INSTRUCTION NAME: Logical NOT 

OP CODE: 8C 

FUNCTION: (A) -- A 

PMU MACHINE FORMAT: 

8 C P PF I INDEX ADDRESS 1M 1 T P 

01' 12 I J 4 15 161' 8 91'0 I" 12 IJI'115 16 1 "I 18 1 19120121 Inl231241 2sJ 26121 2eJ 29130 I Jl 132 33 34 35 

AP MACHINE FORMAT: 

DEFINITION: The ones complement of the contents of the 

Accumulator replaces the contents of the Accumulator. 

EXAMPLE: 

, 
M REGISTER A REGISTER 

I CONTENTS BEFORE EXECUTION FF I 1 I 76543210 FEL1J 01A98765 

I CONTENTS AFTER EXECUTION FFI11 76543210 FE I 1 I FE56789A 

5-118 



INSTRUCTION NAME: Logical Greater or Equals 

OP CODE: 8D 

FUNCTION: If (M)0-3l = 1 or (A)0-3l = 0; 

If (M) 0-31 = 0 and (A) 0-31 = 1; 0-AO- 3l 

PMU MACHINE FORMAT: 

8 D P PF I INDEX ADDRESS MI T P 

o 1 J 1 2 13 ,1 5 1617 8 9110 I JJ 12 )3 114115 '61'71181'9120 I" 1"1231"125176127128129130131 32 33 34 35 

AP MACHINE FORMAT: 

DEFINITION: If the value of the M Register, bit for bit, is 

a one or the corresponding bit of the A Register 

is a zero; then the corresponding bit of the 

Accumulator is set to one (1). Otherwise, the 

value of the corresponding bit is set to zero in 

the Accumulator. 

EXAMPLE: 

M REGI STER A REGISTER 

I CONTENTS BEFORE EXECUTION FF I 0 1 67543210 10 11 1 01010101 

r CONTENTS AFTER EXECUTION FF 1 01 67543210 10 11 I FEFEFEFE 

5-119 



INSTRUCTION NAME: Logical NAND 

OP CODE: 8E 

FUNCTION: If (M)0-31= 0 or (A)0-31 = 0; l----AO_31 

If (M)0-31 = 1 and (A)0-31 = 1; 0----A O_ 31 

PMU MACHINE FORMAT: 

8 E P PF I INDEX ADDRESS Ml T P 

01 I 12 13 41 5 I 61 7 S 9110 I" 12 lJ I J4115 '6 1'7 1 lsi 19120121 12212312412512612717s129130 131 32 33 34 35 

AP MACHINE FORMAT: 

8 E P PF DT OPERAND 

o I I 12 13 415 1617 s 91 '0 I" 121 IJ 1'41 IS '6 1'7 1 lsi 19120121 12212312412512612712sI2913013'13~ 3313'1 3sJ 3013138\ 39140J4'142J 43J44}SJ46I 
J 

DEFINITION: If the v~lue of the M Register, bit for bit, is 

EXAMPLE: 

I 
I 

a zero or the corresponding bit of the A Register 

is a zero; then the corresponding bit of the 

Accumulator is set to one (1). Otherwise, the 

corresponding bit is set to zero. 

M REGISTER A REGISTER 

CONTENTS BEFORE" EXECUTION 00 I 1.1 12233445 FF I 0 I ODDCCBBA 

CONTENTS AFTER EXECUTION 00 I 1 I 12233445 FF 1 0 I FFFFFFFF 

5-120 



INSTRUCTION NAME: Logical Set 

OP CODE: 8F 

FUNCTION: 1-AO- 31 

PMU MACHINE FORMAT: 

8 F P PF I INDEX ADDRESS 

01' 12 I J _Is H 7 8 9110 I" 12 13114115 161171'81'912012'12212312412512612712SI2913013' 

AP MACHINE FORMAT: 

8 F P PF DT OPERAND 

Ml T P 

32 33 34 35 

DEFINITION: The contents of the Accumulator, bit for bit, is 

set to one (1). 

EXAMPLE: 

M REGISTER A REGISTER 

1 CONTENTS BEFORE EXECUTION 00 1 1 1 12233445 FE 11 I 23456789 

I CONTENTS AFTER EXECUTION 00 1 1 I 1 2233445 FE 11 1 FFFFFFFF 

5-121 



5.3.7 Array Storage 

The number of words used by an array, in its 

unpacked form, must be equal to or less than 255. A Dimension 

Word plus 255 words make up a page and a page is the maximum 

size of any array. That is, a double precision array can only 

have 127 elements in it (12~2 words + 1 Dimension Word = 255): 

a packed binary array is limited to 9 words in storage (7x32 + 

lx31) bits + 1 Dimension Word = 256). 

Arrays are stored backward in the memories with the 

dimension word first followed by the last word element of array 

going to the first element. For example, if an array is created 

in memory of consecutive integers beginning with ~ and going to 

A-I it would appear as follows: 

Location 

o 
1 

N 

Dimension Word 

Last Word 

First Word 

Contents 

A-I 

A-2 

A-3 

As previously stated, the shape of the array in 

storage is defined b.y the Dimension Word. The dimension high 

field contains the number of rows in the matrix. The dimension 

low field contains the number of elements in a row or in the 

case of a vector the number of elements in the vector. Both 

of these fields may contain a value of 0-255, but there must 

be less than 256 elements in the array. 

5-122 



Packed Data is stored in memory in the following 

format (8 bit data, with 6 elements is used in this example). 

location 

o 
I 

2 

1 

5 

0 

4 

(00)16 (00)16 

3 I 2 

DIMENSION WORD 

When packed data is referenced, the array controller 

issues an UNPACK instruction to the AP. The AP unpacks the 

data to full word logical operands for subsequent processing. 

The STORE PACKED instruction is used to convert full word 

data to a packed form. 

5-123 



Arrays with more than 255 elements must be handled 

with a software subroutine. 

5.3.8 Array Operations 

Any AP instruction which is addressable may access 

an array as an operand. If it does so, and the Accumulator is 

scalar, each element of the array will operate against the 

Accumulator separately for the Qase of arithmetic instructions, 

generating an array of the same shape as the original array 

fetched. This array will become the new AP Accumulator. 

If the Accumulator is an array, and the operand 

is also an array, they must have conformal shapes (as a function 

of tl~ operator) in order to allow processing. Any deviation 

is signalled as a length error. If they do have the correct 

shape, each element of the operand is combined with the corres­

ponding Accumulator element forming a new Accumulator. 

Once the Accumulator is defined as an array, even 

if the memory operand is scalar, an array operation is performed. 

In this case, operation is analogous to the case where the 

operand was an array and the Accumulator a scalar. 

5-124 



5.3.9 Parenthetical Control 

The following parenthetical control actions occur 

during array processing: 

PUSH (Open Parenthesis) - If the Accumulator is 

an array, the array controller accesses scratchpad register 

26, uses it as a virtual address for storage of the Accumulator 

array, then increments the higher order byte (bits 0-7) of 

register 26. 

If the operand is an array, it is loaded into the 

Accumulator array. 

The AP is sent a scalar push instruction in order 

to save the operation code of the instruction, or to load 

a scalar operand, if this is specified. 

For the purposes of this operation, a complex 

scalar is considered an array. 

POP (Close Parenthesis) - When a POP occurs in 

which the Accumulator to be popped is an array, the array 

controller accesses scratchpad register 26, decrements its 

higher order byte (bits 0-7), and fetches the array stored 

at that location. 'This array is placed into the Accumulator 

array, and the popped operation may be performed. 

5-125 ' 



The AP has two flip-flops which indicate whether 

the present accumulator is complex, real, or scalar array. 

These are pushed and popped in the AP in order to maintain 

memory of whether the value stored in the AP stack is a value 

or an image of a value stored in memory. 

5.3.10 Arrays 

Array handling procedures are implemented in hardware 

in an AADC. Both the AP and PMU are controlled by the Array 

Controller during array operations. Array operations are set 

into operation when one of the following events occur: 

1) The Accumulator is already an array from a 

previous operation. 

2) One of the set of instructions that are array 

instructions is fetched. These instructions 

will act in array mode regardless of the shape 

of either of the operands. Even with two 

scalars, arr?y mode will be called into effect. 

'(i.e. catenation) 

3) When an arithmetic instruction addresses an 

operand, and the operand has a data tag of 

complex or is a Dimension word. 

5-126 



5.3.11 Array Storage Area 

Reference has been made to an Array Accumulator, 

and a working Array Accumulator. These are the last three pages 

of Task Memory (pages 13, 14, 15 of a 4K word memory) which are 

reserved for array operations. When an array enters the 

Accumulator for the first time, it is placed in page 13. The 

next array operation generates a new Accumulator in page 14. 

The next is assigned to page 13 and so on. 

When a packed array enters the DPE, it is first 

unpacked and placed in page 15, then operated upon. When a 

"close parenthesis" occurs, as described before, the array to 

be popped is placed in page 15. Page 15 is termed the working 

Accumulator area. Pages 13 and 14 are termed the Array 

Accumulators, though only one will be the Array Accumulator 
at a given time. 

5.3.12 Dimension Word 

The dimension word format is: 

~~ 
UNUSED S 

DATA 
RANK DIM (HIGH) DIM (J.OW) 001 p 

TYPE 

0 1 2131.151. 7 81 91 '0 111 171'J 1"1,5 '61'71'81'9T 201211221 23 24125126127128129130131 32133134 35 

For all operations, except TAKE and DROP, the sign bits (SDL/ 

SDH) of the dimension word are not interpreted. For TAKE and 

DROP, the sign bits have meaning. Refer to the definition of 

of TAKE and DROP for these meanings. 

5-127 



Bit 7 - Scalar bit flag for indirect dimension 

words only. 

Bits 8-11 describe the data type of the array. 

The possible types are: 

o - Single precision flo~ting, integer or logical 
1 - Double precision floating 
2 Complex 

8 - Packed binary (1 bit) 

9 - Packed quaternary (2 bits) 

A - Packed hexadecimal (4 bits) 

B - Packed byte (8 bits) 

c - Packed half-word fl6 bits) 

Packed arrays are unpacked upon receipt by a DPE 

for use in an instruction. 

The rank field (bits 12-15) indicates whether this 

is a matrix or vector. A rank field of 0 indicates a vector, 

1, a matrix. If the rank field is greater than 1, odd number 

ranks will be treated as an array, even number ranks as a vector. 

If the operand is a vector, bits 24-31 enumerate 

the number of elements in the vector. There are a maximum of 

255 single precision operands, or 127 double precision or complex 

operands. If bits 24-31 of a vector are all ZERO, the vector 

is said to be NULL. Null vectors have significance in certain 

operations. 

If the operand is a matrix, bits 16-23 enumerate 

the number of row elements, bits 24-31 enumerate the number of 

column elements. There are a maximum of 255 single precision 

matrix elements, or 127 double precision or complex elements. 

5-128 



If bits 16-23 or 24-31 of a matrix are all zero, the matrix 

is said to be NULL. If the number of matrix elements specified 

exceeds the stated limits, the desired answer will not result. 

What does occur is a function of the operation being executed. 

Bit 35 is parity. 

Note that scalars can be accessed via an 

indirect dimension word with bit 7 being set to one. 

5.3.13 Indirect Dimension Words 

Normally, a dimension word is adjacent to 

the block of data it describes. Indirect Dimension Words provide 

a means to describe a block of data with a non-adjacent 

dimension word. 

When indirection is specified in data virtual 

addressing mode (the indirect dimension word capability is not 

provided when the data addressing mode is absolute), the data 

tag of the referenced indirect word is examined. If the data 

tag is 001, the address of the indirect dimension word is 

stored in the scratchpad register 28, the dirnension word is 

stored in the Task Memory location whose address is alII's 

and the next sequential indirect word is read and interpreted 

as a normal indirect word. 

Before proceeding with subsequent handling of 

the indirect dimension words, the following remarks are noteworthy: 

5-129 



. If multiple indirect dimension words are 

accessed, the last indirect dimension word 

controls the final operand fetch . 

. An indirect dimension word may be marked as 

"SCALAR." This means that during the course 

of computation on an array referenced by an 

indirect word, the array has been converted 

to a scalar. Bit 7 (being 1) of an indirect 

dimension word indicates this condition. 

The final binding of the referenced operand is 

a function of the normal addressability condition of the present 

instruction. 

If the instruction is normally addressable, one 

of two actions occurs. If a non scalar indirect_dimension word 

was referenced, the operand is referenced by a Read Array to 

Output Instruction if word oriented data. If paged data, 

internal indicators are used to maintain the proper association 

of dimension word with data. 

If a scalar indirect dimension word was referenced, 

the operand is referenced through the normal operand accessing 

mechanism (i.e., as if no indirect dimension word was accessed). 

This meanS that a non-scalar operand may be accessed if the word 

referenced by the scalar dimension word is a dimension word. 

If the instruction is normally non addressable 

(e.g., STORE), the final operand produced is the address field 

of the last indirect word accessed. Thus, during the execution 

of the Store instruction~ the dimension word of the array is stored 

in the location of the last indirect dimension word received, 

and the array is stored (less dimension word) in the memory area 

defined by the address field of the last indirect word. Thus, 

the same indirect loop can be used for obtaining and storing operands. 

5-130 



5.3.14 Complex Numbers 

A Complex number is represented by two adjacent 

single precis~on floating point numbers. The first element 

is treated as the real part and the second element as the 

imaginary part. A complex number is interpreted when the data 

tag is 110. Most real operators have meaning when applied to 

complex operands. Thus, using the example used in array operations, 

evaluating the expression A BXC+D where A,B,C,&D are complex, 

one uses the same DPE code. 

LOAD D 

+ C 

X B 

STORE A 

All operations involving complex operand must specify 

the result of the operation to be double precision (instruction bite) . 

There are, however, some exceptions in the handling 

of complex operands when compared to real operands. They are: 

A true complex divide is not performed. A ~ B where 

A and B are complex results in the real part divided by the real 

and the imaginary divided by the imaginary. 

A complex compare signals a domain error. 

Mixed mode arithmetics are signalled as domain errors. 

Thus, the statement 5+B where B is complex results in a domain 

error. The constant 5 must be specified as 5+iO or 5+i5 depending 

on the meaning intended. 

Mixed mode non-arithmetics of the form A op B 

where A is a control specification is allowed. For example 1 2 $ B, 

where B is a complex matrix. 

5-131 



In cases where a multiplication is specified, a 

true complex multiply is performed except for the following 

instructions where operation 2 (operation specified in bits 16-23) 

is multiply. 

-61 - Polynomial 

-62 - Outer Product Reduction 

-6C - Inner Product 

-6D - Outer Product 
-6E - Reduction Along Row 

5.3.15 Array Instructions 

The following instructions cause the array controller 

to take control of the DPE. 

5-132 



INSTRUCTION NAME: Load Op Code 

OP CODE: 37 

FUNCTION: 

PMU MACHINE FORMAT: 

3 

01· 12 13 

DEFINITION: 

7 P PF I INDEX ADDRESS Ml T P 

415 1617 8 9110 [11 12 13114[15 .61.71.81.9120 12. 12212312~ 2512612712812913013. 32 33 34 35 

This instruction is intended to define the op 

codes to be used for the AP array operations. 

( 61) Polynomial 

(62) Outer Product Reduction 

(6C) Inner Product 

(6D) Outer Product 

(6E) Reduction Along Row 

If bits 9, 10 and 11 of this instruction indicate 

immediate operation (ODD), the effective address 

field is used to load the AP Op Code registers. 

If bits 9-11 indicate a push operation (111), 

the effective address field is pushed into the 

AP accumulator. This action implies that the 

above listed AP instructions also specify a 

deferra"l push. 

If bit 9-10 indicate a pop, it will be treated 

as if an immediate operation was specified, no 

pop will actually occur. 

5-133 



This instruction is normally non-addressable. 

Bits 16-23 specify operation 2 (O~ 2) and bits 

24-31 specify operation 1 (OP 1). See the 

definitions of the above listed array instructions 

for the particular manipulations performed by 

these operations. 

If one of the above array instructions is popped, 

OP 1 and OP 2 are contained in the Accumulator 

and the operand which is to be arithmetically 

manipulated is contained in the first level of 

deferral. The control sequence for the above 

op codes will adjust the deferral and obtain 

the Op Codes from the accumulator if necessary. 

NOTE: In the instruction which pops the 

deferred array operand, the parenthetical 

field must specify at least two pops. One 

for the deferred array instruction. One for 

the deferred Load opcode instruction. 

with this op code, the following sequences are 

necessary to perform the three basic modes of 

AP instruction execution (immediate, pop, push). 

The instruction, Outer Product, is used for 

illustrative purposes. 

IMMEDIA'1.'E 

Instruction Location Instruction 

X LOAD OP CODE OP2, OPl 
X+l OUTER PRODUCT (Address) 

POP 

Instruction Location Instruction 

X LOAD OP CODE OP2, OPl 
X+l OUTER PRODUCT) •.. ) <Addres~ 

PUSH 

Instruction Location Instruction 

X LOAD OP CODE ( OP2, OPl 
X+l OUTER. PRODUCT ( (Address) 

where a "(" denotes a push and a ") .•. )" denotes one or more pops. 

(See above note concerning instruction which pops deferred instructions 
in this example.) 

5-134 



INSTRUCTION NAME: Polynomial 

OP CODE: 61 

FUNCTION: 

PMU MACHINE FORMAT: 

6 1 P PF I INDEX ADDRESS MI T P 

a l' 12 13 41 5 16 17 8 91101" 12 13114115 '61'71'81'912012'122123124125126127128129130131 32 33 34 35 

DEFINITION: This instruction interprets bits 16-31 of the AP 

Accumulator as 2 operation codes (bits 16-23 is 

operator 2 and bits 24-31 is operator 1). The 

addressed operand is combined according to a power 

series expansion with the Accumulator operand. 

The two op codes are previously loaded by the 

Load Op Code instruction (Op Code 37). 

The power series expansion used to evaluate 

polynomial is: 

«A[N]OP1 M[OJoP2 A[N-1JloPl M[N-IJoP2 A[N-2]) •.• )oPl M[N-l]oP2 A[O] 

5-135 



If oPl is multiply and oP2 is addition, the typical power series 

expansion is generated. The characteristics of the expansion 

for the allowed data types are: 

M and A are scalars: The accumulator is loaded with the accumulator. 
(This is subject to precision control). 

M is a scalar and A is a vector: M is effectively expanded to 

equal the length of A. 

M is a vector and A is a scalar: A is effectively expanded to 

equal the length of M. 

M and A are vectors: Alternate values of M and A are used for 

coefficients and bases. The first value of M (M[O) is ignored. 

If A or M is a null vector, the accumulator is loaded with ZERO. 

Error Condition: 

A Domain Error occurs if A or M are matrices or one real and one 

complex. 

A Length Error occurs if A and M are vectors of unequal length. 

Notes: 

• A vector M of length 1 is NOT treated as a scalar. 

• In the case of M vector, the Polynomial instruction can be made 

equivalent to the APL statement (where oPl is X, and oP2 is +). 

• A vector A of leng'th 1 is treated as a scalar. 

• If no error condition exists the rank of the result is 0 (scalar). 

5-136 



INSTRUCTION NAME: Dimension 

OP CODE: 51 

FUNCTION: pA---A 

PMU MACHINE FOru~T: 

5 1 P PF I INDEX ADDRESS Ml T P 

° I I I ' 13 41 s16J7 e 91 '0 I " 12 lJ 1141 J5 161171 18 1 191 20 I" 1-"1 23 12412sl26121t~L29 J JoJ 3 I 32 JJ 34 35 

DEFINITION: The Accumulator is loaded with a logical real 

scalar whose bit configuration is that of the 

dimension word of the array that was in the Accumulator. 

Bit 7 in the Accumulator is set to 1 to indicate 

Scalar A. This differentiates the results of this 

operation from an Accumulator of all zeros which is 

generated for null vectors. 

5-137 



INSTRUCTION NAME: Index Generator 

OP CODE: 60 

FUNCTION: 0, 1, 2, ..... , (A) 24-31 - 1 

PMU MACHINE FORMAT: 

6 0 P PF I INDEX ADD~ESS Ml T P 

01' I 2 13 4 I 5 I 6 I 7 8 9110 1" 1213114115 '61'71'31'912012112212312'12512612712812913013' 32 33 34 35 

DEFINITION: The Mantissa of the Accumulator (bits 24-31) is 

used as an integer and creates a vector of 

consecutive integers beginning with 0 and continuing 

to one less than the initial Accumulator value. An 

appropriate dimension word is assigned to the array 

of numbers and the array is stored in the Task 

Memory (TM) Array Accumulator. 

A non scalar or negative scaler Accumulator results 

in a domain error interrupt being sent to the PMU. 

The accumulator is assumed to be integerized. 

5-138 



INSTRUCTION NAME: Ravel 

OP CODE: 50 

FUNCTION: ,A-A 

PMU MACHINE FO&~T: 

5 0 P PF I INDEX ADDRESS Ml T P 

oj, I 2 13 4 [ 5 I 6 I 7 8 9110 I ! 1 12 ]j j 14) 15 1<1 17 1IS [ 19[20 12: 1"1231"1"126 i 27128129130131 32 33 34 35 

DEFINITION: The Accumulator array is made into a vector. If 

a scalar, a vector of length 1 is formed. If a 

vector already, no operation is performed. If the 

Accumulator is a matrix, its dimensions are changed 

to those of a vector with an identical number of 

elements. 

5-139 



INSTRUCTION NAME: Outer Product Reduction 

OP CODE: 62 

FUNCTION:: OP 2/MO .OPl , A-A 

PMU MACHINE FORMAT: 

6 

011 12 13 

DEFINITION: 

2 P PF I INDEX ADDRESS Ml T P 

4 15 1617 8 9110 I" 12 lJ 114[15 161171181191 20 I" 12212312'125126127128119130131 32 33 34 35 

The Load Op Code instruction COp Code 37) is used 

first to load the two operation codes to be used 

with this instruction. 

The operand in the AP accumulator is raveled (i.e., 

treated as a vector.) Each memory operand is 

combined (operator 1) with every AP operand (Outer 

Product). The resulting vector whose length is 

equal to the AP accumulator operand is reduced to 

a single value by performing an element-by-element 

combination using operator 2. This sequence is 

repeated until all memory operands are used to 

perform an outer product. The accumulated results 

of the repeated reductions become the contents 

of the accumulator. 

Both operands must be complex or real. Otherwise, 

a domain. error occurs. If the operator 2 is 

Boolean Inclusive OR and operator 1 is equal, the 

APL primitive 'membership' is performed. Various 

high-low searches are performed by specifying 

the proper compares as operators 1 and 2, and 

specifying the bounds of the compare as the AP 

operand. 

5-140 



The shape of the result is the shape of M. 

See the description of Outer Product and the 

Reduction instructions for examples involving 

these two operators. 

It should be noted that a potential temporary a 

accumulator wraparound exists. If M represents 

the total number of M operands and A the total 

number of A operands, on the last iteration of 

the algorithm the array accumulator uses the 

A+M-l location, even though the final number of 

locations used is M. If this condition exists, 

operands occupying locations in excess of 255 

will be written into the origin of the accumula­

tor page destroying the initial result calcula­

tions. 

5-141 



INSTRUCTION NAME: Expand Along Column 

OP CODE: 63 

FUNCTION: (M)'~,/A)- A 

PMU MACHINE FORMAT: 

6 3 P PF I INDEX ADDRESS Ml T P 

o I' I ' 13 41 5 16 1, 8 9-1 10 111 12 13114! 15 161 "1'81'91201"1221231"1'*61"1281 79130131 32 33 301 35 

DEFINITION: The contents of the M Register is a Boolean vector. 

The number of non zero elements in the M Register 

must be equal to the number of rows in the Accumulator 

array if the Accumulator is a matrix, or the number 

of elements if the Accumulator is a vector. 

For each zero element in the "M" vector a new row 

of Matrix Accumulator or element of Vector Accumulator 

which is a will be placed into the new Accumulator. 

For each non zero element of the operand, the row 

or element of the Accumulator will be duplicated. 

If the Accumulator is a scalar, the value will be 

used again for each non zero element of the M Register. 

If the M element is complex, double precision, or a 

matrix, a domain error occurs. 

5-142 



EXAMPLE: 

M ACC Result 

11101 1,2,3,4 1,2,3,0,4 Vector 

101 1,2,3 1,2,3 Matrix 

4,5,6 0,0,0 

4,5,6 

0 Null Matrix 0 0 0 Matrix 
Shape 03 

The following table summarizes the Expand operator. 

M 

Scalar 

Vector 

Matrix 

Scalar 

Vector 

Matrix 

Scalar 

Vector 

Matrix 

A 

Scalar 

Scalar 

Scalar 

Vector 

Vector 

Vector 

Matrix 

Matrix 

Matrix 

Result 

Vector 

Vector 

Domain Error 

Length Error if length of A not 
equal to 1: Vector result. 

Length Error if the number of 1 
in M is not equal to the length 
of A. If A is empty M must be 
O{s) or empty. Vector result. 

Domain Error. 

Length Error if the number of 
rows in A is not equal to the 
value of the scalar. Matrix result. 

Length Error if the number of 1 
in M is not equal to the number of 
rows in A. Matrix result. 

Domain Error. 

5-143 



INSTRUCTION NAME: Catenate Rows 

OP CODE: 64 

FUNCTION: A"M-A 

PMU MACHINE FOru1AT: 

-

6 4 P PF I INDEX ADDRESS Ml T P 

o II 12 13 41516T 7 8 9-r 10 1 " 12 lJJ14j15 1611711811917012112212311412512612+8129130131 32 33 34 35 

DEFINITION: The Array A is appended to the Array M. If M and 

A are both vectors, the result is a vector of 

length M+ A. If M and A are both matrices, they 

must conform in that number of columns (i.e., row 

length) are the same. The number of columns in the 

result matrix is identical to the number of columns 

in the original Array A. The number of rows is the 

sum of the rows of the initial A and M arrays. A 

length error is signalled for non conforming array 

dimension s. 

If either A or M is complex, then both A and M must 

be complex; otherwise, a domain error occurs. 

The following table shows the dimensions resulting 

from the operation. Numbers in parentheses 

represent dimensions. 

A Array 

Scalar 

Scalar 

5-144 

M Array 

Scalar 

Vector ( ) 

Result 

Vector (2) 

Vector (P+l) 



A Array M Array Result 

Scalar Matrix (p, r) Matrix (p+l,r) 

Vector (n) Scalar Vector (n+l) 

Vector (n) Vector (p) Vector (n+p) 

Vector (n) Matrix (p, n) Matrix (p+l, n) 

Matrix (m,n) Scalar Matrix (m+l,n) 

Matrix (m,n) Vector (n) Matrix (m+l, n) 

Matrix (m,n) Matrix (p, n) Matrix (m+p, n) 

5-145 



INSTRUCTION NAME: Transpose 

OP CODE: 65 

FUNCTION: ''S,JA-A 

PMU MACHINE FORMAT: 

6 5 P PF I INDEX 

OJIJ 2[ J 415 H 7 8 .110 I" 12 13! Td! 15 

DEFINITION: 

ADDRES~ Ml T P 

1611~18119120 121 122123124125126127128129T30 r 31 32 33 34 35 

The contents of a matrix Accumulator A is reshaped 

such that each row of the initial Accumulator 

becomes a column, and each column becomes a row. 

EXAMPLE: 

If A is a vector or scalar, no operation is performed. 

ACC 

1,2,3 

4,5,6 

5-146 

Result 

1,4 

2,5 

3,6 



INSTRUCTION NAME: Reversal Along Rows 

OP CODE: 66 

FUNCTION: d)A-A 

PMU MACHINE FOR~T: 

6 6 P PF I INDEX ADDRESS 

011 12 13 41 S 16T7 8 '110 I 11 12 l3!14!J5 J6IJ71i8IJ~202~"1231241251'612712812913013J 

DEFINITION: 

Ml T P 

32 33 34 35 

The elements of each row vector of A are rearranged 

in the reverse index sequence. A may be a vector. 

or matrix. No operation is performed if A 

is scalar. 

EXAMPLE: 

ACC Result ---
1,2,3,4 4,3,2,1 Vector 

1,2,3 3,2,1 } Matrix 
4,5,6 6,5,4 

5-147 



INSTRUCTION NAME: Laminate Rows 

OP CODE: 67 

FUNCTION: (A), [-5] (M)- A 

PMU MACHINE FORMAT: 

6 7 P PF I INDEX ADDRESS Ml T P 

011 12 13 4 151617 8 9110 I" 12 IJ 114115 16117118119120121 1"1 23124125126127128129130131 32 33 34 35 

DEFINITION: Vector A, whose length is equal to Vector M, is 

appended to Vector M to form a matrix with the row 

length being equal to the length of the original 

vectors, and whose column length is equal to 2. 

If A or M are scalar, they are extended to the 

appropriate length. If both are scalar, a catenate 

operation is performed. 

Vectors of unequal lengths will cause a length 

error. Matrix arguments will cause a domain error. 

If A or M is complex, then both A & M must be 

complex, otherwise a domain error occurs. 

5-148 



EXAMPLE: 

M ACC Result Dimension Result 

1,2,3 4,5,6 123 2 3 

456-

5 4,5,6 555 2 3 

456 

5-149 



INSTRUCTION NAME: Rotate Row 

OP CODE: 68 

FUNCTION: A+M¢A 

PMU MACHINE FORMAT: 

6 8 P PF I INDEX ADDRESS MIT P 

01' 12 I 3 415 1617 8 91'0 I" 12 13114115 '61171'81'912012'12212312412512612712812913013' 32 33 34 35 

DEFINITION: Rotate Accumulator Array M places. 

EXAMPLE: 

Each row vector of Matrix A is rotated left the 

number of component positions specified by the 

corresponding scalar component of Vector M, and the 

result is placed in A. If M is a scalar, it is 

extended to equal the column length of Matrix A. 

A may he a vector and considered as a single row 

matrix. M must conform in length with the length 

of column of A when A is a matrix. 

Scalar A produces no operation, regardless of the 

shape of-M. Vector A requires scalar M. 

The elements of M are treated as single precision 

integers whose absolute values are less than or 

equal to the number of columns if matrix or elements 

if vector in A. If M is complex or double precision 

a domain error occurs. 

M 

4 

-2 

ACC 

1,2,3,4,5 

1,2,3,4,5 

5-150 

Result 

5,1,2,3,4 

4,5,1,2,3 



M ACC Result 

-1,2,1 1,2,3 3,1,2 

4,5,6 6,4,5 

7,8,9 - 8, 9, 7 

2 1,2,3 3,1,2 

4,5,6 6,4,5 

7,8,9 9,8,7 

The elements of H are treated as single precision 

integers. Whole absolute values are less than or 

equal to the number of columns of A (if matrix) 

or element if A is a vector. 

A domain error occurs if M is complex. 

The least significant 8 bits of H are used to 

determine the rotation specification. Significance 

in bits 1 thru 23 of the elements of M are ignored. 

5-151 



INSTRUCTION NAME: Reshape 

OP CODE: 69 

FUNCTION: MpA--A 

PMU MACHINE FORMAT: 

6 9 P PF I INDEX ADDRESS Ml T P 

011 12 13 415 I 61 7 8 9110 111 12 IJ 114115 16117118119120121122123124125126127128129130131 32 33 34 35 

DEFINITION: M must be a scalar integer, logical, or single 

precision operand, otherwise a domain error 

occurs. M has the format of an indirect 

dimension word. That is if bit 7 is a lilli, the 

result of the Reshape operator is a scalar. If 

bit 7 is a "0", the dimension word of the result 

is the dimension word in M. 

EXAMPLE: 

Elements of the Accumulator are raveled and used 

to form the new array (scalar) up to the number 

of elements required. If the accumulator has 

more elements than the new array, excess ele­

ments are discarded. If it has less, the accumu­

lator will repeat as often as necessary. 

A length error occurs if the accumulator is null 

and the dimension word specified by M indicates 

a result which is not null. 

M ACC Result 

5 1,2,3 1,2,3,1,2 

2 1,2,3 1,2 

2 3 1,2,3,4 1,2,3 
4,1,2 

4 0 1,2,3,4 empty matrix with shape 4 

5-152 

0 



INSTRUCTION NAME: Take 

OP CODE: 6Ao 

FUNCTION: (M) ~ (A) --- A 

PMU MACHINE FORMAT: 

6 A P PF I INDEX ADDRESS Ml T P 

o I' I' 13 415 I 61 7 S -IIOI" 12 1~TI~TT5 '6 [ 17T.sT.-T 201211"12312412512612712;r ,9130 13, 32 33 34 35 

DEFINITION: M must be a scalar integer, logical, or single 

precision operandi otherwise a Domain Error occurs. 

M has the format of an indirect dimension word. 

That is, if bit 7 is a "1", the result of the Take 

operator is a scalar if the accumulator is present­

ly a scalar. If bit 7 is a "0", the dimension word 

of the result is the dimension word in M. 

Bits 0 and 1 of M act as the sign bits (0 = plus, 

1 = minus) for the array dimensions in bits 24-31 

and bits 16-23 respectively. The magnitude of M 

acts as a new dimension for A. If a value of M is 

greater than the corresponding dimension of A, the 

rows (or columns) of A are extended to the length 

of the M dimension by catenating zeros, to the left 

if M is negative, or to the right if M is positive. 

If a value of M is less than or equal to the cor­

responqing dimension of A, the first or last M 

elements of each row (or column) are taken depend­

ing upon the sign of M being positive or negative. 

If a new dimension is zero, the result is an empty 

array. 

5-153 



The following tables enumerates the actions taken by 

combining the shapes of A and the result dimension specified by M. 

A (present accumulator) M (result accumulator Result 

Scalar Scalar Scalar 

Vector Scalar Length Error 

Matrix Scalar Length Error 

Scalar Vector Vector 

Vector Vector Vector 

Matrix Vector Length Error 

Scalar Matrix Matrix 

Vector Matrix Length Error 

Matrix Matrix Matrix 

5-154 



EXAMPLE: 

M ACC Result 

3 3,4,5,6 3,4,5 

-3 3,4,5,6 4,5,6 

6 3,4,5,6 3,4,5,6,0,0 

-6 3,4,5,6 0,0,3,4,5,6 

1,1 3,4 3 

5,6 

3,3 3,4 3,4,0 

5,6 5,6,0 

0,0,0 

(-3) , 3 3,4 0,0,0 

5,6 3,4,0 

5,6,0 

3,3 NULL 0,0,0 

0,0,0 

0,0,0 

3,0 3,4 NULL WITH SHAPE 3,0 

5,6 

3,3 1 SCALAR 1,0,0 

0,0,0 

0,0,0 

5-155 



INSTRUCTION NAME: Drop 

OP CODE: 6B 

FUNCTION: (M) t (A)-- A 

PMU MACHINE FORMAT: 

6 B P PF I INDEX ADDRESS Ml T P 

01' 12 13 415 1617 8 9110 1" 12 IJ 114115 '61171'8 1'912012' 122123124125126127128129130131 32 33 34 35 

DEFINITION: The M operand has the same form as in TAKE. 

EXAMPLE: 

Each dimension of A is reduced by the value of the 

corresponding magnitude of M. If any resulting 

dimension is zero or negative, the result is an 

empty array. The first M elements of each row 

(or column) of A are dropped if M is negative. The 

last M elements of each row (or column) of A are 

dropped if M is positive. 

M ACC Result 

2 3,4,5,6 5,6 

-2 3,4,5,6 3,4 

1,1 3,4 6 

5,6 

3,3 3,4 NULL MATRIX 

5,6 WITH SHAPE 0,0 

1,-1 3,4 5 

5,6 

5-156 



~ [1; 1] A 

1\ [2;1] A 

~~ .. ; 1] A 

INSTRUCTION NAME: Inner Product 
OP CODE: 6C 

FUNCTION: (M) OP 1 . OP 2 (A)-- A 

PMU MACHINE FORMAT: 

6 C P PF I INDEX ADDRESS 

011 12 I J 4 15 I 61 7 8 91 10 i 11 12 IJ 114/15 16117118119120121122123124125126127128129130131 

Ml T P 

32 33 34 35 

DEFINITION: The Load Op Code instruction (Op Code 37) 

is used first to load the two operation codes 

to be used with this instruction. 

Each element of the result A iij is formed by a 

combination of the elements of the ith row of M 

with the jth column of the initial A. 

[1;2] A [liNJ M [1 i 1J M [1 i 2J M [liP] A[l;l] A[li2] 

[2; 2J A [2iN] M [2;1] M [2; 2] M [2; P] A[2i1] A[2;2] 
. . . 

- ••• 0Pl ·01' 2. 
. . . . .. 

[Mi 2] A [MiN] M [Mi 1] M em; 2] M [MiP] 

A[Pi1] A [P; 2] 

5-157 

A[liN] 

A[2;N] 

A[PiN] 



Each element of row i of M is paired with each 

element of column j of A. Dyadic operation op2 

is placed between the elements of each pair. 

Dyadic operation opl is placed between the pairs. 

If A or M are vectors, M will be treated as a 

row vector and A as a column vector. 

If A and M are matrices, a matrix will result. 

If one is a vector, a vector will result. 

If both are vectors, a scalar will result. 

A [iij]--M[iil] op2 A [lij] op1 M [ii2] op2 A [2ij] opl M [i;3] 

op2 A [3ij] op1 ... opl M [iik] op2 A [kij] 

opl and op2 can be any of the dyadic operation 

codes. The combination +.x represents the ordinary 

matrix product. 

within the processing element, for M and A arrays, 

each Consecutive element of M is expanded to the 

length of a row of A, operation 2 is executed with 

each expanded M and each element of the row of A. 

The results are stored in a set of partial answer 

registers. The second element of M is expanded and 

paired .to a second row of A. Operation 2 is 

executed with each of these pairs of elements. 

The results of this set of operations are now 

combined with the results of the first set of 

5-158 



operations by use of operation 1. The process 

is repeated until a complete row of M has been 

applied to the entire matrix A. This yields 

row 1 of the final matrix. The entire operation 

repeats for each row of M, until the completed 

answer matrix results. 

The following table summarizes the'Inner Product operation. 

INNER PRODUCTS 

A M Result 

Scalar Scalar Scalar 

Scalar Vector Scalar 

Scalar Matrix Vector 

Vector Scalar Scalar 

Vector Vector Scalar CD 
Vector Matrix Vector CD 
Matrix Scalar Vector 

Matrix Vector Vector CD 
Matrix Matrix Matrix ® 

CD The Vectors must be of equal length. This operation is 

equivalent to a vector dot product with oP2 as add and 

oPl as multiply. 

~ The length of the vector must be equal to the number of 

matrix columns, otherwise a length error. 

CD The length of the vector must be equal to the number of 

matrix rows, otherwise a length error. 

G) The number of M matrix columns must be equal to the number 

of A matrix rows, otherwise a length error. 

CD A vector of length 1 is not treated as a scalar. 

t;-lt;q 



INSTRUCTION NAME: Outer Product 
OP CODE: fiD 

FUNCTION: (M) 0 • OP (A)-- A 

PMU MACHINE FORMAT: 

6 D P PF I INDEX ADDRESS M 1 T P 

o I' 12 13 4 1 5 1 6 1 7 8 9110 1 1 J 12 IJII'115 161171131191201"1"1?3I"1251261"1"1191301" 32 33 34 3S 
- ---'- --

DEFINITION: Each element of M is algebraically combined, accord­

ing to the specified opcode, with every element of 

A. (The opcode is specified by bits 24-31 of the 

A 

Scalar 

Scalar 

Scalar 

Vector (M) 

Vector (IV1 ) 

Vector (IV1 ) 

Matrix (M, N) 

Matrix (M,N) 

Matr.ix (M, N) 

Load Opcode instruction). The rank of the result 

is the sum of the A and M ranks (scalars have rank 

0). The following table summarizes the Outer 

Product operation. 

M Result Shape 

Scalar Scalar 

Vector (N) Vector N 

Matrix (M, N) Matrix M,N 

Scalar Vector M 

Vector (IV1 ) Matrix M,N 

Matrix pomain Error, Vector M 

Scalar Matrix M,N 

Vector Domain Error, Matrix M,N 

Matrix Domain Error, Matrix M,N 

If either A or M is complex, both must be complex, . 

otherwise a Domain Error occurs. 

5-160 



A [lil]--M [1] op A [l],A [1;2] __ M [1] op A [2] , ... A [l;j]--M [1] op A [j] 

A [2;l]--M [2] op A [l],A [2;2]-M [2] op A [2] , ••• A [2ij]-M [2] op A [j] 

A [3il]--M [3] op A [l],A [3;2]--M [3] op A [2] , ••• A [3;j]--M [3] op A [j] 

A [i;l]--M [i) op A [l],A [i;2]--M [i) op A [2] , ••• A [i;j]--M [i] op A [j] 

Each element of vector M is treated as a scalar 

and extended to equal the length of vector A. The 

specified dyadic operation is executed for each 

repeated M against the vector A. Each element 

of M produces a row vector when combined with A. 

The resulting matrix has the column dimensions of 

the length of M and the row dimension of the length 

of A. Any of the dyadic operation codes can be 

used in conjunction with the outer product instruction 

(i.e., preset into the array accumulator). 

II either A or M are scalar, the operation code 

is executed as in generalized array operations 

previously discussed. 

If the sum of ranks of A and M exceeds two (scalars 

have rank of 0) an interrupt will be sent to the PMU. 

5-161 



INSTRUCTION NAME: Reduction Along Row 

OP CODE: 6E 

FUNCTION: OPr (A)- A 

PMU MACHINE FORMAT: 

6 E P PF X XXX XXXX XI T P 

01' 12 13 4 15 1617 8 91'0 I" 12 lJ 114115 '61171'81'912012'12212312412512612712811913013' 32 33 ="4 35 

DEFINITION: An expression is formed for each row of the array 

contained in A by placing the dyadic operator 

associated with reduction between each element. 

The evaluation of these expressions is placed in 

the Accumulator. A matrix reduced in this manner 

results in a vector. A vector reduced in this 

manner results in a scalar. A sralar reduced 

remains a scalar. 

The dyadic operation code associated with this 

reduction instruction is operation 2 as loaded by 
.the Load Op Code instruction (Op Code 37) . 

. The order or reduction is from right to left. 

The subtract SBR operation produces an alternatina 

sum. The divide DVR operation produces an alter­

nating product. 

5-162 



EXAMPLE: 

Any interrupt that would normally be produced by 

by execution of the dyadic operation provided 

with the reduction instruction may be sent to 

the PMU. 

A [l]-A [1;1] op A [1; 2J op A [1; 3] op ..• op A [l;j] 
A [2J-A [2; IJ op A [2; 2J op A [2;3J op .•. op A [2;j] 
A [3J--A [3;lJ op A [3;lJ op A [3 i 3J op ... op A [3;j] 

A [i J -A [i; 1] op A [i i 2] op A [i; 3] op ... op A [i; j ] 

The contents of Al are moved from A to M. The first 

element is placed in the Accumulator. The dyadic 

operation result replaces A. The process repeats 

through the entire row. If the reduction is a 

matrix, the first row result is placed in the 

Accumulator Answer register area so that the next 

row can be similarly reduced. Again, the process 

continues until the entire array has been processed. 

Op Code 

+ 

+ 

Any Op 

ACC --
1,2,3 

1,2,3,4 

1,2,3,4 

5,6,7,8 

2,0 

NULL 30 

NULL 03 

MEMORY 

SHAPE 

3,1 

1 

2 

3 

5-163 

Result 

6 

-2 

10, 26 

a 
0,0,0 

- NULL VECTOR 

1 
,2 

2 



Note: If A is complex and op2 is multiply, a true complex 

multiply is not performed. If A is matrix and has 1 

column or a vector with one element, the accumulator 

remains unchanged (operands still subject to precision 

control as specified by bit 8 of the instruction). 

5-164 



INSTRUCTION NAME: Compression Along Columns 

OP CODE: 6F 

FUNCTION: M/A---A 

PMU MACHINE FORMAT: 

6 F P PF I INDEX I>.DDRESS Ml T P 

01' 12 13 4 Is 1617 8 9110 I" 12 13114115 '61'71'81'917012' In 12312412*6177128129130 131 32 33 34 35 

DEFINITION: The value of each M element is tested for Zero. If 

zero, the corresponding A element is deleted from 

the result accumulator. If the M element is non-zero, 

the corresponding A element is included in the result 

accumulator. 

If the M element is complex or matrix, or double pre­

cision, a domain error occurs. The following summarizes 

the Compress operator. 

M 

Scalar 

Vector 

Matrix 

Scalar 

Vector 

Matrix 

Scalar 

A 

Scalar 

Scalar 

Scalar 

Vector 

Vector 

Vector 

Matrix 

5-165 

Result 

Vector 

Vector 

Domain Error 

Vector 

Vector 
A&M must have the same length. 
Otherwise a length error is 
enabled. 

Domain Error 

Matrix 



EXAMPLE: 

M 

Vector 

Matrix 

A 

Matrix 

Matrix 

Result 

Matrix. 
The Length of M must be equal 
to the number of rows of A. 

Domain 

Note: Length and Domain Errors leave the accumulator 
unchanged. 

M ACC Result 

0,0,1,0,1 1,2,3,4,5 3,5 Vector 

1,0,1 1,2,3 1,2,3 Matrix 

4,5,6 7,8,9 

7,8,9 

1,0,1 NULL SHAPE 30 NULL SHAPE 20 

5-166 



5.3.16 Generalized Array Operations 

The Array Mode is entered when AP scalar instruc­

tions listed in Section 5.3 encounter non-scalar or complex 

operands. This form of array processing is broken into the 

following forms: 

0 AP Dyadic Arithmetic 
0 AP Monadic Arithmetic 
0 AP Compares 
0 AP Stores 
0 AP Transfers 
0 AP Load 

0 AP Dyadic Arithmetic 

The generalized array operation, M op A, is performed. If 

one operand is complex, both must be complex; otherwise, a 

domain error is signaled. The A and M operand must be conformal 

as summarized by the following table: 

A M Result 

Scalar Scalar Scalar 

Scalar Vector (M) Vector (M) 

Scalar Matrix (M, N) Matrix (M, N) 

Vector (J) Scalar Vector (J) 

Vector (J) Vector (M) Vector M - M&N must be equal; 
otherwise a length error 
OCCUl."s. 

Vector (J) Matrix (M, N) A domain error occurs. 

Matrix (J ,K) Scalar Matrix (J, K) 

Matrix (J,K) Vector (M) Domain Error 

Matrix (J, K) Matrix (M,N) Matrix (J,K) - If J~M or K~N, 
a length error occurs. 

5-167 



If either M or A is null, the result is null. Domain errors 

are signalled before length errors. Boolean operations on com­

plex operands are done pairwise. 

o AP Monadic Arithmetics (e.g., ABS) 

The specified AP Monadic is applied to the contents of the 

accumulator. The shape of the accumulator is unchanged. 

Note: The square root of a complex produces the square root 

of the real part and then the square root of the imaginary part. 

o AP Compares 

The specified AP Compare is performed with A and M. The 

rules of AP Dyadic Arithmetic holds with the additional rule 

that neither A or M are complex. 

o AP Stores 

The accumulator operand is stored according to the effective 

address specified. 

o AP Transfers 

The operand produced by performing a ItA (TAKE) operation 

(or IltA for matrices) on the accumulator replaces the accumu­

lator. This accumulator is used to determine whether a trans­

fer is performed or not. 

o AP Load 

The previous accumulator is replaced by the contents of the 

effective address. No length or domain checking occurs. 

5-168 



5.3.17 Reductions on Null Elements 

Three instructions perform, as part of their 

execution, a reduction. These instructions are: 

- 6C - Inner Product 

- 62 Outer Product Reduction 

6E Reduction 

For Inner Product and Reduction, when the re­

duction is applied to a null element, zeros are always pro­

duced. (In Outer Production Reduction, this does not apply 

since the shape of the answer is the shape of M). Thus, the 

reduction of a 3 by 0 matrix is three zeros. This is a dif­

ferentiation from what would be expected with APL. In APL, 

zeros are not always produced; the identity operand is pro­

duced. Thus, a + reduction on a 3 by 0 matrix is three 

zeros, a X reduction is three lIs, and max reduction is three 

-oo's (infinity). 

5-169 



6. TRAP STRUCTURE 



6.0 TRAP STRUCTURE 

The DPE possesses an instruction lookahead fetch­

cycle. In this structure more than one trap can occur at any 

given time. To properly process this kind of trap system, the 

PMU computer stratifies traps into levels which are vectored 

directly into a trap location of memory. This process is based 

on priorities and is completely mechanized in the hardware. 

Normal execution of a program is performed on level ~ 

(lowest priority) and traps occurring on higher levels will 

interrupt the current level and be serviced immediately. A 

comparison between trap levels (trap being honored and present 

trap) is performed by the hardware to determine the appropriate 

level to service. Lower priority, previous trap levels are 

placed in a stack to be executed when the higher levels have 

been completed. For example: 

Present Program 
Trap Le,-v.c..e~l __ _ 

o 
1 

1 

5 

5 

1 

o 

Parameter 
Stack 

Prog. flow 

o 
o 
1 
o 
1 
o 

o 

Prog. flow 

6-1 

Trap 

Instruction Trace Occurs 

Instruction Trace Routine 

PMU Overflow Trap Occurs 

Overflow Routine 

Finish Overflow Routine, 
execute "Return Stack to 
P and Proceed" to return 

Returned to Instruction Trace 
routine, execute "Return 
Stack to P and Proceed" 

Return to program flow 



6.1 Trap Levels 

There are 19 internal traps generated in the DPE 

configuration. Table 6.1 below lists the DPE trap interrupts 

and their priority level. 

Parity Error 

Interval Timer 

AP Deferral Overflow 

AP Deferral Underflow 

Kernel Protect 

Read Protect 

Write Protect 

Command Protect 

Page Error 

Kernel Out of Bounds 

Illegal Instruction 

AP Underflow 

AP Overflow 

AP Store Error 

PMU Arithmetic Overflow 

AP Domain Error 

AP Length Error 

Instruction Trace 

Kernel Trace 

Priority 
Level. 

19 

18 

17 

16 

15 

14 

13 

12 

11 

10 

9 

8 

7 

6 

5 

4 

3 

2 

1 

DPE Trap Interrupts 

Table 6.1 

6-2 



6.2 Trap Mechanism 

All traps are processed in the PMU and are 

honored when all of the following conditions are true. 

1) No other instruction is in process. 

2) No externally generated instruction is 

pending. 

3) The priority of the trap attempting to be 

honored is greater than the present priority 

of the trap being honored. The absence of 

any traps is a trap priority level 0 and 

indicates normal program execution. 

4) The priority of the trap attempting to be 

honored is greater than the priority of any 

other trap that is trying to be honored. 

That is, two or more traps can occur simultaneously 

and only one can be honored at a given time. 

6-3 



When a trap occurs and is to be honored, the 

trap mechanism vectors to a given location in memory specific 

to the trap. The specific memory location is determined by 

using the Procedure Page referenced by Word 255 of the Kernel 

Page indicated by the Procedure Kernel Register. Within this 

page, the word to be executed is in the word location equivalent 

to the priority level of the trap as given in Table 6.1. 

For example, a parity error trap would vector to the word in 

location 19 of the virtual page. 

The instruction executed should either be a 

TRANSFER AND STACK (Op Code 51), TRANSFER AND STACK KERNEL 

N (Op Codes 54-57), or TRANSFER TO EXECUTIVE (Op Code 37). 

A TRANSFER AND STACK type instruction results in a transfer 

to a user provided trap routine dedicated to the trap and 

adjustment of the program trap level to the priority 

of the trap honored. A TRANSFER TO EXECUTIVE results in 

the generation of a two word interrupt to the executive 

and the PMU entering the HALT state. The address field 

(bits 16-31) of the TRANSFER TO EXECUTIVE instruction is 

a progra~~er defined mask that by convention should indicate 

the type of internal trap generated. If any other instruc­

tion is executed, the trap is masked and the program level 

remains unchanged. It should be noted that regardless 

of the instruction executed, the trap indication causing 

the trap to be honored is reset. If the instruction 

executed does not result in a change in the program counter, 

then upon completion of the executed instruction, the 

next sequential instruction is fetched and intepreted. 

The traps which can be generated within a DPE 

and the conditions which generate them are given in the 

foilowing paragraphs. 

6-4 



6.3 Parity Error Trap (No. 19) 

This trap is generated whenever a read operation 

discloses a parity error, unless the Parity Error Inhibit 

Indicator is set. (See Section 4.1.1.7) 

6.4 Interval Timer Trap (No. 18) 

This trap is generated when the contents of the 

interval timer register has decremented to zero. 

6.5 AP Deferral Overflow Trap (No. 17) 

At the completion of the PMU servicing of the 

present instruction, when the next action function is performed, 

tIle AP Deferral Overflow trap is honored. The AP Deferral 

Overflow occurs as a result of an attempt to perform a deferral 

push when the deferral is full. The hardware will already 

have executed appropriate store deferral instructions. This 

trap is generated to indicate that an overflow had occurred. 

6.6 AP Deferral Underflow Trap (No. 16) 

At the completion of the PMU servicing of the 

present instruction, when the next action function is performed, 

the Ap Deferral Underflow trap is honored. The AP Deferral 

Underflow occurs as a result of an attempt to perform a deferral 

pop when the deferral is empty. T~e hardware will already have 

executed appropriate load deferral instructions. This trap is 

generated to indicate that an underflow had occurred. 

6-5 



6.7 Kernel Protect Trap (No. 15) 

When a Kernel Protect violation is detected, the 

remaining execution sequence of the instruction being executed 

is aborted and the kernel protect trap honored. The kernel 

protect trap results from any direct addressing (read or write) 

of the kernel area defined by the lower bound indicator with 

the mode being 0, indicating problem state (not executive mode) , 

or an invalid attempt to perform a Load Data Kernel or Initiate 

New Task instruction. There are two exceptions to this condi­

tion. If the instruction executed is either an Initiate New 

Task or Load Data Kernel and the addressed kernel entry allows 

a load of the Kernel area, no violation occurs. This viola­

tion cannot occur in executive mode or if the active source is 

I-Source and it indicates executive (EF). When this violation 

is detected, the attempted Read or Write is inhibited. 

6.8 Read Protect Trap (No. 14) 

When a Read Protect violation is detected, the 

remaining execution sequence of the instruction being executed 

is aborted and the Read Protect trap honored. The Read Protect 

trap results from an attempt to perform a read operation and 

Bit 32 of the kernel entry associated with the virtual address 

being 1. This violation cannot occur in executive mode. (Read­
modify-write instructions are considered to be write operations.) 

6.9 write Protect Trap (No. 13) 

When a write Protect violation is detected, the 

remaining execution sequence of the instruction being executed 

is aborted and the Write Protect trap honored. The Write 

Protect trap results from an attempt to perform a write operation 

6-6 



and Bit 33 of the kernel entry associated with the virtual 

address being 1. This violation cannot occur in executive 

mode. 

6.10 Command Protect Trap (No. 12) 

When a Command Protect violation is detected, the 

remaining execution sequence of the instruction being executed 

is aborted and the Command Protect trap honored. The Command 

Protect trap results from an attempt to perform a Command 

Subsystem instruction, a Transfer instruction or a Page Carry 

Sequence, and Bit 34 of the kernel entry associated with the 

virtual address being 1. This violation cannot occur in 

executive mode. 

6.11 Page Error TraR (No. 11) 

When a page of data is requested and exactly 256 

words are not received, or an instruction which specifically 

references a page is executed and the referenced operand is 

not page oriented, the Page Error trap is honored. When this 

violation is detected, the remaining execution sequence of the 

instruct~on being executed is aborted and the trap is honored. 

6.12 Kernel Out of Bounds Trap (No. 10) 

When Kernel Out of Bounds violation is detected, 

the remaining execution sequence of the instruction being 

executed is aborted and the kernel out of bounds trap honored. 

The kernel out of bounds trap is caused when an attempt is made 

to set, or when the value of, the Data Kernel Register or the 

Procedure Kernel Register is greater than the Lower Bound Register 

vaiue. The values of the kernel registers will not be changed. 

If the out of bounds condition occurs as a result of a Set Task 

Parameter instruction, the kernel registers will be incorrect. 

6-7 



6.13 Illegal Instruction Trap (No.9) 

When an illegal PMU instruction is detected, the 

remaining execution sequence of that instruction is aborted 

and the illegal instruction trap honored. When an illegal AP 

instruction is detected, the remaining execution sequence of 

that instruction is treated as 'no operation,' an illegal 

instruction trap is transmitted to the PMU, and the AP next 

action sequence performed. At the completion of the PMU 

servicing of the present instruction, when the PMU next action 

function is performed, the Illegal Instruction trap is honored. 

6.14 AP Underflow Trap (No.8) 

When an exponent Underflow is detected (the 

exponent cannot express the proper negative value), an AP 

Underflow trap is transmitted to the PMU, and the AP next 

action sequence performed. At the completion of the PMU 

servicing of the present instruction, when the PMU next action 

is performed, the AP Underflow trap is honored. 

6.15 AP Overflow Trap (No.7) 

When an exponent Overflow is detected (the 

exponent cannot express the proper positive va1ue1 or a divide 

by zero, an AP Overflow trap is transmitted to the PMU, and 

the AP next action sequence performed. At the completion of 

the PMU servicing of the present instruction, when the PMU 

next action is performed, the AP Overflow trap is honored. 

6-8 



AP Store Error Trap (No.6) 

When the AP accumulator exponent is converted to 

a memory exponent (8 bits to 7 bits),' and the conversion 

process is not exact (the higher order two bits of the accumulator 

exponent are not equal), an AP Store Error trap is transmitted 

to the PMU, and the AP next action sequence performed. At the 

completion of the PMU servicing of the present inst uction, when 

the PMU next action is performed, the AP Store Error trap is 

honored. 

6.17 PMU Arithmetic Overflow Trap (No.5) 

When the overflow condition is detected, the over­

flow trap ~honored when the next action function is performed. 

6.18 AP Domain Error Trap (No.4) 

When a Domain Error is detected (during the execution 

sequence of an array operation), the remaining execution 

sequence is aborted, and the AP Domain Error trap is transmitted 

to the PMU. When the PMU next action function is performed, 

the AP Domain Error is honored. A Domain Error occurs when the 

specified operation is not defined for the given values of the 

arguments. The value of arguments refers to data type and 

structure (scalar, array). 

6.19 AP Length Error Trap (No.3) 

When a Length Error is detected (during the execution 

sequence of an:array operation), the remaining execution 

6-9 



sequence is aborted, and the AP Length Error trap is transmitted 

to the PMU. When the PMU next action function is performed, 

the AP Length Error trap is honored. A Length Error occurs 

when an operation is not defined due to the absence of 

conformable arrays. Arrays are non conformable because 

combining coordinates have unequal lengths. 

6.20 Instruction Trace Trap (No.2) 

At the completion of the PMU servicing of the 

present instruction, when the next action function is performed, 

the instruction trace trap is honored. The instruction trace 

trap is indicated by Bit 34 of the internal instruction, or 

the second instruction word of a Two Word I/O with Indexing 

instruction, being one. 

6.21 Kernel Trace Trap (No.1) 

At the completion of the PMU servicing of the 

present instruction, when the next action function is performed, 

the kernel trace trap is honored. The kernel trace trap is 

indicated by Bit 9 of the kernel entry accessed being 1. 

6.22 Instruction Abort 

The PMU, under certain circumstances, will cause 

the remaining processing of the current instruction being 

executed to be aborted. These circumstances are any of the 

following conditions: 

l} An interval of 153.6 microseconds have passed 

since the generation of an Interval Timer 

Trap, during which interval the trap was not 

honored. 

6-10 



6.23 

2) A Kernel Protect, Read Protect, Write Protect, 

Command Protect, Page Error~ or Kernel Out of 

Bounds trap is generated. 

3} An illegal instruction has been fetched. 

computer Failure Signal 

The PMU, under certain circumstances, will raise 

a signal to the external environment indicating a Computer 

Failure. Once generated, this signal will remain on until a 

reset condition is received. 

The circumstances which will cause a Computer 

Failure signal are, any of the following conditions. 

1) A Parity Error Trap occurs during the 

processing of a previous Parity Error Trap. 

2} An interval of 153.6 microseconds have passed 

since an instruction abort caused by an Interval 

Timer Trap not being honored and the trap still 

has not been honored. This amounts to a total 

interval of 307.2 microseconds since the 

occurrence of the Interval Timer Trap, during 

which time the trap was not honored. 

The computer failure signal is reset when the 

reset line of the DPE is enabled. 

6-11 



BLANK 

6-12 



A 
'(A) 
AADC 
AE 
AI 
AP 
APQ 
Array 

BORAM 

C 

D 

DCM 
DD 

DPE 
DT 
DU 

E 

EOB 

FB 
FIFO 

H 

(H) 

I 
I-Source 

LIFO 

APPENDIX A 

GLOSSARY 

~he arithmetic processor A register or accumulator 
The contents of the arithmetic processor A registers 
All Application Digital Computer System 
Arithmetic processor accumulator exponent 
Integerized value of the AP accumulator 
Arithmetic Processor 
Arithmetic Processor Queue 
Is a non sealer operand that can have either one 
dimension (vector) or two dimensions (matrix) 

Block Oriented Random Access Memory 

The command protect bit 

The effective address or a half word operand after 
all address modifications and/or operand fetching 
Data Communicator Module 
Represents a full word operand after all address 
modifications and operand fetching 
Data Processing Element 
Data Type 
Deferral Unit or Stack 

External subsystem specified by the contents of the 
active source register 
End of Block 

Fanout Box 
First In/First Out 

A high scratchpad register (Sp D-~ through hn] 
determined by the SPA field of the instruction word 
Represents the contents of H 

Indirection Bit 
Interrupt Source Register 

Last In/First Out 

Memory reference bit or the AP M Register 
Contents of the AP M Register 
The memory location referenced by the effective 
address 
The contents of MD 

A-I 



OP CODE 

OPND 

P 
(p) 
PEI 
PF 
PMU 
P-Source 

R 

(R) 
RAMM 
Real 
REP 
RS 

(RS) 

S 

(S) 
SP 
SPA 

SP [ n] 

T 
'I'M 
TVD 

w 

Bits 0 through 7 of the instruction word, designated 
in hexadecimal notation 
Operand 

Program Counter or Parity bit 
The contents of the Program Counter 
Parity Error Inhibit Indicator 
Parenthetical Field . 
Program Management Unit 
Program Source Register 

Integerized Quotient 
Quotient Residue (Remainder) 

A low scratchpad register (Sp [0] through SP [15] ) 
determined by the SPA field of the instruction word 
or the Read Protect Bit 
The contents of the low scratchpad register 
Random Access Main Memory 
Any operand, sealer or array, that is not complex 
Replacement 
Represents scratchpad registers Rand S treated as 
a single full word register 
Contents of RS 

Represents the low order part of full word register 
pair when required for full word operations 
Contents of S 
Scratchpad 
Scratchpad Register Address indicated by bits 8 
through 11 of the instruction word 
Scratchpad Register No. n 

Trace Bit 
Task Memory or local memory 
Test Valid Flip Flop 

Write Protect Bit 

A-2 



APPENDIX B 

Numerical Listing of PMU Op Codes 

Op Code Instruction Page 

00 Test and Reset To Output 4-276 
01 Proceed 4-243 
02 Read Word To Output 4-277 
03 Write Word From Input 4-278 
04 Read Operand To Output 4-287 
05 Write Operand From Input 4-292 
06 Read Page To Output 4-289 
07 Write Page From Input 4-294 
OC Read Array To Output 4-290 
OD Write Array From Input 4-296 
OE Read Indirect Word to Output 4-291 

10 Load High SP 4-200 
11 Store High SP 4-225 
12 Load SP 4-198 
13 Store SP 4-223 
16 Load SP Full 4-202 
17 Store SP Full 4-227 
19 Move Half To Half 4-237 
lD Move Full To Full 4-239 
lF Move Full And Stack 4-241 

20 Load Left Byte 4-204 
21 Store Left Byte 4-228 
22 Load Right Byte 4-206 
23 Store Right Byte 4-230 
25 Set System Parameters 4-258 
27 Execute 4-244 
28 Initiate New Task 4-263 
29 Set Task Parameters 4-256 

30 Load Absolute Value 4-207 
31 Load Negative 4-211 
32 Interval Timer Control/Halt 4-245 
33 Store Interval Timer 4-247 
34 Load Absolute Full 4-209 
35 Load Negative Full 4-212 
36 Test and Reset 4-266 
37 Transfer To Executive 4-188 

B-1 



40 
41 
42 
43 
44 
45 
46 
47 
4F 

50 
51 
52 
53 
,54 
55 
56 
57 

60 
61 
62 
63 
64 
65 
66 
67 

70 
71 
72 
73 
74 
75 
76 
77 
7B 

80 
81 
82 
83 
84 
85 
86 
8'7 

Transfer Unconditional 
Transfer If R Negative 
Transfer If R Is Zero 
Transfer If Not Equal 
Load Data Kernel 
Transfer If R Neg Full 
Transfer If R Zero Full 
Command Subsystem/Address Modification 
Command Subsystem/Immediate Execution 

Transfer On Incremented SP 
Transfer And Stack 
Return Stack To P 
Return Stack to P and Proceed 
Transfer and Stack Kernel 0 
Transfer and Stack Kernel 1 
Transfer and Stack Kernel 2 
Transfer and Stack Kernel 3 

Single Word I/O Command 
Skip If Greater Than 
Skip If Equal To 
Skip If Not Less Than 
Load Page 
Skip If Greater Than Full 
Skip If Equal To Full 
Skip If Not Less Than Full 

Skip If Less Than 
Skip If Not Equal To 
Skip If Not Greater 
Two Word I/O Command 
Skip If Less Than Full 
Skip If Not Equal To Full 
Skip If Not Greater Than Full 
Store Page 
Two Word I/O With Indexing 

Mask Load 
Reset Bit N 
Set Bit N 
Skip On Bit N 
Load Control Bits 
Store Control Bits 
Load Multiple 
Store Multiple 

B-2 

4-175 
4-180 
4-176 
4-184 
4-218 
4-182 
4-178 
4-268 
4-272 

4-186 
4-192 
4-248 
4-250 
4-196 
4-196 
4-196 
4-196 

4-279 
4-146 
4-138 
4-158 
4-221 
4-148 
4-140 
4-160 

4-154 
4-142 
4-150 
4-281 
4-156 
4-144 
4-152 
4-235 
4-284 

4-214 
, 4-252 
4-254 
4-162 
4-216 
4-232 
4-217 
4-233 



90 
91 
92 
93 
94 
95 
96 
97 

AO 
Al 
A2 
A3 
A4 
A5 
A6 
A7 

BO 
Bl 
B2 
B3 
B4 
B5 
B6 
B7 

CO 
Cl 
C2 
C3 
C5 
C6 

DO 
Dl 
D2 
D3 
D6 
D7 

EO 
El 
E2 
E3 
E4 
E5 
E6 
E7 

D And R 
Convert 2's To SM 
XOR 
NAND 
D And R Full 
Convert 2's To SM Full 
XOR Full 
NAND Full 

And 
XNOR 
Convert SM To 2's 
D Or R 
AND Full 
XNOR Full 
Convert SM To 2's Full 
D or R Full 

Add 
D Or R 
Or 
Subtract 
Add Full 
D Or R Full 
Or Full 
Subtract Full 

Multiply Half To Half 
NOR 
D And R 
Multiply Half To Full 
NOR Full 
D and R Full 

Shift LRHC 
Shift LRFC 
Divide Full By Half 
Divide Half By Half 
Round 
Binary Normalize 

Shift ARHO 
Shift ARFO 
Shift ALHO 
Shift ALFO 
Escape 0 
Escape 1 
Escape 2 
Escape 3 

B-3 

4-82 
4-164 
4-110 
4-102 
4-84 
4-166 
4-112 
4-104 

4-78 
4-114 
4-168 
4-98 
4-80 
4-116 
4-170 
4-100 

4-62 
4-94 
4-90 
4-66 
4-64 
4-96 
4-92 
4-68 

4-70 
4-106 
4-86 
4-72 
4-108 
4-88 

4-134 
4-136 
4-76 
4-74 
4-172 
4-173 

4-118 
4-120 
4-122 
4-124 
4-197 
4-197 
4-197 
4-197 



FO Shift LRHO 4-126 
Fl Shift LRFO 4-128 
F2 Shift LLHO 4-130 
F3 Shift LLFO 4-132 
F4 Escape 4 4-197 
F5 Escape 5 4-197 
F6 Escape 6 4-197 
F7 Escape 7 4-197 

B-4 



APPENDIX C 

Numerical Listing of AP Op Codes 

Op Code Instruction Page 

27 Execute 5-85 

31 Load Memory Word 5-48 
32 Store Packed 5-49 
33 Load Deferral 5-50 
34 Store Deferral 5-51 
35 Push Data 5-55 
36 Store Operand 5-56 
37 Load Op Code 5-133 

50 Ravel 5-139 
51 Dimension 5-137 

60 Index Generator 5-138 
61 Polynomial 5-135 
62 Outer Product Reduction 5-140 
63 Expand Along Column 5-141 
64 Catenate Rows 5-142 
65 Transpose 5-145 
66 Reversal Along Rows 5-146 
67 Laminate Rows 5-147 
68 Rotate Row 5-149 
69 Reshape 5-151 
6A Take 5-152 
6B Drop 5-154 
6C Inner Product 5-155 
6D Outer Product 5-158 
6E Reduction Along Row 5-160 
6F Compression Along Column 5-162 

70 Boolean Zero 5-90 
71 Boolean AND 5-91 
72 Boolean Less Than 5-92 
73 Boolean Odd Even 5-93 
74 Boolean Greater Than 5-94 
75 Boolean Load 5-95 
76 Boolean Not Equal 5-96 
77 Boolean Inclusive OR 5-97 
78 Boolean NOR 5-98 
79 Boolean Equals 5-99 
7A Boolean Load Complement 5-100 
7J3 Boolean Less Than or Equal To 5-101 
7C Boolean Not 5-102 
7D Boolean Greater Or Equal 5-103 
7E Boolean NAND 5-104 
7F Boolean One 5-105 

C-l 



80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
8A 
8B 
8C 
8D 
8E 
8F 

90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
9A 
9B 
9C 
9D 
9E 
9F 

AO 
Al 
A2 
A3 
A4 
A5 
A6 
A7 
A8 
A9 
AA 
AB 
AC 
AD 
AE 
AF 

Logical Zero 
Logical AND 
Logical Less Than 
No Operation 
Logical Greater Than 
Logical Load 
Logical Not Equal 
Logical Inclusive Or 
Logical NOR 
Logical Equals 
Load Complement 
Logical Less Than Or Equal 
Logical Not 
Logical Greater or Equals 
Logical NAND 
Logical Set 

Reset TVD Destructive 
Compare Equal Non Destructive 
Compare Less Than Destructive 
Compare Less Than Or Equal Non Destructive 
Compare Greater Than Destructive 
Compare Greater Than Or Equal Non Destructive 
Compare Not Equal Destructive 
Set TVD Non Destructive 
Reset TVD Non Destructive 
Compare Equal Destructive 
Compare Less Than Non Destructive 
Compare Less Than Or Equal Destructive 
Compare Greater Than Non Destructive 
Compare Greater Than Or Equal Destructive 
Compare Not Equal Non Destructive 
Set TVD Destructive 

No Transfer 
Transfer On Equal To Zero 
Transfer On Greater Than Zero 
Transfer On Greater Than Or Equal to Zero 
Transfer On Less Than Zero 
Transfer On Less Than Or Equal To Zero 
Transfer On Not Equal To Zero 
Unconditional Transfer 
No Transfer 
Transfer On Equal To Zero 
Transfer On Greater Than Zero 
Transfer On Greater Than Or Equal To Zero 
Transfer On Less Than Zero 
Transfer On Less Than Or Equal To Zero 
Transfer On Not Equal To Zero 
Unconditional Transfer 

C-2 

5-106 
5-107 
5-108 
5-109 
5-110 
5-111 
5-112 
5-113 
5-115 
5-114 
5-116 
5-117 
5-118 
5-119 
5-120 
5-121 

5-73 
5-59 
5-58 
5-60 
5-61 
5-62 
5-63 
5-64 
5-65 
5-66 
5-67 
5-68 
5-69 
5-70 
5-71 
5-72 

5-76 
5-77 
5-78 
5-79 
5-80 
5-81 
5-82 
5-83 
5-76 
5-77 
5-78 
5-79 
5-80 
5-81 
5-82 
5-83 



BO 
B2 
B4 
B8 
B9 
BC 

Cl 
C2 
C4 
C5 
CA 
CC 
CF 

DO 
D2 
D4 
D8 
DA 
DC 

EO 
E2 
E4 
E5 
E8 
EA 

FO 
Fl 
F4 
F8 
F9 

Signim 
Minimum 
Maximum 
Unpack 
Load Word To Accumulator 
Transfer On Test Valid Set 

Addition 
Subtract 
Reverse Subtract 
Load Accumulator 
Load Negative 
Negation 
Absolute Value 

Divide 
Divide Short 
Divide Residue 
Reverse Divide 
Reverse Divide Short 
Reverse Divide Residue 

Hultiply 
Square Root 
Floor 
Ceiling 
Store And Halt 
Store And Proceed 

Shift Open 
Shift Cyclic 
Normalize 
Shift Single Open 
Shift Single Closed 

C-3 

5-41 
5-74 
5-75 
5-52 
5-54 
5-84 

5-16 
5-21 
5-19 
5-37 
5-38 
5-39 
5-40 

5-27 
5-33 
5-29 
5-25 
5-35 
5-31 

5-23 
5-44 
5-42 
5-43 
5-46 
5-47 

5-86 
5-87 
~,-45 

88 
[59 



BLANK 

C-4 



APPENDIX D 

Alphabetical Listing of PMU Op Codes 

Instruction 

Add 
Add Full 
AND 
AND Full 

Binary Normalize 

Command Subsystem/Address Modification 
Command Subsystem/Immediate Execution 
Convert 2's to SM 
Convert 2's to SM Full 
Convert To 2's 
Convert SM To 2's 

D And R 
D And R Full 
D And R 
D And R Full 
D Or R 
D Or R Full 
D Or R 
D Or R Full 
Divide Full By Half 
Divide Half By Half 

Escape 0 
Escape.l 
Escape 2 
Escape 3 
Escape 4 
Escape 5 
Escape 6 
Escape 7 
,Execute 

Initiate New Task 
Interval Timer Control/Halt 

D-l 

Op Code 

BO 
B4 
AO 
A4 

D7 

47 
4F 
91 
95 
A2 
A6 

C2 
C6 
90 
94 
A3 
A7 
Bl 
B5 
D2 
D3 

E4 
E5 
E6 
E7 
F4 
F5 
F6 
F7 
27 

28 
32 

4-62 
4-64 
4-78 
4-80 

4-173 

4-268 
4-272 
4-164 
4-166 
4-168 
4-170 

4-86 
4-88 
4-82 
11-84 
4-98 
4-100 
4-94 
4-96 
4-76 
4-74 

4-197 
4-197 
4-197 
4-197 
4-197 
4-197 
4-197 
4-197 
4-244 

4-263 
4-245 



Load Absolute Value 
Load Absolute Full 
Load Left Byte 
Load Riqht Byte 
Load Control Bits 
Load Data Kernel 
Load Multiple 
Load Negative 
Load Negative Full 
Load Page 
Load High SP 
Load SP 
Load SP Full 

Mask Load 
Move Full And Stack 
Move Full To Full 
Move Half To Half 
Multiply Half To Full 
Multiply Half To Half 

NAND 
NAJ:\TJ) Full 
NOR 
NOR Full 

OR 
OR Full 

Proceed 

Read Array To Output 
Read Indirect Word To Output 
Read Operand To Output 
Read Page To Otuput 
Read Word To Output 
Reset Bit N 
Return Stack To P 
Return Stack To P And Proceed 
Round 

Set Bit N 
Set System Parameters 
Set Task Parameters 
Shift ALFO 
Shift ALHO 

D-2 

30 
34 
20 
22 
84 
44 
86 
31 
35 
64 
10 
12 
16 

80 
IF 
ID 
19 
C3 
co 

93 
97 
Cl 
C5 

B2 
B6 

01 

OC 
OE 
04 
06 
02 
81 
52 
53 
D6 

82 
25 
29 
E3 
E2 

4-207 
4-209 
4-204 
4-206 
4-216 
4-218 
4-217 
4-211 
4-212 
4-221 
4-200 
4-198 
4-202 

4-214 
4-241 
4-239 
4-237 
4-72 
4-70 

4-102 
4-104 
4-106 
4-108 

4-90 
4-92 

4-243 

4-290 
4-291 
4-287 
4-289 
4-277 
4-252 
4-248 
4-250 
4-172 

4-254 
4-258 
4-256 
4-124 
4-122 



Shift ARFO E1 4-120 
Shift ARHO EO 4-118 
Shift LLFO F3 4-132 
Shift LLHO F2 4-130 
Shift LRFC D1 4-136 
Shift LRHC DO 4-134 
Shift LRFO F1 4-128 
Shift LRHO FO 4-126 
Single Word I/O Command 60 4-279 
Skip If Equal To 62 4-138 
Skip If Equal To Full 66 4-140 
Skip If Greater Than 61 4-146 
Skip If Greater Than Full 65 4-148 
Skip If Less Than 70 4-154 
Skip If Less Than Full 74 4-156 
Skip If Not Equal To 71 4-142 
Skip If Not Equal To Full 75 4-144 
Skip If Not Greater 72 4-150 
Skip If Not Greater Than Full 76 4-152 
Skip If Not Less Than 63 4-158 
Skip If Not Less Than Full 67 4-160 
Skip On Bit N 83 4-162 -
Store Byte Left 21 4-228 
Store Byte Right 23 4-230 
Store Control Bits 85 4-232 
Store Interval Timer 33 4-247 
Store Multiple 87 4-233 
Store Page 77 4-235 
Store SP 13 4-223 
Store SP Full 17 4-227 
Store High Scratchpad 11 4-225 
Subtra'ct B3 4-66 
Subtract Full B7 4-68 

Test And Reset 36 4-266 
Test And Reset To Output 00 -4-276 
Transfer And Stack 51 4-192 
Transfer And Stack Kernel 0 54 4-196 
Transfer And Stack Kernel 1 55 4-196 
Transfer And Stack Kernel 2 56 4-196 
Transfer And Stack Kernel 3 57 4-196 
Transfer If Not Equal 43 4-184 
Transfer If R Is Zero 42 4.:;.176 
Transfer If R Is Zero Full 46 4-178 
Transfer If R Negative 41 4-180 
Transfer If R Negative Full 45 4-182 

D-3 



Transfer On Incremented SP 50 4-186 
Transfer To Executive 37 4-188 
Transfer Unconditional 40 4-175 
Two Word I/O Command 73 4-281 
Two Word I/O with Indexing 7B 4-284 

Write Array From Input OD 4-296 
Write Operand From Input 05 4-292 
Write Page From Input 07 4-294 
Write Word From Input 03 4-278 

XNOR Al 4-114 
XNOR Full A5 4-116 
XOR 92 4-110 
XOR Full 96 4-112 

D-4 



APPENDIX E 

Alphabetical Listing of AP Op Codes 

Instruction 

Absolute Value 
Addition 

Boolean AND 
Boolean Equals 
Boolean Greater Or Equal 
Boolean Greater Than 
Boolean Inclusive OR 
Boolean Less Than Or Equal 
Boolean Less Than 
Boolean Load Bit 
Boolean Load Complement 
Boolean NAND 
Boolean NOR 
Boolean NOT 
Boolean Not Equal 
Boolean Odd Even 
Boolean One 
Boolean Zero 

Catenate Rows 
Ceiling 
Compare Equal Destructive 
Compare Equal Non Destructive 
Compare Greater Than Destructive 
Compare Greater Than Non Destructive 
Compare Greater Than Or Equal Destructive 
Compare Greater Than Or Equal Non Destructive 
Compare Less Than Destructive 
Compare Less Than Non Destructive 
Compare Less Than Or Equal Destructive 
Compare Less Than Or Equal Non Destructive 
Compare Not Equal Destructive 
Compare Not Equal Non Destructive 
Compression Along Column 

Dimension 
Divide 
Divide Residue 
Divide Short 
Drop 

Execute 
Expand Along Column 

E-l 

Op Code Page 

CF 5-40 
Cl 5-16 

71 5-91 
79 5-99 
7D 5-103 
74 5-94 
77 5-97 
7B 5-101 
72 5-92 
75 5-95 
7A 5-100 
7E 5-104 
78 5-98 
7C 5-102 
76 5-96 
73 5-93 
7F 5-105 
7D 5-90 

64 5-143 
E5 5-43 
99 5-66 
91 5-59 
94 5-61 
9C 5-69 
9D 5-70 
95 5-62 
92 5-58 
9A 5-67 
9B 5-68 
93 5-60 
96 5-63 
9E 5-71 
6F 5-162 

51 5-137 
DO 5-27 
D4 5-29 
D2 5-33 
6B 5-154 

27 5-85 
63 5-141 



Floor E4 5-42 

Index Generator 60 5-138 
Inner Product 6C 5-155 

Laminate Rows 67 5-147 
Load Accumulator C5 5-37 
Load Compliment 8A 5-116 
Load Deferral 33 5-50 
Load Memory Word 31 5-48 
Load Negative CA 5-38 
Load Op Code 37 5-133 
Load Word To Accumulator B9 5-54 
Logical AND 81 5-107 
Logical Equals 89 5-114 
Logical Greater Or Equals 8D 5-119 
Logical Greater Than 84 5-110 
Logical Inclusive OR 87 5-113 
Logical Less Than 82 5-108 
Logical Less Than Or Equals 8B 5-117 
Logical Load 85 5-111 
Logical NAND 8E 5-120 
Logical NOR 88 5-115 
Logical NOT 8C 5-118 
Logical Not Equal 86 5-112 
Logical Set 8F 5-121 
Logical Zero 80 5 .... 106 

Maximum B4 5-75 
Minimum B2 5-74 
Multiply EO 5-23 

Negation CC 5-39 
Normalize F4 5-45 
No Operation 83 5-109 
No Transfer AO or A8 5-76 

Outer Product 6D 5-158 
Outer Product Reduction 62 5-140 

P01ynominal 61 5-135 
Push Data 35 5-55 

Ravel 50 5-139 
Reduction Along Row 6E 5-160 
Reset TVD Destructive 90 5-73 
Rest TVD Non Destructive 98 5-65 
Reshape 69 5-151 
Reversal Along Rows 66 5-146 

E-2 



Reverse Divide D8 5-25 
Reverse Divide Residue DC 5-31 
Reverse Divide Short DA 5-35 
Reverse Subtract C4 5-19 
Rotate Row 68 5-149 

Set TVD Destructive 9F 5-72 
Set TVD Non Destructive 97 5-64 
Shift Cyclic Fl 5-87 
Shift Open FO 5-86 
Shift Single Closed F9 5-89 
Shift Single Open F8 5-88 
Signum BO 5-41 
Square Root E2 5-44 
Store and Halt ES 5-46 
Store and Proceed EA 5-47 
Store Deferral 34 5-51 
Store Operand 36 5-56 
Store Packed 32 5-49 
Subtract C2 5-23 

Take 6A 5-152 
Transfer On Equal To Zero Al or A9 5-77 
Transfer On Greater Than Or Equal To Zero A3 or AB 5-79 
Transfer On Greater Than Zero A2 or AA 5-78 
Transfer On Less Than Or Equal To Zero A5 or AD 5-81 
Transfer On Less Than Zero A4 or AC 5-80 
Transfer On Not Equal To Zero A6 or AE 5-S2 
Transfer On Test Valid Set BC 5-84 
Transpose 65 5-145 

Unconditional Transfer A7 or AF 5-83 
Unpack BS 5-52 

E-3 



BLANK 

E-4 



APPENDIX F 

CONSIDERATIONS IN PREPARING PROGRAMS FOR THE DPE 

1. Indirect Dimension Words are not provided for absolute 
data addressing. 

2. Register Replacement can only occur if the pipeline is 
empty or a transfer is not in the APQ. Otherwise, the 
present instruction will be refetched with a simultaneous 
pipeline clear function. This action will continue until 
the pipeline is clear. 

3. For resident data, the packing factor on a dimension word 
is not interpreted. 

4. For double precision word structured data, the Store and 
Halt instruction should be used for AP stores. 

5. A page error is signalled if paged non-resident data is 
encountered during the executuion of AP store instructions. 
If the page is non-resident, the AP store should specify 
addressable. This will allow the fetch cycle to obtain 
the page. It should be noted that even if this is done, 
subsequently fetched instructions may, if paged data is 
requested, overlay the page the AP store requested. Thus, 
the Store Halt instruction should be used. 

6. The location of an indirect dimension word should not be 
"write protected." When an AP store is executed which 
specified indirection and encountered an indirect dimension 
word, the accumulator dimension word replaces the dimension 
word in memory. Additionally, the dimension word may be 
stored correctly but a write protect may occur when the 
operand part of the array is stored. 

7. If an AP store references its storage location via an 
indirect dimension word, the store must be a Store and Halt 
instruction. 

8. The Deferral Overflow/Underflow Pointer maintained in 
SP [27] should reference page resident, or word structured 
data pointing to a non used RAMM. Otherwise, the system 
pipeline may stall under certain pipeline conditions which 
result in queues being full. 

F-l 



9. All references to array or complex operands using word 
structured data must specify pipeline halt (bit 3 of the 
Kernel Word being zero). 

10. All AP instructions whose op codes bits 0, 1, 2, 3 are (hex) 
2, 3, 5, or 6 will cause the pipeline to halt until their 
execution sequences are completed. 

11. Length and domain errors leave the accumulator unchanged. 

12. Vectors of length 1 are not treated as scalers. 

13. Monadic instructions (e.g., Transpose) should never be 
specified as addressables (bit 32 of the instruction 
being 1). Failure to adhere to this will result in un­
necessary operand fetch time and ambiguity in the result 
accumulator when the previous accumulator is a vector and 
the requested operand is fetched from R~M. 

14. All manipulation involving complex operands should specify 
the precision of the result as double precision. 

15. For Blockmode Operations: SP[26;], SP[24;3] should be 
initialized ~o the next to last page entry. The word dis­
placement field (bits 8-15) must be 1000 0001. 

16. Need Appendix on Reset state of the machine. 

17. When the conditional AP transfer is executed by the EXECUTE 
instruction, the PMU comes to a halt awaiting the instruc­
tions execution by the AP. This condition is analogous to 
an AP transfer being fetched when an AP transfer is 
presently in the APQ. 

18. In Blockmode operations scratchpads 16-31 may all be used. 
Thus, programs written in an environment expecting blockmode 
operations should not use these scratchpads for storage of 
program variables. 

F-2 



APPENDIX G 

PMU INSTRUCTION ATTRIBUTES 

The following chart summarizes some of the more important 

attributes of the PMU instruction set. This chart is intended 

to be used only as a summary reference after gaining a thorough 

understanding of the instructions from their individual 

descriptions in Section 4. The symbolism used in the "Function" 

column is defined in Appendix A - Glossary. The following 

notes apply, where indicated in the chart. 

NOTE 1 - "Tnst Type" Column 

This column indicates whether a given instruction is 

an TNT (Internal) or EXT (External) type of instruction. EXT 

instructions are those instructions which must be received 

through the input queue of the channel and would cause an 

illegal instruction trap to occur if fetched from program 

counter operation. INT instructions may be fetched from 

program counter operation or from the channel's input queue, 

either directly or as the second word of a command subsystem 

instruction. 

NOTE 2 _. "Operand Fetch" Column 

This column indicates whether a given instruction is 

normally addressable (ADD) or normally non addressable (NON-ADD). 

ADD instructions mayor may not have a one in bit 32 of the 

modified instruction word indicating a memory reference or an 

immediate operand, respectively. NON-ADD instructions either 

ignore the contents of bit 32 or, if bit 32 is one, expends a 

non required operand fetch from memory. 

G-1 



INST OPERAND 
OP PAGE TYPE FETCH OPERAND 

CODE INSTRUCTION NAME REF (NOTE 1) (NOTF: 2) ~IZE FUNCTION 

. PMU ARITHMETIC INSTRUCTIONS 

BO ADD 4-62 INT ADD I!ALF (R) + D-R 

B4 ADD FULL 4-64 INT ADD FULL (RS) + DO -RS 

B3 SUBTRACT 4-66 INT ADD HALF (R) - D-R 

B7 SUBTRACT FULL 4-63 INT ADD FULL (RS) - DD-RS 

CO MULTIPLY HALF TO HALF 4-70 !NT ADD HALF DX (R)-R 

C3 MULTIPLY HALF TO FULL .4-72 TNT ADD HALF OX (R)-RS 

03 DIVIDE HALF BY HALF 4-74 !NT ADD HALF (R) -;. 0 - R; REMAINDER - S 

02 DIVIDE FULL BY HALF 4-76 1NT ADD HALF- (RS) -;. D -R; REMAINDER-S 

PMU LOGICAL INSTRUCTIONS 

AO AND 4-78 1NT ADD HALF D· (R)-R 

A4 AND FULL .4-80 INT ADD FULL DO· (RS) -RS 

90 DANDR 4-82 !NT ADD HALF D' (R) -R 

94 DAND R FULL 4-84 INT ADD FULL DD' (RS) -RS 
-

C2 DANDR 4-86 INT ADD HALF D' (R)-R 

C6 o AND R FULL 4-88 !NT ADD FULL DO' (RS) -RS 

B2 OR ·4-90 INT ADD HALF Dv (R)-R 

B6 OR FULL ·4-92 INT ADD FULL DO v (RS) -RS 

B1 DOR R 4-94 1NT ADD HALF Dv(R) -R 

B5 D OR R FULL 4-96 INT ADD FULL DDV(RS) -RS 

A3 o OR R 4-98 !NT ADD HALF Dv(R) -R 

A7 D OR R FULL 4-100 !NT ADD FULL DDv(RS) -RS 

93 NAND 4-102 !NT ADD tLt;.LF Dv(R) -R 

97 NAND FULL 4-104 !NT ADD FULL DD v (RS) -RS -1 
-

CI NOR 4-106 !NT ADD HALF D· (R)-R 

C5 NOR FULL 4-108 !NT ADD FULL DD' (RS) -RS 

92 XOR 4-110 !NT ADD HALF D Gl (R)-R 

96 XOR FULL 4-112 !NT ADD FULL DD Gl (RS) -RS 

Al XNOR .4-114 !NT ADD HALF D Gl (R)-R 

A5 XNOR FULL 4-116 INT ADD FULL DO Gl (RS) - RS 

PMU SHIFT INSTRUCTIOl'<S (Note A) 

EO SHIFT ARHO ·4-118 INT ADD HALF (R)X 2-N -R 

EI SHIFT ARFO ·4-120 INT ADD HALF (RS) X 2;-N -RS 

E2 SHIFT ALHO 4-122 INT ADD HALF (R)X2N -R 

E3 SHIFT ALFO 04-124 INT ADD HALF (RS) X 2N -RS 

FO SHIFT LRHO 4-126 !NT ADD HALF (R) X 2- N -R 

Fl SHIFT LRFO 4-128 INT ADD HALF (RS) X 2-N -RS 

F2 SHIFT LLHO 4-130 !NT ADD HALF (R) X 2N_R 

F3 SHIFT LLFO 4-132 !NT ADD P..ALF (RS) X ZN -RS 

DO SHIFT LRHC 4-134 INT ADD HALF (R) X 2- N -R 

D1 SHIFT LRFC 4-136 !NT ADD HALF (RS) X 2- N - RS 

Note A: For OpCodes EO-E3, the shift is algebraic (the sign Bit, Bit G, remains unchanged), For OpCodes FO-F3, 
DO and 01 the shift is logical (Bit 0 is included in the shift), 

G-2 



INST OPERAND 
OP PAGE TYPE FETCH OPERAND 

COD INSTRUCTION NAME REF (NOTE I) (NOTE 2) SIZE FUNCTION 

PMU SKIP INSTRUCTIONS 

62 SKIP IF EQUAL TO 4-138 INT ADD HALF IF D ,,(R), (P) + 1 - P 

66 SKIP IF EQUAL FULL 4-140 INT ADD FULL IF DD" (RS), (P) + I-P 

71 SKIP IF NOT EQUAL TO 4-142 INT ADD HALF IF D*(R), (P)+ I-P 

75 SKIP IF NOT EQUAL TO FULL 4-144 11'1'1' ADD FULL IF DD"* (RS), (P) + I-P 

61 SKIP IF GREATER THAN 4-146 INT ADD HALF IF D >(R), (P) + I-P 

65 SKIP IF GREA TER THAN FULL 4-148 INT ADD FULL IF DD > (RS), (P) + 1 -P 

72 SKIP IF NOT GREATER 4-150 lNT ADD HALF IF D oS (R), (P) + 1 - P 

76 SKIP IF NOT GREATER THAN 4-152 INT ADD FULL IF DD:$ (RS), (P) + I-P 
FULL 

70 SKIP IF LESS THAN 4-154 INT ADD HALF IF D < (R), (P) + 1 - P 

74 SKIP IF LESS THAI'" FULL 4-156 INT ADD FULL IF DD < (RS), (P) + 1 -p 

63 SKIP IF NOT LESS THAN 4-158 INT ADD HALF IF D 2=: (R), (P) + 1 - P 

67 SKIP IF NOT LESS THAN FULL 4-160 INT ADD FULL IF DD2=: (RS), (P) + I-P 

83 SKIP ON BIT N 4-162 INT ADD HALF IF BITt = 1 WHERE i = 0, --. 15 
THEN P) + I-P 

PMU DATA INSTRUCTIONS 

91 CONVERT 29 TO SM 4-164 INT ADD HALF o:-i -R 

95 CONVERT 28 TO SM FULL 4-166 INT ADD 
, 

FULL DD- l-RS 

A2 CONVERT SM TO 25 4-168 INT ADD HALF D + l-R 

A6 CONVERT SM TO 29 FULL 4-170 INT ADD FULL DD + 1 -RS 

D6 ROUND 4-172 INT NONADD FULL (R) -RROUND' O-S 

'-
07 BINARY NORMALIZE 4-173 INT NONADD FULL IF (RS) POS, (RS) - RS (2 30 ) ! 

IF (RS) NEG, (RS) - RS (_230) 
SHIFT COUNT - MD 

IF (RS) ZERO, 0 - MO 

PMU TRANSFER INSTRUCTIONS 

40 TRANSFER UNCONDITIONAL 4-175 INT NONAOD HALF D-P 

42 TRANSFER IF R IS ZERO 4-176 INT NONADD HALF IF (R) = 0, D-P 

46 TRANSFER IF R ZERO FULL 4-178 INT NONADD FULL IF (RS) =0, D-P 

41 TRANSFER IF R NEGA TIVE 4-180 INT NONADD HALF IF (R) <0, D-P 

45 TRANSFER IF R NEG FULL 4-182 . INT NONADD FULL IF (RS) < 0, D - P 

43 TRANSFER. IF NOT EQUAL 4-184 INT ADD H.l;.LF IF Dolo (R), (S) -P 

50 TRANSFER ON INCREMENTED ·4-186 INT NONADD HALF IF (R) + 1 "* 0, D - P 
SP 

37 TRANSFER TO EXECUTIVE 4-188 INT NONADD FULL CONTROL OF INT TIMER 
PROG CONT - EXEC 

51 TRANSFER AND STACK 4-192 INT NONADD FULL TRAP LEVEL IND 

l MODE IND 
HALTIND 

M(R) + 1 DATA AND PROC 
KERNEL REG 

SP[ 31] 

P-SOURCE ' ~ M(R) +' 2 
P COUNTER 

(R) + 2 -SP [31] 

O-HALT IND 

D-P 

G-3 



INST OPERAND 
OP PAGE TYPE FETCH OPERAND 

CODE INSTRUCTION NAME REF (NOTE 1) (NOTE: 2) SIZE FUNCTION 

PMU TRANSFER INSTRUCTIONS (Cont.) 

54 TRANSFER AND STACK 4-1% INT NONADD FULL TRAP LEVEL IND ( (N=O) MODE IND 
HALT IND M(R) + I 55 KERNEL N DATA KERNEL REG 

~ N=l) PROC KERNEL REG 
56 (N = 0, I, 2, 3) SP (31] 

N=2) P-SOURCE 

\ 
M(R) + 2 

57 P COUNTER 
N=3) (R) + 2 -SP[3I] 

o -HALT IND 

N -PROC KERNEL REG 

D-P 

E4 ESCAPE NUMBER N 4-197 INT ADD FULL (P) - 33 + 2N 
N=O) 

E5 (N = 0, I, ..•• , 7) DD-RS 
N=I) 

E6 LOC (32 + 2N)(J6_31) -P 
N=2) 

E7 
N=3) 

F4 
N=4) 

F5 
N=5) 

F6 
N=6) 

F7 
N=7) 

PMU LOAD/STORE INSTRUCTIONS 

12 LOAD SP 4-1981 INT 
I 

ADD HALF D-R 

10 LOAD HIGH SP 4-200 INT ADD HALF D-H 

16 LOAD SP FULL 4-202 INT ADD FULL DD-RS 

20 LOAD LEFT BYTE 4-204 INT ADD HALF D(0_7) -- R(0_7)' o -R(8_15) 

22 LOAD RIGHT BYTE 4-206 INT ADD HALF D(8_15) -R(0_7)' 0 -R(8_15) 

30 LOAD ABSOLUTE VALUE 4-207 INT ADD HALF IDI -R 

34 LOAD ABSOLUTE FULL 4-209 INT ADD FULL IDDI -RS 

31 LOAD NEGA TIVE 4-211 I INT ADD HALF -D -R 

35 LOAD NEGATIVE FULL 4-212 INT ADD FULL -DD - RS 

80 MASK LOAD 4-214 INT ADD HALF D· (S)v(R)· (S) -R 

84 LOAD CONTROL BITS 4-216 INT ADD FULL I(MD)(32-35) -R(12_15)' o -R(O_II) 

86 LOAD MULTIPLE 4-217 INT NONADD FULL (MD) -RS 

I (M D + 1) -RS+ 1 
I 

. . 
(M D + IS) -RS + 15 

44 LOAD DA TA KERNEL 4-218 INT NONADD FULL DATA KERNEL PAGE -TM 

64 LOAD PAGE 4-221 INT NONADD FULL DATA PAGE -TM 

G-4 



INST OPERAND 
OP PAGE TYPF: FETCH OPERAND 

CODE INSTRUCTION NAME REF (NOTE 1) (NOTE 2) SIZE FUNCTION 

PMU LOAD/STORE INSTRUCTIONS (Cant.) 

13 STORE SP 4-223 INT NONADD HALF (R)-MD 

11 STORE HIGH SP 4-225 INT NONADD HALF (H)-MD 

17 STORE SP FULL 4-227 INT NONADD FULL (RS) -MD 

21 STORE BYTE LEFT 4-228 INT NONADD HALF (R)(0_7) -MD (O_'1) OR M D(l6_23) 

23 STORE BYTE RIGHT 4-230 INT NON ADD HALF (R)(0_7) -MD(8_I5) OR M D(24_3I) 

85 STORE CONTROL BITS 4-232 INT NON ADD FULL (R)(J2_I4) -MD(32-34) 

87 STORE MULTIPLE 4-233 INT NON ADD FULL iRS) -MD 

(RS+ 1) -MD + 1 

I (RS + 15) -MD + 15 

77 STORE PAGE 4-235 INT NONADD FULL DATA PAGE-E 

19 MOVE HALF TO HALF 4-237 INT ADD HALF (MD) -M(R) 

ID MOVE FULL TO FULL 4-239 INT ADD FULL (MD) -M(R) 

IF MOVE FULL AND STACK 4-241 INT ADD FULL (MD) - M(R + 1)' (R) + 1 -R 

PMU CONTROL INSTRUCTIONS 

01 PROCEED 4-243 INT NONADD HALF o -HALT IND 

27 EXECUTE 4-244 INT NONADD FULL (MD) USED AS INSTRUCTION 

32 INTERVAL TIMER CONTROL/ 4-245 INT ADD HALF LOAD AND CONTROL INT TIMER 
HALT 

33 STORE INTERVAL TIMER 4-247 INT NONADD HALF (INT TIMER) -MD 

52 RETURN STACK TO P 4-248 INT NONADD HALF M(Sp (31]) -l P-SOURCE 
P COUNTER 

I rR~lliO MODE IND 

M(Sp [31] )-1 HALT IND 
DATA KERNEL REG 
PROC KERNEL REG 

, SP [31] & SPA 
(Note A) 

S3 RETURN STACK TO P AND 4-250 I INT NON ADD HALF M(Sp [31]) - { P-SOURCE 
PROCEED P COUNTER 

~ TRAP IND 
MODE IND 

M(Sp [31] )-1 I DATA KERNEL REG 
PROC KERNEL REG 

(Note A) SP [31] & SPA 

o -HALT INDICATOR 

81 RESET BIT N 4-252 INT NONADD HALF o -MD (BIT N) 
N = 0, 1, .••• , 15 

82 SET BIT N 4-254 INT NONADD HALF 1 -MD (BIT N) 
N = 0, I, •••• , 15 

Note A: If mode indicator presently 0, it is left as O. 

G-5 



INST OPERAND 
OP PAGE TYPE FETCH OPERAND 

CODE INSTRUCTION NAME REF (NOTE 1) (NOTE 2l SIZE FUNCTION 

PMU CONTROL INSTRUCTIONS (Cant. 1 

29 SET TASK PARAMETERS 4-256 EXT NONADD SETS: UPPER BOUND REG 
LOWER BOUND REG 
REP ALGO REG 
DA TA ADDRESS MODE 

25 SET SYSTEM PARAMETERS 4-258 EXT NONADD SETS: MEMORY PARITY INHIBIT 
CHANNEL PARITY INHIBIT 

INITIALIZES CHANNEL 

ASSIGNS RESOURCE NAMES TO 
CHANNEL 

28 INITIA TE NEW TASK 4-z63 INT NONADD INITIALIZE PMU FOR NEW TASK 

36 TEST AND RESET 4-z66 INT NONADD HALF (MDl 16-31 - R, O-MD 

47 COMMAND SUBSYSTEM/ 4-268 INT NONADD FULL INSTRUCTION - E 
ADDRESS MODIFICATION 

4F COMMAND SUBSYSTEM/ 4-Z 72 I INT NONADD FULL INSTRUCTION -E 
IMMEDIATE EXECUTION i 

PMU INPUT/OUTPUT INSTRUCTIONS 

00 TEST AND RESET TO OUTPUT 4-Z76 EXT NON ADD FULL (MDl -E, O-MD 

OZ READ WORD TO OUTPUT 4-Z77 EXT NON ADD FULL (MDl -E 

03 WRITE WORD FROM INPUT 4-Z 78 INT NONADD FULL E -(MDl 

60 SINGLE WORD I/O COMMAND 4-279 INT NONADD FULL (MDl -E 

(MDl IS SINGLE WORD INST 

73 TWO WORD I/O COMMAND 4-Z81 INT NONADD FULL (MDl1 -E 

(MDl1 IS INSTRUCTION 

I (MDlZ -E 

(MDlZ IS DATA 

78 TWO WORD 1/0 WITH 4-Z84 1 INT NONADD FULL (MDll -E 
INDEXING 

(MDl1 IS INSTRUCTION 

(MDlZ -E 

(MDlZ IS DATA 

INDEXING ALLOWED IN FETCHING 
(MDl Z 

04 READ OPERAND TO OUTPUT 4-Z87 EXT NONADD FULL (MDl -E 

06 READ PAGE TO OUTPUT 4-Z89 EXT NONADD FULL (MDl PAGE- E 

OC READ ARRA Y TO OUTPUT 4-Z90 EXT NONADD FULL I(MDl ARRAy- E 

OE READ INDIRECT WORD TO 4-Z91 EXT NONADD FULL (MDl-E 
OUTPUT 

(MD + 1l -E 

05 WRITE OPERAND FROM 4-Z9Z EXT NONADD FULL E -MD 
INPUT 

07 WRITE PAGE FROM INPUT 4':Z94 EXT NONADD FULL E pAGE -MD 

OD WRITE ARRAY FROM INPUT 4-Z96 INT NONADD FULL E ARRAy -MD 

G-6 



APPENDIX H 

AP INSTRUCTION ATTRIBUTES 

The following chart summarizes some of the attributes of the 

AP instruction set. This chart is intended to be used only 

as a summary reference after gaining a thorough understanding 

of the instructions from their individual descriptions in 

Section 5. The symbolism used in the "Function" column is 

defined in Appendix A - Glossary. The following notes apply, 

where indicated in the chart. 

NOTE 1 - "Operand Fetch" Column 

This column indicates whether a given instruction is 

normally addressable (ADD) or normally non addressable (NON-ADD). 

ADD instructions mayor may not have a one in bit 32 of the 

modified instruction word (PMU format) indicating a memory 

reference or an immediate operand, respectively. NON-ADD 

instructions either ignore the contents of bit 32 or, if bit 32 

is one, expends a non required operand fetch from memory. 

H-l 



OPERAND 
OP PAGE FETCH FUNCTION 

CODE INSTRUCTION NAME REF (NOTE 1) TYPE FUNCTION 

AP ARITHMETIC INSTRUCTIONS 

Cl ADDITION 5-16 ADD DYADIC (M) + (A) - A 

C4 REVERSE SUBTRACT 5-19 ADD DYADIC (M) - (A)- A 

C2 SUBTRACT 5-21 ADD DYADIC (A) - (M) - A 

EO MULTIPLY 5-23 ADD DYADIC (M) X (A)- A 

D8 REVERSE DIVIDE 5-25 ADD DYADIC (M) ~ (A)- A 

DO DIVIDE 5-27 ADD DYADIC (A)-;-(M)-A 

D4 DIVIDE RESIDUE 5-29 ADD DYADIC (A)-;-(M);QR- A 

DC REVERSE DIVIDE RESIDUE 5-31 ADD DYADIC (M) -;- (A); Q R - A 

D2 DIVIDE SHOR T 5-33 ADD DYADIC (A) -;- (M); QI- A 

DA REVERSE DIVIDE SHORT 5-35 ADD DYADIC (M) -;- (A); QI- A 

C5 LOAD ACCUMULATOR 5-37 ADD MONADIC (MD)-M. THEN (M)-A 

CA LOAD NEGA TIVE 5-38 ADD MONADIC (MD)-M. THEN - (M)- A 

CC NEGATION 5-39 NONADD MONADIC - (A)- A 

CF ABSOLUTE VALUE 5-40 NONADD MONADIC I(A)I-A 

BO SIGNUM 5-41 NONADD MONADIC IF (A)<O; -I-A 
IF (A) = 0; 0 - A 
IF (A) > 0; 1 - A 

E4 FLOOR 5-42 NONADD MONADIC IF AI - 1 < (A) < AI 

THEN Al - 1 - A 

IF (A) = (AI); AI - A 

E5 CEILING 5-43 NONADD MONADIC IF Al + 1 > (A) > Al 

THEN AI -I 1 - A 

IF (A) = (AI); AI - A 

E2 SQUARE ROOT 5-44 NONADD MONADIC .JTTAiT- A 

F4 NORMALIZE 5-45 NONADD MONADIC (A) NORMALIZED - A 

AI' LOAD/STORE INSTRUCTIONS 

E8 STORE AND HALT 5-46 NONADD DYADIC 11 - STORE HALT 
(A)-MD 

0- STORE HALT 

EA STORE AND PROCEED 5-47 I NONADD DYADIC (A)-MD 

31 LOAD MEMOR Y WORD 5-48 NONADD MONADIC (MD)-A 

32 STORE PACKED 5-49 NONADD DYADIC (A)-MD 

33 LOAD DEFERRAL 5-50 NONADD MONADIC I (MD ) - DEFERRAL STACK 

34 STORE DEFERRAL 5-51 NONADD MONADIC (DEFERRAL STACK) - MD 

B8 UNPACK (NOTE A) 5-52 NONADD MONADIC UNPACK ACCUMULATOR 

B9 LOAD WORD TO ACCUMU- 5-54 ADD MONADIC (MD)-A 
LATOR 

35 PUSH DATA 5-55 ADD MONADIC (A)-MD 

36 STORE OPERAND 5-56 NONADD DYADIC (A)-M 
D 

Note A: Issued by Array Controller when packed data is interpreted. Should not be us ed in a softwa re program. 

H-2 



OPERAND 

OP PAGE FETCH FUNCTIOl\ 

CODE INSTRUCTION NAME REF (NOTE 1) TYPE FUNCTION 

AP COMPARE AND TVD INSTRUCTIONS 

92 COMPARE LESS THAN 5-58 ADD DYADIC IF (M) < (A); 1 - A, 1 - TVD 
DESTRUCTIVE IF (M) ?:(A); 0- A, 0- TVD 

91 COMPARE EQUAL NON- 5-59 ADD DYADIC IF (M) = (A); 1 - TVD 
DESTRUCTIVE IF (M) '* (A); 0 - TVD 

93 COMPARE LESS THAN OR 5-60 ADD DYADIC IF (M) :'5 (A); 1 - TVD 
EQUAL NONDESTRUCTIVE IF (M) > (A); 0 - TVD 

94 COMPARE GREATER THAN 5- 61 ADD DYADIC IF (M) > (A); 1 - A, 1 - TVD 
DESTRUCTIVE IF (M) :'5 (A); 0- A, 0- TVD 

95 COMPARE GREATER THAN 5-62 ADD DYADIC IF (M) ?: (A); 1 - TVD 
OR EQUAL NONDESTRUCTIV IF (M) < (A); 0 - TVD 

96 COMPARE NOT EQUAL 5-63 ADD DYADIC IF (M) '* (A); 1 - A, 1 - TVD 
DESTRUCTIVE IF (M) = (A); 0 - A, 0- TVD 

97 SET TVD NONDESTRUCTIVE 5-64 NONADD MONADIC 1 - TVD 

98 RESET TVD NONDESTRUC- 5-65 NONADD MONADIC O-TVD 
TIVE 

99 COMPARE EQUAL DESTRUC- 5-66 ADD DYADIC IF (M) = (A); 1 - A, 1 - TVD 
TIVE IF (M) '* (A); 0 - A, 0 - TVD 

9A COMPARE LESS THAN NON- 5- 67 ADD DYADIC IF (M) < (A); 1 - TVD 
DESTRUCTIVE IF (M) ?: (A); 0 - TVD 

9B COMP ARE LESS THAN OR 5-68 ADD DYADIC IF (M) :'5 (A); 1 - A, 1 - TVD 
EQUAL DESTRUCTIVE IF (M) > (A); 0- A, 0- TVD 

9C COMPARE GREATER THAN 5-69 ADD DYADIC IF (M) > (A); 1 - TVD 
NONDESTRUCT:IVE IF (M) :'5 (A); 0 _ TVD 

9D COMPARE GREATER THAN 5-70 ADD DYADIC IF (M) ?: (A); 1 - A, 1 - TVD 
OR EQUAL DESTRUCTIVE IF (M) < (A); 0 - A, 0 - TVD 

9E COMPARE NOT EQUAL NON- 5-71 ADD DYADIC IF (M) '* (A); 1 - TVD 
DESTRUCTIVE IF (M) = (A); 0 - TVD 

9F SET TVD DESTRUCTIVE 5-72 NONADD MONADIC 1 - TVD, 1- A 

90 RESET TVD DESTRUCTIVE 5-73 NONADD MONADIC 0- TVD, 0- A 

B2 MINIMUM 5-74 ADD DYADIC lF (A) > (M); (M) - A 

B4 MAXIMUM 5-75 ADD DYADIC IF (M) > (A); (M) - A 

I 

I 

I 
I 

H-3 



OPERAND 
OP PAGE FETCH FUNCTION 

CODE INSTRUCTION NAME REF (NOTE 1) TYPE FUNCTION 

AP TRANSFER INSTRUCTIONS 

AO NO TRANSFER 5-76 NONADD MONADIC NO OPERATION 
or 
AB 

Al TRANSFER ON EQUAL TO 5-77 NONADD MONADIC IF (A) = 0; (M) - P 
or ZERO IF (A) "* 0; (P) + 1 - P 
A9 

A2 TRANSFER ON GREATER 5-78 NONADD MONADIC IF (A) > 0; (M) - P 
or THAN ZERO IF (A) ::; 0; (P) + 1 - P 
AA 

A3 TRANSFER ON GREATER 5-79 NONADD MONADIC IF (A) 2:0; (M) - P 
or THAN OR EQUAL TO ZERO IF (A) < 0; (P) + 1 - P 
AB 

A4 TRANSFER ON LESS THAN 5-80 NONADD MONADIC IF (A) < 0; (M) - P 
or ZERO IF (A) 2: 0; (P) + 1 - P 
AC 

A5 TRANSFER ON LESS THAN OF 5-81 NONADD MONADIC IF (A) ::; 0; (M) - P 
or EQUAL TO ZERO IF (A) > 0; (P) + 1 - P 
AD 

A6 TRANSFER ON NOT EQUAL 5-82 NONADD MONADIC IF (A) "* 0; (M) - P 
or TO ZERO IF (A) = 0; (P) + 1 - P 
AE 

A7 UNCONDITIONAL TRANSFER 5-83 NONADD MONADIC (M)-P 
or 
AF 

BC TRANSFER ON TEST VALID 5-84 NONADD MONADIC IF (TVD) = 1; (M) - P 
SET IF (TVD) = 0; (P) + 1 - P 

27 EXECUTE ;5,,_85 NONADD MONADIC (MD) USED AS INSTRUCTION 

AP SHIFT INSTRUCTIONS 

FO SHIFT OPEN L?-Sb ADD DYADIC IF (M) +; (A) X 241 (M)I _ A 

IF (M) _; (A) X 2 -4 l!M)I_ A 

Fl SHIFT CYCLIC 5-87/ ADD DYADIC IF (M) +; (A) X 24 1 (M)I _ A 

IF (M) _; (A) X 2-4 1 (M)I _ A 

F8 SHIFT SINGLE OPEN ,5-88 ADD DYADIC A X 2M30-.?1 __ :-_~ 

F9 SHIFT SINGLE CLOSED ~5-89 ADD DYADIC A X 2M30-31 - A,-

AP BOOLEAN AND LOGICAL INSTRUCTIONS 

70 BOOLEAN ZERO 15~90-- NONADD MONADIC 0- A; 0- TVD 

71 BOOLEAN AND 5-91 ADD DYADIC (A)31 • (M)31 - A31 - TVD 

72 BOOLEAN LESS THAN /5-921 ADD DYADIC I IF (M)31 = 0 AND (A)31 = 1 

THEN 0 - A, 1-A31 , 1 - TVD 

IF (M)31 = 1 

THENO-A, O-TVD 

73 BOOLEAN ODD EV-i:N _5_-93 NONADD MONADIC IF (A)31 = 1 

THEN O-A, l-A31 , I-TVD 

- '.- IF (A)31 =0 

THEN O-A. O--TVD 
74 BOOLEAN GREATER THAN IS-9~i . ADD DYADIC IF (M)31 > (A)31 

THEN O-A, 1 - A 31 , 1- TVD 

I 
IF (M)31 = 0 

THEN 0- A, O-TVD 

H-4 



OPERAND 
FUNCTIONI OP PAGE FETCH 

COD INSTRUCTION NAME REF (NOTE J) TYPE FUNC'nON 

-AP BOOLEAN AND LOGICAL INSTHUCTIONS (Contd) 

75 BOOLEAN LOAD 5-95 ADD MONADIC IF (M)31 = J 

THEN 0- A, 1-.A3J , J - TVD 

IF (M)31 = 0 

TI-IEN 0 - A, 0 - TVD 

76 BOOLEAN NOT EQUAL 15-96. ADD DYADIC IF (M)31 " (A)3) 

THEN 0- A, ) - A 31 , 1 - TVD 

IF (M)31 = (A)31 

TI-IEN 0 - A, 0 - TVD 

77 BOOLEAN INCLUSIVE OR .f-97 ADD DYADIC IF (M)31 OR (A)31 = I 
THEN 0- A, 1- A31 , ) - TVD 

IF (M)31 AND (A)31 = 0 

THEN 0 - A, 0 - TVD 

78 BOOLEAN NOR 5-98 ADD DYADIC IF (M)31 AND (A)31 = 0 

THEN 0- A, 1 - A 31 , 1 - TVD 

IF (M)31 OR (A)31 = I 
THEN 0 - A, 0 - TVD 

79 BOOLEAN EQUALS 5-99 ADD DYADIC IF (M)31 = (A)31 

THEN 0- A, I-A31 , 1- TVD 

IF (M)31 " (A)3l 

THEN 0 - A, 0 - TVD 

7A BOOLEAN LOAD COMPLE- 5-100 ADD MONADIC IF (M)31 = 0 
MENT 

TI-IEN 0 - A, l-A31 , 1 - TVD 

IF (M)31 = I 
THEN 0- A, 0- TVD 

7B BOOLEAN LESS THAN OR L5~10!! ADD DYADIC IF (M)3! = 0 OR (A)31 = 1 
EQUAL TO 

THEN O-A, 1 - A 31 , 1 - TVD 

IF (M)31 " 0 OR (A)3! '" 1 

THEN 0- A, 0- TVD 

7C BOOLEAN NOT 5-102 NONADD MONADIC IF (A)3! = 0 

THEN O-A, 1 - A 31 , ! - TVD 

IF (A)3! = 1 

THEN 0 - A, 0 - TVD 

7D BOOLEAN GREATER OR 5~1 o:f ADD DYADIC IF (M)31 = 1 OR (A)31 = 0 
EQUAL 

---'_ .. _--. 
THEN 0- A, 1 - A 31 , 1- TVD 

IF (M)3! = 0 OR (A)3! = 1 

THEN 0 - A, 0 - TVD 

7E BOOLEAN NAND 5-104 ADD DYADIC I IF (M)31 = 0 OR (A)31 = 0 

THENO-A, 1 - A 31 , 1- TVD 

IF (M)31 = 1 AND (A)31 = 1 

THEN 0 - A, 0 - TVD 

7F BOOLEAN ONE i5-l05; NONADD MONADIC O-A, 1 - A 31 , 1- TVD 

H-5 



OPERAND 
OP PAGE FETCH FUNCTJO 

COD· INSTRUCTION NAME REF (NOTE I) TYPE FUNCTJON 

AP BOOLEAN AND LOGICAL INSTRUCTIONS (Contd) 

80 LOGICAL ZERO 5-106 NONADD MONADIC a - AO _31 

81 LOGICAL AND 5-107 ADD DYADIC (M)0_3I' (A)0_31 - A O _31 

82 LOGICAL LESS THAN :5 -1 08 ADD DYADIC (A)0_31 > (M)0_31 - AO _ 31 

83 NO OPERATION 5-109 NONADD --- NO OP 

84 LOGICAL GREATER THAN 5 -II 01 ADD DYADIC (M)0_31 > (A)0_31 - AO _ 31 

85 LOGICAL LOAD 5-111 ADD DYADIC (M)0_31 - (A)0_31 

S6 LOGICAL NOT EQUAL '5 - 112 ADD DYADIC (M)0_31 " (A)0_31; 1- A O _31 

(M)0_31 = (A)0_31; 0- AO _31 

87 LOGICAL INCLUSIVE OR 5-113 ADD DYADIC IF (M)0_31 = I OR (A)0_31 = 1 

THEN 1 - (A)0_31 

IF (M)0_31 = a AND (A)0_31 =0 

THEN 0-- AO _31 

89 LOGICAL EQUALS 5-114 ADD DYADIC IF (M)0_31 = (A)0_31 

THEN 1 - AO _31 

IF (M)0_31 " (A)0_31 
THEN 0- AO _31 

88 LOGICAL NOR 2_0 L15 ADD DYADIC IF (M)0_31 AND (A)0_31 = a 
THEN 1 - A O _ 31 

IF (M)0_31 OR (A)0_31 " a 
THEN 0 - AO _31 

SA LOAD COMPLEMENT 5-116 ADD DYADIC (M)-A 

8B LOGICAL LESS THAN OR 
5-Ul! 

ADD DYADIC IF (M)0_31 = 0 OR (A)0_31 = 1 
EQUAL 

THEN 1 -> AO _ 31 

IF (M)0_31 = 1 AND (A)0_31 =0 

THEN 0 - A O _ 31 

SC LOGICAL NOT 5-118 NONADD MONADIC (A)-A 

8D LOGICAL GREATER OR i5 -119 ADD DYADIC IF (M)0_31 = 1 OR (A)0_31 =0 
EQUALS 

THEN 1 - AO _31 

I 
IF (M)0_31 = 0 AND (A)0_31 = 1 

THEN 0 - A O _ 31 I 

8E LOGICAL NAND 5-120 ADD DYADIC IF (M)0_31 = 0 OR (A)0_31 = 0 

THEN I - AO _31 

I IF (M)0_31 = 1 AND (A)0_31 = I 

THEN 0 - A O _31 

SF LOGICAL SET 5-121 NONADD MONADIC I-AO _31 

H-6 



OPERAND 
OP PAGE FETCH FUNCTION 

CODE INSTRUCTION NAME REF (NOTE I) TYPE FUNCTION 

AP ARRAY INSTRUCTIONS 

37 LOAD OP CODE 5-133 1 NONADD MONADIC OP I ANDOP2 LOADEDTOAP 

61 POLYNOMIAL 5-135 ADD DYADIC POWER SElUES EXPANSION OF A 
AND MUSING OP 1 and OF 2 

51 DIMENSION 5-137 NONADD MONADIC p(A)-A 

60 INDEX GENERA TOR 5-138 NONADD MONADIC 0, I, 2, •... , (A)24_31 -1 (Note A) 

50 RAVEL 5-139 NONADD MONADIC (A)-A 

62 OUTER PRODUCT REDUC- 5-140 ADD DYADIC OP, /(M)~ . OP2 , (A)-A 
TION 

63 EXPAND ALONG COLUMN 5-Hl.l' ApD DYADIC (M)", (A) - A 

64 CATENATE ROWS 5-143 ADD DYADIC (A), (M)-A 

65 TRANSPOSE 5-145 NONADD MONADIC .<\>(A)-A 

66 REVERSAL ALONG ROWS 5-146 NONADD MONADIC <j>(A)-A 

67 LAMINA TE ROWS 5-147 ADD DYADIC (A), [ -. 5) (M) - A (Note A) 

68 ROTATE ROW 5-149 ADD DYADIC (M)1> (A) - A 

69 RESHAPE 5-151 ADD DYADIC (M) P (A)-A 

6A TAKE 5-152 ADD DYADIC (M) 1 (A)-A 

6B DROP 5-154 ADD DYADIC (M) I(A)-A 

6C INNER PRODUCT 5-155 ADD DYADIC (M) OP j • OPZ (A) - A 

6D OUTER PRODUCT 5-158 ADD DYADIC Me. OP (A) --A 

6E REDUCTION ALONG ROW 5-160 NONADD MONADIC OP/(A) - A 

6F COMPRESSION ALONG 5-162 ADD DYADIC (M)/(A)-A 
COLUMNS 

!";ute A: Origin 0 

I 

I 

I 

I 

H-7 



BLANK 

H-8 



APPENDIX I 

CHANNEL INTERRUPT CONDITIONS 

The channel transmits an interrrupt to the executive if one 
of the following actions occur. (Reference Section 4.2.2.1.2 
Channel Interrupt). 

Status bus error 
Send error 
Receive error 
PMU alert 
Channel reset 

The environment which causes these actions is as follows: 

Status Bus Error - The detection of an illegal code on the 
indicated bus in the status bus lines of the primary bus. 

Send Error - A second error status return is detected after 
the transmission of a word that has been retried. The word 
was retried due to the detection of an error status return 
when the word was initially transmitted. 

Receive Error - A parity error is detected on the indicated bus 
on a word that is being re-transmitted on the primary bus (retry 
bit is on). 

NOTE: The channel transmitting the word sends a send error 
interrupt to the executive. The channel receiving the word 
sends a receive error interrupt to the executive. 

PMU Alert - The PMU alert signal is the computer failure signal 
in a DPE configuration. See Section 6.23, Computer Failure 
Signal, for a further description. 

Channel Reset - Channel reset occurs when the timeout counter 
runs to completion (4096 IB clock periods). The timeout 
counter when enabled starts counting from 0 every time a new 
word is placed on the input secondary bus and is reset when 
the word is acknowledged by the receiving element. The en­
abling condition for the timeout counter is either: (1) an 
emergency instruction placed on -the secondary bus (ref. 
4.2.2.2.1); (2) a data word or non-emergency instruction placed 
on the secondary bus and the timeout enable allowed by the Set 
System Parameter instruction. 

I-I 


	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	4-001
	4-002
	4-003
	4-004
	4-005
	4-006
	4-007
	4-008
	4-009
	4-010
	4-011
	4-012
	4-013
	4-014
	4-015
	4-016
	4-017
	4-018
	4-019
	4-020
	4-021
	4-022
	4-023
	4-024
	4-025
	4-026
	4-027
	4-028
	4-029
	4-030
	4-031
	4-032
	4-033
	4-034
	4-035
	4-036
	4-037
	4-038
	4-039
	4-040
	4-041
	4-042
	4-043
	4-044
	4-045
	4-046
	4-047
	4-048
	4-049
	4-050
	4-051
	4-052
	4-053
	4-054
	4-055
	4-056
	4-057
	4-058
	4-059
	4-060
	4-061
	4-062
	4-063
	4-064
	4-065
	4-066
	4-067
	4-068
	4-069
	4-070
	4-071
	4-072
	4-073
	4-074
	4-075
	4-076
	4-077
	4-078
	4-079
	4-080
	4-081
	4-082
	4-083
	4-084
	4-085
	4-086
	4-087
	4-088
	4-089
	4-090
	4-091
	4-092
	4-093
	4-094
	4-095
	4-096
	4-097
	4-098
	4-099
	4-100
	4-101
	4-102
	4-103
	4-104
	4-105
	4-106
	4-107
	4-108
	4-109
	4-110
	4-111
	4-112
	4-113
	4-114
	4-115
	4-116
	4-117
	4-118
	4-119
	4-120
	4-121
	4-122
	4-123
	4-124
	4-125
	4-126
	4-127
	4-128
	4-129
	4-130
	4-131
	4-132
	4-133
	4-134
	4-135
	4-136
	4-137
	4-138
	4-139
	4-140
	4-141
	4-142
	4-143
	4-144
	4-145
	4-146
	4-147
	4-148
	4-149
	4-150
	4-151
	4-152
	4-153
	4-154
	4-155
	4-156
	4-157
	4-158
	4-159
	4-160
	4-161
	4-162
	4-163
	4-164
	4-165
	4-166
	4-167
	4-168
	4-169
	4-170
	4-171
	4-172
	4-173
	4-174
	4-175
	4-176
	4-177
	4-178
	4-179
	4-180
	4-181
	4-182
	4-183
	4-184
	4-185
	4-186
	4-187
	4-188
	4-189
	4-190
	4-191
	4-192
	4-193
	4-194
	4-195
	4-196
	4-197
	4-198
	4-199
	4-200
	4-201
	4-202
	4-203
	4-204
	4-205
	4-206
	4-207
	4-208
	4-209
	4-210
	4-211
	4-212
	4-213
	4-214
	4-215
	4-216
	4-217
	4-218
	4-219
	4-220
	4-221
	4-222
	4-223
	4-224
	4-225
	4-226
	4-227
	4-228
	4-229
	4-230
	4-231
	4-232
	4-233
	4-234
	4-235
	4-236
	4-237
	4-238
	4-239
	4-240
	4-241
	4-242
	4-243
	4-244
	4-245
	4-246
	4-247
	4-248
	4-249
	4-250
	4-251
	4-252
	4-253
	4-254
	4-255
	4-256
	4-257
	4-258
	4-259
	4-260
	4-261
	4-262
	4-263
	4-264
	4-265
	4-266
	4-267
	4-268
	4-269
	4-270
	4-271
	4-272
	4-273
	4-274
	4-275
	4-276
	4-277
	4-278
	4-279
	4-280
	4-281
	4-282
	4-283
	4-284
	4-285
	4-286
	4-287
	4-288
	4-289
	4-290
	4-291
	4-292
	4-293
	4-294
	4-295
	4-296
	5-000
	5-001
	5-002
	5-003
	5-004
	5-005
	5-006
	5-007
	5-008
	5-009
	5-010
	5-011
	5-012
	5-013
	5-014
	5-015
	5-016
	5-017
	5-018
	5-019
	5-020
	5-021
	5-022
	5-023
	5-024
	5-025
	5-026
	5-027
	5-028
	5-029
	5-030
	5-031
	5-032
	5-033
	5-034
	5-035
	5-036
	5-037
	5-038
	5-039
	5-040
	5-041
	5-042
	5-043
	5-044
	5-045
	5-046
	5-047
	5-048
	5-049
	5-050
	5-051
	5-052
	5-053
	5-054
	5-055
	5-056
	5-057
	5-058
	5-059
	5-060
	5-061
	5-062
	5-063
	5-064
	5-065
	5-066
	5-067
	5-068
	5-069
	5-070
	5-071
	5-072
	5-073
	5-074
	5-075
	5-076
	5-077
	5-078
	5-079
	5-080
	5-081
	5-082
	5-083
	5-084
	5-085
	5-086
	5-087
	5-088
	5-089
	5-090
	5-091
	5-092
	5-093
	5-094
	5-095
	5-096
	5-097
	5-098
	5-099
	5-100
	5-101
	5-102
	5-103
	5-104
	5-105
	5-106
	5-107
	5-108
	5-109
	5-110
	5-111
	5-112
	5-113
	5-114
	5-115
	5-116
	5-117
	5-118
	5-119
	5-120
	5-121
	5-122
	5-123
	5-124
	5-125
	5-126
	5-127
	5-128
	5-129
	5-130
	5-131
	5-132
	5-133
	5-134
	5-135
	5-136
	5-137
	5-138
	5-139
	5-140
	5-141
	5-142
	5-143
	5-144
	5-145
	5-146
	5-147
	5-148
	5-149
	5-150
	5-151
	5-152
	5-153
	5-154
	5-155
	5-156
	5-157
	5-158
	5-159
	5-160
	5-161
	5-162
	5-163
	5-164
	5-165
	5-166
	5-167
	5-168
	5-169
	6-00
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	D-03
	D-04
	E-01
	E-02
	E-03
	E-04
	F-01
	F-02
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	H-08
	I-01

