

MARCH 27-31, 1995

CONFERENCE
PROCEEDINGS

| d
‘I

Annabooks

ISBN 0-929392-27-2 SANTA CLARA, CALIFORNIA

You are welcome to send us comments or questions concerning this
or other Annabooks products, or to request a catalog of our other
products and seminars.

Annabooks
11838 Bernardo Plaza Court
San Diego, CA 92128-2414

800-462-1042
619-673-0870
619-673-1432 FAX
73204.3405 (@ compuserve.com

Proceedings of PCI'95 Conference
March 27-31, 1995 e Santa Clara, California

TABLE OF CONTENTS

Overview xi
Lance A. Leventhal

SESSION D3A

Architectural and Design Considerations When Implementing

High Performance Multimedia Applications on PCI 1

J.Scott Runner, Alak Deb, Maulin Bhatt, David Greenberg
Sean Ganjooi, and Gina Ngo

SESSION D3B

Rambus Technology and System Design Overview 7
Billy Garrett

SESSION D3C

OEM System Tuning Guide for Pentium” Processor-Based Computers 13
Fred Pollack

SESSION D3D

Programmable Logic in PCI-Based Systems: An Overview 14
David J. Ridgeway

Designing a Flexible PCI Bus Interface

With Programmable Logic 18
Bradly K. Fawcett

SESSION D3E

Trends in System Logic Design 24
Wen-Chi Chen

SESSION D4A

New PC Card ICs Contribute to the Proliferation

of the PCI Bus 25
Mark Bode, David Dickens, and Tony Wutka

SESSION D4B

Number Nine's View on PC Graphics -- Now and into the Future 28
Andrew Najda

SESSION D4C

PCI Host Bridge for the 60x Family of PowerPC™ Microprocessors 29
Christopher D. Bryant, Michael J. Garcia, and Laura A. Weber

SESSION D4D

PCI Test Benches for FPGA Implementations 36
John Birkner

SESSION D4E

Architectural Enhancements of Next Generation

Pentium™ Chip Sets 37

John Monti

aee

SESSION D5A
Optimizing the PCI/Memory Interface for High Performance
James D. Joseph
SESSION D5SB
A PCI-Based Integrated Multimedia Chipset
David C. Baker
SESSION D5C
Expanding Your Market By Adding Open Firmware Support
to Your PCI Peripheral Card Designs
Greg Hill and Mitch Bradley
SESSION D5D
Expanding Server I/0 Capabilities to New Performance Levels
Byron Gillespie
SESSION DSE
Multimedia on the Motherboard (MOM)
Stephen Tobak
SESSION D6
PNP DOS/Windows Overview/Update
Scott Hay
SESSION D7A
Obtaining Maximized Performing Cost-Efficient Design With Core
Logic for Pentium™-based PCI Systems
S.J. Lee
SESSION D7B
ALTA-S/MP Memory Controller and PCI Bridge
John Derrick
SESSION D7C
Overview of the Use of the PCI Bus in Present and Future High
Energy Physics Data Acquisition Systems
A.van Praag, R.A. McLaren, J-P. Matheys, P. Vande Vyvre,
T. Anguelov, G. Georgiev, S. Piperov, 1. Vankov, D. Gillot,
A. Guglielmi, O. Orel, and A. Sytin
SESSION D7D
PC Architectures for Video Capture
Aki Kaniel
SESSION D7E
Sound, Graphics, and MPEG Video on a Single PCI Card
Michael K. Harris and Tony Chu
SESSION D8A
Performance and Backplane Positioning of PCI Adapter Cards
Dennis Aldridge
CMC Mechanical Implementation
David C. Moore
CardBus PC Pards: A New Opportunity
John Elmore

43

48

49

54

60

70

78

79

83

89

91

92

93

98

Industrial Applications of PCI
Jim Medeiros
Small PCI: Implementation and Strategy
Joseph F. DiMartino
SESSION D8B
Using Simulation Models for PCI Compliance Verification
Dave Kresta
PCI Compliance Testing
Barbara P. Aichinger
Compliance Seals: Value or Bust?
Lloyd Holder
Real-Time On-Board Bus Testing
Jeffrey A. Floyd and Matt Perry
SESSION D9A
Designing High Performance PCI Adapters and Embedded Systems
Mike Salameh
SESSION D9B
The Design of a PCI Fast Ethernet LAN Adapter
Liam Quinn
SESSION D9C
PCI-SCSI and PCI-IDE Solutions from Symbios Logic
Margit Stearns and Mark Winchell
SESSION D10A
From PCI to SCI
David Gustavson and Qiang Li
SCI-Enabled PCI Expansion
Antonio Turgeon
A PCI-SCI Bridge for High Rate Data Acquisition Architectures at LHC
H. Miiller, A. Bogaerts, C. Fernandes, L. McCulloch, and P. Werner
SESSION D10B
ACCESS.bus™: The Missing Communications Link for Easy, Inexpensive
Connectivity Between the Host System and Computer Peripheral Devices
Richard J. Fisher
SESSION D10C
S’I: The Key to Direct-Attach PCI Disk Storage
Martin Freeman
SESSION D10D
A PCI-Based Industrial Backplane
Pierre McMaster
SESSION D10E
QuickRing™: A Low-Cost, High-Speed Seamless Interconnect
Sean Long
SESSION D10F
RACEway: A Scaleable Interface for Real-Time Multiprocessor Systems
Barry §. Isenstein

100

102

104

115

122

125

131

138

143

144

150

156

161

163

164

165

168

PCI'95 CONFERENCE
March 30-31, 1995 e Santa Clara, California

SESSION 1A - WORKING WITH PENTIUM

Behavioral Validation and Its Application to Pentium™ Class Processors 171
Mark Schreitrum and Alan Smith

RePent” - Peace of Mind for Pentium Users 177
Matr Trask :

Thermal Issues in Working with Pentium™ 182
Gary Kuzmin

SESSION 1B - GRAPHICS CARDS

PCI Graphics Boards 183
Jack Roberts

A 192-Bit Graphics Controller for the PCI Marketplace 184
Joe Eschbach

MATROX MGA™ Power Graphics 185
Lorne Trottier

Graphics, Motion Video, and PCI 195
Michael Hawkey

Graphics Card Design: System Implications and Constraints 196

Billy Garrett
SESSION 1C - CHIP MAKERS ROUNDTABLE

Performance Requirements for Next Generation Chipsets 202
William E. (Eric) Mentzer
PCI Bus Technology: Design Issues and Answers 203

Bernie Rosenthal
High Speed Data Acquisition System for Ultrasound

Data Based on the PCI Bus 204
S. Freear, B.S. Hoyle, and N.J. Bailey
PCI Bus Performance: A Realistic Look 209

Wiliam G. Holland

SESSION 1D - SYSTEM APPLICATIONS

MPEG Decoders on PCI 215
Shrikant Acharya and John E. Crosbie

SESSION 2A - CHIP SETS

Distributed DMA in PCI Systems (and Legacy IRQ Support) 222
David Evoy

Single-Chip, General-Purpose Interface to the PCI Bus 229
John Williams

The Apollo Plus Chip Set 235
Wen-Chi Chen

Multimedia on the Motherboard (MOM) 236
Stephen Tobak

Next Generation Chipset Performance 246

Dale B. Jorgensen

Vi

SESSION 2B - NETWORK CARDS
Implementing High-Speed LANs on PC Buses:
Fast Ethernet Meets PCI
Charles R. Anderson
PCI and the LAN
Tom Caldwell
Host Interface Design for ATM LANs
Michael H. Benson
Performance Implications in Designing ATM Adapters for the PCI Bus
Gary Kidwell
PCI Bus ATM Adapter Design
Subbu Ganesan and Jim Hora
PCI Latency and Bandwidth Issues for Network Adapters
Alan Deikman
SESSION 2C - COMPUTER MAKERS ROUNDTABLE
SESSION 2D - GRAPHICS CONTROLLERS
Technical Issues in MPEG/Graphics Integration
Larry Chisvin
Mixed Media Streams Over the PCI Bus
Brian Gibson
Implementing High Performance 3D Graphics on the PCI Local Bus
Neil Trevett
DECchip 21130 Integrated PCI Graphics and Video Accelerator
Frank T. Schapfel
Driving Toward a PCI-Centric Graphics/Video Solution
Ken Lowe
SESSION 3A - PCI MEZZANINE CONNECTOR DESIGN ISSUES
Improving PCI Connectivity
Barry S. Isenstein
SESSION 3B - DISK CONTROLLERS
PCI -- Caching SCSI Host Adapter
Kamal Mansharamani
The PCI Interface Propels Disk Drives to Meet New
Bandwidth Requirements
Danial Faizullabhoy
New Master Mode Enhanced IDE Controller
Tzu-Mu Lin
Hard Disk Technology
Donald F. Coffin
PCI-SCSI Made Simple
Peter Passaretti
Theoretical Benchmarking
Yu-Ping Cheng
SESSION 3C - BOARD MAKERS ROUNDTABLE
SESSION 3D - SUPPORTING ISA LEGACY PERIPHERALS
Supporting ISA Legacy Peripherals on PCI
Bert McComas

vii

247
248
249
250
251

257

261
262
263
270

284
292
298

302
303
304
311

312

313

SESSION 4A.1 - PCI ELECTRICAL DESIGN & BUS LAYOUT
PCI Electrical Design and Bus Layout
Jim Murashige

Treat Circuit Boards as Design Components in PCI-Based Systems
(Reprinted from EDN, November 23, 1994)

Jim Murashige
SESSION 4A - SEMICUSTOM LOGIC IMPLEMENTATIONS
Customization with PCI Functional System Block
Sam Sanyal and Brad Bailey
PCI Bus Core Design Reduces Product Cost, Time to Market
Frank J. Creede
Using FPGAs for Peripheral Component Interconnect (PCI)
Interface Designs :
Brian Small, Kevin Yee, and Charles Geber
PCI 64-Bit Design Using LSI Logic's CoreWare® Methodology
Jose A. Valdes
On-Chip SRAM Aids PCI Design
David Ridgeway
SESSION 4B - MOTHERBOARDS & BOARD COMPUTERS
Trends in Motherboard Design
Jeffrey Lee
The Overview of PCI Based Motherboards
Leonard Tsai
PCI in Industrial SBC/Passive Backplane Applications
Bao Tran
Alpha RISC PC Example Design PC Motherboard for the 21064 A
Tim Miller
PCI Enhances the Flexibility of VMEbus-Based Single Board Computers
R. Baxter, J. Gipper, G. Novak, C. Pham, and M. Rush
SESSION 4C - LAN TECHNOLOGY
PCI Bus Latency and Network Adapter Design
Glen Gibson
PCI -- The 10 Bus of Choice for LAN Connections
Deborah Vogt
Directions in PCI LAN Adapter Design
Jeff Stockdale
Developing Network Interface Cards for the PCI Bus
Jim Schooler
Low-Cost, High Performance 10/100 PCI Adapter Design
for 100VG-ANYLAN
Lisa Piper
SESSION 4D - BUS TO BUS CONNECTIONS
Expanding PCI Bus for High Speed Communication in
Supercomputing Environment
N. Gopal Reddy and Shreyas Shah
CardBus: A Key to Personalized Portable Computing
Claude A. Cruz

viii

314

325

330

337

340

346

350

351

352

358

363

371

376

377

384

385

386

392

396

QuickRing™ Technology, The High Performance
PCI Interconnect and Bridge
Webster (Rusty) Meier, Jr.
PCI to PCI Bridges and the DECchip 21050
Todd Comins and Tracy Richardson
SESSION 5A - SYSTEM LEVEL SOFTWARE ISSUES
Expansion ROMs for PCI Devices
Richard Holmberg
Meeting the Challenges of PCI BIOS Development
Maxwell G. (Greg) Paley
PCI/Plug and Play Support in PhoenixBIOS
Frances Cohen
AT-BIOS Compatibility in PCI RISC Systems
Peter Hayden
PCI Architecture BIOS Implications
Tim Hennessy
SESSION 5B - MULTIMEDIA APPLICATIONS
Multimedia Applications and PCI
Mark Wodyka
DSP-Accelerated Multimedia for PCI
Mark Clayron
PCI Based Multimedia
Rainer Hoffinann
PCI Based Graphics Board for High Performance GUI
Acceleration and 3D Graphics
Chris Russell
SESSION 5C - POWER PC APPLICATIONS
A PowerPC Add-On Graphics Board
Ken Comstock
Open Firmware and PCI
Mitch Bradley
IBM Perspectives on PCI's Use With Its PowerPC Products
Lee H. Wilson
SESSION 5D - SYSTEM DEVELOPMENT
Intro to the HP PCI Bus Exerciser
Tom Shanley
System-Level Emulation Enables PCI Rapid Development
Vincent Coli and Doug Kern
Boundary-Scan in PCI Bus Systems
Menachem Blasberg

A Design for Reuse (DFR) Methodology for the Rapid Development

and Verification of PCI Prototype and Production Systems
Alak Deb, J. Scott Runner, and Maulin Bhatt
SESSION 6A - THE FUTURE OF PCI
Power Macintosh and PCI
David Limp

401

407

412

417

418

425

430

431

432

438

444

445

446

447

448

454

460

467

472

PCI & Open Firmware
Lillian Leung

PCI's Role in Mobile Computing
Randy Giusto

Late Submissions

Windows 95 and PCI (DZ) (Reprint from Microsoft Magazine, Winter 1994)
Marshall Brumer
1IBM27-82351 PCI to PCI Bridge (2A)
Robert Kilmartin, Alvar Dean, Marc Faucher,
Uri Elazar, Ophir Nadir
PCI Bus Analyzer Greatly Simplifies Test and Debugging
of PCI Systems (5D)
Thomas Nygaard
PCI, A Technology Enabler (2C)
Sean Burke
A Programmable Logic Design Approach to Implementing
PCI Interfaces (4A)
Martin Won and Glen Quiro
PCI to VME: Building the Bridge (4D)

D. Lisk, T.P. Wilson, A. Sheedy, J. Morris, 1. Dobson

Designing a PCMCIA Add-In Card for the PCI Bus (4D)
Allen M. Light

Author Index
Keyword Index

Participants List

473

474

477

480

481

484

485

497

503

509

511

513

Overview

Lance A. Leventhal, Ph.D.
Program Coordinator, PCI ‘95
Annabooks
11838 Bernardo Plaza Ct., Suite 102A
San Diego, CA 92128
Ph. (619) 673-0870 Fax (619) 673-1432

Since its introduction in 1992, PCI has
rapidly become a standard in the world
of high-speed personal computers. It has
received the backing of virtually every
major computer manufacturer, and a
multitude of PCI chips, boards, and other
equipment is now available. Major
product areas include core-logic chip
sets, bridge chips, interface chips, bus-
to-bus connections, disk controllers,
graphics cards, network cards,
multimedia cards, board computers,
motherboards (or system boards), and
software. Test equipment manufacturers
now provide extender cards, bus
analyzers, logic analyzer add-ons, and
other support. Models and other design
tools are also available.

Industrial computer manufacturers have
also moved toward PCI through the
following efforts:

e The PMC (PCI Mezzanine
Card) specification for a plug-in
(mezzanine) connection between PCI
and industrial buses such as VME,
Multibus, and Futurebus. This work has
the support of VITA, the VME Industrial
Trade Association.

e The PCI Industrial Computer
Manufacturers’ Group (PICMG)
specification for a backplane-based PCI
system.

Xi

Other efforts include CardBus (derived
from PCMCIA), Small Form-Factor PCI
(SFFPCI), and Rugged PCI.

The advantages of PCI are now well-
known. They include:

e 32-bit or 64-bit operation
transparent to devices

e Allowance for either 5V or
3.3V boards

e Support for up to
MB/second data transfers

e Auto-configuration capabilities
that eliminate the need for jumpers and
DIP switches

e Compatibility with ISA, EISA,
or Micro Channel systems and boards

e Operation at up to 66 MHz

e Processor-independence that
allows for RISC-based as well as X86-
based boards

o Detailed compliance
specification and testing via PCI SIG
and independent vendors

o Well-defined electrical and
mechanical interfaces

132

The PCI ‘95 Conference Proceedings
show the wide variety of products
already available or planned. We can
expect to see far more in the very near
future.

ARCHITECTURAL AND DESIGN CONSIDERATIONS WHEN IMPLEMENTING
HIGH PERFORMANCE MULTIMEDIA APPLICATIONS ON PCI

J. Scott Runner, Alak Deb, Maulin Bhatt, Dave Greenberg, Sean Ganjooi, Gina Ngo
Synopsys, Inc., DesignWare™ Components R&D
700 East Middlefield Road, Bldg. B
Mountain View, CA 94043-4033

BSTRA!

Albeit PCI has been viewed as a key technology enabler in
bringing multimedia to the desktop, server and peripheral market,
there is a broad degree of latitude in the way in which multimedia
may be implemented on PCI. A subspace of this design space allows
for product differentiation and technology migration to avoid
obsolescence;. On the other hand, another subspace does not
provide for differentiation, but rather represents alternate design
choices available to implement compliant systems. Some are more
efficient than others, while some are better proven than others. The
architectural and implementation tradeoffs when implementing
various forms of video and graphics on PCI, their relative tradeoffs,
and the implementation considerations associated with them will be
explored in this paper. Pixel formats and details on addressing
modes are not discussed in this paper. For more information on this
topic, refer to (PCISIG, MM, 1994).

REQUIREMENTS FOR MULTIMEDIA

Before analyzing alternate architectures, we will determine the
requirements for multimedia systems and add-in cards. This will be
relative to customer, systems and card vendor and components
companies to derive appropriate selection criteria, as follows:

Cost: Cost means more than the sheer sum of the components,
board cost, testing, kitting/assembly and packaging costs, etc. It also
includes the cost to support the product, to design it, and to re-
design it (i.e., the cost to design a derivative product, or the next
generation product). However, in the context of this paper, cost
will refer to materials costs.

Upgradability: In the fast-paced, competitive market in which
we live and work, the ability to quickly add functionality and take
advantage of new H/W and S/W technologies is of paramount
importance. Functionality should be scaleable in a straightforward
manner between H/W and S/W. As an example, many video cards
today provide for decompression and display of such data as real
time video-conferencing or video clips off CD-ROM. But many of
these cards do not provide access from the processor to the video
frame buffer, and rely on video overlay via the VGA Feature
Connector or VESA (Advanced) Feature Connector (V(A)FC). As
processor bandwidth and video processing capability increases, the
ability to leverage S/W for video functions will become potentially
more valid and valuable.

Quality and Robustness: The promise of Plug and Play (PnP)
and more standardized S/W-H/W interaction through standard
APIs and H/W configurations is exciting. However, the demand
that each device is placing on a system creates contentious
situations between resources and challenging problems to
standardize interoperability. Card designs should be efficient and
fair while achieving compliance and must be robust and “fail-safe.”
No longer is it acceptable to just assert reset to solve a system dead-
lock condition. Systems should avoid introducing errors, and should
be non-destructively tolerant to their occurrence.

Performance: This is what has made PCI such an enabler.
Tables 3a and 3b indicate the bandwidth requirements for various
resources as compared with the available bandwidths of PCI.. While
there is plenty of bandwidth, PCI will become more crowded as
additional functionality and classes of devices migrate to this bus. It
is important performance consider not just card performance, or

local optimizations, but more importantly, that designers bear in
mind optimization of the entire system to which they contribute.

LTERNATIVE ARCHI R

One of the advantages of PCl is that it supports a variety of
bus and system architectures and configurations. This is also one of
its challenges. Figures 1 through 4 depict alternate architectures for
multimedia systems comprised at a minimum of a graphics
controller, video source (compressed or raw), and audio source.
Table 1 provides a comparison of these architectures. Having
reviewed some of the key multimedia design requirements,
attention will now turn to the design implementation tradeoffs for
architectures described in Table 1.

A key point is that various architectures optimize different
design parameters. None of the architectures is superior to any
other in all cases, but rather each has specific advantages. While
certain standards must be followed for the benefit of interoperability
and PnP, there is a great deal of latitude available to the designers of
multimedia systems that can provide product differentiation.
Synopsys’ DesignWare™ PCI MacroSet is a modular, parameterized
synthesizable kit designed to facilitate fast implementation and
exploration of this design space. With appropriate parameters, it can
support all the configurations listed in Table 1 in a highly efficient
and compliant manner.

P u 1 i 1

Some bus topologies require system changes, while others can
be implemented entirely on the card. System modifications tend to
take longer to implement and are typically expensive. Such
architectures will appear first in workstations and embedded
systems before we see them in high-end desk-side PCs, or even
desk-tops. The planar bus will be around for quite a while, as the
low cost system solution. However, card designers must keep in
mind that as planar bus bandwidth becomes increasingly more
consumed by higher bandwidth, more demanding functions, their
cards must be efficient, and robust enough to gracefully degrade in
the presence of traffic. Given that legacy busses will tend to bridge
off this bus, and that CPU access to system resources is directly
affected by this bus, cards placed on it must be not only robust and
compliant, but also efficient as well. The 2.1 specification moves to
address this by tightening up latency and wait-state tolerances and
guidelines, but agents must still be tolerant of existing cards that
may not be so efficient.

r eature Connector (Figure 2

The VGA feature connector has become pervasive, and the
VESA Advanced Feature Connector (VAFC) will be no exception.
But note that the VAFC, as well as the Shared Frame Buffer
Initiative (SFBI), are both complementary, not competitive with
PCIL Such DAC attach circuits are simple to implement, support
multiple video sources, provide high resolution, off-load video
bandwidth from the graphics frame buffer, and keep their traffic
off the system bus. However, they are expensive in that they
introduce redundant system components (such as frame buffers)
and do not allow CPU access to manipulate video.

Secondary Bus on a Card (Figure 3)

While this solution provides the same advantages as the
secondary bus in the system, it leverages existing planar systems. It
also avoids some redundancy in components, since the subsystem is
entirely under the control of the card manufacturer. This applies to
video addressing and pixel formats as well, and the optimization of
the shared frame buffer. Due to the 10-load rule, this architecture
does not allow for multiple bus connection from a single card.
Rather, a PCI-PCI (or PCI-other) bridge must be employed to limit
the load to 2. However, each function must incorporate its cwn PCI
interface. Additional features may be added in future versions of
cards either by higher integration of given functions on the card, or
by adding functions onto the local bus.

This architecture is compatible with planar or hierarchical bus
topologies and can be used today, or in tomorrow’s systems. The
drawback of this approach is that such cards will be relatively
expensive, and many exhibit higher power consumption than the
Integrated Multi-function card.

Since the card vendor controls all the functionality on the
card, there may be a tendency to cut corners or restrict access to the
card. Access from the CPU and other video sources is generally
important, so be sure to provide for it via appropriate apertures
(apertures are discussed in later sections).

Secondary Bus Betw r i

The hierarchical PCI bus is fast becoming an interesting
architecture in implementing high performance multimedia systems
to support multiple video streams, particularly for professional
purposes. It is perhaps even more interesting to desk-side and
server systems given the 10-load rule. If one envisions more than 4
PCI add-in cards, expect to see hierarchical bus architectures. While
more expensive than the planar equivalent, this bus topology
provides for isolation of multimedia components onto their own bus
level, more controlled latency and bandwidth efficiency, and can
off-load the planar when the graphics subsystem is moved to the
secondary bus.

Integr. Multi- i Fi. 4

Different from the secondary-bus on a card, the Integrated
card has but one PCI Controller. This implementation may be PCI
multi-function, in which each function logically has its own
configuration space and slave at a minimum, or it may be im-
plemented as a single function card in which arbitration, resource
scheduling, datapath management and bus interface issues are all
managed outside the PCI master/slave. In the former case, (a
“loosely coupled” architecture), functions can operate
independently of one-another, yet bus traffic, architecture, pixel
formats, addressing and other issues related to efficient
interoperability can be controlled. This means that functionality can
be increased by adding components with their respective PCI
interfaces. The latter case can be more powerful and cost efficient,
requiring but one PCI controller interface.

While providing all the advantages of the previous
architecture (Secondary Bus on card), this architecture provides for
optimization of cost by avoiding redundant components, and
system performance by off-loading bandwidth from other busses,
while providing a tight coupling between multimedia resources.

DesignWare™-BASED L DIA DEVICE

Synopsys has developed a PCI developer’s kit that provides for
fast, accurate and efficient implementation of PCI controllers for a
broad variety of applications. This will be used as an example in the
following implementation discussions. Note that block diagrams and
specifications of these systems implemented with DesignWare™ are
available from any of the authors.

Bus Functional Models (BFMs): These are BFMs of the PCI
master and slave, as well as a passive monitor that observes and
records bus activity and violations/exceptions and validates timing.

Each model executes a series of commands test various compliance
or user scenarios, and therefore be used for complete system tests.

Compliance Suites: These are a series of verification suites
derived in collaboration with the PCISIG Protocol subcommittee to
verify functional accuracy. Scenarios based on functionality
supported by the unit under test are automatically generated for
the appropriate configurations. Automatic post-processing of the
test results creates a compliance report showing which SIG tests
passed, which failed and/or are not applied.

DesignWare™ MacroSet: A set of seven Plug and Play,
parameterized modules that can efficiently construct virtually any
PCI implementation. In addition, DMA controllers, design
examples, system-level test benches and Synopsys-optimized
synthesis scripts are provided as a complete solution for the
implementation of an on-chip PCI controller. Parameters allow a
designer to quickly implement their required functionality, or
explore the space of alternative implementations with rapidity, to
quickly converge on optimal solutions.

Archi ral Assumption

It is assumed that the architecture will be an integrated
multimedia ASIC that implements a PCI single function, single
interface. We will assume that graphics, audio, video in and a H/W
CODEC are all implemented on a single ASIC. These resources will
access a single shared frame buffer, which will be accessible from
other resources on PCI, including the processor. We will assume
that the application-side domain operates at 50Mhz, and that we
are dealing with 33Mhz PCIL. Interaction between application
components will be accomplished directly (i.e., the video CODEC
dumping RGB16 data into the frame buffer will require no direct
involvement from the PCI interface).

Point-to-point or “destination” addressing will be implemented
with one H/W window for each video or graphics source. This is in
accordance to the PCISIG Multimedia Design Guidelines. This
provides support for a variable numbers of windows, support for
H/W-S/W scaleable, and robustness and elegance in addressing
pixel locations and dealing with buffer over-run and other errors.
Apertures will be implemented to support YUV 4:2:2, RGB-15+a and
RGB 24+a pixel formats, as well as big and little endian support. To
allow access from external video sources, these apertures will be
accessible from PCI bus resources as well. Resources on the PCI bus
would access such spaces through apertures implemented in two
ways with the DesignWare™ MacroSet. By defining a single address
range and decoding the higher-order alias bits, or by assigning an
address range and associated Base Address Register (BAR) for each
aperture (PCI supports up to 6 such relocatable spaces) or a hybrid
of the two. The MacroSet supports this by assigning a set of
attributes to a range and simulating and synthesizing the
implementation. In this case, a BAR is assigned to each pixel format,
and a user-defined programmable bit associated with each BAR can
be used to indicate “endian-ness”. Note that this excludes
concurrent support of multiple endian formats per pixel format.

An Address Recognition and Mapping (ARM) module decodes
‘hits’ into all address spaces, notifying the application of the space
accessed, controlling the assertion of DEVSEL#, and performing
address translation if it is specified. Space decodes can be used to
enable apertures and/or resources, and to select among multiple
datapaths. Typically one would want one FIFO or register for slave
read, one for write, one for master read, one for write. Feeding the
application from the slave on a slave write would amount to
notifying the appropriate space that the data was available, and
having the data read out before the next slave read transaction. An
alternative implementation is to support one datapath FIFO per
slave application resource. Therefore, one might have a command
FIFO for the graphics engine, and one directly to the frame buffer.
In this way, the FIFO can be read at anytime, either being notified
when not empty, or at any programmable threshold and can service
the FIFO when most appropriate.

Bandwidth Budgeting - Frame Buffer

Determining the required bandwidth of multimedia devices is
critical due to their general real-time requirements and high band-
width. Failure to do so may render a system inoperable, or result in
poor quality graphics (dropped pixels, lines or frames) or audio, and
may adversely affect other peripherals, such as disk controllers and
LANS, which expect to have all the bandwidth they will need.

The frame buffer is a key resource. Not only must all local
resources (display refresh, graphics, video, refresh) have sufficient
bandwidth, but there must be sufficient residual bandwidth for
external resources. Worst case demands will occur during an active
display refresh line. Note that blanking can be leveraged to mask the
effects of DRAM refresh (if required), as well as helping to resource-
level non-real time accesses, such as those from the graphics engine
after a period of peak activity. To do so requires that buffering from
the interface to the frame buffer be sufficient to cover the available
bandwidth during a scan line (or half a scan line on the average).
This is because the PCI slave cannot guarantee that a disconnect-
retry during an active line will resume during blanking.

As an example, if available FB bandwidth is 200MB/sec, and
the card designed to support 1024 x 768 x 16 bpp resolution, then
during a scan line at 72HZ refresh, 148MB/sec is consumed by
display refresh. If a 320 x 240 True Color video image is being
displayed at 30 FPS, then that consumes another 6.912MB/sec,
leaving 45MB/sec to be shared between the graphics engine and
the PCI bus. While the graphics engine is not ‘real-time,” it can
create a live-lock situation if the processor is waiting to write a
graphics command while at the same time, buffering writes of real-
time to the FB. Supporting a graphics command buffer that can
buffer a number of commands that might be issued during a scan
line is an ideal solution (alternately side band signaling of status
between the graphics engine and the processor can work, but it’s
not as insensitive to bus topologies). Should command buffering or
FB bandwidth become inadequate during peak activity, the
graphics or available engine should gracefully degrade and not hang
and certainly not affect real-time operation.

Latency and Datapath Buffering

Latency and Datapath Buffering Latency have always been
controversial issues in the PCI community, partly because it has
been affected by legacy busses so greatly, and partly due to the fact
that latency and throughput have been somewhat at odds with
each other, and high performance cards effectively want to
optimize both. There are several components of latency, arbitration
latency (which is typically 2 clocks for the highest priority device in
the system); bus acquisition latency (the time from receiving a
GNT# till the bus is IDLE and consequently available); and the
target latency to respond to the transaction. Target latency for first
data is now required to be 16 clocks; any more and the target must
either perform a delayed transaction, or target-abort. (PCISIG, 2.1,
1994); Subsequent data transfers may see up to 8 clks to complete,
but if the behavior of your target is known, the more accurate data
would be factored into your calculations.

The controversial figure is that of bus acquisition latency which
is very dependent on system configuration. The 2.0 specification
recommends that 30psec be the guideline for acquisition latency on
the planar bus, while (PCISIG, 2.1, 1994) and (PCISIG, MM
Guidelines, 1994) specify that bus levels off the planar bus typically
would see less than 3psec acquisition latency. This latency is
affected by the value programmed into the master latency timer
(MLT), as well as the typical and max burst duration of resources in
the system. The number of masters and their priority also affect
acquisition latency. For example, if there are 5 masters (max) on a
bus level, each with their MLTs programmed to 32 clks, then if the
target latency to first data was 16 clks and 8 clks between data
transfers, then the acquisition latency assuming equal priority, could
be as high as 32*(5-1)+8+16 = 4.56psec of latency. The general rule is:
tune your implementation to operate efficiently at 3psec of latency,
but insure that it can handle 30psec of latency without catastrophic

degradation. A few pixels dropped may be acceptable, while
dropped frames or important control information are not.

Acquisition, generally the most variable and severe of the
latencies, will require buffering in accordance with this equation:

slat_buf =tLAT * farrival * Wdata

where t] AT is the max latency time, farrjval is the frequency of the
data arriving to be transmitted (for master writes), and Watj is the
number of bytes per farrival. Note that t} AT should include the
maximum latency that the current master’s last transaction may
introduce (8 PCLKs), as well as the initial target latency of the new
master (16 PCLKS under the 2.1 guidelines). As an example, a
50MHz application clock delivering WORDs will require
30psec*50Mhz*2B/WORD = 3K bytes (min) of total buffering, while
a 10baseT interface would require 30pusec*10MHz*1/8 = 38 bytes of
buffering (min). This does not include master latency (from IDLE to
FRAME# asserted) nor target transfer latency.

After the bus is acquired, the sourcing FIFO must be able buffer
data at least to the following depth:
Sxfer_buf=ttar_xfer_lat*(farrivalferice) (Wdata/4
bytes/DWORD)

3K bytes of on-chip buffering is expensive, and often
impractical, considering that less buffering is required after the bus
is acquired. An effective solution is to partition the buffering into
levels: one transfer FIFO to provide data sufficient for the longest,
fastest burst expected, and a buffer store to cover acquisition and
initial target latencies. Synopsys’ datapath buffers are tightly
coupled with the master to not only initiate transfers from
populated FIFOs, but also to manage exceptions. These buffers are
able to cycle data at 0 wait-states during a burst, for popular,
modern ASIC technologies. Their depth should be computed based
on the master’s maximum burst size and the relative difference in
the master-slave bandwidth (Sxfer buf equation).

Sitting behind the master datapath buffer can be a store that
buffers the amount of data necessary to cover acquisition latency
and initial target latency and provide storage (if necessary) for other
resources. This buffer could be implemented in SRAM, or DRAM.
Transfer from this buffer to the master datapath buffers could be
performed by a simple DMA controller such as the one provided
with the DesignWare™ MacroSet. Note that while transfers are in
progress, the buffer store can be back-filling the master’s datapath
FIFO, providing for a resource sharing of storage, reducing area.

If the master’s data arrival bandwidth is sufficiently low in
portion to the acquisition latency and target bandwidth and
latencies, then a single buffer may be sufficient.

Master reads need not account for acquisition latency, but only
the classic queuing theory case of the difference in arrival rate
versus service rate. If a master read requests as much as X bytes of
data, and the transaction is completed without interruption, in the
worst case, no data was serviced by the application, then X bytes of
master read FIFO buffering would be required. A similar analysis can
be applied to the slave read and write buffering requirements. The
DesignWare™ MacroSet supports this by providing for
parameterized depth FIFOs and/or registers each way, for master
and/or slave. Recent enhancements allow FIFOs to be constructed
from Flip-Flops, or by leveraging ASIC vendor diffused or metal
programmable SRAMs.

SUMMARY

Alternate PCI multimedia architectures have been reviewed,
with emphasis placed on compliance, efficiency, and leverage the
design implementation latitude that PCI provides. Where design
decisions provide for differentiation, optimize them for one’s own
design criteria. However, be compliant and where design decisions
are not differentiating, follow proven, conservative approaches,
such as those specified in PCISIG Guidelines. Synopsys has viewed
the various architectures presented herein as equally valid under
differing design criteria, and have constructed a reusable, complete
PCI design kit to support them.

Table 1 - Comparison of Some Alternative Multimedia Bus Architectures

Table 2a - Frame Buffer and Bus Bandwidth Requirements of Various Sources

[1] Mean bandwidth depends on bus topology, number of cards and their bus traffic characteristics, arbitration behavior, effectiveness of
bursting, bridge characteristics (ability to sustain burst without disconnect), etc. Also note that twice as wide doesn’t mean twice as fast,
since this depends on how effectively the data from the peripheral can be framed to QWORDs. Likewise, twice the clock rate does not
mean twice as fast, since the peripherals must keep pace, given their own bandwidth behavior which may result in streams being
broken up into a larger number of bursts. Therefore, this number is system specific, and meaningless in this context and is intended to
simply show that there is plenty of bandwidth to be had. 32b, 33mhz systems have been.constructed which demonstrate 80MB/sec
sustained performance, but your mileage will vary. The key is to bear these issues in mind which architecting, so that the overall system
is optimized.

The PCI Multimedia Design Guide and the PCI Local Bus Specification, Revision 2.1 (draft), provide important
clarification's to the specification of latency and wait states, as follows:

Table 4 - Comparison of PCI Latency Specifications

[1] This references the draft specification, in which specifications may differ slightly.

[2] The Multimedia Guidelines stipulate that this specification applies to a secondary bus, and with a statistically high probability to the
planar bus. This is especially true when bridges to legacy busses support specify there should be no more than 4 bus masters on the level
of a MM device to insure the 3psec latency guideline. Devices on the planar with ISA attach may see worst case latencies of up to 30ps.

I VRAM — Graphics

| VRAM t‘ Graphics I

Audio

Y

Disk LAN M'g'r:?ry Mgt?ag‘ry
Figure 1 - Planar Bus Topology (separate cards) Figure 2 - Secondary Bus Between Cards

Video Gral?hlcs Z|S
FB B I VRAM |'"Graphics Video Audio

. DAC —§
Graphics

.
IFrocessor

> D/
‘ ==
Disk LAN Memory Disk
Figure 3 - Card Top/Feature Connector Figure 4 - Integrated Multi-Function Card

REFERENCES

Edward Solari, George Willse, PCI Hardware and Software (San Diego: Annabooks, 1994)

PCI Special Interest Group. PCI Developer’s Conference Proceedings. April 20, 1994.

PCI Special Interest Group. PCI LocalBus Specification. Revision 2.0. April 30, 1993.

PCI Special Interest Group. PCI LocalBus Specification; Review Draft. Revision 2.1. October 21, 1994.
PCI Special Interest Group. PCI System Design Guide. Revision 1.0. September 8, 1993.

Synopsys®, Inc. DesignWare™ Components PCI MacroSet Databook. April 30, 1993.

RAMBUS TECHNOLOGY AND SYSTEM DESIGN OVERVIEW

Billy Garrett
Manager of Graphics Development
Rambus Inc.
2465 Latham Street
Mountain View, CA 94040
garrett@rambus.com

ABSTRACT

Rambus™ 500 MHz DRAM Technology removes
the performance bottleneck faced by today's com-
puter and graphics systems. Current computer sys-
tems use multiple banks of DRAMs and large SRAM
caches to meet the performance demands of 486,
Pentium, and RISC CPUs. To increase performance,
DRAMSs are arranged as multiple, interleaved banks
on wide buses and are controlled by multiple, high
pin-count ICs. Graphics systems use many VRAMs
in wide, interleaved buses to meet the performance
demands of Windows, video, and the new higher-
resolution monitors. The high bandwidth, low pin-
count Rambus solution enables highest perfor-
mance at lowest system cost for high volume per-
sonal, portable and multimedia systems, and, as a
result, is broadly supported in the industry.

This paper discusses the elements of Rambus
Technology and their impact on graphics system
design

RAMBUS TECHNOLOGY OVERVIEW

The Rambus solution replaces the complex mem-
ory subsystem with a single, standard high-perfor-
mance bus and Rambus DRAMs (RDRAM™), The
Rambus solution has three elements: the Rambus
Interface, the Rambus Channel, and the RDRAM.

The Rambus Interface is implemented on both
the Channel controller and RDRAM devices. The
controller directs the operations of the RDRAMs on
the Channel through the use of a packet-oriented
protocol. Rambus Channel controllers can be con-
ventional microprocessors, peripheral chips, ASIC
devices, memory controllers, or graphics engines.

The Rambus Interface on an RDRAM contains
minimal logic and a few registers. This reduces die
size overhead and maximizes cost effectiveness. The
RDRAM is a CMOS DRAM incorporating unique
architectural modifications and the Rambus Inter-
face circuitry. The 16Mbit RDRAM is arranged as
2MDbitx8 or 2Mbitx9, while the 8Mbit RDRAM is

organized as 1Mbitx8. Definition and use of the
eight or nine data lines is left to the system designer.

The Rambus Channel is revolutionary in that it
is only eight or nine data bits wide, but is capable of
transferring data at rates up to 500 MBytes per sec-
ond from a single RDRAM. By contrast, today's fast-
est page-mode DRAMs transfer data at 33 to 50
MBytes per second. ,

Rambus Interface

Rambus DRAMs

Controller
Or
Processor

2100 WVAAd
2100 WVIA

Rambus Channel: One byte of data is
transferred every 2 nanoseconds

Rambus Technology Elements:
Controller, Channel and RDRAMs

The Rambus Channel is also defined by a
mechanical specification. The controllers and
RDRAMs connect to the PC board with an interface
that has only 15 active signals. The RDRAM pack-
age itself has 32 pins, including power and ground.
The RDRAM is available in two plastic surface
mount packages: an EIAJ standard vertical pack-
age (SVP) that allows dense packing for main mem-
ory applications, or a horizontal, low profile
package (SHP) for add-in card applications.

The Rambus Interface transforms the data from
the Channel's 2 nanosecond transfer rate to a 16
nanosecond cycle. It also converts the low-swing
voltage levels of the Rambus Channel to the ordi-

0oooooooon

<4— Vertical
RModule

Vertical
RSocket

Rambus
Channel

Vertical
RDRAMs

ASIC with Rambu
Interface Cell

A Rambus Motherboard Subsystem Example

nary CMOS logic levels used by the ASIC logic. The
heart of this interface is a high-performance digital
DLL (delay-locked-loop) circuit that provides the
clocks for transmitting and receiving Rambus Chan-
nel data.

All critical system implementation issues have
been resolved for the designer with the Rambus
approach. Designers can implement a Rambus sys-
tem following step-by-step documentation.

Example Subsystem Designs

The example subsystem figures above show typi-
cal physical implementations of a Rambus system
including a controller that acts as a Channel mas-
ter, a base set of RDRAM devices soldered directly
on the Channel, and an RModule and RSocket used
for memory expansion. At the heart of this system
is the Rambus Channel itself. The Channel uses a
small number of very high-speed signals to carry all
address, data, and control information between
Rambus devices.

Horizontal RSocket

RDRAM
GUI Controller

A Rambus Add-in Card Example

The Channel is implemented using standard PC
board layout and manufacturing techniques; it
relies on controlled impedance terminated transmis-
sion lines to carry the high-speed, low-voltage-
swing RSL signals. Clock signals are propagated in
each direction on the Channel allowing data and
clocks to always travel in parallel, virtually eliminat-
ing all clock to data skews.

Rambus Inc. has assured device independence
by defining a high-level protocol that moves data in
blocks and by using a large 36-bit address space.
Designing new generations of hardware is simplified
since the signals comprising the Channel will not
change from generation to generation.

Each master and slave has its own Rambus
Interface, which is currently available as an ASIC
cell. This interface converts from the low-swing RSL
levels used by the Channel to ordinary CMOS logic
levels.

RDRAM1 | .

RDRAM n Vierm

L

[SOut II
|

|

Controller
BusDatal8:0]

SIn] I
1
BusCtrl, BusEnable

ClkfromMaster r
ClkToMaster

Vref
Gnd, GndA

Vdd, VddA

The Rambus Channel

Rambus Signaling Logic

The Rambus Channel achieves its high speed
with dense packing, high-quality transmission
lines, low voltage signalling, and precise clocking. A
Rambus Channel contains controlled impedance,
matched transmission lines:

a ClkToMaster

a ClkFromMaster
0 BusData [8:0]
Q BusEnable

Q BusCtrl

These high-speed signals are terminated in their
characteristic impedance. The Channel has a bus
topology with the controller at one end, terminators
at the other end, and the RDRAMs in between.

All high-speed signals on the Channel use low-
voltage swings of about 800 mV. A logic “0” is equiv-
alent to Vi, which is typically about 2.4V, V., is
about 2.0V and Vg (logic “17) is about 1.6V. Within
limits, all these voltage levels can be set by the sys-
tem designer to control power consumption and
noise margin. Vs may be easily generated with a
resistive divider.

V,er sets the logic threshold for the high-speed
RSL signals. This provides immunity from common
mode noise on the Channel. All devices receive the
low-swing signals with differential input circuits
and use V¢ to set the logic threshold.

This differential sensing allows the Channel to
use a low-voltage swing. Low-voltage-swing signals
minimize dv/dt and, thus, di/dt to provide the fol-
lowing advantages:

0 Reduced ground bounce

0 Reduced power consumption

0 Reduced electromagnetic interference

Q 5 volt and 3.3 volt device interoperability

Clocking

The Rambus Channel is synchronous, meaning
that all data transfers are referenced to clock edges.
At Rambus frequencies, special care has been
taken to minimize clock to data skew for all RSL sig-
nals, as listed above.

The clock source typically is a separate oscilla-
tor. The clock routing begins at the slave end of the
Channel and propagates to the master end as Clk-
ToMaster, where it loops back as ClkFromMaster to
the slave end and terminates.

This clocking topology allows clock and data to
travel in parallel to minimize skew. A slave always
sends data to the master synchronously with ClkTo-
Master, and the master always sends data to the
slaves synchronously with ClkFromMaster.
Because the transmission lines are matched, the
clock and data signals remain synchronized as they
travel to their destination.

View from solder side
Dimensions in mils
= Component Side

® = Solder Side
= Hole

256+ [erffes

26D
\ 1/4+0-1 4D

I

i 3 a-. & §§ ? % § |

Hie'e' ‘e'e'ede e ‘Ge ‘e
VTV OTUVNT OV OV NACXL XDV T T CHFSOODVNTST~TOGZTVT
CEBECBE DBV OO ERErmPIgcagttacalcD
>Cr0r8E>50ROREL>ROQPSFEOR O HEC>

0O ogas o >0 Q 3 O oea Ao

o oW 9 @ ® m ®» 00 0

3 300 3 3 =1 3 303 3

@ a~2 a @ @ @ @~d @

Sample Channel Layout

Each Rambus Channel requires a (nominal) 250
MHz clock. The clock is driven at normal RSL levels.
If a Rambus memory controller has multiple Ram-
bus Channels, the clocks on each channel must be
synchronized to arrive at the pins of the RAC with a
minimum of skew.

Several vendors offer a pin-compatible clock
driver designed to meet the needs of most Rambus
systems. The 8-pin SOIC device connects directly to
a low-frequency crystal and generates two copies of
a Rambus compatible clock with less than 100 ps of
skew between outputs. A series matching resister
placed at the outputs allows it to drive bus imped-
ances ranging from 20 to 50 .

Data Transfer

Direct data transfers occur only between the
Channel controller and the RDRAMs. This allows
signals to be terminated at only one end of the
Channel. Data driven by the controller propagates
past all RDRAMs with the desired voltage swing
allowing all RDRAMSs to correctly sense the data.
The matched terminator prevents any reflections.

Data driven by an RDRAM moves in both direc-
tions at one-half the desired voltage swing. Data is
effectively transferred on both edges of a 250MHz
clock, resulting in a 500 Mbit-per-second-per-wire
transfer rate. Each data transfer uses a 2 nanosec-
ond interval, with 2 of these intervals per clock
period.

Any one Rambus Channel is limited to approxi-
mately 10 cm. This length is determined by a 2
nanosecond propagation delay constraint for sig-
nals traveling from end to end on the Channel. As a
result, a single Channel can accommodate up to 32
RDRAMSs, 10 RSockets, or some combination of the
two. Since each RModule can hold up to 32
RDRAMSs, a fully configured system can have up to
320 RDRAMSs, while a minimum system can have
as few as one.

Component Packaging

Rambus has developed innovative packaging for
the RDRAMs using proven materials and tech-
niques. The packaging minimizes concerns such as
on- and off-chip impedance that could arise when
transferring data at 500 MByte per second speeds.
Two styles of packages are available: the vertical
“SVP” package allows very dense packaging for
motherboard-based memory subsystems; the hori-
zontal “SHP” package is optimal for low-profile add-
in card subsystems. All Rambus Interface pins are
located on one edge of the plastic package, thus
aligning die pads, package leads, and printed cir-
cuit board traces, while minimizing the length of

10

leads and bond wires. As a result, PC board electri-
cal and interconnect issues such as inductance,
capacitance, traces, and connectors are managed
efficiently, enabling the Rambus solution to achieve
500MHz data transfer rates.

Rambus memory systems are expandable.
Because the Rambus Channel and DRAMs were
developed with expandability in mind, there are
now simple, low cost Rambus Sockets (RSocket™)
available from Augat Inc. and Molex Corporation
that are supported by Rambus Modules (RMod-
ules™). RModules can support one to 32 RDRAMs.
The motherboard subsystem and add-in card exam-
ple figures shown earlier illustrate the use of verti-
cal and horizontal RSockets and RModules.

System Packaging

Printed circuit boards carrying Rambus Channel
signals are designed using standard FR-4 construc-
tion. Dielectric thickness is 5 mils (surface trace to
ground layer) with 8 mil copper traces, resulting in
a nominal 55Q trace impedance. This impedance
needs only be controlled to within a +20% tolerance
during bare-board manufacturing.

Separate power and ground planes are required
for noise immunity. Two or more signal layers may
be used. Design rules call for 8 1 mil wide signal
traces on 0.65 mm (about 25 mil) centers. This
spacing matches that of pins emanating from pack-
ages incorporating a Rambus Channel. The “Sam-
ple Channel Layout” is an example of a board
design that includes a Rambus memory subsystem.
Rambus Inc. supplies detailed information for use
by PC board layout personnel; this “cookbook”
streamlines the layout process. In addition, due to
its smaller number of signals, a Rambus Channel
design generally uses fewer PC board layers than
traditional designs.

GRAPHICS SYSTEM DESIGN ISSUE

Rambus DRAMs provide the highest perfor-
mance and lowest overall system cost of today’s PC
graphics. As shown in the table, RDRAMs provide
sufficient drawing bandwidth for all popular and
professional-level screen resolutions. Rambus-
based graphics cards are cost-effective from both
component and system-oriented viewpoints.

Graphics frame buffers for popular resolutions
of 1024x768x8bpp require hundreds of megabytes-
per-second of bandwidth for refreshing the display
and accelerating graphics operations such as line
drawing, shading, and text. Rambus DRAMs pro-
vide highest performance and lowest system cost
for PC graphics. 500MHz Rambus DRAMs are able
to satisfy the graphics display bandwidth require-

ments for a single component. The 1 or 2 MByte
graphics subsystem is reduced to the GUI accelera-
tor and a single DRAM component. Rambus DRAMs
are based on 16Mbit DRAM technology which is
lower cost per bit than 4Mbit technology starting in
1995. Rambus Technology provides a complete sys-
tem solution; there is no need for additional regis-
ters, buffers, or glue logic.

Table 1: Display Resolution versus Frame Buffer

Requirements
. Frame
Resolution Dravfmg Buffer
Bandwidth *
Storage
Single 800x600x8 250-300 1 of 8Mb
Rambus 800x600x16 MB/sec RDRAM
Channel 1024x768x8
Single 800x600x24 200-250 1 of 16Mb
Rambus 1024x768x16 MB/sec RDRAM
Channel 1280x1024x8
Dual 1024x768x24 600-700 2 of 16Mb
Rambus 1280x1024x16 MB/sec RDRAMs
Channels 1280x1024x24

* Bandwidth Available After Refresh

A Rambus DRAM is the only 16Mbit-based
DRAM to provide sufficient bandwidth for profes-
sional-level graphics products. Alternative DRAM
approaches to achieve this level of bandwidth
require the use of multiple 4Mbit-based DRAMs
organized in wide, 64-bit data buses. As mentioned
above, 16Mbit DRAM technology has become lower
cost-per-bit than 4Mbit technology. A single 16-

Dual-Ported DRAM Approach

RAMDAC
L—

‘ >
.»

@ 110 pin interface to memory

0 200 MBytes per second max drawing
bandwidth

o Complex PCB layout

0 Partitioned display bandwidth

11

Mbit RDRAM takes up far less board area than the
alternative solution: four 256K x 16 SDRAMs.

A Rambus-based graphics subsystem allows
cost savings in the graphics controller component.
The Rambus interface requires only 31 pins on the
graphics controller. This is 80 to 100 fewer pins
than the number required to implement a controller
supporting the alternative 64-bit wide data path to
the frame buffer. This lower pin count allows GUI
controller designers to realize die-area and packag-
ing-cost savings, while enabling them to take advan-
tage of additional available on-chip real estate and
pins to add multimedia features. A savings of 80
pins on a controller package can result in halving
the die area of the controller, and greatly reducing
die costs.

COMPARATIVE ANALYSIS

Compared to the Rambus memory solution,
alternative approaches using multiple DRAMs or
VRAMs in wide 32- or 64-bit parallel buses to pro-
vide the bandwidth required by 1024 x 768 x 24bpp
displays face a number of system issues. In particu-
lar, the wide bus interface used with 32- and 64-bit
parallel buses requires more DRAM components
and controller pins than the Rambus approach.
Designers looking to integrate multimedia features
into their conventional designs have two choices: to
move to a larger and more expensive controller
package with more than 240 pins, or to develop a
solution that requires multiple chips.

In the case of a conventional single-ported
DRAM architecture, a 105-pin memory interface
may lead to a larger controller package and more

RDRAM Approach

L

@)

P

I

1 MB to 8 MB frame buffer

Internal RAMDAC

450 - 900 MBytes per second bandwidth
Second Channel can be added

complex board layout—all of which yields a maxi-
mum bandwidth range of from 200 tc 400 MBytes
per second. In contrast, the Rambus solution con-
sists of a single-chip, two-megabyte frame buffer,
smaller packaging, more room for additional fea-
tures, and considerably higher bandwidth ranging
from 400 to 450 MB/second.

Graphics designers have traditionally moved to
dual-ported DRAMs, such as VRAMs, in order to
gain higher performance than single-ported DRAM
approaches. A dual-ported VRAM design, with its
110-pin memory interface further complicates the
board layout considerations and may requires the
need for larger controller package. The current
trend for today’s PC GUI controllers is to include
the RAMDAC on-chip: a design that require even
more pins on the controller if the VRAM’s serial
ports are connected back to the controller to the
internal RAMDAC. The Rambus approach provides
the ability to add a second Channel, increasing
effective bandwidth of up to 900 MBytes per sec-
ond, enough to support even the most advanced PC
graphics applications.

The high integration and low-cost benefits of
Rambus Technology are passed on to PC graphics
subsystem board designers. A Rambus-based frame
buffer requires just a few square inches of board
space—about one tenth the space required by
conventional graphics board designs. The Rambus
minimal board area also helps to relieve the crowded
Pentium motherboard: the Pentium’s SRAM cache

12

and DRAM backing store can be replaced with a
Rambus memory subsystem with no loss in
performance.

BIOGRAPHY

Billy Garrett is the Manager of Graphics Develop-
ment at Rambus Inc. Rambus Inc. has developed
the 500MHz Rambus Technology for high volume
personal, portable, and multimedia systems. Mr.
Garrett holds both a BSEE ('82) anc MBA ('88) from
the University of South Carolina. He has worked on
a variety of design projects including: PC graphics
boards, semi-custom ASICs for grayhics and main-
memory applications, PC systems, UNIX servers,
and X-Terminals. Mr. Garrett holds several patents
in these areas.

BIBLIOGRAPHY

“Applying Rambus Technology to Graphics,”
Rambus, Inc. Publication, 1994.

“Rambus Architecture Overview,” Rambus, Inc.
Publication, 1994.

“Rambus Product Catalog,” Ramisus, Inc.
Publication, 1994.

TRADEMARKS

Rambus, RDRAM, RSocket, RModule are trade-
marks of Rambus Inc. All other brand and product
names used may be trademarks of their respective
companies.

OEM System Tuning Guide for Pentium™ Processor-Based Computers

Fred Pollack
Director of Measurement, Architecture, and Planning
Intel Corp.
Microprocessor Products Group
5200 NE Elam Young Pkwy.
MailStop JF1-91
Hillsboro, OR 97124
(503) 696-4953
(408) 765-4423/5947 (fax)
pollack@ichips,intel.com

This presentation identifies software and
hardware enhancements that improve
overall system performance of a 90 MHz
Pentium processor-based desktop
system. Each system component was
changed systematically to determine the
effects on overall performance.
Specifically, various I/0 bus
implementations, graphics resolutions,
device drivers, memory hierarchy
schemes, and disk caching methods were

13

evaluated. This information is meant to
benefit and guide OEMs in selecting
peripherals and system design strategies
to achieve optimum performance. What
we find is the need to pay special
attention to all aspects of system design,
including software device drivers, in
order to obtain optimum Pentium
processor performance as measured by
the SYSmark93 for = Windows
benchmark.

PROGRAMMABLE LOGIC IN PCI-BASED SYSTEMS: AN OVERVIEW

David J. Ridgeway

Xilinx Inc.
2100 Logic Drive
San Jose, California, 95124

ABSTRACT

The Peripheral Component Interconnect (PCI)
bus eliminates the 1/O bottlenecks of traditional
system buses by providing a high performance
datapath for system CPUs and peripherals to
communicate. This is essential for computation-
intensive applications such as sophisticated
graphics, local-area networking and real-time video
which require large amounts of data processing and
high speed system throughput.

This paper will focus primarily on hardware
systems design with specific emphasis placed on
PCI bus interface implementation and verification
issues. We will first look at the background,
features and functionality of the PCI bus. This will
be followed by a design example, showing how
system requirements drove the selection of specific
technologies in order to achieve particular
performance and marketing goals.

WHY PCI LOCAL BUS

A personal computer system bus performs the
task of moving data between the CPU and the
peripherals such as disk drives, monitors, and
printers. The most successful of these has been the
16-bit Industry Standard Architecture (ISA) bus
established by IBM and its 32-bit successor, the
Extended Industry Standard Architecture (EISA).
However, the capabilities of new high-speed CPUs
such as Intel’s Pentium processor and the high data
throughput requirements of applications such as
graphics and video processing have quickly
exceeded the data transfer capabilities of these
standard system buses. As a result, many systems
today are adopting one of the newer “local bus”
standards as a means for improving overall
performance.

By circumventing the I/0O expansion slots, local
bus peripherals tap directly into the path between
processor and motherboard. The PCI Local Bus
accesses the processor’s local bus through a bridge.
Because it is independent of the system bus, it is

14

possible to use the local bus to achieve the
performance required for critical functions such as
video, and still maintain compatibility with existing
peripheral hardware through the system I/0 bus.

Although PCI delivers performance similar to a
direct processor connection, it is in fact physically
removed from the processor bus by a PCI Bridge.
This bridge places a managing layer between the
CPU and peripherals - creating a uniform interface.
This also provides support for bus mastering,
enabling intelligent devices to directly access main
memory. PCI also includes an optional hurst mode
that provides accelerated throughput of data across
the bus.

PCI defines four bridge types:

e Host to PCI Bridge - Connects the host CPU,
memory and cache subsystem to the PCI bus.

e PCI to Standard Bus Bridge - Connects PCI to
standard I/O bus such as ISA.

e PCI-to-PCI Bridge - Provides a connection path
between two independent PCI buses, allowing a
hierarchy of multiple PCI buses.

e I/O Controller - Translates between the PCI bus
and the I/O protocols.

PCI System Architecture

- 3 Main Buses
— CPU Local Bus
— PCI Bus Hierarchy
- Standard 1/0O Bus
» PCI Bridge Functions
— Host-PClI
—~ PCI-PCI
— PCl-Standard Bus
— PCI-I/O Controller

PCI BUS TECHNOLOGY

The PCI bus is unterminated, operating on the
principal of reflected wave signaling. The output
impedance of a device driving the bus is roughly
matched to the characteristic impedance of the bus
(a transmission line). The incident wave from the
output driver travels down the bus, reflects off the
unterminated end and travels back to the receiver
where the voltage doubles to meet the required
input threshold. PCI defines a worst case signal-
propagation delay (terop) of 10 nsec, one-third of the
clock period for 33-MHz operation.

To drive the transmission line, IC output drivers
must source and sink a minimum amount of
current to ensure a large enough step on the line,
given the characteristic impedance.

Loading and I/O Drive

The PCI V/I drive curves show that the
minimum impedance an output must be able to

drive is 31.8 L2 (1.4 V/44 mA) in the logic high
state. All output drivers for PCI components must
satisfy these minimum / maximum drive
characteristics to ensure sufficient signal drive
during AC switching.

PCI employs a 32-bit multiplexed address and
data path, which provides a peak bandwidth of 132
Mbytes/sec at 33 MHz. The basic data transfer
mechanism on the PCI bus is a burst, comprised of
an address phase followed by one or more data
phases.

The PCI bus 30 nsec clock period allocates 11
nsec for clock to out delay (tvar), 10 nsec for the bus
propagation delay (terop), 2 nsec for clock skew
(tskew), and 7 nsec for input set-up time (tsu).

15

PCI Bus Timing Requirements

30 nzec
—
Clock / -~——___~
Ty tagop ¢ b ons: 1
Time delays . Y t—2
11 nsec 12 noos 7 necc
PG
Speedway

Lypy = 1 BOC te: = 7 ngec

ty =¢naee

The PCI bus has a number of signals that must
be driven by more than one bus agent during a data
transaction. To avoid bus contention, PCI requires
bus turn-around cycles, or high-impedance states,
at each point where a driving agent releases control
of the PCI bus. This must occur one clock cycle
before another agent can begin driving the bus to
avoid contention.

An additional complexity in this scheme, is that
the turnaround cycles occur in different bus cycles
for different classes of signals, resulting in a need
for multiple, independent output buffer enables.
Target bus agents require five independent output
enable controls while combined Initiator/Target bus
agents require seven.

PCI protocol requirements are especially difficult
to meet in chip architectures where the output
enable signal must be driven from an internal flip-
flop. Determining device compliance to these
requirements is difficult. It requires careful analysis
of device AC timing parameters, along with clock
distribution, and internal propagation delays
through the interconnect and logic structures.

This completes the overview of the features and
functionality of PCI. We will now take a look at a
design example focusing on the choice of
technologies needed to meet this design’s
requirements.

VIDEO DIGITIZER DESIGN EXAMPLE

MuTech Inc. specializes in high resolution PC-
based image processing solutions for OEMs in
machine vision, laboratory image analysis, and
color publishing. The firm has developed a series of
single-monitor and dual monitor Image/VGA frame
grabber boards that provide high-quality, low noise,
color and gray-scale digital video images used in
finger print identification, gel electrophoresis, parts
inspection, and biotech cell classification.

In order to develop the next generation
of image peripherals, MuTech was faced with the
challenge of developing a high performance, low
cost system that could capture and transfer high
quality images quickly. MuTech selected the PCI
Local Bus based on its high throughput capabilities.
The PCI bus is so fast that images can be captured
and transferred to system memory in real-time
without the expense of large on-board memory.
Using PCI, MuTech targeted continuous transfer
rates of more than 20 Mbytes/sec from the video
digitizer to system main memory and more than 30
Mbytes/sec to the VGA Display. This was over 10
times the performance level of an ISA bus based
video digitizer.

SELECTING A SILICON SOLUTION

Attaching a peripheral device to the PCI bus
requires an I/O controller chip that implements the
PCI protocols on the PCI side and connects to a
back-end bus on the reverse side. Determining the
best product for the interface requires careful
understanding of PCI design requirements. This

Standards such as IDE disk drives, Ethernet
LANs, and SCSI devices define the controllers for
these applications and many vendors offer these
controllers with PCI interfaces. Unfortunately, few
off-the-shelf products have been designed to
support the need for a general purpose I/0
controller. To attach non-standard devices to the
PCI bus, designers have limited choices and in
many cases will have to design their own general-
purpose PCI controller.

An important decision in a custom PCI interface
design is whether you will implement the design
using chipsets, gate arrays, or programmable logic.
The chart below compares some trade-offs for each.
Programmable logic technology has advanced such
that performance is competitive with ASIC designs
for many applications.

There were several factors that were key for
MuTech in deciding which technology to use.
Besides the need for 100% PCI-compliance, MuTech
required integration of specific features that no
existing chipset supported. It was critical to be able
to prototype and experiment with multiple iterations
of the design without worrying about costly NRE
charges and prototype cycle times. Time-to-market
was important as well as the ability to customize the
final product for specific host systems. These factors
led MuTech to select a Field Programable Gate Array
(FPGA) as their solution.

One of the most important feature requirements
of the design is that it be easy to install and
configure. As a true Plug and Play PCI add-in, the
board memory and registers are all automatically
assigned addresses by the system BIOS at boot-up
thus resolving the memory, I/0 base, and IRQ
conflicts that have plagued traditional ISA bus

includes protocol timing requirements, I/0 drive cards.

characteristics, and the implementation of PCI

autoconfiguration registers for Plug and Play

operation.

Chipset Gate Array FPGA

PCI Compliance Yes. Yes Yes

Customization None Full Full

Design Flexibility None Costly Fully Reconfigurable

NRE None High None

Prototypes N/A Lead time/Costly Fast/Free i
Time-to-Market Fast Medium Fast |
Availability Immediate Lead time/Risk Immediate 1
Testing Factory User Supplied 100% Factory ‘
Unit Cost Low Low Masked Migration

16

DESIGNING FPGA-BASED PCI INTERFACES

Using a high-density FPGA, MuTech engineers
were able to integrate the video capture control,
VRAM memory control, board control registers and
the complete PCI Interface into a single device. This
high level of integration yields several benefits
including high-performance, small package size,
and low power consumption.

The Xilinx XC3100A family provides all the
necessary features and logic capacity required to
integrate the interface requirements onto a full sized
PCI bus circuit board. The XC3100A architecture
contains three major circuit blocks which were used
to develop this design:

e Input / Output Block (I0B). Provide registered
and buffered input as well as 3-state registered
or buffered outputs.

e Configuration Logic Block (CLB).
5-input logic functions with registered or
combinatorial outputs.

e Channeled Routing. Signal routing is
accomplished using internal horizontal and
vertical routing resources.

Implementing the design to run at the full burst
rate of 33 MHz required a high degree of pipelining
to optimize the routing and logic delays of the bus
interface and memory control blocks. Registered
input and output buffers were used on both the PCI
and VRAM interface ports of the design. The
resulting pipelined data flow increased the initial
PCI access latency but produced a design that
performs burst transfers at 33 MHz. For write
burst, PCI address/data signals are latched by
registered input buffers on one clock edge, and
appear on the VRAM data port one clock later. A
similar data flow occurs in the reverse direction on
read cycles.

In addition to pipelining, partitioning the logic to
utilize the 5-input CLB structure eliminated
multiple CLB delays and maximized logic utilization.
To meet the high I/O demands of a PCI controller,
the 160-pin XC3195A package provides 138 I/Os.
The XC3100A-2 family I/0s have been
characterized to guarantee PCI compatibility. The
devices have CMOS outputs with a guaranteed
static output current of 8 mA. PCI dynamic drive
requirements are not covered by the original data
sheet, however, Xilinx has characterized devices
and verified their compliance in all Plastic Quad-
Flat Pack (PQFP) packages.

17

MV-1000 VIDEO DIGITIZER

This is a picture of the completed design. On the
right is the video digitizer board (MV-1000)
containing the PCI interface, analog camera
interface, video capture, video conditioning and
VRAM buffers. On the left is an optional digital
camera interface board (MV-1100) which is EIA 422
compliant and allows the board to support up to
four concurrent 8-bit digital inputs.

The entire system fits into a single full-sized PCI
card slot. Connectors at the back of the MV-1100
enable the MV-1000 to support most of the popular
higher resolution line scan, area scan, and variable
scan cameras sold by vendors such as Kodak,
Dalsa, EG&G, Ektron, Pulnix, and Roche.

SUMMARY

MuTech set out to design a high performance
video digitizing system with a broad potential
market. The system bandwidth requirements made
the PCI bus a natural selection. In addition,
because PCI is processor independent, designing a
PCI based video digitizer would give them the
potential to sell one board into PC, PowerPC and
workstation platforms.

The bus interface and digitizer block required
high performance with 100% PCI compliance. It
required a high-level of integration and the ability to
experiment with the design by testing multiple
iterations during the design phase. Finally, time-to-
market was critical. Together, these requirements
drove the selection of an XC3100A FPGA as the
technology of choice for implementing the critical
functions of the system.

Designing a Flexible PCI Bus Interface with Programmable Logic

Bradly K. Fawcett
Xilinx Inc.
2100 Logic Drive
San Jose, CA 95124

ABSTRACT

PCIl-compliant high-density programmable logic
devices can be used to create flexible PCI bus
interfaces while avoiding the costs and risks of
custom IC development. However, careful design is
required to meet the performance and signaling
requirements of the PCI specification. This paper
overviews these issues, focusing on the attributes
needed in the programmable logic device to facilitate
interface design, and suggesting appropriate design
techniques and methodologies. Examples of PCI-
compliant devices from the Xilinx product line also
are examined.

INTRODUCTION

The Peripheral Component Interconnect (PCI) bus
definition has the admirable goal of providing high
throughput on a well-defined, lightly-loaded bus
while being compatible with today's IC manufacturing
processes. In order to insure interoperability in all
PCI-based systems, components that interface to the
PCI bus must strictly adhere to the PCI specification's
performance and I/O drive requirements. Thus,
equipment manufacturers planning to design PCI-
based systems and add-in boards face the challenge
of locating and selecting PCI-compliant devices.

With the recent emergence of PCI-compliant Field
Programmable Gate Arrays (FPGAs) and EPROM-
based Programmable Logic Devices (EPLDs),
designers of PCI bus interfaces can now reap the
flexibility and time-to-market benefits of high-density
user-programmable devices, while avoiding the costs
and risks of custom and semi-custom IC
development. However, PCl bus interfaces are
complex, and when implemented in EPLD devices
tend to require most of the capacity of the device,
even in large EPLDs. Designers interested in
integrating both the PCI bus interface and their
unique control logic for the back-end device being
connected to the bus into the same programmable
device will be attracted to the capacity of the higher-
density FPGA devices.

The first issue that a designer must face before
selecting component technologies is whether full PCI
compliance is needed. Full compliance is a
requirement for any board intended to be plugged
into any PCI system or any system intended to accept
any PCl-compatible boards. In other words, full

18

compliance is a must in systems that are to be sold in
to the general marketplace and require inter-
operability among multiple vendors. However, if the
system environment is "closed", in the sense that the
PCI bus is being used internally in a system where
the equipment designer has control over all devices
that interface to that bus (such as an embedded
system with no add-in capabilities), then, of course,
the designer has freedom to deviate from the
specification. This would expand the range of
available devices, since many EPLD and FPGA
devices are not completely compliant to the PCI
specification.

The PCI Special Interest Group (PCI SIG) has
published the PCI Compliance Checklist of parameters
that both system and component suppliers must
adhere to in order to claim compliance. It includes a
Component Electrical Checklist covering areas such as
I/O signaling levels, timing specifications, and bus
loading. It is important to review this checklist for
any device that will connect directly to a PCI bus. By
responding appropriately to the items in this check-
list, a vendor demonstrates that the minimum amount
of work required in order to claim compliance has
been completed. Inability to furnish a response to
this checklist is sufficient reason to question the
vendor's familiarity with the PCI specification and any
claims of compliance.

However, while meeting the checklist criteria is
necessary, it does not in itself guarantee PCI
compliance. Full system-level compliance typically is
verified by actually building a board and testing it.
To facilitate compliance verification, the PCI SIG
conducts workshops where candidate systems and
peripherals can be thoroughly tested. The PCI SIG
also offers board-level products (some of which use
programmable logic) that permit developers to
perform their own compliance tests. In addition,
simulation models available from Logic Modeling
Corp. (a division of Synopsys) have been sanctioned
by the PCI SIG for compliance testing.

I 1 PERFORMANC IREMENTS

The PCI bus supports a maximum transfer rate of
33 MHz over a 32-bit or 64-bit data path (33 MHz
transfers of 32-bit data = 132 Mbytes/second). At the
maximum 33 MHz clock rate, the 30 ns clock period
for a data transfer allocates 11 ns for the output
driver, 10 ns for the round-trip bus propagation

Symbol Parameter PCI Limit
Tsy Input Set-up Time 7 ns
Ty Input Hold Time O ns
TyaL Clock to Valid data out 2 ns <Tya, €11 ns
Ton Float to Active delay 2 ns € Ton € TyaL

Table 1: Key PCI Timing Parameters

delay, 2 ns for potential clock skew, and 7 ns for
input set-up time. This leads to the performance
requirements listed in Table 1.

The deterministic timing of most EPLDs makes it a
fairly straightforward task to examine the AC timing
parameters in the manufacturer's data sheet and
determine if that device meets the PCI timing
specifications for Tgy, Ty, and Tya,. Determining an
FPGA's compliance to these specifications is more
difficult, since global buffer and interconnect delays
as well as logic delays must be taken into account.

Most FPGA data sheets specify clock-to-output
timing for registered outputs relative to the clock at
the output register (which may reside in an I/O block
or nearby logic block). However, the PCI standard
specifies pin-to-pin timing, and the Ty, parameter is
measured relative to the bus clock entering the FPGA
device. Thus, the Tyay, clock-to-output valid delay in
an FPGA typically would include the delay in
inputting the clock signal, bringing it to the FPGA's
global clock buffer, routing the clock to the relevant
I/O or logic block, the internal clock-to-output delay
of the register, and the delay through the output
buffer (Figure 1). A clock-to-output valid delay of
under 11 ns is difficult to guarantee in large FPGA

Output
Buffer Pad
Data DQ {> 24
A Data out
Global
Clock
Pad
a Buffer Clock
x N Routing

|/
Clock in

Figure 1: The pin-to-pin clock-to-output timing for

an FPGA includes all delays on the clock path from

its input pad to the register, and all the delays on the
data path from the register to its output pad.

19

devices, where it may take 6 to 8 ns to distribute the
global clock signal to every flip-flop on the chip.

Set-up and hold times for registered inputs also
must be examined carefully in FPGA designs. FPGA
data sheets typically specify set-up and hold times
relative to the internal clock at the register itself,
while the PCI standard defines these parameters
relative to the clock input pin. Again, the delay
involved in inputting the bus clock and routing it
through a global clock buffer to the input register and
the delay on the data path to the input register also
must be taken into account. The internally-specified
set-up and hold times must be adjusted to
compensate for the delays associated with getting the
clock signal to the register. This may result in non-
zero hold time requirements in many FPGAs. (Some
FPGAs, such as the Xilinx XC3100A and XC4000
families, include a deliberate delay in the data path to
an input register to compensate for the clock
distribution delay, and, thus, guarantee set-up and
hold times relative to the clock input pin. Many other
manufacturers do not offer this feature, and the lack
of minimum delay specifications on the clock network
make the calculation of guaranteed hold times with
respect to the clock pin impossible.)

The float-to-active delay (Tgy) specifies the time
required for an output driver to transition from 3-state
to a valid output, timed from a bus clock input. This
must occur before a valid output is available (Tyay).
This path can involves delays through /O cells, logic
cells, and routing; therefore, this parameter is
design-dependent, and requires careful layout along
critical paths.

Other, more subtle, performance requirements
result from the implementation of the bus interface
protocols. For example, the IRDY# and TRDY#
signals must respond to a change in FRAME# within
one clock cycle. Again, these paths will be design-
dependent, involving internal logic and routing paths
in the FPGA or EPLD, and require careful attention to
the timing of critical paths.

Pipelini

The PCI bus protocols encourage burst-oriented
data flows between bus agents, facilitating the use of
pipelined data flows within PCI bus interface logic.
Pipelining techniques are often key to successfully
supporting data transfers at the maximum throughput
of the bus. While wait states during bus transactions
are permitted and occasionally may be necessary, a
high frequency of wait states is counter to the high
performance goals of the PCI standard.

The "back-end" of a PCI bus interface typically
connects the bus to a processor, memory subsystem,
embedded controller, or peripheral device. In most
designs, a data buffer, such as a FIFO buffer or dual-
port memory, resides between the external device and

the PCI bus interface logic, decoupling the speed of
the PCI bus from the back-end controller, and
allowing multiple data words to be queued for a burst
data write to the bus or stored during a burst data
read from the bus. Pipelining techniques are then
used to control the data flow through the interface
logic and onto the bus at maximum speed. This
increases the latency of data transfers, as multiple
clocks may be required for the first data word to move
through the stages of the pipeline and onto the bus,
but can allow maximum throughput during a burst
transfer by providing new data each bus clock cycle
once the pipeline is filled. For example, a two-stage
pipeline would require the data be transferred from
the back-end device to the first stage on one clock
edge, and then driven to the register that drives the
bus on the next clock edge. Thus, at the start of a
burst read from this agent, a single wait state may be
required for the first data byte (while the data is being
transferred to the bus interface's register), but a new
data word could be read from the agent on each
subsequent clock of the burst transfer (assuming that
the back-end can supply new data to the pipeline at
each clock).

lmpl ing State Machi

Typically, the signals involved in bus
transactions, such as FRAME#, IRDY#, and TRDY#,
and the operation of data flow pipelines are controlled
by state machines in the bus interface logic; example
state machines for controlling bus signaling are
provided in Appendix B of the PCI Specification (PCI
SIG 1993). To comply with PCI bus protocols and
performance requirements, bus control signals must
be sensed within the 7 ns input setup time. In some
cases, such as initiator-generated wait states during
reads, these signals must be responded to on the first

clock edge after their activation. Thus, high-
performance state machines are required.
For FPGAs, one-hot-encoded (OHE) state

machines are recommended (that is, state machines
with one register per state and minimal decoding
logic). These are well-suited for register-rich FPGA
architectures. On the other hand, fully-encoded state
machines are better suited to the AND-OR plane logic
of EPLDs.

For performance reasons, the transaction protocol
state machine often is divided into two levels. The
top level sets the data pipeline up for continuous data
flow and controls the front end of the cycle. However,
while the PCI protocol is compatible with data
pipelining, there are two exceptions: the sequence of
events that starts on the last transfer of a burst, and
when an initiator inserts wait states on a read cycle.
Thus, at a second layer, the IRDY# and FRAME#
signals must be sensed directly and responded to
within their 7 ns set-up time on the bus, so they
directly gate state machine outputs that control the
appropriate bus control signals.

20

rity Generation and Checki

Parity generation and checking is another
example where the bus protocol leads to a
performance requirement that can be problematic,
particularly in FPGA devices, and pipelining often is
required. For a 32-bit bus implementation, parity
must be maintained for the 36-bit data field
consisting of AD[0-31] and C/BE#[0-3] during both
address and data cycles. Typically, FPGA logic
blocks and EPLD macrocells have a fan-in of less
than 36 - far less in the case of FPGAs - so parity
generation and checking functions will require more
than one level of logic, with the resulting performance

implications.

All agents must generate an even parity bit when
writing address or data information to the bus. The
PAR signal must be driven to the appropriate state
and be present on the bus one clock cycle after the
address or data. In other words, this signal must be
driven out to the bus within 11 ns of the bus clock
edge wherein valid address or data information is
transferred. Inevitably, signals cannot pass through
the multiple logic levels of a parity generation circuit
in this short period. Rather than adding wait states to
each data transfer to compensate for a slow parity
generator, pipelining of the multiple levels of the
parity generation circuit can allow full speed
operation during burst data transfers. The parity
generation pipeline would work in conjunction with
the data flow pipelining, with "partial parity” results
moving through the pipeline in concert with the data.

For example, consider an EPLD or FPGA capable
of implementing six-input functions in each logic cell.
A two-stage parity generation pipeline would be
required (Figure 2). The first stage of the pipeline
generates parity calculations on six 6-bit sub-
segments. The parity results of the first stage are
registered on the same clock edge in which the back-
end data is loaded into the interface register and
driven onto the bus. The second pipeline stage then
completes the parity calculation; the output of this
stage drives the PAR signal. For FPGA devices whose

Dat
Path Logic |HD al— AD(31:0),CBE(3:0)
A
36 4
First Final
—XORs [P Q¢ xor [P Q@ PAR
A
CLK

Figure 2: A two-stage pipeline for parity generation

logic blocks have a fan-in less than six, the parity
generator may require three-levels of logic.
Depending on the set-up time of the data from the
back-end to the register driving the bus and the
achievable performance of the FPGA device, the first
two levels of logic may be implemented in the first
pipeline stage, or a three-level pipeline may be
required (which may, in turn, be a determining factor
in the number of pipeline stages in the data flow.)
For initiator agents driving addresses onto the bus,
the address and command information must be fed to
the parity generation pipeline the requisite number of
clocks before the initiator begins the actual bus
transaction by asserting FRAME#, in order to insure
that the PAR bit is available at the correct time.

Parity checking is not required in target agents,
and, even if available, is activated only if a parity
enable bit in one of the PCI configuration registers is

set. In the event a parity error is detected when
reading address or data information from the bus, an
active SERR# or PERR# signal must be available on
the bus one clock period after PAR. Thus, the error
signal must be driven onto the bus within 11 ns after
the clock edge where PAR is sensed. The best
approach is to generate an even parity bit for the data
as it is received and compare it to the PAR signal that
arrives one clock after the data. Thus, parity
generation can occur during the entire clock cycle
following the latching of the data, and the parity bit
latched on the next clock edge. (Careful placement
and routing may be required to traverse the multiple
logic levels of a 36-bit parity generator within 30 ns.)
At the clock edge where PAR is sensed, the generated
parity bit must then be XORed with the PAR signal,
ANDed with the enable bit from the configuration
register, and drive the SERR# or PERR# signal, all
within the next 11 ns. This implies that the sum of
the clock-to-out delay of the register holding the
generated parity, the delay through one level of logic,
the output buffer delay, and all associated internal
routing delays along this path must not exceed 11 ns.
While possible in the highest speed devices, this can
be a difficult challenge in any technology, and
discourages designers of many target-only devices
from including parity check capability.

Similarly, wide decode logic is required by
potential bus targets to decode bus addresses, and is
likely to involve multiple levels of logic within an
FPGA or EPLD. However, the PCI standard allows up
to four clock periods for an addressed device to
activate its DEVSEL# signal; this is ample time to
traverse several levels of logic in today's
programmable logic devices.

UIRE

The PCI bus is unterminated, operating on the
principle of reflective wave signaling. The initial
output signal, therefore, has half amplitude. It travels

21

to the end of the non-terminated bus, and gets
reflected back towards the source to become a full-
amplitude signal. This scheme demands strict
control of device drive characteristics. The driver
must have an output impedance in both the High and
Low states that is roughly the same as the
characteristic impedance of the driven bus. When
that condition is met, the returning signal is absorbed
without any further ringing or reflection. In order to
achieve 33 MHz, the round-trip delay must be limited
to 10 ns, limiting the physical length and allowable
capacitive loading of the bus.

Thus, unlike traditional bus specifications, PCI
defines AC switching characteristics as well as DC
parametrics. In other words, as well as specifying
1/0 sink and source limits at logic O and 1, PCI also
includes specifications for sink and source switching
currents across the transition from one logic level to
another. These are specified as regions and specific
points on a current vs. voltage graph (or "I/V curve")
within the PCI Specification. This type of I/O drive
information typically is not readily available in FPGA
and EPLD data sheets, and may need to be obtained
from the manufacturer. Again, designers are
encouraged to examine device manufacturers'’
responses to the items in the PCI SIG's Component
Electrical Checklist.

Bus loading must be strictly controlled in order to
maintain performance. FEach add-in card edge-
connector finger can attach to only one device pin of
no more than 10 pF, except for the CLOCK pin which
can be 12 pF. Programmable logic devices in plastic
packages typically meet this requirement; although
data sheets often list higher input capacitances, these
values usually only apply to ceramic packages, where
the multi-layer package increases pin capacitance.

/

The SERR# and interrupt request bus signals
must be implemented as "open drain” outputs that
can be shared by multiple agents in a wired-OR
manner. While most FPGAs and EPLDs do not
incorporate true open drain output structures, the
functionality of an open drain output is easily
implemented in an FPGA or EPLD with three-statable
output buffers. This is accomplished by supplying a
zero to the data input of the buffer and driving the
buffer's output enable input instead of the data input.

Some FPGA and EPLD devices have restrictions
as to the number of different signals that can be used
as output enables for the device's output buffers.
These devices generally are not good candidates for
PCI bus interface designs. Since different bus
control signals must be driven at different times and
most control signals are three-state signals that must
be driven by three-state buffers (and separate control
of the output enable is needed for each of the "open
drain" signals, as described above), PCI interface
designs require significant flexibility in the
generation of multiple output enable signals.

Pin Placement

The PCI standard specifies a maximum trace
length of 1.5 inches from the card edge connector to
the PCI device for all 32-bit signals in order to limit
trace capacitance. In all, a minimum of 47 pins are
required for a target-only device and 49 for an
initiator. These requirements dictate the use of a high
pin count device in a small, dense package, such as
the popular plastic quad flat pack (PQFP) package.

The PCI specification recommends a pinout for
PCI interfaces in quad flat pack packages that is
designed to align with the board's edge connector pin
assignment. However, other factors that could
influence pinout choices include simultaneous
switching and board layout considerations, and
internal logic placement along critical paths within
the FPGA or EPLD. To avoid switching noise
problems, address/data bus signals often are placed
in groups surrounding package ground pins. The
target FPGA or EPLD device should provide adequate
routing near its 1/O cells to provide flexibility in 1/O
placement while allowing complete, fully-routable
designs.

OTHER ARCHITECTURAL CONSIDERATIONS

The PCI bus is a synchronous bus based on a
single master clock signal; this implies that bus
signals should be registered as they exit and enter
bus agents. Thus, PCI interfaces demand an
architecture with adequate register space for latching
bus signals as well as generating state machines,
pipelines, and other internal logic. High-density,
register-rich FPGAs easily fulfill this requirement.
EPLDs typically provide only one register per
macrocell; however, some EPLDs, such as the Xilinx
XC7300 family devices, feature additional,
independent registers in their input paths, as well as
the macrocell registers. These structures are ideal for
latching bus inputs, and are a necessary resource for
meeting the capacity and density requirements of PCI
bus interface design.

PCI devices must implement a basic set of
configuration registers, divided into a predefined, 64-
byte header region and a 192-byte device-dependent
region. Many of these registers or fields within these
registers are optional. For EPLD-based interfaces,
these registers would be implemented in an external
memory device. FPGA-based designs may include
some or all of the configuration bits either within the
FPGA or in external memory devices, dependent on
the design requirements and FPGA capacity, .

The PCI standard includes specifications for both
5 V and 3.3 V signaling environments; PCI
subsystems can be 5 V only, 3.3 V only, or universal
(both). A keyed connector scheme prevents damage
to single voltage cards. Currently, FPGA-based PCI
interfaces must be 5 V only designs; the 3.3 V

22

FPGAs available today do not provide adequate
performance for this application. Some EPLDs, such
as the XC7300 family, while running at 5 V internally
to provide the required performance, can
accommodate either 3.3 V or 5 V signal levels on their

I/O pins. Thus, these devices can be used on
universal cards that provide both signaling
environments.

vV S S

An often overlooked factor when evaluating
programmable logic devices for possible use in PCI
systems is the capabilities of their development tools.
Since the performance requirements of the PCI
standard tax the capabilities of most FPGA and EPLD
devices, development tools capable of easily
producing high-performance layouts are mandatory.
If a high-level hardware design language is used for
design entry, logic synthesis tools that are optimized
for the target architecture are required. While
automated layout tools should be robust, the
intricacies of PCI design may require that the
designer exercise some control over the tools,
especially in the placement and routing of critical
paths and the placement of I/O pins. Thus, some
form of placement control is needed, and
floorplanning support is desirable. For FPGA-based
designs, timing-driven place and route tools such as
XACT-Performance™ from Xilinx and TimingWizard™
from NeoCAD can ease the design process by
allowing the specification of target performance
requirements for entire paths through the design.
"Re-entrant" FPGA place and route tools, wherein the
placement and routing of a previous version of a
design can guide the implementation of a new version
with minimal changes, can greatly ease the design
process.

EXAMPLE DEVICES AND DESIGNS

Examples of fully compliant programmable logic
devices include the XC3100A FPGA and XC7300
EPLD families from Xilinx Inc. PCI Compliance
Checklist data has been submitted to the PCI SIG (and
is available to interested users) for the -2 speed
grade of the XC3100A family, and -10 and -7 speed
grades of the XC7300 family.

Several PCI designs have been based on the
XC3100A FPGA family. In fact, the PCI SIG chose an
XC3100A device for the board developed for use in
their BIOS compliance test kit. A target interface
design that links the PCI bus to a slave processor
through a dual-port RAM has been incorporated in an
XC3164A-2 device in a 160-pin PQFP package
(Figure 3). The design was coded in Verilog HDL,
synthesized using Exemplar Logic's CORE™ tools, and
verified on a PC using Simucad's Silos/Verilog
simulator. This design utilizes only 40% of the logic
blocks available in the XC3164A FPGA. Design files

and an application note describing the design are
available from Xilinx (Xilinx 1994a).

Likewise, an application note and design files are
available for a PCI target interface implemented using
two EPLD devices: an XC73108 and an XC7354
(Xilinx 1994b). This design also can be collapsed
into a single XC73144 device. The "back-end"
interface is a FIFO buffer connected to a DRAM
memory subsystem with its own memory controller.

While not fully compliant, the XC4000-4 FPGA
family also has been used in a number of "embedded
system" PCI bus implementations. (The XC4000-4
FPGA devices fall just short of meeting the Ty, Tsuy,

and T timing requirements, but are compliant in all
other aspects.) However, XC4400 HardWire devices,
mask-programmed versions of the XC4000 devices,
are fully-compliant, allowing for prototype
development with the programmable version, but
high-volume manufacturing with the fully-compliant
HardWire version. A higher-performance version of
the XC4000 FPGA architecture will be available in
the second half of 1995, and is expected to be fully
compliant. The XC4000 architecture has several
features that facilitate PCI bus interface design,
including the ability to implement 9-input functions
in a single block (easing parity generation and

checking), and on-chip RAM capability (facilitating
the on-chip implementation of the PCI configuration
registers).

SUMMARY

While careful design is required, PCI-compatible
EPLD and FPGA devices bring the system-integration,
flexibility, and time-to-market benefits of high-
density programmable logic to the PCI design
community. These devices can provide the
performance, density, and routability to handle
complex structures such as pipelined data paths, 32-
bit parity generation, and PCI bus control.

REFERENCES

1. PCI SIG, PCI Local Bus Specification Revision 2.0,
April, 1993

2. Xilinx Inc. application note, Fully Compliant PCI
Interface in an XC3164A-2, 1994

3. Xilinx Inc. application note, Designing Flexible
PCI Interfaces with Xilinx EPLDs, Document No.
0010216-01, 1994

¢e———— |OC_REQA—————
LOC_GNTm———— & | —
_, ADDR[31:24]
(@] \I__.______
(o
'—
pa
:> <: 8
SRWE(3:0]n SRWE[3:0]n 2
| 8
- SRCSn— «—SRCSn— CONTROL
——SROEN—» le—SROENn—
XC3164A ngig SLAVE MPU
ADDRESS ADDRESS & ADDR[23:0]
! Z,
w o
w W
il :
we
\ EE Ve
PCI DATA / gF DATA
-

Figure 3: Block diagram of system employing the XC3164A FPGA for a PCI bus interface. The back-end of the
interface is a bank of static RAM shared by an on-board host microprocessor.

23

TRENDS IN SBYSTEM LOGIC DESIGN

Wen-Chi Chen
VIA Technologies, Inc.
5020 Brandin Court
Fremont, CA 94538 USA

ABSTRACT

In the past ten years, PC system logid has
evolved from simple glue logic plus DMA, interrupt
control and timer functions into much more
powerful and sophisticated system control
functions.The general trend has been moving
toward
¢ Higher performance CPUs
Higher frequency CPU buses
Bigger and faster cache and DRAM
Faster and better I/O buses
Advanced features such as “Green® and *Plug

and Play”’
» Higher integration

® @ S O

System logic can be divided into several sub-
systems namely, CPU interface, memory control,
bus interface and other features.

CPU INTERFACE

From the original 8088 to today’s high end
Pentium and equivalents, CPU performance has
grown at a rate of 50% per year. In the future,
system logic designs will need to support new CPU
features such as write-back cache and Qreen
functions. The CPUs of the various vendors differ
today, and in the future they will differ even more.
System logic designs will try to support as many of
the differing CPUe as possible. Most system logic
chip sets will support Pentium class CPUs, such as
AMD’s KS and Cyrix's M1, but they will not support
NextGen's CPUs due to their different cacho archi-
tecture.

Dual, or multiple processor support, will be one
of the major issues in future CPU intetface designs.

MEMORY CONTROL

Direct mapped cache, both asynchronous and
synchronous, is generally supported by system logic
designs todqy. Originally the size of cache for 386
systems was 32K Bytes to 64K Bytes. Pentium
system logic designs now support up to 2 Mega-
bytes, and in the future most designs will support

24

synchronous pipelined 3.3v cache. Second level
cache may move inside P6 type CPUs, and con-
sequently system logic designs will support either
much bigger cache, or no cache at all.

DRAM interfaces will go through even greater
change. EDO {Extended Data Out) DRAM support
will be a requirement. But other DRAM such as
synchronous DRAM, EDRAM, RAMBUS and others
may also be supported by system logic. 3.3v DRAM
is used mostly for mobile systems now, but it may
become popular in desktop systems too.

BUS INTERFACE

The ISA bus will remain long after the E[SA and
VL buses are dead, and the PCI bus will be sup-
ported by all system logic designs. Its transfer rate
will become an important consideration. Integrated
buffering will be common, and also 64-bit PCI buses
will be more common. The popularity of 66 MHz PCI
buses will depend upon reliability issues. PCI to PCI
bridges and CardBuses will become key features.

OTHER FEATURES

*Green” functions and “Plug and Play” will be
supported by all the major systern logic designs.
Other functions, such as the keyboard controller,
the enhanced IDE controller and the real time clock
will be integrated. The latest trend is to support
Native Signal Processing (NSP) which may lead to
the integration of audio, modem/fax and certain
video functions. Other possibilities are to integrate
Super [/0, gaphics control and LAN functions.in
system logic designs

COST CONCERNS

Cost is always a major consideration for system
logic designers in attempting to increase perfor-
mance by adopting advanced features. Most cost
decisions involve
¢ Pin count: 100, 160, 208, 240, 304 and above
o Package: PQFP, or DGA
e Gate count
¢ Process technology

New PC Card ICs Contribute to
the Proliferation of the PCI Bus

Mark Bode, David Dickens & Tony Wutka
Texas Instruments -- PCIbus Solutions
P.O. Box 84, M/S 814
Sherman, TX 75090

ABSTRACT

The emerging PCI standard brings with it the need for
unique, innovative solutions for connecting system
components to it. The advent of PCI requires devices
which can bridge between PCI and other peripherals, such
as PC Cards. Systems also must be able to support legacy
software and hardware. Issues such as legacy DMA and
standard ISA interrupt handling are difficult to implement
under the current PCI specification. Creative solutions
exist for PC Cards that address both legacy DMA (Direct
Memory Access) and standard ISA interrupt handling in a
PCI environment.

INTRODUCTION

After years of experimenting, the PC industry is
converging on a single high-speed local bus standard for
motherboards. This standard, the Peripheral Component
Interconnect (PCI) bus, is rapidly becoming the local bus of
choice in both desktop and portable PCs. To meet the
emerging demand for devices that connect peripherals to
the PCI bus, Texas Instruments is developing a family of
PCI bus interface ICs.

PCI's high performance, scalability, microprocessor
independence and endorsement by the PC industry ensure
that the bus standard will become dominant in the market
during the next few years. TI estimates that by 1997 the
market for PCs using PCI will have grown to ncarly 40
million units a year, morc than 60 percent of the entire PC
market.

In addition to the high growth of the PCI industry, other
peripheral industries such as PC Cards are also
experiencing rapid growth. CardBus, an extension to the
new PC Card specification, is fully backward-compatible
with the PCMCIA 2.1 PC Card specification. CardBus
provides a relatively easy upgrade path from R2 (PCMCIA
2.1) PC cards. CardBus provides added features over R2
cards, such as bus mastering capabilities, 32-bit data paths,
33 MHz speed and future lower voltages. CardBus
controllers being designed by Texas Instruments will be
among the industries first to interface PCI to CardBus.

These controllers also provide innovative solutions which
can help simplify support of legacy software and hardware.

New PC Card controllers will address some of the
weaknesses of the current PCI specification. The first of

25

these is the lack of an casy to implement standard tor
handling legacy DMA. A unique method of resolving
legacy DMA issues is to use a distributed DMA scheme.
The second is the difficulty and overhead of supporting
standard ISA interrupts in a PCI environment. The
preferred method of handling standard ISA interrupts is to
utilize a serial interrupt design.

PCI: THE PC BUS OF THE FUTURE

PC manufacturers have long looked for a high-speed
alternative to the ISA bus, which dates from the original
IBM XT and AT designs. The list of alternatives reads like
alphabet soup: EISA, MicroChannel, VME, VMEG64,
FutureBus+, VL-bus. While all of these alternative buses
have advantages, none is as well designed and universally
accepted as PCI to take PCs into the future.

PCI was developed by the PCI Special Interest Group
(SIG), an industry-wide committee representing more than
300 companies. The PCI Local Bus Specification, revision
2.0, approved in April 1993, is the latest version of the
standard.

With a 32- or 64-bit multiplexed data and address path,
PCI operates at frequencies of up to 33 MHz and can
support up to 10 loads per bus. Although PCI was created
as a local bus, it also has I/O capabilities that make it
advantageous for exchanging massive amounts of data with
peripherals such as hard disk drives and LANGs.

PCI is platform-independent, supporting both CISC
(Complex Instruction Set Computer) and RISC (Reduced
Instruction Set Computer) microprocessors. It is also
backward-compatible with earlier x86 processors and
software -- always a key factor to acceptance in the PC
industry.

PCI's high bandwidth of 132 Mbytes/s for 32-bit
transfers and 264 Mbytes/s for 64-bit transfers means that it
can support the mixed video, audio and other data transfers
necessary for multimedia.

Because of the multiplexed data and address lines, PCI
cards require few signals -- just 49 for bus masters and 47
for slaves. Having fewer signals means that the bus cuts
down on pin count, board space and layers, saving expense
for motherboard manufacturers. PCI specifies both 3.3-V

and 5-V signal levels, so it easily transitions to the low-
voltage systems that are rapidly entering the market today.

PCT's scalability allows it to be used in a variety of
systems, ranging from notebooks to desktop PCs to
workstations. The ubiquity of PCI will also serve to drive
down costs, making it even more attractive for computer
manufacturers.

PCMCIA: THE KEY TO MOBILITY

As a local bus, PCT handles high-frequency traffic
among the CPU, memory and controllers for high-speed
devices such-as video displays. Although PCI has I/O
capability itself, it also needs to interface to other I/O buses.
Among these, the most important emerging standard is the
PC Card (commonly called "PCMCIA") bus and its
extension CardBus.

The Personal Computer Memory Card International
Association (PCMCIA) in association with Japan
Electronic Industry Development Association (JEIDA) has
worldwide support from more than 500 member companies
for its PC Card standard. PCMCIA revision 2.1, the
current version of the 16-bit specification, represents the
culmination of various improvements to earlier releases of
memory and I/O cards for PCs.

PC Cards support typical data transfers of 5 to 10
Mbytes/s and a theoretical limit of 20 Mbytes/s. In
addition, with automatic system configuration, a PC Card is
plug-and-playable through hot card insertion even after the
system has been powered on.

The PC Card standard brings several advantages to
small form-factor add-ins. Its 3.3- and 5-V signaling
options support various schemes of system power
management, helping to reduce power consumption and
prolong battery life. The PC Card standard also supports
the miniaturization of PC products for lighter weight and
greater mobility.

These same advantages are also offered by a variant of
PCI, Small Form-Factor PCI. While there is some overlap
in application between the two interfaces, Small Form-
Factor PCl is finding more use in embedded systems, while
PC Cards are more widely used for add-in peripheral cards.

An improved version of the PC Card standard has been
announced by PCMCIA and JEIDA. This new standard
will support a muitiplexed 32-bit address/data path defined
for CardBus PC Cards, while still maintaining
compatibility with 16-bit version 2.1 PC Cards. With a
wider data path and operating speeds of up to 33 MHz,

26

CardBus cards will support data transfer rates up to 132
Mbytes/s. In addition, CardBus supports bus mastering
capability, operates at 3.3V and allows for the next
generation of lower device operating voltages. With these
enhancements, CardBus will further enhance the mobility
of future PC systems.

DISTRIBUTED DMA : THE PREFERRED SOLUTION

A standard feature of the PC-AT ISA architecture is the
8237 DMA(Direct Memory Access) Controller. The dual
cascaded 8237 configuration provides seven DMA
channels, by which application software may program
memory-to-1/O or I/O-to-memory transfers without
processor involvement. DMA transfers are useful in
transferring blocks of data from peripherals to main
memory without taxing the processor itself. Such transfers
are common in floppy disk drives, parallel ports, sound
cards, and other I/O devices.

The evolution of the PC architecture has seen the
introduction of several new peripheral bus protocols which
define new ways of connecting current peripherals and
open the door to new ones; PCI and PC Card are perfect
examples. However the support of legacy DMA peripherals
and the applications which use them require a method of
implementing DMA in a PCI and/or PC Card environment.
This need prompted PCMCIA to provide DMA support in
the upcoming release of the PC Card standard. The lack of
support in the PCI environment prompted a group of
computer and semiconductor makers to define DMA
support for PCI. The result is a distributed DMA scheme
for PCI.

The distributed DMA concept dictates that each PCI
device implements as many slave DMA channels as
required by the peripheral. For Texas Instruments CardBus
controller, the PCI1130, this means that one slave DMA
channel per socket, or two channels total, are supported. In
order to maintain the legacy DMA programming model,
one DMA device in the system is designated the master
DMA device. This device will claim PCI I/O reads and
writes to the legacy DMA control registers. The master
DMA device relays the information written to these legacy
DMA addresses to the proper slave DMA device, such as
the PCI1130.

Each slave DMA channel has a set of registers mapped
into a 16-byte window in PCI I/O space. The location of
this window is specified by the Slave DMA Configuration
Register, found in the slave device’s PCI Configuration
space. Two such registers may be found in the PCI1130.

By programming the Slave DMA Configuration
Register, the master DMA device may communicate with
the slave DMA. After these registers have been
programmed by the master DMA device, the PCI1130 may
respond to a PC Card’s assertion of DREQ by bus
mastering on the PCI bus and transferring the required
data.

A distributed DMA scheme offers several benefits over a
concentrated DMA solution. First, by implementing the
scheme mostly in hardware, the legacy DMA programming
model is retained. This ensures that software written to this
model will now function as intended in a PCI system.
Second, the distributed DMA scheme ‘distributes’ the
burden of DMA support among all of the devices which
will support it, rather than requiring a single device to
implement the entire dual-8237 functionality. A drawback
to the concentrated solution is that each DMA transfer from
memory-to-1/O, would require two PCI transactions: one
from the target to the master, and one from the master to
the destination. The distributed approach programs the
slave DMA device to carry out the transfer directly.

An attractive byproduct of the distributed DMA scheme
described here is that PCI devices supporting this scheme
will automatically support a mechanism for PCI bus
mastering. New application software or device drivers may
program the Slave DMA registers directly without being
constrained by the legacy DMA programming model. This
allows new applications to exploit the bandwidth of the PCI
bus by supporting 32-bit transfers over the full PCI address
range.

SERIALIZED INTERRUPTS: THE FUTURE ALTERNATIVE

Another standard feature of the PC-AT architecture is
the 8259 Programmable Interrupt Controller.
Traditionally, there are fifteen interrupts available in a PC-
AT system. The interrupt controller responds to requests
for help or service by executing interrupt service routines.

An alternative method to standard ISA interrupts is to
implement shared interrupts, as defined by the PCI
specification. Shared interrupts offer the system designer a
simplified means of handling interrupts, but to date have
proved difficult to implement. To build a PCI system and

27

maintain backward compatibility with legacy software, a
system must be capable of responding to standard ISA
interrupts.

A superior method of handing ISA standard interrupts
is to provide them serially to the interrupt controller for
servicing. This method was defined by several of the
industries leading suppliers of systems, system controllers
and peripheral components.

Since the interrupt stream is constructed utilizing a
wired-OR scheme, IRQSER, a common pin, is driven low
for each corresponding IRQx on its assigned clock cycle
and allows for their replication at the host controller. This
method has the advantage of reducing the number of lines
required to service standard ISA interrupts. Using a device
such as the Texas Instruments PCI1130 CardBus controller,
the number of board traces required to service standard ISA
interrupts can be significantly reduced.

BUS INTERFACE ICS: THE CORNERSTONES OF PCI

Because of the growing significance of PCI, TI is
supplying interfaces that will bridge between PCI and other
system functions, such as PC Cards (PCMCIA) and
CardBus. The company is well-positioned to play a role in
enhancing the viability of PCI. As an active member of
both PCI SIG and PCMCIA, TI plays a part in defining
these standards and has an early perspective on future
developments.

In addition, TT's core competencies assure its customers
that it can supply devices in the volumes needed for a
rapidly growing PCI bus market. Among these
competencies is TI's experience in designing,
manufacturing and marketing mixed-voltage (3.3-/5-V)
ICs.

PCl is the preferred bus for new PC designs. As the
market for PCI continues to grow, PC manufacturers will
need off-the-shelf components to help them integrate the
bus. With its manufacturing strength and low-voltage
leadership, TI is positioned to provide these essential
components for PC systems. PCI bus interfaces from TI
will be key to the future of PC systems.

Number Nine’s View on PC Graphics -- Now and into the Future

Presenter: Andrew Najda
President and Co-founder
Number Nine Visual Technology Corporation

Number Nine Computer Corporation, renamed Number Nine Visual Technology Corporation to
reflect its product direction in the graphics marketplace, has been a leading provider of PC-based
high-performance graphic display solutions for more than a decade. In the recently released
International Data Corporation report entitled “The Intel VGA Add-In Board Market”, IDC
ranked Number Nine as an industry leader in high-end VR AM-based graphics and #4 in the
overall market.

Founded in 1982, Number Nine has consistently delivered preemptive market-driven technology.
Number Nine delivered a number of world’s firsts, starting with the first 256- and 16.8- million-
color cards for the PC. The company went on to develop the first graphics accelerator board with
a built-in processor, the first solution to allow both the host CPU and the graphics processor to
draw in parallel, and the first graphics productivity and utility software for Windows users. Only
months after Number Nine began shipping a new series of 64-bit graphics accelerator boards,
Number Nine again demonstrated its industry leadership by introducing Imagine128, the worlds
first 128-bit graphics accelerator chip and board family. Number Nine is continuing this tradition
with the development of Imagine128 Pro. This product will incorporate 8MB of high-speed
VRAM, a#9 Imaginel28 processor, a 128-bit data path from the processor to memory, and a 128-
bit DAC (digital to analog converter). This should be the first commercially available graphics
accelerator board to utilize a 128-bit DAC.

Computer manufacturers are in a race to introduce faster and more powerful systems. The line
that separates the PC from the workstation is becoming increasingly difficult to define as PC
performance continues to increase and prices fall. Computer manufacturers are consistently
turning to graphics board manufacturers for assistance in improving overall graphics performance,
added utilities and increased functionality. It is this added value that helps the computer vendor
differentiate their system from the competitor.

Andrew Najda, president and co-founder of Number Nine will be present to speak on events that
are currently effecting the graphics industry. Additionally, Mr. Najda will discuss where the
industry is heading as a whole. Topics being covered will be:

1) How newer 32-bit operating systems will increase graphics demands on the overall
system.

2) The strengths and weakness of current and new graphics memory technologies.

3) The integration of graphics, video and audio.

4) How 3D will evolve at the low-end for entertainment markets, to the more demanding
requirements of high end engineering applications.

This session promises to be very educational for all those that attend.

28

PCI Host Bridge for the 60x Family of PowerPC™ Microprocessors

Christopher D. Bryant, Michael J. Garcia, Laura A. Weber
Motorola Incorporated
6501 William Cannon Drive West
Austin, Texas 78735-8598

ABSTRACT

This paper describes a single chip Peripheral Component
Interface (PCI) host bridge for the PowerPC 60x family of
microprocessors. The MPC105 is a high performance, low
power, low cost chip which integrates all functions of a PCI
host bridge, a memory controller, and secondary L2 cache
controller. This solution provides system designers the ability to
design a wide range of performance systems based on the PCI
bus and the PowerPC architecture.

ARCHITECTURAL ERVIE

The MPC105 is partitioned into four interfaces, the processor
interface, the second level (L2) cache interface, the memory
interface, and the PCI interface. A central control unit provides
arbitration and coherency control between each of the
interfaces. This central control unit supports concurrent
operations on the processor/memory bus and the PCI bus,
allowing transactions such as a processor write to memory to
occur while a master on the PCI bus is writing to memory via
internal buffers. The processor interface is a high bandwidth,
high performance, TTL compatible interface which supports
any of the MPC60x PowerPC microprocessors and a second
level (L2) cache or two MPC60x PowerPC microprocessors.
The memory interface is highly flexible, supporting either
DRAM or SDRAM in sizes up to one gigabyte, and in up to
eight banks. The PCI interface is fully compliant with the PCI
Local Bus Specification Revision 2.0[1] and all its supplements
and functions as both a master and target device.

The MPC105 connects directly with the PCI bus and the
processor bus, and shares the data bus to system memory with
the processor. The processor/memory bus and the PCI bus are
synchronized with the use of a Phase-locked loop (PLL) clock
design. An H-tree clock distribution network is used to
minimize the clock skew to less than 500ps across the chip. The
MPC105 supports PCI bus operations at a frequency between
20Mhz and 33Mhz, with the processor/memory bus running at
either the same frequency or two times the PCI frequency. A
typical system using the MPC105 is shown in Figure 1.

The following sections will describe the functionality and
capability of each of the interfaces, the central control unit, and
various other features such as power management modes, error
detection and reporting, and chip technology.

29

|

MPC105

S R | SR B8 | % | S | R | R

Figure 1 Typical PC system using the MPC105.
PCIINTERFACE

The PCI interface is fully compliant with the PCI Local Bus
Specification Revision 2.0[1] and all its supplements and
functions as both a master and target device. The interface
supports PCI bus speeds of OMhz in the sleep or suspend power
savings mode and a range of 20Mhz to 33Mhz in the full on
mode. The interface can be programmed for either Little Endian
or Big Endian formatted data. It provides the data swapping,
byte enable swapping, and address translation in hardware. The
interface supports parity checking and error reporting as both a
master and a target.

The interface supports memory reads and writes, I/O reads
and writes, configuration reads and writes, special cycles and
interrupt acknowledge as a master. As a target the interface
supports memory reads (including memory read line and
memory read multiple), and memory writes (including memory
write and invalidate).

The interface is controlled by a master and a target state
machine running independently of each other. This allows the
MPC105 to run two separate transactions simultaneously. For
example, if the master is trying to run a burst write to a PCI
device, it may get disconnected before finishing the transaction.

If another PCI device is granted the PCI bus and requests a
burst read from system memory, the interface can accept the
burst transfer and continue the burst write when next granted
the PCI bus.

The MPC105 as a Master

Upon the detection of a valid command from the central
control unit, the PCI interface requests the use of the PCI bus if
not already granted. Once granted, the MPC105 drives a full
32-bit address and command. The master interface supports
reads and writes of 1, 2, 3, 4, or 32 bytes without master
initiated wait states. The one, two or three byte transfers can
either be aligned or unaligned. The four and thirty-two byte
transfers must be aligned. The master part of the interface does
not run fast back-to-back or interlocked access. The master
interface does support decode for all 21 identification selects,
any of the various device selection timings, master abort, target
abort, target retry, and target disconnects.

The MPC105 as a Target

As a target, upon detection of an address phase the interface
simultaneously decodes the address and command to determine
if the transaction is for system memory. If the transaction is
destined for system memory the interface latches the address
and decoded command and forwards them to the central control
unit. On writes to system memory data is forwarded along with
its byte enables to the central control unit. On reads 4 bytes of
data are provided to the PCI bus regardless of the byte enables.

The target supports both PCI compliant fast back-to-back
transactions, interlocked accesses using the PCI lock protocol,
target-abort and target retry, The MPC105 uses the fastest
device selection timing and can accept bursts writes of up to
32-bytes with no wait states. Burst reads of up to 32-bytes are
also accepted with wait states inserted depending upon system
memory speed. The target interface will disconnect at the end of
a cache line (32-bytes) to force a new address for snooping

purposes.
Design Issues

Most differences in the operation of the processor bus and the
PCI bus are resolved within the PCI interface. For example, if
the processor bus is operating at twice the frequency of the PCI
bus, the internal control of the MPC105 operates at the
processor bus speed and the PCI interface synchronizes
transfers with the slower PCI bus.

Another design issue requiring special attention was the
ability to interface between the 64-bit processor data bus and
the 32-bit PCI bus. In this case, the interface to the central
control unit is 64-bits wide. For PCI writes to memory, the
interface latches two 32-bit beats of data and 4-bit byte enables.
The interface then forwards all 64-bits of data and 8 byte
enables to the central control unit. If an odd number of PCI data
transfers is done, the data written to the central control unit and
to system memory is still 64-bits with the proper byte enables.

On PCI reads from system memory, the central control unit
forwards 64-bits of data to the target interface. The interface
then selects which thirty-two bits of data to send out onto the
PCI bus. The master part of the interface has similar pointers for

30

selecting 32-bits out of 64-bits for processor writes to PCL.

ERFACE
DRAM Support.

The memory interface of the MPC105 controls transactions to
and from system memory and supports a maximum of one
gigabyte of DRAM or JEDEC compliant SDRAM. The
memory interface’s flexible design supports a variety DRAM
configurations through SIMM’s and/or direct board
attachments. Support for up to eight banks of memory is
provided through the use of eight row address strobe lines and
eight column address strobe lines, allowing for byte selection
during writes. Twelve address pins allow each of the eight
banks to be populated with memories from 1 megabit up to
sixteen megabits in depth. Memories can be from one to
seventy-two bits in width. All banks must be populated with the
same type of DRAM, as mixing of DRAM and SDRAM is not
supported. It is not necessary to use identical memory chips in
each of the eight banks. Individual banks may be of differing
size. The memory interface can be configured to provide nine to
twelve row bits to a bank, and nine to twelve column bits. The
row and column bits are multiplexed onto the twelve address
pins. The start and ending addresses for each bank are
programmable, allowing appropriate row and column
multiplexing.

Timing variables for read and write transactions are
controlled through programmable registers, allowing system
designers to optimize the MPC105 for a variety of memory
designs. Some of these programmable variables include the
RAS and CAS precharge times, the RAS to CAS delay time,
and the first access CAS pulse width. For SDRAM systems
some of the programmable timings include the data latency
from read commands, the interval between refresh command to
active command, the interval between read and write
commands to active commands, and the intervals for active to
precharge and precharge to active.

The MPC105 can be configured to provide parity checking. If
enabled, parity will be checked for all memory reads and will be
generated for PCI writes to memory, L1 or L2 copybacks, and
L2 castouts. The processor provides parity for all other
processor to memory related transactions.

CAS before RAS (CBR) refresh is used to maintain memory
integrity. This interval is programmable with a resolution of one
processor bus clock cycle. The MPC105 distributes refreshes to
(S)DRAM according to the interval programmed and will bank-
stagger the refreshes to minimize instantaneous current
consumption. While in power savings mode or during system
shutdown, the MPC105 can be programmed to use normal CBR
refreshes, self refresh mode (for memories that support this
functionality), or CBR refreshes based on a clock frequency
other than the internal clock and supplied to the MPC105 (not
supported with SDRAM). Refreshing can be disabled to allow
for systems who prefer to copy back main memory to non
volatile memories or maintain memory through other means.

ROM Support
The MPC105 supports a 32 or 64 bit wide ROM or an 8 bit

wide FLASH ROM with memory sizes for up to sixteen
megabytes of ROM or one megabyte of FLASH ROM. The
ROM memory can be located off the memory interface or out
on the PCI bus. Twenty bits of address and two chip selects,
which can be used as bank selects, are provided for systems that
are using 32 or 64-bit wide ROM. The MPC105 provides for
programmable access timing for ROM so that systems of
various clock frequencies may be implemented. The MPC105
can be programmed to support the burst capability available
with some ROM memories, taking advantage of access time
improvements. The programmable parameters for ROM access
have a granularity of one processor bus clock cycle.

For systems that prefer to use an 8 bit wide ROM or flash
ROM, 20 bits of address, a chip select pin, a write enable pin,
and an output enable pin are provided to ease read accesses and
write accesses to flash ROM. The MPC105 only supports Byte
write accesses to flash ROM. To reduce bus traffic, individual
bytes are read from the byte wide ROM and are gathered in the
MPC105 before sending the requested size back to the
processor.

PROCESSOR AND L2 INTERFACE

The MPC105 processor interface supports a subset of the
PowerPC microprocessor bus capabilities. The subset includes
but is not limited to single-beat (8 bytes or less) transfers, burst
(32 bytes) transfers, the 60x Little Endian (LE) mode, the 60x
32-bit mode, the address retry mechanism, and pipelined
transactions. It uses a 32-bit address bus that is decoupled from
the 64-bit data bus, and provides arbitration to these buses for
one processor without L2, one processor with look-aside L2 or
two processors. It also uses the snoop protocol for PCI to
system memory transfers.

The MPC105 processor’s interface, upon the detection of a
transfer start from the processor, latches the address, transfer
type, and transfer size. The interface decodes the transaction to
determine whether the transaction is a read, write, or address
only and whether the transaction is destined for PCI memory
space, PCI 1/O space, system memory, ROM or the internal
configuration registers. The address and the decoded
information are passed along to the central control unit where it
is used for internal snooping operations from either the
processor or PCI interface. The data phase of the transaction
proceeds when it is determined that the transaction will not get
retried and when it is the highest priority of the outstanding
transactions within the MPC105. Once the data phase has
begun, the MPC105 allows pipelining to occur. A one-level
pipeline is enforced by extending the address phase of a
pipelined transaction until the data phase of the previous
transaction is complete. This allows the MPC105 to begin the
decode for the next transaction.

The MPC105 provides control for a direct mapped look-aside
L2 cache. This L2 cache can be of size 256 kilobytes, 512
kilobytes or 1 megabyte, programmed in either write-through or
write-back mode and provides up to 4 gigabytes of cacheable
address space. The L2 interface can be programmed to support
either asynchronous, synchronous or pipelined SRAM’s of
various speeds. The programmability of the L2 interface allows
flexibility in the choice of SRAM’s and Tag RAM’s for various

31

processor bus frequencies. The support for L2 cache flush and
L2 cache invalidate is provided in hardware.

To determine the L2 response to processor or PCI initiated
transactions a hit and modified signal are used along with the
address retry, and page protection bits from the processor. The
L2 cache will supply data on read hits that are destined to
system memory from either the processor or PCL. If the cache is
programmed in write-back mode it will accept write data from
the processor. The modified data then remains in the L2 until it
is written to memory due to either an L2 replacement copyback
or a PCI write snoop that hits in the L2. Updates to the L2 cache
are done for processor burst reads from memory that miss, and
processor to memory burst writes.

CENTRAL CONTROL,

The central control unit performs the internal arbitration,
coordinates the internal and external snooping, and controls the
flow of transactions through the MPC105. The MPC105 uses
internal buffering to store addresses and data moving through
the part, and to maximize opportunities for concurrent
operations. For most operations, the data is latched internally in
one of seven data buffers. The exception is processor accesses
to memory, in which the data is transferred directly on the
shared data bus. There are eight address buffers which
correspond to the seven data buffers and the current
processor-memory access. The addresses for incoming
transactions from either PCI or the processor are compared to
the latched addresses for internal snooping purposes. See Figure
2 for the general buffer organization.

Processor/L2 Interface Control Block

’ v
Processor/Memory
Buffers

\ 4 t

Processor/PCI Memory Interface
Buffers Control Block

v

PCI/Memory
Buffers

T

PCI Interface Control Block

Figure 2 General Buffer Organization.
Processor/L2/Memory Accesses

Because systems using the MPC105 have a shared data bus
between the processor, the L2, and memory, for most cases it is
unnecessary to buffer data transfers between these devices.
However, there is a 32-byte castout buffer which is used for L2
castouts and for L1 copybacks due to snooping for PCI reads
from memory. L2 castouts are caused when a processor
transaction which misses in the L2, and the line in the L2 which
will be replaced currently holds modified data. This data is

latched internally to minimize the latency of the original
processor-memory transaction. The slower flush of the data to
memory is completed at the earliest available opportunity.

In the case of a snoop for a PCI read from memory which
causes an L1 copyback, the copyback data is latched in the L2
copyback buffer and simultaneously forwarded to PCI. Once
the L1 copyback is complete and PCI has finished reading from
the L2 copyback buffer, the data is flushed to memory at the
earliest available opportunity. Using the L2 copyback buffer for
this purpose instead of the PCI read buffer simplifies the design
by allowing fewer buffers to contain data which is modified
with respect to memory.

Processor

Address/Control Processor/
Memory
Data

v

Buffer Row/Column

Processor/ 12 back
Memory [A] Buter [AToolDiI52]D3] | |
| I
Address

Figure 3 Processor/Memory Buffers
Processor Accesses to PCI

There are three buffers for processor accesses to PCL: one
32-byte buffer for reads from PCI, and two 16-byte buffers for
writes to PCIL. Buffering was required for processor reads from
PCI for two primary reasons. First, the processor bus uses a
critical-word-first protocol, while the PCI bus uses a
zero-word-first protocol. The second design requirement was
that the MPC105 be able to handle a memory access from an
alternate PCI master if the target for a read disconnects part way
through a data transfer. Because a PCI initiated read would
require a snoop transaction on the processor bus, including a
potential for a copyback, the processor address and data buses
must remain accessible throughout the transfer of read data
from PCIL Thus, all the requested data must be latched
internally before the MPC105 responds to the processor. A
buffer size of one cache line is required.

For example, if the processor initiates a critical-word-first
burst read, starting with the second double-word of the cache
line, the read on the PCI bus begins with the cache-line aligned
address. If the PCI target disconnects after transferring the first
half of the cache line, the MPC105 re-arbitrates for the PCI bus
and, once granted the bus, will initiate a new transaction with
the address of the third double-word of the line. If an alternate
PCI master requests data from memory while the MPC105 is
waiting for a bus grant, the MPC105 retries the processor
transaction to allow the snoop for the PCI initiated transaction
to be posted on the processor bus. When the processor snoop is
complete, the subsequent processor transaction is compared to
the latched address and attributes of the PCI read buffer to
ensure that the processor is requesting the same data. Once all
data requested by the processor is latched in the PCI read buffer,
the data is transferred to the processor to complete the
transaction.

32

Processor/
Processor Memory
Address/Control Data
} .
| 4
Write Read A |Do|D1|D2|D3
Mmfmf Red ~ [ATDODI[D2[D3]
A
PCI Addr/Data
/Data &

Figure 4 Processor/PCI Buffers

For processor writes to PCI, the primary design goal was to
use internal buffering to minimize the affect of the slower PCI
bus on the high speed processor bus. Once the processor write
data is latched in internally, the processor bus can be available
for subsequent transactions before the write is completed to the
PCI target. Another design goal for these buffers was to
effectively support both burst transactions and streams of
single-beat transactions. The solution to these goals is a set of
two 16-byte buffers, which can be used together as one 32-byte
buffer for processor burst writes, or separately for single-beat
writes.

In the case of a processor burst write to PCI, both buffers are
used to store the processor data, and the address and transfer
attributes are stored in the first address buffer. For a stream of
single-beat writes, the data for the first transaction is stored in
the first buffer and the transaction is started on the PCI bus. The
second single-beat write is then stored in the second buffer. For
subsequent single-beat writes, store gathering is possible if the
incoming write is to the same half cache line as the previously
latched data. Store gathering is only used for PCI memory
address space, not PCI I/0 space, and can continue until the
buffer is scheduled to be flushed or until the processor issues a
synchronizing transaction.

PCI Accesses to Memory

All PCI accesses to memory are snooped on the processor bus
to ensure hardware-enforced coherency between PCI, main
memory, and the primary and secondary caches. For PCI reads,
the primary design goal was to minimize the initial read latency,
especially the effect of snooping on the read latency. Thus,
when a PCI master requests data from memory, the memory
access is started along with the snoop. If the snoop results in a
hit in either the L1 or L2, the memory transaction is cancelled.
PCI read data from the L2 or from memory is latched in a
32-byte PCI read buffer. For PCI reads which hit in the L2, the
L2 sources the data without changing its internal state and no
copyback to memory is necessary. For PCI reads which do not
hit in either the L1 or L2, the data is fetched from memory
starting with the requested address and continuing to the end of
the cache line. Data is forwarded to PCI as soon as it is
received, not when the complete cache line has been written
into the PCI read buffer. New PCI read addresses are compared
to the existing address, so if the new access is to the same cache

line and the requested data is latched, the data can be forwarded
to PCI without a snoop or another memory transaction.

To further minimize the latency for large block transfers, the
MPC105 includes a selectable speculative read feature. When
this feature is enabled, the MPC105 starts the snoop of the next
sequential cache line address when the current PCI read is
accessing the third double-word of the cache line. Once the
speculative snoop response is known and PCI has completed
the read, the data at the speculative address is fetched from
memory and loaded in the buffer in anticipation of the next PCI
request. If a different address is requested, the speculative
operation is halted and any data latched in the PCI read buffer is
invalidated.

Memory Processor/
Processor Row/Column Memory
Address/Control RowiCo D
A A
5 A
v
PCI/Mem,
P I Mer :(1) gg g} g; gg Read [A |DO]D1]D2]D3]
1 Buffer t f Buffer A

PCI Addr/Data o
Figure 5 PCI/Memory Buffers

For PCI writes to memory the MPC105 supports two buffers
that are each 32-bytes wide. For PCI writes to memory, the data
can be latched internally without waiting for a snoop response.
Thus write data can be accepted without any wait states. There
are two buffers so that while a PCI master is writing to one, the
other can be flushing its data to memory. Both buffers are
capable of gathering for writes to the same cache line. If a
snoop hit occurs, the copyback data is merged into these buffers
into all the bytes that were not written by the PCI master. For
write-invalidate transactions, a different snoop is used on the
processor bus which causes the caches to invalidate any
modified data without doing the copyback. Once the PCI write
is complete and the snooping is resolved, the data is flushed to
memory at the first available opportunity.

Arbitration.

There are two types of arbitration involving the MPC105, one
for the PCI bus and the other for the shared processor/memory
data bus. For the PCI bus, the arbitration is done externally and
all processor-PCI transactions are performed strictly in-order.
For the processor/memory data bus, the priority is as follows:
processor memory read, processor/L2 transfer, L2 copyback
due to a read snoop, PCI read from memory, processor memory
write, snoop copyback due to write snoop, processor read or
write from PCI, load of L2 copyback buffer, flush of internal
buffer, speculative read. Note that if there is an address collision
with an internal buffer, or if a buffer is needed but full, the flush
for that buffer is bumped up in priority accordingly.

33

OTHER FEATURES

Power Management

For power management techniques to be successful all levels
of the system, both hardware and software, must be involved.
The MPC105 does its part by being a fully static design (typical
power dissipation about 1.0 Watt) and providing four different
power saving modes. It supports three different levels of power
management through software programmability (Doze, Nap,
and Sleep) and a suspend mode which is enabled through an
input pin. The four power levels differ in the number of
functional units remaining enabled as well as the type of
transactions that are responded to by the MPC105. In Doze
mode, all functional units are disabled except for PCI address
decoding, system RAM refreshing, processor bus monitoring,
and interrupt monitoring. Doze mode can be entered
independently of all other hardware in the system. Nap mode is
used when the system would like to reduce power consumption
in both the processor and the MPC105. Sleep mode is also used
in conjunction with the processors power saving modes and
allows for the shutdown of the clocking logic within the
MPC105 to further reduce system power consumption.

Error Handling and Test Logic

The MPC105 provides error detection and reporting on the
three primary interfaces (processor interface, memory interface,
and PCI interface). Errors detected by the MPC105 are
conditionally reported (through programmable configuration
bits) to the processor through the assertion of a machine check
or a transfer error acknowledge. The system error and parity
error signals are used to report errors on and to the PCI bus. The
type of errors detected are: illegal transfer types from the
processor, illegal flash ROM write transactions, memory parity
errors, accesses to memory addresses out of the range of
physical memory, PCI address and data parity errors, PCI no
device select errors, and PCI received target abort errors. The
address and type of transaction which caused the error are
latched and held within the MPC105 so that diagnostic software
can access them.

The MPC105 supports the IEEE 1149.1 JTAG standard
providing a pin boundary-scan capability in a board test
environment. Additional logic throughout the design allows for
99% test coverage in Motorola’s manufacturing environment.

CHIP AND PACKAGING TECHNOLOGIES

The MPC105 is implemented in a 3.3 volt Motorola CMOS
process with four levels of metal and a minimum drawn feature
width of 0.65 um. The MPC105 integrates over 256,000
devices on a 5.8 X 6.7-mm die size and is packaged in a 304 pin
Ceramic Ball Grid Array (CBGA) that is bonded using
Motorola’s Control Collapse Chip Connection (C4) technology.
This package reduces the parasitic package inductance by over
60% as compared to standard wire bond quad flat pack (QFP)
packages. The package measures 21 X 25-mm and contains a
solder ball array laid out to a pitch of 1.27mm (center to center).
This technology significantly reduces the footprint area, one
fourth the size of a QFP with a similar I/O count.

Figure 6 MPC10S5 die photo.
LONCLUSION

THE MPC105 is a fully integrated, high performance, PCI
compliant single-chip host bridge and memory controller for
the PowerPC 60x family of microprocessors. The flexible
design is capable of performing in a wide range of systems from
portables and handhelds, to workstations and multiprocessing
systems. The flexibility of the memory and processor interfaces
allows a designer to choose the memory system and processor
which is most suitable for a system’s performance needs and
provides an easy migration path for system upgrades.

ACKNOWLEDGMENTS

The authors would like to acknowledge the hard work and
dedication put forth by the design and verification engineers
who worked on the MPC105 project. We would also like to
thank the packaging team, the tools group, the manufacturing
team, and all the other support staff.

REFERENCES

[1] Garcia, M.J. and Reynolds, B.K., “Single Chip PCI
Bridge And Memory Controller For PowerPC
Microprocessors,” Proc. of the 1994 IEEE Int’l Conf. Computer
Design (Cambridge, MA, October 10-12, 1994), pp. 409-412.

[2] MPC105 PCI Bridge/Memory Controller User’s Manual,
Motorola Incorporated, 1995.

[3]1 PCI Special Interest Group, “PCI Local Bus Specification
Revision 2.0”, April 30, 1993.

* PowerPC is a trademark of | 221 Ruas Machines C:

P

The authors may be reached at chrisb%ibmoto.com(@oakhill.sps.mot.com,
garcia%ibmoto.com@oskhill sps.mot.com, lauraw%ibmoto.com@oakhill sps.mot.com

34

Author biographical statements

Christopher Bryant works for Motorola at the Somerset design facility in Austin, Texas, where
he has been involved in the conception and definition of the MPC105 and also with the logic
design of the PCI interface He holds a BS degree in Microelectronic Engineering from Rochester
Institute of Technology.

Michael J. Garcia works for Motorola’s RISC Division at the Somerset design facility in Austin,

Texas, where he was a technical design manager for the MPC105 development team. He is cur-

rently working as the project leader for a future PowerPC product. Garcia holds a BSEE and an

MSEE degree from Purdue University. He is a member of the IEEE and the IEEE Computer Soci-
ety.

Laura Weber works for Motorola at the Somerset design facility in Austin, Texas, where she
worked on the logic design for the central control unit of the MPC105. She holds a BS degree in
electrical engineering with the computer option from the Ohio State University. She is a member
of the IEEE and the IEEE Computer Society.

35

From: Stan Baker To: Lance Leventhal

Date: 2/13/95 Time: 14:28:58

PCI TEST BENCHES FOR FPGA IMPLEMENTATIONS

John Birkner
Chairman, Steering Committee
PREP Corp.
Dir. CAE Products
QuickLogic Corp.
2933 Bunker Hill Lane
Santa Clara, CA 95052.
phone 1-408-9872022 email john@qlogic.com

Abstract

PLD suppliers are challenged to meet the needs of
systems designers who are using programmable
logic in PCI applications. Designers want to know:

. Are PLDs electrically compliant with PCI
bus-drive specs?

. Can PLDs meet PCI speed and density
requirements?

. Can PLD suppliers provide HDL
reference design examples?

. Can synthesis provide designs meeting
PCI timing requirements?

. Must critical paths be hand crafted?

HDL simulation Test Benches can answer many
of these questions. Specifically, the Test Bench
reports functional and timing parameter
simulation results for a given post-place-route
netlist and timing file. The designer can
modify/optimize his HDL code and use the Test
Bench to verify the quality of the design.

36

Besides discussing these key questions, this
session will explain and discuss the concept

of using Test Benches to evaluate design tools,
programmable devices and specific
implementations.

PREP Corp. is developing a set of Test Benches to
use in comparing the efficiencies of different
synthesis techniques, using many types of
functions including the PCI bus interface.

This discussion will therefore also be a milestone
report on the progress of that work.

PREP is a non-profit consortium of vendors of
programmable logic devices and related design
tools. PREP has developed standard benchmarks
for comparing the performance and functional
capacity of programmable logic devices. It's
primary technical activity is now focused upon the
Test Bench developments.

Page 2 of 3

ARCHITECTURAL ENHANCEMENTS OF NEXT GENERATION PENTIUM™ CHIP SETS

by

John M. Monti
Director of Marketing
Symphony Laboratories
4000 Burton Drive
Santa Clara, CA 95054

ABSTRACT

The next generation of core logic chip sets for
PC motherboards supporting Pentium-class
microprocessors will add a host of new functional
enhancements in order to increase overall system
performance. These enhancements generally fall
into two categories: improving memory
performance as well as the I/O capabilities and
bandwidth of the chip set. The caching
mechanisms of future systems will be enhanced
via support for larger cacheable main memory,
SRAM bank interleaving, and direct interfacing to
new synchronous burst SRAMs. Main memory
performance will be improved through the
implementation of new high-volume memory
architectures such as Extended Data Out (EDO)
and burst EDO DRAMs in addition to increased
levels and sophistication of read pre-fetching and
write posting. Input/output performance and
capabilities will be improved via increasing the
bandwidth available on the Peripheral Component
Interconnect (PCI) Local Bus to greater than 100
Mbytes /second, adding enhanced peripheral
controller cores, such as dual-channel bus master
Integrated Drive Electronics (IDE) on PCI, and
increasing the number of PCI bus masters and
slots achievable in a system.

CACHE MEMORY

There are commonly two types of cache
memory in higher performance PC systems: level
one (L1) cache which is internal to the
microprocessor, and level two (L2) cache which is
external to the CPU. Since all Pentium-class CPUs
contain from 8 to 16 Kbytes of L1 writeback or
writethrough cache, the ability to support these is
intrinsic to all of today’s Pentium-class core logic
chip sets. However, there are several
enhancements which can be implemented in the
second level cache controller built into the core
logic which will further improve the system
performance of next generation systems.

Cache Size
First of all, the chip set needs to support the

most common cache sizes desired by end users,
which is 256 or 512 Kbytes today on Pentium-

class motherboards, in addition to adding support
for future upgrades. As a result, the chip set
should have the capability to directly access at
least 1024 Kbytes, if not 2048 Kbytes for those
chip sets targeted at the high end or server
market. The amount of cacheable main memory
should increase in accordance with the larger
cache sizes up to a maximum of 256 Mbytes with a
1024 Kbyte L2 cache. Unfortunately, commodity
20 or 25 nanosecond asynchronous cache SRAMs,
while very cost effective, may not provide the
required performance with a 66 MHz external
microprocessor bus, necessitating wait states.
One way to reduce the wait states typically
required by back-to-back cache accesses to
different banks is to implement a bank
interleaving scheme with the L2 cache, similar to
the way DRAM bank interleaving had been
implemented in the past. While improving the
situation a small amount, dramatic improvement
is possible only via use of a pipelined burst SRAM
architecture.

Pipelined Burst SRAM

For this reason, Intel and the manufacturers of
other high performance CPUs have recently
advocated the manufacture of so-called
synchronous burst SRAMs with the goal of keeping
up with the ever-increasing speed of Pentium and
future microprocessors. Beginning in 1994, non-
pipelined burst SRAMs became available from a
limited number of SRAM suppliers offering very
high access speeds, such as 12 or 15 nanoseconds.
Unfortunately, the manufacturing yields of these
devices was below the percentages required to
compete on a cost basis with the standard
asynchronous SRAMs. As a result, this
architecture has remained in small niche
applications. A second movement, toward
pipelined burst SRAMs, was precipitated by Intel
later in 1994. The pipelined burst SRAM
architecture allows a much slower SRAM array
access by synchronously pipelining data and
comfortably meets the requirements for a 66 Mhz
3.3V Pentium processor bus with today’s standard
CMOS process. This should improve yields
substantially on the mainstream 3.3 Volt process
technologies used to build today’s SRAM devices
in volume.

Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

As a result of the improved manufacturing
efficiencies of the pipelined variety, support for
this type of SRAM will become a mandatory
feature of Pentium-class core logic chip sets
during 1995.

MAIN MEMORY

Main memory performance is fundamental to
achieving higher overall system performance. In
many mainstream systems which do not use any
external cache memory in order to reduce costs,
the impact main memory has on the overall
system performance is magnified. In a typical
cache-based Pentium-class system, 256 or 512
Kbytes of level two cache SRAM is typically used,
adding an additional $20 to $50 to the hardware
cost of the system. Although the majority of
business PCs sold today still contain external
cache memory, a decreasing percentage of
consumer-targeted systems are including this
costly addition. Primarily for this reason, DRAM
vendors have been proposing a wide assortment of
new memory products to maintain system
performance while reducing total system cost.

Additionally, the main memory architecture
can improve the average access time in systems
with L2 cache during cache miss cycles. Various
unique DRAM architectures are currently being
proposed by the leading DRAM manufacturers as
well as a handful of start-up companies. Most of
these architectures will not be designed into high
volume systems due to the increase in costs
associated with them. This category of new
architectures includes new synchronous DRAMs in
addition to products from Rambus, MoSys,
Samsung, and others. Several of these
architectures are nonetheless expected to become
pervasive in applications requiring very high
bandwidth, such as local bus graphics and video
boards, but the movement of these new memory
architectures to main memory will be slow during
the next two years.

Extended Data Out

The key to the future success of a new memory
architecture in a main memory application is its
ability to significantly improve the overall
performance of the memory subsystem with little
or no impact on system cost. For these reasons,
it is expected that new Extended Data Out (or
‘EDO’) DRAMs will become mainstream products in
the next generation of high volume personal
computers and thus must be supported by the
next generation of Pentium-class core logic chip
sets. The key to EDO’s improved performance is
the elimination of an overlapped precharge time

38

penalty between back-to-back sequential memory
accesses. Although EDO DRAMs require the same
amount of clock cycles as standard Fast Page
Mode (FPM) DRAMs on the first access, the access
time of each subsequent read or write is greatly
reduced allowing zero wait state performance at a
clock speed of up to 50 MHz. In a 64-bit memory
system, transfers at this speed can peak at close
to 500 Mbyte/second bandwidth during an access.

The manufacturing cost of EDO DRAMs is very
close to that of standard FPM devices since the
circuitry required to implement the overlapped
precharge access is a small modification to the
design and complexity of FPM. This allows the
DRAM vendor to embed both EDO and FPM
circuitry on the same die with little or no die size
increase, as well as, use the same lead frame,
plastic package, test hardware, marking
equipment, shipment packaging, etc. This almost
eliminates any additional production costs of EDO
over FPM devices.

Burst EDO

Burst EDO DRAMs take the EDO concept one
step further by embedding a processor-compatible,
four-cycle burst count on chip supporting
interleaved or linear bursts. This way the cycle
time of sequential rows is reduced even more,
resulting in 20 - 40% higher performance. With
these types of DRAMSs, zero wait state accesses at
66 Mhz are possible. Another advantage of burst
EDO products is their ability to easily co-exist in
the same system with standard EDO and FPMs.
This capability must be supported by next
generation core logic chip sets in order to ensure
easy upgradeability, allowing the end user to
upgrade his system without worrying about any
incompatibility problems.

Read Pre-fetch & Posted Writes

Other architectural enhancements which will
improve 64-bit memory system performance can
be made in the chip set in addition to supporting
new types of DRAMs. Two of the most beneficial
are the ability to access data from memory before
it is actually needed, called pre-fetching, and
holding data in posted write buffers to be written
later when the long DRAM first-access time can be
hidden by other CPU activity. Due to the
demanding needs of 90 and 100 MHz CPUs today,
read pre-fetching and posted write buffers should
be four or more accesses deep. In a 64-bit
memory subsystem this means four quad word (36
bytes including parity bits) deep buffering.

PCI BUS BANDWIDTH

Most veteran PC users know that the promised
performance improvement of the Peripheral
Component Interconnect (PCI) local bus has been
less than remarkable. In fact many graphics cards
tally better benchmark numbers on the VESA local
bus than PCI. The reason for this is not the
definition of PCI or the design practices of system
OEMs. The true culprits are the core logic chip
set suppliers.

In a rush to provide PCI capability on 486
systems, several core logic vendors introduced so-
called ‘VL-to-PCI bridge’ solutions into the
marketplace. These chip sets enabled the
manufacture of VIP motherboards which contain a
slot for everyone: VESA, ISA and PCI. The
problem is that hastily designed bridge chips add
considerable latency to accesses across them.
This extra latency can be obvious when high
bandwidth peripheral cards are plugged into the
PCI bus, such as new multimedia video boards.
Additionally, most bridge chip solutions are not
able to perform burst accesses across the PCI bus,
especially not continuous burst accesses
nullifying one of PCI’'s main advantages over VESA
in multimedia applications requiring
uninterrupted video data streams.

Advent of Deep PCI Core Logic

With the movement of Pentium-class
microprocessors into mainstream computing
applications, the requirement to support the aging
VESA bus has been diminishing. For this reason,
next generation core logic needs to support a
‘deep PCI’ architecture, which removes the
additional bridge latency of first generation
solutions. These chip sets must support zero wait
state data transfers from back-to-back multiple
bus masters on the PCI bus. There are several
architectural enhancements which can be
implemented in chip sets to increase the PCI
bandwidth available closer to the theoretical
maximum. For any PCI system, this limit is
somewhere above 120 Mbytes/second on a 33
MHz, 32-bit PCI implementation.

Concurrent Operation

Concurrent operation makes possible several
types of data movement within the same system
during the same period of time. For example, a
bus master controller on PCI containing its own
on-chip DMA controller, should be allowed to
directly transfer data to a target slave device on
the PCI bus at the same time that the system CPU
is performing other non-PCI tasks, such as reading
or writing main memory. A SCSI controller may

39

write directly to a LAN controller across PCI for
instance, as part of an automated network back up
utility. This transfer is allowed because
architecturally, PCI is not a ‘true’ local bus since
both the CPU and its local memory are on the far
side of a processor bridge device from the PCI
master /slave pair. However, in practice, many
core logic chip sets cannot support this type of
operation since a complicated system simulation
must be performed during the design of the chip
set state machine. This type of simulation is only
possible using a high level design tool such as
Verilog, which is not commonly used by many
chip set manufacturers.

A second type of concurrent operation is the
ability of the chip set to allow the CPU to update
its local cache memory at the same time a PCI bus
master controller is accessing a different region of
the system’s main memory. Of course, a complex
algorithm must also be employed in this case in
order to ensure the validity of data being accessed
at all points within the system at the same time.
For example, the chip set cannot allow a PCI bus
master to read information from a location in
main memory, if that same location, as
represented in the L1 or L2 cache, was updated on
the previous cycle. The chip set must contain a
sophisticated method of continuously snooping all
of the data located in the caches as well as any
pre-fetch or posted write data buffers within the
chip set to determine on a cycle-by-cycle basis
which data is ‘valid’ or ‘dirty’.

Concurrent operation improves overall system
performance as well as specifically improving the
bandwidth available on the PCI local bus. Itis
really a form of multi-processing, which has the
potential of improving system efficiency in the
same manner that the first 8237 DMA controllers
had done so for adapter cards on the legendary ISA
bus. In a concurrent system, the core logic must
treat all data buffers throughout the various data
paths in the system as small caches rather than
mere data FIFOs. Concurrent operation is
increased by placing buffers between the CPU and
main memory, the CPU and PCI, as well as
between PCI and main memory.

BUS MASTER IDE

In tomorrow’s multimedia systems, which
require continuous video streams to pass across
the PCI local bus using tremendous bandwidth,
mass storage performance can be improved by
integrating a bus master PCI-IDE controller into
the core logic rather than the more common slave-
only type. Intel’s Architecture Labs division has
actively promoted the use of a standard
architecture bus master PCI-IDE solution as a way

to reduce one of the most common performance
bottlenecks in today’s Pentium-based systems.
Bus master DMA added to the IDE function has
two main benefits to overall system performance:
reducing the number of interrupts to the CPU
during large block data transfers, and the amount
of PCI bus bandwidth required to transfer the data.
In addition, the implementation of two separate
IDE channels directly on the PCI bus enables
multi-threaded I/O processes.

Reduced Interrupts

The original ATA standard required the disk
drive to assert an interrupt after each 512 Byte
sector is transferred. As a result, just the data
transfer portion of a 1M Byte data move required a
minimum of 2000 interrupts. Each of these had
to be cleared by the system CPU by reading the
IDE controller’s status register and vectoring to an
interrupt service routine prior to continuing the
transfer. The time it takes to clear the interrupt
can often be adversely affected by the operating
system, the graphical user interface shell (i.e.
Windows), as well as the application running on
top of it. More recently, the ATA standard has
evolved to allow larger block transfers which can
reduce the number of interrupts somewhat.
However, the ultimate interrupt reduction comes
from integrating a DMA controller into the IDE
controller chip.

A bus master DMA device is able to transfer
almost an unlimited amount of data without
requiring intervention from the system CPU. Even
64 Kbyte page boundaries can be jumped by the
scatter/gather DMA controller until the complete
transfer is finished, provided no error condition
has occurred. The DMA controller together with
its device driver can actually ‘scatter’ logically
sequential data over various pages located in
different physical areas of memory. When this
data is required by the CPU, the DMA controller
and driver act together to retrieve and reassemble
it in its proper form for modification or transfer.
Since all of this activity is handled without
generating interrupts to the CPU, the total is
greatly reduced. As an example, the number of
interrupts required to complete a transfer can be
reduced from several thousand to 2 or 3, leaving
the microprocessor to complete other tasks at the
same time.

Burst Transfer Capability

The second main advantage of using a bus
master DMA IDE controller on the PCI local bus is
its ability to reduce the PCI bandwidth required to
move large amounts of data. Since the bus master
device and its device driver have the intelligence

40

to store data in an on-chip DMA FIFO, the bus
master will only request access to PCI when the
FIFO is approaching its capacity. Once the PCI
arbiter grants access to the IDE controller, which
can in reality be several microseconds after the
bus access was originally requested, the PCI-IDE
controller’'s DMA engine can perform zero wait
state burst data transfers to or from memory at 33
MHz. Since even the fastest IDE disk drives today
can only maintain a head transfer rate of 4 or 5
Mbytes/second once the cache on the disk drive is
empty, the amount of the PCI bandwidth used is
very small (roughly 5/125 = 4%). This reduction
of bandwidth usage will allow bandwidth-hogging
multimedia applications to function more
efficiently in the same system.

Integration of a bus Master IDE controller into
the core logic chip set will become a requirement
by the middle of 1995. Due to the relatively large
software requirements for the device drivers
needed to control this portion of the chip set,
several chip set companies are developing discrete
versions of the bus master IDE controller which
can be fully debugged and supported by software
prior to its integration into a future chip set.

Multi-threaded I/0

Placing two separate IDE channels onto the PCI
bus can improve the overall system performance
perceived by the user. If the core logic
implements all of the control and data paths to
each port separately and proper support is built
into the driver software and operating system,
then true multi-threaded [/O processes are
possible, similar to SCSI. Two channels allow the
faster hard drive to sit on the primary port while a
much slower CD-ROM can sit on the secondary
port. Multi-threading allows each device to
execute a command simultaneously, such as a
format of the hard disk and a copy command from
the CD-ROM. Presently this capability is only
available in lower volume PC operating systems
such as Windows NT, Novell NetWare, SCO Unix,
etc., but will move into the mainstream with the
increased acceptance of Windows 95 and OS/2
Warp during 1995 and beyond.

PCI ARBITER

The actual number of PCI components and
slots available in any given system is a
characteristic of the core logic chip set as well as
the maximum allowable electrical loading
specification of PCI. The lowest cost place in the
system to integrate the PCI arbiter is in the CPU
bridge device. By maximizing the number of bus
masters supported by the chip set, the flexibility
for the system designer to place a varying number

of PCI peripherals directly on the motherboard in
an LPX ‘all-in-one’ form factor is increased. If a
bus master IDE controller is located in the chip
set, the arbiter should dedicate one REQ/GNT pair
to the IDE controller. Additionally, the arbiter
should dedicate a second REQ /GNT pair for any
ISA bus masters which are placed into the system
by the end user. The DMA channel used for the
ISA masters should be sharable by more than one
DMA capable ISA card in case more than one is
attempting to move data at the same time.

Since the core logic chip set usually takes two
PCI loads (one for the CPU bridge and one for the
SIO/ISA bridge device), eight possible loads are
left for additional components. This leaves a
maximum of four slots if no other PCl components
are on the motherboard. If two PCI components
are on the motherboard, such as a bus master IDE
controller and a graphics controller, a total of
three slots can still be supported if the arbiter has
a total of six REQ/GNT pairs. This is why next
generation chip sets should have six pairs. It
increases the options for the motherboard
designer without overly burdening the chip set
manufacturer with too many additional pins (2 -
4).

Programmability

In order to maximize the efficiency of the PCI
arbiter, it should be able to take into account the
intrinsic differences between the various PCI
master components on the local bus. For
instance, top priority on a networked business
machine should be given to the ethernet
controller card since ethernet is non-deterministic
and dropped packets can greatly reduce the
overall performance of the local area network.
Even though the IDE controller may seem more
‘important’ to the efficient functioning of the PC,
the BIOS writer must take into the account the
specific application in which the PCI arbiter will
be used.

If the core logic design enables flexibility in
the way the PCI arbiter can be programmed,
enhanced system (and network) efficiency can be
obtained. This is why in addition to a default
round-robin arbitration scheme, the arbiter
defaults should be overridden in ‘degrees’ (i.e.
highest priority gets the most local bus
bandwidth, next highest priority gets the next
most, etc.}. In this way, in a saturated PCI
application such as video conferencing over a
local area network, a LAN controller could
maintain 40% of the PCI bus bandwidth, with the
video controller getting the next 30%, and every
other peripheral sharing the rest.

41

3.3 AND 5 VOLT AUTO-DETECTION

System designers have many choices for
including various types of DRAMs, cache SRAMs,
PCI boards, and CPUs onto tomorrow’s Pentium-
class motherboards. There are both 3.3 Volt, as
well as, 5 Volt alternatives in each of the above
four categories dictating that core logic should
support both of these voltage ranges in the future.
In order to minimize the design impact of
including this capability, the chip set should
automatically detect the voltage level of each of
the four different bus interfaces: CPU, DRAM,
SRAM, and PCI. This is easily done in the chip set
by including 1/0O cells which change the voltage
level they can drive and receive depending upon
the Vdd sensed at local power pins on the device.
For instance, each bus interface buffer set should
have its own dedicated Vdd pins. When the Vdd
pins corresponding to the 1/O buffer cells are
powered to 3.3 Volts, then the 1/O buffers
automatically drive 3.3 Volt levels. The input
buffer should still maintain 5 Volt tolerance to
avoid unnecessary silicon damage if 5 Volts is
inadvertently driven into the chip.

SUMMARY

Next generation core logic chip sets for
Pentium-class PC motherboards will require
enhanced capabilities and performance in order to
optimize the available hardware for demanding
multimedia system applications. These
enhancements include the capability of directly
interfacing with future mainstream memory
architectures, such as 3.3 Volt pipelined burst
SRAMSs and burst EDO DRAMs, integrating dual
channel bus master PCI-IDE, providing a
programmable PCI arbiter which can control up to
six PCI masters, and automatically detecting the
voltage level on each of the four key system
interfaces: CPU, L2 cache, main memory, and PCI
local bus.

BIOGRAPHY

John M. Monti received a B.S.E.E. from Yale
University in 1985. He later earned a Master of
Science in Engineering Management from Santa
Clara University in 1990. After starting his career
as a field engineer for Lockheed Missiles & Space
Co., he worked for Advanced Micro Devices, Inc.
for the next seven years in various marketing
management positions. John joined Symphony
Laboratories, a core logic chip set supplier, in
1994 as the director of marketing. The company
is located at 4000 Burton Drive, Santa Clara, CA,
95054 and can be reached at 408-986-1701.

}—
3 #2 I <
Pentium CPUs | _ | PCI Master
(2 max) - - #1
#5
#4
#3
#2 |
ISA Slot = >
244x4 - # - >
‘ . -] o
245 - -
L2 Cache []
(SRAM) - > o
h\ g
3 F. IDE_ IDE 3
3 2 3 PORT PORT 3 gl
<f O < 1 2 <| [a)

Figure 1. Symphony's Rossini Chip Set Solution

42

OPTIMIZING THE PCI/MEMORY INTERFACE FOR HIGH PERFORMANCE

James D. Joseph

Ramtron International Corporation
1850 Ramtron Drive

Colorado Springs, CO 80921

ABSTRACT

In a high-performance PCI system, the
mismatch in data bus speeds creates the potential
for a data transfer bottleneck. The problem is
exacerbated with slow DRAM main memory - even
if a fast secondary cache is included. Most system
simulations only include the CPU/main memory
interface. However, the interface between the
local bus and main memory often contributes to a
loss in overall performance of 10% or more.

The Ramtron Enhanced DRAM (EDRAM)
memory with Quickcache™ is the ideal main
memory component to simultaneously support 33
MHz PCI bus clock rates and even higher CPU data
bus speeds. Its fast 15 ns page access time
requires no wait states for any PCI read from main
memory. The 15 ns write time allows a fast CPU to
write to main memory directly without a write
buffer. This performance can be achieved with a
noninterleaved memory consisting of EDRAM
SIMM modules. Fast SRAM memory normally used
for secondary cache systems has similar
performance but is 4 to 16 times lower in density
and is many times more expensive. In addition,
cache coherency issues are greatly simplified.

This paper illustrates a number of system issues
involved in optimizing the various types of
CPU/memory and PCl/memory cycles. In addition
to memory timing examples for several processors,
control strategies integrating an EDRAM controller
with a PCI master, target, and host/PCI bridge are
presented.

THE PROBLEM

CPU performance has increased dramatically in
recent years. A major factor has been the increase
in bus clock speeds. Unfortunately, DRAM main
memory speeds have not kept pace. The resultis a
bottleneck - a fast CPU, capable of single-cycle
burst reads and writes, must wait several cycles to
read from or write to a 60- or 70-ns DRAM. System
designers have alleviated the problem somewhat
with SRAM secondary cache. As long as the CPU
reuses data, the data can be read from secondary
cache in one cycle. Although maintaining
secondary cache coherency requires some

43

overhead, simple CPU/memory or CPU/PCI target
reads and writes are easily handled.

Another improvement is the writeback cache. This
policy reduces memory write traffic on the CPU bus
by writing to the L2 cache and/or DRAM only when
necessary. The policy can be extended to the
L2/DRAM and has no drawbacks in a simple
system.

Unfortunately, the situation is not as simple in a
system that includes PCI masters. Writeback is
complicated by the snoop cycle. Cache coherency
checking may not take any longer, but the valuable
system memory is now not available for PCI master
cycles. We want to optimize all six types of basic
cycles as follows:

CPU Reads from Main Memory

CPU Writes to Main Memory

PCI Master Reads from Main Memory
PCI Master Writes to Main Memory
CPU Reads from PCI Target

CPU Writes to PCI Target

One comment - the 33 MHz, 5v implementation of
the PCI bus is by far the most common. The
discussion and timings presented here all assume
use of that version.

ADDITIONAL EDRAM ARCHITECTURAL FEATURES

Before discussing each of the cycles in more detail,
three other characteristics of the EDRAM
architecture (see Figure 1) are useful for high-
performance PCI designs. First, all reads come
from the on-chip cache. For a read miss, the
DRAM row accessed is loaded in parallel into the
cache and the first word is accessed in 35 ns. All
subsequent words in a CPU burst are read from the
cache in 15 ns. With a read hit, the cache is
directly accessed in 15 ns for the first and all
subsequent words in a burst.

Next, the EDRAM allows cache reads in so-called
“/CAL-high” mode. The column address is changed
without latching and the data is read available 15
ns later. The 512Kx8 part has a selectable EDO

feature to further increase the system designer’'s
flexibility.

Finally, since during a CPU burst cycle all reads but
the first must come from the cache, the DRAM
array can be refreshed in the background,
providing yet another way to improve performance.

CPU/MAIN MEMORY READS AND WRITES

Replacing conventional DRAM+secondary cache
main memory with EDRAM allows bursts at SRAM
speeds while substantially improving read miss
performance. In addition, L2/DRAM cache
coherency problems disappear along with the
secondary cache.

Use of an EDRAM main memory also has important
advantages for write cycles. Since DRAM writes
are quite slow compared with the CPU bus clock
cycle time, CPU support chipsets often include a
four-deep write buffer to retire CPU-to-main
memory writes with no wait states. This works
well for processors like the Pentium and PowerPC;
the only burst writes can only occur in writeback
cycles, so the overhead of the writeback cycle
means that the write buffer would never be filled.
In other words, consecutive writeback cycles are
impossible. For processors supporting more
general burst writes (e.g., the MIPS R4600), the
problem is more difficult; filling the write buffer is
a definite possibility.

Use of a CPU-to-main memory write buffer with a
PCI bus master also does not help if the PCI master
wants to read from or write to DRAM; the master
must wait until the DRAM completes the write.
The faster EDRAM write cycles mean that a bus
master has a much smaller potential memory
conflict with an EDRAM main memory.

Finally, there is an important issue regarding
writeback. In a system with ordinary DRAM, a
writeback policy is almost always selected because
DRAM writes are so slow it is best to minimize the
total number of writes to main memory. With
EDRAM and unbuffered zero-wait-state writes, the
overhead associated with snoop cycles actually
exceeds the EDRAM write transaction time, so

writethrough may actually result in the fastest
overall memory performance.

Table 1 summarizes the bus cycle counts for
CPU/main memory reads and writes in a PowerPC

604 system with a 66 MHz CPU bus clock.

PCI MASTER/MAIN MEMORY READS AND WRITES

Because the PCI bus clock frequency is often lower
than the CPU data bus frequency, the effect of PCI
master/main memory wait states is magnified.
However, zero-wait-state PCI reads, either single or
burst, are not difficult even with conventional EDO
DRAM technology, and timing is even more relaxed
with an EDRAM main memory.

There are three issues with PCI master writes to a
DRAM main memory. First, the EDO technology
doesn’t help with write cycles, so timing
requirements are more critical. Second, since the
number of words in a PCI burst write can be long,
write buffering of master writes can’t help to cover
for a slow main memory. Finally, cache coherency
is frequently an issue. Despite frequent chipset
support for writeback protocol in the L2 cache,
master writes are usually only to slower main
memory. The next access to that data will always
be a read miss. With an EDRAM main memory, not
only is the memory capable of 15 ns consecutive
writes within a page, but also coherency between
the EDRAM’s DRAM array and internal cache is
automatically maintained.

CPU/PCI TARGET READS AND WRITES

'~ CPU reads and writes involving a PCI target do not

involve main memory, of course. Reads from the
target provide little opportunity for creativity; the
only option is to improve the target response. Two
strategies are in common use. As with CPU-to-
main memory writes, use of a write buffer clears
the CPU bus more quickly. In addition, many of
the memory controllers avoid continued PCI bus
rearbitration by gathering numerous writes to
consecutive locations into a single PCI burst write.
Both of these functions should be retained in a
system even if the main memory is upgraded to
EDRAM.

Transaction EDRAM (15 ns) DRAM + SRAM cache
Burst Read Hit 4:1:1:1 6:1:1:1

Burst Read Miss 5:1:1:1 8:3:3:3

Write (Page Miss) 3-5 Cycles 3 Cycles
Write (Page Mode) 3 Cycles 3 Cycles

Table 1 - PowerPC 604 Bus Cycle Comparison @ 66 MHz Bus Clock

44

What about the memory controller design of a
PCI system with EDRAM main memory? This is
discussed in the next section.

EDRAM MEMORY CONTROL

Fast programmable logic can readily synthesize
the memory control that takes advantage of the
EDRAM'’s speed. We have used three approaches
at Ramtron. First, signals from a built-in DRAM
controller are “translated” by simple PAL devices
(e.g., 22V10) to generate a new set of EDRAM
control signals (Figure 2). This is most
appropriate for low-performance applications (25
MHz CPU clock or lower). The next step is direct
generation of multiplexed address signals by a
PAL or fast PFGA (Figure 3). This approach
works well in systems with 33-40 MHz CPUs.
Ocean Information Systems uses this approach
in the world’s fastest PCI motherboard - an
EDRAM-based DX4 /100 system. For the highest
performance, a combination of logic and fast
FCT-E buffers assures no wasted cycles (Figure
4).

A good logic candidate for either or both
functions is the Altera FX8160. In addition to a
6 ns tCO and a 10 ns tPD, the device provides
extremely flexible clocking (three delay options
and clocking off either edge).

Since the PCI bus clock is slower than the CPU
clock, it is also critical to assure that cycles are
not wasted while entering a PCI memory cycle.
By integrating the logic for the EDRAM memory
controller with the PCI master, target, or host
bridge functions, we can further optimize
performance. Intel provides FX8160 FPGA
equations for PCI master or target logic in an
application note (Brown and Heit 1994), and
Ramtron extends this with FPGA equations for
the host/PCI bridge logic and the EDRAM
controller equations.

CONCLUSION

Replacing DRAM and secondary cache in a PCI
system 1is a straightforward path to high

performance. An EDRAM system achieves zero-
or low-wait-state performance on all bus
transactions. EDRAM outperforms the

DRAM+secondary cache memory system while
providing better density and lower memory cost
with simpler writethrough cache policy. EDRAM
provides the best cost/performance combination
for PCI applications.

45

REFERENCES

Brown, C. and E. Heit, 1994, “Implementing PCI
Interface Designs Using Intel’'s FLEXlogic
FPGAs,” Application Note AP-396, Intel
Corporation, Folsom, CA (July).

PCI Special Interest Group, 1993. PCI Local Bus
Specification, Revision 2.0, Hillsboro, OR (Apr.).

PCI Special Interest Group, 1993. PCI System
Design Guide, Revision 1.0, Hillsboro, OR (Sept.).

Shanley, T. PCI System Architecture,
Richardson, TX: Mindshare Press, 1994.

ICAL

Columin Decoder

512 X 4 Cache (Row Register)
Sense Amps .
& Column Wit Selert |6 o 1
' ’ Control
—— - ‘ and | 4E D00
Data
Latches
4 /3
% Mamary
2 Array e JWE
2 {2048 X 512 X 4)
&
b A0 iy Vi
‘ , v,
fF #— RawAdd {«$ e ety Vg
A e and 4o Refres
WR Rafresh Counter
/RE &—1 Control
Figure 1
1Mx4 EDRAM Block Diagram
TI TMS320C40
Control
A(31:0) v
D(31:0) Y -
22V10
MA(10:0)
EDRAM
Figure 2

TMS320 System - EDRAM Control with 22V10

46

Intel i960JF l
Control

% AD(31:0) ¢

FX8160 =M A(10:0) EDRAM
‘ MD(31:0)

Control
{ A PCI
AD(31:0)

_ Y _
1. PCl Device(s) |
L. .

Figure 3
I1960JF PCI System - EDRAM Control with FX8160

PowerPC 604

Control
A$ 1 A (0-31) w
w D (0-63) Y

| FcT163244 |

HOST

Row

FCT244
M A (10:0)==3n
FX8160 EDRAM

FCT162373

MD(63:32) MD(31:0)

FCT244 * w

FCT543 Column LrcTs543) |FCT543]

—¥ v oo -]‘L — § - T o

PCI Device(s)

Figure 4
PowerPC 604 PCI System - EDRAM Control with FX8160 and Buffers

47

A PCI-Based Integrated Multimedia Chipset

David C. Baker, Ph.D.
Director, Texas Design Center
Brooktree Corporation
9868 Scranton Rd.

San Diego, CA 92121
(619) 452-7580/1249 (fax)

The BtV MediaStream family is a PCI-
based integrated multimedia chipset that
provides graphics acceleration,
integrated wavetable synthesis audio,
games compatible audio, live video in a
window, video capture to disk, and full-
screen, full-motion digital video
playback - all on a single PCI load. BtV

48

goes beyond the traditional graphics
accelerator, achieving synchronization
by accelerating all the multimedia data
types in a way that is ideal for
entertainment and game titles as well as
for videoconferencing. The specific
architectural considerations involved in
the design will be discussed.

EXPANDING YOUR MARKET
BY ADDING OPEN FIRMWARE SUPPORT
TO YOUR PCI PERIPHERAL CARD DESIGNS

Greg Hill and Mitch Bradley
FirmWorks
480 San Antonio Road, Suite 230
Mountain View, CA 94040-1218
gregh@firmworks.com wmb@firmworks.com

ABSTRACT

Vendors of PCI add-in cards can expand their
market beyond x86 machines by supporting Open
Firmware.

This paper answers the following questions:
* What is Open Firmware?
e Why use Open Firmware?
¢ How will it expand my markets?
* How will it improve:
* My development process?
* My manufacturing process?
* My field service process?

* How much engineering effort is required to
create an Open Firmware driver?

¢ What training is required?
* What tools are required?
* How long is a typical development cycle?

¢ What else must be added to my design for the
PowerPC market?

e For PowerPC Reference Platform machines?

* For PowerMac?

DESCRIPTION OF OPEN FIRMWARE

Open Firmware is a portable boot firmware
system. Boot firmware is the ROM-based software that
controls a computer from the time that it is turned on
until the primary operating system has taken control
of the machine. The main function of boot firmware is
to initialize the hardware and then to “boot” (load and
execute) the primary operating system. Secondary
functions include testing the hardware, managing
hardware configuration information, and providing
tools for debugging in case of faulty hardware or
software.

Open Firmware, defined by IEEE Standard 1275-
1994, is portable in the sense that its design is not

49

tied to any particular processor family nor to any
particular expansion bus. Open Firmware was
specifically designed to support a varlety of different
processor instruction set architectures and different
buses. Open Firmware is already in use on over a
million machines, and is supported by several system
vendors. A number of bus standards, including PCI,
Futurebus+, VME-D, and SBus, contain provisions for
Open Firmware card identification and booting. The
PowerPC Reference Platform (PR*P) Specification
requires that all PR*P-compliant machines shipped
after June, 1995 use Open Firmware as their boot
firmware (Dean and Adkins, 1994).

Firmware standardization can reduce system
costs by eliminating “re-invention of wheels”, providing
“off the shelf” sources for firmware, eliminating
unnecessary relearning of different firmware systems,
reducing the effort of porting operating systems to
different machines, and providing a consistent and
powerful base set of hardware and software debugging
tools.

The design of Open Firmware was undertaken as
a long-term effort to “do it right”, rather than viewing
firmware as a “necessary evil” that should be done
quickly and forgotten as soon as possible. As a
consequence, it includes the following features.

“P ”

Open Firmware’s “plug and play” capability was
designed in from the very beginning. Open Firmware
provides auto-configuration capability more powerful
than any previously available auto-configuration
scheme, and is not tied to any specific vendor’s
products.

Open Firmware accomplishes this by providing
support for self-identifying devices. Consider a
computer with an “open” expansion bus such as PCI.
An independent board vendor (i.e. not a system
manufacturer) of a PCI card would like for the system
to recognize and be able to use that card

automatically. In the operating system environment,
that may be easy; the board vendor can supply a
driver on a diskette, and that driver may be loaded
onto a hard disk or installed into the operating
system.

In the firmware environment, acquiring drivers is
more difficult; the firmware has to operate before the
system is ready to read the disk. It is better to have
the board driver in a ROM somewhere. Since a system
ROM made today can’t contain a driver for a plug-in
card designed tomorrow, it is better to store such a
driver in a ROM on the card with which it is to be
used. This approach has been taken before, but in
most existing firmware systems, the driver is stored as
CPU-specific binary code, and thus only works on
computer systems compatible with a particular CPU
instruction set.

Open Firmware uses the “plug-in driver”
technique, but instead of storing those drivers in
machine language, Open Firmware encodes the
drivers in a machine-independent language called
“FCode”. FCode is a byte-coded “intermediate
language” for the Forth programming language. Forth,
an ANSI standard interactive programming language,
is based on a stack-oriented “virtual machine” that
can be easlly and efficiently implemented on any
computer. FCode drivers are “incrementally compiled”
into system RAM for later execution. The same FCode
driver can be used on systems with different processor
types. Thus, for example, a particular PCI add-in card
could be used as a boot device in a PowerPC-based
PCI system or in a SPARC-based PCI system with no
firmware changes.

In addition to its use for firmware device drivers,
FCode also provides a descriptive capability known as
“properties”. Plug-in cards use properties to report
their characteristics to the firmware and system
software. Such characteristics may include the device
name, model, revision level, device type, register
locations, interrupt levels, supported features, and
any other identification information that makes sense
for the particular device. The PCI bus binding even
defines a property that can contain either the actual
operating system drivers or the location of the OS
driver, System software can use this property
information to configure itself automatically for correct
operation with a particular device. This information is
stored in a processor/architecture-independent format
that may be retrieved and decoded easily.
Furthermore, this format is open and extensible, and
allows any arbitrary device information to be recorded,

50

providing protection against obsolescence of the
interface.

Flexible Nami

Open Firmware was designed for adaptability. Its
notation and structure for naming particular devices
is based on a hierarchical “device tree” that mimics
the bus configuration and physical addressing of the
machine on which it is being used. This structure
applies equally well to simple single-bus desktop
machines and to “back room” servers with multiple
processors and complicated hierarchies of
interconnected buses. The “name space” for individual
device names was designed so that no central
authority is needed for “allocating” names - companies
can design their products without appealing to a
“master name arbiter”.

The Open Firmware command language is open-
ended. In addition to the standard commands that are
present on all implementations, an arbitrary number
of new commands may be added at any time, even by
the user. Such additional commands might provide
access to system-specific features, or might simply be
customizations for the needs and tastes of individual
users.

Configuration Maintenance

As mentioned, plug-in devices describe their own
characteristics with FCode. Such descriptions are
stored in the device tree. Each device tree node
represents a particular device, and the description of
that device is stored in its device node. Buses are
considered to be devices in this sense, and are
represented by “interior” nodes in the device tree. The
“children” of a bus node represent the devices
attached to that bus. Permanently-installed “built-in”
devices also have device tree nodes with associated
descriptions. The set of descriptive information about
a particular device is open-ended, so new types of
devices and new characteristics are added easily.

An operating system can use the device tree, with
its device descriptions, to configure itself, locate
particular devices, attach device drivers, etc. This
supports the growing requirement for “plug and play”
installation of new devices.

The Open Firmware “plug and play” capability is
more comprehensive and less tied to specific buses,
and operating systems than the Intel “Plug ‘n Play”
scheme, yet the Open Firmware scheme can co-exist
and in many cases subsume the Intel scheme.

Interactive Interpreter

The core of Open Firmware is an ANS Forth-
compliant kernel. This kernel provides the set of
language primitives and operators used to implement
the drivers and interfaces of the Open Firmware
system. Compatibility with the ANS Forth Standard
ensures source code portability and stability for future
development.

The kernel contains an integrated machine
language assembler/disassembler and a rich set of
extensions for development and debugging at the
hardware level, including breakpoints, stepping,
tracing, disassembly, and memory and /0O operations.

Given these capabilities of Open Firmware, what
are the practical benefits of adopting it?

MARKETING BENEFITS OF OPEN FIRMWARE

PR*P-compliant machines and the PCI bus Power
Macintosh systems all provide PCI plug-in slots. All of
these machines use Open Firmware. The size of the
PR*P market remains to be seen, but Apple Computer
has maintained approximately a 15% market share
over a long period of time. With Apple converting to
PCI as their standard bus, if a PCI card manufacturer
who currently only targets x86 machines adds Open
Firmware support, at least an additional 15% of the
market opens up.

Not only does the market size expand, but
customer satisfaction (which also affects one’s market
presence) is increased. Virtually everyone reading this
paper is someone who has (probably more than once)
had the unpleasant experience of trying to add a new
peripheral card to an IBM-compatible PC. How many
new purchases have been soured by a lost weekend
spent trying to get things to work? How many of you
gave up or settled for less than the promised
performance because you just couldn't get it to work
as advertised?

“Plug ‘n Play” for the PC may help, but it’s really
just a partial solution that was bolted on 10 years
after the fact, and which is nicknamed “plug and pray”
for good reason. It wasn’t designed in; it was added
on. And, despite everyone’s best efforts, it is a complex
approach that doesn’t quite succeed.

Open Firmware has architected “plug and play”
that has been field-proven for over 6 years in over 1
million machines. Would your customers prefer
products that were easier to install and configure? If

51

your competitors provide Open Firmware support and
you don't, will your customers stay with you?

BENE F OPEN

Eliminate Drivers for non-Boot Devices

The PCI Binding for Open Firmware provides for
the system’s Open Firmware to create Open Firmware
properties automatically by reading the configuration
space header of a PCI card. If the manufacturer fills
out the header, non-boot devices need not contain
Open Firmware drivers. Of course, non-boot devices
may contain drivers, in which case that driver’s
properties can extend or override those automatically
created from the configuration space header.

Few iv Wri

In today’s world, a PCI manufacturer of a boot
device will have to write an x86 driver and an Open
Firmware driver. That's the bad news. The good news
is that as additional processor families using Open
Firmware adopt PCI, no additional firmware work will
be required to support those machines.

Write Boot Drivers Faster

FCode drivers do not execute in a vacuum: they
may take advantage of Open Firmware operations
supplied by the system firmware. The Open Firmware
“device interface” specifies the full set of FCode
primitives guaranteed to be available to an FCode
driver. This set effectively constitutes an Application
Binary Interface (ABI) for FCode which is required to
be consistent and dependable across platforms and
processors, providing a powerful framework for writing
machine-independent drivers. Open Firmware system
ROMs contain built-in support for frame buffers,
network devices and protocols, disks, tapes and
terminal emulation. By using these facilities, drivers
are smaller, and are easier to write and debug.

The device interface also specifies probe and
configuration practices on a bus-by-bus basis,
affording processor independence to third-party
developers.

Faster Debugging

Open Firmware’s Forth kernel provides a
wonderfully interactive environment for firmware
development and testing. As a high level language,
Forth is well suited to top-down design. Additionally,
Forth’s interpreter provides an environment in which
bottom-up testing is easily accomplished, even very

early in the development cycle. If you have ever
struggled to understand a poorly written (or perhaps
misleading, or even just plain wrong!) data sheet, you
will appreciate the ability to write a routine and
immediately try it on the hardware. And, if the routine
fails, re-write it in a matter of seconds and try it again.
Forth even provides a high-level-language “patch”
capability to further enhance the ability to make rapid
program changes in a development environment.

Not only does Open Firmware’s interactive
interpreter ease the life of the firmware developer, but
the interpreter provides an environment in which
hardware engineers can quickly bring up new designs
by writing simple debugging routines “on the fly”.
Since Forth enables a designer to write programs
quickKly right on the test platform (without having to go
through an edit-compile-link cycle elsewhere), data
can be gathered quickly and new experiments can be
run rapidly.

Open Firmware can debug hardware, operating
system software, plug-in drivers, and even the
firmware itself. The emphasis is on interactive tools for
exploring problems, rather than “canned” diagnostics
(although Open Firmware includes provisions for
“canned” diagnostics as well). With today’s short
product cycles, a new design may spend as much time
in the lab as in actual production. Open Firmware is
an excellent bringup tool, and has been shown to
shorten the time it takes to get a product to market.

MANUFACTURING BENEFITS OF OPEN FIRMWARE

Many companies that use Forth in the lab have
found that the same dlagnostics used by the
developers for bring-up are well-suited for use in
manufacturing, particularly during the initial ramp-up
and /or for low volume products.

FIELD SERVICE BENEFITS OF OPEN FIRMWARE
Maintainability

Field ROM upgrades are expensive. Open
Firmware provides a “self-patching” facility that allows
many types of firmware bugs to be fixed without
changing the system and/or device driver ROMs. The
same facility allows additional firmware capabilities to
be added to systems or drivers in the field, without
changing the ROMs. (This capability might be viewed
as less important given the increasing use of flash
ROMs as the storage medium for firmware. However,
when the overhead costs of a release and testing cycle

52

are taken into account, Open Firmware's “one-off
patch” capability can still be quite valuable.)

The Forth interpreter also provides a set of
programmable debugging features to allow users and
service personnel (as well as developers and
manufacturing personnel) to isolate system problems
in the event of a failure.

Configurabilit

Another service issue is storage and maintenance
of user choices, such as the preferred boot device and
the amount of memory to test. Open Firmware has
“configuration variables” which keep such user
choices in non-volatile memory, such as battery-
backed RAM, electrically erasable PROM, or flash
memory. Open Firmware configuration management
uses self-describing, human-readable parameter
names and values. The human readable values are
encoded for efficient storage in the non-volatile
memory device, where space is often at a premium. All
access to these parameters is by name; new
parameters may be added and old ones deleted at will,
allowing for easy evolution of product families.

User Friendli

Many system vendors are providing graphical front
ends to make simple firmware interactions easy, but
the full power of the Open Firmware command-based
“user interface” is also present for technical users who
need access to the full power of the system.

Nearly all the Forth kernel primitives are
accessible interactively. The user interface provides
access to the system for booting and debugging, and
includes features such as command-line editing, ANSI
terminal emulation, and system security controls.

ADDITIONAL DEVELOPMENT COSTS
Third Party Dri Devel |

For those companies without internal development
resources with which to produce Open Firmware
drivers, one solution is to hire a company like
FirmWorks to create the required drivers on a turn-
key basis. Even those companies that want to “grow
their own” Open Firmware development capability can
benefit from the use of third party drivers on their first
Open Firmware designs. Having an experienced
programmer create the first Open Firmware driver
provides a specialized example from which
inexperienced programmers can learn.

Training

Training in the writing of Open Firmware drivers
can take many forms. The book Writing FCode
Programs for PCI (available exclusively from
FirmWorks) provides information on the specifics of

FCode for PCI, including sample drivers. The book
assumes some familiarity with the Forth language.

For those who want a classroom approach, one
week classes in Forth and Open Firmware are
avalilable from FirmWorks. Classes can be held in
Mountain View, CA or on your site. These classes
assume no previous Forth experience. By the end of
the week, participants will have written a simple
driver.

For those who want a bit more help, a FirmWorks
engineer can “look over the shoulder” of a customer’s
engineer while s/he writes an FCode driver.

Tools

Any PCI system running Open Firmware can serve
as a development platform, provided that an FCode
tokenizer is also available. One solution is an Open
Firmware developer’s kit for PCI from FirmWorks.
Apple Computer also has suitable machines available
to participants in their Power Macintosh developers
program. When PR*P-compliant machines become
available, they will also be suitable platforms when
combined with an FCode tokenizer. Such tokenizers
are available from FirmWorks and in Apple’s Power
Macintosh developer’s kit.

Development Cycle Length

Development cycles vary with the complexity of
the driver. Drivers for non-boot devices that simply
publish property information can be completed in a
fraction of a day. Relatively complex bootable device
drivers can be completed in two weeks by an
experienced programmer or in 4 - 6 weeks by a novice
programmer.

OTHER POWERPC REQUIREMENTS

The most significant additional requirement is an
OS driver. Windows-NT, AIX, Workplace OS and
Solaris are currently expected to be available for PR*P
machines. For the Power Macintosh, a MacOS driver is
required.

53

REFEREN

Dean, M. and A. AdKins, eds. PowerPC Reference
Platform Specification, Version 1. Document
number MPR-PPC-RPU-02. International Business
Machines, 1994, p. 85.

Institute of Electrical and Electronics Engineers, 1994.
Standard for Boot (Initialization Configuration)
Firmware, Core Requirements and Practices. IEEE
Standard 1275-1994. IEEE, Piscataway, NJ

PCI Open Firmware Working Group, 1994. PCI Bus
Binding to IEEE Standard 1275-1994. Available
by anonymous ftp from playground.sun.com in
/pub/p1275/bindings/postscript.

BIOGRAPHY

Greg Hill is director of marketing of FirmWorks, a
consulting firm specializing in providing Open
Firmware system ROMs, device drivers, and training.
Prior to founding FirmWorks in February, 1994, Greg
was a senlor engineer with ROLM where he had been
since 1974. Although his last assignment with ROLM
was doing embedded firmware, he previously held
positions at ROLM in digital, analog and ASIC
hardware design, manufacturing test engineering and
production engineering. Greg has a BSEE (with
honors) and a BA (psychology) from Lafayette College
and an MSEE from Stanford University.

Mitch Bradley is president and chief technical
officer of FirmWorks. Prior to founding FirmWorks, he
was the technical leader of the firmware group at Sun
Microsystems Computer Corporation, where he
conceived and developed the Open Firmware concept.
He is chairman of the IEEE P1275 Open Firmware
Working Group, which developed the Open Firmware
standard, and vice chairman of the ANS X3/J14
Technical Committee, which developed the ANSI Forth
standard. His educational background includes
degrees in various technical disciplines from
Vanderbilt University, Cambridge University, and
Stanford University. Before embarking on the quest for
Open Firmware, he did a variety of electronics things,
from analog circuit design to operating system
hacking.

EXPANDING SERVER [/0O CAPABILITIES TO NEW
PERFORMANCE LEVELS

Byron Gillespie
Intel Corporation
5000 W. Chandler Blvd. M/S CH5-233
Chandler, Arizona 85226

ABSTRACT

With the standardization of the PCI local
bus, server designers are faced with many
system-level design challenges. This paper
focuses on improving server performance by
moving the interrupt processing from the host
processor to the /0 subsystem.

NEED FOR INTELLIGENT I/O INNOVATION

Today’s client/server computing
environment presents a challenge for
maximizing server performance. Increasingly
powerful host CPUs must be offloaded of
interrupt processing in order to perform at
optimal levels. Creating intelligent 1/O
subsystems based on high performance
embedded processor allows the host CPU to
perform more effectively.

Other factors driving the need
intelligent I/0O subsystems include:

for

e The stand-alone computing model is
being replaced by networked computing
driving the need for network computing

I/0.

Networked computers increase the vast
quantities of data the server systems
support.

Since the host processors (CPUs) in these
servers also now run user applications,
they need more powerful storage
interfaces for accessing larger and larger
disk storage areas in addition to higher
reliability offered from RAID storage.

Simultaneously, the data sizes and type
increasingly contain natural data elements
like video or audio, in addition to text and
graphics.

Clearly, in today’s client/server model,
data congestion occurs more frequently at the
servers. An intelligent I/O subsystem creates

54

the balance between server performance and

the data 1/O paths and relieves data
congestion.
EXAMPLES OF INTELLIGENT /O
INNOVATION

Storage /O Interfaces

In the two basic areas of server 1/O,
network and storage, intelligent 1/O
subsystems offer superior server performance
possibilities.

RAID controllers describe one of the
better known examples of storage. The server
can initiate a disk sfore or retrieve command
as if it were writing to a single disk. The
intelligent RAID controller separates
commands into parallel read or write
commands to its attached array of disks.

This parallel operation, controlied by the
intelligent 1/O processor, compensates for the
single disk spin-up delay and protects data.
This results in superior data transfer rates as
well as greater reliability, a critical necessity
as servers become more widely used for
corporate computing and the creation of
databases.

A similar example of how intelligent 1/0
improves server storage connection is in
caching disk controllers. In this application,
the host can write a data file to the intelligent
disk controller cache at speeds matching the
fast DRAM memory. The host application
execution continues while the /O processor
controls the actual disk storage sequences.

i960° JF_Microprocessor-based SCSI _Disk
Caching Controller

For example, an intelligent 1/0O disk
caching controller can utilize a i960° JF
microprocessor. This processor, rated at over
30 VAX MIPS, can implement advanced

features like complex caching algorithms
(intelligent read-ahead, dirty block
invalidation), sophisticated disk management
(scatter-gather, elevator sorting), and
multithreaded /O for multitasking operating
systems.

Hardware Figure 1 shows a block
diagram of a SCSI disk caching controller for
the PCI Local Bus. The V961PBC' provides
two independent DMA channels with bi-
directional FIFOs supporting PCl burst
transfers up to the maximum 132 Mbyte/sec

address range and access timing parameters
are fully programmable. The V96SSC also
supports the control logic for boot ROM.

The V961PBC has two independent bi-
directional FIFOs allowing it to transfer data
independently from the i960 JF
microprocessor. The FIFOs loaded by one
bus (local or system) empties onto the other
bus when reaching the number of
programmed entries in the FIFO or terminal
count. The V961PBC DMA controller will
release control of the local bus once its FIFOs

i960 JF
MICROPROCESSOR
PCIBUS
N 7N
l Optional
V961PBC
(——9 Bus Master
Interface Chip
h 4 Vv \L

V96SSC
COMPANION

CHIP

256K WD33C93B
BOOT BLOCK SCSI
FLASH CONTROLLER

WD33C93B
SCSI

WD33C93B
CONTROLLER

SCSI
CONTROLLER

16 MEG
DRAM

LOCAL BUS

!

SCsI
BUS

Figure 1. i960° JF Microprocessor-Based SCSI Controller

rate. The V96SSC? companion chip to the
i960® JF microprocessor integrates a
(E)DRAM controller, four 32-bit
counter/timers, 4-channel DMA controller,
integrated interrupt controller, programmable
chip selects, and debug serial port. For this
application, the most important V96SSC
features are the glueless interface to the
memory and the DMA controller to transfer
data between the DRAM and the SCSI
controller.

The V96SSC also contains a
programmable /O controller that generates
control signals required to interface the 1960 J
series processors to common peripherals. All

The V961PBC is from V3 Corp., Toronto,
Canada

2The V96SSC is from V3 Corp., Toronto,
Canada

55

are full/lempty or when the local latency timer
expires. The DMA controller will release
control of the PCl bus when the FIFOs are
fulllempty or when the PCI latency timer
expires and it loses the PCI grant signal.

The PCl host processor can directly
access devices on the local bus for non-burst
reads and writes. Configuration registers
within the V961PBC will control the decoding
and mapping of these accesses to the local
address space. The 960 JF processors
(shown in Figure 2) can also directly access
the PCI bus. Again, configuration registers
within the V961PBC will control the decoding
and mapping of these accesses to the PCI bus
address space.

Network I/O Interfaces

On the network 1/O side, the bridge and
routing functions are migrating into the
servers. The Ethernet or token ring LAN
interface with intelligent 1/O handles the

frequent I/O interrupts and intelligently buffers
messages to and from the host. This allows
the host to streamline applications processing
and to use other system resources, such as
the system bus and memory, more effectively.

In WAN interfaces, intelligent /O
processing also offers significant performance
improvements. For example, intelligent WAN
interfaces can compress large message files
prior to transmission. This not only frees the
host CPU to perform more valuable
application tasks, bus can allow more users to
share the same fixed, wide-area connection.
Also, the host CPU is transparent to this
operation, thus providing better utilization of
the WAN.

In selecting a processor for a networking
system, the developer requires a simple
hardware interface and a robust tool chain to
make porting existing code straightforward.
Figure 3, shows a block diagram of a typical,
medium performance, multi-port Ethernet
bridge card. The boot ROM holds the code
and may transfer it to DRAM for faster code
execution. In addition, the SRAM typically
stores interrupt handlers, protocol analyzers,
and bridging/routing tables. The DRAM
contains less critical code and data. The
memory control section implements common
system functions such as timers, real-time
clock, interrupt multiplexing, DRAM control,
and a system debug port.

The Ethernet component receives serial

Physical Region || Control
Configuration ‘_’@

@ CLKIN PLL, Clocks
Power Mgmt
4K Byte ¢ Bus
Instruction Cach(a(PR Control Unit Address/
@ TAP Boundary Scan Two-way Set Associative «mﬁm«»‘g Data Bus
Controller [32-Bit Cache Bus] Bu&fieeu%usest LE Q—-;l:l
Instruction Sequencer S Two 32-Bit
Timers
[Constant Bus}] [Control Bus]
% g:‘: l Interrupt
8 Set Local e ¢=P| Programmable | Port .
Register Cache [}1] l l l »{ Interrupt Controlier @
A 4
Execution Memory
Muttiply and Intertace &=p{ Memory Mapped
Divide Address Unit Register Interface
Unit Generation| ; ”
Unit [32-Bit
¥ n Address
& o) 1KByte
Three-port [Address S g
i i 32-Bit Data
Register File - Bus] pueslp Bug Data RAM
A 68al |&8%l |g &
[SRC1} [SRC2][DEST] 660 gi 5 5 él.i 5
: > 2 KByte
: l > Direct Mapped
st S Data Cache
32:8IT
. . @ .
Figure 2. i960 JF Processor Block Diagram
. ® . . . H i
i960° JF Microprocessor in Networking data from the physical interface and

There are several factors increasing the
performance required for networking. ASCII
data types heavily load today's networks. The
LAN connection rate is growing twice as fast
as the PC installed base. In addition, as the
performance on the desktop increases, users
expect quicker response. Finally, multimedia,
with its high bandwidth and strict latency
requirements, place huge strains on the
existing network infrastructure. The 960 JF
microprocessor delivers the performance
needed to solve these networking problems.

56

assembles the resulting packet. The on-chip
DMA controller stores the data packet in
memory. The Ethernet component can also
transmit a packet from memory. One
example of an Ethernet component includes
the National Sonic.

The Ethernet interrupts the CPU after the
first packet arrives. The CPU scans the
received packet and checks the destination
address against the bridging table in memory.
The processor decides whether to forward the
packet or ignore it. In addition, the processor
analyzes the source address and updates the

bridging table as needed (the learning
function). After processing the packet, the
system polls the other ports to see if another
packet has arrived. The system allows
bridging of packets between the two Ethernet
chips and between other boards via the PCI
bus connection.

The number of packets per second that
can be bridged/routed is the critical
performance benchmark for these systems.
As multiple protocol routers become more
intelligent, the need for higher system
performance increases. The 960 JF
microprocessor has several features that allow
the networking developers to achieve the
highest possible performance in a networking
application. These include high bandwidth
instruction and data caches, on-chip SRAM,
multiple, independent execution units, branch
prediction unit eliminates execution delays
from the branch instruction, and paraliel
instruction execution.

performance requirements. Incoming network
data structure typically violates the traditional
data alignment, or natural boundaries of the
microprocessor. In such cases, the processor
must perform "unaligned" accesses into big
endian memory regions. The 960 JF
processors support unaligned big endian bus
requests. These include word accesses to a
short or byte boundaries and short word
accesses to a byte boundary.

Big endian byte ordering is supported in
the 1960 JF microprocessor, simplifying the
development of applications that use big
endian data. This enhancement allows the
processor to access big endian " data
transparently without degrading the system
performance. The user does not have to
perform the byte swapping to reorder the bits.
Unaligned big endian support eases the
porting of code written for older big endian
architectures, such as the 68000.

Full Featured Interrupt Controller and Interrupt

80960 JH Memory
CPU Controller
DRAM
(1-8MB)
Ethernet [] e
Ethernet j Por)
BOOT
ROM Ethernet [] oo
V961PBC
PCI Bus

Figure 3. Simple Multi-Port Bridge

Big Endian Support The natural data
type format for networking is big endian. This
requires formatting the network data to
conform to network protocol function and

57

Structure

Both the caching SCSI controller and
Ethernet controller examples described

require high performance interrupt processing
to move the interrupt processing from the host
CPU to the intelligent I/O subsystem.

The 960 architecture provides 32
executing priorities. The executing priorities
decide the importance level of the executing
tasks and interact with interrupt structure for
redirection of program execution. An interrupt
is an event that causes a temporary break in
program execution so the processor can
handle another task. Each interrupt vector has
an associated priority. The requests for
interrupt service come from many sources.
Redirection of the executing task occurs if the
interrupt request is higher priority than the
executing task. These interrupt priorities allow
the system designer the flexibility to
implement an explicit structure to prioritize the
various tasks associated with a high-
performance embedded design.

The interrupt vector number accompanies
the interrupt request. It indexes into the inter-
rupt table to locate the entry point of the
interrupt handler. From that entry, it gets an
address to the first instruction of the selected
interrupt procedure. The processor then
makes an implicit call to that procedure. The
processor switches to supervisor mode and
changes stack to use a dedicated interrupt
stack for the interrupt call. The processor
allocates a new frame and a new set of local
registers on the interrupt stack for the interrupt
procedure. The processor saves the
interrupted program's current state. Upon
return from the interrupt procedure, the
processor restores the interrupted program’s
state, switches back to the stack that the
processor was using before the interrupt, and
resumes program execution.

Every interrupt request contains an
associated interrupt vector in the interrupt
table. The table contains 248 vectors, from
vector number 8, assigned the lowest priority,
to vector number 255, the highest priority.
The 1960 architecture transparently prioritizes
the 248 possible interrupts. There are 31
interrupt levels of priority, with eight vectors
per priority.

The 1960 J series processors integrate
additional interrupt controller features. These
processors contain eight interrupt input pins.
These eight inputs support three different
modes: dedicated interrupt mode with eight
inputs; expanded mode that receives the

58

interrupt vector from the eight input pins; and
mixed mode which splits the eight inputs into
three dedicated interrupt inputs and five
expanded mode vector bits. The dedicated
interrupt inputs can internally cache the
interrupt vector entry in the on-chip data-RAM.
In addition, these processors allow the
application to cache the interrupt handling
procedure internally in the instruction cache.
Locking the interrupt handler in the cache and
caching the interrupt vector provides the
lowest interrupt latency for the dedicated
mode interrupts. The i960 J series processor
also contains a separate non-maskable
interrupt (NMI) pin. The NMI interrupt
executes at priority 31, uninterruptable by any
interrupt event.

All of these interrupt controller features
with the hardware priority detection built-in the
i960° J series processors result in fast
interrupt response and flexibility for the
system designers.

Interrupt Latency

The processor design provides interrupt
processing latency and enough performance
to eliminate the “software-based interrupt
processing” typically performed by the host
server CPUs. The RISC microprocessor in
the hardware system relieves the system CPU
of RAID chores and thus doubles the transfer
rate as compared with the software system for
the storage applications.

In networking 1/0, the i960®
microprocessor and service the networking
controller interrupts without loss of packets. It
also performs data buffering and compacting.
This data buffering and compacting combines
the data packets into larger, yet linear packets
for transfer to the host system memory, thus
effectively utilizing of the PCI bus.

COMPLETE TOOL SET FOR EMBEDDED
DESIGN

There are many factors evaluated before
choosing a RISC processor architecture.
These considerations include processor
performance, system costs, upgrade paths,
customer support and a complete tools'
package. The i960 architecture is supported
by 200 development tools, services and
support components.

SUMMARY

This paper has presented two typical
intelligent 1/O applications. From the cost-
sensitive SCSI controller application to the
performance-driven networking application,
the 1960 microprocessor family has the device
to meet the need. The i960 architecture offers
an easy to use, robust architecture, for the
application designers to create powerful
applications.

Additional Information

Applied Micro Circuits Corporation offers
an PCI-to-80960 component. Contact AMCC
6195 Lusk Blvd. San Diego, CA 92121-2793

PLX Technology offers an PCI-t0-80960
bus bridge component. Contact PLX
Technology, 625 Clyde Ave. Mountain View,
CA 94034

V® Corporation offers an PCl-to-80960
component. Contact V® Corporation, 2348
Walsh Ave. Suite G, Santa Clara, CA 95051

59

References

“960° Jx series Microprocessor User
Manual”, Order Number: 272483-001 Intel
Corporation, 1994,

“V961PBC Local Bus to PCI Bridge Controller
Manual’, V® Corporation, 2348 Walsh Ave.
Suite G, Santa Clara, CA 95051

“V96SSC Local Bus to PCI Bridge Controller
Manual”, V¥ Corporation, 2348 Walsh Ave.
Suite G, Santa Clara, CA 95051

All other trademarks are the property of
their respective owners.

BIOGRAPHY

Byron Gillespie works as a strategic
development engineer for Intel's Embedded
Processor Division. He is responsible for
working with customers to define the
requirements for future iI960® microprocessor
products. Before coming to Intel in 1991, he
had eight years experience writing software
for embedded avionics applications. The
embedded applications used a variety of Intel
processors including the superscalar i960®
CA microprocessor. Gillespie received a B.S.
in computer science from Northern Arizona
University in 19883.

Multimedia On the Motherboard (MOM)

Stephen Tobak
Director of Corporate Marketing
OPTi Inc.

2525 Walsh Ave.

Santa Clara, CA 95051
408-486-8243

Multimedia On the
Motherboard (MOM)

= Enhancing the Performance of
Multimedia PCs

Stephen Tobak
OPTi Inc.
: Multimedia PC
S Market Drivers
i
E « Edutainment
« Communications
« SOHO
* Telecommuting
* Ubiquitous CD-ROM
* In general, the consumer

60

Multimedia System

Components
/ ;\
&‘X h% i unn
J
EET
4
L]
A
i
L]
1]
L
|
]]
== EENEE——
- O

Do Today’s Systems Provide
Adequate Performance

« CPU/Memory performance
* Graphics performance

* Benchmarks emphasize single
function/task performance, keeping
other functions constant

* Performance metrics do not
adequately measure multimedia
systems performance

61

System Bottlenecks

» Audio Playback from CD-ROM
— ‘Lip Sync’ phenomena
— Audio/Video Synchronization
» Video playback and overlay
— Hardware assist required...
— Without adding cost
* Multitasking OS’s
— Shared system resources
— CPU / Memory bus bandwidth

Bottleneck Example:
CPU / Memory Bus Bandwidth
Audlo I Vldeo Sync

OPTl
9201 781

Graphlcs Controller

o | OPTi |

Ei 82C930

== Audlo Controller

Ea ° Video/Graphics problem - granularity
EE e Audio problem - lip sync T

62

The Goal

* To free up as much CPU/ memory
bandwidth as possible by improving
multimedia interface throughput

 Enables CPU to perform other tasks,
i.e. NSP

* Result is improved system
performance on today’s muitimedia
applications, with bandwidth left
over for tomorrow’s applications

Multimedia System
Architecture

63

Key Audio Factors

* Real-time data

* ‘Timeliness’ on PC bus critical
—Ear sensitive to audio aberations

—Audiolvideo synchronization -
‘lip sync’

 CD-ROM playback most difficult
—Highest audio sampling rate
* DMA mechanism optimum

- Audio Bottleneck

>17.6% CPU / Memory bus bandwidth
utilized in DMA operation

Mem Cntrir

Sys Cntrir)
ISA Bridge ISA bus

64

»»»»»

Audio Solution: Type F DMA

* Burst operation

e Cuts average DMA transfer from

1us to 250ns

* Decreases required CPU bus
bandwidth from 20% to < 5%

* Requires FIFO in audio

controller

Key Storage Factors

* Need to improve transfer time on

IDE reads/writes

* Need to enable faster IDE drives,

i.e. Modes 4 & 5

* Need to improve CPU / memory

bandwidth

65

Storage Solution:
Bus Master IDE

IDE cPy

BM IDE
Cntrol

Storage Solution:
Bus Master IDE

IDE Idle Write IDE data
[[] to memory

11 Mem
R

= Bus
: == Bus Master PCI Master
- IDE Write to mem.

T

EE N~ Arbitratign OH

== 1 ReadIDE j 1 IDE

N L ! Bus

an

Ea Time—> mn
. .ﬁid’.ﬂiﬂ

66

Graphics/Video Issues

e Both native and imported (CD-ROM)
video signals must pass through
graphics engine

» High performance graphics available,
but with a significant cost adder

— 64-bit acceleration
- EDO --> SDRAM ->RAMBUS
 How to improve performance - add

video acceleration - without
additional cost ’iﬁi

Graphics/Video Solutions

« MPEG decoder with hardware assist
— Color space convertor
—Zoom stretching

» Shared memory architecture -
system memory / frame buffer

* Integration of memory / graphics /
video DMA controllers

67

The Role of Core Logic in
Multimedia PCs

System -> Motherboard

mEE

EE

EBE

m® Multimedia . Bus

- EE Performance Standards
N

HE

N

NN

== ' I S R
i integration [SIEkE

e
R
1]
[L) -
e OPTi
o I B 92C178 |
L] SVGA Cntrlr
ik U
]
[|]
o] PCMCIAICard
.. S ‘Bus Cntrir
== 1-System Controller 3-Bus Controller/ pewmemuyy
1] 2-Data Buffer Power Mgmt OPT
11 T i

68

OPTi Multimedia Solutions

820924 82C930

Audm Controller ; integrated
Plug~n~PIay ' Audlo Controiler

Viper—,M |
Multimedia Enhanced

Core Logic Chipset

82c941 820950 N
Advanced Sound - _ Audio & Comm.
| Synthesizer _ Controller

i = Bl B
|

The ,. f MOM

= Appha |

The motherboard becomes the system
with multimedia performance -

» optlmlzed architecture

Baseline set of multlmedla functlons
» Card-based upgradablllty .
» Optimized for Windows95, Plug-n-Play

g
YD e
Wy 1
EngelEdRE

69

Scott Hay
Technical Marketing Engineer
Intel Corporation
5200 NE Elam Young Pkwy., HF3-64
Hillsboro, OR 97124
Ph. (503) 264-2217 Fax (503) 264-7902
March 29, 1995

*Other trademarks are the property of their respective owners. —

2/08/95

70

PNP DOS*/Windows*

Overview/Update

Scott Hay
Technical Marketing Engineer
Intel Corporation
6200 NE Elam Young Pkwy., HF3-64
Hillsboro, OR 97124
Ph. (603) 264-2217 Fax (503) 264-7902
March 29, 1985

*Other trademarks are the property of their respective owners.]

20mm

The Desktop Add-in Problem

)

)))
Set Jumpers Input Setup Devlce“canﬂiw
* Parameters System Fails!

Try Again, Call Tech Support, or Give Up and Retumn the Card

What is Plug and Play?

= Automatic configuration of add-in cards

= Major element of ease of use

m Industry backed standard

® Plug and Play is ready today on MS-DOS* and

Windows* 3.1

4 Migratable to Windows*95

= Windows*95 product offering full PnP

m Industry well on its way to full implementation
4 30+ OEMs & 70+ IHVs in development
4 15+ OEMs and 20+ |HVs announced and shipping

*Other brands and names are the property of their respective ownels.m

2ores

Agenda

u PnP Overview
= DOS*/Windows*/BIOS PnP Architecture
m PCMCIA on the desktop

= PnP DOS*/Windows* migration to
Windows*95

u PnP Debug/Support Issues
= DOS*/Windows* Product Plans/Support

*Other trademarks are the property of thelr respective owners. m

2ouns

Solution

= Plug and Play enabled platforms
4 PnPBIOS
u Plug and Play add-in cards
4 PCl
Plug and Play ISA
4 PCMCIA
= Plug and Play enabled operating systems
4 DOS*/Windows*
4 Windows*95

Making the PC an Information Appliance

*Other trademarks are the proparty of their respective owners. W

woane

Plug and Play

Plug and Play System with Plug and Play Cards

PCMCIA

Step 1:

Plug it in
Step 3:
It works!
Step 2:
Turniton
foeo

71

Plug and Tell

Plug and Play system and Legacy cards

Legacy ISA /
- Step 1:
Step 2: Run ICU and select card

Change Jumper
or Dip switch
It works!
Step 3: Step 4:
Plugitin Turniton
R

2oum8

Plug and Play Association

= Administers Specifications

& Plyg and Play ISA enecification 1.0

7 Clarification Documents
49 Plug and Play BIOS specification 1.0A
2 Clarification Documents
9 Hosts Interoperability Workshops
73 PlugFests to date
7 Upcoming event in April
4 300+ bers of the iation
7 Open to all industry participants
7 $500/company annual fee

PnP DOS/Windows* Architecture

ISA Configuration Utility

- y
Utilities Utility IDa'gi(:sel or 0S Dependent

0s PCMCIA
Device Drivers Clients

Run-ti Configuration Manag cs PCMCIA
Services (PnP ISA Configuration) | AP [7] Card Services
|
1

) [Standard PnP BIOS Intel PnP PCMCIA
w Pls:form r_ 1.0A BIOS Extensions ocket Services)]
0S Runtime (PCl & ISA)

“Other trademarks are the property of thelr respective owners. Platform Dependent

Plug and Hope
Legacy system and Legacy cards
= Today’s situation

= No guarantee you will get the right configuration
m Trial and error

Agenda

m PnP Overview
m PCMCIA on the desktop

m PnP DOS*/Windows* migration to
Windows*95

= PnP Debug/Support Issues
m DOS*/Windows* Product Plans/Support

*Other trademarks are the property of their respective owners. S

wouns

Agenda

m PnP Overview
= DOS*/Windows*/BIOS PnP Architecture
= PCMCIA on the desktop

m PnP DOS*/Windows* migration to
Windows*95

= PnP Debug/Support Issues
m DOS*Windows* Product Plans/Support

“Other trademarks are the property of their respective owners. T —

2wowns

72

PCMCIA Autoconfiguration Today

m Card Services or Card Installer Device Drivers performs the
autoconfiguration
¢ D i ilable sy resources and assigns
available requested resources to PCMCIA cards
4 Works ok in a mobile environment where limited
peripheral/add-in card expansion exists

= Model breaks down in a desktop environment

4 CS/Cldoesn’'tknow how ALL the desktop resources have
been assigned

4 CS/Cl can’t assign resources in a non-conflicting way

Desktop PCI & PnP ISA
Autoconfiguration Today

= PnP BIOS
4 Autoconfigures PCl and PnP ISA add-in devices
4 Provides PnP runtime services
= PnP Software
4 DOS/Windows Kit available NOW from Intel
7 Configuration Manager
VAutoconfiguration of PnP ISA devices
VProvides API for PnP device drivers and software utilities
A ISA Configuration Utility
Vintegration guidance for legacy add-in cards
VEssential for accurate map of static resource usage
4 Microsoft Windows*95
7AA i ion of PnP di

*Other trademarks are the property of their respective owners, m

20

Integrated PnP Solution Available Today

= Plug and Play DOS/Windows Kit Release 1.41
4 Autoconfigures PCl & PnP ISA cards

4 Provides a Configuration Manager API for Card
Services

7 CS uses CM as a resource manager

7 CM provides resource map of all legacy, PCl and
PnP ISA devices installed in the system

7 CS can now accurately and reliably assign resources
to PCMCIA clients by calling CM

s Card Services Providers

Intel has informed all CS providers regarding the
PCMCIA functionality supported by the PnP software

kits
4 Card Services Providers
7 Developing CS capable of making the CM API calls
7 Card Installers can cail CM or continue to call CS

P

Agenda

u PnP Overview
= DOS*/Windows*/BIOS PnP Architecture
m PCMCIA on the desktop

= PnP DOS*/Windows* migration to
Windows*95

= PnP Debug/Support Issues
s DOS*/Windows* Product Plans/Support

*Other trademarks are tha property of their respective owners. W

73

PnP BIOS for MS-DOS* and Windows* 3.1 PnP BIOS for Windows*95 or MS-DOS*
and Windows*3.1

Run-time Run-time
BIOS BIOS

==

BIOS BIOS %
*Other trademarks are the property of their respective owners. “ *Other trademarks are the property of their respective owners. -
Windows*95 PnP Architecture Agenda

4 Bus enumerators presentbus resource requests to CM
ZISA, PCMCIA, PCI, BIOS, COM, Video, SCSI, EISA ...

@ Arbitrators allocate/release resources
7IRQ. DMA. Memory and 1/0

@ Device drivers support dynamic events PCMCIA on the desktop
Zlnsertion/removal/docking PnP DOS*/Windows* migration to
ASuspend/resume Windows*95

4 CM performs resource balancing = PnP Debug/Support Issues

* D::lce manager rfaflects system resources present = DOS*Windows* Product Plans/Support
'ower users, shielded from most users

4 Need to develop specific Windows 95 device driver

PnP Overview
NOS*Windowe*/RIOS PnP Archit

~ s s
T ArGhnelware

*Other trademarks are the property of their respective ownou.“ *Other trademarks are the property of their respective owners. —

woune 2ouns

PnP as a Support Tool PnP DOS/Windows* Support Issues

= Customer doesn’t use ICU
= PnP Learning curve
Calls may go up initially

4 Customer may be inclined to install legacy card
before running ICU (DON’T LET THIS HAPPEN!)

m Customer still needs to load device drivers
Z 4 Windows*95 will dynamically load DD
m Use the ICU as a tool for on-line debugging m Multiple function card not completely configured

4 ISA limitation: May still run out of available
resources
71RQ, DMA, I/O, Memory

m Use the ICU to install legacy cards!
4 ESCD must describe all static resources
4 ESCD is a resource map

74

Plug and Play Saves Money

% of

Total
Producy

Costs | Factory
Configured

Agenda

u PnP Overview
» DOS*/Windows*/BIOS PnP Architecture
= PCMCIA on the desktop

= PnP DOS*/Windows* migration to
Windows*95

= PnP Debug/Support Issues
» DOS*/Windows* Product Plans/Support

“Other trademarks are the property of their respective owners. R

Future PnP Software Products

u Intel will continue to update software kit as needed
m Symantec incorporated ICU/CM in “More PC-Tools”
(Q4/95)
€ Available in retail stores
m Microsoft Windows*95
4 Rich Ease of Use environment
= IBM 0S/2
4 Incorporating Ease of Use features

75

PnP Issues Continued

= Non-PnP card claiming to be “Plug and Play”
= Legacy card with no CFG file for ICU

@ Add CFG file

@ Use “unlisted” option in ICU

4 Contact Intel to develop or integrate CFG
m Other issues?

Plug and Play Kit Plans

m Release 1.41JP Japanese (Kanji) Win 3.1 (no
DOS)

m Release 1.41CN Chinese Win 3.1 (no DOS)
4 Goal: March/April
m Release 1.41 BIOS Enhancement and DOS/Win
3.1

@ Release: February
Feature enhancement: PCI-PCI bridge support
4 10 European Languages Support

7 Goal: March

PnP Support Contacts

u Customer Support: 1-800-628-8686 or
1-916-356-3551

m Customer FaxBack: 1-800-628-2283

u BBS: 1-916-356-3600 North America

44-793-496340 Europe

n Developers Kit: 1-800-253-3696

= Plug and Play Association Information
P.O. Box 14070
Portland, OR 97214-9499
(800) 433-3695, (503) 797-4244
(503) 234-6762 Fax

PnP Support Contacts cont. Key Message

= Compuserve Forum: “go plugplay”

PP ISA, BIOS, SCSI, Mobile, PCMCIA etc. = To get Plug and Play today you

u Internet must have:
4 ftp.intel.com or www.intel.com #Plug and Play BIOS
4 ftp.microsoft.com or www.microsoft.com ACompliant to 1.0A specification

4CM and ICU installed on hard disk for

MS-DOS* and Windows* 3.1 systems i
#Plug and Play cards

ZPCI, PnP ISA or PCMCIA

R e . AN
Summary
Appendix
& Plug and Play is:
@ Developed for MS-DOS* and Windows* 3.1 today
@ Fully compatible with Windows*95
= Plug and Play saves money, reduces end-user
frustration y
m Ship systems with ICU/CM pre-installed
& ESCD reflects all cards including legacy
= Plug and Play is an industry backed standard
= OEM’s, BIOS and IHV’s have begun rolling out Plug
and Play Products now
Sy e R R
i PnP BIOS
Call To Action
u Configure Plug and Play devices
@ Detect
m Focus on making the PC as easy to use as possible 4 Allocate system resources
m Develop PCI cards fully compliant to the PCI spec. * °°"“:"'° c
A £ : = Run-tii ccess to
¢ full PnP ality @ Motherboard
u Develop fully integrated PnP PCs @ ISA, EISA, MCA
4 PCl 4 Plug and Play ISA and PCI
4 PnPISA
4 PCMCIA
Make the PC an Information Appliance S| [FFese T
Platform 1.0A BIOS Extensions
Bios | l Runtime | (PCI & ISA)
oo Platform Dependent

76

Extended System Configuration Data

eStores All Configuration Information
eMotherboard devices
oISA, EISA, MCA add-ins
ePlug and Play add-ins
= ds EISA Confi i
ePlug and Play Configuration Information
eLast working configuration
ePrevious boot assigned resources
#ICU and ECU assigned resources
eLocked Resources
eNon P&P environments (i.e. Unix)

- Standard PnP BIOS Intel PnP
Platform 1.0A BIOS Extensions
BIOS Runtime (PCI & ISA)

Platform Dependent

ISA Configuration Utility

ISA Configuration Utility . Siii"éillﬁliff;s

e . =7 u Supported Environments
Utilities Utility IDa'“base' or [ECU : xﬂsdnws
os PCI
Device Drivers

Run-time Configuration Manager cs
Services (PnP ISA Configuration) APl

OS Dependent

- Standard PnP BIOS Intel PnP
Platform 1.0A BIOS Extensions
BIOS Runtime (PCI & ISA)

*Other trademarks are the property of thelr respective owners.

Platform Dependent

Plug and Play Implementation Today

Intel Delivers... .

L Plug and Play Kit for MS-DOS*
BIOS Enhancement Kit (with and Windows* (with

PnP BIOS, sions) c ion Manager and
* Configuration Utility) +
OEMs and [= @
|
)
PCMCIA

IHVs
/ PCl PCMCIA
Users Purchase...

incorporate..
- ot a s s o gy or o R

PnP ISA

PCI, PP ISA, S~

Configuration Manager

s Configure Plug and Play ISA e Assist PCMCIA Card
oL Services
egacy systems s rted Envi "
= Access to configuration data * upported Environments
. . - Legacy systems
Device drivers
- Plug and Play systems

Utilities
Plug and Play Kit for
4 MS-DOS* and
Windows*
gunjﬁme Configuration Manager cs
ervices (PnP ISA Configuration) AP

- Standard PnP BIOS intel PnP
Platform 1.0A BIOS Extensions
BIOS Runtime | (PCI & ISA)

“Other trademarks ars the property of thels respective owners.

Platform Dependent

PnP Architecture

ISA Configuration Utility

o [Configurati |ACFG| ECU
Utilities Utility Database || °" OS Dependent

PCMCIA
0s PCI !
Device Drivers Clients
Run-time Configuration Manager | cs PCMCIA
Services (PnP ISA Configuration) | API [™] Card Services

T

PnP BIOS Intel PnP PCMCIA
1.0A BIOS Extensions ocket Services
Runtime (PCI & 1SA)

Platform Dependent

ABSTRACT

Obtaining Maximized Performing Cost-Efficient Design
With Core Logic for Pentium-based PCI Systems

by Dr. S.]. Lee
Acer Laboratories Inc. (AL1)

Ali (Acer Laboratories, Inc.) will discuss the key issues in providing PCI Pentium PC
designers with system core logic which is able to meet the system cost-pressures of
Pentium-class CPUs becoming a main-stream technology, without sacrificing
performance.

The product with which Ali has implemented its solution is the Aladdin M1511

Memory Buffer Controller, M1513 System I/O Controller and M1512 Data Path
Buffers.

One of the key elements in the chin architectnre which Ali has designed for its
Pentium/M1/K5 system core logic is its buffering approach to maximize data transfer
and maintain concurrent operations between CPU, memory, PCI bus and IDE. The
Memory Buffer Controller integrates the cache controller, memory controller and the
buffer controller between Host and PCI. The buffer controller is used to optimize the
Host to PCI memory cycle to improve the graphic performance, by merging the Host
byte/word/dword cycle to perform burst or back-to-back PCI cycles. The memory
controller is architected to support memory sizes up to 768 MB in six banks. The
secondary level cache can be 256K, 512K or 1MB in write-back mode, using
asynchronous or Pipeline Burst SRAM performing an N-1-1-1 cycle are all supported
in Aladdin. Fast page mode DRAMs and EDO DRAMs performing an N-2-2-2 cycle
can be achieved for maximum system design flexibility and cost optimized design.

The 8-level qword write buffers to 64-bit main memory in the Data Path buffer, have
been designed to quickly respond to memory requests of both Host and I/O Masters.
Posted write buffer and prefetching read buffer berween Host and PCI bus have been
developed to not only sustain the Host to PCI slave throughput, but also to maximize
the utilization of PCI bandwidth requested by PCI masters. The APIC multiprocessor
protocol and all PC-AT macro logic are supported in the System I/O controller. Also,
the IDE inverface controller and AT Keyboard controller are integrated, providing
greater cost efficiency and design options.

78

ALTA-S/MP MEMORY CONTROLLER AND PCI BRIDGE

John Derrick
IBM Microelectronics
1000 River Street, Essex Jdct., VT 05452

ABSTRACT

ALTA-S/MP is a family of memory controller and PCI
Bridges that are optimized for peak PCI performance.
They have been architected to maximize the bandwidth
of the PCI Bus in real system design.

Extensive prefetching and buffering of reads and writes
to main memory, PCI memory address space, and other
innovative features that optimize bandwidth provide
leading edge performance while providing full proces-
sor and PCI bus parity and memory EDAC protection.

These leading edge performance enhancements and pro-
grammable features also enable the ALTA-S/MP family
to support processors from Intel, Cyrix, IBM, and other
similar processors in an optimal fashion.

IBM's leading edge device, packaging, and tools tech-
nology enabled the ALTA-S/MP design team to imple-
ment 133 MHz I/O resolution for memory control sig-
nals and 133 MHz internal logic to maximize system
performance.

KEY FEATURES

Processors Supported:
Intel Pentium(yy;) Class Processors

Cyrix 586-Class Processors
IBM 586-Class Processors
AMD 586-Class Processors

DRAM Interface
*Up to 1 GB of ECC-Protected DRAM.
*ECC Codes are generated/checked with Parity
Performance.

79

*Single Bit and Double Bit Errors are recorded, Double

Bit errors are tagged in memory so no error
information is lost.

*16 Non-Interleaved 64-bit or 8 Interleaved
128-bit Banks.

*1/2 Clock resolution RAS and CAS control pulses
for optimal memory timings. (7.5 ns at 66 MHz)
*Partial Write Optimization minimizes reads for
optimal ECC read-modify-write performance.

*Page_Miss_Mode to eliminate Page Miss Penalty in
Dual and Multi-processor Systems.

*Address and Data-Flow paths are latched at chip edge
thus, timings are predictable allowing for optimal
system designs.

*Memory Map is highly programmable with 4 MB
resolution of the memory map in non-interleave
mode and 8 MB resolution in interleave mode.

CPU Interface
*Supports Serial and Look-Aside L2 Caches with CPU
Address Pipeling and Programmable Cache Timings.
*Full CPU Address and Data Parity Generation and
Checking.
*Extensive Buffering and Prefetching

PCI Master Interface

*Programmable ROM Decode
*Write Buffering with Programmable Compression
*PCI 2.0 Compliant, will be PCI 2.1 Compliant

PCI Slave Interface

*Buffering and Prefetching
*PCI 2.0 Compliant, will be PCI 2.1 Compliant

KEY PERFORMANCE ADVANTAGES

ALTA-S/MP offer significant performance advantages
not found in other memory controllers and PCI bridges.
They also support a wide range of processors and ex-
ternal cache controllers to match the price performance
required for a wide range of system needs. These fea-
tures are outlined below.

Level-2 Cache Controllers

The ALTA-S/MP family of memory controller and PCI Bridges
support both a Look-Aside Cache and various Serial Cache
Controllers.

Look-Aside LYNX L2 Cache Controller (Write-Back or Write-
Thru)

LYNX using Async SRAM can support 256K, 512K, 1M &
2MB L2 Caches.
3-2-2-2 bursts when running without CPU Address

Pipeling.
(about 213 MB/sec local bus bandwidth @ 66 MHz)

3-2-2-2-2-2-2-2 bursts when CPU Address Pipeling is
enabled.
(approaches 267 MB/sec local bus bandwidth @ 66 MHz)

LYNX using Sync SRAM can support 256K, 512K & 1MB L2
Caches.

3-1-1-1 bursts when running without CPU Address Pipeling.
(about 305 MB/sec local bus bandwidth @ 66 MHz)
3-11121 11 bursts whien CPU Address Pipeiing 1s en-
abled.

(about 427 MB/sec local bus bandwidth @ 66 MHz)

Serial L2 Cache Controllers (Write-Back or Write-Thru)

ALTA-S/MP supports both a local bus frequency
matching the CPU local bus frequency and a local
bus frequency matching the PCI bus frequency. This
allows the most flexibility in choosing Serial L2 con-
trollers. CPU Address Pipeling is fully supported for
serial caches also.

80

Full Concurrency:

The following groups of transactions may occur
simultaneously. Interrupt Acknowledge cycles
and I/O cycles cause the write and pre-fetch
buffering to be cleared.

CPU-to-L2 Accesses

CPU-to-PCI Accesses

CPU-to-Memory Accesses
PCI-to-Memory (non-Cacheable) Accesses

CPU-to-L2 Accesses
CPU-to-PCI Accesses-
PCI-to-Memory (Cacheable} Accesses

The CPU-to-Memory Data write path includes a 40-Byle
write buffer for cast-outs and single memory writes.The
write-back data path for PCI originated snoops have
32-Bytes of CPU frequency buffering and 32-Bytes of
PCI frequency buffering.

The CPU-to-Memory Data read path includes a 32-
Byte read buffer used for prefetched read allocation
cycles during cast-out for allocation cycles. This allows
data to be retrieved for a line-fill concurrent to the L2
casting out the dirty cache line about to be replaced.

The CPU-to-PCI Data write path includes a 24-Byte
write buffer that offers programmable compression.
This buffering and compression enables the proces-
sor to generate higher bandwidth (burst transfers)
as the PCI bus becomes utilized. This offers some
dynamic performance tuning without adding latency
to CPU-to-PCI write cycles.

The PCI-to-Memory Data write path includes a 32-
Byte Buffer, shared with the write-back data path,
that allows PCI masters to write a full cache-line of
data concurrent with the processor snoop inquire or
snoop invalidate cycle.

ALTA-S/MP BUFFER SCHEME

Memory
- Interface
i il / [
: 32-Byte
CigtgggzieBus E Prefetch Buffer 8-Byte
: Write Buffer
—_—
é 32-Byte Y
e Write Buffer
: / 32-Byte
: > Writ&-Back
: Buffer
: 16-Byte PCI
H Write Buffer
Jessensensesnnsaressnsansnsnnsnfunsansnsnnchanennsansnsnnsnsssnsafennansnsanendansnasncnansasnal

PCI MASTER PCI SLAVE
Interface Interface

Concurrent Operations:

The 16—-Byte PCI Write Buffer may contain memory write cycles
and data destined for PCI Address Space.

The 8—Byte Write Buffer to Memory may contain a memory write
cycle destined for Planar Address Space.

The 32-Byte Write—Back Buffer may be prefetching a PCI Master
memory read or posting a PCI Master memory writes.

The 32—-Byte Write Buffer may be posting the Cache Write—Back
while the 32-Byte Write—Back Buffer is prepared for data merge.

The 32-Byte Write Buffer may fill while the 32—-Byte Prefetch
Buffer fills during a Cast—Out for Allocation.

note: Locked Accesses and Interrupt Acknowledge Cycles cause buffers to flush.

81

ALTA-S

LYNX L2 CACHE

A

CPU#1 < l
' ~| ALTA-S
CPU#2 CPU BUS
PCI
BUS
At aam
AL A-IVIF
CPU#1 CPU#2 CPU#3 CPU#4

CACHE#1

L__.I___l

CACHE#2

ALTA-¥
™¢

PCI
BUS

82

[<¢——p> PLANAR

MEMORY

l——p» PLANAR

MEMORY

Overview of the use of the PCI bus in Present and Future
High Energy Physics Data Acquisition Systems

A.van Praag, R.A. McLaren, J-P. Matheys, P. Vande Vyvre, CERN, Geneva, Switzerland

T. Anguelov, G. Georgiev, S. Piperov, I. Vankov, INRNE - BAS, Sofia, Bulgaria

D. Gillot, A. Guglielmi, Digital Equipment Corporation, Joint project office, CERN

0. Orel, A. Sytin, THEP, Prodvino, Russia

ABSTRACT

Due to its very complex data acquisition systems
High Energy Physics (HEP) experiments are
always looking for cheap and fast computers and
communication equipment. PCI as a mainstream
product is one of the new technologies responding
to these criteria. After a short introduction of
CERN and its Particle Physics Facilities, the first
part of this article describes, with a real
development project as example, the specific
problems of data acquisition HEP experiments
with the future LHC accelerator. Solutions where
PCI technology will play a role will be presented,
showing as examples the use of a VMEbus
module with dual port ram and PCI to SCI
interfaces. The second part describes the NA48
experiment including a detailed description of
the development of the PCI to HIPPI interface.

INTRODUCTION

In the war-ravaged Europe of the early 1950s, a
far sighted group of scientists and politicians
envisioned a new adventure in science, a
European scientific laboratory. Even then, it was
clear that state-of-the art science needed
research facilities larger and more complex than
individual nations could afford. In this way
Europe’s role in fundamental science would be
restored, at the same time bringing together
people from countries which had been at war
only few years before. In 1954 twelve countries
started to work on a 600 MeV Synchro-Cyclotron
on the Meyrin Site in Switzerland. In Parallel
CERN began to build the Proton Synchrotron
(PS). This came into operation in 1959 and for a
time was the most powerful particle accelerator
in the world, supplying experiments with 28 GeV
beams of protons. This accelerator is still the

83

kingpin, being the first of the actual system of
interconnected accelerators.

In 1976 the PS was followed by a new more
powerful Super Proton Synchrotron (SPS)
machine of 450 GeV. This accelerator has a
circumference of 7 Km and passes under the
Swiss-French border.

In 1983 work started on the Large Electron
Positron Accelerator (LEP). Constructed in a
27 Km tunnel, the first particles were accelerated
during 1989, with an energy of up to 45 GeV.
LEP will by 1995 reach an energy of 90 GeV.

On 16 December 1994 the CERN member states
decided to continue the extension of the
laboratory with the construction of the Large
Hadron Collider (LHC) in the same 27 Km
tunnel, having two intersecting accelerator tubes
with an energy of over 7 TeV each. During the
short history of CERN the number of member-
states has grown to nineteen and four more
countries have an observer status.

PART 1: DATA ACQUISITION FOR THE
LHC ATLAS DETECTOR

Several physics experiments will use the LHC
accelerator. Three of them have already been
approved: Atlas and CMS will study proton-
proton collisions and ALICE will observe heavy
ion interactions. An experiment consists of
different specialized detectors each of them
containing tens of thousands of channels. There
are interactions in the detectors each 25ns
(40 MHz), but only a fraction of these is of
interest. Filters are foreseen with several levels
of triggers to select and store only selected data.
In Atlas the architecture uses three levels
(LVL1, LVL2, LVL3) as shown in Fig. 1. At
LVL1, special-purpose processors act on reduced

granularity data from a subset of the detectors.
The LVL2 detector trigger uses full granularity,
full precision data from most of the detectors, but
examines only regions of the detector identified

RATE [Hz]
DATA RATE

10*-10°
10 - 100 GB/s

derandomizing

—% digital buffer
memories

10%10°
100 - 1000 MB/s
I READOUT/EVENT BUILDING Eswitch

. o

{ p:ﬁ; st s INTF INTF INTF Binterface
(pC [nre} [l

LVL3 : L

processor
farm

LVL2 <
~1-10 mséc

10'-10°
~10 - 100 MB/s

I Data Storage E

Fig 1: The Atlas Architecture

by LVL1 as containing interesting information,
the so-called Regions Of Interest (ROI). At LVL3,
the full event data is used to make the final
selection of events to be recorded for off-line
analysis. The LVL1 trigger accepts data at the
full LHC bunch crossing frequency of 40 MHz
(every 25 ns). The latency time necessary to form
and distribute the LVL1 decision is ~2 ps, and
the number of positive decisions is expected to be
10%/s. Hence the LVL1 trigger must select no
more than one interaction in ~10°. During the
LVL1 trigger processing the data from all parts
of the detector are held in pipeline memories.
Requirements of the LVL1 trigger are that it
must identify unambiguously the bunch crossing
that contains the region of interest with a
negligible deadtime.

The LVL2 trigger must reduce the data rate from
up to 100 KHz after LVL1 to ~1 KHz. Its

architecture is based on ROIs. The LVL2 trigger
has therefore to access and process only small
fractions of the data which is an advantage for
the required processing and data movement
capacity. The processing is divided in two phases,
extraction of the ROI and summarize it in a few
data words, and combine it with information
from other ROIs to make the LVL2 decision. The
LVL2 latency is variable from ~1 to ~10 ms.

After an event is accepted by the LVL2 trigger,
the full data is sent, via the event builder, to the
LVL3 processor farm where reconstruction of the
physics phenomena is possible. Decision times
are up to ~1 s. After the final selection made by
LVL3, data will be stored at a rate of
10-100 MB/s.

CAN PCI COMPONENTS BE OF USE?

The planning for LHC is that it will be
operational in 2004, and that the technology will
be frozen in 1997. Standards will be wused
wherever possible.

For the LVL1 part, the time available to do some
very specific operations on the unfiltered data
makes it necessary to construct the largest part
of this front end with dedicated electronics.

The Digital Buffer Memories

Data accepted by the LVL1 trigger is transmitted
to the digital buffer memories (Fig 1). Data input
rates of 100 MB/s per memory are expected.
Simultaneously, data from accepted LVL2 events
must be output to the event builder. A dual port
memory architecture with sophisticated memory
management is therefore required. Currently

PMC #1

DSP CPU
High Power CPU VSB interface
High Speed Interfac High Speed Interfac:

or or
Custom Logic Custom Logic

FRONTPANEL CONNECTORS

Fig 2: The RIO2 Block Diagram

84

neither the input nor the output links have been
chosen. Therefore it could be judicious to specify
the PCI bus as input and output to the digital
memories, allowing easier implementation of any
link type. An example of a suitable module is
currently being designed by Creative Electronic
Systems (CES). The RIO2 VMEbus module is
shown in Fig 2. It has a Power-PC 603 or 604 as
processor, 8 - 128 MB memory and a PCI main
bus. One PCI Mezzanine Card (PMC) slot is
directly coupled to the main bus. The second
PMC is coupled to this bus both via a PCI to PCI
buffer, and via an up to 2 MB dual port memory.
The throughput of each memory port is
132 MB/s.

The LVL2 and LVL3 Interfaces

Referring again to Fig 1, the output of the digital
buffer memories are transmitted through high
speed links to the input of the event builder. The
outputs of the event builder are connected to the
LVL3 processor farm interfaces built out of
standard workstations. Most manufacturers have
announced PCI on their new models. The link
technology used can be (Serial) HIPPI or in the
near future Fibre Channel Standard (¥CS) or
Scalable Coherent Interface (SCI). ATM is
another possibility under evaluation. If we
assume that the digital buffer memory and the
LVL3 interface use PCI internally, then
interfaces between the link technology and PCI
are required. Possible solutions for the system
are:

1: HIPPI
The maximum throughput for HIPPI is
100 - 200 MB/s as given in the HIPPI-PH

specification. Several HIPPI to PCI and Serial-
HIPPI to PCI interfaces are under development
by Genroco, Essential Communications and at
CERN. No developments for the PMC form factor
are known.

2: FCS

The maximum throughput for FCS is 100 MB/s
as given in the FC-PH specification. Several PCI
to Fibre Channel and PMC to Fibre channel
interfaces are under development in industry by
among others Western Digital, Emulex and
Interphase. One of the difficulties is to combine
the standard optical FCS modules with limited
dimensions, especially height, of the PMC.

85

3: ATM

ATM specifies speeds from 155 Mb/s up to
2.4 Gb/s, where 1.2 Gb/s corresponds with
100 MB/s. PCI to ATM interfaces are under
development by several companies, for example
Newbridge, Efficient Networks and Digiboard.
The development of an ATM PMC inetrface is
under evaluation as part of a collaboration
between at CERN and Uppsala University. All
these interfaces cover the 155 Mb/s speed only.

4: SCI

The maximum link speed in the SCI specification
is 1 GB/s.

A development project for a PCI to SCI interface
has been started at CERN. The interface to the
PCI bus will use the AT&T Orca FPGA, for data
and PCI bus control, as shown in Fig 3.

Fig 3: The CERN PCI to SCI Interface
The internal logic of the card is built with a DMA

engine and address protection logic both
implemented in PALs. They couple via a bus
adapter to the Cbus entry of the SCI interface, a
Dolphin Nodechip. The 64 bit SCI address is built
by storing a number of the high words (A32-A63)
in RAM and passing the low word (A00-A31), via
the necessary buffers for bus adaptation, directly
from the PCI bus to the SCI interface.

A very similar PCI-SCI interface but including a
256 word bi-directional FIFO in the data path is
developed by Manchester University in
collaboration with CERN [Hughes, 1994]. It is
intended to be used in the Atlas LVL2 trigger.

PART 2: DATA ACQUISITION FOR NA 48

The NA 48 is a CP violation experiment. It is now
in the construction phase. It should be fully
operational in 1996 and finish before the
installation of LHC.

/ DUAL PORT DISKS /

Serial-HIPPI

HIPPI SWITCH to Computer Centre

4 X 4 + Serial-HIPPI

ETHERNET

REEEEE

Fig 4: The NA 48 Data Flow

In the NA 48 experiment a few thousand events
per second are expected after the second level
trigger (LVL2) during every accelerator cycle (a
spill of ~2.5 s every 15 s), resulting in a data
block of up to 250 MB. These data are then to be
processed by the third level trigger (LVL3) which
requires the power and flexibility of powerful
workstations. Three sequential interleaving
workstations are used because processing of this
quantity of data needs more time than is
available between spills. The very high event
rate does not allow any software intervention
during the data transfer. Local disks are used
for storage, complemented with a 10 Km high
speed fiber optic link to the central computer
center. Fig 4 shows an overview of the system.

Spill distribution is based on point-to-point
HIPPI connections. The data block is distributed
spill by spill using a HIPPI crossbar switch. The

processors are DEC Alpha workstations with
TURBOchannel interfaces. As part of a joint
project, HIPPI to TURBOchannel interfaces were
developed at CERN; the OSF/1 device drivers
were developed by DEC. On top of the driver is a
user level library. Tests with this architecture
have shown that 64 MB of data can be
transferred in ~770 ms from the event builder to
a DECstation AXP 5000/200, including software
overhead and Ethernet feedback to the data
source. This corresponds to a transfer speed of
83.1 MB/s. Block sizes larger than 64 MB could
not be tested because of the limits in the OSF/1
version 2 operating system. The very recent
OSF/1 version 3 does not have this limit and tests
with block sizes of up to 250 MB have been
performed. To connect to the central computer
center, one port of the switch is equipped with a
Serial HIPPI module. The connection is made
with single mode fiber optic cable.

Moving From TURBOchannel to PCI.

In the future more powerful workstations are
needed. DEC has announced that new
workstations will no longer support TURBO
channel, instead they will be equipped with PCI
interfaces.

In a new joint project the former partners have
therefore agreed to develop a PCI to HIPPI
interface that meets the NA48 specifications,
adapting at the same time the drivers but
maintaining the user level library. In parallel
new industrial PCI to HIPPI and PCI to Serial-
HIPPI interfaces will be evaluated as they
become available.

THE PCI TO HIPPI INTERFACE

The HIPPI to PCI modules are built around a
PCI interface with a DMA Engine, a Scatter
Gather Memory, a History Memory, and the
HIPPI Interfaces. The block diagram for the
Destination is shown in Fig5. The only
differences for the Source are that the data flow
goes in the opposite direction and the use of a
different HIPPI circuit.

As CERN developments are often very
specialized, quantities for economic use of ASICs
are rarely reached. For this reason the PCI
interface has to be implemented using

86

required to store the maximum allowed quantity
of data. At present 64 KB is foreseen which
corresponds to a 256 MB transfer block on an
Alpha DS 5000/200, and 512 MB on the new PCI
stations. Bit 31 indicates the last page allowed
for the current transfer. The scatter/gather
memory must be initialized by the processor
before start of the transfer, using I/O operations.

Fig 5: Block diagram of the PCI to HIPPI

programmable logic. The only FPGA for the PCI
interface, available at the start of the project,
that is fully compliant with the PCI AC-drive
parameters was the iFX8160. This FPGA is
complemented by a Xilinx XP 4006 containing
register files, the DMA engine, and the memory
control. As the iFX8160 has no possibilities to
bring a buffered clock to the output pins an
external Phased Lock Loop is used for clock
distribution.

Interrupts

All interrupts except “End of Transfer” will be
masked during transfer. To allow a simpler way
of event building by using the connectivity
control of the switch, an external interrupt on
the back panel will be included and can replace
the “End of Transfer” with an external signal
coming from the system, such as “End of Spill”.

The Scatter Gather Memory

In order to allow the sustained speed for
receiving very large blocks of data, the host
processor should not interact in the transfer
process. In the HIPPI destination and in the
HIPPI source, this is done by including a
Scatter/Gather Memory and a History Memory.
For every page boundary a scatter/gather index
addresses the scatter gather memory and a new
address is loaded into the DMA write pointer.
This is the first address of the new page to be
accessed. From here the DMA write pointer
increments for every word transferred. At the
end of the page a new page address is fetched the
same way from the scatter/gather memory. The
size of the scatter/gather memory is system
determined, and depends on the number of pages

87

The History Memory

For the same reasons of speed, the pointers and
messages concerning the transfer are not
forwarded to the host, but stored in a history
memory. Tags contain such data as “Burst
Status”, “End of Packet”, “End of Connection”
and LLRC and Parity errors. The offset to the
beginning of the transfer is stored with the tag.
The processor can access the history memory
only after the transfer is finished, using normal
I/O operations.

Scatter/gather memory and history memory fit
together in a fast 4 MB (4 x 128x8) static memory
that is included in the normal PCI address space
of the Source and Destination boards as follows:

Base Address Address Window Unit
XXX 00000-3FFFF Registers
XXX 40000-7FFFF FIFO
XXX 80000-BFFFF Scatter/Gather
XXX C0000-FFFFF History Memory

FIFO Memories and HIPPI Interfaces

Due to the 10 Km link to drive, large FIFOs, in
the order of 4 Kwords (2 X 74ACT3651) are
necessary. The HIPPI interfaces are built around
AMCC circuits, the S2020 for the source and the
52021 for the Destination. A power converter
generates the necessary voltages for HIPPI.

Solving the Mechanical problems

Mounting two 100-pin HIPPI connectors for a full
duplex interface needs a double-width back

Fig 6: A double width panel vs. two modules

panel, or a special solution. Using an I/O cable
into a remote connection box is too delicate in a
HEP experiment environment. The logical
solution is two independent units, one as a HIPPI
Source and the other as a HIPPI Destination, as
shown in Fig 6. At the same time the power
dissipation per module is within the limits of the
PCI specifications.

Alpha Specific Properties

Looking in depth at the present Alpha station, its
internal circuitry uses the 21072-AA IC. An
interesting point is that this processor bus to PCI
interface chip, according to the datasheet, shows
asymmetrical throughput for different speeds
and modes:

Mode Read/Write Speed MB/s HIPPI Function
DMA W 120 Destination
DMA R 70 Source
Pr. /O W 84 Destination
Pr. /O R 22 Source

To obtain speeds in the 70 - 80 MB/s range, the
best results can be obtained if the HIPPI
Destination wuses DMA mode. However,
programmed I/O seems to be fast enough. The
HIPPI Source will have much better throughput
using DMA transfer. During DMA transfers the
processor should be idle; if programmed I/O is
used the processor should only do the transfer
and no other tasks.

Project Status

A prototype board has been mounted and is ready
for tests. The rather simple implementation
needs wait-states during set-up and page
switching. This means that speeds will probably
not be better than 60-70 MB/s, and as such not
fast enough for the final needs of NA48. Having
this solution working, the project will be
continued with the development of 64-bit PCI
interfaces where the 100 MB/s speed of HIPPI
can be sustained. In this second version both
Source and Destination modules will have both
programmed I/O and DMA transfer possibilities.

CONCLUSION

Data acquisition for HEP has always been
looking for more computing power with faster

interconnect possibilities. In the past this- was
done with dedicated electronics and interfaces.
The PCI gives the physics community an I/O
standard that is fast enough to solve a large
number of its speed problems. In addition, HEP
experiments have a lifetime from design to end of
operation of 20 years. This spans several
generations of computer technology, therefore
the interconnections have to be as flexible as
possible. PCI and PMC offer a fast, processor
independent, industrially supported solution.

PCI could be used on many places in future HEP
data acquisition systems and its influence will
certainly go much further than the few examples
described here.

REFERENCES

PCI Local Bus Specification, Rev2.0, April 1993
PCI Special Interest Group, Oregon

Proposed Standard for a Common Mezzanine Card
Family: CMC, IEEE P1386/Draft 1.5, September 1994

Proposed Standard Physical and Environmental
Layers for PCI Mezzanine Cards: PMC,
P1386.1/Draft 1.5, September 1994

Atlas Technical Proposal, Chapter "Trigger, DAQ and
Computing”,
WWW: http://atlasinfo.cern.ch:80/Atlas/Welcome.html

T. Anguelov, “HIPPI to TURBOchannel Interface”
CERN/EAST note 93-07, 21 June 1993.

A. Van Praag, et al, “HIPPI Developments for CERN
Experiments”, CERN/ECP 91-28, 7 November 1991.
Presented at IEEE NSS 1991

Datasheet RIO2 8060/8061, Creative Electronic
Systems, Geneva, 1994

SCI Subsystems for HEP Experiments,
R.E.Hughes-Jones, et, al, Manchester University.
October 1994. Presented Open Bus 1994, Paris

J-P. Matheys, et al, “Data Transfer and Distribution
at 70 Mbytes/s”, CERN/ECP 93-7, 19 July 1993.
Presented at IEEE RT 1993

CERN High Speed Interconnect project,
WWW: http://www.cern.ch/HSI

88

PC Architectures for Video Capture

Aki Kaniel
Marketing Manager, Digital Video Products
Philips Semiconductors , Sunnyvale, CA.

Abstract:

Video capture to PCI computers will be discussed. The real-time
requirements and the solutions of video capture via CPU memory and direct
to Graphics Frame Buffer will be discussed as well as the Philips chipset
designed for these applications.

1. The Video Capture Challenges

Video capture has real time and high data rate requirements. Besides the raw bus
bandwidth it is much more important to assure the availability of enough bandwidth at
the right time. It is the nature of live multimedia data streams that the flow of video data
can not be stopped. Input data, that is not captured, is lost. A multimedia presentation
which is paused or has gaps and interruptions is quite disturbing. Scheduling and
bandwidth allocation in a predictable manner on the video bus is a major issue.
Dedicating a secondary bus for multimedia use reduces that problem, but it is still
effected by the randomness of the main system access to the secondary bus.

A further criteria to measure the robustness of a bus is its capability to recover from
an error and to handle conflicting demands beyond the safety margin of abundant bus
bandwidth . The priority control for the arbiter on PCI can manage and distinguish the
real-time importance of each master requesting the bus.

If the multimedia bus is so overloaded, that certain data can not be transmitted in
time, this data will be lost. The source based and destination targeting DMA control of
PCI transfers can easily recover from denied bus access, as the next data burst transfer of
the affected data channel incorporates the actual physical address. The visual degradation
of live video information by losing a couple of pixels is marginal, as long as the real time
phase, i.e. position of transmitted pixels is maintained.

2. Video Capture subsystems

Video capture subsystems are found on add- on boards or on the mother board of
personal computers. The main purpose of video capture subsystems, is to make the video
information available for display on the computer screen, for example as video in a
window, surrounded or overlaid by graphics. Add-on cards for PCI based PCs are based
on two architectures. In both architectures analog video input is sampled, digitized,
decoded into RGB or YUYV signals and scaled.

In a Video Display Only system, the video data is stored in a frame buffer shared
with the graphics engine. Note that the graphic controller need to have an Image Port to
receive the video data stream.

In a Video Processing system, the video data is transferred via under DMA control
to any memory in the computer (CPU memory, Hard Disk, communication CODEC,
graphic display frame buffer). In both systems the merging of video and graphics signals
is done in the digital domain.

89

Both architectures has significant advantage in size, cost and performance, as it
eliminates the video controller, local image memory, dual ported RAMDAC:S, etc. Note
that the inexpensive Video Display Only architecture does not make the video data
available for other purposes than display, such as video compression or encoding to a
VCR. The Video Processing architecture maintains system and application flexibility at a
somewhat higher cost.

3. PCI Local Bus

Intel developed the Peripheral Components Interconnect (PCI) as a high bandwidth
bus for next generation high performance desktop computer and workstation. PCI is a 32
(or 64) bit wide bus, with 17 or more auxiliary control signals, and a maximum clock
frequency of 33 MHz. Addresses and data are multiplexed and travel on the same wires
of the bus. The raw 32 bit bus data bandwidth is 132 MBytes/s. Multiple 'master' agents
can be on the bus and access is dynamically granted by a central arbiter under control of a
priority scheme and latency counters, which are set up by the operating system. Any
client with master capability on the PCI has its own DMA control and can read from and
write to any memory address in the system, without involvement of the CPU.

The PCI-SIG (Special Interest Group) supplemented the PCI design guide with a 'PCI
for multimedia design guide'. It discusses considerations and gives advice for system
configuration on the PCI bus supporting multimedia applications, without changing the
actual specification of the bus. The major issues are how to organize the system in order
to guarantee maximum latency for real-time signals, and to define the required amount of
FIFO-buffering in particular devices. In planar systems where the CPU and the
peripheral components reside on the same bus, the PCI bus can handle a certain amount
of real-time multimedia data transfers under 'business' performance requirements and
some reasonable assumption about the behavior of the rest of the system. For more
demanding, more complex and high performance multimedia applications. e.g. with
multiple live video pictures on the screen, it is recommended to utilize a secondary PCI
bus, which is dedicated to the multimedia data transfers. PCI multimedia bus and system
bus are connected via a 'bridge' containing FIFO buffers. The latency considerations
regarding the multimedia PCI are much more predictable in that case.

4. System Solutions and Integrated Circuits

Philips Semiconductors offers various video Tuners and ICs for desktop video
applications. The SAA7110 and SAA7111 are ideal for Video Display Only systems.

Several chipsets are available for Video processing systems. The SAA7116 is a
Digital Video to PCI Interface IC. The SAA7116 incorporates a FIFO decoupling the real
time video data stream from the PCI bus and provides two DMA channels to deliver the
data in packed rasterized format for local display or planar format for compression
applications. The SAA7116 has a glueless interface to other Philips video capture and
scaling ICs like the SAA7110 and SAA7111 digital video decoders, SAA7186 and
SAAT7T140 digital video scalar or SAA7196 digital video decoder and scaler.

20

Sound, Graphics, and MPEG Video on a Single PCI Card

Michael K. Harris & Tony Chu
Avance Logic, Inc.
47509 Seabridge Drive
Fremont, CA 94538
Ph. (510) 226-8555 Fax (510) 226-8039

ABSTRACT

The Peripheral Component Interconnect (PCI)
bus is ideally suited for transferring large
amounts of multi-media data to the new
generation of audio and video products currently
available from Avance Logic and other
companies. One inherent drawback of the PCI
bus has always been the “one-load” requirement
which is why multi-function cards have not
existed in the market. The other drawback of
using the PCI bus for multi-media data transfers
is the danger of overloading the system bus
which is also used for graphics, mass-storage,
network and other essential systems functions.

91

The authors suggest a single device which
integrates PCI to PCI and PCI to ISA bridges
along with video input and processing functions.
With this and other devices (PCI graphics, ISA
sound, video/MPEG decoder), an all-in-one
multimedia PCI card can be constructed.
Furthermore, most multi-media data is
transferred on the secondary PCI bus without
occupying significant bandwidth of the primary
PCI bus.

Performance and Backplane Positioning of PCI Adapter Cards

Dennis Aldridge
Director of Product Marketing
Texas Microsystems
P.O. Box 42963
Houston, TX 77242
(713) 541-8200/8226 (fax)

This session will present issues in use and performance of PCI adapter cards in front and behind the bridge.

92

CMC Mechanical Implementation

David C. Moore
Senior Hardware Engineer
Digital Equipment Corp.
129 Parker Street, PK02/J60
Maynard, MA 01754-2571
Ph. (508) 493-2257 Fax (508) 493-4659

BI H

David Moore, presently employed by Digital
Equipment Corporation, for the past 17 years,
and located in Maynard, MA. My current job
title is Senior Hardware Engineer and my job
function has been design and development of
new computer products and to provide assistance

93

in the development of open industrial standards.
The specific standards that I have contributed to
are IEEE 1301, 1301.1, 1301.2, 1301.4, 1156.1,
1156.2, 896.2, 1101.10 and am presently draft
technical editor of 1386, 1386.1 and 1386.2.

ABSTRACT

The purpose of this paper is to provide the Common
Mezzanine Card (CMC) designer with a more complete un-
derstanding of the design variations and how to use them to
provide the necessary design features for their product.
Much flexibility has been added to the CMC to provide the
designer with flexibility to optimize his design. Along with
this flexibility it is necessary to add constraints that may
not be completely obvious at first glance. It is my intent to
call attention to these areas and make them more easily un-
derstood. The variations which will be discussed are CMC
sizes, CMC envelopes, CMC staking height/connector
height/standoff height/bezel height vs. component height
limits on CMC and host modules, optional voltage keying,
number of mezzanine connectors, host module component
placement and height restriction area designations

CMC SIZES

Dependent on real estate needed for the design, a CMC
size can vary from a single wide standard depth to a double
wide, extended depth. In all, there are four sizes available
to the user. The basic sizes available are: 1) the single wide
standard depth (75.0 mm X 150.0 mm), 2) the double wide
standard depth (150.0 mm X 150.0 mm), 3) the single wide
extended depth (75.0 mm X 250.0 mm), 4) the double
wide extended depth (150.0 mm x 250.0 mm). These di-
mension depict the boundary limits of the CMC rather than
actual card size. Since some systems cannot provide suffi-
cient room for extended sized CMC the single wide stan-
dard depth is the preferred module size. Due to design re-
quirements, more real estate or possible rear panel I/O
connections, the wider or extended versions may be neces-
sary.

CMC ENVELOPE

The total three dimensional envelope for a CMC mod-
ule is the width and depth of the CMC (note four options
listed above) plus a total component height of 8.2 mm with
exceptions along the CMC bezel I/O area the standoff /key-
ing area and the mezzanine connector positions identified
in the CMC specification. The bezel I/O area provides for
connector clearance up to 32.0 mm from the CMC bezel
and an envelope height of 13.5 mm along this strip. When
optional CMC connectors are not used, components may be
positioned in these areas so long as their height is no
greater than dimension Hy. Dimension Hy, is dependent on
the CMC stacking height and is from 2.30 mm for 8 mm
stacking height up to 5.30 mm for 11 mm stacking height.
No components are to be positioned in the area of either 3V
or 5V keying pins. Other than the optional CMC size there
are no options defined for the CMC envelope except the

94

position the CMC is placed within the envelope. This can
be better understood as we proceed to discuss the stacking
height options.

CMC STACKING HEIGHT

It must be remembered that the three dimensional CMC
envelope is placed in a constant position above any specific
host module. The host sets the envelope position and the
CMC provides the positioning within that envelope. The
stacking height between the host module and the CMCis a
combination of the host envelope positioning and the CMC
placement. Examples of this are seen when creating a
CMC for a VME64 module where the stacking height is set
at 10 mm and a Futurebus+ module with the stacking
height at 13 mm. Both CMC modules use the same height
bezel, standoffs and connectors but the Futurebus+ host
module provides a 3 mm spacer to add to the standoff and
bezel height and also the host mounted connector must be
increased by the 3 mm. The CMC is allowed to vary its
position within the envelope to allow the designer freedom
of component placement.

CMC COMPONENT HEIGHT

The component height on the CMC is only dependent
on the position that the CMC resides within the CMC enve-
lope. Asthe CMC moves closer to the host module, within
its envelope, more component height is made available on
CMC side 2 and less on side 1. Total component height for
a CMC is 8.2 mm minus the CMC board thickness except
in the area reserved for CMC front panel I/O. Maximum
component height is limited to 0.2 mm less than the stack-
ing height. These maximum component heights must be
reduced by another 0.7 mm when components are not elec-
trically isolated (conductive surfaces).

CMC MEZZANINE CONNECTOR

The CMC connector used (IEA E700 AAAB) is not op-
tional but since the position that the CMC resides in is, it is
necessary to comment. The host connector does not vary
due to the CMC position within the CMC envelope so the
CMC connector must make up for the variation. The as-
signed connector that corresponds to the stacking height
shall be used.

HOST KEYING YVOLTAGE

The host determines the signaling voltage. Since both
3.3V and 5V may be used it is necessary to prevent incom-
patible modules from connected. A keying pin is to be in-
stalled on the host to prevent this occurrence. Note a CMC
that can operate on either voltage would provide clearance
for both keying pin positions.

HOST MODULE COMPONENT PLACEMENT

The main requirement for the host module is that it must
provide the mechanical and electrical components to insure
fit and function for all intended CMC options. Component
placement on the host starts 32.0 mm from the back surface
of the front panel and extends back in the area of the CMC
to either 149.0 for standard or 251.0 mm for extended
depth.

HOST COMPONENT HEIGHT LIMITS

As stated earlier, maximum component spacing on the
CMC in the I/O area is 9.8 mm. Note that no components
shall be positioned in the I/O keepout area until the stack-
ing height increases to greater than 10.0 mm . For host
modules such as the Futurebus+ where the stacking height
is 13 mm there is a allowable component height of 2.0 mm
available indicated as restricted I/O area..

‘When a host designer builds a module which does not re-
quire all available mezzanine connectors he may choose to
use the space that these connector are assigned for other
components. This space may be used for components but it
is necessary to limit the height of these components so that
they would not interfere with a CMC that has all connector
positions utilized.

The component height limit for a 10.0 mm stacking height
is 4.7 mm. The component height for the host module may
increase 1 to 1 as the stacking height increase. I Future-
bus+ at a stacking height of 13.0 mm may have compo-
nents as high as 7.7 mm.

95

CMC Envelope

CMC VARIABLE
STACK HEIGHT

CMC FRONT
/ PANEL
=

!
\— HCST PCB

@ - cMC BEZEL CENTERLINE
SEE TABLE 3-2

Mezzanine Stacking Height

IO
gl

+ |
"_“I-Bu

“§\\\\\¥—-‘PLUG CONNECTOR (Pn)
STANDOFF

— @ 5.50 MAX

M2.5 THREAD X 5.0 DEEF MIN

HP = Maximum Component
Placement in connector area

96

— SIGNAL VOLTAGE
KEY HOLE

BEZEL—~//

STANDOFF
SINGLE CMC

EMC SURFACE

DOUBLE CMC

Typical Single
and
Extended CMCs

97

CARDBUS PC CARDS:
A NEW OPPORTUNITY

John Elmore
IBM Corporation, M/S-5432
1000 NW 51st Street,
Boca Raton, FL 33429-1328

The 16-bit PC Card interface provides performance
capabilities equivalent to the ISA Bus. Since the
majority of mobile systems now available are ISA
based, this interface is ideal for I/O and memory
expansion. The trend in the industry, however, is
clearly toward 32-bit high performance systems with
capabilities for addition of high performance
expansion cards. Mobile systems must embrace the
higher performance demands of the industry if they
are to continue to enjoy their current robust rates of
growth. Likewise, a means for attachment of high
performance 32-bit expansion cards must be
established to provide the versatility and
convenience that mobile systems users now enjoy
with 16-bit PC Cards. The CardBus PC Card
interface is intended to enable this capability while
maintaining support for existing 16-bit PC Cards.
This paper briefly describes some of the
opportunities presented by the CardBus PC Card
interface

Characteristics

The CardBus PC Card interface enables many new
PC Card applications and provides a means for the
enhancement of current 16-bit PC Card product
offerings. It introduces several important new
capabilities and functions to PC Card applications,
and is compatible with all new features and
capabilities being introduced with the new PC
Card Standard. CardBus PC Card features and
capabilities include:

32-bits of Address and Data
33 MHz Operation

Bus Master Operations
Platform &O/S Independence
Backward Compatibility
interface Power Management
3.3 Volts (or lower) Operation
Remote Wakeup

Dynamic Reconfiguration
Improved Audio Capability
Non-customized Multi-function Card
Support

98

The CardBus PC Card interface presents an
opportunity to significantly expand the set of
applications now available to PC Card users.

Opportunity

Clearly, the trend in the mobile industry is toward
duplication of the office environment where
increased performance and expanded functionality
are the bywords to introduction of new products.
Due to their cost, most high function and/or high
performance features for office systems are under-
the-covers add-in cards rather than standard
system features. Interchange of these cards
between platforms with disparate system buses is
difficult if not impossible. The ability to use these
features with a mobile system usually doesn't
exist without the use of some type of 'docking
station', which compromises mobility. The
CardBus PC Card interface provides the
opportunity for system and card manufacturers to
provide a truly mobile high function/high
performance capability for their customers, while
maintaining the traditional PC Card advantage of
interchangeability between systems, regardless of
the type of bus employed by the system.

The CardBus PC Card interface provides
improvements to 16-bit PC Card via a multiplexed
32-bit data/address interface which operates at
up to 33 MHz (132 MB/s peak data throughput).
Combined with bus master support, the CardBus
PC Card interface enables system processor
offload and optimization of multi-tasking operating
system performance. Since CardBus PC Card
sockets are also required to support 16-bit PC
Cards, the motivation for implementation of the
CardBus PC Card interface in all new 32-bit
systems is strengthened. The implementation of
CardBus PC Card interfaces in office systems will
enable interchange of virtually any PC Card with
mobile systems. Not only will it be easier to take
more of your office functions with you, the
opportunity for reduced capital expenditures is
presented by the capability to use the same PC
Cards in both environments. Further, customer
satisfaction will be improved due to the cost

savings and the improved configurability of their
systems.

These are just a few of the more obvious
opportunities and benefits presented by
implementation of the CardBus PC Card interface.
Without question, many more opportunities are
immediately available and even more will emerge
as technology and the industry progress.

PCI Synergy

The CardBus PC Card interface signaling protocol
is derived from the Peripheral Component
Interconnect (PCI) Local Bus signaling protocol.
While there are some differences between the two
specifications, operations are identical for most
functions implemented. This similarity provides
an opportunity for development of common silicon
for use on both PCI cards and CardBus PC Cards.
Refer to the PCI Mobile Design Guide and the new
PC Card Guidelines documentation for further
details.

Conclusion

The CardBus PC Card interface is the next-
generation, high-performance 32-bit/bus master
interface for PCMCIA/JEIDA. It provides the
opportunity for migration of most high
performance functions now available only on
desk-top and larger systems to CardBus PC Cards
for use in the mobile environment. New functions
developed for CardBus PC Cards may also be used
in 32-bit desk-top systems, if they are equipped
with CardBus PC Card sockets.

While the CardBus PC Card interface is derived
from PCI, it may be implemented on any 32-bit
system that provides functionality similar to that
provided by PCI. Although it is not the same as
PCI in all respects, the signaling protocols are
identical which enables development of common
silicon.

All CardBus PC Card sockets must be able to
accept and operate non-CardBus PC Cards within
the capabilities of the system. Since all CardBus
PC Card sockets also support non-CardBus PC
Cards, the initiative for implementation lies with
the system developers. Once CardBus PC Card
sockets are available on 32-bit systems, CardBus
PC Cards will be developed to take advantage of
the performance provided by the 32-bit system
and true office mobility will be realized.

99

INDUSTRIAL APPLICATIONS
OF PCI

Jim Medeiros
Ziatech Corporation
1050 Southwood Drive
San Luis Obispo, CA 93401 USA

ABSTRACT

The Peripheral Component Interconnect (PCI)
standard is the latest in a number of
technologies originally created for “desktop” or
“notebook” personal computers, and adopted by
manufacturers of industrial computers. These
technologies enhance computers used to
automate control applications in the
semiconductor, telecommunications, automotive,
paper processing and other industries.

This presentation examines how PCI
technology benefits industrial computers, and
sorts through the evolving PCI choices available
to designers of industrial control systems. PCI
approaches discussed include passive backplane
ISA-based computers (PICMG) the PCI Mezzanine
Card (PMC) primarily for VME and MULTIBUS
computers, PCMCIA Cardbus and Small Form
Factor approaches, and rugged PCI formats for
small format computers.

INDUSTRIAL APPLICATIONS OF PCI

The personal computer is traditionally
associated with desktops at the office or at
home, and increasingly in more transient,
crowded quarters such as airplane seats or hotel
rooms.

Yet the ongoing and rapid evolution of
technology affecting personal computers reaches
beyond the office and the aisle seat. Peripheral
Component Interconnect (PCI), a high-
performance local bus standard championed by
Intel and now utilized by most major PC
manufacturers, is just the latest in a long list of
PC technologies borrowed by the makers of VME,
MULTIBUS, passive backplane ISA, STD 32, and
other industrial computer standards.

100

PC HELPS ADVANCE INDUSTRIAL COMPUTERS

It did not take industrial computer
manufacturers long to figure out that aligning
with the large PC market and taking advantage
of that industry's advances in silicon and
software would enable them to enhance their
products in rapid-fire fashion. Industrial
computer manufacturers also realized that the
large volumes of the PC market would translate
into quantities and cost savings that the smaller
industrial computer market couldn't hope to
beat.

Initially, it took industrial computer makers
months and even years to adopt PC CPUs,
operating systems, peripherals, video interfaces
and networking capability, but today, there is
little lag time between a technology's PC
appearance and its industrial computer
implementation.

Early industrial computers that were PC
compatible often lagged the desktop marketplace
by years with regard to performance and
features.

In most cases a PC compatible embedded
system would require multiple boards and many
incompatibilities would exist because of the
different environments.

In the last three years, the integration of PC
compatible technology has dramatically affected
the ability of industrial computer manufacturers
to provide compact, fully PC compatible
embedded computer systems. With this new
technology (in some cases single chip solutions,)
industrial computer systems can be every bit as
powerful as those offered for the desktop. In
fact, today it is possible to buy a Pentium based
CPU, with hard disk, floppy disk, and Super VGA
interface that will fit into the palm of your hand.
(See Figure A)

Figure A: A Compact Pentium Computer

Over the last ten years, industrial computer
manufacturers have continued to improve the
performance of embedded CPU systems by
leveraging off of the latest in technology that is
offered for desktop systems.

Prior to PCI, high speed local bus VGA
interfaces have been available for embedded use.
Early local bus architectures such as VL Bus
have been primarily used only for VGA interfaces
on 486 class machines. Although other
interfaces have been made for VL Bus, the need
for a standardized, processor-independent local
bus has emerged to meet the performance
requirements of PC compatible systems through
the year 2000.

I: EAKING DOW E BOTTLE NECK

Which brings us to PCI. This local bus
solution to the bandwidth bottleneck created by
increasingly demanding computer peripherals is
rapidly invading not only desktop and notebook
PCs, but industrial computers as well.

PCI products are relatively inexpensive and
easy to design, and because the standard offers
high performance and new sought after

101

capabilities like “plug-n-play”, PCI is becoming a
prevalent part of industrial computers. Yet
because the formats of these industrial
computers differ quite considerably, the ways in
which PCI is implemented varies widely.
Emerging standards for these different PCI
implementations will be discussed by industry
representatives from Texas Microsystems, DEC,
IBM, Intel and Ziatech Corporation.

Smali PCI
Impfementation and Strategy

Joseph F. DiMartino '
Chairman -- Small PCI Workgroup hY

IBM PC Company
3039 Comwallis Road
Regearch Triangle Park, NC 27709
(919) 543-9795
joe_dimartino(@vnet.ibm.com

ABSTRACT

Peripheral Component Interface (PCY) is a bus standard that has gained industry wide
acceptance in a relativity short amount of time. The robust charactertistics of the bus
have resulted in a variety of sysiem designs leaning towards implementation. Some of
the system designs are constrained by physical size, like mobile products, set top box’s
and small personal computers. The Small PCI (SPCI) form factor address’s this design
concern.

SPCI is an implementation of the standard PCI Bus in a physically smaller size. The
electrical characteristics are similar and no additional silicon is required to implement
this solution, The differences are in the connector header, 108 pins vs, the standard 124
pins as well as the card size which has the physical dimensions of current PCMCIA
cards. Maintaining the aforementioned design characteristics result in relatively easy
implementation of SPCI. Litile invention is required because both PCI and the PCMCIA
physical characteristics are well known and understood by the computer indus<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>