ALL APPLICATIONS
DIGITAL COMPUTER

DATA PROCESSING
ELEMENT
(DPE)

PROGRAMMER' S
REFERENCE
MANUAL

BR-8184

30 SEPTEMBER 1974

< MYTH EOR&

UNCLASSIFIED

ALL APPLICATIONS DIGITAL COMPUTER (AADC)
DATA PROCESSING ELEMENT (DPE)
PROGRAMMERS REFERENCE MANUAL

BR-8184 30 September 1974

Prepared for

Naval Air Development Center

Warminster, Pennsylvania 18974

PREPARED BY

RAYTHEON COMPANY

MISSILE SYSTEMS DIVISION

B EDFORD.,. MASSACHUSETTS

BLANK

ii

TABLE OF CONTENTS

PREFACE
1.0 INTRODUCTION

2.0 SYSTEM ARCHITECTURE

2.1 System Components

2.2 Data Processing Element Components

3.0 DATA FLOW

3.1 Primary Bus

3.1.1 Transmission Types

3.1.2 Sequence Number Field
3.1.3 Data/Instruction Field

3.1.4 Source/Destination Field

3.2 Chaﬁnel

3.2.1 Input Queue
3.2.2 Output Queue

4.0 PROGRAM MANAGEMENT UNIT (PMU)

4.1 PMU Registers

4.1.1 Addressable Registers

4.1.1.1
4.1.1.2
4.1.1.3
4.1.1.4
4.1.1.5
4.1.1.6
4.1.1.7
4.1.1.8
4.1.1.9

General Scratchpad Registers
Program Address Register
Interval Timer Register

Source Registers

Halt Indicator

Trap Level Register

Parity Error Inhibit Indicator
Procedure Kernel Register

Data Kernel Register

iii

3-1
3-1
3-6
3-9
3-9
3-10
3-11
3-12
3-13

4.1.1.10 Upper Bound Register
4.1.1.11 Lower Bound Register
4.1.1.12 Executive Mode Indicator
4.1.1.13 Data Addressing Mode Indicator
4.1.1.14 Replacement Algorithm Register
4.1.2 Non Addressable Registefs
4.1.2.1 Procedure Page Register
Modes of Operation
4.2.1 Problem Solving
4.2.2 Executive Mode
4.2.2.1 Entrance Into Executive Mode
4.2.2.1.1 Programmed
4.2.2.1.2 Channel Interrupt
4.2.2.2 Executive Mode Capabilities

4.2.2.2.1 Emergency
Commands

4.2.2.2.2 Security System
4.2.2.3 Exit From Executive Mode
Detailed Instruction Performance
4.3.1 External Instructions
4.3.2 Emergency Commands
4.3.3 Internal Instructions

4.3.3.1 Virtual Addressing
Modification

4.3.3.2 Normal Instruction Fetch

4.3.3.2.1 Program Counter
Operation

4.3.3.2.2 Page Carry

4.3.3.3 Procedure Page Fetch
4.3.3.3.1 Kernel Entry Word
4.3.3.3.2 Resident Procedure

4.3.3.3.3 Non Resident
Procedure

B U O N fssh N N

PAGE

| | |

|

|
N N 0000000y O

4-10
4-11
4-11
4-12
4-12
4-13
4-14

4-15
4-16

4-16
4-17
4-17
4-18
4-20

4-20

4.3.3.3.4 Replacement Algorithm 4-21

iv

4.3.3.4

4.3.3.5

Non Standard Procedure
Page Fetch

Examples of Instruction
Fetch

4.3.3.5.1 Resident Paged
Procedure

4.3.3.5.2 Non Resident Paged
Procedure

4.3.4 Instruction Word Interpretation

4.3.4.1
4.3.4.2
4.3.4.3

4.3.4.4

Instruction Format
Parity

Addressing Modification

'4.3.4.3.1 1Indexing

4.3.4.3.2 1Indirect Addressing

4.3.4.3.3 Chaining of Address
Modification

4.3.4.3.4 Examples of Address
Modification

Operand Cycle

4.3.4.4.1 Memory Operand
Fetch

4.3.4.4.2 Non Memory Operand
Fetch

4.3.4.4.3 Instruction Trace

4.3.4.4.4 Examples of Non
Resident Full Word
Operand Fetch

4.3.4.4.5 Pipeline

4.3.5 1Instruction Execution

4.3.5.1

4.3.5.2

Operand Destination

4.3.5.1.1 Destination is AP
4.3.5.1.2 Destination is PMU
PMU Word Formats

4.3.5.2.1 Half Word Arithmetic
Format

4.3.5.2.2 Full Word Arithmetic
Format

PAGE

4-24
4-28
4-28
4-30
4-30
4-30
4-30

4-44
4-45

4-45
4-45
4-51
4-51
4-51
4-52
4-53

4.3.5.2.3 Half Word Logical
. Format

4.3.5.2.4 Full Word Logical
Format

4.3.5.2.5 Shift Count Format

4.3.5.2.6 Data Transmission
Word Format

4.3.5.2.7 Instruction
Transmission Word
Format

4.3.6 Operand Types

4.3.7 Overlapped Fetch Cycle

PMU Instruction Definitions

4.4.1 PMU Arithmetic Instructions

(BO)
(B4)
(B3)
(B7)
(Co)
(C3)
(D3)
(D2)

Add

Add Full

Subtract

Subtract Full
Multiply Half to Half
Multiply Half to Full
Divide Half by Half
Divide Full by Half

4.4.2 PMU Logical Instructions

(RO)
(n4)
(90)
(94)
(c2)
(ce)
(B2)
(B6)
(B1)

AND
AND Full
D And R
D And R
D And R
D And R
OR

OR Full
D Or R

"Full

Full

vi

PAGE

4-53
4-54

4-55
4-55
4-57
4-60
4-62

4-62
4-64
4-66
4-68
4-70
4-72
4-74
4-76
4-78
4-78
4-80
4-82
4-84
4-86
4-88
4-90
4-92
4-94

4.4.

4.4.

3

4

(B5)
(A3)
(A7)
(93)
(97)
(c1)
(c5)
(92)
(96)
(A1)
(A5)

D Or
D Or
D Or
NAND
NAND
NOR

NOR F
XOR

XOR F
XNOR
XNOR

R Full

R

R Full

Full

ull

ull

Full

PMU Shift Instructions

(EO)
(E1)
(E2)
(E3)
(FO)
(F1)
(F2)
(F3)
(DO)
(D1)

Shift
Shift
Shift
Shift
Shift
Shift
Shift
Shift
Shift
Shift

ARHO
ARFO
ALHO
ALFO
LRHO
LRFO
LLHO
LLFO
LRHC
LRFC

PMU Skip Instructions

(62)
(66)
(71)
(75)
(61)
(65)
(72)

Skip
Skip
Skip
Skip
Skip
Skip
Skip

If Equal To

If Equal To Full

If Not Equal To

If Not Equal To Full
If Greater Than

If Greater Than Full
If Not Greater

vii

PAGE

' 4-96

4-98

4-100
4-102
4-104
4-106
4-108
4-110

4-112

4-114
4-116
4-118
4-118
4-120
4-122
4-124
4-126
4-128
4-130
4-132
4-134
4-136
4-13g
4-138
4-140
4-142
4-144
4-146
4-148
4-150

4.4.5

4.4.6

(76)
(70)
(74)
(63)
(67)
(83)

-Skip If

Skip If
Skip If
Skip If
Skip If
Skip On

Not Greater Than Full

Less
Less
Not
Not
Bit

Than

Than Full
Less Than

Less Than Full
N

PMU Data Instructions
Convert 2's To SM
Convert 2's To SM Full
Convert SM To 2's
Convert SM To 2's Full

(91)
(95)
(a2)
(n6)
(D6)
(D7)

Round

Binary Normalize

PMU Transfer Instructions

(40)
(42)
(46)
(41)
(45)
(43)
(50)
(37)
(51)
(54)
(55)
(56)
(57)
(E4)
(E5)
(E6)

Transfer Unconditional

Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Transfer
Escape O
Escape 1
Escape 2

If
If
If
If
If
On
To
And
And
And
And
And

viii

R Is Zero

R Zero Full

R Negative

R NEG Full

Not Equal

Incremented SP

Executive
Stack
Stack Kernel O
Stack Kernel 1
Stack Kernel 2
Stack Kernel 3

PAGE

4-155
4-154
4-156
4-15g
4-160
4-162
4-164
4-164
4-166
4-1€8
4-170
4-172
4-173
4-175
4-175
4-17%
4-18
4-180
4-182
4-184
4-18¢
4-188
4-192
4-196
4-196
4-196
4-196
4-197
4-197
4-197

4.4.7

PMU Load/Store Instructions

(12)
(10)
(16)
(20)
(22)
(30)
(34)
(31)
(35)
(80)
(84)
(86)
(44)
(64)
(13)
(11)
(17)
(21)
(23)
(85)
(87)
(77)
(19)
(1D)
(1F)

Escape
Escape
Escape
Escape

Escape

O bW N

Escape 7

Load
Load
Load
Load
Load
Load
Load
Load
Load
Mask
Load
Load
Load
Load

Store

Store

SP

High SP

SP Full
Left Byte
Right Byte
Absolute Value
Absolute Full
Negative
Negative Full
Load

Control Bits
Multiple
Data Kernel
Page

SP

High Scratchpad

Store SP Full

Store
Store
Store
Store

Store

Move
Move

Move

Byte Left
Byte Right
Control Bits
Multiple

Page
Half to Half
Full To Full
Full And Stack

ix

PAGE

4-197
4-197
4-197
4-197
4-197
4-197
4-198
4-198
4-200
4-202
4-204
4-206
4-207
4-209
4-211
4-212
4-214
4-216
4-217
4-218
4-221
4-223
4-225
4-227
4-228
4-230
4-232
4-233
4-235
4-237
4-239
4-241

4.4.8 PMU Control Instructions

4.4.9

(01)
(27)
(32)
(33)
(52)
(53)
(81)
(82)
(29)
(25)
(28)
(36)
(47)

(4F)

Proceed

Execute

Interval Timer Control/Halt
Store Interval Timer

Return Stack to P

Return Stack to P And Proceed
Reset Bit N

Set Bit N

Set Task Parameters

Set System Parameters
Initiate New Task

Test and Reset

Command Subsystem/Address
Modification

Command Subsystem/Immediate
Execution

PMU Input/Output Instructions

(00)
(02)
(03)
(60)
(73)
(7B)
(04)
(06)
(oc)
(OE)
(05)
(07)
(OD)

Test And Reset To Output
Read Word To Output

Write Word From Input
Single Word I/O Command
Two Word I/0 Command

Two Word I/0 with Indexing
Read Operand To Output
Read Page To Output

Read Array To Output

Read Indirect Word To Output
Write Operand From Input
Write Page From Input
Write Array From Input

PAGE

4-243
4-243
4-244
4-245
4-247
4-248

4-250

4-252
4-254
4-256
4-258
4-263
4-266

4-268

4-272
4-276
4-276
4-277
4-278
4-279
4-281
4-284
4-287
4-289
4-290
4-291
4-292
4-294
4-296

THE
5.1

ARITHMETIC PROCESSOR

AP System Components
5.1.1 The AP Fanout Box
5.1.2 AP Input Formats

5.1.3 AP Input Instruction/Data Queue
5.1.4 The AP Arithmetic Unit (APAU)

Basic AP Instruction Sequence

Basic AP Instruction Set
5.3.1 AP Arithmetic Instructions

(c1)
(c4)
(c2)
(EO)
(D8)
(DO)
(D4)
(DC)
(D2)
(DA)
(c5)
(ca)
(cc)
(CF)
(BO)
(E4)
(E5)
(E2)
(F4)

Addition

Reverse Subtract
Subtract

Multiply

Reverse Divide
Divide

Divide Residue
Reverse Divide Residue
Divide Short

Reverse Divide Short
Load Accumulator
Load Negative
Negation

Absolute Value
Signum |

Floor

Ceiling

Square Root

Normalize

xi

PAGE

5-1

5-1

5-3

5-6

5-8

5-10
5-14
5-15
5-16
5-16
5-19
5-21
5-23
5-25
5-27
5-29
5-31
5-33
5-35
5-37
5-38
5-39
5-40
5-41
5-42
5-43
5-44
5-45

5.3.2

5.

3.3

LOAD/STORE Instructions

(E8)
(EA)
(31)
(32)
(33)
(34)
(B8)
(B9)
(35)
(36)

Store and Halt

Store and Proceed

Load Memory Word

Store Packed

Load Deferral

Store Deferral

Unpack

Load Word to Accumulator
Push Data

Store Operand

Compare and TVD Instructions

(92)
(91)
(93)

(94)
(95)

(96)
(97)
(98)
(99)
(9A)
(9B)

(9c)
(9D)

(9E)
(9F)
(90)
(B2)
(B4)

Compare Less Than Destructive
Compare Equal Non Destructive

Compare Less Than or Equal
Non Destructive

Compare Greater Than Destructive

Compare Greater Than or Equal
Non Destructive

Compare Not Egqual Destructive
Set TVD Non Destructive
Reset TVD Non Destructive

Compare Equal Destructive

Compare Less Than Non Destructive

Compare Less Than or Equal
Destructive

Compare Greater Than Non Destructive

Compare Greater Than or Equal
Destructive

Compare Not Equal Non Destructive

Set TVD Destructive
Reset TVD Destructive
Minimum

Maximum

xii

PAGE

5-46
5-56
5-47
5-48
5-49
5-50

- 5-51

5-52

- 5-54

5-55
5-56

'5-58

5-58
5-59

5-60
5-61

5-62
5-63
5-64
5-65
5-66
5-67

1 5-68

5-69

5-70
5-71
5-72
5-73
5-74
5-75

5.3.4 Transfer Instructions

(n0)
(A1)
(a2)

(a3)

(a4)
(A5)

(a6)

(A7)
(BC)
(27)
5.3.5
(FO)
(F1)
(F8)
(F9)
5.3.6
(70)
(71)
(72)
(73)
(74)
(75)
(76)
(77)
(78)
(79)
(7R)
(7B)
(7€)

or
or

or

or

orxr

or

or

orx

(a8)
(A9)
(AR)

(AB)

(AC)
(AD)

(AE)

(AF)

No Transfer
Transfer on

Transfer on
Than Zero

Transfer on
or Equal to

Transfer on

Transfer on

Equal To Zero

Greaterxr

Greater Than
Zero

Less Than Zero

Less Than or

Egual to Zero

Transfer on Not Equal

to Zero

Unconditional Transfer

Transfer on Test Valid Set

Execute

Shift Instructions

Shift Open

Shift Cyclic

Shift Single Open
Shift Single Closed

Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Boolean
Booclean
Boolean

Boolean

Boolean and Logical Instructions

Zero

AND

Less Than

0dd Even
Greater Than
Load

Not Equal
Inclusive OR
NOR

Equals

Load Complement
Less Than or Equal
NOT

®xiii

PAGE

5-76
5-76
5-77

5-82
5-83
5-84
5-85
5-86
5-86
5-87
5-88
5-89
5-90
5-90
5-91
5-92
5-93
5-94
5-95
5-96
5-97
5-98
5-99
5-100
5-101
5-102

(7D) Boolean Greater or Equal
(7E) Boolean NAND

(7F) Boolean One

(80) Logical Zero

(81) Logical AND

(82) Logical Less Than

(83) No Operation

(84) Logical Greater Than

(85) Logical Load

(86) Logical Not Equal

(87) Logical Inclusive OR

(89) Logical Equals

(88) Logical NOR

(8A) Load Complement

(8B) Logical Less Than or Equal
(8C) Logical NOT

(8D) Logical Greater or Equals
(8E) Logical NAND

(8F) Logical Set

5.3.7 Array Storage

5.3.8 Array Operations
5.3.9 Parenthetical Control

5.3.10
5.3.11
5.3.12
5.3.13
5.3.14
5.3.15

Arrays

Array Storage Area
Dimension Word

Indirect Dimension Words
Complex Numbers

Array Instructions

(37) Load Op Code

(61) Polynomial

xiv

PAGE

5-103
5-104
5-105
5-106
5-107
5-108
5-109
5-110
5-111
5-112 .
5-113
5-114°
5-115
5-116
5-117
5-118
5-119
5-120
5-121
5-122
5-124
5-125
5-126
5-127
5-127
5-129
5-131
5-132
5-133
5-135

TRAP
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

(51) Dimension
(60) Index Generator
(50) Ravel

(62) Outer Product Reduction

(63) Expand Along Column
(64) Catenate Rows

(65) Transpose

(66) Reversal Along Rows
(67) Laminate Rows

(68) Rotate Row

(69) Reshape

(6a) Take

(6B) Drop

(6C) Inﬁér Product

(6D) Outer Product

(6E) Reduction Along Row

(6F) Compression Along Columns

5.3.16 Generalized Array Operations

5.3.17 Reductions on Null Elements

STRUCTURE

Trap Levels

Trap Mechanism

Parity Error Trap (No. 19)

Interval Timer Trap (No. 18)

AP Deferral Overflow Trap (No. 17)
AP Deferral Underflow Trap (No. 16)
Kernel Protect Trap (No. 15)

Read Protect Trap (No. 14)

Write Protect Trap (No. 13)

6.10 Command Protect Trap (No. 12)
6.11 Page Error Trap (No. 11)
6.12 Kernel Out of Bounds Trap (No. 10)

XV

PAGE

5-137
5-138
5-139
5-140
5-142
5-144
5-146
5-147
5-148
5-150
5-152
5-153
5-156
5-157
5-160
5-162
5-165

5-167
5-169

6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20

Illegal Instruction Trap (No. 9)

AP Underflow Trap (No. 8)

AP Overflow Trap (No. 7)

AP Store Error Trap (No. 6)

PMU Arithmetic Overflow Trap (No. 5)
AP Domain Error Trap (No. 4)

AP Length Error Trap (No. 3)

Instruction Trace Trap (No. 2)

6.21 Kernel Trace Trap (No. 1)

6.22 Instruction Abort

6.23 Computer Failure Signal

Appendix A - Glossary

Appendix B - Numerical Listing of PMU Op Codes

Appendix C - Numerical Listing of AP Op Codes

Appendix D - Alphabetical Listing of PMU Op Codes

Appendix E - Alphabetical Listing of AP Op Codes

Appendix F - Considerations in Preparing Programs
for the DPE

Appendix G - PMU Instruction Attributes

Appendix H - AP Instruction Attributes

Appendix I - Channel Interrupt Conditions

xXvi

PAGE

6-8
6-8
6-8
6-9
6-9
6-9
6-9
6-10
6-10
6-10
6-11

A-1
B-1

D-1
E-1

F-1
G-1
H-1
I-1

Figure
Figure
Figure

Figure
Figure

Figure
Figure
Figure
Figure

Figure

Figure
Figure

Figure

vt bW N

O 0 39 O

11
12
13

LIST OF ILLUSTRATIONS

AADC Baseline Configuration
Data Processing Element
Bus Word Format

Virtual Addressing - Resident Paged
Procedure

Virtual Addressing - Non Resident Paged
Procedure

General Instruction Format
Address Mod EX1
Address Mod EX2
Address Mod EX3

Virtual Addressing - Non Resident Full Word

Operand
AP Block Diagram
Instruction Look-Ahead Mechanism (APQ)

The Deferral Mechanism

xvii

Page

2-2
2-6
3-7
4-25

4-26

4-28
4-34
4-36
4-37
4-46

5-2
5-10
5-12

PREFACE

This reference manual is intended to satisfy the
contractual requirements for Contract N62269-73-C-0660 for the
Naval Air Development Center, Warminstef, Pennsylvania. It
is expected that the material contained in this document will
become a substantial part of a future document to be entitled

"Principles of Operation."

This manual is the reference manual for the Data
Processing Element (DPE) of the All Application Digital
Computer System (AADC). It provides a comprehensive description
of the system and of the DPE instruction set. Because the DPE
is comprised of two computational elements, the PMU and AP,
that have separate instruction sets, a prefix, A-, will be used
with the op code number of an AP instruction for purposes of
differentiation within this manual. This manual is intended
to be self-teaching for a reader that has a basic knowledge of

data processiné systems.

xviii

1.0 INTRODUCTION

The AADC System employs an advanced, powerful
general purpose digital system concept. Its concept
embraces the computer applications spectrum from the mini-
computer at one end to the powerful multiprocessor systeﬁ
at the other end. To accomplish this, the AADC defines
modular elements which may be combined to whatever complexity
is required by a given application. The modularity is not
confined to the assembly of Processing Elements, Memories
and I/0 Controllers. The Data Processing Element (DPE)
itself is separable into two components. One component is
a stand alone mini-computer (Program Management Unit) while

the other is a powerful Arithmetic Unit.

Salient features of the DPE are:

- Data Insensitive Arithmetic Structure

- Stack oriented accumulator structure to
directly execute expressions in infix notation
(parenthetical control)

- Implementation of APL primitives

- Virtual Addressing Support

- Pipeline Architecture

- Debugging and Performance Monitoring

- Executive and Security Support

- Efficient Interprocessor Communications

BLANK

2.0 SYSTEM ARCHITECTURE

2.1 System Components

The block diagram (Figure 1) of an AADC configuration
shows the system concept and the manner in which the elements
interrelate. It should be noted that this is not the only

configuration of an AADC.

There are three types of memories available in an
AADC, the Block Oriented Random Access Memory (BORAM) which
is used for storage of procedure, the Random Access Main
Memory (RAMM) which is used for the storage of variables,
and the Task Memory (TM) which is used as the local DPE
memory.

There are two types of interface units available,
the channel which is an AADC internal interface unit, and
the Data Communicator Module (DCM) which is an external

interface unit.

There are two additional AADC components. One
component is a stand alone mini-computer (Program Management
Unit) and the other is a powerful Arithmetic Unit (AP).

1 Hanslaﬂ

NOILVINO IANOD WHELSAS OAVY

PERIPHERAL DEVICES

| |

RAM DCM
PMU ® RAM
CHANNEL PMU
CHANNEL
PRIMARY BUSES
& S ?
& € © ©
& o— © ©
r—TrTT - T T T T AT T T —— 7N
| . || |
CHANNEL : CHANNEL : | | CHANNEL | | { CHANNEL |
PMU ™ | | PMU mwm ! PMU ||
BORAM | | || |
| AP l AP AP
| || |
| | L |
!
lore Ploe T S]

1) BORAM (Block Oriented Random Access Memory) -
Stores procedure and constants for all programs in pages of
256 words each. Each program segment (or task) may require
a number of pages of storage which may or may not be
consecutively located in memory. During execution of a
particular task, pages will be transferred to the T™ of
the executing DPE as needed on a demand basis. Transfers
are via the primary bus at an uninterrupted rate of 150
nanoseconds per word. Access to the first word of a page
is a maximum of two microseconds. In tactical operational
use, this memory will function in the read only mode. The
write mode will be provided for non-tactical or non-critical’

applications,

2) RAMM (Random Access Main Memory) - Constitutes
the main data storage for the system. The RAMM typically
consists of a series of modules, each 8 or 16K words (K=1024),
36 bits per worq. Each RAMM has an associated PMU and channel
unit which interfaces it with the remainder of the AADC
subsystems. Data contained in RAMM can be addressed by any
DPE on a single word or multi-word basis. The DPE can use
this data directly, or hold it for later use in the TM.

Data access time is 250 nsec though transfers are made over
the primary bus at 150 nsec per word rate, and access time

per word for blocks of data is 150 nsec.

3) T (Task Memory) - Is a local direct access
memory to the mini-computer (PMU) and is considered part of
the DPE. The TM typically has 4K of 36 bit words, but could
be as large as 64K words. Data transfers are made at 150 nsec

per word rate.

4) Channel Unit - Is the common interface between
elements of the AADC and the primary bus. It performs the
queueing and transfer of information, and coordinates all

internal bus transfers.

5) DCM (Data Communicator Module) - Is the interface
unit to external devices. It contains serial to parallel
converters, and packing and unpacking circuitry. It acts
through the channel in the DPE configuration for communications

with the computer.

6) DPE (Data Processing Element) - Is a general
purpose, programmable processor capable of performing logic
and arithmetic operations necessary for handling sequentially
organized tasks. The DPE contains a PMU (Program Management
Unit), an AP (Arithmetic Processor), a channel and a ™
(Task Memory). Procedure pages of program segments or tasks
are stored in the ™ for execution. Part of the T™ is also
used for temporary data storage. Control functions of the
DPE, including normal instruction and operand fetching,
executions of program management type instructions, and
interfacing with the other elements via the channel and the
primary Dbus, are handled by the PMU. Arithmetic and logical
computations are performed in the AP. This separation of
computational functions and control functions permits a
highly parallel operation of the two subsystems. Additionally,

the PMU is used as a front end memory controller for the RAMM.

2.2 Data Processing Element Components

As indicated earlier, the DPE is a powerful general
purpose digital computer which has the property that its
sophisticated arithmetic logic may be sepérated from the
computer proper leaving a simple mini-computer. Some
factors which highlight the advantages of the DPE over

other powerful data processors are:

1) The DPE handles fixed point, floating point
and complex arithmetic automatically.

2) The DPE operates on arrays and matrices

automatically.

3) The DPE solves algebraic expressions automatically

through its ability to interpret parenthetical notation.

The block diagram in Figure 2 shows the DPE internal
structure. The DPE contains four major components. They
are the arithmetic processor (AP), the Program Management
Unit (PMU), the Task Memory (TM) and the Channel.

. CHANNEL

INPUT OUTPUT
QUEUE BUFFER.

TASK MINI
MEMORY COMPUTER

AP
QUEUE

) ARITHMETIC ARRAY
DEFERRAL G UNIT CONTROL

AP
CONTROL

FIGURE 2. DATA PROCESSING ELEMENT

The AP

The AP or Arithmetic Processor, is a data insensitive
execution unit which performs arithmetic operations requiring
full word precision at high speed. Thesé instructions include
Add, Subtract, Multiply, Divide, and Square Root. All
operations are performed in floating point. The AP responds
to inputs of two kinds. The first type involves receipt of
an operation code and operand on which the AP acts according
to its instruction set. A second is used in array operatidns
and places the PMU under control of the AP Array Controller,
addressing operands and operating as instructed by the AP.
Additionally, the AP may interrupt the PMU during scalar-real
instruction sequencing for servicing of store conditional trans-
fer instructions, and exception conditions (e.g., exponent over-
flow).

To implement parenthetical notation, the AP contains
a last-in/first-out (LIFO) deferral unit in which information is
held for later operation. The operation of this deferral

stack will be discussed in section 6.3.9 "Parenthetical Control."

To permit the PMU and AP to run asynchronously in
normal operations, @ queue (AP Queue) is placed between them.
This Queue is a simultaneous read/write scratchpad element
that operates on a first-in/first-out basis. It is wide
enough to contain an operation code, an operand, and certain
necessary control and sequencing information. The queue

length visible to the programmer is 13 words in length.

In normal operation, the PMU fetches an instruction
(from TM) and an associated operand (from RAMM), and places

the necessary data into the Queue. At the other side of the

2-7

Queue, the AP sequentially removes these instructions, and
executes them. The AP can perform some instructions, such
as ADD, faster than the PMU can complete a full fetch;
certain other instructions, such as MULTIPLY, take longer
than the fetch takes. Use of a Queue tends to average out
these differences by permitting the PMU to stockpile
instructions during periods when the AP is executing long
instructions against the time when a series of short

instructions will begin to deplete the queue.
The PMU

The PMU is a mini-computer in that it has its own
arithmetic logic and instructions, and may in some
applications be a stand alone machine. In the DPE, the PMU
acts as the controlling subsystem. It fetches all instructions,
performs address translation when necessary and obtains an
appropriate ope;and. It executes its own instruction set
and prepares others for transmission to the AP. It formats
data requests to outside devices if required and controls
the ™. During array processing, the PMU is controlled by
the AP. '

The TM

Task Memory is a small high speed memory which forms
part of the DPE. This memory contains 4096 words of 36 bit
length and provides the program which is executed by the DPE.
The T™ is subdivided into 16 pages of 256 words each. All

programs are executed in modules of up to 256 words each.

As program pages are execuged and new pages are required,
they are brought in as needed and written over current pages.
The decision as to which of the current pages are to be
written over is decided in accordance with a number of

algorithms which are mechanized by the PMU hardware.

The Channel

The Channel is the common interface between
elements of the AADC and the primary bus. It performs the
queueing and transfer of information, and coordinates the
prgmary bus transfers. The primary buses are bi-directional
buses which handle all data and control information transfers
between the various computer system elements on a 50 bit
parallel basis. Each word is transferred during a 150
nanosecond time slot. The primary bus control scheme
assigns non-dedicated time slots on a rotational priority
basis. Each channel in the system contains a circuit which,
when tied in a closed chain, provides the rotational priority
control. A channel desiring the bus, raises an internal
demand line and waits notification of bus assignment.

Channels having no demand are skipped so all time slots can

be used. No element, except when specifically programmed

to do so (i.e., BORAM), is permitted to hold on to the bus

for more than two time slots. The BORAM locks the bus for

one whole page transfer (256 words). Three buses-

are used to allow for efficient communication between channels

as well as to provide redundancy. Two buses are programmatically
identical while the third bus is not normally attached to a

DPE channel. This third bus is dedicated to other system
functions. Any element desiring to communicate with another

can use either bus when free. To make most efficient use of

the primary buses, each channel contain; an input queue

on its input interface with the bus. This makes the destination
channel effectively always available to receive data for it

on the bus.

3.0 DATA FLOW

The internal flow of data and procedures within
an AADC is between the DPE, primary buses and
other components. Each of these facets of the system
can be explained somewhat independently, but will not
be clear outside of the context of a complete system
description. The following sections describe the
operation and data flow between the primary bus, DPE,

and other AADC system components.

3.1 Primary . Bus

The system employs a time slotted bus. The
time slots are non-dedicated. A distributed equal
priority bus controller is used. The system is provided
with automatic error retry. In order to allow this
system to operate efficiently, the channels in the
system are designed with a wide address and are almost

always available to receive information.

Bus usage is assigned by the bus controller
to a channel. This channel puts its information on the
bus for a fixed period of time and then releases it
unless the bus has been re-assigned to the same channel.
A synchronizing clock is provided which is common to
all channels. The time slots are said to be non-
dedicated because they are assigned to channels which
have asked to send a word, as the requests occur,

rather than in a fixed sequence.

The bus controller decides which channel
will use a certain time slot during the preceeding one,
so that no time 1is lcst for this determination. The

assignment is said to be equal priority because no

3-1

channel has easier access to the bus than any other.
Some channels may send more words in consecutive slots
than others according to fixed rules, but do not have

any greater ability to obtain the bus.

The controller is distributed among the channels
in a daisy chain fashion. That is, each channel recgives
a signal representing status of channels physically
before it in the chain. According to preset logic,
this signal is passed on to remaining channels. ' Other
information on the bus is in a party line form. That
is, the same wires are used for input to and output from
every channel in the system. This type of bus is

~bi-directional.

Each channel which is capable of receiving
information is supplied with an input queue buffer which

is eight instruction words in length.

This means that all information sent to a channel
will almost always be accepted by the receiver. In fact,
the receiver can be executing an instruction while »
receiving and accepting a group of others which will
wait their turn to be processed. The receiving channel
is said to be essentially "always available". Sending
channels will ordinarily await an indication of its
instruction's being processed before attempting to

continue sending to the same channel.

In order to ensure correctness of receipt of
the information, parity checking is performed by the
receiver on received words, but in order to avoid overly

long time slots, this checking is done during the next

3-2

time slot after receipt. fThe errcr, if cne cceourred, is
signaled in the second time slot aftor recelpt on a
separate cable. Correct receipt is acrncwledyed, to
account for the absence of the indicated receiving unit.
That is, correct receipt is positively signasled.
Furthermore, irregular, but possible: conditicns such

T

as receiver input queue full can be siynaled.

When an error or receiver kusy is signalled,
the sender, which is constrained to maintain sent
information in its Output Queue,retries the transfer.

In order to maintain proper sequencing of messages, a
receiving channel once-it has rejected a werd due to
parity error or busy condition, it will reject with the
'busy' code all the words that may be received by it
in the two time slots following the arrival of the first

rejected word.

When the first rejected word is retried, if
a second parity error is detected by the receiving
channel, an emergency Transfer and Stack Kernel 0 (Op Code 54)
instruction addressed to the Executive will be generated by
the receiving channel and sent through its Output Queue

to the Internal Bus.

A transmitting channel receiving a parity
error Status Return for the second time for the same
word will:

- send an emergency Transfer and Stack

Kernel 0 (Op Code 54) instruction addressed
to the Executive, passing through its Output

Queue to the Primary Bus.

- Keep rétrying the transmission of the
rejected word until either the word is
accepted or the channel receives an

emergency reset command from the Executive.

In the system described, a channel wishing-to
send information raises an internal control line indicating
this and signalling its portion of the bus controller.

Some time later, this channel is granted the bus. It
sends its information during the indicated time slot,

then releases the bus if required.

A channel maintains three address counters

associated with its output queue.

1) the next queue location to be filled
2) the next gqueue location to be transmitted
3) the queue location after the last validated

transmission

When an error or busy signal is received, no
further transmission is permitted. If the channel continues

to possess the bus, it transmits the No Transmission Code.

The channel may now obtain the bus for purposes
of error or busy retry. Retry is made for only one word
at a time. A second parity error Status Return received
is signalled to the executive. Busy signals repeat the
retry until accepted. When the queue validation counter
equals the next queue location to be transmitted counter,
normal continuous operation may be resumed. The ﬁrror Retry
bit is set if the nature of the error was parity error.

3-4

If several words were sent with one having an
error, only the incorrect or busy words need to be re-
tried. If one word of a two word instruction which was
sent is signalled as being an error, both words must
be retried. Thus, the first word of a two word instruc-
tion is only considered as sent and validated when the
second word of the instruction has also been received

and validated.

Channels are provided as three bus units or
as two bus units with extension capability to three

buses.

The bus system described can run continuously
with a transfer taking place in each time slot and will

sometimes only degrade temporarily, when errors occur.

A further enhancement to the bus system is the
AADC wide address. In this system, instructions placed
on the bus are steered by their address field to the
proper receiving element. The source element identifies
itself using the source field provided as part of each
transmission. Thus, any command regquest to an element
may be placed on the bus with a destination address,
and be certain that the element will pick up the request
and process it. The element addressed can be anything
from a main memory to a simple peripheral. The word
addressed can be a register, a bank of switches or a

word in a memory.

As an additional possibility, some elements
may be designed so that they can be instructed to
regquest channel transmission on only some of the avail-

able buses, so that an element can be given a bus

'3-5

continuously or so that a bad bus can be removed from the
system, allowing further error free operation with reduced

total throughput.

The word formats for the two word types, command
and data, which are transmitted on the bus are illustrated

in Figure 3 and are discussed in the following paragraphs.

3.1.1 Transmission Types (Commands and Data) (Bits 37-39)

The channels use the bus to transmit both
commands and data to other subsystems. Presently, the
bus system can specify the following types of transmission
through 3 coded lines.
Bit Pattern

0 No Transmission 000

There is no valid transmission on the bus.
Receivers are to ignore the remainder of the bus content.
The transmitting device possesses the bus, but did not

want it.
1 Continue Interrupted Process 001

This is a special transmission code which will
be discussed elsewhere in detail. The command normally
causes immediate activation of the receiving device to

initiate an operation previously suspended.
2 Data 010

The bus contains data. The receiving subsystem

must be expecting this data. It is placed in the data queue.

3-6

‘¢ 2anbtg

jewrIog pIOM sng

Q\
NS
§éj?
S S
N Q& &
Q(J(j _\@OQ: \}\Q‘Q eb‘g‘
WIDE ADDRESS IAIFSEEDN ¥
NS I & &<
o1 I’ ?l 3 l 41 5J G] 7 sl 9[10[11 1z[~.3[14| 15]15117(13]19 20]21122]23]24125{26!27]28]29]30| 3 32]33]34 35 36 37I38[39 ao]ulaz]u{u[u!nsl” 481 a9
__COMMAND WORD__
N
N
FONS
&O§e
ST P
ee L Sy
S8 55
I & &<
DESTINATION
OPERAND e ADDRESS
o fl z] 31 a! sl a] 7] sLe[mlnlw]uta_] 15116]17FBL19]20]21122 23[24]25]26127125[29!30!31 32133134 35 36 37l:mJ39 40141‘42]43[44]45]45147 43‘49

DATA WORD

Bit Pattern

3 Data and End of Block 011

Same as 2, with the additional information that
is the last word of a variable block transfer. This code
is generated by a transmitting subsystem under defined

conditions.
4 Single Word Command 100

This indicates an instruction interrupt is

on the bus.
5 Two Word Command 101

This code identifies the next word on the bus
as being destined for the same device as this one. All
other devices must unconditionally refuse the next word.
Similarly, this device must unconditionally accept
the next word and place it in the input instruction

gueue.
6 Single Word Emergency Command 110

This code identifies that this command is to
be the next to be executed. Normal processing is inter-

rupted and will not necessarily continue correctly.
7 Two Word Emergency 111

This code identifies that this command is to
be the next to be executed. As with 5, the next word
should be accepted as well. As with 6, normal pro-

cessing is interrupted.

3.1.2 Sequence Number Field (Bits 48 and 49)

This 2-bit field can be set at 00, 01
or 10 and must be returned with the data requested by.
the source element. The source channel transmits this
number any time its controlling element expects a data
reply. When the source element does not expect a reply,
as in the case of a single word write command, the chan-
nel transmits the currently valid transmission number.
This means that a channél can issue up to 3 commands
with data returns pending, and properly sequence the re-
turns. If the returned data has the correct transmission
number, the data is accepted. If the data has the correct
number and .is also EOB, then the expected sequence number
register contained in the channel may be moved up to the
next expected sequence number. Any data received in the
incorrect sequence will be rejected by the channel with
a busy signal. The fourth combination of the sequence
number bits (11) is used only by elements placing .
commands in the channel output queue to indicate to the
channel that the element is expecting a reply. The
current sequence number incremented by one is to be
used as the sequence number when this command is sent
out on the AADC Internal Bus.

3.1.3 Data/Instruction Field (Bits 0-35)

The format of the 36 bits correspond to the

Data or Instruction formats of the DPE.

3.1.4 Source/Destination Field (Bits 40-47)

Elements &re specified by an 8 bit number.
The 8 bit number is identical to the high order 8 bits
of a standard AADC 20 bit wide address. When commands
are sent to an element, the address information con-
tained within the 36 bit instruction word contains the
Destination information to specify the Receiving elemént.
The element address is specified by bits 12-19 in the
command word.

Since commands require an eventual return of
information to the originating element, the 8 bit field
associated with a transmission command specifies the

Source Subsystem in bits 40-47.

Data is transmitted only to an element which
requested the data. Elements which request data from
other elements must be ready to receive the returned
data when it is provided. When a bus contains data,
the associatéd 8 bit field contains the destination
information (bits 40-47).

Each channel has two names, physical and logical.
The physical name is wired in by the channels physical position
in the AADC housing. Upon’system reset, the logical name is
made to be the physical name. The AADC Executive can, via the
Set System Parameter (Op Code 25) instruction, determine the
logical name of the channel. Independent of the logical name,
all Emergency Commands are sent to the physical name of the

channel.

One channel code has been reserved for specifying the
executive system wherever it resides in the system. This is

code FF (hexadecimal notation).
3.2 Channel

The channel control must perform sequencing of
queue addressing output buffer selection, as well as decisions
about the function to be performed as a result of information

sent on the bus.

The channel unit contains four major parts which are the
bus itself including the drivers, a bus controller circuit, the
input queue, and an output gueue. The bus and bus controller were
discussed in Section 3.1. The Input and Output Queues will be

discussed in the following sections.

3.2.1 Input Queue

The input queue is divided into two parts
conceptually. These are Command and Data. The physical
component is 16 words in length, with commands using

8 words and data using 8 words.

Information is stored into these queues in a
first-in/first-out fashion. Of the information on the
bus only the retried bit is stripped off. All other

information is placed into the queue.

The queue will be considered empty when the
next word to be read equals the next word to be written
and the last operation was a read from the queue. The
queue will be considered full when the next word to be
read equals the next word to be written and the last

operation was a write into the queue.

The gueue full signal is used to refuse further

information from the internal buses.

The routing of data and command is a function
of the transmission field. 1In the case of the second
word of a two word command, the information is always

placed in the command queue.

Two deviations from this are the no transfer
and continue bus tags. No transfer indicates that the
device which has the bus has nothing to send. This

word is ignored by the receiving channel unit.

3-12

Continue,, when received, should be used by the
element to format as a data word and is placed in the

data queue.

An Emergency command is allowed to interfere
with any operation in progress and will be passed through

after validation.

Emergency commands bypass all commands presently
waiting in the input queue, appearing immediately at the
front of the queue.

As soon as the words received by the channel

are validated and placed in the Input Queue attempts

are made to send them out to the DPE one after another.

3.2.2 Output Queue

Before sending the information out on the AADC
Internal Bus, the channel unit first places all command
words and data words received from the DPE
into the Output Queue. Up to 16 words mixed, command
and/or data, can be entered into the queue in the seguence

of arrival.

The main purpose of the Output Queue is to provide
a variable depth word buffer between the DPE, capable of sending
a continuous stream of data words during burst mode, and the

AADC Primary Bus with its automatic error retry requirement.

4.0 PROGRAM MANAGEMENT UNIT (PMU)

The PMU is a digital data processor with a 36 bit
word length. It is capable of performing operations using
half-word (16 bit), and full word (32 bit) operands. It
performs arithmetic operations using sign magnitude integer
arithmetic. The most significant bit of an operand is the

sign bit: O means positive, 1 means negative.

4.1 PMU Registers

4.1.1 Addressable Registers

The registers in the following subparagraphs are

addressable for the specified PMU operations.

4 1.1.1 General Scratchpad Registers

The PMU has one general scratchpad register set,
consisting of 32 16-bit registers designated SP [0] through
SP [311l . Each SP register is capable of holding a half-word
operand for arithmetic, shift and lqgical functions, aﬁd as
temporary storage. SP [0] - 8P [15] are directly addressable
by designators in the instruction words. SP [1l] through SP [7]
may also be used as index registers, addressable by another

set of designators in the instruction words.

For half-word operations SP [0] - SP [15] are each
selectable as a 16-bit accumulator. For those operations in

which a full word accumulator is required. a 32 bit register

is made available by concatenating one register selected

from SP [0] - SP [15]°with the corresponding register

selected from SP [16] - sp [31] , respectively. The low

bank of 16 registers will contain the most significant portion
of the operand while the high bank, SP [16] - sP [31] , will

contain the least significant portion of the operand.

Within the general scratchpad set, all are available
as pointers and operand registers. However, the following
registers are dedicated to automatic functions in the DPE

configuration and any programmatic contents may be destroyed.

sp [15] Interrupt Stack Pointer

sp [16])

sp [17]

sp [18]

sp [19]) . ;

sp [20] & Used fgr Arléy Control in DPE

sp [211 Configurations

sp [22]

sp [23]

sp [24]

sp [25]

sP [26] Array Stack Deferral Pointer

sp [27] Deferral Overflow/Underflow Stack Pointer
sp [28] Address of Indirect Dimension Word
sP [29] P Counter Temporary Storage

SP [30] Internal Registers Temporary Storage
sp [31] Parameter Stack Linkage

4.1.1.2 Program Address Register

The PMU has a 16 bit program address register which
is designated P. The contents of P specify the address of

the next instruction. The computer increments by one the

contents of P for each instruction. Instructions which cause
program jumps enter P with the address of the instruction to
which program control is transferred. When the operations
specified by the current instruction are completed, the

contents of P are then used to obtain the next instruction.

4.1.1.3 Interval Timer Register

The PMU has a 16 bit Interval Timer Register. When
enabled, the contents of the Interval Timer Register decrement
at an interval of 307.2 microseconds. The Interval Timer
Trap Signal is generated when the contents of the Interval
Timer Register equals zero. The Interval Timer Register is
loaded and the decrementing sequence is enabled under program
control. The total elapsed time capacity for the Interval

Timer Register is approximately 20.1314 seconds.

4.1.1.4 Source Registers

The PMU contains two source registers. The Program
Source register (P-source) contains the 8 bit code of the
external system elemént that requested the presently running
program. The Interrupt Source register (I-source) contains
the 8 bit code of the external system element that supplied
the most recent external instruction. If the PMU is processing
an external instruction, the I-source register is defined as
containing the active source for that instruction. If the PMU
is processing an internal instruction, the P-source register

holds the active source.

4.1.1.5 Halt (HALT) Indicator

When the Halt Indicator is set (HALT = 1), the PMU
will not perform program operations, but will only respond to
externally generated instructions or intérnal traps. The
Halt Indicator is set when bit 11 in either an Interval Timer
Control/Halt instruction (Op Code 32) or a Transfer to Executive
instruction (Op Code 37) is set and the instruction is executed,
or the indicator is set by the Reset line. The Halt Indicator
is reset (HALT = 0) by the execution of a Proceed instruction
(Op Code 01), or a Return Stack to P and Proceed instruction

(Op Code 53), or a Transfer and Stack instruction (Op Code 51).

4.1.1.6 Trap Level Register

The PMU contains a five bit register which maintains
the trap priority level of the presently running program

(see section 6.0).

4.1.1.7 Parity Error Inhibit (PEI) Indicator

When this indicator is set‘(PEI = 1), the parity
error trap signal will not be generated and no response will
be made to a parity error. This indicator is set or reset by

bit 9 of the Set System Parameter instruction (Op Code 25).

4.1.1.8 Procedure Kernel Register

This two-bit register indicates which of the four
lowest page areas of memory that the current program is

referenced in.

4.1.1.9 Data Kernel Register

This two-bit register indicates which of the four
lowest page areas of memory that is referenced for the data

being used for current program.

4.1.1.10 Upper Bound Register

This four-bit register is used to designate the
highest page area, within the 16 least significant page areas
of local memory which are subject to automatic page replacement
(see Section 4.3.3.2). This register is set with bits 8-11
of the Set Task Parameters instruction (Op Code 29).

4.1.1.11 Lower Bound Register

This two-bit register is used to designate the
highest page area, within the four page areas normally reserved
for kernel information, which are not subject to automatic
page replacement (see Section 4.3.3.2). This register is set
with the least significant bits (bits 14-15) of the Lower
Bound field (bits 12-15) of the Set Task Parameters instruction
(Op Code 29). '

4.1.1.12 Executive Mode Indicator

This indicator, when set (= 1), designates that the
PMU is in the executive mode and capable of performing all
privileged functions. When this indicator is clear (= 0),

the PMU is not in the executive mode. (See Section 4.2.2.)

4.1.1.13 Data Addressing Mode Indicator

This indicator, when set (= 1), designates that the
data is to be accessed virtually, through references located
in the Data Kernel. When clear (= 0), this indicator designates
that the data is to be accessed directly from local memory.
This indicator is set or reset by bit 23 of the Set Task

Parameters instruction (Op Code 29).

4.1.1.14 Replacement Algorithm Register

This two-bit register contains the code for the
presently operational replacement algorithm (see Section 4.3.3.2).
This register is set with the contents of bits 18-19 of the

Set Task Parameters instruction (Op Code 29).

4.1.2 Non-Addressable Registers

The register in the following subparagraph is not
directly addressable by the programmer, but is included here
for definition. It is referenced later in the manual in the

discussion of virtual addressing.

4.1.2.1 Procedure Page Register

This non-addressable eight-bit register contains the
direct local memory address of the page of procedure currently
being executed. The contents of this register are appended
to the eight least significant bit of the program counter P,

the displacement field, to obtain the direct local memory

address of the next instruction to be executed. This.
register is set with the contents of bits 0-7 of the procedure

kernel word during a procedure page fetch. (See Section 4.3.3.2.)

4.2 Modes of Operation

A DPE can operate in either one of two modes, Problem

or Executive.

4.2.1 Problem Mode

In this mode of operation, the Executive Mode Indicator
is cleared to zero. This is the normal mode for interpreting pro-
cedure. All security protect mechanisms involved with virtual

addressing are invoked. (See Section 4.2.2.2.2).

4.2.2 Executive Mode

In this mode of operation, Executive Mode Indicator
set to one, a DPE possesses capabilities that would otherwise
be illegal when there is an attempt to use them. The following

description is in three parts.
- Entrance to Executive Mode
- Executive Mode Capabilities

- Exit from Executive Mode

4.2.2.1 Entrance into Executive Mode

There is only one way to enter the Executive Mode,
the receipt of an external Transfer and Stack Kernel O

instruction (Op Code 54) addressed to the channel which

4-7

recognizes the resource name hex "FF." The Transfer and

Stack Kernel O instruction in this structure is a two word bus
command. The first word, the instruction itself, invokes the
Executive at a fixed entry point, a transfer to the instruction
located at the virtual address hex "FFO00O." The Executive,

once invoked, must obtain the interrupt mask data word from

its channel by executing a Write Word From Input instruction
(Op Code 03). This mask word contains the necessary information
for the Executive to determine what actions to perform.

(Note: Further interrupts are inhibited until the interrupt
mask word is fetched.)

The two word Transfer and Stack Kernel 0 instruction
is transmitted to the Executive in the normal course of
computation by one of two possible mechanisms: programmed or

channel interrupt.

4.2.2.1.1 Programmed

When a DPE wishes to interrupt the Executive, it
executes a Transfer to Executive instruction (Op Code 37).
This instruction causes the creation of the two word Transfer
and Stack Kernal O command. The first word of the Transfer
and Stack Kernel 0 instruction has been described in Section

4.2.2.1. The second word has the following format:

RESOURCE
NAME INTERRUPT MASK

L-'-‘»‘Il 12l3]415 l 6'7 8'9!!0!”'12[131“]15 lé]l?'lﬁll?!wl?l[22[23[24[25[26]27!28[29130[31

Bits 0-7 contain the resource name of the resource
performing the Transfer to Executive instruction. The contents
of this field are derived from the Resource Name field (bits 16-23)
of the Set System Parameter instruction (Op Code 25).

Bits 8-15 are cleared to zeroes, which indicates
that this interrupt was due to the execution of a Transfer to

Executive instruction.

Bits 16-31, the interrupt mask, are the effective
address field of the Transfer to Executive instruction (normally
instruction bits 16-31 as an immediate). The meaning of the

interrupt mask will be established by system software conventions.

4.2.2.1.2 Channel Interrupt

The channel, in response to .certain conditions that
are described below, sends an interrupt to the executive. The
channel creates a two word Transfer and Stack Kernel O command.
The first word has the same format as an interrupt generated
as a result of the execution of a Transfer to Executive instruction.

The second word has the following format.

STATUS &
BUS SEND RECEIVE SA&A D4
ERROR ERROR ERROR oS
NN Y

RESOURCE
NAME 0 1 #E2#3 | #1 (521 #3 #1[#2[#3 00000

JNRbNAnEDEDNDEEE Al

6117{18119120121 122123 24|25

)
o~

Bits 16-26 signify the occurrence of various interrupt
conditions that the channel has detected. These conditions are
independent and more than one may occur simultaneously. It
should be noted that once a condition is detected by the
channel and transmitted to the executive, subsequent occurrences
of the same condition will not cause another executive interrupt
unless the channel received a Set System Parameter instruction

(Op Code 25) in the interim. (See Appendix I).
Bits 8-15 signify the interrupt originates from the
channel. Bits 0-7 are the resource name for the originating

channel.

It should be noted, nothing prevents an executive

from sending an interrupt to itself.

4.2.2.2 Exeéutive Mode Capabilities

When, a DPE is in the executive mode of operation,
it possesses capabilities not present in the problem mode.
These capabilities involve two areas: the security system and

emergency commands.

4.2.2.2.1 Emergency Commands

When a DPE is in the executive mode, two word
emergency commands can be transmitted to an AADC resource
via the Command Subsystem instructions (Op Codes 47 and 4F).
If bit 8 of the Command Subsystem instruction is set to one,
a two word command is transmitted that has a transmission tag
designating emergency commands. See Section 4.3.2 for a

description of emergency commands.

4.2.2.2.2 Security System

When the DPE is in the executive mode, all security
violations involving the protection mechanisms for the kernel
area cannot occur, i.e., read, write and command protect.
Security violations that result due to an improper data structure
still occur in the executive mode. For example, transferring
to word data or attempting to execute the load page instruction

with word data.

The kernel protect violations do not occur in the
executive mode. It should be noted that this is true whether
the executive is attempting to access the kernel in its own
task memory, or is attempting to access a kernel area in a

remote resource.

4.2.2.3 Exit From Executive Mode

The executive exits from the executive mode by
executing a Return Stack to P instruction (Op Code 52) or a
Return Stack to P and Proceed instruction (Op Code 53). Upon
completion of this instruction, the DPE is either in the problem
mode or a previous level of the executive. It is not possible
to return to the executive mode when a return stack instruction
is executed in the problem mode. There is a hardware override

which leaves the DPE in the problem mode.

4.3 Detailed Instruction Performance

Instructions for the DPE are of three types: external.
emergency, and internal. External instructions and emergency

.commands are received by the DPE over the .primary bus system. In-

ternal instructions are obtained from local memory, either as the

result of a trap or a normal program"counter instruction fetch
or they are obtained from the primary bus specifically as the
word following a Command Subsystem/Address Modifications (Op
Code 47).

4.3.1 External Instructions

Any pending external instruction is processed immediately
at the conclusion of the instruction currently being processed.
External instructions are received over the primary bus system
in a 50-bit format (see Section 3.1). The external instruction
is the 36-bit high order (bit positions 0-35) portion of the

incoming 50-bit transmission word, and has the following format.

OP CODE SPA XXXX ADDRESS MIAP X X

0Ll[2[3J4J5L6J7 EL’)[IO]H lleJ’MilS]6‘17118!19120121!72!231124]25‘[?61’27]76129‘30[31

w
N}
©
<
w
~

35

Bits 0-7 specify the operation to be performed.

Bits 8-11 specify a particular scratchpad register or

specify a special purpose function depending upon the op code.

Bits 12-5 are unused.

Bits 16-31 specify the operand or the address of

the operand.

Bit 32 define whether a memory reference is to be

made or not.

Bit 33 define whether this is a PMU or an AP instruction.

Bit 34-35 are unused.

The above defined fields have the same meaning as
for internal instructions , (see Section 4.3.4.1 for further

definition of these fields).

Address modification (bits 12-15) and parity (bit 35)
checking are not performed by the PMU for external instructions.
The instruction trace (bit 34) trap also is not generated for

any external instruction.

4.3.2 Emergency Commands

An "emergency command" is.a mechanism to enable the
executive processor (or any other permitted device, such as the
control panel) to interrupt a channel and cause the "emergency

command" to be the next thing transmitted via its secondary bus.

Identified by the Transmission Code "1l11" the emergency
command is a two word instruction. Although any two-word instruc-
tion can theoretically be sent, the present AADC design contains
a mechanism for producing the emergency transmission code only in

conjunction with either of the COMMAND SUBSYSTEM instructions.

This, the first word received by the channel will be a routing

word, and the second will specify the action to be performed.

As previously mentioned, the channel, when receiving
an emergency command addressed to one of its secondary bus
devices, transmits the word, with it emergency code, as its next
transmission. This is the only type of command information
that takes precedence over data, and the integrity of the program
of the addressed processor cannot be maintained -- the emergency
command will interrupt an array being read or, in the case of
the DPE, a pipeline of data requests. Recovery from these
interruptions will probably be impossible. Sending a HALT
command prior to the emergency command will not necessarily be
effective in alleviating this problem unless sufficient time is

allowed to ensure that the HALT was accepted.

Emergency commands may also effect other subsystems
connected to the same channel. When the channel places the first
word on the secondary bus, it begins to count the clock pulses.
If 4096 clock pulses pass and the receipt of the command has
not been acknowledged, the channel raises its SYSTEM MASTER

RESET line and resets all the subsystems on the secondary bus.

When ‘the Channel is known to be reset, the first sub-
sequent instruction must not be an emergency instruction. After
receipt of this first instruction, emergency instructions can be

properly received.

4.3.3. Internal Instructions

Internal instructions are obtained either in response
to a trap, a Command Subsystem/Address Modification instruction
(Op Code 47) or by a program counter reference of memory. Such
a reference to memory will occur when no external instruction is
pending, the HALT indicator is zero and no trap of higher priority
than the present trap register value is pending. 1In such

circumstances, the contents of P are used to obtain an instruction.

4.3.3.1 Virtual Addressing Mechanism

In normal operation, a processing element operates
on a single segment of a program until completion. It then
performs another. Each of these segments.is termed a program
module. Associated with each program module is a "kernel
area" which may contain a maximum of 4 kernel tables and which
normally remain resident in ™ throughout the running of the
program module. This kernel typically contains, among other
information, the direct BORAM addresses of the remaining pages
of the program module. It may also contain RAMM data addresses,
and control information necessary to run the program. Kernels
associated with other program modules (as well as the Executive
kernel, if required) may also be resident in task memory. The
remainder of ™ is used to hold currently running program
pages, subject to dynamic replacement; and also is used to hold
the parameter stack and array data required by the arithmetic
processor.

TASK ARRAY DATA, PARAMETER STACK

MEMORY

UPPER BOUND

CONTAINS PROGRAM DATA AND
PROCEDURE PAGES SUBJECT

TO DYNAMIC REPLACEMENT — — _ LOWER BOUND

KERNEL TABLES

The virtual addressing mode is the normal mode in
the AADC system. In this mode, a fetch cycle is implemented
to access procedure or word data from BORAM or RAMM respectively.
via the Channel. When data is absolutely addressed, procedure
is virtually addressed and all data is resident in Task Memory

(kernel data entry not accessed).

4-15

The Virtual Addressing Mechanism's
sltimate objective is to calculate the absolute address of
the operand referenced by the effective virtual address of
the instruction executed. The effective virtual address is
used in this description to mean the 16 bit address obtained

after indexing and all modes of indirection are completed.

4.3.3.2 Normal Instruction Fetch

If the present instruction does not specify a transfer
or escape, and if a Page Carry condition (see Section 4.3.3.2.2)
does not exist, and if a pending trap is not about to be honored,

the PMU will obtain its next instruction in the following manner.

4.3.3.2.1 Program Counter Operation

The Program Counter P has the following format:

PAGE DISPLACEMENT

T EEEELEE s

To fetch an instruction, an address is formed by
sppending the Procedure Page Register (see Section 4.1.2.1)

tee the displacement field of P.

PROCEDURE
PAGE REGISTER DISPLACEMENT

Ol]l?l3]4[5|6l7 8]91!0[”’”]]3!“-[15

This address is used as an absolute local memory
address of the instruction to be fetched and executed. After
this instruction is fetched, P is incremented by one to point
to the next sequential instruction. If the instruction thus
obtained does not specify a transfer or an escape and if the
contents of the displacement field (bits 8-15) of P were hex FF,

a Page Carry condition exists.

4.3.3.2.2 Page Carry

Upon completion of the fetch of an instruction, P
is incremented by one. If a carry from bit 8 to bit 7 occurs
during this process, a page carry exists. A page carry
indicates that the instruction just fetched was located at
word 255 of the present page. Since the process of incrementing
P also incremented the page field of P, the procedure kernel
must be accessed to determine if the next sequential procedure
page is resident in local memory. Thus, a page carry condition
results in a control sequence being entered which unconditionally

transfers to the instruction indicated by the incremented P.

For example, if the present P indicates page 10,
location 255, incrementing P results in P indicating page 11,
location 0. The Procedure Kernel entry associated with page 11

is accessed to determine if page 11 is resident in local memory.

4.3.3.3 Procedure Page Fetch

When a Page Carry condition exists, or when the
instruction just executed was a Transfer causing a change in P,

or an escape instruction, a procedure page fetch is performed.

The contents of the page field (bits 0-7) of the program
counter are appended to the contents of the Procedure Kernel
Register (see Section 4.1.1.8) to form a local memory address

of a kernel entry word.

PROCEDURE P COUNTER
KERNEL REGISTER PAGE FIELD

NBBnanE0nD0no0E

It should be remembered that the Procedure Kernel
Register is a 2-bit register. Therefore, in the above format
these two bits occupy bit positions 6 and 7 with zeroes in

bits 0-5.

4.3.3.3.1 Kernel Entry Word

The Kernel Entry Word accessed has the format:

&
&
O
, A
Q& & OF
Yy, S
OO 00
\ll\e & &
Q’Q/«,§ < Q/g,é
§ 88 FEFS
CEEX i—"_i‘;&q‘:

TM PAGE WIDE ADDRESS RywjCtP

T EELED

121IJ[IAIlﬂlbll?l18[I9I20L2]]22[?3|14{25|26|27l28[29 30‘3! 32(33}34¢35

4

o
o
3

A Xkernel entry word consists of 36 bits, 32 of

which are directly used in processing. The remaining 4 bits,

the least significant byte, contains certain security-oriented

control information. These bits are interpreted as follows:

a)

b)

c)

Read—-Protect (Bit 32) - When this bit is set,

the program is not permitted to read the

desired information unless the PMU is in the
executive mode. If this bit is discovered

set in the kernel in the course of a normal
virtual Read fetch cycle, the PMU halts and sig-

nals the Exécutive if the trap routine so indi-
cates.

Write-Protect (Bit 33) - When this bit is set,

the program is not permitted to write into the

indicated virtual segment unless the PMU is in
the executive mode. If this bit is discovered

set in the kernel in the course of a normal

-Store type command, the PMU halts and signals

the Executive if the trap routine so indicates.

Command Protect (Bit 34) - This bit, when set,

indicates that the associated kernel word
contains a command to be interpreted by another
subsystem. Certain PMU instructions permit a
program to issue commands to other subsystems.
These instructions may only issue those commands
located in the kernel and marked by this bit.

Parity Check (Bit 35) - This bit assures an

odd parity within the 36 bit word if no single

error exists.

4-19

If the kernel entry indicates word oriented data
(bit 11 is zero), a Command Violation trap occurs. All
procedure must be page oriented. (Note: An Execute instruction
interprets data as an instruction and therefore uses the

Operand Kernel Page.)

4.3.3.3.2 Resident Procedure

If the Command Protect (Bit 34) bit of the kernel
entry word is one or if the Page/Word (bit 11) bit is zero
(indicating word data), the Command Protect Trap is generated and
the remainder of the procedure fetch is aborted. If bit 34 is
zero and bit 11 is one (indicating paged procedure), the contents
of the Resident (bit 10) bit is examined. If the page is shown
as being resident (bit 10 is one), the contents of the TM Page
Field (bits 0-7) are placed in the Procedure Page Register (see
Section 4.1.2.1) and the next instruction is fetched according

to a normal instruction fetch (Section 4.3.3.2).

4.3.3.3.3 Non-Resident Procedure

If the kernel entry word indicates paged procedure
(bit 11 is 1), not resident (bit 10 is zero), and the Command
Protect bit (bit 34) is a zero, a standard Instruction Transmission
Word (see Section 4.3.5.2.7) is created with an Op Code 06 (Read,
Page to Output instruction) and transmitted on the primary bus
system. The 20-bit System Address of the transmission word is
equal to bits 12-31 of the kernel entry word. At this point,
the PMU prepares to accept a page transmission by determining
the appropriate local memory location in which to place the
first word of the received page. The page replacement sequence

that is performed is described in Section 4.3.3.3.4. The page

4-20

location in which the incoming page will be stored is placed
into bits 4-7 of the kernel entry word (bits 0-3 are always
zero because of the maximum 4K size of the task memory), the
residency bit (bit 10) is set to one and the kernel entry word
is rewritten in the local memory location from which it was
read. The PMU also places the contents of bits 0-7 of the
updated kernel entry word in the Procedure Page Register and
writes the incoming page into sequential local memory locations
beginning with the address formed by augmenting the contents of
the Procedure Page Register with hex 00. In addition, the PMU
locates the kernel entry word, if any, that referred to the
contents of the page being overlayed and clears the residency
bit (bit 10) to zero. At this point the page replacement
sequence is complete and the next instruction is fetched according

to a normal instruction fetch (Section 4.3.3.2).

4.3.3.3.4 Replacement Algorithm

Wheriever non-resident paged information is brought
in, the selection of a local memory page location must be made.
The DPE allows a selection from four different types of algorithms.
A pair of registers,'Lower Bound Register and Upper Bound Register,
are provided which maintain the bound of the local memory area
which is subject to replacement. It is within this area that
the automatic algorithms work. The algorithm to be used is
contained in the Replacement Algorithm Register and is set, along
with the two boundary registers, by the execution of the Set
Task Parameter instruction (Op Code 29). The four replacement
algorithms are:

Programmer Specified
First In/First Out

. Random
Sequential Fill/Random

4.3.3.3.4.1 Programmer Specified

If the contents of the Replacement Algorithm Register
are 00, the starting location for the page store is the contents
of bits 0-7 of the kernel entry word augmented by hex 00. 1In
this case, the residency bit (bit 10) of the kernel entry word
is set to one and the kernel entry word is rewritten into the

local memory location from which it was read.

Also, if bits 0~3 of the referenced kernel word are
not 0000, the page to be replaced is determined by bits 0-7 of
the just read kernel word (regardless of the specified replacement
algorithm). 1In the last case it should be noted that even though
the replaced page was not generated by the automatic replacement
logic, the automatic replacement logic assumes that it has. Conse-
gquently, the call of successive page replacements via this means may,
for example, make the replaceable area look filled (Seguential Fill/
Random Algorithm) even though a page was never replaced in the

dynamically replaceable area.

4.3.3.3.4.2 First In/First Out

If the contents of the Replacement Algorithm Register
are 01, the page location in which the new page is to be stored
is determined in the following manner. Immediately after an
Initiate New Task instruction (Op Code 28), the new page is placed
in the page location immediately above that specified by the
Lower Bound Register. Thereafter, successive pages are placed
in the next sequential higher page locations, until a page has
been placed in the page location specified by the Upper Bound
Register. Subsequent pages are placed‘in the location immediately
above that specified by the Lower Bound Register, and successive

Pages are stored in successive locations as before.
4.3.3.3.4.3 Random

If the contents of the Replacement Algorithm
Register are 10, the random algorithm is used and the page
location is determined in the following manner. The internal
counter that is used to determine the page location according

to the first in/first out algorithm is allowed to continuously

count in the range from one plus the contents of the Lower

Bound Register to the value of the Upper Bound Register.
Whenever the counter reaches the value of the Upper Bound
Register, it is reset to its lower value. For each page
replacement according to the random algorithm, the current value
of the counter is used as the page location for storing the

incoming page.

4.3.3.3.4.4 Sequential Fill/Random

If the Replacement Algorithm Register contents are
11, the Sequential Fill/Random algorithm is used. Immediately
after an Initiate New Task instruction (Op Code 28), the new
page is placed in the page location immediately above that
specified by the Lower Bound Register. Thereafter, successive
pages are placed in the next sequential higher page locations,
until a page has been placed in the location specified by the
Upper Bound Register. Subsequent pages are then replaced

according to the random algorithm described in section 4.3.3.3.4.3.

4.3.3.4 Non Standard Procedure Page Fetch

In honoring a trap, the PMU performs a Procedure
Page Fetch according to Section 4.3.3.3 except that Word 255 of

the Procedure Kernel is used as the kernel word for all cases.

4.3.3.5 Examplex of Instruction Fetch

Figures 4 and 5 ‘are illustrative diagrams of
the steps which occur during the instruction fetch cycle for
resident paged procedure and non resident paged procedure,
respectively. Hexadecimal notation is used in these examples,

where applicable.

4.3.3.5.1 Resident Paged Procedure (Figure 4)

In this examplé the current contents of the Program
Counter "P" indicate that the last instruction (number 255
decimal) of virtual page O0A is to be fetched. The local memory
address of this instruction (1l1FF) is obtained by catenating the
contents of the Procedure Page Register (11) to the displacement
field of P (FF). After this instruction is fetched, P is
incremented by one which results in a page carry from bit 8 to
bit 7. As a result, the Procedure Kernel Page Register contents
for this program module are appended to the page field of P to
obtain the local address of the kernel word. This kernel word
indicates resident paged procedure which is located in local
memory page 06. This local memory page 06 is loaded into the
Procedure Page Register and appended to the displacement field
of P (00) to obtain the local memory address (0600) for the

virtual address (0B00) contained in P.

4.3.3.5.2 Non-Resident Paged Procedure (Figure 5)

r
For this example it is assumed that the same

conditions and steps were followed as in the previous example
up to the examination of the Kernel Word located in local
memory address 020B. In this example the kernel word indicates
that the paged procedure is non-resident (bit 10 is zero).
Therefore, a "Read Page To Output" instruction is created

and transmitted over the internal bus to the BORAM. For this
example the PMU address is 00 and the BORAM address is 03.

The required procedure page is located in address 4D6 in the

BORAM. Upon receiving the "Read Page To Output" instruction,

PROGRAM COUNTER "P"

ABSOLUTE ADDRESS
it TASK MEMORY
OF VIRTUAL PAGE 0A

FETCH INSTRUCTION
AT TASK MEMORY
LOCATION 11FF

INCREMENT P BY ONE
CARRY FROM BIT 8 TO BIT 7
RESULTS IN PAGE CARRY

PROCEDURE KERNEL PAGE
REGISTER - SET BY BITS
10 - 11 OF OP CODE 28
"INITIATE NEW TASK®

TASK MEMORY ADDRESS
OF KERNEL WORD

PAGE _ DISPLACEMENT
0 A FF
01\[2[3[4[5|6’7 8!?])01ll!|71|)]|ll£
PROCEDURE

PAGE REGISTER

11

ofri2t3ajafsjie7

FF

AREOEDEE

DISPLACEMENT

00

JNEOUOEDD

CONTENTS OF ADDRESS
0208 (KERNEL WORD)

ABSOLUTE ADDRESS
IN TASK MEMORY
OF VIRTUAL PAGE 0B

FETCH INSTRUCTION
AT TASK MEMORY
LOCATION 0400

10
0
Y_ —
02 08
0[112’3I4[s]=]7 e[vtxoiu]v:|ululys
(. J ~
“ ~EL
v 53 S5
SES s oq$°§§
TAsK MemORY Pace & & & T WORD ADDRESS SO
7
06 olof1]1 034DG6 ol1]ofe
0| 1]213!4l5|6’7 glotioln lZIIJINI15‘16]17‘15[\9'20[2||72|Z3‘24l25[26[27[78[79!3011 32133(34{35

PROCEDURE
PAGE REGISTER

06

annonanE

00

BI ?J‘Ol”'l?lul“l!s

PAGE DISPLACEMENT
INCREMENT
P 8Y ONE 0B 01
TG R s
F'igure 4. Virtual Addressing - Resident Paged Procedure

AESOLUTE ADDRESS
IN TASK MEMORY
OF VIRTUAL PAGE 08

FETCH INSTRUCTION
AT 165K MEMORY
LOCATION 0600

INCREMENT
“PTBY ONE

e
- &S ££9
ST SEF
SSNO TSeE
TASK MEMORY PAGE & & WIDE ADDRESS EEFE
£ aTer TS OF
L. 71350208 0 6 o|o]of1 034D6 ol1]o|p
yihtel v ORD) :
é‘fAif:\l&‘OUS 0]\[7]3 ‘lslbl7 gl9owon IZI‘Jb4]|51|bh7119117l70l21IZZI?JI74‘15!26l27}18[19130[31 320333435
) . ———
_ j .
» .0t PESIDENT N
<3 DITION "READ e N ‘}O\e & &
o orcove I Aooress Abpress REN
+35TRUCTION
0 6 6 03 406 1jo]1|e
il T EEEGED LR R e oo [[e e
FEGISTER ADDRESS OF PAGE ADDRESS
[| BORAM WITHIN BORAM _ Py N
[— §§‘\§ .
CAUSES IS Lo
\ p \ & ¥ SOURCE ADDRESS .
CHANNEL
TRAMNSMISSION PI1T 0O 00 ojo
WORD SENT
7O BORAM °I 1 [2 IJJ . lea [7 [8 [3 lloluln]ulul xsl|e[x7||alwlzoLz| [zz[zaInﬁlzs[u[za[zolaokrlzz]:zl:u[as 3 37[33!39 Ao]u [u]a]u];s[«a]y 4849
ADDRESS OF
&, o TMUS CHANNEL
N S Y
L&, A FI0
O EITIS, %
15t WORD
PECEIVED FIRST INSTRUCTION OF PAGE Plo 10 00 olo
Eop‘f\M 01‘l?]3]4[5T6I?[B[9[I0[||[I2]13]|4T|5F61|7‘18lIVIZCJ2|J22123l?‘]?SI?bIZ?]ZG!Z?[QOI:H 32{33/34135]36 37'38'35’ 40[4![‘?[431“!‘5J“J47 48|49
- A J
i STORED IN TASK MEMORY LOCATION 0600
25610 WORD
PECEIVED 256th INSTRUCTION OF PAGE plo 11 00 olo
BORAM ﬂ‘l?lll4l§[é]7l8]9!]0]”1!2[ljlldl|$J|6]I?[IQI!?[?O!2![22[23'2‘]25]26[27]28]29]30l3l 32({33(34(35(36 37133139 w!lllGZIqﬂIljJ“l47 4849
> 58 STCRED IN TASK MEMORY LOCATION 06 FF N O
SEE oSugER
SESL ST
TASK MEMORY PAGE & & &' Q WIDE ADDRESS EEIET
CONTENTS OF
ATDRESS 0211 0 6 olojo 03221 ofojofp
KERNELWORD OF .
S;L:g[EYD]SAR%SEET 0[']2}3 4]5]6[7 glefiofn I2II3JI4IISF6]!7]TSI!9]?O!Z)I22|23121125116177128]29‘[3017“ 32)133(34}35
FOR NON RESIDENCY
CONTENTS OF ADDRESS
0263 WEPNEL WORD ° s lololils 034D6 ololo|p
OF titvi PAGE
‘;‘E];‘EEBS‘{‘FORSOEEEFDOU';E 0! |l l?].’l 4 l5[6]7 8l9lwin IZIIl[}lllill6]|7||8]!9J20[Z|I2?]23]24]25[26[27128]29'301’“ 320133(34]35

PROCE

PAGE REGISTER

DURE

0

6

FROM DISPLACEMENT

01\12[3 Alslét EgLUDN?EFRnP,

r d N
0 & 0 0
011[2[3 llS‘bi? e]v]'w[n nLuJuLxs

PAGE DISPLACEME}\IT A
0 B 0 1
iL\JI[a 4]5[5’7 slleo]n IZTIJ!I&IIS

Figure 5.. Virtual Addressing - Non-Resident Paged

Procedure - Programmer Specified Replacement

the BORAM executes the instruction by accessing its location
4D6 and causing the transmission of the full 256 word page

to the PMU. Upon receiving the words from the BORAM, the

PMU stores the words in consecutive locations in local memory
page 06, as determined by the page field of the Kernel Word
because the replacement is programmer specified. The kernel
word for the paged procedure which formally was stored in page
location 06 is tagged non-resident (bit 10 is reset to zero).
In this example, this kernel word is located in memory location
0211. The kernel word, memory location 020B, for the page

just read into memory is marked resident. From this point on
the same procedure as described in the previous example is followed

to obtain the final instruction.

4-27

4.3.4 Instruction Word Interpretation

4.3.4.1 Instruction Format

The general format for both PMU and AP instructions

are essentially the same and is given in Figure 6.

Bits 0-3 are termed the HI-OP bits, bits 4—7Aare
termed the LO-OP bits. HI-OP and LO-OP values are specified
in hexadecimal notation. These two bytes, in combination,
are termed the Operation Code (or Op Code), and specify the

operation to be performed.

When ‘bit 33 equals zero, indicating a PMU instruction,
bits 8-11 indicate the scratchpad register (SPA) (or register
pair in the case of full word instructions) which is to be
used as the accumulator. When bit 33 is set to one, indicating
an AP instruction, bits 8-11 are termed the parenthetical
field. Bit 8 is an arithmetic precision bit and bits 9-11

specify parenthetical action.’

<
SCRATCHPAD &L
ADDRESS OR DD RESS N N ',s-g
PARENTHETICAL MODIFICAT SRS
OP CODE FIELD FIELD FSEE
r_/\ﬁ §l YQ\..‘\..QY
HI-OP | Lo-OP ilox OPERAND ADDRESS ME le
Ol‘|2I3 4[5]6!7 8]9llﬂ” 12]31]4]]5 16[]71]8]19'20[2‘[22!23124]25|26|27|28[29!30]3' 32i33 34135

FIGURE 6 ' GENERAL INSTRUCTION FORMAT

4-28

Bits 12-15 specify requisite address modification.
Bit 12 specifies whether the address derived by this instruction
is the effective address of the operand or the address of
another address. When bit 12 is set, an. indirect addressing
cycle is performed. Bits 13-15 specify one of seven index
registers (SP[1]-[7]) to be used to index the instruction.
If no indexing is desired, an index code of "000" is specified.

Indexing occurs prior to Indirect Addressing.

Bits 16-31 specify the address of the operand. The
PMU will typically be in "Virtual Address Mode," and this fiela
thus specifies the virtual address of the operand. 1In this v
case, bits 16-23 specify the location of the RAMM segment addresé
in the kernel, and bits 24-31 specify the displacement of the
particular operand in that segment. In cases where direct
addressing of task memory mode has been specified, bits
20-31 give the direct address. When both bit 12 and bit 32
are zero, the contents of bits 16-31 are taken as an immediate

operand.

Bit 32, when set, specifies if a memory access is

to be made.

Bit 34, when set, will cause the instruction trace

trap to be raised upon completion of the execution seqguence.

Bit 35 specifies odd parity for the instruction

word.

4.3.4.2 Parity (Bit 35)

Parity of the instruction word (bit 35) is checked
after the instruction is read from local memory. If parity
does not check, the Parity Error Trap is_enabled. Parity is
generated on all local memory writes. Thereafter, bit 35 is

ignored in instruction processing.

4.3.4.3 Addressing Modification (Bits 12 thru 15)

In all internal instructions, the address portion
of the instruction word may be modified by indexing or indirect
addressing or both. Indexing precedes indirect address

modifications.

4.3.4.3.1 Indexing (Bits 13 thru 15)

The Index field (bits 13-15) specifies one of
seven index registers (scratchpad registers 1-7) or the Index
field (000) specifies that indexing is not to be performed.
If indexing is required, the contents of the specified index
register is added to the contents of bits 16-31 of the instruction

word. The sum replaces the bits 16-31 of the instruction word.

INDEX

i‘:_l 1 I2l3 I 4 IS l 6!7 [8 [9llOJHJ|2 !3‘|4I15 l6|]7r’8119120121122123!24]25|26J27]28P9l3013]’32133]34E5

4.3.4.3.2 Indirect Addressing (Bit 12)

The process of indirect addressing entails replacing
bits 12-32 of the original instruction word. Bit 12 of the

original instruction, when a one, specifies that indirect
addressing is to be performed. When bit 12 is a 0, no
indirect addressing is performed. (See Sectim 5.3.13 for indirect

addressing in regard to Dimension Words)

w
<3

orll2 |3 l l15I6|7—[Bl9llolll 12 lSJMj)5Ilé]I7[18|I9]20|2][22]?3124]25[26[27128129T30{3I

3 [34 { 35

When bit 12 is a one, bit 32 specifies one of two

indirect modes: Memory or Register Indirect Addressing.

4.3.4.3.2.1 Memory Indirect Addressing (Bit 32 is ONE)

INDEX ADDRESS 1

T LD Rh o e e R e B

When bit 32 is one, and indirect addressing is to
e performed (bit 12 is one), bits 16-31 are used to directly
specify an indirect word. The fetch of this indirect word is
accomplished @s in Section 4.3.4.4. The contents of bits 12-32
0f the fetched indirect word replace bits 12-32 of the original

instruction word. The remaining bits of the indirect word are
ignored.

4.3.4.3.2.2 Register Indirect Addressing (Bit 32 is zero)

e

i oL NEW
' INDEX | |M| UNUSED REGISTER |1 | INDEX
! FIELD FIELD

L:r"i7]3lllslél7lalvlw]n 12 13J|4!15 7)Blm]zollen 231ﬂ75[2¢[27 28 29[30'31 3

-
o

>
I

When bit 32 is zero, and indirect addressing is to
be performed (bit 12 is one), bits 12-32 of the original

instruction word are replaced as follows:

Bits 28-31 replace bits 12-15
Bit 17 replaces bit 32

The contents (bits 0-15) of the scratchpad
register specified by bits 23-27 replace bits 16-31

In addition, bit 16, if a one, indicates a
Replacement operation (see Section 4.3.4.3.3)

4.3.4.3.3 Chaining of Address Modification

If indirect addressing was required, the process
of indexing is again performed and indirect addressing may
be repeated. If the Replacement operation was specified from
the previous register indirection, bits 16-31 of the modified
instruction word (after indexing) are written back into the
register specified by the preceding register indirect cycle
(4.3.4.3.2.2). 1In all cases, bit 12 of the modified instruction
word is then checked. If bit 12 is a one, the process of
indirect addressing is repeated as before. If bit 12 is a

zero, the operand cycle will commence.

4.3.4.3.4 Examples of Address Modification

Figures 7 through 9 are illustrative examples of
the various forms of address modification discussed in section
4.3.4.3. The digits used in these examples are either binary
or hexadecimal and may be discerned by the field length when
the digit(s) are used. Although the normal addressing mode is
virtual, it has been assumed for simplicity that the addressing

mode in these examples is absolute.

4-32

4.3.4.3.4.1 Example No. 1 (Figure 7)

This example indicates the steps involved during
address modification of a half word PMU instruction ‘
(bit 33 = 0) using indexing and direct memory fetch of the
operand. In the original instruction word the index field
(bits 13 - 15) indicates that the contents of Index Register
No. 2 are to be added to the contents of the address field
(bits 16-31). This addition results in a new address of
1170 for the modified instruction word. No indirection is.
required (bit 12 is zero) and because bit 32 is a ONE, a
memory access is to be made for the operand. Because this
instruction contains a half word op code the address
field of the modified instruction word is shifted right one
bit and a leading zero added to the high order bit position
to obtain the actual memory location (08B8) of the operand
(see section 4.3.4.4.1). Bit 31 of the modified instruction
word was a zero which specifies that the left half of the
32 bit operand read from memory is to be used for the

execution of this instruction.

/4
?@C,/o
%

SE A
L ‘«gq\eg‘é\
OP CODE SPA < INDEX ADDRESS T YA
[?\TS‘%L’J\IC/;‘I-ON HALF WORD 01010 0115D 1Hol|tjep
WORD 0]) I 2131[} B | 6|7 s[?!roLn 12 lJlMlli mlwllslwl?clﬂ 27‘73lutzsiz«]n‘za‘zv}aa]ﬂ 32]33fa¢f3s
C A —
INDEX
REGISTER 0013
(SCRATCHPAD)
NO. 2 0‘7\12lz[4[5[s[7ls[leoil1l|Qlululls
.]
|
7 op copt sPA 4 ADDRESS
:VF:IOS%;UE?!ON 0] XXX 1170 1{O|T|P
WORD AFTER
INDEXING o]tlzkl;lslaP 3!9|10[H 12 ulu||s !éTl?TlS[VVT2c[YI[72‘2][21[25[2¢¥27128[1ﬂ30|3\ 32|33]24(35
[N)
SHIFT RIGHT ONE BIT
TO OBTAIN MEMORY ADDRESS
MEMORY
LocaTioN 6 A0S 03 E1 X x x|p
ol Iz [3 I 4[515[7 I a[ﬂwln]ﬂsz]u[w wlnllaInﬂzo[:x[zz!n[u[zslu[27129]29[;[31 Jz—|'33F4 35
g]

OPERAND
(SPECIFIED BY BIT 31 OF
MODIFIED INSTRUCTION)

CONDITIONS - PMU INSTRUCTION (BIT 33 1S 0)
HALF WORD OP CODE
INDEXING, MEMORY OPERAND
FETCH NO INDIRECTION

FIGURE 7 Address Modification -~ Example 1

-

4.3.4.3.4.2 Example No. 2 (Figure 8)

In this example, a half word PMU instruction
(bit 33 = 0) is modified by memory indirection and indexing
prior to a memory fetch of the operand. Indexing always
precedes indirection, however, in this example the index
field of the original instruction word is zero resulting
in no index modification. Bit 12, being one, and bit 32
set to one, indicates that memory indirection occurs. The
indirection process results in bits 12-32 of the original
instruction word being replaced by bits 12-32 of the contents
of the memory location (015D) as specified by the address
field of the original instruction. The resulting modified
instruction now specifies that the contents of Index Register
No. 1 are to be added to the contents of the address field
in order to obtain the new operand address. Again, as in
Example No. 1, this instruction involves a half word
op code. However, because bit 31 = 1, the right half of
the 32 bit operand read from memory is used for the execution

of this instruction. (See Section 4.3.4.4.1)

4.3.4.3.4.3 Example No. 3 (Figure 9)

For this example it is assumed that the instruction
is a .full word PMU instruction calling for register
indirection, indexing and an immediate operand. Bit 12, of
the original instruction word, being set to one with bit 32
set to zero specifies register indirection, with bits 23-27

specifying Register No. 20. The contents of this register

ORIGINAL
INSTRUCTION
WORD

R
7
(o)
N

5 X
N LORSEOAS)
OP CODE __SPA \§ INDEX ADDRESS ‘}éé\g{%
HALF WORD 000 |1| o00 015D 1olT|p
ﬂj?hltlﬁ]t[7 Bl’?lloll! 12 Ijllﬂlls Véllj!ﬂziiolﬂlz}l?}{?l[b[ﬂﬂ?@llj”l:ﬂ 32133(34(35

T T

X X X X olo o1 0013 1| X X P
*MEMORY
o5 TR R e e e e FR R PR F R
« J
s ‘ \ —"= N
OP CODE SPA INDEX ADDRESS

INSTRUCTION Oloon co1s e
Eory llljitb] el s e e e e [R [e e[e o]
INDIRECTION T T _er
INDEX X 00 A4
REGISTER
(ScRatChPAD) | [T a5 [« s o[-]2][] v e[w[n]s

“

J

Tﬁ Y
| I

r N r N
OP CODE SPA ADDRESS R
:‘ANOS?I;U(EI%ON 0lX X X 0087 1lolt]p
WORD . . -
IA;}(‘)EERXING ul 1] 2}3 [4 { 5 I A] 718 [inoln 2 u]ul\s !5[17‘18[19[20121 72[23[%[2:[25[271zs(;vlao!at 32(33(34]35
. v
SHIFT RIGHT ONE BIT W
TO OBTAIN MEMORY ADDRESS ’
MEMORY 6 A0 8 O3E1 X X X|P
LOCATION
0058 iy:h['iﬂ s l 7] 5 } 9]m]n InLu]x:iw m] x7]|slwlzoiulzz 23[n]zs[:a;v]zalz?[ao[m 32!33(34 35
“ 7
OPERAND
CONDITIONS - PMU INSTPUCTION (BIT 33 IS O) (SPECIFIED BY BIT 31 OF
HALF WORD OP CODE MODIFIED INSTRUCTION)

MEMORY INDIRECTION, INDEXING,

MEM
EMORY OPERAND FETCH *INDIRECTION IS TO A FULL WORD

EVEN IF OP CODE IS FOR 1/2 WORD

FIGURE 8 Address Modification - Example 2

4-36

< > >
Qo & 9
s A N
& &8 $ Soga
9 S S FSEE
OP CODE spA S INDEX &S REGISTER I? NDEX_ S ¢ &
. NOT ‘
IC;:?S'%'LTCAT%ON FULLWORD 1looojf1|o UseD 10100 [0 010 {olo|T|p
WORD OII [2]3‘{4]5]6‘[7 319(10§” 12 |JI|4!Y5 16117 IS’IVIZO[Z(IZZ 2i7i‘{2‘]2$i77128 ZQI3U13| 3213313435
— ~ f—
C
utare o
L N onoono: ul Doopog
OP CODE SPA INDEX Y ADDRESS ™
MODIFIED
\'NNOSFSUAC;:?RN ojo 10 00A4 OO} TP
'IIIEIGD:;ZE:RTION \ol ||2'3|4[5Tq7 s[9[ﬂn 1: |3‘14Lvs ijlm]wlzo[zx|21]23]24|2sizslz7'ze|z?l30[i:\z 333435
] f
INDEX
SCRATCHPAD) et
(NO.Z oll]2’3'4lilSJ7LBI9I|DIIIII2IIJ‘HIH
C T —
N)
, 1 .
SCRATCHPAD
REGISTER 0087
NO. 20
(;‘ETP:'?SE{‘)AENT 011Iz!31415]a[713[9‘101:1[12]13]1415
.
T Op CoDE SPA - ADDRESS T
MODIFIED
WOSEEUACFI'!&N 0|X X X 0087 ol|o}T|P
INDEXING ol v[1|3]4E1e17 8]9]]ﬂ” 12 |3[|4|15 |é]|7ll&ll?T10[?lT27IZ3!24]25'26'27[78[29130 31{32|33 34|35
N =
IMMEDIATE
OPERAND
p
0000 0087
0111213 [4]5 l el? ia[v[m[n[u]ulu‘ls ulw]ﬂwIzolzl[zz[zalu|2slza|z7lzal29]30 31
« A J
OPERAND OPERAND
FOR SPA FOR SPA + 16
CONDITIONS - PMU INSTRUCTION (BIT 33 IS 0)

FULL WORD OP CODE
REGISTER INDIRECTION WITH
REPLACEMENT, INDEXING,
IMMEDIATE OPERAND

FIGURE 9 Address Modification - Example 3

4~37

are then used for the address field of the modified instruction.
At this point indexing is called for and proceeds in the same
manner as the previas examples. However, bit 16 of the
original instruction was set to one, calling for replacement,

so the contents of Register 20 are replaced by the results of
the indexing operation. The modified instruction after indexing
specifies no indirection, bit 12 = 0, and no memory access,

bit 32 = 0, resulting in an immediate operand. Because the
instruction calls for a full word operand the the immediate
operand is only 16 bits, the high order portion of the final

operand is filled with zeros. (See Section 4.3.4.4.2)

4.3.4.4 Operand Cycle

The operand cycle determines the operand for use
with bits 0-11 of the original instruction word. The state
of bit 32 of the modified instruction word (after all indexing
and indirect addressing operations have been accomplished)
determines whether the operand is contained in memory (bit 32
is 1) or is the actual contents of bits 16-31 of the modified
instruction word (bit 32 is 0). If the operand is to come from
memory, the contents of bits 16-31 of the modified instruction
word are used to address memory to obtain a 36 bit operand.
Bits 0-15 (left half) or bits 16-31 (right half) of the addressed

location are selectable, should a half word be required.

All operands for use by external devices are full
36 bit operands. For these cases, the 16 bit address is used to

access up to 65K of memory.

Operands for use by a PMU are half word operands
(16 bits) or full word operands (32 bits). The word size is
determined by the op code field (bits 0-7) of the instruction.
In cases where a 16 bit operand is required, the least significant
bit of the address for the half word instructions specified
the left half (bit 31 of the modified instruction word equals
zero) or the right half (bit 31 of the modified instruction
word equals one) of the full word addressed by the remaining
15 address bits. A 16 bit address with the most significant

bit being zero is sent to memory to retrieve the desired operand.

For those PMU instructions which require full word
operands all 16 address bits of the instruction word are used

for accessing full word operands from memory.
Memories always read and deliver full words. The
PMU selects the referenced half word (if appropriate) when

the operand is received.

4.3.4.4.1 Memory Operand Fetch

4.3.4.4.1.1 Virtual Address Mode

The normal address mode for DPE operations is virtual,
which is indicated when bit 23 of the Set Task Parameter Instruction
(Op Code 29) is set to one. The first step in calculating the
absolute address of the referenced operand is to access the
entry in the kernel indicated by the Page Field of the effective
address of the modified instruction. The local memory location
of this kernel entry word is formed by appending the Data Kernel
Page Register to the Page field. The resulting 16 bit address

has the following format.

If the addressed operand is full word (32 bits),

the address of the kernel entry is:

DATA KERNEL PAGE FIELD
PAGE REGISTER (BITS 16-23)

INNBNABE0NDNDE0E

If the instruction addresses a half word (16 bits)

the address of the kernel entry is:

DATA KERNEL PAGE FIELD
PAGE REGISTER 0 (BITS 16-22)

T L LD el m s

The kernel entry word has the format as indicated
below and depending upon whether the data is paged or word

oriented.

PAGED DATA &
&
9
Vo‘%gél 65 45"\4'5’2)&
RIS OO5
SEES S5
Y QIS
PAGE FIELD & LI LEET
T T l T T
; WIDE ADDRESS R lwlclp
CI'IZ?J]#]S(A{7 grofwoln IZJHIMIISIM]W 18 19[20[2['22[23[24 25126!27]28'29[3013!]32 33({34}35

WORD DATA

£

9 & co&

Sy & &6

SRS SN

F N S LESE

& 0F LEad ; NI

UNUSED T

010 WIDE ADDRESS R|W|C|P
OIITZ 3 415[6]7 81904 n l?IIJIMIlS,lé‘l?lIBI]?IZOI2?I22!23J24]2_’>’Zﬂl27!78]21130[3] 32(33]34|35

If the kernel entry indicates word data (bit 11 = 0),
bits 24-31 of the kernel entry are added to the displacement
field of the effective address of the instruction and the carry
from bit 24 to bit 23 inhibited. The resulting 20 bit wide
address (bits 12-23 of the kernel and the 8 bit sum just
générated) is the address field of the instruction that is
created and sent to the channel. The channel instruction
generated is a function of the type of instruction that is

being executed, Read or Write.

For word data, bit 10 of the kernel word indicates
which set of primary buses are used. With bit 10 equal 0, Bus 1
or 2 is used. When bit 10 equals 1, Bus 3 is used. It should
be noted that the aVailability of the 3 possible primary buses
is controlled by the Set System Parameter instruction (Op Code 25).
Should bit 10 be 1 and the DPE is not allowed to use Bus , the
DPE will hang up.

For all created transmission intructions, bits 4-7 of
the referenced kernel becomes bits 8-11 of the created Input/

Output bus instruction.

For word data, bit 3 denotes whether the pipeline
(see Section 4.3.4.4.5) is to be entered for the next sequential
instruction. If bit 3 is one, the pipeline is entered. If
bit 3 is zero, the pipeline is exited or terminated. Bit 3 must
be specffied as zero when arrays or complex data type is to be
encountered. By definition, paged data halts the pipeline and
therefore the stopping of the pipeline need only be determined

for word data.

If the kernel entry indicates Paged Data and not
Resident, a Read Page to Output instruction (Op Code 06) is
created and sent to the channel. This is true even if the
instruction is a Store type. The displacement field of the
instruction is not added to the 20 bit wide address when data
is page oriented. Thus the 20 bit wide address of the Read
Page to Output instruction is bits 12-31 of the kernel entry.
The PMU, while awaiting the return of the addressed page,.
performs a page replacement sequence. The sequence for bringing
in a page is identical to that described for procedure (see
Section 4.3.3.3). Once the referenced page is loaded, the
virtual addressing mechanism is re-entered to resolve addressing

to an operand.

If the kernel entry indicates paged data, resident,
and command bit (bit 34) is 0, the Procedure Page register
is loaded with bits 0-7 of the kernel entry. Then the operand
located at the local memory location indicated by appending
the data page register to the Displacement field of the effective

virtual address is fetched and operated upon.

In all the above cases, if an operand is read, the
Read Protect bit must be 0. If an operand is written into,
the Write Protect bit must be 0, and if an operand is executed
the Command Protect bit must be 0. If any of the above conditions
are not true, the appropriate violation is detected and a trap

occurs.

4.3.4.4.1.2 Absolute Address Mcde

When bit 23 of the Set Task Parameter instruction
(Op Code 29) is zero, the cperand addressing mode is absolute
i.e., local memory is directly addressed. It should be noted
that absolute addressing applies only to operand fetch and not

to procedure fetch which is always done in the virtual mode.

For <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>