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Overview 

Lance A. Leventhal, Ph.D. 
Program Coordinator, PCI '95 

Annabooks 
11838 Bernardo Plaza Ct., Suite 102A 

San Diego, CA 92128 
Ph. (619) 673-0870 Fax (619) 673-1432 

Since its introduction in 1992, PCI has 
rapidly become a standard in the world 
of high-speed personal computers. It has 
received the backing of virtually every 
major computer manufacturer, and a 
multitude of PCI chips, boards, and other 
equipment is now available. Major 
product areas include core-logic chip 
sets, bridge chips, interface chips, bus­
to-bus connections, disk controllers, 
graphics cards, network cards, 
multimedia cards, board computers, 
motherboards (or system boards), and 
software. Test equipment manufacturers 
now provide extender cards, bus 
analyzers, logic analyzer add-ons, and 
other support. Models and other design 
tools are also available. 

Industrial computer manufacturers have 
also moved toward PCI through the 
following efforts: 

• The PMC (PCI Mezzanine 
Card) specification for a plug-in 
(mezzanine) connection between PCI 
and industrial buses such as VME, 
Multibus, and Futurebus. This work has 
the support of VITA, the VME Industrial 
Trade Association. 

• The PCI Industrial Computer 
Manufacturers' Group (PI CMG) 
specification for a backplane-based PCI 
system. 

xi 

Other efforts include CardBus (derived 
from PCMCIA), Small Form-Factor PCI 
(SFFPCI), and Rugged PCI. 

The advantages of PCI are now well­
known. They include: 

• 32-bit or 64-bit operation 
transparent to devices 

• Allowance for either 5V or 
3.3V boards 

• Support for up to 132 
MB/second data transfers 

• Auto-configuration capabilities 
that eliminate the need for jumpers and 
DIP switches 

• Compatibility with ISA, EISA, 
or Micro Channel systems and boards 

• Operation at up to 66 MHz 
• Processor-independence that 

allows for RISC-based as well as X86-
based boards 

• Detailed compliance 
specification and testing via PCI SIG 
and independent vendors 

• Well-defined electrical and 
mechanical interfaces 

The PCI '95 Conference Proceedings 
show the wide variety of products 
already available or planned. We can 
expect to ·see far more in the very near 
future. 





ARCHITECTURAL AND DESIGN CONS ID ERA TIO NS WHEN IMPLEMENTING 
HIGH PERFORMANCE MULTIMEDIA APPLICATIONS ON PCI 

J. Scott Runner, Alak Deb, Maulin Bhatt, Dave Greenberg, Sean Ganjooi, Gina Ngo 
Synopsys, Inc., Design Ware™ Components R&D 

700 East Middlefield Road, Bldg. B 
Mountain View, CA 94043-4033 

ABSTRACT 

Albeit PCI has been viewed as a key technology enabler in 
bringing multimedia to the desktop, server and peripheral market, 
there is a broad degree of latitude in the way in which multimedia 
may be implemented on PCI. A subspace of this design space allows 
for product differentiation and technology migration to avoid 
obsolescence;. On the other hand, another subspace does not 
provide for differentiation, but rather represents alternate design 
choices available to implement compliant systems. Some are more 
efficient than others, while some are better proven than others. The 
architectural and implementation tradeoffs when implementing 
various forms of video and graphics on PCI, their relative tradeoffs, 
and the implementation considerations associated with them will be 
explored in this paper. Pixel formats and details on addressing 
modes are not discussed in this paper. For more information on this 
topic, refer to (PCISIG, MM, 1994). 

REQUIREMENTS FOR MULTIMEDIA 

Before analyzing alternate architectures, we will determine the 
requirements for multimedia systems and add-in cards. This will be 
relative to customer, systems and card vendor and components 
companies to derive appropriate selection criteria, as follows: 

Cost: Cost means more than the sheer sum of the components, 
board cost, testing, kitting/ assembly and packaging costs, etc. It also 
includes the cost to support the product, to design it, and to re­
design it (i.e., the cost to design a derivative product, or the next 
generation product). However, in the context of this paper, cost 
will refer to materials costs. 

Upgradability: In the fast-paced, competitive market in which 
we live and work, the ability to quickly add functionality and take 
advantage of new H/W and S/W technologies is of paramount 
importance. Functionality should be scaleable in a straightforward 
manner between H/W and S/W. As an example, many video cards 
today provide for decompression and display of such data as real 
time video-conferencing or video clips off CD-ROM. But many of 
these cards do not provide access from the processor to the video 
frame buffer, and rely on video overlay via the VGA Feature 
Connector or VESA (Advanced) Feature Connector (V(A)FC). As 
processor bandwidth and video processing capability increases, the 
ability to leverage S/W for video functions will become potentially 
more valid and valuable. 

Quality and Robustness: The promise of Plug and Play (PnP) 
and more standardized S/W-H/W interaction through standard 
APis and H/W configurations is exciting. However, the demand 
that each device is placing on a system creates contentious 
situations between resources and challenging problems to 
standardize interoperability. Card designs should be efficient and 
fair while achieving compliance and must be robust and "fail-safe." 
No longer is it acceptable to just assert reset to solve a system dead­
lock condition. Systems should avoid introducing errors, and should 
be non-destructively tolerant to their occurrence. 

Performance: This is what has made PCI such an enabler. 
Tables 3a and 3b indicate the bandwidth requirements for various 
resources as compared with the available bandwidths of PCL While 
there is plenty of bandwidth, PCI will become more crowded as 
additional functionality and classes of devices migrate to this bus. It 
is important performance consider not just card performance, or 

local optimizations, but more importantly, that designers bear m 
mind optimization of the entire system to which they contribute 

ALTERNATIVE ARCHITECTURES 

One of the advantages of PCI is that it supports a variety of 
bus and system architectures and configurations. This is also one of 
its challenges. Figures 1 through 4 depict alternate architectures for 
multimedia systems comprised at a minimum of a graphics 
controller, video source (compressed or raw), and audio source. 
Table 1 provides a comparison of these architectures. Having 
reviewed some of the key multimedia design requirements, 
attention will now turn to the design implementation tradeoffs for 
architectures described in Table 1. 

A key point is that various architectures optimize different 
design parameters. None of the architectures is superior to any 
other in all cases, but rather each has specific advantages. While 
certain standards must be followed for the benefit of interoperability 
and PnP, there is a great deal of latitude available to the designers of 
multimedia systems that can provide product differentiation. 
Synopsys' Design Ware™ PCI MacroSet is a modular, parameterized 
synthesizable kit designed to facilitate fast implementation and 
exploration of this design space. With appropriate parameters, it can 
support all the configurations listed in Table 1 in a highly efficient 
and compliant manner. 

Planar Bus Topology <Figure 1) 

Some bus topologies require system changes, while others can 
be implemented entirely on the card. System modifications tend to 
take longer to implement and are typically expensive. Such 
architectures will appear first in workstations and embedded 
systems before we see them in high-end desk-side PCs, or even 
desk-tops. The planar bus will be around for quite a while, as the 
low cost system solution. However, card designers must keep in 
mind that as planar bus bandwidth becomes increasingly more 
consumed by higher bandwidth, more demanding functions, their 
cards must be efficient, and robust enough to gracefully degrade in 
the presence of traffic. Given that legacy busses will tend to bridge 
off this bus, and that CPU access to system resources is directly 
affected by this bus, cards placed on it must be not only robust and 
compliant, but also efficient as well. The 2.1 specification moves to 
address this by tightening up latency and wait-state tolerances and 
guidelines, but agents must still be tolerant of existing cards that 
may not be so efficient. 

Cardtop/Feature Connector <Figure 2) 

The VGA feature connector has become pervasive, and the 
VESA Advanced Feature Connector (V AFC) will be no exception. 
But note that the V AFC, as well as the Shared Frame Buffer 
Initiative (SFBI), are both complementary, not competitive with 
PCI. Such DAC attach circuits are simple to implement, support 
multiple video sources. provide high resolution, off-load video 
bandwidth from the graphics frame buffer, and keep their traffic 
off the system bus. However, they are expensive in that they 
introduce redundant system components (such as frame buffers) 
and do not allow CPU access to manipulate video. 



Secondary Bus on a Card <Figure 3) 

While this solution provides the same advantages as the 
secondary bus in the system, it leverages existing planar systems. It 
also avoids some redundancy in components, since the subsystem is 
entirely under the control of the card manufacturer. This applies to 
video addressing and pixel formats as well, and the optimization of 
the shared frame buffer. Due to the 10-load rule, this architecture 
does not allow for multiple bus connection from a single card. 
Rather, a PCI-PCI (or PCI-other) bridge must be employed to limit 
the load to 2. However, each function must incorporate its own PCI 
interface. Additional features may be added in future versions of 
cards either by higher integration of given functions on the card, or 
by adding functions onto the local bus. 

This architecture is compatible with planar or hierarchical bus 
topologies and can be used today, or in tomorrow's systems. The 
drawback of this approach is that such cards will be relatively 
expensive, and many exhibit higher power consumption than the 
Integrated Multi-function card. 

Since the card vendor controls all the functionality on the 
card, there may be a tendency to cut corners or restrict access to the 
card. Access from the CPU and other video sources is generally 
important, so be sure to provide for it via appropriate apertures 
(apertures are discussed in later sections). 

Secondary Bus Between Cards (not pictured) 

The hierarchical PCI bus is fast becoming an interesting 
architecture in implementing high performance multimedia systems 
to support multiple video streams, particularly for professional 
purposes. It is perhaps even more interesting to desk-side and 
server systems given the 10-load rule. If one envisions more than 4 
PCI add-in cards, expect to see hierarchical bus architectures. While 
more expensive than the planar equivalent, this bus topology 
provides for isolation of multimedia components onto their own bus 
level, more controlled latency and bandwidth efficiency, and can 
off-load the planar when the graphics subsystem is moved to the 
secondary bus. 

Integrated Multi-function Card (Figure 4) 

Different from the secondary-bus on a card, the Integrated 
card has but one PCI Controller. This implementation may be PCI 
multi-function, in which each function logically has its own 
configuration space and slave at a minimum, or it may be im­
plemented as a single function card in which arbitration, resource 
scheduling, datapath management and bus interface issues are all 
managed outside the PCI master/slave. In the former case, (a 
"loosely coupled" architecture), functions can operate 
independently of one-another, yet bus traffic, architecture, pixel 
formats, addressing and other issues related to efficient 
interoperability can be controlled. This means that functionality can 
be increased by adding components with their respective PCI 
interfaces. The latter case can be more powerful and cost efficient, 
requiring but one PCI controller interface. 

While providing all the advantages of the previous 
architecture (Secondary Bus on card), this architecture provides for 
optimization of cost by avoiding redundant components, and 
system performance by off-loading bandwidth from other busses, 
while providing a tight coupling between multimedia resources. 

DesignWare™-BASED MULTIMEDIA DEVICES 

Synopsys has developed a PCI developer's kit that provides for 
fast, accurate and efficient implementation of PCI controllers for a 
broad variety of applications. This will be used as an example in the 
following implementation discussions. Note that block diagrams and 
specifications of these systems implemented with Design Ware™ are 
available from any of the authors. 

Bus Functional Models (BFMs): These are BFMs of the PCI 
master and slave, as well as a passive monitor that observes and 
records bus activity and violations/exceptions and validates timing. 
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Each model executes a series of commands test various compliance 
or user scenarios, and therefore be used for complete system tests, 

Compliance Suites: These are a series of verification suites 
derived in collaboration with the PCISIG Protocol subcommittee to 
verify functional accuracy. Scenarios based on functionality 
supported by the unit under test are automatically generated for 
the appropriate configurations. Automatic post-processing of the 
test results creates a compliance report showing which SIG tests 
passed, which failed and/or are not applied. 

DesignWare™ MacroSet: A set of seven Plug and Play, 
parameterized modules that can efficiently construct virtually any 
PCI implementation. In addition, DMA controllers, design 
examples, system-level test benches and Synopsys-optimized 
synthesis scripts are provided as a complete solution for the 
implementation of an on-chip PCI controller. Parameters allow a 
designer to quickly implement their required functionality, or 
explore the space of alternative implementations with rapidity, to 
quickly converge on optimal solutions. 

Architectural Assumptions 

It is assumed that the architecture will be an integrated 
multimedia ASIC that implements a PCI single function, single 
interface. We will assume that graphics, audio, video in and a H/W 
CODEC are all implemented on a single ASIC. These resources will 
access a single shared frame buffer, which will be accessible from 
other resources on PCI, including the processor. We will assume 
that the application-side domain operates at 50Mhz, and that we 
are dealing with 33Mhz PCI. Interaction between application 
components will be accomplished directly (i.e., the video CODEC 
dumping RGB16 data into the frame buffer will require no direct 
involvement from the PCI interface). 

Point-to-point or "destination" addressing will be implemented 
with one H/W window for each video or graphics source. This is in 
accordance to the PCISIG Multimedia Design Guidelines. This 
provides support for a variable numbers of windows, support for 
H/W-S/W scaleable, and robustness and elegance in addressing 
pixel locations and dealing with buffer over-run and other errors. 
Apertures will be implemented to support YUV 4:2:2, RGB-lS+a and 
RGB 24+a pixel formats, as well as big and little endian support. To 
allow access from external video sources, these apertures will be 
accessible from PCI bus resources as well. Resources on the PCI bus 
would access such spaces through apertures implemented in two 
ways with the DesignWareTM MacroSet. By defining a single address 
range and decoding the higher-order alias bits, or by assigning an 
address range and associated Base Address Register (BAR) for each 
aperture (PCI supports up to 6 such relocatable spaces) or a hybrid 
of the two. The MacroSet supports this by assigning a set of 
attributes to a range and simulating and synthesizing the 
implementation. In this case, a BAR is assigned to each pixel format, 
and a user-defined programmable bit associated with each BAR can 
be used to indicate "endian-ness". Note that this excludes 
concurrent support of multiple endian formats per pixel format. 

An Address Recognition and Mapping (ARM) module decodes 
'hits' into all address spaces, notifying the application of the space 
accessed, controlling the assertion of DEVSEL#, and performing 
address translation if it is specified. Space decodes can be used to 
enable apertures and/ or resources, and to select among multiple 
datapaths. Typically one would want one FIFO or register for slave 
read, one for write, one for master read, one for write. Feeding the 
application from the slave on a slave write would amount to 
notifying the appropriate space that the data was available, and 
having the data read out before the next slave read transaction. An 
alternative implementation is to support one datapath FIFO per 
slave application resource. Therefore, one might have a command 
FIFO for the graphics engine, and one directly to the frame buffer. 
In this way, the FIFO can be read at anytime, either being notified 
when not empty, or at any programmable threshold and can service 
the FIFO when most appropriate. 



Bandwidth Budgeting - Frame Buffer 

Determining the required bandwidth of multimedia devices is 
critical due to their general real-time requirements and high band­
width. Failure to do so may render a system inoperable, or result in 
poor quality graphics (dropped pixels, lines or frames) or audio, and 
may adversely affect other peripherals, such as disk controllers and 
LANs, which expect to have all the bandwidth they will need. 

The frame buffer is a key resource. Not only must all local 
resources (display refresh, graphics, video, refresh) have sufficient 
bandwidth, but there must be sufficient residual bandwidth for 
external resources. Worst case demands will occur during an active 
display refresh line. Note that blanking can be leveraged to mask the 
effects of DRAM refresh (if required), as well as helping to resource­
level non-real time accesses, such as those from the graphics engine 
after a period of peak activity. To do so requires that buffering from 
the interface to the frame buffer be sufficient to cover the available 
bandwidth during a scan line (or half a scan line on the average). 
This is because the PCI slave cannot guarantee that a disconnect­
retry during an active line will resume during blanking. 

As an example, if available FB bandwidth is 200MB/sec, and 
the card designed to support 1024 x 768 x 16 bpp resolution, then 
during a scan line at 72HZ refresh, 148MB/sec is consumed by 
display refresh. If a 320 x 240 True Color video image is being 
displayed at 30 FPS, then that consumes another 6.912MB/sec, 
leaving 45MB/sec to be shared between the graphics engine and 
the PCI bus. While the graphics engine is not 'real-time,' it can 
create a live-lock situation if the processor is waiting to write a 
graphics command while at the same time, buffering writes of real­
time to the FB. Supporting a graphics command buffer that can 
buffer a number of commands that might be issued during a scan 
line is an ideal solution (alternately side band signaling of status 
between the graphics engine and the processor can work, but it's 
not as insensitive to bus topologies). Should command buffering or 
FB bandwidth become inadequate during peak activity, the 
graphics or available engine should gracefully degrade and not hang 
and certainly not affect real-time operation. 

Latency and Datapath Buffering 

Latency and Datapath Buffering Latency have always been 
controversial issues in the PCI community, partly because it has 
been affected by legacy busses so greatly, and partly due to the fact 
that latency and throughput have been somewhat at odds with 
each other, and high performance cards effectively want to 
optimize both. There are several components of latency, arbitration 
latency (which is typically 2 clocks for the highest priority device in 
the system); bus acquisition latency (the time from receiving a 
GNT# till the bus is IDLE and consequently available); and the 
target latency to respond to the transaction. Target latency for first 
data is now required to be 16 clocks; any more and the target must 
either perform a delayed transaction, or target-abort. (PCISIG, 2.1, 
1994); Subsequent data transfers may see up to 8 elks to complete, 
but if the behavior of your target is known, the more accurate data 
would be factored into your calculations. 

The controversial figure is that of bus acquisition latency which 
is very dependent on system configuration. The 2.0 specification 
recommends that 30µsec be the guideline for acquisition latency on 
the planar bus, while (PCISIG, 2.1, 1994) and (PCISIG, MM 
Guidelines, 1994) specify that bus levels off the planar bus typically 
would see less than 3µsec acquisition latency. This latency is 
affected by the value programmed into the master latency timer 
(MLT), as well as the typical and max burst duration of resources in 
the system. The number of masters and their priority also affect 
acquisition latency. For example, if there are 5 masters (max) on a 
bus level, each with their ML Ts programmed to 32 elks, then if the 
target latency to first data was 16 elks and 8 elks between data 
transfers, then the acquisition latency assuming equal priority, could 
be as high as 32*(5-1)+8+16 = 4.56µsec of latency. The general rule is: 
tune your implementation to operate efficiently at 3µsec of latency, 
but insure that it can handle 30µsec of latency without catastrophic 
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degradation. A few pixels dropped may be acceptable, while 
dropped frames or important control information are not. 

Acquisition, generally the most variable and severe of the 
latencies, will require buffering in accordance with this equation: 

S1at_buf = tLAT * farrival • Wdata 

where tLA T is the max latency time, farrival is the frequency of the 
data arriving to be transmitted (for master writes), and Wdata is the 
number of bytes per £arrival. Note that tLAT should include the 
maximum latency that the current master's last transaction may 
introduce (8 PCLKs), as well as the initial target latency of the new 
master (16 PCLKS under the 2.1 guidelines). As an example, a 
50MHz application clock delivering WORDs will require 
30µsec*50Mhz*2B/WORD = 3K bytes (min) of total buffering, while 
a lObaseT interface would require 30µsec*lOMHz*l/8 = 38 bytes of 
buffering (min). This does not include master latency (from IDLE to 
FRAME# asserted) nor target transfer latency. 

After the bus is acquired, the sourcing FIFO must be able buffer 
data at least to the following depth: 

Sxfer_buf=ttar_xfer_lat *( f arriva1-f service)*(W data/ 4 
bytes/DWORD) 

3K bytes of on-chip buffering is expensive, and often 
impractical, considering that less buffering is required after the bus 
is acquired. An effective solution is to partition the buffering into 
levels: one transfer FIFO to provide data sufficient for the longest, 
fastest burst expected, and a buffer store to cover acquisition and 
initial target latencies. Synopsys' datapath buffers are tightly 
coupled with the master to not only initiate transfers from 
populated FIFOs, but also to manage exceptions. These buffers are 
able to cycle data at 0 wait-states during a burst, for popular, 
modern ASIC technologies. Their depth should be computed based 
on the master's maximum burst size and the relative difference in 
the master-slave bandwidth (Sxfer_buf equation). 

Sitting behind the master datapath buffer can be a store that 
buffers the amount of data necessary to cover acquisition latency 
and initial target latency and provide storage (if necessary) for other 
resources. This buffer could be implemented in SRAM, or DRAM. 
Transfer from this buffer to the master datapath buffers could be 
performed by a simple OMA controller such as the one provided 
with the DesignWare™ MacroSet. Note that while transfers are in 
progress, the buffer store can be back-filling the master's datapath 
FIFO, providing for a resource sharing of storage, reducing area. 

If the master's data arrival bandwidth is sufficiently low in 
portion to the acquisition latency and target bandwidth and 
latencies, then a single buffer may be sufficient. 

Master reads need not account for acquisition latency, but only 
the classic queuing theory case of the difference in arrival rate 
versus service rate. If a master read requests as much as X bytes of 
data, and the transaction is completed without interruption, in the 
worst case, no data was serviced by the application, then X bytes of 
master read FIFO buffering would be required. A similar analysis can 
be applied to the slave read and write buffering requirements. The 
DesignWare™ MacroSet supports this by providing for 
parameterized depth FIFOs and/or registers each way, for master 
and/or slave. Recent enhancements allow FIFOs to be constructed 
from Flip-Flops, or by leveraging ASIC vendor diffused or metal 
programmable SRAMs. 

SUMMARY 

Alternate PCI multimedia architectures have been reviewed, 
with emphasis placed on compliance, efficiency, and leverage the 
design implementation latitude that PCI provides. Where design 
decisions provide for differentiation, optimize them for one's own 
design criteria. However, be compliant and where design decisions 
are not differentiating, follow proven, conservative approaches, 
such as those specified in PCISIG Guidelines. Synopsys has viewed 
the various architectures presented herein as equally valid under 
differing design criteria; and have constructed a reusable, complete 
PCI design kit to support them. 



Table 1 - Comparison of Some Alternative Multimedia Bus Architectures 

Table 2a -Frame Buffer and Bus Bandwidth Requirements of Various Sources 
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Table 2b - Bandwidth Availability of Various Frame Buffer Implementations 

Table 3a - PCI Bus Bandwidth Requirements of Various Sources 

Table 3b - PCI Bus Bandwidth Availability 

[1] Mean bandwidth depends on bus topology, number of cards and their bus traffic characteristics, arbitration behavior, effectiveness of 
bursting, bridge characteristics (ability to sustain burst without disconnect), etc. Also note that twice as wide doesn't mean twice as fast, 
since this depends on how effectively the data from the peripheral can be framed to QWORDs. Likewise, twice the clock rate does not 
mean twice as fast, since the peripherals must keep pace, given their own bandwidth behavior which may result in streams being 
broken up into a larger number of bursts. Therefore, this number is system specific, and meaningless in this context and is intended to 
simply show that there is plenty of bandwidth to be had. 32b, 33mhz systems have been constructed which demonstrate SOMB/sec 
sustained performance, but your mileage will vary. The key is to bear these issues in mind which architecting, so that the overall system 
is optimized. 
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The PCI Multimedia Design Guide and the PCI Local Bus Specification, Revision 2.1 (draft), provide important 
clarification's to the specification of latency and wait states, as follows: 

Table 4 - Comparison of PC! Latency Specifications 

[1] This references the draft specification, in which specifications may differ slightly. 

[2] The Multimedia Guidelines stipulate that this specification applies to a secondary bus, and with a statistically high probability to the 
planar bus. This is especially true when bridges to legacy busses support specify there should be no more than 4 bus masters on the level 
of a MM device to insure the 3µsec latency guideline. Devices on the planar with ISA attach may see worst case latencies of up to 30µs. 
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Figure 3 - Card Top/Feature Connector Figure 4 - Integrated Multi-Function Card 
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ABSTRACT 

Rambus™ 500 MHz DRAM Technology removes 
the performance bottleneck faced by today's com­
puter and graphics systems. Current computer sys­
tems use multiple banks of DRAMs and large SRAM 
caches to meet the performance demands of 486, 
Pentium, and RISC CPUs. To increase performance, 
DRAMs are arranged as multiple, interleaved banks 
on wide buses and are controlled by multiple, high 
pin-count ICs. Graphics systems use many VRAMs 
in wide, interleaved buses to meet the performance 
demands of Windows, video, and the new higher­
resolution monitors. The high bandwidth, low pin­
count Rambus solution enables highest perfor­
mance at lowest system cost for high volume per­
sonal, portable and multimedia systems, and, as a 
result, is broadly supported in the industry. 

This paper discusses the elements of Rambus 
Technology and their impact on graphics system 
design 

RAMBUS TECHNOLOGY OVERVIEW 

The Rambus solution replaces the complex mem­
ory subsystem with a single, standard high-perfor­
mance bus and Rambus DRAMs (RDRAM™). The 
Rambus solution has three elements: the Rambus 
Interface, the Rambus Channel, and the RDRAM. 

The Rambus Interface is implemented on both 
the Channel controller and RDRAM devices. The 
controller directs the operations of the RDRAMs on 
the Channel through the use of a packet-oriented 
protocol. Rambus Channel controllers can be con­
ventional microprocessors, peripheral chips, ASIC 
devices, memory controllers, or graphics engines. 

The Rambus Interface on an RDRAM contains 
minimal logic and a few registers. This reduces die 
size overhead and maximizes cost effectiveness. The 
RDRAM is a CMOS DRAM incorporating unique 
architectural modifications and the Rambus Inter­
face circuitry. The 16Mbit RDRAM is arranged as 
2Mbitx8 or 2Mbitx9, while the 8Mbit RDRAM is 
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organized as 1Mbitx8. Definition and use of the 
eight or nine data lines is left to the system designer. 

The Rambus Channel is revolutionary in that it 
is only eight or nine data bits wide, but is capable of 
transferring data at rates up to 500 MBytes per sec­
ond from a single RDRAM. By contrast, today's fast­
est page-mode DRAMs transfer data at 33 to 50 
MBytes per second. 

Rambus DRAMs 

Rambus Channel: One byte of data is 
transferred every 2 nanoseconds 

Rambus Technology Elements: 
Controller, Charmel and RDRAMs 

The Rambus Channel is also defined by a 
mechanical specification. The controllers and 
RDRAMs connect to the PC board with an interface 
that has only 15 active signals. The RDRAM pack­
age itself has 32 pins, including power and ground. 
The RDRAM is available in two plastic surface 
mount packages: an EIAJ standard vertical pack­
age (SVP) that allows dense packing for main mem­
ory applications, or a horizontal, low profile 
package (SHP) for add-in card applications. 

The Rambus Interface transforms the data from 
the Channel's 2 nanosecond transfer rate to a 16 
nanosecond cycle. It also converts the low-swing 
voltage levels of the Rambus Channel to the ordi-
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A Rambus Motherboard Subsystem Example 

nary CMOS logic levels used by the ASIC logic. The 
heart of this interface is a high-performance digital 
DLL (delay-locked-loop) circuit that provides the 
clocks for transmitting and receiving Rambus Chan­
nel data. 

All critical system implementation issues have 
been resolved for the designer with the Rambus 
approach. Designers can implement a Rambus sys­
tem following step-by-step documentation. 

Example Subsystem Designs 

The example subsystem figures above show typi­
cal physical implementations of a Rambus system 
including a controller that acts as a Channel mas­
ter, a base set of RDRAM devices soldered directly 
on the Channel, and an RModule and RSocket used 
for memory expansion. At the heart of this system 
is the Rambus Channel itself. The Channel uses a 
small number of very high-speed signals to carry all 
address, data, and control information between 
Rambus devices. 

Horizontal RSocket 

GUI Controller 
RDR~ 

A Rambus Add-in Card Example 

The Channel is implemented using standard PC 
board layout and manufacturing techniques; it 
relies on controlled impedance terminated transmis­
sion lines to carry the high-speed, low-voltage­
swing RSL signals. Clock signals are propagated in 
each direction on the Channel allowing data and 
clocks to always travel in parallel, virtually eliminat­
ing all clock to data skews. 

Rambus Inc. has assured device independence 
by defining a high-level protocol that moves data in 
blocks and by using a large 36-bit address space. 
Designing new generations of hardware is simplified 
since the signals comprising the Channel will not 
change from generation to generation. 

Each master and slave has its own Rambus 
Interface, which is currently available as an ASIC 
cell. This interface converts from the low-swing RSL 
levels used by the Channel to ordinary CMOS logic 
levels. 

Controller RDRAMl ... RDRAMn Vterm 

BusData[S:O] 
BusCtrl, BusEnable 

ClkFromMaster 
ClkToMaster 

Vref 
Gnd,GndA 
Vdd, VddA 

@ 

[ 

1sout J I 

The Rambus Channel 
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Rambus Signaling Logic 

The Rambus Channel achieves its high speed 
with dense packing, high-quality transmission 
lines, low voltage signalling, and precise clocking. A 
Rambus Channel contains controlled impedance, 
matched transmission lines: 

o ClkToMaster 

o ClkFromMaster 

o BusData [8:0] 

o BusEnable 

o BusCtrl 

These high-speed signals are terminated in their 
characteristic impedance. The Channel has a bus 
topology with the controller at one end, terminators 
at the other end, and the RDRAMs in between. 

All high-speed signals on the Channel use low­
voltage swings of about 800 mV. A logic "O" is equiv­
alent to Vterm• which is typically about 2.4V, Vref• is 
about 2.0V and V 0dlogic "1 ") is about 1.6V. Within 
limits, all these voltage levels can be set by the sys­
tem designer to control power consumption and 
noise margin. Vref may be easily generated with a 
resistive divider. 

Vref sets the logic threshold for the high-speed 
RSL signals. This provides immunity from common 
mode noise on the Channel. All devices receive the 
low-swing signals with differential input circuits 
and use Vref to set the logic threshold. 

This differential sensing allows the Channel to 
use a low-voltage swing. Low-voltage-swing signals 
minimize dv/dt and, thus, di/dt to provide the fol­
lowing advantages: 

o Reduced ground bounce 

o Reduced power consumption 

o Reduced electromagnetic interference 

o 5 volt and 3.3 volt device interoperability 

Clockin~ 

The Rambus Channel is synchronous, meaning 
that all data transfers are referenced to clock edges. 
At Rambus frequencies, special care has been 
taken to minimize clock to data skew for all RSL sig­
nals, as listed above. 

The clock source typically is a separate oscilla­
tor. The clock routing begins at the slave end of the 
Channel and propagates to the master end as Clk­
ToMaster. where it loops back as ClkFromMaster to 
the slave end and terminates. 

This clocking topology allows clock and data to 
travel in parallel to minimize skew. A slave always 
sends data to the master synchronously with ClkTo­
Master, and the master always sends data to the 
slaves synchronously with ClkFromMaster. 
Because the transmission lines are matched, the 
clock and data signals remain synchronized as they 
travel to their destination. 

View from solder side 
Dimensions in mils 

39+-3 D 
51 

~' = Component Side 
• = Solder Side 
•=Hole 

Swnple Channel Layout 
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Each Rambus Channel requires a (nominal) 250 
MHz clock. The clock is driven at normal RSL levels. 
If a Rambus memocy controller has multiple Ram­
bus Channels, the clocks on each channel must be 
synchronized to arrive at the pins of the RAC with a 
minimum of skew. 

Several vendors offer a pin-compatible clock 
driver designed to meet the needs of most Rambus 
systems. The 8-pin SOIC device connects directly to 
a low-frequency ccystal and generates two copies of 
a Rambus compatible clock with less than 100 ps of 
skew between outputs. A series matching resister 
placed at the outputs allows it to drive bus imped­
ances ranging from 20 to 50 

Data Transfer 

Direct data transfers occur only between the 
Channel controller and the RDRAMs. This allows 
signals to be terminated at only one end of the 
Channel. Data driven by the controller propagates 
past all RDRAMs with the desired voltage swing 
allowing all RDRAMs to correctly sense the data. 
The matched terminator prevents any reflections. 

Data driven by an RDRAM moves in both direc­
tions at one-half the desired voltage swing. Data is 
effectively transferred on both edges of a 250MHz 
clock, resulting in a 500 Mbit-per-second-per-wire 
transfer rate. Each data transfer uses a 2 nanosec­
ond interval, with 2 of these intervals per clock 
period. 

Any one Rambus Channel is limited to approxi­
mately I 0 cm. This length is determined by a 2 
nanosecond propagation delay constraint for sig­
nals traveling from end to end on the Channel. As a 
result, a single Channel can accommodate up to 32 
RD RAMs, I 0 RSockets, or some combination of the 
two. Since each RModule can hold up to 32 
RDRAMs, a fully configured system can have up to 
320 RDRAMs, while a minimum system can have 
as few as one. 

Component Packa~n~ 

Rambus has developed innovative packaging for 
the RDRAMs using proven materials and tech­
niques. The packaging minimizes concerns such as 
on- and off-chip impedance that could arise when 
transferring data at 500 MByte per second speeds. 
1\vo styles of packages are available: the vertical 
"SVP" package allows very dense packaging for 
motherboard-based memory subsystems; the hori­
zontal "SHP" package is optimal for low-profile add­
in card subsystems. All Rambus Interface pins are 
located on one edge of the plastic package, thus 
aligning die pads, package leads, and printed cir­
cuit board traces, while minimizing the length of 
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leads and bond wires. As a result, PC board electri­
cal and interconnect issues such as inductance, 
capacitance, traces, and connectors are managed 
efficiently, enabling the Rambus solution to achieve 
500MHz data transfer rates. 

Rambus memocy systems are expandable. 
Because the Rambus Channel and DRAMs were 
developed with expandability in mind, there are 
now simple, low cost Rambus Sockets (RSocket™) 
available from Augat Inc. and Molex Corporation 
that are supported by Rambus Modules (RMod­
ules™). RModules can support one to 32 RDRAMs. 
The motherboard subsystem and add-in card exam­
ple figures shown earlier illustrate the use of verti­
cal and horizontal RSockets and RModules. 

System Packa.ging 

Printed circuit boards carrying Rambus Channel 
signals are designed using standard FR-4 construc­
tion. Dielectric thickness is 5 mils (surface trace to 
ground layer) with 8 mil copper traces, resulting in 
a nominal 55.Q trace impedance. This impedance 
needs only be controlled to within a ±20% tolerance 
during bare-board manufacturing. 

Separate power and ground planes are required 
for noise immunity. 1\vo or more signal layers may 
be used. Design rules call for 8 ±1 mil wide signal 
traces on 0.65 mm (about 25 mil) centers. This 
spacing matches that of pins emanating from pack­
ages incorporating a Rambus Channel. The "Sam­
ple Channel Layout" is an example of a board 
design that includes a Rambus memocy subsystem. 
Rambus Inc. supplies detailed information for use 
by PC board layout personnel; this "cookbook" 
streamlines the layout process. In addition, due to 
its smaller number of signals, a Rambus Channel 
design generally uses fewer PC board layers than 
traditional designs. 

GRAPHICS SYSTEM DESIGN ISSUES 

Rambus DRAMs provide the highest perfor­
mance and lowest overall system cost of today's PC 
graphics. As shown in the table, RDRAMs provide 
sufficient drawing bandwidth for all popular and 
professional-level screen resolutions. Rarnbus­
based graphics cards are cost-effective from both 
component and system-oriented viewpoints. 

Graphics frame buffers for popular resolutions 
of I 024x768x8bpp require hundreds of megabytes­
per-second of bandwidth for refreshing the display 
and accelerating graphics operations such as line 
drawing, shading, and text. Rambus DRAMs pro­
vide highest performance and lowest system cost 
for PC graphics. 500MHz Rambus DRAMs are able 
to satisfy the graphics display bandwidth require-



ments for a single component. The 1 or 2 MByte 
graphics subsystem is reduced to the GUI accelera­
tor and a single DRAM component. Rambus DRAMs 
are based on l 6Mbit DRAM technology which is 
lower cost per bit than 4Mbit technology starting in 
1995. Rambus Technology provides a complete sys­
tem solution; there is no need for additional regis­
ters, buffers, or glue logic. 

Table 1: Display Resolution versus Frame Buffer 
Requirements 

Single 
Rambus 
Channel 

Single 
Rambus 
Channel 

Dual 
Rambus 

Drawing Resolution 
Bandwidth* 

800x600x8 250-300 
800x600xl6 MB/sec 
1024x768x8 

800x600x24 200-250 
1024x768xl6 MB/sec 
1280xl024x8 

1024x768x24 600-700 
1280xl024xl6 MB/sec 

Channels 1280xl024x24 

• Bandwidth Available After Refresh 

Frame 
Buffer 

Storage 

1of8Mb 
RD RAM 

1of16Mb 
RD RAM 

2of16Mb 
RD RAMs 

A Rambus DRAM is the only 16Mbit-based 
DRAM to provide sufficient bandwidth for profes­
sional-level graphics products. Alternative DRAM 
approaches to achieve this level of bandwidth 
require the use of multiple 4Mbit-based DRAMs 
organized in wide, 64-bit data buses. As mentioned 
above, 16Mbit DRAM technology has become lower 
cost-per-bit than 4Mbit technology. A single 16-

Dual-Ported DRAM Approach 

a 110 pin interface to memory 

a 200 MBytes per second max drawing 
bandwidth 

a Complex PCB layout 

a Partitioned display bandwidth 
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Mbit RDRAM takes up far less board area than the 
alternative solution: four 256K x 16 SDRAMs. 

A Rambus-based graphics subsystem allows 
cost savings in the graphics controller component. 
The Rambus interface requires only 31 pins on the 
graphics controller. This is 80 to 100 fewer pins 
than the number required to implement a controller 
supporting the alternative 64-bit wide data path to 
the frame buffer. This lower pin count allows GUI 
controller designers to realize die-area and packag­
ing-cost savings, while enabling them to take advan­
tage of additional available on-chip real estate and 
pins to add multimedia features. A savings of 80 
pins on a controller package can result in halving 
the die area of the controller, and greatly reducing 
die costs. 

COMPARATNE ANALYSIS 

Compared to the Rambus memory solution, 
alternative approaches using multiple DRAMs or 
VRAMs in wide 32- or 64-bit parallel buses to pro­
vide the bandwidth required by 1024 x 768 x 24bpp 
displays face a number of system issues. In particu­
lar, the wide bus interface used with 32- and 64-bit 
parallel buses requires more DRAM components 
and controller pins than the Rambus approach. 
Designers looking to integrate multimedia features 
into their conventional designs have two choices: to 
move to a larger and more expensive controller 
package with more than 240 pins, or to develop a 
solution that requires multiple chips. 

In the case of a conventional single-ported 
DRAM architecture, a 105-pin memory interface 
may lead to a larger controller package and more 

RDRAM Approach 

a 1 MB to 8 MB frame buffer 

a Internal RAMDAC 

D 450 - 900 MBytes per second bandwidth 

D Second Channel can be added 



complex board layout-all of which yields a maxi­
mum bandwidth range of from 200 to 400 MBytes 
per second. In contrast, the Rambus solution con­
sists of a single-chip, two-megabyte frame buffer, 
smaller packaging, more room for additional fea­
tures, and considerably higher bandwidth ranging 
from 400 to 450 MB/second. 

Graphics designers have traditionally moved to 
dual-ported DRAMs, such as VRAMs, in order to 
gain higher performance than single-ported DRAM 
approaches. A dual-ported VRAM design, with its 
110-pin memory interface further complicates the 
board layout considerations and may requires the 
need for larger controller package. The current 
trend for today's PC GUI controllers is to include 
the RAMDAC on-chip: a design that require even 
more pins on the controller if the VRAM's serial 
ports are connected back to the controller to the 
internal RAMDAC. The Rambus approach provides 
the ability to add a second Channel, increasing 
effective bandwidth of up to 900 MBytes per sec­
ond, enough to support even the most advanced PC 
graphics applications. 

The high integration and low-cost benefits of 
Rambus Technology are passed on to PC graphics 
subsystem board designers. A Rambus-based frame 
buffer requires just a few square inches of board 
space-about one tenth the space required by 
conventional graphics board designs. The Rambus 
minimal board area also helps to relieve the crowded 
Pentium motherboard: the Pentium's SRAM cache 
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and DRAM backing store can be replaced with a 
Rambus memory subsystem with no loss in 
performance. 
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This presentation identifies software and 
hardware enhancements that improve 
overall system performance of a 90 MHz 
Pentium processor-based desktop 
system. Each system component was 
changed systematically to determine the 
effects on overall performance. 
Specifically, various I/O bus 
implementations, graphics resolutions, 
device drivers, memory hierarchy 
schemes, and disk caching methods were 

13 

evaluated. This information is meant to 
benefit and guide OEMs in selecting 
peripherals and system design strategies 
to achieve optimum performance. What 
we find is the need to pay special 
attention to all aspects of system design, 
including software device drivers, in 
order to obtain optimum Pentium 
processor performance as measured by 
the SYSmark93 for Windows 
benchmark. 
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ABS1RACT 

The Peripheral Component Interconnect (PCI) 
bus eliminates the I/0 bottlenecks of traditional 
system buses by providing a high performance 
datapath for system CPUs and peripherals to 
communicate. This is essential for computation­
intensive applications such as sophisticated 
graphics, local-area networking and real-time video 
which require large amounts of data processing and 
high speed system throughput. 

This paper will focus primarily on hardware 
systems design with specific emphasis placed on 
PCI bus interface implementation and verification 
issues. We will first look at the background, 
features and functionality of the PCI bus. This will 
be followed by a design example, showing how 
system requirements drove the selection of specific 
technologies in order to achieve particular 
performance and marketing goals. 

WHY PCI LOCAL BUS 

A personal computer system bus performs the 
task of moving data between the CPU and the 
peripherals such as disk drives, monitors, and 
printers. The most successful of these has been the 
16-bit Industry Standard Architecture (ISA) bus 
established by IBM and its 32-bit successor, the 
Extended Industry Standard Architecture (EISA). 
However, the capabilities of new high-speed CPUs 
such as Intel's Pentium processor and the high data 
throughput requirements of applications such as 
graphics and video processing have quickly 
exceeded the data transfer capabilities of these 
standard system buses. As a result, many systems 
today are adopting one of the newer "local bus" 
standards as a means for improving overall 
performance. 

By circumventing the I/0 expansion slots, local 
bus peripherals tap directly into the path between 
processor and motherboard. The PCI Local Bus 
accesses the processor's local bus through a bridge. 
Because it is independent of the system bus, it is 

14 

possible to use the local bus to achieve the 
performance required for critical functions such as 
video, and still maintain compatibility with existing 
peripheral hardware through the system I/0 bus. 

Although PCI delivers performance similar to a 
direct processor connection, it is in fact physically 
removed from the processor bus by a PCI Bridge. 
This bridge places a managing layer between the 
CPU and peripherals - creating a uniform interface. 
This also provides support for bus mastering, 
enabling intelligent devices to directly access main 
memory. PCI also includes an optional liurst mode 
that provides accelerated throughput of data across 
the bus. 

PCI defines four bridge types: 

• Host to PCI Bridge - Connects the host CPU, 
memory and cache subsystem to the PCI bus. 

• PCI to Standard Bus Bridge - Connects PCI to 
standard I/0 bus such as ISA 

• PCI-to-PCI Bridge- Provides a connection path 
between two independent PCI buses, allowing a 
hierarchy of multiple PCI buses. 

• 1/0 Controller- Translates between the PCI bus 
and the 1/0 protocols. 

PCI System Architecture 

• 3 Main Buses 
- CPU Local Bus 
- PCI Bus Hierarchy 
- Standard 1/0 Bus 

• PCI Bridge Functions 
- Host-PCI 
- PCl-PCI 
- PCl-Standard Bus 
- PCl-1/0 Controller -ISACudo 



PCIBUSTECHNOLOGY 

The PCI bus is unterminated, operating on the 
principal of reflected wave signaling. The output 
impedance of a device driving the bus is roughly 
matched to the characteristic impedance of the bus 
(a transmission line). The incident wave from the 
output driver travels down the bus, reflects off the 
unterminated end and travels back to the receiver 
where the voltage doubles to meet the required 
input threshold. PCI defines a worst case signal­
propagation delay (tPROP) of 10 nsec, one-third of the 
clock period for 33-MHz operation. 

To drive the transmission line, IC output drivers 
must source and sink a minimum amount of 
current to ensure a large enough step on the line, 
given the characteristic impedance. 
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The PCI V /I drive curves show that the 
minimum impedance an output must be able to 

drive is 31.8 .Q (1.4 V/44 mA) in the logic high 
state. All output drivers for PCI components must 
satisfy these minimum I maximum drive 
characteristics to ensure sufficient signal drive 
during AC switching. 

PCI employs a 32-bit multiplexed address and 
data path. which provides a peak bandwidth of 132 
Mbytes/sec at 33 MHz. The basic data transfer 
mechanism on the PCI bus is a burst, comprised of 
an address phase followed by one or more data 
phases. 

The PCI bus 30 nsec clock period allocates 11 
nsec for clock to out delay (tvAL). 10 nsec for the bus 
propagation delay ( tPROP), 2 nsec for clock skew 
(tsKEw). and 7 nsec for input set-up time (tsu). 
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PCI Bus Timing Requirements 
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The PCI bus has a number of signals that must 
be driven by more than one bus agent during a data 
transaction. To avoid bus contention, PCI requires 
bus tum-around cycles. or high-impedance states, 
at each point where a driving agent releases control 
of the PCI bus. This must occur one clock cycle 
before another agent can begin driving the bus to 
avoid contention. 

An additional complexity in this scheme, is that 
the turnaround cycles occur in different bus cycles 
for different classes of signals. resulting in a need 
for multiple, independent output buffer enables. 
Target bus agents require five independent output 
enable controls while combined Initiator /Target bus 
agents require seven. 

PCI protocol requirements are especially difficult 
to meet in chip architectures where the output 
enable signal must be driven from an internal flip­
flop. Determining device compliance to these 
requirements is difficult. It requires careful analysis 
of device AC timing parameters, along with clock 
distribution, and internal propagation delays 
through the interconnect and logic structures. 

This completes the overview of the features and 
functionality of PCI. We will now take a look at a 
design example focusing on the choice of 
technologies needed to meet this design's 
requirements. 



VIDEO DIGITIZER DESIGN EXAMPLE 

MuTech Inc. specializes in high resolution PC­
based image processing solutions for OEMs in 
machine vision, laboratory image analysis, and 
color publishing. The firm has developed a series of 
single-monitor and dual monitor Image/VGA frame 
grabber boards that provide high-quality, low noise, 
color and gray-scale digital video images used in 
finger print identification, gel electrophoresis, parts 
inspection, and biotech cell classification. 

In order to develop the next generation 
of image peripherals, MuTech was faced with the 
challenge of developing a high performance, low 
cost system that could capture and transfer high 
quality images quickly. MuTech selected the PCI 
Local Bus based on its high throughput capabilities. 
The PCI bus is so fast that images can be captured 
and transferred to system memory in real-time 
without the expense of large on-board memory. 
Using PCI, MuTech targeted continuous transfer 
rates of more than 20 Mbytes/sec from the video 
digitizer to system main memory and more than 30 
Mbytes/sec to the VGA Display. This was over 10 
times the performance level of an ISA bus based 
video digitizer. 

SELECTING A SILICON SOLUTION 

Attaching a peripheral device to the PCI bus 
requires an I/0 controller chip that implements the 
PCI protocols on the PC! side and connects to a 
back-end bus on the reverse side. Determining the 
best product for the interface requires careful 
understanding of PCI design requirements. This 
includes protocol timing requirements, I/O drive 
characteristics, and the implementation of PCI 
autoconfiguration registers for Plug and Play 
operation. 

Ch!Q_set 
PCI Com~iance Yes 
Customization None 
Design Flexibility_ None 
NRE None 
Proto!YQ__es N/A 
Time-to-Market Fast 
Availabili:!Y_ Immediate 
Testin__g_ Factory_ 
Unit Cost Low 
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Standards such as IDE disk drives, Ethernet 
LANs, and SCSI devices define the controllers for 
these applications and many vendors offer these 
controllers with PCI interfaces. Unfortunately, few 
off-the-shelf products have been designed to 
support the need for a general purpose I/O 
controller. To attach non-standard devices to the 
PCI bus, designers have limited choices and in 
many cases will have to design their own general­
purpose PCI controller. 

An important decision in a custom PCI interface 
design is whether you will implement the design 
using chipsets, gate arrays, or programmable logic. 
The chart below compares some trade-offs for each. 
Programmable logic technology has advanced such 
that performance is competitive with ASIC designs 
for many applications. 

There were several factors that were key for 
MuTech in deciding which technology to use. 
Besides the need for 100% PCI-compliance, MuTech 
required integration of specific features that no 
existing chipset supported. It was critical to be able 
to prototype and experiment with multiple iterations 
of the design without worrying about costly NRE 
charges and prototype cycle times. Time-to-market 
was important as well as the ability to customize the 
final product for specific host systems. These factors 
led MuTech to select a F1eld Programable Gate Array 
(FPGA) as their solution. 

One of the most important feature requirements 
of the design is that it be easy to install and 
configure. As a true Plug and Play PCI add-in, the 
board memory and registers are all automatically 
assigned addresses by the system BIOS at boot-up 
thus resolving the memory, I/O base, and IRQ 
conflicts that have plagued traditional ISA bus 
cards. 

Gate Arr<!Y_ FPGA 
Yes Yes 
Full Full 

Costly Fully Reconfi~urable 
Hi~h None 

Lead time/Costly Fast/Free 
Medium Fast 

Lead time/Risk Immediate 
User Supplied l 00% Facto..!Y. 

Low Masked M!g!ation 



DESIGNING FPGA-BASED PCI INTERFACES 

Using a high-density FPGA, MuTech engineers 
were able to integrate the video capture control. 
VRAM memory control, board control registers and 
the complete PCI Interface into a single device. This 
high level of integration yields several benefits 
including high-performance, small package size, 
and low power consumption. 

The Xilinx XC3 l OOA family provides all the 
necessary features and logic capacity required to 
integrate the interface requirements onto a full sized 
PC! bus circuit board. The XC3100A architecture 
contains three major circuit blocks which were used 
to develop this design: 

• Input / Output Block (IOB). Provide registered 
and buffered input as well as 3-state registered 
or buffered outputs. 

• Configuration Logic Block (CLB). 
5-input logic functions v,,rith registered or 
combinatorial outputs. 

• Channeled Routing. Signal routing is 
accomplished using internal horizontal and 
vertical routing resources. 

Implementing the design to run at the full burst 
rate of 33 MHz required a high degree of pipelining 
to optimize the routing and logic delays of the bus 
interface and memory control blocks. Registered 
input and output buffers were used on both the PCI 
and VRAM interface ports of the design. The 
resulting pipelined data flow increased the initial 
PCI access latency but produced a design that 
performs burst transfers at 33 MHz. For write 
burst, PCI address/data signals are latched by 
registered input buffers on one clock edge, and 
appear on the VRAM data port one clock later. A 
similar data flow occurs in the reverse direction on 
read cycles. 

In addition to pipelining, partitioning the logic to 
utilize the 5-input CLB structure eliminated 
multiple CLB delays and maximized logic utilization. 
To meet the high I/O demands of a PCI controller, 
the 160-pin XC3 l 95A package provides 138 I/ Os. 
The XC3100A-2 family I/Os have been 
characterized to guarantee PCI compatibility. The 
devices have CMOS outputs with a guaranteed 
static output current of 8 mA. PCI dynamic drive 
requirements are not covered by the original data 
sheet, however, Xilinx has characterized devices 
and verified their compliance in all Plastic Quad­
Flat Pack (PQFP) packages. 
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MV-lOOOVIDEO DIGITIZER 

This is a picture of the completed design. On the 
right is the video digitizer board (MV-1000) 
containing the PCI interface, analog camera 
interface, video capture, video conditioning and 
VRAM buffers. On the left is an optional digital 
camera interface board (MV-1100) which is EIA 422 
compliant and allows the board to support up to 
four concurrent 8-bit digital inputs. 

The entire system fits into a single full-sized PCI 
card slot. Connectors at the back of the MV-1100 
enable the MV-1000 to support most of the popular 
higher resolution line scan, area scan, and variable 
scan cameras sold by vendors such as Kodak, 
Dalsa, EG&G, Ektron, Pulnix, and Roche. 

SUMMARY 

MuTech set out to design a high performance 
video digitizing system with a broad potential 
market. The system bandwidth requirements made 
the PCI bus a natural selection. In addition, 
because PCI is processor independent, designing a 
PCI based video digitizer would give them the 
potential to sell one board into PC, PowerPC and 
workstation platforms. 

The bus interface and digitizer block required 
high performance with 100% PCI compliance. It 
required a high-level of integration and the ability to 
experiment with the design by testing multiple 
iterations during the design phase. Finally, time-to­
market was critical. Together, these requirements 
drove the selection of an XC3 l OOA FPGA as the 
technology of choice for implementing the critical 
functions of the system. 
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ABSTRACT 

PCI-compliant high-density programmable logic 
devices can be used to create flexible PCI bus 
interfaces while avoiding the costs and risks of 
custom IC development. However, careful design is 
required to meet the performance and signaling 
requirements of the PCI specification. This paper 
overviews these issues, focusing on the attributes 
needed in the programmable logic device to facilitate 
interface design, and suggesting appropriate design 
techniques and methodologies. Examples of PCI­
compliant devices from the Xilinx product line also 
are examined. 

INTRODUCTION 

The Peripheral Component Interconnect (PCI) bus 
definition has the admirable goal of providing high 
throughput on a well-defined, lightly-loaded bus 
while being compatible with today's IC manufacturing 
processes. In order to insure interoperability in all 
PCI-based systems, components that interface to the 
PCI bus must strictly adhere to the PCI specification's 
performance and 1/0 drive requirements. Thus, 
equipment manufacturers planning to design PCI­
based systems and add-in boards face the challenge 
of locating and selecting PCI-compliant devices. 

With the recent emergence of PCI-compliant Field 
Programmable Gate Arrays (FPGAs) and EPROM­
based Programmable Logic Devices (EPLDs), 
designers of PCI bus interfaces can now reap the 
flexibility and time-to-market benefits of high-density 
user-programmable devices, while avoiding the costs 
and risks of custom and semi-custom IC 
development. However, PCI bus interfaces are 
complex, and when implemented in EPLD devices 
tend to require most of the capacity of the device, 
even in large EPLDs. Designers interested in 
integrating both the PCI bus interface and their 
unique control logic for the back-end device being 
connected to the bus into the same programmable 
device will be attracted to the capacity of the higher­
density FPGA devices. 

The first issue that a designer must face before 
selecting component technologies is whether full PCI 
compliance is needed. Full compliance is a 
requirement for any board intended to be plugged 
into any PCI system or any system intended to accept 
any PCI-compatible boards. In other words, full 
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compliance is a must in systems that are to be sold in 
to the general marketplace and require inter­
operability among multiple vendors. However, if the 
system environment is "closed", in the sense that the 
PCI bus is being used internally in a system where 
the equipment designer has control over all devices 
that interface to that bus (such as an embedded 
system with no add-in capabilities), then, of course, 
the designer has freedom to deviate from the 
specification. This would expand the range of 
available devices, since many EPLD and FPGA 
devices are not completely compliant to the PCI 
specification. 

The PCI Special Interest Group (PCI SIG) has 
published the PC! Compliance Checklist of parameters 
that both system and component suppliers must 
adhere to in order to claim compliance. It includes a 
Component Electrical Checklist covering areas such as 
I/O signaling levels, timing specifications, and bus 
loading. It is important to review this checklist for 
any device that will connect directly to a PCI bus. By 
responding appropriately to the items in this check­
list, a vendor demonstrates that the minimum amount 
of work required in order to claim compliance has 
been completed. Inability to furnish a response to 
this checklist is sufficient reason to question the 
vendor's familiarity with the PCI specification and any 
claims of compliance. 

However, while meeting the checklist criteria is 
necessary, it does not in itself guarantee PCI 
compliance. Full system-level compliance typically is 
verified by actually building a board and testing it. 
To facilitate compliance verification, the PCI SIG 
conducts workshops where candidate systems and 
peripherals can be thoroughly tested. The PC! SIG 
also offers board-level products (some of which use 
programmable logic) that permit developers to 
perform their own compliance tests. In addition, 
simulation models available from Logic Modeling 
Corp. (a division of Synopsys) have been sanctioned 
by the PCI SIG for compliance testing. 

MEETING PCI PERFORiv1ANCE REQUIREMENTS 

The PCI bus supports a maximum transfer rate of 
33 MHz over a 32-bit or 64-bit data path (33 MHz 
transfers of 32-bit data= 132 Mbytes/second). At the 
maximum 33 MHz clock rate, the 30 ns clock period 
for a data transfer allocates 11 ns for the output 
driver, 10 ns for the round-trip bus propagation 



::b~mbQl Earam!::~C E~l Limit 
Tsu Input Set-up Time 7 ns 

TH Input Hold Time 0 ns 

TvAL Clock to Valid data out 2 ns :;;; T VAL :;;; 11 ns 

ToN Float to Active delay 2ns:s;ToN:s;TvAL 

Table 1: Key PCI Timing Parameters 

delay, 2 ns for potential clock skew, and 7 ns for 
input set-up time. This leads to the performance 
requirements listed in Table 1. 

The deterministic timing of most EPLDs makes it a 
fairly straightforward task to examine the AC timing 
parameters in the manufacturer's data shee~ ~nd 
determine if that device meets the PCI tlmmg 
specifications for Tsu. TH, and TvAL· Determining an 
FPGA's compliance to these specifications is more 
difficult, since global buffer and interconnect delays 
as well as logic delays must be taken into account. 

Most FPGA data sheets specify clock-to-output 
timing for registered outputs relative to the clock at 
the output register (which may reside in an 1/0 block 
or nearby logic block). However, the PCI standard 
specifies pin-to-pin timing, and the TvAL parameter is 
measured relative to the bus clock entering the FPGA 
device. Thus, the TvAL clock-to-output valid delay in 
an FPGA typically would include the delay in 
inputting the clock signal, bringing it to the FPGA's 
global clock buffer, routing the clock to the relevant 
I/O or logic block, the internal clock-to-output delay 
of the register, and the delay through the output 
buffer (Figure 1). A clock-to-output valid delay of 
under 11 ns is difficult to guarantee in large FPGA 

Pad 

Clock in 

Data----

Global 
Clock 
Buffer Clock 

,_ ___ .. Routing 

Output 
Buffer Pad 

Data out 

Figure 1: The pin-to-pin clock-to-output timing for 
an FPGA includes all delays on the clock path from 
its input pad to the register, and all the delays on the 

data path from the register to its output pad. 
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devices where it may take 6 to 8 ns to distribute the 
global ~lock signal to every flip-flop on the chip. 

Set-up and hold times for registered inputs also 
must be examined carefully in FPGA designs. FPGA 
data sheets typically specify set-up and hold times 
relative to the internal clock at the register itself, 
while the PCI standard defines these parameters 
relative to the clock input pin. Again, the delay 
involved in inputting the bus clock and routing it 
through a global clock buffer to the input register and 
the delay on the data path to the .input register '.llso 
must be taken into account. The mternally-specified 
set-up and hold times must be adjusted to 
compensate for the delays associated with getting the 
clock signal to the register. This may result in non­
zero hold time requirements in many FPGAs. (Some 
FPGAs such as the Xilinx XC3100A and XC4000 
familie~, include a deliberate delay in the data path to 
an input register to compensate for the clock 
distribution delay, and, thus, guarantee set-up and 
hold times relative to the clock input pin. Many other 
manufacturers do not offer this feature, and the lack 
of minimum delay specifications on the clock network 
make the calculation of guaranteed hold times with 
respect to the clock pin impossible.) 

The float-to-active delay (ToN) specifies the time 
required for an output driver to transition from 3-sta~e 
to a valid output, timed from a bus clock mput. This 
must occur before a valid output is available (TvAd· 
This path can involves delays throug.h I/O cells, log~c 
cells, and routing; therefore, this parameter is 
design-dependent, and requires careful layout along 
critical paths. 

Other, more subtle, performance requirements 
result from the implementation of the bus interface 
protocols. For example, the IR_DY# and TR_D'Y'.# 
signals must respond to a change m F~AME# w1~hm 
one clock cycle. Again, these paths will be design­
dependent, involving internal logic and routing paths 
in the FPGA or EPLD, and require careful attention to 
the timing of critical paths. 

Vipelining 

The PCI bus protocols encourage burst-oriented 
data flows between bus agents, facilitating the use of 
pipelined data flows within PCI bus interface logic. 
Pipelining techniques are often key to successfully 
supporting data transfers at the rr:aximum throu~put 
of the bus. While wait states durmg bus transactions 
are permitted and occasionall)_' may be necessary! a 
high frequency of wait states is counter to the high 
performance goals of the PC! standard. 

The "back-end" of a PC! bus interface typically 
connects the bus to a processor, memory subsystem, 
embedded controller, or peripheral device. In most 
designs, a data buffer, such as a FIFO buffer o.r dual­
port memory, resides between the external device and 



the PCI bus interface logic, decoupling the speed of 
the PCI bus from the back-end controller, and 
allowing multiple data words to be queued for a burst 
data write to the bus or stored during a burst data 
read from the bus. Pipelining techniques are then 
used to control the data flow through the interface 
logic and onto the bus at maximum speed. This 
increases the latency of data transfers, as multiple 
clocks may be required for the first data word to move 
through the stages of the pipeline and onto the bus, 
but can allow maximum throughput during a burst 
transfer by providing new data each bus clock cycle 
once the pipeline is filled. For example, a two-stage 
pipeline would require the data be transferred from 
the back-end device to the first stage on one clock 
edge, and then driven to the register that drives the 
bus on the next clock edge. Thus, at the start of a 
burst read from this agent, a single wait state may be 
required for the first data byte (while the data is being 
transferred to the bus interface's register), but a new 
data word could be read from the agent on each 
subsequent clock of the burst transfer (assuming that 
the back-end can supply new data to the pipeline at 
each clock). 

Implementing State Machines 

Typically, the signals involved in bus 
transactions, such as FRAME#, IRDY#, and TRDY#, 
and the operation of data flow pipelines are controlled 
by state machines in the bus interface logic; example 
state machines for controlling bus signaling are 
provided in Appendix B of the PCI Specification (PCI 
SIG 1993). To comply with PCI bus protocols and 
performance requirements, bus control signals must 
be sensed within the 7 ns input setup time. In some 
cases, such as initiator-generated wait states during 
reads, these signals must be responded to on the first 
clock edge after their activation. Thus, high­
performance state machines are required. 

For FPGAs, one-hot-encoded (OHE) state 
machines are recommended (that is, state machines 
with one register per state and minimal decoding 
logic). These are well-suited for register-rich FPGA 
architectures. On the other hand, fully-encoded state 
machines are better suited to the AND-OR plane logic 
ofEPLDs. 

For performance reasons, the transaction protocol 
state machine often is divided into two levels. The 
top level sets the data pipeline up for continuous data 
flow and controls the front end of the cycle. However, 
while the PCI protocol is compatible with data 
pipelining, there are two exceptions: the sequence of 
events that starts on the last transfer of a burst, and 
when an initiator inserts wait states on a read cycle. 
Thus, at a second layer, the IRDY# and FRAME# 
signals must be sensed directly and responded to 
within their 7 ns set-up time on the bus, so they 
directly gate state machine outputs that control the 
appropriate bus control signals. 
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Paritv Generation and Checking 

Parity generation and checking is another 
example where the bus protocol leads to a 
performance requirement that can be problematic, 
particularly in FPGA devices, and pipelining often is 
required. For a 32-bit bus implementation, parity 
must be maintained for the 36-bit data field 
consisting of AD(0-31] and C/BE#(0-3] during both 
address and data cycles. Typically, FPGA logic 
blocks and EPLD macrocells have a fan-in of less 
than 36 - far less in the case of FPGAs - so parity 
generation and checking functions will require more 
than one level of logic, with the resulting performance 
implications. 

All agents must generate an even parity bit when 
writing address or data information to the bus. The 
PAR signal must be driven to the appropriate state 
and be present on the bus one clock cycle after the 
address or data. In other words, this signal must be 
driven out to the bus within 11 ns of the bus clock 
edge wherein valid address or data information is 
transferred. Inevitably, signals cannot pass through 
the multiple logic levels of a parity generation circuit 
in this short period. Rather than adding wait states to 
each data transfer to compensate for a slow parity 
generator, pipelining of the multiple levels of the 
parity generation circuit can allow full speed 
operation during burst data transfers. The parity 
generation pipeline would work in conjunction with 
the data flow pipelining, with "partial parity" results 
moving through the pipeline in concert with the data. 

For example, consider an EPLD or FPGA capable 
of implementing six-input functions in each logic cell. 
A two-stage parity generation pipeline would be 
required (Figure 2). The first stage of the pipeline 
generates parity calculations on six 6- bit sub­
segments. The parity results of the first stage are 
registered on the same clock edge in which the back­
end data is loaded into the interface register and 
driven onto the bus. The second pipeline stage then 
completes the parity calculation; the output of this 
stage drives the PAR signal. For FPGA devices whose 

Data 
Path --- Logic 

36 

First 
XORs 

DO AD(31 :O),CBE(3:0) 

Final 
XOR PAR 

Figure 2: A two-stage pipeline for parity generation 



logic blocks have a fan-in less than six, the parity 
generator may require three-levels of logic. 
Depending on the set-up time of the data from the 
back-end to the register driving the bus and the 
achievable performance of the FPGA device, the first 
two levels of logic may be implemented in the first 
pipeline stage, or a three-level pipeline may be 
required (which may, in turn, be a determining factor 
in the number of pipeline stages in the data flow.) 
For initiator agents driving addresses onto the bus, 
the address and command information must be fed to 
the parity generation pipeline the requisite number of 
clocks before the initiator begins the actual bus 
transaction by asserting FRAME#, in order to insure 
that the PAR bit is available at the correct time. 

Parity checking is not required in target agents, 
and, even if available, is activated only if a parity 
enable bit in one of the PCI configuration registers is 

set. In the event a parity error is detected when 
reading address or data information from the bus, an 
active SERR# or PERR# signal must be available on 
the bus one clock period after PAR. Thus, the error 
signal must be driven onto the bus within 11 ns after 
the clock edge where PAR is sensed. The best 
approach is to generate an even parity bit for the data 
as it is received and compare it to the PAR signal that 
arrives one clock after the data. Thus, parity 
generation can occur during the entire clock cycle 
following the latching of the data, and the parity bit 
latched on the next clock edge. (Careful placement 
and routing may be required to traverse the multiple 
logic levels of a 36-bit parity generator within 30 ns.) 
At the clock edge where PAR is sensed, the generated 
parity bit must then be XORed with the PAR signal, 
ANDed with the enable bit from the configuration 
register, and drive the SERR# or PERR# signal, all 
within the next 11 ns. This implies that the sum of 
the clock-to-out delay of the register holding the 
generated parity, the delay through one level of logic, 
the output buffer delay, and all associated internal 
routing delays along this path must not exceed 11 ns. 
While possible in the highest speed devices, this can 
be a difficult challenge in any technology, and 
discourages designers of many target-only devices 
from including parity check capability. 

Similarly, wide decode logic is required by 
potential bus targets to decode bus addresses, and is 
likely to involve multiple levels of logic within an 
FPGA or EPLD. However, the PCI standard allows up 
to four clock periods for an addressed device to 
activate its DEVSEL# signal; this is ample time to 
traverse several levels of logic in today's 
programmable logic devices. 

IIO REOUIREMENfS 

The PCI bus is unterminated, operating on the 
principle of reflective wave signaling. The initial 
output signal, therefore, has half amplitude. It travels 

21 

to the end of the non-terminated bus, and gets 
reflected back towards the source to become a full­
amplitude signal. This scheme demands strict 
control of device drive characteristics. The driver 
must have an output impedance in both the High and 
Low states that is roughly the same as the 
characteristic impedance of the driven bus. When 
that condition is met, the returning signal is absorbed 
without any further ringing or reflection. In order to 
achieve 33 MHz, the round-trip delay must be limited 
to 10 ns, limiting the physical length and allowable 
capacitive loading of the bus. 

Thus, unlike traditional bus specifications, PCI 
defines AC switching characteristics as well as DC 
parametrics. In other words, as well as specifying 
1/0 sink and source limits at logic 0 and 1, PCI also 
includes specifications for sink and source switching 
currents across the transition from one logic level to 
another. These are specified as regions and specific 
points on a current vs. voltage graph (or "I/V curve") 
within the PCI Specification. This type of 1/0 drive 
information typically is not readily available in FPGA 
and EPLD data sheets, and may need to be obtained 
from the manufacturer. Again, designers are 
encouraged to examine device manufacturers' 
responses to the items in the PCI SIG's Component 
Electrical Checklist. 

Bus loading must be strictly controlled in order to 
maintain performance. Each add-in card edge­
connector finger can attach to only one device pin of 
no more than 10 pF, except for the CLOCK pin which 
can be 12 pF. Programmable logic devices in plastic 
packages typically meet this requirement; although 
data sheets often list higher input capacitances, these 
values usually only apply to ceramic packages, where 
the multi-layer package increases pin capacitance. 

) 

The SERR# and interrupt request bus signals 
must be implemented as "open drain" outputs that 
can be shared by multiple agents in a wired-OR 
manner. While most FPGAs and EPLDs do not 
incorporate true open drain output structures, the 
functionality of an open drain output is easily 
implemented in an FPGA or EPLD with three-statable 
output buffers. This is accomplished by supplying a 
zero to the data input of the buffer and driving the 
buffer's output enable input instead of the data input. 

Some FPGA and EPLD devices have restrictions 
as to the number of different signals that can be used 
as output enables for the device's output buffers. 
These devices generally are not good candidates for 
PCI bus interface designs. Since different bus 
control signals must be driven at different times and 
most control signals are three-state signals that must 
be driven by three-state buffers (and separate control 
of the output enable is needed for each of the "open 
drain" signals, as described above), PCI interface 
designs require significant flexibility in the 
generation of multiple output enable signals. 



Pin Placement 

The PCI standard specifies a maximum trace 
length of 1.5 inches from the card edge connector to 
the PCI device for all 32-bit signals in order to limit 
trace capacitance. In all, a minimum of 4 7 pins are 
required for a target-only device and 49 for an 
initiator. These requirements dictate the use of a high 
pin count device in a small, dense package, such as 
the popular plastic quad flat pack (PQFP) package. 

The PCI specification recommends a pinout for 
PCI interfaces in quad flat pack packages that is 
designed to align with the board's edge connector pin 
assignment. However, other factors that could 
influence pinout choices include simultaneous 
switching and board layout considerations, and 
internal logic placement along critical paths within 
the FPGA or EPLD. To avoid switching noise 
problems, address/data bus signals often are placed 
in groups surrounding package ground pins. The 
target FPGA or EPLD device should provide adequate 
routing near its I/O cells to provide flexibility in I/O 
placement while allowing complete, fully-routable 
designs. 

OTHER ARCHITECTURAL CONSIDERATIONS 

The PCI bus is a synchronous bus based on a 
single master clock signal; this implies that bus 
signals should be registered as they exit and enter 
bus agents. Thus, PCI interfaces demand an 
architecture with adequate register space for latching 
bus signals as well as generating state machines, 
pipelines, and other internal logic. High-density, 
register-rich FPGAs easily fulfill this requirement. 
EPLDs typically provide only one register per 
macrocell; however, some EPLDs, such as the Xilinx 
XC7300 family devices, feature additional, 
independent registers in their input paths, as well as 
the macrocell registers. These structures are ideal for 
latching bus inputs, and are a necessary resource for 
meeting the capacity and density requirements of PCI 
bus interface design. 

PCI devices must implement a basic set of 
configuration registers, divided into a predefined, 64-
byte header region and a 192-byte device-dependent 
region. Many of these registers or fields within these 
registers are optional. For EPLD-based interfaces, 
these registers would be implemented in an external 
memory device. FPGA- based designs may include 
some or all of the configuration bits either within the 
FPGA or in external memory devices, dependent on 
the design requirements and FPGA capacity, . 

The PCI standard includes specifications for both 
5 V and 3.3 V signaling environments; PCI 
subsystems can be 5 V only, 3.3 V only, or universal 
(both). A keyed connector scheme prevents damage 
to single voltage cards. Currently, FPGA- based PC! 
interfaces must be 5 V only designs; the 3.3 V 
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FPGAs available today do not provide adequate 
performance for this application. Some EPLDs, such 
as the XC7300 family, while running at 5 V internally 
to provide the required performance, can 
accommodate either 3.3 V or 5 V signal levels on their 
I/O pins. Thus, these devices can be used on 
universal cards that provide both signaling 
environments. 

DEYELOPMENT SYSTEM CAPABILITIES 

An often overlooked factor when evaluating 
programmable logic devices for possible use in PCI 
systems is the capabilities of their development tools. 
Since the performance requirements of the PCI 
standard tax the capabilities of most FPGA and EPLD 
devices, development tools capable of easily 
producing high-performance layouts are mandatory. 
If a high-level hardware design language is used for 
design entry, logic synthesis tools that are optimized 
for the target architecture are required. While 
automated layout tools should be robust, the 
intricacies of PCI design may require that the 
designer exercise some control over the tools, 
especially in the placement and routing of critical 
paths and the placement of I/O pins. Thus, some 
form of placement control is needed, and 
floorplanning support is desirable. For FPGA- based 
designs, timing-driven place and route tools such as 
XACT-Performance™ from Xilinx and TimingWizard™ 
from N eoCAD can ease the design process by 
allowing the specification of target performance 
requirements for entire paths through the design. 
"Re-entrant" FPGA place and route tools, wherein the 
placement and routing of a previous version of a 
design can guide the implementation of a new version 
with minimal changes, can greatly ease the design 
process. 

EXAMPLE DEVICES AND DESIGNS 

Examples of fully compliant programmable logic 
devices include the XC3100A FPGA and XC7300 
EPLD families from Xilinx Inc. PC! Compliance 
Checklist data has been submitted to the PCI SIG (and 
is available to interested users) for the -2 speed 
grade of the XC3100A family, and -10 and -7 speed 
grades of the XC7300 family. 

Several PCI designs have been based on the 
XC3100A FPGA family. In fact, the PCI SIG chose an 
XC3100A device for the board developed for use in 
their BIOS compliance test kit. A target interface 
design that links the PCI bus to a slave processor 
through a dual-port RAM has been incorporated in an 
XC3164A-2 device in a 160-pin PQFP package 
(Figure 3). The design was coded in Verilog HDL, 
synthesized using Exemplar Logic's CORE™ tools, and 
verified on a PC using Simucad's Silos/Verilog 
simulator. This design utilizes only 40% of the logic 
blocks available in the XC3164A FPGA. Design files 



and an application note describing the design are 
available from Xilinx (Xilinx 1994a). 

Likewise, an application note and design files are 
available for a PCI ta1Bet interface implemented using 
two EPLD devices: an XC73108 and an XC7354 
(Xilinx 1994b). This design also can be collapsed 
into a single XC73144 device. The "back-end" 
interface is a FIFO buffer connected to a DRAM 
memory subsystem with its own memory controller. 

While not fully compliant, the XC4000-4 FPGA 
family also has been used in a number of "embedded 
system" PCI bus implementations. (The XC4000-4 
FPGA devices fall just short of meeting the TvAL Tsu 
and TH timing requirements, but are compliant 1in all 
other aspects.) However, XC4400 HardWire devices, 
mask-programmed versions of the XC4000 devices, 
are fully-compliant, allowing for prototype 
development with the programmable version, but 
high-volume manufacturing with the fully-compliant 
HardWire version. A higher-performance version of 
the XC4000 FPGA architecture will be available in 
the second half of 1995, and is expected to be fully 
compliant. The XC4000 architecture has several 
features that facilitate PCI bus interface design, 
including the ability to implement 9-input functions 
in a single block (easing parity generation and 

checking), and on-chip RAM capability (facilitating 
the on-chip implementation of the PCI configuration 
registers). 

SUMMARY 

While careful design is required, PCI-compatible 
EPLD and FPGA devices bring the system-integration, 
flexibility, and time-to-market benefits of high­
density programmable logic to the PCI design 
community. These devices can provide the 
performance, density, and routability to handle 
complex structures such as pipelined data paths, 32-
bit parity generation, and PCI bus control. 
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In the past ten years, PC system logid ha_s 
evolved from simple glue logic plus DMA, interrupt 
control and timer functions into much more 
powerful and sophisticated system control 
functions.The general trend has been moving 
toward 
• Higher performance CPUs 
• Highf>r frequency CPU buses 
• Bigger and Caster cache and DRAM 
• Faster and better 1/0 buses 
• Ad\'flllced features such as •oreen• and •p1ug 

and Ptay" 
• Higher integration 

System logic can be divided into several sub­
systems name\y, CPU interface, memory control, 
bus interface and other features. 

CfUINTERFACE 

From the original 8088 to today's high end 
Pentium and equivalents, CPU performance has 
grown at a rate of 50% per year. In tho future, 
system logic designs will need to support now CPU 
features such as write-back cache and Oreen 
functions. The CPUs of the various vendors differ 
today, and in the future they will differ even more. 
System logic designs will try to support as many of 
the differing CPUs as possible. Moat system logic 
chip sets will support Pentium class CPUs, such as 
AMD's KS and Cyrix's M 1, but they will not support 
NextGen's CPUs due to their dilferent cache archi­
tecture. 

Dual, or multiple processor eupport, will be one 
of the major issues in future CPU interface designs. 

MEMORY CONTR0.1 

Direct mapped cache, both asynchronous and 
synchronous, is generatzy supported by system logic 
designs today. Originally the eizo of cache for aa6 
systems was 32K Bytes to 64K Bytes. Pentium 
system logic designs now support up to 2 Mega­
bytes, and in the future most designs will support 
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synchronous pipelined 3.3v cache. Second level 
cache m~ move inside P6 t;ype CPUs, and con· 
aequentzy system logic designs will support either 
much bigger cache, or no cache at all. 

DRAM interfaces will go through even greater 
change. EDO (Extended Data Out) DRAM aupport 
will be a requirement. But other DRAM such as 
aynchronoua DRAM, EOAAM, RAMBUS and others 
may also be supported by system logic. 3.3v DRAM 
.is used mostly for mobile ayatems now, but it ma.v 
become popular in desktop systems too. 

BUS INTERFACE 

The ISA bus will remain long after the EISA and 
VL buses are dead, and the PCI bus will be sup­
pol"Wd by all aysteitl lo&ie designs. Its transfer rate 
will become an important consideration. Integrated 
butl'ering will be common, and also 64-bit PCl busea 
will be more common. The popularity of 66 MHz PCl 
buses will depend upon reliability issues. PCI to PCI 
bridges and CardBuses will become key features. 

OTHER FEATURES 

•Green" functions and '"Plug and Play" will be 
supported by all the major system logic designs. 
Other functions, such as the keyboard controller, 
the enha.11ccd IDE controller and the real time clock 
will be integrated. 'l'he latest trend hi to support 
Native Signal Processing (NSP) which may lead to 
the integration of audio, modem/fax and certain 
video !unctions. Other possibilities are to integrate 
•super t/o•, gaphica control and LAN functions.in 
system logic designs 

COST CONCERNS 

Coat is always a major consideration for system 
logic dMignera in attempting to increa:se perfor­
mance by adopting advanced features. Most cost 
decisions involve 
• Pin count: 100, 160, 208, 240, 304 and above 
• Package: PQFP, or DOA 
• Gate count 
• Process technology 
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ABSTRACT 

The emerging PCI standard brings with it the need for 
unique, innovative solutions for connecting system 
components to it. The advent of PCI requires devices 
which can bridge between PCI and other peripherals, such 
as PC Cards. Systems also must be able to support legacy 
software and hardware. Issues such as legacy DMA and 
standard ISA interrupt handling are difficult to implement 
under the current PCI specification. Creative solutions 
exist for PC Cards that address both legacy DMA (Direct 
Memory Access) and standard ISA interrupt handling in a 
PCI environment. 

INTRODUCTION 

After years of experimenting, the PC industry is 
converging on a single high-speed local bus standard for 
motherboards. This standard, the Peripheral Component 
Interconnect (PCI) bus, is rapidly becoming the local bus of 
choice in both desktop and portable PCs. To meet the 
emerging demand for devices that connect peripherals to 
the PCI bus, Texas Instruments is developing a family of 
PC! bus interface !Cs. 

PCI's high performance, scalability, microprocessor 
independence and endorsement by the PC industry ensure 
that the bus standard will become dominant in the market 
during the next few years. TI estimates that by 1997 tJ1e 
market for PCs using PCI will have grown to nearly 40 
million units a year, more than 60 percent of the entire PC 
market. 

In addition to the high growth of the PCI industry, other 
peripheral industries such as PC Cards are also 
experiencing rapid growth. CardBus, an extension to the 
new PC Card specification, is fully backward-compatible 
with tlle PCMCIA 2.1 PC Card specification. CardBus 
provides a relatively easy upgrade path from R2 (PCMCIA 
2.1) PC cards. CardBus provides added features over R2 
cards, such as bus mastering capabilities, 32-bit data paths, 
33 MHz speed and future lower voltages. CardBus 
controllers being designed by Texas Instruments will be 
among tlle industries first to interface PCI to C_ardBus. 

These controllers also provide irmovative solutions which 
c;m help simplify support of legacy software and hardware. 

New PC Card controllers will address some of tlle 
weaknesses of the current PCI specification. The first of 
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tllese is tlle lack of ~m easy to implement standard tor 
handling legacy DMA. A unique method of re,w~ving 
legacy DMA issues is to use a distributed DMA scheme. 
The second is the difficulty and overhead of supporting 
standard ISA interrupts in a PCI environment. The 
preferred method of handling standard ISA interrupts is to 
utilize a serial interrupt design. 

PCI: THE PC nus OF THE FUTURE 

PC manufacturers have long looked for a high-speed 
alternative to tlle ISA bus, which da.tes from the original 
IBM XT and AT designs. The list of alternatives reads like 
alphabet soup: EISA, MicroChannel, VME, VME64, 
FutureBus+, VL-bus. While all of these alternative buses 
have advantages, none is as well designed and universally 
accepted as PCI to take PCs into the future. 

PCI was developed by the PCI Special Interest Group 
(SIG), an industry-wide committee representing more than 
300 companies. The PCI Local Bus Specification, revision 
2.0, approved in April 1993, is tlle latest version of the 
standard. 

Witll a 32- or 64-bit multiplexed da.ta and address patll, 
PCI operates at frequencies of up to 33 MHz and can 
support up to 10 loads per bus. Although PCI was created 
as a local bus, it also has I/O capabilities that make it 
advantageous for exchanging massive amounts of data with 
peripherals such as hard disk drives and LANs. 

PCI is platform-independent, supporting both CISC 
(Complex Instruction Set Computer) and RISC (Reduced 
Instruction Set Computer) microprocessors. It is also 
backward-compatible with earlier x86 processors and 
software -- always a key factor to accept<mcc in the PC 
industry. 

PCI's high bandwidth of 132 Mbytes/s for 32-bit 
transfers and 264 Mbytes/s for 64-bit transfers means that it 
can support the mixed video, audio and other data transfers 
necessary for multimedia. 

Because of tlle multiplexed data and address lines, PCI 
cards require few signals -- just 49 for bus masters and 47 
for slaves. Having fewer signals means that the bus cuts 
down on pin count, board space and layers, saving expense 
for motherboard manufacturers. PCI specifies both 3.3-V 



and 5-V signal levels, so it easily transitions to the low­
voltage systems that are rapidly entering the market today. 

PCI's scalability allows it to be used in a variety of 
systems, ranging from notebooks to desktop PCs to 
workstations. The ubiquity of PCI will also serve to drive 
down costs, making it even more attractive for computer 
manufacturers. 

PCMCIA: THE KEY TO MOBILITY 

As a local bus, PCI handles high-frequency traffic 
among the CPU, memory and controllers for high-speed 
devices such as video displays. Although PCI has I/0 
capability itself, it also needs to interface to other I/O buses. 
Among these, the most important emerging standard is the 
PC Card (commonly called "PCMCIA") bus and its 
extension CardBus. 

The Personal Computer Memory Card International 
Association (PCMCIA) in association with Japan 
Electronic Industry Development Association (JEIDA) has 
worldwide support from more than 500 member companies 
for its PC Card standard. PCMCIA revision 2.1, the 
current version of the 16-bit specification, represents the 
culmination of various improvements to earlier releases of 
memory and I/O cards for PCs. 

PC Cards support typical data transfers of 5 to 10 
Mbytes/s and a theoretical limit of 20 Mbytes/s. In 
addition, with automatic system configuration, a PC Card is 
plug-and-playable through hot card insertion even after the 
system has been powered on. 

The PC Card standard brings several advantages to 
small form-factor add-ins. Its 3.3- and 5-V signaling 
options support various schemes of system power 
management, helping to reduce power consumption and 
prolong battery life. The PC Card standard also supports 
the miniaturization of PC products for lighter weight and 
greater mobility. 

These same advantages are also offered by a variant of 
PC!, Small Form-Factor PCI. While there is some overlap 
in application between the two interfaces, Small Form­
Factor PCI is finding more use in embedded systems, while 
PC Cards are more widely used for add-in peripheral cards. 

An improved version of the PC Card standard has been 
mmounced by PCMCIA and JEIDA. This new standard 
will support a multiplexed 32-bit address/data path defined 
for CardBus PC Cards, while still maintaining 
compatibility with 16-bit version 2.1 PC Cards. With a 
wider data path and operating speeds of up to 33 MHz, 
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CardBus cards will support data transfer rates up to 132 
Mbytes/s. In addition, CardBus supports bus mastering 
capability, operates at 3.3V and allows for the next 
generation of lower device operating voltages. With these 
enhancements, CardBus will further enhance the mobility 
of future PC systems. 

DISTRIBUTED DMA: THE PREFERRED SOLUTION 

A standard feature of the PC-AT ISA architecture is the 
8237 DMA(Direct Memory Access) Controller. The dual 
cascaded 8237 configuration provides seven DMA 
channels, by which application software may program 
memory-to-1/0 or I/0-to-memory transfers without 
processor involvement. DMA transfers are useful in 
transferring blocks of data from peripherals to main 
memory without taxing the processor itself. Such transfers 
are common in floppy disk drives, parallel ports, sound 
cards, and other I/0 devices. 

The evolution of the PC architecture has seen the 
introduction of several new peripheral bus protocols which 
define new ways of connecting current peripherals and 
open the door to new ones; PCI and PC Card are perfect 
examples. However the support of legacy DMA peripherals 
and the applications which use them require a method of 
implementing DMA in a PCI and/or PC Card environment. 
This need prompted PCMCIA to provide DMA support in 
the upcoming release of the PC Card standard. The lack of 
support in the PCI environment prompted a group of 
computer and semiconductor makers to define DMA 
support for PCI. The result is a distributed DMA scheme 
forPCI. 

The distributed DMA concept dictates that each PCI 
device implements as many slave DMA channels as 
required by the peripheral. For Texas Instruments CardBus 
controller, the PCil 130, this means that one slave DMA 
channel per socket, or two channels total, are supported. In 
order to maintain the legacy DMA programming model, 
one DMA device in the system is designated the master 
DMA device. This device will claim PCI 1/0 reads and 
writes to the legacy DMA control registers. The master 
DMA device relays the information written to these legacy 
DMA addresses to the proper slave DMA device, such as 
the PCil 130. 

Each slave DMA channel has a set of registers mapped 
into a 16-byte window in PCI I/0 space. The location of 
this window is specified by the Slave DMA Configuration 
Register, found in the slave device's PCI Configuration 
space. Two such registers may be found in the PCil 130. 



By programming the Slave DMA Configuration 
Register, the master DMA device may communicate with 
the slave DMA. After these registers have been 
programmed by the master DMA device, the PCI 1130 may 
respond to a PC Card's assertion of DREQ by bus 
mastering on the PCI bus and transferring the required 
data. 

A distributed D MA scheme offers several benefits over a 
concentrated DMA solution. First, by implementing the 
scheme mostly in hardware, the legacy DMA programming 
model is retained. This ensures that software written to this 
model will now function as intended in a PCI system. 
Second, the distributed DMA scheme 'distributes' the 
burden of DMA support among all of the devices which 
will support it, rather than requiring a single device to 
implement the entire dual-8237 functionality. A drawback 
to the concentrated solution is that each DMA transfer from 
memory-to-I/O, would require two PCI transactions: one 
from the target to the master, and one from the master to 
the destination. The distributed approach programs the 
slave DMA device to carry out the transfer directly. 

An attractive byproduct of the distributed DMA scheme 
described here is that PCI devices supporting this scheme 
will automatically support a mechanism for PCI bus 
mastering. New application software or device drivers may 
program the Slave DMA registers directly without being 
constrained by the legacy DMA programming model. This 
allows new applications to exploit the bandwidth of the PCI 
bus by supporting 32-bit transfers over the full PCI address 
range. 

SERIALIZED INTERRUPTS: THE FUTURE ALTERNATIVE 

Another standard feature of the PC-AT architecture is 
the 8259 Programmable Interrupt Controller. 
Traditionally, there are fifteen interrupts available in a PC­
AT system. The interrupt controller responds to requests 
for help or service by executing interrupt service routines. 

An alternative method to standard ISA interrupts is to 
implement shared interrupts, as defined by the PCI 
specification. Shared interrupts offer the system designer a 
simplified means of handling interrupts, but to date have 
proved difficult to implement. To build a PCI system and 
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maintain backward compatibility with legacy software, a 
system must be capable of responding to standard ISA 
interrupts. 

A superior method of handing ISA standard interrupts 
is to provide them serially to the interrupt controller for 
servicing. This method was defined by several of the 
industries leading suppliers of systems, system controllers 
and peripheral components. 

Since the interrupt stream is constructed utilizing a 
wired-OR scheme, IRQSER, a common pin, is driven low 
for each corresponding IRQx on its assigned clock cycle 
and allows for their replication at the host controller. This 
method has the advantage of reducing the nmnber of lines 
required to service standard ISA interrupts. Using a device 
such as the Texas Instruments PCil 130 CardBus controller, 
the number of board traces required to service standard ISA 
interrupts can be significantly reduced. 

Bus INTERFACE ICs: THE CORNERSTONES OF PCI 

Because of the growing significance of PCI, TI is 
supplying interfaces that will bridge between PCI and other 
system functions, such as PC Cards (PCMCIA) and 
CardBus. The company is well-positioned to play a role in 
enhancing the viability of PCI. As an active member of 
both PCI SIG and PCMCIA, TI plays a part in defining 
these standards and has an early perspective on future 
developments. 

In addition, Tl's core competencies assure its customers 
that it can supply devices in the volumes needed for a 
rapidly growing PCI bus market. Among these 
competencies is Tl's experience in designing, 
manufacturing and marketing mixed-voltage (3.3-/5-V) 
I Cs. 

PCI is the preferred bus for new PC designs. As the 
market for PCI continues to grow, PC manufacturers will 
need off-the-shelf components to help them integrate the 
bus. With its manufacturing strength and low-voltage 
leadership, TI is positioned to provide these essential 
components for PC systems. PCI bus interfaces from TI 
will be key to the future of PC systems. 



Number Nine's View on PC Graphics -- Now and into the Future 

Presenter: Andrew Najda 
President and Co-founder 
Number Nine Visual Technology Corporation 

Number Nine Computer Corporation, renamed Number Nine Visual Technology Corporation to 
reflect its product direction in the graphics marketplace, has been a leading provider of PC-based 
high-performance graphic display solutions for more than a decade. In the recently released 
International Data Corporation report entitled "The Intel VGA Add-In Board Market", IDC 
ranked Number Nine as an industry leader in high-end VRAM-based graphics and #4 in the 
overall market. 

Founded in 1982, Number Nine has consistently delivered preemptive market-driven technology. 
Number Nine delivered a number of world's firsts, starting with the first 256- and 16.8- million­
color cards for the PC. The company went on to develop the first graphics accelerator board with 
a built-in processor, the first solution to allow both the host CPU and the graphics processor to 
draw in parallel, and the first graphics productivity and utility software for Windows users. Only 
months after Number Nine began shipping a new series of 64-bit graphics accelerator boards, 
Number Nine again demonstrated its industry leadership by introducing Imaginel28, the worlds 
first 128-bit graphics accelerator chip and board family. Number Nine is continuing this tradition 
with the development oflmagine128 Pro. This product will incorporate 8MB of high-speed 
VRAl\!I, a #9 Imaginel28 processor, a 128-bit data path from the processor to memory, and a 128-
bit DAC (digital to analog converter). This should be the first commercially available graphics 
accelerator board to utilize a 128-bit DAC. 

Computer manufacturers are in a race to introduce faster and more powerful systems. The line 
that separates the PC from the workstation is becoming increasingly difficult to define as PC 
performance continues to increase and prices fall. Computer manufacturers are consistently 
turning to graphics board manufacturers for assistance in improving overall graphics performance, 
added utilities and increased functionality. It is this added value that helps the computer vendor 
differentiate their system from the competitor. 

Andrew Najda, president and co-founder of Number Nine will be present to speak on events that 
are currently effecting the graphics industry. Additionally, Mr. Najda will discuss where the 
industry is heading as a whole. Topics being covered will be: 

1) How newer 32-bit operating systems will increase graphics demands on the overall 
system. 

2) The strengths and weakness of current and new graphics memory technologies. 
3) The integration of graphics, video and audio. 
4) How 3D will evolve at the low-end for entertainment markets, to the more demanding 

requirements of high end engineering applications. 

This session promises to be very educational for all those that attend. 
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PCI Host Bridge for the 60x Family of Power PC™ Microprocessors 
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ABSTRACT 

This paper describes a single chip Peripheral Component 
Interface (PCI) host bridge for the PowerPC 60x family of 
microprocessors. The MPC105 is a high performance, low 
power, low cost chip which integrates all functions of a PCI 
host bridge, a memory controller, and secondary L2 cache 
controller. This solution provides system designers the ability to 
design a wide range of performance systems based on the PCI 
bus and the PowerPC architecture. 

ARCHITECTURAL OYERVIEW 

The MPC105 is partitioned into four interfaces, the processor 
interface, the second level (L2) cache interfac,e, the memory 
interface, and the PCI interface. A central control unit provides 
arbitration and coherency control between each of the 
interfaces. This central control unit supports concurrent 
operations on the processor/memory bus and the PCI bus, 
allowing transactions such as a processor write to memory to 

occur while a master on the PCI bus is writing to memory via 
internal buffers. The processor interface is a high bandwidth, 
high performance, TTL compatible interface which supports 
any of the MPC60x PowerPC microprocessors and a second 
level (L2) cache or two MPC60x PowerPC microprocessors. 
The memory interface is highly flexible, supporting either 
DRAM or SDRAM in sizes up to one gigabyte, and in up to 

eight banks. The PCI interface is fully compliant with the PCI 
Local Bus Specification Revision 2.0[1] and all its supplements 
and functions as both a master and target device. 

The MPC105 connects directly with the PCI bus and the 
processor bus, and shares the data bus to system memory with 
the processor. The processor/memory bus and the PCI bus are 
synchronized with the use of a Phase-locked loop (PLL) clock 
design. An H-tree clock distribution network is used to 
minimize the clock skew to less than 500ps across the chip. The 
MPC105 supports PCI bus operations at a frequency between 
20Mhz and 33Mhz, with the processor/memory bus running at 
either the same frequency or two times the PCI frequency. A 
typical system using the MPC105 is shown in Figure 1. 

The following sections will describe the functionality and 
capability of each of the interfaces, the central control unit, and 
various other features such as power management modes, error 
detection and reporting, and chip technology. 
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Figure I Typical PC system using the MPClOS. 

PCI INTERFACE 

The PCI interface is fully compliant with the PCI Local Bus 
Specification Revision 2.0[1] and all its supplements and 
functions as both a master and target device. The interface 
supports PCI bus speeds of OMhz in the sleep or suspend power 
savings mode and a range of 20Mhz to 33Mhz in the full on 
mode. The interface can be programmed for either Little Endian 
or Big Endian formatted data. It provides the data swapping, 
byte enable swapping, and address translation in hardware. The 
interface supports parity checking and error reporting as both a 
master and a target 

The interface supports memory reads and writes, 1/0 reads 
and writes, configuration reads and writes, special cycles and 
interrupt acknowledge as a master. As a target the interface 
supports memory reads (including memory read line and 
memory read multiple), and memory writes (including memory 
write and invalidate). 

The interface is controlled by a master and a target state 
machine running independently of each other. This allows the 
MPC105 to run two separate transactions simultaneously. For 
example, if the master is trying to run a burst write to a PCI 
device, it may get disconnected before finishing the transaction. 



If another PC! device is granted the PC! bus and requests a 
burst read from system memory, the interface can accept the 
burst transfer and continue the burst write when next granted 
thePCibus. 

The MPClOS as a Master 

Upon the detection of a valid command from the central 
control unit, the PCI interface requests the use of the PCI bus if 
not already granted. Once granted, the MPC105 drives a full 
32-bit address and command. The master interface supports 
reads and writes of 1, 2. 3, 4, or 32 bytes without master 
initiated wait states. The one, two or three byte transfers can 
either be aligned or unaligned. The four and thirty-two byte 
transfers must be aligned. The master part of the interface does 
not run fast back-to-back or interlocked access. The master 
interface does support decode for all 21 identification selects, 
any of the various device selection timings, master abort, target 
abort, target retry, and target disconnects. 

The MPClOS as a Target 

As a target, upon detection of an address phase the interface 
simultaneously decodes the address and command to determine 
if the transaction is for system memory. If the transaction is 
destined for system memory the interface latches the address 
and decoded command and forwards them to the central control 
unit. On writes to system memory data is forwarded along with 
its byte enables to the central control unit On reads 4 bytes of 
data are provided to the PCI bus regardless of the byte enables. 

The target supports both PCI compliant fast back-to-back 
transactions, interlocked accesses using the PC! lock protocol, 
target-abort and target retry, The MPC105 uses the fastest 
device selection timing and can accept bursts writes of up to 
32-bytes with no wait states. Burst reads of up to 32-bytes are 
also accepted with wait states inserted depending upon system 
memory speed. The target interface will disconnect at the end of 
a cache line (32-bytes) to force a new address for snooping 
purposes. 

Design Issues 

Most differences in the operation of the processor bus and the 
PCI bus are resolved within the PCI interface. For example, if 
the processor bus is operating at twice the frequency of the PCI 
bus, the internal control of the MPC105 operates at the 
processor bus speed and the PCI interface synchronizes 
transfers with the slower PC! bus. 

Another design issue requiring special attention was the 
ability to interface between the 64-bit processor data bus and 
the 32-bit PCI bus. In this case, the interface to the central 
control unit is 64-bits wide. For PCI writes to memory, the 
interface latches two 32-bit beats of data and 4-bit byte enables. 
The interface then forwards all 64-bits of data and 8 byte 
enables to the central control unit If an odd number of PCI data 
transfers is done. the data written to the central control unit and 
to system memory is still 64-bits with the proper byte enables. 

On PCI reads from system memory, the central control unit 
forwards 64-bits .of data to the target interface. The interface 
then selects which thirty-two bits of data to send out onto the 
PCI bus. The master part of the interface has similar pointers for 

30 

selecting 32-bits out of 64-bits for processor writes to PCI. 

MEMORY INTERFACE 

DRAM Support. 

The memory interface of the MPC105 controls transactions to 
and from system memory and supports a maximum of one 
gigabyte of DRAM or JEDEC compliant SDRAM. The 
memory interface's flexible design supports a variety DRAM 
configurations through SIMM's and/or direct board 
attachments. Support for up to eight banks of memory is 
provided through the use of eight row address strobe lines and 
eight column address strobe lines, allowing for byte selection 
during writes. Twelve address pins allow each of the eight 
banks to be populated with memories from 1 megabit up to 
sixteen megabits in depth. Memories can be from one to 
seventy-two bits in width. All banks must be populated with the 
same type of DRAM, as mixing of DRAM and SD RAM is not 
supported. It is not necessary to use identical memory chips in 
each of the eight banks. Individual banks may be of differing 
size. The memory interface can be configured to provide nine to 
twelve row bits to a bank, and nine to twelve column bits. The 
row and column bits are multiplexed onto the twelve address 
pins. The start and ending addresses for each bank are 
programmable, allowing appropriate row and column 
multiplexing. 

Tuning variables for read and write transactions are 
controlled through programmable registers, allowing system 
designers to optimize the MPC105 for a variety of memory 
designs. Some of these programmable variables include the 
RAS and CAS precharge times, the RAS to CAS delay time, 
and the first access CAS pulse width. For SDRAM systems 
some of the programmable timings include the data latency 
from read commands, the interval between refresh command to 
active command. the interval between read and write 
commands to active commands, and the intervals for active to 
precharge and precharge to active. 

The MPC105 can be configured to provide parity checking. If 
enabled, parity will be checked for all memory reads and will be 
generated for PCI writes to memory, L1 or L2 copybacks, and 
L2 castouts. The processor provides parity for all other 
processor to memory related transactions. 

CAS before RAS (CBR) refresh is used to maintain memory 
integrity. This interval is programmable with a resolution of one 
processor bus clock cycle. The MPC105 distributes refreshes to 
(S)DRAM according to the interval programmed and will bank­
stagger the refreshes to minimize instantaneous current 
consumption. While in power savings mode or during system 
shutdown. the MPC105 can be programmed to use normal CBR 
refreshes, self refresh mode (for memories that support this 
functionality), or CBR refreshes based on a clock frequency 
other than the internal clock and supplied to the MPC105 (not 
supported with SDRAM). Refreshing can be disabled to allow 
for systems who prefer to copy back main memory to non 
volatile memories or maintain memory through other means. 

ROM Support 

The MPC105 supports a 32 or 64 bit wide ROM or an 8 bit 



wide FLASH ROM with memory sizes for up to sixteen 
megabytes of ROM or one megabyte of FLASH ROM. The 
ROM memory can be located off the memory interface or out 
on the PCI bus. Twenty bits of address and two chip selects, 
which can be used as bank select5, are provided for systems that 
are using 32 or 64-bit wide ROM. The MPC105 provides for 
programmable access timing for ROM so that systems of 
various clock frequencies may be implemented. The MPC105 
can be programmed to support the burst capability available 
with some ROM memories, taldng advantage of access time 
improvements. The programmable parameters for ROM access 
have a granularity of one processor bus clock cycle. 

For systems that prefer to use an 8 bit wide ROM or flash 
ROM, 20 bits of address, a chip select pin, a write enable pin, 
and an output enable pin are provided to ease read accesses and 
write accesses to flash ROM. The MPC105 only supports Byte 
write accesses to flash ROM. To reduce bus traffic, individual 
bytes are read from the byte wide ROM and are gathered in the 
MPC105 before sending the requested size back to the 
processor. 

PROCESSOR AND L2 INTERFACE 

The MPC105 processor interface supports a subset of the 
PowerPC microprocessor bus capabilities. The subset includes 
but is not limited to single-beat (8 bytes or less) transfers, burst 
(32 bytes) transfers, the 60x Little Endian (LE) mode, the 60x 
32-bit mode, the address retry mechanism, and pipelined 
transactions. It uses a 32-bit address bus that is decoupled from 
the 64-bit data bus, and provides arbitration to these buses for 
one processor without L2, one processor with look-aside L2 or 
two processors. It also uses the snoop protocol for PCI to 
system memory transfers. 

The MPC105 processor's interface, upon the detection of a 
transfer start from the processor, latches the address, transfer 
type, and transfer size. The interface decodes the transaction to 
determine whether the transaction is a read, write, or address 
only and whether the transaction is destined for PCI memory 
space, PCI 1/0 space, system memory, ROM or the internal 
configuration registers. The address and the decoded 
information are passed along to the central control unit where it 
is used for internal snooping operations from either the 
processor or PCI interface. The data phase of the transaction 
proceeds when it is determined that the transaction will not get 
retried and when it is the highest priority of the outstanding 
transactions within the MPC105. Once the data phase has 
begun, the MPC105 allows pipelining to occur. A one-level 
pipeline is enforced by extending the address phase of a 
pipelined transaction until the data phase of the previous 
transaction is complete. This allows the MPC105 to begin the 
decode for the next transaction. 

The MPC105 provides control for a direct mapped look-aside 
12 cache. This L2 cache can be of size 256 kilobytes, 512 
kilobytes or 1 megabyte, programmed in either write-through or 
write-back mode and provides up to 4 gigabytes of cacheable 
address space. The L2 interface can be programmed to support 
either asynchronous, synchronous or pipelined SRAM's of 
various speeds. The programmability of the L2 interface allows 
flexibility in the choice of SRAM's and Tag RAM's for various 
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processor bus frequencies. The support for L2 cache flush and 
L2 cache invalidate is provided in hardware. 

To determine the L2 response to processor or PCI initiated 
transactions a hit and modified signal are used along with the 
address retry, and page protection bits from the processor. The 
L2 cache will supply data on read hits that are destined to 
system memory from either the processor or PCI. If the cache is 
programmed in write-back mode it will accept write data from 
the processor. The modified data then remains in the L2 until it 
is written to memory due to either an L2 replacement copyback 
or a PCI write snoop that hits in the L2. Updates to the L2 cache 
are done for processor burst reads from memory that miss, and 
processor to memory burst writes. 

CENTRAL CONTROL 

The central control unit performs the internal arbitration, 
coordinates the internal and external snooping, and controls the 
flow of transactions through the MPC105. The MPC105 uses 
internal buffering to store addresses and data moving through 
the part, and to maximize opportunities for concurrent 
operations. For most operations, the data is latched internally in 
one of seven data buffers. The exception is processor accesses 
to memory, in which the data is transferred directly on the 
shared data bus. There are eight address buffers which 
correspond to the seven data buffers and the current 
processor-memory access. The addresses for incoming 
transactions from either PCI or the processor are compared to 
the latched addresses for internal snooping purposes. See Figure 
2 for the general buffer organization. 

Processor/L2 Interface Control Block 

Processor/PC! 
Buffers 

Processor/Memory 
Buffers 

Memory Interface 
Control Block 

PCl/Memory 
Buffers 

PCI Interface Control Block 

Figure 2 General Buffer Organization. 

Proce~r/L2/Memory Accesses 

Because systems using the MPC105 have a shared data bus 
between the processor, the L2, and memory, for most cases it is 
unnecessary to buffer data transfers between these devices. 
However, there is a 32-byte castout buffer which is used for L2 
castouts and for Ll copybacks due to snooping for PCI reads 
from memory. L2 castouts are caused when a processor 
transaction which misses in the L2, and the line in the L2 which 
will be replaced currently holds modified data. This data is 



latched internally to nururruze the latency of the original 
processor-memory transaction. The slower flush of the data to 
memory is completed at the earliest available opportunity. 

In the case of a snoop for a PCI read from memory which 
causes an Ll copyback, the copyback data is latched in the L2 
copyback buffer and simultaneously forwarded to PCI. Once 
the Ll copyback is complete and PCI has finished reading from 
the L2 copyback buffer, the data is flushed to memory at the 
earliest available opportunity. Using the L2 copyback buffer for 
this purpose instead of the PCI read buffer simplifies the design 
by allowing fewer buffers to contain data which is modified 
with respect to memory. 

Processor 
AddressJCootrol 

Processor/ 
Memory 
Buffer 

Figure 3 Processor/Memory Buffers 
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There are three buffers for processor accesses to PCI: one 
32-byte buffer for reads from PCI, and two 16-byte buffers for 
writes to PCI. Buffering was required for processor reads from 
PCI for two primary reasons. First, the processor bus uses a 
critical-word-first protocol, while the PCI bus uses a 
zero-word-first protocol. The second design requirement was 
that the MPC105 be able to handle a memory access from an 
alternate PCI master if the target for a read disconnects part way 
through a data transfer. Because a PCI initiated read would 
require a snoop transaction on the processor bus, including a 
potential for a copyback, the processor address and data buses 
must remain accessible throughout the transfer of read data 
from PCI. Thus, all the requested data must be latched 
internally before the MPC105 responds to the processor. A 
buffer size of one cache line is required. 

For example, if the processor initiates a critical-word-first 
burst read, starting with the second double-word of the cache 
line, the read on the PCI bus begins with the cache-line aligned 
address. If the PCI target disconnects after transferring the first 
half of the cache line, the MPC105 re-arbitrates for the PCI bus 
and, once granted the bus, will initiate a new transaction with 
the address of the third double-word of the line. If an alternate 
PCI master requests data from memory while the MPC105 is 
waiting for a bus grant, the MPCI05 retries the processor 
transaction to allow the snoop for the PCI initiated transaction 
to be posted on the processor bus. When the processor snoop is 
complete, the subsequent processor transaction is compared to 
the latched address and attributes of the PCI read buffer to 
ensure that the processor is requesting the same data. Once all 
data requested by the processor is latched in the PCI read buffer, 
the data is transferred to the processor to complete the 
transaction. 
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For processor writes to PCL the primary design goal was to 
use internal buffering to minimize the affect of the slower PCI 
bus on the high speed processor bus. Once the processor write 
data is latched in internally, the processor bus can be available 
for subsequent transactions before the write is completed to the 
PCI target Another design goal for these buffers was to 
effectively support both burst transactions and streams of 
single-beat transactions. The solution to these goals is a set of 
two 16-byte buffers, which can be used together as one 32-byte 
buffer for processor burst writes, or separately for single-beat 
writes. 

In the case of a processor burst write to PCI, both buffers are 
used to store the processor data, and the address and transfer 
attributes are stored in the first address buffer. For a stream of 
single-beat writes, the data for the first transaction is stored in 
the first buffer and the transaction is started on the PCI bus. The 
second single-beat write is then stored in the second buffer. For 
subsequent single-beat writes, store gathering is possible if the 
incoming write is to the same half cache line as the previously 
latched data. Store gathering is only used for PCI memory 
address space, not PCI J/O space, and can continue until the 
buffer is scheduled to be flushed or until the processor issues a 
synchronizing transaction. 

PCI Accesses to Memory 

All PCI accesses to memory are snooped on the processor bus 
to ensure hardware-enforced coherency between PCI, main 
memory, and the primary and secondary caches. For PCI reads, 
the primary design goal was to minimize the initial read latency, 
especially the effect of snooping on the read latency. Thus, 
when a PCI master requests data from memory, the memory 
access is started along with the snoop. If the snoop results in a 
hit in either the Ll or L2, the memory transaction is cancelled. 
PCI read data from the L2 or from memory is latched in a 
32-byte PCI read buffer. For PCI reads which hit in the L2, the 
L2 sources the data without changing its internal state and no 
copyback to memory is necessary. For PCI reads which do not 
hit in either the Ll or L2, the data is fetched from memory 
starting with the requested address and continuing to the end of 
the cache line. Data is forwarded to PCI as soon as it is 
received, not when the complete cache line has been written 
into the PCI read buffer. New PCI read addresses are compared 
to the existing address, so if the new access is to the same cache 



line and the requested data is latched, the data can be forwarded 
to PCI without a snoop or another memory transaction. 

To further minimize the latency for large block transfers, the 
MPC105 includes a selectable speculative read feature. When 
this feature is enabled, the MPC105 starts the snoop of the next 
sequential cache line address when the current PCI read is 
accessing the third double-word of the cache line. Once the 
speculative snoop response is known and PCI has completed 
the read, the data at the speculative address is fetched from 
memory and loaded in the buffer in anticipation of the next PCI 
request. If a different address is requested, the speculative 
operation is halted and any data latched in the PCI read buffer is 
invalidated. 
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Figure 5 Pel/Memory Buffers 
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For PCI writes to memory the MPC105 supports two buffers 
that are each 32-bytes wide. For PCI writes to memory, the data 
can be latched internally without waiting for a snoop response. 
Thus write data can be accepted without any wait states. There 
are two buffers so that while a PCI master is writing to one, the 
other can be flushing its data to memory. Both buffers are 
capable of gathering for writes to the same cache line. If a 
snoop hit occurs, the copyback data is merged into these buffers 
into all the bytes that were not written by the PCI master. For 
write-invalidate transactions, a different snoop is used on the 
processor bus which causes the caches to invalidate any 
modified data without doing the copyback. Once the PCI write 
is complete and the snooping is resolved, the data is flushed to 
memory at the first available opportunity. 

Arbitration. 

There are two types of arbitration involving the MPC105, one 
for the PCI bus and the other for the shared processor/memory 
data bus. For the PCI bus, the arbitration is done externally and 
all processor-PC! transactions are performed strictly in-order. 
For the processor/memory data bus, the priority is as follows: 
processor memory read, processor/L2 transfer, L2 copyback 
due to a read snoop, PCI read from memory, processor memory 
write, snoop copyback due to write snoop, processor read or 
write from PCI, load of L2 copyback buffer, flush of internal 
buffer, speculative read. Note that if there is an address collision 
with an internal buffer, or if a buffer is needed but full, the flush 
for that buffer is bumped up in priority accordingly. 
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OTHER FEATURES 

Power Management 

For power management techniques to be successful all levels 
of the system, both hardware and software, must be involved. 
The MPC105 does its part by being a fully static design (typical 
power dissipation about 1.0 Watt) and providing four different 
power saving modes. It supports three different levels of power 
management through software programmability (Doze, Nap, 
and Sleep) and a suspend mode which is enabled through an 
input pin. The four power levels differ in the number of 
functional units remaining enabled as well as the type of 
transactions that are responded to by the MPC105. In Doze 
mode, all functional units are disabled except for PCI address 
decoding, system RAM refreshing, processor bus monitoring, 
and interrupt monitoring. Doze mode can be entered 
independently of all other hardware in the system. Nap mode is 
used when the system would like to reduce power consumption 
in both the processor and the MPC105. Sleep mode is also used 
in conjunction with the processors power saving modes and 
allows for the shutdown of the clocking logic within the 
MPC105 to further reduce system power consumption. 

Error Handling and Test Logic 

The MPC105 provides error detection and reporting on the 
three primary interfaces (processor interface, memory interface, 
and PCI interface). Errors detected by the MPC105 arc 
conditionally reported (through progranunable configuration 
bits) to the processor through the assertion of a machine check 
or a transfer error acknowledge. The system error and parity 
error signals are used to report errors on and to the PCI bus. The 
type of errors detected are: illegal transfer types from the 
processor, illegal flash ROM write transactions, memory parity 
errors, accesses to memory addresses out of the range of 
physical memory, PCI address and data parity errors, PCI no 
device select errors, and PCI received target abort errors. The 
address and type of transaction which caused the error arc 
latched and held within the MPC105 so that diagnostic software 
can access them. 

The MPC105 supports the IEEE 1149.1 ITAG standard 
providing a pin boundary-scan capability in a board test 
environment. Additional logic throughout the design allows for 
99% test coverage in Motorola's manufacturing environment. 

CWP AND PACKAGING TECHNOLOGIES 

The MPC105 is implemented in a 3.3 volt Motorola CMOS 
process with four levels of metal and a minimum drawn feature 
width of 0.65 µm. The MPC105 integrates over 256,000 
devices on a 5.8 X 6.7-mm die size and is packaged in a 304 pin 
Ceramic Ball Grid Array (CBGA) that is bonded using 
Motorola's Control Collapse Chip Connection (C4) technology. 
This package reduces the parasitic package inductance by over 
60% as compared to standard wire bond quad fiat pack (QFP) 
packages. The package measures 21 X 25-mm and contains a 
solder ball array laid out to a pitch of 1.27mm (center to center). 
This technology significantly reduces the footprint area, one 
fourth the size of a QFP with a similar I/0 count. 



Figure 6 MPC105 die photo. 

CONCJ,USJON 

THE MPC105 is a fully integrated, high performance. PCI 
compliant single-chip host bridge and memory controller for 
the PowerPC 60x family of microprocessors. The flexible 
design is capable of performing in a wide range of systems from 
portables and handhelds, to workstations and multiprocessing 
systems. The flexibility of the memory and processor interfaces 
allows a designer to choose the memory system and processor 
which is most suitable for a system's performance needs and 
provides an easy migration path for system upgrades. 
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Abstract 

PLD suppliers are challenged to meet the needs of 
systems designers who are using programmable 
logic in PCI applications. Designers want to know: 
• Are PLDs electrically compliant with PCI 

bus-drive specs? 
• Can PLDs meet PCI speed and density 

requirements? 
• Can PLD suppliers provide HDL 

reference design examples? 
• Can synthesis provide designs meeting 

PCI timing requirements? 
Must critical paths be hand. crafted? 

HDL simulation Test Benches can answer many 
of these questions. Specifically, the Test Bench 
reports functional and timing parameter 
simulation results for a given post-place-route 
netlist and timing file. The designer can 
modify/optimize his HDL code and use the Test 
Bench to verify the quality of the design. 

36 

Besides discussing these key questions, this 
session will explain and discuss the concept 
of using Test Benches to evaluate design tools, 
programmable devices and specific 
implementations. 

PREP Corp. is developing a set of Test Benches to 
use in comparing the efficiencies of different 
synthesis techniques, using many types of 
functions including the PCI bus interface. 

This discussion will therefore also be a milestone 
report on the progress of that work. 

PREP is a non-profit consortium of vendors of 
programmable logic devices and related design 
tools. PREP has developed standard benchmarks 
for comparing the performance and functional 
capacity of programmable logic devices. It's 
prima.tytechnical activity is now focused upon the 
Test Bench developments. 
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ABSTRACT 

The next generation of core logic chip sets for 
PC motherboards supporting Pentium-class 
microprocessors will add a host of new functional 
enhancements in order to increase overall system 
performance. These enhancements generally fall 
into two categories: improving memory 
performance as well as the I/O capabilities and 
bandwidth of the chip set. The caching 
mechanisms of future systems will be enhanced 
via support for larger cacheable main memory, 
SRAM bank interleaving, and direct interfacing to 
new synchronous burst SRAMs. Main memory 
performance will be improved through the 
implementation of new high-volume memory 
architectures such as Extended Data Out (EDO) 
and burst EDO DRAMs in addition to increased 
levels and sophistication of read pre-fetching and 
write posting. Input/output performance and 
capabilities will be improved via increasing the 
bandwidth available on the Peripheral Component 
Interconnect (PCI) Local Bus to greater than 100 
Mbytes/second, adding enhanced peripheral 
controller cores, such as dual-channel bus master 
Integrated Drive Electronics (IDE) on PCI, and 
increasing the number of PCI bus masters and 
slots achievable in a system. 

CACHE MEMORY 

There are commonly two types of cache 
memory in higher performance PC systems: level 
one (Ll) cache which is internal to the 
microprocessor, and level two (L2) cache which is 
external to the CPU. Since all Pentium-class CPUs 
contain from 8 to 16 Kbytes of Ll writeback or 
writethrough cache, the ability to support these is 
intrinsic to all of today's Pentium-class core logic 
chip sets. However, there are several 
enhancements which can be implemented in the 
second level cache controller built into the core 
logic which will further improve the system 
performance of next generation systems. 

Cache Size 

First of all, the chip set needs to support the 
most common cache sizes desired by end users, 
which is 256 or 512 Kbytes today on Pentium-

class motherboards, in addition to adding support 
for future upgrades. As a result, the chip set 
should have the capability to directly access at 
least 1024 Kbytes, if not 2048 Kbytes for those 
chip sets targeted at the high end or server 
market. The amount of cacheable main memory 
should increase in accordance with the larger 
cache sizes up to a maximum of 256 Mbytes with a 
1024 Kbyte L2 cache. Unfortunately, commodity 
20 or 25 nanosecond asynchronous cache SRAMs, 
while very cost effective, may not provide the 
required performance with a 66 MHz external 
microprocessor bus, necessitating wait states. 
One way to reduce the wait states typically 
required by back-to-back cache accesses to 
different banks is to implement a bank 
interleaving scheme with the L2 cache, similar to 
the way DRAM bank interleaving had been 
implemented in the past. While improving the 
situation a small amount, dramatic improvement 
is possible only via use of a pipelined burst SRAM 
architecture. 

Pipelined Burst SRAM 

For this reason, Intel and the manufacturers of 
other high performance CPUs have recently 
advocated the manufacture of so-called 
synchronous burst SRAMs with the goal of keeping 
up with the ever-increasing speed of Pentium and 
future microprocessors. Beginning in 1994, non­
pipelined burst SRAMs became available from a 
limited number of SRAM suppliers offering very 
high access speeds, such as 12 or 15 nanoseconds. 
Unfortunately, the manufacturing yields of these 
devices was below the percentages required to 
compete on a cost basis with the standard 
asynchronous SRAMs. As a result, this 
architecture has remained in small niche 
applications. A second movement, toward 
pipelined burst SRAMs, was precipitated by Intel 
later in 1994. The pipelined burst SRAM 
architecture allows a much slower SRAM array 
access by synchronously pipelining data and 
comfortably meets the requirements for a 66 Mhz 
3.3V Pentium processor bus with today's standard 
CMOS process. This should improve yields 
substantially on the mainstream 3.3 Volt process 
technologies used to build today's SRAM devices 
in volume. 

Product names used in this publication are for identification purposes only and may be trademarks of their respective companies. 
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As a result of the improved manufacturing 
efficiencies of the pipelined variety, support for 
this type of SRAM will become a mandatory 
feature of Pentium-class core logic chip sets 
during 1995. 

MAIN MEMORY 

Main memory performance· is fundamental to 
achieving higher overall system performance. In 
many mainstream systems which do not use any 
external cache memory in order to reduce costs. 
the impact main memory has on the overall 
system performance is magnified. In a typical 
cache-based Pentium-class system, 256 or 512 
Kbytes of level two cache SRAM is typically used, 
adding an additional $20 to $50 to the hardware 
cost of the system. Although the majority of 
business PCs sold today still contain external 
cache memory, a decreasing percentage of 
consumer-targeted systems are including this 
costly addition. Primarily for this reason, DRAM 
vendors have been proposing a wide assortment of 
new memory products to maintain system 
performance while reducing total system cost. 

Additionally, the main memory architecture 
can improve the average access time in systems 
with L2 cache during cache miss cycles. Various 
unique DRAM architectures are currently being 
proposed by the leading DRAM manufacturers as 
well as a handful of start-up companies. Most of 
these architectures will not be designed into high 
volume systems due to the increase in costs 
associated with them. This category of new 
architectures includes new synchronous DRAMs in 
addition to products from Rambus, MoSys. 
Samsung, and others. Several of these 
architectures are nonetheless expected to become 
pervasive in applications requiring very high 
bandwidth, such as local bus graphics and video 
boards, but the movement of these new memory 
architectures to main memory will be slow during 
the next two years. 

Extended Data Out 

The key to the future success of a new memory 
architecture in a main memory application is its 
ability to significantly improve the overall 
performance of the memory subsystem with little 
or no impact on system cost. For these reasons, 
it is expected that new Extended Data Out (or 
'EDO') DRAMs will become mainstream products in 
the next generation of high volume personal 
computers and thus must be supported by the 
next generation of Pentium-class core logic chip 
sets. The key to EDO's improved performance is 
the elimination of an overlapped precharge time 
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penalty between back-to-back sequential memory 
accesses. Although EDO DRAMs require the same 
amount of clock cycles as standard Fast Page 
Mode (FPM) DRAMs on the first access. the access 
time of each subsequent read or write is greatly 
reduced allowing zero wait state performance at a 
clock speed of up to 50 MHz. In a 64-bit memory 
system. transfers at this speed can peak at close 
to 500 Mbyte/second bandwidth during an access. 

The manufacturing cost of EDO DRAMs is very 
close to that of standard FPM devices since the 
circuitry required to implement the overlapped 
precharge access is a small modification to the 
design and complexity of FPM. This allows the 
DRAM vendor to embed both EDO and FPM 
circuitry on the same die with little or no die size 
increase, as well as. use the same lead frame, 
plastic package, test hardware, marking 
equipment. shipment packaging, etc. This almost 
eliminates any additional production costs of EDO 
over FPM devices. 

Burst EDO 

Burst EDO DRAMs take the EDO concept one 
step further by embedding a processor-compatible, 
four-cycle burst count on chip supporting 
interleaved or linear bursts. This way the cycle 
time of sequential rows is reduced even more, 
resulting in 20 - 40% higher performance. With 
these types of DRAMs, zero wait state accesses at 
66 Mhz are possible. Another advantage of burst 
EDO products is their ability to easily co-exist in 
the same system with standard EDO and FPMs. 
This capability must be supported by next 
generation core logic chip sets in order to ensure 
easy upgradeability, allowing the end user to 
upgrade his system without worrying about any 
incompatibility problems. 

Read Pre-fetch & Posted Writes 

Other architectural enhancements which will 
improve 64-bit memory system performance can 
be made in the chip set in addition to supporting 
new types of DRAMs. Two of the most beneficial 
are the ability to access data from memory before 
it is actually needed, called pre-fetching, and 
holding data in posted write buffers to be written 
later when the long DRAM first-access time can be 
hidden by other CPU activity. Due to the 
demanding needs of 90 and 100 MHz CPUs today, 
read pre-fetching and posted write buffers should 
be four or more accesses deep. In a 64-bit 
memory subsystem this means four quad word (36 
bytes including parity bits) deep buffering. 



PCI BUS BANDWIDTH 

Most veteran PC users know that the promised 
performance improvement of the Peripheral 
Component Interconnect (PCI) local bus has been 
less than remarkable. In fact many graphics cards 
tally better benchmark numbers on the VESA local 
bus than PCI. The reason for this is not the 
definition of PCI or the design practices of system 
OEMs. The true culprits are the core logic chip 
set suppliers. 

In a rush to provide PCI capability on 486 
systems, several core logic vendors introduced so­
called 'VL-to-PCI bridge' solutions into the 
marketplace. These chip sets enabled the 
manufacture of VIP motherboards which contain a 
slot for everyone: VESA, ISA and PCI. The 
problem is that hastily designed bridge chips add 
considerable latency to accesses across them. 
This extra latency can be obvious when high 
bandwidth peripheral cards are plugged into the 
PCI bus, such as new multimedia video boards. 
Additionally, most bridge chip solutions are not 
able to perform burst accesses across the PCI bus, 
especially not continuous burst accesses 
nullifying one of PCI's main advantages over VESA 
in multimedia applications requiring 
uninterrupted video data streams. 

Advent of Deep PCI Core Logic 

With the movement of Pentium-class 
microprocessors into mainstream computing 
applications, the requirement to support the aging 
VESA bus has been diminishing. For this reason, 
next generation core logic needs to support a 
'deep PCI' architecture, which removes the 
additional bridge latency of first generation 
solutions. These chip sets must support zero wait 
state data transfers from back-to-back multiple 
bus masters on the PCI bus. There are several 
architectural enhancements which can be 
implemented in chip sets to increase the PCI 
bandwidth available closer to the theoretical 
maximum. For any PCI system, this limit is 
somewhere above 120 Mbytes/second on a 33 
MHz. 32-bit PCI implementation. 

Concurrent Operation 

Concurrent operation makes possible several 
types of data movement within the same system 
during the same period of time. For example, a 
bus master controller on PCI containing its own 
on-chip DMA controller, should be allowed to 
directly transfer data to a target slave device on 
the PCI bus at the same time that the system CPU 
is performing other non-PCI tasks, such as reading 
or writing main memory. A SCSI controller may 
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write directly to a LAN controller across PCI for 
instance, as part of an automated network back up 
utility. This transfer is allowed because 
architecturally, PCI is not a 'true' local bus since 
both the CPU and its local memory are on the far 
side of a processor bridge device from the PCI 
master/ slave pair. However, in practice, many 
core logic chip sets cannot support this type of 
operation since a complicated system simulation 
must be performed during the design of the chip 
set state machine. This type of simulation is only 
possible using a high level design tool such as 
Verilog, which is not commonly used by many 
chip set manufacturers. 

A second type of concurrent operation is the 
ability of the chip set to allow the CPU to update 
its local cache memory at the same time a PCI bus 
master controller is accessing a different region of 
the system's main memory. Of course, a complex 
algorithm must also be employed in this case in 
order to ensure the validity of data being accessed 
at all points within the system at the same time. 
For example, the chip set cannot allow a PCI bus 
master to read information from a location in 
main memory, if that same location, as 
represented in the Ll or L2 cache, was updated on 
the previous cycle. The chip set must contain a 
sophisticated method of continuously snooping all 
of the data located in the caches as well as any 
pre-fetch or posted write data buffers within the 
chip set to determine on a cycle-by-cycle basis 
which data is 'valid' or 'dirty'. 

Concurrent operation improves overall system 
performance as well as specifically improving the 
bandwidth available on the PCI local bus. It is 
really a form of multi-processing, which has the 
potential of improving system efficiency in the 
same manner that the first 8237 DMA controllers 
had done so for adapter cards on the legendary ISA 
bus. In a concurrent system, the core logic must 
treat all data buffers throughout the various data 
paths in the system as small caches rather than 
mere data FIFOs. Concurrent operation is 
increased by placing buffers between the CPU and 
main memory, the CPU and PCI, as well as 
between PCI and main memory. 

BUS MASTER IDE 

In tomorrow's multimedia systems, which 
require continuous video streams to pass across 
the PCI local bus using tremendous bandwidth, 
mass storage performance can be improved by 
integrating a bus master PCI-IDE controller into 
the core logic rather than the more common slave­
only type. Intel's Architecture Labs division has 
actively promoted the use of a standard 
architecture bus master PCI-IDE solution as a way 



to reduce one of the most common performance 
bottlenecks in today's Pentium-based systems. 
Bus master OMA added to the IDE function has 
two main benefits to overall system performance: 
reducing the number of interrupts to the CPU 
during large block data transfers, and the amount 
of PCI bus bandwidth required to transfer the data. 
In addition, the implementation of two separate 
IDE channels directly on the PCI bus enables 
multi-threaded 1/0 processes. 

Reduced Interrupts 

The original ATA standard required the disk 
drive to assert an interrupt after each 512 Byte 
sector is transferred. As a result, just the data 
transfer portion of a IM Byte data move required a 
minimum of 2000 interrupts. Each of these had 
to be cleared by the system CPU by reading the 
IDE controller's status register and vectoring to an 
interrupt service routine prior to continuing the 
transfer. The time it takes to clear the interrupt 
can often be adversely affected by the operating 
system, the graphical user interface shell (i.e. 
Windows), as well as the application running on 
top of it. More recently, the ATA standard has 
evolved to allow larger block transfers which can 
reduce the number of interrupts somewhat. 
However, the ultimate interrupt reduction comes 
from integrating a DMA controller into the IDE 
controller chip. 

A bus master DMA device is able to transfer 
almost an unlimited amount of data without 
requiring intervention from the system CPU. Even 
64 Kbyte page boundaries can be jumped by the 
scatter/gather OMA controller until the complete 
transfer is finished, provided no error condition 
has occurred. The OMA controller together with 
its device driver can actually 'scatter' logically 
sequential data over various pages located in 
different physical areas of memory. When this 
data is required by the CPU, the DMA controller 
and driver act together to retrieve and reassemble 
it in its proper form for modification or transfer. 
Since all of this activity is handled without 
generating interrupts to the CPU, the total is 
greatly reduced. As an example, the number of 
interrupts required to complete a transfer can be 
reduced from several thousand to 2 or 3, leaving 
the microprocessor to complete other tasks at the 
same time. 

Burst Transfer Capability 

The second main advantage of using a bus 
master OMA IDE controller on the PCI local bus is 
its ability to reduce the PCI bandwidth required to 
move large amounts of data. Since the bus master 
device and its device driver have the intelligence 
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to store data in an on-chip DMA FIFO, the bus 
master will only request access to PCI when the 
FIFO is approaching its capacity. Once the PCI 
arbiter grants access to the IDE controller, which 
can in reality be several microseconds after the 
bus access was originally requested, the PCI-IDE 
controller's DMA engine can perform zero wait 
state burst data transfers to or from memory at 33 
MHz. Since even the fastest IDE disk drives today 
can only maintain a head transfer rate of 4 or 5 
Mbytes/second once the cache on the disk drive is 
empty, the amount of the PCI bandwidth used is 
very small (roughly 5/125 = 4%). This reduction 
of bandwidth usage will allow bandwidth-hogging 
multimedia applications to function more 
efficiently in the same system. 

Integration of a bus Master IDE controller into 
the core logic chip set will become a requirement 
by the middle of 1995. Due to the relatively large 
software requirements for the device drivers 
needed to control this portion of the chip set, 
several chip set companies are developing discrete 
versions of the bus master IDE controller which 
can be fully debugged and supported by software 
prior to its integration into a future chip set. 

Multi-threaded 1/0 

Placing two separate IDE channels onto the PCI 
bus can improve the overall system performance 
perceived by the user. If the core logic 
implements all of the control and data paths to 
each port separately and proper support is built 
into the driver software and operating system, 
then true multi-threaded 1/0 processes are 
possible, similar to SCSI. Two channels allow the 
faster hard drive to sit on the primary port while a 
much slower CD-ROM can sit on the secondary 
port. Multi-threading allows each device to 
execute a command simultaneously, such as a 
format of the hard disk and a copy command from 
the CD-ROM. Presently this capability is only 
available in lower volume PC operating systems 
such as Windows NT, Novell NetWare, SCO Unix, 
etc., but will move into the mainstream with the 
increased acceptance of Windows 95 and OS/2 
Warp during 1995 and beyond. 

PCI ARBITER 

The actual number of PCI components and 
slots available in any given system is a 
characteristic of the core logic chip set as well as 
the maximum allowable electrical loading 
specification of PCI. The lowest cost place in the 
system to integrate the PCI arbiter is in the CPU 
bridge device. By maximizing the number of bus 
masters supported by the chip set, the flexibility 
for the system designer to place a varying number 



of PCI peripherals directly on the motherboard in 
an LPX 'all-in-one' form factor is increased. If a 
bus master IDE controller is located in the chip 
set, the arbiter should dedicate one REQ/GNT pair 
to the IDE controller. Additionally, the arbiter 
should dedicate a second REQ /GNT pair for any 
ISA bus masters which are placed into the system 
by the end user. The DMA channel used for the 
ISA masters should be sharable by more than one 
DMA capable ISA card in case more than one is 
attempting to move data at the same time. 

Since the core logic chip set usually takes two 
PCI loads (one for the CPU bridge and one for the 
SIO /ISA bridge device), eight possible loads are 
left for additional components. This leaves a 
maximum of four slots if no other PCI components 
are on the motherboard. If two PCI components 
are on the motherboard, such as a bus master IDE 
controller and a graphics controller, a total of 
three slots can still be supported if the arbiter has 
a total of six REQ/GNT pairs. This is why next 
generation chip sets should have six pairs. It 
increases the options for the motherboard 
designer without overly burdening the chip set 
manufacturer with too many additional pins (2 -
4). 

Programmability 

In order to maximize the efficiency of the PCI 
arbiter, it should be able to take into account the 
intrinsic differences between the various PCI 
master components on the local bus. For 
instance, top priority on a networked business 
machine should be given to the ethernet 
controller card since ethernet is non-deterministic 
and dropped packets can greatly reduce the 
overall performance of the local area network. 
Even though the IDE controller may seem more 
'important' to the efficient functioning of the PC, 
the BIOS writer must take into the account the 
specific application in which the PCI arbiter will 
be used. 

If the core logic design enables flexibility in 
the way the PCI arbiter can be programmed, 
enhanced system (and network) efficiency can be 
obtained. This is why in addition to a default 
round-robin arbitration scheme, the arbiter 
defaults should be overridden in 'degrees' (i.e. 
highest priority gets the most local bus 
bandwidth, next highest priority gets the next 
most. etc.). In this way, in a saturated PCI 
application such as video conferencing over a 
local area network, a LAN controller could 
maintain 40% of the PCI bus bandwidth, with the 
video controller getting the next 30%, and every 
other peripheral sharing the rest. 
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3.3 AND 5 VOLT AUTO-DETECTION 

System designers have many choices for 
including various types of DRAMs, cache SRAMs, 
PCI boards, and CPUs onto tomorrow's Pentium­
class motherboards. There are both 3.3 Volt, as 
well as, 5 Volt alternatives in each of the above 
four categories dictating that core logic should 
support both of these voltage ranges in the future. 
In order to minimize the design impact of 
including this capability, the chip set should 
automatically detect the voltage level of each of 
the four different bus interfaces: CPU, DRAM. 
SRAM, and PCI. This is easily done in the chip set 
by including I/O cells which change the voltage 
level they can drive and receive depending upon 
the Vdd sensed at local power pins on the device. 
For instance, each bus interface buffer set should 
have its own dedicated Vdd pins. When the Vdd 
pins corresponding to the I/O buffer cells are 
powered to 3.3 Volts, then the 1/0 buffers 
automatically drive 3.3 Volt levels. The input 
buffer should still maintain 5 Volt tolerance to 
avoid unnecessary silicon damage if 5 Volts is 
inadvertently driven into the chip. 

SUMMARY 

Next generation core logic chip sets for 
Pentium-class PC motherboards will require 
enhanced capabilities and performance in order to 
optimize the available hardware for demanding 
multimedia system applications. These 
enhancements include the capability of directly 
interfacing with future mainstream memory 
architectures, such as 3.3 Volt pipelined burst 
SRAMs and burst EDO DRAMs, integrating dual 
channel bus master PCI-IDE, providing a 
programmable PCI arbiter which can control up to 
six PCI masters, and automatically detecting the 
voltage level on each of the four key system 
interfaces: CPU, L2 cache, main memory, and PCI 
local bus. 
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OPTIMIZING THE PCI/MEMORY INTERFACE FOR HIGH PERFORMANCE 

James D. Joseph 
Ramtron International Corporation 
1850 Ramtron Drive 
Colorado Springs, CO 80921 

ABSTRACT 

In a high-performance PCI system, the 
mismatch in data bus speeds creates the potential 
for a data transfer bottleneck. The problem is 
exacerbated with slow DRAM main memory - even 
if a fast secondary cache is included. Most system 
simulations only include the CPU/main memory 
interface. However, the interface between the 
local bus and main memory often contributes to a 
loss in overall performance of 10% or more. 

The Ramtron Enhanced DRAM (EDRAM) 
memory with Quickcache™ is the ideal main 
memory component to simultaneously support 33 
MHz PCI bus clock rates and even higher CPU data 
bus speeds. Its fast 15 ns page access time 
requires no wait states for any PCI read from main 
memory. The 15 ns write time allows a fast CPU to 
write to main memory directly without a write 
buffer. This performance can be achieved with a 
noninterleaved memory consisting of EDRAM 
SIMM modules. Fast SRAM memory normally used 
for secondary cache systems has similar 
performance but is 4 to 16 times lower in density 
and is many times more expensive. In addition, 
cache coherency issues are greatly simplified. 

This paper illustrates a number of system issues 
involved in optimizing the various types of 
CPU/memory and PCI/memory cycles. In addition 
to memory timing examples for several processors, 
control strategies integrating an EDRAM controller 
with a PCI master, target, and host/PCI bridge are 
presented. 

THE PROBLEM 

CPU performance has increased dramatically in 
recent years. A major factor has been the increase 
in bus clock speeds. Unfortunately, DRAM main 
memory speeds have not kept pace. The result is a 
bottleneck - a fast CPU, capable of single-cycle 
burst reads and writes, must wait several cycles to 
read from or write to a 60- or 70-ns DRAM. System 
designers have alleviated the problem somewhat 
with SRAM secondary cache. As long as the CPU 
reuses data, the data can be read from secondary 
cache in one cycle. Although maintaining 
secondary cache coherency requires some 
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overhead, simple CPU /memory or CPU /PCI target 
reads and writes are easily handled. 

Another improvement is the writeback cache. This 
policy reduces memory write traffic on the CPU bus 
by writing to the L2 cache and/or DRAM only when 
necessary. The policy can be extended to the 
L2/DRAM and has no drawbacks in a simple 
system. 

Unfortunately, the situation is not as simple in a 
system that includes PCI masters. Writeback is 
complicated by the snoop cycle. Cache coherency 
checking may not take any longer, but the valuable 
system memory is now not available for PCI master 
cycles. We want to optimize all six types of basic 
cycles as follows: 

• CPU Reads from Main Memory 
• CPU Writes to Main Memory 
• PCI Master Reads from Main Memory 
• PCI Master Writes to Main Memory 
• CPU Reads from PCI Target 
• CPU Writes to PCI Target 

One comment - the 33 MHz, 5v implementation of 
the PCI bus is by far the most common. The 
discussion and timings presented here all assume 
use of that version. 

ADDITIONAL EDRAM ARCHITECTURAL FEATURES 

Before discussing each of the cycles in more detail, 
three other characteristics of the EDRAM 
architecture (see Figure 1) are useful for high­
performance PCI designs. First, all reads come 
from the on-chip cache. For a read miss, the 
DRAM row accessed is loaded in parallel into the 
cache and the first word is accessed in 35 ns. All 
subsequent words in a CPU burst are read from the 
cache in 15 ns. With a read hit, the cache is 
directly accessed in 15 ns for the first and all 
subsequent words in a burst. 

Next, the EDRAM allows cache reads in so-called 
~/CAL-high" mode. The column address is changed 
without latching and the data is read available 15 
ns later. The 5 l 2Kx8 part has a selectable EDO 



feature to further increase the system designer's 
flexibility. 

Finally, since during a CPU burst cycle all reads but 
the first must come from the cache, the DRAM 
array can be refreshed in the background, 
providing yet another way to improve performance. 

CPU /MAIN MEMORY READS AND WRITES 

Replacing conventional DRAM+secondary cache 
main memory with EDRAM allows bursts at SRAM 
speeds while substantially improving read miss 
performance. In addition, L2/DRAM cache 
coherency problems disappear along with the 
secondary cache. 

Use of an EDRAM main memory also has important 
advantages for write cycles. Since DRAM writes 
are quite slow compared with the CPU bus clock 
cycle time, CPU support chipsets often include a 
four-deep write buffer to retire CPU-to-main 
memory writes with no wait states. This works 
well for processors like the Pentium and PowerPC; 
the only burst writes can only occur in writeback 
cycles, so the overhead of the writeback cycle 
means that the write buffer would never be filled. 
In other words, consecutive writeback cycles are 
impossible. For processors supporting more 
general burst writes (e.g., the MIPS R4600), the 
problem is more difficult; filling the write buffer is 
a definite possibility. 

Use of a CPU-to-main memory write buffer with a 
PCI bus master also does not help if the PCI master 
wants to read from or write to DRAM; the master 
must wait until the DRAM completes the write. 
The faster EDRAM write cycles mean that a bus 
master has a much smaller potential memory 
conflict with an EDRAM main memory. 

Finally, there is an important issue regarding 
writeback. In a system with ordinary DRAM, a 
writeback policy is almost always selected because 
DRAM writes are so slow it is best to minimize the 
total number of writes to main memory. With 
EDRAM and unbuffered zero-wait-state writes, the 
overhead associated with snoop cycles actually 
exceeds the EDRAM write transaction time, so 

writethrough may actually result in the fastest 
overall memory performance. 

Table l summarizes the bus cycle counts for 
CPU/main memory reads and writes in a PowerPC 
604 system with a 66 MHz CPU bus clock. 

PCI MASTER/MAIN MEMORY READS AND WRITES 

Because the PCI bus clock frequency is often lower 
than the CPU data bus frequency, the effect of PCI 
master /main memory wait states is magnified. 
However, zero-wait-state PCI reads, either single or 
burst, are not difficult even with conventional EDO 
DRAM technology, and timing is even more relaxed 
with an EDRAM main memory. 

There are three issues with PCI master writes to a 
DRAM main memory. First, the EDO technology 
doesn't help with write cycles, so timing 
requirements are more critical. Second, since the 
number of words in a PCI burst write can be long, 
write buffering of master writes can't help to cover 
for a slow main memory. Finally, cache coherency 
is frequently an issue. Despite frequent chipset 
support for writeback protocol in the L2 cache, 
master writes are usually only to slower main 
memory. The next access to that data will always 
be a read miss. With an EDRAM main memory, not 
only is the memory capable of 15 ns consecutive 
writes within a page, but also coherency between 
the EDRAM's DRAM array and internal cache is 
automatically maintained. 

CPU /PCI TARGET READS AND WRITES 

CPU reads and writes involving a PCI target do not 
involve main memory, of course. Reads from the 
target provide little opportunity for creativity; the 
only option is to improve the target response. Two 
strategies are in common use. As with CPU-to­
main memory writes, use of a write buffer clears 
the CPU bus more quickly. In addition, many of 
the memory controllers avoid continued PCI bus 
rearbitration by gathering numerous writes to 
consecutive locations into a single PCI burst write. 
Both of these functions should be retained in a 
system even if the main memory is upgraded to 
ED RAM. 

Transaction EDRAM (15 ns) DRAM + SRAM cache 

Burst Read Hit 
Burst Read Miss 
Write (Page Miss) 
Write (Page Mode) 

4:1:1:1 
5:1:1:1 
3-5 Cycles 
3 Cycles 

6:1: 1:1 
8:3:3:3 
3 Cycles 
3 Cycles 

Table I - PowerPC 604 Bus Cycle Comparison @ 66 MHz Bus Clock 
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What about the memory controller design of a 
PCI system with EDRAM main memory? This is 
discussed in the next section. 

EDRAM MEMORY CONTROL 

Fast programmable logic can readily synthesize 
the memory control that takes advantage of the 
EDRAM's speed. We have used three approaches 
at Ramtron. First, signals from a built-in DRAM 
controller are "translated" by simple PAL devices 
(e.g., 22Vl0) to generate a new set of EDRAM 
control signals (Figure 2). This is most 
appropriate for low-performance applications (25 
MHz CPU clock or lower). The next step is direct 
generation of multiplexed address signals by a 
PAL or fast PFGA (Figure 3). This approach 
works well in systems with 33-40 MHz CPUs. 
Ocean Information Systems uses this approach 
in the world's fastest PCI motherboard - an 
EDRAM-based DX4/100 system. For the highest 
performance, a combination of logic and fast 
FCT-E buffers assures no wasted cycles (Figure 
4). 

A good logic candidate for either or both 
functions is the Altera FX8160. In addition to a 
6 ns tCO and a 10 ns tPD, the device provides 
extremely flexible clocking (three delay options 
and clocking off either edge). 

Since the PCI bus clock is slower than the CPU 
clock, it is also critical to assure that cycles are 
not wasted while entering a PCI memory cycle. 
By integrating the logic for the EDRAM memory 
controller with the PCI master, target, or host 
bridge functions, we can further optimize 
performance. Intel provides FX8160 FPGA 
equations for PCI master or target logic in an 
application note (Brown and Heit 1994), and 
Ramtron extends this with FPGA equations for 
the host/PCI bridge logic and the EDRAM 
controller equations. 

CONCLUSION 

Replacing DRAM and secondary cache in a PCI 
system is a straightforward path to high 
performance. An EDRAM system achieves zero­
or low-wait-state performance on all bus 
transactions. EDRAM outperforms the 
DRAM +secondary cache memory system while 
providing better density and lower memory cost 
with simpler writethrough cache policy. EDRAM 
provides the best cost/performance combination 
for PCI applications. 
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The BtV MediaStream family is a PCI­
based integrated multimedia chipset that 
provides graphics acceleration, 
integrated wavetable synthesis audio, 
games compatible audio, live video in a 
window, video capture to disk, and full­
screen, full-motion digital video 
playback - all on a single PCI load. BtV 
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goes beyond the traditional graphics 
accelerator, achieving synchronization 
by accelerating all the multimedia data 
types in a way that is ideal for 
entertainment and game titles as well as 
for videoconferencing. The specific 
architectural considerations involved in 
the design will be discussed. 
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ABSTRACT 

Vendors of PCI add-in cards can expand their 
market beyond x86 machines by supporting Open 
Firmware. 

This paper answers the following questions: 

• What is Open Firmware? 

• Why use Open Firmware? 

• How will It expand my markets? 

• How will It Improve: 

• My development process? 

• My manufacturing process? 

• My field service process? 

• How much engineering effort ls required to 
create an Open Firmware driver? 

• What training ls required? 

• What tools are required? 

• How long ls a typical development cycle? 

• What else must be added to my design for the 
PowerPC market? 

• For PowerPC Reference Platform machines? 

• For PowerMac? 

DESCRIPTION OF OPEN FIRMWARE 

Open Firmware ls a portable boot firmware 
system. Boot firmware is the ROM-based software that 
controls a computer from the time that it is turned on 
until the primary operating system has taken control 
of the machine. The main function of boot firmware ls 
to initialize the hardware and then to "boot" (load and 
execute) the primary operating system. Secondary 
functions Include testing the hardware, managing 
hardware configuration Information, and providing 
tools for debugging in case of faulty hardware or 
software. 

Open Firmware, defined by IEEE Standard 1275-
1994, is portable in the sense that Its design ls not 
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tied to any particular processor family nor to any 
particular expansion bus. Open Firmware was 
specifically designed to support a variety of different 
processor Instruction set architectures and different 
buses. Open Firmware ls already In use on over a 
million machines, and ls supported by several system 
vendors. A number of bus standards, Including PCJ, 
Futurebus+, VME-D, and SBus, contain provisions for 
Open Firmware card identification and booting. The 
PowerPC Reference Platform (PR•P) Specification 
requires that all PR•P-compllant machines shipped 
after June, 1995 use Open Firmware as their boot 
firmware (Dean and Adkins, 1994). 

Firmware standardization can reduce system 
costs by eliminating "re-Invention of wheels", providing 
"off the shelf' sources for firmware, eliminating 
unnecessary relearning of different firmware systems, 
reducing the effort of porting operating systems to 
different machines, and providing a consistent and 
powerful base set of hardware and software debugging 
tools. 

The design of Open Firmware was undertaken as 
a long-term effort to "do it right", rather than viewing 
firmware as a "necessary evil" that should be done 
quickly and forgotten as soon as possible. As a 
consequence, It includes the following features. 

Architectecl "Plut and Play" 

Open Firmware's "plug and play" capabillty was 
designed In from the very beginning. Open Firmware 
provides auto-configuration capabillty more powerful 
than any previously available auto-configuration 
scheme, and Is not tied to any specific vendor's 
products. 

Open Firmware accomplishes this by providing 
support for self-Identifying devices. Consider a 
computer with an "open" expansion bus such as PCI. 
An Independent board vendor (I.e. not a system 
manufacturer) of a PCI card would like for the system 
to recognize and be able to use that card 



automatically. In the operating system environment, 
that may be easy; the board vendor can supply a 
driver on a diskette, and that driver may be loaded 
onto a hard disk or installed into the operating 
system. 

In the firmware environment, acquiring drivers ls 
more difficult; the firmware has to operate before the 
system ls ready to read the disk. It ls better to have 
the board driver in a ROM somewhere. Since a system 
ROM made today can't contain a driver for a plug-in 
card designed tomorrow, it is better to store such a 
driver in a ROM on the card with which it ls to be 
used. This approach has been taken before, but ln 
most existing firmware systems, the driver is stored as 
CPU-specific binary code, and thus only works on 
computer systems compatible with a particular CPU 
instruction set. 

Open Firmware uses the "plug-in driver" 
technique, but Instead of storing those drivers in 
machine language, Open Firmware encodes the 
drivers in a machine-independent language called 
"FCode". FCode ls a byte-coded "intermediate 
language" for the Forth programming language. Forth, 
an ANSI standard interactive programming language, 
ls based on a stack-oriented "virtual machine" that 
can be easily and efficiently implemented on any 
computer. FCode drivers are "incrementally compiled" 
into system RAM for later execution. The same FCode 
driver can be used on systems with different processor 
types. Thus, for example, a particular PCI add-in card 
could be used as a boot device in a PowerPC-based 
PCI system or in a SPARC-based PCI system with no 
firmware changes. 

In addltlon to its use for firmware device drivers, 
FCode also provides a descriptive capability known as 
"properties". Plug-in cards use properties to report 
their characteristics to the firmware and system 
software. Such characteristics may include the device 
name, model, revision level, device type, register 
locations, interrupt levels, supported features, and 
any other identification information that makes sense 
for the particular device. The PCl bus binding even 
defines a property that can contain either the actual 
operating system drivers or the location of the OS 
driver, System software can use this property 
information to configure itself automatically for correct 
operation with a particular device. This information is 
stored in a processor/ architecture-Independent format 
that may be retrieved and decoded easily. 
Furthermore, this format ls open and extensible, and 
allows any arbitrary device information to be recorded, 
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providing protection against obsolescence of the 
interface. 

Flexible Naming 

Open Firmware was designed for adaptablllty. Its 
notation and structure for naming particular devices 
ls based on a hierarchical "device tree" that mimics 
the bus configuration and physical addressing of the 
machine on which it ls being used. This structure 
applies equally well to simple single-bus desktop 
machines and to "back room" servers with multiple 
processors and complicated hierarchies of 
interconnected buses. The "name space" for individual 
device names was designed so that no central 
authority is needed for "allocating" names - companies 
can design their products without appealing to a 
"master name arbiter". 

The Open Firmware command language ls open­
ended. In addition to the standard commands that are 
present on all implementations, an arbitrary number 
of new commands may be added at any time, even by 
the user. Such additional commands might provide 
access to system-specific features, or might simply be 
customizations for the needs and tastes of individual 
users. 

Confi.oration Maintenance 

As mentioned, plug-in devices describe their own 
characteristics with FCode. Such descriptions are 
stored in the device tree. Each device tree node 
represents a particular device, and the description of 
that device is stored in its device node. Buses are 
considered to be devices in this sense, and are 
represented by "interior" nodes in the device tree. The 
"children" of a bus node represent the devices 
attached to that bus. Permanently-installed "built-in" 
devices also have device tree nodes with associated 
descriptions. The set of descriptive information about 
a particular device is open-ended, so new types of 
devices and new characteristics are added easlly. 

An operating system can use the device tree, with 
its device descriptions, to configure itself, locate 
particular devices, attach device drivers, etc. This 
supports the growing requirement for "plug and play" 
installation of new devices. 

The Open Firmware "plug and play" capabll1ty is 
more comprehensive and less tied to specific buses, 
and operating systems than the Intel "Plug 'n Play" 
scheme, yet the Open Firmware scheme can co-exist 
and in many cases subsume the Intel scheme. 



Interactive Interpreter 

The core of Open Firmware ls an ANS Forth­
compllant kernel. This kernel provides the set of 
language primitives and operators used to implement 
the drivers and interfaces of the Open Firmware 
system. Compatiblllty with the ANS Forth Standard 
ensures source code portabillty and stablllty for future 
development. 

The kernel contains an integrated machine 
language assembler I disassembler and a rich set of 
extensions for development and debugging at the 
hardware level, including breakpoints, stepping, 
tracing, disassembly, and memory and I/O operations. 

Given these capablllties of Open Firmware, what 
are the practical benefits of adopting it? 

MARKETING BENEFITS OF OPEN FIRMWARE 

PR*P-compliant machines and the PCI bus Power 
Macintosh systems all provide PCI plug-in slots. All of 
these machines use Open Firmware. The size of the 
PR*P market remains to be seen, but Apple Computer 
has maintained approximately a 15% market share 
over a long period of time. With Apple converting to 
PCI as their standard bus, if a PCI card manufacturer 
who currently only targets x86 machines adds Open 
Firmware support, at least an additional 15% of the 
market opens up. 

Not only does the market size expand, but 
customer satisfaction (which also affects one's market 
presence) ls increased. Virtually everyone reading this 
paper ls someone who has (probably more than once) 
had the unpleasant experience of trying to add a new 
peripheral card to an IBM-compatible PC. How many 
new purchases have been soured by a lost weekend 
spent trying to get things to work? How many of you 
gave up or settled for less than the promised 
performance because you just couldn't get it to work 
as advertised? 

"Plug 'n Play" for the PC may help, but it's really 
just a partial solution that was bolted on 10 years 
after the fact, and which ls nicknamed "plug and pray" 
for good reason. It wasn't designed in; it was added 
on. And, despite everyone's best efforts, it ls a complex 
approach that doesn't quite succeed. 

Open Firmware has archltected "plug and play" 
that has been field-proven for over 6 years in over 1 
mllllon machines. Would your customers prefer 
products that were easier to install and configure? If 
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your competitors provide Open Firmware support and 
you don't, will your customers stay with you? 

ENGINEERING BENEFITS OF OPEN FIRMWARE 

Eliminate Drivers for non-Boot Devices 

The PCI Binding for Open Firmware provides for 
the system's Open Firmware to create Open Firmware 
properties automatically by reading the configuration 
space header of a PCI card. If the manufacturer fills 
out the header, non-boot devices need not contain 
Open Firmware drivers. Of course, non-boot devices 
may contain drivers, ln which case that driver's 
properties can extend or override those automatically 
created from the configuration space header. 

Fewer Boot Drivers to Write 

In today's world, a PCI manufacturer of a boot 
device wlll have to write an x86 driver and an Open 
Firmware driver. That's the bad news. The good news 
ls that as additional processor famllles using Open 
Firmware adopt PCI, no additional firmware work will 
be required to support those machines. 

Write Boot Drivers Faster 

FCode drivers do not execute in a vacuum: they 
may take advantage of Open Firmware operations 
supplied by the system firmware. The Open Firmware 
"device interface" specifies the full set of FCode 
primitives guaranteed to be available to an FCode 
driver. This set effectively constitutes an Application 
Binary Interface (ABI) for FCode which ls required to 
be consistent and dependable across platforms and 
processors, providing a powerful framework for writing 
machine-independent drivers. Open Firmware system 
ROMs contain bullt-in support for frame buffers, 
network devices and protocols, disks, tapes and 
terminal emulation. By using these facllltles, drivers 
are smaller, and are easier to write and debug. 

The device interface also specifies probe and 
configuration practices on a bus-by-bus basis, 
affording processor independence to third-party 
developers. 

Faster Debug(inf 

Open Firmware's Forth kernel provides a 
wonderfully interactive environment for firmware 
development and testing. As a high level language, 
Forth ls well suited to top-down design. Addltlonally, 
Forth's interpreter provides an environment in which 
bottom-up testing ls easily accomplished, even very 



early in the development cycle. If you have ever 
struggled to understand a poorly written (or perhaps 
misleading, or even just plain wrong!) data sheet, you 
will appreciate the ablllty to write a routine and 
immediately try it on the hardware. And, if the routine 
fails, re-write It in a matter of seconds and try it again. 
Forth even provides a high-level-language "patch" 
capability to further enhance the ablllty to make rapid 
program changes in a development environment. 

Not only does Open Firmware's interactive 
interpreter ease the life of the firmware developer, but 
the interpreter provides an environment in which 
hardware engineers can quickly bring up new designs 
by wrltlng simple debugging routines "on the fly". 
Since Forth enables a designer to write programs 
quickly right on the test platform (without having to go 
through an edit-complle-llnk cycle elsewhere), data 
can be gathered quickly and new experiments can be 
run rapidly. 

Open Firmware can debug hardware, operating 
system software, plug-in drivers, and even the 
firmware Itself. The emphasis Is on Interactive tools for 
exploring problems, rather than "canned" diagnostics 
(although Open Firmware includes provisions for 
"canned" diagnostics as well). With today's short 
product cycles, a new design may spend as much time 
In the lab as In actual production. Open Firmware ls 
an excellent brlngup tool, and has been shown to 
shorten the time It takes to get a product to market. 

MANUFACTURING BENEFITS OF OPEN FIRMWARE 

Many companies that use Forth in the lab have 
found that the same diagnostics used by the 
developers for bring-up are well-suited for use In 
manufacturing, particularly during the initial ramp-up 
and/or for low volume products. 

FIELD SERVICE BENEFITS OF OPEN FIRMWARE 

Maintainability 

Field ROM upgrades are expensive. Open 
Firmware provides a "self-patching" facllity that allows 
many types of firmware bugs to be fixed without 
changing the system and/or device driver ROMs. The 
same faclllty allows additional firmware capabllltles to 
be added to systems or drivers in the field, without 
changing the ROMs. ("Ibis capability might be viewed 
as less important given the increasing use of flash 
ROMs as the storage medium for firmware. However, 
when the overhead costs of a release and testing cycle 
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are taken into account, Open Firmware's "one-off 
patch" capability can stlll be quite valuable.) 

The Forth interpreter also provides a set of 
programmable debugging features to allow users and 
service personnel (as well as developers and 
manufacturing personnel) to isolate system problems 
in the event of a failure. 

Con.fii'lJ'l.bility 

Another service issue ls storage and ·maintenance 
of user choices, such as the preferred boot device and 
the amount of memory to test. Open Firmware has 
"configuration variables" which keep such user 
choices in non-volatlle memory, such as battery­
backed RAM, electrically erasable PROM, or flash 
memory. Open Firmware configuration management 
uses self-describing, human-readable parameter 
names and values. The human readable values are 
encoded for efficient storage in the non-volatile 
memory device, where space ls often at a premium. All 
access to these parameters ls by name; new 
parameters may be added and old ones deleted at will, 
allowing for easy evolution of product famllles. 

User Friendliness 

Many system vendors are providing graphical front 
ends to make simple firmware interactions easy, but 
the full power of the Open Firmware command-based 
"user interface" ls also present for technical users who 
need access to the full power of the system. 

Nearly all the Forth kernel primitives are 
accessible interactively. The user interface provides 
access to the system for booting and debugging, and 
includes features such as command-line editing, ANSI 
terminal emulation, and system security controls. 

ADDmONAL DEVELOPMENT COSTS 

Third Party Driver Development 

For those companies without internal development 
resources with which to produce Open Firmware 
drivers, one solution is to hire a company like 
FlrmWorks to create the required drivers on a turn­
key basis. Even those companies that want to "grow 
their own" Open Firmware development capablllty can 
benefit from the use of third party drivers on their first 
Open Firmware designs. Having an experienced 
programmer create the first Open Firmware driver 
provides a specialized example from which 
inexperienced programmers can learn. 



Traininf 

Training in the writing of Open Firmware drivers 
can take many forms. The book Writing FCode 
Programs for PCI (available exclusively from 
FirmWorks) provides information on the specifics of 
FCode for PCI, including sample drivers. The book 
assumes some famillarity with the Forth language. 

For those who want a classroom approach, one 
week classes in Forth and Open Firmware are 
available from FirmWorks. Classes can be held in 
Mountain View, CA or on your site. These classes 
assume no previous Forth experience. By the end of 
the week, participants will have written a simple 
driver. 

For those who want a bit more help, a FlrmWorks 
engineer can "look over the shoulder" of a customer's 
engineer while s/he writes an FCode driver. 

Any PCI system running Open Firmware can serve 
as a development platform, provided that an FCode 
tokenizer ls also available. One solution is an Open 
Firmware developer's kit for PCI from FlrmWorks. 
Apple Computer also has suitable machines available 
to participants in their Power Macintosh developers 
program. When PR*P-compllant machines become 
available, they will also be suitable platforms when 
combined with an FCode tokenizer. Such tokenizers 
are available from FlrmWorks and in Apple's Power 
Macintosh developer's kit. 

~looment Cycle Length 

Development cycles vary with the complexity of 
the driver. Drivers for non-boot devices that simply 
publish property information can be completed ln a 
fraction of a day. Relatively complex bootable device 
drivers can be completed ln two weeks by an 
experienced programmer or in 4 - 6 weeks by a novice 
programmer. 

OTHER POWERPC REQUIREMENTS 

The most significant additional requirement ls an 
OS driver. Windows- NT, AIX. Workplace OS and 
Solarls are currently expected to be available for PR*P 
machines. For the Power Macintosh, a MacOS driver ls 
required. 
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ABSTRACT 

With the standardization of the PCI local 
bus, server designers are faced with many 
system-level design challenges. This paper 
focuses on improving server performance by 
moving the interrupt processing from the host 
processor to the 1/0 subsystem. 

NEED FOR INTELLIGENT 1/0 INNOVATION 

Today's client/server computing 
environment presents a challenge for 
maximizing server performance. Increasingly 
powerful host CPUs must be offloaded of 
interrupt processing in order to perform at 
optimal levels. Creating intelligent 1/0 
subsystems based on high performance 
embedded processor allows the host CPU to 
perform more effectively. 

Other factors driving the need for 
intelligent 1/0 subsystems include: 

• The stand-alone computing 
being replaced by networked 
driving the need for network 
1/0. 

model is 
computing 
computing 

• Networked computers increase the vast 
quantities of data the server systems 
support. 

• Since the host processors (CPUs) in these 
servers also now run user applications, 
they need more powerful storage 
interfaces for accessing larger and larger 
disk storage areas in addition to higher 
reliability offered from RAID storage. 

• Simultaneously, the data sizes and type 
increasingly contain natural data elements 
like video or audio, in addition to text and 
graphics. 

Clearly, in today's client/server model, 
data congestion occurs more frequently at the 
servers. An intelligent 1/0 subsystem creates 
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the balance between server performance and 
the data 1/0 paths and relieves data 
congestion. 

EXAMPLES OF INTELLIGENT 1/0 
INNOVATION 

Storage 1/0 Interfaces 

In the two basic areas of server 1/0, 
network and storage, intelligent 1/0 
subsystems offer superior server performance 
possibilities. 

RAID controllers describe one of the 
better known examples of storage. The server 
can initiate a disk store or retrieve command 
as if it were writing to a single disk. The 
intelligent RAID controller separates 
commands into parallel read or write 
commands to its attached array of disks. 

This parallel operation, controlled by the 
intelligent 1/0 processor, compensates for the 
single disk spin-up delay and protects data. 
This results in superior data transfer rates as 
well as greater reliability, a critical necessity 
as servers become more widely used for 
corporate computing and the creation of 
databases. 

A similar example of how intelligent 1/0 
improves server storage connection is in 
caching disk controllers. In this application, 
the host can write a data file to the intelligent 
disk controller cache at speeds matching the 
fast DRAM memory. The host application 
execution continues while the 1/0 processor 
controls the actual disk storage sequences. 

i960® JF Microprocessor-based SCSI Disk 
Caching Controller 

For example, an intelligent 1/0 disk 
caching controller can utilize a i960® JF 
microprocessor. This processor, rated at over 
30 VAX MIPS, can implement advanced 



features like complex caching algorithms 
(intelligent read-ahead, dirty block 
invalidation), sophisticated disk management 
(scatter-gather, elevator sorting), and 
multithreaded 1/0 for multitasking operating 
systems. 

Hardware Figure 1 shows a block 
diagram of a SCSI disk caching controller for 
the PCI Local Bus. The V961PBC1 provides 
two independent DMA channels with bi­
directional FIFOs supporting PCI burst 
transfers up to the maximum 132 Mbyte/sec 

address range and access timing parameters 
are fully programmable. The V96SSC also 
supports the control logic for boot ROM. 

The V961 PBC has two independent bi­
directional FIFOs allowing it to transfer data 
independently from the i960 JF 
microprocessor. The FIFOs loaded by one 
bus (local or system) empties onto the other 
bus when reaching the number of 
programmed entries in the FIFO or terminal 
count. The V961 PBC DMA controller will 
release control of the local bus once its FIFOs 
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V961PBC IL I 
L ~ 

' 
, Bus Master ~ l l I l _!_ Interface Chip 

'- ../ ~ I 
V96SSC 256K I WD33C93B I WD33C93B I WD33C93B 

COMPANION I BOOT BLOCK I SCSI SCSI SCSI 

CHIP I FLASH CONTROLLER I CONTROLLER ) CONTROLLER 

~ l I l l 
16MEG SCSI I SCSI SCSI 
DRAM BUS I BUS BUS 

I 
I 
I 
I 
I 
I 
I 
I 

LOCAL BUS l __ - - - - - J 

Figure 1. i960® JF Microprocessor-Based SCSI Controller 

rate. The V96SSC2 companion chip to the 
i960® JF microprocessor integrates a 
(E)DRAM controller, four 32-bit 
counter/timers, 4-channel DMA controller, 
integrated interrupt controller, programmable 
chip selects, and debug serial port. For this 
application, the most important V96SSC 
features are the glueless interface to the 
memory and the DMA controller to transfer 
data between the DRAM and the SCSI 
controller. 

The V96SSC also contains a 
programmable 1/0 controller that generates 
control signals required to interface the i960 J 
series processors to common peripherals. All 

1The V961 PBC is from V3 Corp., Toronto, 
Canada 

2The V96SSC is from V3 Corp., Toronto, 
Canada 
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are full/empty or when the local latency timer 
expires. The DMA controller will release 
control of the PCI bus when the FIFOs are 
full/empty or when the PCI latency timer 
expires and it loses the PCI grant signal. 

The PCI host processor can directly 
access devices on the local bus for non-burst 
reads and writes. Configuration registers 
within the V961 PBC will control the decoding 
and mapping of these accesses to the local 
address space. The i960 JF processors 
(shown in Figure 2) can also directly access 
the PCI bus. Again, configuration registers 
within the V961 PBC will control the decoding 
and mapping of these accesses to the PCI bus 
address space. 

Network 1/0 Interfaces 

On the network 1/0 side, the bridge and 
routing functions are migrating into the 
servers. The Ethernet or token ring LAN 
interface with intelligent 1/0 handles the 



frequent 1/0 interrupts and intelligently buffers 
messages to and from the host. This allows 
the host to streamline applications processing 
and to use other system resources, such as 
the system bus and memory, more effectively. 

In WAN interfaces, intelligent 1/0 
processing also offers significant performance 
improvements. For example, intelligent WAN 
interfaces can compress large message files 
prior to transmission. This not only frees the 
host CPU to perform more valuable 
application tasks, bus can allow more users to 
share the same fixed, wide-area connection. 
Also, the host CPU is transparent to this 
operation, thus providing better utilization of 
the WAN. 

PLL, Clocks 
Power Mgmt 

In selecting a processor for a networking 
system, the developer requires a simple 
hardware interface and a robust tool chain to 
make porting existing code straightforward. 
Figure 3, shows a block diagram of a typical, 
medium performance, multi-port Ethernet 
bridge card. The boot ROM holds the code 
and may transfer it to DRAM for faster code 
execution. In addition, the SRAM typically 
stores interrupt handlers, protocol analyzers, 
and bridging/routing tables. The DRAM 
contains less critical code and data. The 
memory control section implements common 
system functions such as timers, real-time 
clock, interrupt multiplexing, DRAM control, 
and a system debug port. 

The Ethernet component receives serial 

Boundary Scan 
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Two-way Set Associative 

[32·Bit Cache Bus] 

Instruction Sequencer 

[Constant Bus] [Control Bus] 

8 Set Local 
Register Cache 

[128-Blt Register Bus] 

Three-port 
Register File 

Multiply 
Divide 
Unit 

Execution 
and 

Address 
Generation 
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[Address 
Bus] 

2 KByte 
Direct Mapped 

Data Cache 

Figure 2. i960® JF Processor Block Diagram 

i960® JF Microprocessor in Networking 

There are several factors increasing the 
performance required for networking. ASCII 
data types heavily load today's networks. The 
LAN connection rate is growing twice as fast 
as the PC installed base. In addition, as the 
performance on the desktop increases, users 
expect quicker response. Finally, multimedia, 
with its high bandwidth and strict latency 
requirements, place huge strains on the 
existing network infrastructure. The i960 JF 
microprocessor delivers the performance 
needed to solve these networking problems. 
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data from the physical interface and 
assembles the resulting packet. The on-chip 
OMA controller stores the data packet in 
memory. The Ethernet component can also 
transmit a packet from memory. One 
example of an Ethernet component includes 
the National Sonic. 

The Ethernet interrupts the CPU after the 
first packet arrives. The CPU scans the 
received packet and checks the destination 
address against the bridging table in memory. 
The processor decides whether to forward the 
packet or ignore it. In addition, the processor 
analyzes the source address and updates the 



bridging table as needed (the learning 
function). After processing the packet, the 
system polls the other ports to see if another 
packet has arrived. The system allows 
bridging of packets between the two Ethernet 
chips and between other boards via the PCI 
bus connection. 

The number of packets per second that 
can be bridged/routed is the critical 
performance benchmark for these systems. 
As multiple protocol routers become more 
intelligent, the need for higher system 
performance increases. The i960 JF 
microprocessor has several features that allow 
the networking developers to achieve the 
highest possible performance in a networking 
application. These include high bandwidth 
instruction and data caches, on-chip SRAM, 
multiple, independent execution units, branch 
prediction unit eliminates execution delays 
from the branch instruction, and parallel 
instruction execution. 

80960 J 
CPU 

DRAM 
(1-BMB) 

BOOT 

ROM 

V961PBC 

PCI Bus 

performance requirements. Incoming network 
data structure typically violates the traditional 
data alignment, or natural boundaries of the 
microprocessor. In such cases, the processor 
must perform "unaligned" accesses into big 
endian memory regions. The i960 JF 
processors support unaligned big endian bus 
requests. These include word accesses to a 
short or byte boundaries and short word 
accesses to a byte boundary. 

Big endian byte ordering is supported in 
the i960 JF microprocessor, simplifying the 
development of applications that use big 
endian data. This enhancement allows the 
processor to access big endian · data 
transparently without degrading the system 
performance. The user does not have to 
perform the byte swapping to reorder the bits. 
Unaligned big endian support eases the 
porting of code written for older big endian 
architectures, such as the 68000. 

Full Featured Interrupt Controller and Interrupt 

Memory 
Controller 

Ethernet (Port) 

Ethernet (Port) 

Ethernet (Port) 

Figure 3. Simple Multi-Port Bridge 

Big Endian Support The natural data 
type format for networking is big endian. This 
requires formatting the network data to 
conform to network protocol function and 
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Structure 

Both the caching SCSI controller and 
Ethernet controller examples described 



require high performance interrupt processing 
to move the interrupt processing from the host 
CPU to the intelligent 1/0 subsystem. 

The i960 architecture provides 32 
executing priorities. The executing priorities 
decide the importance level of the executing 
tasks and interact with interrupt structure for 
redirection of program executfon. An interrupt 
is an event that causes a temporary break in 
program execution so the processor can 
handle another task. Each interrupt vector has 
an associated priority. The requests for 
interrupt service come from many sources. 
Redirection of the executing task occurs if the 
interrupt request is higher priority than the 
executing task. These interrupt priorities allow 
the system designer the flexibility to 
implement an explicit structure to prioritize the 
various tasks associated with a high­
performance embedded design. 

The interrupt vector number accompanies 
the interrupt request. It indexes into the inter­
rupt table to locate the entry point of the 
interrupt handler. From that entry, it gets an 
address to the first instruction of the selected 
interrupt procedure. The processor then 
makes an implicit call to that procedure. The 
processor switches to supervisor mode and 
changes stack to use a dedicated interrupt 
stack for the interrupt call. The processor 
allocates a new frame and a new set of local 
registers on the interrupt stack for the interrupt 
procedure. The processor saves the 
interrupted program's current state. Upon 
return from the interrupt procedure, the 
processor restores the interrupted program's 
state, switches back to the stack that the 
processor was using before the interrupt, and 
resumes program execution. 

Every interrupt request contains an 
associated interrupt vector in the interrupt 
table. The table contains 248 vectors, from 
vector number 8, assigned the lowest priority, 
to vector number 255, the highest priority. 
The i960 architecture transparently prioritizes 
the 248 possible interrupts. There are 31 
interrupt levels of priority, with eight vectors 
per priority. 

The i960 J series processors integrate 
additional interrupt controller features. These 
processors contain eight interrupt input pins. 
These eight inputs support three different 
modes: dedicated interrupt mode with eight 
inputs; expanded mode that receives the 
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interrupt vector from the eight input pins; and 
mixed mode which splits the eight inputs into 
three dedicated interrupt inputs and five 
expanded mode vector bits. The dedicated 
interrupt inputs can internally cache the 
interrupt vector entry in the on-chip data-RAM. 
In addition, these processors allow the 
application to cache the interrupt handling 
procedure internally in the instruction cache. 
Locking the interrupt handler in the cache and 
caching the interrupt vector provides the 
lowest interrupt latency for the dedicated 
mode interrupts. The i960 J series processor 
also contains a separate non-maskable 
interrupt .(NMI) pin. The NMI interrupt 
executes at priority 31, uninterruptable by any 
interrupt event. 

All of these interrupt controller features 
with the hardware priority detection built-in the 
i960® J series processors result in fast 
interrupt response and flexibility for the 
system designers. 

Interrupt Latency 

The processor design provides interrupt 
processing latency and enough performance 
to eliminate the "software-based interrupt 
processing" typically performed by the host 
server CPUs. The RISC microprocessor in 
the hardware system relieves the system CPU 
of RAID chores and thus doubles the transfer 
rate as compared with the software system for 
the storage applications. 

In networking 1/0, the i960® 
microprocessor and service the networking 
controller interrupts without loss of packets. It 
also performs data buffering and compacting. 
This data buffering and compacting combines 
the data packets into larger, yet linear packets 
for transfer to the host system memory, thus 
effectively utilizing of the PCI bus. 

COMPLETE TOOL SET FOR EMBEDDED 
DESIGN 

There are many factors evaluated before 
choosing a RISC processor architecture. 
These considerations include processor 
performance, system costs, upgrade paths, 
customer support and a complete tools' 
package. The i960 architecture is supported 
by 200 development tools, services and 
support components. 



SUMMARY 

This paper has presented two typical 
intelligent 1/0 applications. From the cost­
sensitive SCSI controller application to the 
performance-driven networking application, 
the i960 microprocessor family has the device 
to meet the need. The i960 architecture offers 
an easy to use, robust architecture, for the 
application designers to create powerful 
applications. 

Additional Information 

Applied Micro Circuits Corporation offers 
an PCl-to-80960 component. Contact AMCC 
6195 Lusk Blvd. San Diego, CA 92121-2793 

PLX Technology offers an PCl-to-80960 
bus bridge component. Contact PLX 
Technology, 625 Clyde Ave. Mountain View, 
CA 94034 

V3 Corporation offers an PCl-to-80960 
component. Contact V3 Corporation, 2348 
Walsh Ave. Suite G, Santa Clara, CA 95051 
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Multimedia PC 
Market Drivers 

• Edutainment 

• Communications 

•SOHO 

• Telecommuting 

• Ubiquitous CD-ROM 

• In general, the consumer 
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Multimedia System 
Components 

Do Today's Systems Provide 
Adequate Performance 

• CPU/Memory performance 

• Graphics performance 
• Benchmarks emphasize single 

function/task performance, keeping 
other functions constant 

• Performance metrics do not 
adequately measure multimedia 
systems performance 

61 



System Bottlenecks 

• Audio Playback from CD-ROM 
- 'Lip Sync' phenomena 
-AudioNideo Synchronization 

• Video playback and overlay 
- Hardware assist required ... 

•• - Without adding cost 

II • Multitasking OS's •• •• •• •• •• •• •• 

- Shared system resources 
- CPU I Memory bus bandwidth 

ililiiil •liilllll••• 

Bottleneck Example: 
CPU I Memory Bus Bandwidth 

Audio I Video Sync 

~,,....._..,,~~ 

~~~. 
~>~0¥§W" 

"'"*~-

Audio Controller 

• Video/Graphics problem - granularity 

• Audio problem - lip sync 
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The Goal 
• To free up as much CPU I memory 

bandwidth as possible by improving 
multimedia interface throughput 

• Enables CPU to perform other tasks, 
i.e. NSP 

• Result is improved system 
performance on today's multimedia 
applications, with bandwidth left 
over for tomorrow's applications 

Multimedia System 
Architecture 

63 



Key Audio Factors 

• Real-time data 

• 'Timeliness' on PC bus critical 
- Ear sensitive to audio aberations 
-Audio/video synchronization -

'lip sync' 

• CD-ROM playback most difficult 
- Highest audio sampling rate 

• OMA mechanism optimum 

111m111 

Audio Bottleneck 
> 17.6% CPU I Memory bus bandwidth 

utilized in OMA operation 

rirrr:iifl 
•liiillil••••• 
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Audio Solution: Type F OMA 

• Burst operation 

• Cuts average OMA transfer from 
1us to 250ns 

• Decreases required CPU bus 
bandwidth from 20% to < 5°/o 

• Requires FIFO in audio 
controller 

Key Storage Factors 

• Need to improve transfer time on 
IDE reads/writes 

• Need to enable faster IDE drives, 
i.e. Modes 4 & 5 

• Need to improve CPU I memory 
bandwidth 
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Storage Solution: 
Bus Master IDE 

IDE 

Bus Master 
IDE 

Storage Solution: 
Bus Master IDE 

IDE l.,_ __ ld_le __ t_w_ri_te_l_DE_da_t ... al 
to memory 

PCI Master 
Write to mem. ~ 

~ Arbitration OH 

Mem 
Bus 

I ~-R_e_ad_l_D_E~l ..... -----------------1~~ 

Time-...... •~ 
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GraphicsNideo Issues 

• Both native and imported (CD-ROM) 
video signals must pass through 
graphics engine 

• High performance graphics available, 
but with a significant cost adder 
- 64-bit acceleration 
- EDO --> SDRAM -.;>RAMBUS 

• How to improve performance - add 
video acceleration - without 
additional cost 

GraphicsNideo Solutions 

• MPEG decoder with hardware assist 
- Color space convertor 

-Zoom stretching 

• Shared memory architecture -
system memory I frame buffer 

• Integration of memory I graphics I 
video OMA controllers 
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The Role of Core Logic in 
Multimedia PCs 

System -"!> Motherboard 

Multimedia 
Performance 

Integration 

Bus 
Standards 

Pentium-Class System 

II 1-System Controller 3-Bus Controller/ 
•• 2-Data Buffer Power Mgmt 
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OPTi Multimedia Solutions 

The Future of MOM 
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PNP 005*/Windows* 
Overview/LI pd ate 

Scott Hay 
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The Desktop Add-in Problem 

(1) 
Set Jumpers 

+ 
121 

Input Setup 
Parameters 

f.ll 
Device Conflict! 

System Fails! 

I 
Try Again, Call Tech Support, or Give Up and Retum the Card 

What is Plug and Play? 

• Automatic configuration of add-in cards 
• Major element of ease of use 
• Industry backed standard 
• Plug and Play is ready today on MS-DOS* and 

Windows* 3.1 
+ Migratable to Windows•95 

• Windows*95 product offering full PnP 
• Industry well on its way to full implementation 

+ 30+ OEMs & 70+ IHVs in development 
+ 15+ OEMs and 20+ IHVs announced and shipping 

*Other brand$ and names are the property of their respective ownets.111111111111111111111111111111 
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Agenda 

• PnP Overview 
• DOS*/Windows*/BIOS PnP Architecture 
• PCMCIA on the desktop 
• PnP DOS*/Windows• migration to 

Windows*95 
• PnP Debug/Support Issues 
• DOS*/Windows• Product Plans/Support 

Solution 
• Plug and Play enabled platforms 

+ PnPBIOS 

• Plug and Play add-in cards 
+ PCI 
+ Plug and Play ISA 
+ PCMCIA 

• Plug and Play enabled operating systems 
+ 005'/Windows• 
+ Windows'95 

Making the PC an Information Appliance 

"Othertr•demarks •re the property of their respective owners. llllllllllllllllllllllllllll 

Plug and Play 

Plug and Play System with Plug and Play Cards 

PnP ISA A PCI 

Step 1: 

Plu~itin Step 3: 
It works! 

-- PCMCIA 

Step 2: 
Turn it on 



Plug and Tell 

Plug and Play system and Legacy cards 

Plug and Play Association 

• Administers Specifications 
~ ~·~'2 ~~d P~~y !S-4. !!pe<::!!!~!!!!en ~.~A 

71 Clarification Documents 
+ Plug and Play BIOS specification 1.0A 

71 Clarification Documents 

+ Hosts Interoperability Workshops 
;i 3 PlugFests to data 
;i Upcoming event in April 

+ 300+ members of the association 
;i Open to all Industry participants 
/I $500/company annual fee 

PnP DOS/Windows* Architecture 

ISA Configuration Utility 

Utilities 

OS 
Device Drivers 

ESCO 

Configuration Manager 
(PnP ISA Configuration) 

cs 
API 

PnP BIOS Intel PnP 
1.0A BIOS Extensions 

Runtime (PCI & ISA) 

OS Depandent 

Platform Depandent 
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Plug and Hope 
Legacy system and Legacy cards 

• Today's situation 
• No guarantee you will get the right configuration 
• Trial and error 

Agenda 

• PnP Overview 
• D05"fvvindows"iBiOS PnP Arcmtecture 
• PCMCIA on the desktop 
• PnP DOS*/Windows• migration to 

Windows*95 
• PnP Debug/Support Issues 
• DOS*/Windows* Product Plans/Support 

*Othwtntdemuksarethepropt1rt)'Ofthelrrespect1Veown.ns. ••••••• 

Agenda 

• PnP Overview 
• DOS*/Windows*/BIOS PnP Architecture 
• PCMCIA on the desktop 
• PnP DOS*/Windows* migration to 

Windows*95 
• PnP Debug/Support Issues 
• DOS*/Windows• Product Plans/Support 

*Othllt'tr~-tt'Mlpmpiriyotthelrre9f"1dlY90WMl'L ••••••• 



PCMCIA Autoconfiguration Today 

• Card Services or Card Installer Device Drivers performs the 
autoconfiguration 
+ Determines available system resources and assigns 

available requested resources to PCMCIA cards 
+ Works ok in a mobile environment where limited 

peripheral/add-in card expansion exists 

• Model breaks down in a desktop environment 
+ CS/Cl doesn't know how ALL the desktop resources have 

been assigned 
+ CS/Cl can't assign resources in a non-conflicting way 

Integrated PnP Solution Available Today 
• Plug and Play DOS/Windows Kit Release 1.41 

+ Autoconfigures PCI & PnP ISA cards 

+ Provides a Configuration Manager API for Card 
Services 

7' CS uses CM as a resource manager 

7'I CM provides resource map of all legacy, PCI and 
PnP ISA devices installed in the system 

7'I CS can now accurately and reliably assign resources 
to PCMCIA clients by calling CM 

• Card Services Providers 
+ Intel has informed all CS providers regarding the 

PCMCIA functionality supported by the PnP software 
kits 

+ Card Services Providers 
:71 Developing CS capable of making the CM API calls 
7'I Card Installers can call CM or continue to call CS 
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Desktop PCI & PnP ISA 
Autoconfiguration Today 

• PnPBIOS 

+ Autoconfigures PCI and PnP ISA add-in devices 
+ Provides PnP runtime services 

• PnP Software 

+ DOS/Windows Kit available NOW from Intel 
/I Configuration Manager 

.J..Autoconfiguration of PnP ISA devices 

.J..Provides API for PnP device drivers and software utilities 
71 ISA Configuration Utility 

.J..lntegration guidance for legacy add-in cards 

.J..Essential for accurate map of static resource usage 

+ Microsoft Windows"'95 
71 Autoconfiguration of PnP devices 

•othertradem.rksarettteproperty Of their respective owner• .•••••••• 

Agenda 

• PnP Overview 
• DOS*/Windows*/BIOS PnP Architecture 
• PCMCIA on the desktop 
• PnP DOS*/Windows• migration to 

Windows*95 
• PnP Debug/Support Issues 
• DOS*/Windows* Product Plans/Support 

*Othertrademark•are theproparty oflh•lr respective ovmer&. ······-



PnP BIOS for MS-DOS* and Windows* 3.1 

Run-time 
BIOS 

Pre-boot 
BIOS 

Windows*95 PnP Architecture 
+ Bus enumerators present bus resource requests to CM 

71 ISA, PCM CIA, PCI, BIOS, COM, Video, SCSI, EISA ... 

+ Arbitrators allocate/release resources 
711RQ. OMA. Memoryandl/O 

+ Device drivers support dynamic events 
/I Insertion/removal/docking 
71 Suspend/resume 

+ CM performs resource balancing 
+ Device manager reflects system resources present 

/I Power users, shielded from most users 

+ Need to develop specific Windows 95 device driver 

-othetlt•demarksarethep!"opertyoftlalrrespect!V9ownen: .••••••• 

PnP as a Support Tool 

• Use the ICU to install legacy cards! 
+ESCO must describe all static resources 
+ ESCO is a resource map 

• Use the ICU as a tool for on-line debugging 
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PnP BIOS for Windows*95 or MS-DOS* 
and Windows*3.1 

Run-time 
BIOS 

Pre-boot 
BIOS 

• PnP Overview 

Agenda 

• PCMCIA on the desktop 
• PnP DOS*/Windows* migration to 

Windows*95 

• PnP Debug/Support Issues 
• DOS*/Windows• Product Plans/Support 

*othertrademarllsan•thepropertyoflhelrreapectlveriwners •••••••• 

PnP DOS/Windows* Support Issues 

• Customer doesn't use ICU 
• PnP Learning curve 

+ Calls may go up initially 
+Customer may be inclined to install legacy card 

before running ICU (DON'T LET THIS HAPPEN!) 
• Customer still needs to load device drivers 

+ Windows*95 will dynamically load DD 
• Multiple function card not completely configured 

+ISA limitation: May still run out of available 
resources 
~IRQ,OMA,UO,Memory 



%of 
Total 
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Plug and Play Saves Money 

Agenda 

• PnP Overview 
• DOS*/Windows*IBIOS PnP Architecture 
• PCMCIA on the desktop 
• PnP DOS*/Windows• migration to 

Windows*95 

• PnP Debug/Support Issues 
• DOS*/Wlndows* Product Plans/Support 

Future PnP Software Products 

• Intel will continue to update software kit as needed 
• Symantec incorporated ICU/CM In "More PC-Tools" 

(Q4/95) 
+ Available in retail stores 

• Microsoft Windows*95 
+ Rich Ease of Use environment 

•IBM OS/2 
+ Incorporating Ease of Use features 
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PnP Issues Continued 

• Non-PnP card claiming to be "Plug and Play" 
• Legacy card with no CFG file for ICU 

+Add CFG file 
+ Use "unlisted" option in ICU 
+Contact Intel to develop or Integrate CFG 

• Other Issues? 

Plug and Play Kit Plans 

• Release 1.41JP Japanese (Kanji) Win 3.1 (no 
DOS) 

• Release 1.41CN Chinese Win 3.1 (no DOS) 
+ Goal: March/April 

• Release 1.41 BIOS Enhancement and DOS/Win 
3.1 
+ Release: February 

+ Feature enhancement: PCl·PCI bridge support 
+ 10 European Languages Support 

" Goal: March 

PnP Support Contacts 
• Customer Support: 1-800-628-8686 or 

1-916-356-3551 

• Customer FaxBack: 1-800-628-2283 
• BBS: 1-916-356-3600 North America 

44-793-496340 Europe 
• Developers Kit: 1-800-253-3696 
• Plug and Play Association Information 

P.O. Box 14070 
Portland, OR 97214-9499 
(800) 433-3695, (503) 797-4244 
(503) 234-6762 Fax 



PnP Support Contacts cont. 

• Compuserve Forum: "go plugplay" 
+ PnP ISA, BIOS, SCSI, Mobile, PCMCIA etc. 

•Internet 
+ ftp.intel.com or www.intel.com 
+ ftp.mlcrosoft.com or www.mlcrosoft.com 

Summary 

• Plug and Play Is: 
+Developed for MS-DOS* and Windows• 3.1 today 
+Fully compatible with Windows*95 

• Plug and Play saves money, reduces end-user 
frustration 

• Ship systems with ICU/CM pre-installed 
+ESCO reflects all cards including legacy 

• Plug and Play Is an Industry backed standard 
• OEM's, BIOS and IHV's have begun rolling out Plug 

and Play Products now 

Call To Action 

• Focus on making the PC as easy to use as possible 
• Develop PCI cards fully compliant to the PCI spec. 

+ Assures full PnP functionality 

• Develop fully integrated PnP PCs 
+ PCI 
+ PnPISA 
+ PCMCIA 

Make the PC an Information Appliance 
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Key Message 

• To get Plug and Play today you 
must have: 
+Plug and Play BIOS 

71Compliant to 1.0A specification 

+CM and ICU installed on hard disk for 
MS-DOS* and Windows* 3.1 systems 

+Plug and Play cards 
;>iPCI, PnP ISA or PCMCIA 

•other trademarks are the property of lhei° reepectlve owners. •••••• 

Appendix 

PnPBIOS 

• Configure Plug and Play devices 
• DefleCt 
• Allocate syatem resources 
• Configure 

• Run-lime Accass to Configuration Information 
• Motherboard 
• ISA, EISA, MCA 
• Plug and Play ISA and PCI 

PnP BIOS Intel PnP 
1.0A BIOS Extensions 

Runtime (PCI & ISA) 

Plalfonn Dependent 



Extended System Configuration Data 
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ABSTRACT 

Obtaining Maximized Performing Cost-Efficient Design 
With Core Logic for Pentium-based PCI Systems 

by Dr. S.J. Lee 
Acer Laboratories Inc. (ALi) 

Ali (Acer Laboratories, Inc.) will discuss the key issues in providing PCI Pentium PC 
designers with system core logic which is able to meet the system cost-pressures of 
Pentium-class CPUs becoming a main-stream technology, without sacrificing 
performance. 

The product with which Ali has implemented its solution is the Aladdin M1511 
Memory Buffer Controller, M1513 System I/O Controller and M1512 Data Path 
Buffers. 

One of th~ key elements in the eh.ip ~rc..bltt:!r.nm~ which Ali h~s de.c:ignP.d for its 
Pentium/M1/K5 system core logic is its buffering approach to maximize data transfer 
and maintain concurrent operations between CPU, memory, PCI bus and IDE. The 
Memory Buffer Controller integrates the cache controller, memory controller and the 
buffer controller between Host and PCI. The buffer controller is used to optimize the 
Host to PCI memory cycle to improve the graphic performance, by merging the Host 
byte/word/dword cycle to perform burst or back-to-back PCI cydes. The memory 
controller is architected to support memory sizes up to 7 68 MB in six banks. The 
secondary level cache can be 256K, 512K or lMB in write-back mode, using 
asynchronous or Pipeline Burst SRAM performing an N-1·1·1 cycle are all supported 
in Aladdin. Fast page mode DRAMs and EDO DRAMs performing an N-2-2-2 cycle 
can be achieved for maximum system design flexibility and cost optimized design. 

The 8-level qword write buffers to 64-bit main memory in the Data Path buffer, have 
been designed to quickly respond to memory requests of both Host and I/ 0 Masters. 
Posted write buffer and prefetching read buffer between Host and PCI bus have been 
developed to not only sustain the Host to PCI slave throughput, but also to maximize 
the utilization of PCI bandwidth requested by PCI masters. The APIC multiprocessor 
protocol and all PC-AT macro logic are supported in the System I/0 controller. Also, 
the IDE interface controller and AT Keyboard controller are integrated, providing 
greater cost efficiency and design options. 
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ALTA-S/MP MEMORY CONTROLLER AND PCI BRIDGE 

John Derrick 

IBM Microelectronics 

1000 River Street, Essex Jct., VT 05452 

ABSTRACT 

ALTA-S/MP is a family of memory controller and PCI 
Bridges that are optimized for peak PCI performance. 
They have been architected to maximize the bandwidth 
of the PCI Bus in real system design. 

Extensive prefetching and buffering of reads and writes 
to main memory, PCI memory address space, and other 
innovative features that optimize bandwidth provide 
leading edge performance while providing full proces­
sor and PCI bus parity and memory EDAC protection. 

These leading edge performance enhancements and pro­
grammable features also enable the ALTA-S/MP family 
to support processors from Intel. Cyrix, IBM, and other 
similar processors in an optimal fashion. 

IBM's leading edge device, packaging, and tools tech­
nology enabled the ALTA-S/MP design team to imple­
ment 133 MHz I/O resolution for memory control sig­
nals and 133 MHz internal logic to maximize system 
performance. 

KEY FEATURES 

Processors Supported: 
Intel Pentium(tm) Class Processors 
Cyrix 586-Class Processors 
IBM 586-Class Processors 
AMD 586-Class Processors 

DRAM Interface 
*Up to 1 GB of ECC-Protected DRAM. 
*ECC Codes are generated/ checked with Parity 
Performance. 
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*Single Bit and Double Bit Errors are recorded, Double 
Bit errors are tagged in memory so no error 
information is lost. 

*16 Non-Interleaved 64-bit or 8 Interleaved 
128-bit Banks. 

*1/2 Clock resolution RAS and CAS control pulses 
for optimal memory timings. (7.5 ns at 66 MHz) 

*Partial Write Optimization minimizes reads for 
optimal ECC read-modify-write performance. 

*Page_Miss_Mode to eliminate Page Miss Penalty in 
Dual and Multi-processor Systems. 

*Address and Data-Flow paths are latched at chip edge 
thus, timings are predictable allowing for optimal 
system designs. 

*Memory Map is highly programmable with 4 MB 
resolution of the memory map in non-interleave 
mode and 8 MB resolution in interleave mode. 

CPU Interface 
*Supports Serial and Look-Aside L2 Caches with CPU 
Address Pipeling and Programmable Cache Timings. 
*Full CPU Address and Data Parity Generation and 
Checking. 

*Extensive Buffering and Prefetching 

PCI Master Interface 
*Programmable ROM Decode 
*Write Buffering with Programmable Compression 
*PCI 2.0 Compliant, will be PCI 2. 1 Compliant 

PCI Slave Interface 
*Buffering and Prefetching 
*PCI 2.0 Compliant, will be PCI 2.1 Compliant 



KEY PERFORMANCE ADVANTAGES 

ALTA-S/MP offer significant performance advantages 
not found in other memory controllers and PCI bridges. 
They also support a wide range of processors and ex­
ternal cache controllers to match the price performance 
required for a wide range of system needs. These fea­
tures are outlined below. 

Level-2 Cache Controllers 

The AL TA-S /MP family of memory controller and PCI Bridges 
support both a Look-Aside Cache and various Serial Cache 
Controllers. 

Look-Aside LYNX L2 Cache Controller (Write-Back or Write­
Thru) 

LYNX using Async SRAM can support 256K, 512K. lM & 
2MB L2 Caches. 

3-2-2-2 bursts when running without CPU Address 
Pipeling. 
(about 213 MB/sec local bus bandwidth@66 MHz) 

3-2-2-2-2-2-2-2 bursts when CPU Address Pipeling is 
enabled. 
(approaches 267 MB/sec local bus bandwidth@ 66 MHz) 

LYNX using Sync SRAM can support 256K. 512K & !MB 12 
Caches. 
3-1-1-1 bursts when running without CPU Address Pipeling. 
(about 305 MB/sec local bus bandwidth@ 66 MHz) 
3"- l l l 2 l l l bu.:t.;ts w-hcJ.-i. CPU AJ.<lress Pipeiing is en-
abled. 
(about 427 MB/sec local bus bandwidth@ 66 MHz) 

Serial 12 Cache Controllers (Write-Back or Write-Thru) 

ALTA-S/MP supports both a local bus frequency 
matching the CPU local bus frequency and a local 
bus frequency matching the PCI bus frequency. This 
allows the most flexibility in choosing Serial L2 con­
trollers. CPU Address Pipeling is fully supported for 
serial caches also. 

80 

Full· Concurr~ 
The following groups of transactions may occur 
simultaneously. Interrupt Acknowledge cycles 
and I/O cycles cause the write and pre-fetch 
buffering to be cleared. 

CPU-to-L2 Accesses 
CPU-to-PCI Accesses 
CPU-to-Memory Accesses 
PCI-to-Memory (non-Cacheable) Accesses 

CPU-to-L2 Accesses 
CPU-to-PCI Accesses 
PCI-to-Memory (Cacheable) Accesses 

The CPU-to-Memory Data write path includes a 40-Byt.e 
write buffer for cast-outs and single memory writes.The 
write-back data path for PCI originated snoops have 
32-Bytes of CPU frequency buffering and 32-Bytes of 
PCI frequency buffering. 

The CPU-to-Memory Data read path includes a 32-
Byte read buffer used for prefetched read allocation 
cycles during cast-out for allocation cycles. This allows 
data to be retrieved for a line-fill concurrent to the L2 
casting out the dirty cache line about to be replaced. 

The CPU-to-PCI Data write path includes a 24-Byte 
write buffer that offers programm::ihlF> <'nmp!'f>Ssion. 
This buffering and compression enables the proces­
sor to generate higher bandwidth (burst transfers) 
as the PCI bus becomes utilized. This offers some 
dynamic performance tuning without adding latency 
to CPU-to-PCI write cycles. 

The PCI-to-Memory Data write path includes a 32-
Byte Buffer, shared with the write-back data path, 
that allows PCI masters to write a full cache-line of 
data concurrent with the processor snoop inquire or 
snoop invalidate cycle. 



AL TA-S/MP BUFFER SCHEME 

.............. ··························································· ..................... . 

Memory D Interface 

.... ~ 
CPU Local Bus 

32-Byte 
Prefetch Buffer 8-Byte • 

Write Buffer 
Interface 

32-Byte 
Write Buffer 

, 
I I 
I I 32-Bhe [ J --, J Wri t~-Back 
l Buff~r 

16-ByCe PC' y 9 , 
.. ~:.~'..'..:~.'. '..'.: ........... t .......................... ""'""'l"' ............ : 

PCI MASTER 
Interface 

PCI SLAVE 
Interface 

Concurrent Operations: 

The 16-Byte PCI Write Buffer may contain memory write cycles 
and data destined for PCI Address Space. 

The 8-Byte Write Buffer to Memory may contain a memory write 
cycle destined for Planar Address Space. 

The 32-Byte Write-Back Buffer may be prefetching a PCI Master 
memory read or posting a PCI Master memory writes. 

The 32-Byte Write Buffer may be posting the Cache Write-Back 
while the 32-Byte Write-Back Buffer is prepared for data merge. 

The 32-Byte Write Buffer may fill while the 32-Byte Prefetch 
Buffer fills during a Cast-Out for Allocation. 

note: Locked Accesses and Interrupt Acknowledge Cycles cause buffers to flush. 
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Overview of the use of the PCI bus in Present and Future 
High Energy Physics Data Acquisition Systems 

A. van Praag, R.A. McLaren, J-P. Matheys, P. Vande Vyvre, CERN, Geneva, Switzerland 

T. Anguelov, G. Georgiev, S. Piperov, I. Vankov, INRNE - BAS, Sofia, Bulgaria 

D. Gillot, A. Guglielmi, Digital Equipment Corporation, Joint project office, CERN 

0. Orel, A. Sytin, IHEP, Prodvino, Russia 

ABSTRACT 
Due to its very complex data acquisition systems 
High Energy Physics (HEP) experiments are 
always looking for cheap and fast computers and 
communication equipment. PCI as a mainstream 
product is one of the new technologies responding 
to these criteria. After a short introduction of 
CERN and its Particle Physics Facilities, the first 
part of this article describes, with a real 
development project as example, the specific 
problems of data acquisition HEP experiments 
with the future LHC accelerator. Solutions where 
PCI technology will play a role will be presented, 
showing as examples the use of a VMEbus 
module with dual port ram and PCI to SCI 
interfaces. The second part describes the NA48 
experiment including a detailed description of 
the development of the PCI to HIPPI interface. 

INTRODUCTION 
In the war-ravaged Europe of the early 1950s, a 
far sighted group of scientists and politicians 
envisioned a new adventure in science, a 
European scientific laboratory. Even then, it was 
clear that state-of-the art science needed 
research facilities larger and more complex than 
individual nations could afford. In this way 
Europe's role in fundamental science would be 
restored, at the same time bringing together 
people from countries which had been at war 
only few years before. In 1954 twelve countries 
started to work on a 600 Me V Synchro-Cyclotron 
on the Meyrin Site in Switzerland. In Parallel 
CERN began to build the Proton Synchrotron 
(PS). This came into operation in 1959 and for a 
time was the most powerful particle accelerator 
in the world, supplying experiments with 28 Ge V 
beams of protons. This accelerator is still the 
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kingpin, being the first of the actual system of 
interconnected accelerators. 
In 1976 the PS was followed by a new more 
powerful Super Proton Synchrotron (SPS) 
machine of 450 GeV. This accelerator has a 
circumference of 7 Km and passes under the 
Swiss-French border. 
In 1983 work started on the Large Electron 
Positron Accelerator (LEP). Constructed in a 
27 Km tunnel, the first particles were accelerated 
during 1989, with an energy of up to 45 GeV. 
LEP will by 1995 reach an energy of 90 GeV. 
On 16 December 1994 the CERN member states 
decided to continue the extension of the 
laboratory with the construction of the Large 
Hadron Collider (LHC) in the same 27 Km 
tunnel, having two intersecting accelerator tubes 
with an energy of over 7 Te V each. During the 
short history of CERN the number of member­
states has grown to nineteen and four more 
countries have an observer status. 

PART 1: DATA ACQUISITION FOR THE 
LHC ATLAS DETECTOR 
Several physics experiments will use the LHC 
accelerator. Three of them have already been 
approved: Atlas and CMS will study proton­
proton collisions and ALICE will observe heavy 
ion interactions. An experiment consists of 
different specialized detectors each of them 
containing tens of thousands of channels. There 
are interactions in the detectors each 25 ns 
(40 MHz), but only a fraction of these is of 
interest. Filters are foreseen with several levels 
of triggers to select and store only selected data. 
In Atlas the architecture uses three levels 
CLVLl, LVL2, LVL3) as shown in Fig. 1. At 
LVLl, special-purpose processors act on reduced 



granularity data from a subset of the detectors. 
The LVL2 detector trigger uses full granularity, 
full precision data from most of the detectors, but 
examines only regions of the detector identified 

LVL1 

1 o•-10• 
10- 100 GB/s 

102-10• 
,_.1'----...._ __ _._ ...... 100 - 1000 MB/s 

101-102 

-10 - 100 MB/s 

Fig 1: The Atlas Architecture 

by LVLl as containing interesting information, 
the so-called Regions Of Interest (ROI). At LVL3, 
the full event data is used to make the final 
selection of events to be recorded for off-line 
analysis. The LVLl trigger accepts data at the 
full LHC bunch crossing frequency of 40 MHz 
(every 25 ns). The latency time necessary to form 
and distribute the LVLl decision is -2 µs, and 
the number of positive decisions is expected to be 
105/s. Hence the LVLl trigger must select no 
more than one interaction in -104• During the 
LVLl trigger processing the data from all parts 
of the detector are held in pipeline memories. 
Requirements of the LVLl trigger are that it 
must identify unambiguously the bunch crossing 
that contains the region of interest with a 
negligible deadtime. 
The L VL2 trigger must reduce the data rate from 
up to 100 KHz after L VLl to -1 KHz. Its 

architecture is based on ROis. The LVL2 trigger 
has therefore to access and process only small 
fractions of the data which is an advantage for 
the required processing and data movement 
capacity. The processing is divided in two phases, 
extraction of the ROI and summarize it in a few 
data words, and combine it with information 
from other ROis to make the LVL2 decision. The 
L VL2 latency is variable from -1 to -10 ms. 
After an event is accepted by the LVL2 trigger, 
the full data is sent, via the event builder, to the 
L VL3 processor farm where reconstruction of the 
physics phenomena is possible. Decision times 
are up to -1 s. After the final selection made by 
LVL3, data will be stored at a rate of 
10-100 MB/s. 

CAN PCI COMPONENTS BE OF USE? 
The planning for LHC is that it will be 
operational in 2004, and that the technology will 
be frozen in 1997. Standards will be used 
wherever possible. 
For the L VLl part, the time available to do some 
very specific operations on the unfiltered data 
makes it necessary to construct the largest part 
of this front end with dedicated electronics. 

The Digital Buffer Memories 

Data accepted by the LVLl trigger is transmitted 
to the digital buffer memories (Fig 1). Data input 
rates of 100 MB/s per memory are expected. 
Simultaneously, data from accepted L VL2 events 
must be output to the event builder. A dual port 
memory architecture with sophisticated memory 
management is therefore required. Currently 
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neither the input nor the output links have been 
chosen. Therefore it could be judicious to specify 
the PCI bus as input and output to the digital 
memories, allowing easier implementation of any 
link type. An example of a suitable module is 
currently being designed by Creative Electronic 
Systems (CES). The RI02 VMEbus module is 
shown in Fig 2. It has a Power-PC 603 or 604 as 
processor, 8 - 128 MB memory and a PCI main 
bus. One PCI Mezzanine Card (PMC) slot is 
directly coupled to the main bus. The second 
PMC is coupled to this bus both via a PCI to PCI 
buffer, and via an up to 2 MB dual port memory. 
The throughput of each memory port is 
132 MB/s. 

The LVL2 and LVL3 Interfaces 
Referring again to Fig 1, the output of the digital 
buffer memories are transmitted through high 
speed links to the input of the event builder. The 
outputs of the event builder are connected to the 
LVL3 processor farm interfaces built out of 
standard workstations. Most manufacturers have 
announced PCI on their new models. The link 
technology used can be (Serial) HIPPI or in the 
near future Fibre Channel Standard (FCS) or 
Scalable Coherent Interface (SCI). ATM is 
another possibility under evaluation. If we 
assume that the digital buffer memory and the 
LVL3 interface use PCI internally, then 
interfaces between the link technology and PCI 
are required. Possible solutions for the system 
are: 
1: HIPP! 
The maximum throughput for HIPPI is 
100 - 200 MB/s as given in the HIPPI-PH 
specification. Several HIPPI to PCI and Serial­
HIPPI to PCI interfaces are under development 
by Genroco, Essential Communications and at 
CERN. No developments for the PMC form factor 
are known. 
2: FCS 
The maximum throughput for FCS is 100 MB/s 
as given in the FC-PH specification. Several PCI 
to Fibre Channel and PMC to Fibre channel 
interfaces are under development in industry by 
among others Western Digital, Emulex and 
Interphase. One of the difficulties is to combine 
the standard optical FCS modules with limited 
dimensions, especially height, of the PMC. 
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3: ATM 
ATM specifies speeds from 155 Mb/s up to 
2.4 Gb/s, where 1.2 Gb/s corresponds with 
100 MB/s. PCI to ATM interfaces are under 
development by several companies, for example 
Newbridge, Efficient Networks and Digiboard. 
The development of an ATM PMC inetrface is 
under evaluation as part of a collaboration 
between at CERN and Uppsala University. All 
these interfaces cover the 155 Mb/s speed only. 
4: SCI 
The maximum link speed in the SCI specification 
is 1 GB/s. 
A development project for a PCI to SCI interface 
has been started at CERN. The interface to the 
PCI bus will use the AT&T Orea FPGA, for data 
and PCI bus control, as shown in Fig 3. 

Fig 3: The CERN PCI to SCI Interface 

The internal logic of the card is built with a DMA 
engine and address protection logic both 
implemented in PALs. They couple via a bus 
adapter to the Cbus entry of the SCI interface, a 
Dolphin Nodechip. The 64 bit SCI address is built 
by storing a number of the high words (A32-A63) 
in RAM and passing the low word (AOO-A31), via 
the necessary buffers for bus adaptation, directly 
from the PCI bus to the SCI interface. 
A very similar PCI-SCI interface but including a 
256 word bi-directional FIFO in the data path is 
developed by Manchester University in 
collaboration with CERN [Hughes, 1994]. It is 
intended to be used in the Atlas LVL2 trigger. 



PART 2: DATA ACQUISITION FOR NA 48 
The NA 48 is a CP violation experiment. It is now 
in the construction phase. It should be fully 
operational in 1996 and finish before the 
installation of LHC. 

ETHERNET 

ttttttt 
Fig 4: The NA 48 Data Flow 

In the NA 48 experiment a few thousand events 
per second are expected after the second level 
trigger (L VL2) during every accelerator cycle (a 
spill of -2.5 s every 15 s), resulting in a data 
block of up to 250 MB. These data are then to be 
processed by the third level trigger (LVL3) which 
requires the power and flexibility of powerful 
workstations. Three sequential interleaving 
workstations are used because processing of this 
quantity of data needs more time than is 
available between spills. The very high event 
rate does not allow any software intervention 
during the data transfer. Local disks are used 
for storage, complemented with a 10 Km high 
speed fiber optic link to the central computer 
center. Fig 4 shows an overview of the system. 
Spill distribution is based on point-to-point 
HIPPI connections. The data block is distributed 
spill by spill using a HIPPI crossbar switch. The 

processors are DEC Alpha workstations with 
TURBOchannel interfaces. As part of a joint 
project, HIPPI to TURBOchannel interfaces were 
developed at CERN; the OSF/1 device drivers 
were developed by DEC. On top of the driver is a 
user level library. Tests with this architecture 
have shown that 64 MB of data can be 
transferred in -770 ms from the event builder to 
a DECstation AXP 5000/200, including software 
overhead and Ethernet feedback to the data 
source. This corresponds to a transfer speed of 
83.1 MB/s. Block sizes larger than 64 MB could 
not be tested because of the limits in the OSF/1 
version 2 operating system. The very recent 
OSF/1 version 3 does not have this limit and tests 
with block sizes of up to 250 MB have been 
performed. To connect to the central computer 
center, one port of the switch is equipped with a 
Serial HIPPI module. The connection is made 
with single mode fiber optic cable. 

Moving From TURBOchannel to PCI. 
In the future more powerful workstations are 
needed. DEC has announced that new 
workstations will no longer support TURBO 
channel, instead they will be equipped with PCI 
interfaces. 
In a new joint project the former partners have 
therefore agreed to develop a PCI to HIPPI 
interface that meets the NA48 specifications, 
adapting at the same time the drivers but 
maintaining the user level library. In parallel 
new industrial PCI to HIPPI and PCI to Serial­
HIPPI interfaces will be evaluated as they 
become available. 

THE PCI TO HIPPI INTERFACE 
The HIPPI to PCI modules are built around a 
PCI interface with a DMA Engine, a Scatter 
Gather Memory, a History Memory, and the 
HIPPI Interfaces. The block diagram for the 
Destination is shown in Fig 5. The only 
differences for the Source are that the data flow 
goes in the opposite direction and the use of a 
different HIPPI circuit. 
As CERN developments are often very 
specialized, quantities for economic use of ASICs 
are rarely reached. For this reason the PCI 
interface has to be implemented using 
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Fig 5: Block diagram of the PCI to HIPPI 

programmable logic. The only FPGA for the PCI 
interface, available at the start of the project, 
that is fully compliant with the PCI AC-drive 
parameters was the iFX8160. This FPGA is 
complemented by a Xilinx XP 4006 containing 
register files, the DMA engine, and the memory 
control. As the iFX8160 has no possibilities to 
bring a buffered clock to the output pins an 
external Phased Lock Loop is used for clock 
distribution. 

Interrupts 

All interrupts except "End of Transfer" will be 
masked during transfer. To allow a simpler way 
of event building by using the connectivity 
control of the switch, an external interrupt on 
the back panel will be included and can replace 
the "End of Transfer" with an external signal 
coming from the system, such as "End of Spill". 

The Scatter Gather Memory 

In order to allow the sustained speed for 
receiving very large blocks of data, the host 
processor should not interact in the transfer 
process. In the HIPPI destination and in the 
HIPPI source, this is done by including a 
Scatter/Gather Memory and a History Memory. 
For every page boundary a scatter/gather index 
addresses the scatter gather memory and a new 
address is loaded into the DMA write pointer. 
This is the first address of the new page to be 
accessed. From here the DMA write pointer 
increments for every word transferred. At the 
end of the page a new page address is fetched the 
same way from the scatter/gather memory. The 
size of the scatter/gather memory is system 
determined, and depends on the number of pages 

required to store the maximum allowed quantity 
of data. At present 64 KB is foreseen which 
corresponds to a 256 MB transfer block on an 
Alpha DS 5000/200, and 512 MB on the new PCI 
stations. Bit 31 indicates the last page allowed 
for the current transfer. The scatter/gather 
memory must be initialized by the processor 
before start of the transfer, using VO operations. 

The History Memory 

For the same reasons of speed, the pointers and 
messages concerning the transfer are not 
forwarded to the host, but stored in a history 
memory. Tags contain such data as "Burst 
Status", "End of Packet", "End of Connection" 
and LLRC and Parity errors. The offset to the 
beginning of the transfer is stored with the tag. 
The processor can access the history memory 
only after the transfer is finished, using normal 
VO operations. 
Scatter/gather memory and history memory fit 
together in a fast 4 MB (4 x 128x8) static memory 
that is included in the normal PCI address space 
of the Source and Destination boards as follows: 

Base Address 
xxx 
xxx 
xxx 
xxx 

Address Window 
00000-3FFFF 
40000-7FFFF 
80000-BFFFF 
COOOO-FFFFF 

Unit 
Registers 

FIFO 
Scatter/Gather 

History Memory 

FIFO Memories and HIPPI Interfaces 

Due to the 10 Km link to drive, large FIFOs, in 
the order of 4 Kwords (2 X 74ACT3651) are 
necessary. The HIPPI interfaces are built around 
AMCC circuits, the S2020 for the source and the 
S2021 for the Destination. A power converter 
generates the necessary voltages for HIPPI. 

Solving the Mechanical problems 

Mounting two 100-pin HIPPI connectors for a full 
duplex interface needs a double-width back 

Fig 6: A double width panel vs. two modules 
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panel, or a special solution. Using an I/O cable 
into a remote connection box is too delicate in a 
HEP experiment environment. The logical 
solution is two independent units, one as a HIPP! 
Source and the other as a HIPP! Destination, as 
shown in Fig 6. At the same time the power 
dissipation per module is within the limits of the 
PCI specifications. 

Alpha Specific Properties 

Looking in depth at the present Alpha station, its 
internal circuitry uses the 21072-AA IC. An 
interesting point is that this processor bus to PCI 
interface chip, according to the datasheet, shows 
asymmetrical throughput for different speeds 
and modes: 

Mode Read/Write Speed MB/s HIPPI Function 
DMA w 120 Destination 
DMA R 70 Source 
Pr. I/O w 84 Destination 
Pr. I/O R 22 Source 

To obtain speeds in the 70 - 80 MB/s range, the 
best results can be obtained if the HIPP! 
Destination uses DMA mode. However, 
programmed I/O seems to be fast enough. The 
HIPP! Source will have much better throughput 
using DMA transfer. During DMA transfers the 
processor should be idle; if programmed I/O is 
used the processor should only do the transfer 
and no other tasks. 

Project Status 

A prototype board has been mounted and is ready 
for tests. The rather simple implementation 
needs wait-states during set-up and page 
switching. This means that speeds will probably 
not be better than 60-70 MB/s, and as such not 
fast enough for the final needs of NA48. Having 
this solution working, the project will be 
continued with the development of 64-bit PCI 
interfaces where the 100 MB/s speed of HIPP! 
can be sustained. In this second version both 
Source and Destination modules will have both 
programmed I/O and DMA transfer possibilities. 

CONCLUSION 
Data acquisition for HEP has always been 
looking for more computing power with faster 

interconnect possibilities. In the past this was 
done with dedicated electronics and interfaces. 
The PCI gives the physics community an I/O 
standard that is fast enough to solve a large 
number of its speed problems. In addition, HEP 
experiments have a lifetime from design to end of 
operation of 20 years. This spans several 
generations of computer technology, therefore 
the interconnections have to be as flexible as 
possible. PCI and PMC offer a fast, processor 
independent, industrially supported solution. 
PCI could be used on many places in future HEP 
data acquisition systems and its influence will 
certainly go much further than the few examples 
described here. 
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PC Architectures for Video Capture 
Aki Kaniel 

Marketing Manager, Digital Video Products 
Philips Semiconductors , Sunnyvale, CA. 

Abstract: 

Video capture to PCI computers will be discussed. The real-time 
requirements and the solutions of video capture via CPU memory and direct 
to Graphics Frame Buffer will be discussed as well as the Philips chipset 
designed for these applications. 

1. The Video Capture Challenges 

Video capture has real time and high data rate requirements. Besides the raw bus 
bandwidth it is much more important to assure the availability of enough bandwidth at 
the right time. It is the nature of live multimedia data streams that the flow of video data 
can not be stopped. Input data, that is not captured, is lost. A multimedia presentation 
which is paused or has gaps and interruptions is quite disturbing. Scheduling and 
bandwidth allocation in a predictable manner on the video bus is a major issue. 
Dedicating a secondary bus for multimedia use reduces that problem, but it is still 
effected by the randomness of the main system access to the secondary bus. 

A further criteria to measure the robustness of a bus is its capability to recover from 
an error and to handle conflicting demands beyond the safety margin of abundant bus 
bandwidth . The priority control for the arbiter on PCI can manage and distinguish the 
real-time importance of each master requesting the bus. 

If the multimedia bus is so overloaded, that certain data can not be transmitted in 
time, this data will be lost. The source based and destination targeting DMA control of 
PCI transfers can easily recover from denied bus access, as the next data burst transfer of 
the affected data channel incorporates the actual physical address. The visual degradation 
of live video information by losing a couple of pixels is marginal, as long as the real time 
phase, i.e. position of transmitted pixels is maintained. 

2. Video Capture subsystems 

Video capture subsystems are found on add- on boards or on the mother board of 
personal computers. The main purpose of video capture subsystems, is to make the video 
information available for display on the computer screen, for example as video in a 
window, surrounded or overlaid by graphics. Add-on cards for PCI based PCs are based 
on two architectures. In both architectures analog video input is sampled, digitized, 
decoded into RGB or YUV signals and scaled. 

In a Video Display Only system, the video data is stored in a frame buffer shared 
with the graphics engine. Note that the graphic controller need to have an Image Port to 
receive the video data stream. 

In a Video Processing system, the video data is transferred via under DMA control 
to any memory in the computer (CPU memory, Hard Disk, communication CODEC, 
graphic display frame buffer). In both systems the merging of video and graphics signals 
is done in the digital domain. 
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Both architectures has significant advantage in size, cost and performance, as it 
eliminates the video controller, local image memory, dual ported RAMDACs, etc. Note 
that the inexpensive Video Display Only architecture does not make the video data 
available for other purposes than display, such as video compression or encoding to a 
VCR. The Video Processing architecture maintains system and application flexibility at a 
somewhat higher cost. 

3. PCI Local Bus 

Intel developed the Peripheral Components Interconnect (PCI) as a high bandwidth 
bus for next generation high performance desktop computer and workstation. PCI is a 32 
(or 64) bit wide bus, with 17 or more auxiliary control signals, and a maximum clock 
frequency of 33 MHz. Addresses and data are multiplexed and travel on the same wires 
of the bus. The raw 32 bit bus data bandwidth is 132 MBytes/s. Multiple 'master' agents 
can be on the bus and access is dynamically granted by a central arbiter under control of a 
priority scheme and latency counters, which are set up by the operating system. Any 
client with master capability on the PCI has its own DMA control and can read from and 
write to any memory address in the system, without involvement of the CPU. 

The PCI-SIG (Special Interest Group) supplemented the PCI design guide with a 'PCI 
for multimedia design guide'. It discusses considerations and gives advice for system 
configuration on the PCI bus supporting multimedia applications, without changing the 
actual specification of the bus. The major issues are how to organize the system in order 
to guarantee maximum latency for real-time signals, and to define the required amount of 
FIFO-buffering in particular devices. In planar systems where the CPU and the 
peripheral components reside on the same bus, the PCI bus can handle a certain amount 
of real-time multimedia data transfers under 'business' performance requirements and 
some reasonable assumption about the behavior of the rest of the system. For more 
demanding, more complex and high performance multimedia applications. e.g. with 
multiple live video pictures on the screen, it is recommended to utilize a secondary PCI 
bus, which is dedicated to the multimedia data transfers. PCI multimedia bus and system 
bus are connected via a 'bridge' containing FIFO buffers. The latency considerations 
regarding the multimedia PCI are much more predictable in that case. 

4. System Solutions and Integrated Circuits 

Philips Semiconductors offers various video Tuners and ICs for desktop video 
applications. The SAA 7110 and SAA 7111 are ideal for Video Display Only systems. 

Several chipsets are available for Video processing systems. The SAA7116 is a 
Digital Video to PCI Interface IC. The SAA7116 incorporates a FIFO decoupling the real 
time video data stream from the PCI bus and provides two DMA channels to deliver the 
data in packed rasterized format for local display or planar format for compression 
applications. The SAA 7116 has a glueless interface to other Philips video capture and 
scaling ICs like the SAA7110 and SAA71 ll digital video decoders, SAA7186 and 
SAA7140 digital video scalar or SAA7196 digital video decoder and scaler. 
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Sound, Graphics, and MPEG Video on a Single PCI Card 

Michael K. Harris & Tony Chu 
Avance Logic, Inc. 

47509 Seabridge Drive 
Fremont, CA 94538 

Ph. (510) 226-8555 Fax (510) 226-8039 

ABSTRACT 

The Peripheral Component Interconnect (PCI) 
bus is ideally suited for transferring large 
amounts of multi-media data to the new 
generation of audio and video products currently 
available from Avance Logic and other 
companies. One inherent drawback of the PCI 
bus has always been the "one-load" requirement 
which is why multi-function cards have not 
existed in the market. The other drawback of 
using the PCI bus for multi-media data transfers 
is the danger of overloading the system bus 
which is also used for graphics, mass-storage, 
network and other essential systems functions. 
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The authors suggest a single device which 
integrates PCI to PCI and PCI to ISA bridges 
along with video input and processing functions. 
With this and other devices (PCI graphics, ISA 
sound, video/MPEG decoder), an all-in-one 
multimedia PCI card can be constructed. 
Furthermore, most multi-media data is 
transferred on the secondary PCI bus without 
occupying significant bandwidth of the primary 
PCI bus. 



Performance and Backplane Positioning of PCI Adapter Cards 

Dennis Aldridge 
Director of Product Marketing 

Texas Microsystems 
P.O. Box 42963 

Houston, TX 77242 
(713) 541-8200/8226 (fax) 

This session will present issues in use and performance of PCI adapter cards in front and behind the bridge. 
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CMC Mechanical Implementation 

David C. Moore 
Senior Hardware Engineer 
Digital Equipment Corp. 

129 Parker Street, PK02/J60 
Maynard,MA. 01754-2571 

Ph. (508) 493-2257 Fax (508) 493-4659 

David Moore, presently employed by Digital 
Equipment Corporation, for the past 17 years, 
and located in Maynard, MA. My current job 
title is Senior Hardware Engineer and my job 
function has been design and development of 
new computer products and to provide assistance 

in the development of open industrial standards. 
The specific standards that I have contributed to 
are IEEE 1301, 1301.1, 1301.2, 1301.4, 1156.1, 
1156.2, 896.2, 1101.10 and am presently draft 
technical editor of 1386, 1386.l and 1386.2. 
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ABSTRACT 

Tue purpose of this paper is to provide the Common 
Mezzanine Card (CMC) designer with a more complete un­
derstanding of the design variations and how to use them to 
provide the necessary design features for their product. 
Much flexibility has been added to the CMC to provide the 
designer with flexibility to optimize his design. Along with 
this flexibility it is necessary to add constraints that may 
not be completely obvious at first glance. It is my intent to 
call attention to these areas and make them more easily un­
derstood. Tue variations which will be discussed are CMC 
sizes, CMC envelopes, CMC staking height/connector 
height/standoff height/bezel height vs. component height 
limits on CMC and host modules, optional voltage keying, 
number of mezzanine connectors, host module component 
placement and height restriction area designations 

CMCSIZES 

Dependent on real estate needed for the design, a CMC 
size can vary from a single wide standard depth to a double 
wide, extended depth. In all, there are four sizes available 
to the user. The basic sizes available are: 1) the single wide 
standard depth (75.0 mm X 150.0 mm), 2) the double wide 
standard depth (150.0 mm X 150.0 mm), 3) the single wide 
extended depth (75.0 mm X 250.0 mm), 4) the double 
wide extended depth (150.0 mm x 250.0 mm). These di­
mension depict the boundary limits of the CMC rather than 
actual card size. Since some systems cannot provide suffi­
cient room for extended sized CMC the single wide stan­
dard depth is the preferred module size. Due to design re­
quirements, more real estate or possible rear panel I/O 
connections, the wider or extended versions may be neces­
sary. 

CMC ENVELOPE 

The total three dimensional envelope for a CMC mod­
ule is the width and depth of the CMC (note four options 
listed above) plus a total component height of 8.2 mm with 
exceptions along the CMC bezel 1/0 area the standoff /key­
ing area and the mezzanine connector positions identified 
in the CMC specification. The bezel 1/0 area provides for 
connector clearance up to 32.0 mm from the CMC bezel 
and an envelope height of 13.5 mm along this strip. When 
optional CMC connectors are not used, components may be 
positioned in these areas so long as their height is no 
greater than dimension Hp. Dimension Hp is dependent on 
the CMC stacking height and is from 2.30 mm for 8 mm 
stacking height up to 5.30 mm for 11 mm stacking height. 
No components are to be positioned in the area of either 3V 
or 5V keying pins. Other than the optional CMC size there 
are no options defined for the CMC envelope except the 
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position the CMC is placed within the envelope. This can 
be better understood as we proceed to discuss the stacking 
height options. 

CMC STACKING HEIGHT 

It must be remembered that the three dimensional CMC 
envelope is placed in a constant position above any specific 
host module. The host sets the envelope position and the 
CMC provides the positioning within that envelope. The 
stacking height between the host module and the CMC is a 
combination of the host envelope positioning and the CMC 
placement. Examples of this are seen when creating a 
CMC for a VME64 module where the stacking height is set 
at 10 mm and a Futurebus+ module with the stacking 
height at 13 mm. Both CMC modules use the same height 
bezel, standoffs and connectors but the Futurebus+ host 
module provides a 3 mm spacer to add to the standoff and 
bezel height and also the host mounted connector must be 
increased by the 3 mm. The CMC is allowed to vary its 
position within the envelope to allow the designer freedom 
of component placement. 

CMC COMPONENT HEIGHT 

The component height on the CMC is only dependent 
on the position that the CMC resides within the CMC enve­
lope. As the CMC moves closer to the host module, within 
its envelope, more component height is made available on 
CMC side 2 and less on side 1. Total component height for 
a CMC is 8.2 mm minus the CMC board thickness except 
in the area reserved for CMC front panel I/O. Maximum 
component height is limited to 0.2 mm less than the stack­
ing height. These maximum component heights must be 
reduced by another 0. 7 mm when components are not elec­
trically isolated (conductive surfaces). 

CMC MEZZANINE CONNECTOR 

The CMC connector used (IEA E700 AAAB) is not op­
tional but since the position that the CMC resides in is, it is 
necessary to comment. The host connector does not vary 
due to the CMC position within the CMC envelope so the 
CMC connector must make up for the variation. The as­
signed connector that corresponds to the stacking height 
shall be used. 



HOST KEYING VOLTAGE 

The host detennines the signaling voltage. Since both 
3.3V and SV may be used it is necessary to prevent incom­
patible modules from connected. A keying pin is to be in­
stalled on the host to prevent this occurrence. Note a CMC 
that can operate on either voltage would provide clearance 
for both keying pin positions. 

HOST MODULE COMPONENT PLACEMENT 

The main requirement for the host module is that it must 
provide the mechanical and electrical components to insure 
fit and function for all intended CMC options. Component 
placement on the host starts 32.0 mm from the back surface 
of the front panel and extends back in the area of the CMC 
to either 149.0 for standard or 251.0 mm for extended 
depth. 

HOST COMPONENT HEIGHT LIMITS 

As stated earlier, maximum component spacing on the 
CMC in the 1/0 area is 9.8 mm. Note that no components 
shall be positioned in the 1/0 keepout area until the stack­
ing height increases to greater than 10.0 mm . For host 
modules such as the Futurebus+ where the stacking height 
is 13 mm there is a allowable component height of 2.0 mm 
available indicated as restricted 1/0 area .. 

When a host designer builds a module which does not re­
quire all available mezzanine connectors he may choose to 
use the space that these connector are assigned for other 
component~. This space may be used for components but it 
is necessary to limit the height of these components so that 
they would not interfere with a CMC that has all connector 
positions utilized. 

The component height limit for a 10.0 mm stacking height 
is 4.7 mm. The component height for the host module may 
increase 1 to 1 as the stacking height increase. I Future­
bus+ at a stacking height of 13.0 mm may have compo­
nents as high as 7.7 mm. 
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CARDBUS PC CARDS: 

A NEW OPPORTUNITY 

John Elmore 
IBM Corporation, M/S-5432 

1000 NW 51st Street, 
Boca Raton, FL 33429-1328 

The 16-bit PC Card interface provides performance 
capabilities equivalent to the ISA Bus. Since the 
majority of mobile systems now available are ISA 
based, this interface is ideal for II 0 and memory 
expansion. The trend in the industry, however, is 
clearly toward 32-bit high performance systems with 
capabilities for addition of high performance 
expansion cards. Mobile systems must embrace the 
higher performance demands of the industry if they 
are to continue to enjoy their current robust rates of 
growth. Likewise, a means for attachment of high 
performance 32-bit expansion cards must be 
established to provide the versatility and 
convenience that mobile systems users now enjoy 
with 16-bit PC Cards. The CardBus PC Card 
inter/ ace is intended to enable this capability while 
maintaining support for existing 16-bit PC Cards. 
This paper briefly describes some of the 
opportunities presented by the CardBus PC Card 
interface 

Characteristics 

The CardBus PC Card interface enables many new 
PC Card applications and provides a means for the 
enhancement of current 16-bit PC Card product 
offerings. It introduces several important new 
capabilities and functions to PC Card applications, 
and is compatible with all new features and 
capabilities being introduced with the new PC 
Card Standard. CardBus PC Card features and 
capabilities include: 

• 32-bits of Address and Data 
• 33 MHz Operation 
• Bus Master Operations 
• Platform &O / S Independence 
• Backward Compatibility 
• interface Power Management 
• 3.3 Volts (or lower) Operation 
• Remote Wakeup 
• Dynamic Reconfiguration 
• Improved Audio Capability 
• Non-customized Multi-function Card 

Support 
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The CardBus PC Card interface presents an 
opportunity to significantly expand the set of 
applications now available to PC Card users. 

Opportunity 

Clearly, the trend in the mobile industry is toward 
duplication of the office environment where 
increased performance and expanded functionality 
are the bywords to introduction of new products. 
Due to their cost, most high function and/ or high 
performance features for office systems are under­
the-covers add-in cards rather than standard 
system features. Interchange of these cards 
between platforms with disparate system buses is 
difficult if not impossible. The ability to use these 
features with a mobile system usually doesn't 
exist without the use of some type of 'docking 
station', which compromises mobility. The 
CardBus PC Card interface provides the 
opportunity for system and card manufacturers to 
provide a truly mobile high function/high 
performance capability for their customers, while 
maintaining the traditional PC Card advantage of 
interchangeability between systems, regardless of 
the type of bus employed by the system. 

The CardBus PC Card interface provides 
improvements to 16-bit PC Card via a multiplexed 
32-bit data/ address interface which operates at 
up to 33 MHz (132 MB/speak data throughput). 
Combined with bus master support, the CardBus 
PC Card interface enables system processor 
offload and optimization of multi-tasking operating 
system performance. Since CardBus PC Card 
sockets are also required to support 16-bit PC 
Cards, the motivation for implementation of the 
CardBus PC Card interface in all new 32-bit 
systems is strengthened. The implementation of 
CardBus PC Card interfaces in office systems will 
enable interchange of virtually any PC Card with 
mobile systems. Not only will it be easier to take 
more of your office functions with you, the 
opportunity for reduced capital expenditures is 
presented by the capability to use the same PC 
Cards in both environments. Further, customer 
satisfaction will be improved due to the cost 



savings and the improved configurability of their 
systems. 

These are just a few of the more obvious 
opportunities and benefits presented by 
implementation of the CardBus PC Card interface. 
Without question, many more opportunities are 
immediately available and even more will emerge 
as technology and the industry progress. 

PCI Synergy 

The CardBus PC Card interface signaling protocol 
is derived from the Peripheral Component 
Interconnect (PCI) Local Bus signaling protocol. 
While there are some differences between the two 
specifications, operations are identical for most 
functions implemented. This similarity provides 
an opportunity for development of common silicon 
for use on both PCI cards and CardBus PC Cards. 
Refer to the PCI Mobile Design Guide and the new 
PC Card Guidelines documentation for further 
details. 

Conclusion 

The CardBus PC Card interface is the next­
generation, high-performance 32-bit/bus master 
interface for PCM CIA/ JEIDA. It provides the 
opportunity for migration of most high 
performance functions now available only on 
desk-top and larger systems to CardBus PC Cards 
for use in the mobile environment. New functions 
developed for CardBus PC Cards may also be used 
in 32-bit desk-top systems, if they are equipped 
with CardBus PC Card sockets. 

While the CardBus PC Card interface is derived 
from PCI, it may be implemented on any 32-bit 
system that provides functionality similar to that 
provided by PCI. Although it is not the same as 
PCI in all respects, the signaling protocols are 
identical which enables development of C<?mmon 
silicon. 

All CardBus PC Card sockets must be able to 
accept and operate non-CardBus PC Cards within 
the capabilities of the system. Since all CardBus 
PC Card sockets also support non-CardBus PC 
Cards, the initiative for implementation lies with 
the system developers. Once CardBus PC Card 
sockets are available on 32-bit systems, CardBus 
PC Cards will be developed to take advantage of 
the performance provided by the 32-bit system 
and true office mobility will be realized. 
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INDUSTRIAL APPLICATIONS 
OFPCI 

Jim Medeiros 
Ziatech Corporation 

1050 Southwood Drive 
San Luis Obispo, CA 93401 USA 

ABSTRACT 

The Peripheral Component Interconnect (PCI) 
standard is the latest in a number of 
technologies originally created for "desktop" or 
"notebook" personal computers, and adopted by 
manufacturers of industrial computers. These 
technologies enhance computers used to 
automate control applications in the 
semiconductor, telecommunications, automotive, 
paper processing and other industries. 

This presentation examines how PCI 
technology benefits industrial computers, and 
sorts through the evolving PCI choices available 
to designers of industrial control systems. PCI 
approaches discussed include passive backplane 
ISA-based computers (PICMG) the PCI Mezzanine 
Card (PMC) primarily for VME and MULTIBUS 
computers, PCMCIA Cardbus and Small Form 
Factor approaches, ·and rugged PCI formats for 
small format computers. 

INDUSTRIAL APPLICATIONS OF PCI 

The personal computer is traditionally 
associated with desktops at the office or at 
home, and increasingly in more transient, 
crowded quarters such as airplane seats or hotel 
rooms. 

Yet the ongoing and rapid evolution of 
technology affecting personal computers reaches 
beyond the office and the aisle seat. Peripheral 
Component Interconnect (PCI), a high­
performance local bus standard championed by 
Intel and now utilized by most major PC 
manufacturers, is just the latest in a long list of 
PC technologies borrowed by the makers ofVME, 
MULTIBUS, passive backplane ISA, STD 32, and 
other industrial computer standards. 
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PC HELPS ADVANCE INDUSTRIAL COMPUTERS 

It did not take industrial computer 
manufacturers long to figure out that aligning 
with the large PC market and taking advantage 
of that industry's advances in silicon and 
software would enable them to enhance their 
products in rapid-fire fashion. Industrial 
computer manufacturers also realized that the 
large volumes of the PC market would translate 
into quantities and cost savings that the smaller 
industrial computer market couldn't hope to 
beat. 

Initially, it took industrial computer makers 
months and even, years to adopt PC CPUs, 
operating systems, peripherals, video interfaces 
and networking capability, but today, there is 
little lag time between a technology's PC 
appearance and its industrial computer 
implementation. 

Early industrial computers that were PC 
compatible often lagged the desktop marketplace 
by years with regard to performance and 
features. 

In most cases a PC compatible embedded 
system would require multiple boards and many 
incompatibilities would exist because of the 
different environments. 

In the last three years, the integration of PC 
compatible technology has dramatically affected 
the ability of industrial computer manufacturers 
to provide compact, fully PC compatible 
embedded computer systems. With this new 
technology (in some cases single chip solutions,) 
industrial computer systems can be every bit as 
powerful as those offered for the desktop. In 
fact, today it is possible to buy a Pentium based 
CPU, with hard disk, floppy disk, and Super VGA 
interface that will fit into the palm of your hand. 
(See Figure A) 



Figure A: A Compact Pentium Computer 

Over the last ten years, industrial computer 
manufacturers have continued to improve the 
performance of embedded CPU systems by 
leveraging off of the latest in technology that is 
offered for desktop systems. 

Prior to PCI, high speed local bus VGA 
interfaces have been available for embedded use. 
Early local bus architectures such as VL Bus 
have been primarily used only for VGA interfaces 
on 486 class machines. Although other 
interfaces have been made for VL Bus, the need 
for a standardized, processor-independent local 
bus has emerged to meet the performance 
requirements of PC compatible systems through 
the year 2000. 

PCI: BREAKING DOWN THE BOTTLE NECK 

Which brings us to PCI. This local bus 
solution to the bandwidth bottleneck created by 
increasingly demanding computer peripherals is 
rapidly invading not only desktop and notebook 
PCs, but industrial computers as well. 

PCI products are relatively inexpensive and 
easy to design, and because the standard offers 
high performance and new sought after 

101 

capabilities like "plug-n-play", PCI is becoming a 
prevalent part of industrial computers. Yet 
because the formats of these industrial 
computers differ quite considerably, the ways in 
which PCI is implemented varies widely. 
Emerging standards for these different PCI 
implementations will be discussed by industry 
representatives from Texas Microsystems, DEC, 
IBM, Intel and Ziatech Corporation. 



ABSTRACT 

Small PCI 
Implementation and Strategy 

Joseph F. DiMartino 
Chairman - Small PCI Workgroup 

IBM PC Company 
3039 Cornwallis Road 

Research Triangle Park. NC 27709 
(919) 543-9195 

joe~ dimartino@vnet.ibm.com 

Peripheral Component Interfuce (PCI) is a bus standard that has gained industty wide 
aceeptance in a relativity short amount of time. The robust characteristics of the bus 
have resulted in a variety of system designs leaning towards implementation. Some of 
the system designs are constrained by physical size, like mobile products. set top box's 
and small personal computers. The Small PCI (SPCI) foim factor address's this design 
COD.'1em. 

SPCI :is an implementation of the standard PCI Bus in a physically smaller size. The 
electrical characteristics are similar and no additional silicon is required to implement 
this solution. The differences are in the connector headert 108 pins vs. the standard 124 
pins as well as the cud size whicb has the physical dimensions of cunent PCMCIA 
cards. Maintaining the aforementioned design characteristics result in relatively easy 
implementation of SPCI. Little invention is required because both PCJ and the PCMCIA 
physical characteristics arc well known and understood by the comJ,uter industry. 
Additionally the openness of the architecture insure multiple vendor somces and card 
manufacturer participation. 

The proposed~ of SPCI cards will initially address subsystems that are experiencing 
fast tu.ms in performance, such as video, SCSI, audio, etc .. Also, expected to be 
implemented quickly are subsysten1s that have a high degree of u.~er preference, such as 
communication cards (Token Ring vs. Ethernet, lOBase T, 10Base2 etc.). TI1e above 
subsystems all have a major impact on inventory of adapter cards, system boards and 
finished g<;>Ods. The implementation of SPCI will give system manufacturers leverage to 
customize systems at point of manufu.cture. This will reduce the risk of system board 
obsolescence and provide an opportunity to reduce the SKU's (stock keeping units) in 
inventory. 
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Session Description: D8B - PCI Compliance Forum 

Conforming to a complex standard interface 
such as PCI requires that special consideration 
and attention be paid to issues surrounding 
compliance. The range of issues to be dealt with 
include mechanical, electrical, software, and 
hardware interface considerations. A number of 
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methods are available for determining the level 
of compliance in a given design. This session 
will explore a number of alternatives which can 
work together to ensure compliance to the PCI 
specification and ease the burden of testing for 
compliance. 



Using Simulation Models for PCI Compliance Verification 

Dave Kresta 
Product Manager 

Logic Modeling Corp. 
19500 NW Gibbs Drive 
Beaverton, OR 97075 

Ph. (503) 531-2249 Fax (503) 690-6906 
E-Mail: een5sf@Leeds.ac.uk 

Chair: Session DSB - PCI Compliance Forum 
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I PCI Bus Model and Test Suite I 

synaPsys· 
LOGIC MODELING 

Agenda 

• Bus Interface Models Overview 

• PCI Bus Model 

• PCI Test Suite 

• PCI Design Kit 

synaPsys~ 
LOGIC UODELING 

© 1994 Synopsys, Inc. 
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What is a Bus Interface Model? 

PCI 
ISA 
EISA 

SCSl-2 \ PC Card 
MCA 
VME 

Design Under Test 

"rest of the system" bus monitor 

Bus Interface Model 

Bus Interface Models 

SCOPE: 

efinition: Simulation model 
allowing designers to verify 
a design's compliance to a particular 
specification, prior to prototyping: 

•Emulates the behavior of 
the "rest of the system" -
generates bus activity efficiently 

• Monitors bus activity for 
protocol compliance. 

synoPsys· 
LOGIC UODELING 

• Bus Interface Models focus on hardware 
protocol level design issues. 

-4f-- Logic Modeling Bus Interface Models 

synoPsys· 
LOGIC UODELING 

© 1994 Synopsys, Inc. 
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Using Bus Interface Models 

Primary Target: ASIC design 
• Efficient test generation capabilities 

• Pre-silicon compliance/interoperability testing 

synapsys· 
LOGIC UOOELING 

Bus Interface Models 

Benefits 

Test for Interoperability 
During Simulation 

Verify Compliance 
Prior to Prototyping 

Generate Test Vectors 
More Efficiently 

107 

synapsys· 
LOGIC UOOELING 



© 1994 Synopsys, Inc. 

Automatic Protocol Generation 
PCI Master model write command: 

mem_write("OOOOOOOO", 1, 0, 0, "10000000", 0, 0, false,false,false,linear}; 

Generated Bus Activity 

wail1 cycle ---=C=LK~====~ then request bus 
REQ#: 

bus grant received GNT# ; 1,___, __ 
assartframe#-=--=="!---4-~";-;:~-;-------;--" ~drlvedata :.-= ::: i::~ !a-! ~·~-6 .... -
command~codiiie --;;c;IBE#;i~,:::::::£:~§§§§.~>f~i, ~7;=f=1x ~ 0 ~ 

: · . wailstare 
IRDY# : \::!:;:J ~ ~ before IRDY# 

TROY# -~ -----------.0-1 ~ ~ 
DEVSEL# ~ \.J_j : : 

synapsys· 
LOGIC MODELING 

Characteristics of Bus Interface Models 

• Highly configurable, flexible 

• emulate any bus element: master, slave, etc 

• generate all bus cycle types 

• Controlled via high-level commands 

•high productivity, high reuse 

• algorithmic control 

• efficient "test vector generator" 
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read(11 •••• ") 

write{" •••• ) 
get_pin(" .•. ") 
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Characteristics (continued) 

• Automatic protocol generation 

• concentrate on interaction of transactions 
rather than bit and signal manipulation 

• Bus protocol verification 

• responds to proper behavior, flags improper 
behavior 

• High-performance 

• high-level abstraction of entire board or chip 

• enables efficient system-level verification 

Alternatives 

Hardware Prototyping 
Requires test jig or target system 

Difficult debugging 

Errors caught are costly to fix 

Manual Stimulus/HDL testbenches 
Low-productivity: low level of abstraction 

Difficult to reuse, usually incomplete 

Write Your Own Bus Interface Model 
Often incomplete, maintenance is difficult & time consuming 

Misinterpretations lead to "self-fulfilling prophecy" 
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Agenda Checkpoint 

• Bus Interface Models Overview 

... • PCI Bus Model 

• PCI Test Suite. 

• PCI Design Kit 

synaPsys· 
LOGIC MODELING 

PC/ Local Bus j>C?I 

© 1994 Synopsys, Inc. 

Model of the PCI Local Bus - Specification 2.0 

Initially developed by Intel in VHDL 

Enhanced, distributed and supported by 
Logic Modeling 

Models both master and slave modes 

Model control is via user-written VHDL or Verilog 

Distributed in VHDL and Verilog source code format 
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Generating Bus Cycles 

2 Methods of generating cycles 

• Embedded Mode 

- Commands are included in the top level 
component (eg: pcimaster) 

+ : Programmatic control 

- : Change test case, must re-anlyze code 

• External File 

- Commands are read from an external file 
+ : Dynamic test case changes 

- : No programmatic control (wakeup, sleep, idle for sync, 
automatic read data compare) 

synapsys· 
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Example PC/ Bus Commands 

• Sample PCIMASTER command file 

-- 32-bit burst write/read test 
mem_write("OOOOOl00",4,"0",0,"00001111",0,0, 

false,false,false,Iinear); 
continue_write("O", "00002222" ,O); 
continue_write("0","00003333",2); 
continue_ write("O", "00004444" ,O); 
idle(5); 
mem_read("OOOOOl00",4,"12",1,"00001111",0,0, 

false,false,false,Iinear) 
continue_read("O", "00002222" ,2); 
continue_read("O", "00003333" ,O); 
continue _read("O", "00004444" ,O); 

• Sample PCISIA VE command file 

-- 32-bit burst write/read test 
contig(3,6,0); 
clear_ delay; 
set_ delay(3,4); 
request( 4,2,0); 

•Questions (1) What is the address decode speed for the slave? 
(2) How many IRDY# /TROY# waits on 3rd data of write ? 
(3) Will any retries (disc-c) occur? If yes, how many ? 
(4) Will the 4th read data compare correctly ? 

synaPsys· 
LOGIC MODELING 
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Example PC/ Bus Commands (cont) 

(1) What is the address decode speed for the slave? 
request(4,2,0); 114 cycles, SLOW decode, No TROY waits 

(2) How many IRDY# waits on 3rd data phase of write ? 
mem_write("00000100" ,4,"0" ,0,"00001111 ",0,0,false,false,false,linear); 
continue_ write("O", "00002222" ,0); 
continue_write("0","00003333",2); I/ 3rd data, be= 0, 2 IROY waits 
continue_ write("O", "00004444" ,O); 

set_delay(3,4); II 4 TROY waits on 3rd data 

(3) Will any retries (disc-c) occur ? If yes, how many ? 

config(3,6,0); II Max burst length = 3 prior to disc-c. force 2 disc-e's 

(4) Will the 4th read data compare correctly ? 

Yes, 4th data phase is retried, but will complete 

Example PC/ Monitor Output 

• 

• 

Sample Trace file 

TIME (NS) : 1000 
BUS PHASE : IDLE 

TIME (NS) : 1100 
FRAME Asserted 
BUS PHASE : ADDRESS 
COMMAND : Reserved (1000) 
ADDRESS : 00000000 (hex) 
PCI WARNING: Reserved encoding detected (3.1.1) 

Sample PCI ERROR: 

warning at 60000 ps from pcimonitor_tst.ul.fm.error_report 

synaPsys· 
LOGIC MODELING 

"pci error: targets must not respond to reserved encodings (3.1.1)" 

synaPsys· 
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PC/ Test Suite j>C?I 

•Based on the PCI Special Interest Group's (SIG) 
Compliance Checklist 

• Developed in cooperation with the PCI SIG 

•Supports verification of a PCI design's compliance 

• Provides VHDL or Verilog bus cycle control code and 
test vectors for each scenario 

• Includes Coverage Analyzer for test completeness 
reporting and Scenario Customizer for customization 

synaPsys· 
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PC/ Test Suite j>C?I 
Test Circuit Customized Bus 

' ... ~.~~~ .'?.'!.~~.1. !?~~~ ... _ 

Customization 
Template 

---~ Checklist Report 

synapsys· 
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PC/ Design Kit 

DesignWare PCI MacroSet 
(synthesis} 

PCI Bus Interface Model 
(simulation} 

PCI Test Suite 
(compliance verification} 

synoPsys· 
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PC/ Design Kit - A Total Solution 

• Flexible (MacroSet versus "monolithic core") 

• Substantial reduction in design/verification time 

• MacroSet building blocks 

• Bus Model for efficient test generation 

•Test Suite to seed test vector generation efforts 

• Enables fully compliant designs 

• Pre-verified MacroSet 

• Compliance checking with Bus Model/Test Suite 

synOPSys· 
LOGIC MODELING 
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PCI Compliance Testing 

Barbara P. Aichinger 
FuturePlus Systems Corporation 

36 Olde English Rd. 
Bedford, NH 03110 

603-4 71-2734 

Barbara P. Aichinger 
FutureP/us Systems Corporation 

PCI '95 Week 

FuturePlus Systems Corporation 

PCI Test Made Easy! 

o Hewlett-Packard and FuturePlus Systems offer 
several different tools to help test your PCI design 

o PCI Compliance Checklist testing 
o PCI Electrical testing 
o PCI Software testing 

o These tools range both in functionality and price 

/>n!mit'r 
Ch;innel 
Panne-r 
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Premier 
Channel 
Panxu~ 

Setting up your lab for PCI 
testing 

FuturePlus Systems Corporation 
--· ·- -- ______________ ,, __________________________________ , 

PCI Preprocessor and Extender 
Cards 

o There are 3 cards available to help probe the PCI 
bus: 
o FS16P64 - 32/64 bit PCI Preprocessor 
o FS16P32E - 32 bit PCI Preprocessor and extender card 
o FSPS32 - 32 bit PCI Probe and extender card 

o Summary of the differences: 
::.... . . 

Patt Number 

,,..._ 
Premier I _ 
~!:::' ! FuturePlus Systems Corporation 

- ------------·-- ·------ _______ .. ________________________ __, 

116 



PCI Compliance Testing 

o The logic analyzer, scope and high speed timing 
card can all work together 

o Protocol, Configuration and BIOS Testing 
o The trigger specification of the analyzer is very 

powerful .... 

,, ... 
./Use the COMBINATION selection of the STORE specification 

to filter out. 
qlDLE states 
qTarget initiated WAIT states 
qMaster initiated WAIT states 

./Use the stored symbols to trigger on the event under test 

Premier 
Chanuel 
Partm:r FuturePlus Systems Corporation 

Prcm.1t>r 
Chimnel 
Partner 

..... -······ ---··--····-··---·--·-·-·--····--··-----------

Capturing PCI Bus Transactions 

FuturePlus Systems Corporation . 
-------------- ···---·~--------
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PCI Bus State Listing 

Premier 
Channel 
l'anner FuturePlus Systems Corporation 

~----· -·---··--------··--·-~----~· ·-·--·- -·--·-----------------· -

Viewing PCI Bus Transactions 
Use the post processing 
display filters to filter the 
PCI bus transaction 
display. 

0 Select to see 
./ 1/0 Reads 
./ 1/0 Writes 
./ Configuration Reads 
./ Configuration Writes 
./ Memory transactions 
./ No Idle states 
./ No Wait states 
./ All other transactions 

0 OR ANY COMBINATION 
OF THE ABOVE! 

,,,.. 
Premier 
Channel 
Partner 
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PCI Compliance Testing 
o Electrical Testing 

l'rrm1·icr 
Channel 
J'anncr 

l'n::mir>r 
Channc~1 

Partner 

o Cross trigger the scope and the logic analyzer 

o Use the high speed timing card for ensuring that all setup 
and hold times are adhered to 

FuturePlus Systems Corporation 

HP BEST System 

~,..:J 
HPBEST 

FuturePlus Systems Corporation 
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BEST Main Control Window 

- HPE2910A Main Window ~lt 

Status line .... 
Pnmtier 
Channel 
Panner FuturePlus Systems Corporation 

Bus Exerciser Window, used to: 

o Enter test sequences 
o Define bus transactions 

using the transaction editor 
o Define patterns [gJ Active Participan1 

o Define address/transaction OPassiveObserver 

types to be decoded when 
acting as target 

o Select whether passive 
monitor or active 
participant 

,, .. PC! Bus 

Prnmier : 
Chanm•I ! 
Partner · FuturePlus Systems Corporation 

120-



Logic Analyzer Window, used to: 

o Upload data from the Logic 
Analyzer for the Listers to 
process or save on disk 

o Load previously uploaded data 
file from disk into the Data 
Listers 

o Load the LA setup from file 

o Define a range of data to be 
uploaded from the Logic 
Analyzer 

f'n~mfrr 
Channel 
Partner 

~ logic cmalyzer 

I~~ 111~-·~-
starting from line @5 ·----=i 
tollne 

FuturePlus Systems Corporation 

··-······--·--·---------------------·-------------------~ 

Summary 

o Time to Insight!... 
o If you can find it. .. you can fix it! 
o These tools are designed to shorten the Time to Insight 

o It takes many different types of testing to bring a 
PCI product to market. 

o In addition to Compliance testing, these tools are 
designed to help with system and general design 
verification testing. 

o Come by the HP/FuturePlus Systems booth and 
take a test drive! 

!'mmier 
Ch;mnel 
Partner 
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COMPLIANCESFALS:VALUEORBUST? 

Lloyd Holder 
NS1L 

6Z5 Ridge Pike 
Conshohocken,PA194Z8 

I. Abstract 

The practice of using compliance seals as a 
differentiator of products that meet certain test 
standards has worked well in those areas of IT 
technology that are dominated by a single vendor. 
Recent attempts at compliance testing programs with 
associated seals have not enjoyed the same success 
because competing vendors participating in committees 
have difficulty establishing and maintaining standards. 
It is time to remove the conflicts between marketing 
and engineering concerns in the interest of releasing 
more compliant and compatible products. It is more 
important for products to actually work together than 
for vendors to inform the market that products have 
negotiated a compliance obstacle course. The market 
itself has always been the final arbiter of all issues in the 
micro computer industry. 

II. The Need for Compliance Seals 

Given unlimited time and resources most engineering 
departments will be able to make most computer 
products work with each other. Unfortunately, market 
considerations usually contrive to limit the time and 
resources available to most engineering departments. 
This results in many computer products reaching 
market with limitations on their compatibility with 
other products. 

New technologies must generally prove themselves to 
not only outperform existing technologies, but also to 
be as stable and as reliable. In their rush to gain a 
market edge some companies produce products that 
implement the new technology in an inconsistent 
manner. This in tum leads to confusion in the market 
since, in some cases, the new technology can be 
demonstrated as superior to the existing technology, 
while it may not work at all in other cases. 

Engineers and marketing departments have traditionally 
sought ways to differentiate those products that exhibit 
good implementations of the new technology from the 
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bad implementations. One popular method is the 
displaying of a compatibility or compliance seal. The 
general idea behind the seal is that the end user will 
perceive that all products exhibiting the seals will either 
work together or were at least tested together at some 
point in time. Large purchasers ofIT products, when 
aware, will sometimes require that products qualify for 
these seals in order to participate in procurement bids. 

Marketing departments generally demonstrate much 
more enthusiasm for compliance seals than the 
engineering departments. The desire to differentiate 
their products from the competition drives the 
marketing staff's enthusiasm. Obtaining the seals is 
their primary objective and they are not overly 
concerned about the methodologies used to determine 
which products earn the seals. Their secondary interest 
is in keeping the cost of obtaining the seal to a 
minimum, thereby retaining their competitive pricing 
and profit margins. 

Engineering departments, on the other hand, are more 
concerned that the seals have true meaning to the end 
user. They are the ones who must defend and fix the 
products when problems occur. Their primary interest 
is in making sure that the testing methodologies are as 
extensive as practical. Most engineers feel that the 
more extensive the coverage of testing the greater the 
guarantee of compliance. Extending the testing 
methodologies is generally associated with increasing 
the costs for testing. 

In practice, the nature and the amount of testing that 
actually occurs is a trade off between doing enough to 
placate the engineers without spending a sum that 
would result in a product selling price that is not 
competitive. 

Compounding this situation are some other practical 
concerns. The current proliferation of seals has lead to 
a situation that could be referred to as "Seal Clutter". 
Product advertisements now contain so many 
compliance and award seals that it is doubtful that the 



end user still pays any attention to them. In the case of 
new technologies, like the PCI bus, standards must be 
established and it is not always clear who has the right 
to establish them. The successful compliance programs 
in the past have generally exhibited features that come 
from one of two cases. 

III. The Dominant Vendor Case 

The case of the IBM PC/DOS standard is a classic 
demonstration of standards being set by a vendor that 
dominates the market by capturing a significant portion 
of it. Prior to the introduction of the IBM PC, micro 
computers had flourished while exhibiting a variety of 
hardware busses and operating systems. Riding on the 
coattails oflBM's dominance in the mainframe and 
midrange markets, the IBM PC, a late entry into the 
micro market, eventually outsold all other competitors. 
Software vendors now had a stable market that 
consisted of a large installed base of common systems 
and they took advantage of this by writing software that 
was compatible with these systems. Adapter vendors 
also took advantage of this installed base by developing 
compatible products for its bus. 

Because of its market dominance the IBM PC became 
the standard for the micro computer industry. 
Competitors felt compelled to demonstrate compliance 
with the IBM specifications even though they were not 
clearly published in detail. IBM has always 
demonstrated a reluctance to display any compatibility 
seals on any of its products. It further prohibits the 
issuing of any seals claiming IBM compatibility. In 
spite of this, and in the absence of seals, the term "IBM 
compatible" became an industry accepted concept. 

N. The Technology Owner Case 

In the second case the market also plays a prominent 
role in establishing the standard. The most prominent 
example of this type of compatibility seal is the 
NetWare compatibility program run by Novell. By 
capturing a significant portion of the LAN market, 
Novell was able to put itself in a position where it could 
demand that hardware products demonstrate 
compatibility with its network operating system. As the 
owner of the technology Novell dictated the 
methodology that was used for testing compliance with 
its products. In the early days of development of the 
file server market, end users quickly adopted the 
NetWare seals as proof that the product was approved 
by Novell. The seals gave the purchaser the assurance 
of the technology owner that the products met the 
minimum requirements for compliance with the 
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technology. Novell's original, relatively rigorous testing 
has since given way to a much more marketing oriented 
self-certification program granting products the 
NetWare Yes seal. 

Other prominent industry owners of technology have 
followed the less rigorous self-certification testing idea. 
Included among the more visible ones are the Microsoft 
Windows and the Intel Inside seals. More recently, 
even IBM has modified its course with the introduction 
of OS/Z and Thinkpad seals. In some cases the use of 
the seal is primarily a marketing arrangement between 
the companies involved and it is often not necessary for 
the products to meet actual testing standards. 

V. The PCI SIG Approach 

The introduction of the ISA and Micro Channel busses 
by IBM guaranteed the simultaneous availability of 
compatible products. Both system and peripheral 
products were extensively tested together in IBM's labs 
before market release. Other busses in the micro 
computer industry have not enjoyed the same instant 
success in the compatibility arena. EISA, PCMCIA, 
VL-Bus, and then PCI all had their origins in an 
industry-wide specification rather than the proprietary 
technology of a single company marketing its products. 
By starting as public specifications these busses were 
saddled with initial products from many competing 
companies. Each company fiercely defended its unique 
interpretation of the specifications and the early 
products were not perceived by the end user as 
interchangeable. 

It was only natural that the PCI SIG would eventually 
consider a compliance testing program that would yield 
products that display a PCI compliance seal. But with 
no dominant market player yet established a key 
ingredient for seal success was missing. At this point in 
the evolution of the IT market it is generally accepted 
that the successful adoption of new technologies is 
often associated with open specifications. Seeking 
industry-wide acceptance, the developers of the PCI 
specification were careful to avoid the perception that 
it was tied to a particular company or even chipset. 

To compensate for the limitation imposed by the 
absence of a dominant player in the market, the PCI 
compliance testing program needed to establish a 
"golden suite" of products in order to get started. The 
mechanism for doing this was the "benchathon", a 
benchmark of interested parties for the purpose of 
establishing compatibility with each other's products. 
At this level of testing compliance with bus standards is 



compounded with other factors such as driver software 
and system resource conflicts. Unfortunately for the 
design engineers, it is only at this level that the market 
understands compatibility and compliance with 
standards. The initial results of the benchathons 
confirmed that the early PCI products were not nearly 
as interchangeable as they would need to be for general 
market adoption. These results were never published 
and the SIG has moved on to a lower level of 
compliance testing. 

VI. Recent Trends 

Advertisements for the Macintosh line of computers 
have been touting the Apple logo as the only true 
compatibility seal for some time now. Despite this 
trend the IBM/DOS compatible market still flourishes. 
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This market has grown up accepting a certain amount 
of incompatibility as the cost of enjoying open 
standards and prices that are determined by the market 
rather than by the vendor community. This does not 
imply that vendors should reduce their compliance 
testing efforts. Rather, it should be accepted by the 
vendors that the market will always determine which 
products it considers compliant. The time is ripe for us 
to reduce our need for compliance seals and the 
difficulty associated with establishing a starting suite of 
accepted products from multiple vendors. It is much 
more important to establish a testing environment 
where the engineers from interested vendors can work 
freely towards compliance with specifications as well as 
on compatibility with each other's products. This will 
lead to much more interchangeable products and 
therefore quicker and greater market acceptance. 



REAL-TIME ON-BOARD BUS TESTING 

Jeffery A. Floyd 
Matt Perry, Ph.D. 

Motorola, Inc. 
Semiconductor Product Sector, Austin, Texas 

ABSTRACT 
This paper will define and describe the need and 

methodology for testing wide buses in real-time and at 
speed. In today's environment, computer buses are 
growing along with system clock speeds. These wide 
high-speed buses require special attention at time of 
board layout and analysis. Characterization of or tests 
on a bus at high-speed cause an additional unneces­
sary problem of tester interference in the circuit. For 
example, the addition of bus loading and capacitance 
by a logic analyzer is detrimental to the circuit perfor­
mance at high speeds. We have developed a technique 
to allow full-fault testing of these wide buses at multi­
ple speeds, in real-time, without tester interference, 
using pseudo-random pattern generation, and allowing 
multiple seed and characteristic equations. The tech­
nique involves transmitting test patterns from multiple 
physical locations on the bus (one at a time) and simul­
taneously receiving the data at other points along the 
bus. This allows testing of the bus in a real-life environ­
ment and allows the test engineer to evaluate the 
design in adverse operating environments with little or 
no undue influence on the design. We accomplish this 
without tester interference, at high speed, and with lit­
tle device pin-out overhead by using the IEEE JTAG 
protocol to control and access the test logic. 

DEFINITION OF PROBLEM 

In the past when an engineer wanted to test a new 
hardware design, he/she had to connect a logic ana­
lyzer or oscilloscope to the circuit. These test tools mea­
sure voltage over time that the engineer analyzes to 
determine if a circuit is functioning properly. This 
methodology is still usable for circuits of low speed and 
low density. Today, however, the speed of designs con­
tinues to rise with each new design generation; for 
example, some of the more popular personal computer 
designs are now approaching 150 MHz in CPU clock 
speed. 

The density of the circuits is also increasing with 
each new generation. Application Specific Integrated 
Circuits (ASICs) and Field Programmable Gate Arrays 

(FPGAs) allow designers to take larger portions of their 
designs and place them on fewer ICs. The result is 
reduction in board size and in the spacing between the 
circuits, which increases the density of the circuit 
board. 

It is difficult to test high pin count devices with 
small lead pitch with standard logic probes, and spe­
cial sockets are expensiye and add capacitance to the 
circuit. In high-speed designs, the test equipment 
(including probe, socket, and tester) significantly influ­
ences the circuit. All of the above factors combine to 
make the job of the engineer testing or debugging a 
design much more difficult. 

Tester Loading 

Any test device, from the most basic logic probe to 
the most exotic logic analyzer or the best automated 
tester, will impose its characteristics on the circuit it is 
testing. These characteristics present themselves as 
capacitance, inductance, and resistance; therefore, 
impedance changes in the circuit. Additionally, the 
tester will require that the driving device of the circuit 
being tested supplies more power to compensate for the 
additional load imposed by the tester. This can push 
marginally functional circuits into a non-functional 
state or cause a non-functional circuit to suddenly 
function. 

Tester Influence at High Speed 

High-speed circuits have additional problems. The 
additions of the testers probe capacitance, inductance. 
and resistance to the circuit; changing the reflection 
dynamics of the circuit, that is. electrical reflections in 
the circuit now have an additional path to follow. 

If a circuit is running in an environment with high 
EMI concentration or fails as the clock speeds 
approach maximum (for variable speed circuits), the 
introduction of the tester loading makes it impossible 
to accurately trace a problem to its root cause. The 
impact of the tester loading changes the behavior of the 
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circuit and its performance. 

ON-CHIP TESTING CIRCUITS 

One obvious solution, and the topic of this paper, is 
to add the testing logic to the ASIC itself. This allows 
the test engineer to test and characterize a circuit with­
out adding any unwanted electrical influence to the cir­
cuit. The test logic will, in most cases, add some 
propagation delay to the design. The design specifica­
tion for the device should include this propagation 
delay compensation. Figure 1 shows the basic block 
diagram of the test logic. 

Bus to 
Test 

Figure 1: System Block 

Device Under 
Test #1 

Test Bus 
I/O 

Logic 
Generator r----i 
Receiver I __l 

.--......._---. 

~· I/O MuxJ { JTAG J 

De\ice Under 
Test #2 

Bus Test 
I/ 0 Generator 

Logic Receiver r-=J 
.--......._~ 

\ I/O Mux] I ~ JTAG J 
~64 

• • • 
Device Under 

Test #N 

Bus Test 
I/O Generator r----i 

Logic Receiver J __l 
.--......._---. 

~ I/O Mux ~ ~ JTAG J 

Common 
Clock 

As shown in Figure 1, a JTAG control box controls 
the input/ output multiplexor and a test generator I 
receiver block. The test generator /receiver generates a 
test pattern on one device and receives and verifies the 
pattern on all other devices on that same bus. This 
requires the 1/0 multiplexor configuration to be an 
output for the pattern generator device and an input on 
the pattern receivers. The bus 1/0 logic block is the 
block of logic that drives the bus during normal opera­
tions. 

Figure 1 also shows a common clock. This clock 
could be the clock that operates the bus under normal 
conditions or a special test clock. Both have their 
appeal. In the case of the normal operation clock, you 
test the function and the skew of the real clock distri­
bution as well as data transfer. If that clock line is dam­
aged or incorrectly designed for high-speed 
transmission, then a secondary clock source is 
required. In this case, the use of the JTAG clock as a 
test clock provides a clock source and gives meaningful 
data. However, a 10 MHz limit imposed by the JTAG 
specification will not allow high-speed testing, but will 
allow a full set of connection tests to be performed. The 
addition clock sources into the system provides a 
greater range of testing possibilities. 

Figure 2 shows the contents of the JTAG block. For 
more detailed information consult the IEEE Joint Test 
Action Group (JTAG) 1149.1 specification. 

Figure 2: JTAG Block 
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Briefly, the JTAG block is accessible via a defined 
five signal or pin port. The protocol running on these 
signals allows users to access a number of internal reg­
isters. If desired, the designer can allow access to a 
number of normal mode user registers and/or a num­
ber of test registers. In this example, we will assume 
that the JTAG controller has access to at least the fol­
lowing registers above the minimum requirements set 
forward in the JTAG specification: 
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1. 1/0 Multiplexor Control Register 
2. Test Generator /Receiver Seed Register 
3. Test Generator /Receiver Result Register 
4. Test Generator /Receiver Control Register 
5. Test Generator /Receiver Coefficient Register 

Via these registers, the test engineer can control 
and retrieve test information from the test logic 
described in this paper. 

Test Generator /Receiver 

The test generator /receiver block contains the cir­
cuits shown in Figure 3. 

Figure 3: Test Generator /Receiver Block 

Interface to I/O Mux 

Control 
LFSR#l LFSR#2 

Register 

Seed I Coef 
Result 

Seed I 
Result Coef 

Interface to JTAG 

The Linear Feedback Shift Registers (LFSRs) gener­
ate a pseudo-random test pattern at the test generator 
device, or receive and verify a test pattern at the 
receiver devices. This architecture shows the imple­
mentation of two LFSRs. The bus to be tested in Figure 
1 is 64 bits wide. If each of the LFSRs in Figure 3 are 
designed to be 32 bits wide, two additional features are 
possible: one, the LFSR is easier to design and analyze, 
and two, the outputs of each LFSR can be interleaved 
on the 64-bit bus to allow for a more random and 
robust test of signals that are "neighbors" to each other 
on the 64-bit bus. 

The seed/result registers write as seed registers 
and read as result registers. The seed register gives the 
LFSR a known starting point for the test pattern gener­
ation. The result register allows the engineer to retrieve 
the final result. 

The coefficient registers allow the test engineer to 
change the characteristic equations of the LFSRs. 
These characteristic equations determine the complex­
ity of the test pattern. 

The control register starts and stops the LFSRs 
and controls the direction of data through the I/0 mul-

tiplexor. It also selects the source of the test clock, nor­
mal operations clock, or JTAG or other secondary clock 
source. 

The interface to the JTAG block allows the JTAG 
Test Access Port (TAP) controller to read and write the 
control, seed, result, and coefficient registers. This 
interface controls the test process. 

The interface to the I/O Multiplexor routes signals 
to the I/O Multiplexor. 

1/0 Multiplexor 

The I/O Multiplexor contains the functional blocks 
shown in Figure 4. 

Figure 4: 1/0 Multiplexor 
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The 1/0 multiplexor routes and interleaves signals 
to the bus that requires testing. This block could also 
route the output of one or both of the LFSRs to internal 
circuits for internal Build In Self Test (BIST). 

TESTING PROCEDURE 

The following sections outline the process steps 
required to start the bus testing, what happens during 
the testing procedure, and how to retrieve and analyze 
the results. The steps outlined are for the general case; 
specific applications of this technology may require 
additional special process steps. 

Starttnu Test 

To start a test, the test engineer first selects which 
chip will be the test generator and which devices will be 
test receivers. This selection of transmitting and receiv­
ing devices creates a test "view". If the transmission 
device is in the middle of the physical bus and the 
receiving devices are on either end, this creates one 
view of the system. If, however, the transmission device 
is on one end of the physical bus and the receiving 
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devices distributed along the bus, then this is a differ­
ent view of the system. For the most complete and 
robust testing, all devices that are not the generator­
configured device are receiver-configured. 

The next step is to program all devices with the 
same coefficient and seeds. All LFSR #1 seeds and coef­
ficients MUST be the same and the LFSR #2 seeds and 
coefficients MUST be the same. However, the settings 
for LFSR # 1 may be different from the setting for LFSR 
#2. In fact, differences in the seed and coefficients for 
LFSR # 1 and LFSR #2 creates a more robust testing 
environment. 

The third step is to start the test. Writing to the 
chain of control registers via the JTAG protocol such 
that all control registers update on the same clock edge 
starts the test. Sufficient information written to the 
control register must start all LFSRs running and 
select a clock source. The same test clock source must 
be selected for all pattern generation and receiver 
devices. 

During the Test 

The test should begin with the generator device 
sending out pseudo-random patterns to the receiver 
devices over the bus to be tested. The receiving devices 
retrieve the pattern from the bus. One of the features of 
the LFSR is reducing the amount of test data required 
to find a specific fault. 

Retrieving & Analyzing Results 

When the test is complete, the receiving LFSRs 
should have the predicted pattern in them. If the pat­
tern read from the result register is not as predicted or 
not all of the patterns match, then a fault detection 
occurred. There are several cases that represent the 
possible failure states that result by analysis of result 
registers. We discuss three below. 

Case 1 

All received patterns read as predicted and are 
consistent. 

In this case, the test passed with no faults 
detected. For the most comprehensive results addi­
tional testing should be done with different coefficient 
register settings and different devices selected as the 
transmission device. This will change the test pattern 
and test view, possibly detecting faults that were unde­
tectable with the previous pattern and view. 

Case 2 

All received patterns are the same but are not the 
predicted pattern. 

In this case, a physical fault (a bus open, short, or 
stuck-at fault) detection most likely occurred. Further 
testing requires that the physical faults be corrected. It 
is possible to determine which line is at fault by analyz­
ing the result pattern. Design simulation determines 
what a resulting pattern would be if a single fault was 
in the system. A reference to a table of possible results 
that stem from a single fault in the system identifies 
single faults. The complexity of this analysis grows 
exponentially when there are multiple faults in the sys­
tem. 

Case 3 

The received patterns are different from the pre­
dicted ones. 

In this case, there is the possibility of several 
faults. One possibility is an open, short, or stuck-at 
fault in addition to some transmission line effect prob­
lem. The best approach for this case is to reduce the 
clock speed and re-run the test. If an open, short, or 
stuck-at fault detection occurred, after correction of the 
fault, re-run the low-speed test to verify correct connec­
tions. Then the high-speed clock testing determines if a 
transmission line effect or some other high-speed prob­
lem exists. 

If the low-speed tests reveal no problems and the 
results start to detect faults as the clock speed 
increases, then the most likely problem is a transmis­
sion line effect or EMI problem. Analysis of these 
results with a good set of board design analysis tools 
and/or a high quality network analyzer or time domain 
reflectometer allows the engineer to narrow the set of 
possible problems. With these tools the engineer can 
begin to trace a problem to the layout error or eliminate 
the possibility of transmission line effect and focus on 
the EMI issue. Testing in an EMI-shielded room verifies 
the presence of an EMI related issue. Careful testing to 
assure that the monitoring and testing equipment is 
not the source of EMI is important in this case. 

Unfortunately, to correct a transmission line effect 
problem due to a layout error, the engineer will proba­
bly need to spin a new board. However, the data that 
results from the testing outlined in this paper will allow 
the engineer to re-design a board with a higher level of 
confidence in the new revision. 

Regardless of the results, the engineer has the abil­
ity within this architecture to change the device on the 
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bus that is acting as the transmitter of test patterns, 
changing the test view. When the test view changes, 
and tests are re-run with these new settings, additional 
data results. This information is useful for determining 
if one of the devices has a driver problem or if the faults 
are consistent. which points to a hard bus fault or 
transmission problem. 

APPLICATIONS 

This section outlines some generalized applica­
tions of this technology. Additional applications are 
possible; the following examples are not intended to be 
exhaustive. 

Adverse Condition Operation Testing 

If a device design specifies a tolerance for a specific 
EMI level, the methods outlined in this paper allow a 
test engineer to verify functionality of the design in the 
presence of that EMI, the. The engineer verifies design 
tolerance by subjecting the design to an EMI source 
with the specified output level and running the tests 
under otherwise normal conditions. 

Figure 5 shows interference energy directed at a 
unit under test. This energy takes many forms: heat, 
radiation, EMI, vibration, and or mechanical stress. 

Figure 5: Adverse Environment Testing 
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In a computer or other system that has a high reli­
ability requirement and where undetected faults can 
linger for long periods of time before producing an 
error, a method of on-line system diagnostics is needed 
to periodically test the system. The method outlined 
here can be adapted to run tests on a system bus in 
real time during either an assigned test bus phase or 
idle data phases. 

Figure 6 shows a possible distribution of test and 
data phases on a bus. These test phases take one or 

more forms: 

1. Set number of bus clocks once a test phase is 
initiated. 

2. Test phase automatically initiates when bus is 
idle. 

3. Testing is done when a test task of low system 
priority is run. 

4. Testing is done when a test task of low to 
medium priority (for systems with high reliabil­
ity requirements) is run. 

5. A complete test is done over several test phases 
to limit the impact of testing. 

Figure 6: On-Line Real-Time Testing 
Bus Phases over Time 
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Specific Bus Application 

In some modern computer buses the designers 
allowed for the addition of test interfaces in the specifi­
cation. The PCI specification set aside five traces on the 
bus dedicated for the use of some testing mechanism. 
If these bus signals implement the JTAG protocol with 
a JTAG scan controller device on the mother board, 
then the methodology described in this paper can be 
used to implement testing of that bus. If each PCI 
device implements the test logic described here, then 
real-time bus testing during idle or dedicated testing 
phases generates on-line diagnostics information for 
fault analysis. If a computer board is thought to be 
faulty, then this same methodology generates test pat­
terns and locates faults via a JTAG-aware board tester 
quickly and efficiently. 
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Figure 7: PCI Application Example 
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As shown in Figure 7, this testing methodology fits 
nicely into the standard PCI bus configuration, assum­
ing the implementation of JTAG in the dedicated testing 
signals of the PCI bus. ·Incorporation of the test logic 
into both PCI card interface ICs and stand-alone PCI 
aware ICs and the addition of dedicated testing phases 
allows the test engineer to fully test a design quickly 
and accurately. The addition of logic to allow automatic 
or semi-aµtomatic testing during bus idle time provides 
for a more reliable system. 

CONCLUSIONS 

This paper has demonstrated that it is possible to 
have on-device test logic that can generate meaningful 
test results of high-speed buses without unwanted 
tester loading. We have shown that this test logic can 
have multiple uses within the device by generating test 
patterns for· not only a bus but also internal logic 
blocks. In addition, we have shown that this test logic 
is accessible by existing and standard methods via the 
JTAG protocol. 

Application examples are provided to allow a poten­
tial user of this technology to design this functionality 
into new devices, providing their customers with a 
more reliable platform. Implementation of this technol­
ogy also allows problems to be found more quickly with 
a high degree of accuracy for products with quick time­
to-market requirements. 

There are, as with any new design concept or idea, 
advantages and disadvantages: 

Advantages: 

1. LFSR can be used for other tests. 
2. Nearly eliminates the need for test devices that 

load circuit, possibly past the point of normal 
operation. 

3. Accessible via a standard JTAG protocol. 
4. Testing from multiple "views" of the system. 

Disadvantages 

1. Requires additional logic to generate and 
receive the test patterns. 

Further Research 

There are areas that require more research and 
study for this technology. They are listed below: 

1. Possible test results from common failure 
modes in a general or typical application. A set 
of failure modes exists that produces a com­
mon and generic result pattern for a given set 

of design configurations. 
2. Set of LFSR characterization equations that 

produce the most comprehensive fault cover­
age in a given set of design configurations. 

3. The possibility of testing in the absence of a 
common clock or on asynchronous buses. 

4. The impact and or gain of on-line testing in 
real-time high-reliability systems using this 
methodology. 
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ABSTRACT 

PCI (Peripheral Component Interconnect) 
bus enables performance and functionality 
improvement and cost reduction for computer 
adapters and embedded systems. Along with 
these advantages, however, comes increased 
interface logic complexity and gate count. 

This paper describes several alternative 
architectures for PCI adapters and embedded 
systems and discusses their cost and 
performance tradeoffs. The paper explains 
methods for implementing these designs easily 
and inexpensively, focusing on the higher 
performance adapters and embedded systems. 

In designing PCI adapters, engineers have a 
range of cost and performance alternatives 
ranging from simple slaves to intelligent 
masters with 32 bit RISC processors. In 
general, intelligent adapters perform their 
function (e.g. disk control, communications) 
faster and with less host CPU intervention than 
non-intelligent bus master or slave adapters. 

By incorporating PCI as a "backplane" or I/O 
bus, embedded systems also benefit, and not 
just from PCI's high bandwidth. They also 
realize all the advantages of using a high­
volume PC-standard architecture: wide 
availability of low-cost I/O silicon, a proven 
standard architecture and compatibility with 
other manufacturers' hardware. 

PLX Technology's family of four PCI interface 
chips implements a broad range of adapter and 
embedded system architectures compactly and 
inexpensively. The design examples in this 
paper use PLX chips to implement high 
performance features. 
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PCI ADAPTER DESIGN ALTERNATIVES 

Two major alternatives for building a PCI 
adapter function are to use one of the many 
single chip PCI controllers available or to design 
a special adapter to meet specific performance 
and functionality requirements. There are 
many single chip PCI controllers available 
including graphics, SCSI, LAN and IDE. 
Clearly, if a single chip controller is available 
that meets the adapter's performance and 
functionality requirement, this is likely to be the 
lowest cost and easiest to implement solution. 

For many applications, however, single chip 
PCI I/O controllers are not adequate. 
Intelligence, often in the form of an on-board 32 
bit RISC processor, is required to meet the 
performance requirements. In some cases, the 
right single chip solution is simply not available. 
In these cases, the designer can choose from a 
variety of adapter architectures. 

Intelligent Adapters 

"Intelligent" adapters contain an on-board 
processor. The following example shows a 
multi-port communication adapter. XPoint 
Technologies, Inc. builds a family of such 
adapters. The communication chips could be 
10 or 100 Megabit Ethernet, Token Ring, ATM, 
Fiber Channel or any other communications 
protocol. The processor in this example is an 
Intel 80960CA 32 bit RISC CPU. Also included 
are an on-board memory for data and 
instruction storage and a boot FLASH or ROM. 
The final piece is a chip, in this case PLX 
Technology's PCI 9060, to connect the adapter 
subsystem to the PCI bus. 



Multi-port Intelligent 
Communication Adapter 

Performance Advantages of Intelligent 
Adapters The major role of this adapter is to be 
a switching hub and router installed in a file 
server. This board has several cost and 
performance advantages over a stand-alone 
switching hub/router. The adapter form factor 
is less expensive than a stand-alone box. 
Furthermore, the adapter accesses the server 
through the high speed (132 Megabytes/sec) 
and low latency PCI bus, as opposed to the 
stand-alone hub/router, which must access the 
server through a lower speed network link. 

In this example, the on-board processor 
directs the traffic of the data packets in and out 
of the communication ports, the on-board 
memory and the PCI bus. This system could 
conceivably be implemented by installing four 
single chip communication adapters into a PCI 
file server, using the host PC's CPU to control 
the packet flow, but the performance would be 
far inferior to the intelligent adapter for several 
reasons. 

First, the intelligent adapter's RISC CPU and 
its associate optimized code processes the 
packets faster than the host system CPU (e.g. 
486, Pentium, Alpha or PowerPC). Second, 
processing the packets by transferring in and 
out of host system memory is extremely slow 
compared to transferring in an out of the 
intelligent adapter's on-board memory. Finally, 
a major benefit of an intelligent adapter is that it 
off-loads the host CPU from performing network 
processing functions, allowing the host CPU to 
concentrate on its file server duties, thereby 
increasing total system performance. 

Other Intelligent Adapters Other 
applications benefit from an intelligent 
architecture for the same basic reasons; 
improved performance, improved functionality 
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and reduced host CPU utilization. The diagram 
below illustrates an intelligent RAID controller. 
In this implementation, the SCSI controllers 
actually reside on a secondary PC! bus. The 
80960 processor has its own private bus and 
memory connected to the secondary PCI bus 
through a PCI 9060 chip. 
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RAID Controller Adapter 

PCI 9060 interface chip PLX Technology's 
PCI 9060 chip contains all the logic required to 
connect the PCI to a high performance adapter 
local bus. On the PCI bus side, the chip drives 
all the required PCI signals. On the local bus 
side, the chip provides a glue-less connection to 
Intel's 80960 processor family. Mode pins 
select one of three local bus configurations: 

C/H mode 

J/K mode 

S mode 

32 bit address/32 bit data 
non-multiplexed 
32 bit address/32 bit data 
multiplexed 
32 bit address/ 16 bit data 
multiplexed 

The PCI 9060 can connect to virtually any local 
bus that matches one of the above 
configurations. 



PCI 9060 bus interface chip 

PCI 9060 Registers In addition to the 
register set required by the PCI specification, 
the PCI 9060 contains registers for 
programming the chip's slave, direct master 
and DMA data transfer modes. Eight 32-bit 
mailbox registers can be accessed from either 
the local or PCI bus for message passing. The 
two doorbell registers generate an interrupt to 
either the PCI or local bus when written to. 
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Data Transfer Modes In addition to message 
passing through the mailboxes, the PCI 9060 
supports three data transfer modes, direct 
slave, direct master and DMA. 
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Direct Slave Transfer 

Direct Slave Transfer During configuration 
after reset or power up, the local configuration 
registers are programmed to provide correct 
address mapping between the PCI and the 
adapter local bus. These registers may be 
loaded from the local bus by the local processor, 
from the serial EEPROM or from the PCI bus. 

When the master on the PCI bus provides an 
address intended for the adapter's local bus, the 
PCI 9060 arbitrates for the local bus and 
completes the data transfer. 

The bi-directional FIFO in the chip allows 
efficient burst transfers between the local bus 
and the PCI bus, even when the two buses 
operate asynchronously. 

In the intelligent adapter application, this 
mode is typically used to down-load instruction 
code from the host to the adapter's instruction 
memory. However, it may also be used to 
transfer data. The XPoint adapter employs their 
peer to peer software utility called "BusBIOS" 
that allows it to transfer data directly to and 
from other adapters in the system, without 
passing through the system host. Therefore, 
when the XPoint adapter is the target of another 
XPoint master adapter, it utilizes the direct 
slave mode for data transfer. 

Direct Master Transfer In this mode, the 
processor or any other master on the local bus 
(e.g. intelligent I/O controller) may become a 
master· on the PCI bus. In an intelligent adapter 
application this direct transfer mode is often 



used to allow I/O controllers to transfer data 
directly to and from host memory, instead of 
taking a less efficient route through the 
adapter's memory. Direct master mode is also 
used by the adapter's processor to fetch 
instructions directly from host memory or to 
configure other devices on the PCI bus. 
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In a similar manner to the slave transfer, 
local configuration registers are programmed to 
provide correct address mapping between the 
PCI and the adapter local bus. These registers 
are loaded during initialization from the local 
bus, from the serial EEPROM or from the PCI 
bus. 

In direct master mode the PCI 9060 can also 
execute I/O and configuration cycles, which 
allows the chip to configure other devices on the 
PCI bus. 

When the local processor or I/O controller 
presents an address that maps to a PCI bus 
address (i.e. is not intended for the local bus), 
the PCI 9060 automatically arbitrates for the 
PCI bus and executes the data transfer. 

The bi-directional FIFO in the chip allows 
zero wait-state burst transfers between the local 
bus and the PCI bus, even when the two buses 
operate asynchronously. 
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DMA Transfers The PCI 9060's two channel 
DMA controller provides the fastest and most 
efficient means of moving data between the 
adapter memory and host memory. In a typical 
intelligent adapter, this is the primary means 
for moving data. The PCI 9060 supports both 
chaining and non-chaining DMA transfers. A 
chaining DMA transfer is shown in the following 
diagram. 
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Chaining DMA Transfer 

To perform a chaining DMA transfer, the 
local processor programs the transfer 
parameters into the adapter local memory. 
These parameters include the PCI address and 
the corresponding local address, the transfer 
size in bytes and the descriptor pointers. The 
descriptor pointers tell the 9060 where to find 
the next group of transfer parameters in the 
chain. The local processor also loads the first 
descriptor pointer into the 9060 DMA registers 
and then initiates the transfer by setting the 
enable and go bits in the command/ status 
register. 

The 9060 then automatically completes the 
data transfer, including arbitrating for both the 
PCI and the local bus, moving the data through 
the FIFO, loading in the transfer parameters for 
each block and terminating the transfer. After 
the transfer is complete, the 9060 sends an 
interrupt to the local processor. 

The advantage of chaining DMA is that it 
allows complex memory transfers to occur 
without requiring intervention by the local 
processor. This frees the local processor to 
complete other tasks. 



PLX also supplies a low cost, reduced feature 
version of the PCI 9060 called the PCI 9060SD. 
This chip is similar to the PCI 9060 except it 
has no direct master interface and just a single 
channel DMA controller. 

Direct Master Adapters 

In the direct master adapter architecture, 
the I/O controller contains its own DMA 
controller and is therefore capable of 
transferring data directly to and from host 
system memory. Examples of such controllers 
include Intel's 82596CA Ethernet controller, 
National's MACSI FDDI controller, LSI Logic's 
ATMizer ATM controller. 
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Typical Direct Master Adapter 

PCI 9060ES and PCI 9036 interface chips 
PLX offers two alternatives for implementing 
direct master adapters. The PCI 9060ES is 
identical to the PCI 9060, except it has no DMA 
controller. The chip transfers data primarily 
through the direct transfer mode described 
above. The PCI 9060ES is the best choice in 
cases where the local bus is asynchronous to 
the PCI bus. Because of its highly flexible slave 
interface (same as PCI 9060), the PCI 9060ES is 
also ideal for direct master adapters with 
memories that need to be accessed from the 
host. 

The PCI 9036 is designed for direct master 
adapters in which the local bus is synchronous 
to PCI (i.e. can run at 33 MHz). 
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Slave Adapters 

The typical slave adapter has a memory that 
connects to a simple I/O controller. The host 
accesses the memory as a PCI target. In a slave 
application either the low cost PCI 9060ES or 
PCI 9060SD may be used. They contain the 
same slave interface as the PCI 9060. 
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HARNESS THE POWER OF PCI FOR 
EMBEDDED SYSTEMS 

The PCI bus offers many advantages to 
hubs, routers, printer engines and other 
embedded systems that require a high-speed, 
low latency backplane. With data rates of up to 
264 Megabytes per second, PCI gives embedded 
system designers the bandwidth previously 
provided only by proprietary architectures. 

With PCI as a backplane, embedded systems 
gain all the benefits of using a high-volume PC­
standard architecture: wide availability of low­
cost 1/0 silicon (e.g. LAN, SCSI and graphics 
controllers), a proven standard architecture and 
compatibility with other manufacturer's 
hardware. 

Embedded System Architecture 

High performance embedded systems 
typically must transfer large amounts of data 
between I/O ports. In a switching hub, for 
example, the system performance depends on 
how fast the hub can move data between the 
LAN segments and how much traffic it can 
handle without saturating. High data transfer 
rates and low latencies are critical requirements 



that, until now, only proprietary buses could 
provide. Standard personal computer buses 
such as ISA(AT), Micro Channel and EISA could 
not meet these requirements. 

PCI and Embedded Systems 

PCI was designed specifically to improve 
bandwidth and latency in computer systems. 
However, the data transfer and latency benefits 
of PCI apply equally to embedded applications. 
Current versions of PCI support data transfer 
rates ranging from 132 to 264 Megabytes per 
second, comparable to or faster than 
proprietary buses in today's embedded systems. 
Furthermore, with PCI, latencies are fully under 
the control of the system designer and can be 
tuned to less than a few microseconds 
compared to tens or hundreds of microseconds 
for previous standard PC buses. Low latencies 
are critical for real-time processing, graphics 
and networking. 

PCI Component Cost and Availability 

Most suppliers of high volume I/O and 
graphics chips now offer a PCI interface in their 
components. Already, there is a wide 
availability of low-cost, high performance PCI 
I/O chips 

PCI 9060ES Connects PCI to the Embedded 
System Controller 

Until recently, the main challenge of 
implementing a PCI bus in an embedded 
system has been the lack of PCI controller 
silicon. There is a wide selection of silicon for 
Intel 486™ and Pentium™ processor-based PCs, 
but none for the unique requirements of RISC 
processor-based embedded systems. 

The PCI 9060ES contains the logic required 
to generate and control a PCI bus in an 
embedded system. The PCI 9060ES is identical 
to the previously described PCI 9060, except it 
has no DMA controller. The following diagram 
illustrates a typical embedded system 
architecture: 
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Typical embedded system architecture 

In this example, one of Intel's 80960 
processors is the engine of the embedded 
system. The PCI 9060ES provides a glue-less 
connection to all members of the 80960 family 
including the Hand C series (32 bit address/32 
bit data non-multiplexed bus), the J and K 
series (32 bit address/32 bit data multiplexed 
bus) and the S series (32 bit address/ 16 bit 
data multiplexed bus). The PCI 9060ES may 
also be used with other similar processors. 

The PCI 9060ES generates the PCI bus 
under the control of the processor. During 
initialization, the PCI 9060ES configures all the 
devices on the PCI bus from information in the 
boot FLASH or ROM which resides on the local 
bus. Configuration information includes the 
base address of the PCI devices, value of latency 
timers and other critical information. 

The PCI 9060ES supports three data 
transfer modes between the PCI bus and local 
bus, where the processor and embedded system 
memory reside. 

Direct Master Mode In direct master mode, 
the processor or other bus master device on the 
local bus, becomes a bus master on the PCI 
bus. Configuration registers in the PCI 9060ES 
map local bus address space to PCI address 
space. When the PCI 9060ES decodes that a 
local bus master is trying to access the PCI bus, 
it translates that local bus request into a PCI 
bus request and manages the data transfer 
between the local bus master and the selected 
PCI bus slave device. This is described in more 



detail earlier in the paper in the PCI 9060 
description. 

Typically in an embedded system, this direct 
master mode is used by the processor to 
configure the PCI and run-time registers of the 
PCI devices. FIFOs within the PCI 9060ES 
buffer the local and PCI bus, allowing them to 
run asynchronously. 

Direct Slave Mode Most data transfer 
transactions occur when the PCI I/ 0 device is 
the master and the embedded system memory 
is the slave. The reason for this is that most 
PCI I/O devices are designed to transfer data at 
high speed as masters. Typically they only act 
as slaves to accept configuration information. 
To accommodate this type of data transfer, the 
PCI 9060ES supports direct slave transfers, in 
which one of the PCI I/ 0 devices is the master 
and the local bus device (usually embedded 
system rnemo1y) is the slave. Configuration 
registers in the PCI 9060ES map the PCI 
address space to the local address space. Deep 
FIFOs in the slave transfer path ensure efficient 
burst data transfers. (see PCI 9060 description 
earlier in the document) 

If the local bus runs at 33 MHz and contains 
a zero-wait state system memory, the average 
data transfer rate is close to the theoretical 
maximum of the PCI bus. Of course if the local 
bus and memory subsystem are slower than the 
PC! bus, the embedded system performance will 
be determined by local bus performance. 

Mailbox Registers As a third means of 
moving data, the PCI 9060ES also contains four 
32 bit mailbox registers that can be accessed by 
both the PCI and local bus. If the PCI I/O 
device can support it, this is a means for 
message passmg. 

DMA Support As mentioned above, 
embedded systems typically do not require DMA 
support in the interface chip because most PCI 
devices are bus masters with built-in DMA 
controllers. However, some embedded systems 
have slave devices, such as memory, on the PCI 
bus. In these cases, the designer may elect to 
use the PCI 9060 chip instead of the PCI 
9060ES. The PCI 9060 contains all the features 
of the PCI 9060ES. However, in addition, it 
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contains a two channel chaining DMA 
controllers, programmed by the processor, 
which can transfer data at high speed between 
the slave PC! device and a slave on the local 
bus. 

Arbitration and Interrupts The embedded 
system also requires a PCI bus arbiter. The 
design of the arbiter is application specific and 
not rigidly defined by the PCI spec. A simple 
arbiter may be implemented in a low cost PAL. 

If there is more than one local bus master 
(i.e. a master besides the processor) on the local 
bus, the local bus will also require an arbiter 
circuit. 

The PC! 9060ES contains a PCI to local bus 
doorbell register and a local bus to PCI doorbell 
register. When written to these registers assert 
an interrupt to the local bus or PC! bus 
respectively. Alternatively, the embedded 
system designer may choose to direct the 
interrupts from the PC! 1/0 devices through an 
OR gate directly to the processor. 

The PCI 9000 series chips simplify the task of 
designing high-performance features into PCI 
adapters and embedded systems. The chips 
automatically handle complex data transfer 
functions in hardware, thereby freeing the 
designer from having to create these functions 
and minimizing host or local CPU intervention. 

Product and Company names are 
trademarks/registered trademarks of their 
respective holders. 
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ABSTRACT 

With the addition of new users each day to the 
corporate networks, and the diverse range of 
applications run from the desktop PC environment, 
the capacity of existing LAN networks cannot handle 
the volumes of data, forcing the need for higher 
speed networks. As a result, there are a number of 
proposed high speed LAN technologies to meet this 
need. One such proposal is Fast Ethernet or 
JOOBase-T, which is an extension of JOBase-T 
1 OMbps Ethernet. The development of the PC/ Local 
Bus architecture with its l 32MB per second transfer 
rate, makes it an ideal plaiform on which to design a 
Fast Ethernet LAN adapter. This paper describes the 
design of such an adapter and discusses the 
requirements of FIFO size and PC/ bus latency. A 

There are several l OOMbps options which may be 
considered as a solution to those users seeking higher 
bandwidth on their network. FDDI, TCNS, Fast 
Ethernet and lOOVG-AnyLAN. Fiber Distributed 
Data Interface was introduced about six years ago 
and is a well proven standard usually deployed as the 
backbone in the network, usually in the riser of a 
building interconnecting servers or routers, or 
between buildings separated by a highway, or street. 
It has not been used as a solution to the desktop, 
primarily because of cost, but with the emerging 
l OOMbps network solutions, its cost is expected to 
decrease. 1TCNS is a l OOMbps proprietary protocol 
which runs on coax cable, Category 5 cable, fiber 
optic cable, and STP cable. It has been in production 
for over four years and is based on the Arcnet 
protocol, available in a full range of PC bus 
architectures. lOOVG-AnyLAN is a proposed high 
speed network protocol which uses a demand priority 
media-access method, and features support for 
Ethernet and Token Ring frame formats. The 
l OOBase-T high speed LAN proposal is an extension 
of lOBase-T, with 10 times the performance. This is 
achieved by a reduction in the bit time of each bit 
transmitted by a factor of 10. The packet format, 
packet length and management information remain 
unchanged. Similar to IOBase-T, lOOBase-T is being 
standardized by the IEEE 802.3 committee and is 
based on the CSMA/CD media access protocol. There 
are three media specifications for the I OOBase-T 
standard: l OOBase-TX supports 2 pair Category 5 
UTP cable, and Type l STP cabling. IOOBase-FX 
supports multimode fiber optic cable, and I 00Base­
T4 which supports 4 pair Category 3,4 or 5 cable To 
ensure a smooth and seamless migration from 
lOBase-T to lOOBase-T the Fast Ethernet Alliance 
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brief discussion is also presented on the issues of cost 
savings, and ease of mamifacturing and testability. 

INTRODUCTION 

There are several factors which heralded the 
development of high speed LAN networks. Primarily, 
the widespread use of a distributed client/server 
computing paradigm, the large increase of users on 
LAN networks, and the use of data intensive 
distributed application packages such as Lotus notes, 
graphics and document management application 
software and multimedia platforms. The development 
of new bus architectures, like the PCI Local Bus with 
its high bus bandwidth provides the platform for the 
development of higher speed networks. 

(FEA) was formed by companies supporting the Fast 
Ethernet standard. 

The Fast Ethernet Alliance 

The Fast Ethernet Alliance is a multi-vendor group of 
companies who are committed to providing Fast 
Ethernet products and standard solutions. Their 
efforts are based on open standards, and products 
which are cost effective and interoperable. This 
ensures that the customers benefit from the 
interoperability testing of the hardware and software 
before they these products appear in the market. With 
the PCI compliance Checklist requirement for PCI 
based products, this PCI Fast Ethernet LAN adapter 
has been designed to meet the requirements of the 
Fast Ethernet Alliance interoperability specifications 
and the PCI Compliance Checklist. 

PCIBUSLATENCY 

The design and size of the FIFOs required on a PCI 
LAN adapter and a Fast Ethernet adapter in particular 
is a very complex and arbitrary task. The FIFOs are 
required to allow the adapter to maintain consistent 
data flow during PCI bus latencies when receiving or 
transmitting data through host memory. A primary 
objective is keeping the cost of the adapter to a 
minimum while at the same time optimizing the 
design and size of the FIFOs on the adapter. By 
definition the PCI Local Bus is a low latency, high 
throughput 110 bus. There are several mechanisms 
which predict and control worst case latency. There 
are three basic elements which form the relative 
latency of a PCI resource in order to become a bus 
master. These are the arbitration latency, acquisition 



The arbitration latency is dependent on the 
arbitration algorithm of the host central arbiter, as 
well as the priority of the requesting PCI add-in 
module requesting bus master ownership .. It is also 
dependent on the present bus cycle. The arbitration 
latency is the amount of time it takes the central 
arbiter to assert GNT# in response to a REQ# from a 
PCI device requesting bus ownership. For the highest 
priority device this time will typically be 2 PCI 
clocks and the arbitration algorithm will be platform 
dependent. The primary elements controlling the 
present bus cycle, are the latency timer and 
disconnect termination.. These two PCI specific 
mechanisms are used to control the amount of time a 
bus master can stay on the bus when other requests 
are being asserted by lower priority PCI elements or 
expansion bus (ISA, EISA, MC) devices. 

Each PCI bus master device has a programmable 
master latency timer which is cleared whenever that 
master is not asserting FRAME#. The master latency 
timer is reloaded each time the PCI bus master device 
asserts the FRAME# signal indicating the start of a 
cycle. The master latency timer count each rising 
edge of the PCI clock line during the time FRAME# 
is asserted, and expires within 256 or fewer PCI clock 
line periods. 

The Bus acquisition latency is the amount of time the 
requesting PCI bus master must wait for the for the 
PCI bus to become free, after it receives the GNT# 
signal from the central arbiter. This is due to the 
completion of the present bus cycle by the current 
PCI bus master. The total time delay is between the 
requesting PCI device sampling the GNT# line on the 
next rising edge on the PCI clock line and the target 
PCI device sampling the FRAME# line asserted on 
the rinsing edge of PCI clock. 

Target Latency is the amount of time between the 
target PCI device sampling FRAME# asserted and 
the assertion of TRDY# back to the PCI bus master. 
The total latency therefore is the is the total of the 
arbitration latency, the bus acquisition latency and 
the target latency. This value will vary from one 
system to the next due to the algorithms used on the 
system and the devices used in a particular system. 
This is a major concern for implementors of PCI add­
in modules and in particular PCI LAN adapters. The 
key question is predicting the worst case latency in 
order to determine the amount of FIFOs on the 
adapter to minimize receive overruns and transmit 
underruns. 

FIFO Requirements for the lOOBase-TX Adapter 

There are many factors which influenced the size of 
the receive and transmit FIFOs in the IOOBase-TX 
LAN adapter. If the receive FIFO is too small it can 
result in receive packet overflow, and packet 
fragments are received. It the transmit FIFO is too 
small, it results in transmit underflow during the 
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transmit of maximum sized packets (1500 bytes), and 
a fragment of the packet is transmitted. Therefore in 
the ideal case the FIFOs should be large enough to 
sustain transmit and receive data during the total 
access latency the adapter may encounter during PCI 
Local Bus accesses. The primary system factors 
which influence the sizing of the FIFOs are the PCI 
Local Bus 1/0 characteristics, the DMA arbitration 
state machine within the Fast Ethernet adapter, the 
host cache line width, memory subsystem. The size 
of the packets being transmitted an received are also 
important factor in deciding the size of the on board 
FIFOs. There is some measure of control over the 
transmit but not over the receive path, so the receive 
FIFO is typically larger than the transmit FIFO. 
Through simulation and analysis of large and small 
packets, it was found that for large packets the FIFO 
size required reduces as the packet size increases, but 
increased for smaller packets because of the increased 
overhead. The PCI Local Bus latency protocol 
described above provides for a measure of fairness 
and predictability, but there is no guarantee of a 
particular latency in the worst case. In a system where 
an ISA bus master accesses a PCI resource through a 
PCI/ISA bridge, the protocol of the ISA bus master 
allows it to retain ownership of the ISA bus and 
therefore the PCI bus indefinitely. There is no ISA 
bus master preemption protocol or way for the 
PCI/ISA bridge to terminate an ISA cycle. Similarly 
with an EISA bus the bridge cannot terminate an 
EISA cycle, but it does have a preemption protocol 
which restricts an EISA access cycle to 64 BCLK 
cycles: at 8.33mhz = 7680nsecs. The user or systems 
integrator should be aware of the different adapters in 
the system, when designing the system with a specific 
arbitration and acquisition latency time. 

ADAPTER FEATURES 

The PCI Fast Ethernet adapter features an integrated 
PCI dual protocol Ethernet MAC controller. It 
provides a direct connection to the PCI Local Bus 
interface and provides two ports for I OMbps serial 
port and a media independent interface/symbol 
I OOMbps port. Each of the ports support full duplex 
mode. The PCI controller features two independent 
large FIFOs for receive and transmit packets, without 
additional on board memory required. The PCI 
controller has a powerful DMA controller with 
programmable burst size for low CPU utilization. The 
standard Mii interface is provided for l00Base-T4 
support, the scrambler and the PLS layer are 
integrated into the controller, providing for a more 
integrated and cheap IOOBase-TX solution. The big 
and little endian byte order capability allow the 
adapter to be used in a range of host processor 
platforms. 

Network Interface 

The design uses a PCI controller which implements 
the IOOBase-TX Mii sublayer, the IOOBase-TX 



physical coding sublayer, the lOMbps and lOOMbps 
Ethernet MAC sublayers. The Mii interface supports 
connections to IOOBase-TX. lOObase-FX and 
100Base-T4 physical media specifications. The PCI 
controller supports two different modes to implement 
the physical connection to its Mil/SYM interface. 
The first mode is the FEA compliant Mii interface 
which may be used with the three media 
specifications defined above. The second mode is 
specific to the lOOBase-TX mode. In this mode the 
PCI controller incorporates the PCS and the 
scrambling/descrambling function specified in the 
IEEE standard 802.3. This mode provides for a 
highly integrated, low cost 1 OOBase-TX connection 
using the well defined twisted pair physical medium 
dependent layer specification (f P-PMD). 

MIIJSYM Interface 

A clock generator and symbol device is connected to 
the symbol interface of the PCI controller. It 
implements the Physical layer portion of the TP-PMD 
standard, and is used to recover the receive clock, 
data recovery and NRZI conversion. The interface 
includes the five bits of transmit data and five bit of 
receive data as well as the 25Mhz recovered clock. It 
has a pseudo ECL interface port for an MLT-3 
transceiver. There are three pairs of pseudo ECL lines 
between the clock generator chip ruid the MLT-3 
transceiver: the TX, RX and SD. The transmit data 
lines are differential raised ECL signals and provide 
serial NRZI data at 125mhz to the MLT-3 
transceiver. The receive serial data input pins are 
differential raised ECL signals and receive serial 
NRZI data from the MLT-3 transceiver at 125MHZ. 
The signal detect input signals are differential raised 
ECL signals and come from the MLT-3 transceiver 
indicating the receive serial data is valid. These three 
pairs of signals are very high speed sensitive lines 
and every effort was taken to keep these lines as 
short as possible, with each pair the same length. The 
transmit pair was routed on the opposite side of the 
adapter from the receive pair. Each pair was 
terminated at the receiving end of the lines, with the 
etch netted between corresponding pins of the two 
devices and then to the terminating devices, thereby 
ensuring the terminators were placed last of the etch 
run at the receivers. To avoid bit error sequences 
being transmitted on the network during power up 
and power down cycles, the design includes low 
power protection logic for the clock generator and 
symbol device and the MLT-3 transceiver. When the 
Vee supply voltage crosses a predefined voltage 
level set by a resistive network, the transmit 
differential pair from the clock generator and symbol 
device are deasserted. It also forces the NRZI MLT-3 
state machine to a quiet state. 

100Mbps ML T-3 Transceiver 

The MLT-3 transceiver device is the interface 
between the lOOMbps clock generator and symbol 
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device and the 1 OOMbps port magnetics. It has a 
pseudo ECL interface, which operates at l25mhz, and 
connected to the clock generator and symbol device. 
On the output side the MLT-3 interface connects to 
the magnetics. The design uses filtered power and 
ground for the terminators associated with the 
1 OOMbps differential transmit and receiver pairs. The 
design has minimum length of etch for all signals 
between the MLT-3 transceiver and the magnetics. 
The receive signal pair are routed on a separate layer 
from the transmit signal pair 

10Base-T Network 

The PCI controller provides a standard 7 wire 
lOBase-T port connection to an external endec and 
transceiver device. This is an integrated device and 
requires a minimum set of external components and 
magnetics. It requires an external 20mhz crystal to 
operate the transmit and receive clocks, and generates 
the transmit clock for the PCI controller. It supports 
full duplex mode, external and internal loopback 
modes. A set of general purpose pins is provided on 
the PCI controller that are used to control a variety of 
adapter functions. 

Port LEDs 

The design features a dual color LED to indicate link 
status and port activity. The link status LED is green 
when the link is good and red to indicate that there is 
link present. The port activity LED is amber and 
indicates activity on either the 1 OMbps or l OOMbps 
ports. There are separate port LEDs to indicate which 
of the two ports is selected. 

PCI Configuration Registers 

The PCI Fast Ethernet adapter design supports the 
predefined header portion of the PCI configuration 
space, as well as sixteen internal command and status 
registers for host communication and adapter control. 
The configuration registers are used for identification, 
initialization and configuration of the PCI controller. 
The command and status registers are used for host 
communication, initialization , adapter feature set 
control and status reporting. 

CSR Registers Functions: 

• Serial EEPROM interface control register 

• Frame descriptor control register 

• WatchDog timer function register 

• General purpose port register 

• General purpose timer register 

• Interrupt enable register 

• Status register 

• Transmit frame control register 

• Receive frame control register 



• 
• 

Mode control register 

PHY port control register 

The host communication interface manages the 
descriptor lists and data buffers which reside in host 
memory. The adapter PCI controller and the host 
resident driver communicate through two data 
structures: CSRs and descriptor lists and data buffers. 
The descriptors are the pointers to the receive and 
transmit frames in host memory and may be 
configured in a ring structure or a linked list of 
descriptors. There is a descriptor list for the receive 
frames and one for the transmit frames and each 
descriptor can point to a maximum of two buffers, 
which may not be contiguous in memory. Each buffer 
consists of either an entire frame or part of a frame, 
but does not exceed a single frame. The buffers 
contain only data with buffer status maintained in the 
descriptor. 

Full Duplex Support 

Traditional Ethernet operates in half duplex mode, 
where it can transmit or receive a packet, but not 
transmit and receive simultaneously. The MAC layer 
CSMA/CD protocol on Ethernet adapters regulates 
access to the LAN network by the attached node. By 
ignoring the carrier detect and collision detect 
scheme in the MAC, full duplex mode is possible, 
where simultaneous transmit and receive packets are 
on the network. In order to take advantage of full 
duplex mode, the adapter must be connected to a 
switch and in effect becomes the only node on the 
switched link. Of course the cost of the Ethernet 
switch is more expensive, making the choice of 
where to place the Fast Ethernet adapter in the 
network more critical. The PCI Fast Ethernet adapter 
design features a programmable full duplex mode bit 
that turns off the carrier and collision detect functions 
in the MAC chip. A critical use of this adapter with 
full duplex mode enabled may be in the server to 
switch network, where the servers are required to 
send and receive data simultaneously to clients. This 
feature allows the adapter to operate at 200Mbps 
which doubles the available bandwidth. 

Serial EEPROM 

The PCI Fast Ethernet controller provides a standard 
Microwire interface port for a I 024 bit serial 
EEPROM organized internally as 64 x 16 bits. It is 
used to hold the unique Ethernet address and any 
additional board specific information. This may 
Power Distribution 

With the high speed signals used on the PCI Fast 
Ethernet module, the design and layout of the module 
was an important consideration. To provide a noise 
free module it is necessary to have a noise free power 
distribution network, which includes Vee as well as 
ground. For AC purposes Vee is ground. The power 
distribution network must provide a return path for all 
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include PCI vendor ID, initialization and diagnostic 
routines 

MODULE LAYOUT AND PACKAGING 

The design of the PCB layout for manufacturing, test 
and packaging is equally important when designing 
an adapter module. The cost of the complete LAN 
adapter must be insignificant compared to that of the 
PC host platform, and especially for PC vendors who 
may bundle the LAN adapter as part of the complete 
system. The cost of the raw PWB can be a significant 
factor to the overall cost of the completed adapter 
product. With the architecture of the PCI Local Bus 
interface, the restrictions of one load per interface 
signal, and the tight requirement placed on the etch 
length of the 32 bit address/data bus, the opportunity 
exists for compact module designs. Typically the 
PCB board vendors charge by the panel size, for 
example an 18" by 20" panel is common. By finding 
the optimum length and height of the PCB module 
and maximizing the number of modules per panel, 
there can be a significant saving on the cost of the 
raw PWB module. Given the maximum length of the 
short PCI raw module as 6.875", it is very possible to 
fit a LAN adapter design into a module much shorter 
than this. The height of the module is normally 
dictated by the number and type of media ports, and 
the ever present status LEDs. Another idea for 
smaller adapters is panelization for ease of 
manufacturing. These can be step and repeat in a row, 
or even two up modules in a reversed step and repeat 
format. This process is normally done at the PCB 
design stage prior to sending out the completed 
Gerber files to the PCB board shop. This results in 
groups of modules in a 'panel within a panel' of 
modules. The cost of the raw PCB is also related to 
the number of signal layers on the module. This 
design is a four layer module, but more complex 
multiport designs featuring possibly a PCI to PCI 
bridge will require a six layer module. The stencil is 
made to match placement data for the multimodule 
panel. During the manufacturing phase, the pick and 
place machine works on several modules 
simultaneously. This concept is carried right through 
assembly until the final stage where the brackets are 
placed on the adapters. By having the PCB vendor 
score the multimode panel for individual adapters, a 
simple snap in one or two directions separates the 
modules. The ICT test fixture may be designed to 
accommodate one or multiple adapters modules, and 
the same is true for systems or functional testing. 

signals generated or received on the module. The 
design objective is to deliver exactly +5V to each 
power pin on the module connector, regardless of the 
position of those pins, and the voltage should be free 
of all line noise. In the ideal case this could be 
represented as an ideal voltage source which has zero 
impedance. The zero impedance concept would 
ensure that the load and source voltage would be the 
same and would also mean that the noise signals 



would be absorbed since the noise generators have 
finite impedance. In actuality, a real power source has 
associated impedance in the form of inductance, 
resistance and capacitance, which are distributed 
throughout the power distribution network. Because 
of this impedance, noise signals are added to the 
voltage in the form of ripple or ringing. While these 
cannot be eliminated completely, the design goal of 
the layout and filtering is to reduce these as much as 
possible. The design uses a I OUF capacitor for each 
+5V entry point close to the edge connector. These 
larger capacitors filter out lower frequencies like the 
60 Hz line frequency which are usually generated off 
the module in the system. A O.OIUF capacitor is 
placed across the power/ground pins of every active 
device on the module. In particular cases such as the 
PCI controller, a range of decoupling capacitors were 
distributed across the power and ground pins to 
reduce the effects of the various harmonic ranges. 
The adapter module design operates off the PCI +5V 
rail voltage, although the PCI controller operates on 
the 3.3V rail. This is generated using an on board 
voltage regulator and appropriate filtering. To avoid a 
single source of the regulator, given the demand by 
laptop computers, the design includes a univ~rsal 
regulator footprint to support either fixed or vanable 
regulators from several vendors. A I OUF capacitor 
and a O.OlUF capacitor are placed across the +5V 
input and a 33UF capacitor is connected across the 
3.3V output to stabilize and filter those voltages. 

PCI Compliance Checklist 

The PCI Fast Ethernet adapter has been designed to 
meet the PCI compliance checklist requirements as 
well as the FEA interoperability specifications. By 
using an internal island, the requirements to terminate 
each unused 3.3V pins on the module with O.OIUF 
capacitors, may be used with fewer decoupling 
capacitors. This technique works as long as the 
restrictions on the length of etch from the bus fingers 
to the terminators are met. 

Summary 

The most challenging aspect in designing a high 
speed LAN adapter, particularly for the PCI Local 
Bus is determining the optimum size of the receive 
and transmit FIFOs for the PCI controller to avoid 
receive overflows and transmit underruns. To deliver 
a low cost adapter, requires the PCl/MAC controller 
to integrate as much of the external logic in to the 
device. The development of software drivers which 
are highly optimized for performance are the crucial 
elements in differentiating one high speed LAN 
adapter from the next. 
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will be introduced for the optimum in 
price and performance. 
The first 16.7MB/s PCI-IDE Bus 
Mastering DMA was first demonstrated 
by Symbios Logic. This portion of the 
discussions will focus on a new, dual 
channel PCI-IDE solution offering the 
highest performance for multi-tasking 
OSes. 
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Abstract 
Is there anything more after PC/? Is PC/ all one needs? 

This paper examines what properties are desirable for 
interconnects, determines that something additional is 
needed, and outlines a solution. 

1: Introduction 

PCI is the final ultimate universal standard bus, so fast 
and powerful that it meets every need. 

PCI has been adopted by every significant vendor, after 
careful evaluation by their marketing departments. 

If anyone ever wants more than PCI offers now, there 
will always be a faster PCI or a wider PCI or several PCis. 

There will be bridges from PCI to every previous bus, 
to provide backward compatibility with old equipment. 

What more could one possibly want? 

2: Desires 

What does one want from an interconnect? 
1) Low cost 
2) Speed 
3) Expansion 
4) Multiple processors 
5) Distance 
6) Ease of use 
7) Open standards 

3: Frustrations 

3.1: Low cost 

Low cost requires narrow signal paths and a simple 
protocol so the interface logic and transceivers all fit in 
one corner of an ASIC. Low system cost requires interface 
behavior that is convenient for operating system and appli­
cation software. For example, PCI systems typically need 
several bridges to divide the PCI bus into short sections, to 
keep the loading of each section within specification. 

Because connecting through a bridge takes time and 
introduces deadlock hazards, PCI systems often "post" a 
write, where the written data are accepted by the bridge 
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and the processor goes on without any confirmation that 
the written data actually reached their destination. This is 
often OK in a small reliable system, though it has obvious 
problems if an error should occur. 

More subtle, however, are cases where the order of 
delivery really matters, where one has to ensure that cer­
tain data are really at the destination before some other 
data are read or written. Mechanisms for handling this 
complicate the bridge design and, worst of all, the soft­
ware. Typically one designs the bridge to ensure that read 
transactions never pass write transactions, and then fol­
lows every critical write by a read to ensure that the data 
really have been delivered before proceeding. 

This may be a tolerable expense in hardware and soft­
ware if one understands the problem and designs for it 
from the start. But if these subtle issues are missed, the 
cost is probably a major chip redesign. 

Other subtle problems are caused by the need for 
atomic operations and locks, essential for mutual exclu­
sion and synchronization. If these are not well designed in 
the system architecture, they can be very difficult to han­
dle in systems containing bridged bus segments. 

3.2: Speed 

Bus speeds can only be increased by making them 
shorter or wider. Shorter (in length and/or fewer sockets) 
makes buses less useful, and PCI has already reduced that 
dimension about to the practical limit. 

Wider makes buses more expensive, because more 
transceivers and pins and space and power are needed. 
Worse yet, doubling a bus width does not double its speed, 
because of the inherent overheads of arbitration, connec­
tion, addressing, and disconnection, and because of the 
limitations due to skew. 

Skew refers to some data bits arriving before others 
across the width of the bus. Bus cycles must be long 
enough that the receiver can keep each cycle's bits segre­
gated correctly, unless the protocol supports automatic 
skew compensation, which is expensive and adds its own 
overhead time. The skew problem becomes more severe as 
bus width increases. 



So, hoping for much faster versions of PCI is unrealistic. 

3.3: Expansion 

Expansion capability requires length and more sockets, 
which don't come easily for PCI--expansion requires 
bridges, which are, of course, additional components and 
introduce a variety of problems, some of the hardest of 
which were mentioned above. 

PCI handles modest expansion needs, but greater 
expansion requires an interface to something else. 

3.4: Multiple processors 

Microprocessors have become so inexpensive that we 
often wish to use many of them in one system. Unfortu­
nately, they tend to be independent prima donnas that do 
what they want when they want, and making them cooper­
ate efficiently in a system requires imposing discipline. 

An interconnect for multiprocessor use must support 
mutual exclusion, to force the processors to perform cer­
tain operation sequences one-at-a-time. 

It must also have well-defined atomic behavior, so that 
software can assume certain variables are written all-at­
once, not a few bytes at a time. (It's hard to imagine a 
worse error than reading an address variable, or pointer, 
that is in the process of being updated by another proces­
sor, and getting some of the bits from the new in-progress 
write with the others left over from the previous write!) 

It must provide end-to-end feedback when needed, so 
that the correct sequencing of writes and reads can be 
ensured when necessary. 

3.5: Distance 

Distance is becoming a greater and greater problem. 
This is surprising, since everything in this industry shrinks 
every year as integration technology improves. However, 
systems tend to remain a convenient size for human 
beings-the improved technology is used to get more 
capability into the same space, not to reduce the space 
occupied by keyboards, displays, desks, and offices. 

As technology advances, clock speeds increase but the 
speed of light stays the same. This means that it takes 
more clock cycles each year to access information that 
comes from some distance, whether from the next chip, 
board, box, office, or building. 

All the tricks we know to compensate for distance 
involve caching. I.e., whenever we request information 
from a distance, we request more than we need at the 
moment (a cache line instead of a byte), and we keep a 
copy of this information locally in a cache memory. It is 
more efficient to transfer longer blocks, because the over-
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head costs are spread over more data, and if the same data 
are used again soon (temporal locality) or if nearby data 
are needed (spatial locality), then filling a whole cache line 
is a good investment. 

Smart compilers or smart programmers can often antic­
ipate which data will be needed, and can cause cache lines 
to be prefetched so that the data are in the local cache 
already when they are needed. 

But caching data creates a very serious problem: each 
cached copy is a duplicate; whenever the data are modified 
all the other cached copies become incorrect. The dupli­
cates must either be corrected or discarded, or serious log­
ical inconsistencies will result. This is the cache 
consistency or cache coherence problem. 

It is possible to solve this problem by using software to 
flush the affected cache lines when necessary, but that is 
complex and usually very slow. 

What one really needs is for the interconnect hardware 
to monitor the use of shared data and keep the caches con­
sistent. That isn't hard, if it is designed into the system 
architecture, but it is very hard to add as an afterthought. 

3.6: Ease of use 

Ease of use requires an architecture that provides a sim­
ple clean way to do whatever needs doing, so one doesn't 
have to improvise and kludge and deal with unintended 
consequences for every new project. 

The architecture should provide building blocks that 
are versatile and well-behaved, and it should be scalable 
so that it can be applied to a very wide range of problems. 

The architecture should be free of arbitrary limitations 
like length and loading, and should provide a wide range 
of cost/performance tradeoffs that remain compatible. 

Having a single modular architecture that covers many 
needs results in accumulated expertise and lower design 
costs. These savings can be applied to doing a better job of 
interfacing the product to its end user. 

3. 7: Open standards 

Standard interfaces are the key to competition, leading 
to low cost, a large and stimulating marketplace, innova­
tion, and versatility. 

Open standards are those not dominated by any single 
company, so the user can have confidence that there will 
be real competition among multiple vendors, leading to 
lower prices and a greater variety of products. Vendors 
need to know that no other vendor has any special advan­
tage that may be impossible .to compete against. 

Standards organizations like the IEEE and ANSI in the 
US and the ISO/IEC internationally have evolved over 
many years to meet the need for fair and impartial stan-



dardization, and continue to evolve to keep up with the 
increasing pace of technological evolution. 

Sometimes company-defined standards are declared 
"open" to gain wider acceptance and create a larger mar­
ket, and sometimes these do successfully make the transi­
tion to become truly open standards. 

4: Pleasures 

A good solution to these problems has been developed, 
has completed the standardization process in the US 
(ANSI, IEEE Std 1596-1992[1]) and will soon be pub­
lished as an international standard (ISO/IEC). Initially 
called "SuperBus," reflecting its original goal of being a 
super-fast far-future hyper-Futurebus, it was soon obvious 
that it is fundamentally impossible for any bus to provide 
enough speed over practical distances to support signifi­
cant multiprocessing with today's fast processors. 

The solution was to not use a bus at all, but to provide 
bus-like services by communicating over a potentially 
large set of independent point-to-point links. The name 
then became the "Scalable Coherent Interface," or SCI, 
which unfortunately brings no useful image to mind for 
most people. Recently people have begun to call this sys­
tem the Local Area MultiProcessor, or LAMP, which 
brings to mind LANs, multiprocessors, communication, 
data sharing, and campus-size distances, a more useful 
mental starting point. 

Happily the "far-future" arrived in 1991. Once the tra­
ditional "bus" mindset was overcome, progress was 
extremely rapid. There aren't many solutions to these 
problems that have the right scaling behavior, so most 
decisions were easy. 

Since 1991, work has continued on verification, polish­
ing, prototyping, testing, and extending the SCI standard 
in several directions. 

One of these extensions is software-oriented, to greatly 
simplify sharing data in a heterogeneous multiprocessor. 
ANSI/IEEE Std 1596.5[2] allows the user to describe the 
shared data so precisely that the compiler can automati­
cally convert it for correct calculations, even in systems 
that mix processor word sizes and endianness, as long as 
the interconnect obeys the principle of "address invari­
ance." If the hardware violates address invariance by 
swapping bytes to reformat the data on the fly, the way 
many interfaces used to do, this problem becomes 
extremely complex because the hardware does not have 
enough information to always do this correctly. Software 
then has to undo damage caused by the hardware's clumsy 
attempts, which requires knowing the details of the path 
taken by the data and the settings of the hardware options 
along that path at the time the data were transferred. 

Other extensions (nearly complete) include a new elec­
trical signaling standard for low-voltage differential sig-
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nals (LVDS), P1596.3, and a 500 Mbyte/s memory-I/0-
processor interface (RamLink), Pl596.4. 

Ongoing work includes generating a guide for switch 
and bridge design, P1596.1; optimizations for kiloproces­
sor systems, P1596.2; optimizations for improved Real­
Time schedulability (SCI/RT), P1596.6; and three new 
projects just starting, for standardizing improved cables 
and connectors, fiber-optic parallel ribbons, and a hyper­
fast memory chip interface (about 2-4 Gbyte/s). 

In 1994 IBM demonstrated an SCI link interface chip, 
biCMOS, running 16-bit-wide links at 1 Gbyte/s, and 
implementing automatic signal deskewing. A 125 Mbyte/s 
CMOS interface chip that includes transceivers, protocol 
logic, and .fifos is available from LSI Logic. Convex/HP is 
shipping the SPP-1000 Exemplar, which uses GaAs SCI 
interfaces internally to support 128 PA/RISC processors. 

Many other computer designs based on SCI are under 
way though still unannounced, and several new chips are 
expected shortly. 

The Navy, Marines and Air Force selected SCI as the 
interconnect for their Joint Advanced Strike Technology, 
instead of the 6 different interconnects used in the F-22. 

And best of all, of course, bridges are being built to 
connect PCI and SCI. 

4.1: PCI-SCI bridges 

These bridges make it possible for PCI systems to use 
SCI to escape some of PCI's limits, and they allow SCI 
systems to access PCI devices. 

A bridge to SCI can't solve every problem, of course­
if PCI conceals what is happening in a processor's cache, 
SCI can't keep that cache consistent with others and thus 
software techniques or other workarounds (like never 
caching data from certain address ranges in the processor) 
will have to be used. 

And obviously a bridge can't transfer data faster than 
the PCI bus it is connected to, or solve ordering, atomic, or 
mutual exclusion problems that already exist between the 
processor and the bridge. 

Still, the bridge to SCI will greatly increase the reach 
and the power of many PCI systems. 

5: Mechanics 

So, how does SCI perform these feats?[5,6] 

5.1: Links 

SCI replaces the shared bus with unidirectional point­
to-point links to eliminate the fundamental physics prob­
lems of busing. Narrow links are compatible with integrat­
ing the entire transceiver set and protocol logic and user 
interface on single chips, which in turn reduces skew prob-



lems and greatly lowers costs compared to multichip solu­
tions. Differential electrical signals are used for low noise 
sensitivity, low noise generation, and high speed. Since the 
links are unidirectional, these can easily be converted to 
optical signals for use in fiber ribbons such as Motorola's 
Optobus. The point-to-point links are independent, allow­
ing for concurrent transmission by many processors or I/O 
devices at the same time. 

The protocols are (mostly) self-timing, and are inde­
pendent of cable or fiber length. Of course, increased dis­
tance reduces system performance, but only for those 
transactions that use the long links, and far less than would 
be the case for bus-style protocols. 

For highest performance, these links are connected by a 
switch that routes information from one device (called a 
node in SCI) to another. However, switches are expensive 
so extra features in the link protocol allow nodes to be 
connected in rings by simply daisy-chaining output links 
to input links. That offers very low cost, but reduces per­
formance because links in a ring carry information for 
other nodes as well. Rings are also simple and inexpensive 
for a motherboard or backplane, needing few layers. 

A wide range of cost/performance tradeoffs is possible 
by mixing switches and rings, or by using meshes of 
rings.[4] Low-end systems can start with rings and add 
switches as demands increase. Systems can grow easily 
over time, because there are few constraints on topology 
or distance. 

5.2: Protocols 

To provide bus-like services, SCI protocols send 
request packets and response packets over these links, 
rather like a split-response bus. These packets are smaller 
and simpler than the packets used in LANs, and the proto­
cols are far more efficient than LAN protocols. This is pos­
sible because the entire connected system in SCI shares a 
single flat 64-bit address space, and because the links run 
continuously so that no time is lost for synchronizing the 
receivers at the start of each packet. 

The high-order 16 bits of the 64-bit address are used for 
routing packets, and are placed in the front of each packet. 
Thus the routing information is available in just a few ns 
for efficient use by switches and bridges. Though a switch 
or bridge keeps a copy of each packet temporarily in case 
it must be retransmitted, the packet can be forwarded on 
out the other side without waiting for it to arrive entirely. 
This "cut-through" routing greatly reduces latency. 

When a packet reaches its destination or a buffer in an 
intermediate switch or bridge, it is removed from the ring 
and copied into a buffer. If there is not enough space in the 
buffer, the packet is discarded. In either case, the packet is 
replaced by its "echo" packet, which proceeds on out the 
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outgoing link and returns to the previous sender, who still 
keeps a copy of the packet. The echo either confirms deliv­
ery to the next buffer, so that the saved packet can be dis­
carded to make room for new traffic, or the echo calls for 
the packet to be sent again until it is delivered success­
fully. The echo provides local hop-by-hop flow control 
from bridge to bridge, but not end-to-end confirmation. 

Confirniation of the final delivery of a request to its 
destination, and completion of the requested action, is 
made by a response packet. The response packet is routed 
through a large system hop by hop in the same way as the 
request, though it may follow a different path. 

If the request was a read, the requested data are carried 
by the response. If the request was a write, the data were 
carried in the request and the response merely confirms 
delivery. A processor may choose to continue after a write 
without waiting for confirmation (weak ordering), or it 
may wait (strong ordering). Thus ordering models are 
implemented by the processor's interface to SCI, and by 
its instruction set. SCI does not restrict these choices. 

5.3: Cache coherence 

SCI includes protocols for keeping caches consis­
tent[7]. Since there is potentially a great deal of concur­
rency in an SCI system, it is impossible to use the 
snooping techniques that have become common in bus­
based systems. Snooping effectively requires all transac­
tions to be visible to each cache controller, which severely 
limits performance and also places a high premium on 
making the cache controllers very fast (expensive). 
Bridges that join two snooping systems must fully account 
for the caching on both sides, making them expensive. 

SCI's coherence protocol keeps track of every cached 
duplicate of each cache line in memory, by building a 
linked list of sharing caches. When the data are modified, 
this list is used to locate all the now-incorrect copies and 
delete them from their caches (invalidation). In many 
cases the shared data are no longer being used, so discard­
ing them from a cache improves cache efficiency by mak­
ing room for more-useful data. If a processor is still using 
the data, its next access results in a cache miss and a fresh 
copy is then requested from memory. 

When data are requested from memory, the request 
packet includes the (16-bit) return address for use in rout­
ing the response. The request also specifies whether the 
data might be modified or will be kept read-only. The 
memory controller uses this information to keep track 
whether its own copy of the data is current or not. If its 
data are current, the response carries them to the requester. 
In all cases, the return address from the request is swapped 
with the return address from the previous request, which 
has been saved by the memory controller. This requires 16 



bits plus a few state bits for each 64-byte cache line in 
memory. 

If the response does not include the data, the requester 
uses the pointer to the previous requester, knowing that it 
must get the data there instead of from memory. Thus con­
tention at the memory is avoided-any request visits 
memory only once. 

The previous requester responds once it has the data 
and is ready to share (perhaps has finished modifying it). 
That response also completes a successor link between the 
two nodes, resulting in a doubly linked list of nodes that 
are sharing cached data. Thus SCI cache controllers con­
tain two 16-bit pointers for each cache line in addition to 
the usual tag (the line's memory address) and status bits. 
This way of distributing the cache sharing directory scales 
correctly for all sharing patterns, whether a line is 
unshared or is shared by 64K nodes. It also distributes the 
traffic related to maintaining the directory, so that it does 
not contribute to contention at the memory. 

One node is in a unique position in this list, being dou­
bly linked to its predecessors (if any) but only singly 
linked to its successor (if any). That node is called the 
"head," and is the only node in the system that may mod­
ify the cache line (and then only if it requested its copy 
from memory with permission to modify). Thus there is a 
well-defined order in which nodes get access to a cache 
line, and exactly one node that can modify the data at any 
time. When the head modifies the data, it also follows the 
doubly linked list to its predecessors and notifies each of 
them that their copy is invalid, and removes them from the 
sharing list. The head's processor may wait before con­
tinuing to execute instructions after this write instruction 
until all the invalidations are complete, or not, depending 
on the ordering-consistency model that is being enforced 
by the processor for that write. 

If a node runs out of cache space, as often happens, it 
can free a line by invalidating it (roll-out) and then leaves 
the sharing list by telling its neighbors to point to each 
other. If a node needs to modify data that it was previously 
sharing, it rolls out and requests the data from memory 
again. Sometime later it will become the exclusive head 
and can only then modify the data. Note that the data may 
have been modified by others meanwhile, so it may be 
quite different from the shared copy it had earlier. 

5.4: Forward progress and deadlocks 

The sequence enforced by this process is important for 
guaranteeing forward progress. Forward progress guaran­
tees are critical in multiprocessor systems. Without them, 
it is likely that some processors will become starved and 
make no progress until others are finished, serializing what 
should have been a parallel process. 
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Deadlocks are even worse, bringing progress to a halt 
and wasting resources until someone intervenes. 

SCI has taken great care to avoid deadlock hazards in 
its protocols and to ensure forward progress. For example, 
buffer space for receiving packets in an SCI node is sub­
ject to a simple reservation mechanism that grants imme­
diate access if there is no congestion, but reserves space 
when necessary to prevent starvation. 

An important property of SCI's coherence protocols is 
that all communication is performed using ordinary 
addressed packets. Thus, a bridge or switch does not have 
to know anything about cache coherence, all it has to do is 
look at the packets it sees and route them as usual. 

Furthermore, there is no special premium on making 
cache controllers fast. As long as they do the right thing 
with the packets they receive, and send the right packets 
when they need to, the caches will be kept consistent. Of 
course, no one likes slow devices-but in SCI a slow 
device only affects the parties that use it, while on a bus 
with snooping coherence protocols the system speed is set 
by the slowest cache controller. This is a significant eco­
nomic effect. 

5.5: Locks and mutual exclusion 

It is usual in bus-based systems to seize the bus briefly 
to exclude all other communication, and then perform a 
read-modify-write to implement locks and mutual exclu­
sion. That strategy only works when all information flows 
through one bus, often causes trouble when the system 
includes two-port memories or bridges to other buses 
(even processor-chip buses-<lesigners often forget that 
the processor interface is actually a bridge). 

A high performance scalable system cannot shut down 
the whole communication system to do locks and synchro­
nization, as the resulting performance would be extremely 
poor. Instead, the action of the mechanism must be limited 
to one point, either the processor or the memory controller 
(of course, either of these parties might in a particular case 
actually be an I/O device). 

The cache coherence mechanism can be used to get an 
exclusive modifiable cache line, which can be held briefly 
and updated by read-modify-write techniques before the 
interface allows the successor node to have a copy. 

If the lock variable is not being cached, then the proces­
sor sends an explicit lock command with appropriate data 
in its request. When the memory or I/O controller acts on 
that request, it does whatever is necessary to assure exclu­
sive access (e.g. briefly locking out other ports) while it 
carries out the read-modify-write internally. Then it 
returns the result in a normal response packet. 

Lock packets look like ordinary requests and responses: 
switches and bridges do nothing special for locks. 



The lock commands that are defined in SCI include 
swap, compare&swap, and fetch&add. The first two are 
critically important for allowing multiple processors to 
add items to a linked list while one server is removing 
items. Doing this without using software semaphores is 
important for performance and for reliability. Fetch&add 
is often used for distributing work among multiple proces­
sors and for implementing barrier synchronization to keep 
them working in step. 

5.6: Atomic transactions 

SCI (by referencing a related standard, ANSUIEEE 
1212, Control and Status Register Architecture[3]) defines 
a set of transactions that are to be executed atomically. 

Thus software can rely on reading certain data reliably, 
without any hazard that another processor might be writ­
ing it in sections at the same time. 

6: Conclusions 

Using multiple microprocessors in a system is very 
attractive and important, but requires some forethought to 
be inexpensive and efficient. Hardware and software 
issues must both be considered by the system architect. 

PCI will be a widely available interface, but it was not 
designed to work well in a multiple-processor system. 

SCI has laid the groundwork for the Local Area Multi­
Processor model of computing, which will soon become 
available from multiple vendors. Though LAMP superfi­
cially resembles clusters or Networks of Workstations 
(NOW), LAMP supports true distributed shared memory, 
the most attractive model for multiprocessor software, 
with cache coherence enforced by hardware. 

Message-passing is very fast in such a machine, so pro­
grams written for or already converted to run on today's 
multicomputers will run very efficiently on a LAMP. 

But converting programs from their single-processor 
prototype versions to run efficiently on multiple proces­
sors is far simpler in a LAMP than in a multicomputer that 
only supports message passing, without shared memory. 

First, the original program can run on a single proces­
sor, which may be the workstation where it was developed 
or may be a very fast workstation-like processor inside a 
high performance supercomputer cabinet. 

Next, the program can be recompiled with automatic 
parallelization enabled. With today's compilers, that may 
not do very well, but the technology is improving rapidly 
now that real LAMP machines are available (Convex). 

Then hints and compiler directives can be used to 
improve parallel performance, and gradually parts of the 
program can be rewritten and optimized. 

The great thing about this is that the program can con­
tinue to do useful work throughout the whole conversion 
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process, unlike the conversion to message-passing, which 
requires a major restructuring of the program to get any 
advantage at all from parallelization. 

Networks have new opportunities in a LAMP. First, 
they can continue to use their traditional protocols but use 
the shared memory to move data at very high speeds. This 
approach will remain limited by the overheads of the pro­
tocol software layers, but the backward compatibility will 
be important and valuable to many users. 

Next, they can move to simpler protocols that take full 
advantage of shared memory. Establishing a connection 
involves negotiating memory access rights, after which the 
shared memory reduces protocol overhead to its absolute 
mm1mum. 

LAMP also supports scalable distributed shared 1/0. 
E.g., disk drives attached to one node could be accessed 
directly from any other, with little software intervention. 
Neighboring nodes can pool their drives in disk arrays for 
high performance fault-tolerant parallel 1/0. This is partic­
ularly attractive for high performance database servers. 

SCI was made very simple so that it could run fast, 
using RISC-like principles. Alternatively, that simplicity 
can be used to get low cost, by sacrificing some speed­
one doesn't need SCI's Gbyte/s links to keep up with 
today's PCI interfaces. 
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Abstract 

The latest generation of high-pert'orrnance 
RISC processors on a chip are providing 
phenomenal CPU performance charncteristics. 
Concurrent with these enhancements, users desire 
to be able to economically expand systems, 
incorporating high-performance CPU's, very large 
memory address space, and increased I/O 
bandwidth, while still maintaining existing 
investments in software and training. Translation 
of these perfonnance enhancements into system 
throughput bas typically been constrained by the 
limitations of conventional computer bus 
technologies. 

Peripheral Component Intetface (PCI) is a 
relatively new bus technology standard providing a 
synchronous, processor independent, multiplexed 
32-bit architecture, with extension capability to 
support a 64-bit wide bus. The PCI bus provides 
for bus speeds as high as 33 :rvniz with transfer 
rates as high as l32 MBytes/sec via burst mode. 
This standard provides full multimaster capabiHty, 
hidden central arbitration, concufrency with 
processor memory subsystems, write-back and 
wdte-through cache support, and automatic 
configu.mtion of PCl add-in cards at power-up. 
Most of the tnajor oomputer manufacturers are 
planning to provide at least one PCI expansion slot 
in future product releases. Any PCI-compliant 
peripheral should work with any PCI based system. 

Scalable Coherent Inte1face (SCI), ANSI/lEEE 
standard 1596-1992 is a new technology 
established as an industry standard and defined 
specifically to break the speed and distance 
limitations associated with conventional computer 
bus technology. SCI defines an architecture of 
distrib\lted shared memory with optional caching 
that interfaces .o:tlcroprocessors, workstation 
clusters and large JJO systems. The specification 
uliti:.i:es unidirectional point-to-point links to 
overcome traditional transmission line 

practicalities and offers extremely high 
interconnect performance (up to 1 GByte/sec data 
transfer rates), independent of the use of the shared 
memory features. By definition, SCl technology 
enables scalable architectures with ample .toom for 
next generation systems by specifying up to a 64~ 
bit address and up to 64,000 nodes. 

The discussion overviews general design 
considerations and SCI characteristics and features 
that provide solutions to existlng limitations of 
conventional bus technologies. The area of 
application interest is concerned with PCI 
expansion capabilities implemented via a high· 
pelformance PCI·SCI bridge intenace between the 
SCI and the Peripheral Component Interface. 

FEA'rURES 

Confoi:ms to PCI Local Bus Specification rev. 2.0. 
Supports non-coherent SCI transactions. 
Supports PCI-PCI bridges over SCl. 
Exports configuration cycles. 
Built-in DMA unit. 
Write gather, assemble 64 bytes packages to SCI. 
Read pi:efetch, read whole cache lines from SCI. 
Immediate write transfer acknowledge from. PCUSCI. 
Generates SCI lock types. 
Ae<:epts locks from SCI and generates PCI lock cycle. 
Address translation, 32 bit PCI to full 64 bits SCI. 
Generates non-translated 32 bits address on PCI. 
On-chip Address Translation Cache (ATC). 
Retry on PCI bus on reads to free bus. 
Accepts aU write~sb packets, read_sb, m:ead64. 
Generates write sh and read sb of any size (l-16). 
Suppoi:ts up to i interrupt input lines with 
progrnmroable priodty. 
Built-in arbiter for 8 masLers. 
PCl Configuratlon space available from SCI. 
CSR in conformance to IEEE Std. 1212-1992. 
CSR available from both SCI and PCI. 
JTAG (IEEE Std. 1149. l) implementation. 

150 



...... 
(J1 ...... 

L PCI expansion system 

Host System 
Processor attach or 110 
attach 

Slot Sot I PCI 
1 2 ·SCI 

400 MBytes/s 

Expansion Unit 
Scalable from 1 to 
many 

400 MBytes/s 

·~~~ ~~,,~.~ 
_.I PCI ~ ~ I~ , .,. 400 MBytesls 



PCI Expansion Solution Objectives 

• Improve the typical limited scalability f.-om a maximum of 4 slots per PCI bus. 

• Offer scalability solution providing for mallY PCI buses. 

• Reduce the typical on-board bridgiug constraints of PCI-PCI bridge chips. 

• Provide expallSion flexibility with internal or extemal cabinets. 

• Provide High Interconnect Bandwidth. 
SCI Links from 200 MBytes/sec B-Link 400 MBytes/sec. 

• Provide High Bridge Bandwidth - Throughput up to 80 MBytes/sec. 

• ProYide Low Latencys: Node to Node 0.15µs; Round trip read< Sµs 

• Provide High Scalability - Many host expansion unit connections. 

• Provide transparent read/write PCI register accesses. 

• Provide a transparent bridge, summarized as follows: 

PCI SCI 

• Processor independent .../ "' 
• High Bandwidth, low latency "' 

...J 

• Shared Memory 
"" 

.../ 

• Locking Support ..J -'\/ 

• Scalability Low High 

• Distance Inches Me ten 
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PCl·SCI Bridge 

Typical PCI-PCI bridges are devices that 
make it possible to extend a local PCI bus with 
an a.ddiliona.1 PCI bus on the same circuit board. 
Using PCI·PCI bddges a. mu.ltUevel bus 
hierarchy can be built allowing for more loads 
011 the same bus domain. 

The PCI·SCI Bridge allows having PCI 
devices connected to a host or multiple hosts 
over SCI. Many PCI JJO expansion nodes can be 
tnaintalned and accessed by a host attachment 
connected to SCI, creating the equivalent of peer 
host bridges. The PCl-SCI bridge 
implementation utili:ies two ASIC's, the SCI 
Transport Layer Link Controller ("LC") and the 
PCI Protocol Layer ("PtoB"). The Link 
Couu:ollel' is Dolphin's latest CMOS version of 
the SCI Unk layer. Both the LC and PtoB 
incorporate the 400 MByte/sec B·Link. The B­
Link connects components with an SCI Local 
Bus. The PtoB connects to the PCI bus on one 
side and B-Link device(s) on the other. 

SCI Transport Layer Link Controller ('•LC") 

The Link Controller manages the SCI 
transport layer protocols. The LC has an input 
link, output link and a B-Liuk backside bus 
providing an implementatiot~ of the SCI transfer 
cloud. B-Link. is a multimaster bus wjth support 

PCI Protocol Layer ("PtoB") 

The PCI Protocol Layer is implemented 
in a custom ASIC, incorporating the PCl bus 
interface. a B·Link Interface Unit, and a 
microsequenccr protocol engine. The PCI 
interface is controlled by the bridge using CSR 
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The PCI-SCI brldge will utilize PCI burst 
capability to build SCI packets that eff'ex::tively 
utilizes SCI bandwidth. The protocols include 
hardware support for: busy ret:t:y, guaranteed data 
delivery, error checkiug, flow control and a 
subset of lock transactions is also supported to 
enable hardware locking in a shaJ:ed memm:y 
environment. An event reporting mechanism is 
used to report interrupts. errors and other events 
from the PCI -SCI bridge to the host attachment. 

The PCI interface is PCI 2.0 compliant and 
takes full advantage of the high bandwidth of 
the PCl bus by utilizing burst capability. write 
gathering and prefetching of data. The PCl-SCI 
bddge will genei:ate configuration cycles using 
configuration mechanism #1. Both type O and 
type 1 configuration cycles will be supported to 
allow hierarchial }>Cl bus systems. The PCl-SCI 
bridge supports both memory space and JJO 
space. The use of memory mapped VO is 
controlled by the host attachment node by using 
non-prefetch and non-write-gathered packets. 

for up to 8 devices. Tbe physical SCI interface 
operated at 100 MHz on a 16-bit parallel cable 
providing 1.6 Obits/sec links. 

(IEEE Std 1212-1991) access. The bridge 
includes an intenupt event reporting mechanism 
using standard CSR message or by issuing 
interrupts at the host attachment node. 
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A PCl-SCI bridge for high rate Data Acquisition Architectures at LHC 

H.Moller, A.Bogaerts, C.Fernandes, L.McCulloch, P.Werner 

CERN Division ECP 

CH1211 Geneva 23, Switzerland 

Abstract 
The RD24 project [ Ref.1.] at CERN is constructing a demonstrator 
Data Acquisition System for the Large Hadron Collider (LHC) 
experiments [ Ref.6.] using the Scalable Coherent Interface (SCI 
IEEE Std 1596) [ Ref.8.] as interconnect. A large number of pro­
ducer and consumer nodes may be equipped with PCI [ Ref.5 .] 
extensions and uniformly interconnected via a multi-node SCI sys­
tem. The PCI-SCI bridge described here is an object of research for 
this application and therefore optimized for data movements away 
from the producers. Particularly important is therefore DMA and 
transparent memory access, as well as multi-cpu support. At a con­
sumer side, this bridge should also allow for "dual ported" data 
flow, i.e. incoming and outgoing flow of data though separate PCI 
extensions of the same consumer CPU bus. This paper describes the 
design goals and tools chosen for a first PCI-SCI bridge in a CMC 
formfactor [ Ref.2.] using the PMC physical layers [ Ref.2.]. We 
use a 33 MHz PCI-PCI bridge chip on the PCI side and a 200 
Mbyte/s SCI Link Controller on the SCI side. 

1. Remote PCI local bus access over SCI 
The reason for using SCI for Data Acquisition (DAQ) [ Ref.3.] 

Detector 1 • • • Detector n 

Workstation \.D~~~ ~~aKina 

l!l • 
Event Di11play Mae-Storage 
Initialisation Remote Sites 

Figure 1: Remote PCl-PCI for large DAQ System 

is SCI's capability of providing a very high bandwidth, uniform, 
bus-like interconnection between a large number of front end DAQ 
units ( memories, embedded processors ) and a large RISC proces­
sor farm [Figure 1). The SCI network is implemented as a scalable, 
multistage system, consisting of SCI ringlets and switches. The 
PCI-SCI bridge is intended to equip DAQ units such as VME proc­
essor cards with PCI mezzanine provisions following the CMC and 
PMC proposed standard. Processor farm elements with PCI exten­
sion can be interconnected to the SCI network via the same type of 
PCI-SCI bridge. The c;ommunication between DAQ units and a 

CPU farm can be transparent over distance: remote PCI addresses 
can be mapped into the processor's address space providing trans­
parent read or write operations over SCI. In addition, locked oper­
ations can be implemented at the bridge, allowing to implement 
robust and efficient synchronization over the SCI network without 
the need for additional control networks. 

2. PCl-SCI bridge overview 
The mezzanine card ( CMC formfactor) of this PCI-SCI bridge 
[Figure 2) is targeted for integration in commercial VMEbus 
processor cards which are very popular in High Energy Physics 
DAQ systems. The same bridge logic can however easily be 
rerouted to be used within a PCI extension of a workstation. 
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SCI Network 
Figure 2: CMC Mezzanine card overview 

For compliance with the PCI-PCI Bridge Architecture Specifica­
tion [Ref. 4.) , a standard PCI bridge chip, the DEC21050 [ 
Ref.14.) with pre-defined internal configuration space and config­
urable address windows is used. The hierarchy choice for this 
bridge specification is to allocate the primary PCI bus (needed to 
configure the bridge) on the PCI host side. The SCI node interface 
uses a Link Controller (LC) from Dolphin [ Ref.7.]. This chip 
handles the SCI physical layers and a part of the logical layers of 
SCI. The user side of the LC is BLINK, a 64 bit packet synchro­
nous bus [ Ref.9.]. A fast dual port memory (DPM) is used as data 
transfer buffer between BLINK and PCI. It also serves various 
other purposes, such as address translation and queuing of SCI 
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packets. The PCI-SCI specific bridge functions, such as direct or 
indirect PCI-SCI transactions, or DMA are implemented in an array 
of two ORCA FPGAs from AT&T [ Ref.11.] which integrate each 
15000 usable gates and more than 25000 user RAM bits. 

3. Bridge logical overview 
A variety of Functional Units (FUs) are distributed [Figure 3] over 
an array of two interconnected FPGA chips. FU's are developed as 
re-programmable logic, synthesized from VHDL or directly from a 
schematic capture editor. The scope of all FU's in this bridge is 
limited to interaction with VHDL models of the two buses on the 
bridge's internal periphery: the PCI-32 secondary bus of the 
PCI-PCI bridge chip and the 64 bit BLINK bus at the SCI chip. 

FPGAArray 

fpga 
liue 

ru 
SCI link 

Figure 3: Logical Bridge Functions 

The intermediate Dual Port Memory (DPM) is used by the FU' s for 
various data buffering purposes. In addition, 15K bits of direct 
access storage for CSRs etc. are available within each FPGA. A 
default boot version of basic FUs is loaded at power-up from a 
read-only boot portion of the Flash Eprom. Update versions of FUs 
can consequently be loaded from the PCI host1 into the writable 
portion of the Flash Eprom. A bridge specific CSR register is used 
to update and intitialize the functions. 

3.1 Bridge access features 
PCI memory and I/0 transactions are supported. As part of the 
DECchip functionality, memory transactions can perform read 
ahead and write posting. These features are used to separate the 
cycle-by-cycle handshakes of PCT from the 16 or 64 byte packet 
transactions of SCI. The I/O transactions are reserved for accessing 
the bridge's internal CSRs or single byte/word reads to sensitive 
byte addresses without causing side effects. 

4. Bridge physical overview 
Data and control flow in this bridge architecture [Figure 4] are 
orthogonal: data is transferred vertically between the PCI32 bus 
and the 64 bit BLINK bus across the DPM and the byte crossbar 
(XBAR inside FPGAl). Control information is passed horizontally 
between the FPGA array and the DPM, the Link Chip and the PCI 
bridge chip. 

The Physical Units (PUs) have been minimized to fit on both sides 
of a single-width CMC mezzanine card and allow for a maximum 

l.we use a XMVME-1600 PowerPC card from Motorola 

degree of flexibility and re-programmability. The 32 bit PCI data 
bus is connected to BLINK across the DPM. PCI data are trans­
ferred between 2*32 bit DPM ports on the PCI side and a 64 bit 
wide port to BLINK. Initially, the BLINK clock is 1(2. of the nom­
inal 33 MHz PCI clock. On the BLINK side, the DPM is always 
addressed as a synchronous 64 bit port, providing complete SCI 
packets in the format and timings required by BLINK. On the PCI 
side, a more asynchronous mode via WAIT stated data cycles is 
allowed. The secondary PCI bus and the DPM bus are connected 

Figure 4: Physical Bridge Functions 

via a 4 byte crossbar (XBAR) function for byte reordering. 

4.1 SCI link Chip 
This new Dolphin SCI Link chip L5A4241 [ Ref.7.] comes in a 
208 pin MQUAD package and handles the SCI link level at 200 
Mbyte/s. To the application side it provides the 64 bit BLINK 
interface with big endian byte ordering. The CMOS chip requires 5 
Volts and consumes less than 3 Watts. The LC decouples the SCI 
link domain ( differential PECL ) from the BLINK (1TL) domain, 
allowing for independent clocks. The SCI link protocols and two 
primary packet queues are available together with 9 CSR registers. 
The configuration CSR is loaded at power up via e serial PROM. 
The LC supports multiple outstanding requests and outstanding 
subactions of SCI, which need to be queued via additional DPM 
resident buffers. 

4.2 PCl-PCI bridge chip 
The DECchip 21050 [ Ref.14.)implements 2.0 PCT compliant sig­
nal drivers and works with a clock frequency of up to 33 Mhz. It is 
implemented in a 208 pin PQFP package and consumes roughly 
1.5 Watts. The 21050 provides concurrent primary and secondary 
bus operation for bidirectional transaction forwarding, Le it can act 
both as a target or initiator on both of its sides. Memory transac­
tions can be filtered through two programmable memory address 
regions, one of which is prefetchable making use of an internal 256 
byte cache.The cacheline register allows defining up to 256 bytes 
of cacheline, of which the values 16 or 64 are useful for SCI 
packet generation.Write posting of up to 8 DWORDS is available. 

5. Dual Port Memory 
The central component of the SCI-PCI bridge is the dual-ported 
RAM. It consists of four IDT 7024 chips in TQFP 100 package 
which are organized as 16 * 4K to give a total of 32 Kbyte, 
upgradable via double density IDT 70261 chips. The PCI access to 
the DPM is via the I/O and the non-prefetchable memory space. 
The DPM is partitioned as described in the following sections: 
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5.1 Packet queue buffer 
The implementation of multiple outstanding SCI transactions 
allows to make efficient use of SCI bandwidth. Response latencies 
on PCI can be made use of by queuing request or send packets 
before eventually generating SCI retries. Both outgoing and incom­
ing queues are added to the packet queues built into the LC. 

5.2 DPM transfer buffer 
The asynchronous DPM supports direct data pass-through between 
the asynchronous PCT and synchronous BUNK, if simultaneous 
access to the same address is avoided via an external comparator 
logic. However, since the transfer buffer is seen from the PCI side 
as two subsequent 32 bit words and as one 64 bit word on the 
BLINK side, a maximum speed for such unbuffered transfer is one 
half of the PCI clock on the BLINK side. Whilst 33 MHz operation 
on BLINK with intermediate packet storage is possible, we chose to 
start with a simplified clocking at BUNK at 1/2 of the PCI clock. 

5.3 PCl-SCI address translation lookup table 
The address translation table for transparently mapped SCI 
addresses is part of the DPM and uses 1024 words (32 bit) to look 
up lK SCI node addresses [Figure 5]. The translation is needed to 
extend the 32 bit address space of PCI to a physical 64 bit SCI 
space. 

FCI32 

18 

PCI oubaddre&11 

SCI 64 bit physical address 

Figure 5: Address Translation PCl->SCI 

Ten PCI address bits within the PCT slot range are used as an index 
into the 1024 word deep lookup table of the DPM. Four reserved 
output bits A3:AO are available. Together with the directly con­
nected lower 18 bits of the primary PCI subaddress the 28 bits from 
the address table output are used to form the physical SCI target 
address. The 19 bit wide SCI address field SCI<47:29> is generated 
from the bit AlS from the address translation table. This field dis­
tinguishes between SCI memory and the CSR space, Al4 between 
private and register space. 

5.4 Semaphore space 
In order to provide a uniquely resolvable multi-CPU access to all 
DPM data structures, each 32 bit DPM word has an associated sem­
aphore bit mapped out from the bottom part of the DPM [Figure 6), 
which can be derived using a simple shift arithmetic on the word 
address. This scheme requires a dedication of 1/32 th of the DPM 
for semaphores. 

5.5 Descriptor space 
Descriptors for the DMA engine and for SCI packet mode opera­
tion are stored within the DPM. Special descriptors are the SCI 
transaction identifiers for outstanding requests ( 32 max) which are 
used as pointers to the request and response queue buffers. 

5.6 PCl-SCI Configuration space 
The jumperless standard 256 byte configuration space of the 
PCI-SCI bridge is allocated within the DPM and gets preloaded 
at power up from the Flash Eprom. On the primary PCI side, the 
DECchip has its own configuration space. 

6. Locked operations 
Indivisible operations need to be supported by the bridge in a sim­
ple way to allow both PCI or SCI resident CPUs perform resource 
allocation. This requires implementation of binary semaphores for 

DP storage 

semaphore 
bit area 

semaphore 
32 0 

,I xxxxxxxxxxr . -"'.,,, 
: ···test bit . . . 

Figure 6: Semaphore bit addresses in DPM 

the DPM, generation of SCI lock primitives via the packet mode 
and generation of PC! locks for incoming SCI locked transactions 
to PCI. 

6.1 DPM semaphore space reads and writes 
For resource sharing of the DPM, the access to semaphore space 
of the DPM from both PCI or SCI is converted as follows: A read 
to a semaphore address is converted by the bridge into a read&set 
of the semaphore bit before the external read cycle completes. 
Any write cycle to a semaphore address is converted to clear of 
the semaphore bit. 

6.2 PCI LOCK transactions 
The PCI LOCK protocol is available from SCI to PCI address 
space conditioned by initialisation of PCI memory or I/0 space 
access. Incoming SCI locked transactions are converted to PCI 
locked transactions. The DECchip generates and transmits lock 
requests via its LOCK signals on both its primary and secondary 
buses. Resource locks generated from the PCI host are transmitted 
and possible for the DPM spaces only. 

7. Chain mode OMA 
A DMA engine allows direct memory transfers between PCI and 
SCI memory under control of an external DMA host. The engine 
is controlled via chained, DPM-resident descriptor blocks which 
are treated in sequence. Multiple DMA requests from different 
CPUs are handled via a first-come-first-served access to a DMA 
control register. This CSR stores pointers to the head of a chain 
descriptor like a FiFo. 

7.1 OMA Descriptor Block fields and functions 
Very similar to the DMA descriptor of the Apple SCI transparent 
interface[ Ref.15.] our descriptor block [Figure 7) for one contig­
uous block of data within a DMA chain consists of four consecu­
tive 32 bit words describing both local PCI and remote SCI 
addresses (source and destination). The descriptor can be set by 
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both PCI or SCI. The command field contains a DMA command, 
the IRQ field contains interrupt options and the Xfer field provides 
size and current count of the transfer. The XT bit allows to enlarge 
the size of the descriptor block by a factor of 2 for additional stor­
age of 64 bit PCI addresses. The two ST bits provide status infor­
mation on completion of this descriptor. Descriptors are always 
initialized with ST=lO. On completion of the DMA the upper bit is 
cleared, the other bit serving as an error status. The IRQ field con­
tains four bits for generating interrupts on completion of the DMA 
or on errors. The Xfer field indicates the number of bytes to transfer 
(1 - lMB). A zero in this field indicates a skip to the next descrip­
tor block in memory.This field must always be readable to provide 
status information. The BW field allows to reduce the DMA trans­
fer speed to prevent contention at the receiving node. The 3 bit 
command field initially implements 4 commands: Write, Move, 
Read and STOP. 

I­
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Local PO address (64) (high) 

3 * reseived 
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Figure 7: Chain DMA descriptor block 

8. Transparent PCl·SCI transactions 
PCI address windows of this bridge can be mapped into SCI. Such 
transparent access is the key feature for implementing remote mem­
ory access ( example PCI-SCI-PCI ) or shared memory applica­
tions. In this bridge, the prefetchable memory space is mapped into 
SCI transactions the I/O spare and the non-prefetchable space is 
only used to access the local DPM and CSRs [Figure 8].. 

PCI DECchi 21050 
I/O 
space 

Figure 8: PCI Space to SCI transactions 

8.1 PCI 110 space mapping 
The JJO space is local to the DPM and CSR registers of the bridge. 
It allows access to individual bytes without side effects. 

8.2 Incoming SCI requests 
Requests from SCI are forwarded to PCI if prefetchable memory, 
as defined via the DECchip, is addressed, otherwise these requests 
are refused. The DPM and CSRs of the bridge are accessible 
within the CSR register space of the bridge. 

8.3 Prefetchable memory space mapping 
The DECchip provides the possibility to define prefetchable mem­
ory windows to be transmitted through the bridge. This memory 
space uses a 256 byte cache whose cacheline size can be defined 
via the cacheline register. For transparent SCI read transactions, a 
cacheline of 16 byte can be used to generate the 16 byte rsb trans­
actions, or a cacheline size of 64 byte can be used to generate 64 
byte nread64 transactions. Similarly for PCl->SCI writes, write 
posting is a feature of the DECchip allowing to post up to 8 
DWORDS (32 byte) without need for a response. This feature is 
used to build byte directly mapped SCI write transactions wsb, 
nwrite64 or move64. 

9. Packet mode transactions 
All SCI transactions supported by the LC, in particular SCI locked 
transactions can be implemented as packet mode transactions with 
minimal hardware overhead and more software overhead. In this 
mode, SCI packets are precompiled into packet mode buffers 
which are reserved in the DPM at fixed addresses, each associated 
with a descriptor and an error summary word in the CSR space. 
The procedure to send a packet mode request and eventually read 
the result is as follows: 

Allocate a packet mode buffer in case of multiple processors 
accessing the SCI-PCI bridge from PCI and compile the complete 
packet in the packet mode buffer. Update the descriptor to indicate 
the request sent - no response status. This transaction triggers also 
the transmission of the request packet. Poll on the descriptor and 
upon arrival of the response packet, assert the response (and if 
required the error) bits together with the packet number.Determine 
the address of the response packet using the packet number and 
read out the result, clear the response buffer. 

10. Packet queues 
An SCI node requires four buffer queues: one pair for output 
request and response, and one pair for input request and response. 
The LC has only very limited buffer space, but allows an unlimited 
number of external buffers. For simplicity. we use the SCI transac­
tion ID (which may count up to 64 for uncompleted transactions) 
as pointer to the request-output and response-input queues, how­
ever we only allow up to 16 buffers for both incoming or outgoing 
packets. The 64 buffers of fixed length of 128 bytes require 
roughly 8 Kbyte of the DPM space. 
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10.1 Outgoing queues 
There are three sources for outgoing requests: DMA, transparent 
mode packets and packet mode [Figure 9]. These must be merged 
with the response requests. All packet sources store their requests in 
the output request queue buffers. An arbiter logic requests BLINK 
access according to a desired priority distribution. The same logic 
may be extended to manage packet ordering. 

11. FPGA design environment 
The development of functional units for the ORCA [ Ref.11.)FPGA 
is based on either VHDL using an editor or alternatively schematic 
capture using CADENCE CONCEPT [ Ref.12.]. A VHDL source 
file is compiled and simulated via LEAPFROG [ Ref.12.]. Once 
functionally correct, the VHDL model is passed through the 
EXEMPLAR [ Ref.13.] sythesizer tool to create an output file in 
XNF format. The internal mapping of a target FPGA structure is 
performed via the NEOCAD MAPSH [ Ref.10.] tool. The result is 
passed to the router which generates a database for an interactive 
editor. EPIC. allowing to look at routing and to edit it if necessary. 

Timing details and critical path delays can be optionally specified 
as well as separate nets for slow and fast timings. The TRACE tool 
allows for static timing analysis and it gives information about the 
maximum achieved frequencies and combinatorial delays. 

The routed output is returned to the mapper for back annotation and 
then can be post simulated in CADENCE. 

The design cycle may need reiteration in its source code. Once 
complete, a bitstream for a PROM programmer is generated which 
allows loading a Flash Eprom with the FPGA boot configuration 

11.1 Partitioning into FPGA arrays 
The PRISM tool will be used1 for partitioning the design block into 
two FPGAs. In a first partitioning, a quick fit is created. This is 
edited and the design is repartitioned following a guide file. The 
partitions are re-routed and then analyzed with EPIC. 

12. CSR and Configuration Space 
There are three CSR modules: the PCI configuration space and the 
CSRs within the Link Controller and bridge specific CSRs to be 
implemented in programmable logic. The SCI CSR space is imple­
mented according to the CSR IEEE-1211 architecture. All CSRs of 
the PCI-SCI bridge can be completely configured from PCI alone 
after a reset. The configuration of the PCI-PCI bridge can only be 
performed via the PCI host. Both the CSRs of the Link Controller 
and the bridge specific CSRs can always be accessed via SCI. 
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15. Bibllography 
1. RD24 Collaboration, "RD24 Status Report, Application of 

the Scalable Coherent Interface to Data Acquisition at 
LHC", CERN/DRDC 93-20, 5May1993 

2. Draft Standard for a Common Mezzanine Card Family: 
CMC P1386/Draft 1.6 and 
Draft Standard Physical and Environmental Layers for 
PCI Mezzanine cards: PMC, P1386.1, Draft 1.6 
IEEE Standards Department, 445 Hoes Lane, P.O. Box 1331, 
Piscataway, NJ 08855-1331, USA 

3. H.Muller "Scalable Coherent Interface Applications to 
DAQ", Overview talk at the DAQ Conference Ferrnilab 
Oct.26-28. (ftp rd24.cern.ch sci{Talks+Papers/FNALtalk.ps.) 

4. PCI to PCI Bridge Architecture Specification, Rev 1.0 PC/ 
Speciallnterest Group, P.O. Box 14070, Portland, OR 97214, 
USA 

5. PCI Local Bus Specification, "Review Draft" Revision 2.1 
October 1994, PC/ Special Interest Group, P.O. Box 14070, 
Portland, OR 97214, USA 

6. Information on LHC and: ATLAS,CMS and ALICE 
information and technical proposals are accessible via the 
World WideWeb: http://www.cern.ch/ under "Activities" 

7. Link Controller Target Specification DIS656A, Dolphin 
Interconnect Solutions AS, P.O. Box 52, Bogerud, N-0621 
OSLO, Norway 

8. Scalable Coherent Interface IEEE 1596-1992, Distribution 
and copyright by IEEE, 345 East 47th Street, New York, NY 
10017-2394, USA 

9. Backside Link ( B-Link) for Scalable Coherent Interface 
(SCI) Nodes, Draft 2.3. Dolphin Interconnect Solutions AS, 
P.O. Box 52, Bogerud, N-0621 OSLO, Norway 

10. FPGA Foundry: Device Independent Modular Toolset for 
FPGA Design, NeoCAD Inc. 2585 Central Avenue, Boulder, 
co 80301 

11. Optimized Reconfigurable Cell Array ( ORCA), iJ&T 
Microelectronics, Dept-500404200, 555 Union Blvd, Allen­
town, PA 18103, USA 

12. CONCEPT, LEAPFROG are tradenames of: Cadence 
Design Systems, Inc. 2 Lowell Research Center Drive, Lowell, 
MA 01852-4995 

13. EXEMPLAR is a tradename of Exemplar Logic, Inc. 2550 
Ninth Street, Suite 102, Berkeley, CA 94710, USA 

14. DECchip 21050 PCI-to-PCI Bridge, Digital Equipment 
Corporation, Maynard Massachusetts, USA 

15. Implementation Issues of Bridging SCI to a conventional 
Processor Bus, G.Stone & D.North of Apple Computer ATG 
in: Proceeding of The First international Workshop on 
SCI-based High Performance and Low-Cost Computing, 
August 17-18, 1994 St.Clara University 

160 



ACCESS.bus™: The Missing Communications Link 
For Easy, Inexpensive Connectivity 

Between the Host System and Computer Peripheral Devices 

by Richard J. Fisher, Applications Manager 
Microchip Technology Inc. 

2355 W. Chandler Blvd. 
Chandler, AZ 85224 

Ph. (602) 786-7200 Fax (602) 917-4005 

The ACCESS.bus™ is the new 
standard for device communication and 
connectivity developed by Digital 
Equipment Corp. and Philips 
Semiconductor. These two companies 
released this technology publicly in 
order to make it an industry standard. 
More than 100 industry leaders, 
including Philips, NEC, Fujitsu and 
Microchip, created the ACCESS.bus 
Industry Group (ABIG) to support the 
implementation of this standard. 

ACCESS.bus provides for the 
first time a two-way communications 
channel through which both external 
peripherals and other "intelligent 
devices," such as the video board, power 
supply and power management devices 
(System Management Bus), can 
exchange data with the host system. 
This feature enables end-users to control 
peripheral and device attributes, like 
monitor resolution, mouse sensitivity 
and power management modes, through 
a single easy-to-use software interface. 

The new specification also 
allows up to 125 peripherals and input 
devices, such as monitors, keyboards, 
mice, bar code scanners, etc., to be 
connected to any type of system through 
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a single port at any time, in any order-­
without the need to exit applications and 
reboot the system. This makes 
peripheral connection easy. No longer 
will users have to figure out which cable 
goes into what slot in the back of the 
computer--or how to hide the ubiquitous 
wire maze. Just plug in a device and it 
will work. 

The industry standard I2C™ 
(Inter Integrated Circuit) protocol is used 
for all messaging. In short, 
ACCESS.bus is relatively simple to 
implement physically, and thanks to r2c, 
can be used with hundreds of available 
microcontrollers, memory and other 
components. This translates into low 
cost and therefore potential widespread 
usage. 

As intelligent devices are also 
sharing the same system interface, 
system management functions and 
peripheral communications can be 
performed effectively with fewer 
interrupt lines and input/output 
addresses. Further, since a large number 
of system tasks are delegated to the 
"intelligent" devices, the CPU is 
interrupted less often and can therefore 
get more important tasks, like running 



applications, completed more quickly 
and efficiently. The new bus utilizes 
relatively inexpensive silicon compared 
with what is needed by, for example, 
high-speed devices, and fewer 
components than are currently being 
used. And, as OEMs and system 
designers need to implement only one 
communications channel, system 
development cost and time 1s 
considerably reduced. 

Because ACCESS.bus is a "Plug 
& Play" standard and thus automatically 
configures both system and peripheral 
devices, installation is simple. Almost 
limitless easy upgrade potential is also 
achieved. 

What ACCESS.bus provides, in 
short, is the missing communications 
link. By itself it serves all low speed 

peripherals. But it can also expand to 
offer a two-way communication port 
through which other buses and their 
dependent devices can communicate to 
the host system and, ultimately, to the 
end user. ACCESS.bus is included in 
the most sophisticated layer of the 
Display Data Channel™, the standard 
created by VESA ™ for transmitting 
configuration information from a video 
monitor to a host computer, and the 
System. Management Bus, the 
communication specification developed 
by Intel and Duracell for on-board 
system management devices. 

And ACCESS.bus will continue 
to expand. 

Editor's Note: Mr. Fisher is treasurer of 
the ACCESS. bus Industry Group. 

The Microchip name and logo are registered trademarks of Microchip Technology Inc. ACCESS.bus is a trademark of 
the ACCESS.bus Industry Group. VESA is a registered trademark and DDC is a trademark of Video Electronics 
Standards Association. I2c is a trademark of Philips Semiconductor. All other trademarks are the property of their 
respective owners. 

Access Bus Industry Group (ABIG), 370 Altair Way, Ste. 215, Sunnyvale, CA 94086, (408) 991-3517/3773 (Fax) 
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8 2 1: The Key to Direct-Attach PCI Disk Storage 

Martin FrHman 

Philips Research Palo Alto 
4005 Miranda Ave, Suite 175 

Palo Alto, OA 94304 

{415) 354-0329; martin@prpa.ph/llps.eom 

Abstract 

Advances in storage and high-perfOrmance 
interconnect technologies are Offering opportunities to 
approach the next step in storage interface evolution. 
Opportunities exist for integrating the storage interface 
into the processor memory hierarchy to achieve high­
performance at low cost. For example, in today's high· 
performance systems, host adapter cards are used to 
interlace disk drives to the system 1/0 bus: better 
storage interface integration can eliminate these 
adapter cards. Furthermore, recent advances in 
storage controller design can streamline the storage 
interface operation and help produce the lowest cost 
device interface. 

The emerging draft IEEE P1285 Scalable Storage 
Interface ($21) standard addresses these opportunities 
in providing a low·cost, high-performance storage 
interface that is simple, scalable, RAID and 
multiprocessor friendly and interconnect independent. 
i.e. any number of physical levels can be used including 
PCI, SCI, RamUnk, SRAM. DRAM, etc. For the PCI 
physical level, s2VPCI disk drives are possible that plug 
directly into the PCI socket on PC motherboards. 

Economonles of scale in tile PC marketplace should 
drive the cost of 521/PCI disk drives down to competitive 
levels. Because disk drives just plug into the PCT 
backplane, they can be aggregated to form RAID 
subsystems. Since PCI bus throughput is 132 Mbytes/ 
sec for 32 bit systems and 264 Mbytes/sec for 64 bit 
systems, sueh subsystems are ideal for. database 
servers and video servers. Using S21 with SCI, such 
systems can be joined together to achieve an interlace 
throughput of 1 Gbyte/sec. 

S121 provides an interface hierarchy of two levels: beta 
and gamma. The beta level is optimii!ed for 32 bit 
uniprocessor systems. while the gamma level is 
optimized for 64 bit multiprocessor systems. The 
interface hierarchy exposes the the internal disk drive 
device buffer to direct access by the system. tt takes 
advantage of disk dn"ves having support for on-the-fly 
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error correction by providing efficient mechanisms tor 
accessing device-local bUffers. These buffers are 
managed b)' system software. To support data 
movement, S21 disk drives can also execute commands 
from system memory (or the drive's internal buffer). 
Most of 1hese commands transfer data between the 
buffer, the media, and the system memory spaces. 
Other commends are available to provide branching 
capabilities and to synchronize command execution. 



A PCI-Based Industrial Backplane 

PICMG Consortium 
301 Edgewater Place, Suite 220 

Wakefield, MA 01880 

The PCI Industrial Computer Manufacturers Group (PICMG) is a consortium of vendors 
who are designing a specification for PCI-based systems and boards for use in industrial 
computing applications. The consortium's mission is to extend the PCI standard, as 
approved by the PCI Special Interest Group (PCI SIG), to incorporate industrial single 
board computer systems. 

PICMG intends to offer industrial equipment vendors a common specification, thereby 
increasing the availability and reducing the costs of industrial PCI standard-based 
products. The PCI industrial standard will provide a clear upgrade path for OEMs 
wishing to migrate to it. 

PICMG's session will highlight and discuss the design challenges involved in porting the 
PCI standard to passive backplane and other bus structures commonly used in the 
industrial marketplace. Topics will include how to further develop the existing PCIMG 
standard, selecting chips and BIOSes, compliance testing, and current and future product 
availability. 

The current standard will give industrial users all the features of the PCI bus, while 
maintaining access to the widely available ISA bus cards for purposes such as data 
acquisition. Vendors presently provide CPU cards and backplanes compliant with the 
specification. 

For more information, please contact the chair, Pierre McMaster, at the following 
address: 

Pierre McMaster 
Chair, PICMG 
Teknor Microsystems, Inc. 
616 Cure Boivin 
Boisbriand, Quebec, Canada J7G 2A7 
(800) 387-4222 
(514) 437-5682/8053 (fax) 
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QuickRing™: A Low-Cost, High-Speed Seamless Interconnect 

Sean Long 
Product Launch Manager 
National Semiconductor 

Mail Stop A1545 
PO Box 58090 

2900 Semiconductor Dr. 
Santa Clara, CA 95052 

(408) 721-3046/737-7218 (fax) 
seanl@joyride.nsc.com 

Sean Long graduated with a BSC Honours 
degree in Electrical and Electronic Engineering 
from Aston University, Birmingham, England. 
He is a member of the Institute of Electrical 
Engineers (IEE). After graduating, he worked as 
a design engineer for Schlumberger and a design 
consultancy, designing a variety of 
microprocessor and Digital Signal Processing 
based systems. 
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From 1988-1992 he worked for National in 
Europe, doing Technical Marketing covering 
programmable logic and memory products. 
From 1993 to the present he has worked for 
National, based in Santa Clara, as a Product 
Launch Manager with responsibility for 
QuickRing. 



Nt.r.tional Semiconductor-

National Semiconductor 
QuickRing™ Interface Forum 

For more information contact: 
Sean Long 
Product Launch Manager 
408.721.3046 

As our industry demands faster 
speeds and greater interconnectivity~ 
semiconductor technology becomes 
even more critical. At National 
Semiconductor, we are in the business of 
creating Technologies for Moving and 
Shaping InformationTM. Our 
semiconductor technologies for data 
transmission and computer I/0 set 
global standards. 

Moving functions are those that 
transport data, internally via bus 
architectures, or externally, between 
computers or systems. QuickRing™ is 
u.1uque in its ability to move streams of 
data at extremely high speeds, both for 
in.-box and box-to-box applications. In 
fact, QuickR.ing's ability to solve the I/0 
bus and interconnect bottleneck is one 
great example of how National is 
moving and shaping information to 
benefit our customers. 

The National QuickRing 
datastream controller is composed of an 
architecture, a physical layer hardware 
specification, and a communications 
protocol. It is used for high performance 
data streaming between devices, cards, or 
systems. The National QuickRing can 
replace buses or work in complement 
with them. 

The National QuickRing 
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controller gets around the I/0 bottleneck 
with a point-to-point interconnect 
scheme. Unlike multi-drop buses which 
are limited to one transaction at a time, 
the controller's architecture allows for 
concurrent data transfers. The· National 
QuickRing can support between 2-16 
nodes in a single ring; plus a ring of 
rings structure, each capable of sending 
and receiving data simultaneously. 

Performance between any 2 nodes 
in a point-to-point scheme using the 
National QuickRing is up to 200 
MegaBytes/sec. For a 16 node ring, an 
aggregate bandwidth of up to 1.7 
GigaBytes/ second is achievable. 

The National QuickRing is a low 
cost, high-speed interconnect which 
allows seamless interconnects within 
and between systems. With National 
QuickRing, moving large amounts of 
data in high-speed LAN routers and 
hubs, servers, and embedded computing, 
is not a problem. 

System designers can use this 
technology to enhance the performance 
of current products or design new ones. 
For further information on the National 
QuickRing, contact: 

General Product Information 
Tel: 800.272.9959 

Application Hotline 
Tel: 408.721.5457 

Internet 

For individual questions, send to: 
quickr@tevrn2.nsc.com 

On Line Bulletin Board 
For latest product status: 
Tel: 408.721.2542 (8-n-1) 
2400-14400 bps 



tfJ Natiou I_ Semlconduc<or• 

For open forum participation 
(reflector) send to: 
qrlink@lightning.nsc.com 

The National QuickRing Design 
Handbook 

Includes application notes and data 
sheets for the QROOOl and QR1001. To 
order, call 800.272.9959 
and ask for lit # 550067 

National SerniconductorTM is a trademark of National 
Semiconductor Corp. 
QuickRing™ is a trademark of Apfile Computer, Inc. 
Moving and Shaping In.formation M is a trademark of 
Natioriitl Semiconductor Corp. 
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RACEway: A Scaleable Interface for Real-Time Multiprocessor Systems 

Barry S. Isenstein 
Director, Strategic Marketing 

Mercury Computer Systems, Inc. 
199 Rivemeck Rd. 

Chelmsford, MA 01824-2820 
(508) 256-1300/3599 (fax) 

isenstein@mc.com 

Barry lsenstein is responsible for product 
planning, message development and strategic 
planning at Mercury. Before joining the 
company in 1984, he was senior project scientist 
at Coulter Biomedical Research Corporation, a 
manufacturer of digital image based analysis 
systems. There he was responsible for design 
and implementation of image processing 
algorithms for automated cytology. Previously, 
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he spent three years on staff at Case Western 
Reserve University at the Picture Processing 

· Laboratory facility of the Biomedical 
Engineering department. There he worked on 
image processing and pattern recognition 
projects. Isenstein earned a master's and 
bachelor's degree in biomedical engineering 
from Case Western Reserve University. 
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BEHAVIORAL VALIDATION AND ITS APPLICATION TO PENTIUM 
CLASS PROCESSORS 

Mark Scheitrum and Alan Smith 
CPU Technology, Inc. 

47212 Mission Falls Court 
Fremont, CA 94539 

ABSTRACT 

Error-free operation of complex computers 
and systems is an area of critical concern to the 
entire computer industry. Current validation 
approaches by the manufacturers do not 
adequately represent the interests of systems 
integrators and end-users. The entire industry 
must participate in establishing measurable 
standards for compatibility and enforcing these 
standards consistently. This paper describes an 
improvement in processor and computer 
validation that is achieved through specification­
based behavioral validation. Specific benefits 
that are achieved by the manufacturer are 
detailed. Benefits to the systems vendors and 
end-users are also presented. The Pentium class 
processor validation suite is summarized. The 
generality of this approach and application to 
software and other systems logic is discussed. 

BACKGROUND 

Even as computers are being trusted with 
more critical responsibilities, they are becoming 
too complex to trust. Each generation of 
computers is exponentially more complex than 
the preceding generation. Computers are 
critically involved in flying our planes, 
monitoring our health, driving our cars and 
controlling our finances. The entire population 
relies on computers to have a high level of 
compatibility, reliability and upgradability. 
Traditional methods of verification, which rely on 
manual, ad-hoc testing and screening with 
popular applications software, are inadequate to 
guarantee that all functions of a processor are 
actually working properly. Validation 
responsibility has been left to the designers 
exclusively, without appropriate tools, without 
industry participation, and without measurable 
and enforceable standards. This approach forces 
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the end-user into an unwanted key role in the 
debug process. The entire industry assumes a 
tremendous risk and liability as a result. 
Manufacturers, integrators, and users must 
participate responsibly by setting and enforcing 
more formal compatibility and upgradability 
standards, especially where life and property are 
at stake. 

COMPLEXITY AND THE MYTH OF THE BUG 
FREE COMPUTER 

It must be restated that a computer is an 
extremely complex, highly precise device. The 
value of a computer comes from the fact that it 
can perform a range of complicated instructions, 
absolutely correctly at an extremely high rate. To 
perform and validate all combinations of possible 
instructions, modes, addresses and data 
patterns would take longer than the lifetime of 
the sun for even a simple processor. In 
something this complex, perfection is 
unverifiable and the concept of 'bug-free' is a 
myth. 

This combination of complexity and 
uncertainty is nothing new. We deal with it daily 
in many other natural and man-made systems. 
But computers and other electronic systems are 
so new and so capable that by the standards of 
other industries, they seem perfect. It is only 
when measured by their own standards that 
they appear flawed. In what other technology 
would a calculation error of less than one in 
10,000 every l,000,000,000 events be 
considered anything but perfection? 

It is up to the entire industry to establish 
the standards of compatibility for all computer 
systems and to ensure measurement of these 
standards. 



VALIDATION IS A SHARED RESPONSIBILITY 

Designers, manufacturers, integrators and 
users have different validation objectives. Of 
course, each of these groups wants the final 
device to have no bugs, but their direct 
involvement is limited. 

Designers need to verify each design 
element and get the processor to a level of 
functionality to prove performance assumptions 
as quickly as possible, so they can move on to 
the next design. 

Manufacturers need to extend the 
architecture to open up new applications and to 
ensure compatibility to some acceptable criteria 
as quickly as possible so that the product can be 
shipped. 

Systems companies and device integrators 
want consistent testing applied by all 
manufacturers to provide verifiably compatible 
devices against standard criteria. 

End-users want as much testing done at 
every level as is possible. They also want low 
price, high performance, new features and no 
problems with their applications, even future 
ones. (They want everything!) 

In a situation where a processor cannot be 
tested completely, only those groups who are 
involved in the validation process can be 
assured of having their interests represented. 

INDUSTRY COMPATIBILITY TESTING GOALS 

For any processor, it is important to 
ensure that the validation approach has the 
following characteristics: 

1. It is based on a measurable and 
enforceable specification. (Claiming 
compatibility to an operating 
environment is not measurable.) 

2. It provides comprehensive specification 
coverage. It tests the defined capabilities 
of the processor, not just the ones in 
common usage. 

3. It is applicable throughout the 
development process as well as on the 
finished device. It minimizes the number 
of 'flaws' in the design rather than find 
them in the finished product. 

4. It is available to all manufacturers of 
compatible processors, to ensure that all 
manufacturers are measured to the same 
consistent standard. 

5. It integrates new tests as the 
specification evolves or as the industry 
requires. 

6. It is an efficient diagnostic and reporting 
tool, which directly identifies any 
problems that it detects. 

7. It provides repeatable and predictable 
test results. 

BEHAVIORAL VERIFICATION TECHNOLOG'YfM. 

Behavioral Verification Technology™ (BVT) 
was invented to address the validation interests 
of all of the participants in the computer 
industry. It enables the rapid development of 
formal instruction-set architecture validation 
suites for any computer. Among the areas where 
BVT already provides value are commercial 
computing (x86 instruction-set) and avionics 
computing. Every computer intended to last for 
more than one generation will benefit from a 
BVT-based validation suite. 

The ability to properly validate a 
processor's defined functions as early as 
possible in the design cycle is the major problem 
faced by processor manufacturers. A method is 
needed which automates the process of 
validating processors to remove design flaws 
before the customers see them. 

Behavioral Verification Technology provides 
a means to generate diagnostic suites that 
thoroughly validate complex processors. 

BVT TEST STRUCTURE 

BVT provides a validation methodology that 
can be used from early pre-silicon development 
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through post-silicon validation. To satisfy the 
needs of the development phase as well as 
compatibility testing of actual devices, several 
objectives are met. 

Minimal Cycle Time 

Functional tests are structured such that 
the amount of time needed to initialize, perform, 
and verify a function is as short as possible. 
Typical circuit simulators operate as slowly as 
two clock cycles per second, so the efficiency of 
the test programs is a critical factor in 
development productivity. 

Self Checking Test Programs 

The test program performs all checks for 
correct results and reports any errors. This 
removes the burden of manual checking of 
vectors or memory images, and enables 
automated regression testing. 

Direct Failure Detection 

The test programs indicate errors as 
directly as possible. A direct failure is one in 
which the test fails because the instruction or 
sequence of instructions being tested contains a 
failure. An example of a direct failure is "the 
ARPL test failed because the ARPL instruction 
incorrectly set condition codes." Direct failure 
detection focuses the designer on a specific 
problem in the design. An indirect failure occurs 
when a test fails not because the instruction or 
sequence under test fails, but because an 
instruction or sequence that the test uses for 
setup or checking results contains a failure. The 
test fails, but the reason for the failure can be 
obscured. An indirect failure might. be "the 
processor took a General Protection exception 
prior to executing a task switch." Indirect 
failures can be much more difficult to identify 
than direct failures. 

Consistency of Tests 

Each test in the suite is structured 
consistently, regardless of the type of function 
under test. The means for specifying run-time 
test parameters and the method in which errors 
are reported should be consistent. The 
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techniques the designer learns to debug the 
processor design should apply for all tests in the 
suite. 

Implementation Independent Tests 

The test programs do not presume any 
particular hardware implementation. They 
operate on models, simulations, emulations and 
devices. Each defined function is tested 
individually and validated in an implementation 
independent manner. Sequence tests are 
performed to validate dependencies between 
functions. 

Repeatable Results 

Each test behaves identically every time it 
is run, so that any errors can be analyzed. A 
random test that reports an error is of no use if 
the error cannot be replicated. 

Isolation of Individual Test Cases 

While a test program may exercise a large 
number of different test cases, it is structured 
such that any specific test case can be isolated 
and exercised individually. If a test program 
checks 100 test cases and only the ninety-ninth 
case fails, then the designer will want to focus 
on only the failing case in order to fix the 
problem. If the first 98 cases must always be 
exercised, then a great deal of time is spent 
testing something that is already working. 

Bootstrapping Methodology 

The validation suite is organized in a 
fashion such that the simplest functions are 
tested first. The testing of these functions does 
not require more complicated functions to be 
operational. Once a function has been verified, it 
can then be used to verify more complex 
functions. This "bootstrapping" structure allows 
the designer to implement and debug the design 
in an incremental fashion, rather than requiring 
him or her to implement complex microcode 
sequences prior to testing simple operations. 



No Dependency on OS or System Resources 

Test programs do not require the existence 
of operating systems or system resources so that 
they can be used very early in the development 
phase. In the early stages of development, 
simulations typically consist of only the 
processor and a simple memory, so the test 
programs must be able to operate in this 
minimal environment. 

Simulation Environment Usage 

In a pre-silicon simulation environment 
the designer has a simple means of loading test 
programs and initializing any run-time 
parameters. In the event of a failure, the test 
program reports the failure as quickly as 
possible. If the failing function and the detection 
of the failure are far apart, then the designer 
must spend a great deal of time backtracking in 
order to observe the failing event. 

Post-Silicon Usage 

When testing actual devices it can be 
assumed that most of the processor is 
operational and that system resources such as 
video monitors may be available. The test 
programs are able to be invoked in finished 
systems running operating systems, as well as 
in specialized prototype debug systems. The test 
program provides as much relevant information 
to the user as possible in the event of a failure. 
Because there is no longer direct visibility into 
the internals of the processor, the test program 
displays internal register contents, control 
register settings, and other pertinent 
information about the failing case. 

BVT SUITE GENERATION 

The goal of the BVT generated test suite is 
to test each processor function, from the 
simplest to the most complex, and verify its 
operation according to the instruction-set 
specification. There are many functions common 
to most processors, such as add, subtract, 
logical operations, and data movement 
instructions. For many of these functions, BVT 
provides tools that automatically generate 
operands and expected results which are 

embodied in the test programs. Layered upon 
these generic test cases are machine specific 
parameters such as register selection, memory 
addressing modes, and condition code rules. 

Processor architectures diverge when it 
comes to more complex functions and operating 
modes. The most complicated instructions 
typically are unique to a given instruction-set. 
Often the behavior of a particular function will 
change depending on the operating mode of the 
processor. For instance, in the Pentium 
architecture, the far call instruction is a rather 
simple function when the processor is in real 
mode, but when in protected mode it becomes 
much more complicated. For example, the far 
call instruction may take one of several different 
actions, including exception cases, depending 
on the selectors and descriptors that it 
references. The development of test programs 
becomes very involved, and the test engineer 
can become bogged down in the details of coding 
these complex scenarios. As a result, the test 
programs for these complex functions can only 
be developed by the most experienced and 
knowledgeable programmers. 

To address this problem, automatic code 
generation tools were developed as part of the 
BVT methodology. These code generation tools 
accept as input a description of various test 
scenarios. A description comprises the set of 
initial conditions, the function to be performed, 
and a set of expected results. The description is 
a high-level language that is separate from the 
low-level instruction coding. The code 
generation tools transform these descriptions 
into the actual machine code which will perform 
the tests and verify the results. This process 
frees the test writer from the drudgery of writing 
complex assembly language code and allows him 
or her to focus on the transformation of 
specification to test description. 

BVT SUITE CONTENT 

The basic organization of a behavioral 
validation suite for any processor is divided into 
three categories: basic function tests, corner 
case tests, and sequence tests. A validation suite 
must provide comprehensive tests in each of 
these areas. 
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Basic Function Tests 

Basic function tests provide coverage of 
every processor instruction in all available 
modes. Basic tests focus on each instruction or 
function individually. These tests verify that the 
fundamentals of an instruction are working 
properly --- the proper result is calculated, 
registers and memory are updated correctly, and 
condition codes are set properly. Basic function 
tests also verify that unwanted side-effects do 
not exist. 

Corner Case Tests 

Corner case testing involves validating the 
boundary conditions and exception cases of a 
function. Many corner cases can be tested in an 
individual fashion, and this is done throughout 
the validation suite. Boundary conditions may 
involve certain operands that cause, for 
example, underflow or overflow in floating point 
operations, or that cause address calculations to 
cross memory boundaries. In addition, the 
processor architecture may define possible 
exceptions that an instruction can take. Each 
exception case that an instruction may allow is 
tested individually. This may include memory 
reference violations, page faults, privilege 
violations, and floating point exceptions. The 
x86 instruction-set architecture provides for a 
wide variety of exception cases, and for many 
functions multiple exceptions may exist 
concurrently. Of particular concern is the proper 
prioritization of multiple exceptions. For 
example, a task switch operation may contain a 
privilege violation for the code segment, an 
invalid new stack segment, and an instruction 
pointer that is beyond the code segment limit. 
The response to each of these error conditions is 
different, so the tests must verify that the proper 
action is taken. 

Sequence Tests 

Individual testing of functions ensures that 
each function operates properly in a stand-alone 
manner. Yet even if all functions work correctly 
individually, errors could occur when multiple 
functions are executed sequentially or 
concurrently. This is due to dependencies 
between instructions for register values, memory 
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contents, and flag settings. In simple non­
pipelined architectures, such dependencies are 
minimal or non-existent. But with more complex 
pipelined architectures such as the 486 and 
beyond, where many instructions may exist in 
various stages of execution at one time, 
additional circuitry is employed to increase 
performance. This circuitry introduces 
dependencies between instructions, which can 
lead to errors when executing sequences of 
instructions. Additional tests are necessary in 
the suite to verify that sequences of multiple 
instructions interact properly. 

THE BVT586 VALIDATION SUITE 

The BVI'586 validation suite 1s the 
Behavi.oral Verification Technology based 
validation suite for Pentium class processors. It 
consists of 150 modules of Pentium assembly 
language instructions containing over 24,000 
test programs, totaling over 900 megabytes of 
executable code. The suite checks the target 
processor for compatibility with the Pentium 
from the programmer's point of view. The test 
suite was calibrated for accuracy against the 
Intel Pentium programmer's reference manuals 
and the IEEE Floating Point specifications, other 
relevant manuals and actual Pentium devices. 
The suite's organization, interface and content 
reflect the feedback from hundreds of processor 
designers and validation engineers involved m 
486 and Pentium compatible design projects. 

BVT586 USAGE: PRE-SILICON 

The BVI'586 validation suite provides a 
specification-based tool for designing processors 
that are compatible to the Intel Pentium 
instruction-set architecture. The entire test 
suite can be run pre-silicon on any simulator 
with no requirements for additional x86 software 
(such as an operating system). When an error is 
detected by the suite, the test halts at the point 
of error and indicates to the user the failing test, 
failure condition and expected results. After 
design repair, the user can selectively rerun the 
failing test, sub-module(s), module(s) or the 
entire suite. The BVI'586 suite can also run on 
hardware emulations of the device. 



BVT586 USAGE: POST-SILICON 

The same BVT586 suite is used post­
silicon to test any device for differences in 
software perceived behavior from the Pentium 
processor. It is used by processor manufacturers 
and can be used by systems manufacturers. It is 
run as a DOS compatible program. Individual 
sub-modules can be run or sets of modules can 
be run as a regression test. Command line 
parameters allow control of error logging, error 
termination, test loop counts, and so forth. If a 
difference in operation between the device under 
test and the expected results is detected, the 
erroneous state and the expected state are 
reported. These identified differences are directly 
communicable between vendor and customer, 
validation engineer and designer, etc. This 
allows customers to participate intelligently in 
the validation and specification dialogue. 

FUTURE VALIDATION CHALLENGES 

The best situation for a processor or any 
complex electronic system is to specify the 
allowed behavior and hold the hardware and 
software accountable to that specification. BVT 
validation suites can be created to validate this 
specification for both software and hardware. 
This restriction of software to the specified 
system behavior will make the validation 
problem easier. Instead of all possible functions, 
only allowed behavior needs to be validated. This 
will also make system evolution easier since the 
new system has to maintain compatibility with 
only the specified behavior of the original. For 
life critical applications, this level of formal 
specification and formal validation is necessary 
now. 

REFERENCES 
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TESTING WITH APPLICATION SOFTWARE 

To contrast against formal behavioral 
testing, we need to examine testing approaches 
that are not formally based on the specification. 
These approaches depend on running 'stress' 
applications and operating environments. 
Typically only a small percentage of the testing 
is done in simulation because simulation will 
not support operating systems and system 
applications. The majority of the testing is done 
in emulation and on silicon. This testing 
approach is very inefficient due to the 
limitations of system hardware emulation. 

• High false error rate with hardware 
emulation since CPU must be run approximately 
100 times slower than intended for the system. 

• High false error rate caused by fragile 
mechanical assemblies involved in hardware 
emulation. 

• High false error rate from the complexity of 
maintaining configurations of applications, 
boards, software patches and system limitations. 

• High false error rate because commercial 
applications and operating systems are not test 
programs. They are complex, restricted in 
configurations and have their own bugs. 

• Low test efficiency due to unmeasurable 
value of each test application. 

• Tremendously long, inaccurate and 
complex debug process from perceived failure to 
identified cause. The debug effort involves 
debugging operating system and application 
from executable code only. 

• Non-repeatable test results. 
• Long reimplementation and retest time for 

repairs. This can be months for silicon and days 
or weeks if emulation. After reimplementation, 
all tests have to be rerun since it is impossible 
to know where side-effects may appear. 

• Difficult to duplicate and maintain test 
environment. 

Behavioral Verification Technology based 
formal verification of the instruction-set 
specification is orders of magnitude more 
effective in finding, identifying, repairing and 
retesting bugs than one based on verification of 
system level applications. 



RePent™ -Peace of mind/or Pentium users 

Matt Trask 
Communica, Inc. 

118 Waterhouse Rd., Ste. B 
Bourne, MA 02532 

Ph. (508) 759-6714 Fax (508) 759-7812 
E-Mail: matt.trask@bix.com 

Matt Trask is President of Communica, Inc., a 
system software firm based on Cape Cod that 
provides OEM development services to 
computer system vendors. His background 
includes various virtual machine and protect-
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mode operating system, development project on 
the Intel CPU Family. Communica's RePent™ 
software detects and corrects the Pentium FPU 
defect, preventing damage to floating point data. 



RePent™ 
Peace of mind for Pentium users 

Are you worried that the defect in your Pentium CPU could damage 
your data? 

Are you concerned that you can't detect defective floating point 
calculations? 

Are you unwilling to wait perhaps months before Intel can replace 
your defective Pentium chip? 

Comm.unica has the sim.ple solution to your worries: RePent™. This 
is a special program that runs on your Pentium computer and 
monitors all use of the Floating Point Unit (FPU). Any attempt to use 
a defective instruction is trapped by the software and calculated by 
RePent without using the defective part of the FPU. More 
importantly, RePent notifies you that this has occurred and that you 
have been protected from inadvertant damage to your data. RePent 
has been carefully designed to minimize overhead while providing 
complete protection from defects in your Pentium FPU. 

~ePent for Microsoft Windows will be shipping in mid-January, 1995 
followed by versions for IBM's 05/2 and Microsoft Windows NT. 
Single unit pricing is $39 for each of these operating systems with 
quantity discounts and site licenses available. Support for other 
operating environments is available on special request. For more 
information, or to place an order for Repent, call Conununica at 
800/2-FIX-BUG or 800/FIX-A-586. 

Rel?ent"' is a trademark of Conununica, .Inc. All rights r:es•rved. Other tradt;)m01r1'.G ux·tt 
p.rop<..•rty of thei.r respective owne.rs. Specifications subjoot l:o ch1.rn9e wttt1011t notice. 

r 02106/!ll:>J 

1 18 WATERHOUSE RO, SUITE B • SOURNE, MA 02532 • 508/759-6714 
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Overview 

RePent™ 
A software fix for Pentium FPU defects 
Matt Trask. Communica, Inc. 13 Dec 94 

· Current versions of the Intel Pentium CPU are known to contain significant defects :in 
their Floating Point Units (FPUs) that can affect common math operations such as 
division, remainder, and some transcendental math operations that use the division 
hardware. The nature of the problem is such that it is unlikely to occur in most uses 
of a Pentium system, but the problem is entirely deterministic. In other words, if it 
happens once during a floating point calculation, it will occur every time the same 
calculation is performed. 

Communica has developed a software solution to this problem that is designed to 
mi.nim1z.e performance overhead while providing complete protection from accidental 
data corruption by the FPU defect. This document describes Communica's software 
solution and characterizes system performance while the software is in use . 

. The Problem 

. The Pentium uses a new algorithm for peJ"foTming floating point divides that is based 
on lookups in a large table. According to Intel's document1 that describes the 
Pentium bug, "the cause of the problem traces itself to a few missing entries in a 
lookup table used in the hardware implementation algorithm for the divide 
operation. Since this divide operation is used by the Divide, Remaindering, and 
certain Transcendental Instructions, an inaccuracy introduced in the operation 
manifests itself as an inaccuracy in the results generated by these instructions." 

Other §olutions 

The first anq most obvious solution was the approach taken by Compaq Computer 
Corp; the Pentium FPU can be disabled under software control, preventing 

. inadvertent use of defective floating point operations by users. This solution is 
simple and safe, but highly undesirable because it causes a significant performance 
penalty to users of floating point operatio.ns. 

Lotus and Microsoft have taken an equivalent approach, giving users instructions that 
explain how to configure their products to ignore the FPU and use their built-in 
floating po:int calculation routines. From a performance perspective, this is no 
different than what Compaq has done. 

Intel has formed a working group to study this problem and has issued a software 
workaround that provides for efficient execution of floating point division that does 
not use the FPU. Unfortunately, Intel's method of supplying this solution to Pentium 
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use~s has been to give it away to compiler writers for inclusion in run-time libraries as 
a replacement for routines that currently use the FPU. This is a technically elegant 
solution,. but it requires software vendors to t'ebuild their applications and provide 
updated versions to their customers, thus incurring potentially significant expense for 
ret.esting and redistribution. This method is not a general purpose solutiort - even 
when some of a user's programs have been updated, other applications may stilt be at 
risk from the defect. · · 

As of 20 Dec 94, Intel has publicly committed to exchange any defective CPU at the 
owners request for the life of the system. While this is the best possible solution,. the 
logistics of this process will probably take many months or even years, and even then,. 
there is no assurance that all Pentium CPUs will be replaced. A future owner or user 
of a Pentium system may still have a defective CPU and have no way of knowing this. 

Communica's Solution 

Our approach to solving this problem is focused on ease of use and efficiency. Each 
floating point operation is trapped and examined - if it is one of the defective 
instructions, the calculation is performed in software. If the opcode ls not on the list 
of known bad instructions, the trap is released as quickly as possible; permitting 
execution on the FPU hardware. 

The most important feature of Communka's design is the notification component. H 
a user's applications actually access the Pentium FPU, the software can be configured 
to notify the user immediately, thus removing all reasons for concern from 
unsophisticated users who are not at risk of damage to their data. This software is an 
excellent means for a system vendor to qualify and prioritize Pentium owners for 
CPU replacement based on demonstrable need. 

At this time, Communka' s software runs as a TSR extension to DOS. 
Implementations for Windows and OS/2 are currently under construction. Current 
plans call for development of versions for Windows NT, Unix and Windows 95. If 
there is sufficient interest, we will also develop a Netware NLM version. 

Perfonnance Considerations 

The current algorithm used in Comm uni.ca' s software adds a fixed overhead of 
approximately 37 assembler-level instructions to each floating point instruction before 
it is released for execution on the FPU. There is no CPU overhead at all for users that 
do not use software that accesses the FPU. Because of this overhead, Communica's 
software categorizes users into three groups: non-FPU users that have no 
performance overhead and who need not worry about damage to their data be<;ause 
they c:a.n be notified if they ever use a new program that uses the FPU, light users of 
the FPU who don't use it often enough to worry about the additional overhead and 
still need not worry about damage to their data, and heavy FPU users who pl'obably 
would be concerned about the performance overhead, but can use the evidence 
provided by running Communica's software to justify expeditious replacement of 
their Pentium chip. 
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. We recognize that the performance overhead caused by this solution is undesirable 
and are working to reduce this as much as possible. At this time we have a new 
algorithm that we believe can lower the overhead to as little as five or six assembler­
level i.itstructions. Development of a proof-of-concept is currently under way. 

Company Background 

Formed in 1989, Communica is a team of senior system programmers and electrical 
engineers that provides OEM development services to most of the major personal 
computer vendors. Areas of expertise include low-level system software such as PC­
com patible BIOS, device drivers, and communication and networking software. 
Virtual Machine Technology and device emulation on Intel-family CPUs are a 
specialty area of expertise. Communica' s engineering staff has considerable 
experience working with DOS/Windows internals, Unix kernel programming, and 
low-level system programming for OS/2, Windows NT, and Netware. Communica's 
client list includes IBM, NCR/ AT&T, Sun Microsystems, Stac Electronics, Central 
Point Software, and many others. 

In addition to providing development services, Communica has licensed the IBM 
SurePath™ BIOS as the basis for developing upgrade products that enhance existing 
computer systems by adding support for Plugn"Play and ReZoom™. Communica's 
ReZoom is a technology for enabling desktop systems to suspend operation and 
rapidly resume at a later time similar to the way most laptop computers operate. 
ReGreen™ is Communica's external power controller th.at is used to add EPA 
EnergyStaT functionality to existing computer systems. 

For more information on RePent'™, Communica's software solution to the Pentium 
defect,, or other products or services provided by Communica,. call 508/759-6714 or 
send email to matt.trask@bix.com. Pentium users that wish to order RePent for 
delivery in mid-January, 1995, please call 800/FIX-A-586 or 800/2-FIX-BUG after 27 
Dec 94. Single quantity pricing is $39 with reseller and quantity discounts, and OEM 
and site licensing available. 

1 Statistical Analysis of Floating Point Flaw in the Pentium'™ Processor (1994), Intel 
Corporation, 30 Nov 94, by H.P. Sharangpani and M.L. Barton 
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Thermal Issues in Working with Pentium (Registered Trademark) 

Gary Kuzmin 
Director of Corporate Technical Marketing 

Aavid Thermal Technologies Inc. 
One Kool Path 

Laconia, NH 03247 
(603) 528-3400 

As large-scale integration has expanded, 
thermal managment has become a 
critical issue for processor and system 
vendors alike. New thermal solutions 
are required, because the performance 
and reliability of the semiconductor is 
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constrained by temperature. The 
. daunting task is to figure the best 
solution with the assurance that the 
customer is going to have a reliable 
system. 



PCI Graphics Boards 

Jack Roberts 
Director and Principal. Analyst 

Graphics and Displays 
Dataquest Incorporated 
1290 Ridder Park Drive 

San Jose, CA 95131 
Phone: (408) 437-8539 

Fax: (408) 437-0292 
E-mail: jroberts@dataquest.com 

The adoption of the PCI bus across multiple desktop computer platforms, 
i.e. Intel-based PCs, Macintoshes, and technical workstations, will have a 
dramatic effect upon the graphics boards market. No longer will 
workstation users have high-end graphics performance as their exclusive 
domain. No longer will the Macintosh user be forced to pay a premium 
for grc:lphics boards compared to users of PCs. This leveling of the 
graphics playing field promises to create a highly competitive market 
where only the strong or tightly niched are able to survive. This session 
looks at the opportunities and obsticales facing the graphics boards 
market. 
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A 192-Bit Graphics Controller for the PCI Marketplace 

Joe Eschbach 
General Manager 

rPC 
215 Moffett Park Drive 
Sunnyvale, CA 94089 

( 408) 541-5400/5672 (fax) 

rPC has developed the FireStorm192 with a unique architectural design that offers the 
user a 192-bit wide data path, providing true col.or (16.7 million colors) at resolutions up 
to 1600 X 1200. FireStorm192's features are ideal for creative professionals who need a 
high level of graphics performance when using desktop publishing applications such as 
Adobe PhotoShop, Quark Xpress, and Aldus PageMaker. 

rPC is an independent business unit of Radius Inc., focused on the Windows-based 
graphics market. 
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Lorne Trottier 
President 

Matrox Graphics Inc. 
1055 St. Regis Blvd. 

Dorval, H9P 2T4, Quebec, CANADA 
Ph. (514) 685-2630 Fax (514) 685-2850 
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Presentation Overview 

• Introduction to the 3D graphics marketplace 

• How do 3D graphics work on the PC? 

• Hardware Requirements for 3D graphics 

• The Matrox MGA: One vendors solution 

PCI Conference 

Existing 3D Markets 

• CAD/CAM: AutoCAD, Microstation, etc. 

• Graphic Arts, Illustration, DTP, ie CorelDraw 

• Multimedia 
• 3D Arcade Quality Games 

• Entertainment 
• Business, Scientific Visualization 

• Virtual Reality 

PCI Conference 

186 

' 
I 

I 

I 

I 

! 



The Emerging 3D Marketplace 

• Microsoft OpenGL for Windows '95 and NT 
bring 3D workstation apps to the PC 

• Corel Corp. will be shipping 3D products in '95 

• Macintosh and OS/2 also providing 3D support 

• Mainstream business applications such as 
Asymmetrix's 3D-FX, Caligari TrueSpace 

• Dozens of compelling 3D game titles by 
Christmas '95 on the PC 

• Sega Saturn - a 3D console - is selling at 250,000 
units/month in Japan alone 

PCI Conference 

How do we see 3D on a 2D screen? 

• Different algorithms 
• Gouraud Shading 

• Z-Bufferring 
• Texture Mapping 

• Phong Shading 

PCI Conference 
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Typical 3D Pipeline for Shading 

30 Object 

TRIANGULARIZED 

XFORM 

PCI Conference 

MATHEMATICALLv_f• 
INTENSIVE l_• 

Typically Floating Point 

Typically per vertex calculations 

calculate intensity for each pixel 

calculate z for each pixel 

perform z-compare 
write pixel and z if compare successful 

Realtime 3D Required Elements 

• High Performance Floating Point Systems 

• Fast and affordable 3D graphics controller 

• Fast frame buffer memory type 

• System bus with high data rate 

• Software standards for 3D 

PCI Conference 
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Fast & Affordable 3D Graphics Hardware 

• Gouraud shading 

• Texture Mapping 

• Z-buffer 
• Color Dithering 

• Double-buffering 

PCI Conference 

Memory Type: Window RAM 

• Ideally suited for 3D acceleration 

• Dual-ported memory- type 

• Almost 400 Megabyte/second drawing bandwidth 

• Aligned Bitblit speed of 695 Megabytes/second 

PCI Conference 
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System Bus: PCI Bus 

• Ideally suited for 3D graphics large bandwidth 
requirements 

• 120 Megabyte/second bandwidth 

• 32-bits wide 

PCI Conference 

Software Standards for 3D 

• OpenGL 

• Intel3DR 

•HOOPS 

• Criterion RenderWare 

• RenderMorphics Reality Lab 

PCI Conference 
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Open GL & Microsoft NT 

3D Applications 

' System 

~ OpenGL 
Software Microsoft 

Display []][] O[J Drivers I I 

' Display 
GRAPHICS HARDWARE 

Device 

PCI Conference 

Intel 3DR 
2D & 30 Windows Applications: Games, VR, CAD, ... 

System 

Software 

Display 

Drivers 

Display 

Device 

PCI Conference 

GDIDDI 11 DCI 

FRAME BUFFER 
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I Virtual Reality Toolkits] 

l Entertainment Toolkits I 

II 30 Render 
Ii 

30Render DOI 

3DHardware 



OpenGL and 
!?.PJ~}I? 
Ithaca Software 
HOOPS 
lntel3DR 

Criterion 
RenderW are 
R enderM orph ics 
ge11Iityl,ab. ... 
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Matrox 3D API Support 

! Extended 
.... ; I)()S .... 

················~····· 

........ --./ 

'1 

•Windows 
.. 3.J 

··········~···QI '95 

'1 
-~ Q2 '95 

'1 QJ'95 

; Windows 
.NT 

.... ~-~2 '95 

Wind ow s 

Q4 '95 

'1 g~ '.95 i 

:.J. Q3 '95 

'1 Q2 '95 

Integrated solution = Low Cost 

• 3D capabilities integrated into 2D GUI engine 

• Z-buffer in offscreen· area of frame buffer 

• Double buffering in off screen of frame buffer 

• Texture memory on host RAM 

PCl Conference 
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Wrong Approaches= High Cost 
&/or Low Performance 

• 3D coprocessor 

• DSP approach 
• Separate dedicated memory for Z-buffer or 

stencil 

• No hardware Z-buffer 
• Rely on host processor for pixel intensive 

operations 

PCI Conference 

Matrox 3D Feature Support 
...................................................•.........•.......................... ·································································-······-····-···· 

! Required 3D Feature MGA Support? 
j G:n.uaud Shading , Yes 

: Texture Mapping Yes 
· '.iBlifferillg.ill fr.ID.re 1Jliffer .. . ...... Yes 

/ lliuble Buffering in~ buffer Yes 

i Color Dithering Yes 

: Integration into GUI engine Yes 

PCI Conference 
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Ma tr ox 3D Performance 

• 190,000 gouraud-shaded, z-buffered, 16-bit color, 50 
pixel triangles/second 

• 38 Million rendered pixels/second 

• Workstation class performance with Pentium PCs 

• MGA 3D hardware offioads·CPU allowing it to run 
applications rather than pumping pixels 

PCI Conference 

Summary/Conclusion 

• The combination of PCI Bus, Pentium systems, and 
3D graphics controllers using new video memory 
technologies bring workstation level 3D to the PC. 

• The PC software industry is fully adopting 3D 
programming standards. 

• Matrox is leading the industry in 3D 
price/performance, software support and time to 
market. 

PCI Conference 
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Graphics, Motion Video, and PCI 

Michael Hawkey 
Marketing Manager 

Multimedia Products Unit 
Western Digital Corporation 

800 E. Middlefield Road 
Mountain View, CA 94043 

hawkey_m@al.wdc.com 
Phone:415-335-2590 

Fax:415-335-2515 

Abstract 

Western Digital is approaching the display controller add-in board market from the point 
of view of the PCI bus ... What data types does the PCI bus pass to the display controller?" 
"Is the system only driving data on the PCI bus to the display controller or is the display 
controller talking back?" These questions, and the interaction of the PCI bus with new 
functions like 30 and Motion Video acceleration, are explored at both the technical and 
marketing levels. 
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GRAPHICS CARD DESIGN: SYSTEM IMPLICATIONS AND CONSTRAINTS 

Billy Garrett 
Manager of Graphics Development 

Rambus Inc. 
2465 Latham Street 

Mountain View, CA 94040 
garrett@rambus.com 

ABSTRACT 

Since the introduction of Windows™ 3.1 with its 
standardized application interface, graphics cards 
for personal computers have advanced significantly 
in price/performance and feature sets, as they take 
advantage of new silicon technology. While the PC 
market moved to 1024 x 768 displays that use at 
least lMByte frame buffers, DRAM frame buffer 
cost has exceeded controller cost in most card 
designs. As frame buffers on graphics cards con­
tinue to expand, the memory component costs dom­
inate the cost of the graphics subsystem. The 
system requirements of PCI (or VL) bus interfaces, 
directly integrated RAMDAC, synthesizer technol­
ogy, and additional graphics or video buses (feature 
connector, VAFC, and VESA Media Channel) put a 
significant pin count burden on the controller. The 
challenge for the graphics card designer is to imple­
ment the frame buffer with the most cost-effective 
memory technology while supporting the required 
bandwidth and feature sets for high quality dis­
plays and multimedia applications. Rambus7M 

500MHz, low pin-count memory technology meets 
these system requirements. 

THE IMPACT OF WINDOWS ON GRAPHICS CARDS 

As PC software moved from character-based to 
Windows applications, the amount of data that 
needed to be manipulated on the screen increased 
dramatically. In the original IBM CGA graphics 
card, only 2KBytes of data was required to specify 
an entire screen of information, and that format 
was widely used by applications of the day: Lotus 
123, Wordstar, DBase, and many others. Windows 
and Windows applications have changed all that; 
applications like Word, Excel, and Powerpoint now 
make use of the pixel-mapped surface of the dis­
play. At a minimum, these applications require 
VGA; at a resolution of 640 x 480 x 8bpp, over 
300KBytes of information must be written to the 
frame buffer to completely update the screen. 
Today, most PCs ship with frame buffers that are 
lMByte or larger in order to support 800 x 600bpp 
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or 1024 x 768bpp display resolutions. These resolu­
tions require somewhere between 512KBytes and 
768KBytes of data for the display. This represents a 
256 to 384 fold increase in display buffer size, in 
the last 12 years. 

The move to Windows applications has had sev­
eral effects on the graphics subsystem. Most PCs 
are now sold with some type of Windows GUI 
(Graphics User Interface) accelerator chip. Graphics 
controller companies such as Cirrus Logic, S3, ATI, 
Matrox, Tseng Labs, and Trident have added func­
tionality to their VGA cores to accelerate Windows 
operations, usually in the form of a bit-blit data 
path or controller, and sometimes font/color expan­
sion and line drawing engines. This new VGA func­
tionality plus a first-rate Windows driver 
significantly increases performance over the origi­
nal VGA chips. 

The increase in frame buffer size has reached 
the point where the frame buffer memory cost 
exceeds the cost of the GUI controller. Now that 
memory is the dominant cost item of the graphics 
board, the designer looks for ways to minimize the 
frame buffer cost while meeting required perfor­
mance. The DRAM alternatives for graphics frame 
buffers are discussed in a later section. 

As more multimedia applications become avail­
able for Windows PCs, GUI controllers will gain 
more features, such as video overlay capability, 3D 
support, additional acceleration features for Win­
dows, MPEG decompression, and audio support. 
Each of these functions further increases the frame 
buffer size and required bandwidth. 

SYSfEM ISSUES: COST FACTORS 

A designer must consider many system issues to 
deliver a successful graphics card: competitive cost, 
performance, features, reliability, time-to-market, 
and so on. Some of these issues are beyond the 
scope of this paper; however, because card costs 
and performance contribute the most toward the 



success of the end product, they will be examined 
here. The designer needs to evaluate several factors 
such as component costs (particularly the frame 
buffer DRAMs and graphics controller chip), mem­
ory expansion support, board space and EMI. Sec­
ondary factors are costs for assembly, testing, 
inventory, handling, and so on. As mentioned 
before, display resolution support determines the 
frame buffer size and cost, and must be considered 
first. 

SYSfEM ISSUES: DISPLAY RESOLUTION SUPPORT 

Mainstream PCs have moved to support 1024 x 
768 displays, and PC users want the ability to dis­
play 256 or more colors. Most PCs are sold today 
with lMByte frame buffers and can accept add-in 
graphics cards supporting at least 2MByte frame 
buffers. To accommodate these directions, in the 
design phase graphics designers try to create a 
frame buffer memory architecture that can support 
one to several megabytes. 

The card's maximum advertised display resolu­
tion and the number of bits per pixel (bpp) deter­
mine the amount of memory required for the frame 
buffer, the required frame buffer bandwidth, and 
the speed of the RAMDAC. If any of these three fea­
tures is deficient, the maximum display resolution, 
refresh rate, or pixel depth cannot be supported. 
Table 1 summarizes these relationships. 

Table 1: Display Resolution versus Memory 
Required, RAMDAC Speed and Bandwidth 

Display KB of DAC Max 
Resolution Memory Speed Bandwidth 

640x480 x 8 300 31.5 31.5 MB/s 

640x480 x 16 600 
MHz 

63 MB/s 

640 x480x 24 900 94.5 MB/s 

800 x 600x 8 469 50 50 MB/s 

800 x 600x 16 938 
MHz 

100 MB/s 

800 x 600x 24 1,407 150 MB/s 

1024 x 768 x 8 768 80 80MB/s 

1024 x 768 x 16 1.536 
MHz 

160 MB/s 

1024 x 768 x 24 2,304 240 MB/s 

1280 x 1024 x 8 1,280 135 135 MB/s 

1280 x 1024 x 16 2,560 
MHz 

270 MB/s 

1280 x 1024 x 24 3,840 405 MB/s 
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Table 1: Display Resolution versus Memory 
Required, RAMDAC Speed and Bandwidth 

Display KB of DAC Max 
Resolution Memory Speed Bandwidth 

1600 x 1200 x 8 1,875 170 170 MB/s 

1600 x 1200 x 16 3,750 
MHz 

340 MB/s 

1600 x 1200 x 24 5,625 510 MB/s 

In order to achieve the bandwidth necessary to 
support these display resolutions using conven­
tional DRAMs, designers have used two or four 
DRAM components in 32- or 64-bit wide data 
buses. These conventional DRAMs present a granu­
larity issue. For example, implementing a 64-bit 
bus requires four xl6 DRAMs (DRAMs with 16-bit 
I/O). Using 4Mbit DRAM technology, this leads to 
using four 256Kxl6 DRAMs (page mode, EDO or 
SDRAM) adding up to a 2MByte frame buffer. A 
lMByte frame buffer uses two DRAMs in a 32-bit 
bus. Most 64-bit graphics controllers use only a 32-
bit bus when configured with lMByte of memory. 
Most consumers are unaware that a 2MByte frame 
buffer is required to take full advantage of the 
card's advertised bandwidth and rated performance. 

Graphics Frame Buffer Cost Factors 

Since the frame buffer implementation domi­
nates overall component costs, the choice of DRAM 
device is critical. This requires some homework as 
there are several DRAM types available for graphics 
subsystems. DRAM prices vary from vendor to ven­
dor and with the organi7..ation and speed grade of 
the memory device. This year 16Mbit DRAM tech­
nology becomes lower cost on a per-bit basis than 
previous generation of 4Mbit DRAMs, so that the 
most cost effective frame buffers will be imple­
mented with 16Mbit technology. In addition, the 
DRAM choice impacts controller cost, since the con­
nection to the DRAM array determines the pin 
count and, potentially, the die area of the controller. 

GRAPHICS DRAM ALTERNATIVES 

Until recently. there were only two DRAM 
choices: page mode DRAMs or video-RAMs (VRAM). 
Today, the number choices has greatly increased. 
Page mode DRAMs are being replaced with 
Extended Data Out (EDO) DRAMs, which provide 
added bandwidth by reducing page mode cycle 
times. Synchronous DRAMs (SDRAMs) and Syn­
chronous Graphics RAMs (SGRAMs) attempt to 
solve the bandwidth issue by adding a new synchro­
nous interface to a standard DRAM core. Denser 
VRAMs, Window-RAMs (WRAMs}, and Synchronous 



VRAMs (SVRAMs) are available for dual-ported 
frame buffers. The Rambus DRAM (RDRAM™) rep­
resents a revolutionary approach to increasing 
bandwidth. RDRAMs transfer data at a 500MHz 
rate over a narrow, byte-wide bus, referred to as the 
Rambus Channel. 

Extended Data Out fEDOl 

EDO DRAMs are like conventional page mode 
DRAMS, except that the way in which data is dis­
abled on a read is changed from the rising edge of 
CAS to WE. The outputs are held when CAS rises. 
This combined with a few other changes allow EDO 
DRAMs to cycle faster in page mode. therefore offer­
ing additional bandwidth. The signals RAS, CAS, 
WE, and OE remain the same as for a page mode 
DRAM, making the design transition to EDO 
straightforward. In order to provide sufficient band­
width for graphics applications, the wide 16-bit 1/0 
versions of these DRAMs are available in the 4Mbit 
generation. A l 6Mbit page mode or EDO DRAM is 
not suitable for graphics due to granularity issues. 
Although a 16Mbit DRAM provides sufficient stor­
age for a 2MByte frame buffer, it does not provide 
enough performance to meet associated display 
requirements. 

SDRAM and SGRAM 

SDRAMs have an evolutionary design compared 
to conventional DRAMs. Internally, they are 
arranged in two banks, each independent and hold­
ing half of the DRAM bits. Available in a variety of 
bus widths (x4, x8, and xl6), these devices are 
applicable for graphics at the 4Mbit (xl6) and 8Mbit 
SGRAM (x32) densities. Although 16Mbit SDRAMs 
are becoming more available this year, the 16-bit 
wide bus is not fast enough to support the display 
refresh performance requirements of the majority of 
important display sizes. 

While the interface to an SDRAM appears simi­
lar to a conventional DRAM, the timing and "com­
mands" sent to a SDRAM are different from the 
RAS/CAS timing normally associated with a DRAM. 
The graphics controller designer must develop a 
new state-machine in order to support SDRAMs. 

SGRAMs, which are based on SDRAMs, are 
offered in the 8Mbit density. They use a x32 inter­
face in order to provide higher bandwidth for graph­
ics. SGRAMs include the block write function, 
which allows SGRAMs to write as much as 32 bytes 
in parallel, but only every other clock cycle. They 
also have a single-color register, so that color expan­
sion requires two passes for a font. Block write adds 
an increase in bandwidth of up to four times for pat­
tern fills and up to two times for fonts. In addition 

to the wider bus, SGRAMs have one more pin, DSF, 
that is used to encode "commands" to the SGRAM. 

Most SDRAM vendors offer parts that operate up 
to 66MHz. Data sheets have become available for 
SGRAMs, with some vendors showing 1 OOMHz bin 
split parts. Since parts are not yet in production, 
yield on these parts has not been established. 
Achieving 1 OOMHz operation on a board, using 
LVTTL signaling will be very difficult, because of 
board layout, clock/ data trace, and skew issues. 
Memory expansion sockets further complicate the 
board design such that SGRAM configurations sup­
porting expandable frame buffers are not expected 
to achieve the component's specified lOOMHz opera­
tion in a system environment. 

Single-Ported DRAM Approach 

VRAM and WRAM 

VRAMs are available in up to 4Mbit densities. 
The 4Mbit parts are arranged as xl6 devices (for 
both parallel and serial ports) and are contained in 
64-pin packages. Because of the their dual-port 
design and other features, VRAMs have cost up to 
twice that of single-ported DRAMs, and, thus, have 
been used only in high performance add-in cards. 
Most current card designs are moving away from 
VRAMs because of cost and the additional pin 
count incurred due to the second port. 
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Samsung offers the WRAM, a special version of 
an 8Mbit VRAM, which is intended to be priced 
40%-50% higher than conventional DRAMS. The 
WRAM has a 32-bit parallel interface and a 16-bit 
serial interface (for video). It also includes dual­
color block write capability and some aligned block 



VRAMs (SVRAMs) are available for dual-ported 
frame buffers. The Rambus DRAM (RDRAM™) rep­
resents a revolutionary approach to increasing 
bandwidth. RDRAMs transfer data at a 500MHz 
rate over a narrow, byte-wide bus, referred to as the 
Rambus Channel. 

Extended Data Out (EDOl 

EDO DRAMs are like conventional page mode 
DRAMs, except that the way in which data is dis­
abled on a read is changed from the rising edge of 
CAS to WE. The outputs are held when CAS rises. 
This combined with a few other changes allow EDO 
DRAMs to cycle faster in page mode, therefore offer­
ing additional bandwidth. The signals RAS, CAS, 
WE, and OE remain the same as for a page mode 
DRAM, making the design transition to EDO 
straightforward. In order to provide sufficient band­
width for graphics applications, the wide 16-bit I/0 
versions of these DRAMs are available in the 4Mbit 
generation. A 16Mbit page mode or EDO DRAM is 
not suitable for graphics due to granularity issues. 
Although a 16Mbit DRAM provides sufficient stor­
age for a 2MByte frame buffer, it does not provide 
enough performance to meet associated display 
requirements. 

SDRAM and SGRAM 

SDRAMs have an evolutionary design compared 
to conventional DRAMs. Internally, they are 
arranged in two banks, each independent and hold­
ing half of the DRAM bits. Available in a variety of 
bus widths (x4, x8, and xl6), these devices are 
applicable for graphics at the 4Mbit (xl6) and 8Mbit 
SGRAM (x32) densities. Although 16Mbit SDRAMs 
are becoming more available this year, the 16-bit 
wide bus is not fast enough to support the display 
refresh performance requirements of the majority of 
important display sizes. 

While the interface to an SDRAM appears simi­
lar to a conventional DRAM, the timing and "com­
mands" sent to a SDRAM are different from the 
RAS/CAS timing normally associated with a DRAM. 
The graphics controller designer must develop a 
new state-machine in order to support SDRAMs. 

SGRAMs, which are based on SDRAMs, are 
offered in the 8Mbit density. They use a x32 inter­
face in order to provide higher bandwidth for graph­
ics. SGRAMs include the block write function, 
which allows SGRAMs to write as much as 32 bytes 
in parallel, but only every other clock cycle. They 
also have a single-color register, so that color expan­
sion requires two passes for a font. Block write adds 
an increase in bandwidth of up to four times for pat­
tern fills and up to two times for fonts. In addition 
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to the wider bus, SGRAMs have one more pin, DSF, 
that is used to encode "commands" to the SGRAM. 

Most SDRAM vendors offer parts that operate up 
to 66MHz. Data sheets have become available for 
SGRAMs, with some vendors showing lOOMHz bin 
split parts. Since parts are not yet in production, 
yield on these parts has not been established. 
Achieving 1 OOMHz operation on a board, using 
LVTTL signaling will be very difficult, because of 
board layout, clock/data trace, and skew issues. 
Memory expansion sockets further complicate the 
board design such that SGRAM configurations sup­
porting expandable frame buffers are not expected 
to achieve the component's specified lOOMHz opera­
tion in a system environment. 

Single-Ported DRAM Approach 

VRAM and WRAM 

VRAMs are available in up to 4Mbit densities. 
The 4Mbit parts are arranged as xl6 devices (for 
both parallel and serial ports) and are contained in 
64-pin packages. Because of the their dual-port 
design and other features, VRAMs have cost up to 
twice that of single-ported DRAMs, and, thus, have 
been used only in high performance add-in cards. 
Most current card designs are moving away from 
VRAMs because of cost and the additional pin 
count incurred due to the second port. 

Samsung offers the WRAM, a special version of 
an 8Mbit VRAM, which is intended to be priced 
40%-500,1> higher than conventional DRAMs. The 
WRAM has a 32-bit parallel interface and a 16-bit 
serial interface (for video). It also includes dual­
color block write capability and some aligned block 



In PCI or VL based systems, most of the GUI con­
troller pins are consumed by the local bus, frame 
buffer, and monitor interfaces. PCI requires about 
45 signal pins, and VL uses even more. Counting 
power and ground connections, well over 55 control­
ler pins are claimed by the local bus interface. 
Many of the current GUI controllers include an inte­
grated RAMDAC to reduce overall component costs. 
In the integrated RAMDAC case, the monitor output 
requires an additional 10 to 15 pins. PCI requires 
the support of a BIOS ROM, which cannot sit elec­
trically on the PCI interface and thus requires more 
pins. These factors leave about 120 to 140 pins of a 
208-pin package unclaimed. Those pins are all that 
are available to support the frame buffer and any 
other functions. 

Frame buffers using a 32-bit data bus to inter­
face to single-ported DRAMS (EDO, SDRAM, 
SGRAM) will use 52 to 55 signal pins plus 12 to 18 
power and ground pins for a total of 64 to 73 pins. 
A 64-bit data bus takes up somewhere between 105 
and 115 pins. Therefore, a 64-bit bus uses almost 
all remaining pins on a 208-pin package. A 32-bit 
memory interface leaves about 45 pins for other 
controller functions, but its reduced frame buffer 
bandwidth limits the display resolutions that can 
be supported. 

Dual-ported memory, such as VRAM or WRAM, 
contribute to higher subsystem costs in two ways: 

Table 2: 2MByte Frame Buffer Comparisons 

EDODRAM 
4Mbit 
VRAM 

Organization 256Kx 16 256Kx 16 

Number of Chips 4 4 
Required 

Bandwidth Per Chip 80 MB/s 50 MB/s 

Relative Cost 1.05 1.9 

Board Area 1.83 sq in., .8 sq in 
(component footprint 1.36 sq in 
only) 

Package 40SOJ or 64 ZIP 
40/44TSOP 

Pins Required on the 95 - 110 80 - 160 
controller 

the dual-ported DRAMs are higher cost than single­
ported DRAMs, and their interface can require more 
pins on the controller. In the past, the serial port 
was connected to a separate RAMDAC chip. As con­
troller silicon has moved to smaller geometries and 
can accommodate more circuitry, many controller 
vendors have integrated the RAMDACs into their 
GUI controllers to reduce overall component costs. 
With the RAMDAC on the controller, the serial port 
must be connected back to the graphics controller. 
This situation further reduces the total number of 
available controller pins, or could force the control­
ler into a larger, more expensive package. 

Rambus DRAMs provide high bandwidth from 
the lowest pin-count interface. The interface to the 
b}rte-wide Rambus Channel takes only 31 pins on 
the controller. The interface consists of 15 active 
pins for data, control, and enable functions, with 
most of the rest power and grounds. The Rambus 
frame buffer saves up to 80 pins over alternative 
frame buffers. The pin-savings frees up the pad 
area on the controller die, allowing savings on con­
troller die costs and controller package costs. The 
graphics designer is able to incorporate additional 
functions in the controller, such as support for 
video interfaces, feature connectors, or 3-D graph­
ics support. The Rambus-based frame buffer allows 
the lowest cost controllers and lowest cost support 
for expanded feature sets. 

WRAM SD RAM SGRAM RD RAM 

256Kx32 256Kx 16 256Kx 32 2Mx8orx9 

2 4 2 1 

160 MB/s 132 MB/s 264- 400 500MB/s 
MB/s 

1.5 1.2 1.3-1.6 1.1 - 1.2 

1.58 sq in 1.54 sq in. 1.1 sq in 0.1 sq in vert, 
0.5 sq in hor 

120 PQFP 44/50TSOP lOOTQFP 32 SVP or 
SHP 

85 - 170 67 -72 or 68- 72 or 31 
114 - 119 115-120 
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BOARD DESIGN CONSIDERATIONS 

Because their electrical specifications influence 
board layout, PCI and VL bus interfaces often deter­
mine minimum board size. To ensure operation at 
up to 66MHz, the PCI and VL specifications dictate 
the location of the local bus interface and 1/0 con­
nectors. The specifications also control the location 
of expansion connectors, such as the feature con­
nector, VAFC, or Vesa Media Channel. PCI further 
specifies that no signal to the 32-bit interface por­
tion of the controller can be more than 1. 5 inches 
away from the connector, further restraining the 
controller chip location. PCI requires that only a sin­
gle component can attach to the bus. 

While the height of the board is generally deter­
mined by the PCI or VL specification, the board 
developer still tries to minimize the remaining sec­
tions of the board to keep costs low. The next factor 
to affect board size is the area required for the mem­
ory array of the frame buffer. As discussed above, 
PC designers have moved to supporting 64-bit data 
paths to multiple DRAMs connected in parallel in 
order to keep up with users' desires for higher dis­
play resolutions. 

Due to its compact design, Rambus Technology 
helps to reduce board space. Most PC graphics 
frame buffers can be implemented with a single 
8Mb or 16Mb RDRAM component. There are only 
13 high-speed signals, plus about three other sig­
nals that need to be routed on the board. With the 
possible exception of Sin/SOut), all of the signals 
are routed as straight traces on the top of the 
board, leaving no signals on the bottom of the board 
underneath the memory array. The Rambus-based 
frame buffer can use only one to two square inches 
of board space, even if memory expansion is sup­
ported. 

Smaller boards help to reduce the cost of the 
overall PC. The board size determines how many 
boards can fit on a single panel for PC board manu­
facture: the more cards per panel, the lower the PC 
cost. 

Electro-Magnetic Interference (EMil 

All systems need to be able to pass FCC require­
ments, and, in many cases, more stringent TUV 
requirements. Good board and layout design prac-
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tices are required to avoid coupling high-frequency 
noise to signals leaving the circuit board. 

Although RDRAMs operate at a much higher fre­
quency than conventional DRAMs, a Rambus frame 
buffer uses significantly fewer wires. The voltage 
swing on the Rambus Channel is much lower than 
the LVTfL signal swing. The Rambus Channel is ter­
minated and very short (usually about one inch in 
most graphics designs). The result of these charac­
teristics is that a Rambus subsystem radiates only 
1I10th of the radiated energy that is generated by a 
comparable performance frame buffer using a 
66MHz 64-bit wide data bus. 

CONCLUSIONS 

As silicon technology continues to advance, 
allowing more features and performance to be inte­
grated into graphics controller products, PC users 
are demanding more and more sophisticated graph­
ics and multimedia applications. The frame buffer 
implementation of the graphics card can be the sin­
gle largest factor in determining the performance, 
cost, and board design of the end graphics sub­
system. Today's graphics card designers are faced 
with many more feature options and DRAM alterna­
tives. Out of all the frame buffer alternatives, Ram­
bus Technology offers the highest bandwidth and 
potential for lowest system costs and expanded fea­
ture sets. 
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Performance Requirements for Next Generation Chipsets 
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The technology acceleration represented 
by ever increasing demands for greater 
personal computer performance creates 
tremendous requirements for PCI chip 
makers. New generations of PCs, 
workstations, and servers will require 
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tremendous flexibility as well as high 
. performance.. For more information 
about Intel's PCisets, call a local sales 
office or the Intel Literature Center at 
800-548-4725 (in the U.S. and Canada). 



PCI Bus Technology: 
Design Issues and Answers 

Bernie Rosenthal 
Vice President, System Interface Products 

AMCC 

In some circles. PCI local bus is 
described as a total system solution for 
increased performance Jn network adapters, 
RAID disk drives, full-motion video, 
graphics, and a wide range of other high speed 
perlpherals. The features and benefits of 
POI compared to buses such as ISA (Industry 
Standard Architecture) and EISA (Enhanced 
ISA) are many. Unfortunately, It's tough to 
get on th& bus unless you've got somewhere 
betw9'1n nine and 12 months of extra 
engineering time to invest. Thars about how 
long it takes to run through the myriad of 
technical details and Implement a custom 
solutlon, not to mention unraveling and 
resolving the ambiguities of the POI bus 
specification. 

AMCC's 85930-33 PCI Matchmaker 
Controllers address design issues associated­
with the PCI looal bus and greatly reduce the 
time required to design a compliant adapter 
carcl. The controllers offer a flexible, 
general-purpose interface that easily 
connects most add-on appllcations to the POI 
local bus. The devices provide a complete 
master/slave controller compliant with 
revision 2. 1 of the PCI speo. 
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High Speed Data Acquisition System for Ultrasound 
Data Based on the PCI Bus 

S.Freear, B.S.Hoyle, N.J.Bailey 
Department of Electronic and Electrical Engineering 

University of Leeds, LS2 9JT, UK. 

ABSTRACT 

Intravascular Ultrasound is an 
exciting new area of medical imaging. It 
is a pulse-echo technique employing 
high frequency transducers (20-30 
MHz), this provides high resolution. The 
structures we are interested in 
visualizing are arteries, in particular the 
coronary arteries of the heart. The 
source of ultrasound is inserted into the 
artery. Cross sectional images can be 
built up by rotating the source. As 
arteries are not stationary objects, the 
capture, process and display has to be 
real time (40 frames/sec). 

The aim of this project has been to 
develop a real-time clinical ultrasound 
imaging system capable of real time 
display and post processing. In 
capturing the raw ultrasound signal 
further processing can be applied to 
extract information on the nature of the 
tissue. Previously images were video 
processed and stored on video tape. A 
fully digital system does not suffer any 
degenerative effects, and a reliable 
database can be formed. 

The first stage of the project has 
been to design a data acquisition card 
based on the PCI bus. The card accepts 
raw analogue ultrasound data. The data 
is digitally sampled at 250 million 
samples per second, and transferred 
across the PCI bus. The data is then 
processed to produce and image. 

BACKGROUND 

The source of ultrasound is at the 
end of a one meter long wire catheter. 
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figure 1 below. The catheters are 
commercially available from Boston 
Scientific Corporation (Crowley et al 
1989). High definition cross sectional 
images of the artery provide important 
information regarding disease processes 
within the arterial wall (Gussenhoven, 
1988). 

Trannspare111 dome 

I 

Figure 1 Cross section of an NUS catheter 

In this paper the design of an 
ultrasound data acquisition system is 
described. The essential difference from 
a commercial imaging machine (Born, 
Lancee, Egmond, 1972) is that the raw 
ultrasound signal is being digitized 
before demodulation. Capturing the raw 
data enables the processing of valuable 
tissue characterization parameters 
(Recchia 1994) and the testing of a 
speckle reduction algorithm (Healey, 
Leeman 1993). The design is based 
around a standard Personal Computer, 
PC. and comprises three 'plug-in' circuit 
boards or cards; one to excite and 
receive the ultrasound signal, one to 
control the rotation of the catheter, and 
one to digitally capture the raw 
ultrasound signal. 



DESIGN REQUIREMENTS 

Pulser Receiver 

The ultrasound generator /receiver 
must be capable of a maximum firing 
spike of 50 volts, and a half power pulse 
width of 4 ns. Maximum pulse 
repetition frequency will be 20 kHz. 

Data Acquisition 

Usually in ultrasound imaging 
systems digitization takes place after 
the signal has been demodulated. In 
order to extract additional information 
that can be used both for speckle 
reduction and characterization of the 
tissue structure the raw radio frequency 
(RF) signal is digitized. The signal has a 
bandwidth of 10 MHz and a central 
frequency of either 20 MHz or 30 MHz 
depending on the ultrasound catheter 
used. 

Initially as data will be collected 
from phantoms and in-vitro tissue, real­
tirne image display will not be 
necessary. In order to get up and 
running quickly with data collection the 
first phase of the design will therefore 
be a high speed acquisition system. 
Processing such as filtering and 
coordinate transformation both 
necessary for image display, can be 
performed in software. However these 
functions will be designed in hardware 
in the second phase. 

Mechanics 

The catheter comprises of a single 
ultrasound element and is therefore 
rotated in order to build up a 360Q 
image. Maximum speed of rotation for a 
real-time image will be 2400 rpm. 
Accurate image display requires a 
constant angular velocity (0.1 % error). 
The wire catheter is rotating within a 
sheath in the patients artery. Current 
monitoring must be incorporated within 
the motor drive in case the catheter 
becomes twisted. 

205 

General 

Additional features required by 
clinicians would include simple image 
measuring tools, in order to calculate 
areas, frame by frame. Such features 
will be easily implemented in software. 
Rather than having a separate imaging 
system and post processing, an 
integrated system based on a personal 
computer, PC would be favorable. The 
design is modular and so can be based 
around a series of plug-in circuit boards 
or cards. 

Data Rates 

The motor control card and the 
pulser/ receiver are not data rate 
dependent as they both simply require 
initial setup. In order to produce a real­
time image (40 frames/sec) a sustained 
data rate of 20 MBytes/sec. The ability 
to transfer the original data set will 
require even higher bandwidths (40 
MBytes/sec) 

HARDWARE DESIGN 

Pulser /Receiver 

The card to excite and receive 
ultrasound is based on an standard ISA 
bus plug in card. It is part of a flaw 
detector designed by AEA Sonomatic. 
The ultrasound firing voltage is variable 
from -5 to -200 volts in steps of 5 V. The 
width of the ultrasound spike is variable 
from 4 ns to 200 ms in steps of 5 ns. 
Both power and pulse shape are 
software controlled. Pulse repetition 
frequency is set from the digitizer card, 
and is variable to a maximum of 30 
kHz. Safety features include shutdown 
in case of excessive current. This 
prevents incorrect software set-up. 

Motor Control 

The ultrasound element is rotated 
by a three phase brushless DC motor 
(Sonotron Ltd.). A drive board, also 
based on the ISA bus, contains all the 
circuitry to control the motor. The 



motor contain a shaft encoder which is 
fed to a phase detector in order to 
provide closed loop control. The phase 
detector output is summed with the 
reference phase output to produce an 
error voltage. This error voltage is 
integrated and used to modulate the 
motor drive voltage. If the rotor lags 
behind the stators magnetic field, a 
greater error occurs from the phase 
detector. This in turn increases the 
stator field and hence reduces the rotor 
lag. During power up, power down and 
freeze the motor is under board control 
so as not to damage the motor. Rotation 
of the motor is variable from 100 - 5000 
rpm. To ensure patient safety the board 
is 'fail safe' and defaults to power down 
in the event of software error forcing the 
motor out of operating range. In case of 
excessive current the motor again shuts 
down, important in case the catheter 
has become twisted. 

Digitizer 

The high speed data acquisition 
card is based· on a HI 1166 from Harris 
Semiconductors. This part is a 250 
MSPS flash A/D converter featuring 
differential and integral linearity of ±0.5 
LSB or less, single power supply (-5.2V) 
and low power consumption 1.4 Watts. 
The digitizer card accepts the 'raw' un­
filtered radio-frequency, RF, signal from 
the pulser /receiver card. The output of 
the A/D converter is demultiplexed by 
an ECL-TI'L data latch ( MCIOH602 
from Motorola). The four resulting data 
steams of 62.5 MBytes/sec is buffered 
in four 2K FIFO memory-. In stage one of 
the design this FIFO memory is 
interfaced directly to a computer bus. 

Bus Data Rates The maximum data 
rate on the AT ISA bus is typically 8.33 
MBytes, assuming 16 bit data path, two 
bus clocks per transfer and an 8.33 
MHz clock. The EISA bus is 32 bit wide , 
and, if the target device supports burst 
transfers, is capable of 33 MBytes/sec 
transfers. The Microchannel is capable 
of 40 MBytes/sec, being 32 bit and 10 
MHz (Shanley, Anderson 1993). The 
Video Electronics Standards 
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Association, VESA local bus solution 
produced a sta.Ildard capable of 132 
MBytes peak rate for burst reads. The 
Peripheral Component Interconnect 
(PCI) standard (PCI Local bus 1993) ts 
also designed to operate at 132 MBytes 
(32 bit 33 MHz clock. The PCI solution 
backed by a Special Interest Group 
(SIG) of most major companies involved 
in PCs and is viewed as a more forward 
looking standard than VESA. The major 
benefit of the PCI bus is that it is 
processor independent and capable of 
higher sustained data rates than VESA, 
the PCI bus is becoming standard on 

· high end PC's including Pentiums. 

The design specification for PCI is 
currently based on revision 2.0 dated 
30.4.93. Until mid way through 1994 
there were few support chips that 
provided a simple interface to the PCI . 
bus. This picture is changing with 
programmable logic (PLD) companies 
releasing code to implement an interface 

PCI Interface The design solution 
chosen is based around the S5933 PCI 
controller from Applied Micro Circuits 
Corporation (AMCC 1994). The device 
provides address decoding, address 
sourcing, and burst transfers. The block 
diagram is shown in figure 2. 

A 32 bit FIFO facilitates system to 
system synchronization, the EPROM 
interface allows pre-boot initialization. 
To aid prototyping applications a 
developers kit is available, based on the 
55933 (PQFP). The kit comprises of a 
PCI compliant edge connector, two pre­
programmed 22V10 PLD's provided for 
use in pass-thru mode. A serial NVRAM 
and byte-wide FI.ASH EEPROM are in 
system programmable though the NV 
build program. 

FIFOs on board the 55933 are 
capable of bus mastering as each 
(read/write) has an address pointer and 
transfer count register associated with 
its PCI bus transaction. FIFO expansion 
is supported as shown in figure 3. 
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Figure 2 Block Diagram of the S5933 PCI Controller (AMCC 1994) 
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Figure 3 Block Diagram of External FIFO 
Interface 

To support the high data rate 
(possible at a full system clock 33 MHz) 
a synchronous design is chosen. 
External FIFO control is provided by a 
22Vl0 PLD. To read from the external 
FIFO the PLD generates read-enable 
(RDENl, RDEN2) and output-enable 
(OE) and WRFIFO#. The PLD monitors 
the output ready (OR) flag of the 
external FIFO and WRFULL of the 
85933. 
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PRELIMINARY RESULTS 

The data acquisition system is 
capable of collecting 2.46 cm tissue 
depth of ultrasound data at 250 MSPS. 
This is using the full 8 KBytes of FIFO. 
The PCI controller transfers data across 
the PCI system bus concurrently with 
further acquisition. Currently a simple 
interface has been implemented 
displaying data in oscilloscope style. The 
major drawback with the system so far 
is that an image takes some time to 
compute (1 minute). Although this does 
not present a problem with in-vitro 
work, for the design to be used in-vivo a 
real time display is required. 

CONCLUSION 

The PCI bus on a modem computer is a 
powerful tool capable of the high speed 
transfer of data. For a device such as an 
ultrasound imager this has the benefit 
of a more flexible system. Data could be 
more easily stored and recalled digitally. 
The advantage of capturing the raw RF 
data enables the testing of algorithms 
designed to enhance the data set. The 
project is on-going, future work will aim 
at accelerating image display. 
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ABSTRACT 

PCI Rus performance is advertised as "132 MR/s" (MRytcs 
per Second). Rut, in measuring PCI husmaster adapters in 
available systems, aggregate throughput ranges from a low of 8 
MR/s to a high of 85 MR/s. 

As the lead designer of IRM's Auto LANStreamcr PCI 
Token Ring LAN adapter. I am concerned with maximi1.ing my 
customer's system throughput. Since this !>cl adapter may be 
used in any PCI system. I. as the designer, can hcst satisfy the 
customer hy understanding the availahle PCI systems and the 
interaction between various system designs and my product. 
Two questions will he explored in this paper: 
• Where did all that l>cl handwidth go? 

• How can my customers get maximum system performance? 

I will focus on adapter and system design issues that arc 
under the control of the adapter designer and/or the customer. 

OVERVIEW 

This paper starts with a look at how I view performance 
with regards to the !>cl hus (within the context of this paper). A 
look at how the !>cl adapter's design influences it.~ efficiency on 
the PCI hus is second. Next, an overview of the factors that 
influence PC! performance for some of the most common PCI 486 
and Pentium hascd systems is reviewed. A discussion of some 
specific alternative system designs, highlighting their performance 
benefits or penalties then follows. The last topic is a few 
suggestions for maximizing performance on current systems while 
awaiting systems that more fully exploit PCI's potential. 

WHAT IS PCI PERFORMANCE 

The PCI bus is most often characterized as a 132MR/s bus, 
but that is the maximum data transfer ratc 1 and is only achievable 
by transferring infinitely large hlocks of data. This is heller 
referred to as the 'handwidth · of PCI, a theoretical number. The 
data rate through the !>cl hus (the PC! hus 'throughput') is 
determined hy dividing the numher of bytes transferred by the 
time taken to transfer them. I consider aggregate PCl-mcmory 
throughput as the key to I>cl performance. 

1 PCI Local Rus Specirication Revision 2.0 Section 1.5 pg. 5 
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A high performance l'CI device can he characterized as a 
'master' or 'husmastcr'. transferring the hulk of the data directly 
to or from system memory; or as a 'target', 'slave', or 'shared 
RAM' in whil:h the system processor transfers the hulk of the data 
hetween the devil.:e and system memory. Performance of a 
husmaster is determined hy the !'Cl-memory interface. 
Performance of a slave device is dependent on more factors: the 
execution speed of the processor, the processor to memory 
interface. and the interface hctwccn the processor and the slave 
device. Each data item must he moved twice, once across the 
Processor-l>cl interface, and once across the CPU-memory 
interface. My focus is on husmastcr devices 

Other Factors There arc other factors affecting the 
performance or l'CI systems and l'CI devices. Herc is a look at 
some other important performance parameters. 

• For each l>cl adapter. the portion or the PC! bus's total 
throughput that is availahle for its use is determined hy how 
long it takes to start a PC! hus transaction ('bus access 
latcm:y'\ and how long it is able to remain a master 
('tenure·) on the PC! hus. Rus access latency is affected by 
the system's arhitration logic. the PC! bus traffic in progress, 
and the adapter's own internal start-up delays (if any). An 
adapter's tenure on the hus can be limited by the PCI 
Latency Timer value set hy the system, any target disconnect 
lugi~· designed to limit data transfers. as well as data hurst 
length limitations in the adapter itself. 

• The PC! spec docs not architect hus arhitration, so each 
system designer is free lo choose there own arhitration 
scheme. l'CI hus arhitration can be designed to efficiently 
distrihute the availahle l>cl throughput among the PCI 
devices, in proportion to the throughput that they need. The 
PCI Configuration registers 'MIN_GNT' and 'MAX_LAT.J 
provide sufficient information for a system to derive 
reasonahle arhitration priorities and Latency Timer values. 
The commercially availahlc systems that I have tested do not 
perform such optimization. Instead the arbitration is set tn a 
fixed priority scheme. allowing the processor. or one of the 
l'CI devices to hog the hus, potentially keeping other PC! 
devices locked out of memory for extended periods of time. 

• Software design, and device drivers in particular. can greatly 
affect the performance of a l'CI device as well as the overall 
system performance. A good hardware design should help 
the software hy minimi1.ing the overhead associated with 

2 l'CI Spec. Section 3.4.4. 3.4.4.1. 3.4.4.2. pp. 42-44 
-1 1>cJ Spec. Section 6.2.4 pg. 159 



data transfers (memory management and huff er manipulation 
required to support the device's busmastering) and 
processor-to-device interaction {interrupts and control l/0). 
Maintaining data buffers that arc aligned with the 32-hit 
width of the PC! hus will increase the device's bus 
efficiency. Maintaining large contiguous huffcrs allows for 
longer data hursts and increased hus efficiency. 

• The PCI hus will start to impact CPU performance if PCI 
devices arc accessing memory when the CPU needs to access 
memory. It is important for a system to have sufficient 
memory throughput availahle for simultaneous processor 
execution and l'Cl hus memory access. Many systems do not 
have the processor-memory throughput to run at full speed 
(maximum Mil's) even without any other devices in !he 
system. Moving significant data through the PCI hus can 
further restril:I the processor's performance. These effects 
arc diffic.:ult to detect on systems handling nominal amounts 
of data traffic. In network server systems and similar high­
data traffo: environments. this 'memory starvation· can he 
minimized hy choosing a system with high memory 
throughput and choosing highly efficient networking and 
storage adapters. 

• Processor cache size and design (write-hack vs. write­
through) can affect the percentage of processor memory 
transactions that can he handled within the cache. Every 
transaction handled within the cache is one less transaction 
that has to get through lo memory. Write-hack caches have 
an additional requirement that data writes lo memory he 
checked against the cache so that processor and PCI data gets 
written to memory in the correct order. 

Modeling all of these factors and designing systems for 
maximum performance arc hot topics that. unfortunately. will not 
fit in this paper. 

PCI ADAPTER EFFICIENCY 

Maximum PCI adapter efficiency is achieved when the 
adapter causes no delays in data transfers heyond the architccted 
PCI timings and the delays introduced hy the system in which it is 
installed. The PCI architecture shows the shortest normal (non 
Fast Rack-to-Rack4) data transfer as requiring 3 clocks for a write, 
and 4 clocks for a read. 
The individual clock cycles in a normal transfer arc5: 

• Write - Idle. Address. Oata 
• Read - Idle. Address, tum-around, Oata 

Most systems cannot provide this ideal 0-wait state timing. 
The delays can he summarized in two numhcrs. The first is the 
'delay to first data', during which the PC I-memory hridgc is 
receiving the l'CI request, forwarding the request to the memory 

4 PCI Spec. sct:tion 3.4.2 pg. 39 
5 PCI Spec. section 3.3.1 pp. 28. and 3.3.2 page 29 
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controller. reading or writing the data from/to system memory or 
an internal huffer. and then returning the first data phase on the 
PC! hus. For simplicity. I comhinc all of these delays into a 
single number cakulatcd as the numhcr of clocks from the prior 
Idle cycle (FRAME# and !ROY# not-asserted) to the first data 
transfer (IRDY# and TRDY# hoth asserted). The second numhcr 
is the 'delay to suhsequcnt data· which is the number of clocks 
from one data phase to the next during which the next memory or 
buffer location is being accessed and transferred to the PCI bus. 
The ideal read would he dcscrihed as having 4 clocks to first data, 
and I clock to suhscqucnl data. The ideal write would have 3, 
and 1. Rorrowing from the nomenclature of cache and memory 
timing, I list the first 4 data phases, to show the relationship 
between suhsequcnt data phases. Thus. the ideal read is '4-1-1-
1 ', and the ideal write is '3-1-1-1 ·. 

Typical delay to first data values range from 9 clocks (fast) 
to more than 15 clocks (slow). The 'delay lo suhscqucnt data' can 
range from I clock (ideal) to 4 clocks (slow). 

In the sample transaction shown in the next figure, the 
system asserts Grant (GNT#) to the l'CI device while a prior 
transadion is in progress. In this sample the master docs not add 
any delays. the target adds 2 (read) or 3 (write) wait states to first 
data. and adds I wait state hctwccn first and second data (all by 
de-asserting TROY#). To model this sample, add the architcctcd 
cycles (3 for write or 4 for read) to the added wait states (3 for 
write or 2 for read). The total time to first data is 6 clocks. The 
time to suhscqucnt data is 2 clocks (I required. I added by the 
target). Thus the timing would he represented as 6-2-2-2. 

Cycle I is the Idle cycle 
Cycle 2 is the address phase 
Cycle 3 would he the turn-around cycle for a read 
Cycles 3. 4. and 5 arc target wait states 
Cycle 6 is the first data phase 
Cycle 7 is a target wait state hctwccn data phases 
Cycle 8 is the second (and last) data phase 
Cycle 9 is the idle cycle for the next transaction 

.................... ·-·····-··Sample PCI Bus Transaction .... _ ............. . 
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486 SYSTEM THROUGHPUT 

Intel 80486 hascd systems appear to he the common PCI hus 
platform for the desktop. These systems arc charactcri7.cd hy a 
single 32 hit wide memory data path lo a 70nS memory. a small 
write-through cache, a fixed priority PCI hus arhilration, and a 
PCI clock frcqucm:y of 33Mhz. These factors comhinc to provide 
an aggregate PCI to system memory throughput between 30 and 
40 MR/s. 

The next chart shows theoretical throughput with timings 
representative of high and low performance 4R6-hascd systems. 
11 clocks to first data (R or 9 wail stales) is faster than most 4R6 
systems and comhincd with three clocks per data phase (2 wail 
slates), would he a top performer among 4R6 systems. 13 clocks 
to first data with 4 clocks per data phase would he a slow system 
in this class. 
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The PCI to memory interface is given the task of moving 
data hctwccn memory which is running at 70nS, and the PCI 
device which is running as fast as 30nS. Rcforc memory can he 
accessed, the PCI request has to he given access to memory. This 
may involve wailing for the completion of prior PCI transactions 
within the huffcrs. processor transactions. or memory refresh. 
This plus request/response staging within the interface cause the 
additional delay to first data. On sustained hursts, the PCI hus 
must wait to allow .the memory cycles to complete. This leads to 
an added wail stale or two helwccn suhscqucnl data phases 
depending on the design of the memory controller. 

Since the PCI hus and the memory arc operating with the 
same 32-hit data width. each data phase on the PC! bus requires a 
memory access cycle. If the transactions do not use all four hytes 
on the bus, the effective data rate drops since fewer bytes arc 
transferred in the same period of time. 

The processor-memory bandwidth on the fastest 486 (DX2-
66, and DX4- I <Kl) systems is harcly enough Ii.Jr the processor. 

6 The throughput graphs show calculated throughput numhcrs 
chosen to show the range of performance ohscrvcd in systems of 
this class. The ploUcd performance does not reflect a specific 
system or set of measurements. 
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Addition of very heavy 1/0 can he observed as a loss in processor 
performam:e. This would suggest that 486 based network servers 
or dalahase engines should he configured so as not to overload the 
PCI bus with data transactions (creating an '1/0 bound' system). 
On systems with slower processors, the processor will generally 
determine the system overload point ('processor bound'). 

The IRM Auto LANStreamcr PCI adapter is designed to 
burst longer on slower systems, providing for 196 or more bytes 
per hus lransm.:lion on many 4R6 systems. The measurements I 
have made7 indkate that faster systems do achieve 40MB/s data 
throughput with this hurst size. The slower systems I have 
measurcll were ahlc to sustain about 30MR/s. Later I discuss 
system compromises that prevent achieving even this level of 
pcrformam:e, either through limited or missing burst support, or 
inefficient arhitralion design. 

PENTIUM SYSTEM THROUGHPUT 

Intel Pentium hm;ed systems arc often the system of choice 
for processor intensive workstations, large network servers, and 
large database servers. These systems are differentiated hy a 
wider (64 bit) memory path and ollen a larger write-back cache. 
1'66 systems run the l'CI hus at 33Mhz. For 33Mhz PCI hus 
systems, the aggregate PC'l-memory throughput is between 75 and 
85 MR/s, roughly twice the throughput of a 486 system. 
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The variation hctwccn high and low performance on 
Pentium systems is much narrower than on 486 systems. Most 
take a few less cycles to first data than their 486 counterpart~. All 
Pentium systems I have examined provide subsequent data with 

7 All measurements quoted were made on IBM and non-IBM PCI 
systems available in the retail market as of January 1995. 
Various IRM and non-IRM adapters were studied in order to 
identify system hehavior. All measurement~ quoted here were 
made with the IRM Auto LANStrcamcr Adapter. Throughput 
numhers were derived from logic analyzer tracing of the PCI bus 
transactions over the course of adapter buffer fill and purge 
transactions to system memory. 



0-wait states. This provides a significant hoost in throughput on 
hurst transactions. 

Current Pentium designs continue to use 70nS memt•ry. so 
the time to first data is not much heller than 486 timings. Rut the 
64-hit wide memory allows the memory interface to stay ahead of 
the 32-hit wide PCI hus once the transaction is started. This is a 
significant improvement even when transferring as few as 16 
hytcs (at that point, throughput already equals the 486 system's 
best throughput.) If some of the 8 bytes available on the M-bit 
memory hus arc not used hy the PC! device that portion of the 
availahle throughput will he wasted. 

Many Pentium systems do not operate at a multiple of 
33Mhz. In most J>60 and P90 systems, the PCI bus runs at only 
30Mhz, a 10% PCI throughput reduction over an equivalent 
33Mhz system. Some newer processor/memory-PC! bridge chip 
designs allow the PCI clock to be asynchronous (other than an 
even multiple of the processor/memory clock). Such systems 
should he examined closely, since asynchronous interfaces can 
add a clock or two delay lo each data transaction. This could 
negate the increase in PCI bus speed. 

Pentium systems arc usually limited by their memory 
throughput. Inefficient adapters moving large amounts of 1/0 can 
impact the processor performance. System configurations should 
be designed lo properly balance the 1/0 and processor 
requirement~ of the application. 

The IR M Auto LAN Streamer PC! Adapter is designed for 0-
wait stale bursts averaging greater than 64 bytes each. The 
measurements I have made indicate that on Pentium systems the 
typical burst is 76 to HR hytes, and throughput ranges between 75 
and 85 MR/s. Some Pentium systems will Target Oisconncct on 
bursts of this length. and therefore place a cap on PC! hus 
throughput, often hclow 70MR/s. This is discussed in the next 
section. 

At ROMR/s the !RM Auto LANStrcamcr PCI adapter would 
use less than :V?r· of the PCI bus. The CPU utilization during high 
LAN traffic is 1 ()'fr or less on most Pentium prrn.:essnrs. The 
typical server system could readily support more LAN connections 
than there arc availahlc PCI slots. Lah testing with three of these 
LAN adapters shows no noticeahle degradation in network 
throughput (neither the PCI hus nor the CPU is overloaded.) 
while servicing 3 separate network segments. 

LOW-COST SYSTEM COMPROMISES 

To provide lower cost PCI hus systems, various design 
compromises have been made which, while attempting to save 
money, sacrifice PCI hus handwidth. 
The first one is to limit the data huffering capahilitics in the 
processor/memory-PCI hridge chip. This will he seen hy a PCI 
busmaster device as an inability to do long bursts and/or as 
additional waits states while hursting. 
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• One design point that appears to he popular is for memory to 
issue a target disconnectH whenever a cache line boundary is 
crossed. Thus the maximum burst size is 16 hytes on a 486, 
or 32 hytes on a Pentium. Rut, nn transactions starting in the 
middle of a cache line, the burst si1.c will he even less. This 
can limit total PCI throughput lo 15-25MR/s (486) or 60-
65MR/s (Pentium). Some chip designs are less severe, 
disconnecting al 2KR nr4KR (page) boundaries. The impact 
to average burst si1.c is less, since only l-in-16 to 1-in-64 of 
the bursts will he cut short due to the target disconnect. 

• Some chips do not support burst mode at all, issuing a target 
disconnect with the first data phase of every transaction. 
Although this was probably not the intended design, the 
compromise was that such a chip is 'good enough to ship'. 
In a 486 system without any data burst capability, the 
maximum theoretical PCI throughput would he 19MR/s. Of 
course, as luck would have it, the system I measured (which 
shall remain nameless along with all of the systems 
discussed in this paper) had additional compromises in the 
arbitration and PCI bus access parts of the time to first data. 
The net result was an aggregate PCI throughput of just over 
RMR/s. For refcreni:c, ISA wuld theoretically deliver over 
5MR/s!9 The IRM Auto LANStreamer PCI is still able to 
run well in such a system. and multiple adapters will operate 
properly in a lightly loaded network environments. Rut, with 
increasing network traffic. the PCI hus quickly saturates and 
the system hogs down. 

• In halancing processor performance with PCI busmaster 
device performance, the system must have a way to choose 
which one will get priority on accesses to memory. Some 
systems do not assure that a PCI device, once granted the PCI 
bus, will gel fair access to memory. This results in PCI bus 
transactions thrashing on retry from the memory interface 
during times of high processor-memory transactions. In a 
networking environment this means the processor doing 
hackground tasks like memory clean-up can lockout the 
network adapter long enough to loose frames. Network 
protocols will generally handle this situation without impact, 
hut if the frequency of network adapter lockout is high 
enough. the network connection will drop, or the network 
will llmid with retries. 

• Most current PCI systems implement a fixed arbitration 
scheme. That means that the device at the bottom of the 
priority list will he locked out of the PCI bus when any other 
devices is using the bus. Neither the PCI device nor its 
associated software has a way to determine the arbitration 
scheme in use, or the adapters relative priority. Only the 
system designer knows how the arbitration will affect a 
specific adapter's performance. 

RPCI Spec. section 3.3.2. pp 33-36 
9 2 bytes every 3 A-clocks (I 20nS each) = 2/360nS 



• The use of PCl-ln-PCI bridge chips (to add additional PC! 
devices or slot~ to a system for example) will add a small 
amount of overhead to transactions crossing the bridge chip. 
For highly efficient devices, the added overhead should he 
negligible. Rut, any inefficient PCI hus transactions will 
become more inefficient when passing through an additional 
bridge. 

ADVANCED SYSTEM DESIGNS 

At the high end of the price grid, systems arc becoming 
available that provide higher memory handwidth, and/or higher 
PC! handwidth. 

• Within the current PC! architecture arc some extended 
commands 10 that will allow the system to handle memory 
requests more cffkicntly. Memory Read Linc. and Memory 
Read Multiple hoth allow the system to 'know' how much 
read prc-fet1:hing lo do on hchalf of the requesting device 
(Rccausc these commands imply an intent to request more 
data hcyond what the system would otherwise assume). 
Memory Write and Invalidate (MW&)) can speed up writing 
data lo system memory hy skipping the cm.:hc snoop that has 
to he done to guarantee that system memory is current prior 
to the PCI data getting lo memory. This is particularly 
hcncficial with a write-hack cache where cache snoop 
accesses pcnali1,c memory throughput. The !RM Auto 
LAN Streamer PCI Adapter implements these functions. 
along with the logic to dynamically choose the best command 
to use for each transaction. The first systems that will sec a 
performance benefit with the extended commands should he 
reaching the retail market in the first quarter of '95. In 
multiple adapter configurations utilizing one or more 
processors with write-back cachc(s). there should he a 
measurable improvement in overall system memory 
throughput. 

• Fast Rack-to-Rack transactions were ignored throughout this 
paper. but they can remove one clock to first data when the 
busmaster is performing multiple transactions during its 
tenure on the bus. Some systems today disable the Fast A2A 
feature (others should - since they fail to run if Fast A2A 
cycles arc issued.) Many systems already honor this type of 
transaction, and receive a small performance improvement 
for their efforts. 

• To get additional benefit on those systems that do allow Fast 
A2A cycles. the arbitration logic would need to keep GNT# 
asserted to the device so that it could issue additional 
transactions. Some of the current arbiter designs only issue 
GNT# Jong enough to start one transaction. Then, GNT# is 
issued again if the device continues to request the bus. Rut 
often GNT# is not present in the right 1.:yclc to allow Fast 
R2R. 

10 l'CI Spc1:, section :u. I. :u .2; pp 19-22 
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• Some second generation PCI devices are showing up with 
douhlc or more data buffering than the original versions, 
This rnn allow for heller performance due to the longer burst 
si1c. hut I suspect that it is actually a reaction to the 'memory 
slarvation'/'mcmory lockout' related prohlcms. The more 
buffer space a dcvi1:c has to work with, the more likely it will 
survive an occasional lock-out from memory. So, the buffer 
thresholds arc set to minimize starvation, rather than 
maximize burst length. Some products can get better 
throughput through software parameters or design (huffer 
sil.c. buffer thresholds. starvation recovery procedures, etc.) 

• The next step for system designs is to double the memory 
speed lo 66Mhz. Time to first data will not get significantly 
shorter. since 66Mh1. memory is often just interleaved 70nS 
memory. Sin1:c Pentium systems already run w/0-wait state 
hctwccn data phases. there will he no direct PCI throughput 
increase. The hcncfil lies in the fact that the data for the PCI 
dcvi.:e can he transferred between memory and a huff er in 
half the lime it takes the l'CI device to transfer the same 
data. Ouring the other half of the time, memory is available 
for the processor lo access memory. So, data may move on 
the l'CI bus at about the same rate. but the processor and PCI 
devices no longer have to contend for memory access. 

• Other design possibilities indudc using faster memory chips 
60nS. 50nS ... 20nS? The cost will keep this restricted to the 
most demanding applications for a few years at least. Rut 
the delay to first data rnuld he cut significantly, in addition 
to rcdu1:ing pnx:cssor/l'CI memory contention. 

• The l'CI hus itself is cnahlcd to double or quadruple its 
throughput. The ahility to implement a 64-hil wide PCT data 
path exists today. and the double speed (66Mh1.) PCI chips 
arc i:oming. One limitation on both of these is that the 
Master and Target must both provide the new feature for it to 
he a benefit. Anti. in addition, with the 66Mhz option, all 
devices on the bus must he ahle to run at 66Mhz. or none 
can. 

• Some pmccssor/mcmory-PCI hridge chips will provide 
signifkantly more buffering than current chips, more like an 
additional level of ca1:hc. This will effectively increase the 
system memory handwidth for PC! devices the same way the 
LI and L2 caches benefit the processor. 

• Providing multiple memory controllers for different regions 
of memory. and separate !'Cl busses for small groups of 
devices 1.:an he com hincd to segment the PC! transactions 
across different intcrf ai:cs. each of which only needs to 
support a portion of the total system throughput. 

• Adding mcmory-l'CI bus interfaces (multiple Host-PCI 
hridgcs) can add additional l'CI slots to a system while 
improving the throughput to memory. since each set of PCI 
slots has its own memory ai:ccss. 



PCI SYSTEM PERFORMANCE TUNING 

Some vendors. induding !RM. have software methods to 
work around. or fix. spe1:ifil; problems on some spcciffr chips. 
IRM has chosen to deliver these 'system tweaks' in the form of a 
program that comes with the adapter and is run after the system is 
hooted, hut prior to adapter initialization. This program will 
sear1:h !'CI rnnf'iguration spa1:e. determine whi1:h chipset is in use 
in the system. and then apply corrections as needed lo assure that 
the system operates properly with the Auto LAN Streamer PCI 
adapter. Look for su1:h a program from your adapter vendor, or 
check the documentation for their recommendations. 

The more data traffic that is re-moved from the subordinate 
bus (ISA/EISNMC) and placed on the PCI bus, the more 
efficiently the PC! bus can operate. ISA disk. LAN, or video 
adapters can steal a large portion of the PC! bus due lo the slow 
transactions on ISA. EISA and Micro Channel subordinate hus 
devices arc certainly helter than ISA. and come pretty close to 
matching PC! performance under ideal conditions. But in general. 
a native PC! adapter will he more efficient that a comparable 
device on the subordinate bus. Under non-ideal conditions (high 
bus utilization, or shorter burst lengths) the difference between 
the bus types becomes more pronounced. In addition, if you have 
a non-bursting EISA adapter or a non-streaming Micro Channel 
adapter, a busmastcr PCJ device should be more efficient. 

On systems in which the RIOS allows direct access to the 
chip level registers. look for these parameters and sec if the 
settings match those shown here: 11 

Arbitration = Fair 
Arbitration priority= 

PCI devices, EISA/ISA/MC devices, then processor 
Burst mode = On 
Latency Timer = 60 
J>Cl Linc Buffers= On 
Posted PC! Write Ruffer= On 
Posted CPU Write Ruffer= Off 
CPlJ-l'CI Write Posting= Off 

CONCLUSIONS 

I am very excited that new systems coming out at the high 
end that may actually deliver> IOOMR/s to the PCI bus. At the 
same time, I am concerned for the future of PC! when I sec new 
'low cost' chipscts that cut performance to 1/4 or less of what 
should be attainable. 

11 WARNING: Some systems have hugs that arc fixed hy very 
specific settings of the chip registers, usually applied hy the 
system RIOS. Changing these settings could cause the system to 
operate incorrectly. Keep track of prior settings for all 
parameters. Test any alterations in a test environment. Always 
solicit your system vendor's recommendations. When you start 
manually altering hardware registers, data can be lost or corrupted 
in memory, on disk, and even across a network. 
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On the adapter side. many vendors have long ago figured 
out how to pass the l'CI Compliance Tests, test their adapter, and 
deliver it lo their rnstomers; and now they arc delivering second 
and third generation l'CI products that really begin to exploit the 
!'Cl archite1:turc. 

The l'CI bus is quickly hemming the hus of choice on many 
non-x86 pro1:cssor platforms. The information presented here is 
equally applicable to other types of PCI systems. The key is to 
match systems based on the available PCI-memory throughput. 
Thal gives you a starting point for estimating PCI device 
performance. Then you 1:an start looking at how specific PCI 
hardware behaves in specifi1: systems. Software issues and 
proccssor-dcvil:c 1:ommunil:ations will tend be very processor 
spcdfic. PC! bus transactions on the PC! bus in IR M's PowcrPC 
reference platform (a prototype system with a 601 processor) look 
just like PCI transactions on a mm parable x86 based systems. 

The PC! arl·hitccture enables some very powerful system 
designs. Through 1:arcful analysis and design, some products will 
become the 'best of breed', while others will he well positioned to 
he the 'low rnst solution'. and yet others will find their way to 
oblivion because they had one of the million possible 
combinations of high cost and poor features. 

BIOGRAPHY 

Rill Holland is currently the Rusmastcr Adapter Technical 
Team Leader in Token Ring Adapter Development. The team's 
latest produl.'! - The IBM Auto LANStrcamer PCI Adapter (a PCI 
Token Ring network adapter) started shipping 4Q94. Beyond the 
Token Ring group. Rill is the !RM Networking Hardware 
Division· s le1:hnical fo1:al point for PCI product development. 

In his 11 years with !RM. Rill has had assignments at 4 
sites, induding: Cir1:uit Board Manufacturing Process 
Development. Mainframe (3090) Processor Design, Large Scale 
Computing Division ProdUl'l Engineering Manager, Joint 
Customer Study Liaison during development of the parallel 
CMOS 'mainframe' rnmputcrs. 



MPEG Decoders on PCI 

Shrikant Acharya 1 and John E. Crosbie2 

Margi Systems Inc. 
702 Topawa Drive 

Fremont, CA 94539 
Ph. (510) 657-4435 Fax (510) 657-4430 

Abstract 

Fast communications are necessary in data 
intensive operations such as real-time video, 
sophisticated graphics, local-area networks etc. 
and these are all benefited by the advent of local 
buses e.g. PCI and VESA local bus. The paper 
will review the bandwidth requirements of the 
MPEG-1 and MPEG-11 and the aspects of 
implementing MPEG-1 and MPEG-11 
compressed video standard decoders on PCI 
buses. The coming to the market of full feature 
length movies on CD-ROMs has ushered the 
market for MPEG-1/MPEGll technology in a 
big way. 

1.0 Video Compression Standards 

1.1 MPEG-1 Digital AudioNideo 
Compression Standard 

The MPEG-1 standard prescribes that all 
standard decoders should be able to decode 
MPEG System bit streams coded at 1.5 
Mbits/second. The encoded image shall be non 
interlaced and confirm to the SIF image size 
(352x240 at 30 frames/second for NTSC while 
352x288 at 25 frames/second for the PAL 
system). The standard provides transcoding 
between motion picture rates of24 
frames/second, PAL at 25 frames/second and 
NTSC at 30 frames/second. The MPEG-1 bit 
stream was designed to be compatible with the 
bit rate supported by the single speed CD­
ROMS in existence at the time of the 
formulation of the standard. Single speed CD­
ROMs provide a standard bit stream at 150 
Kbytes/second. However, the MPEG-1 
algorithm can accommodate data rates of up to 5 
Mb its/second. 

1.2 MPEG-11 Digital AudioNideo 
Compression Standard 

As MPEG-1 could not meet the quality and 
display requirements of the broadcast industry, a 
higher data rate audio/video compression 
standard called MPEG-11 was proposed. The 
MPEG-11 standard provides for the coding of 
bitstreams from 5 Mbits/second to 10 
Mbits/second. This standard is also more 
flexible in accommodating different audio 
encoding standards for incorporation into its 
system. Currently the two audio schemes are the 
1) MPEG-1 audio standard (MUSICAM) and 2) 
Dolby AC-3 audio compression algorithm. The 
image size is CCIR-601 i.e., 704x480 at 30 
frames/second for NTSC, 704x576 at 25 
frames/second for PAL The MPEG-11 standard 
also proves for field to field motion 
compensation (a technique for reducing frame to 
frame or field to field correlation between 
images and results in reducing the effective bit 
rate of the compressed bit stream) as opposed to 
frame to frame motion compensation in MPEG-
1. This provides for a better correlation between 
frames and leads to higher picture quality at a 
given bit rate. 

One of the offshoot implementation of the 
MPEG-11 standard is being adopted by two rival 
high density compact disk formats. They are 
DVD (Digital Video Disk) and High Density 
Compact Disk (HDCD). 

1.3 DVD vs. HDCD 

The Digital Video Disk (DVD) proposed by the 
consortium of Time Warner, Matsushita and 
Pioneer is compact disk with 10 Gigabytes 
capacity dual sided and plays movies up to 270 

1Shrikant Acharya is President of MARGI Systems, Inc 
2John Crosbie is VP of Engineering at MARGI Systems, Inc. 
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minutes long (135 minutes to a side). The rival 
standard by SONY and Philips is HDCD with a 
capacity of7.4 Gigabytes capacity on dual sided 
compact disks as in DVD. MGM/UA and other 
Hollywood studios have given their backing to 
DVD ostensibly for its higher density over rival 
HDCD. Both these standards will use the 
MPEG-2 video encoding compression algorithm 
and use the Dolby AC-3 encoding technique for 
the audio. (Dolby AC-3 is likely to be adopted 
by the MPEG committee as one of the audio 
encoding mechanisms) for their compact disks. 
Even though Hollywood has chosen DVD, it 
does seem that with SONY and Philips with 
their prior entrenchment in the PC area could 
influence the market to use HDCD thereby 
splitting the market between Hollywood studios 
on one side (DVD) and PC manufacturers on the 
other side (HDCD). 

The DVD system's peak data rate is 10 
Mbits/second. It sustains an average transfer rate 
of 4.94 Mbits/second for the full 135 minutes on 
each side. 
Other DVD parameters are: 

Disk diameter 120mm(5 inches) 

Disk thickness l.2mm (back-to-back bonding of two 
0.6 mm thick double sided) 

Memory Capacity 5 Gigabytes/single-side, I 0 
Gigabytes/double-sided 

Track Pitch 

Wavelength of 
laser diode 

0.725 micrometer 

650 nanometers 

Numerical aperture 0.6 

Error Correction RS-PC (Reed-Solomon Product 
Code) 

Playing 
Time 
Movies 135 minutes/side, 270 minutes on 

both sides (at an average data rate of 
4.94 Mbits/second for image and S 
sound. 

Secondary use of 74 minutes/side, 148 minutes on both 
broadcast sides (at an average of 9 bits/second 
programs for image and sound) 

2.0 Need For PCI 

Compressed data bandwidth as a measure of the 
total bandwidth for the ISA bus (real maximum 
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transfer rate is 2 Mbytes/second) is 15% (.3/2), 
while it is only 1.5% (.3/20) of the PCI band 
width (typical transfer rate of20 
Mbytes/second). 

As the pixel data rate is much higher then 2 
Mbytes/second (shown below) even at SIF 
display size, all ISA based systems route pixel 
data out of separate video bus on the decoder 
board. It manifests as a ribbon cable brought out 
of the board to be connected to a video display 
board. 

The figure 1. indicates typical bandwidth taken 
when data is transfered from a CD-ROM to a 
MPEG decoder board on the PC bus. 

PC Host System 

150 Kbytes/second 
transfer to decoder 

MPEG Decoder 

150 Kbytes/second 
read from CD ROM 

~ 
Video CD Compatible 
CD-ROM Drive 

Total transfer badwidth is 300 Kbytes/second. First read 
through the ISA bus from CD-ROM and then write data 
into decoder through the ISA bus. 

Figure 1_ Typical Video Data transaction on the ISA Bus 

The numbers below project the data rates 
required to display images of a particular size 
and display rate. 

For SIF Images (352x240 for NTSC and 352x288 PAL) 
Frame rate 30 frames per second or 60 fields per second 

NTSC Date rate= 30 (frames/second)* 352x240 pixels *2 
byte/pixel 

= 5.0688 MBytes/second 

PAL Data rate= 25 * 352x288 *2 
= 5.0688 MBytes/second 

For CCIR-601 Images the data rate is: 

NTSC Data rate = 30 * 704*480 * 2 
= 20.2752 MBytes/second 

PAL Data rate= 25 * 704*576 *2 
= 20.2752 Mbytes/second 

At 60 fields per seconds each of the data rates indicated 
above shall double. 

With the indicated data rates even PCI bus 
bandwidth can be exhausted. Therefore unless 



the PCI bus throughput is made substantially 
larger than 20 Mbytes (PCI bandwidth can go up 
to 132 Mbytes/second) it is not advisable to 
route the pixel data through the PCI bus into a 
video card. However, the compressed data rate 
occupies less than 2% of the PCI data rate and 
therefore the remaining bandwidth can easily be 
used to enhance the response of the Windows 
system, get data off the network, or perform 
sophisticated graphical operations. 

In MPEG-11 the data rates coming from the CD­
ROM is going to be between 5-10 Mb its/second. 
Effectively as indicated for ISA calculations in 
Figure 1., the bit rate will be 10-20 Mbits/second 
on the bus. At 10 Mbits/second the MPEG-11 bit 
stream shall occupy 60% of the ISA bus 
bandwidth but only 6% of the PCI bandwidth. 
The advantages of using PCI for MPEG-11 
decoder designs are clearly evident. 

2.1 PCI Bus 

The PCI bus can be clocked at the maximum 
clock rate of 33 MHz. PCI employees a 32 bit 
multiplexed address and data bus to give an 
effective data transfer rate of 132 Mbytes/second 
(a 64 bit data bus is optional). The PCI bus is an 
unterminated transmission line having CMOS 
loads. An unterminated bus uses reflective 
waves instead of incident waves to transfer data. 
The "reflected-wave" switching, creates a 
voltage wave that travels down the transmission 
line which is not enough to cause a logic 
transition. It must wait to be reinforced by the 
wave reflecting off the end of the transmission 
line. PCI defines the worst case signal 
propagation delay of 10 nano seconds. 

In contrast the ISA bus is an incident wave bus, 
the maximum clock rate is 6-8 MHz and the data 
path is only 16 bits wide. The maximum 
transfer rate is around 5 Mbytes/second, but 
realistically that bandwidth rarely exceeds 2 
Mbytes per second. The applications on the ISA 
bus will however will not disappear any time 
soon as it has the huge installed base. 

2.2 PCI Design Implementations 

A number of companies have started providing 
PCI interface controllers for various applications 
e.g., IDE controllers, Ethernet controllers, VGA 
controllers. Manufacturers have started to 
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incorporate PCI interface into their base silicon 
design, obviating the need for a special purpose 
PCI interface chip. NCR offers 
53C810 and 53C85 PCI-to-SCSI processors that 
connect directly to the PCI bus. Future domain 
also offers a single-chip SCSI-2 interface to the 
PCI bus. Adaptec AIC-7870 is a similar PCI­
SCSI interface chip. Symphony Labs 
SL82C101P provides a PCI-IDE interface with 
ability to support up to 4 drives and offers IDE 
primary and secondary addresses selection and 
an automatic stand by mode for power saving. 
The PCI-IDE interface chip from Opti 82C621 
from Opti Inc. also supports four IDE drivers 
and contains 16-byte read prefetch and FIFO. 
Cirrus Logic and Tseng Labs have their new 
VGA controllers that already incorporate the 
PCI designs inside their chip. 

However, there are many applications and 
prototype designs, including the MPEG-I and 
MPEG-11 decoder designs which may require 
the use of off the shelf general purpose PCI 
controllers or the use ofFPGA's that can 
effectively implement an independent PCI 
interface. 

Applied Micro Circuits Corp. (AMCC) offers 
the S593X series of general purpose PCI bus 
controllers. LSI Logic provides PCI-32 
FLexCore building blocks. Specialized FPGA's 
that can be adapted to service PCI design 
purposes are available from Altera (MAX 
7000/8000, FlexLogic 8160). AT &T's 
Optimized Re-configurable Cell Array (ORCA) 
family of .5 micron CMOS FPGAs offer 12K-
26K gates and as many as 384 usable I/O pins. 
Xilinx offers XC7300 family ofEPLDs. Xilinx 
even guarantees PCI compliance with their 
XC73108-10 EPLD. In a typical design 
XC71308 functions as the PCI bus interface, an 
XC7354 functions as the error handler, and an 
XC3190A functions as a memory and back-end 
controller. 

2.3 Layout considerations 

The PCI specification 2.0 gives special mention 
for the placement of the control and input 
multiplexed address and data. This is to 
guarantee the bus master (host) a load on each 
line that is within the specifications for line 
capacitance and load. To minimize transmission 
line effects and input capacitance, signal stubs 



should be kept to a minimum. The maximum 
trace length for 32-bit signals is 1.5 inches. 
Additional signals are limited to 2 inches, with 
the exception of the clock which is exactly 2.5 
inches. The designed is advised to review the 
suggested pin out for pin placements before 
completing a PCI design. 

Do not daisy chain clock lines. All devices on 
the PCI bus should have the same exact distance 
from the master clock output. The PCI clock 
source has to arrive at each device with a 
maximum skew delay of2 nano-seconds. 
Therefore the user should buffer the PCI clock 
coming into the controller instead of distributing 
it on the board. 

2.4 Specific Issues related to the Use of 
EPLDs 

Designers have to be beware about being carried 
away with the assertion of ASIC manufacturers 
that their part is very flexible. Designers in their 
haste to get a prototype done overlook the fact 
that their design could potentially occupy more 
than 75% of the macro-cells in their FPGA. 
This can make the design very inflexible to 
routing. Especially the problem gets 
exacerbated if without configuring and 
compiling the design, pin assignments are 
already made just because of the availability of 
the I/O pins. A case in point is the FLEX logic 
8160. Intel's application note indicates a 90% 
occupancy of the macro cells for target 
implementation. This can make the part very 
difficult to route. Designers are advised to first 
compile the design and check where the fitter is 
able to place the PCI sensitive pins. The part 
should be placed in the schematic with pins only 
after the designer is nearly complete with his 
design and has left room only for minor 
modifications. Otherwise the cost in lost time is 
enormous. 

3.0 PCI MPEG Design 

3.1 Hardware Design 

Generic designs for the MPEG-I decoder are 
presented to the reader. This design can be 
extended to incorporate the MPEG-II decoders 
as well. MPEG-I decoders are available from C­
Cube Microsystems, Zoran Semiconductor Inc. 
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and Thomson CSF. More companies may bring 
their MPEG-I designs to the market in 1995, but 
the above three companies have had an 
established presence. In the case of MPEG-II 
decoders, only LSI-Logic and C-Cube 
Microsystems are prominent in their offerings. 

Listed below are two typical design examples 
for the MPEG-I playback systems. In Figure 2. 
the output is to a VGA screen. This example 
uses the new generation of VGA controllers that 
provide on board PCI interface control and the 
ability to accept pixel data and also control the 
size and placement of the window. 

The second example suggests a possible 
interface to a Video Windowing environment. 
This example assumes that the board has a 
separate VGA controller. This design provides 
video using the chroma key feature. The output 
DAC as shown in the figure combines the VGA 
from the feature connector with the pixel data 
coming from the Video Windowing chip. 

Both the above examples can enhance their 
throughput performance by using a bus master 
design instead of a target PCI design. A Bus 
master can initiate the transfer of the MPEG data 
from the CD-ROM driver without the CPU 
intervention. This adds more complexity to the 
PCI card for MPEG-II but also increases the 
efficiency of data transfer on the bus. 

3.2 Software Design 

The software should be structured into layered 
modules for ease of integration and 
maintenance. The base module will have the 
lower lower level primitives that provide access 
to the hardware, provide setup of the hardware 
and basic data throughput in and out of the 
hardware. The next level of structure is the high 
level primitives that will provide more macro 
functions as opening buffers and manipulating 
buffers and providing rate control to the 
hardware. The top level of the driver will have 
the MCI commands that will open a file, close a 
file, play the file etc. A complete software 
package for DOS and Windows environment 
should include the following: 

3.2 Software Design 



The software should be structured into layered 
modules for ease of integration and 
maintenance. The base module will have the 
lower lower level primitives that provide access 
to the hardware, provide setup of the hardware 
and basic data throughput in and out of the 
hardware. The next level of structure is the high 
level primitives that will provide more macro 
functions as opening buffers and manipulating 
buffers and providing rate control to the 
hardware. The top level of the driver will have 
the MCI commands that will open a file, close a 
file, play the file etc. A complete software 
package for DOS and Windows environment 
should include the following: 

3.2.1 Digital Video MCI (Media Command 
Interface) Driver 
The new set of drivers for the Windows 
environment should follow the guidelines setup 
by the OM-1 (Open MPEG Committee) and this 
also includes MCI Overlay functions. The 
overlay functions provide the ability to overlay 
video over the VGA window. Recently Philips 
Interactive Media has started bringing movie 
titles on Compact Disk using MPEG-1 
technology. Philips has enveloped it into a 
specification known as the Video CD. The MCI 
driver should provide support for playing Video 
CD titles. 

3.2.2 OM-1 DOS Driver 
The OM-1 DOS driver specification is also 
published by the OM-1 committee. This is 
ostensibly to provide a uniform standard for the 
Video Game writers to follow in designing their 
games. The OM-1 DOS specification will 
provide a standard that all manufacturers of 
MPEG-I decoder software and hardware can 
follow. The software consists of a TSR 
(Terminate and stay resident) driver which can 
intercept OM-1 commands and play back MPEG 
system files. The TSR driver should also 
include Video CD support. 

The design of the above software drivers have 
the following sub sections: 

1) Windows MCI Overlay Functions 
The MCI overlay commands will rely on the 
DLL (Dynamic link library) provided by the 
manufacturers of various Video Windowing chip 
sets (e.g., Auravision, Pixel Semiconductor). 
The DLL follows the MCI interface. Any MCI 
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software designed for the MPEG decoder shall 
issue commands to the Video Window DLL. 
While the MPEG decoder provide pixel data 
output, the Video Windowing section provide 
the ability to do color conversion, window 
positioning, window sizing etc. 

2) Develop Basic MCI Digital Video Driver 
It is important to have a basic software in place 
to test and debug the hardware as soon as the 
hardware is available. This software is a very 
basic MCI driver with the capability of Open 
and Play. This driver performs the following 
tasks: 

- Basic Windows Installable Driver structure, 
Driver Setup. 
- Hardware initialization of the Audio and Video 
Decoders. 
- Open and parse MPEG Bitstream stored in a 
DOS file. 
- Delivery ofMPEG Bitstream to Decoder. 

This driver will operate with the MCITEST 
program. Driver setup includes the ability to set 
the hardware 1/0 Port, Interrupt Channel and 
OMA Channel. A hardware presence detect can 
be performed to determine if the board is 
installed and configured correctly. 

Delivery of MPEG data to the Audio and Video 
decoders requires the following tasks to be 
performed: 

A critical component of a successful 
AudioNideo computer system is the data path 
design. The different data rates of the source 
file and the destination decoder must be 
accounted for by a number ofbitstream buffers. 
Optimum hard drive and CD drive performance 
is obtained by using a particular read block size. 
Hard Drive data rate interruptions due to thermal 
recalibration and, in the Windows environment, 
data access by other applications make a large 
rate buffer necessary. A buffer of 1 second of 
data should be sufficient. 

3) Completion of Windows MCI Digital Video 
driver 
The MCI software should be capable of 
operation with Media Player (a standard 
Windows application to play video files). This 
driver will support MPEG Bitstreams stored in a 
DOS File only. 



The MCI commands that should be supported 
for OMI compatibility follow. A description of 
the function of each command can be found in 
the Microsoft documents: "Microsoft 
Multimedia Standards Update, MPEG 
Command Set for MCI" and "Digital Video 
Command Set for the Media Control Interface" 
(Microsoft part# 098-37538). 

Configuration/Status commands 
Configure, Info, Signal Set, SetAudio, SetVideo, Status 

Windows Commands 
Create Video DC, Update VideoDC, Release VideoDC, 
Update, Where Window 

Clipboard commands 
Copy - Copy specified frame to clipboard as 24bit BMP 

Player Control Commands 
Freeze, Unfreeze, Pause, Put, Resume, Seek, Step, Stop 

4) DOS OMl driver and DOS MPEG Player 
The OMI DOS Driver is a Terminate Stay 
Resident (TSR) program that provides similar 
functions to the Windows MCI Driver. The 
functionality of this driver is specified in the 
document; "PROPOSED MPEG DOS 
APPLICATION PROGRAMMING 
INTERFACE" by Creative Technology Ltd. 

The DOS Driver will largely consist of the same 
code modules as the Windows MCI Driver. 
Modifications will include the driver structure (a 
DOS TSR instead of a Windows Installable 
Driver), memory management, interrupt 
installation and some command and command 
handling differences. 

The DOS MPEG Player performs similar 
functions to the Windows Media Player 
program. It will operate in a standard VGA 
graphic mode and provide the following 
controls: 

File Open, Play, Pause/Resume, Stop, 
Fast Fwd, Rewind. 

5) CD-ROM Characterization 
It is important that the software play just as well 
on all CD-ROMs (SONY, Mitsumi etc.). We 
have found in our experience that various CD­
ROMs display different characteristics for 
reading Video CDs. e.g., Mitsumi has on board 
cache of l 6K while SONY has on board cache 
of 64K. Manufacturers may have to decide on 
the range of CD-ROMs and PC systems that this 
particular software may have to be qualified. 
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4.0 Conclusion 

The explosion of market for interactive media 
products will hasten the migration of MPEG 
decoder hardware towards PCI interface. The 
higher performance buses have been able to 
provide the extra throughput needed to bring 
real motion to many video applications. 
Unfortunately the bottleneck in the proliferation 
of the MPEG technology in the consumer arena 
is severally limited by the lack of software in the 
industry. Software is once more a critical 
element in determining the extent of adoption by 
the industry. 
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Distributed OMA 

in PCI systems 

[and Legacy IRQ support] 

The OMA problem 

O PCI does not support legacy OMA 

o Legacy OMA uses Fly - by data transfers 
• MEMR# and IOWR# asserted with data 

or 
• MEMW# and IORD# asserted with data 
• PCI cannot support fly by transfers 

O PCI does not have OMA signals 
• No DACK# or DRQ# signals on PCI 
• Not enough pins available on PCI connector 
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Who needs a solution? 

0 PCMCIA PCI controllers 
• Allows support of OMA devices 

o PCI docking systems 
• Allows PCI docking connector without DRQ# and DACK# signals 

o Super 10 chips 
• OMA needed for floppy and printer support. 

o PCI audio cards I PCI audio mother board devices 
• Can maintain compatibility with current OMA drivers 

o Systems without an ISA cage 
• Allows full legacy compatibility without an ISA bus 

What is distributed OMA? 

Perphieral Controller 
System IOdevice 
Controller PCI -- __... 

DM~ -- __.... 

lo --- --
Memo11 Cycle 
Cycle 

Perphieral Controller 

~emo~ DM,... •10 ~ 10 device 
Cycle 

Cycle 

OMA channels are distributed into the peripheral chip(s). 
Peripheral chip does PCI master cycles, 10 portion of the OMA cycle is between Peripheral 

chip and external device or internal to peripheral chip. 
OMA legacy programming model is maintained via centralized 1/0 mapper. 
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1/0 MAPPING 

"- Alk' 
Ob 
Ob 
lb 
lb 
2h 
2h 
3h 
3h 
4b 
4h 
Sb 
5h 
6b 
6h 
7b 
7h 
Sb 
Sh 
9b 
Ah 
Bb 
Ch 
Db 
llh 
Ph 

The two 8237s are mapped Into 8 separate 10 address spaces 

Legacy VO 
addresses 
used by 
Software 

Three fixed 10 ranges 
with registers that 
are shared between 
channels 

Individual OMA 
engines relocated 
In upper VO space 

Each DMA channel 
remapped to a separate 
1/0 space 

Single 8237 
(4 channels) 

Distributed OMA "slice" 
(1 channel) 

'<RM' Cbannel • ,•y•••~1erNilin~cS•• 
w 0 Base Addre 0-7 S-15 

-= R 0 Current Adchess 0-7, 8·15 --w 0 BaseCount0-7 S-15 

~ 
R 0 Current Count 0-7, S-15 
w 1 Base Address 0-7, S-15 
R 1 CurrentAddress0-7 8-15 
w 1 Base Count 0-7, 8-15 
R I Current Count 0-7 S-15 
w 2 Base Address 0-7, 8-15 
R 2 CurrentAddress0-7 S-15 
w 2 Base Count 0-7, S-15 'Y 
R 2 Current Count 0-7 8-15 '1 
w 3 Base Address 0-7, S-15 
R 3 Current Address 0-7 8-15 
w 3 Base Count 0-7, 8-15 
R 3 Current Count 0-7 8-15 .. w 0,1,2,3 Command ,... 

..... R 0,1,2,3 Status -WO 0,1,2,3 Write~uest 
_.... 

p 

WO 0,1,2,3 Write Single Mask Bit ~ WO 0123 Write Mode 
_.... 

WO Clear ~e Pointer ~ 
p 

none 
WO 0123 Master Clear .. 

~ WO 0,1,2,3 Clear Mask t--
w 0123 Write all Mask bits 

::>. • A.ildre.. RIW 
b+Oh w 
b+Oh R 
b+ lb w 
b+ lb R 
b+2h w 
b+2h R 
b+ 3h w 
b+3h R 
b+4h w 
b+4h R 
b+5h w 
b+5b R 
b+6h w 
b+6h R 
b+7h NIA 
b+7h NIA 
b+ 8h w 
b+Sb R 
b+9h w 
b+Ah NIA 
b+Bh w 
b+Ch w 
b+Dh w 
b+llh NIA 
b+Fh R/W 

>ri~iiFNaiiMlK.:.::.;mv• 
Base Address 0-7 

Current Address 0-7 
Base Address S-15 

Current Address S-15 
Base Address 16-23 

Current Address 16-23 
Base Address 24-31 

Current Address 24-31 
Base Word Count Q.. 7 

Current Word Count 0-7 
Base Word Count S-15 

Current Word Count 8-15 
Base Word Count 16-23 

Current Word Count 16-23 
Reserved 

Reserved 
Command 

Status 

~uest 
Reserved 

Mode 
Reserved 

Master Clear 
Reserved 

Channel Mask 

(Channels 
• • • 2,3, and 4) 
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Example of a Read Status Command 

Host reads OMA status at 10 address 8 

System controller breaks this Into 4 separate 10 reads 

Read Slave O base + 8 Read Slave 1 base + 8 

76543210 76543210 

Channel o REQ Channel 1 REQ 

Chan~OR ~an~1R 

Read Slave 2 base + 8 

76543210 

~annel2REQ 

Channel2TC 

Read Slave 3 base + 8 

76543210 

~annel3REQ 

Channel3TC 

System controller assembles four reads Into a single byte 

Channel3 REQ 
Channel2 REQ 

76543210 

Channel 1 REa---
Channel O REQ Channel 3 TC ____ ...... 
Channel 2 TC-----­
Channel 1 TC 
Channel OTC-------

Write to a register that is shared by four OMA channels 

PCIWRto 
DMAO Mask reg. 
@ 10adr100Fh 

assumes: 
OMA<> base =1000h 
DMA1 base m1400h 
DMA2 base =1800h 
DMA3 base =1C00h 

PCIWRto 

ADS# 

1 

System WR 
to Mask reg. 
IOadrOOOFh 

ROY# 

14 

OMA 1 Mask reg. 
@ 10 adr 140Fh 

PCIWRto 
DMA2 Mask reg. 
@ 10adr180Fh 

1 1 
Bridge 

PCI WR to 
DMA2 Mask reg. 
@ 10adr180Fh 
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The IRQ Problem 
PCI 
controller/ 
bridge 

PCIBus 
]J~ 

1I 11 
PCI 4 ints PCI Slots 
Super 10 

5 to 9 int,! 3 to 7 ints 
? ? --- . -

D PCI has 4 sharable IRQs 
D ISA bus has 11 edge sensitive IRQs 

11 
PClto 
PCMCIA 

;I,L 

L-- '--

PCMCIA 
cards 

D ISA style IRQs are required for PCMCIA, Audio, and Legacy 
devices 

D Transitioning devices from ISA to PCI is constrained by IRQs 
D Evolution of PCI /ISA systems to PCI only possible with IRQ 

expansion 

PCIBus 

The serialized IRQ solution for PCI 

PCI 
llQmlalbu1 controller/ 

_ .. bridJ e ... 
• ~4 ints 

Il I 
11 .1 ll -1 

PCI PCI Slots 
Super 10 

A single pin serial I RO bus interconnects all devices. 
Saves pins 
Increases Plug-n-Play support 
Docks using a smaller connector 
Allows true legacy I RO support in the PCI bus 
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PCI legacy OMA and IRQs, 
one or two issues? 

O DMA and IRQ solutions appear independent - - but - -
O Docking 

• PCI does not provide DRQs, DACKs, or adequate IRQs so 
numerous side band signals are required, making PCI docking 
overly expensive. 

o PCI card slot 
• PCI card slots do not provide DRQ, DACK#s, or IRQs 

O Super 10 chips for PCI bus 
• Super 10 chips need IRQ and OMA support to complete the 

transition to the PCI bus 
0 PCMCIA 

• Need to address both IRQs and DRQs to solve PCMCIA 
interface problems 

0 Conclusion - Coordinated solutions for both problems are 
required. 

Summary 

O Distributed DMA 
• Improves PCI bandwidth 

• Extensible, including 32 bit extensions, bursting 
• One PCI cycle for 1 to 4 DMA cycles 
• Strong industry support 
• Enables moving Floppy, Audio and PCMCIA to PCI bus 

O Serialized IRQ for PCI systems 
• Decreases number of pins required to support Plug-n-Play on 

multiple devices 
• Enables placing PC AT legacy devices on the PCI bus 
• Will enable placing PC AT legacy devices on PCI cards when/if 

a pin is allocated to IRQSER 
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SINGLE-CHIP, GENERAL-PURPOSE INTERFACE TO THE PCI BUS 

John Williams 
AMCC 

6195 Lusk Blvd. 
San Diego, CA 92122 

ABSTRACT 

This paper presents an overview of the 
benefits of the PCI bus to new, high­
performance PC applications. The discussion 
focuses on meeting the requirements of the PCI 
specification and the advantages or 
disadvantages of various approaches used to 
interface to the PCI bus. Finally, a general­
purpose, single-chip solution for interfacing to 
the PCI bus is presented, with various modes of 
operation and add-on card interface options 
detailed. 

INTRODUCTION 

In the past, different system architectures 
contained different bus standards. Intel 
architecture systems used the ISA, EISA, or 
Multibus. Motorola systems used the VME bus, 
and numerous other architectures each 
implemented their own standard. Add-in card 
manufacturers were forced to make a different 
product for each system architecture they wanted 
to plug into. The PCI (Peripheral Component 
Interconnect) bus standard is being adopted for 
use in Intel architecture, Power PC, DEC Alpha 
and other systems, allowing a single card design 
to be used in multiple system architectures. 

A limitation of previous bus standards was 
performance. The bandwidth provided by 
previous PC bus standards was inadequate for 
many new application areas such as A TM, 
RAID and multimedia. Newer bus standards, 
such as the VESA VL bus allow much greater 
bandwidth, but still have limitations. 

The PCI bus allows add-in card 
manufacturers to create designs which can be 
used in multiple system architectures, providing 
a larger market for add-in card vendors. PCI 
also has the bandwidth required for many new, 
high-performance applications and provides for 

229 

growth to 64-bits, 66 MHz, and 3.3V operation 
to support future performance requirements. 

PCI COMPLIANCE 

To ensure that PCI devices (either on the 
mother-board or on add-on cards) are useable in 
multiple system architectures, they must meet an 
extensive set of guidelines. The PCI 
Specification defines what is required to 
interface to the PCI bus. Some of the major 
areas involve: 

Signal definitions 
Bus Commands and transactions 
Bus arbitration 
Cache support 
Configuration space definition 
Electrical interface 

The current specification is reasonably 
specific, but like all great literary works, there is 
room for interpretation. As the PCI 
specification evolves, it will become more 
clearly defined, but ambiguities introduce 
difficulties for add-in card manufacturers 
interfacing to the PCI bus. If a BIOS vendor 
interprets the specification one way and a 
hardware vendor interprets it another, problems 
occur. 

To help avoid the problems with different 
interpretations of the PCI specification, the PCI 
SIG (Special Interest Group) publishes an 
extensive "PCI Compliance Checklist." The 
Compliance Checklist lists requirements for PCI 
Compliance. PC, BIOS, add-on card, and 
silicon vendors participate in PCI compliance 
workshops to ensure they meet PCI interface 
requirements and function together in a system 
environment. This allows differences in 
interpretations to be identified and worked-out 
prior to production. 



CONNECTING TO THE PCI BUS 

Creating an interface to the PCI bus is not a 
trivial task. There are a number of standard 
devices available to translate PCI to SCSI, PCI 
to PCMCIA, etc., but there is a conspicuous 
absence of general-purpose solutions. What 
about the add-on board manufacturer with an 
8051, 68000, 80960, a PC peripheral device, or 
a DSP on their card? A general solution is 
required to interface these devices to the PCI 
bus. There are three possibilities for this 
interface: ASIC, FPGA, and off-the-shelf 
devices. 

ASIC Solution 

The designer could create an ASIC which 
provides the logic required to interface to the 
PCI bus. This approach has the advantage of 
allowing all glue logic required for the add-on to 
be implemented in a single device, but there is a 
significant drawback to this approach: cost. 

The primary cost component of an ASIC 
approach is the NRE. The size of an NRE is 
prohibitive to all but very high volume designs. 
A secondary cost involves development time. 
The significant amount of time required to 
develop and debug a PCI compliant device can 
lead to increased time-to-market, resulting in 
lost revenue and reduced marketshare. There 
are significant risk factors to an ASIC 
implementation. 

FPGA Solution 

Another possibility is to create the PCI bus 
interface with field programmable gate arrays. 
This approach also allows the designer to 
customize the add-on interface for their 
application, but, again, has the disadvantage of 
cost. 

As with an ASIC solution, a major 
component of the cost for an FPGA solution is 
development time. The PCI specification must 
be converted into logic and then debugged. 
Some FPGA manufacturers provide the PCI 
interface logic block, but the designer is still 
required to implement and debug the logic 
needed to interface the add-on logic to the 
predefined PCI interface block. 
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Another significant cost of an FPGA 
solution is component cost. Currently FPGA 
densities are not high enough to support a full 
master/slave PCI interface on a single device. 
This leaves the designer with the option of using 
a defeatured PCI interface or using multiple 
FPGAs. If multiple FPGA devices are used, the 
issue of PCI electrical compliance arises. The 
PCI specification states that no PCI signal trace 
(on the add-on board) may be longer than 1.5 
inches. Even with a single interface component 
this can be difficult to achieve and using 
multiple FPGA devices may require adding 
signal layers to the add-on board. 

Like an ASIC solution, the development 
time for the PCI interface can increase time to 
market, leading to lost revenue and decreased 
market-share. Additionally, the cost ofFPGA 
devices and their implementation increases the 
cost of an add-on board, significantly. This is a 
big disadvantage in a competitive market. 

Off-the-Shelf Solution 

The ideal interface to the PCI bus is an off­
the-shelf, low-cost, standard product which is 
guaranteed to be PCI compliant. The AMCC 
S593x "PCI Matchmaker" devices fulfill these 
requirements. As AMCC is a member of the 
PCI SIG, the S593x products are tested in the 
"compliance workshops" with PCI systems, 
chipsets and BIOS'. This removes the burden of 
compliance testing from the add-on board 
manufacturer and greatly reduces development 
time by allowing the designer to focus on the 
actual application, not debugging the PCI 
interface. 

The AMCC S593x devices provide a 
general-purpose interface to the PCI bus. The 
add-on bus interface is flexible enough to allow 
it to interface with 8-, 16-, or 32-bit add-on 
microprocessors or peripherals, and even allows 
operation without an add-on processor. The 
S593x can function as a PCI initiator or target, 
or both, and is capable of transferring data at the 
full PCI bandwidth. 

The S593x provides three ways to 
communicate with the add-on card. There are 
four 32-bit mailbox registers, four configurable 
8-, 16-, or 32-bit pass-thru regions and an eight-



deep 32-bit FIFO (which also can be used in bus 
mastering applications). The device is 
configured at reset based on the contents of an 
external nvRAM (x8 or serial), which can also 
contain an expansion BIOS. The modes of 
operation are described in more detail later. 

The S593x is a single-chip solution. 
Various versions are available with different 

CONTHOI. 

add-on bus widths and configuration options. 

The packages range from a 120-pin PQFP for 
the 16-bit add-on bus with a serial nvRAM 
interface (S5930) to a 160-pin PQFP for a 32-
bit add-on bus with a x8 nvRAM interface 
(S5933). All devices support a 32-bit, 33 MHz 
PCI interface. 

LilESIEERllQ. .................. 
mwfER I U.TalES 

' 

ADD-ON 
lllTERFACE 

' SELECT• 
CONTROL 

' ' ' 

+--------- STATUS• 
'----r-_J : INTERRLFT 

BIOS ROii •TERFACE 

Figure 1-1. S593x Block Diagram 

AMCC S593x ARCHITECTURE 

The S593x provides a 32-bit PCI-compliant 
interface with a flexible 8-, 16-, or 32-bit 
multiplexed address/data bus on the add-on card 
side. A block diagram of the S593x 
architecture is shown in Figure 1. The 
following sections provide an overview of the 
S593x architecture and its modes of operation. 

Register Architecture 

The S593x contains three groups of 
registers: PCI Configuration Registers, PCI 
Operation Registers, and Add-on Operation 
Registers. These define the different modes of 
operation for the device. 

PCI Configuration Registers. All PCI 
devices contain a 256 byte region called the 
Configuration Space. Some of the first 64 bytes 
(the header) are required for PCI compliance. 
The remaining 192 bytes are not defined and are 
device-specific. The 64 byte header contains the 
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device vendor ID, device ID, revision number, 
and other information such as specific device 
capabilities and amount of memory required for 
operation. The configuration registers are 
intended for use during system initialization and 
catastrophic error handling. 

PCI Operation Registers. The S593x 
contains 16 double word registers defined as PCI 
Operation Registers. These registers provide the 
primary communication path from the PCI bus 
to the add-on bus. Through these registers, the 
host CPU can access mailbox registers and the 
internal FIFOs. These registers also configure 
the S593x for bus mastering, define other 
operation and indicate status. 

Add-on Operation Registers. The S593x 
contains 18 double word registers defined as 
Add-on Operation Registers. These registers 
provide the primary communication path from 
the add-on bus to the PCI bus. Through these 
registers, the add-on can access mailbox 
registers, the internal FIFOs, and address or 
data associated with pass-thru cycles. These 



registers also configure the S593x for bus 
mastering, define other operation and indicate 
status. 

Non-Volatile Memory Interface 

The S593x can be used in it's default 
configuration, or a custom configuration can be 
downloaded from a non-volatile memory at 
reset. The device can download configuration 
information from either a serial (2 Kbytes, 
maximum) or a byte-wide device (64 Kbytes, 
maximum). The presence of an external 
memory and its type (serial or byte-wide) is 
automatically detected by the 593x at reset, and 
configuration information is downloaded. 

This interface allows add-on card vendors 
to program their own Vendor ID and Device ID 
information into the S593x (or AMCC' s default 
values may be used). Other information which 
is read by the host during initialization is also 
downloaded, defining the characteristics of the 
add-on card. The non-volatile memory interface 
also provides for an optional expansion BIOS on 
the PCI bus. 

As many non-volatile devices may be 
written, in-circuit, the S593x allows the non­
volatile memory to be written from the PCI bus 
or the add-on bus. This provides the add-on 
card manufacturer the ability to perform field 
upgrades to the expansion BIOS code. This also 
allows the S593x configuration information to 
be tailored to a specific system architecture via 
software during installation. 

Mailbox Operation 

The S593x contains eight 32-bit mailbox 
registers. Four mailboxes transfer data from the 
PCI bus to the add-on bus, and four mailboxes 
transfer data from the add-on bus to the PCI bus. 
The mailbox registers are useful for transferring 
data, command or status information between 
the PCI and add-on buses. 

Mailbox status (empty/full) may be 
monitored with status bits in the Add-on and 
PCI Operation Registers, or interrupts can be 
generated by mailbox accesses. A PCI interrupt 
(INTA#) can be generated by either an outgoing 
mailbox being read by the add-on or by an 
incoming mailbox being written by the add-on. 
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An add-on interrupt (IRQ#) can be generated by 
either an incoming mailbox being written by the 
PCI bus or an outgoing mailbox being read by 
the PCI bus. Each interrupt condition can be 
individually enabled or disabled. 

The empty/full condition (interrupt 
condition) for mailboxes is configurable. A 
specific byte is identified to cause the empty/full 
flag to be set. This works well for systems with 
an 8-bit or 16-bit add-on interface. For 
example, a PCI to add-on mailbox can be 
configured to indicate the full condition (and 
optionally generate an interrupt to the add-on) 
when Byte 0 is written by the PCI bus. This 
allows a simple interface to an 8-bit add-on bus, 
as data can be transferred in single-byte 
quantities without assembling or disassembling 
32-bit data. 

Some designs require a method to generate 
interrupts to the PCI bus without writing to a 
mailbox register (cards without a CPU on the 
add-on). The S593x may be configured to allow 
interrupts to be generated through hardware. 
Add-on outgoing mailbox 4, byte 3 is accessible 
via multiplexed function device pins. All 8 data 
bits and a load clock are provided. This allows 
the add-on to toggle the load clock and generate 
an interrupt to the PCI bus (provided the 
mailbox full condition is set for mailbox 4, byte 
3). 

Pass-thru Operation 

Pass-thru operation allows PCI bus cycles to 
be executed in real time with the add-on 
interface. The PCI bus may directly read from 
or write to add-on resources. The S593x allows 
definition of up to four individual pass-thru 
regions in PCI memory or 1/0 space. Each 
region may be defined as 8-bits, 16-bits, or 32-
bits wide and mapped into memory or 1/0 space. 

Pass-thru mode is a PCI target-only mode, 
making it useful for converting existing 
ISA/EISA designs to PCI (which, in many cases, 
do not act as bus masters). Pass-thru mode uses 
handshaking to communicate with the add-on 
interface. The pass-thru signals indicate when 
the PCI is writing to the add-on or needs to read 
from the add-on. They also provide information 
such as which specific byte lanes are involved in 
the transfer, if the access is a read or write, 



which of the four pass-thru regions is being 
accessed, and whether the access is a burst or a 
single cycle. Address and data information is 
passed between the PCI bus and add-on via add­
on operation registers. 

The add-on interface provides a pass-thru 
attention signal which indicates that the PCI bus 
is attempting to access an add-on resource. 
Once a pass-thru access is identified, the add-on 
interface can read the PCI address associated 
with the cycle (via the pass-thru address 
register) and read or write the appropriate data 
(via the pass-thru data register). Once the 
access is complete (all bytes read or written, in 
the case of a non-32-bit add-on), the add-on 
returns a pass-thru ready indication, ending the 
current access. 

Pass-thru accesses can be either single data 
phase PCI cycles or PCI bursts. Provided the 
add-on logic can process data quickly enough, 
the pass-thru interface can support the full PCI 
bandwidth. 

FIFO Operation 

FIFO operation provides two FIFO data 
paths between the PCI and add-on buses. One 
FIFO passes information from the PCI bus to the 
add-on bus, and the other FIFO passes 
information from the add-on bus to the PCI bus. 
Each FIFO is 32-bits wide and 8 Dwords deep. 
The FIFOs may operate as either a PCI target or 
a PCI initiator (bus master). 

Endian Conversion. The FIFO interface 
also allows endian conversion. The FIFO can be 
programmed for 16-bit, 32-bit, or 64-bit endian 
conversion on incoming and outgoing data. 
This allows an add-on processor and the host to 
operate in their native endian format. 

16-bit and 8-bit Add-ons. The FIFO also 
interfaces easily to 16-bit add-ons. If the add-on 
is configured as 16-bits, the FIFO internally 
steers data in the upper 16-bits of the Dword to 
the lower 16-bits on alternate accesses. Another 
method to interface to 8-bit or 16-bit add-ons is 
available. The advance condition for the FIFO 
is programmable. The FIFO pointer is updated 
when a specific byte is accessed. By changing 
the advance condition to byte 0 or byte 1, the 
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FIFO can be implemented as 8-bits or 16-bits 
wide. 

FIFO Interface. To allow high transfer 
rates through the FIFO and a simple interface to 
an external FIFO, two signals are implemented. 
The RDFIFO# and WRFIFO# inputs provide a 
direct method to access the FIFO. The S593x 
can be programmed to allow either an 
asynchronous or synchronous FIFO interface 
with these signals. The FIFOs can also be 
accessed like the other add-on operation 
registers using the chip enable, address inputs, 
and read or write strobes. 

Bus Mastering. The FIFOs allow bus 
mastering on the PCI bus. The PCI to add-on 
FIFO and the add-on to PCI FIFO each have an 
associated address register and transfer count 
register. These are initialized before each 
transfer. These registers may be loaded from 
either the host CPU or the add-on. This is 
determined at reset. To determine when a 
transfer is complete, the transfer count status 
may be monitored via a status bit, or an 
interrupt may be generated (the interrupt will be 
to the add-on or PCI bus, based on which side 
controls the address and transfer count loading). 

The FIFO management scheme determines 
how full or empty the FIFO must be before it 
asserts REQ# to the PCI bus (to gain control of 
the bus). The PCI to add-on FIFO can be 
configured to request the bus when any of the 8 
Dwords are empty, or only when four or more 
Dwords are empty. The add-on to PCI FIFO can 
be configured to request the bus when there is 
data in any of the 8 Dwords, or only when four 
or more Dwords are full. This allows the 
designer to control how often the S5933 requests 
the bus. The S5933 always attempts to perform 
burst operations to empty or fill the FIFOs. 

Summary 

Because the PCI bus applies to numerous 
system architectures, it allows a single add-in 
card hardware design to be created for multiple 
platforms. PCI also provides the bandwidth 
required for many new, high-performance 
applications. 

Developing and debugging a compliant 
interface to the PCI bus is not a small task. 



Depending on time constraints, cost constraints, 
and application requirements, different 
approaches are available. The competitive add­
in card market requires low cost, and short 
design cycles. This makes an off-the-shelf PCI 
interface solution very attractive. 

The AMCC S593x products provide a 
flexible, low-cost, compliant interface to the PCI 
bus. The architecture of the S593x makes it an 
excellent choice for cards being converted from 
the ISA/EISA standard, as well as newer 
applications requiring high data rates and bus 
mastering capabilities. This solution allows the 
hardware developer to focus on the actual 
application development rather than debugging 
the PCI bus interface logic. This significantly 
shortens design cycles and decreases 
development costs. 
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ABSTRACT 

The Apollo Plua chip set is a cost-effective 
implementation of• high petfonnance and energy 
efficient PCJ/ISA desktop personal computet" system 
based on the 64-bit P54C/Pentium/K5/Ml super 
scalar proceaaors. Either 3.3v or 5v CPU and cache 
interfaces are supported at eJ&:tornal bus speeds up 
to 66MHz with intomal CPU speeds up to lOOMHz 
and above. 

The four-piece chip set includes a system 
controller, a PCI bus controller (including integrated 
enhanced IDE and plug and play controllers) and 
two data buffers. The CPU bus is minimally loaded 
with only the CPlJ, seconduy cache and the system 
logic chip set. Tho data buffers isolate the CPl1 bus 
from the DRAM, PCI and ISA bugeg so that CPU and 
cacho operations will run rcliab~ at the high 
frequency demanded by the ptoces$0r&. 

Apollo Plus supports either single or dual proces­
ora baaed on write-back primazy cache. It.s key 
features are 

• lnt.egrated PCI buffer management 
• Native and Concurrent IDE Controller 
• Notebook claas power management 
• Emerging cache and DRAM ""pport 
• Integrated multimedia and native signal 

processing 
• Plug and pl~ ready 
• Same chip set for multiple platforms 

(Home/NB/MPC./DP/Servcr) 

MEMORY CONTRQL 

Apollo Plua supports eight banks of DRAMs up 
to 512MB. The eight banks are grouped into four 
pairs with an arbitrary m~ture of256K/512K/ lM/ 
2M/4M/8M/16MxN DRAMs. Zero, one or both 
bank.a may be populated in each pair. The only 
constraint is that if both banks within the same pair 
are populated, they must be of the same t;ypo. Thia 
conetraint fits particularly well with 72-pin x36 
double aide DRAM SIMM modulce, although 30-pirt 
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x9 SIMM modules and 72-pin x36 sinsle side SIMM 
modules are supported equa!Jy well. 

DRAM data can be cached in the secondary 
cache bucd on on either synchrortous or standard 
SRAMs from 128KB to 2MB. For sytichronoua 
SRAMs, 3-1-1-1 tim.ing can be achieved for both 
read and write transactions up to 66MHz. For 
standard SRAMs, 3-2-2·2 and 4-2-2-2 timing can 
be achieved for interleaved read and write 
transactions up to 66mbz, respectively. 

BUS INTERFACE 

Apollo Plus supports a 32-bit PCI bus at a 
synchronous hall the CPU frequency. The 64-bit to 
32-bit data conversion and command regeneration 
are performed by the chip set's system controller 
with minimum overhead. Four levels of post write 
buffers are included betvTeen the CPU and the r'1CI 
bus to allow concurrent CPU and PCI operation. 
Consecutive CPU addresses arc converted into 
burst PCI cycles with byte merging capability for 
optimal CPU to PCI throughput. A 32·bit Cast data 
lin1' is eetablished between the two data buffers and 
the PCI bus controller ao that tho address, data and 
command information for CPU to PCI bus trans­
ctiona is contained in the Mme chip. Thia arrange­
ent. unique to tho Apollo Plus chip set, is crucial in 
achieving zero wait atate buffer movement and in 
implementing sophiaticated and upgradable buffer 
management schemes auch aa byte merging. 

OTHER FEATURES 

'Ibo integrated power management unit monitors 
1/0 events, DMA and PCI master request signals to 
detect the status of system activit;y. It is ideal for 
high performance, high quality, high energy efficient 
and high integration desktop and notebook PCI/ ISA 
computer systems. The chip set provides two plug 
and play port.a for converting non plug and play 
devicea into plug ancl play devices on the main 
board. The chip set also interfaces direct{y with the 
VT82C416MV integrated clock generator. real time 
clock and keyboard controller. 



Multimedia On the Motherboard (MOM) 

Stephen Tobak 
Director of Corporate Marketing 

OPI'i Inc. 
2525 Walsh Ave. 

Santa Clara, CA 95051 
408-486-8243 

Multimedia On the 
Motherboard (MOM) 

Enhancing the Performance of 
Multimedia PCs 

Stephen Tobak 
OPTi Inc. 

Multimedia PC 
Market Drivers 

• Edutainment 
• Communications 
•SOHO 
•Telecommuting 
• Ubiquitous CD-ROM 
• In general, the consumer 
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Multimedia System 
Components 

•• 
. 

. 

. 
: 

-~ . *"''-'"''~~·/. ,,. 

ilirEi~ii ... ~······ 

Do Today's Systems Provide 
Adequate Performance 

• CPU/Memory performance 
• Graphics performance 

•• • Benchmarks emphasize single 
•• function/task performance, keeping •• •• other functions constant •• •• •• •• •• •• •• •• •• 

• Performance metrics do not 
adequately measure multimedia 
systems performance 
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System Bottlenecks 

• Audio Playback from CD-ROM 
- 'Lip Sync' phenomena 
- AudioNideo Synchronization 

• Video playback and overlay 
- Hardware assist required ... 
-Without adding cost 

• Multitasking OS's 
- Shared system resources 
- CPU I Memory bus bandwidth 

Bottleneck Example: 

Iii 
•lliill 

CPU I Memory Bus Bandwidth 
Audio I Video Sync 

......... t.:.' : 
; '" ~ ~ ~,:;: " « ?ti:U 

Graphics Controller 

~;·:·e<Po>•••: "' .. · 
~· : I I ; 
' . 

,, ~' < .; , >, .,, ; ,,~~ ~-

Audio Controller 

• Video/Graphics problem - granularity 
• Audio problem - lip sync 

238 



•• •• •• •• •• 

The Goal 
• To free up as much CPU I memory 

bandwidth as possible by improving 
multimedia interface throughput 

• Enables CPU to perform other tasks, 
i.e. NSP 

• Result is improved system 
performance on today's multimedia 
applications, with bandwidth left 
over for tomorrow's applications 

Multimedia System 
Architecture 

CPU Data 

nrn:11'!ill 
•3111 SI 

II CPU Address/Contrnl 
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Key Audio Factors 

• Real-time data 
• 'Timeliness' on PC bus critical 

- Ear sensitive to audio aberations 
-Audio/video synchronization -

'lip sync' 

• CD-ROM playback most difficult 
- Highest audio sampling rate 

• OMA mechanism optimum 

Audio Bottleneck 
> 17.6% CPU I Memory bus bandwidth 

utilized in OMA operation 

Sys Cntrlr 
ISA Bridge 
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,,, Audio Solution: Type F OMA 

• Burst operation 
• Cuts average OMA transfer from 

1us to 250ns 
• II • Decreases required CPU bus 

II bandwidth from 20o/o to < 5°/o •• •• •• •• •• •• •• •• •• 

• Requires FIFO in audio 
controller 

Key Storage Factors 

• Need to improve transfer time on 
IDE reads/writes 

• Need to enable faster IDE drives, 
i.e. Modes 4 & 5 

• Need to improve CPU I memory 
bandwidth 

DiiEi~ii •.millili••••• 
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Storage Solution: 
Bus Master IDE 

IDE 11--.. •~1·~---i•~11iM1ii1·'·1"1i 

IL-.. -.. -.. -;_;;;;-... -_-_ :_:~11i}011· 11+1B1i 

Bus Master ...... ·---"" 
IDE 

Storage Solution: 
Bus Master IDE 

~1-R_e_ad_ID_E ..... 1----------------~1~~ 

Time-... •~ 
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GraphicsNideo Issues 

• Both native and imported (CD-ROM) 
video signals must pass through 
graphics engine 

• High performance graphics available, 
but with a significant cost adder 
- 64-bit acceleration 
- EDO --> SDRAM -.;>RAMBUS 

• How to improve performance - add 
video acceleration - without 
additional cost 

GraphicsNideo Solutions 

• MPEG decoder with hardware assist 
- Color space convertor 

- Zoom stretching 

• Shared memory architecture -
system memory I frame buffer 

• Integration of memory I graphics I 
video OMA controllers 

'ii~Ei-=1 ........ ~II 
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•• •• •• •• 

The Role of Core Logic in 
Multimedia PCs 

System ·""> Motherboard 

Integration 

Bus 
Standards 

Pentium-Class System 

1-System Controller 3-Bus Controller/ •11!.llllP.r;"'i• 
2-Data Buffer Power Mgmt 1!11.11~1 
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•• •• •• •• •• •• •• •• 

OPTi Multimedia Solutions 

Ui[iili 

The Future of MOM 
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Next Generation Chipset Performance 

Dale B. Jorgensen 
Applications Engineering Manager 

PCI Components Division 
Intel Corp. 

1900 Prairie City Rd. 
Folsom, CA 95630 

The Intel Triton TM chip set represents a 
new generation in PCI chip set 
performance. For additional information 
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about Intel's PCisets, call a local sales 
office or the Intel Literature Center at 
800-548-4725 (in the U.S. and Canada). 



Implementing High-Speed LANs on PC Buses: Fast Ethernet Meets PCI 

Dr. Charles R. Anderson 
President 

Cogent Data Technologies, Inc. 
175 West St., P.O. Box 926 
Friday Harbor, WA 98250 
(360) 378-2929/2882 (fax) 

The rapid evolution of local area 
network topologies poses an 
unprecedented challenge to traditional 
PC bus designs. Fast Ethernet, lOOVG­
AnyLAN, and ATM all push cable 
bandwidth to 100 Mbits/sec or more and 
result in sustained bus traffic of at least 
10 MB/sec. With typical installations 
involving up to four simultaneous LAN 
channels in a single PC and with full 
duplex Fast Ethernet doubling these 
numbers, users are starting to need up to 
80 MB/sec bus bandwidths just for their 
LAN peripherals. 

Clearly traditional bus designs cannot 
begin to keep pace. With ISA bus 
speeds clocking a maximum of 4 
MB/sec and even EISA realistically 
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limited to 16 MB/sec, there just isn't 
enough bandwidth to handle new LAN 
topologies. 

PCI offers the only realistic solution for 
high-speed network designs. With a 
theoretical bus bandwidth of 132 
MB/sec, designers have a reasonable 
platform even for multiport Fast 
Ethernet designs. This presentation will 
cover some issues confronting designers 
of high speed LAN adapters for PCI bus 
systems and will analyze bus bandwidth 
utilization in traditional as well as PCI­
based PCs. PCI to PCI bridge 
technology will be discussed as well, 
particularly in reference to some of the 
new multiport adapter designs becoming 
available in the market today. 



PCI and the LAN 

Tom Caldwell 
Product Manager 

Rockwell Network Systems 
7402 Hollister Av. 

Santa Barbara, CA 93117-2590 
(805) 562-3164/968-6478 (fax) 

tcaldwell@rns.com 

This talk will cover how network 
adapters utilize the PCI Local Bus to 
address needs for a variety of 
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applications, including graphics, multi­
media, and client/server applications. 



Host Interface Design for ATM LANs 

Michael H. Benson 
ASIC Design Engineer 

Fore Systems, Inc. 
17 4 Thom Hill Road 

Warrendale, PA 15086-7535 
(412) 772-6600/6500 (fax) 

mhb@fore.com 

ATM (Asynchronous Transfer Mode) is 
the newest and most talked about data 
networking standard. It offers high 
throughput, scaleable bandwidth, quality 
of service guarantees, support for 
multiple data traffic types, transparent 
interface to the WAN, and well-defined 
open standards. Along with these new 
capabilities has come the challenges of 
designing system bus interface that will 
deliver the required performance. With 
ATM, the network interface can no 
longer be considered as a low-speed 
peripheral. Currently, the most common 
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ATM physical interface to the desktop, 
SONET OC3c, requires up to 35 MB per 
second of system bus bandwidth. In the 
near future, SO NET OC 12 will require 
140 MB per second. Low system 
latency and efficient interface to the 
host's main memory are crucial to 
reducing the cost of delivering many 
high-speed connections through a single 
ATM interface. This paper will briefly 
describe ATM, the challenges of ATM 
applications, and the requirements that 
ATM network adapters place on the 
system bus. 



Performance Implications in Designing ATM Adapters for the PCI Bus 

Gary Kidwell 
Senior Hardware Engineer 

Interphase Corporation 
13800 Senlac 

Dallas, TX 75234 
(214) 919-9000/9200 (fax) 

The emerging A TM standard requires much 
higher bandwidth than traditional networks such 
as Ethernet and Token-Ring. This talk will 
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discuss the performance implications of the 
various choices in designing A TM adapters for 
the PCI bus. 



PCI BUS ATM ADAPTER DESIGN 
Subbu Ganesan and Jim Hora 
ZeitN et, Inc. 
5150 Great America Parkway 
Santa Clara, CA 95054 USA 

ABSTRACT 

A TM is a cell based circuit switching 
technology that is rapidly becoming the network 
technology of choice. Standards have been ratified 
which ensure interoperability among vendors. In this 
paper, we will give a brief overview of A TM and its 
network capabilities. Then we will focus on the PCI 
Bus specification and analyze its capabilities and 
advantages for processing ATM. We will illustrate 
the system analysis necessary for an A TM adapter 
design using the PCI Bus and discuss the advantages 
of using the host memory as the ATM data memory. 
Lastly, we will discuss some of our experiences with 
PCI bus computer systems and its future potential for 
providing high performance A TM solutions. 

1.0 INTRODUCTION 

The acceptance of A TM in the marketplace has 
occurred rapidly because A TM has several 
advantages over other networking technologies. 

A TM provides for constant bit rate services that 
require real time processing capabilities, including 
low latency, Quality of Service (QOS) parameters, 
and traffic management. These capabilities are 
possible because A TM is a fast cell switching 
technology based on a fixed length 53 byte cell. By 
switching short fixed length cells over a switched 
fabric, networks can provide real time processing 
capabilities. A TM allows variable bit rate (VBR) 
services to be combined with constant bit rate (CBR) 
services to provide efficient usage of the network. 

The A TM has developed standards for multiple 
bit rates including standards with over 1 Gbps data 
rates. These multiple bit rate standards simplify 
LAN/WAN connectivity over an A TM fabric by 
providing scaleable connectivity to higher bit rates. 

The ATM Forum has developed standards for 
signaling that allow end stations to setup a 
connection between them which defines the control 
parameters necessary for maintaining the 
performance required for real time processing. LAN 
Emulation, another standard developed by the A TM 
Forum, provides for compatibility with legacy LANs 
such as Ethernet and Token Ring. 
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A TM is a connection oriented technology that 
allows for Quality of Service (QOS) parameters such 
as bandwidth, latency, and priority to be specified at 
the setup of the connection. To handle the problem 
of congestion, the A TM Forum has implemented 
traffic management control standards to provide an 
even more robust solution. 

This paper will focus on the PCI Bus 
architecture and how it will support a high 
performance A TM adapter design. In Section 2.0, 
key parameters of the PCI bus architecture that relate 
to an A TM adapter design will be analyzed. In 
Section 3.0, we will analyze an ATM adapter design 
and discuss the system level design decisions that are 
required during this process. We will show how the 
PCI bus architecture satisfies the A TM requirements 
of high bandwidth and low bus latency for real time 
processing as well as highlighting the PCI Bus Plug 
and Play capability. In section 4.0, we will discuss 
our experiences with the PCI Bus and highlight the 
future growth path available for the PCI Bus and 
A TM networking. 

2.0 PCI BUS ARCHITECTURE 

Let's look at a typical PCI bus computer system. 

PCIBus 

SCSI A TM EISA Graphics Peripherals 
Host Adapter ISA Adapter 
Bus MCA 

Adapter Bridge 

Typical PCI Bus System with A TM Adapter 



The PCI Bus is a high performance bus that is 
well suited for transferring data between peripherals, 
adapters, and other bus backplanes. The types of 
adapters that are supported by the PCI bus control 
include adapters for external memory accessing 
(typically a SCSI adapter) and adapters for 
networking connectivity (including A TM). The PCI 
Bus supports expansion busses through the use of a 
bridge and other peripheral devices which include 
audio and video peripherals. 

The PCI bus is usually connected to the host 
CPU and main memory through a bridge device that 
controls the data transfers between the CPU, Cache 
and Main Memory. This bridge also provides the 
major interface and controls the data transfer between 
main memory and all of the other devices on the PCI 
bus. 

The PCI Bus architecture has addressed several 
of the shortcomings of other bus architectures. By 
addressing these issues, the PCI bus architectures 
enables high performance networking solutions. 
High performance A TM networking solutions require 
specific bus performance capabilities, such as 
bandwidth, latency, and burst data transfer as well as 
containing configuration capabilities to allow for 
Plug and Play. 

The key features of PCI bus architecture that 
make it an attractive bus for an A TM adapter solution 
are: 

Raw Bandwidth 
Low Latency 

Burst Capability 
Processor Independence 

Plug & Play 
Growth 

Let's analyze these key features of the PCI bus 
architecture. Then in Section 3, we will apply these 
key parameters in a system design analysis of an 
A TM adapter for the PCI bus. 

2.1 Bus Bandwidth 

Bus bandwidth is extremely important to not 
only networking performance but also system 
performance. The PCI Bus is capable of high 
performance data transfer through its high bus 
bandwidth capacity. To calculate the maximum PCI 
bus transfer rate, we multiply the bus clock rate by 
the number of bits on the bus and then divide by the 
number of clock cycles it takes for each data transfer 
(It is 1 for the PCI bus): 

Clock Rate = 33 Mhz 
Bus width = 4 bytes = 32 bits 
Max. transfer rate= 133MBytes/s= l.04Gb/s 
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From this data, we can see that the maximum 
transfer rate of over a gigabit per second is much 
greater than the transfer rate required for A TM. (The 
SONET 155 Mbps ATM rate requires 134 Mbps data 
rate. The data rate difference is due to the amount of 
SONET overhead data which is not sent over the PCI 
bus) However, just having the available bandwidth 
does not guarantee good A TM performance. This 
will be discussed in the A TM adapter system design 
in Section 3. 

2.2 Variable Burst Size 

A burst transfer is comprised of and address 
phase and one or more data phases. The burst size is 
the number of data phases multiplied by the number 
of bytes on the PCI bus (4 for 32 bit PCI bus) that 
occur between the bus master and the target. The 
PCI Bus specification allows for a variable burst size 
and does not restrict the burst size. The upper limit 
on the burst size is set depending on the system load, 
the latency timer, and what the target can tolerate. 
This means that in a lightly loaded system the burst 
size could be very large. In a system with several Bus 
Masters, the bus bandwidth is distributed among the 
Masters. 

2.3 Bus Latency 

Bus latency is the time between a master 
requesting access to the PCI bus and the completion 
of the first data phase. Therefore, bus latency is a 
very important requirement necessary to provide low 
cost/high performance A TM solutions. 

There are several factors that contribute to bus 
latency. The overall bus latency is comprised of 
three parts: arbitration latency which is the time the 
Master waits after asserting REQ# until it receives 
GNT#, bus acquisition latency which is the amount 
of time the device waits for the bus to become free 
after GNT# has been asserted, and target latency 
which is the amount of time that the target takes to 
assert TRDY# for the first data transfer. 

The PCI handshake is designed to be as a worst 
case scenario - 2 clock cycles. For time critical 
transfers, the PCI specification provides Latency 
Timers which all Masters have to implement. When a 
latency timer expires, the Master has to release the 
bus after the current data transfer, if the Grant is 
removed. This allows time critical data transfers to 
gain access to the bus in a timely manner. 



2.4 Plug & Play 

Plug and Play is a concept where any adapter or 
peripheral card can be plugged into the bus and it 
will automatically be configured and work (Play) in 
the system without any problems. The PCI Bus 
specifications provides for an automatic 
configuration of the hardware in the system, by 
allowing the operating systems to set the interrupt 
levels, base address, latency timers and obtain 
directly from the hardware any information required 
by the driver I OS. This eliminates conflicts between 
boards in the system as well as eliminating the need 
for jumper headers on a board that were common in 
the past and caused many problems during 
installation. The configuration registers allow the 
operating system to determine the type of cards in the 
system, gather information on the requirements of the 
hardware and its setup parameters, like the bus 
latency timers, inorder to optimize system 
performance. Below is the information contained in 
the PCI bus configuration header. 

Device ID Vendor ID 

Status Command 

Class Code Rev. ID 
BIST I Header Latency Cache 

~e Timer Line Size 

Base Address 
Registers 

Reserved 

Reserved 

Expansion ROM Base Addr 

Reserved 

Reserved 

Max_LatJ Minx_Gnt J Interrupt J Interrupt 

Configuration Space Header 

2.5 Processor Independence 

00 

04 

08 

oc 
10 

28 

2C 

30 

34 

38 

3C 

Processor independence is when the operation 
of the system is not dependent on the type of 
processor used. This allows all devices on the PCI 
bus to operate in systems that have different 
processors, as long as they provide a PCI interface 
Bus. 

2.6 Growth 

A high performance specification needs to 
address the needs of today as well as allowing for 
growth in the future. The PCI bus specification has 
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been designed to grow with technology. This will be 
discussed in section 4.1. 

3.0 A PCI BUS ADAPTER DESIGN 

When designing an A TM adapter card for any 
bus specification, one needs to have their goals 
clearly established. As we set out to design an 
adapter card for the PCI bus, we had the following 
goals: 

I . Be able to sustain full duplex line speed 
2. Low cost (<$1000) 
3. Operate in multiple software environments 
4. Simple installation process 
5 Operate on multiple PCI platforms 

The PCI bus allowed us to meet these goals. To 
start the system design analysis process, lets take a 
look at an A TM system block diagram for the PCI 
bus. 

PCI Bus A TM Adapter Block Diagram 

The major functions that are needed for a PCI 
l 2 

bus ATM adapter are the SAR, PMD , FIFO, 
Control Memory, PCI interface, and Fiber 
Transceiver. There is one functional block that is not 
included in this block diagram and that is data or 
packet memory. As we go through the system design 
for the adapter, it will become obvious that the PCI 
specification allows the adapter to transfer data 
directly to host memory with minimal buffering 
required on the adapter. This was necessary to 
achieve the cost goals for our adapter. 

The following analysis identifies the 
requirements of an A TM adapter from an end station 
point of view. 

1 Segmentation and Reassembly 
2 Physical Media Interface Device 



3.1 Bandwidth 

ATM networks running on SONET OC-3 
transfer data at 155 Mbits/sec which results in a bus 
bandwidth requirement of about 20MB/s (134Mb/s) 
on the receive side. To sustain line rate on the 

transmit side we require another 20MB/s3. 

Therefore, to sustain Line Rate for both 
Transmit and Receive, we need a raw bandwidth of 
40 MB/s. As shown in Section 2.1, the PCI bus easily 
provides this raw bandwidth by design (> 1 Gbps). 
The A TM adapter would only take up 30% of the 
raw bandwidth even during peak transfers. 

3.2 Bus Latency 

Predictable and low bus latency are very 
important for A TM adapters. If bus latency was not 
low and predictable, one would need to add data 
memory to the adapter or provide a large buffer. As 
mentioned in Section 1, applications running on 
A TM networks require guaranteed latency 
parameters. Isochronous (time sensitive) applications 
depend on predictable latency values. 

In a system with PCI devices, the latency value 
is a configuration parameter that the adapter can 
request. The boot software determines the latency 
timer value based on the load in the system. For a 
given latency timer value, the maximum latency is 
fixed and predictable. 

The PCI bus latency specification guidelines for 
PCI devices states that the typical latency is short 
(likely under 2usec and predictable. If for example 
the LT timer is set to 40, which is a typical value for 
the PCI bus, the maximum latency would be l .6usec 
and the peak bandwidth would be IOOMB/sec. This 
bandwidth is still above A TM bandwidth 
requirement. 

The latency is more difficult to predict for 
existing PCI systems that have ISA or other 
expansion bus devices. This is because devices on the 
expansion bus do not comply with the latency 
requirements of the PCI. The PCI Specification 
suggests using 30usec as a worst case latency in such 
systems. 

Using 30 microseconds as a worst case analysis 
of how long the A TM adapter would have to wait to 
receive control of the bus, we can calculate the 
amount of data that would need to be stored on the 
adapter. As we discussed in section 3 .1, the bus 

3 Note that ATM is "Full Duplex" unlike Ethernet 
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bandwidth required for sustained line rate data 
transfer is about 20MB/s. Therefore: 

FIFO Size = 30usec X 20 MB/s 
= 600 Bytes 

Therefore, even at line speed, only a lK FIFO is 
needed for the worst case latency. For the typical 
case of 2 microsecond bus latency, a FIFO of less 
than 100 Bytes is necessary. 

3.3 Burst 

The SAR fetches one cell at a time from the 
host transmit packet memory and similarly assembles 
one cell at a time on the host receive packet memory. 
Being able to burst 48 bytes (The A TM cell size) 
across the PCI Bus helps in reducing the overhead 
and utilizing the bus more efficiently. The Host/PCI 
bridge chip sets limit the burst transfer size to 32 
bytes during a read cycle and 16 bytes during a write 
cycle (this is discussed in section 4). Let's look at 
the bus cycle timing for a PCI read cycle for a 32 
byte burst. 

Action Number 
of clocks 

Bus Request to Grant 4 
Address Cycle l 
Target Delay 10 
Data Transfer (8 Words I 32 Bytes) 8 
Tum-around & Idle 2 
Total 25 

PCI Burst Read Cycle 

The PCI burst read cycle uses 25 clock cycles to 
transfer 32 bytes of data. This provides an effective 
bandwidth of 340 Mbps even with the bus latency 
added in. The bus cycle timing for a PCI burst write 
cycle is: 

Action Number 
of clocks 

Bus Request to Grant 4 
Address Cycle 1 
Target Delay 2 
Data Transfer ( 4 Words /16 Bytes) 4 
Tum-around & Idle 2 
Total 13 

PCI Burst Wnte Cycle 



The PCI write cycle uses 13 clock cycles to 
transfer 32 bytes of data. This provides an effective 
bandwidth of 328 Mbps even with an allowance for 
bus latency 

The PCI bus specification allows for bursting 
large data transfers or packets across the Bus, since 
the packet size is typically between 4KB to l OKB. 
Since the PCI bus is a low latency/high bandwidth 
1/0 bus, it is obvious that the Master Latency Timer 
will expire and the device would have to give up the 
bus. If one device tries to burst large data packets 
across the bus, it would monopolize the bus. This 
would negate on of the benefits of the PCI bus and 
reduce the performance of other devices, like audio 
and video controllers on the bus. The latency timers 
allow several isochronous adapters/peripherals to be 
on the bus at the same time while not impacting the 
performance. 

3.4 System Decisions 

After analyzing the bandwidth, latency, and 
burst capabilities of the PCI bus, we can now go back 
and look at the goals for the design of the PCI bus 
A TM adapter and determine whether they were met. 
From the analysis in the burst section, we can see that 
both the PCI bus read cycle and write cycle support 
A TM line speeds which fulfill goal number 1 of full 
duplex sustained line rate. 

The second goal was the one that required the 
most analysis. The analysis of the bus latency for the 
PCI bus shows that packet memory is not needed on 
board and that only a 1 K FIFO is needed to buffer the 
data and still sustain A TM Line Rate. There is a 
large cost savings by using the host memory as the 
packet memory. The amount of packet memory 
needed for ATM is calculated in the table below. 
This assumes that each virtual channel (VC) requires 
lOK buffer space (unidirectional transfer only), 
which is the maximum IP over A TM packet size. 

Number of M~mon: Memon: 
VCs ReQuired Cost 
32 320KB $30.00 
64 640KB $60.00 
100 lMB $100.00 
lK lOMB $1000.00 

Packet Memory Cost 

From this table, we can see that the amount of 
memory needed grows quite rapidly and is still 
considerable even for a low number of VCs. For full 
duplex operation, the amount of memory would need 
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to double to support both transmit and receive. It is 
important to note that the use of packet memory on 
the adapter does not change the amount of host 
memory required. The same amount of host memory 
is determined by the size of the packet and the 
number of VCs and is independent of the amount of 
memory on the adapter. The PCI bus specification 
allows an A TM design to be done avoiding the 
excess cost of packet memory. By designing the 
adapter without packet memory on the adapter, we 
were able to meet the cost goal. 

Goal number three was to operate in multiple 
software environments. This was accomplished 
during our testing with the PCI bus adapter. the PCI 
bus supports multiple operating systems including 
Windows NT, Novell Netware, Windows for 
Workgroups, NDIS, and more. We have been able to 
operate with these multiple operating systems which 
satisfies goal number three. 

In Section 2.4, we discussed the configuration 
capabilities of the PCI bus specification. Using the 
configuration space header data, we have been able 
to simplify the installation process and meet goal 
number4. 

Goal number five, which was to operate on 
multiple platforms, was met and will be discussed in 
Section 4. 

4.0 ZEITNET'S PCI EXPERIENCE 

The PCI bus is becoming very popular among 
computer vendors which has resulted in a lot of 
computer manufacturers that are supporting the PCI 
bus specification. Inorder to do thorough testing of 
our PCI adapter design, we had to test our adapter in 
several variations and types of PCI computers. We 
tested our adapter on several different PCI machines 
including Compaq, Dell, DEC-PC, Gateway, Hewlett 
Packard, Micron, NEC PC and various clones. Each 
of these systems had other PCI devices on the system 
which allowed us to test a variety of typical systems. 
As one can imagine when testing multiple computer 
vendors, we found that not all PCI bus computers 
acted the same and discovered several interesting 
items during our testing of the ATM adapter. Some 
of these items satisfy the PCI specification, but may 
impact system throughput depending on planned use 
of the PCI specification. Here are some of our 
findings: 

l) There are two manufacturers of Host/PC I 
bridges that supply most of the computer vendors. 
They both behaved similarly, but were not quite what 
we expected. Both Host/PCI Bridge chip sets limits 
the transfers to host memory to 32 bytes for a burst 



read cycle and 16 bytes for a burst write cycle. This 
is due to the buffers provided in these host bridges 
for the PCI Bus. For ATM, the impact is minimal, 
but it does require the adapter to transfer a cell in two 
bus transfer (one transfer of 32 bytes and a second 
transfer of 16 bytes) to the host memory. We expect 
the new Host!PCI bridge chips to provide for larger 
transfers in the future. 

2) Some of the BIOS software do not initialize 
the Interrupt Vector. This requires your software to 
update your interrupt vector. We expect most 
computer vendors to incorporate this in the future. 

3) None of the existing systems that we tested 
with have implemented the latency timer. The 
latency timer allows for a more predictable bus 
latency and we believe that it will be implemented in 
the future on most systems which will improve the 
PCI performance. 

4) The Host!PCI bridge contain extra control 
bits that have to be chosen carefully. Your software 
needs to ensure that these bits are chosen correctly 
and can not assume that the BIOS has done 
everything properly. 

5) All systems do not enable parity. This 
requires you to process parity differently on some 
systems. 

6) There are two mechanisms for identifying 
the devices in the system. Most systems use 
mechanism 1 to identify the hardware devices, but 
mechanism 2 seems to be coming more popular and 
will probably be used more in newer systems and in 
the future. 

7) The target delay for the PCI burst read cycle 
was 10 clock cycles. We expect this to improve in 
the future and increase the performance of the PCI 
bus. 

As you can see, you can not assume that all PCI 
bus computers will act the same. Your software 
needs to be versatile and monitor the system to 
ensure that all processing is done properly. 
Fortunately, there were no major problems and the 
PCI bus performed very close to expectations. 

4.1 Future for PCI Bus and ATM 

With any good technology or specification, 
future growth is an important consideration. The PCI 
bus specification is designed to grow with 
technology. There are several upgrades that are 
possible that will improve the A TM performance on 
the PCI Bus. These changes include; 

1) The current PCI Bus is 32 bits wide. The 
PCI Bus allows for expanding the data bus to 64 bits. 
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This change alone will double the maximum 
throughput. 

2) The clock rate for the PCI specification is 
for 33 Mhz. The next generation of PCI Bus will 
allow for clock rates of 66 Mhz. This will also 
double the maximum transfer rates. 

These two changes alone will provide for a 
maximum transfer rate of over 4Gbps. With the 
improved performance of the PCI Bus and the 
continued processing power growth, the possibilities 
for higher bandwidth [STS-12: 622Mb/s SONET] 
A TM networking on the PCI Bus are possible. 

5. CONCLUSION 

The PCI bus architecture is ideally suited for 
high performance networking applications. The key 
PCI bus features are: 

Raw Bandwidth 
Low Latency 

Burst Capability 
Processor Independence 

Plug & Play 
Growth 

These key features allow users to create 
applications that utilize the power of A TM. But even 
more important is that the PCI bus allows one to 
design an adapter that is cost effective, which is 
essential to expanding high performance networking 
solutions for the end station. 

It will now be up to the application vendors and 
users to create the next generation of products that 
can utilize the true power of A TM and the PCI Bus. 

Subbu Ganesan: As a hardware architect for 
ZeitNet, he has worked on both the Sbus and PCI bus 
A TM adapter architectures. He has over ten years 
experience in high performance system design. His 
recent interests includes high speed bus interface 
design, A TM and other emerging LAN technologies. 
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Abstract 

0111! of the basic applications of PC/ i1 IO proWle an 
inltl/'au for LAN adapters that connect COlllpflter 
q#Dns lo Mtworb. The PCI LAN """'1ttr is quickly 
dilplacing the legacy b111 adapt~n "1 IM same type (i.e. 
PC1 Etlu!mtt Wttad of ISA Ethernet. etc.J. hmmt: llw 
ldgMI' transfer qml of tlte PC/ ma provida more 
tflic:iart data mtJmMnts. reducing l]lttm tr1erbad. 

LAN rxlapten fll'e chal'actmznl by ltaYing lo intafaa a 
COn#a1ll blf·rate daJa Stmlm, such Ill (I 10 
megabitl1«tllld Ethernet or 16 •gabidsecond Token 
Riq. '° a CPUIMt:"""1 q1ttm drat is 11111 alwa]s 
awriWM at ""' 11wn instant. This lllDll&$ that data 
bdllg m:dml Im IO be ·qwlltd, or dattz tl'tllUmlttftl 

""" ""' lo be pn-fdch«J. lf. PC/ bu iatellCJ u 11111 
"*lflUlld1 tlllr.cn into cOMideration, data,,,,.,.,.,,,, aml 
tlVm'llll conditilml can OCClll'. 

PCI /lappnlS 1o be arrmn, into common .._ 111 a ,;,,. 
*n anwri t«laroloo a Wlklni a ql/ltl1lttlm incrmle 
in sptttl. A wut ,,.;orilJ of Mtworlt.s inlttllktl btfott 
1995 1'W'e ilatallfd with eit#IU at 16 or JO 
fMIQblalltlCOlltl tet:lwllov. Ft>r 1995 OllJl beyond, 
Mt i8 c ..,. tnntl toward JOO tntpbitll«tlllll tllld 
/01W LANs, with IEE6 802.J fr#I ("Fat ~ J, 
IF.EE 802.12 ("JOOBaleVG-Altyl..AN°'J, FDD/ a ATM. 
Silla famr networkl wiU ~ mon lamtc:1 problau 
than"°""'"""'°'*'· it ii bnportant for l'CI 'Jlltm and 
peripltmll dalgnus to J101 tlltMtlon to*- i6llla. 

LAN Adapter Arcbltecturt 
PCl provide. two basic modes of data 11amfer: 1) 
taqet/llaYe mode. and 2) bu& master. The medlod or 
cholc:c used for LAN adaplm is bus IDllter, which 
allows biaha' speed bunt tramf«S and, men 

257 

impoltandy, the ability IO traD&fer data without the 
involvement of the host CPU. 

As a iautt. the typcial PC! LAN adapter his an 
arclritectme similar to tbat shown in Fipte 1. For 
simplicity the components implc:meadng taiJet/slave 
mode register5 for device cxinfiguration and contml have 
been omitted. 

Fi&ure I - Typical PCI LAN /ttJapM" 

Because a PCI based aysaan is apec1ed to ha'Ve a 
bandwidth that is high telllive to that of Che Network 
Media, (even for high speed nelwolb) 111011t PCI LAN 
adapters do not implement iDclepmdent. nmdomly 
a:c:esled butter memory. Thi& S&YCS on dac ovad bomd 
COlf. 

The FIFO/Buffer system povidcs an adaptation between 
the tower speed. ccmtant bit-rate data flow of the 
Netwodt Media to the hiper speed. variable bit-ralO data 
flow of Che PCI bus. 

During a 1l'aDSIDit operadoa. tile FIFO must be filled with 
data from the PCI bus f8*t dmn the PhyaicaJIMAC 
Layer device consumes it. If it does not, a PIFO undcmm 
occurs and the tnmsmit opendion must be aboded. 

During a n:iceive operadon, the FIPO D1lllt be emptied by 
the PCI bus faster than the Pbysieal/MAC Layer fiUa ir. Jf 
Chis does not happen. a FIFO ovemm oa;un IDd the 
blcolPing data packet ii c:orrupted. 
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The problem will be compounded if the LAN adapter 
supports full duplex operation, providing a sepasate 
transmit FIFO and a receive FIFO. Undernms and 
ovemms will occur under one of two conditions: 

1) The bandwidth of the Network Media i$ larger than 
fhe bandwidth on the PCI bus that i& available to the 
LAN adapter. 

2) The dme that it lakes for the LAN Adapter to 
acquite and transfer data on the PCI bus. This is 
called the PCI Latency. 

The larger thc FIFO, the less likely an undemm or 
ovemm event will occur. lt ia tempting to simply design a 
device with the FIFO as tarp or larger as the muimum 
size packet and this has been done with at least one 
design. and thereby guaranteeing that any PCI latency 
condition can be accommodalcd. Howcva', the trade-off 
is cost; a 1514 byte FIFO for a full length Eahernet data 
packet can consume 80,000 or more gates on a standard­
ceU ASIC. In addition, the LAN board design becomes a 
store-and-forward design. which imposes a network 
transmit/n:ceive latency equal to the size of She data 
packet. Competing designs that do not impose this 
netwolk latency win benchmark higher. 

One of the principal design questions of the LAN adapler 
designer, then. is how large doeS the FIFO need to be? 
The optimal choice will be the smallea me that will 
never allow an undemm or ovenun to occur in the worst 
case latency scenario for lhe supponed systems. 

PCI B&nclwldtb 
Bcfote klokiog at latcney, a quick overview of PCl 
bnhridtb is bdpful. PC1 is widely adverdacd • beina 
capable of .. 132 mepb)'tm per sec:oad. .. whkh bu led to 
Ibo gmaal mapcion daat this is dle baodwidth of PCI. 
lhc, figure is derived from • 33M& bus dock (30 
nimosecoads). with 32 bits of ............ each 
cydo. 

The PCl Specific:alion allows for a bus cloct • slow II 
2Smhz., which will sault in a lower..,_.. .. of 100 
....,_petteCOnd. 

In praclicc, die accual llDOURt of data dl8t CID be moved 
over PCI is somewhat smaller than Chis dleoiedcal 
maximum. since a cataia amounc of owabead is intaexent 
in the daipa. The liOUl'Cel of this~ 119: 

• Bus arbitration cniemc:.t • cycla me lost wbeo tho 
PCI bus arbiter swicehcs frocn nmter to master. 

~· .' -~ . 

f; 
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• PCI burst length • data ttansfcrs are broken up into 
bmsts, each with an address cycle. The Morter the 
burst, the~ address cycles will consume the bus. 

• Bus turnaround - each PCI read burst requires a turn­
around cycle to allow the bus to settle between 
alternate drivm. 

• Wait stata imposed by the PCI target device(s). 

• Wait stale$ im~ by the PCI master device{&). 

Figure 2 illustrales how PCI Burst Len8fb can affect PC1 
bandwidth. For simplicity, the figure disregaids the 
pouibilities of wait states and bus arbitration. 

AssumiDa 28 bytes are to be traosfemd in 7 dlla cycles. 
tbe PCJ bus will actually take 19 clocb to complete the 
tnmsfer in a bus-master read operation. With a 33Mffz 
cl<JCk. this is at a rate of 35 megabytes/second. or only 
26% of the nominal 132 megabyteslsecon theoredcal1y 
possible! (Still faster than EISA, but considmbly less 
than what the customer probably expected.) 

~ die PC1 burst leugtlt to 8 grally improves 
matter&. ~ the efficiency of the da1a 1raDSfers climbs 
to 11 % for mck of 28 bytes and 87~ for writa of 28 
byCe&. longer transfers and larger PO bun.t lengths will 
gtadually ~the efficiency of tho bus. 

Clearly. the &ilicon designer of dlc LAN adapter sbou1d 
mate sure to maximize these parameterS of the design. 
since the mnainder of the bandwiddl has to be med 
between all the bus-mastem contcndinB for b USC of tbe 
bus. _,...,.,_ _,_.,...,._ 
r=.-c.-n: I:.':.": ~:.~-= ==--= - . .- ... ·--1 

• 
1 m • I 

I • • • • I • • r ' ' ' t ·- • 7c:ut • • !e'1-t1 -- t1 ,. 
~=- • ,. 

"' M .. • --- • -- f1 ==•a11 ,. 
• 

Fiprt 2 - F/fttct of PC/ Biii'# U..tla on Btlllllwl4th 

It is important to note dial if a banclwidlh pvblem _... 
in a S)'StlMl. no amount of FIPO space in dle LAN 
~ can pievent overrun madklollll. (Uudeuma .can 
be elimimded wi1h a srorwnd·forward FIFO.) Although 
problems can be posqmed on liOIDO scatc. it unly 
n=quim a dlda bum long eaoqll befCR a packet ii lolL 
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PC1 Latency 

The design of PCI allows the configuration of systems 
with prcdk;table bus access latency. This is done by 
limiting the amount of time that each bus muter ~ 
can own the bus, and then granting access to all 
requesting bus masters on a .. fair" basis.1 

The principal mechanisim for making sure that each PCI 
device receives a portion of the bus is the master latency 
counter. 

i I 

LAT ---~ ....... ~! .•.••. ~-----1 
c... 1 ,., •• 

Tablt I 

PCI Latency is broken down into th~ components, as 
illustrated in Figure 3. 

2 4 G 6 7 8 9 W tt 

RIQt --i -------------
GN1'9 

FIW8 

IRP'fjJ 

1'lmt l'~--

Problems Obseryed In Real·Ufe 

The PCI Specification 2.1. states "Inclusion of a standard 
expansion bus (JSA. BSA, or MC) makes lalcncy 
prediction more difficult when a PCI agent is accessing 
an a&mt on die mpansion bus. ..a Thia wms om to be an 
llCCUnlle prediction. LaleiK:y problems eu occ:ar for two 
reasons: l) ft'om tbe daip of tbc lepc)' bus bridp. llld 
2) tbe.laa:ncy of cbc legacy bus device i1self. 
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NetWare and ISA video 
One latency problem scenario has been observed using a 
lOMbit Ethernet Adapter with a 256 byte transmit FIFO 
and a 256 byte receive FIFO. This device is able to 
tolerate a PCI latency of around 200 f.!SCC, wbida i$ many 
time& larger tban that suggesled by the PCI 
Specification. 3 The problem system was based on Novell 
NetWarc, a standard 486/586 class PCI mother-bomd. 
the PCI Ethernet adapter, and an ISA video adapter. 

The PCI Bthemet adapter is a bus-master device. which 
stores and fetches LAN data into and out of main 
memory according to insU'Uctions given it by the 
adapter's driver. The softwan: driver is able to detect 
FIFO undenun or ovenun incidents. 

The NetWare monitor SC«CD, when active. updates its 
display once each second. On a slow ISA adapeer, this 
causes laraer than nonnal latencies on the PCI bus each 
second which. if dara is being tnnsfem:d by the LAN 
adapter at that lime, result in an unde:rrun or ovemm 
being ~ by the driver. When the monitor ICreeo is 
deactivated, no undenuns or overnms appear under fhe 
same nenvork load. The conclusion is that the wait states 
imposed on the PCJ bus by the ~pansion bus bridge (on 
behalf of the video card) results in lalcncies longer than 
2()()Jlaec. 

Although this situation does not threaten the security of 
the user's dala or, in most cases. noticably 8ffect 
peri'ormanc:e, most S)'Slml pun:halera find dris condition 
unaa:eptablc. The cure most often seen is to use a PCI 
video c:md (although high speed grapbic:s ii not aormally 
asaociatal with server applic:ations). 

Uamory SUbsystems 
In many systans, the speed of the PCI bus is DOt the 
system boldeneck. Instead, the IQoifalign is 1be lbilitJ of 
the boat DRAM subsyS1an to IOUl'CC/sink data. A simple 
memory subsys«cnl. composed of 36-bit SIMM. is often 
limited to a total capabillty of 40 ~ 
comp&R!d to Che 100 mcpbyte and above dala dllt QIU 

appear from the PCJ bus. 

As a nsult, a four-cbanncl Ethernet Adapter, c:oafijmtd 
a four NICa beyond a PCl-PCI bridge. CM ovmua smne 
systems.in the oonfiguratioo shown in Pigme 4. 
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PCIBus--~--------~--~-
IO 

Figur~4 ·FOllTPortTtstSetup 

In this test setup, each NlC ia programmed to 
continuously transmit data packets stored in the DRAM 
memory. Esh port tran&mits at 10Mbps. Since each NIC 
is also looped back co another NJC. each port is also 
condnuomly ~g It lOMbps. So die OYef8ll payload 
data rate can reach a mlldmum 2.S Mepbytes/seeond 
per NIC, or 10 ~for the total 1at setup. 

Some mother-boan:ls haw been observed dsat ~ not 
able to hlladle this data load. Although these mother­
board& lend to be the lowaHnd product, it ii an 
importam demoustmtion dm shows that PCI bandwidth 
does not necessary indic:B da&a paocasing capability. 
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Abstract 

This talk will focus on the rech.nical trade-offs involved when integrating MPEG-1 
playback capability with a graphics controller. Various methods of connecting the video 
stream to the graphics function are reviewed, with an analysis of the advantages and 
disadvantages of each. 
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Tomorrow's systems, especially home systems, 
will require an upgrade path that allows the user 
to add various multimedia functions. This must 
be low cost but still provide usable quality video 
and audio. The upgrade path could be via some 
type of standard connector or bus. The port/bus 
would carry various data types such as live 
audio/video (e.g. from a camera, VCR, 
laserdisk) and compressed audio/video (e.g. 
Indeo, Cinepak or MPEG files from a CD 
ROM). Several "standards" have been offered 
to provide this capability including the VESA 
Advanced Feature Connector (V AFC) and the 
Media Channel. While these two have their 
merits, neither has been very successful. The 
PCI local bus on the other hand is an effective 
upgrade path for multimedia data streams. Not 
only does it have sufficient bandwidth to handle 
mainstream multimedia applications, it is present 
in an ever growing number of systems. 
Therefore, at no additional cost, a user who 
purchases/owns a PCI based system has a built 
in expansion path. Following are some issues to 
consider when deciding on a multimedia 
platform. 

• Bandwidth requirements/issues for 
multimedia data streams 
• Source image size and associated 

bandwidth requirements 
• Destination image size and associated 

bandwidth requirements 
• Multiple images (e.g. video 

conferencing) 
• Livevideo 
• MPEG/Indeo/Cinepak playback 
• Audio streams 
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• Latency effects 
• FIFO size 
• Arbitration priority schemes 
• Efficient use of bus 

• Number of upgrade slots 

• Multiple functions on PCI bus 
• PCI to PCI bridge (secondary PCI 

bus) 
• Busless interface to PCI device 

• Interrupt issues 
• Allocation by system 
• Proper sampling of interrupt line 
• Interrupt routing/sharing 

• PCI vs VMCN AFC 

Components and Adapters are available today 
that take advantage of the PCI bus for 
multimedia applications. There are adapters that 
bring live or pre-compressed video over the PCI 
bus to be displayed by a graphics subsystem. 
More and more, the PCI bus will be utilized for 
multimedia. Those who are designing PCI 
components and systems need to help ensure 
that this platform can keep up with the fast 
growing multimedia market. 
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3Dlabs 

Imp le 
Perfor 

© Copyright 301.bs 1995 - PCI'95 Pogc I 
GLINT is a Rq:istcral Trademark and 3 Dlabi is a T rademuk of 3Dlabs Inc. Ltd. 

Background to 3Dlabs 

• 3Dlabs designs and sells chips and technology for 3D graphics 

• 3D is our core competency 
- 10 years experience of hardware and software design for 3D graphics 
- Hundreds of man years R&D Investment in 3D 
-A large patent estate in 3D graphics 
-A proven silicon design capability 

• GLINT - our sixth generation 3D product 

• Over 40 design-wins for GLINT 
- Mostly PCI boards for PCs 

©Copyright 301.bs 1995 - PCI'95 Pogc 3 
GLINT ii a Rc:gistctcd Trademark and 3Dlabs is a Trademadt of3Dlabs Inc. Ltd. 

Topics Covered 

• Key technical issues for hardware designers and driver writers 
implementing accelerated 3D Graphics for Windows 

-Market requirements for 3D Graphics under Windows 
-The 3D Graphics pipeline, geometry and rendering, and 
the need for acceleration 

-Software architecture for acceleration 
-Hardware architecture for acceleration 
-Future directions for 3D under Windows 

©Copyright 301abs 1995 - PCI'95 Pogc 2 
GLINT ii a Regi1tetcd TradMlark and 3Dlab5 is a Trademark of3Dbhl Inc. Ltd. 

Opportunities for 3D Graphics 
• Two separate market opportunities for 3D 

- Productivity and Games 

• Early market driven by specialized Applications/Titles 

• Eventually 3D will be Pervasive - 1997? 
- No longer driven by specific applications 
- 3D used in everyday applications and the user interface itself 

Price 

1994 1995 1996 .. 
©Copyright30labs 1995-P0'95 P.gc4 
GLINT is a IU:gi11~ Tra:lemark and 3DlalH is a Trademark of3Dlab. Inc. Ltd. 



High Performance 3D 
Graphics on the PC is here 

• All the components are now in place for high performance 
3Don the PC 

- Pentium, MIPS and PowerPC class processors 
- PCI local bus 
- 32 bit operating systems - Windows 95 and Windows NT 
-Adoption ofOpenGL by Microsoft 
- Fast 3D silicon, for example GLINT from 3Dlabs 

• Application developers WANT to port to the PC platform 
• Accelerated PCs are outperforming workstations running 

3D intensive OpenGL applications TODAY 

© Copyright 3Dlabs 1995 - PCI'95 Page 5 
GLINT is a Regi&tered Trademark and 3Dlahs U a Trademark of3Dlabs Inc. W. 

3Dlabs are Active in Both 
High-end and Games Markets 
• Rest of talk concentrates on Professional I OpenGL market 

Price 
GLINT 300SX and 300T.X. 
OpenGL Acceleration 
Available Now. Low-cost, high performance 

GLINT variants 

d:2~~~~E;--.. ; .. , ... nfB""'•·""~""¢"'·9"''~'""•·-;-·~..,· 
GLINT. Available 2Q95 

1994 1995 1996 
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3D tor Productivity and Games 
Have Very Different Needs 

Professional Needs Games Needs 
H.!g_h Qual!!x_ Low cost 

Workstation ~rfonnance Interactivi!l_ 
O_j)_enGL GamesAPis 

24 bit Z and color 16 bit Z and color 
1280xl024 Minimum Resolution 640x480 Minimum Resolution 
Windows, overlaj's, al_p_ha buffer Full screen, video, ~Iites 

Competition: deskte>p_ Silicon Graphics Com_j)_etition: SollY_ PlayStation 

© CopYright 3Dbbs 1995 - PCI'95 Page 6 
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3111ahs 
···· .. ···.~~ ~ 

The 3D Graphics Pipeline 
•All 3D APls have a similar architecture 

Where are the objects on the screen? 

What color are the objects? 
Geometty t 

lli!f P~;:.:-~---"·'::;'L~.:I What shape are they on the screen? 

Pixel I 
Processing - t 

'Rasterization' 

© Copyright 3Dlab. 1995 - PCl'95 Page 8 
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Which pixels are covered? 

What color is each pixel? 

Which pixels are visible? 

Write the pixels to che framebuffer. 



The Need for Acceleration 

•Geometry 
- Functionality varies for each API 
- Floating point intensive 
- Large, complex code 
- Runs well on fast, standard processors 

• Rasterization 
- Functionality common between APis 
- Small, multi-field integer operations, bit shifting 
-Well suited to hardware implementation 
-Dedicated hardware provides x15 polygons/$ advantage over 
standard processors 

•Use hardware for accelerating pixels not geometry 

© Copyrighr 3Dlabs 1995 - PCI'95 P'lle 9 
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Overview ·of OpenGL 

• Originally developed by Silicon Graphics 

•Integrated by Microsoftinto Windows NT 
and Windows 95 

• The de facto standard for workstation class 3D applications 
• Compute intensive geometry pipeline 

•Extensive pixel processing functionality 
• Strict conformance test - including consistency between 

rendering modes 

© Copyrighr 3Dlab.s 1995 - PCl'95 P'lle IO 
GLINT is a Regincrcd Trademark and 3Dlabs is a Trademark of 3Dl:obJ Inc. Ltd. 

~~~t~kJ 
m~~~-~~~~~~~~~~~~~~~~~~~~-r--~~~~~~~~~~~~~~~~~~~~~~~-----1 

m 

Windows OpenGL Architecture 
•By dynamically installing a _DLL, standard OpenGL 

applications can seamlessly use a 3D accelerator 

Application 

OP ENG GDl32-D 

GLINT DDiext 
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Client 

Server 

Rasterization Performance 

• 3Dlabs ships a fully optimized OpenGL .DLL for GLINT 
- Direct implementation from API to Silicon 

• Advantages over using an intermediate Driver Layer 
- Higher performance - avoids an extra processing layer 
-Allows Optimizations, eg texture caching, command buffering 
-Allows Enhanced functionality, eg Multi-window double buffering 

• A GLINT board typically provides 5-lOx OpenGL speed 
increase on a P90 machine 

©Copyright 3Dlabs 1995 - PCI'95 P'Jle 12 
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3D·DDI • A 3D Driver Interface 

• API and Chip vendors may decide to use 3D-DDI 
-A common interface layer between 3D APis and chips 

• A useful safety net for widespread availability of OpenGL 
and other APis across hardware platforms 

- Precludes performance and functionality enhancements 

• 3D-DDI is NOT an API for use by application developers! 
• 3D-DDI will be available for GLINT 

• GLINT currently support nine 3D APis 
-All are implemented directly for maximum performance 

© Copyright 3Dlabs 1995 • PCl'95 Page 13 
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PCI Local Bus Design for 3D 
Performance 

• The PCI interface can have a critical impact on graphics 
performance 

•The use of DMA can double graphics performance whilst 
freeing the CPU for application processing 

• GLINT provides comprehensive PCI DMA support 
-On-chip master capability and DMA controller 
-On-chip FIFO, with multiple address mappings to allow linear burst 
transfers into the FIFO 

-Command formats allow DMA of command and parameter stream 
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Geometry Performance 

• A 90MHz Pentium processes geometry for lOOK visible 
OpenGL polygons/sec 

- GLINT can rasterize 300K polygons/sec 

•The bottleneck is mainly floating point to integer 
conversions and function calls 

• Faster processors help - MIPS and PowerPC are twice as 
fast, P6 is coming 

• 3Dlabs Software Optimizations: Multi-threading for MP 
machines, Vertex Array Extension, Display List Caching 

• Some GLINT boards will have hardware geometry 
acceleration - DSPs or PowerPCs 

- Need access to OpenGL source for a direct .DLL implementation 
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Specification for an Effective 
OpenGL Accelerator Chip 

• Performance equal to mid/high-end desktop workstations 
- Professional users cannot afford to work any slower than on their 
workstations 

•Complete OpenGL Rendering functionality in hardware 
-Applications use all the OpenGL rendering modes 
- Need hardware performance regardless of mode 
-Avoids software emulation of missing functionality 
-Any emulation must mimic hardware implementation 

• Support for Workstation-class memory configurations 
- 32 bit color, 32 bit Z, overlays, double buffering 

• PCI Master and DMA Capability 

© Copyright 3Dlabs 1995 • PCl'95 Page 16 
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The GUNT Chip 
Single Chip 

Ac~lerates 3D and GUI 

100%0penGL 
All 3D Pixel Operations 

Accelerated in Silicon, 
including texture mapping 

Deep Buffer Support 
32 bit color, 32 bit Z, 

controllable per window 

©Copyright 3Dlabs 1995 - PCI'95 Page 17 

High Graphics Performance 
300K Shaded, Z Buffered, 
Anti-aliased, Transparent Polygons/sec 

High Performance PCI Interface 
Rev 2.0 compliant PCI Master, 
On-chipDMA 

Flexible Memory Architcture 
Upto 32 MBytes framebuffer and 
48MBytes DRAM localbuffer 

GLINT is a Registered Trademark and 3Dlabr is a Tndc:matk of3Dlabs Inc. Ltd. 

GLINT Functionality • 1000/o OpenGL 
• Primitives 

Points, lines, triangles, rectangles, 
bitmaps 

•Texture 
All OpenGL modes in silicon 
Including tri-linear mip-maps 
with per pixel perspective correction 

• Anti-aliasing 
True 4x4 or 8x8 subpixel sampling 
Works for vectors and polygons 

•Also 
Fogging, Alpha tests 
Windows and Scissor Clipping 
Stencilling and Stippling 
Depth cueing, Logic Operations 

An Example 3D Accelerator 
Board Design Using GLINT 

No RAM 
Buffers required 

for most 
configurations 

Plug and Play 
EPROM. 

interface 

• Very low component count and board cost 

On-chip Timing 
Generator for 
driving 
RAMDACs 

On-chip PCI 
Interface, !vfaster/ 
Target Rev 2.0, 
DMA Controller, 
FIFO Buffering 

• Direct connect to PCI, memory and RAMDAC 
• PCI interface is full Rev 2.0 compliant 

© Copyright 3Dlabs 1995 - PCI'95 Page 18 
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Memory Configuration Flexlbillty 

0-48 bits 

S3 coprocessor interface 
to share the framebuffer 
with an S3 device 

Localbuffer holds 
offscreen pixel buffers and 
texture 
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VGA to 
2560x2048 
Resolution 
1-32 MBytes. 
Split Transfers 

60-80ns 
RAS Access 

Localbufler bits 
configurable on a 
per windows basis 

0-48 MBytes 



3Dlabs I S3 Alliance 

• S3 chips and GLINT can be used on the same board 

• Maintains S3-based 2D driver and design investment 
- Seamless upgrade from 2D to 3D 
-All existing 2D drivers run without modification 

• Scalable 3D solution 
-Low cost 3D designs using Trio64 +GLINT 
- High functionality using Vision64 + GLINT 

• Video and 3D on one board 
- Vision968 has video support 
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Work in Progress for 3D under 
Windows 

• Some workstation capabilities still lacking under Windows 
- Essential for many workstation applications 

• Both GDI and OpenGL need support for: 
-Overlays 
- Double buffering in a window 
-Stereo 

• 3Dlabs are working with Microsoft to define OS extensions 
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GUNT and S3's Vision 968 
• Shared VRAM F ramebuffer 

- GLINT private localbuffer 

• Vision968 performs all windowing and video functions 

• GLINT accelerates all 3D within the window boundaries 

DRAM 
Localbuffcr 

GLINT 

Vision968 
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53 Coprocessor Interface 

VRAM 
Framebuffer 

RAMO AC 

For More Information on GLINT 

• Neil Trevett 

• 3Dlabs Inc. is based in San Jose 
• ( 408) 436 3456 

• neil. trevett@3dlabs.com 

• See us on the floor! 
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DECchip 21130 Integrated PCI Graphics and Video 
Accelerator 

Frank T. Schapfel 
Digital Semiconductor, DEC 

77 Reed Rd. 
Hudson, MA 01749 

508-568-4122 
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DECchip 21130 
Integrated PCI Graphics and Video 

Accelerator 

Optimized solution for quality business video 

Frank T. Schapfel, Product Line Manager 

Graphics and Multimedia 

Digital Semiconductor 

PCIWeek.ppt 1 
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211.3=0 An,n.oun.cem,en,t 

+ High performance controller for business graphics and 
video applications 

+ First in a family of integrated PCl-bus display controllers 

+ Availability 
- Samples and Evaluation boards April '95 

- Production June '95 

+ Price 
- $34.10@ 5Ku 

PCIWeek.ppt 2 
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Business Video Requirements 

+ Convergence of graphics and video on the desktop 
- Business Video 

• Multimedia presentations 

• Multimedia Authoring 

• Desktop Teleconferencing 

• Training and Remote Learning 

- Proliferation of CD ROM titles 
• Education and Entertainment 

+ Video performance dictated by end user expectation 
- Comparison to TV quality 

+ Jerky, blocky, postage-stamp video does not meet user 
expectations · 

ll!!iilllliili!l:lli:,1 
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What the 21130 delivers ••• 

+ Outstanding graphics and video performance 
+ Optimized performance of SW video codecs 

- PCI Bus mastering 

+ AccuVideoTM 
- Digital's Patent-pending imaging technology 
- Real time video at 30 frames per second 

- High resolution video 
- Multiple video window support 
- Simultaneous color quality for video and graphics 

1111111111'11::1::.·1 

PCIWeek.ppt 4 
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PCI 

21.1,30: Performance 
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motion video 
+graphics 

1/2/4MB EDO 
DRAM 

+ Windows PCI Desktop 

+ Target applications 
- Multimedia presentations 
- Motion video playback 

• Real-time lndeo, 
Cinepak 

• Cost-effective MPEG-1 
• Games, "edutainment" 

- Windows acceleration 
- Upgrade to ... 

• Video teleconferencing 

• Multimedia authoring 

+ Mainstream Pricing 
- -$65 BOM cost for 1 MB 

- -$95 BOM cost for 2~~Week.ppt 5 



'Cl Video Acceleration Market Size 

20000 
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...... MPEG Accel K Units 10000 ; , 
8000 ; , 
6000 fl 
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fl/I -"" 2000 -- "' 111111 

0 
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21130 Graphics Features 

+ 64:.bit 20 Windows acceleration 
- BiTBL Ts, line drawing 

- Full color solid and patterned fills 

- Color expansion for text and monochrome brush fills 

- 35M Winmarks 4.0 (Pentium-90 1024x768x256) 

+ Integrated VGA controller 

+ Integrated 135MHz RAMDAC 
- 3x256 color LUTs 

+ Integrated Phase-Locked Loop clock generator 

+ 32-bit PCI bus interface 
- Bus Master OMA read for fast BL Ts to screen 

+. 32-/64-bit EDO DRAM frame buffer interface 

:!111,111:::11:1:1::1::· 
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+ AccuVideo™ imaging technology 
- 64K color quality 
- Unique imaging filters eliminate scaling artifacts 
- High resolution 1280x1024 in 2MB 
- Image scaling to arbitrary sizes 

+ Unlimited video windows 

+ Windows™ DCI compatibility 
- Monochrome or 8-bpp graphics overlay support on video 

+ YUV to RGB color conversion 
- No color palette conflict between graphics and video 

PCIWeek.ppt 9 
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21.1 .. 30 Acea Video™: 
A Closer; Look 

PCI 
YUV 4:2:2 
RGB 8:8:8,5:5:5,5:6:5 

·······································:····························································· 
PCI OMA Read 

Sharpen filter 

Scale 

Smooth filter 

21130 
DAC 
x3 

ccu Video™imag ingl 

YUV->RGB Index 
256x24 11 256x8x3 

VideoLUT GraphicsLUT I: 

8-bit RGB index 

DRAM Frame Buffer 
Video 

Stencil 
1-bpp 

PCIWeek.ppt 1 0 
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System Architecture Advantage 

+ Value segment is dominated by software codecs 
- lndeo and Cinepak 
- MPEG-1 emerging in late 95 

21130 is a PCI Bus Master 
- Increases software codec performance by >20°/o 

CPU 

Chip set 

CPU performs 
video decompression 

Main 
Memory 

Shared 
Frame 
Buffer 

t PCILocalBus 

~ 
\.i.W Multimedia Content 

PCIWeek.ppt 11 
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21130 Software Drivers 

+ Windows 3.1 

+ Windows95 

+ Windows NT 3.5 (Alpha and Intel) 

+ Video for Windows 
- DCI 

+ OS/2 
- ENDIVE 

+ SCO Unix 

+ AutoCAD 

°"11:111i1:::1. 

PCIWeek.ppt 12 
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21130 
Uncompromised Video Acceleration 

+ Quality solution for mainstream business video and 
graphics 

+ Optimized video playback solution for SW codecs 

+ Flexible video windows with AccuVideo 

+ Balanced graphics and video performance 

:::11111:1:1 

PCIWeek.ppt 13 



Driving Toward a PCI-Centric Graphics/Video Solution 

Ken Lowe 
Sierra Multimedia 

2075 N. Capitol Ave. 
San Jose, CA 95132 

408-263-9300 
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Sierra Semiconductor 
Driving Toward a PCI-Centric 

GraphicsNideo Solution 

••••••11111 

Ken Lowe 

Director of Marketing 

Sierra Multimedia 
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Sierra Semiconductor 

Relevant Market Trends 

••••••••11~ 
II Higher performance PCs 

II Cross-platform adoption of PCI 

1164-bit GUI accelerators 

II Integrated video acceleration 

II Soft CODECs 

Ill 3D acceleration support 

While maintaining 

II A constant-price market model 
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Sierra Semiconductor 

GraphicsNideo Complex 
Interfacing Needs 

••••••111~· 
II Standard method of connection 

- Graphics controller 
- MPEG decoders 
- NTSC decoders 
- 3D Accelerators 

II Low-cost 

II Low pin-count 
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Sierra Semiconductor 

Alternatives and Issues 

••••••1111~ 
II V AFC - only supports video back-end mixing 

II Philips - only supports uncompressed video inputs 

II VMC - low acceptance, high cost (gates, pins) 

Ill Custom - becomes "vendor-centric" = risk 
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Sierra Semiconductor 

The PCI-Centric Approach 

••••••1111~ 
PCI 

MPEG 
Decoder 

NTSC Graphics 
Decoder Controller 

3D 
Accelerator 
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The PCI-Centric Benefits 

••••••11111 
II Single existing standard 

II Inherently plug-n-play 

Ill Lower cost/pins 

II All data available to CPU 



.Aflil.. 

'"' Sierra Semiconductor 

Conclusions 

•••••1111~ 
The PCI-Centric Approach Provides 

II Users with a universal, upgradable, plug-n-play 
~ environment 

II PC vendors with a chip-vendor independent 
architecture 

II Device vendors with a low-cost/low pin-count 
interface 



Improving PCI Connectivity 

Barry S. lsenstein 
Mercury Computer Systems, Inc. 
199 Riverneck Road 
Chelmsford, MA 01824 
(508) 256-1300 and FAX (508) 256-3599 

Improving PCI Connectivity 

• Connectivity goals 
• Physical and logical limitations 
• Solution 
• Casestudy 
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The Goals 

• Connect dozens of high­
performance PCI devices 
seamlessly 

• Balance multiprocessing 
computation throughput 
with PCI 1/0 bandwidth 

• Minimize latencies 

PCI Physical Limitations 

• Connectivity of a single PCI 
bus limited by 
- 101oads 
- 4 plug-in boards 

• For multiprocessor 
systems, connectivity must 
extend beyond these limits 

•Yet it is desirable to use PCI 
as an 1/0 bus 
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PCI Logical Limitations 

• The hierarchical structure of 
two-port bridges 

• Contention problems 
• Latency problems 
• Limited bisection bandwidth 

The Solution 
RACEway Interlink Switching Fabric 

• A switching fabric for PCI 
• Implemented with glueless 

building blocks for scalable 
flexible interconnect 

• Concurrent transactions 

• 

294 



PMC Standard 

• PCI Mezzanine Card 
(PMC) defines 
daughtercards with a PCI 
interface for VMEbus, 
Multibus, and Futurebus+ 

• A RACEway to PCI bridge 
on PMC daughtercard 
allows any PMC-equipped 
product to attach to the 
RACEway 

PCl-RACEway Bridge ASIC 

• 32-bit, 33 MHz PCI interface 
• 32-bit, 40 MHz RACEway 
• Performance 

- 132MB/s peak bandwidth 
- Up to 100MB/s sustained on 256 

byte blocks 

• Other support 
- OMA controller 
- Realtime clocks 
- Performance metering 
--- Address mapping 

295 



A Case Study 

• Scalable PMC chassis with up to 16 slots and 32 
PMC cards 

• Applicable to VMEbus chassis and other PMC 
platforms 

• 1.2 Gbyte/s peak aggregate bandwidth 
• 640 Mbytes/sec peak bisection bandwidth 
• Under three microsecond write latency 
• Six component interconnect, at one Watt and one 

square inch each 
• Performance metrics 

Case Study Configuration 
Standard VM Ebus Chassis 
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Summary 

• Two-ported PCI bridges limit configurability and 
performance for PCI bus interconnectivity. 

• Existing standards (VME, PMC, and RACEway 
Interlink) provide a basis for system-wide PCI 
connectivity. 

• PCl-RACEway bridge ASIC developed at Mercury 
is aimed at high-performance systems that 
balance multiprocessing computation with PCI 
1/0 bandwidth. 
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PCI - CACHING SCSI HOST ADAPTER 

Kamal Mansharamani 
DCM Data Systems, 

Vikrant Tower, 4, Rajendra Place, 
New Delhi-110008, INDIA 

ABSTRACT 

This paper goes into the technology issues 
involved in the design of a high performance PCI 
caching SCSI host adapter. It discusses the design 
issues involved to deliver high throughput on 
servers which are based on the high performance 
CPU's like Pentium, DEC Alpha and POWER-PC. 
These CPU's can handle large amount of data 
which cannot be provided by the hitherto existing 
bus architectures. This problem has been 
addressed by the PCI bus. Even though the PCI 
bus can handle data transfer rates of.upto 132 
Mb/ sec, the storage medias (which normally are 
SCSI) can deliver data only upto a maximum of 
20 Mb/sec. In a server environment, the data 
transfer to/ from the storage media is the primary 
bottleneck. In a conventional controller, this leads 
to an inefficient bus utilisation. This problem can 
be circumvented by having a Caching host adapter 
with an onboard controller with intelligent software 
to relieve the host from Input/Output tasks. 

INTRODUCTION 

In the recent past, technological advances 
have dramatically pushed up the CPU 
performance. This has been made possible on 
account of architectural enhancements as well 
as higher dock speeds. Almost all the new 
generation CPU's are 64 bit wide with super scalar 
architecture with multiple integer and floating 
point units allowing multiple instructions per 
clock. These chips also come with local instruction 
and data cache. In addition, the clock speeds have 
really gone up from 33 Mhz to more than 100 
Mhz. In fact the DEC ALPHA chip operates at 250 
Mhz and above. With the result, there has been 
a multifold increase in the CPU performance. 

Almost all of these CPU's have an extremely 
fast bus interface and need a bus bandwidth in 
excess of 100 Mb per second for optimum 
performance. However, none of the existing buses 
like EISA or the Microchannel have the required 
bandwidth to cater to the high performance CPU's. 
The advent of PCI bus has eliminated this 
bottleneck. The PCI bus supports a bandwidth of 
132 Mb/sec and can match upto the speed 
requirements of a high performance CPU. 

29~ 

DESIGN ISSUES 

The design of a SCSI host adapter sub system 
to cater to this environment of high performance 
CPU's and high bandwidth PCI bus poses new 
challenges. The key design issues for a SCSI host 
adapter with possible solutions have been 
discussed in this paper. 

1) Bus Utilisation 

Since PCI is a high performance local bus, 
its optimum utilisation is of paramount 
importance. An efficient use of the bus is essential 
to enable all the bus masters to take advantage 
of its high bandwidth. What this essentially means 
is that the bus master should be able to get 'on' 
the PCI bus quickly and also get 'off' the bus as 
soon as the transfer is over. Also, while the master 
is on the bus, it should be able to transfer data at 
the full PCI speed. Latency is a parameter which 
controls the bus utilisation. A designer has to 
ensure that the adapter does not hog up the bus. 

DCM Data Systems has designed a PCI SCSI 
host adapter which could make hundred percent 
utilisation of the PCI bus. For this a FIFO of 64 
DWORD depth has been used at the PCI end, to 
ensure that the data transfer on the PCI bus 
happens on every clock edge. This would ensure 
that the host adapter would occupy the bus only 
when it is required. Also an innovative scheme 
has been used to implement the FIFO. 

The FIFO has been implemented as a 
dynamic circular buffer in which the read and 
write operations can take place independently at 
different rates. The FIFO is managed through two 
flags which are called FIFO_Empty and FIFO_Full. 
In addition, two more flags have been provided 
to fine tune the performance, especially taking 
into account the PCI latency given to the card 
and the access speed of the DRAM cache. These 
flags are referred to as READ-ONLY and WRITE­
READY flags. These flags are dependent on the 
threshold values which can be programmed 
through registers. The READ threshold is used 
to specify the minimum amount of data in the 
FIFO before a READ operation is triggered off. 
Similarly, the WRITE threshold is used to specify 



the minimum threshold in the FIFO before the 
write operation can begin. If the read and write 
operations are correctly programmed, then the 
FIFO can give very high sustained bursts. For 
example, if the READ and WRITE rates are the 
same, an infinite burst can be theoretically 
supported. The maximum burst which can be 
supported through the FIFO can be given by the 
following equation : 

00 

64 *~(yx)i Burst size = L 
i=O 

x No. of clocks required to read/write the 
FIFO buffer from the PCI Bus 

y No. of clocks required to read/write the 
FIFO buffer from the DRAM. 

This is on the assumption that DRAM access 
are slower than the PCI access. The SCSI host 
adapter designed by DCM Data Systems supports 
upto 32 MB of DRAM cache. It takes 3 clock 
cycles to write one DWORD from the DRAM into 
the FIFO, while it takes two clock cycles to 
transfer one DWORD from the FIFO onto the PCI 
bus. The read and write operations work 
concurrently on the bus. Let us take the case 
where the FIFO is full and we initiate a transfer 
on the PCI bus. In this case the controller would 
keep pumping the data from the FIFO onto the 
PCI bus, while at the same time it would keep 
filling the FIFO by taking the data from the DRAM. 
In this scenario, a maximum number of 186 
DWORDS could be transfered. So a design 
implementing this scheme can transfer a full 
block of data (512 Bytes) at full PCI speed of 
132 MByte/second. 

2) Caching 

The PCI bus has the capability to match the 
demands of high performance CPU's in terms of 
bus bandwidth and one can design a controller 
which can operate at the peak PCI speed of 
132MB/sec. However, the storage media still acts 
as a bottleneck. The fastest data transfer rate one 
can obtain from a SCSI storage system is only 
20MB/sec. 

Caching host adapters play an important role 
in bridging the gap between the I/O requirements 
of the high performance CPU's and the slow 
storage media. Even through the new generation 
operating system like WINDOWS-NT, Novell 
Netware have some form of cache built in, the 
hardware cache on the host adapter can greatly 
enhance the performance of the system. The 
caching logic built in the Operating System is not 
tuned for a particular type of host adapter 0 hard 
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drive combination, but is a general 
implementation, whereas, by having caching logic 
on the host adapter, one could tune it to the host 
adapter-hard drive combination to give the best 
results under all situations. 

The caching logic implementation consists 
of two main strategies : 

(a) Intelligent Read Ahead Strategy 

When the data is being accessed in a 
sequential manner, then it is beneficial if, by 
giving one command to the hard drive, the entire 
track is read off. The data that has been "read­
ahead" would be retained in the cache, and for 
any subsequent read call, the data would be 
returned from here and there would be no need 
to give the command to access the hard drive. 
For example, for a hard drive with 32 sectors per 
track, the time taken to read one track would be : 

With no read ahead 

32 *( time taken to make one command+ 
time taken to read one sector+ 
time taken to transfer data for one sector+ 
Interrupt processing time ) 

With read ahead 

( Time taken to make one command+ 
Interrupt processing time+ 

32 * (time taken to read one sector+ 
time taken to transfer data for one sector)) 

Clearly, the saving of time is obvious. 

However, the amount of memory on the host 
adapter is limited, and all the tracks which are 
"read-ahead", have to be maintained in this limited 
memory. It would not be advisable to read ahead 
data ( which may not be used later ) and store in 
the memory, at the expense of throwing out 
data which is being used more often. Because, 
that would defeat the whole purpose of caching 
which was to minimise the traffic to the hard-drive. 
To decide, as to when to do the read-ahead and 
when not to do, the following strategy can be 
followed. 

If "N" sectors are read from a track 
sequentially, then the read for the (N+l) sector 
would result in the entire track being read. The 
"N" is a variable parameter and is tunable. 
Typically, "N" could be 20% of the number of 
sectors per track. For example, for hard drive of 
32 sectors per track, the value of "N" could be 6. 
So if sectors 1, 2, 3, 4, 5 and 6 of a track are read 
sequentially, then a read of sector number 7 of 



this track would result in all the sectors of this 
track (i.e. 7 thru 32) being read. 

This feature is very useful in SERVER 
environment, when the database is being created, 
or when the database is being scanned. for some 
information sequentially or when the database has 
to be backed up. 

(b) Delyed Write Strategy 

In DELAYED WRITE STRATEGY, any write call 
that the Operating System may issue for writing 
the data, would be delayed to the extent possible 
and the actual write to the hard drive would be 
committed much later. This ensures that if later 
the same data has to be modified or over written, 
then the update would take place in memory 
and the overhead of preparing the command and 
issuing the command to the hard drive would be 
avoided. In a SERVER environment, the updates 
to the same data block keep happening and by 
delaying the writes, the performance improvement 
is tremendous. 

Further improvements can be achieved by 
implementing scatter-gather and elevator sorting. 
In scatter-gather, one tries to combine as much 
of read or write commands as possible so that the 
number of commands that are issued to the device 
are minimised. 

Results have shown that seek time and 
latency time of the hard drive are a significant 
portion of the total time taken to complete one I/ 
0 request. If one could minimise the seek time, 
an improvement in performance would be seen. 
The commands that are issued to the drive are 
issued in such a fashion, that the head keeps 
moving in one direction. Care has to be taken that 
no command is starved because of elevator sorting, 
i.e. each command should finish within a pre­
determined time and that no command is waiting 
indefinitely. An out-of-order count can be 
maintained to know the number of commands 
that have come which are out-of-order. For 
example, if the 1/0 requests that have come are 
for, lets say sectors in the following order: -

and we are processing I/O request for sector 30 
(the third 1/0 request ) and another request 
comes for sector 15, then the request chain would 
look like 
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and the out-of-order count would be one. ·Once 
this out-of-order count goes upto, lets say.5, then 
any further requests would. be put in a seperate 
"batch" and all requests for this batch would be 
serviced firsL Otherwise, the request for sector 
15 could get starved as we are moving in the 
forward direction. 

(c) Concurrent DMA Operation 

To achieve a good throughput, the data 
transfer between the SCSI device and the PCI 
host is done through a caching mechanism, 
wherein the data is trasferred via the DRAM. A 
typical read from the SCSI device, for example, is 
broken up· intu various scatter gather dma 
commands, which are chained. Incase some of the 
blocks are found in the DRAM (cache) they can be 
transferred directly to the host, without a fetch. 
The entire operation of transfer is carried on by 
two DMA channels, which operate concurrently. 
One DMA transfers the data between the SCSI 
and the cache, where as the other transfers the 
data between the cache and the PCI host. As the 
DRAM transfer rate is not the same as the transfer 
rate of the SCSI device or the PCI, two 
independent FIFOs are used to buffer the data 
during the transfer. This allows a much better 
utilization of all the buses. 

(d) The Multi Ported DRAM 

The DRAM is used as the cache and is multi 
ported as it has to be used by all the masters. 
Each host that requires to access the DRAM is 
given a burst access. This is done to utilize the 
DRAM bus bandwidth very effectively. To achieve 
a burst in the case of the local CPU, we have 
incorporated independent read-ahead and write­
back buffers of 16 bytes each. The read-ahead 
buffers prefetch a 16 byte block from the DRl\M 
after the current burst is over. Subsequent 
accesses to DRAM within this block can be 
satisfied by this buffer. If data is not found in the 
buffer, the CPU will have to wait for the current 
burst to get over. The read buffers also snoop on 
all the DRAM cycles and update the data in case 
of writes in the range at which the data is in the 
buffers. For the write operation there are 16 bytes 
of write back buffers. The writes need not be 
contiguous but would have to be DWORD aligned 
for full utilisation of the buffers. 

Once data is written onto a buffer, a flush 
request is raised to the DRAM arbiter, the CPU 
flush operation gets the highest priority for data 
consistency. This improves the throughput 
considerably on the DRAM bus, especially if the 
cpu accesses data within 16 byte boundary. 



CONCLUSION 

The intelligent SCSI host adapter, in which 
the Firmware is very tightly coupled with the 
hardware, allows a much finer control on the 
throughput. The key parameters - the latencies 
to various DRAM masters and the sizes of transfers 
to/from the host are programmable from the host 
driver. This allows the performance of the 
controller to be fine tuned according to the 
Operating System under which the controller 
operates. Caching has been evaluated under 
NetWare. It has been observed that without 
caching, the number of I/O requests waiting were 
about 2000, whereas with caching, the number 
of I/O requests waiting came down to 3-4, a 
phenomenol improvement in response time. 
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This shows that it is possible to build 
Intelligent SCSI host adapter with the current 
technology which can operate at the maximum 
PCI speeds. In addition an innovative caching 
algorithm with support from the h~dware can 
significantly enhance the performance of the 
system specially under heavily loaded server 
environment. 
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Abstract 

Today, graphical user interfaces, multimedia 
applications, and the rising popularity of A TM 
and Fast Ethernet networks have mounted 
unrelenting performance pressures on both the 
PC host interface and the mass-storage 
subsystem. For host interface buses, the PCI bus 
is rapidly becoming the interface of choice for 
the modern PC. PCI supplies the performance 
needed by supplying bandwidths of 132 MB/sec. 
Additionally, the PCI roadmap go to 792 
MB/sec. Other performance features in the PCI 
architecture include full multiple-master 
capability with arbitration. All of this propels 
the elements of mass storage technology to 
higher performance levels. 

For mass storage device interfaces, new 
interfaces with much higher bandwidths are up 
to the task to support the bandwidth 
requirements for the PCI bus. Interfaces such as 
DoubleSpeed SCSI, Serial Storage Architecture 
and Fibre Channel Arbitrated Loop supply 
bandwidths from 40 MB/sec to 200 MB/sec. 
This is much higher than today's ISA based disk. 
drive. 

Another technology element driving the 
bandwidth equation is the rising NRZ data 
transfer rates available from hard disk 
controllers. Areal densities are rising 60% per 
year and disk rotation rates are at 7200 rpm. The 
resulting sustained bandwidths off of the disk 
have risen from 10 MB/sec in 1993 to over 20 
MB/sec in 1995. This has forced bard disk 
designers to look for new, high bandwidth 
solutions in their controller designs. 

The goal of the article is to examine the impact 
of the PCI interface on mass storage 
architectures. First, the bandwidth requirements 
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of emerging applications will be briefly 
reviewed Then overall technology trends in the 
disk drive marlcet will be examined Finally, a 
detailed discussion of a high bandwidth disk 
controller featwe is presented. 

The discussion will focus on disk controller 
technologies used in Adaptec's new AIC-8300 
products. These products have the automation 
and internal architectures that will effectively 
support PCI' s high bandwidth requirements. 
Automation techniques used to increase 
bandwidth will be discussed This includes 
automated data transfers, host automation and 
faster/flexible ECC. Other features used to fine 
tune hard disk controller performance are 
reviewed The net result is a hard disk controller 
architecture that supports the requirements for 
PCI bus based application in 1995 disk drive 
designs. 
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AB8TltACT 

VIA Technologies' new VT83C57 l Master Mode 
Enhanced IOE Controller takes full advantage of PCI 
bus maatoring. It approaches SCSI performance by 
offering Enhanced !DE Mode 4 data transfer rates of 
16.6MB/a, with PCI burst transfers of up to 
132MB/s. 

VIA•s third generation technology is the fnt IDE 
master mode controller to COnlbine PCI SIG com­
patibility with a 128 byte FlFO cache, the largest to 
date. 

The new 100-pin PQFP packaged VT83C571 
chip ia a bridge between the PCI bua and IDE 
devices. It complies with both the latest Enhanced 
IDE and PCI Rev. 2.0 specifications. 

Its key adw.ntages are 

• Bfticient PCI bus utilization 
• Concurrent DMA channels 
• Flexible byte ali8nment 
• Mexiblc FIFO assignment 

J!;FFlCIENT PCI BUS 'UTILIZATION 

The 571 reduces tx> a minimum the time that it 
uses the PCI bus, thereby enabling bus resources to 
be allocated to other Pel bus masters. It achieves 
this goal through the use or int.elligent scatter-and 
gather (S&G) protocol and its ability to control data 
flow 

The S&G protocol is based on a PCl-SIG proposal 
which in the future will be incorporat.ed in most 
operating systems. After issuing onJ;y one command 
and pointing to the S&O list, the host CPU hands 
the transfer task over to the controller. Thereafter 
the 571's command processor manages block data 
transfers without host intervention letting the host 
CPU perform other taska while IDE operations run 
in the baclqp-ound. 

Tho data flow control manages tho load of tn.me 
on the PCI bus while it performs IDE b:ansfens into 
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ita internal FIFOs. The 571 always trit;s to accom­
pliah doublcwotd transfers on the Pel bus PCl bus 
utiW:a.tion for a sector (512 byte) transfer is 
approximatly as follows: 

• Arbitration....overhead + 
• {Read DescriptorJ + 
• 128 • PCI-c:ycle + Two 

CONCURRENT DMA CHANNELS 

Two OMA erJ8ines are built-in which enables 
each channel to operate indepettdently and con­
current.\Y. When two channels simultaneously 
request DMA services from the DMA engines, the 
arbiter automaticaltY switches between the two 
channels to maximally utilize the IDE data bus. 

FLEXIBLE BYTE ALIGNMENT 

Data ia tranaferred to and from peripheral 
devicea and system memory either aa a word (2 
bytes) or doubleword (4 bytes). In those caaea where 
the base address is not doubleword aligned or the 
byte count iB not doublewotd aliened, the tranafer 
on the PCI bus will still be accomplished in double~ 
words and burst transfers will be maintained on the 
PCI bus. This feature also eliminates double­
buft'ering by the driver which in tum improves 
system perlormance. 

FLEXIBLE FIFO ASSIGNMENT 

The 571 supports 32 level doubleword FIFO aa 
profetch and poet write buffers for the two IDE 
channels. The 32 level FIFO can be shared between 
the two channels under prowamming control. One 
of five configurations is available: 32/0, 24/8, 
16/16, 8/24 and 0/32. In this manner the system 
can be optimized for different peripheral speeds by 
flexibly assigning FIFO between the two channels. 
When only one channel is used, which is usually 
the caao, the depth of the FIFO is etrective\y double 
that of hatdwited FIFO configurations. 
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Hard Disk 
Technology 

Donald F. Coffin 

Product Marketing Manager 

Future Domain Corporation 

Hardware Interfaces 

+ RLL 
+ ESDI 
+ MFM 
+ ST-506 

+ IDE (OMA) 
+SCSI 
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• 
• 
• 
• 

• 

Sizes 

< 32MB (DOS 
limitation) 

<528 MB (CHS 
limitation) 

< 2GB (SCSI-I 6-byte 
CDBs) 

< 8GB (SCSI-II 
10-byte 
CDBs, EIDE) 

> 8GB 

Data Rates 

+ Past: 
> Peripheral thru-put 

limited by host bus 

+ Future: 
> Realized thru-put 

limited by 
peripheral 
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Peripheral Bus Rates 

+ SCSI-I Asynchronous -
2MB/s 

+ SCSI-II Synchronous -
SMB/s 

+ SCSI-II Fast Synch -
lOMB/s 

+ SCSI-II Fast/Wide -
20MB/s 

+ SCSI-III Serial -
>>20MB/s 

Peripheral Rates 

+ Mode0-
3.3MB/s 

+·Mode 1-
5.2MB/s 

+ Mode2-
8.3MB/s 

+ ModeJ-
11.1 MB/s 

+ Mode4-
16.7MB/s 
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Host Bus Rates 

• ISA 
8MHz 
x 16 data bits (2 bytes) ... 4-SMB/s 
+ 2-4 clocks/cycle 

• EISA 
8MHz 
x 32 data bits (4 bytes) ... 
+ 1 clock/cycle 32MB/s 

Host Bus Rates 

• MCA 
10-20MHz .. = 40-80 MB/s 
x 32 data bits (4 bytes) 
+ 1 clock/cycle 

• VL 
33MHz 

32 data bits (4 bytes) .. = 132 MB/s 
x 

+ 1 clock/cycle 
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Host Bus Rates 

+ PCI 
33MHz 

x 32 data bits ( 4 bytes) 

• 1 clock/cycle 
- .... ~ = 132 MB/s 

Bottom Line 

+ Greater thru-put 
+ Processor independent 
+ More bus for your processor 

+ Data flies to and from disk. 
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SCSI Applications 

+ SSA (file server/WAN) 

+ 1394 (TV-set-top devices) 

+ Large amounts of data to be moved 
quickly 

+ Data/Application servers 

IDE Applications 

+ Home/office desktop 

+ Low cost 

+ Relative high performance 
(MODE 3 compared to SCSI-II) 

• 
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PCI-SCSI Made Simple 

Peter Passaretti 
Vice-President, Marketing and Sales 

Initio Corporation 
2901 Tasman Dr., Suite 201 

Santa Clara, CA 95054 
(408) 988-1919/3254 (fax) 

peterp@initio.com 

The language of PCI and SCSI buses, if 
not the concept, is foreign to most of us. 
This presentation will try to explain the 
need for using the SCSI bus together 
with the PCI bus. Via simple visuals, 
the viewer will gain an understanding of 

311 

the architecture of the PCI-SCSI 
controller. The presenter will take the 
viewer through the current construction 
trends, ending with a prediction of future 
SCSI adapter directions and implemen­
tations. 
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Abstract The term (x l+x2+11.3+(x.S/x4)) determines 
Everyone wants to know how w~ll an the processing time of one disk 1/0 
adapter works, therefore benchmark request. Dividing it by thne_under_test 
proo-rams for J/O device adaritcrs became yields the number of requests during the 
ncc~ssary. Typica1 benchmark programs tests. Finally, the mu1tiplication of x5 
measure the data throughput. gives us the total data throughput. The 
Unfortunately, the throughput depends on total throughput will be limited by the 
many things outside an adapter such as: system and peripheral busses. For 
the computer and JJO device speed, the example, one can not. get more than 6 
system bus bandwidth, the amount of MB/sec on an lSA bus, 32 MB/sec on an 
memory or cache available and, most ETSA bus and 132 MB/sec on a local bus. 
importantly, the overhead of the With nnly nnl" srST hm, thl". mnximnm 
benchmark 1tselt. 1t is very easy tor a throughput is limited at lO MB/se~. Th~s 
manufacturer to pick the unique formula is a very simple view of disk dnve 
combination to give his adapter the best throughput. 
results. 
The benchmark number arc accurate only 
from one specific perspective ·- or the 
benchmark's perspective. This gives an 
overview of a disk adapter's: perf orroance 
relative to these three parameters: 

1. Tue adapter's overhead in 
processing an JJO request. 
2. The adapter's data transfer 
speed. 
3. The adapter's ability to do 
multitasking. 

Hard Disk Adapter 
Performance 
A typical disk drive operation consists of 
five major components: 

1. Operating system software i.md 
device driver overhead -- xl. 
2. Disk adapter overhead -- x2. 
3. Disk drive command decode, seek, 
and rotational delays -- x3. 
4. Disk aduplcr data transfer speed -­
x4. 
5. Amount of data transferred per 1/0 
request -- x5. 

111e amount of throughput of a disk 
adapter is simply: 

( time_under_test / 
, (~I +x2+x3+(x5/x4)) ) * x5 
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An ideal benchmark should have xl close 
to zero. A large xl gives a very low I/O 
throughput and a very distorted result. x2 
is provided by the adapter manufacturer. 
x3 depends on the type of disk drives 
being used in benchmark and also 
depend$ on how the adapter can overlap . 
multiple disk request~ as we .shall e~platn tt 
in details later. x4. like J1.2, ts provided by 
adapter manufacturer. xS is chosen by 
one who runs the benchmark. Typically, it 
relates to a specific application. 

Multitasking Disk Adapters 

High-performance adapters are designed 
to manage multiple requests in order to 
maximize throughput. There are few . 
benchmark progrdmS actually measunng 
the multitasking ability of an adapter. 
There are two ways of improving a disk 
adapter's throughput using multitasking: 

I. Multiple commands to SCSI 2 
disk uri vcs. 
2. Multiple disk drivers for 
overlapping disk seeks and rotational 
delays. 



Supporting ISA Legacy Peripherals on PCI 
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In-Stat, Inc. 
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As long as MS-DOS survives, 
applications running under it that 
interact directly with peripheral 
hardware will require ISA style support 
of DMA and interrupts. Though PCI 
provides much greater bandwidth than 
ISA, it will remain with us as a legacy 
for some time to come. 

The need for DOS support is satisfied in 
the desktop market today by the 
inclusion of both the PCI and the ISA 
buses within systems. However, some 
special cases cannot be satisfied within 
the typical desktop configuration and 
demand a new solution. They include: 

- PCI docking involving ISA 
buses in both the notebook and the 
docking bay 

- PCMCIA over PCI requiring 
both ISA interrupts and DMA 
capabilities 

- On-board PCI-based super 1/0 
chips with floppy and or error-correcting 
protocols 

- Compatible audio chips using 
the PCI interface 

- Future systems lacking an ISA 
backplane 
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Each chipset or system vendor 
considering any of these types of 
systems or features must develop a 
proprietary method to circumvent the 
problems. Most have chosen variations 
of a near term brute force solution using 
many sideband signals. This allows near 
equivalent ISA functionality in every 
part of the PCI system. Though it can 
meet time to market requirements, this 
approach is not a worthy solution to a 
problem which will be with us for some 
time to come. 

This is why industry leaders have 
banded together to establish an 
intelligent control protocol that will 
translate DMA activity from several 
ISA-like sources into PCI cycles, and 
allow ISA interrupt information to be 
transmitted using a single pin. This 
allows full ISA legacy support in 
notebook computers and their docking 
stations, PCI super 1/0, and PCI audio 
chips, with the addition of one rather 
than many pins. It will also help 
consolidate the industry, which currently 
is saddled with several proprietary, high 
pin count solutions to the ISA legacy 
problem. 



Jim Murashige 

PC/ Electrical Design and Bus 
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PC! Bus Layout Goals and Strategies 

• Keep Loaded Characteristic Impedance Up(>32ohms) 

• Meet PCI T PROP Requirements By Either: 
Keeping Signal Velocity Up T PROP= LengthNelocity 
Shortening Bus Lengths 

• Minimize Impedance Discontinuities 
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,i 

PC/= Reflected Wave Switching 
~~~~~~~~~~~) 

----=---"\.__:'. 

PCI Driver 
at end 

• Ends of the bus are UNTERMINATED 

•A REFLECTION is Required 

• Switching Threshold is Assured Only on Return Wave 

• Devices on END, Switch First 

•Worst Case Propagation Delay is One Round Trip(T PROP <=10ns) 

··,_ e AC Environment is KEY 
Pull Up Pull Down 

c......i (mA) c......i (mA) 

Vn Curves for PCI SV Signaling 

• PCI Spec Defines AC Device Characteristics 

•Characteristics are Different for Pull-Up, Pull-Down, 5V, 3.3V Signaling 

•AC Characteristics Dictate the Required PC Board Transmission Environment 
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ercial Devices Will Adhere to Mln/Max 
Drive Requirements 

Pull Up Pull Down 

CUmlnl (rM) CUmlnl (rM) 

Example Adaptec AIC-7870 

• PCI Defined AC Specs in Line With Current IC Technology 

•Slew Rate Requirements Must Also Be Considered (1V/ns - 5V/ns) 

e Circuit Board is a Design Component 

Micro Stripline Geometry 

C - trace capacitance/inch is proportional to wit. 
L - trace inductance/inch Is proportional to 1/(w+h) 
Characteristic Impedance/inch is JJC 
Propagation Delay/inch is JL*C 
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alculation of Circuit Board 
Characteristics 

z = 87 
..Je + 1.41 

In ( 
5.98t 

O.Bw+ h 

Example 102 Ohm Circuit Board Dimensions 

) 

or Ground plane 

r or Ground plane 

e "' Dielectric Constant 
G10 Glass Epoxy=S 

I= Dielectric Thickness 
w=TraceWidth 
h = Trace Thickness 

tpd = 0.08475..J 0.475e + 0.67 ns/in 

0.148 ns/inch for G10 

1 Speedway Layout 

PGA POA 

• A Suggested Layout From the PCI SIG 
• A Good Example- Easy to Model 
•Demonstrates Signal Transmission Principles 
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.~1 Speedway Transmission Model 

PCI Driver 
at end T +' • • • • • • T 

,,.~/ 

• Devices Are Evenly Spaced 
• Loading Effects Are Principally Capacitive 
• Short Stubs Minimize Stray Capacitive Loading 
• I Cs Are Limited to 1 Opf Loading 

Loaded Impedance > 32 ohms 
TPROP < 10ns 

The Debilitative Effects of Capacitance 

• Capacitance Slows Down Signals, Lowers Effective Impedance 

• Evenly Distributed Capacitance is Better than Lumped Capacitance 
Easier to Model 
Lumped Capacitance creates impedance discontinuities 
and more noise, in effect - a PCI "Speedbump" 
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A Not So Good Bus Layout 
(from the Impedance Perspective) 

Slot Riser Card---...r-

l'Cla.. 

,8 
11-k=••m•••••••~ 

tori!JS,f1~2£~e, .. £flf, .. ttgj!ive Loading 
I ~ ~ I Circuit Traces= 1.45 pF/inch 

PGA PGA 
~-,_VIA holes= O.SpF 

.6 inches typical 

C1oad = Cvia + Cstub + Cvia + Cvo 

C1oad = O.SpF.+ (1.45pF/in • 1.Sin) + O.SpF + 10pF 

C1oad = 13.175pF 

J <1·45 • Ci-J = 3.176 
Adjustment factor= 1.45 
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-Loaded Impedance and Propagation Delay 

Loaded Characteristic Impedance= Characteristic Impedance/Adjustment Factor 

Loaded Propagation Delay = Propagation Delay* Adjustment factor 

Loaded Impedance = 102 ohms/ 3.176 = 32.1 ohms 

Loaded Prop Delay= 0.148 ns/in * 3.176 = 0.47ns/in 

Round-trip Trace Length = T PROP I Loaded Prop Delay 
= 10ns I 0.47ns/in = 21.28 inches 

One Way trace Length . = 21.28 inches/2 = 10.65 inches 

Note: Narrower Traces • Less Capacitance • Better Signals! 

f)lit Power Plane Situations 

5 V Power plane 
lass Epoxy 

.3 V Power plane 

• Routing over Split Power Planes Creates Impedance Discontinuities 

• Route over same plane or cross over to route over Ground Plane 
(assuming physical dimensions are the same on other side) 

• Or Capacitively tie together power planes with 0.01 uF caps for every 4 signals 
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CI Clock Distribution 

• Tskew < 2ns 

• Severe Clock Skew at PCI 
devices is frequently cause 
of data corruption problems 

PCIClock 
at Device 1 

PCIClock 
at0evlce2 

PCIClock 
at Device n 

PC! Expansion Card Layout Requirements 

• Unloaded Characteristic Impedance = 60 to 100 ohms 

• Propagation Delay = 0.15 to 0.19 ns/in 

• Maximum Trace Length for PCl-32 bit signals < 1.5 in 

• PCI CLK signal must be 2.5 in +/- 0.1 in 
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The PC! Signal Trace Calculator 

ltiple Parameters Involved: 
e, t, w, h, Z, tpc1. T PROP, C, C1oac1. Cvia, Cstub• Cv0 • Adjustment Factor 

Several Equations: 
z- 87 

- ,,/e+ 1.4.1 

5.98t 

0.8w+ h ) lpd = 0;08475 ,,/ 0.475e + 0.67 nslin 

Adjustment factor= J (1.45+c...J 
1.45 

To Simplify Calculations, the PCI Signal Trace Calculator 
Written in BASIC, 44 lines 

PC! Signal Trace Calculator 
'PCl_TltCE PCI Cimrit Boud Trace Par-eter Calculalin Pro11-
1NPUTS are TRACE WIDTH. TRACE THICKN!SS, DIELICTllC THltKNESS, DTIUCTRIC 
CONSTANT 
'OUTPUTS en CHAllACIRISTIC OHMS. PROP DILA Y. CAP/INCH, ADJST FACTOR, 
'OUTPUTS en ADJUSTED OHMS, ADJUSTID PROP DELAY 
'J1MNt1fadai1e.A41p1tc: ID/61'3 
10 PRINT 0 TTP! THE TRACI WIDTH IN MILi, PRESS er" 
20 INPUTw 
lO LPR.INT "THE TRACE WIDTH TM MILS IS", w 
40 PRINT "TTPI THI.TRACI THICJCHISS IN MILS. PRiii CR" 
50 INPUTla 
dO LPlllNT "THI TRACI THICKNESS IN NILS IS", b 
70 PR.INT 0 TYPI THI DllLICTRIC SPACING IN MILS, PRESS er' 
ID INPUT t 
H LPRINT "THI DIELECTRIC IPACINO IN MILS 11",I 
IOO PRINT 'TYPE THI DllLICTRIC CONSTANT, PRESS er' 
110 INPUT e 
120 LPIUNT "THI DllLICTIUC CONSTANT IS', e 
no Tl• (5.n • 01((.1 • •>• lri) 
140 T1 • LOG(Tl) 
UOTJ•IQR(e+ 1.41) 
UOZ•(l11TJ)•T2 
110 PRINT 'TH! CHARACTERISTIC JMP!DANC! It:•, Z, "OHMS' 
UO LPRINT 'THI CHARACTllUSTIC IMPEDANCI IS:\ Z. 'OHMS" 
200 PROP• .Ol47S • SQR(( 4'15 •I)+ .U) 
210 PRINT.'THI PROPAGATION DELAY IS·•, PROP, 'NS/INCH' 
UO LPRINT 'THI PROPAGATION DELAY IS·', PROP, 'JU/INCH' . 
ZlO CAP• (PROP/ Z.) • 1000 
Z41 PJtJNT 'THE TRACE CAPACITANCE/INCH IS.", CAP, 'PFnNCH' 
ZSO LPRINT "THI TRACI CAPACITANCE/INCH IS:', CAP, 'PF/INCH' 
261LOADC•11 +(CAP' IS) 
no ADJ .. SQR(I +{LOA DC I CAP)) 
HI Pit.INT 'TH! ADJUSTMENT FACTOR IS:',ADJ 
UO LPl.INT 'THE ADJUSTMENT PACTOll 11:', ADJ 
100 ADJ OHM • Z I ADJ 
110 ADJPllOP •PROP' ADJ 
lZO PRINT 'THE ADJUSTED CHARACTERISTIC IMP!DANC!.JS·', ADJOHM, 'OHMS' 
110 LPRJNT 'TH! ADJUSTED CHARACTIRISTIC IMPEDANCE IS:', ADJOHM, "OHMS' 
140 Pit.INT 'THI ADJUSTED Pll.OPAOATION DELAY II:', ADJPll.OP. 'NS/INCH" 
lSI LPRINT 'THI ADJUSTED PROPAGATION D!l.AY IS:', ADJPl\OP, 'NlllNCH' 
160 MAXTR • 11 /ADJPllOP/Z 
170 PRINT 'THI MAXIMUM SPEIDWAT Tit.ACE LENGTH IS:', MAXTll. 'INCHES' 
110 LPl\INT 'THI MAXIMUM SPllDWAT TRACI LINOTH II:', MAXTll,'INCHll' 
3'0 LPRINT 
400 LPl\INT 
410 PRINT 
4ZO PRUIT 
4JOGOTO IO 
440 STOP 
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In Summary 
e PCI Signaling Environment Requires a Fresh Look at Circuit Interconnects 

• Higher Speeds are Turning Circuit Boards into Design Components 

• Physics and T PROP Requirements Limit Bus Lengths 

• Impedance Discontinuities Should Be Avoided, i.e .. Slot Riser Card Designs 

,Reference Sources 
CI Local bus Specification, Revision 2.0, 

April 30, 1993; PCI Special Interest Group 

(800)433-5177 

(503) 797-4207 

"Treat circuit boards as design components 
in PCl-based systems" 

EON Magazine; November 23, 1994; page 111-116 
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• An examination of the PCI Electrical switching 
environment and how it is different from 
previous bus interfaces. 

• The circuit board as a design element in PCI. 

• Circuit layout suggestions and requirements 
from the PCI v2.0 specifications. 



m 1 DESIGN FEATURE 

Treat circuit boards 
as desig!J. components 
in PCI-based systems 

JIM MURASHIGE, ADAPTEC 

To obtain the highest levels of 
performance possible with a 
local-bus interface while using 
currently available technolo­
gy, you should treat the lay­
outs and designs for PCI moth­
erboards and add-in cards as 
signal-transmission environ-

By treating pc-board traces and device loads 
as components in a transmission line, you can 

create high-speed PCl-system designs that 
satisfy the PCI Specification Rev 2.0. 

The PCI Revision 2.0 spec 
defines signaling in 3.3 and SV 
systems. To avoid confusion, 
we cover only the SV environ­
ment here, though the princi­
ples involved apply identically 
to 3.3V systems. By definition, 

ments, as opposed to simple component-wiring intercon­
nects. To help you in this endeavor, the PCI Specification 
Revision 2.0 introduces several concepts and highlights cir­
cuit effects that were formerly small enough to ignore. 

The circuit board thus becomes an electrical element to 
consider in design. To design PCI circuits successfully, you 
should thoroughly understand and implement the principles 
and requirements in the PCI standard. Moreover, you should 
be well-versed in transmission theory. The PCI standard con­
tains several major points about signal transmission. 
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EQUATION A: 
10 H = 11.9(Vour- 5.25)(V0 ur + 2.45) 

FOR Vee> Vour > 3.1V 

PCI components are CMOS 
devices with small input-leakage currents, although in the SV 
signaling environment, they operate with TTL signal levels. 
Output-drive capability is not much of an issue in the steady­
state, de condition, as the outputs must supply only small 
input-leakage currents. Of great concern, however, is the out­
put switching capability during logic transitions. 

• 
The bibliography and software listings mentioned in this article are avail­
able on the EDN Readers' BBS. Phone (617) 558-4241 with modem set­
tings 1200/24008,N,1 (9600 baud=(617) 558-4580). From the Main­
System Menu enter ss/freeware. Then from the /freeware SIG menu enter 
rkms855. 
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EQUATION B: 
IOL = 78.5 Vour (4.4 - Vourl 

FOR OV < Vour< 0.71V 

TEST POINT 
0.71V, 206 mA 

To ensure sufficient-but not excessive-signal drive during ac switching, the PCI Rev 2 spec imposes minimum/maximum 
limits on current drive, for both the pullup (sourcing) and pulldown (sinking) transitions. 
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HIGH-SPEED PCI DESIGN 

Fig 1 shows the minimum/maximum output-drive 
requirements for SV signaling in the PCI Revision 2.0 spec. 
The curves show the minimum and maximum drive levels 
at given signal voltages, with the shaded areas acceptable. 
During logic transitions, the pc-board traces that intercon­
nect PCl components appear as transmission lines, with 
ohmic characteristic impedances. 

To drive a transmission line, the outputs must source or 
sink a minimum amount of current to ensure a large enough 
voltage step on the line, given the characteristic impedance. 
At the same time, however, it's necessary to limit the drive 
current to keep the reflected voltage wave within acceptable 
limits. The minimum and maximum ac-drive curves reflect 
these two considerations. 

The SV V-1 drive curves in Fig 1 show that the minimum 
impedance an output must be able to drive is 3 l.8il (l.4V /44 
mA). For 3.3V systems, this figure is 37.Sil. All PCI compo­
nents must satisfy the minimum/maximum drive curves to 
ensure sufficient signal drive during ac switching. Fig 2 
shows the PCI signal characteristics of an Adaptec AIC-7870 
PCI-SCSI controller. 

PCI systems use "reflected-wave" switching, in which the 
initial voltage wave that travels down the transmission line 
isn't large enough to cause a logic transition. It must wait to 
be reinforced by the wave reflecting off the end of the trans­
mission line. For this reason, the ends of the line are left 
unterminated. In reflected-wave switching, the device far­
thest away from the driving device switches first, followed by 
the nearest device, which switches last. 

PCI defines a worst-case signal-propagation delay (tPROI') of 
10 nsec, which, in the light of the reflected-wave switching, 
mandates a maximum round-trip signal-propagation time 
down the PCI bus and back again of tPR0.=10 nsec. However, 
you can relax this requirement in systems operating with a 
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PCI clock frequency lower than 33 MHz. You can also some­
what relax tPRO• if you can economize on t5KEW' You can com­
bine the t5KEw budget with tPRO, for a total maximum round­
trip delay of 12 nsec. 

The pc board as a PCI-design component 
The objective in PCI-system-board design is to minimize 

impedance discontinuities that cause signal degradation, 
while satisfying the characteristic-impedance and propaga­
tion-delay requirements. Characteristic impedance and 
propagation delay are functions of the intrinsic inductance 
and capacitance of the circuit-board traces. These parameters 
are, in turn, directly related to the physical geometry of the 
circuit board. Propagation delay and characteristic imped­
ance are interrelated; changing one affects the other. 

Trace inductance is a function of the cross-sectional 
dimensions of the circuit-board traces. Trace capacitance is a 
function of the trace surface area, physical proximity of the 
trace to a power or ground plane, and the type of laminate 
used. The cross-sectional view in Fig 3 shows the physical 
dimensions that determine trace inductance and capaci­
tance in the case of a signal over a power or ground plane 
(micro stripline). 

It's difficult to calculate exact trace impedance because of 
the geometries involved. However, a workable formula for 
calculating the impedance of micro-stripline is: 

87 1 ( 5.98t ) z- n -----le+ 1.41 0.8w+h 

where e is the dielectric constant of the medium, t is the 
dielectric thickness, w is the trace width, and h is the trace 
thickness. Fig 4 shows an example of trace-impedance con-
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Designers of Pel-standard circuits must ensure that the minimum/maximum current-drive capabllltles of the circuits fall with­
in the shaded areas, as Is the case for Adaptec's AIC-7870 PCl-SCSI controller. 
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llllB I DESIGN FEATURE 

trol, in which the unloaded board-signal impedance calcu­
lates to about 102!1. 

P!:QPagation delay is directly related to signal velocity 
( 1 /0LC), which in free space is the speed of light: 3x108 

m/sec, or 11.81 in./nsec. A workable formula for calculating 
the propagation delay of a micro-stripline signal is: 

t,,"=0.08475-V0.475e+0.67 nsec/in. 

For a G 10 glass-epoxy circuit board, the dielectric constant 
is approximately 5. This yields a propagation delay (tPD) of 
0.148 nsec/in. 

Racing along the PCI Speedway 
As an aid to laying out motherboards, PCI suggests the PCI 

"Speedway" topology (Fig 5). The recommended Speedway 
dimensions are: 

WsP•rnwAY=width=0.6 in. typ 
Lsrus=stub length (Speedway-to-load)=l.5 in. max 

LuN•=line length (stub-to-stub)=2 in. 

Devices are placed on both sides of the Speedway and stag­
gered such that the physical device-stub-to-device-stub spac­
ing is 1 in. If you follow the spacing recommendations, the 
Speedway appears electrically as a transmission line with 
evenly distributed capacitive loads (Fig 6). Device loads must 
be evenly distributed because, if they are physically grouped 
together, their loading effects appear as a lumped impedance 
discontinuity, resulting in signal-reflection problems. 

The loading character of PCI devices is principally capac­
itive. If the devices are evenly distributed, then you can con­
sider their capacitive loading effects to contribute to the 
transmission-line characteristics. Qualitatively, this addi­
tional transmission-line capacitance lowers the d1aracteris-

1iMM11 
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PROPOGATION DELAY/IN. IS jLC 

Trace capacitance and Inductance are functions of trace thick­
ness and width, proximity to the power or ground plane, and 
the dielectric pl'operties of the boal'd material. 

tic impedance and increases the propagation delay. 
As an example of recalculating the characteristic imped­

ance and propagation delay, return to Fig 4's 102!1 circuit­
board example. The signal-trace capacitance/in. depends on 
the physical trace width and the thickness of the circuit­
board dielectric. Fig 7 shows the relevant parameters. 

It's difficult to calculate capacitance/unit length directly 
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The formulas In the text, using the dielectric thickness, the 
dielectric constant of the board material, and the trace thick­
ness and width, yield 102!l characteristic Impedance and 
0.148-nsec/ln. propagation delay for this board. 

1iMM!J 

Lsrus 

-------SPEEDWAY-------

The PCI Speedway topology staggers devices along the bus 
at 1-ln. Intervals and avoids the lumped-Impedance disconti­
nuity that grouping the devices together would cause. 
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because of fringing effects. However, the relationship C=tPD/Z 
yields a usable figure. In the example of Fig 7, it works out to 
1.45 pF/in. of trace length. Assuming you use a PCI Speed­
way layout with the dimensions in Fig 8, the additional 
capacitive loading per PCI device is: 

CLOAD =CvIA +Csrus +CI/o' 

where c\I.\ is the capacitance per feedthrough hole, CSTUB is the 
capacitance of the trace connecting the device to the Speed­
way, and C110 is the capacitive loading per device. 

Assuming that C\'IA=0.5 pF and a device load is 10 pF, 
c,OA0=0.S pF+(l.45 pF/in.xl.5 in.)+0.5 pF+lO pF=13.175 pF. 
Also assuming that the PCI devices are regularly spaced, you 
can consider the load to be distributed and additive to the 
trace capacitance of 1.45 pF/in. This assumption allows you 
to calculate an adjustment factor to apply to the originally 
calculated values for impedance and propagation delay. 

In this case, the adjustment factor is ~l.45+C .. ""0 /l.45=-
3.17 6. You revise the characteristic impedance downward 
and the propagation delay upward by this factor. You now 

1#MJMIJ 

+ + 

Jr~· ·/r 
STUBS 

-j11N.1-

obtain a loaded characteristic-impedance value of 32. lf! and 
an adjusted propagation delay of 0.47 nsec/in. You can use 
these adjusted values to determine whether this PCI layout 
meets the PCI spec requirements. 

As Fig 1 shows, the trace impedance in a 5V signaling envi­
ronment has a minimum spec of 31.8!1, which our example 
satisfies. The round-trip signal-propagation time must be less 
than 10 nsec. Applying the revised propagation-delay figure 
yields a round-trip trace length of 21.29 in. The maximum 
allowable trace length is thus 21.29+2=10.65 in. 

To aid in signal-trace parameter calculation, the Basic pro­
gram in the Listing 1 calculates and prints all the derived 
parameter values and adjustment factors, using the formulae 
given in the text. Inputs to the program are the circuit·board 
trace dimensions, the dielectricthickness, and the dielectric 
constant of the board material. 

Trace and load capacitance has the general effect of reduc-

1#MM!:1 
2 IN. I 2 IN. I 2 IN. I • ... .. 'f . • 

1.5 IN. 

If you follow the spacing recommendations In the PCI spec, In this typical Speedway layout, the trace and device capacl­
the Speedway resembles a transmission llne with evenly dis- tances conspire to worsen the characteristic Impedance and 
trlbuted capacitive loads at each device stub. propagation delay of the design by a factor of more than 3. 
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Capacitance of the signal trace/In. depends on the trace 
width and the thickness of the circuit-board dielectric. 

1#MM!' SIGNAL 
TRACE 

GROUND 
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In mixed 3.3 and SV systems, the power plane may be spllt, 
causing Impedance discontinuities for signals running over 
the split. 
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HIGH-SPEED PCI DESIGN 
ing signal velocity and lowering characteristic impedance. 
Naturally, minimizing trace and load capacitance is benefi­
cial; it ensures signal integrity through higher signal veloci­
ty and higher impedance. Trace capacitance is directly pro­
portional to the trace width, so narrower traces reduce 
capacitance and help signal transmission. However, it's dif­
ficult to reliably fabricate traces narrower than 5 mils while 
maintaining consistent characteristic impedance. 

These analyses assume that signal traces run over a con­
tinuous ground or power plane. However, in dual 3.3 and 5V 
systems, situations arise in which the power plane is split, 
causing impedance discontinuities for signals running over 
the split. Fig 9 shows a split-power-plane situation, in which 
you should route the high-speed signals to avoid the split or 
pass them through to the opposite side of the board and ref­
erence them to the ground plane. Failing these solutions, you 
should capacitively couple the two power planes, as the PCI 
spec recommends, using a 0.01-µ.F capacitor for every four 
signals crossing the split. Place the capacitors no farther than 
0.25 in. from the signal crossing. · 

Don't daisy-chain clock lines 
So far, we've dealt with the situation of PCI devices daisy­

chained on the same bus, with signals propagating down the 
bus from device to device. The PCI clock source, however, 
needs to arrive at each device with a maximum tSK•w delay of 
2 nsec (Fig lOa). Because of this, you should not daisy-chain 
the PCI clock from device to device but rather route the main 
clock source directly to each device with equal trace lengths 
to minimize skew (Fig lOb). 

The PCI Rev 2.0 spec does not mandate a trace-layout 
geometry for motherboard designs. The geometry is at the 
discretion of motherboard designers, provided the design 
meets the requirements for round-trip signal-propagation 
delay and loaded-trace impedance. The requirements for 
expansion-card designs are more stringent to ensure hos­
pitable electrical characteristics. The unloaded characteristic 
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Clock skew In PCI systems must not exceed 2 nsec (a); there­
fore, It's wise to route clock signals directly from the clock 
source to each devJce (b), rather than In daisy-chain fashion. 
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LISTING 1-SIGNAL·TRACE PARAMETER 
CALCULATION 

'PCI_TRCE PCI Circuit Board Trace Parameter Calculation Program 
'INPUTS are TRACE WIDTII, TRACE THICKNESS, DIELECTRIC THICKNESS, DIELECTRIC 
'OUTPUTS are CHARACERISTIC OHMS, PROP DELAY, CAP/INCH, ADJST FACTOR, 
'OUTPUTS are ADJUSTED OHMS, ADJUSTED PROP DELAY 
'Jim Muraehige, Adaptec 10/6/93 
10 PRINT hTYPE THE TRACE WIDTH IN MILS, PRESS er" 
20 INPUT w 
30 LPRINT "THE TRACE WIDTH IN MILS IS", w 
40 PRINT nTYPE THE TRACE THICKNESS IN MILS, PRESS CR" 
50 INPUT h 
60 LPRINT "THE TRACE THICKNESS IN MILS IS", h 
70 PRINT "TYPE THE DIELECTRIC SPACING IN MILS, PRESS er" 
BO INPUT t 
90 LPRINT "THE DIELECTRIC SPACING IN MILS IS", t 
100 PRINT "TYPE THE DIELECTRIC CONSTANT, PRESS er" 
110 INPUT e 
120 LPRINT "THE DIELECTRIC CONSTANT IS", e 
130 Tl• (S.98 * t) / ((.8 • w) + h) 
140 T2 • LOG(Tl) 
150 T3 • SQR(e + 1.41) 
160 z • ( 81 I T3) • T2 
180 PRINT "THE CHARACTERISTIC IMPEDANCE IS:", Z, "OHMS" 
190 LPRINT "THE CHARACTERISTIC IMPEDANCE IS:", Z, "OHMS" 
200 PROP• .08475 * SQR((.475 *El+ .67) 
210 PRINT "THE PROPAGATION DELAY IS:", PROP, "NS/INCH" 
220 LPRINT "THE PROPAGATION DELAY IS:", PROP, "NS/INCH" 
230 CAP - (PROP I Z) • 1000 
240 PRINT "THE TRACE CAPACITANCE/INCH IS:", CAP, "PF/INCH" 
250 LPRINT "THE TRACE CAPACITANCE/INCH IS:", CAP, "PF/INCH" 
260 !pADC • 11 + (CAP* 1.5) 
270 ADJ • SQR(l + (LOADC I CAP)) 
280 PRINT "THE ADJUSTMENT FACTOR IS: 11 , ADJ 
290 LPRINT "THE ADJUSTMENT FAC?OR IS:", ADJ 
300 ADJOHM - z I ADJ 
310 ADJPROP • PROP * ADJ 
320 PRINT "THE ADJUSTED CHARACTERISTIC IMPEDANCE IS:", ADJOHM, "OHMS" 
330 LPRINT "THE ADJUSTED CHARAt"I'ERISTIC IMPEDANCE IS:", ADJOHM, "OHMS" 
340 PRINT "THE ADJUSTED PROPAGATION DELAY IS:", ADJPROP, "NS/INCH" 
350 LPRINT "THE ADJUSTED PROPAGATION DELAY IS: 11 , ADJPROP, "NS/INCH" 
360 MAXTR - 10 I ADJPROP I 2 
370 PRINT "THE MAXIMUM SPEEDWAY TRACE LENGTH IS: 11 , MAXTR, "INCHES" 
380 LPRINT •THE MAXIMUM SPEEDWAY TRACE LENGTH IS: 11 , MAXTR, "INCHES" 
390 LPRINT 
400 LPRINT 
410 PRINT 
420 PRINT 
430 GOTO 10 
HO STOP 

impedance of signal traces on expansion cards is specified at 
60 to 1000, with a propagation delay from 0.15 to 0.19 
nsec/in. The maximum trace length for all 32-bit PCI signals 
is 1.5 in.; for 64-bit signals, it's 2 in. The PCI clock (CLK) sig­
nal must run 2.5±0.1 in. to minimize clock skew. 

To summarize, treat the circuit board as a design compo­
nent to achieve robust, reliable designs in high-speed, local­
bus designs such as PCI. In particular, consider the board's 
characteristic impedance and propagation delay. To allow 
wide latitude in motherboard designs, the PCI Rev 2.0 spec 
imposes few requirements other than current drive and prop­
agation delay. PCI expansion cards, on the other hand, have 
more stringent design requirements to ensure electrically 
compatible environments. ~ 
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INTRODUCTION 

In this paper we present the VLSI VCF94100 
Peripheral Component lnterconnect(PCI) FSB™ 
(functional sytem block) . 

The VCF94100 provides a flexible, high 
performance solution for interfacing to the PCI 
bus. The VCF94100 incorporates the following 
features: 

The VCF94100 FSB core allows a peripheral 
component to be connected to a PC/ Local bus 
with a minimal amount of design effort. The 
VCF94100 provides full compliance as a Master 
and/or Target as defined in the PC/ Local Bus 
Specification, Revision 2.0 

- Fully compliant with PCI Specification, 
Revision 2.0 for a 32 bit peripheral device 

- Can act as a Bus Master, Bus Target, or both 

- Supports full range of memory and l/O 
A key feature of the VCF94100 FSB™ element is 
the Configuration Logic Block. The design of the 
Configuration Logic Block is such that it may be 
easily and quickly modified to meet the individual 
configuration space requirements of each user. 

operations, from single transfers to infinitely 
long transfers in either burst mode or wait 

- Provides an infinitely adjustable configuration 
space which is uniquely defined by each user 

The VCF94100 FSB™ element is a high 
performance stand-alone block that is easily 
integrated into any ASIC or ASSP device. 

- PCI clock and on-chip clock isolation. The 
VCF94100 can support the required 0-33 MHz 
clock frequency on the PCI Interface, and will 
support up to 50 MHz on the Local Interface. 
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- Area efficient design which utilizes roughly 
12K gates with a typical Configuration Logic 
Block 

INTERFACES 

The VCF94100 has four major interfaces: 

- PCI Interface 
- Local Input Interface 
- Local Output Interface 
- Command Interface 

The PC/ Interface contains all the signals 
needed to connect the VCF94100 up to a PCI 
bus. The signals are broken into groups that 
interface to 1/0 pads. For example, the PCI IRDY 
signal is represented as an IRDYin and an 
IRDYout signal on the VCF94100. 

The Local Input Interface supports the transfer of 
on-chip data to the resynchronization FIFOs. 
This interface is used during master write and 
target read transactions. The interface is purely 
synchronous with respect to the on-chip clock. 

This is a simple interface that includes an 
address bus, a data bus, and some control 
signals. The bus functions similar to that of a 
OMA, where the VCF94100 is responsible for 
initiating each transaction. The interface can 
transfer data at a maximum rate of one DWORD 
per clock cycle. If required, wait states can be 
injected by either the VCF941 00 when the FIFO is 
full, or by on-chip logic when data to be 
transferred is not yet available. 

A signal is driven from the VCF94100 to indicate 
whether the current bus activity is associated 
with a master or a target transaction. 

The Local Output Interface supports the transfer 
of data from the resynchronization FIFOs to on­
chip resources. This interface is used during 
master read and target write transactions. With 
exception to the direction of data flow, this 
interface operates in the same manner as the 
Local Input Interface described above. 

The Command Interface is used to transfer the 
information needed to setup the VCF94100 for a 
master transaction. This interface operates 
purely as a slave type interface, with the on-chip 
logic initiating the data transfer. The interface 
includes a data-in bus, two select inputs, and 
some control signals. 

There are three words that get loaded into the 
VCF94100 to initiate a master transaction. These 
words are: 

- PCI Address 
- Local Address 
- Control 

------------------------------331 

The on-chip logic will drive the two select lines to 
indicate which of the three words are being 
presented to the data-in bus. The loading of 
either the PCI Address or the Local Address is 
optional. The loading of the Control word actually 
starts the processing of a master transaction. 

The PC/ Address word is a pointer into PCI 
address space. The Local Address word is a 
pointer into the on-chip memory space. If these 
do not get loaded with a control word, then the 
master transaction will proceed using the existing 
residual address values that were left over since 
the last master transaction. An example of how 
this could be beneficial would be the case where 
source data is held in non-contiguous blocks and 
destination data is to be stored in contiguous 
blocks. 

The Control word contains the remaining 
miscellaneous control information for the master 
transaction. Included in this word are: 

- Transfer Count 
- PCI Command 
- Function Space 
- PCl/Local Address Increment 
- Continuous 

The Transfer Count is the byte count for the 
transaction. The PCI Command is per the PCI 
Specification Revision 2.0 for PCI command 
types. 

The Function Space is a pointer into one of eight 
functions within configuration space that is to be 
used when performing the master transaction. 
This is only used for VCF941 OOs that are 
configured as multi-functional devices. There are 
items within each function that dictate how 
certain items happen during a master 
transaction. This field allows the VCF941 oo to 
validate whether a requested master transaction 
meets the requirements held in the associated 
function space. An good example of this is the 
Bus Master bit, where each function has its own 
Bus Master bit. 

The PCl/Local Address Increment was designed 
in the interest of supporting constant address 
FIFO devices. When set, the address presented 
to the associated interface will not be 
incremented. For the case of PCI accesses, this 
will only be apparent during Disconnect-Retry 
cycles since the bus implements implied 
addressing. 
The Continuous bit provides an alternative 
method to controlling the length of a transaction. 
When set, the transfer count is ignored, and the 
transaction continuous until the on-chip logic 
asserts a signal indicating the completion of the 
transaction. 
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INTERNAL FUNCTIONS 

The VCF94100 design is subdivided into two 
distinct blocks: 

- Configuration logic Block 
- Core logic Block 

The Configuration logic Block is considered the 
modifiable portion of the design, while the Core 
Logic Block is the fixed portion of the design. A 
user of the VCF94100 will custom tailor the 
Configuration Logic Block according to their 
particular system requirements. 

Configuration Logic Block 

Each device that connects to the PCI bus will 
have a unique set of memory, 1/0 or ROM 
resources. For example, some elements may 
have only one memory range, which would require 
the use of only one Base Register. Multiple 
memory ranges would require multiple Base 
Registers. In addition, the physical size of each 
resource being offered is uniquely encoded in the 
form of fixed lower bits within each Base 
Register. 
There are other fields in the configuration space, 
such as the Vendor ID and Device ID fields, that 
are also unique to each design. 

In the interest of creating only the logic 
necessary to implement the required functions of 
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a unique configuration space, the VCF94100 
configuration space is constructed entirely by 
the user in the form of VHDL source code. A 
sample of a typical configuration space is 
provided to the user. To create a unique 
configuration space, the user simply modifies 
this sample block as needed. The new code is 
then synthesized and joined to the already 
synthesized and laid-out Core Logic Block. 

It is interesting to note that the PCI timing and 
protocol information is contained entirely within 
the Core Logic Block. Therefore the ability of the 
VCF94100 to remain fully PCI compliant is not 
jeopardized by any actions that may be taken by 
the user to create a new configuration space. 

Configuration Support: 

The VHDL-based Configuration Logic Block 
provided to the user has examples of how to 
i 
implement all the features of the PCI specified 
configuration space. This includes: 

- Multiple Base Registers, including examples 
for memory, 1/0 and ROM 

- Multiple Functions, from one to eight 
functions 

- Status and Command registers 
- All hardcoded bits featured as VHDL 

constants in a single package file 
- Zero Wait State configuration access 



Additional Support: 

The Configuration Logic Block actually supports 
more than just those items identified for 
configuration space in the PCI specification. 
There are additional items that the user can 
adjust that further characterize how the 
VCF94100 operates. These items are: 

Target 1/0 Transaction Byte Alignment: 

The PCI specification is very specific about how 
a target responds to an 1/0 access with respect 
to the alignment of the lower two address bits and 
the byte enables. An illegal combination of the 
two, such as a byte enable pattern implying a 
lower address that specified in the two address 
bits (i.e. Ox00000001 and 0000) is considered an 
error and must be rejected. 

The VCF94100 provides further capabilities. The 
user may specify in the configuration space how 
the VCF94100 is to respond to subsets within a 
byte enable and address pattern. For example, 
the user may declare an 1/0 space that will 
accept only a byte enable pattern of 11 oo 
(assuming the proper lower address bits). A byte 
enable pattern of 111 O or 11 01 may or may not be 
considered an error depending on how the user 
sets up the Configuration Logic Block. This logic 
is unique for each Base Register used to 
represent 110 space. 

PCI to Local Address Translation 

The VCF94100 allows the user to provide address 
translation between the PCI Interface and the 
Local Interface. A specified number of upper 
address bits from the PCI address get translated 
to create a new local address. This translation is 
unique for each Base Register. 

Local Address Increment 

By default, the VCF94100 will increment the local 
address by four for each DWORD that is 
transferred. The user may choose not to 
increment the local address if the device that is 
attached to the Local Interface operates in a 
manner similar to a constant address FIFO. This 
ability is unique for each Base Register. 

Target Latency Timer 

The Target Latency Timer provides an additional 
means of controlling the PCI bus bandwidth 
required by the VCF94100. This timer counts the 
number of PCI clock cycles that occur between 
data transfers. If the number of clock cycles 
between a data transfer exceeds the value 
programmed into this timer, the VCF94100 will 
initiate a Disconnect-Retry cycle. 
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Core Logic Block 

The Core Logic block can be further subdivided 
into three more blocks. These are: 

- PCI Interface 
• Local Interface 
- PCl/Local Resynchronization 

PCI Interface: 

The PCI Interface is responsible for supporting 
the flow of data between the PCI bus and the 
resynchronization FIFOs. All PCI timing and 
protocol information is contained within this 
block. This block is a fully synchronous design 
that is based on the PCI CLK signal. The sub­
blocks of this design are: 

- Master/Target State Machines 
- lnpuVOutput Data Paths 
- Master/Target FIFO Control 
- Parity Generation and Checking 
- Master/Target Latency Timers 

The Masterffarget State Machine blocks are the 
heart of the PCI Interface. These blocks provide 
control to the Data Path and FIFO Control blocks. 
Inputs from the Latency Timer blocks are used to 
further determine responses. The Target State 
Machine has the added responsibility of 
controlling data transfers between the PCI bus 
and the Configuration Logic Block. 

The Input/Output Data Path blocks provide a 
path for data to flow between the FIFOs and the 
PCI bus. In addition, configuration data is merged 
into or drawn from these blocks. Addressing 
information is contained within these blocks, with 
the Input Interface holding the target address 
and the Output interface holding the Master 
address. 

The Masterffarget FIFO Controlblocks determine 
how data gets written to or read from the 
resynchronization FIFOs. A portion of this block 
is responsible for allocating cycle time between 
master and target transactions, while the other 
portion of this block keeps track of the status of 
each FIFO. 

The Parity Generation and Checking block 
handles the generation and checking of parity on 
the PCI bus. 

The Masterffarget Latency Timer blocks control 
access times to the PCI bus. Count down 
information for each timer is obtained from the 
Configuration Logic Block. The master latency 
timer guarantees a minimum PCI access time as 
a master, and the target latency timer shuts down 
a target transaction after a pre-determined 
number of clocks have expired. 
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Local Interface: 

The Local Interface is responsible for supporting 
the flow of data between the on-chip resources 
and the resynchronization FIFOs. This block is a 
fully synchronous design that is based on the on­
chip clock. The sub-blocks of this design are: 

- Mode Control 
- Master/Target Flow Control 
- Masterffarget Registers 
- lnpuVOutput Control 
- lnpuVOutput Data Path 
- lnpuVOutput FIFO Control 

The Mode Control block is responsible for 
allocating the input and output resources within 
the VCF94100 to either master or target 
transactions. Recall that because of the clocking 
differences between the PCI Interface and the 
Local Interface, it is possible that the Local 
Interface could be tasked to simultaneously 
handle both a master and a target transaction. 
The Mode Control block allocates the resources 
needed for each type of transaction. For 
example, the Mode Control block will allow a 
simultaneous target read and a master read 
transaction to occur since one uses the input 
data path and the other uses the output data 
path. The Mode Control block not allow a 
simultaneous master read and target write 
transaction since both types require the use of 
the output data path. 
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The Master/Target Flow Control blocks handle the 
logistics associated with starting, maintaining, 
and stopping the transaction. The Master Flow 
Control block has the additional task of 
supporting the Command Interface. 

The Master/Target Register blocks hold the 
registered information associated with a 
transaction, such as the address counters, the 
byte enable registers, and the transfer count 
register. 

The Input/Output Control blocks provide the 
lower level control needed to perform the actual 
data movement. These blocks feed information 
into the Data Path blocks and the FIFO Control 
blocks. 

The Input/Output Data Path blocks provide the 
data path between the Local Interface and the 
FIFOs. These blocks contain the registers and 
miscellaneous logic needed to capture data from 
either the FIFOs or the Local Interface. 

The Input/Output FIFO Control blocks determine 
how data gets written to or read from the 
resynchronization FIFOs. Information relative to 
the status of a FIFO (i.e. empty, almost empty, 
almost full, full) is generated here and sent to the 
Input/Output Control blocks. 
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PCl/Local Resynchronization: 

The VCF94100 has the ability to provide complete 
clock isolation between the PCI and the Local 
interfaces. This feature off loads the user from 
dealing with resynchronizing data between the 
PCI bus and on-chip resources. This also proves 
beneficial in light of the specified requirement 
that the PCI clock can potentially be stopped or 
slowed down at any time (i.e. 0 - 33 MHz}. The 
resynchronization logic isolates the on-chip 
circuitry from being affected by this condition. 

The VCF94100 incorporates two dual-port RAMs 
and some control logic to implement a pair of 
FIFOs between the two interfaces. One FIFO 
supports the flow of data and control from the 
Local Interface to the PCI Interface, and the 
other FIFO supports the opposite flow. 

Each FIFO is further subdivided into master 
space and target space. The two spaces are 
handled independently of each other by the 
corresponding master or target interface logic. 
This scheme allows master transactions to be 
performed completely independent of target 
transactions. 

The FIFOs are used to pass controlling 
information between the two interfaces. For 
example, a special control word will be passed 
from the PCI Interface to the Local Interface at 

. the start of each target transaction. This eontrol 
word contains the translated address and the PCI 
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command of the transaction. When a target 
transaction is completed, an indication of such is 
passed as control information within the FIFOs. 

In a similar manner, the PCI Address and Control 
Command Interface words used to setup a 
master transaction gets passed from the Local 
Interface to the PCI Interface as command words 
in the input FIFO. 

Additional circuitry is included that enables each 
interface to keep track of the status of the 
FIFOs. Several sets of hardware pointers are 
exchanged between the interfaces that indicate 
exactly where the opposing interface is in 
regards to processing FIFO information. For 
example, an interface waiting to write information 
into a FIFO will only do so when it has an 
indication from the opposing interface that the 
FIFO has room to be written to. In a similar 
manner, an interface will only read from a FIFO 
when there is an indication that there is new data 
within the FIFO to be read. 

CONCLUSION 

The VCF94100 is a highly integrated PCI 
interface solution that is flexible enough to be 
used in many different applications. The 
VCF94100 was created to make the task of 
interfacing to the PCI bus as simple for the 
designer as possible. Many of the issues that 
would concern a designer have already been 
resolved within the VCF94100. The use of a 



modifiable VHDL configuration space further 
enhances the users ability to quickly provide a 
complete single block solution. 
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PCI BUS CORE DESIGN REDUCES PRODUCT COST. TIME TO MARKET 
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Product cost and time to market dictate a PCI bus 
product's potential for success. Product cost fS driven 
by the qwmttt;y and cost of each component which 
com.pr1$eS the product. It is safe to say that the first 
available and most cost e1fective product will haw: a 
preponderance for market success.. The PCI Bus 
stringent AC/DC loading and drive requirements. as 
well as the siX man month development effort 
required. worlm against both a PCI Bus product's cost 
and time to market. A turnkey. PCI Bus synthesizable 
core ~es a qui.ck turnaround design solutie>n 
ready for :immediate :lmplem.entation tn a cost e.tiecttve 
ASJ.C or even a FPGA. A teirted and silicon proven PCI 
Bus core implemented in VHDL/Verilogjumpstarts a 
PCI Bus product derelopment with the con:6.dence 
that only the appJica.tion spedfi.c logic requires new 
eog1neer.lng effort. The final ASIC implementation can 
yield an. unmatched PCI Bus interface for $10.00 to 
$30.00 in volume. 

THE PCI BUS INTERFACE PROBLEM 

There are two aspects to arcbitecting a PCI Bus 
interface. First.. the very speciftc PCI Bus loading and 
drive requiretnents IllUst be satisfied. Second. the PCI 
Bus is a high speed. flexible bus interface which 
requ!res significant engineering effort (six man 
months for either a Master or a Target). 1hese aspects 
must be considered when developing a PCI Bus 
product development plan. 
'lbe challenge behind developing a PCI Bus product is 
not simply the engineering task at hand. The 
selection of the appropxiate development approach 
will Insure that a timely. cost effective PCI Product 
Will be developed. 
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TBE PCI BUS.ALTERNATIVES 

Th.ere axe several PCI Bus implementation alternatives: 

1- Use~~~m~ntcgratedpenpheraldev1ce 
wt.th a PCI Bus :Interlace. 

2 - Use a PCI Bus 1nterface device in conjunction 
with a peripheral controller. 

3 - Use a Mega-PAL and discrete logic in 
conjunction with a pertpheral controller. 

4 - Use a custom ASIC or FPGA implem.entatlon 
wbJ.ch integrates the PCI bus interlace and the 
pe;dpheral function into a single device. 

Each altemattve provides benefits and drawbacks; 
bowever. we a.re concemed with those issues which wW 
inevitably deternmie the time to market and the final 
product cost. 

Altetna.Uve t l, an off the sh~ int.egrated peripheral 
de\lice With a PCI Bus intetface. is the no brain.er. 
Should a designer chose a device which bas the PCI 
Bus inte1'f.ace built Ul., the PCI :Bus design becomes a 
eonnect the dots exexdse. The t:i1ne to IJlal"ket is the 
best with this approach. However. the product's cost 
and features will be Similar to other PCI products 
which use the same device. 

Altemattve # 2. a PCI Bus interface device :in 
COQjunction with a periph«al controller. provides short 
time to i:narket at the expense of product cost. PCI 
tnterface chfps are not only costly. but pertpheml 
interface logic will be required to connect to the 
peripheral controller or custom interface. Tue result is 
a multichip, more costly PCI Bus proch.~ct. 



Alternative # 3. a Mega-PAL and discr'ete logic in 
coqjunct:ion with a peripheral controller, provides 
both a longer product development cycle and a 
m.ult:icbip. more co:stly PCI Bu:s product 
implementation. The Mega-PAL approach will requ:ire 
:several man months of design effort to implement a 
xn:lnimaJ PCI Bus interface. Due to the small size of 
the Mega-PAL. sigoificant custom peripheral :Interface 
logic will not fit within the device (in addition to the 
PCI Bu:s interface). 

Alternative # 4, a custom ASIC or FPGA. 
implement.a.ti.on. is the best approach for quick tum 
around and for minimized product cost. :8ased upon 
the availability of a silicon proven Ver.ilog/VHDL 
sy.nthemzable core, the designer need only add the 
peripheral interface logic to the ASIC design to 
complete the lowest chip count, most cost effective 
approach. 

THE ASIC/fPGAALTERNATIVE 

With the availabllit;y of a proven PC! Bus core design. 
the dewlopment risk falls on the peripheral tnterface 
logic. Since many eidsting applica:tl.on:s are moving to 
the PCI Bus from other environments. the peripheral 
:Interface logi.c for many user:s is a slam dunk. 

Wby use a. PCI core design? 1bree reasons. First, the 
PCI Bus implementation itself will require three or 
more man month:s of development effort. This 
development involves both effort and risk. Second, 
the more than t:W'enty·seven scenartos specified by 
the PCI Special Interest Group requireS an equal if 
not greater effort in the validation of the design. 
Similarly. this task :ln'V'Olves both etfort and risk. 
'Ibird. the use of a PCI synthesiza.ble core will 
Wldoubtedly yield the most cost effecb.'ve of an 
alteroattves mentioned. The use of a custom ASIC w.ill 
:ID.cw- only the silicon cost for the features needed. 
Tue resulting design will yield a single chip PCl 
interface with peripheral controller, RAM, etc. All .PCI 
Bus interl'ace. user required logtc and peripheral 
:Interlace functl.ons will reside 'Within a single device. 
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FEATURES OF A PCI BUS SJ'NTBESJZABLE COKE 

A good PCI bus synthesizable core should be a silicon 
proven. rigorously verifted desJgo.. Tue core must be 
verified against the all scenarios of the PCI SIG 
compliance checklist. Finally, a royalty free unlimited 
use core allows for the design to be reused without fees 
tied to the number of designs the core is used in. In 
addition, the designers of the PCI bus core should have 
a demonstrable record of developing efficient. opUmired 
designs which synthesize into high speed. minimal 
complexity :Implementations. SynthesiZable core 
designs created by "model farms" are often mefficlent. 
and contain enormous state machines which require 
modification to run at speed after they have been 
synthesJzed. 

The following is a list of features for both a MMter and 
a Target PCI core demgns. 

PCI Master Features 

• 

• 

Verilog or VHI>L Design Compliant With IEEE 
1076 and IEEE 1164 Extensions. 

PCI Bus Master Interface. 

• 1/0 and Memory Space Supported. 

• 

• 

• 

Full Speed Burst Memory T.r:ansfer Support 
(132M Bytes/Sec). 

Address and Data Parity Generation and 
Checking. 

PCI Interrupt Support. 

Custom Loe.al Interfaces Provided: 

-FIFO 
- Dual Port SRAM 
- Single Port SAAM with Dual Port Arbiter 
- User Defined 

• Validated to All Master Scenarto:s of PCI SIG 
Compliance Checklist. 

• Approximate 7,000 Gate Implementation. 



PCI Target Features 

• 

• 

• 

• 

• 

Verilog or VIIDL Design Compliant with IEEE 
1076 and IEEE 1164 Ext.ens.ions. 

PCI Bus Target Interface • 

1/0 and Memory Space Supported . 

Full Speed Burst Memory Transfer Support 
(132M Bytes/Sec). 

Address and Data Parity Generation and 
Checking. 

• PCI Intenupt Support. 

• PCI Configuration S),)ace Registers: 

- Device L D .• Vendor L D. 
- Status, Commands 
- Class Code. Remion I. D. 
- Memory Base Address 
- I/0 Base Address 
- Interrupt Line 
- Interrupt Pin 
- User Defined_ 

• Custom Local Interfaces Provided: 

-FIFO 
- Dual Port SRAM 
- Single Port SRAM'. with Dual Port Arbiter 
- User Defined 

• Validated to All Target Scenarios of PCI SIG 
Complianoe Checklist. 

• Approximate 5.000 Gate Implementation. 
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CONCUJSION 

The use of a PCI Bus synthestiable core in an ASIC or 
lalge scale FPGA for PCI Bus applications w.IIl provide 
the fastest development cycle with the most cost 
effective final product. For applications which require 
more than 20,000 gates, an ASIC or custom silicon 
device built around the synthesizable PCI core will 
proVide the best solutton. For implementations which 
require 20,000 gates or less, a large scale PCI 
compliant FPGA can be used for prototyping in short 
timeframe (a matter of 2-3 months). 'Ibe FPGA may be 
converted into an ASIC for a cost reduced 6nal 
product. 



Using FPGAs for Peripheral Component Interconnect (PCI) 
Interfac~ Designs 
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Abstract 

Peripheral Component Interconnect (PCI) is a 
recently defined standard Local Bus for high­
speed processors and peripheral controllers. 
PCI is intended to meet the local bus 
requirements of next generation high­
performance computer systems for several years, 
and has been adopted by several processor 
architectures and numerous system integrators. 
Digital Equipment (DEC Alpha), Motorola 
(PowerPC), and Intel (Pentium) are only a few of 
the industry players who have embraced this 
new bus interface for their processors and future 
desktop computers. This paper suggests 
methods of choosing an FPGA for PCI designs, 
and describes a complete PCI interface 
implemented in a single QuickLogic QL24x32B 
FPGA. The large logic and pinout capabilities of 
the QL24x32B device are key to providing the 
necessary interface functionality in a single 
FPGA device. In additions, the extremely fast 
I I 0 pad and internal logic can accommodate the 
stringent system timing requirements of the 33 
MHz PCI bus. The design presented uses only 
half of the QL24X32B's resources, leaving room 
for additional system functions, like DMA logic. 
This paper will demonstrate how QuickLogic's 
high speed, pinout flexible, PCI compliant 
FPGA's can be used in PCI Applications, 
especially when the designer wants to integrate 
additional logic functions to a standard PCI 
Interface. 

Choosing the right FPGA 

Device Characteristics 

PCI interface designs have difficult timing and 
board layout requirements. Picking an FPGA 
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that can meet these requirements can be 
challenging. However, there are a few minimal 
criteria which, if used, can make the design 
much less painless - and faster to market (after, 
all - why use an FPGA if design-time isn't your 
primary focus?). 

First of all, determine if the PCI design really 
requires an FPGA. There are many PCI designs 
whose requirements may be met by existing PCI 
chip-sets. However, a good portion of PCI 
designs have very stringent board-space 
requirements, so it would be more effective to 
use a higher density FPGA which would contain 
the PCI interface logic, and many other pieces of 
the entire board design. 

Choose a high-density FPGA which will still 
meet the PC! timing restrictions. One such 
example is the QL24X32B (8000 gate) FPGA, 
which can easily meet and exceed the 33 MHz 
clock requirement, and 11 ns clock-to-output 
requirements of PCI designs. 

Make sure the FPGA can interface with the PCI­
bus directly. In other words, the FPGA cannot 
have I I 0 pin capacitance of greater then 1 Opf for 
pins attached to the bus, and the 1/0 drive must 
be able to meet the stringent PCI bus AC timing 
characteristics. These characteristics are 
outlined in the PCI Local Bus Specification. The 
difficult aspect of these AC timing characteristics 
is that they involve the drive capability of an I/O 
pin as the pin is changing value, not the static 
DC drive of a pin at a specific voltage. Check 
carefully that the FPGA you use meets the 
required bus driving requirements. The 
QL24X32B device from QuickLogic is one such 
device which meets these requirements. 



One very important and often overlooked criteria 
for FPGA's in PCI designs is custom pinout 
support. Custom pinouts are needed in PCI 
designs to keep board traces short to reduce 
noise on the sensitive PCI bus. While many 
FPGA's support custom pinouts, the fixed pinout 
makes design changes difficult because routing 
resources on the devices are limited. The ideal 
FPGA device to use for PCI designs has 
guaranteed mutability, even when a custom 
pinout is used. Quicklogic guarantees that a 
design with a custom pinout will always be 
routable, even across design iterations. 
QuickLogic's QL24X32B device has 172 
available user I/O, making it easy to choose a 
pinout that will meet the difficult board-trace 
limitations of PCI bus signals. 

FPGA Design Tools 

FPGA designs are often riddled with difficulty in 
using design tools. In many FPGA design tools, 
auto-placement and routing of a device may not 
complete, or timing will change from one place 
and route to another - making the design 
process frustrating. All these factors make 
using traditional FPGA's for PCI design a tedious 
process, seemingly opposed to the goal of fast 
time to market. 

The design of a PCI Interface requires a design 
entry environment focused on high-speed design 
results, with flexibility of design. 

Ideally, the design tool allows easy 1ll1Xlllg of 
different modes of design entry. HDL (Hardware 
Description Language) and schematic entry both 
need to be supported, because some areas of a 
PCI design (state machines) are more 
appropriate to HDL descriptions, while other 
portions (speed-critical logic) are more 
appropriate for schematic entry. The QuickLogic 
Quick Works toolkit uses schematic tools that 
can integrate Verilog or VHDL descriptions as 
blocks within a top-level hierarchical schematic. 

Also, a design environment for PCI designs 
needs to provide a simulator and simulation 
interface that allows the designer a great deal of 
flexibility with vector entry and result analysis. 
PCI interface simulation requires modeling 
inputs from two different busses, each with read 
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and write capability. The QuickWorks toolkit 
meets this complex simulation need by 
including the Silos III simulation tool with it's 
design environment. This simulator allows for 
fast simulation times, and support of the 
industry standard simulation language - Verilog. 
Also QuickLogic provides application notes that 
explain the process of multi-chip simulation, 
should you decide to use simulate the 
interaction between multiple devices. 

Finally, FPGA tools for PCI design should 
contain a compilation (placement and routing) 
tool which is fully automatic. Due to the simple 
and abundant routing architecture of the 
QuickLogic pASIC 1 series of devices, 
QuickLogic's compilation tools are always fully 
automatic, even when design specifications 
require that 100% of all pins and logic within 
the device are used, and the pinout has been 
fixed to meet PCI recommended pinouts. And if 
you want to use more advanced features, the 
QuickLogic place and route environment (SpDE) 
contains a user interface for visually inspecting 
the final chip design, determining accurate 
delays with the Path Analyzer, and making 
timing improvements with the Timing-Driven 
Placer. 

PCI Design Using the QL24X32B 
FPGA from QuickLogic 

The remainder of this paper describes a 
complete PCI interface implemented fully within 
a portion of a QuickLogic QL24X32B (8000 gate) 
FPGA. There is additional logic available on the 
device for implementing various pieces of 
memory control or interface logic that may be 
necessary for a complete PCI-bridge design. The 
user side of the interface has been designed for 
a generalized 32-bit device with a typical READY 
and READ/WRITE-strobe handshake sequence; 
24 bits of user device address have also been 
provided. The large logic and pinout capabilities 
of the QL24X32B device are key to providing the 
necessary interface functionality in a single 
FPGA device. In addition, the extremely fast I/O 
pads and internal logic can accommodate the 
stringent system timing requirements of the 33 
MHz PCI bus. 



The design implements a PCI-compliant 
interface that utilizes the PCI burst transfer 
mode for highest data throughput. All required 
PCI Configuration Space registers have been 
implemented in a highly modular structure; 
readers may simply modify the necessary fixed­
value registers to contain the vendor, device, 
and revision identification for a specific product. 

While portions of this paper may appear to only 
address specific areas of the PCI interface, the 
general design concept described may be applied 
to a variety of applications for various processors 
and peripherals. The design files and 
schematics are available from QuickLogic and 
can be easily modified to your particular needs. 

System Overview 

Figure 1 below indicates a typical PCI system 
topology. The CPU is coupled to the PCI bus via 
the indicated adapter. The figure indicates that 
a high-speed disk and video controller reside on 
the PCI bus as well as a user device, interfaced 
by the QuickLogic FPGA device described in this 
paper. 

CPU 

PCI Adapter 

PCI BUS 

SCSI Video 

Controller Controller 

Disc CRT User 
Device 

Figure 1 : System Topology 

PCI Bus Overview 

The PCI Local Bus is a high-performance 32-bit 
(or 64-bit) bus with multiplexed address and 
data lines. It is designed to interconnect high­
performance processors and peripheral 
controllers for a wide variety of next-generation 
computer systems. 
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The following is a brief overview of the PCI Local 
Bus. For a complete, detailed description the 
reader should consult the PCI Local Bus 
Specification, distributed by the PCI Special 
Interest Group. I 

Address Space 

PCI defines three address spaces: Configuration 
Space, defined to support PCI hardware 
configuration, and Memory and 1/0 Spaces, 
which are used by the attached devices for 
actual data transfer. Address decoding on PCI is 
distributed, wherein each device is responsible 
for decoding its own address. PCI supports two 
address decoding schemes: positive decoding, 
where a device looks for an address in its 
assigned range, and subtractive decoding, where 
a single bus-coupler device accepts all addresses 
that were not positively decoded by some other 
device. With either scheme, a device indicates 
that it has decoded its address and thus claims 
the transaction by asserting the tristate signal 
DEVSEL#. 

Configuration Space 

PCI provides for totally software-driven 
initialization and configuration via the 
Configuration Space. PCI devices are required to 
allocate 256 bytes of configuration registers for 
this purpose. (NOTE: not all of these bytes need 
be implemented in physical logic if a read-value 
of zero can be generated.) Accesses to the 
Configuration Space require external address 
decoding via the IDSEL control pin, which 
functions as a unique "chip-select" for each 
device. 

Data Transfer 

The basic bus transfer mechanism on PCI is a 
burst transaction, composed of an address 
phase and one or more data phases. The first 

1 PCI Special Interest Group 
M/S HF3-15A 
5200 N.E. Elam Young Parkway 
Hillsboro, Oregon 97124-6497 
(503) 696-2000 



clock cycle on which the FRAME# control signal 
is asserted establishes the address phase of the 
transaction. FRAME# will remain active to 
indicate each data phase to follow, and will 
deassert at the start of the final burst data 
phase. Handshake signals for each data phase 
include IRDY# (Initiator Ready, indicating the 
Bus Master is supplying write-data or is ready 
for read-data) and TROY# (Target Ready, 
indicating that the target device has accepted 
the write-data or is supplying the read-data). 

Devices connected to PCI implement Bus 
Commands, which indicate the type of 
transaction that the Bus Master is requesting. 
Bus Commands are encoded in the 4-bit CBE# 
lines during the address phase of Bus 
transactions. During the data phases the CBE# 
lines contain byte-enables for the word 
transfers. 

Byte lane swapping is not done on PCI since all 
PCI compliant devices must connect to all 32 
address/ data bits for address decode purposes. 
This means that bytes will always appear in their 
natural byte lane, based upon byte address. In 
addition, PCI does not support automatic bus 
sizing for 8- or 16-bit transfers: the byte-enables 
alone are used to determine which word bytes 
carcy meaningful data 

The maximum transfer rate of the PCI is one 32-
bit word every 30ns, or 132 MB/sec. Basic 
timing diagrams for PCI write and read 
transactions are shown in Figures 2 and 3. 

CLK 

FRAME# 

ADDR/DATA 

CBE# 

IRDY# 

TROY# 

DEVSEL# 

Figure 2: PCI Write Transaction 
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CLK 

FRAME# 

ADDR/DATA 

CBE# 

IRDY# 

TROY# 

DEVSEL# 

Figure 3: PCI Read Transaction 

Design Objectives 

The design presented in this paper accomplishes 
the following objectives: 

• Implements a single QL24X32B FPGA 
device for PCI interface to general 32-bit 
user device 

• Makes efficient use of QuickLogic FPGA 
architectural advantages 

External Interface Signals 

Figure 4 below indicates the external signals 
between the FPGA and the PCI Bus and user 
device. The function of each signal will now be 
described. Note that only the PCI signals that 
are relevant to this application are presented. 

PCI Interface User Interface 

PCl[0:31] USR[0:31) 

CBE#[0:3) BE#[0:3) 

PARITY Quicklogic 
ADR[2:23] 

FRAME# QL16x24B 

IDSEL FPGA 
IRDY# 

DEVSEL# READY# 

lRDY# WRITE# 

STOP# READ# 

RST# 

CLK 

Figure 4: QL24X32B External Interface 



PCI Interface Signals 

PCl{0:3l] 
CBE#{0:3] 
PARITY 
FRAME# 
IDSEL 
IRDY# 
RST# 
CLK 
DEVSEL# 
TRDY# 
STOP# 

Address / Data Bus 
Bus Comm.and / Byte Enables 
Even parity (PCI[0:31] & CBE[0:3]) 
Data Frame (start and duration) 
Chip select during Configuration 
Bus ma.Ster ready to transfer data 
Master reset signal 
Master clock signal 
FPGA has decoded its address 
FPGA ready to transfer data 
FPGA requests (burst) transfer stop 

The PARITY signal is bi-directional; parity 
generation is required by all PCI devices but its 
detection is not. The PARITY signal is active one 
cycle after its corresponding data transfer to 
allow pipeline parity-generation and detection to 
be implemented. Parity detection has been 
omitted in this design for the purposes of 
simplicity. 

The three PCI control signals driven by the FPGA 
(DEVSEL#, TRDY#, and STOP#) are defined in 
the PCI specification to be Sustained Tri-State, 
meaning that after being driven low (active). the 
FPGA must drive the signal high (inactive) for at 
least one clock time before letting it float. 

User Interface Signals 

USR{0:3l] 
BE#{0:3] 
ADR{2:23] 
READY# 
WRITE# 
READ# 

Bi-directional user data bus 
Byte enables (write and read) 
User address bus 
User device ready to transfer data 
User write strobe 
User read strobe 

Note that this design assumes a separate 
WRITE# and READ# strobe; a simple alternative 
design might use a common STROBE# signal 
accompanied by a R/W# indicator. 

The PCI interface defines transactions for 
memory and I/ 0 address spaces. In the I/ 0 
address space. all address lines are valid; in the 
memory address space, address bits [1:0] 
contain burst direction information and should 
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not be considered valid address information. 
This design describes a memory-space design 
and thus address signals ADR[O:l] are not 
needed by the user device. 

The design assumes that the user device will be 
running synchronously to the PCI Bus Master 
Clock. However, connecting the user device and 
the FPGA to the PCI CLK signal would exceed 
the allowable fan-in capacity of one CMOS load. 
Thus, the system level design should utilize a 
CMOS Phase-Locked-Loop type clock buffer to 
provide zero-skew copies of the PCI master clock 
signal to both the FPGA and the user device. 

PCI Bus Commands 

During the address phase of a PCI Bus 
transaction the CBE#[0:3) lines contain the Bus 
Command, indicating the type of transaction 
that will occur. The defined Bus Commands are 
indicated in Table 1 below: 

Table 1: PCI Bus Commands 
CBE#[0:3) 
0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

Comm.and Type 
Interrupt Acknowledge 
Special Cycle 
I/O Read 
I/O Write 
Resetved 
Resetved 
Memory Read* 
Memory Write* 
Resetved 
Resetved 
Configuration Read* 
Configuration Write* 
Memory Read Multiple* 
Dual Address Cycle 
Memory Read Line* 
Memo Write Invalidate* 

The Bus Comm.ands marked with an asterisk are 
utilized in this design. If the reader wishes to 
map the device into the PCI I/O address space, a 
schematic module may be simply modified to 
decode the appropriate Bus Comm.and 
transactions. 



PCI Configuration Space 

The PCI Configuration Space is divided into a 
predefined header region (64 bytes) and a device 
dependent region (192 bytes). A PCI-compliant 
device is not required to implement all of the 
registers; all unimplemented registers, however, 
must return a value of zero when read. 

Of the seven indicated implemented header 
registers, four deal with device identification, 
and thus are read-only. The reader will simply 
modify the skeleton form of these registers 
provided in the design to uniquely identify the 
target device. The following briefly describes the 
contents of these registers; more detailed 
information can be referenced in the PCI Local 
Bus Specification. 

Vendor ID 

Device ID 
Revision ID 
Class Code 

Device manufacturer, 
from PCI SIG 
Device type, from the vendor 
Device revision, from the vendor 
Generic device function. (See 
detailed specification.) 

The remaining three registers have read-write 
capability and provide the following 
functionality: 

Command 

Status 

Base 

Controls the device's ability to 
respond to PCI cycles 
Records status information for 
PCI bus-related events 
Specifies the base address of the 
device (assigned by the O/S) 

The Command register is cleared at power-on 
reset to logically disconnect the device from all 
PCI transactions except Configuration Space 
reads and writes. This design implements 
Command Register Bits 0 and 1 which control 
the device's response to I/O and memory space 
accesses. All other Command register bits have 
an implicit value of zero. 

Bits [10:9] of the Status register indicate the 
speed at which the device is capable of decoding 
its own PCI address. The PCI specification offers 
codings for Fast, Medium, and Slow response: 
this design utilizes the Medium decode speed. 
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(Fast speed is not obtainable in FPGA 
technology using synchronous design practices.) 

The Base Register is also used by the operating 
system to determine the Memory or I/O space 
requirements of a device. In this design, the 
user device is assumed to have a 16-MB address 
space (24 bits); thus the upper 8-bits of the Base 
Register will be implemented with read-write 
capability and the lower 24-bits will always 
return a read value of zero. If the reader wishes 
to expand or contract the address space 
allocated to their device, the size of the Base 
Register and its associated address comparator 
can be adjusted accordingly. 



PCI 64-BIT DESIGN USING LSI LOGIC'S 
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Jose A Valdes 
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ABSTRACT 

The Peripheral Component Interconnect 
(PCI) is emerging as the bus of choice across 
an unprecedented number of different 
platforms. Designing a PCI based system, 
however, involves a myriad of technical details 
dealing with 1/0 buffers, bus protocols, 
timing, device drivers, and compliance that 
present significant technical challenges. 

This paper describes how a set of 64-bit 
PCI design blocks, the PCI-64 FlexCore™ 
Architecture, and other cores in LSI Logic's 
CoreWare® Libraries can substantially shorten 
the time needed to design and produce PCI­
based ASICs. 

PCI-64 FLEXCORE BUILDING BLOCKS 

The PCl-64 FlexCore Architecture is a set 
of tightly integrated, ASIC building blocks or 
modules that bridge a PCI bus to an "on chip" 
Host interface. Combined with a User Logic 
block, the PCI-64 FlexCore Architecture can 
be used with external logic to produce a 
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single chip PCI Host Bridge · or Adapter 
solution. The diagram below shows a top level 
view of the individual functional blocks. 

LSI LOGIC'S COREWARE METHODOLOGY 

CoreWare is LSI Logic's proprietary 
approach to creating custom, single-chip 
systems with more complex and higher level 
logic blocks as opposed to standard gate 
arrays. 

CoreWare represents a new paradigm for 
system designers by offering them the ability 

· to utilize applications-optimized engineering. 

With CoreWare, designers can focus on 
the specific application requirements neces­
sary to make their product competitive in the 
market, and then quickly produce silicon 
optimized for that functionality and perf or­
mance. Complex systems-on-a-chip can be 
fabricated with unprecedented time-to-market 
and low cost relative to alternative approaches 
such as gate arrays or full custom designs. 

~ ~ ::71 

FIFO 

L;1 
User 
Logic 

v v 
Fig. 1 PCI-64 FlexCore-™ ASIC Building Blocks 
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WHY USE A CORE FOR PCI? 

With a PCI core, the design team can focus 
on creating unique intellectual property, not 
re-engineering industry standards. By 
having PCI working at the start of a design 
cycle, high level system trade-offs are clear 
sooner and design dead-ends are more readily 
avoided. Also with a working core generating 
real cycles, the PCI protocol learning cmve is 
sharply reduced if not altogether eliminated. 

PCI compliance is another area where a 
core can save large amounts of time and 
resources. With the PCI-64 FlexCore 
Architecture, the component electrical, 
configuration, and protocol check lists are 
already complete. 

Finally, reusability is a major benefit of 
using a core; the same core can be used in 
many different applications. 

ARCHITECTURE 

The PCI-64 FlexCore Architecture is 
partitioned into five high level building blocks 
as shown in Figure I. These functional 
blocks consist of a PCI Protocol Engine, PCI 
Arbitration Unit, PCI Configuration Registers, 
FIFOs, and a set of PCI compliant I/0 buffers. 

PCI Protocol Engine 

Logically, the PCI Protocol Engine is 
partitioned into six functional modules. As 
shown in Figure 2, these consist of muxed 
PCI Master and Slave modules, an 

1/0 Buffers .. A D [63:0] 

Address/Data Path module, an Arbiter, a 
FIFO Controller, and a Host Interface 
Controller. 

As its name implies, the PCI Protocol 
Engine is the workhorse of the PCI-64 
FlexCore Architecture. It handles the bridging 
function between the PCI bus and the Host 
interface. The PCI side of the bridge provides 
all signaling for the PCI Bus and 
Configuration Space; the Host side of the 
bridge consists of the Host Interface 
Controller, Bridge Arbitration unit, and the 
FIFO controller. 

The FlexCore Architecture can operate 
either as a master or a slave on the PCI bus. 
PCI Bus master cycles are initiated by the PCI 
Master module in response to a cycle passed 
by the Host Interface Controller. These cycles 
originate in the User Logic Block. Cycles 
directed towards the core on the PCI bus are 
responded to by the Slave module. 

The Bridge Arbiter unit plays the role of 
traffic cop by monitoring control signals and 
arbitrating access to the FIFOs from both 
sides of the bridge. 

The Address/Data Path routes 32 -bits of 
address and 64 or 32 -bits of data to and from 
the PCI Master, PCI Slave, FIFO Controller, 
FIFOs, Host Interface, and Configuration 
Registers. 

The FIFO Controller generates control 
signals for the FIFO buffer block. Three 

FIFO 

FIFO Controller 

Addrs/Data r-iilMI---.~ 
Path 

Config. Registers 

Host 
Interface 

Controller 

Fig. 2 PCI Protocol Engine Block 
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external control bits provide for different 
depth FIFOs. 

The Host Interface Controller implements 
a lucid non-multiplexed Host Interface. 
Interfacing external logic is straightforward 
with an address strobe/ data ready style 
handshake with both master and slave cycles. 

The controller also takes advantage of the 
full capabilities of PCI with its ability to 
perform zero wait state bursting. 

PCI Arbiter Unit 

The PCI Bus Arbiter is fully compatible 
with PCI's access-based central arbitration 
scheme. It uses a request-grant type of 
handshake to grant mastership on the PCI 
bus. Support is provided for up to five 
masters on a programmable priority basis 
with parking ability. 

Since some adapter card implementations 
do not need an arbiter unit, the PCI Bus 
Arbiter is optional. 

PCI Configuration Block 

The Configuration block implements 
commands that access the PCI Configuration 
space and provides address decode for PCI 
bus transactions. Within this block are a 
number of registers whose contents are 
unique for a given implementation, this 
module is therefore left as a soft layout. and 
VHDL source code is available for custom 
implementations. 

The Configuration block can define up to 
six resources that may be used in each of four 
Host Interface devices. The resources may be 
I/ 0 resources or memory resources, where 
the size of each resource is programmable. 
The memory resources also have a relocation 
attribute. 

Additional user definable options in the 
standard implementation are shown below. 
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The Global options: 
• Vendor Identification 
• FIFO Size 

Local Device options: 
• Device Identification 
• Revision number 
• Base class number 
• Subclass number 
• Program interface 
• IRQ pin mapping 
• Resource register settings 

Resource Register options: 
• Enable/disable resource 
• Memory or 1/0 select 
• ROM resource select 
• Resource size select 
• Memory relocation attributes 

FIFOs 

The FIFO is assumed to be a memory 
block with separate read and write ports. The 
FIFO can be 4, 8, 16, 32, or 64 double words 
deep to accommodate different performance 
requirements. The size of the FIFO selected 
determines the core's maximum sustainable 
bandwidth. 

PCI Buffers 

The PCI specification very precisely 
defines the electrical characteristics and 
constraints of components, systems, and 
expansions boards on a PCI bus. Producing a 
compliant I/ 0 buff er requires extensive 
modeling, simulation, and characterization. 
The task is complicated further since PCI 
specifies both 3.3 Volt and 5 Volt signaling 
environments. 

LSI Logic has a number of I/ 0 Buffers in 
its ASIC cell libraries that are fully PCI 
compliant. The RED 12PCI and RED 12PCIF 
buffers (in 500K Process Technology), for 
example, supports 3.3 Volt and 5 Volt signal 
environments. 



DESIGN METHODOLOGY 

Object Oriented VHDL 

The PCI-64 FlexCore Architecture was 
designed using a VHDL top down design 
methodology encompassing "Object Oriented" 
concepts. By abstracting the core into 
separate functional elements, many different 
design manifestations are possible without 
changes to overall design integrity. 

Design Partitioning 

The top level modules are partitioned into 
either fixed layout "hard macros" or user 
modifiable netlists. The PCI Protocol Engine 
and PCI Arbiter blocks, for example, are "hard 
macro" blocks since they contain critical 
timing paths which should not be altered. 

The PCI Configuration registers are "soft 
macros" since register settings for things like 
Vendor ID and Device ID must be different in 
each design. 

The FIFO memory block has been isolated 
from the rest of the core so different memories 
can be used to vary sustained data bandwidth 
rates. 

Third Party Simulator Support 

The PCI-64 FlexCore Architecture can be 
used in many different system verification 
environments. Though primarily targeted 
towards VHDL 1076 compliant simulators, 
Verilog-based design environments are 
supported if the simulator supports co­
simulation or has VHDL model import 
facilities. 

Support for other types of environments is 
accomplished with LSI Logic's C-MDE tool set. 
With C-MDE a netlist can be translated and 
back annotated into virtually any simulation 
environment. 

FULL PCI 2.1 COMPLIANCE 

PCI compliance can be a drain on 
engineering resources. The PCI-64 FlexCore 
Architecture has been thoroughly tested for 
PCI 2.1 specification compliance. With the 
Host Interface decoupled from the PCI side, 

349 

the designer need only be concerned with 
connecting to a more forgiving on-chip Host 
Interface. 

LSI Logic's CoreWare library qualification 
requirements in many ways are more 
stringent than those of PCI. Rigid design 
methodology, a complete system verification 
environment, post and pre-layout timing 
analysis, and back-annotation into the SVE 
are done to check functionality. 

Once a core has been successfully 
simulated and layed out, prototypes are 
generated, tested, and characterized on both 
a chip tester and at the system board level to 
assure full silicon functionality. 

INTEGRATING OTHER CO REW ARE 
COMPONENTS 

The PCI-64 FlexCore Architecture com­
bined with LSI Logic's comprehensive library 
of functional cores allows the implementation 
of PCI functionality to a significant number of 
industry standards. 

The CoreWare library includes a wide 
variety of leading microprocessors, net­
working, and high speed interface elements, 
including RISC microprocessor, Ethernet 
controllers, ATM networking cores, DSP, Fibre 
Channel, MPEG2, JPEG and DigiCipher II 
video, and Dolby AC-3 audio cores. 

CONCLUSIONS 

The PCI-64 FlexCore Architecture offers a 
new approach to system design that allows 
the system designer to test many designs in a 
CAD environment at the start of the silicon 
design. 

By allowing selection of such key features 
as Bus Arbitration, FIFO depth, and device 
resources, the core provides the flexibility 
required for system designers to meet a broad 
range of price performance goals. 

By isolating the complex electrical and 
timing specifications of the PCI bus standard, 
the PCI-64 FlexCore Architecture enables 
engineers to focus resources on adding value 
to PCI Host and Adapter designs. 
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Equipment manufacturers developing 
PCI-based systems face the challenge of 
designing products quickly while, at the 
same time, addressing the requirements 
of the new and evolving local bus 
standard. An ASIC can offer a cost­
effective solution here, but the long 
development time suggests that it is an 
unacceptable option. FPGAs with on-
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chip SRAM provide a better and faster 
approach to designing PCI local bus 
interfaces. in addition to in-system 
reconfigurability in computer systems, 
on-chip SRAM can be used to 
implement scalable, high-performance 
FIFO buffers to maximize the bandwidth 
offered by PCI. 



TRENDS IN MOTHERBOARD DESIGN 
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ABSTRACT 

Since the first introduction of the affordable personal 
computer, the requirement tbr faster and better 
performance has increased. Fueled by consumer and 
technological demands, manufacturers have been forced 
to develop products to keep abreast of and ahead of these 
demands or risk extinction. 

Current trends in motherboard development have 
been based on: 

• Advance$ jn CPU perfonnance 
Larger and faster Cache and DRAM 
Enhancement$ in I/O buses 
"Plug & Play" 

• Advanced networking requirements 

ceu PERFORMANCE 

Intel has been one of the primary driving forces 
behind CPU developments, spearheaded by the Pentium 
Processor. AMD's K.5 and Cyrix's Ml further fuel the 
race toward higher pertbnning CPUs and the need for 
advanced system logic designs. 

CPU perfonnance has grown at an average of SO% 
per year. As performance increases, so too due,,s the 
demand for hardware capable of fully utilizing CPU 
interface designs. 

CACHE&DRAM 

Coinciding with advancements in CPU performance 
is the demand for more system memory. Today's 
hardware and software applications already require more 
memory than ever before. Tomorrow's demands must 
equally be considered. 

System logic designs for the Pentium already support 
up to 2MB cache, while future designs will support 
synchri>nouspipelined 3.3v cache. 

New developments in DRAM are also creating 
changes, EDO DRAM. synchronous DRAM, EDRAM, 
RAMBUS, and 3 .3v DRAM are all factors to be analyzed 
in new motherboard designs as system logic 
developments rise to meet the challenges. 
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yo PERFORMANCE 

With PCI's 32-bit data bus, multiple peripheral 
components and add-on cards can reach a bandwidth of 
l32MB/sec. Low access latency allows faster access 
times, eliminating the need for additional memory on 
add-on cards and thus lowering costs. Additional 
performance is reached tllrough PCI's bus mastering 
support. 

Increased developments in graphics, multimedia, 
disk d1ives, and networking further highlight the need to 
improve the 1/0 bottleneck. 

11PLUG & PLAY" 

PCl's "Plug and Play" support i$ a major issue for 
board manufacturers. Today's average user is not 
technologically sophisticated; and demands for user 
friendliness is on the rise. With a growing number of 
users eager to continuously upgrade. PCPs built-in 
configuration registers and software allow users to add 
new hardware effortlessly, bringing tho age of computing 
closer to the consumer. 

NETWQBXING 

While networking has filtered down to the SOHO 
marketplace, there is an increasing demand for high 
performance enterprise networking. Advancements in 
hard disk drives, telecommunications, and network 
hardware further solidifies the need for high performance 
bus architecture. PCI architecture allows pedpberal 
functions to take advantage of the CPU's processing 
power without depending solely on the CPU itself. PCI's 
higher bandwidth, low access latency, and bus mastering 
can increase network performance 

SUMMA Ry 

As CPU and system logic designers continue to 
improve their products. PCI architecture offers a cost 
effective solution to board real-estate, with fewer 
components needed to populate the board. This further 
allows manufacturers a quicker development time. and 
faster time to market. 
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Abstract 

Since the announcement of PCI specification, there has been several 
generation of implementations for the mother board chip sets. This paper 
examines their architecture, implementation and provide comparison 
information from actual commerical products. We hope in this way, reader 
can obtain better understanding of the decision and trade off made during 
the design phase. 

1. The Historical factor 

When PCI bus specification was first announced, the market already 
accepted VL bus definition for low cost and its simplicity. Defined by 
VESA (Video Equipment Standard Association) work group to support 
higher performance graphic display required by Microsoft Windows 3 .1, 
VL bus is simple and glue to the 486 processor bus protocol. During the 
definition stage of the VL bus, Pentium Processor was still un-announced. 
Although many of the participants in the VL bus work group have 
knowledge of how the upcoming processor will look alike, but none of 
them can discuss it in public. Therefore, the VL bus was very easy to 
adapt in 486 type design but lack the proper support for Pentium 
functionality. 

During that time, Intel's 82420 (codename Saturn) was the only shippng 
chipse. Many companies design motherboards based on the same 
reference design guide from Intel. Unfortunately, chip set bugs and 
changes cause multiple revisions of product within a short period of time. 
After piles of errata and correction with external GAL fixes, the market 
abandon Saturn based 486 PCI products eventually. 

In the same time Pentium processors was introduced. Several companies 
came out with a quick design and come out Pentium mother board with 
VL bus. However, armed with astronomical budget, Intel lunch series of 
marketing advertisement and lead the major PC marketing companies 
such as Gateway 2000 to Pentium PC! market, the demand for 
PentiumNL motherboard disappear very soon. At that time, the only 
available Pentium PCI based chipset is from Intel (82430, codename 
Mercury). Opti, Inc. later came out with with 596/597 chip set to ease the 
dominance from Intel. 

It is not until Intel start shipping P54C processor that other chip set 
supplier finally catch up. From Taiwan UMC, the 881 chipset (for 486) 
and 891 chipset (for Pentium) are good low cost, PCI 2.0 compliant 
solution. Opti, SiS, VLSI, Acer Labs and Via Technologies, all ship their 
PC! chipset in 1994. Today, there are more and more PC! mother board 
chip set coming out and make designer job much easier than before. 

2. Architecture 

We will skip the .82420 Staum chip set are it is already obsolete. In Figure 
2 and Figure 3 we demonstrate the architecture differences of 80430LX 
(Mercury) and 80430NX (Neptune). 
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Fig 2. 80430LX (Mercury) 

We notice there are only minor changes but the basic architecture is very 
similar between Intel Mercury and Neptune chip sets. One major 
differences between these two chip sets is that Neptune support dual P54C 
processor which requires 3.3V interface in PCMC and LBX. 
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Fig 3. 80430NX (Neptune) 

The new generation PCI chip are more performance tuned. From Fig. 4, 
we can see that VLSI 590 chip set has shrink the datapath buffer size and 
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use PCI bus to pass tbe command and status between the PSC 
(Processor/System Controller) and Data buffer. Notice the 32 bit 
address/data path is interleave to reduce noise and increase efficient 
during byte or word transfer. 

MA 

P54C Cache DRAM 
SRAM SIMM 

A l ] l I MD MD 
DI 

r 
l 

LJAIA DATA 
'--- PSC BUFFER BUFFER 

(208 PIN) (144 PIN) (144 PIN) 

TAD[0 .. 31] AD(B .. 15,24 •. 31] AD(0 .. 7, 16 .. 23] 

PCI Bus 

PC VISA 
BRIDGE 

(208 PIN) 

ISABus 
Fig 4 VLSI 590 

Intel new generation Triton chip set also use this type of approach. In Fig. 
5, we can see that the LBX in original design has been shrink into TDP 
(Triton Data Patb) in I 00 pin PQFP to reduce cost. However, tbe 
command/status bus still exist between TSC (Triton System Controller) 
and TDP. PLINK (16 bit) bus become tbe main data path between host 
CPU and PCI bus. 

Plug & Play 
p[I)( 

(208 PIN) 

P54C 

OABUS 

Fig 5 82430 (TRITON) 

PCllDE 

SiS 85C50115021503 chip set use very different approach. In order to 
reduce tbe chip count, SiS uses 3 208 pin chip witb no intra-chip 
communication patb. 

2/21/95 
1:31 PM 353 

1995 PCI WEEK 

CACHESRAM 

373 Butter 

DATA~----"---j------~~--t--..~ 
ADDRESS <1---~----~ 

PCMC DRAM 
SIMM 

PCI BUS 

PSIO 

DATA PLDB 

ISA BUS 

Fig 6. SiS 85C50x 

One of tbe major challenge in chip set design is pin count. At current 
stage, SiS 3 chip solution seems to be tbe most compact design. Next 
generation PCI chipset will use Ball Grid Array (BGA) witb 300+ pin 
count and futber reduce tbe chip count down to 2. At that time, because 
tbe data patb is integrated into tbe controller, witb help of internal buffer, 
higher performance PCI design will be possible without major change to 
architecture. 

3. Performance and data buffer 

In tbe first generation PCI chip set from Intel, we notice the extensive 
use of buffers and FIFO. There are several levels oftbese buffers help to 
minimize tbe overhead and turn around cycle penalty. Intel has implement 
buffers in several different key data patb which help to maintain 
concurrency for PCI and processor bus. However, tbese buffers requires 
very complex arbitration logic and require large real estate on the silicon, 
tbey increase tbe cost oftbe chipset and also reduce the initial yield rate. 
Several companies make different choice and take the performance 
penalties. In Table I, we can see the comparison of tbe buffer usage of 
different chip set. In Fig. 3, we can also see some raw performance 
number sampled from real products. 

Table I 

In Figure 6 and 7, we use Intel 80430 chip set LBX (Local Bus 
Accelerator) and SiS 85C502 PLDB (PCI Local bus Data Buffer) as 
example to compare their internal buffer structure. These buffers in the 
PCI mother board chip set plays a very important role to keep the system 
from waiting each other. It also help to introduce concurrency between 
host bus and PCI bus. 
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HOST BUS 

., ., 
4DWORDS 

MEMORVBUS 

'2 ., 
4DWORDS 4DWORDS 

......................... : 

PCIBlO 

Fig. 6 LBX Buffer 

Notes in Figure 6 represents : 

* I CPU-to-Memory Post Write Buffer 
• 2 PCI-to-Memory Post Write Buffer 
• 3 PCI-to-Memory Read Prefetch Buffer 
* 4 CPU-to-PCI Post Write Buffer 
* 5 CPU-to-PCI Read Prefetch Buffer 

4QWORD 

• 2 

.. 
4QWORD 

Fig. 7 PLDB Buffer 

Notes in Figure 7 represents : 

• I CPU-to-Memory Post Write Buffer 
* 2 PCI-to-Memory Post Write Buffer 
* 3 CPU-to-PCI Post Write Buffer 

.. 
4 Owal:DS 

M0(63:0J 

PC1 AD[31 :OJ 

We can see the difference between LBX and PLDB is that PLDB did not 
incldue prefetch buffer. These prefetch buffer can help to reduce the wait 
cycle and improve the system performance. Also, there are no PCI to CPU 
buffer which will also impact system performance when PCI bus master 
try to access the system memory. 

In Figure 8, we chart real life several benchmark result to demonstrate the 
impact of these buffers. 
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a.. aJ <9 a.. a.. (f)Oooa.. 

-+-Tes~1 
-e- Test 2 

Test 3 

Test# I is with all buffer tum on, Test #2 is with PCI post write buffer tum 
off and Test 3 is with Host post write buffer tum off. Test is performed 
under BapCo 93 (SysMrk93). Legend: WP - Word Processing, SP -
Spread Sheet, DB - Data Base, DG - Desktop Graphic, DP - Desktop 
Publishing, PP - Presentation. 
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Fig. 8 

4. Layout Issues 

The PC! mother board layout has cause many engineer spend countless 
overtime and retries to try to get the best placement on the limited PCB 
space. Because PCI specification defines all peripheral components are 
mounted at reverse side of!SA card, a share slot scheme was defined. The 
placement of share slot has cause some challenge to engineers to come out 
with different placement than traditional mother board 3 years ago. We 
will examine two major types of mother boards; standard Baby AT and 
LPX/LPM boards for slim line. There are several other form factors that 
uses full size AT or passive backplane for special industrial application. 
However, we will focus on the most popular types only. 

4.1 The movement for on board 1/0 

One of the major movement in PCI based mother board is that almost all 
of the new PC! based mother board has Super UO chip on board. This is 
the new trend in the industry. There are several good reason behind this 
movement. First, the PCI specification defines only I load per slot, and it 
limits traditional COMBO type of UO card design unless a very expansive 
PC! to PC! bridge chip is used to meet the compliance. Second, by 
definition, PCI bus is Plug and Play ready and by putting the Super 1/0 
chip on board, the designer can have full control in BIOS setting which 
allow easier transition to full Plug and Play in future. Third, the new 
emerging Enhanced IDE specification from ATA committee really benefit 
from the high speed PC! bus transfer rate. Because the PC! specification 
did not include the INT 14 which is used by the primary IDE channel, the 
PCI IDE add on card will need a paddle card to get INT 14 signal from 
ISA slot side. This will in tum use 2 slot instead of 1. And last, by putting 
the PCI storage controller on board, the mother board designer can fine 
tum the parameter and boost the transfer rate and give better performance. 

The on board I/O today normally includes a PCI IDE chip and a Super 
UO chip which provide the basic floppy controller, 2 FIFO serial port and 
I ECP/EPP printer port. However, this type of design does has I draw 
back that requires mother board manufacturer to extend the product test 
and support to peripheral devices that are attached to these UO ports. 
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Figure 9. 

4.2 Baby AT layout examples and issues 

The original Baby AT formal factor host 8 ISA slots. Under the same 
formal factor and constrain, the PCI mother board designer has to divide 
the slot space between PCI and ISA (or EISA). Normal configuration 
today includes 4 PCI and 4 ISA or 3 PCI and 5 ISA slots. There are 2 
types of the layouts that are widely adapted. (See Fig. 9) In Fig 8, the 
black lines marks normally trace routing on these placements. 

DODD 
Figure 10. 

The general problem on layout# I in Figure 9 is the component 
placement. We notice that the memory is located near the upper right 
comer which blocks any trace between the MC and I/O chip block. The 
Super I/O and I/O interface chip are located at the read of the PCI slots 
and still meets the mechanical requirements of PCI specification. 
However, the I/O connector placement become a bigger issue that if they 
are placed next to the memory SIMM slot, then the memory slots is 
limited to 4 SIMMs only. If they are placed near the power connector at 
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top, then memory SIMMs has to move down and may interfere with the 
floppy disk drive in the chassis. 

Because these limitation, the PCI bus controller or data buffer chip 
normally is place right under PCI slots. This will provide a very efficient 
layout between the MC and the PCI controller. The MC is placed near the 
center of the CPU and the cache memory and the net tree is flat (linear) 
using minimum distance. Sometimes, the design engineer need to 
manually adjust the net list sequence to obtain the desired result before the 
layout engineer start to do the placement. 

The layout #2 in Figure I 0 also have placement problems. As the 
memory SIMMs are located in the lower right comer, it pushes the MC 
and CPU to left of the board which in turns blocks the ISA slot for full 
size card. Because the space limitation, the cache memory get push sit 
between CPU and MC which place right under the PCI slots. Since the 
traffic between CPU and Cache memory is very high, the simultaneous 
switching noise become noticeable from the PCI slot side. Extra filters and 
bypass capacitors are needed but normally translate into cost and routing 
constrain. 

The PCI mother board normally take several iterations before the balance 
of cost, manufacturablity, and reliability can be reached. The layout 
process normally is break into two phases. The trivial traces between the 
buses are first lay down to achieve regularity (for both PCI and ISA). Then 
the connection between bus controller and on board PCI device is done to 
obtain minimum distance layout. Last, the controller is connected to the 
PCI slots. All the standard PCB layout rules for high speed logic applies 
and to minimize the clock skew between slots, it is recommended that the 
clock trace are placed manually with special treatments. 

4.3 LPX/LPM layout issues 

LPX PC! board design is particularly difficult because it involves 
PCI/ISA mixed riser card. The mega connector on the mother board 
normally serve as the great wall on the board that blocks and trace from 
left side of the board to the right side. Because of the physical limitation 
and space constrain, there are little choice for component placement for 
design engineer to choose from. In most LPX form factor case, the on 
board 1/0 device must be placed at left side of the riser card slot. This is 
for easy cable routing consideration. In Fig 11. we can see a typical 
layout placement. 
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CJ .__I _ __,I CJ CJ D D 
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D D 
D DODD 

EJ DODD 
Figure 11. 

In this placement, we notice that the cache memory is located at lower 
right corner. The memory SIMMs are located at lower left which give 
easy access for the user. Since the upper left corner are occupied by VGA 
controller and video memory, there leave very little room for the 
placement of chip set. One design dilemma is that for the consideration of 
the space, designer may choose to put the PCI IDE (or SCSI) device on 
the left side on the riser card connector and put the PCI controller on right 
side of the slot. The draw back of this implementation is that if the device 
plug into the PCI slots on the riser card cause any signal degradation, then 
the PCI IDE chip may not receive good enough signal quality and may 
cause intermittent problems. 

One good rule of thumb is to consider a safety factor for PCI slots on the 
riser card. Two PCI slots on the riser may be safe if there is one or two 
devices on board already. Routing of the clock and some critical bus 
control signal is very important and designer should pay special care to 
them. 

4.4 PCI Riser card 

The PCI riser card is especially difficult to design due to the mechanical 
difference between ISA and PCI add on card. The same share slot issue we 
discussed before still apply here. In Figure 12, we can see several design 
that has been proved to work. 

The PCI riser faces two fold of the problem; first, because the PCI 
component are mounted on the reverse side of the ISA add on card the 
PCI slot has to be half slot lower then the ISA card. In a single sid~d riser 
card, there is no problem except the share slot issue. 
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~o ISA D 
Figure 12. 

In the dual side PCI/ISA mixed riser card, this post major as one side of 
PCI slot will conflict with the ISA slot on the other side. Special 
arrangement has to be made and case bracket designed to meet with this. 

Signal integrity should be considered before any slot arrangement. 
Marketing requirement may like to place PCI slots on top of the riser card 
~d ISA on the lower part to use I share slot in between. This placement 
will cause problem when high speed signal for PCI slots travel between 
ISA connectors. Interference and noise has been observed during 
prototype experiments when there are analog device reside on ISA slot 
which requires clock signal from mother board (e.g. osc, 14.318 MHz) 

5. A look into Mixed PCI design and future 

Several of the possible direction for the current PCI mother board design 
are outlined here. In next 2 or 3 years most of these functions should start 
to show up in market. Will they be widely accepted and design into future 
products is left to be seen. 

5.1 3.3V PCI bus 

Although 3 .3 V PCI bus is already in several notebook design but desktop 
system still have not adapt yet. One of the main reason is 3.3V component 
normally cost more. The new Pentium P54C processor has help to 
proliferate the support on 3 .3 V on mother board. But not until the 3 .3 V 
memory price goes down will the 3.3 V become major factor. 

5.2 66 MHz PCI bus 

The new proposal in PCI workgroup for the extension of 66 Mhz bus 
specification is far more difficult for mother board design than expected. 
To extend the 4 PCI slots to 66 Mhz not only increase signal integraty 
problem but also cause EMI headaches. New architecure and deeper bus 
buffer will be needed to support the operation and thus increase the chip 
cost. 

5 .3 64 bit PCI bus 

64 bit PCI bus has not catch up in the market but in a few year when EISA 
based server gradually evolve into PCI, 64 bit PCI bus may be a good 
choice for heavy server application. Large and wide disk raid controller 
can take the advantage for the wide transfer bus and provide high 
bandwidth. One of the potential targetfor 64 bit bus is 
graphic display card. However, this will rely on BGA technology and the 
final component cost. 

5.4 PCI on PCI (Mezzanine bus) 
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PCI Mezzanine bus was lead by DEC as a way to expand PCI to more 
device general purpose bus. Later on, this was proposed as the solution for 
multi-drop video data path as compare to the VMC (VESA Media 
Channel). At current stage, most of PCI bridge design in done on multi­
function add on card. Small quantity of server boards with more PCI slots 
design has been done in a very limited scale. 
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PCI IN INDUSTRIAL SBC/ PASSIVE BACKPLANE APPLICATIONS 
Give industrial applications the advantage that's offered by the PCl local bus. 

BAO TRAN 
Senior Design Engineer, 

Teknor Microsystems, Inc. 
616 Cure Boivin 

Boisbriand, PQ. J7G 2A7 Canada 

INTRODUCTION 

Industrial applications now can take 
advantage of the speed and processing power of the 
latest PCs. That's because the PCI local bus supplies 
an effective 32- or 64 bit I/O bus, effectively 
eliminating bottle-necks between the system 
processor and high-bandwidth peripherals, such as 
graphics displays video interfaces, and LAN 
Controllers. With PCI, the system under design can 
exploit the latest high-speed microprocessors using a 
flexible, CPU-independent bus. 

In the following pages, we will introduce the 
Industrial PCI specification and examine the unique 
challenges involved in designing PCI-based passive 
backplane and single board computer systems for 
industrial applications. 

MOTHERBOARDS VS SINGLE BOARD COMPUTERS 

Motherboard computers do a terrific job in a 
great variety of applications. While they are utilized 
primarily in desktop systems, many industrial 
computer setups do actually utilize motherboards. 
Despite the fact, however, that motherboard MTBF's 
are continuously improving, there is still a significant 
advantage to employing passive backplanes and 
single board computers (SBCs) in typical industrial 
applications. 

For starters, accessing single board 
computers for repair or replacement is typically much 
easier and quicker than for motherboards. That is, a 
user's mean-time-to-repair is greatly reduced with 
passive backplane systems. In addition, 
motherboards are limited in the number of expansion 
slots, whereas passive backplanes can offer the 
maximum number of dedicated I/O slots for any 
particular application. And finally, passive 
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backplanes and SBCs are much more flexible in terms 
of size and format and can be easily customized for 
special applications. 

WHY PCI BUS IN INDUSTRIAL APPLICATIONS 

Because of the continual technological 
advances being made, industrial system designers 
increasingly require high-speed I/O in their designs. 
Technologies such as ATM, high-speed LANs, 
extended 3D graphics, and so on, have resulted in 
system bottlenecks in ISA-based systems. 

PCI has the necessary throughput designers 
are looking for to mate with the new technology. In 
addition, PCI local bus technology offers processor 
independence which, among other things, allows you 
to interface to a wide variety of CPU platforms with 
only one design. 

AN INDUSTRIAL PCI SPECIFICATION 

The PCI Industrial Computer Manufacturers 
Group (PICMG), is an industry marketing and 
technical work group setup to standardize an 
industrial PCI passive backplane specification. The 
group adopted a specification guideline proposed by 
charter members Teknor Microsystems, Montreal, 
Canada, and Trenton Systems, Duluth, Ga. That 
guideline helps maintain plug-and-play compatibility 
between CPUs and backplanes. 

Known as the P996 standard, the specified 
CPU board is a full-size AT board. It measures 
13,330 by 4.5 in., and is made up of two sets of finger 
connectors. The first set is a standard ISA connector, 
which supports the ISA-bus backplane. The second 
set is a modified version of the PCI bus, which 
supports four PCI masters on one backplane. 



A board can run on both the newly designed 
PCI-ISA backplane or on an existing ISA-only 
backplane. Four clock drivers facilitate clock layout 
on the backplane, as well as minimize clock-skew 
problems when driving the expansion slots. The CPU 
board supports the PCI and ISA buses independently. 
Combining the two buses gives users the best of both 
worlds: High-speed devices can use the PCI bus, while 
the ISA bus supplies the necessary backward­
compatibility with existing peripherals. 

PI CMG ultimately hopes to get approval of the 
PCI backplane specification from both the PCI SIG 
and the IEEE. 

INDUSTRIAL PCI DESIGN CHALLENGES 

Designing the PCI bus into an industrial 
single-board computer (SBC), however, requires 
careful attention to a number of design issues. The 
design process begins with a definition of the system 
under design-- an ISA- and PCI-compatible system 
with more than three PCI slots, and a passive 
backplane or motherboard. 

Suppliers of SBCs needed to review the PCI 
standard to define the "custom bus" for the CPU 
board, which can support the PCI expansions slots on 
a backplane. As part of this approach, extra pins 
were added for point-signal connectors, and for the 
location of the passive components. These 
modifications support PCI's 64-bit orientation and 
offer backward compatibility with existing applications 
that don't require PCI's bandwidth (see Figure 1). 

The PCI-ISA backplane consists of one CPU 
connector slot that combines an ISA connector and a 
32- and 64-bit PCI connector. The ISA connector is 
close to the bracket end of the backplane, followed by 
the PCI connector, so that the CPU board also 
functions as an ISA backplane. Using the specified 
backplane layout, the ISA connectors can be added to 
one side of the CPU connector while the PCI 
connectors are on the other side. The connector 
layout follows both ISA and PCI standards, making it 
possible to fit the backplane into most current 
industrial enclosures. Another advantage of this 
layout is that the system integrates both standard PCI 
and ISA boards developed for desktop computers. 
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The CPU board is a full-size card, whose 
optional "drop-end" is used for peripherals I/O 
connectors. The remaining drop-end allows four 72-
pin SIMM connectors to be used for memory­
expansion purposes. 

Unlike the pin assignments of the ISA 
connectors, the assignments of the PCI connector 
have been modified. This was done so that the 
primary bus could support up to four masters. 
Function pins not used for industrial applications 
were removed. To meet the 2-ns PCI clock-skew 
requirement, each dot is driven by one line from the 
clock driver on the CPU card. This requires an extra 
pin for each expansion slot.. 

This revision of the PCI specification clarifies 
certain connection schemes for SBC and passive 
backplanes. Such connections include pull-up 
resistors that support 64-bit expansion boards. 

The number of slots is limited by a 10-ns 
propagation delay imposed by the PCI standard. 
Because the PCI connector on the CPU card is located 
below the ISA connector, 9 in. of trace length are 
needed to route the signals across the backplane to 
the three expansion slots. The remaining 4 in. can be 
employed on the CPU board. 

The PCI bus uses the reflected wave in a 
constructive manner. The summation of the original 
signal and the reflected signal can drive low­
impedance lines. If the trace lines are longer than 13 
in., the reflected wave will take longer than 10 ns to 
return. This leaves the original signal alone, which is 
incapable of driving the lines, thus causing system 
malfunctions. The designer also must ensure that 
less than 2 ns of clock skew exists between any two 
devices. In this case, each expansion card should be 
driven by a separate clock from a clock driver on the 
CPU card. If there are PC! devices on the CPU card, a 
delay can be added on the clock line. The delay 
ensures a clock skew of no greater than 2 ns for the 
PCI devices and any other devices using the 
expansion slot. 

Transmission-line effects should be 
considered when calculating trace delays and signal 
integrity. For a standard material board, a 0.2-ns/in. 
delay for strip line and a 0.15-ns/in. delay for 
microstrip line is commonly expected. Because the 
signal-switching is based on a reflected wave, line 
impedance must be controlled. The 2-ns clock skew, 
including the clock-driver and trace skew, requires a 



careful choice of clock buffers and click-trace layout. 
In addition, the connector selected should support 
high-speed signals as well as a low load on the 
transmission line. 

A set of point-to-point signals should be 
added to the CPU connector for each expansion 
connector supported. According to the PCI standard, 
a set of signals such as Request, Grant, and ID Select 
is unique to each PCI expansion connector. Those 
signals should be supported by the CPU connector. 
The ID Select signal is a restively coupled version of 
one of the address signals. The CPU connector pin 
can be saved if these signals are routed on the 
backplane, so that the ID Select signal is independent 
of the address signals on the backplane. 

The coupled Request and Grant signals 
support the master mode. Each PCI device possesses 
Request and Grant signals that interface with the PCI 
master controller. The number of extra pins that must 
be added to CPU connector depends on the number of 
master-enabled expansion slot supported and on the 
chosen PCI master controller. Four to six masters can 
be supported by the PCI master controller and arbiter 
using available chip sets. 

The location of certain components is critical 
(on either the CPU board or backplane) for the system 
to run with either the 32- or 64-bit versions of PCI. 
According to the PCI standard, the Request-64 and 
Acknowledge-64 signals negotiate a 64-bit transfer 
between devices that support 64 bits. Selecting the 
proper pull-up-resistor scheme must be considered to 
avoid contention problems, such as a 64 bit 
expansion card being mounted in a 32-bit slot. 

The PCI bus, which is synchronous, features 
signal switching based on a clock edge. The address 
lines can change state on every clock cycle when in 
burst mode. To avoid EMI problems, several 
techniques can be utilized, including lowering the 
trace impedance and running high-EMI-generated 
lines on the inner-layer board. Crosstalk can be 
avoided by leaving enough space between signals and 
rerouting signals that are sensitive to noise away from 
high-speed switching signals, such as the clock lines. 

The PCI bus supports existing standard 
busses including ISA, EISA, Micro Channel, Multibus, 
and VMEbus. System designers can integrate one of 
these buses to support existing designs and 
applications. To facilitate a smooth transition from 
the existing technology to the PCI bus, the system 
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controller on the CPU board should support both 
buses independently. All transactions between busses 
must be transparent to the applications. One or both 
buses can be omitted from the backplane. 

PCI TO PCI BRIDGE 

In industrial applications, it's common to use 
more than eight expansion slots. For such 
applications, a PCI-to-PCI bridge offers a solution. 
The bridge, when connected to one PCI bus, called the 
primary bus, creates an additional PCI bus, called the 
secondary bus. Up to four additional slots can be 
supported for each bridge. The bridges can be added 
in hierarchical order or in peer, depending on the 
application. The bridge also permits the PCI buses to 
run concurrently as the devices on one bus don't 
access the devices on another. Within the PICMG 
specification, up to four PCI to PCI bridge slots can be 
added together in peer mode to support up to 16 PCI 
slots on the secondary bus (see Figure 2). 

A FINAL NOTE 

During the layout of a high speed board, trace 
length must be viewed as a transmission line. 
Similarly, crosstalk, EMI, signal integrity (overshoot 
and undershoot, ringing, and skew) should undergo 
analysis using the appropriate tools, In the design of 
Teknor's PCI boards, the PDQ tool was used for 
component placement. XTK was utilized for 
transmission line and crosstalk analyses. 

Bao Tran, is a senior design engineer with Teknor 
Microsystems Inc. He holds a degree in electrical and 
communications engineering and is concluding a 
master's degree in computer engineering at the Ecole 
Polytechnique in Montreal, Canada. 



Figure 1 

PCI SLOTS 
0 

D 1-DLED 

n ON LED 

~ 1<B INHBIT• 

0 DOY"'-D' 
mGN:> 

g 
(/J 

::> 
D. 
0 
c 
w 
u:: 
Ci 
0 
:::!; 

0 

361 

ISA SLOTS 
()' I 

I I 
0 0 

~ 
~~ 
~~ 
~~ 

D 
1/0 INTERFACE 
CONNECTOR 

- x 

O o· +IN 

+12V 

QC) -12\/ 

Giil 

0 (J GUO 

""' OU Giil _,., 
Qo' +SV 

+IN 

~ -t5V 

0000 
0 
0 
0 
0 



Figure 2 

• ~ I 
0 0 

PCISLOTS 

.® .® .® .'f> .'f> .e .® .@ .® .® 

. ·· .. . ·· .. • "@ •• • ·111 •• • ·Ii) •• . ·· .. 

I- .• .• .e 
0 
~ 
I/) 

<( 

b I-!!? 
I- 0 

~ ~ 0 I/) I/) 
~ 
I/) w w 
:> (!) (!) 

c. 0 0 
(.) ii: ii: 
0 ID ID 
w u u u:: c. c. 
Ci 0 0 g (:) . -
0 I- rJ C:)' • :::!: u u • . 

·•. ··. 
c. ··. c. rJ cJ • .. 

rJ c:s • • .. 
rJ c:S • • • 
rJ cJ • .. . 

C:) 

0 
0 

ITT 

I 0 
0 

. 

362 



Abstract 

Alpha RISC PC Example Design 
PC Motherboard for the 21064A 

Tim Miller 
Product Line Mgr., Alpha CPU Products 

Digital Semiconductor, DEC 
77 Reed Rd., MS HL02-2/N7 

Hudson, MA 017 49-2895 
508-568-4122 

This paper describes the Alpha System Architecture for the 21064A and cache 
subsystem. It presents the example design timeline, AlphaPC64 features, the 21072 
core logic cbipset, cbipset features, features of the RISC PC motherboard,, and the 
power supply. It also describes the alpha cache SIMMs, AlphaPC64 flash memory 
support, and AlphaPC64 firmware support. 
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Dlgn.t Semiconductor 

21064A Example Design Timeline 

.Q2!IlL A!Q.tlil ~ 
EB64 21064 150 First Design, PLO Based 

EB64+ 21064 200 Using 21072 Core-Logic Chlpset 

EB64+ 21064A 275 Speed Upgrade 

AlphaPC64 21064A 275 Cost Reduced, New Design 

First Revenue Shipments 
c:::> AlphaPC64 

c:::> EB64+ 275 MHz 

c:::> EB64+ 200 MHz 

c:::> EB64 

July 93 May 94 Sept94 Aprll95 

lgltel Semiconductor 

EB64+ 
21064A and Cache Subsystem 

..-----. ............................ .. 
• DRAM"°"" . CACHE.·• 

8RA"8 . ·· 128Blte •• ..... 

.. 
: . . 
~,.._ ....... ..., 
~ PCI 
\ Bridge 

PCIBu 

M9mcxy 
Control 

DRAM Control 
MUXAdd,..M 

VRAM Control 

\ 
•. . . 
I . . . . . . . . . . . .. :· 

- ------"~ - -/ 

•••••• 21072 Core Logiif Chipset 
""-. ... 

...................... -··· 
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Dlgllal Semiconductor 

21071/72 Chipset Features 

+21071-BA 
- 32 bits of datapath interface and buffers 

+21071-CA 
- 2nd-level cache control 
- Main memory DRAM control 
- Frame buffer VRAM support 

+21071-DA 
- 32-bit PCI Host Bridge Interface 

flOB.pln POFPe 
0.7 mlonm g•te-.ye 
und• aw poww ••• ,,.,,on 

EB64+ Features 

+ A complete RISC PC motherboard 

+ Fu/I-size A Tform factor, 6 layers 
+ System design based on 21072 chipset 

- 512KB or 2MB cache options 
- 2 banks of 128-bit main memory (512MB max) 

+ On-board PCI devices 
- Ethernet controller 
- SCSI controller 

Digital 21040 
NCR 53C810 

+ Uses on-board 5V to 3.3V regulators 

+ 275 MHz upgrade in September 1994 
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Dlgltal s.mloonduclor 

EB64+ Design Accomplishments 

+ PCI has become the industry-standard 10 Bus 
+ ISA provides for legacy devices 

+ Low-cost thermal management solution 
- Heatsink, or Heatsink and Fan 

+ Development of high-frequency PLL for Alpha 
- Triquint chip reduces cost 

.1·-······ .•. 
' 21072 

Trlqulnt ·' Clockln_h'..,· ---. Chi t 

Crystal 
Oscillator 

,__......___,• \21064A ~!:~ ~~ ..--C-lo_ck___, pse 

• .._ __ ..... ksaMHz 1-----t 
,.. ; Dlstrtbutlon 

..___...,, Clockln 1...,i __ _. 33MHz 
..... - •. · 26.66 MHz 

··., .......... ·· 
Very short isolated traces 

PCI Bus 
33 MHz 

Ital Semiconductor 

AlphaPC64 Design Motivation 

+ Customers require a cost-effective reference design 

+Can we fit into Baby-AT, 6 layers? 

+ Need to meet FCC requirements 

+ Would like to vary cache size and speed 

+ Not everybody needs on-board SCSI and Ethernet 

- More PCI slots 
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Digital s.mlconductor 

AlphaPC64 Features 

+ Reduced-cost design, Baby-AT, 6 layers 

+ Uses 21072 Core Logic Chipset 

+ Alpha Cache SIMMs, 512KB, 2MB, 8MB Cache options 

+ Two banks of industry-standard DRAM SIMMs 

- 512MB Maximum, 70ns or less 

+ 4 PCI slots and 2 ISA slots (or 3 and 3) 

+ IDE connector 

+ Low-cost ZIF socket for 21064/21064A 

+ Flash memory support 

+ 3.3V power supply 

Digital Sernloonductor 

Power Supply, 5V and 3.3V 

+ EB64+ has on-board regulators 

- Utilizes cost~effective 5V power supplies 

+ Industry standard 3.3V supplies are now available 

- Cost is less than regulators 

- Less board space 

- Less overall power 

+ AlphaPC64 supports 3.3V supplies 
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Dlglt81 Semiconductor 

Alpha Cache SIMMs 

+ Common Motherboard for different Cache sizes 

+ Supports all Alpha Microprocessors 

- Alpha uses 128-bit bus, external cache tag store in SAAM 

+ SIMMs have 64-bit Datapath plus parity or ECC 

+ Introduced on AlphaPC64 design (1 bank of 2 SIMMs) 

~ SRAM!i! SBAMs for tags SRAM speeds 
512KB 32Kx8 64Kx4 6 ors ns 

2MB 128Kx 8 64Kx4 6,8,10,12or 15ns 

SMB 512Kx 8 256Kx4 1 Sns (sampling) 

• Available from Micron CMS 

Flash Memory Support 

+ AlphaPC64 supports 1 MByte Flash 

+ Combined functions of UVROM and NVRAM 

256K 

256K 

384K 

64K 

64K 

Debugger 

Windows NT 
FlrmwRl'A 

SRM 
Console 

SRM 

Windows NT 

+ + 
BIOS Environment 

Variables 

Enables multiple OS images 
in one device 

Allows remote updates 
and saves ROMs 
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Dlgllel Semiconductor 

AlphaPC64 Firmware Support 

+ Windows NT 3.5, HAL Kits 
- available from Microsoft 

+ Windows NT 3.5, Firmware kits 
- from Digital 
- No royalty fees 

+ Boot SROM & Debugger source code 
- from Digital 
- No royalty fees 

+ Emulation of VGA BIOS 
- Can use PCI and ISA graphics adaptor cards 

WlndowsNTlla-olMlcroooftCorporatlon 

Dlgltal llemlcopduclor 

AlphaPC64 Summary 

+ A Cost-Effective Reference Design 
- Baby-A Tform factor 
- Industry-standard PCI and ISA 
- 3.3V power supply 
- Designed for FCC compliance 

+ Alpha Cache SIMM 

- cost/performance flexibility 

+ Flash memory 

- provides OS/Update flexibility 

+ Build the Fastest PC on the planet! 
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PCI Enhances the Flexibility of VMEbus-Based Single Board Computers 

R. Baxter, J. Gipper, G. Novak, C. Pham, M. Rush 
Motorola Computer Group 

2900 South Diablo Way 
Tempe, AZ 85282, USA 

ABSTRACT 

This paper will discuss the design techniques used to 
implement a complete PCI 1/0 subsystem on a PowerPC based 
single board computer. The paper will provide an overview of 
the PCI specification itself along with complementary 
information concerning the IEEE P1386.1 specification for PCI 
Mezzanine Cards (PMC). The technical advantages of flexible 
designs using both PCI compatible intelligent controller 
components and PMC's will also be discussed. 

INTRODUCTION 

The Peripheral Component Interconnect (PCI) local bus has 
become a common design element in virtually all high volume, 
low cost personal computer and single board computer designs. 
The PCI bus is used primarily as a component interconnect for 
the single board computer designs but its versatility as an 
expansion bus has also made it a popular choice with today's 
designers. 

The PCI local bus was specified to establish a high 
performance local bus standard for many generations of 
product. The PCI specification provides a selection of features 
that can achieve multiple price-performance points and can 
enable functions that allow differentiation at the system and 
component level. 

PCIONVME 

PCI provides many features and benefits for single board 
computer designs. 

Table 1: PCI Features and Benefits 

Feature Benefit 

High • Transparent upgrade from 32-bit data path 
Performance (132MB/s peak) to 64-bit data path 

(264MB/s peak). 
• Variable length linear and toggle mode 

bursting for both read and write. 
• Low latency random accesses. 
• Capable of full concurrency with 

processor/memory subsystems. 
• Synchronous bus with operation from 25 

to33 MHz. 
• Hidden (overlapped) central arbitration. 

Table 1: PCI Features and Benefits 

Feature Benefit 

Low Cost • Optimized for direct silicon (component) 
interconnections using standard ASIC 
technologies. 

• Multiplexed architecture reduces pin 
count and package size of PCI 
components making economical use of a 
relatively small number of signals. 

• Ability to use low cost commodity 
components due to the wide acceptance of 
PCI technology. 

Longevity • Processor independent. 
• Supports both 64-bit address and data 

extensions. 
• Both 5V and 3.3V signalling 

environments are specified. 

Ease of Use • Enables full auto configuration support of 
PCI local bus add-in boards and 
components. PCI provides control 
registers with the device information 
required for configuration. (Plug and 
Play) 

Interoperability • Forward and backward compatibility of 
& Reliability 32-bit and 64-bit add-in boards and 

components. 

Flexibility • Full multi-master capability allowing any 
PCI initiator peer-to-peer access to any 
PCI initiator/target. 

• Supports up to 256 devices as well as a 
hierarchy of PCI buses and expansion bus 
capability. 

Data Integrity • Provides parity on data address, and 
control lines allowing implementation of 
robust client platforms. 

Software • PCI components can be fully compatible 
Compatibility with existing driver and applications 

software. Device drivers can be portable 
across various classes of platforms. 

The ideal standard must perform a delicate balancing act. It 
must be stable, avoiding constant revision updates that prevent 
a vendor from recouping the cost of each design. But it must 
also change, growing to meet dynamic market needs. Improper 
trade-offs on this challenging standards hi wire has caused 
many a proposal to plummet into oblivion. 
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The PCI standard supports powerful yet cost effective 
implementations. The signals required to interface to PCI have 
been kept to a minimum-- under 50 for either a basic target or 
initiator implementation. This reduces component costs, PC 
board real estate devoted to chips as well as bus traces, not to 
mention design time. 

Performance was certainly a key factor in developing the 
standard. Options like 64-bit address and/or data bus and 
multi-master configurations will become checklist items in a 
few years. Features like the required support of burst transfers 
by all devices and hidden bus arbitration encourage the design 
of high performance systems. 

Yet the interface is truly processor independent. Various X86 
and Alpha AXP microprocessors already have PCI interfaces 
directly on the processors. Other microprocessor families will 
certainly provide this interface as its popularity continues to 
grow. Other chip designers are also adopting this standardized 
interface with its associated technical and market benefits. 
Many peripheral I/0 controllers already connect directly to 
PCI. Besides saving glue logic, this gives the user access to the 
full functionality of each controller chip. The board designer 
need not waste valuable time re-inventing interfaces to each 
controller chip that will utilize its unique features. Rather, the 
chip vendors themselves provide the PCI interface most 
applicable to their specific controller or CPU. 

Both board and system designers benefit from this standardized 
interface at the component level and at the expansion bus level. 
On-board local devices as well as add-in cards are supported. 
This expansion bus capability allows very versatile system 
solutions. Besides factory installed option support, it allows the 
user to customize his system as his computing needs change. 

But while PCI is useful now, will it be viable in a few years? 
PCI provides a performance growth path through 64-bit 
expansion and the other performance features mentioned 
previously. It also supports 3.3 V operation for lower power 
designs. PCI addressing supports up to 256 devices, far more 
than is required today. A hierarchy of PCI buses is expands this 
support even further. The standard specifies configuration 
registers to provide software with a standardized way of 
initializing the system. While not that difficult to support from 
a hardware viewpoint, these registers help simplify the 
complex task of auto-configuration support. 

PCI MEZZANINE CARDS WITH VME 

The VMEbus was developed to provide systems designers with 
the electrical and mechanical standards to interconnect boards 
to form a system. VMEbus provided a common ground for 
board and system designers and resulted in the development of 
many products by numerous vendors. The competitive 
environment caused lower costs and a successful VMEbus 
market The PCI bus takes this strategy to the board level. 
Today there are many PCI devices being developed by 

numerous companies and are used in virtually all personal and 
single board computer designs. Lower costs have resulted 
because the bus interface does not need to be reinvented each 
time a new microprocessor enters the market and glue logic is 
not required. 

A key element that has been missing from VMEbus designs 
since the inception of VMEbus has been a standard for 
peripherals and peripheral expansion from the main boards. 
Several attempts have been made in the past several years to 
define a standard that could provide this expansion. Many 
developers of VMEbus products attempted to define and 
implement their own architectures that they hoped would be 
used as industry standards. Sbus was perhaps the most 
developed of those solutions. None of the numerous solutions 
ever gained industry wide acceptance. 

The advent of PCI excited the industry to the point that both 
the VMEbus and the Multibus communities joined forces to 
develop a standard that is quickly becoming the industry 
choice for mezzanine expansion. The PCI Mezzanine Card 
(PMC) standard IEEE Pl386.1 is that standard. PMC combines 
the electrical elements of the PCI local bus with a set of 
common mechanical definitions, IEEE P1386, the Common 
Mezzanine Card (CMC) to form the basis of PMC. 

PMC is an excellent solution because it offers the features and 
benefits of the PCI local bus plus: 

Table 2: PMC Features and Benefits 

Feature Benefit 

Form Factor • A well defined mechanical form factor for 
use on may different base boards. 

• Low profile, fits in a single VME slot. 
• Single and double wide modules allow 

flexibility in the amount of board space 
used. 

I/0 Options • Allows connection to be made to the front 
panel of a VME module or to be routed to 
P2 for VME host boards supporting this 
feature. 

Electrical • A well defined electrical interface which 
Interface is also a device level interface. A PCI 

component placed on a PMC card does 
not require another bridge device to 
interface the chip to the bus. 

32-or64-bitPCI • Plenty of bus bandwidth for high 
Local Bus performance and demanding applications. 

Mechanical • Prevents association of host and 
Keying mezzanine card with incompatible 

signaling voltages. 

IEEE Pl386, the Common Mezzanine Card (CMC) defines the 
mechanical standards for the entire IEEE Pl386 family. This 
standard includes details like the 4 board sizes allowed, 
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component height restrictions, the physical connector, voltage 
keying, and power consumption. The PCI Mezzanine Card 
(PMC) and Sbus Mezzanine Card (SMC) are the 2 currently 
defined families that comply with this specification. PMC is 
defined by the IEEE P1386.1 specification. Since all of the 
mechanical definition is provided by the related CMC 
specification, IEEE P1386.1 only defines the specific PCI 
electrical signals associated with the pins on each connector. 

Mezzanine buses added another level of complexity to board 
design. Many mezzanine buses have been defined over the 
years and most have failed to gain wide acceptance. One 
reason is the mezzanine bus was not the same as the board's 
local bus and required a bridge device to connect the buses. 
Plus, mezzanine buses were not supported at the device level 
which meant that additional glue logic was required to connect 
the mezzanine bus to the devices on the mezzanine board. Sbus 
was well accepted and used as a local bus but peripheral chips 
with an Sbus interface were not widely developed and bridge 
chips were often required. In general, bridges require 
expensive real estate, impair performance and impact software. 
The same device, such as a SCSI or Ethernet controller used on 
the main board may appear very different to the software when 
used on a mezzanine board. Because the PMC uses the PCI 
electrical specification, bridge devices are not required and the 
devices will appear the same to the software drivers. This 
reduces the software development time, improves performance 
and reduces time to market. 

PMCs can easily be implemented on other form factors, such 
as standard PCI cards, because the electrical PCI interface does 
not change. PMCs can also be adapted to many other form 
factor hosts besides VME. A standardized mezzanine card 
allows many different vendors to provide cards for many 
different systems. This plays a role in developing larger 
economies of scale that drive down costs. 

DESIGN ISSUES WITH PCI 

Single board computer designs, whether they are VMEbus or 
motherboard designs, have certain criteria that must be met if 
the design is to meet the market requirements and be a success. 
The major criteria and the goals are listed in the following 
table. 

Table 3: Design Criteria 

Criteria Goals 

Low Cost Use industry standard components to 
drive high economies of scale that 
maintain a competitive price advantage 

Table 3: Design Criteria 

Criteria Goals 

High Performance A local peripheral bus that would 
support today's data transfer 
requirements. Single board computer 
designs need to support multiple 
peripherals on the board as well as 
expansion. Bus loading is a concern. 

Future Growth Path A solution that is at its maximum level 
at implementation is not acceptable in 
terms of future requirements and 
capabilities. 

Industry Acceptance Industry acceptance is required to drive 
price and selection of components. 

Large Selection of A large selection gives designers a 
Components choice. These choices allow the 

product to be optimized for the target 
applications and markets. 

Software Support Software support is critical to reducing 
design cycle times. With today's 
complex peripheral controllers, the 
software development burden can add 
substantial delay to a project. 

System Expansion It is desirable for the architecture to 
support off-board peripheral expansion. 

A standardized interface is important to board designers. In the 
past, they were forced to interface chips with different bus 
interfaces to the local bus. Incompatible interfaces resulted in 
many "bus bridges" being developed. Many of the bus 
incompatibilities were difficult to overcome and resulted in 
lower performance. The PCI bus architecture requires a single 
bridge between the MPU bus and the PCI bus. Since real estate 
is limited on VME boards and other standardized form factors, 
many chips were chosen for their bus interface rather than for 
their programming interface, features or performance. 

The custom interfaces required for each device may be 
different each time the device is used and this resulted in 
different software drivers being developed each time the 
device was instantiated. With PCI, the hardware interface is 
standard and the chip should always look the same to the 
software driver. Therefore, a standardized hardware interface 
also leads to a standardized software interface. 

The PCI specification defines a 64-bit extension which will 
provide performance improvements and ensure a long life for 
the PCI bus. 3.3 volt operation is also addressed. This is also 
important for a long life since more systems and devices will 
move to 3.3 volts in the future. 
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Big endian byte ordering versus little endian byte ordering is a 
major issue when designing with PCI. The PCI bus is little 
endian so when the PCI bus is used with a big endian processor 
and programs, the software must provide the translation. This 
is amplified even more in a VMEbus application because 
VMEbus is big endian. With a VMEbus design it is quite 
possible to go from an initiator VMEbus board with a big 
endian processor to little endian PCI to big endian VMEbus 
and back up the chain on the target end of the transaction. 
Extreme caution is needed to be sure that the endian impact is 
fully understood. Software incurs a much larger burden than 
might normally be expected. 

The PCI bus is not a backplane bus. The PCI bus was defined 
to be driven by low power CMOS devices, therefore there are 
severe loading restrictions when compared to a backplane bus 
such as the VMEbus. The PCI bus may be extended using 
repeaters, but this will impact performance. The PCI bus is a 
very good local bus and provides limited expansion but at the 
present time it is not a backplane bus replacement. This is a 
major issue when users of the board products start to realize the 
performance capability of PCI. They see an opportunity to 
expand the PCI to external peripherals via PCI bridges. What is 
not understood is the impact of multiple bridges on the PCI 
bus. 

SOFIWARE CONSIDERATIONS 

Software developers welcome the PCI bus architecture as a 
breath of fresh air. A look at some of the key features of this 
architecture from a software perspective is important when 
considering PCI bus. 

A common software design goal today is to maintain an "open" 
systems perspective. With the variety of VMEbus modules on 
the market today, this open systems perspective is difficult to 
maintain. VMEbus modules, as a whole, are difficult to 
identify programmatically. However, it is required that 
supported VMEbus modules be configured through a list of 
known addresses per type and function. Over the life of a 
software product it is often necessary to add support for new 
VMEbus modules. During the entire life cycle, this address list 
becomes difficult to manage and maintain. 

The PCI bus architecture allows software to dynamically 
identify the PCI modules and/or devices within a system. This 
identification process is the same for all PCI compliant 
devices. The probing of PCI devices doesn't require the 
software probing functions to be capable of exception/interrupt 
(e.g., machine check, bus error) processing. Simple MPU read 
cycles, from the perspective of the software, can be performed 
through the configuration register space, to determine the 
presence of a PCI device. The architecture guarantees that the 
PCI bridge device will return a predefined value indicating no 
device is present at a particular PCI "slot". If a device is 
present at the probed PCI "slot", the probed device will reply 
with data containing its vendor identifier (ID). 

The software interface is further standardized by the 
Configuration Registers. These registers allow software to 
determine the devices and their revisions in a standardized 
way. 

Each PCI compliant device adheres to predefined configuration 
register space. This configuration register space (256 bytes 
total) provides features necessary for system configuration 
needs. The configuration register space consists of mandatory 
and optional features. Mandatory features are; device ID, 
vendor ID, command/status, class code, revision ID, and 
header type registers. 

The class code register is divided into three registers: base 
class, sub-class, and programming interface. The base class 
portion of the class code register identifies the basic function of 
the device (e.g., mass storage, network, display). The "sub­
class" portion of the register further identifies the device's 
function (e.g., mass storage - SCSI, IDE, floppy disk, IPI). 

Some of the predefined optional features include: cache line 
size, latency timer, built-in self-test (BIST), base address, 
expansion ROM address, interrupt pin/line, and timing 
infonnation. 

The base address register permits the configuration mechanism 
software to determine the memory and 1/0 address space 
requirements, and to programmatically locate the address 
space, of a PCI device. These address spaces are typically 
where the device's control (e.g., command/status, data ports) 
registers are located. A device may have both memory and 1/0 
address spaces. The base address register permits the 
configuration software to dynamically locate the device's 
memory and or 1/0 address spaces. The register also identifies 
the address space (i.e. memory or 1/0) and the size of the 
address space. This programmability of the location and size of 
a device's control space eases the burden of the memory 
management functions, as well as coalescing and localizing all 
control spaces. 

The BIST feature allows initialization and diagnostic software 
to dynamically determine the health of a PCI device. 

The expansion ROM feature allows PCI devices to incorporate 
their own device ROM. This ROM may contain the BIST, 
POST, BIOS, device initialization functions, a system boot 
function, and/or interrupt service routines. The expansion 
ROM address register behaves similar to the base address 
register, as discussed previously. A predefined ROM header is 
specified to aid configuration software in the contents and 
requirements of the expansion ROM. 

The interrupt pin and line feature permits the configuration 
software to initialize the interrupt routing information. The 
device drivers can use this information later to determine 
interrupt priority and vector configuration. 
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The PCI bus architecture mtrum1zes the burden of 
configuration software designers and maintainers, and allows a 
commonality approach without sacrificing a device's 
uniqueness. 

DESIGN ISSUES WITH PMC 

The perfect mezzanine card for VMEbus; 1) allows the host to 
stay within a single VMEbus slot, 2) provides front panel and 
P21/0 access, 3) is inexpensive, 4) is widely supported, 5) has 
high performance capability, and 6) makes it easy to design 
custom modules. PMC meets these requirements. There are, 
however, constraints that users and designers of PMCs should 
consider. 

1. Pn variations/host capabilities. The PMC mechanical 
specification allows for four 64-pin connectors on the module. 
Clearance provisions for P3 and P4 connectors should be 
considered to allow compatibility with 64-bit hosts and hosts 
that support the P4 connector for J/O. Not all combinations are 
necessary but the strategy for supporting them should be well 
thought out 

2. Board space/keep out spaces. There are restrictions on 
board space and keep out spaces that the host board needs to 
follow to allow various PMCs to fit on the host The keep out 
areas are typically reserved for J/O connectors on the PMC. 

3. Component height limitations. Tied in with the keep out 
space restrictions are limitations on component height on both 
the host and the PMC. It is vital to respect these requirements 
to allow the boards to mate together. Lack of adequate 
component clearance prevents a reliable mating of boards. 
These clearances are fully appreciated during shock and 
vibration testing 

4. Thermal considerations. Allowance for proper cooling is 
a key requirements and closely associated with component 
height restrictions. Not only is adequate clearance required, but 
hot spots may require additional airflow considerations during 
PC board layout 

5. Voltage signaling. The PMC specification has provisions 
for both 5V and 3.3V signal levels, as well as the 3.3V and 5V 
power pins. Both interfaces must be defined. 

6. Host specifications. It is important that developers of host 
products fully specify the capabilities of their host board Not 
all hosts may be able to handle all PMCs. The host 
specification should clearly state the size, signalling, connector 
configuration, etc. that it supports so that users can make the 
right choice in selecting mating PMCs. 

Most of these parameters are directly controlled by the host 
board that carries the PMC. A well designed mezzanine card 
requires that the carrier be fully understood and characterized. 

FUTURE PLANS FOR PCI 

For any bus to stay competitive, it must continue to evolve. 
The VMEbus standard has continued to increase both 
performance and functionality during its 13 years of growth. 
Improved block transfer modes, serial bus support, live 
insertion, 3.3V support and other proposed s11U1dards are 
extending VMEbus to meet the needs of tomorrow's users. An 
ideal local bus must grow in a similar manner to stay 
competitive with other local buses and provide performance 
that compliments VMEbus or whatever the system bus may be. 
PCI Rev 2.0 is a relatively new standard that has many 
advanced features which are just starting to be utilized, features 
such as 64-bit capabilities and open firmware. Nonetheless, 
PCI is looking to the future with developments like 66 MHz 
operation. 

SUMMARY 

PCI brings to the VMEbus technology the ability to design 
lower cost products with high performance components. This 
will strengthen the VME bus position in the industrial technical 
markets. Development cycle times will be reduced for VME 
products because of the plug-in nature of PCI controller chips. 
System scalability with PMCs will reduce overall system costs 
for VME system designs. VMEbus and PCI are in for a long 
marriage. 

REFERENCES 

PCI Local Bus Specification, Revision 2.0 

Physical and Environmental Layers for PCI Mezzanine Cards, IEEe 
P1386.l/Draft 1.5 

Common Mezzanine Card Family: CMC, IEEE P1386/Draft 1.5 
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PCI Bus Latency and Network Adapter Design 

Glen Gibson 
Strategic Marketing Engineer 

Advanced Micro Devices 
PO Box 3453 

Sunnyvale, CA 94088 
( 408) 732-2400/749-5466 (fax) 

glen.gibson@amd.com 

Advanced Micro Devices intends to discuss issues of PCI·bus latency as it relates to 
network FIFO and buffer sizes. Latency is a particularly important issue as attention 
turns from 10 Mbps Ethernet to the newer 100 Mbps versions such as Fast Ethernet. 
Comparisons will be made to similar situations on the VL-bus. 

For more information about AMD's network adapter chips, please contact your local 
sales office. 
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High Performance 

040 Performance Benchmarks 
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140 Performance Benchmarks 

8000 
7800 

. 780.11 
KByte111/secr•oo 

7200. iooo 
6800· 
6600 

82/ ~"--~~~---+ 
81.5 

B.etter . 81 Vc-I-----+---
··. . %.80.5 l 7~:. 

. . . . . . : ; . : : : : : . . . : : : . 

No\i~U'P~r£orm ~"typical. fil.e sizes, 
Rel~tive $l9rmca'rce.only>• • 
2.1140-base~pcl.~dapt~r: 

D1g1tal Semi:condutf" "m rr,., 
Cb • 

phisticated System Interface 

Separate larg~ r~~i~e ?h~!'t~~!)~~i~~~ilFO~J·!!.!; • 
. . . . . .·. . ·:·:· ...... , .. . 

···:..,..On• .. efilterout;.· ·· ... · <::•· ·· {:"> ,. ,.•· ... ··.~·· .. 
: : . : : '·~·· "' ~ !:;,; ;:~;:, ;:dii ;<,;:,:::.; .:.:: ...... :=i·i' 

. . . >. 'Fraffies notaddre$~d·toi1Ptal•apd~$.i::,;:·.·· 
.··..,;,..On transmit.,.. 

. :··:.··.: .. . : .. ·. :· :·:·. ::·.,·:· 

... . .. · • •. RetravslTlltfrorn FIFO tdilowirjgC(llli~I . 

~~=l~::~:!;:~:~r:~.:~.~,;~~~~;~b·a•nri~IS•·•· 
flexlore Interrupt~ .. ·.. ... • ..·.·· .. ..... . .. 

· · · :_..::Mask'•re~.ist~t · · ········· ······· • ••· • .., •• , ..... 
:..,..d¢taile.d·. interrl.iptreport. 

380 



Digital Setmconductbr:~~ 

Full Duplex 

Full Duplex 

381 



lti-Ethernet Port Adapters 

01g1tal Sennconduct:or " :~ 

Follow-on Products 

382 



Drg1ta! Scrn1cnndu:etor @ , " 

Boards and Drivers 

383 



Directions in PCI LAN Adapter Design 

Jeff Stockdale 
Director of Engineering 

Cogent Data Technologies, Inc. 
P.0.Box926 
175 West St. 

Friday Harbor, WA 98250 
(800) 426-4368/(360) 378-2929/2882 (fax) 

jeff@cogentdata.com 

Cogent Data's LAN adapter product line is based 
on the Digital Semiconductor LAN chips. We 
plan to extend our line to cover Fast Ethernet as 
well as other emerging high-speed networks. 
The PCI bus is especially well-suited to the 
design of fast servers because of its high 
bandwidth, secondary bus capability behind PCI 
bridges, and ability to support multiport 
adapters. 

Cogent is a leader in the design and manufacture 
of state-of-the-art Ethernet and Fast Ethernet 
adapters. Cogent's latest product announce­
ments include the PCI Quartet adapters in both 
lOBaseT and 1 OOBaseTX versions which 
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provide four independent Ethernet segments on a 
single PCI adapter. 

Jeff is presently the Director of Engineering at 
Cogent, responsible for all hardware and 
software design activities. He has been with the 
company for two years and has been managing 
the development group for the past year. Prior to 
Cogent, Jeff was employed by Attachmate 
Corporation as a Product Manager and Senior 
Hardware Engineer. Jeff has 12 years of 
communication industry experience and has an 
Electrical Engineering degree from Washington 
State University. 



Developing Network Interface Cards for the PCI Bus 

Jim Schooler 
Senior Product Manager for Adapter Products 

Racal lnterLan, Inc. 
60 Codman Hill Road 

Boxborough, MA 01721 
(508) 881-2308/263-8655 (fax) 

schooler@interlan.com 

This discussion will center on the ups and downs 
of developing network interface cards for the 
PCI bus. This includes the differing operating 
systems (and network operating systems) and 
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how they operate (or fail to operate) with the PCI 
bus. Attention will be paid to design, 
development, and testing for compliance to the 
PCI bus. 



LOW-COST, HIGH PERFORMANCE 10/100 PCI ADAPTER 
DESIGN FOR 100VG-ANYLAN 

Lisa Piper 
AT&T Microelectronics 
555 Union Boulevard 
Allentown, PA 18103 

ABSTRACT 

One of the primary motivations for 
upgrading computer equipment is the desire 
for more computer power. This enables 
faster response times and it enables new 
applications like multimedia. It is clear that 
next generation high speed computers have 
migrated to the PCI architecture as one 
means of achieving greater computing 
power. The focus of this paper is on how 
LAN technologies are 

technical overview of 1 OOVG-AnyLAN is 
provided, and an example 100VG-AnyLAN 
PCI adapter card design is shown. 

evolving to meet the local 
networking needs of these 
higher bandwidth 
networked computers. 
1 OOVG-AnyLAN is 
discussed in detail, 
including its cost 
advantages and technical 
characteristics. An 
example PCI adapter card 
design is also discussed. 

INTRODUCTION 

More powerful computing 
capabilities has led not 
only to faster response 
times but also has enabled 

HIGH SPEED NETWORK COMPUTING 
SOLUTIONS 

High speed networking will make available 
more bandwidth. This could mean more 
users on a network. But more likely it 
means being able to use the network to do 
applications like imaging that require that 

Criteria for Selecting a New Network 
1 . Price/Performance: Improve performance for a 

modest premium. 

2. Compatibility: Preserve as much of the existing 
network as possible. This includes the 
infrastructure (i.e. bridges, routers, hubs, 
adapter cards), cabling, network topologies, 
network operating system software(NOS), and 
network management capabilities. 

3. Simple, Low Cost Migration: Users should be 
able to evolve to the new network with minimal 
disruption and low migration costs. 

4. Provisions for Emerging Applications: In today's 
environment, that implies low latency and 
guaranteed bandwidth for multimedia .. 

large files can be 
transmitted across 
the network in a 
timely manner. And 
for multimedia, low 
latency and 
guaranteed 
bandwidth are also 
required. Typical 
bandwidth needs for 
multimedia are from 
384 kbits/s to 
2 Mbits/s. 

There are four 
primary buyer 
concerns when 
upgrading network 

new multimedia applications. There is now 
a movement towards higher speed 
networking. Several alternatives exist, 
however, this paper proposes that 1 OOVG­
AnyLAN technology is the way to go for the 
near future. Next generation networking 
solutions are compared, the advantage of 
using 1 OOVG-AnyLAN is discussed, a 

capabilities. Buyers want better 
performance for a modest premium. This 
not only includes bandwidth, but also 
provisions for emerging applications. In 
today's environment, that includes low 
latency and guaranteed bandwidth. Minimal 
change is desired to minimize cost and to 
make the migration simpler. This means 
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preserve as much of the existing network as 
possible, including the infrastructure {i.e. 
bridges, routers, hubs, adapter cards}, 
cabling, network topologies, network 
operating system software{NOS}, and 
network management capabilities. 
Compatibility and low cost migration go hand 
in hand. The more compatible the two 
technologies are, the easier it is to evolve in 
steps, thus spreading out the cost and 
conversion time incrementally. 

The predominant LAN in use today is clearly 
Ethernet, and the biggest reason is that it 
operates over category 3 UTP cabling since 
most existing wiring is Category 3 UTP. 
Therefore, it makes sense to judge 
compatibility and cost by a comparison with 
Ethernet. Table 1 lists alternative 
100 Mbits/s technologies. 

the ability to support emerging applications. 
The next section will address 
price/performance by showing the simplicity 
of an adapter card design. 

Compatibility of 1 OOVG-AnyLAN 

There are two basic characteristics of 
1 OOVG-AnyLAN that account the most for 
making 1 OOVG-AnyLAN very compatible 
with Ethernet. The first is that 1 OOVG­
AnyLAN uses quartet signaling which allows 
for running over UTP category 3 cabling. 
Quartet signaling uses a four level 
transmission scheme and transmits a 
scrambled 58/68 NRZ encoded data across 
four pairs of category 3, 4, or 5 UTP at a 
rate of 30 Mbits/s. Refer to Figure 1. The 
transmission rate is only slightly greater than 
that of Manchester encoded Ethernet, so 

Table 1. - High Speed Alternatives to the Desktop 

Alternative Data Rate Data Grade Voice Grade 
{Mbits/s) UTP UTP 

(Cat 5) (Cat 3) 

Ethernet 10 100m Yes 

1 OOVG-AnyLAN 100 150m 100m 

Token Ring 4116 40-100 m 40m 

100Base-T4 100 Planned 

100Base--TX Yes 

CODI 100 Yes No 

ATM 25,50 Planned Planned 
155 Planned No 

Ethernet and Token Ring are included in 
Table 1 for base comparisons. One 
additional comment on A TM is that today 
there are still a lot of standards issues, there 
are not clear choices, and the technology is 
still very expensive. While ATM has a lot of 
potential for the future, it is not likely to be 
installed to the desktop today. It is clear from 
the table that 1 OOVG-AnyLAN will provide 
performance superior to that of Ethernet and 
will support emerging applications. 

1 OOVG-ANYLAN OVERVIEW 

This section provides an overview of 
1 OOVG-AnyLAN technology with respect to 
how it addresses buyer concerns of 
compatibility, simple low cost migration, and 
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Multimedia Ethernet Rel. Cost Network 
Support Topology 1=1ow, Span 

&=high 

No Yes 1 1100 m 

Yes Yes 2 2200m 

No No 2 Large 

no no 2 210m 

2 

Limited No 4 2200m 

Yes No 6 Large 
Yes No 

EMI will be about the same; the scrambling 
and encoding have resulted in performance 
improvements{transmission distances 
possible) over Ethernet. Performance has 
proven to exceed those of Ethernet and all 
the same Ethernet topologies are possible. 
This means the customer's wiring will not 
have to change when migrating from 
Ethernet. 



1 OBase-T ._! ...:.1~d ti>=ts:;;;:IS;;.._ ______ __:1.::DD::...:M=b~ 1 OOYG-AnyLAN 

Quartet Signalling 

Figure 1. 1 OOVG-AnyLAN Quartet Signaling 

The second characteristic that makes 
1 OOVG-AnyLAN so compatible is that it uses 
the same frame format as in Ethernet. In 
addition, 100VG-AnyLAN can alternatively 
use a Token Ring frame format. Using the 
same frame format enables the buyer to still 
use existing network operation system 
software drivers and bridges and routers. 
This makes 1 OOVG-AnyLAN very compatible 
with both Token Ring and Ethernet networks. 

Migrating to 1 OOVG-AnyLAN 

Migrating to 100VG-AnyLAN is very easy. It 
is only necessary to change out the adapter 
card and the hub. Most adapter cards are 
being designed so they can be used on 
Ethernet or 1 OOVG-AnyLAN networks. 
Buyers can purchase a 10/100 card and use 
the Ethernet mode until the hub is changed 
out. These new adapters even autoselect 
1 OOVG-AnyLAN mode so the user does not 
have to do anything to change once the 
10/100 card is installed. 

Most hubs are designed to provide either an 
Ethernet port or a Token Ring port that can 
be connected to the old network. This 
means the buyer can use existing bridges 
and routers. Commercially available 
repeater IC's , the ATT2R01 for example, 
provide filtering features to simplify this 
bridge port design and they provide the 
same network management statistics and 
security provisions that more advanced 
Ethernet users are accustomed to. 
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Application Flexibility of 1 OOVG-AnyLAN 

Ethernet and most existing LANs are 
designed primarily for data transmission. 
They cannot guarantee bandwidth or bound 
latencies. This is becoming an issue with 
emerging applications like multimedia. 

1 OOVG-AnyLAN uses a hub-centric demand 
priority protocol. Packets are directed on the 
fly from the source to the destination and 
there exist two levels of priority. Stated very 
simply, the source "requests" to transmit. 
The hub addresses these "requests" using 
two round robins, one for each level of 
priority. High priority packets are "given 
permission to transmit" first. There are no 
collisions in 1 OOVG-AnyLAN so transmission 
is much more efficient than Ethernet. 
Latencies can be bounded by limiting the 
size of the round robin and the number of 
stations allowed to transmit at high priority. 
"Requests" and other control information is 
achieved through the transmission of low 
frequency tones. 

DESIGN OF A 1 OOVG-ANYLAN PCI 
ADAPTER CARD 

This section shows that it is relatively easy 
and cost effective to develop 1 OOVG- · 
AnyLAN products by discussing an example 
1 OOVG-AnyLAN PCI adapter card design 
and showing the cost of it versus the cost of 
a similar Ethernet card. 



Relative to the initial Ethernet IC offerings, 1 OOVG-AnyLAN IC's provide very high levels of 
integration and maintain the features that have become standard over time for Ethernet. Figure 
2 shows a high level block diagram of the example PCI adapter card. 

SRAM ~-········-i=_ ~-········~----...... 
t----iii;• ATT2MD11 = = A.TT2XD1 i---1 1 CATEGORY !!! -L-!; •••••••• J ....... ····~ 

~-·······1 

EEPROM 
3,4,0RS 
TWISTED PAIR 
CONNECTIONS 

OPTIONAL = T7213 ""'=---1 J , ......... ;: 
PCI BUS 

Figure 2. 100VG-AnyLAN PCI Adapter Card 

There are two IC's in the design that are 
specifically for 1 OOVG-AnyLAN. These are 
the ATT2X01 1 OOVG-AnyLAN transceiver 
and the ATT2MD11 MAC and PCI System 
Interface device. An Ethernet transceiver, 
the T7213 for example, can be added to 
complete the Ethernet offering. 
The best way to understand the card design 
is to understand the IC's in it. 

A TT2X01 Transceiver for 1 OOVG-AnyLAN 

The ATT2X01 provides the transceiver 
functions needed in a 1 OOVG-AnyLAN 
Category 3, 4 or 5 solution. It enables 
100 Mbits/s transmissions over 1 OBase-T 
wiring installations (bundled or unbundled). 
A block diagram of the device is shown in 
Figure 3. 

MAC 
INTERFACE 

RECEIVE 
LNE 

STATE 
MACHINE 

PLL& 
JUSTIFER 

TRANSMIT 

SLICER 

The A TT2X01 provides the four transceivers 
necessary to connect to one category 3 
interface. The receiver circuitry detects 
energy, provides automatic gain control, 
adaptive equalization, phase locking, and 
data justification. On-chip drivers minimize 
component count and facilitate FCC 
compliance by simplifying board layout. 
Transmit and receive line state machines 
and associated tone detectors and tone 
generators support the two levels of priority 
needed for bounded latency networking (for 
multimedia and other time sensitive 
applications). The ATT2X01 can be used in 
station or hub designs. 

EQUALIZER 

CONTROL----- RESET 

AUTOMATIC 
GAIN 

TWISTED PAIR LNE 
-----INTERFACE (4PAIR 

VOICE GRADE) 
CONTROL ~ 

ir~iE ~---------- TW6~~:-IR 
MACHINE 

Figure 3. ATT2X01 1 OOVG-AnyLAN Transceiver Block Diagram 
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ATT2MD11 MAC and PCI System 
Interface Device 

The A TT2MD11 provides all the MAC, 
memory management, and PCI bus 
interface logic in one chip. Furthermore, two 
MA Cs are- available - one for Ethernet and 
one for 1 OOVG-AnyLAN. This facilitates the 
design of 10/100 products which makes it 
easier for the buyer to make gradual 
transitions and enables the design of 
portable test equipment that can be used 
across networks. A block diagram of the 
A TT2MD11 is shown in Figure 4. 

In addition to the two MACs, there is an 
associated autoselect circuit. This circuitry 
will determine if a 1 OBase-T link exists. If it 
does, the Ethernet MAC will be selected 
automatically. Otherwise the 100VG­
AnyLAN MAC will be selected. This way the 
end user will not -have to do anything when a 

SYSTEM BUS 

PCI 
LEDs 

at maximum bus speeds; Slave mode 
ensures broad compatibility and minimal 
software overhead. 

The memory manager is the same as that of 
the ATT2MD01 MAC and ISA/EISA interface 
device. This allows the software data 
structures to be maintained across PCI 
slave, EISA slave and ISA slave 
implementations. The memory manager 
supports up to 128 Kbytes of local memory 
to ensure host bus efficiency. Also, byte, 
word, or double word transfer capability 
optimizes performance. 

The EEPROM is used to store configuration 
information. It can be omitted for 
motherboard applications or other similar 
applications where a EEPROM exists 
someplace else on the board. The 
ATT2MD11 also provides the typical adapter 
card LED activity and status indicators. 

To summarize, the 

6--- RECEIVE 
PACKER 

TRANSMIT 
PACKER 

1 OOVG-AnyLAN 
adapter card consists 
of the transceiver, the 
MAC and system 
interface chip, 

DATA 

EEPROM 
NID 

MEMORY 
INTERFACE 
CONTROL RECEIVE TRANSMIT 

RING RING 

IEEE802.3 
10BASE-T CSMA/CD 

10 Mbits/s MAC 

ADDRESSIHASHICRC 

/EEE802.12 
1 OOVG-AnyLNI 
Demand Priority 
100Mbits/sMAC 

PHYSICAL LAYER INTERFACE(S) 

128 Kbytes of SRAM, 
and a EEPROM. The 
transceiver will 
require magnetics 
and some 
miscellaneous 
resistors and 
capacitors. Two 
oscillators are also 
needed by the 
ATT2MD11. 

In addition to the high 
integration of 

Figure 4. ATT2MD11 MAC and PCI Interface Block Diagram 
functions in silicon, 
development of 

1 OOVG-AnyLAN hub is added; the transition 
will happen automatically. 

The ATT2MD11 also provides the PCI bus 
interface, the memory manager, and 
glueless interfaces to an optional EEPROM 
and to memory. The 32 bit PCI interface is 
designed to connect directly to the PCI 
connector and will support PCI slave modes 
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1 OOVG-AnyLAN 
products is facilitated 
by having the IEEE 

802.12 Standard in place, development tools 
are available, and interoperability tests are 
in place at University of New Hampshire. 
Together, these measures ensure the buyer 
a smooth migration and developers a quick 
time to market. 



Adapter Card Cost Comparison to 
10Base-T 

Now that the design of a typical adapter card 
is understood, we can compare the cost of a 
1 OBase-T PCI adapter card to a 1 OOVG­
AnyLAN adapter card. Table 2 shows the 
major components and 1994 estimated costs 
of each design. The main differences are in 
the cost of the 1 OOVG-AnyLAN controller 
and transceiver. Some additional cost will 
also occur in 1 OOVG-AnyLAN; this is a result 
of special crystals and precision capacitors, 
and some accounting for a slightly more 
complex assembly and test process since 
10Base-T designs typically also integrate the 
transceiver. These differences will diminish 
quickly as 1 OOVG-AnyLAN is more widely 
deployed. 

Table 2 - Cost Comparison of 10Base-T 
PCI to 1 OOVG-AnyLAN PCI 

Component 10Base-T 10Base-T, 
(100K Volume) 100VG-

(1994) Any LAN 

Controller/Xcvrs $25.00 $45.00 

SRAM $11.00 $11.00 

Assembly/Test $8.00 $10.00 

Magnetics $3.00 $5.00 

PC Board $5.00 $8.00 

Miscellaneous $1.75 $8.00 

Total $53.75 $87.00 

As is shown from Table 2, there is less than 
a two to one differential in cost for 1 O Mbits/s 
10Base-T and a combination 10Base-T/100 
Mbits/s 1 OOVG-AnyLAN card. This small 
increase in cost buys new application 
potentials and a tenfold increase in 
performance, probably more since 1 OOVG­
AnyLAN is much more efficient than 
1 OBase-T because there are no collisions. 

SUMMARY 

1 OOVG-AnyLAN provides a cost effective 
migration path for both Ethernet and Token 
Ring users. Use of 1 OOVG-AnyLAN 
preserves the existing infrastructure, 
including bridges and routers, network 
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topologies, cabling, and network operating 
system and network management software. 
1 OOVG-AnyLAN provides a substantial 
performance improvement for a modest 
premium over Ethernet and an even lower 
premium over Token Ring. It provides 
higher speed and low latency, guaranteed 
bandwidth so it can support emerging 
multimedia applications. And migrating to 
1 OOVG-AnyLAN is as simple as replacing 
the hub and the adapter card. 

A design for a 1 OOVG-AnyLAN adapter card 
was presented and shown to be very cost 
competitive relative to Ethernet. Highly 
integrated silicon is readily available. The 
802.12 proposed standard is in place and is 
expected to be adopted soon. Test 
equipment exists and interoperability labs 
are set up. Equipment is readily available 
from multiple vendors today. 

The book, Planning and Designing High 
Speed Networks Using 1 OOVG-AnyLAN 
provides an excellent tutorial on 1 OOVG­
AnyLAN. To learn more about the ATT2X01 
ATT2MD11, ATT2R01, or ATT2MD01, 
contact AT&T Microelectronics Customer 
Response Center at 1-800-372-2447, 
Department P; in Canada, 1-800-553-
2448, Department P; for customers outside 
of the U.S., fax +1-610-712-4106. AT&T 
Microelectronics offers both repeater and 
adapter card demonstration systems that 
can be used to learn about the devices and 
about 1 OOVG-AnyLAN. 
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Expanding PCI Bus for High Speed Communication in 
SuperComputing Environment 

N Gopal Reddy and Shreyas Shah* 

Abstract 

PCI (Peripheral Component Inte~·connect) is a pro­
cessor independent local bus. It bas received wide 
acceptance from Computer Industry. In this paper 
we have proposed some changes to the existing PCI 
standard for the following reasor;s. 

1. Enhance the Bus performance. 

2. To get wider acceptance for a longer duration. 

1 Introduction 

We have briefly described PCJ bu_.; protocols, DS 
(Data Strobe) link and Cluster \:o,nputing in the 
following sections. 

1.1 PCI Bus 

PCI is a 32/64 bit processor independent Local Bus. 
It is a synchronous Bus with operating frequency in 
the range of DC to 33 Mhz. PCI is bar.ed on reflected 
wave technology, hence it converts ringing problem 
of high speed bus into an advantage. PCI compli­
ant devices have to drive the Bus for half the TTL 
voltage level unlike other standard Buses. Hence the 
required driving capability of PCI compliant devices 
are halved, reduces power consumptiun. It supports 
Data and Address stepping which reduces ground 
bounce and allow to use weak huff.:.s. It also sup­
ports auto configuration, multiple V'.-.ltage signalling 
environment and variable length lii car and toggle 
bursting. 

*The Authors are with Centre .'.·or De•elopment of Ad­
vanced Computing (C-DAC), India 

1.2 DS Link: 

DS Link1 is a high speed full-duplex serial commu­
nication link. 
It consists of four wires, two in each direction, one 
carrying data and another carrying strobe, hence the 
term DS-links (data-strobe). Various Media recom­
mended for DS link are PCB tracks, copper cable or 
single/multimode fibre cable. Each link can oper­
ate at upto 100 Mbits/sec, providing a bidirectional 
bandwidth of 19Mbytes/sec. The link protocol sup­
ports virtual channels, dynamic message routing and 
provides a high data bandwidth. The DS-link proto­
cols are part of the proposed IEEE standard for Het­
erogeneous Interconnect (IEEE P1355). This stan­
dard proposes simple scalable point to point connec­
tion schemes ranging from 100 Mbaud to 1 Gbaud 
speeds. DS link has separate Data and Strobe lines. 
Strobe is generated by exclusive-or operation on 
Data and clock. Hence clock can be retrived from 
Data and Strobe at the receiver without any signifi­
cant effort. 
DS link is based on packet transmission. Each packet 
has header which provides routing information. 

1DS Link is a Trade mark of SGS-Thomson, U.K. 
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1.3 Cluster Computing: 

Cluster computing is a technique to run various 
applications on different workstations connected 
through High speed InterConnect(HIC). This creates 
a virtual parallel environment. DS Link has many 
advantages compared to conventional interconnect 
schemes for cluster computing applications. Follow­
ing are some of the advantages of DS Link in Cluster 
Computing application. 

1. High Performance Packet switching 

2. Availability of fully configurable wormhole 
Asynchronous Packet routers 

3. Low latency communication protocols required 
in efficient Communication for computing 

4. Availability of routers for Group-Adaptive and 
Universal Routing to minimize hot spots 

5. Low cost interconnection per port 

2 

2.1 

Suggestions: 

Incorporating DS Link in PCI 
Bus: 

This can be performed by incorporating DS links as 
part of the PCI bus signals. This can be achieved 
by two different ways. 

• Using reserved pins of PCI bus. 
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• Adding extra connector with PCI connector to 
support multiple DS Links per slot. 

2.1.1 First Approach : 

In present 32 bit PCI bus connector, there are only 
6 reserved pins, hence it is possible to go for one 
DS Link per slot2 • The reserved pins assigned for 
DS Link in each slot can be connected to the router. 
This router can be either integrated on the mother­
board or it can be on the PCI-DS router slot3 • 

There are two approaches to achieve this. 

1. To have one PCI-DS router slot and one DS 
Link support (use reserved pins) for each slot 
on PCI. Refer Figure No. 1 

2. To integrate DS router on the mother board and 
use reserved pins of PCI connector for DS Link. 
Refer Figure No. 2 

2.1.2 Second Approach : 

The first approach is not suitable for the applica­
tion that demand high communication bandwidth 
e.g. Cluster Computing. So it is necessary to have 
multiple DS Links per device. There are two ap­
proaches to achieve this. 

1. In each PCI based system, there will be one 
PCI-DS router slot and one or more number of 
PCI-DS agent slots4 • Refer Figure No. 3 

2. To integrate DS router on the mother board 
and have multiple PCI-DS agent slots. In this 
approach, there will not be any PCI-DS router 
slot. Refer Figure No. 4 

We recommend to have an integrated DS router 
on the mother board and DS connector for ac­
cepting upto four DS Links with each PCI slot in 
the system (second approach: item no. 2). In 
this approach, the router chip with PCI interface 

2 Each DS Link require four lines 
3 PCI-DS Router slot means one PCI connector with a DS 

Link connector to accept all the DS Links from PCI-DS agents 
4 PCI-DS agent slot means PCI connector with small DS 

link connector to accept four DS links from the agent in that 
slot. These Links will be routed to PCI-DS router slot 



can be optional. There can he separate DS con:­
nectors mounted on the motherboard that accepts 
DS Links meant for external communication on the 
router. This enables the system to communicate to 
other workstations/high performance systems with 
DS link support. Depending on the requirement, 
user can plug in the DS router chip available from 
standard sources. 
This scheme will have following advantages over 
other schemes. 

1. Theoritically, PCI can support 10 Loads. In 
the practical implementation of PCI Bus sys­
tem, the maximum number of PCI slots can be 
upto four (Because each slot is equivalent to two 
loads). So by using integrated router, the load 
capacitance on PCI Bus can be significantly re­
duced. 

2. Integrated devices on the mother board can also 
become members on the DS Link network. 

3. Integrated DS Router on the motherboard will 
increase the reliability of the system. 

4. This approach is also cost effective. 

In the above mentioned schemes, the devices on one 
PCI bus can communicate to each other through 
very high speed parallel bus (PCI) as well as high 
speed serial link (DS Link). Since the DS link 
router is an intelligent asynchronous crossbar packet 
switch, it is possible for multiple devices on the 
PCI Bus to communicate simultaneously through DS 
links. This will help in considerably reducing the 
traffic on PCI Bus and enhance the communication 
bandwidth between PCI agents. 
Machines with DS Link support on the motherboard, 
can be connected to each other through a simple 
central crossbar switch. Any PCI agent with DS 
Link support can communicate with any other agent 
of the system which is connected to the DS network 
without intervention of PCI Bus 

• Incorporating DS Link in PCI Bus helps in ex­
ploiting the inherent advantages of DS Link for 
efficient Cluster Computing. There are devices 
available for interfacing paralld buses to DS 
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Link (DS Lirrk Adaptor }-5 and routing the in­
formation among machines (DS Router) 6 con­
nected through DS Links7 • 

• PCI bus agents with DS Link support can con­
currently communicate through PCI bus as well 
as very high speed DS link. 

2.2 Upgrade Path from 32/64 bit to 
128/256 bit PCI Bus: 

At present all latest processors support 128/256 bit 
Memory data path width. Since PCI is a Proces­
sor independent bus, there should be some mecha­
nism to allow users to extend the PCI Bus width 
to 128/256 bit and hence increase the bandwidth by 
two to four fold. 
We suggest that one can implement above mentioned 
as follows. The initiator will find whether target 
supports 128/256 bit data bus by using special cycle. 
If so, it will communicate in the 128/256 bit mode 
else it communicates as per standard PCI 32/64 bit 
protocol. The extra connector for this enhanced PCI 
has to be standardized by PCI SIG (Special Interest 
Group). 
DS Link Connector for External Interface 
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7ST ClOl and ST C104 are available from SGS-Thomson 
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2.3 Dynamic configurati.on support 
in PCI Bus Specifkr . .tions: 

In the PCI bus there is no way that. PCI master can 
initiate a fresh configuration cycie. We suggest that 
there should be atleast one line that informs default 
master to initiate a new configuration cycle. There 
are many applications where the PCI cards need to 
be reconfigured for some parameters like min-gnt 
and max-latency. We call this a dynamic configura­
tion. This allows to meet certain timing parameters 
for specific application. So in those kind of appli­
cations, first the card will have sc:ne default values 
in configuration registers, these will be changed by 
default master according to sorne ru],~s. If those pa­
rameter values are not suitable for application then 
card will change those default c.onfig<lration parame­
ters and restart a configuration cv: :lr: to meet timing 
requirements of that application 
So this is as good as some network protocol where 
network card will find the negotiated parameter val­
ues and if it is not suitable for the application, it 
will restart negotiating for parameters to meet exact 
timing performance of a particular ai>plication. Pre­
liminary work in this direction is being carried out 
and will be reported elsewhere. 

Conclusion 

From the above mentioned suggestions, we conclude 
that 

1. PCI Bus based systems have to be modified to 
support High speed DS Lrnk interconnect; this 

will help in the design and development of very 
high performance (Tera flops) parallel machines. 
DS Link Connector for External Interface 

2 

3 

OS Link• 

Socke\ for 

OS Router 

Mother Boar 

Agents 

OS Links 

PCI SLOTS Mother Board 

Fig. 4: Extra Connector for OS Link Oa e•ery Slot, 4 DS Liak•/•lot 
OS Router oa MotkerBoa.rd 

2. Upgrading PCI Bus to 128/256 bit will support 
latest developments in processor architectures. 
Hence the system performance may increase by 
two to four fold. 

3. Incorporating dynamic configuration feature in 
PCI, will efficiently serve many real time appli­
cations. 
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ABSTRACT 

Portable computers are proliferating at an ever-growing 
rate. These devices now fill out a computing-platform 
taxonomy that include laptops, notebooks, sub-notebooks, 
personal digital assistants (PDAs) and personal 
communication systems (PCS). All of these devices share 
certain common constraints, such as the need for extreme 
power efficiency while delivering computing capabilities 
that rival those of full-size desktop systems. 

The PCI bus supports these machines with its wide 
data/address path (32+ bits), its high operating frequency 
(33+ MHz), its ability to operate at either 5v or at a power­
saving 3.3v, and its numerous advanced features (e.g. 
cache-coherency mechanism, bus-locking, multi-master 
capability, etc.). 

CardBus is a high-end extension of the popular 
PCMCIA standard for dynamically-installable system 
options. Architecturally, CardBus is a close cousin of PCI, 
making pairing of these two interfaces especially attractive. 
Through its "hot insertion" capability and associated 
configuration software, CardBus allows functions operating 
at local-bus speeds to be attached to a system as needed. 
This makes it possible to "tailor" computers to individuals' 
needs and preferences with unprecedented ease. 

This paper explores some of the novel ways in which the 
conjunction of PCI with CardBus will reshape computing 
in both the portable environment and on the desktop. 

CARDBUS AS A PCI DERIVATIVE 

Because CardBus is intended to serve as a high­
performance system reconfiguration mechanism, it is 
patterned closely on the PCI bus. There are five major 
areas in which CardBus extends and/or complements PCI. 
To better understand this complementarity, we will sketch 
the major characteristics of the PCI bus and of 
PCMCINCardBus in the following areas: 

• Performance at local-bus speeds; 
• Bus-master capability; 
• Hot-insertion/dynamic configuration capability; 
• Small physical form-factor card and connector; 
• Emphasis on minimizing power dissipation. 

PCI Overview 
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The PCI bus standard was developed to specify a 
uniform local-bus medium that can be used as a system 
back-bone across a range of computer performance levels. 
PCI enables the design of systems which may contain 
several system buses, to enable concurrent transfers 
between various functional units of the machine. The PCI 
bus is especially efficient in executing burst (i.e. multi­
datum) transfers, for which bus-arbitration and addressing 
overhead are minimized. 

PCI systems can accommodate a number of master 
devices, as well as slave cards. The PCI standard includes 
a protocol for bus arbitration, as well as stipulating 
constraints on bus acquisition utilization which are 
intended to minimize bus latency and ensure equitable 
partitioning of bus bandwidth across multiple masters. PCI 
includes a "LOCK" protocol by which masters can obtain 
exclusive use of the bus for some period. 

In a PCI system, cards are assumed to be installed in the 
system motherboard before power is applied. Then, during 
system boot-up, the PCI configuration space is used to 
allocate shared resources such as interrupt levels to specific 
PCI agents. The PCI configuration process is mediated by 
low-level software (typically in device drivers), and is 
hardware-specific. PCI cards cannot be installed into or 
removed from the system after boot-up. 

The PCI standard defines a 120-pin connector (for a 32-
bit bus) which can be used to connect a card directly to a 
PCI bus. This connector is used with a fairly large-format 
card which is intended for use in a desktop computer. 



The PCI standard focuses on providing adequate 
hardware support for system power-reduction, and codifies 
operation at 3.3v as well as at Sv. In addition, the standard 
allows clock-gating and/or frequency change to lower card 
power consumption in a controllable fashion. 

PCMCIA/CardBus Overview 

Since its inception in the 1980's, the PCMCIA 
(Personal Computer Memory Card International 
Association) standard has provided a means for adding 
functions to operating computer systems. Initially, 
PCMCIA was used to add ROM, Flash and SRAM memory 
to a computer. These "Revision I" ("RI') cards were soon 
followed by a variety of I/0 ("R2") device adapters. 

CardBus was defined primarily to provide higher 
performance than can be achieved using PCMCIA RI or 
R2, which utilize an 8-bit or 16-bit interface operating at 
ISA bus speeds (8 MHz). In contrast, CardBus provides a 
32-bit multiplexed address/data path which operates at PCI 
local-bus speeds of up to 33 MHz. CardBus accomplishes 
this by adopting the synchronous burst-transfer orientation 
of PCI, as well as a bus protocol which is essentially 
identical to that of PCI. These similarities makes it 
especially easy to link CardBus with PCI (although 
CardBus is also usable with other system buses, such as 
ISA or EISA). Note that the CardBus standard is a 
superset of the PCM CIA standard, allowing existing 
PCMCIA cards to be used in CardBus sockets. 

Besides its PCI-like data rate, CardBus devices are 
capable of acting as system-bus masters; that is, they can 
assume control of the system bus(ses) to effect data 
transfers. This contrasts with PCMCIA Rl and R2 devices, 
which can only act as slaves to system-resident master 
devices. The CardBus master capability opens a path to 
novel types of "intelligent" system adapters, as is discussed 
later in this paper. 

Both PCMCIA and CardBus view dynamic system 
reconfiguration as a primary functional requirement This 
reflects the fact that these interfaces must allow hardware 
such as modem or Flash memory cards to be shared by 
simply porting them from one system to another. This 
resource mobility allows users to carry their work 
environment with them, in the form of "personalizable" 
hardware adapters. 

The PCMCIA and CardBus interfaces allow an 1/0 
adapter or a memory module to be added to or removed 

from an operating computer without disrupting the 
system's operation. Moreover, both PCMCIA and CardBus 
standards define a resource-configuration software 
architecture which allows high-level configuration of 
system resources whenever cards are added to or removed 
from a system. 

"Card Services" consists of a generic high-level 
mechanism for describing a card's capabilities and system­
resource needs. Card Services is based on a card­
description "Meta-format" which has been gracefully 
extended from PCMCIA to CardBus. 

"Socket Services" is a hardware-dependent software 
layer which intervenes between Card Services and a 
particular PCMCIA or CardBus host-bus bridge. Socket 
Services translates Card Services' generic card status and 
command transactions into the accesses which are required 
by a particular PCMCIA or CardBus controller IC. 

The PCMCIA standard defines a compact 68-pin 
connector and several small, thin card form-factors. 
CardBus cards share PCMCIA's mechanical design, as well 
as a 68-pin connector similar to that used by PCMCIA 
cards. In the CardBus connector, a special shielding 
shroud is used to provide enough signal integrity to operate 
the bus at up to 33 MHz. When used with the prescribed 
CardBus controlled edge-rate buffers, the grounded shield 
ensures that ground-bounce does not corrupt signals. 

Both PCMCIA and CardBus place heavy emphasis on 
supporting card power reduction. Card Services defines 
Meta-format "tuples" which describe a card's power 
requirements and options. This information can be used to 
control the power (Vee and Vpp) supplied to a card socket. 
In addition, CardBus includes PCI's CLKRUN# signal and 
its associated protocol for controlling clocking to a card. 

Figure 1 Summarizes the similarities and complemen­
tarities between PCI and CardBus. 

CARDBUS APPLICATIONS IN PCI SYSTEMS 

The preceding section suggests that CardBus can serve 
as a performance-matched means for adding hot-insertion 
capability to a PCI-based system. Moreover, the CardBus 
and PCI interfaces are (intentionally) so similar that they 
can easily and effectively be used together. Finally, the 
small CardBus form-factor and power-reduction 
capabilities make CardBus an ideal adjunct to PCI in 
constructing high-performance portable systems. 
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PERFORMANCE 
Data/Address Width (bits) 
Max. Clock Rate (MHz) 
Peak Transfer Rate (MB/sec) 
Bus-Master CapabllHy 

CONFIGURATION 
Hot-Insertion Support 
Boot-up Configuration Support 
Dynamic (In-Operation) Configuration 
Support 

Configuration-Software Level 

POWER MANAGEMENT 
Operating Voltage(s) 
Card-Clocking Hardware Support 

MECHANICAL DESIGN 
Card Form-Factor 

Connector Type 
Card Bridge Hardware Required 

PCI 

32/64 
33/66 

132/264 
YES 

NO 

NO 

Low 
(Device Driver) 

5v/3.3v 
NO 

120-Pin Unshielded 
NO 

CardBus 

32 
33 
132 
YES 

YES 
YES 
YES 

High 
(Card/Socket Serves) 

YES 
(CLKRUN) 

Portable 
Credit-Card-Size 
68-Pin Shielded 

YES 

Figure 1: PCI/CardBus Comparison 

To flesh out this proposed use of CardBus, two other 
PCI derivatives need to be put into perspective: PCI Small 
Form-Factor (PCI SFF), and PCI Mobile. All three of these 
PCI variants are well-suited for use in portable systems, and 
indeed are most often used in portable systems. 

PCI SFF is basically a repackaging of standard PCI 
cards to provide a smaller card format which is more 
compatible with physically-compact PCI-based systems. 
PCI SFF cards can be directly connected to a PCI bus, 
without intervening bridge hardware. PCI SFF cards are 
not "hot-insertable"; that is, they cannot be inserted into or 
withdrawn from a powered socket, as is required to support 
dynamic system reconfiguration. In addition, the PCI SFF 
standard shares PCI's configuration mechanism, and lacks 
definition of the high-level software configuration 
mechanisms provided by PCMCIA and CardBus. 

The PCI Mobile standard is a variation of the PCI 
standard which focuses on power-reduction issues (which 
are of central importance in battery-driven portable 
systems). Like PCI SFF, though, this is a hardware­
oriented standard which does not provide hot-insertion 
capability or high-level configuration software. 

Both PCI SFF and PCI Mobile are candidates for use in 
systems which do not require hot-insertion or dynamic 
reconfiguration. Typical applications might include adding 
an internal LAN adapter to a portable system. This type of 
PCI card can be simply and inexpensively connected 
directly to the platform's PCI bus( es). CardBus is a better 
choice for adding shareable high-performance adapters to a 
portable system. CardBus performance is equivalent to that 
of PCI SFF or PCI Mobile cards. However, the versatile 
system reconfiguration capability of requires support from 
CardBus-to-PCI bridge controllers and more-complex 
(though standardized) system software. 

Bevond the 16-bit Card PCMCIA Standard 

Today, a wide variety of 8- and 16-bit PCMCIA cards 
("PC Cards") are available for adding various functions to a 
computing platform. Some of the more common cards 
include modems, LAN adapters (e.g. Ethernet), Flash 
memory cards, fast SRAM-based "silicon disk" cards, 
wireless communication adapters, and removable hard-disk 
cards. The speed of these cards is limited by the low band­
width of their PCM CIA interface. 

398-



PC-Card applications which require substantially 
greater interface band-width are now beginning to appear. 
For example, a 100 Mbit/sec Ethernet adapter cannot 
realistically be implemented on a PC Card without 
resorting to the data-transfer speed of a CardBus interface. 
similarly, portable PC-based teleconferencing systems 
require a CardBus interface to the host platform. 

Beyond raw performance, master-capable CardBus 
Cards make it possible to distribute processing intelligence 
throughout a system, offloading tasks from a single central 
processor. Such cards can be used to implement intelligent 

I/0 adapters; for example, bus-mastering cards can execute 
their own data transfers. This capability is especially useful 
in platforms which contain hierarchical PCI buses, whose 
bus-isolation capability makes it is possible to effect 
parallel data transfers. In a system with this architecture, 
the system CPU may be processing out of RAM on the 
primary PCI bus, while data transfers are occurring 
between an I/O adapter and a buffer memory located on a 
higher-level PCI bus. In the extreme, it is possible to build 
a complete CPU card which is contained within a single 
CardBus Card. 

CPU/ 
Cache 

Host 
Bridge 

System 
Memory 

3.3v Primary PCI Bus 

PCl-to-PCI 
Bridge 

Docking­
Station 

Connector 

PCl-to­
CardBus 
Bridge 

CardBus CardBus 
Socket Socket 

0 1 
\.._____ I y 

Dynamically-

Integrated 
110 

Display 
Adapter 

Hard-Disk 
Adapter 

Motherboard Devices or 
PCI SFF I PCI Mobile 

Semi-Permanently Installed 
Internal Cards 

lnstallable/Removeable 
CardBus and/or 
PCMCIA Cards 

Figure 2: CardBus-Capable PCI Portable Computer 

Some Architectural Possibilities 

In near-term portable computers, CardBus cards and 
PCI SFF or PCI Mobile cards may be connected to a 3.3v 
PCI system bus. In such a configuration, base motherboard 
functions can be augmented with internally-installed PCI 
SFF or PCI Mobile cards providing continually-needed 
functions, such as a LAN adapter. Shareable functions can 
be connected to the system via one or more CardBus slots 
which are overseen by a PCI-to-CardBus controller. The 
resulting portable system is schematized in Figure 2. 

CardBus (and PCMCIA) Cards can contain significant 
portions of a computer's overall functionality, such a disk 
subsystem or a display adapter or large increments of 
memory. Both PCMCIA and CardBus include a "multi­
function" capability through which multiple distinct 
functions can be integrated within one card, while retaining 
full software support from Card Services and Socket 
Services. (The main challenge in building such cards is in 
defining how to handle interrupts from multiple functions). 
This multi-function capability further broadens the scope of 
how system functions can be partitioned between 
motherboard and PC Card(s). 
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It is reasonable to consider a longer-term scenario in 
which major system functions migrate onto a set of 
CardBus cards. This might lead to a system which consists 
of a comparatively simple and inexpensive "mainframe" 
populated by one or more high-functionality CardBus 
Cards. The mainframe might consist of little more than a 
chassis, a power supply and a PCI bus populated with a 
handful of fairly generic functions, such as RAM. 

Users could port their entire computing "environment" 
from one such mainframe to another, on a handful of 
CardBus cards. This would move the bulk of a system's 
expense onto readily-portable and customizable Cards, 
while allowing bulky and relatively inexpensive 
mainframes to be left in stationary locations. The 
processing-core Cards could equally easily be used in a 
compact battery-powered version of the mainframe for 
portable applications. All of this portability is based on a 
marriage of PCI's high performance with CardBus 
performance, hot-insertion and dynamic configuration 
capabilities. 

Some Unresolved Issues 

As a close relative of PCI, CardB us faces some of PCI' s 
as-yet-unresolved issues. One of these involves how ISA­
like "legacy" DMA can be performed using native PCI 
capabilities. DMA is presently used by certain types of I/O 
adapters, such as sound cards. One possibility is to provide 
one or more specialized data-transfer agents within a 
system, each of which uses burst-oriented PCI mastering 
and burst transfers to move data blocks. The difficult part 
of this solution is to also provide a hardware interface 
which "looks" like an Intel 8237-based ISA DMA 
subsystem to ISA-legacy software. 

Another thorny problem involves how to provide an 
ISA-legacy interrupt facility without replicating all of the 
side-band signals which are used for this purpose in extant 
ISA systems. One solution might be to serialize (i.e. time­
multiplex) multiple non-shareable ISA interrupts over an 
existing PCI/CardBus signal, using allowed transitions. A 
demultiplexer can then present the usual ISA interrupts to 
an Intel 8259-based ISA interrupt controller. 

The two preceding problems are relevant to CardBus in 
that, through the foreseeable future, both ISA-style DMA 
and interrupts must be conveyed across both PCI buses and 
CardBus interfaces for X86-based platforms (since those 
systems constitute a large portion of all PC-class compute 
platforms). Whatever solutions are found for PCI will 
probably also work for CardBus, and vice versa. 

In a rather different dimension, CardBus is an emerging 
technology, and thus presents some market adoption issues. 
The CardBus standard is now stable, but PCI-to-CardBus 
controller ICs are just beginning to make their appearance. 
CardBus card vendors cannot (and would not wish to) field 
high-performance CardBus cards until they perceive a 
sufficient level of interest in CardBus, as manifested 
through adoption by major platform vendors. Thus, it is 
likely that the rate of CardBus adoption will be determined 
by the rate of PCI adoption in portable systems (which is 
already high), and by the rate of incorporation of CardBus 
into major computer vendors' product lines. 

Recently, there has been a strong up-turn in CardBus 
interest from computer manufacturers. It appears that this 
is being driven by a growing public perception that most of 
PCMCIA's (and CardBus') early compatibility problems 
have now been resolved. This is lending further 
momentum to PCMCIA as an attractive system­
configuration technology. 

Since PCI-to-CardBus controllers are not likely to be 
much more costly than PCI-to-PCMCIA controllers, 
platform vendors may be seeing an incentive to "future­
proof' their products at minimal risk, even though there are 
not yet CardBus cards to take advantage of this prospective 
CardBus interface. The presumption is that CardBus­
capable platforms will initially be used with PCMCIA R2 
Cards (using backward compatibility as mandated in the 
CardBus standard), while CardBus cards are developed. 

SUMMARY AND CONCLUSIONS 
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Taken together, PCI and CardBus are ideally-matched 
technologies for building versatile high-performance 
portable computing systems. PCI has already gained wide­
spread acceptance as the system bus of choice in such 
systems. CardBus, which is closely related to PCI, offers a 
uniquely flexible mechanism for dynamically configuring a 
PCI-based system to meet the needs of particular 
applications and users. The major computer vendors are 
likely to show relatively rapid adoption of CardBus in their 
portable products over the next year or two. In addition, 
desktop computers should also begin to incorporate 
CardBus interfaces as a means for sharing high­
performance adapters with portable computers. 
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ABSTRACT 

PCI has rapidly become accepted as the high perfor­
mance local bus for next generation of PCs. QuickRlng 
Technology (QRT) is a low-cost high performance (200 
M-bytes/sec) point-to-point ring-based interconnect 
architecture that enables the PCI architecture to 
achieve new heights of functionality and performance. 

QRT supports a total Ring Bandwidth (16 node 
ring) of up to 1. 7 Giga-Bytes / Second. When connect­
ing multiple PCI Buses with QuickRlng Controllers, 
each PCI bus becomes a node on the Ring. 

This paper will examine a PCI interface to QRT. It 
will also examine how the QRT interconnect between 
PCI buses enhances application areas where high per­
fonnance, concurrent transactions between PCI buses, 
multiple system interconnects and direct peer-to-peer 
transfers are necessary. 

INTRODUCTION 

The PCI Platform is rapidly becoming the industry 
standard local bus. It provides high performance and a 
consistent platform for system interconnects. There 
are issues associated with certain applications where 
the PCI performance cannot be fully realized. A solu­
tion is needed to overcome these obstacles of high per­
formance, concurrent transactions, multiple system 
interconnects and direct peer-to-peer transfers. 

QRT enables a high degree of system parallelism in 
a ring based topology, provides a simple generic client 
interface, and can be easily expanded to connect thou­
sands of nodes with current silicon. 

The PCI environment ls a natural flt for QRT. QRT 
connects chips, cards, or racks together and is micro­
processor and bus independent. QRT can help utilize 
full PCI performance across a variety of concurrent 
applications. 

QUICKRING CONTROLLER CHARACTERISTICS 

The QuickRing Controller (QRC) is a high speed 
point-to-point interconnect. A node on the ring inter-
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faces to the QRC through two ports, an Upstream Port 
and a Downstream Port (see Figure 1). 

The QRC transfers symbols from a source node to a 
target node. The source and target are each repre­
sented by a 4-bit field in the head symbol (see Table 2). 

In a single ring, the maximum number of nodes is 
sixteen because of a 4-blt addressing scheme (see 
Table 2). The 4 HOP fields that additionally occur in the 
QRC Head allow thousands of nodes to be connected in 
a multi-ring architecture implemented by bridging the 
rings together. It should be noted that two QuickRing 
controllers can cross-connect their client interface 
ports (potentially no glue logic) to form a bridge (see 
Figure 2). 

The QRC also has 1WO separate 35-bit client inter­
faces - the transmit and receive ports. Each client port 
has a 32-bit symbol plus a 3-bit type field. The type 
field designates the 32-bit symbol type (basically Head, 
Data, Frame, or Null, see Table 1). There is also a sin­
gle handshake signal for each client port to control the 
rate at which symbols are enqueued (Tx Port, TxOK) or 
dequeued (Rx Port, RxSTALL). 

Receive 

Port Client Interface 
Transmit 

Port 

Figure 1: The QuickRing Controller (QRC) 

The client transmit port can transmit an arbitrary 
length stream of symbols to a target. For example, 1 
head followed by 1 million symbols could be fed into 
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TX Port 

Rx Port 

Tx Port 

QRC 
RING#2 QRC 

Rx Port 

FIGURE 2: QRT Bridge in a Multi-Ring Topology 

the transmit client port. The QRC will automatically 
packetize the stream into individual packets of one 
head followed by up to 20 symbols, then another head 
(same as previous) followed by 20 symbols ... etc., until 
the entire 1 million symbols has been transmitted 
(Packet description shown in Figure 3). 

Table 1: Client Type Field Definitions (TxT/RxT) 

Type Name Description 

0 Directed First symbol of a stream or packet, 
Head specifying the path to a single target. 

1 Multicast First symbol of a packet destined for one 
Head or more targets. This stream does not 

use the reservation based ring protocol. 

2 Data 32-bit payload symbol is a Data. 

3 Data-Tail Data symbol which is the last symbol in 
a fixed length stream or packet. 

4 Frame Specially marked 32-bit payload symbol 
isa Frame. 

5 Frame-Tail Frame symbol which is the last symbol 
in a fixed length stream or packet. 

6 Reserved Future use 

7 NoSymbol No associated symbol 

Table 2: Transmit & Receive Port Head Format 

Rx/ Rx/TxS[31 :0) 
TxT[2:0] 

2:0 31:30 29:28 27:24 23:2 19:16 15:12 11 :8 7:4 3:0 
0 

Type Ace Conn Srce Trgt HOP 

0 0 Conn Srca Trgt Hop1 Hop2 Hop3 Hop4 HCNT 

Vary 011* 

0 1 0 Srca Trgt Hop1 Hop2 Hop3 Hop4 HCNT 

Fixed 

1 xx 0 Srce Group Field Multicast Field 

Conn = 1 indicated Low bandwidth 
Type = 0 indicates a Directed Head to one Target 
Type = 1 indicates a Multicast Head to multiple Targets 
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Currently there are four types of transmission avail­
able with the QRC (see Table 2): 
• Low Bandwidth High Priority Packets, these packets 

have higher priority then the following types of pack­
ets. 

• Directed Variable Sized Packets, the packet size is 
determined by the QRC, not by the system interface. 

• Directed Fixed Sized Packets, the system interface 
determines the size of the packet (20 symbols or less). 

• Multicast Packets, these packets may be sent to more 
then one node on the ring. 

3-bit Type 32-bit Symbol 

Data Tail Data Symbol 

Data Data Symbol 

• • u~to 20 
to al data 

• • symbols in 

• • the Packet 

Data Data Symbol 

Dir. Head Directed Head Sym 

Figure 3: QuickRing Packet: 1 Head 
followed by up to 20 Data Symbols. 

guickRing Tecbnoloa IQRTJ Reservation Based Pro­
m~ 

All QRC packets use a reservation based protocol 
(except multicast packets) to move across the ring to a 
target node. When the first symbol of a packet is 
enqueued a voucher is sent to the target node asking if 
the targets receive FIFO has space available to receive a 
packet (up to 20 symbols). If available, the target sends a 
ticket to the source node to launch the packet. Both the 
transmit and receive FIFO depth is greater then 100 sym­
bols. As long as the receive FIFO has at least 20 symbols 
of vacency it will return a ticket to the source node (Fig­
ure 5). 
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Figure 4: QRT applied to connecting PCI busses together 

QRC Latency Issues 

The QRC contains two data transfer protocols at the 
physical layer: 
• Reservation based protocols (vouchers and tickets) for 

all packet types except multicast packets, 
• Non-Reservation based protocol for multicast pack­

ets. 

The following times relate to a reservation based 
protocol transaction on a two node ring, where the ring 
ls lnltially idle (QRC Clock at 50MHz). 
• First data enqueued into QRC transmit port (Node 0) 

to first data dequeued at target receive port (Node 1) 
= 40 clocks (800ns). 

Requestin.11: 
QRC Node 

Receive 
Head and 
1st Data 

source 
transmits 
1 packet 

(ie. 1 Head 
&upto 

--r-

Voucher sent to target 

Ticket back to Source 

H, source to target path 

D,data 
• . . 

Respondiru! 
QRC NOde 

....... -
__... --__... -

Have space 
available in 
receive FIFO 
for 1 packet 

20data 
symbols) 

DT, data tail (end of packet) 

~ 

Figure 5: Reservation Based Protocol 
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It ls important to mention that lt ls extremely dlfft­
cult for one or several QRC nodes to monopolize the 
Ring Bandwidth (BW). The reservation protocol tends 
to guarantee that no node/nodes will be starved in 
terms of the ring BW it may have access to, as long as 
the total desired BW of all nodes on the ring is less 
then the total available ring BW (200MBytes/sec). 

Multicast packets (non-reservation based) will allow 
much faster transfers since they do not have the 
voucher /ticket overhead. 

PCI I gRC APPUCATIONS AND BENlFITS 

In any PCI application where high performance and 
concurrency between multiple boards ls needed, The 
QRC ls an appropriate solution (Figure 4). A few exam­
ple applications are: Multimedia, Video Server. Network 
Hubs & Routers, Multiprocessing, Image Processing, 
Medical Imaging, DSP Systems, RAID array, Data 
Acquisition, PC Enhancement and PCI extender. 

The following are some highlights of the QRC char­
acteristics that a PCI application can take advantage 
of: 
1. High Performance and Concurrency: A single node 

can transmit and receive data at a maximum rate of 
200MB/sec (aggregrate total per node of 400MB/ 
Sec). Also multiple nodes on the ring may be trans­
mitting and receiving ~imultaneously gl.vlng an aggre­
gate ring bandwidth of up to 1. 7 Giga-Bytes/sec. 
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Figure 6: PCI QuickRing Technology Interface (PCIQRTI) 

2. Point to Point Low Voltage Differential SilP'•Hne 
(LVDS): The QRC uses Low Voltage Differential Sig­
nalling (LVDS) which has high noise Immunity and 
very low signal levels. The QRC can be run at full 
speed without crosstalk or noise problems between 
the LVDS and other PCI signals. 

3. Multiple System ln.terconn.ect Environment: The 
QRC Interconnect allows multiple card cage chassis, 
along with other equipment to be connected using an 
external cable connector or card to card connections 
using an Internal card connector. The QRC can be 
used to Interconnect boards, PCs, workstations, disk 
arrays, etc. 

4. Direct Peer-to-Peer transfers: QRT overcomes the 
traditional system bus bottlenecks by providing an 
alternate communication route. QRT provides a direct 
link for peer-to-peer data transfers. For example, a 
video system could use QRT in the following manner: 
• a video camera could Input video data and transfer 

it directly (via QRn to a display card; 
• the display card could directly transfer the data (via 

QRn to a compression card; 
• the compression card could then transfer the data 

(via QRn to the storage card (I.e. disk array card) 

THE PCI QRT INTERFACE (PCIQRTIJ 

A PCI to QRT Interface (PCIQRTI) ls being designed. 
The lnltlal version of this Interface will be designed 
around the a PCI Bridge chip and an FPGA device (Fig-
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ure 6). 

The PCIQRTI features Include: 
• providing both a master and a slave interface to PCI. 
• Compatibility with "PCI Local Bus specification 

Rev.2" 
• Generating/Checking parity on PCI bus 
• Allowing direct CPU transfers, DMA transfers, PCI 

write transaction bridge function, and control trans­
actions. 

The primary objective behind this design was to 
keep the PCIQRTI as simple as possible while allowing 
the system designer to take advantage of the high 
bandwidth, concurrency, and peer to peer transactions 
that the QRT offers. 

The PCigBTI Control ProtOCOI Overyiew 

The QRC is very efficient at moving large amounts 
of data between nodes on a Ring. The QRC inherently 
performs write transactions between nodes. In order to 
perform reads (or other non-write types of transactions) 
a protocol can be Implemented on top of the Inherent 
QRT protocol. A PCI QRT control protocol has been 
speclfted. In Implementing this protocol the first sym­
bol of data after the QR 

head symbol is a Frame Symbol. The 32-blts of the 
frame symbol have been defined to allow lmplementa-



tion of a higher level protocol. Four of the bits are used 
to encode the particular PCI command (i.e. Interrupt, 
Memory /1/0/Conftguration Read/Write, .. etc). 

The Client Interface 

To get a high level of performance out of the QRC it 
ls necessary to include hardware capable of transmit­
ting and receiving data every clock cycle (the receive 
and transmit clocks can run up to 50MHz). This could 
be provided by a transmit/receive DMA channel. 

Only one simple receive DMA controller is needed 
because all Packets transferred across the intercon­
nect could be Self-Sufficient fixed size Packets (SSP), 
the packet size being one head followed by up to 20 
symbols (Figure 7). The SSP includes: 
• a Head that contains the source and target QRC node 

of the transfer (Head type= H), 
•the Frame Command, marked as a frame type (F), 

necessary to perform the transfer (i.e. read, write,,, 
etc.), 

• the Ad.dress of the transfer (address to read from or 
write to), marked as a data type (D), 

• the Data (D) involved in the transfer. Up to 18 data 
symbols could be transferred per packet, the last 
data is a Data Tail type (D11. 

Type: 32-bit Symbo1 
..--------------~ 

H Head Symbo1 
F Frame, PCI Command 

D Address of Transaction 
D Data to be transferred 

• • • 
: up to 20 symbo1s 
• 

~ ... I _L_a_s_t_o_a_t_a __ o_f_P_a_c_k_e_t _ __. 

Figure 7: QRT Packet Form.at 

This way the receive DMA would only need to con­
cern itself with lndlvldual packets (lt would have no 
concept of a stream). Each received packet would con­
tain the information necessary to perform its transfer. 

For example, one transmit DMA channel could be 
set up to transfer 160 Symbols across the QRC. The 
transmit DMA would dlvlde the 160 symbols into 10 
packets, each packet consisting of a head, command, 
address and 16 data symbols. The transmit DMA 
would automatically increment the address on each 
successive transferred packet and inset the particular 
frame command (read/write). 
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PCigRTI. Types Of Tnmactions 

There are four different types of data transfers avail­
able with the PCIQRTI: 
1) DMA Self-Sufficient fixed size Packet (SSP) Write 

transfers: In these transactions the· source node 
CPU will write to the PCIQRTI DMA registers in 
order to set up the following write DMA (source and 
target memory addresses, last memory address of 
the source block, the QRC Head for the DMA, and 
the PCI control protocol frame symbol). Once the 
DMA has been set up and the "Go" bit has been set 
the PCIQRTI will start performing burst read 
accesses (up to 16 data transfers, 64 bytes, per PCI 
bus access). The transmit DMA wll1 enqueue fixed 
size Self-Sufficient Packets (SSP) to the target node. 
Once the source DMA is finished the Host CPU may 
be interrupted to indicate this. Each of these SSP 
will be transferred across the QRC to the target 
node. The target node PCIQRTI DMA engine (seeing 
the frame symbol DMA bit [13) set) will dequeue 
each of these packets and perform PCI burst write 
transactions on the PCI bus. Upon detection of the 
"End of Transaction" symbol the receive DMA may 
interrupt Its host CPU to indicate that the received 
DMA has terminated (Figure 8). 

2) Direct (SSP) Write Transfers. The CPU will enqueue 
a SSP that look the same as the DMA packets 
described above, note that in this circumstance the 
DMA engine ls only used in the target node. 

3) Control Packets (CPU enqueued non-DMA). This 
allows the host CPU to enqueue fixed size packets of 
any protocol it desires. The target node will inter­
rupt the host CPU to dequeue this packet. 

4) PCI Write Transaction Bridge Function: This 
packet type ls generated by setting the PCI write 
transaction bridge function (bit (0) of register 64h). 
If set this bit instructs the state machine to cause 
any PCI write memory transactions to the Base 
Address of the configuration space (address l 4h) to 
get enqueued automatically into QRC. These trans­
actions will automatically appear at the node speci­
fied by the DMA Head (register 58h). This bit set will 
cause the QRC to look like a PCI bridge for write 
memory transactions. The memory size for this area 
can be set in the configuration space base address 
register (!Oh). 

The PCIQRTI ls primarily a PCI interface to the QRC, 
although for PCI memory write transactions this inter­
face can function as a PCI Bridge. In the initial boards 
the only PCI transactions that will be supported are: 
• memory write, and, 
• configuration read/write. 

Future versions of this interface may be designed to 
support the complete set of PCI transactions. 



Figure 8: Example of PCIQRTI DMA Block Write (Up to 64 Million 32-Bit Symbols 

PCT Primary Interface QRCBridge 
Source Node 

QuickRing QRC Bridge PCI Secondary Interface 
PCT Target PCIMaster Target Node 

Memory Write Cmmd & DMA Registe Address 

--Memory Write Data (DMA Setup) --
__.. 

• Write to DMA Cmmd --
Setup DMA Write Transaction • Block Registers . 

Memory Write Data (DMA Setup & DMA Go Bit) 
-• -

DMA enqueues QRC Head and 

Memory (DMA) Read Cmmd 
target address. Then it performs 
a PCI Read Multiple transaction -- to enqueue all of the packet data. r--

Memory DMA Read Data, TRDY# The last data of the fixed length 

-- packet will be given a Data-Tail . - type. The last data of the DMA 
• DMA Read Data stream will be given a Frame-Tail . type . 

Memory DMA Read Data, TRDY# 

-- Upon sensing the QRC Type Field change ~ 

from a Null to a Head the PCIQRTI will 
H QRCHead dequeue the QRC Head. Next, the Frame . -- Symbol (PCI Command) will be dequeued F, PCI Write Transaction --• and places into the RxDMA registers of the 
D, PCI Target Address --• -- PCIQRTI. 

Continue doing Read Transactions -- Next the Target Address will be dequeued D, Data --on the PCI Bus until the DMA 
~ from the QRC Client Receive port and Ioadeli Transaction is finished. . -- into the Rx DMA Target Register . . 

The Rx DMA will then take over the . 
Dequeuing of QRC Received Data and 

DT, Last Data of Fixed Packet Writing it to the Target Address. ----. . Memory Write Cmmd & Target Address 
_ .. . 

_QRC Received Data Written to Memory 
• ~ --QRC and PCI secondary • 

bus transactions continue until . 
the DMA operation concludes QRC Received Data Written to Memory ----

PCIQRTI Register Descrtptions 
BEFEBENCE LIST; 

There are two sets of registers contained Within this 
interface: [ 1) QuickRlng Bandwidth Calculations by Chakradher 

Reddy. • the PCI configuration space, and, 
• the Transmit/Receive DMA registers. 

CONCWSION 

The QRC and PCI produce an ideal combination for 
appllcations that need low cost, high performance (up 
to 400MB/sec/node), low latency, concurrency, and 
conductibility between multiple PCI busses and sys­
tems. 
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[2] National Semiconductor, June 1994, "The National 
QuickRing™ Design Handbook". 

QuickRing™ ls a trademark of Apple Computer, Inc. 
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PC/ to PC/ Bridges 
and 

The DECchip 21050 

.ll~llllllat is a PC! to PC! bridge? 

• PC/to PC/ bridges allow transactions 
between PC/ busses 
• one transaction at a time 

-master o and tatf16f 1, or 
-master 1 and tatf16f O 

conceptual rules of thumb 
• PC/ operating at 33 Mhz supports 10 loads 

total 

• device on motherboard = 1 load 

• device on option card = 2 loads 
- option caros 19Stricted to a single device 

These are not absolute rules! 
Actual loading is dependent on many 

407 

odd Comins and Tracy Richardson 

Digital Equipment Corp 
77 Reed Rd. 

Hudson, MA 01749 
5 08-568-5103 

:I.bat is a PC! to PC! bridge? 
:: 

• allows concurrent operation 
• both transactions can be simultaneous 

-master O and tatf16f 0, and 
- master 1 and tatf16f 1 

illlllg/e Device Option Card 

• option cards are allowed to connect 
only one device to the PC/ bus at the 
option connector 

• high integration of PC/ devices leaves 
lots of unused board real estate 



Comins & Richardson 

• the PC/ to PC/ bridge (PPB) isolates the 
loading of the devices on the option 
card 
• enables muHip/e device option cards 

• PC/ transactions flow across bridge 

Once configured, a PC/ to PC/ Bridge is 
transparent! 
• a PC/ to PC/ Bridge does not have a 

device driver 

• no changes to devices or their drivers 
when attached behind a PC/ to PC/ Bridge 

Transactions 

VO base and limit registers 
• 4 Kbyte granularity 

• /SA aware mode 
-blocks fotwardlng of ISA alias addtesses 
- addtesslng Is similar to EISA slot specific 

addtesslng 

• VGA aware and VGA palette snooping 
modes 
-only example of suppott for legacy devices 

-requll8d to enable multlmedla applications 

• no write posting 
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• bridge must support concunent bus 
operation 

• Video to Graphics DMA does not cross the 
bridge 

forwarding is controlled by address 
ranges 
• different registers for //0, memory mapped 

//0 and prefetchable memory 

• base and limit registers define primary to 
secondary forwarding 
-secondary to primary fotwatd/ng Is Inverse 

• PC/ to PC/ bridges provide three 
address ranges 
• //0 

Addressing Example 
Mode Disabled 

• a single 4Kb .. e range at top of VO 
address space 
• inverse decoding is used for forwarding 

from secondary to primary 

• /SA aware mode is disabled. 

• assuming 64 Kbyte total //0 address space 
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• exploded view o op 4Kbyte range from 
previous slide with /SA mode enabled 
(equivalent of EISA slot 15) 
• accesses are forwarded primary to 

secondary when in the bottom 256 bytes of 
every 1 Kbyte block in enabled range 

• memory bas · · mit configuration 
registers 
• 1 Mbyte granularity 

• defines address range in which memory 
accesses are forwarded from primary to 

The DECchip 21050 
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j,li:::::fft~:;/;:;;ped 110 
:· 

memory base and limit registers 
• 1 Mbyte granularity 

writes can be posted 

• read prefetching 
• memory read 

-no prefetchlng 
-t8llds may have side etrects for memoty 

mapped VO dev#ce8 

• memory read line 
-hnpllcllly specifies Ille pt8(etch of up to one 

cache line 

prefetchable memory base and limit 
registers 
• 1 Mbyte granularity 

• writes can be posted 

• all reads can be prefetched 
• optimization for bus masters that do not 

use memory read line and memory read 
multiple commands 

• devices identify prefetchability of memory 
address ranges via the standard base 

Jgital is the Leader in PC/ to 
..... 1 Bridges 

Digital is the recognized industry leader 
in PC/ to PC/ Bridges 
• Digital has the most technical expertise in 

the industry 

• Digital was the first to develop PC/ to PC/ 
Bridge products 

• Digital Proposed and Chaired the PC/ 
to PC/ Bridge Workgroup 
• Lead the definition of PC/ to PC/ Bridge 
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iil~j.j~jjj,.l!cchip 21050 Features 
·' • • • • • • • • • • • • '· .... • • • • • • • ·' '· • • • • .. • • ·: • • ·'' 'W,"o,'e'o.Yo,Ye" Y Y "e':" "eYe"eYo,Y • "f "1Y:Yfe"fe'e· 

Supports concu"ent primary and 
secondary bus operation 
Provides 32 bytes of primary to 
secondary buffering 
• posted write data 

• prefetched read data 

• Provides 32 bytes of secondary to 
primary buffering 
• posted write data 

• prefetched read data 

supports 110 address range 
• 4 Kbyte granularity 

•/SA mode 

• VGA and palette snooping modes 

• supports Memory Mapped 110 address 
range 
• 1 Mbyte granularity 

• supports Prefetchable Memory address 
range 
• 1 Mbyte granularity 

The DECchip 21050does not need a 
device driver 

BIOS or initialization code must be able 
to recognize and configure a bridge 
• PC/ to PC/ Bridge support will be required 

to pass PC/ SIG compliance testing 

• We are working with the major BIOS 
vendors, system vendors, Microsoft and 
Intel to insure BIOS availability 

• BIOS vendors now provide bridge 
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:1~,.l .... ll.lllb50 Data Path 
:::::::::=:=:=:=:=:=:=:=:=:=::m·· m····m···m···;;;;;i···::ZJ···m~m .. ·~m·,·e·-.m·,-.(·m:...-·me" .. ;;;;;i ••. ;;;;;i .. -:-,.,m.,.,·m···m···m···m···m····m···m···;;;;;i··:m···m···m···m···m··";m~ 

ii-111-illltcchip 21050 Features 

Integrates secondary bus arbiter 
• six requesVgrant pairs 

Generates buffered clocks for 
secondary bus 
• six devices (In addition to the bridge) 

• Operates at full 33 Mhz PC/ clock 
frequency 

• PC/ lock transactions supported 

Is fully compliant with the PC/ spec 2.0 

:Jjlfllllllil!os Utilities 
:::::·:·· .. ;.».;-.;-~:.:.:..»·········»:.m········~:v;.:.;:-»»:········ .................. ··..:·····:,.·..;.····:.:.:.~ 
:: :;:;:~~ 

'"'"""° Temporary workaround for customers 
who do not yet have BIOS with PC/ to 
PC/ Bridge support 
• allows customers to configure systems and 

add-in cards with PC/ to PC/ Bridges 

• complete custom configuration possible 

• provides example code for PC/ to PC/ 
bridge enumeration and configuration 

• provides examples on PC/ device mapping 

• Cu"ently on Digital's BBS - can be 
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:S Utilities 

• User can view entire PC/ bus topology 
• Allows complete manual PC/ configuration 
• Enables developer to debug new designs 

with direct access to device configuration 
space 

• pConf Utility - PC/ bus configuration 
utility 
• Configures and enumerates PCl-PCI 

Bridges 

\.~illl!!:!:!ii 
~~till:. Cchip 21050 Availability 

DECchip 21050 completely qualified 
• Revenue shipping in full volume now 
• Complete documentation and support 

available now 
• 21A50 Evaluation Board available now 
• Utility software available now 

• DECchip 21050 is first in a family of PC/ 
to PC/ Bridge products from Digital 
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.i·!ii:!'i:!ffifCchip 2 JA50 Evaluation 
r·······,:~: rds 

DECchip 21A50 Evaluation Boards 
• PC/ adapter card with DECchip 21050 and 

four expansion slots 
• Two PALs allow customer to experiment 

with special features of the DECchip 21050 
• Full documentation and schematics 
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Abstract 
The PCI bus standard opens up the PC architecture to 
new levels of performance and ease of configuration. 
This speed and flexibility also forces a new level of 
"responsibility" among expansion card hardware and 
software. PCI expansion ROMs are a critical 
component in the overall configurability of a PCI 
system. PCI expansion ROMs have added 
capabilities over the current ISA expansion ROMs 
such as a software programmable memory address 
and the ability to support more than one processor 
architecture. 

Introduction 
Personal computer expansion devices that participate 
in the boot process often require an expansion ROM 
which provides support for the device while loading 
the O/S. Examples of devices that often make use of 
an expansion ROM are VGA cards, SCSI host 
adapters, and network interface cards that load the 
O/S from a server. The expansion ROM mechanism 
used by PCI devices is much more robust that the 
traditional ISA or EISA expansion ROM standard. 
The major differences are listed below: 

• PCI expansion ROMs may contain any number 
of code images. Each code image supports a 
different processor architecture. 

• The base address of PCI expansion ROMs is 
software configurable, freeing the end user from 
having to manually set the ROM address of 
peripherals. 

• PCI expansion ROM code is never executed in 
place. It is copied into system shadow memory . 
before it is given control. 

• When PCI expansion ROM code is initializing, it 
.is running in read/write shadow. 
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Expansion ROM Contents 
A PCI expansion ROM contains one or more code 
images. Each image contains code that is native to a 
different processor architecture. At this time only 
x86 and OpenBoot expansion ROM code types are 
defined. The system BIOS selects the appropriate 
code image for the system and copies only that one 
image into shadow RAM for execution. 

Each image in a PCI expansion ROM contains an 
expansion ROM header and a PCI data structure. 
The format of the generic PCI expansion ROM 
header is shown below: 

Generic PCI Expansion ROM Header 

:::::Plll.@J: :rJr.Jl:i:::::::: :f:::::::::::::::::::1:1:::::::::::::::rrn>.i.#J.tmmm.::::::::ftt:=:=:rr::::::=:::r::::=:::::: 
Oh byte 55h ROM signature 
lh byte AAh ROM signature 
2h l 6h Processor architecture dependent data 
l 8h word Offset of PCI data structure within this 

code image. 

For the x86 processor architecture, the data area at 
offset 2 contains the traditional information found in 
current ISA and EISA expansion ROMs. The format 
of the x86 expansion ROM header is shown below: 

x86 PCI Expansion ROM Header 

Jt.>lliMClt$1.i.#:ltlflltlt'tltil1'mil!i4'.W.Mltltttltlt't= 
Oh byte 55h ROM signature 
lh byte AAh ROM signature 
2h byte Size of this code image in units of 512 

bytes 
3h 4 Entry point of code to initialize 

expansion ROM, accessed via a FAR 
CALL to this location. 

7h I lh Vendor defined data area 
18h word Offset of PCI data structure within this 

code image . 



The PCI expansion ROM header in each code image 
contains a pointer to the PCI data structure for that 
code image. The PC! data structure contains various 
information identifying the vendor and device, as 
well as a one byte code indicating the processor 
architecture supported by this code image. The 
format of the PCI data structure is shown below: 

PCI Data Structure 

(Qff.~ltt ?hf.&.¥ u:::JJJ?!?J/1t:!JJP:4.~f.fik?W.i.flLi:i :?!%!?/'!!:JJ} 
Oh 4 "PCIR" Ascii signature (Pat offset 0) 
4h word Vendor ID, same value as offset 0 in 

6h 

8h 

Ah 
Ch 
Oh 

this device's configuration space 
word Device ID, same value as offset 2 in 

this device's configuration space 
word Offset of Vital Product Data (VPD) 

within this code image. The VPD 
structure is currently undefined. 

word 
byte 

3 

PCI Data Structure size, set to J 8h 
PCI Data Structure revision, set to 0 
Class code, same value as offset 9 in 
this device's configuration space 

!Oh word Size of this code image in units of512 
bytes 

12h word Revision level of code image (vendor 
specific) 

14h byte Code type of this image: 
0 = Intel x86 architecture 
1 = OpenBoot standard 
2-FF =Reserved 

I Sh byte Indicator Flags: 
Bit 7: If set, this is the last image in 
the expansion ROM, if clear, more 
image(s) follow. 
Bit 6-0: Reserved 

16h word Reserved 

Figure I shows an example expansion ROM for a 
PCI SCSI host adapter. The physical ROM is 64k in 
size and contains two code images. The first image 
is an x86 code image that is l 6k in size. The second 
image is an OpenBoot code image that is 32k in size. 
There is I 6k of unused space at the end of the 
expansion ROM. On an x86 architecture PCI 
platform, the system BIOS would search the 
expansion ROM, find the x86 code image, and copy 
that 16k image into read/write shadow memory 
before giving control to its initialization entry point. 

413 

0 

16k 

48k 

64k 

PCI Expansion 
ROM Header 

x86 Code 
Image 

PCI Expansion 
ROM Header 

PCI Data 
Structure 

Open Boot 
Code Image 

PCI Data 
Structure 

Empty Space 

Figure I: PCI Expansion ROM Example 

Expansion ROM Base Address 
Register 
PCI devices that need expansion ROMs must provide 
a mechanism that allows software to set the base 
address of the ROM. System software should be able 
to configure the PCI device so that its ROM is visible 
at any address in the 4GB memory space that is a 
multiple of the ROM's size. The PCI device's 
expansion ROM base address register must be used 
for this purpose. 

There are a handful of PCI cards on the market today 
that use an expansion ROM but do not implement the 
expansion ROM base address register. Because these 
cards hardwire their expansion ROMs to a fixed 
address, they do not comply with the PCI 
specification and may not work on all PCI systems. 
Even PC! VGA cards whose expansion ROM code is 
almost always copied to and run from address 
COOOOh, should not hardwire their expansion ROMs 



32 

\ 

to this address. One of the goals of PCI is to provide 
peripherals that are fully configurable. Fixed address 
expansion ROMs clearly impede this objective. 

The expansion ROM base address register is a 32-bit 
register located at offset 30h in a PCI device's 
configuration space. The format ofthis register is 
shown in figure 2. Bits I through 10 are reserved 
and should read as zeros. Bits 11 through n-1 should 
be hardwired to read as zeros. Bits n through 32 
should be read/write. The value of n should be 
chosen so that 211 is equal the size of the entire 
expansion ROM (including all of the images that it 
contains). 

n n-1 11 10 1 0 

ROM Base Address I 0 I Reserved I ~1 
Figure 2: Expansion ROM Base Address Register 

In order to determine the size of the memory block 
that will be occupied by the entire expansion ROM, 
the system BIOS typically writes FFFFFFFF to the 
expansion ROM base address register, then reads 
back the register, clears bit 0, inverts all of the bits, 
and finally increments this value. The BIOS uses the 
resulting size to find an unused block in the system's 
memory space. The base address of this block, 
which is a multiple of the size, is then written into the 
register. 

Bit 0 of the expansion ROM base address register is 
used as a "decode enable." The PCI device responds 
to accesses to its expansion ROM only when bit 0 of 
the Expansion ROM base address register is set. The 
PCI device is not required to respond to any other 
memory or 1/0 address while the decode enable bit is 
set. During normal operation this bit is always clear. 
This allows a PCI device to share its internal address 
decoding logic between one of its standard base 
address registers and its expansion ROM base 
address register. 

Expansion ROM /nit Sequence 
After the system BIOS has completed POST and 
configured all PCI devices in the system, it will 
initialize the PCI expansion ROMs. At this point 
each PCI device that implements an expansion ROM 
has been configured so that its expansion ROM base 
address register contains a base address which is 
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typically near the top of the system's 4GB address 
space. Also at this point each PCI device's command 
register will have its I/O and memory decode bits 
enabled. 

When initializing a PCI device's expansion ROM, 
the system BIOS first reads the expansion ROM base 
address register and writes it back with bit 0 set. This 
causes the PCI device to respond to reads in its 
assigned expansion ROM memory block. The 
expansion ROM should then be visible to the system. 

The system BIOS (assuming an x86 system) then 
examines the first code image in the ROM. The 
system BIOS verifies that the code image contains a 
valid 55h AAh signature, and that the image 
checksums to zero. The BIOS will then find the code 
image's PCI data structure and examine its code type 
field. If the code type is x86 code (type 0), then the 
BIOS has found the proper code image. If the code 
type is not x86, then the system BIOS checks bit 7 of 
the indicator flags field for the presence of another 
code image in the expansion ROM. The system 
BIOS repeats this search until an x86 image is found 
or until all code images in the ROM have been 
checked. 

Upon finding a valid x86 code image in the 
expansion ROM, the system BIOS will use the size 
field in the image's header to find a region of shadow 
memory large enough to hold the x86 code image. 
This region will start on a 2k boundary in the range 
COOOO through DF800. The BIOS makes this 
shadow RAM region readable and writable, and then 
copies the x86 code image from the expansion ROM 
into the shadow RAM region. The BIOS then 
disables the PCI device's expansion ROM by reading 
the expansion ROM base address register, clearing 
bit 0, and then writing it back. 

The next step in the initialization sequence is to give 
control to the expansion ROM's init routine. This is 
done by making a far call to offset 3 of the x86 code 
image in shadow RAM. When making this call, the 
system BIOS passes some valuable information to the 
ROM's init routine: 



Inputs to Expansion ROM Initialization Routine 

J\l#Ht.1rwn:: <· , :::::r,:r;:::, ::JQttttit!(mn :t=tt::<tt:r :t 
AH PCI Bus number of device that 

supplied the expansion ROM 
AL Bits 7-3: Device number of device 

that supplied the expansion ROM 
Bits 2-0: Function number of device 
that supplied the expansion ROM 

The expansion ROM code then initializes its 
associated PCI device. As part of its initialization a 
PCI device's expansion ROM will usually need to 
determine the configuration of the device that it 
supports. There are several BIOS services that may 
be used by the expansion ROM code to accomplish 
this. These services are described in the next section. 

When initializing the PCI expansion ROM code will 
be running in read I write shadow memory. PCI 
expansion ROMs can make use of this feature by 
building tables and data structures directly in their 
code segments. Some ISA and EISA expansion 
ROMs have traditionally reserved a block of the 
system's base memory for this purpose. Building 
data structures directly in the ROM's code segment is 
a much cleaner approach and should be used 
whenever possible. It should be noted that the 
system BIOS will write protect all memory 
containing expansion ROM code before the system 
boots. So any data structures contained within the 
ROM's code segment cannot be modified after the 
ROM's init routine exits. 

The PC! specification outlines a mechanism that 
allows expansion ROMs to reduce their size after 
initialization. This feature allows PCI expansion 
ROMs to make efficient use of the precious 128k of 
memory available to them. 

To make use of this feature expansion ROMs should 
position their initialization code at the end of the 
code image. Code and data needed once the system 
boots should be located at the start of the code image. 
Before returning from its initialization routine the 
expansion ROM code can change its size by 
adjusting the size byte at offset 2. After this is done 
the expansion ROM code must also adjust a byte 
anywhere in the new smaller code image so that the 
new code image will checksum to zero. 

It is also possible for an expansion in it routine to 
effectively remove the entire code image from 
memory. This is done by setting the byte at offset 2 
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to zero to indicate a new size of zero bytes. This 
feature may be useful if a PCI device decides during 
its initialization that it will not participate in the boot 
process. One example of this situation is a SCSI host 
adapter that does not find any bootable drives 
attached. 

When finished initializing, the expansion ROM code 
should execute a RETF instruction to return control 
to the system BIOS. 

Determining PC/ Device 
Configuration 
The PCI configuration mechanism is dynamic, a 
device's configuration may change from one boot to 
the next. Any software that communicates directly 
with a PCI device must deal with this dynamic 
configuration. The system BIOS assigns 1/0 
addresses, memory addresses, and IRQ levels to PC! 
devices before giving control to the device's 
expansion ROM. In most cases PCI expansion ROM 
code will need to determine which I/O address( es), 
memory address( es), and IRQ level(s) have been 
assigned to its card each time the system boots. 

The first task a PCI expansion ROM faces is locating 
its associated card in the system. To locate a PCI 
device three pieces of information are needed: the 
device's PCI bus number, its device number, and its 
function number. The system BIOS makes this task 
very easy; it passes this information to the expansion 
ROM code when control is transferred to the ROM's 
initialization routine. As described above, the AH 
and AL registers contain the bus, device, and 
function number of the PCI device that supplied the 
expansion ROM. This infonnation should be saved 
by the expansion ROM code. and used in subsequent 
calls to read from the PCl device· s configuration 
registers. 

When trying to locate its PCI deYice. PCI expansion 
ROM code should not use the "find PCI Device" 
BIOS service (Int I A B 102). If there are two devices 
in the system with the same vendor and device IDs, 
this BIOS function may return the location of either 
one. Use of this function by expansion ROMs makes 
it impossible to for the system BIOS to prioritize 
boot devices. 

The system BIOS supplies a set of functions for 
reading from the configuration space of PCI devices. 
When using these functions the caller must supply 
the bus, device, and function number of the PCI 



device to read. These are the same values that were 
passed to the expansion ROM code in AH and AL 
(described above). PCI expansion ROM code should 
not use IN or OUT instructions to access PCI 
configuration space directly. The following table 
describes the functions available for reading and 
writing to PCI configuration space. The functions 
are called using an Int I Ah with the AX register set 
to the indicated value. 

PCI BIOS Configuration Space Functions 

\% [:441: tt ?t?ltt?PD:tf.letf.i.f.iC?t !Jilt 
B108 Read configuration byte 
B109 Read configuration word 
BlOA Read configuration dword 
Bl OB Write configuration byte 
BIOC Write configuration word 
Bl OD Write configuration dword 

Summary 
The PCI bus standard opens up the PC architecture to 
new levels of performance and ease of configuration. 
This speed and flexibility also forces a new level of 
"responsibility" among expansion card hardware and 
software. PCI expansion ROMs are a critical 
component in the overall configurability ofa PC! 
system. Only when a PCI system's expansion ROMs 
are implemented correctly, can it meet the 
performance and usability objectives set forth in the 
PCI specification. 
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Meeting the Challenges of PCI BIOS Development 

Maxwell G. (Greg) Paley 
Vice-President of Engineering Worldwide 

Award Software International, Inc. 
777 East Middlefield Rd. 

Mountain View, CA 94043 
(415) 968-4433/0274 (fax) 

Award Software has been a major player in 
meeting the early challenges of PCI bus 
technology, and has worked closely with the PCI 
SIG in meeting those challenges. Award sees 
the increase in processor power offered by the 
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latest generation offering of CPU manufacturers 
as creating a critical need for high-performance 
I/O subsystems in order to achieve a balanced 
system design. 



PCI/Plug and Play 
Support in PhoenixBIOS 

PCI 2.1 Compliance 
Frances Cohen 

Principal Engineer 

Phoenix Technologies, Inc. 

2575 McCabe Way 

Irvine, CA 92714 

Ph. (714) 440-8323 Fax (714) 440-8300 

Overview 

• New Plug and Play Requirements 

•POST 

• RunTime Services 

• IRQ Routing 

• Windows 95 Issues 

• In Conclusion 
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Plug and Play BIOS Requirements 

• Responsible for PCI Card 

- Detection 

- Configuration 

• Runtime Interface -- Provides a Way 
for Operating Systems to Configure 
Hardware on the Fly 

PCI - System BIOS POST 

• Allocates Resources for Conflict-Free 
Operation 
- Avoids 10-Bit 1/0 ISA Aliases 

- Optimizes IRQs Dedicated to PCI 

- Shares IRQs Only When Necessary 
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PCI - System BIOS POST 

• Writes Configuration Space Registers 

- Detects and Configures PCl-PCI Bridges 

- Writes Resource Allocations to Configuration 
Registers 

- Writes to Control Registers and Enables Devices 

PCI - System BIOS POST 

• Shadows and Initializes Expansion ROMs 

- ROMs Reduce Their Foot-Print After Initialization 

- Optimizes ROM Space by Shadowing Each ROM After 
Reduced Foot-Print 

Physical Image Optimized Image 
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PCI - Sys BIOS Runtime Services 

• 16 and 32-Bit Interfaces 

• Functions Supported 
- Find PCI Device/Class Code 

- Read/Write Configuration Space Registers 

- Get PCI Interrupt Routing Options (Oeh) 

- SET PCI Hardware Interrupt (Ofh) 

PCI - Sys BIOS Runtime Services 

• Future Operating Systems Will Use Runtime 
Interfaces! 

• Issues with Direct Hardware Access 

- BIOS Can Cover-up Platform and Chipset Anomalies 

- Embedded Devices Return Wrong Class Codes 

- Configuration Access Mechanisms Need Work-
Arounds 
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PCI - Sys BIOS Runtime Services 

• Platform Slot Information Returned 
- The Masked Slot Number on the Board Can be 

Associated with the PCI Device 

• Operating Systems Can Fully Understand and 
Control Interrupt Routing 

PCI - IRQ Routing 

• PCI Slot Interrupt Lines are Routed Through the 
Chip Set to the Programmable Interrupt 
Controller 

• Platform Specific BIOS is Required to Control the 
Routing of IRQs on Host PCI Buses and Behind 
PCl-PCI Bridges 
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PCI - IRQ Routing Diagram 
1--1 1--------1 
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Windows 95 and PCI 

• Windows 95 Does Not Configure Cards Behind 
A Bridge 

• Windows 95 Will Enable Cards that Were 
Disabled by the BIOS 

- IRQ register must already be loaded 

- IRQ routing must already be established 
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In Conclusion ... 

• BIOS has changed to meet the needs of Plug 
and Play PCs 
- POST now configures add-in hardware 

- Runtime interface allows all PCI devices to be 
controlled 

- Supporting Windows 95 adds new requirements 

• PhoenixBIOS 4.0 incorporates complete Plug 
and Play Support 
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AT-BIOS Compatibility in 
PC/ RISC Systems 

Peter Hayden 
Windows NT Engineering 

March 31, 1995 

Digital Equipment Corp. 

-BIOS Compatibility 

What is AT-BIOS Compatibility in a 
RISC System? 

How Customers Benefit? 

• How System Vendors Benefit? 

• How Option Card Vendors Benefit? 

Digital Equipment Corp. 
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at is AT-BIOS Compatibility? 

Non-x86 systems capable of using AT­
B/OS extensions on option cards 

Video support via graphics board's 
video BIOS 

• Disk 110 via SCSI BIOS 

• System firmware emulates x86 CPU, 
PC hardware, PC system BIOS. 

Digital Equipment Corp. 

w Customers Benefit 

Expectations fulfilled 
• Options that plug in should just work 

.. Broader selection of options 

• Lower costs by using commodity 
components 

Digital Equipment Corp. 
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w Customers Benefit 

Many RISC systems only support a 
short list of specific options 
• Expanding support requires update of 

system ROM. 

• Other systems support OpenBoot 
• Only supported by a few PC/ options 

• Doesn't support /SA, E /SA, or VL options 

Digital Equipment Corp. 

w System Vendors Benefit 

Supports cards for /SA, EISA, and VL 
buses as well as PC/ 

Take immediate advantage of new 
graphics developments 

• Not restricted to boards supporting 
Open Boot 

• Eliminates cost of engineering and 
deploying OpenBoot support 

Digital Equipment Corp. 
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w System Vendors Benefit 

Eliminates need to upgrade system 
firmware to support new options. 

Broader option support enables more 
specialized configurations for vertical 
markets. 

• Co-operative development with option 
vendors not required. 

Digital Equipment Corp. 

w PC/ Card Vendors Benefit 

Sell into growing RISC market with your 
standard PC offerings. 

Co-operative development with system 
vendors not required 

•Eliminates need to develop and deploy 
OpenBoot ROM 
• Lower engineering and material costs 

• Simpler distribution 

Digital Equipment Corp. 
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mary 

AT-BIOS Compatibility provides 
platform independence like OpenBoot 
on PC/. 

• Added advantage of supporting /SA, 
EISA, and VL cards. 

• Customers, System Vendor, and Option 
vendors all benefit significantly. 

• Available from Digital - Shipping today 

Digital Equipment Corp. 
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PCI Architecture BIOS Implications 

Tim Hennessy 
Product Development Manager 

SystemSoft Corporation 
313 Speen St. 

Natick, MA 01760 
(508) 651-0088/8188 (fax) 

Since the PCI architecture has been 
introduced to the personal computer, 
there has been significant impact on 
system BIOS. The system BIOS has 
required considerable enhancement to 
support both PCI devices and a Plug and 
Play aware environment. The purpose of 
this discussion is to focus on the areas 
that impact the BIOS directly. 

The primary BIOS consideration 
involves recognizing and automatically 
configuring PCI devices, both boot and 
non-boot devices. The configuration of 
these devices must be done with regard 
to other devices in the system, regardless 
of whether they are add-in devices or 
motherboard-resident devices, statically 
or dynamically configurable. The two 
specifications which govern the BIOS 
requirements are the PCI 2.1 BIOS 
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specification and the PnP l.Oa BIOS 
specification. While these specifications 
address the primary BIOS issues, there 
are areas in which BIOS designers and, 
as a direct result, system designers, can 
benefit from greater enhancements and 
improvements to the BIOS requirements 
as outlined in these specifications. 
SystemSoft will reveal what some of 
these enhancements involve. 

Of late, there has been a great deal of 
attention paid to PCI to PCI bridges. In 
being the first vendor to provide BIOS 
support for such bridges, SystemSoft has 
gained significant expertise in the area. 
The discussion will focus on the 
differences between peer to peer and 
hierarchical PCI bridge architectures as 
well as the BIOS implications and 
system recommendations for each. 



Multimedia Applications and PCI 

Mr. Mark S. Wodyka 
Vice President 

AITech International Corporation 
47971 Fremont Blvd. 
Fremont, CA 94538 

Ph. (510) 226-8960 Fax (510) 226-8996 
Internet E-Mail: Markw@Aitech.com 

Multimedia, a sometimes ambiguous 
term in the computer industry, is 
generally accepted as the convergence of 
computers with video, film, sound, 
animation, photos and text. The various 
media are digitized so that a computer 
can understand and manipulate them, 
allowing the user to control the 
presentation and delivery of information. 

Multimedia, the fastest growmg 
computer technology arena, has gone 
form four billion dollars in 1990 to a 
projected twenty-five billion dollars by 
the end of 1995. The major application 
areas for multimedia are in desktop 

431 

video, presentations, training, entertain­
ment, kiosks, desktop video networking 
and telecommunications. 

The discussion overviews the application 
areas of multimedia which will take 
advantage the rich features of the 
Peripheral Component Interface. 
Specific attention will be given to 
applications where previous limitation of 
CPU speed and bus transfer rates 
hampered the development of 
multimedia applications, such as: 
desktop video editing, full motion video 
capture, audio and video playback, and 
desktop video networking. 



DSP-Accelerated Multimedia for PCI 

Mark Clayton 
Ariel Corporation 
433 River Road 

Highland Park, NJ 08904 USA 
Phone: 908.249.2900 

E-Mail: Mark.Clayton@ariel.com 

Abstract 

The advantages of using DSP for advanced 
audio and video processing are well-known to 
users of ISA computers. The PCI platform, along 
with recent advances in DSP technology enable 
even higher performance systems capable of real­
time video processing, PC-based teleconferencing 
and acceleration of time-consuming data 
compression algorithms such as motion JPEG 
and MPEG. 

The Peripheral Component Interface (PCI) bus 
is a high-speed local bus used to interconnect 
multiple 32-bit devices with a synchronous, 
processor-independent interface at rates up to 
132 Mbytes/sec. PCI supports plug-in cards as 
well as motherboard devices, multimastering 
capabilities, auto configuration on power-up and 
full parity for mission-critical applications. PCI 
offers significant advantages over the ubiquitous 
ISA bus such as significantly faster data 
throughput, ease of installation and setup, 
reliable bus mastering capability and platform 
independence. 

Texas Instruments' TMS320C80 'MVP' DSP 
chip is the latest in the TMS320 series of DSP 
chips from the company and represents a 
significant departure from previous generations. 
The C80 chip includes four integer DSP cores 
and a 32-bit floating-point RISC core which all 
work in parallel. The C80 performs up to two 
billion operations per second and is well-suited to 
real-time processing of video and/ or audio 
signals. 
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Many multimedia applications can make use 
of the advantages of the C80 and PCI bus. For 
example, teleconferencing requires real-time 
audio and video decompression, both of which 
require massive amounts of processing power. 
For multimedia authoring, many existing and 
emerging compression/ decompression algorithms 
are asymmetrical with respect to processing 
complexity. For example, MPEG video requires 
many times the processing power to compress a 
video frame as it does to decompress it. Also, 
video and audio post-processing for preparing 
multimedia program content can significantly 
burden an unaccelerated system. 

PCI for Multimedia 

The PCI bus has many advantages for 
multimedia authoring workstations and for high­
performance end-user systems. The installed 
base of ISA-based MPC systems typically include 
a hardware-accelerated video card (possibly with 
a VL-Bus local bus interface) and an ISA-based 
sound card and modem card. Any real-time 
video (such as video-in-a-window) must be 
accommodated by special-purpose cards and/or 
supplemental over-the-top busses to handle the 
extremely high data rates. Data rates for audio 
input or output are more modest (176 Kbytes/sec 
for CD-quality stereo audio) so are easily handled 
via ISA plug-in cards. The data rates for MIDI 
and serial fax/ modems are even lower so little 
performance can be gained by the speed 
advantage of PCI. This is not to say that there 
are other advantages for PCI implementations of 
these devices (such as automatic configuration 



and portability), but in these cases the ISA bus 
performs adequately from a data flow perspective. 

640w x 480h x 16bpp x 30fps = 18.432Mbytes I sec. 

Uncompressed, full-frame live video requires 
a minimum of 18 Mbytes/sec, which is way 
beyond the capabilities of the ISA bus and can 
challenge even well-designed PCI systems. Even 
if the system handles the video data flawlessly, 
o~her bus activity (such as graphics drawing, 
disk or network I/O) may be impeded. A better 
solution for playback is to pass compressed video 
data over the PCI bus and add real-time 
decompression hardware to the video subsystem. 
This decompression hardware can include a 
dedicated function decompressor (such as C­
Cube or Indeo) or a general-purpose processing 
element like the C80 for compression or 
decompression. And, unlike a chip dedicated to 
a particular function and algorithm, the C80 can 
be programmed for virtually any audio or video 
compression scheme. 

Chip vendors have recognized the large 
potential market for multimedia playback 
systems (both desktop and set-top) and are 
already offering products that can perform these 
dedicated decompression algorithms many times 
faster than the host computer or conventional 
DSP chips. These chips offer substantial 
price/performance advantages for the high­
volume applications, but are only useful for 
decompression of video and/or audio encoded in 
a way that the chip is built to understand. 
Obviously, future enhancements (or bug fixes) to 
the encoding algorithm cannot be incorporated 
into any existing silicon while a programmable 
solution can adapt to new and improved 
compression algorithms. 

Another aspect to consider is asymmetry in 
the computational requirements of compression 
and decompression. Computational complexity 
of the compression algorithm is justifiably traded 
off in favor of both more effective compression 
and simplification of the decompression 
algorithm. This makes sense for authoring of 
multimedia material as the compression process 
occurs just once during the mastering of the 
media while decompression is performed every 
time each copy of the material is played. A 
dedicated DSP can ease the burden of the 
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compression of the material, to the point where 
literally hours of computer time may be saved in 
some instances. Consider a situation where 45 
minutes of 352 x 240 pixel video at 30 frames per 
second is to be compressed using the MPEG-1 
compression standard. Using a fast PC, each 
f~ame can be compressed in a few seconds, but, 
smce the PC can't compress the video as it comes 
in (i.e. in real time), the live uncompressed video 
must first be recorded to random-access storage 
or else an expensive frame-accurate video player 
can be used to present each frame in sequence. 
Assuming that the PC can compress one frame 
per second, 45 minutes of video would require 
22.5 hours of CPU time during which the PC 
could do little else. A single TMS320C80 can 
compress this video in real time so the job would 
be completed in 45 minutes and there would be 
no need to store the raw video at all. 

A C80 DSP implementation on PCI offers 
many advantages over ISA implementations. 
With a PCI interface to the host, high data rates 
on and off the DSP board can be achieved on a 
continuous basis. As demonstrated above, real­
time processing of video and/or audio can make 
a huge difference in computation time as well as 
other required system resources. The full 
multimastering capabilities of PCI can be used 
again to greatly accelerate the data processing 
job at hand. For example, a bus mastering disk 
controller can transfer audio or video data 
directly from disk to the DSP subsystem without 
intervention from the host's CPU. Similarly, a 
bus mastering DSP subsystem can blast pixel 
data directly to a display's frame buffer. And, of 
course, the user gets the other PCI benefits such 
as plug-and-play automatic configuration, host 
platform independence and (finally) a robust and 
well-defined board-level interconnect for desktop 
computers. 

DSP Backgrounder 

Digital Signal Processing can be simply 
defined as the manipulation of analog signals 
that have been converted to digital values in 
order to perform a useful function. While the 
mathematical field of DSP has been around for 
centuries, it is only in the past 10-15 years that 
general-purpose DSP chips are available. These 
chips are similar to conventional 
microprocessors, but have a number of 



architectural features that boost the performance 
when performing DSP-related arithmetic. For 
example, a common DSP operation is to multiply 
a sequence of numbers by another sequence of 
numbers and then add (or accumulate) the 
products. On most general-purpose CISC and 
RISC processors, this requires a separate 
multiply and add instruction, plus any extra 
cycles for address register updates. Also, integer 
and floating point multiplies are multiple-cycle 
instructions in virtually all conventional CPUs. 
DSP CPUs can perform a multiply and 
accumulate all in a single instruction cycle and 
have other features making them well-suited to 
dealing with massive amounts of real-time data. 
Some of the characteristics of typical DSPs 
include saturation arithmetic (numerical 
overflows saturate to full-scale values rather than 
wrapping around), fast interrupt latency (to 
respond to real-time interrupts), one or more on­
chip DMA channels, multiple external memory 
buses and parallel or serial communication ports 
(for interconnecting multiple DSPs and/or I/O 
channels). 

Simpler DSP chips are so cost-effective that 
most mid- and high-line MPC audio cards 
incorporate one for music synthesis, mixing, 
equalization, level control and other functions. 
These DSPs can also be used for fax/modems, 
voice recognition, text-to-speech and general­
purpose number crunching. However, this 
generation of DSP is generally inadequate for 
video processing at anywhere near real-time 
rates. For this, a more advanced architecture 
was required: The TMS320C80. 

The Texas Instruments TMS320C80 DSP 

The TMS320C80 DSP diverges from the (until 
this point) upward-compatible TMS320 series of 
digital signal processors with a new advanced 
architecture that combines four integer DSPs and 
a 32-bit floating-point RISC core on a single chip. 
The table below summarizes the key features of 
the C80. 
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2 billion operations per second @ 50 MHz 

Integrated onto a single chip: 

Four Advanced Digital Signal Processors 
(ADSPs) 

100 MFLOPS 32-bit RISC Master Processor 
(MP) 

Transfer Controller (TC) - intelligent DMA 
controller 

Two video memory Frame Controllers (FCs) 

50 Kbytes of SRAM in 25 2K blocks 

Memory crossbar switch supports 15 
concurrent accesses per cycle 

4 million transistors, 0.6 micron process 

305-pin PGA, 7.5 W@ 3.3 V 

TMS320C80 Key Features 

The four ADSPs work in parallel with the 
RISC Master Processor and are fed data and 
programs through the memory crossbar switch to 
the 25 banks of internal memory. This memory 
is also accessible to the intelligent Transfer 
Controller which acts as a super DMA controller 
for moving data and programs on and off the 
chip. All told, the C80 can move 4.2 gigabytes of 
data per second within the chip plus up to 400 
Megabytes/sec to off-chip memory. 

The four ADSPs utilize a 64-bit instruction 
word to support multiple signal processing, bit­
field/pixel manipulation and entropy 
encoding/ decoding operations per instruction 
cycle. The 100 MFLOPS RISC CPU has a new 
architecture optimized to run code generated by 
high-level language compilers such as C. The 
RISC core has a separate floating point adder, 
multiplier and integer unit, all of which can run 
in parallel. 

The dual frame controllers can interact with 
two video frame buffers simultaneously. These 
buffers can be connected to video capture and 
display devices. PAL, NTSC, interlaced and non 
interlaced as well as progressive scan formats are 
supported. The Transfer Controller directly 
controls the external memory connected to the 
CBO DSP. This memory can be SRAM, VRAM, 



DRAM or a combination of the above. The 
Transfer Controller also performs automatic 
endian conversion between big- and little-endian 
systems as well as handling dynamic bus sizing 
of 1, 2, 4 or 8 byte widths. Data transfer rates 
up to 400 Mbytes/sec are supported by the 
Transfer Controller between the C80's internal 
RAM and external RAM. 

a RISC 

Master § Processor 

'--r--.---' ' 

ADSP 
I 

ADSP ADSP j ADSP 

""" °""' 32 .. ...... 
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" ,-------, 
32 
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TMS320C80 Block Diagram 

With a peak rating of 2 billion operations per 
second, the C80 can handle complex tasks well 
beyond the ability of the PCI host's CPU. The 
chart below lists some of the capabilities of a 
single TMS320C80 DSP. 

2 billion operations per second @ 50 MHz 

130K Dhyrstone MIPS (MP alone) 

JPEG encoding of 352x240 image (4:2:2 
format) in 8 milliseconds. 

Decoding of same image in 6 milliseconds 

DCTs on 8x8 kernels at 800,000/second 

700,000 shaded polygons/second 

Px64 encoding and decoding at 30 fps 

Real-time MPEG-1 encoding (CIF resolution) 

TMS320C80 Capabilities 

Another key issue to consider when 
comparing a software-only solution to a special­
purpose DSP subsystem is that the DSP works in 
parallel with the host's CPU. While the DSP is 
working, the host CPU can be left free to attend 
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to its normal functions of dealing with the host 
operating system, disks, display, keyboard, etc. 
This is especially important when time­
consuming tasks are being performed, as using a 
dedicated, attached DSP can release the host 
computer for other uses concurrently. 

The Griffin Board 

The Griffin board mates a 50 MHz 
TMS320C80 DSP with memory, modular 1/0 and 
a high-performance master/ slave PCI interface. 
As a PCI slave, a Griffin may be the target for 
host data transfers or from other bus master 
devices such as fast disk controllers. As a PCI 
master, a Griffin can (under control of the host) 
directly transfer data anywhere in system 
memory. Modules for NTSC video in and video­
in-a window are planned initially, and others will 
follow. For example, the base Griffin board 
includes a single high-resolution RGB video 
output. With an additional channel of RGB 
output on an 1/0 module, the system is now 
capable of stereoscopic 3D graphics for virtual 
reality systems. Other stackable modules could 
include additional memory, parallel or serial 1/0, 
audio 1/0 and other special-purpose interfaces. 

128K x 32 

Master/Slave 
Bus Interface 

Host PCI Bus 

24-bit 
RAMDAC 

Griffin Block Diagram 

Video 
Output 

For dedicated, standalone applications, it is 
possible for Griffin to boot from its 128K x 32 
nonvolatile EEPROM memory. This memory can 
also be used to store user or application 
preference data, error logging, serial number or 
other product information and proprietary 
algorithms. 



There are three data paths from the C80 to 
the PCI bus, each optimized for a particular type 
of data transfer. The simplest is a set of mailbox 
registers that may be used to signal user-defined 
events. The mailbox registers may be accessed 
asynchronously with respect to other types of 
data transfers through the board. There is also a 
4K x 32 bit dual-ported RAM placed between the 
C80 and the PCI bus. This RAM can be used for 
program loading, parameter and status passing 
and for quickly moving relatively small chunks of 
data. Finally, the bi-directional 512 x 32 bit 
FIFO is ideal for streaming arbitrarily large 
blocks of data on and off the board. The host (or 
any other PCI bus master) can set up the Griffin 
to automatically transfer data from anywhere in 
memory to the C80 and visa-versa. 

processing elements inside the C80 chip. 
Fortunately, the chip designers foresaw this 
situation and created a special emulation/ debug 
port directly on the C80's silicon. This port is 
based on extensions to the IEEE 1149 .1 JTAG 
standard for in-circuit testing of chip devices. 
The emulation interface permits complete control 
of the C80 and its peripherals and memory either 
through the PCI host (a JTAG controller circuit is 
included onboard Griffin) or through a remote 
debugger that attaches to the Griffin's JTAG port 
via a simple ribbon cable. While the C80's 
instruction sets are unique, the debug and 
development tools will be familiar to anyone with 
experience with the Texas Instruments XDS tools 
for the TMS320C3x, TMS320C4x and 
TMS320C5x series DSPs. 

Features Benefits 

Master/ slave PCI Interface High-speed 32-bit bus for highest host 
throughput 

64-bit memory architecture Maximize TMS320C80's bus bandwidth 

8 MB DRAM memory space Vast storage for programs and data 

4 MB on-board frame buffer for RGB video High-resolution output even in 24-bit color 
output - 64-bit organization. modes 

Stackable I/O modules Adaptable to various I/ 0 requirements 

Allows customizable I/O Custom and embedded applications 

Additional video output in RGB or Flexible I/O configurations 
NTSC/PAL/Component video formats 

512-word bi-directional FIFO and 4K x 32 High-speed data channel between the C80 and 
dual-port RAM between C80 and host the host 

512 Kbyte nonvolatile Flash memory Standalone or embedded applications 

JTAG port and on-board controller chip Use familiar XDS debug tools 

The on-board RGB output is backed with 4 
Mbytes of VRAM and is capable of resolutions up 
to 1600 x 1280 with 64K colors. 24-bit color 
modes are available up to 1024 x 768 resolution. 
The high-performance RAMDAC includes a 
hardware overlay plane, dynamic color look-up 
tables in low bit-per-pixel resolutions and gamma 
correction tables in true color resolutions. 

Debugging such a complex system might 
seem daunting as many of the board's resources 
are not directly accessible to the host, and there's 
the added complexity of five independent 
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The TMS320C80 DSP on the Griffin board 
requires 3.3 volts rather than the more usual 5 
volts for digital logic. PCI supports both 3.3V 
and 5.0V signaling, which is accomplished via 
keys in the edge connector. This makes it 
impossible to install a board into an incompatible 
slot. The C80 requires up to 7.5 Watts at 3.3 
volts, but there is no guarantee that all PCI hosts 
will have sufficient 3.3V power available (or any 
3.3V power at all, for that matter). So, the Griffin 
board includes a DC-to-DC converter to derive all 
of its power from the host's 5V supply. 



Applications 

The Griffin board has many applications in 
the fields of multimedia, general-purpose signal 
processing and number crunching, 
communications and military/ industrial 
products. 

Multimedia authoring 

Real-time audio/video processing 

Real-time and near-real-time compression 

Graphics rendering 

Virtual Reality 

Spatial sound processing 

Stereo image rendering 

Teleconferencing 

Real-time audio/video compression 

Protocol conversion 

Video-in -a -window 

Commercial / Industrial / Military 

General-purpose, high-performance signal 
processing 

Medical image processing and display 

Scientific visualization of complex data 
sets 

Commercial-off-the-shelf DSP systems 

Machine vision and real-time video 
processing 

Embedded video processing systems 

OEMs 

Custom, stackable I/O and memory 
modules 

Special configurations for high-volume 
applications 

Graphics and image processing libraries 

Griffin Applications 
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Summary 

The PCI bus enables new applications for 
desktop computers when coupled with the 
TMS320C80 DSP. The Griffin board is well­
suited for real-time video processing and has 
many potential applications in multimedia, 
teleconferencing and other areas. For special 
applications, the modular Griffin architecture 
supports multiple, stackable I/O or memory 
modules and the on-board JTAG emulation port 
makes in-circuit debugging a simple task. 

The CSO and the Griffin bring the best of the 
new while retaining a path to the familiar. The 
faster and more robust PCI bus supplants the 
ubiquitous ISA bus and the C80's novel, new 
architecture is supported by an industry-leading 
manufacturer and familiar development tools. 
Griffin represents a leading-edge system that 
delivers the highest possible performance from 
both PCI and the C80. 



PCI BASED MULTIMEDIA 

Rainer Hoffmann 
Thesys Mikroelektronik 

Haarbergstrasse 61 
99097 Erfurt, Germany 

ABSTRACT 

The paper covers the requirements of adding 
Multimedia capabilities to the PC platform. The 
PCI bus is discussed as a foundation for such 
capabilities and is compared to alternative 
architectures. Considering an application oriented 
approach, a list of Multimedia capabilities is 
compiled. Based on these prerequisites the design 
of a single chip Multimedia 1/0 chip is described. 

THE TRADITIONAL WAY 

Conventional wisdom says that if you are doing a 
Multimedia card, make it an ISA one. There are two 
reasons why ISA has been and still is the bus for 
just about every Multimedia card in the known 
universe. 

1: ISA slots are in every PC and everybody wants 
the biggest TAM available. 

2: Multimedia cards, such as sound cards or 
simple video capture cards, either did not 
require high bandwidth from the bus or they 
worked their way around the limitations of the 
ISA bus. 

Things are changing, though. These changes are 
driven by the arrival of video as a Multimedia data 
type. When video first arrived on the desk top, 
designers had no choice but to use their own 
special interface just to display full rate video on 
a monitor. In those days one would not begin by 
defining an industrial standard and then design 
the products. As a result, designers were stuck 
with an oddity called the feature connector. And 
god knows they have paid for their negligence. 
Besides incompatibilities, the major drawback has 
been that the video data stream bypassed the 
system and went directly to the monitor. This 
architecture increased the system cost more than 
it should and solved only part of the applications 
requirements. This kind of architecture could not 
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handle situations effectively where applications 
would want to process the video, nor could this 
kind of interfacing support more than one source 
of the video. Hardware compression was the only 
way of making even VHS quality video data 
available for processing. The additional cost of the 
hardware compression limited the appeal of such 
solutions to the broad market. Today we have high 
performance CPUs and high speed hard disk 
systems that could handle higher data rates 
directly. It is probably not wrong to assume that 
in the future even more powerful standard system 
components will allow more economical video 
solutions, if there is a way of getting the video to 
them. 

If video is to become a part of just about every PC, 
things have to become less expensive and video has 
to get to every system component, not just the 
monitor. 

AS GRAPHICS GREW UP 

Graphic chip manufacturers have been 
approaching the issues of bus bandwidth for some 
time. The true performance revolution has come 
from the use of local buses as the system 
interface. The commercial and technical ratio 
behind local buses has moved the entire PC market 
to adapt these buses. As video can be considered a 
special case of graphics, the same ratio can 
provide significant benefit to video applications. 
One interesting side note may be added here. The 
first widely used local bus has been the VL bus. 
This bus was defined by VESA, an organization 
who's primary interest is in graphics. The VL bus 
has many benefits to the PC market; still it has 
been quickly realized that focusing on the 
requirements of the graphic system alone will not 
necessarily provide a good solution for the entire 
system. The radical swing of the market away from 
VL towards PCI has proven that a well defined 
interface, which provides benefits to the entire 



system, will provide enough economical benefit to 
change the market in its favor. 

THE MULTIMEDIA APPLICATION 

There is of course no such thing as the Multimedia 
application. Still we can make a list of things that 
a typical Multimedia application will use. The 
point I am trying to make is that if we were to 
conceive the theoretically best Multimedia 
component, this component should be able to cover 
all of the required capabilities. As of today, when 
we open a Multimedia ready PC we will find 
multiple cards that all solve their individual part 
of a Multimedia applications task. One card offers 
the sound features, another one will capture and 
overlay video and yet another will do MPEG 
decoding. The modem function will occupy another 
card or reside outside. As we move into the age of 
the Multimedia PC for just about everybody, such 
variety becomes a commercial disaster. 

Let's make a list of functions that are part of a 
Multimedia application. First of all, we need 
sound. Sound will be generated by the PC and may 
also come from a prerecorded medium such as a 
CD. We will also need video. Again, with the 
entrance of MPEG we will see prerecorded video 
and graphics data generated by the CPU. One 
requirement is to combine the PC generated 
component with the prerecorded components. For 
audio this boils down to an audio mixer. For video 
this dictates the need for at least a pixel 
resolution mixing of video with graphics and a way 
of displaying the result. 

The more tool-like Multimedia application such as 
video phones require efficient ways of moving the 
Multimedia data into and through the system. 
Possible tasks range from capturing to getting the 
compressed data to the decompression hardware. 

One way of getting all these function on one board 
would be to put everything into a single chip. 
Another way could be to build chip that would 
work as a bridge between a system bus and 
subsystems on the board. Actually it is not that 
important how many functions are integrated into 
the chip. The point is that it has just one system 
interface. Such a chip is similar to a Multi-1/0 
chip. That is why we called it a Multimedia Multi-
1/0 chip. 
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HOW TO INTERFACE A MULTIMEDIA MULTI 1/0 

The number of possible interfaces is definitely 
higher than one, so lets reduce the number of 
candidates one by one. 

The one major headache for hooking up video is 
bandwidth. The nasty thing about video is it comes 
into the system in real time. The incoming data 
has to be processed at the rate of the incoming 
video data. One trick to reduce the bandwidth 
demand is to scale the video to a smaller format. 
The required average bandwidth goes from about 1 
MB/s (that is M for 10E6) for a 160x120 format at 
30 frames per second (fps) with 16 bit color depth 
to about 33 MB/s for a full size PAL format 
(768x576@ 25 fps) using true color format. Table 
1 demonstrates how the bandwidth requirement 
goes up with the image size. The required peak 
bandwidth varies, of course, with the size of your 
FIFO. If one would try without a FIFO the peak 
bandwidth would even reach 44 MB/s for full 
format PAL at 25 fps in true color. 

MB/s MB/s 
# # fps pixel/s @ 16 @ 24 

horz. vert. bit bit 
pixel pixe color color 

s 1 s de..E._th de_Q_th 

160 120 30 576.000 1 2 

320 240 30 2.304.000 5 7 

352 240 30 2.534.400 5 8 

640 480 30 9.216.000 18 28 

384 288 25 2.764.800 6 8 

768 576 25 11.059.200 22 33 
Table 1. Average bandwidth requirements over 
image format 

There go ISA and EISA, and on the little more 
exotic architecture side we can also exclude: 
RS232, SCSI, IDE, Access.bus and, of course, the 
keyboard and PS/2 mouse interface. I presume we 
would like to use an electrically clean and well­
defined bus. Therefore we can add to the list of 
'you shouldn't even think about it' good old VL­
bus and the all time favorite, the popular feature 
connector. 



Let's see! We have come down with three 
candidates for the title: VAFC, VMC and PCI. 

VAFC provides the designer with a technically 
sound and very economical way of displaying video 
on a graphic screen. Still, all video subsystems 
require a second bus interface to the system for 
doing things like configuration and capturing. As 
a reaction to this issue, companies have come up 
with their own special flavor of VAFC. This 
common approach of fixing things that were left 
out of a standard has in the past provided us with 
many delightful defacto non-standards. Even those 
special VAFCs are still not capable of handling 
sound, nor are they a likely candidate to hook up a 
DSP to your system. The biggest issue with VAFC 
is: it isn't even a bus. It's a point to point 
connection between one video card and one 
graphics card. Try to get yourself a capture card 
and a MPEG card and hook those up via VAFC. You 
should leave the computer case open, because you 
have to switch cables when you want to see an 
MPEG video after having captured some pictures 
for the family album. Sorry, but we only have two 
candidates left. 

VMC was defined as a bus to handle video and all 
the other data types required for the tasks 
described above. It is technically sound and quite 
capable. The only issue not completely clear is 
how do we get data to and from the rest of the 
system? We have two choices, either to do all 
communication through the graphic controller or 
get a bridge between a Multimedia capable system 
bus and VMC. As we have only two candidates left 
over I should probably have written PCI instead of 
'Multimedia capable system bus'. The everything 
through the graphic card approach is not 
especially attractive to graphic chip designers 
that are trying to squeeze every single byte per 
second of bandwidth out of their memory interface 
just for display refresh and fast drawing. The 
audio and compression related data transfers 

. could take a major byte out of the available 
bandwidth. Since upcoming things like 30 are not 
likely to reduce the bandwidth hunger of the 
generic graphic card tasks, we better try to do it 
the other way. 

To be completely honest, if this would have been 
written in January 94, this would be a paper about 
a VMC to PCI bridge. The architecture is quite 
appealing. VMC reduces the bus load on the PCI to 
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only the necessary part. Simply displaying a video 
picture would not take a single megabyte of the 
PCI bandwidth. The only problem is that you need 
a graphic controller that has a VMC interface in 
your system. Many people have announced VMC 
graphic controllers, none has been seen yet. The 
reason for this is partially the old chicken and egg 
problem. Who would deliver video on VMC to my 
VMC graphic controller, if I were to bring one to 
the market? For sure this problem will be resolved 
as people are teaming up to finally get things 
going. The second reason is more serious. It can be 
summed up by a single number: 44. This is the 
number of pins that you have to add to your 
graphic controller to have a 32 bit VMC interface. 
As things are moving towards 0.5µ and even 
further, being pad limited becomes a serious 
concern. Pad limited refers to situation where 
your chip has to be bigger than the logic that you 
want to put on the chip would require because you 
have too many pins. A few semiconductor 
manufacturers offer special technologies to fix 
this issue. Still, the most common approach is just 
not to have too many pins. As a result of this 
discussion, it is probably not wrong to assume 
that not every graphic controller will have a VMC 
interface. This of course limits the TAM for any 
VMC based solution and is just a nag. Our guess is 
that VMC can be a choice for optimized systems, 
but the main bulge of the business will not use it. 

AND THE WINNER IS - PCI 

It seemed to be a natural choice to make some good 
remarks about PCI at a PCI conference. So it is my 
pleasure to declare PCI as the Multimedia bus. The 
ratio seems straightforward: 

a) PCI provides the bandwidth, 
b) the system wide access and 
c) the biggest TAM available, 

when compared with alternatives that 
provide a) and b). 

On the negative side of things are uncertain bus 
latencies, unguaranteed bandwidth into system 
components, and the concern that the Multimedia 
traffic will clobber the entire bus. The latency 
problem relates directly to the required FIFO 
depth, since you have to buffer the incoming video 
data until you get access to the bus. At this point, 
it is time to thank the guys at Intel for their 
pioneer work done on sending video over the PCI 
bus. The result of their efforts is now being sold 



by Philips as the SAA7116. Their experience, that 
they very generously share, has been that you can 
configure most systems in a way that makes 
Multimedia traffic possible. But the issue is not to 
be underestimated. Very many parameters are 
involved in finding what the real performance of a 
given PCI system for Multimedia purposes is. For 
the sake of the market there should be a set of 
measurements that can identify a system as 
perfect, good or maybe even unusable for PCI 
based Multimedia. This would allow manufacturers 
to put a PCI Multimedia performance requirement 
statement on each product, just as we have the 
hardware and software requirements today. If the 
industry decides not to hurt anybody and avoid 
such benchmarks, it will not be to the benefit of 
PCI as a Multimedia bus and, thus, not for the 
benefit of the industry itself. 

For the time being let's stick with the statement 
that PCI can hold Multimedia traffic and explore 
the potential of this statement. 

SCALER2/PCI - A MULTIMEDIA MUL Tl-1/0 

Since 1993 we at Thesys offer Multimedia 
solutions that integrate video into the PC 
environment. As we strongly believe that 
Multimedia products have the same price pressure 
that their consumer counterparts face, we have 
been sticking from the start with the shared frame 
architecture. The only issue that we have with the 
current implementations is that we have to provide 
a separate chip for every graphic controller that 
we want to support. Hooking the video processor 
via PCI to the graphic controller gets rid of that 
pain. PCI also provides us with an opportunity to 
build a part that eventually will be able to handle 
more Multimedia tasks in a useful way. 

The primary task for our Scaler family is to take 
data that comes into our chip as digital video data, 
filter it, scale it and do some color space 
conversion on it. The second thing is to take that 
video data and display it. Displaying it is more 
than just switching to full screen video or having 
the video run by itself in a window. MPEG, for 
instance, is and will be used as prerecorded video 
data that interacts in some way with PC generated 
graphic as a means of user interaction. A simple 
example of this is a Karaoke title that contains 
multiple languages from which the user can 
choose. The text will be generate by the CPU. As 
experts in this field will assure you, it is 
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absolutely necessary that the text will be 
displayed within the video. Therefore we need a 
mechanism to mix the video with the graphics. 
This sounds easy enough, but it brings up several 
issues. Traditionally, you would use an overlay 
architecture, have dedicated (additional, wasteful, 
... ) memory for the video, and use color keying to 
replace every graphic pixel of a certain color with 
the corresponding video pixel. Now that everybody 
wants to save money, the idea of using a shared 
frame buffer is becoming more popular. The 
shared frame buffer architecture gets rid of the 
second memory system for video by storing the 
video data inside of the graphics memory, 
effectively treating it as normal graphic data. But 
beware, mixing video and graphics in a shared 
frame buffer architecture is not as easy as some 
people think. It takes some care to guarantee that 
the refresh of the video and the refresh of the 
graphics are synchronized. A simple mask that 
decides whether to overwrite or not to overwrite a 
graphic pixel by a video pixel will work fine with 
stationary graphic overlays, but might provide 
some undesired effects when the graphic object 
starts to move. Fixing this issue requires full 
access to the memory where the graphic comes 
from. This is traditionally the memory of the 
graphic controller. As new graphic architectures 
come to the market, other places might become the 
source of the data. For instance WinG, the 
Microsoft game API, will render in main memory 
and copy the entire screen to the graphic memory 
when the drawing is finished for that frame. This 
could also need some help, could it not? The 
Scaler2/PCI will actually take data from anywhere 
in the system, merge that data with the incoming 
video, do some processing and send it to the 
graphic memory, all under the timing regime of 
the video. This effectively eliminates any chance 
for video and graphic to get out of sync and 
therefore eliminates all related artifacts. The 
bandwidth requirement of such a configuration 
will put a very heavy burden onto the PCI bus. Our 
calculations show that a good PCI system will be 
able to handle this. Still as an architectural 
element that can significantly off-load bandwidth 
from the bus, Scaler2/PCI has a memory interface 
for optional memory. This memory could also be 
used by the second major functional block: the DSP 
interface. 



INTERFACING A DSP VIA PCI 

The primary motivation to put a DSP into a PC 
system is for audio purposes. Audio comes in 
many flavors. There is Blaster type sound card 
audio, wave table audio, modem and fax audio. A 
single DSP based audio solution can cover all of 
these applications. This has been demonstrated by 
DSP-based sound cards already. The potential of 
using a DSP has been increased by Microsoft with 
the introduction of the DSP platform. This 
software interface will make DSP capabilities 
available to Windows95 applications. Obviously 
the hardware architecture has to support these 
efforts. Putting the DSP on an ISA interface is a 
very efficient way to clobber system performance 
when the DSP is receiving or sending data. This 
becomes a real tragedy for systems that have a PCI 
bus. The ISA bus in these systems is implemented 
by a PCI to ISA bridge. Pushing the ISA bus to its 
limits will also block the PCI bus. This is what I 
call a waste. In contrast, the interface we have 
chosen is a PCI master providing to the DSP a DMA 
type access to and from the system. The bandwidth 
requirements of full CD quality audio can be 
satisfied with a small percentage of the total 
capacity of the PCI bus. This interface could also 
serve to send very high bandwidth data to the DSP. 
Now that software has finally realized the power of 
DSP computing, hardware shouldn't be in the way 
of new DSP applications; one of which is obviously 
MPEG audio en- and decoding. 

HOOKING UP MPEG 

MPEG will play a major role for everybody that is 
involved in PC based video. The MPEG market is so 
promising that people come up with new ways to 
get video into the PC. Besides doing it the old 
fashion way with an overlay controller, there have 
been some proprietary interfaces introduced 
lately. From a hardware designers point of view 
there are two basic task to be solved for a MPEG 
card design. First you must get the compressed 
video stream to the MPEG decoder. Some newer 
decoders provide direct CD drive interfaces, which 
makes perfect sense since they have been designed 
with standalone consumer type products in mind. 
For a PC this kind of interfaces will work with 
most applications we have today, but what if we get 
this thing called the information superhighway? 
In a PC environment we will see MPEG coming from 
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almost anywhere in the system, not just the CD­
ROM. Now, why not let the CPU pump the data to 
the MPEG decoder? The answer to this is that there 
is a better way of doing it. A PCI master controller 
could transfer the data. By integrating this 
function with other functions, such as the video 
data transfer and the DSP data transfer, this could 
even be achieved without a heavy investment in 
silicon real-estate. This would off-load the CPU 
and make the playback task more multitasking 
friendly. In other words, it would provide an 
efficient solution for things to come, one of which 
will be MPEG2. MPEG2 will raise the amount of 
data to be moved to the decoder from about 150 
KB/s to anywhere from that amount to more than 1 
MB/s. Anybody that has tried to satisfy a hungry 
sound card with CD quality 44 kHz/16 bit stereo 
audio, which is about 176 kB/s, knows that even 
this modest requirement can be a problem, 
especially if you try to do this while running a 
certain operating system on your machine at this 
time. 

The second task is to display the decoded video 
data. As this data is of the same format as live 
video data it can be treated just the same. 

THINGS TO COME 

In the future Multimedia applications will call for 
new features and for less expensive 
implementation. Topping of the list of new 
features for us is 3D graphic support and 
interaction between video and 3D graphic. Using 
the Multimedia MUL TI-1/0 as our basic 
architecture, we will add 3D capabilities to the 
system. 

MPEG decoding in software is currently making 
waves. Today even the most powerful PC's have just 
enough horse power for basic decoding, if there is 
some hardware that helps to do part of the job. We 
are focusing our design efforts on a generalized 
form of this cooperation between existing 
processing power and helping hardware. 
Hardware-software co-design tools help us raise 
the performance of a system for a given task above 
the required limit. This kind of approach is also 
at the core of our cost reduction efforts, which 
will be focused on using the DSP for things beyond 
the basic audio tasks described above. 



IT'S ALL IN THE GRAPHICS CARD 

The tight coupling of video and graphic has 
brought about a new class of graphic cards that 
include Multimedia functions on the graphic card 
itself. These cards are less expensive and provide 
better quality to the customer than two board 
solution. The movement towards those integrated 
solution is accelerated by graphic chip 
manufacturers that develop special architectures 
around their graphic solutions. Most of theses 
concepts solve the display of the video issue, some 
are trying to cover audio as well. The one issue 
none of these special architectures approaches is 
the upgrade issue. True, we can use more gates 
today than we could before, and also true the 
know-how to process Multimedia data is much 
more wide spread than it use to be. As a result we 
can do many new things. Some people even believe 
they can do everything. Still, the one thing we will 
never be able to do is to fix tomorrow's problems. 
That's why PCI is a much better choice as the 
Multimedia interface than optimized proprietary 
interfaces. Integrated and cost optimized solutions 
will only be of true value to the customer if they 
make their resource available through the PCI bus. 
If they meet this requirement they are open for 
future upgrades. 

AN OEMs VIEW OF MULTIMEDIA 

As Thesys is not an OEM, we can only speculate on 
what the view of an OEM could be. I think it is safe 
to say that OEMs prefer to have the solution that 
costs the least in its category. Probably the OEM 
also prefers to have the smallest possible number 
of different Add-On cards. Also it is wise for the 
OEM to be flexible in the configuration of their 
systems, in order to be able to cover the varying 
demands of the end customers. The last two points 
seem to be contradicting. Still, it is possible to 
satisfy both targets by finding or defining 
elementary tasks that simply belong together. I 
hope to have shown that a PC that is to be called a 
video ready Multimedia PC requires both audio 
and video and the corresponding merging 
functions. Given that you can build a single PCI 
card that covers all of these functions, it would 
give the OEM the option to take a plain vanilla 
motherboard and turn it into a Multimedia PC with 
just one board. Since the proposed solution, the 
Multimedia Multi-1/0, uses the least overhead and 
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the most cost effective architecture to supply 
these features, it will also meet the number one 
requirement: 

The most bang for the buck. 



PCI based Graphics board for high performance GUI acceleration and 3D graphics 

Chris Russell 
Marketing Manager, 3-D Graphics 

Cirrus Logic 
3100 W. Warren Avenue 

Freemont, CA 94538 
Ph. (510) 226-2358 Fax (510) 252-6070 

The advent of high performance graphics 
chipsets such as the Cirrus Logic 
GD5470/71/72 enables a new breed of 
Pentium/PowerPC machines with PCI to 
achieve the performance traditionally 
associated with the workstation market. 
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The presentation will cover the 
emergence of the 3D based PC market, 
the technologies such as PCI that are 
making it possible and also the specifics 
of the Cirrus Logic Chipset. 



A PowerPC Add-On Graphics Board 

Ken Comstock 
Diamond Multimedia Systems, Inc. 

2880 Junction Ave. 
San Jose, CA 95134 

( 408) 325-7000/7070 (fax) 

The PowerPC architecture requires 
different add-on boards than those suited 
to the general PC market. A new 
graphics board from Diamond 
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Multimedia System illustrates the 
requirements and points the way to 
further developments in this area. 



OPEN FIRMWARE AND PCI 

Mitch Bradley 
Firm Works 

480 San Antonio Road, Suite 230 
Mountain View, CA 94040-1218 

wmb@firmworks.com 

ABSTRACT 

IEEE Standard 1275-1994 for Boot Firmware 
(based on Sun's "Open Boot" firmware) was approved 
In April, 1994. The specification defines the boot 
firmware more commonly known as "Open Firmware". 

A group of companies ls proposing the use of 
Open Firmware for PCI Local Bus add-In cards, to 
ellmlnate the need for a different boot driver for each 
different CPU type. 

Open Firmware ls a CPU-independent, bus­
lndependent, and operating-system-Independent 
specification for the firmware that lives In main 
system ROMs, with the following features: 

• Autoconfiguratlon of add-In cards on multiple 
buses 

• CPU-Independent booting from add-In cards 

• CPU-Independent selftest for add-In cards 

• Built-In debugging tools for hardware, software, 
firmware 

• Extensible NVRAM configuration options 
management 

• Built-In scripting language for patches and tests 

• Autoconfiguratlon assistance for operating 
systems 

Open Firmware ls based on technology that has 
been shipping for many years, on over 1 million 
systems. Compatible Implementations of Open 
Firmware are currently available for a number of 
different CPUs. 

This presentation gives an oveIVlew of Open 
Firmware and Its application to the PCI Local Bus. 
The talk includes both technical Information and the 
business case for firmware standardization. 
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officer of FlrmWorks, a consulting firm speclallzlng In 
providing Open Firmware system ROMs, device 
drivers, and training. Prior to founding FlrmWorks In 
Febrwuy, 1994, Mitch was the technical leader of the 
firmware group at Sun Microsystems Computer 
Corporation. where he conceived and developed the 
Open Firmware concept. He ls chairman of the IEEE 
Pl275 Open Firmware Working Group, which 
developed the Open Firmware standard, and vice 
chairman of the ANS X3/Jl4 Technical Committee, 
which developed the ANSI Forth standard. His 
educational background Includes degrees In various 
technical disciplines from Vanderbilt University, 
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IBM Perspectives on PCI's Use with its PowerPC Products 

Lee H. Wilson 
IBM Power Personal Systems 

Mail Stop 4357 
11400 Burnet Rd. 
Austin. Tx 78758 

Phone:512~838-6569 

E:Mail: Ieew@ausrin.ibm.com 

IBM has made it clear that PowerPC is our 
strategic processor technology. Our strategy for 
PowerPC iS clearly a multi-OS strategy. 
PowerPC will become a Wlifying theme 
throughout our product family as our strategies 
continue to unfold. We are committed to using 
PCI. PCl provides for the support of multiple 
processor architectures. We have had a number 
of discussions with the PCI development 
community on issues that have arisen in 
supporting this open environment. Firmware 
issues, big and little endian issues and processor 
bus issues arise frequently since we have some 
different requi~ments in these arenas. We have 
identified other areas of interest that we would 
like to bring to the industry's attention as well. 
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Our presentation will touch on the following 
subjects: 

• 
• 
• 

• 

"' 
"' 

• 
• 

• 

• 
• 

Our reference platform for PowerPC clients 
- today and tommorrow. 
Bi-Endian issues 
Should we use PCl·b~ graphics or 
processor bus-based graphics? 
Where is PCI applicable to multi-media and 
where is a real time bus like VMC 
applicable? 
Our move to open firmware. 
What are we doing about runtime firmware 
support? 
PCI error recovery 
Do we need new arbitration schemes that 
support real time requirements? 
Implications of multiple host bridges in a 
system 
64 bit addressability 
3rd party data moving mechanib-ms 
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INTRO TO THE HP PCI BUS EXERCISER 

Tom Shanley 
MindShare, Inc. 

2202 Buttercup Drive 
Richardson, TX 75082 

Tel: (214) 231-2216 
Fax: (214) 783-4715 

Email: mindshar@interserv.com 

Abstract 

This paper provides an introduction to the HP PCI Bus Exer­
ciser. The exerciser may be utilized either as a passize ob­
server or as an active participant. In the role of passive ob­
server, it captures and verifies the proper protocol of PCI bus 
traffic originated by other PCI bus masters. As its name im­
plies, the exerciser may also be used to generate PCI bus 
transactions. It can act as either the bus master or as the 
target of PCI transactions. 

This paper identifies the key hardware and software compo­
nents of the exerciser system and their relationships to the 
UUT. 

TYPICAL SYSTEM ARCHITECTURE 

Slide 1 illustrates the architecture of a typical PC system that 
incorporates the PCI bus. The example system is built 
around three buses: host, PCI, and ISA. The host processor 
and bus masters residing on the PCI and ISA buses perform 
read and Write transactions to transfer data with targets re­
siding on the same bus or a different bus. The VLSI 82C59x 
chipset provides the bridging between the three buses. 

Slide #1 

• • UUT System Block Diagram 

Host/PCI Bridge Address/Data 
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HP BUS EXERCISER COMPONENT OVERVIEW 

The HP PCI Bus Exerciser consists of both hardware and 
software components. Slide 2 introduces the hardware com­
ponents. They are: 

• Adapter - Interfaces the logic analyzer and Main Board 
to the UUT. 

• Main Board - Executes test sequences downloaded 
from the Sequencer Card and returns results to Se­
quencer. 

• Sequencer Card - Compiles test sequences and down­
loads to Main Board for execution. Receives results from 
Main Board. 

• Logic Analyser - Captures bus traffic and downloads to 
test system. 

Slide #2 

•&&%. 
HP Best System 
• Can act as a passive observer or an active PCI 

transaction participant (either as initiator or target). 
• Dual BEST systems can be utilized to generate both the 

initiator and target portions of a PCI transaction. 

PC 

© MindShare, Inc. 1995 
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SEQUENCER CARD 

The Sequencer (ISA) card is installed in the PC. It runs the 
sequencer program and interacts with the Main Board's pat­
tern recognition hardware to control the execution of the 
specified sequence. Slide 3 illustrates the Main Board and 
the connector used to interface with the Sequencer card. 

Slide #3 

Sequencer Card 

• Installed in the PC, 
interacts with the main 
board (via a special 
cable). 

Main Board 

ft3Hl!wt..e:TT 
L"T..a PACK.r.RD 

~ VLSI TE1~'.HPJL((rY. n;.::: 

Slide#4 

• 
Main Board 

• Interfaces to 
- a UUT master/target PCI adapter card via the 

stand-alone adapter, or 
-a UUT system board via the in-system adapter. 
- logic analyzer via three (or five) cables 

ti 

L.to logic analyzer 

~to sequencer card 
in PC 

L..to PCI bus adapter 

In-System Adapter 

In a scenario where the HP system is to interact with a UUT 
consisting of a PCI system board, the Main Board is inter­
faced to the UUT system board via the HP E291 l In-System 
Adapter. 

Slide #5 

M:~~ • !!!!•• 
The Main Board contains the bus protocol state machines, I 5 Ad 
transaction memmy and triggering logic. It interfaces with: n- ystem apter 

• the sequencer card and the PCI bus adapter that con­
nects to the UUT's PCI bus. 

• the logic analyzer. This connection permits the logic 
analyzer to observe the PCI bus and internal state ma­
chine signals on the Main Board without presenting an 
additional signal load to the PCI bus under test. 

A separate power supply is connected to the Main Board. 
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• Interfaces the main board to a PCI slot on the UUT 
system board. 

PCI 
connector I 

© MindShare, Inc. 1995 



Stand-Alone Adapter 

In a scenario where the HP system is to interact with a UUT 
consisting of one or more PCI expansion cards (rather than a 
PCI system board). the Main Board is interfaced to the UUT 
via the HP E2912 Stand-Alone Adapter. 

The E2912 adapter is, in effect, a PCI System Board. It incor­
porates a PCI bus arbiter, three PCI card slots and a PCI 
clock generator. It permits the use of an external clock in lieu 
of the on-board clock. 

The Main Board is mated to the HP E2912 Stand-Alone 
Adapter as an extension in the same horizontal plane. The 
logic analyzer and the Sequencer interface to the Main Board. 
UUT PCI cards are installed in the three card slots supplied 
on the adapter. Connections are provided for one external 
state analyzer and one or two timing analyzers. A separate 
power supply is connected to the adapter. 

c 
Analyzer 

Slide #6 

Stand-Alone Adapter 
• When a system board is not used, provides a PCI 

environment with 3 PCI slots to be occupied by the 
main board and up to 2 PCI UUT target/master 
adapter cards. 

• Built-in arbiter and PCI clock generator. PCI card slots 

External Clock 
Inputs 

State Analyzer 

liming Analyzer 

Timing Analyzer 

Power Supply 
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Main Window 

Slide 7 is used to discuss the various elements of the main 
window. These elements are: 

• Sequencer button. Invokes the sequence editor. 
• Bus Exerciser button. Invokes the bus exerciser window. 
• Logic Analyzer button. Invokes the logic analyzer win­

dow. 
• Configuration Lister button. Invokes the configuration 

lister window. 
• Transaction Lister button. Invokes the transaction lister 

window. 
• Bus Cycle Lister button. Invokes the bus cycle lister 

window. 

Slide #7 

U&A 

Main Window 
•Illustrates relationships of test system elements to each other 

Qptions Windows jjelp 

RFST St."t.11.< l i ne 
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Bus Exerciser Window 

The bus exerciser window is used to: 

• enter sequences using the sequence editor. 
• enter PCI transactions using the transaction editor. 
• enter patterns using the pattern editor. 
• enter address information to be utilized by the main 

board's address decode logic when the main board has 
been configured as a target device. 

Slide #8 

Bus Exerciser Window, used to 
nter test sequences 
efine bus transactions 
sing transaction editor 

_ efine patterns to be 
ignalled to sequencer 
efine address/transaction 
ypes to be decoded when 
cting as a target 
elect whether the main 

board acts as a passive 
observer or an active 
participant 
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Sequence Editor 

The sequence editor is used to enter test sequences. A test 
sequence contains calls to transactions defined in a transac­
tion file and to patterns defined in a pattern file. It also con­
tains control statements to control sequence execution. 

Slide #9 

Sequence Editor 

.Edit Bun J:telp 

I Insert your t.estsequence here. For exa1Tple: 
I 
urst wr1te: 
urst=read:I 
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Transaction Editor 

The transaction editor is used to define PCI bus activity to be 
generated by the main board. Each transaction is named and 
is called from within a sequence file by an INSTR (instruction) 
statement. 

When executed, the examples in slide 10 cause the main 
board to perform a two data phase burst write or burst read 
transaction. 

Slide #10 

Transaction Definition 

.Elle £dlt Bun .tlelp 

I Insert your transact1ons here. for exarrple: 
I 
urst_wr1te: 

m_addr(addr = b6000\h. and= m_wr1te): 
m data (data = 8f458f42\h); 
m=l ast(data = Bf548f53\h): 

urst read: 
{ -

m addrCaddr = 12000000\h. end= m read); 
m-dat<>Cbyten = dwordO): -
m=last(byten = dwordO); 

Dff+4 ti 
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Transaction Lister 

The transaction lister window displays the PCI bus activity 
uploaded from the logic analyzer on a transaction-by­
transaction basis. The bus cycle lister window may be used 
to view each transaction using clock-level granularity. 

Slide #11 

Transaction Lister 

Ble .Qptions Help 

0: Memory Write ADDR = 000b8000 83458342 
7: Menvry Write ADDR = 000b8004 83548353 

14: Me1110ry Write ADDR = 000b8008 83698320 
21: Memory Write ADDR = 000b800c 83208373 

© MindShare, Inc. 1995 



Bus Cycle Lister 

The bus cycle lister window displays PCI bus activity cap­
tured by the logic analyzer on a clock-by-clock basis. The 
transaction lister window collapses this information to the 
lesser-granularity level of the transaction-by-transaction ba­
sis. 

Slide #12 

•'*'• 
Bus Cycle Lister 

.O.p"tlons .Help 

0: Memory Wr1 t.e ADDR = OOObSOOO 
WAIT (no DEVSEL#) 

2: WAIT Cno TROY#) 
WAIT (no TRDY#) 
WAIT (no TROY#) 

5: DATA - 83458342 BE - 0000 
6: IDLE 
7: Memory wr·1 to ADDR =- OOOb8004-
0: WAIT (no OEVSEL#) 
9: WATT (no TROY#) 

:1.0: WAIT (no TROY#) 
1'.L: WAIT (no TRDV#) 
12: DATA ..,. 83548353 BE .... 0000 
13: IDLE 
14-:: Memory wr·1 te ADDR """ 000b8008 
15: WAIT Cno OEVSEL#) 
16: WAIT (no TROY#) 
17: WAIT Cno TROY#) 

WAIT cno TROY#) 
DATA = 83698320 BE = 0000 

20: IDLE 
Memory Wr1 ta ADDR """ OOObSOOc 

Configuration Lister 

The author apologizes for not having a picture of the Configu­
ration Lister screen. This lister decodes and lists each con­
figuration transaction as a separate lien item. On each line, 
the following elements are identfied: 

• PC! device number. 
• Command type (read or write). 

Type 0 or 1 configuration transaction. 
• Target PCI function number. 
• Target PCI configuration register. 
• Value read or written. 

If configuration register defined by specification, provides 
detailed breakdown (e.g., BIST implemented, cache line 
size). 

Conclusions 

The HP bus exerciser provides the following capabilities: 

• controlled generation of the PCI bus activity initiated by 
both bus master and target devices. 

• automatic protocol checks performed on all PCI bus ac­
tivity generated by the bus exerciser, as well as the ac­
tivity generated by PCI agents other than the bus exer­
ciser. 

• permits recording, editing and playback of PCI bus traf­
fic. 

In conclusion, the HP bus exerciser is an invaluable tool de­
signed to ease PCI device design and debug. 
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Slide #13 

Conclusions 

• controlled generation of the PCI bus activity 
initiated by both bus master and target devices. 

• automatic protocol checks performed on all 
PCI bus activity generated by the bus exerciser, 
as well as the activity generated by PCI agents 
other than the bus exerciser. 

• permits recording, editing and playback of PCI 
bus traffic. 
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SYSTEM-LEVEL EMULATION ENABLES PCI RAPID DEVELOPMENT 

Vincent Coli and Doug Kem 
Aptix Corporation, 2890 North 1st Street, San Jose, CA 95134 

ABSTRACT 

This paper describes a system emulation 
methodology for PCI rapid development. System 
emulation is performed on a reprogrammable 
hardware platform integrated with high-level 
design tools and populated with reprogrammable 
FPGAs. System emulation encompasses 
emulation of both embedded core ASIC(s) and 
the board-level components-together on one 
hardware platform. This robust methodology 
offers observability, changeability. and co­
design. 

Observability eases testing and design debug 
utilizing an HP logic analyzer. Software routable 
diagnostic probes isolate trouble areas in the 
circuit before they become problems. 

Changeability empowers the designer to 
explore various architectures by implementing 
Verilog/VHDL and schematics quickly using 
programmable interconnect technology and 
reprogrammable FPGAs. Thus performance­
stealing bottlenecks can be removed or designs 
can be reused for new projects. 

Co-design enables an entire design team to 
participate in system-level testing of the 
hardware, software, bus interface, and human 
interface early and concurrently in the design 
process. Bus compliance can now be ensured 
before the design is committed. 

INTRODUCTION 

The PCI Local Bus was defined to establish a 
standard high-speed interface between 
peripheral functions and the system processor. 
Although the PCI Local Bus standard was 
defined to allow trouble-free connection of high­
speed peripherals to the host system, 
compatibility problems do occur. System 
emulation catches compatibility problems very 
early in the design cycle. 
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Moreover, the variety of high bandwidth 
functions (e.g., graphics/multi-media, SCSI, IDE 
controllers, communications, high-speed LANs) 
configured around the PCI Local Bus is growing 
rapidly requiring integration testing with 
multiple add-on cards. System emulation can 
provide full system verification. 

Finally, many of today's PCI-based high 
bandwidth functions involve real-world 
interfaces (i.e., audio processing, video 
teleconferencing, full motion video). Real-world 
interfaces are best designed in an incremental 
process whereby progress. is monitored by 
building and testing successive design revisions. 

METHODOLOGY 

Figure 1 shows the traditional design flow for 
a PCl-based function. Starting at the top in this 
figure, the design starts out as an architectural 
specification typically using an HDL. The core 
ASIC(s) are designed and then simulated as 
individual units. Based upon simulation 
results, several design iterations are typically 
required before the ASIC is ready for fabrication. 
The Printed Circuit Board is then designed and 
fabricated while the ASIC is being fabricated. 

Unfortunately testing can not be performed 
until after the ASIC and board return from 
fabrication and are tested together. Often bugs 
in the ASIC and/or board are found during 
functional test, system verification, and then 
bus compliance test. Since the ASIC and board 
may have to be redesigned and fabricated, these 
bug fixes are costly in both schedule and NRE 
cost. Also the software drivers must be Written, 
debugged, and integrated with hardware, and 
field tested prior to production tooling. 

Figure 2 shows the design flow using System 
Emulation. Although the ASIC and board design 
steps are the same, inserting the System 
Emulation step actually streamlines the design 



process by eliminating ASIC and board 
design/fabrication iterations. Now the ASIC and 
board netlists are verified together as a system 
prior to starting the physical design. Also, 
system verification and bus compliance testing 
occur much earlier in the design process. 

Board Dllalgn 

Board Fabrication 

Functlonal Test 

.____ ___ _, Systern.Varfflcatlon i---------' 

..__ ____ ._,1auaco~llancaTeat1---------' 

Field Teat 

Production 

Figure 1 Traditional Dest.en Flow 

Moreover, the software drivers can be tested 
within the system emulation hardware-­
concurrent with the hardware design. Since the 
design has not yet been committed to silicon, it 
is even possible to explore software/hardware 
architecture tradeoffs. System emulation 
hardware can also be used for field testing with 
real customers. 

Automated debug tools integrated into the 
system design isolate root problems straight 
away, rather than being diverted by contributing 
problems. Since the system is reprogrammable, 
various architectural specifications can be 
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explored, the design can be performed in 
increments. and portions of the design can be 
re-used. 

ASIC(s) Design Board Design 

ASIC(s) Slmulate Board Fabrication 

ASIC(s) Fabrication 

Production 

Figure 2 Design Flow with System ~ulation 

SYSTEM EMULATION PLATFORM 

The system emulation platform is based 
upon Aptlx proprietary interconnect technology. 
This interconnect technology consists of FPIC™ 
(Field-Programmable Interconnect Component) 
devices mounted on an FPCB™ (Field­
Programmable Circuit Board) printed circuit 
board under the control of partition, place, and 
route algorithms within the development system 
software. Implementation is straightforward: 
user components are mounted on the FPCB, the 
design specification describing the netlist is 



imported into Aptlx's development software, 
then the FPIC electrtcally connects the user 
components using routing information from the 
user's netlist. 

The FPIC Device 

The FPIC device (Guo et al, 1992) is a 
universal interconnect array with 936 user 
interconnect pins capable of connecting any pin 
to any other interconnect pin(s). This 
component employs a segmented routing array 
architecture that offers greater interconnect 
flexibility than traditional crossbar array 
architectures. 

Figure 3 shows the internal structure of the 
FPIC device. The FPIC die has 1,024 1/0 pads 
arranged in a 32 by 32 matrix. Associated with 
each 1/0 pad are 1/0 tracks that connect into 
the routing tracks that are grouped into 
horizontal and vertical routing channels. 
Routing tracks are segmented into various sizes 
to efficiently accommodate signal paths with 
different lengths. Shorter segments allow the 
same track to be shared by multiple signals 
when each runs only a short distance. Longer 
segments provide uninterrupted routing paths 
for signals running long distances. 

The FPIC device is programmed by 
selectively writing to the SRAM cells to connect 
any pin on the FPIC to any other set of pins. 
Connections between routing tracks are made 
with bi-directional pass gates controlled by 
SRAM cells that contain the FPIC programming 
data. The configuration data is loaded at system 
power-up and may be re-loaded on command. 

The FPIC device is available in two versions: 
FPIC/D and FPIC/R. The two components can 
be used together on the same board (the FPIC/R 
mounts on top of the FPCB while the FPIC/D 
mounts on the bottom). The FPIC/D offers a 
diagnostic capability in which 64 user diagnostic 
pins on the FPIC/D are connected to a logic 
analyzer through a flex cable. Since the FPIC 
device is connected to every user component on 
the circuit board, any net in the netlist can be 
probed by the logic analyzer under software 
control. 

The FPIC/R is intended for stand-alone 
operation and does not have the diagnostic 
capability of the FPIC/D. In stand-alone 
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operation, an SPM (an EPROM-based Stand­
alone Programming Module) configures the 
FPIC/R on power-up so the board can be used. 
without being connected to a host computer. 

The FPCB Printed Circuit Board 

The Aptlx FPCB is a Field Programmable 
Circuit Board that is used with the FPIC device. 
The FPCB architecture is shown in Figure 3. 
The FPCB contains a number of through-holes 
that can accept user component pins. Each 
through-hole is connected to a separate pin on 
the FPIC device. Connections between user 
components are made by routing the FPIC 
device to implement the user's netlist. 

The FPCB is divided into regions that are 
each supported by a separate FPIC. Routing 
between components in different FPIC regions is 
implemented with board-level interconnect that 
directly connects two FPIC devices. For 
example, the three components shown in Figure 
3 are connected with two FPIC devices and 
global interconnect between the devices. 

Several types of FPCBs are available, each 
optimized for a specific application. FPCB 
optimization involves: different global 
interconnect architectures and component 
capacities; the ability to mate with adapters to 
implement standard bus protocols; and board­
level structures to implement I/O interfaces, 
low-skew clocks, and system busses. Different 
types of FPCBs include: 

• General Purpose (GP) type available in 
the VME 6UE and PC/ AT form factors 

• ASIC Prototyping (AP) type available for 
ASIC emulation applications 

• Multi-Purpose (MP) type for system 
emulation applications 

The GP4 and MP3 are discussed in this 
paper due to their respective suitability for PCI 
motherboard and accessory card applications. 

TheGP4FPCB 

The GP4 FPCB is uses the industry-standard 
Type C hole pattern whereby the through-hole 
pattern is arranged with repeated rows that are 
spaced at alternating 100 mils and 300 mils 
apart. This pattern provides high density (50 
pins/sq. inch) and allows DIP (both 300 mil and 



600 mil) and SIP components. surface mount 
components (such as QFP and PLCC). and PGAs 
to plug in. Discrete components (such as 
resistors. capacitors. and diodes) can be 
mounted using headers or daughter boards. A 
rich set of adapters is available to mount 
standard connectors. including: 

• PCI Local Bus expansion slot connector 
• PC AT expansion slot connector 
• PCMCIA I/O connector 
• 72-pin SIMM memory module connector 

Aptjx 
Interconnect 
Architecture 

The GP architecture provides for system-level 
considerations such as low-skew global pins for 
clock drivers and power distribution through 
readily accessible power and ground lands. The 
GP4 board supports 3,000 component pins (or 
about 100 components). 

Because of its ability to mount user 
components. the GP4 is suitable for board 
emulation-such as PCI motherboard 
applications (Long, 1994). 

N-Channel 
Pass-Gate 

Controlled By 
Static RAM Cell 

Segmented 
Track 

Figure 3. Interconnect Architecture of FPIC™ and FPCB™ 
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TheMP3FPCB 

The MP3 enables system emulation by 
providing the capability to emulate a board 
(using GP4-style through-hole regions) and an 
ASIC (using reprogrammable FPGAs} together. 

The MP3 through-hole region is also 
implemented as a standard Type C pattern. 
Therefore user components can be mounted 
directly on the MP3 for board emulation. 

A row of special-purpose pins along the edge 
of the through-hole region provide power and 
ground, access to low-skew clocks, and access to 
FPGA configuration pins. FPGA-specific 
adapters are keyed to access these signals. 
Therefore reprogrammable FPGAs are 

conveniently mounted on the MP3 for ASIC 
emulation. 

The MP3 also provides high-speed busses 
that can connect to FPGAs or components in the 
through-hole region. These busses are useful 
for system emulation tasks where part of the 
design must run over 50 MHz. 

The MP3 is shown in Figure 4. In the MP3 
FPCB, the general purpose component hole area 
is divided into three FPIC regions that support a 
total of 1,900 component pins (or about 60 
components). This FPCB will also support 12 
FPGAs mounted on adapters and 2 FPGAs 
mounted in the 1/0 socket or a combination of 
adapters and components. 

FPGA Config FPGA Download 
PROM Socket Connector 

Clock 
Buffer 
Socket 

1/0 
Header 
Pins 

Adapter Support 
Pins - VCC, GND 
High Speed Clock 
FPGA Download 

50 MHz Bus 
36 Bits Wide 

'\ 
HIM 

Connector 

Free Hole Region 
for FPGA, uP, UC, DSP, · 
Bonded-Out ASIC Cores, 
Plug In Explorer ASIC 

Figure 4. MP3 System Explorer FPCB 
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SUMMARY 

Today's PCI development can be quickly 
implemented and verified using system-level 
emulation tools. Starting from the HDL or 
schematic entry, the PCI design is automatically 
downloaded to reprogrammable hardware, 
interfaced to other components and powered up 
for full system integration and test. 

System level emulation and rapid 
prototyping are made possible by: (i) software 
which automatically maps synthesized Verilog 
and VHDL to FPGAs and converts board-level 
schematics to a netlist; (ii) high-performance 
hardware including FPICs and FPCBs. The 
typical turnaround time from PCI simulation to 
hardware is less than three hours. Once 
implemented, test and debug operations are 
under software control which allow any pin or 
net to be observed on a logic analyzer quickly. 
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ABSTRACT 

Since its introduction as an industry standard in 1990, Boundary-Scan - also known as JTAG - has 
enjoyed growing popularity for board level manufacturing test applications. Due to its low cost nature 
and IC level access capabilities of the boundary-scan standard, its use has expanded beyond traditional 
board test applications into design and service. New industry standard buses such as the PCI bus, and 
soon, the VME bus, are adopting boundary-scan as the common test bus interface. This presents new 
possibilities for the use of boundary-scan at the system level rather than just the board level. System 
level test is supported using a hierarchical scan architecture such as the SCANPSCllO bridge concept 
developed by National Semiconductor. This article provides a brief introduction to boundary-scan and 
its application to the PCI bus. Hardware and software development and test tools that support 
hierarchical scan are also reviewed. 

Introduction to Boundary Scan 

As electronic systems continue to increase in 
complexity and capability, and as circuits and 
packaging densities continue to rise, system-level 
development and manufacturing techniques face 
ever-higher hurdles. In 1990, the IEEE 1149.1 
"boundary-scan" test standard was created to 
address the problem of how to test modern digital 
systems. This standard was originally created to 
ease the testing of dense boards in a manufacturing 
environment. Boundary-scan has since become a 
commonplace companion to traditional in-circuit 
test techniques. Most of today's manufacturing 
testers offer boundary-scan capabilities, and 
"design for test" (DFT) features such as scan are 
gradually being embraced by designers who face 
daunting test issues. 

To enable boundary-scan-based testing, digital 
I Cs on the board under test must be furnished with 
scan circuitry at each 1/0 pin. These scan 1/0 cells 
are all connected in a serial shift register enabling 
the logic state of each 1/0 pin to be observed and/ 
or modified by shifting data patterns in and out 
through the serial scan chain. This scan test logic 
is only enabled during a special test mode, allowing 
the system to perform its normal "mission" 
operations at all other times. 

The observability and controllability­
enhancing capabilities of boundary-scan have been 
used to good advantage in board testing, where 
they provide access to what might otherwise be 
unreachable "buried" nets - nets for which no vias 
or test points are available. This is especially 
valuable in systems that use fine-pitch high lead­
count packages that are surface-mounted on 
double-sided boards, which also lack through-holes. 
Such boards can not be tested using traditional 
"bed of nails" contact fixtures. 

By allowing direct access to nets, boundary­
scan eliminates the need for the large number of 
test vectors which are normally needed to properly 
initialize sequential logic. A few tens or hundreds 
of vectors may do the job that had previously 
required thousands of vectors. Potential benefits 
realized from the use of boundary-scan are shorter 
test times, higher coverage, increased diagnostic 
capability and lower capital equipment cost. The 
screen image below (Figure 1) illustrates the high 
level of test coverage and detail of diagnostic 
information available through boundary-scan 
testing. This picture was taken from a Corelis and 
JTAG Technologies CVXI-1149.1 Boundary-scan 
tester for VXI based test systems. 
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Figure 1 : Diagnostic Screen of PC/ Motherboard Boundary Scan test 

Recently, ways have been found to extend 
boundary-scan testing to the level of entire 
systems. This allows a single test access 
mechanism - boundary-scan - to be used at different 
hierarchical levels of a system - components, 
boards, modules, sub-systems, etc. Test-patterns 
for one level can be reused at a higher level; for 
example, board test-vectors can be applied to a 
board by a system-level test master after that board 
has been built into a system, allowing systems to 
be assembled and tested incrementally. 

Standard Buses 

Standard system buses, such as PCI, are 
important primarily because they allow complete 
systems to be easily assembled from compatible 
sets of "off the shelf' boards. Standard buses 
provide a uniform interface that allows a 
conforming board to be used in multiple systems 
produced by multiple vendors. 

It is possible to use boundary-scan in 
conjunction with standard buses. If a bus standard 
makes provisions for scan usage as part of the bus 
standard, then that standard defines a uniform 
test-access mechanism that can be supported by 
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any standard-compliant boards. This mechanism 
can then be used both to test individual boards, 
and to test complete systems consisting of boards 
and their interconnect (backplane and cables. The 
PCI bus standard has adopted boundary-scan as 
an integral part of the PCI bus. 

The PCI bus is widely finding favor as a high­
performance, block-transfer-oriented internal 
system bus, primarily in personal computers and 
workstations. Often, these are very high volume 
products, for which manufacturability and field 
maintainability are key economic issues. In 
addition, intense market pressures force ever­
shortening development cycles for such products, 
making ease of development a key pre-requisite. 
Each of these three constraints can benefit from 
the use of boundary-scan as a system-level testing 
and debug vehicle. 

Extending Boundary-Scan to the System 
Level 

As mentioned earlier, boundary-scan was 
originally developed for testing boards in a 
manufacturing environment. Applying these 
techniques at the system level requires extension 



of the IEEE 1149.1 standard. In the present 
context, a system consists of a set of boards 
installed in slots on one or more backplanes. While 
it is possible to extend a single system-level scan 
chain through the scan-compatible components on 
all boards, there are disadvantages to this. First, 
a fault in any component's scan circuitry disrupts 
scan access to all chips. Second, this approach 
requires the use of very long test vectors which 
tends to increase test times. Figure 2 illustrates 
this configuration. 

To overcome these drawbacks, it is necessary 
to use multiple scan chains to access various 
portions of the system. This can be done by running 
multiple scan chains from the test master (say, one 
per board in the system), and then using path­
multiplexing circuitry to allow the master to 
selectively access different portions of the system. 
This has the disadvantage of requiring the use of 
a complex backplane. 

A more elegant and less costly approach is to 
use scan addressable scan chain selection circuitry 
in order to partition the system's scan network. 
That is, special "gateway" circuits can be addressed 
by the test master to provide access-on-demand to 
the various branches of the boundary-scan 
network. This is the approach employed in 
National Semiconductor's SCANPSCllO bridge 
architecture. With such a mechanism, the system 
test master is able to selectively apply test patterns 

TOI 
TMS 
TCK 
TOO 

to specific boards within a system, or even to sub 
portions of a given board (down to the level of 
individual I Cs, if desired). 

Since boundary-scan tests can be implemented 
completely in software, test vectors already 
developed and used during production test can be 
run on the embedded processor of the product that 
is shipped. As such, a central processor can access 
any card inserted into the PCI backplane for 
diagnostic and auto configuration purposes. This 
level of built-in test surpasses most conventional 
methods used in the past at virtually no 
incremental cost. Since system configurations 
change over time, the multi-drop (i.e. parallel­
gateway) capability of the scan architecture is 
particularly suited for these applications. Figure 
3 illustrates a PCI based system using a multi­
drop boundary-scan bus to provide built-in test of 
card modules. 

Scan on Standard Buses 

There is a natural synergy between the use of 
standard buses such as PCI in building a system, 
and the use of boundary-scan as a means for testing 
such systems. Bus standardization and test­
mechanism standardization are both methods for 
allowing systems to be constructed in a modular 
manner. This offers advantages in terms of scale 
of manufacture, and in terms of ease and versatility 
in configuring application-specific systems. The 

••••••••••• 

Figure 2: Typical "Single-Chain" Backplane 
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Figure 3: PC/ based system using a multi-drop boundary scan bus 

following sections describe more in detail how these 
advantages apply to PCI-based systems. 

PCI-Bus Standard Boundary-scan Access 

The PCI bus standard provides the necessary 
boundary-scan signals to support scan test. The 
relevant pins on the PCI bus connectors are shown 
in Table 1. 

Implementing System Level Scan on the PCI 
bus 

Fortunately for those contemplating taking 
advantage of boundary-scan technology for reasons 

Pin Side B Side A Type 

stated previously, the necessary boundary-scan 
development and test tools to support PCI system 
level hierarchical scan exist today. This is 
consistent with the concept of the IEEE-1149.1 
boundary-scan standard to provide a product life 
cycle test philosophy. The same boundary-scan 
resources can be used in design, manufacturing and 
service with no additional investment required in 
test software development. 

In product development, boundary-scan can be 
used to enhance an engineer's observability and 
controllability of the system. For example, many 
modern microprocessors are equipped with a scan-

Description 

1 TRST# input Test Reset Not 

2 TCK input Test Clock 

3 TMS input Test Mode Select 

4 TOO TOI output/input Test Data Out I Test Data In 

If boundary scan is not supported by the PCI plug-
in card, these two pins need to be shorted 
together. 

Table 1: Boundary-Scan pins on the PC/ bus connectors 
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based emulation port that provides access to 
internal processor resources such as registers. 
These resources can be interrogated and modified, 
code can be downloaded and single-stepped and 
breakpoints can be set through a common four wire 
JTAG interface, thus lowering the cost of 
development tools such as in-circuit emulators. In 
a multi-board backplane PCI-based system, the 
same JTAG-based emulator controller can be used 
to access any board on the backplane using the 
hierarchical addressing capabilities of a system 
level JTAG implementation. JTAG based processor 
emulators are available from companies such as 
Corelis Inc., that specializes in scan based 
development and test tools. 

In order for boundary-scan to be useful as a 
generic test vehicle throughout the product life 
cycle, this test technology must be supported by 
appropriate hardware and software tools. On the 
hardware front, tester hardware must be available 
to drive the scan chain(s). In a standard-bus 
environment such as PCI, this hardware must 
mesh properly with the standard bus. In terms of 
software support, users must be able to generate 
test vectors in as automated and trouble-free a 
manner as possible. In addition, it is very useful 
to be able to use scan as a vehicle to observe and 
control the operation of all portions of the system. 
This can be achieved by using the boundary-scan 
emulation port that is usually available on the 
central resource of the system: the system 
microprocessor. 

The suite of test tools mentioned above must 
be available in a variety of application 
environments. Certain tools, such as scan-based 
processor emulation control, are needed primarily 
during product development. Other tools, such as 
high-throughput scan-compatible testers, are 
needed to support large-scale manufacturing. Still 
other tools, such as a compact boundary-scan 
tester, are useful to service and maintain products 
once they are in the field. Boundary-scan can serve 
as the "common denominator" across all of these 
tools and application environments. 

Boundary-Scan Test Tools 

While Boundary-scan Testers are now 
available from several vendors, only a few, such as 
Corelis and JTAG Technologies, support 
hierarchical scan architectures. Some of Corelis 

and JTAG Technologies' test controllers such as 
the PC-based Explorer, VXI-bus based CVXI-
1149.1 or the high speed IEEE-488 bus compatible 
Vector Blaster are capable of supporting high test 
throughputs and complex production test 
requirements with software support available for 
multi-drop scan hierarchies. These products not 
only support go no-go testing but offer in-depth 
node-level diagnostics as well, thus greatly 
reducing rework cost and board fall-out. These 
types of testers are particularly well suited for high 
volume production environments such as those 
found in the manufacture of PCI based PC's. 

The same JTAG access can be utilized for 
hardware debugging of PCI-based designs such as 
PC motherboards using the PCI pre-processor 
available from Corelis Inc. This logic analyzer pre­
processor supports Hewlett-Packard's popular line 
of logic analyzers. Using this pre-processor not 
only provides the design engineer with state and 
timing information on all PCI signals, it also 
contains a JTAG trace module that allows the logic 
analyzer to disassemble all boundary-scan chain 
TAP controller states. All scan controller TAP 
states can be captured and analyzed using this pre­
processor. A standard JTAG test connector is 
provided on the pre-processor to enable the user 
to connect any boundary-scan tester for external 
access to the PCI bus boundary-scan chain. This 
enables the backplane as well as any board 
connected to the PCI bus to be accessed in case a 
JTAG connector was not provided on the backplane 
itself. This scenario is shown in Figure 4. 

Automatic Test Vector Generation for 
Hierarchical Scan Designs 

There are currently several vendors who offer 
Automatic Test Pattern (ATPG) Generation 
Software for board level boundary-scan 
implementations. One is the Boundary-scan Test 
Pattern Generation software package (BTPG) 
developed by JTAG Technologies B.V. - a spin-off 
from Philips International of The Nether lands -
and available in the US through Corelis Inc. The 
BTPG package is based on a high level structural 
test description language known as BTSL 
(Boundary-scan Test Specification Language). This 
hardware tester independent language includes 
support for hierarchical scan designs such as those 
available from National Semiconductor and Texas 
Instruments. 
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Figure 4: Boundary-Scan Integration with Core/is' PC/ Preprocessor 

To generate test vectors for mutli-drop scan 
chains, the BTSL language supports a scan chain 
interface logic description syntax that allows the 
architecture of the scan chain interface to be 
described. This is best illustrated using a simple 
example. Given the National SCANPSCllOF 
bridge-based multi-drop backplane design shown 
in Figure 5, the following BTSL interface logic 
description would apply: 

SYNTAX_ VERSION 

DESIGN 

REVISION 

TESTER_CHANNEL TAP1 

1.2 

PCIBCKPL 

1C 

MULTIDROP1 

MULTIDROP2 

MULTIDROP3 

CASCADE1 

END_CHANNEL 

(PSC110F, 1, TAP1, TAP2, TAP3) 

(PSC110F, 2, NONE, TAP4, TAPS) 

(PSC110F, 3, TAP6, TAP?, CAS­
CADE1) 

(PSC110F, 4, TAP8, TAP9, NONE) 
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SLOT1 
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Figure 5: Multi-drop SCANPSC110F bridge PC/ Backplane 

From this simple description, the BTPG 
software is capable of generating test vectors that 
fully test all interconnects on each individual plug­
in board and provides node-level diagnostics. Any 
required chain addressing and switching is handled 
automatically by BTPG. The level of diagnostics 
can be selected depending on the test execution 
platform to be used and the desired test execution 
times. 

CONCLUSION 

Boundary-scan offers much promise as a 
generic system-level test mechanism that is usable 

throughout the life of a product. Scan techniques 
are especially powerful when implemented in 
standard-bus-based systems, as a natural 
extension of the backplane standardization for 
those systems. The PCI standard is a prime 
example of a standard bus that support this 
synergy. In such a standardized environment, 
silicon manufacturers, test-tool vendors and board 
and system designers can more productively work 
together to produce well-integrated solutions to 
system-test problems. 
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ABSTRACT 

Design of PCI-based systems poses not only technical 
challenges, but the designers of iliese systems often work 
under demanding time-to-market constraints. During design, 
opportunities to explore the space of different 
implementations and configurations often yield to schedule 
pressures. Moreover, derivative systems of original designs 
that may impose new requirements are often developed 
without effective utilization of previous PCI designs, nor 
embodying enhancements derived from personal, industry and 
field experience. As a consequence, even second generation 
PCI systems often fall short of the overall system performance 
improvements that they could leverage, and take more time to 
design than required. In this paper, a design methodology 
using the Desi~nWare™ PCf controller MacroSet will be 
presented which provides for fast implementation, 
verification and successive refinement based on feature, 
performance and environment changes, and evolution of the 
PCI specification. Several PCI design considerations and how 
they translate into implementation will be discussed 
regarding what optimizations and improvements they 
introduce. The methodology will involve the implementation 
of a real-time multi-media add-on card in a FPGA prototype 
and production ASIC, the tools used to validate and optimize 
the system, and several design tradeoffs and their cost and 
effect. Note that this paper will focus on design of "add-in" 
cards, however most of the concepts are relevant to bridge 
designs, though there are additional issues that must oe 
considered therein. 

THE DESIGN FLOW 

A High-level Design (HLD) methodology is employed 
leveraging high-level synthesis of VHDL or Verilog. HLD 
does not directly equate to "Top-down" design, but does keep 
the designer abstracted from as much irrelevant detail as 
possible, enabling the designer to focus on their value-added, 
and to more quickly implement their system. 

This design flow (depicted in Figure 1) assumes top­
down design of the system, with modular construction of the 
PCI controller by leveraging the existing DesignWare™ 
MacroSet. Test development is by first testing the PCI­
controller under the required configuration, testing the 
application separately, and then integrating them. Bottom-up 
or top-down test approaches may also be employed, 
depending on one's existing, well-defined and effective 
methodology. Test development is discussed later, but an 
important point to make is that tests should be 
straightforward to develop, and easily reusable. For example, 
as the desiQil is successively refined, tests from higher levels 
of abstraction (e.g. behavioral/RTL should be cferived for 
unit-level and pre and post-layout gate-level simulations). 
Furthermore, with tools such as Synopsys VHDLGen 
product, sub-system and unit-level tests and test benches can 
be derived from higher integration tests. 

The design flow referenced in this paper relies on the 
top-down approach, but one in which the PCI controller is 
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implemented by modifying Synopsys' existing MacroSet 
implementation by removing modules, if neecfed, and by 
specifying required parameters. Some modifications to the 
provided test oench and test suites may be required. This sub­
system test bench and test can now be simulated to verify 
compliance and correct functional operation (Figure 1). The 
controller portion of the design is now done. 

In parallel, the application is being architected, 
partitioned coded, simulated and synthesized. Remember that 
during this process, it's important to perform synthesis early 
in the process to insure efficient partitioning and coding of 
the design, as well as testability. Once a synthesizable 
version of the application exists, or at least the interface 
between the PCf controller and the application, synthesis 
constraints and scripts can begin to be modified. Sets of these 
constraints and scripts for tne MacroSet are provided, but 
require modification based on changes to the MacroSet and 
the application interface. False paths and Multi-cycle f aths 
within the MacroSet are already provided. Top-leve and 
apJJlication constraints, including multi-cycle paths and false 
paths must be identified, and then synthesis and timing 
analysis can begin. 

To effectively support technology independence, 
instantiation of technology-specific gates sbould be 
eliminated or kept to a minimum. Types of cells which 
typically need to be instantiated are 1/0 pads and large 
muxes, ~Ms and ROMs. 1/0 pads should be partitioned 
into their own level of hierarchy, if RTL descriptions of these 
pads are also defined for this partition, then the 
insert_io_pads function can be leveraged when mapping to 
FPGAs and those ASIC libraries which support I/0 pad 
synthesis. By minimizing instantiation of tecllriology-specific 
cells, and by partitioning the design into modules which can 
be containecf within individual FPGAs, the design can be 
targeted in a straightforward manner into FPGAs, as well as 
alternative ASICs (Xilinx, 1994). 

After functional simulation and synthesis are complete, 
unit delay gate-level simulation was performed. This is to 
insure that the circuit is correctly synthesized, that timing 
loops, if they exist, are legitimate, and that the integrated 
design functions properly, without interference of numerous 
timing violations which undoubtedly will exist after the first 
pass( es) of synthesis. The initial synthesis runs also need not 
have detailed timing information. The concept is to begin by 
pruning out gross errors, then successively refining the circwt 
until all functional and timing violations are removed. Once 
unit delay is clean, then (or in parallel) false paths should be 
eliminated and multi-cycle paths identified, while applying 
top-level timing constraints. Details regarding alternative 
synthesis compffe and constraining methodologies are beyond 
the scope of this paper. However, this specific design flow 
involved using tne compile-characterize-revise-write_script 
methodology, while allows for accurate timing constraints, 
while facilitating automation of synthesis scripts. 

When static timing demonstrates that all timing errors 
are removed, then the design can proceed to layout. PCI 



imposes demanding timing requirements, such as setup and 
hold times, and output delays into a SOpF load (tvAd· To 
optimize these timings requires involvement during 
floorplanning and/or place & route, depending on the 
techriology employed. The Design Ware™ is entirely register 
isolated at the boundary of the PCI interface (super­
synchronous). Therefore, most of the critical timings can be 
addressed by abutting the MacroSet interface registers 
adjacent to their associated 1/0 pads. 

Post-layout static timing analysis and simulation is 
highly recommended, as pre-fayout estimates may be overly 
conservative or liberal but either way, result in variations 
that are nearly always greater than the timing margins 
available. Post-layout simulation is generally required by 
ASIC foundries for sign-off, so use it to one's advantage. This 
is accomplished by back annotating the delay, typica1ly in a 
Standard Delay Format (SDF) file, as shown Figure 1. ASIC 
vendors generally also require functional manufacturing test 
patterns which comply with certain tester requirements. Since 
these timing requirements generally do not map well to the 
system timing under which the functional tests are derived, 
tests must generally be derived for this purpose. The 
VHDLGen rroduct captures stimulus and response at the 
boundary o the ASIC and can "till" the timing of transitions 
to match characteristics specified by the designer. 

Note that if Test Compiler is used to insert full or partial 
scan chains into the design and execute Automatic Test 
Pattern Generation (ATPG), then these tests must be 
converted into the appropriate format. 

DESIGN REUSE AND EXPLORATION 

The goals of HLD are to 1) greatly increase productivity 
by abstracting the designer to a level wherein more logic and 
functionality can be expressed much more succincfly (i.e. 
Hardware Description Languages, technology independence, 
and high-speed simulation), and 2) to facilitate Design Reuse. 
Technology migration of a desi&n is but one facet of reuse. 
Others include leveragin~ existing designs for subsequent 
product families and denvative products. Design Reuse is 
also the process of how efficiently the design can be reused 
throughout phases of the design itself. For example, functional 
and timing errors require design iterations, as does the 
exploration of different characteristics. The cycle time of 
these analyze-modify-verify loops is critical to implementing 
an efficient design in a short amount of time. Shortenin~ this 
loop means faster time to market, also affords the ability to 
explore alternate architectures and to rapidly derive new 
systems and upgrades. 

The approach taken by Synopsys DesignWare™ is to 
support design modifications through adjustment of 
parameters and design constraints. At the inception of the 
project, then designer would evaluate the functional 
requirements of the system, and make a pass at the required 
characteristics of the controller~ There are three ways in 
which changes to functionality- and characteristics can be 
affected: assembling MacroSet modules in different 
configurations, modification of parameters, and modification 
of synthesis constraints. Figure 2 depicts a slave-only 
implementation with the MacroSet, while Figure 3 illustrates 
a master-slave configuration. Multiple datapath 
configurations are also possible. Design parameters such as 
configuration space characteristics, interface and 
handshaking witfi the application, datapath construction 
(number of data/address paths, whether register or FIFO, 
and if FIFO of what de:i;>th), are all imi:mrtant design decisions 
that may require revisiting as more design data and system 
behavior becomes availabfe, or when given designs are to be 
modified for subsequent use in a next generation card. Since 
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these parameters may change frequently, they have been 
implemented as Desi~nWare™ parameters for rapid 
implementation and modification. 

Reusable components, in which each component is a 
black-box, also affords the ability to accommodate new 
optimizations of the PCI controller, as well as new 
specification versions. And it provides for alternate 
constructions of given modules. For example, versions of a 
module can be area-optimized, performance optimized, 
optimized for testability or power, and yet support the same 
interface to allow for Elug-and-play. Thus, a reusable design 
becomes valuable in that it can be more easily learned and 
modified by designers taking over an existing project for 
future upgrades or new architectures. Now that m~clianisms 
for supporting Design Reuse have been reviewed, the system­
level considerations that they support will now be discussed. 

DESIGN TRADEOFFS 

Architecting and designing PCI systems involve first 
evaluating desi~ requirements and understanding the effect 
of various design parameters on add-in card and overall 
system performance, cost, robustness/ quality and 
functionality. Designers know this process welf, and the fact 
that these forces are often in competition with one another is 
a continual challenge. PCI tradeoffs include optional 
functionality which does not compromise compliance. 
Designers of "closed" or proprietary systems, for wfiich PCI 
is just as equally a good choice, may be tempted to compromise 
comeliance, however, this is taking risk since many 
re9uirements are thought out for the purpose of general, 
efficient interoperability, and doing so will demand more re­
design effort snould future revisions of such systems begin to 
open up to add-in cards or leverage standard platform 
systems/subsystems. Some of the design decisions PCI 
designers will face are included in the following sub-sections. 

Bus Mastering 

A minimal PCI controller implementation is shown in 
Figure 2. At a minimum, a PCI imefementation must support a 
slave finite state machine (DWpci_slave_fsm) controller with 
address space recognition/ decoding (DWpci_slave_arm) , a 
confi&"U1"ation space (DWpci_configJ, and an interface which 
electrically connects to tne PCI bus (DWpci_interface). Bus 
Mastering is not required functionality. 

The decision to use bus masters on add-in cards is based 
on the bandwidth requirements and characteristics, and 
source and destination of the data that will be transferred 
to/from the card. If data is primarily be pumped into the card 
from system memory /processor, or other add-in cards, such 
as in the case of graphics adapters, then slave writes are the 
primary source of bandwidth, with slave reads bein~ used for 
state/status. If S/W or other H/W are to operate directly on 
images from a shared frame buffer on the card, then slave 
reads can be relied on to extract the data. Alternatively, and 
access via S/W to the data could be translated by the driver 
into master write from the card into the desired location. This 
can be accomplished if the master has DMA associated with 
it that accepts a starting address and transfer size, and a 
destination address. The transfer would need to be broken 
into lines in this specific case, unless a more sophisticated "2-
D" DMA scheme was employed in which an entire window, 
etc. could be specified. In general, mastering is attractive if the 
data resides on the master's side, since data availability can 
then be tightly coordinated with the master state machine bus 
transactions. 



Configuration Space 

The heart of PCI's "DIP-less", reconfigurable 
architecture which supports Plug-and-Play (PnP) is the 
configuration space. The three parts making up this space are 
the required header, the optional header, and the device­
specific registers. The required header must be programmed to 
include the identification/personalization information such 
as Vendor/device ID, class codes, etc. Also required are the 
status and command registers which communicate state 
information back to software in the former case, and allow 
for device configuration in the latter case. The required 
header also includes the Base Address Registers (BARs) 
which were discussed in association with address range 
allocation, and the Expansion ROM BAR. The requirement 
for implementing bits m the address space is often based on 
capability. If an agent does not implement certain 
functionality, then bits associated with tbat functionality 
may generally be tied low (inactive). 

Other design decisions relative to the configuration 
space are whether to hardcode all bits, or make them 
configurable. While some bits are sr.ecified as read/write 
(R/W), others are read-only (RO . However, in many 
occasions, a PCI controller may be reused in different 
contexts, a scenario known as "common silicon". However, 
to do so requires that certain RO fields be programmable 
prior to POST time. This may be accomplished by 
implementing these RO bits as registers. At power-on-reset 
(POR), the state of these bits is programmed by a sequencer 
that retrieves the state to be programmed from external 
EEPROM or other source. While the configuration space must 
respond to all configuration reads and writes directed to its 
space, in the case that the configuration space is being loaded 
from EEPROM, it is acceptabfe to issue a disconnect-retry 
until the state has been programmed. Therefore, the ability for 
the slave FSM to determine when the config space is ready is 
important. 

Another issue when dealing with the configuration space 
is that of the device-specific registers. One Should not be 
immediately inclined to move all control and status registers 
in their card or system into config space; recall that accesses 
to this space require at least 2 cycles to complete. Therefore, it 
is generally recommended that card status, command and 
control registers and memory spaces such as FIFOs be 
allocated to memory space, or memory and 1/0 spaces. 

Application-side Interface 

How the PCI controller interfaces with the application is 
critical to overall system operation. Often the apf>lication is 
running at a different clock: domain than the PCI aomain. In 
such a case one has to be careful to synchronize the 
asynchronous signals at the interface (such as control lines 
and flags). While this introduces a 2 clock latency (assuming 
that a aual stage synchronizer is used) in the signals, it 
insures that signals are de-glitched and that the probability 
of meta-stability is radically reduced. Look-ahead decoding 
can help mask the synchronization latency. For example, 
FIFO fu11 and empty flaps can instead be defined as "low­
water" and "high-water' marks which are either a line, or a 
couple of DWORDs or more from the top or bottom, depending 
on the synchronization latency, and the application response 
latency. 

Another factor that influences how the application 
interface is designed is the degree of visibility that is required 
of the PCI interface. Generally, the interface between the and 
the application entails data/address and control and status 
signa1s. A loosely-coupled system in which the a_Eplication 
supplies data, start address, and number of bytes/DWORDs 
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to transfer to a DMA controller and then lets the transaction, 
including exceptions, be managed by the controller is one 
solution. An alternate solution is to allow the application to 
have visibility into the state of the controller, anabe directly 
involved in exception handling. This allows the application 
more control, which is sometimes useful when the application 
is arbitrating among multiple resources. 

Datapath Architecture 

This is perhaps the biggest issue in efficient PCI design. 
Latency and Datapath Buffering Latency has always been a 
controversial issue in the PCI community, partly because it 
has been affected by legacy busses so greatly, and partly due 
to the fact that latency and througheut have been somewhat 
at odds with each other, and high performance cards 
effectively want to optimize both. !here are several 
components of latency, arbitration latency (which is 
typically 2 clocks for the highest priority device in the 
system); bus acquisition latency (the time from receiving a 
GNT# till the bus is IDLE and consequently available); and 
the target latency to respond to Hie transaction. Target 
latency for first data is now required to be 16 clocks; any 
more and the target must either perform a delayed transaction, 
or target-abort. (PCISIG, 2.1, 1994); Subsequent data 
transfers may see up to 8 elks to complete, but if the behavior 
of your target is known, the more accurate data would be 
factored into your calculations. 

The controversial figure is that of bus acquisition 
latency which is very dependent on system configuration. The 
2.0 specification recommends that 30µsec be the guideline for 
acquisition latency on the planar bus, while (PCISIG, 2.1, 
19g4) and (PCISIG, MM Guidelines, 1994) specify that bus 
levels off the planar bus typically would see 1ess than 3µsec 
acquisition latency. This-fatency is affected by the value 
programmed into the master latency timer (ML T), as well as 
the typical and max burst duration of resources in the system. 
The number of masters and their priority also affect 
acquisition latency. For example, if there are 5 masters (max) 
on a bus level, each with their MLTs programmed to 32 elks, 
then if the target latency to first data was 16 elks and 8 elks 
between data transfers, then the acquisition latency assuming 
equal priority, could be as high as 32*(5-1)+8+16 = 4.56µsec 
oflatency. The general rule is: tune your implementation to 
operate efficiently at 3µsec of latency, but insure that it can 
handle 30µsec of latency without catastrophic degradation. 
A few pixels dropped may be acceptable, while dropped 
frames or important control information are not. 

Acquisition, generally the most variable and severe of 
the latencies, will require buffering in accordance with the 
following equation: 

S1at_buf = tLAT * farrival * Wdata 

where tLAT is the max latency time, farrival is the frequency 
of the data arriving to be transmitted (for master writes), and 
W data is the number of bytes per farrival. Note that tLAT 
should include the maximum latency that the current master's 
last transaction may introduce (8 PCLKs), as well as the 
initial target latency of the new master (16 PCLKS under the 
2.1 guidelines). As an example, a SOMHz application clock 
delivering WORDs will require 30µsec*50Mhz*2B /WORD 
= 3K bytes (min) of total buffering, while a lObaseT interface 
would require 30µsec*lOMHz*l / 8 = 38 bytes of buffering 
(min). This does not include master latency (from IDLE to 
FRAME# asserted) nor target transfer latency. 

After the bus is acquired, the sourcing FIFO must be able 
buffer data at least to the following depth: 



Sxfer_buf = ttar_xfer_lat *( farrival - fservice) * (W data/ 4 
bytes/DWORD) 

Obviously 3K bytes of on-chip buffering is expensive, 
and often impractical, especially when considermg that 
substantially 1ess bufferin$ is required after the ous is 
acquired. An effective solution is to partition the buffering 
into levels: one transfer FIFO to provide data sufficient for 
the longest, fastest burst expected, and a buffer store to cover 
acquisition and initial target latencies. Synopsys' datapath 
buffers are tightly coupled with the master to not only irutiate 
transfers from populated FIFOs, but also to mana$e 
exceptions. These buffers are able to cycle data at 0 wait­
states during a burst, for popular, modern ASIC technologies. 
Their depili should be computed based on the master's 
maximum burst size and the relative difference in the master­
slave bandwidth (Sxfer_buf equation). 

Sitting behind the master datapath buffer can be a store 
that buffers the amount of data necessary to cover acquisition 
latency and initial target latency and provide storage (if 
necessary) for other resources. This buffer coula be 
implemented in SRAM, or DRAM. Transfer from this buffer to 
the master datapath buffers could be performed by a simple 
DMA controller such as the one provided with the 
DesignWare™ MacroSet. Note that while transfers are in 
progress, the buffer store can be back-fillin$ the master's 
aatap~th FIFO, providing for a resource shanng of storage, 
reducing area. 

If the master's data arrival bandwidth is sufficiently 
low in portion to the acquisition latency and target 
bandwidth and latencies, then a single buffer may -be 
sufficient (such as in the case of serial communications, etc.). 

Buffer master writes has been the focus of discussion so 
far. Master reads need not account for acguisition latency, 
but only the classic queuing theory case of the difference m 
arrival rate versus service rate. If a master read requests as 
much as X bytes of data, and the transaction is completed 
without interruption, in the worst case, no data was serviced 
by the application, then X bytes of master read FIFO buffering 
would be required. A similar analysis can be applied to the 
slave read and write buffering requirements. The 
DesignWare™ MacroSet supports this oy providing for 

parameterized depth FIFOs and/ or registers each way, for 
master and/or sfave. Furthermore, recent enhancements 
allow FIFOs to be constructed from Flip-Flops, or by lever­
aging ASIC vendor diffused or metal programmable SRAMs. 

TEST DEVELOPMENT AND VERIFICATION 

Ease of test development, modification and accuracy of 
tests and models are crucial in developing compliant systems 
in first-time silicon and in facilitating the development and 
validation of system tests. Models and tests provided in the 
Synopsys PCI kit used in this flow include the following: 

Bus Functional Models (BFMs): These are BFMs of the 
PCI master and slave, as well as a passive monitor that 
observes and records bus activity and violations/exceptions 
and checks timing. Each model executes a series of commands 
test various compliance or user scenarios, and can therefore 
be used for complete system tests. 

Compliance Suites: These are a series of verification 
suites derived in collaboration with the PCISIG Protocol 
subcommittee to verify functional accuracy. Scenarios based 
on functionality supported by the umt under test are 
automatically generated for the appropriate configurations. 
Automatic post-processing of the test results creates a 
compliance report showing which SIG tests passed, which 
failea and I or not applied. 

Leveraging the test benches provided, one can create 
system-level tests by writing transaction sequences, as well 
as utilizing automatically generated test suites which 
validate protocol compliance. System tests and application 
tests can De stimulated and observed from the PCI bus through 
calls to these command procedures. Many sequences are 
generate which can be referenced. An example of such as test 
sequence is shown in Example 1. 

CONCLUSION 

In this paper, design and verification methodologies, 
des~gn tra~~offs and mo~els and tools have been presented 
which facilitate the rapid prototype and/or production 
design of efficient, compliant and reusable PCI-based systems. 
The authors welcome requests for additional design details. 

- scenario_l.7 for multi-data phase retry cycle test 
primary target behaves as PT (primary target) 

Initialize target 
clear_delays; 

memory cycles 

config(0,12,0); 
AFTER data 

fast 
-- Transfer Limit 

Target Reception of a Memory Write Cycle 

0, abort limit 12, Terminate 

request(l,0,0); request_limit = l, decode= 0, delay= O 
config(3,12,0); -- Transfer Limit= 3, abort limit= 12, Terminate 

AFTER data 
Target Retry of a Memory Write Cycle 

request(l,0,0); 

config (0, 12, 0) ; 
AFTER data 

-- Transfer Limit 

Target Reception of a Memory Read Cycle 
request(l,0,0); 

0 , abort limit 

Example 1- Test Command Sequence Stub 
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12, Terminate 
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Figure 1 - High Level Design Flow For Implementation 
of PCI-based Systems 
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Power Macintosh and PCI 

David Limp 
Power Macintosh Product Line Manager 

Apple Computer, Inc. 
One Infinite Loop 

MS: 306-4PM 
Cupertino, CA 95014 

(408) 862-7218/974-2403 (fax) 
limp@applelink.apple.com 

In March of 1994, Apple Computer Inc. 
introduced the Power Macintosh line of 
computers, signifying a major leap 
forward in personal computer design and 
RISC technology. Customer acceptance 
of Power Macintosh has been 
phenomenal, with over one million units 
shipped in the first 10 months--well 
before Apple's one-year forecast. 
Support from third-party software and 
hardware vendors remains strong with 
over 500 native applications developed 
which have been optimized to take 
advantage of the PowerPC processor. 
New Power Mac applications continue to 
enter the market each week. Apple's 
transition from CISC-based technology 
to the RISC-based PowerPC chip has 
redefined the price/performance 
paradigm for personal computers and 
represents one of the most ambitious and 
successful accomplishments in Apple's 
history. 

In 1995, Apple promises to extend the 
momentum and innovation of Power 
Macintosh by integrating two significant 
technologies into the next Power Macs: 
the PowerPC 604 processor and the 
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Peripheral Component Interconnect 
(PCI) bus. The PowerPC 604 will bring 
even higher RISC performance to the 
desktop without requiring customers to 
pay workstation prices. The PCI bus in 
Power Mac systems will allow Apple 
customers to use industry-standard PCI 
cards, thus enabling new solutions and 
higher performance on the Power 
Macintosh platform. 

Apple is committed to the PCI bus for 
the long term. The company has 
adopted Open Firmware as its boot 
interface to allow for a very open 
implementation of PCI cards on the 
Power Macintosh. Any PCI card that 
complies with the PCI 2.0 specification 
should work on Power Mac systems with 
PCI, thus making it very easy for 
developers to offer products for the 
Macintosh platform. The session will 
present an overview of why Apple chose 
PCI as its future bus strategy and how 
developers can take advantage of new 
PC and Macintosh markets where 
traditional PCs did not have significant 
market share. 



PCI & Open FirmwareTM 

Lillian Leung 
Senior Software Engineer 

FirePower Systems 
190 Independence Drive 
Menlo Park, CA 94025 

Ph. (415) 462-6217 Fax (415) 462-3051 

The PCI bus has been adopted on the Intel 
PC/AT platforms and non-Intel platforms. The 
PowerPC PReP platform is what I am involved 
with currently. Prior to that I'd been involved 
with a Pentium-based PCI/EISA server. With 
my background as a frrmware engineer, I would 
like to concentrate on the future of PCI in terms 
of firmware and software support. I would like 
to encourage PCI device vendors to develop 
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Fcode drivers for Open Firmware (IEEE 1275 
Standard). After all, Open Firmware runs on 
PowerPC PReP, PowerPC Apple, Intel, Spare 
and other machines. By providing Fcode drivers 
in device ROM, the PCI device vendors will 
expand their market shares beyond the legacy 
PC\A T. New markets can be penetrated with 
ease. It's a win-win situation. 



PCI' s Role in Mobile Computing 

Randy Giusto 
BIS Strategic Decisions 
One Longwater Circle 
Norwell, MA 02061 

Phone (617) 982-9500 
Fax (617) 982-1724 

PCI has the potential to deliver true desktop 
power to mobile computing. Today, the mobile 
professional has the processor power, memory, 
and storage features that desktops provide, but 
lacks a bus to provide ~ performance for 
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applications such as multimedia. PCI, along 
with cardbus, will provide users more power for 
emerging applications and capabilities as we 
move from a text-based metaphor to a visual 
one. 



LATE SUBMISSIONS 
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Windows 95 and PCI 

Marshall Brumer 
System Developer Relations Group 

Microsoft Corporation 
One Microsoft Way 

Building 6 
Redmond, WA 98052-6399 
(206) 936-5840/7933 (fax) 
marshalb@microsoft.com 

This talk covers the areas within PCI in which 
Microsoft has encountered issues and has created 
solutions for within Windows 95 and Windows 

Paper reprinted courtesy of Microsoft Magazine, Winter 1994. 
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NT. Issues and problems are explained and 
actionable solutions given. 



Special preview: Windows 95 
Youve heard about the 

next major release of 

Windows. Now, here's a 

look at what's in it for you. 

HERE'S MORE POWER in your 

personal computer than you may 

think. The upcoming version of the 

Microsoft Windows operating 

system-Windows 95-replaces 

MS-DOS., Windows version 3.1, 

and Windows™ for Workgroups 3.11 

with a new system that takes advan­

tage of your computer's power to let 

you do more tasks faster and with 

greater ease. The minimum hardware 

configuration for Windows 95 is a 

386DX computer withjust 4 

megabytes (MB) of memory. With 

Windows 95, you can run your exist­

ing 16-bit programs as well as new 

32-hit applications. 

Just click to connect 

Click Network Neighborhood to 
access what's on the network. 
Windows 95 is also an easy intro­
duction to the Internet. Built-in 
software uses your modem to dial 
up and connect. 

No more growing pains 

Plug and Play means you don't have 
to select driuers and settings manu­
ally or run a configuration program 
to add, set up, or change computer 
hardware. Just plug in a CD-ROM 
drive, more memory, or a network 
,·,ml, and Windows 95 detects and 
configures it for immediate use­
autmf!alically. 

MlCROSOFT MAGAZINE 

So long, Program Manager 

Now, icons for your programs, folders, 
and files can sit directly on your desktop. 
So the last thing you worked on is right 
there, ready to go, Or, click My Computer 
to see folders of all your files. 

Start here 

Desktop 

S···!\ My Comput~r 
. l±l 9 5"-1 FlopPY (A 
~ ·Gl 311: FlopPy (B 
lth::.3 (C:) 
$·~ (D:) 
' GiJ Fonts 

. : · fill Control Pane' 
j L .. GD Printers 

lfl·~ Network Neighbc 
'··'it Wastebasket 

Click Start for immediate access to what you want to 
do. l:ven if you care never to learn anything else about 
Windows 95, you can get to 99 percent of the tools 
you'll ever use just by clicking Start. 
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·-- Long live MS·DOS 

Windows 95 replaces the Microsoft 
MS-DOS operating system but has 
complete backward compatibility with 
it, so you can run any MS-DOS-based 
application you like. 

t • OVEAVIEW;.OOC,(Aead~Onl}lf' :~. LI .lS.J 
. . .. ' ,. '. ,, '• . '· . 'fl':\''.·.' . ·. 

~w Insert Fgmat: \. Tool$ :"'.!T11ble.i1:;Wi'ndow . <;;,,,, _~/;~; l!J 
' - ~ ~I •~' ~ ' .-4 . . .·, -·~\.',~·-·:· 'f'• 

I C9.J ~11 IRll ~I eJ <11 Liat-:.1 si-,IJr.;l ll@I ~l.J l'illl I !!ii! 
3 I Times ~~~·~?m.~~i/!]":1~?. ~!J~pe lz:tl:ttJ;m 
_· ...... 1_· _._. __ ,_. ___ 2 __ ._ ....... ' ..... ---~--\ ... · ... --... %· ... ~·-· .. : .... ·_ ........ 4--r 
~System i 
now, there are nine planets locked in orbit around the Sun. 
own Earth, supports life. But there are countless other suns 

The Microsoft Network: 
Microsoft's own online service 

W hen you upgrade to Microsoft Windows 95, you can 
merge onto the information highway while you're at it. 

Windows 95 includes access to a new, easy-to-use online service, 
The Microsoft Network, that puts you in touch with the entire 
world. And it's your direct connection to Microsoft. 

With The Microsoft Network, it will be easy to get informa­
tion or support on Microsoft products straight from the source. 
In addition, access to many top computer hardware and soft­
ware companies will be available through the service. The 
Microsoft Network also includes an array of bulletin boards 
where you can exchange ideas with those who share your inter­
ests-whether that means debating the merits of the latest 
Oliver Stone film or getting advice on how to grow prize toma­
toes. Plus, you can tap into thousands of Internet discussion 
groups. And, The Microsoft Network provides you with elec­
tronic mail so you can send messages to other members of The 
Microsoft Network and to anyone who has an Internet address. 

If you're intcn:ste<l in going onlinc with Microsoft, watch 
for the free trial offer during your setup of Windows 95. 

untless galaxies scattered across the expanse of the univers-1'------~ 
know if life exists on another planet in some other galaxy. 
iw more and more all the time about our own solar system. 
;t 15 years, space probes such as the Mariner and Voyager 

~.:) 

3:) 

°'I 

1orhood 

nrlons .rle.tllil nt ll 1.1 t 

My Budget Letter to Peter 

Applications Bmw 

What's up? 

See exactly what's running on your computer. 
The task bar shows what you can switch to­
withjust a click. 

Do two, three, four things at once 

View a video while printing a document 
in Word while copying a disk. Multitasking 
makes it possible-and easy. 

-+-...---- Easy to explore 
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Explorer shows much more than File Manager. Everything on 
your computer, from documents to programs, is laid out both 
hierarchically and pictorially in the Windows 95 two-pane 
Explorer. Just click the pictorial image, and the tool bar displays 
buttons that work with the object represented by the picture. 

Get wordy 

Filenames can be more descriptive because you can use up to 
255 characters. If you want, call a file Everything I ever wanted 
to do with my office except that I haven't found the time. 

Ycm can keep up to date on Windows 95 with our free 
electronic newsletter. To subscribe, send Internet mail to 
enews@microsoft.nwnet.com with the words SUBSCRIBE WIN­
NEWS in thi: body of your mi:ssagi:. If you arc a CompuServi;, .. 
customer, send mail to INTERNET:enews@microsoft.nwnet.com. 

When you subscribe to the WinNews newsletter, you will receive 
a welcome message. Because of the popularity of the newsletter, 
however, the Win News computer has experienced some capacity 
shortages. If you don't receive this welcome message within three 
days, please resubmit your subscription request. m 

MICROSOi-;T MAGAZINE 



IBM27-823Sl PCI TO PCI BRIDGE 

Robert Kilmartin, Alvar Dean, Marc Faucher I Uri Elazar, Ophir Nadir 
IBM Microelectronics I IBM Israel 

1000 River Street. Essex Jct., VT 05452 

ABSTRACT 

In today's computer environment, the PCI 
local bus standard has emerged as the leading high 
performance bus of choice. It provides a high 
bandwidth, processor independence, low latency 
transfer protocol with a built-in configuration 
mechanism to facilitate inter-operability. The high 
speed nature and electrical requirements of the PCI 
bus result in a practical limit of around ten PCI 
loads. A PCI to PCI bridge significantly increases 
PCI bus expandability. This enables motherboards 
to increase the number of on-board PCI devices and 
add-in card connectors, and allows adapter cards to 
offer multiple PCI device solutions. 

This paper presents IBM's first solution in 
the PCI to PCI bridge market. The IBM27-82351 is 
a fully compliant PCI to PCI bridge with many 
features that enhance the performance and usability 
beyond the basic requirements of the PCI to PCI 
Bridge Specification 1.0. The IBM27-82351 bridge 
provides several performance enhancing features 
such as reduced latency, data combining, improved 
buffer management, and arbitration control. In 
addition, enhanced address decode and forwarding 
control is provided via configurable address 
registers. These features and others will be fully 
presented. 
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PCI BUS ANALYZER GREATLY SIMPLIFIES 
TEST & DEBUGGING OF PCI SYSTEMS 

Thomas Nygaard 
Vice President, VMETRO 

Tel. (713) 584-0728, Fax: (713) 584-9034 
Email: thomasny@vmetro.oslonett.no 

Abstract 

Testing and debugging PCI bus systems can be a 
challenge, not only because of the tough specifications 
that require careful timing design of the hardware, but just 
as much on the software side, when several complex 
devices must play together with potential configuration 
and initialization problems, hardware and software 
incompatibilities, problems byte-swapping, interrupts etc. 

The common factor for most of these problems is that 
they relate to interactions between chips or boards that all 
reside on the PCI bus. This means that observing the 
activity on the PCI bus is the key to finding and solving 
problems. For this reason, VMETRO is offering a PCI 
Bus Analyzer that greatly simplifies test & debugging of 
PCI systems. 

Figure I. A full-featured Logic Analyzer for PC/ 
on a P MC - PC/ Mezzanine Card 

THE PBT-315 PCI Bus ANALYZER 

The PBT-315 is an advanced self-contained Bus 
Analyzer for the PCI bus, implemented as a single-width 
PCI Mezzanine card (PMC). This allows the analyzer to 
be plugged directly into a PCI motherboard like a PCI bus 
CPU card with PMC slots. Alternatively, the analyzer can 
be delivered with a buffered PCI/ISA shaped adapter 
board that plugs into desktop systems like PCs or 
workstations. 
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Figure 2. Also for analysis of desktop PC/ systems using 
the PC/I/SA form factor adapter. 

POWERFUL DEBUGGING FEATURES 

The PBT-315C State, Timing and Statistics Analyzer 
includes a number of powerful features which have been 
chosen to make the analyzer as useful as possible in 
detecting complex problems. The most important features 
are: 

• State, Timing & Statistics Analysis on all channels. 

• Up to 50MHz sampling rate using CLK- or 
transfer-synchronous sampling. 

• 128 sampling channels for 32 & 64-bits PCI 
support. 

• 64K Trace Memory depth. 

• 4 full-speed Word Recognizers with Range, Don't 
care and NOT. 

• 16 levels Trigger/Qualifier Sequencer. 

• Trigger after Delay or Event Count. 

• Demux'ed Address, Command and Data. 

• Time Tags in Trace Buffer show time between 
samples and Wait states. 
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Figure 3 : Block Diagram of P BT-315 Bus Analyzer 

TRACE DATA PRESENTATION WITH 

DEMULTIPLEXED ADDRESS/ DATA 

The powerful features of the PBT-315 Bus Analyzer 
mentioned above allows the capture of a comprehensive 
set of information representing the activity on the bus. 
One very important feature is the capability to 
demultiplex address, commands and data into separate 
trace channels. This not only simplifies readability of the 
trace, but allows powerful triggers involving both address 
and data to be defined easily. 

The captured data are presented to the user in a 
uniform and easily understandable way. Trace data can be 
captured and presented in the form of an alphanumeric 
trace list, where data is sampled either on each CLK edge 
or only when there is a valid data item transferred. 
Alternatively, data can be shown as a waveform diagram. 

Regardless of the type of presentation selected, the 
user can scroll forward and backward in the trace data, 
and can also select which signals shall be present on the 
screen. This allows the user to extract the maximum of 
relevant information from the trace data with a minimum 
of effort. 

[ 

Any PCI PMC module 

PC! Analyzer 

·. ::: :: ·· -

VME board 

Figure 4. In PMC systems, the analyzers allow stacking 
of a P MC module on top of the analyzer. 

.482 

STACKABLE PMC 

Being equipped with both male and female PMC 
connnectors, one standard PMC module card may be 
piggybacked on the PBT-315, eliminating the need for a 
spare PCI slot. The analyzer may operate from a separate 
power supply, and the analyzer and the piggybacked PMC 
module under test have isolated, separate reset functions 
to eliminate the need for time-consuming host reboot 
during debugging or production testing of PMC modules. 

STATE ANALYSIS WITH COMPLEX TRIGGERING 

State analysis is the process of capturing events or 
cycles one by one at the speed they occur in the system. 
This technique is typically used to debug problems 
associated with software. To trigger on even the most 
complex of situations the PBT-315 analyzer is equipped 
with 16 triggering levels, and with 20-bit event counters, 
allowing up to lM occurrences of an event in the trigger 
program. Delay counters are also included, providing 
programmable delays anywhere in the triggering 
sequence. This is particularly useful in real-time systems. 
Figure 4 shows an example of a complex trigger 
condition. 

If (Event 0) then 
Count 1048575 occurrences of (DMA-READ) 
Store (Event 0 or Event 1) 
If (Event O) then 

Count 65535 occurrences of (Event 1) 
If (BUSERROR) then 

Delay 120us then 
Trigger at 75% of Trace 

Else 
Restart 

(Up to 16 levels) 

Figure 5 : Example of how to utilize multiple count and 
delay statements to form a complex trigger condition. 

Sometimes a problem calls for triggering or storing on 
cycles that comply with a number of conditions except 
one, like in the two examples shown in figures 5 and 6. 
The first of these examples can be used to trigger when a 
subroutine returns an unexpected value, but one has no 
idea what that value may be. In the second example one 
might be able to reveal who is responsible for data being 
overwritten in a byte-oriented device buffer by using the 
analyzer to capture only data of "not byte" size (i.e. word, 
lword), typically written by a program gone wild. These 
examples show that the NOT capability gives a new level 
in flexibility in specifying the desired trigger point or 
filter specification. 



If (Write to Address X, Data NOT equals OJ then ••• 

Store (Write to Address Range X-Y, Data of Size NOT 
Byte) 

Figure 6 : The possibility to add NOT statements in signal 
groups in the word recognizers increases triggering and 

filtering flexibility considerably. 

INVESTIGATION OF A SOFTWARE PROBLEM 

The PBT-315 analyzer can be of great assistance in 
investigating certain types of 

WINDOWS OR TERMINAL-BASED 
USER-INTERFACE 

The PBT-315 can be operated from a terminal, PC/WS 
with terminal emulator or from a true Windows 
application; VMETRO's BusView for Windows. In either 
case the user will find similar windows, command bars, 
pull-down menus and dialog boxes. 

Window Help 

PC I Event Pattel"nS 

software errors in a PCI bus system, 
especially those kind of errors 
where one or more boards fail to 
implement some kind of software 
protocol correctly. In these cases a 
clear view of the traffic on the PCI 
bus may identify not only what kind 
of error occurred, but also which 
board caused it and how. 

Euent REQI GHTI FRAIEI Rd dress Data COHMRte BE 3: : I I I 

Anylbing : x xxxxxxxx 
PCJ I : I xxxxxxxx 
PCI1 XXXXXXXX XXXX llCXXX 
PCJ2 11111111 XXXICXXXX MelllllHllll 1111 
PCl3 11111111-111"8.laC KXXICXXXX 

PCI Se uenc•r 

1.a: Sil"Pling in STATE node 
1.b: Store (PCl3) 
1.c: If (PCll) thH Data 
2.a: If (PC11+PCl3) then FFFFFFFF FFFFFFFF 1111 1111 1 

One example would be to 
investigate a problem where three 
PCI bus masters are synchronising 
their actions by communicating 
through a common mailbox. The 
contents of this mailbox may 
occasionally be destroyed, 
presumably because one of the 
masters under certain conditions 
uses the wrong data type to access 
it. 

2.b: Trigger at START of trace FFFFFFFF FFFFFFFF 1111 1111 1 
1.d: Else I 18111111 FFFFFFFF tl!llRHd 1111 1 
3.a: If (PCI2) then 1 18111111 FFFFFFFF tteNRead 1111 1 

1 101111111 111111111 Me9'11Hd .... • 
1 1111111111. 22223333 Mellllead 1111 llAIT 

Sa"J)le Tiu llait Address Datil 111111111 22223333 Mellllead .... • 
TRIG ... .. 18118111 11111111 111111• _.., .. 5555 MellRHd 1111 .. n I 

1 61ns 11 191111 ... 22223338 
2 61n5 11 ......... 411"'45555 
3 31ns II 11111HC 66667777 sa11p1e Ab5Ti• 
"311'15 .. 18111111 81889999 TRIG II ens I 
5 311'15 .. 10111111' AllUllABBBB 
6 31ns .. 10111118 CCCCDDDD 
7 31115 .. 11111111C EEEEFFFF FRAME I 

1 
9 31ns .. 101IOl2Jt DDDDCCCC Me.write 1111 BE(3: :D)I 

11 31ns .. 10111128 BIBBAAAA Mellllllrite 1111 1111 
11 61ns 11 11111812C 99998118 MeRWrite 1111 IRD¥1 
12 Sins .. 11111131 77776666 Meltlllrite 1111 1 
13 31ns .. 1011113 .. 5555""" Mellllrite 11111 TRDYI 
1• 31ns .. 11111138 33332222 Melllllrite 1111 1 
15 121115 13 1011013C 11119111 Me.write IHI DEUSELI 
16 3Hns Ill 11110 ... 1 11118111 Melllfrite 1111 1 

One may in such a case set up a l!! .. ,., .. .,_r..,on....,H,,,,nc~-------------------------------' 

trigger condition that captures 
accesses within a specific area 
(representing the mailbox) and with wrong data type. The 
trace output will easily show that we can identify not only 
the access itself and the address accessed in the mailbox, 
but also which PCI bus master performed the access. An 
inspection of the trace data preceding the trigger may 
even tell us exactly why, or at least under exactly what 
conditions, this error occurred. 

INVESTIGATION OF SYSTEM PERFORMANCE 

USING STATISTICS FUNCTIONS 

Finally we may use the PCI anallyzer to look at the 
performance of a PCI bus system. In order to simplify 
such an investigation the PBT-315 Bus Analyzer system 
is equipped with a Statistics module. This module allows 
the user to gather many different kinds of data as to how 
the traffic on the PCI bus behaves and to spot uneven 
distribution of system load and other symptoms that may 
represent performance bottlenecks. · 
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CONCLUSION 

In this paper we have discussed how the PBT-315 Bus 
Analyzer system can be a very powerful tool in detecting, 
locating and fixing different kinds of PCI bus system 
problems. 

Altogether, the PBT-315 Bus Analyzer constitutes a 
very important tool when building and integrating PCI 
bus based systems. In many cases this tool could save a 
very considerable amount of time in debugging such 
systems, as well as greatly simplify the issue of quality 
testing. 
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PCI technology is a key 
technology that impacts various 
customer segments today and will 
provide industry-leading solutions for 
tomorrow. As leader of dell's 
development plans, Mr. Burke will 
discuss how Dell has integrated PCI 
technology across its desktop product 
lines and outline how Dell has 
implemented PCI in various ways, 
according to its diverse target markets 
-- ranging from small to medium sized 
businesses, individul enthusiasts to 
large corporations. 

For enthusiasts and small-to­
medium sized businesses, PCI 
provides a flexible platform enabling 
users to achieve maxumzmg 
performance from their system. 

Large corporate customers 

depend on stability, standardization, 
and reliability. Mr. Burke will 
highlight how Dell has integrated PCI 
components on the system board, 
such as int4egrated Pei SCSI and 
integrated PCI video. With these 
implementations, Dell delivers both 
stability and cost efficient computing 
to corporate customers. 

As a leader in the PCI industry, 
Dell strives to be on the leading edge 
of important technology transitions -­
delivering relevant technology as it 
becomes available. PCI is an enabler 
for other key developing standards, 
such as video architectures and chip 
design. Fast to market is the 
cornerstone of Dell's direct model and 
PCI helps the company stay on the 
leading edge of performance. 
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This paper will discuss a 
programmable logic approach to 
implementing Peripheral Component 
Interconnect (PCI) bus interfaces. PCI is 
rapidly gaining popularity for its high 
performance and wide bandwidth, and in 
order to take full advantage of its 
capabilities, system designers must 
consider a number of possible 
implementations. The portion of the PCI 
bus scheme that this paper will address is 
the the interface between the PCI bus 
itself and any back-end function that 
needs to use the bus, either to send or 
receive data. 

A programmable logic 
implementation of a PCI interface offers 
several options that non-programmble 
logic implementations (i.e. chip sets) do 
not. The most attractive aspect of using 
programmable logic for PCI bus 
interfacing is the flexibility of the 
implementation. Programmable logic 
provides the flexibility to customize the 
interface to the back-end function. There 
is also the capability to easily change or 
alter the interface design to update or 
add features to the overall product. 
Also, programmable logic features the 
option to incorporate portions of the 
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back-end function into the programmable 
logic device itself (if resources are 
available; see the Hardware 
Implementation section of this paper), 
thus conserving board real estate. 
Finally, another reason for choosing 
programmable logic over a less-flexible 
solution is that a dedicated solution 
might not support all the possible bus 
cycles specified in the PCI specification, 
whereas programmable logic is open to 
support all the existing bus cycles, plus 
any that may be defined in the future. 

Customizable Functionality 

There are a number of areas in a 
PCI interface that need to be tailored to 
suit the needs of the function that is 
being interfaced to a· PCI bus. This 
tailoring ranges in complexity from 
choosing not to implement certain 
functions (i.e. parity check and/or parity 
error) to fine-tuning the logic to meet 
critical needs (i.e. limiting the response 
of the control state machine to certain 
bus cycles to optimize the timing). These 
and other types of changes are easily 
made in a programmable logic design 
approach with straightforward 



modifications of the design description. 
Specific modifications will be discussed 
in the section of this paper titled 
Modifying/Customizing the 
Macrofanctions. 

Description of PCI Macrofunctions 

A set of PCI interface designs has 
been created for use with Altera' s 
programmable logic devices. These 
designs (or macrofanctions in Altera's 
terminology) are meant to serve as the 
foundations for a PCI interface design, 
with the designer changing aspects of the 
macrofunction and adding/removing 
components to suit the individual needs 
of the product. At present, there are 
three macrofunctions: a master interface, 
a target interface, and a parity generator. 
A macrofunction for a combined 
master/target interface is in development. 

Several Altera devices are 
specified by the PCI Special Interest 
Group (SIG) as being PCI-compliant, 
including many members of the MAX 
7000 and FLEX 8000 families. A 
complete list of these devices is available 
both from the PCI SIG and from the 
Altera Marketing department at ( 408) 
894-7000. There is also a complete 
checklist of items that are associated with 
PCI compliance; for more information on 
specificities of Altera' s device 
compliance, consult Altera's Application 
Brief 140: PC! Compliance of Altera 
Devices. 

The PCI macrofunctions have 
been described using Altera Hardware 
Description Language (AHDL). In this 
form, they are ready to be incorporated 
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into any design targeted for an Altera 
programmable logic device. The 
development tool used to design for 
Altera devices is MAX +PLUS II, a 
complete development environment 
including design entry, compilation, and 
simulation capabilities, as well as 
interfaces to most popular CAE tools. 
The rest of this section describes 
MAX +PLUS II operation; readers who 
are familiar with MAX+PLUS II but not 
AHDL may wish to skip ahead to the 
Brief Introduction to AHDL. Readers 
who are familiar with MAX +PLUS II 
and AHDL will probably want to skip 
forward to Modifying/Customizing the 
Macro/unctions. 

Within the MAX +PLUS II design 
environment, macrofunctions can be used 
either as stand-alone design descriptions 
or as part of larger design descriptions. 
Depending on the design requirements, 
the designer can modify the design 
description of the appropriate PCI 
interface macrofunction, or instantiate 
the macrofunction into a larger design 
description. Design descriptions can be 
composed of any combination of 
graphics, text, and waveform design files. 
A completed design description is 
submitted to the MAX +PLUS II 
Compiler, which produces programming 
and simulation files for the targeted 
programmable logic device. Simulating 
the design using timing information from 
the overall system contributes to 
guaranteeing the reliable operation of the 
device in the system. The MAX +PLUS 
II design flow (modified to show use of a 
PCI macrofunction) is illustrated in 
Figure 1 below: 



PCI interface 
macrofunction file 

Figure I 

1--_.. MAX+PLUS II 
Sirrulator 

sirrulation files 
MAX+PLUSll 
Design Editors 

_____ .....__._.. MAX+PLUS II 

Corrpiler 

top-level design file 

Brief Introduction to AHDL 

While this document cannot 
include a full treatment of AHDL, an 
understanding of some of the basic 
concepts of AHDL will enable a designer 
to make most of the changes necessary 
to use and customize the PCI 
macrofunctions. To this end, a few 
simple AHDL examples will be discussed 
in this section. Readers who are familiar 
with AHDL can skip forward to the 
Understanding and Customizing the 
Macrofunctions section. For a complete 
treatment of AHDL consult the 
MAX +PLUS II AHDL manual as well as 
MAX+PLUS II On-Line Help. 

AHDL is a text-based design 
language in which the behavior of the 

SUBDESIGN pci_par 
( 

) 

ad[Jl •• O], c_be[J •. O] 
parity 

VARIABLE 
par[lO •. O] 

BEGIN 

1--.... Prograrrmer 

prograrming files 

desired logical function is described. For 
example, Figure 2 shows an AHDL 
fragment of the parity generator (a 
complete AHDL description of this 
macrofunction is available as part of 
Altera's PCI Design Kit or directly from 
Altera's Applications group). Note that 
the bit widths of the input buses (address 
or ad and command/byte enable or 
c _be) are indicated by the range 
delimiter [ X •• Y] where X and Y 
determine the upper and lower bound of 
the bus width. Note also that the parity 
signals paro and parl are generated 
via boolean equations, where the symbol 
$ corresponds to the logical XOR 
operation. 

INPUT; 
OUTPUT; 

NODE; 

Parity generation equations 

paro = ado $ adl $ ad2 $ adJ; 
parl = ad4 $ ad5 $ ad6 $ ad7; 

487 



Figure 2 

The AHDL fragment in Figure 3 
below illustrates the declaration of the 
Base Addess Registers (BAR): 

SUBDESIGN target 
( 

PCI Interface Signals 

) 

CLK 
AD[31 •• 0] 
RST 

VARIABLE 

BEGIN 

BAR[31 •• 5] 

BAR[].clk = CLK; 
BAR[].clrn = RST; 

INPUT; 
BIDIR; 
INPUT; 

DFF; 

PCI Clock 
Multiplexed address/data 
PCI Master Reset 

-- Base Address Registers 

BAR[31 •• 5].d = Write_BAR & AD[31 •• 5] # !Write_BAR & 
BAR[31 •• 5] .q; 

Figure 3 

The AHDL fragment in figure 3 
also illustrates the description of the 
logic required to write a value into the 
Base Address Registers. The last line of 
AHDL in the fragment (shown below) 
defines that the 28-bit value to be placed 
on the d inputs of the BAR is the value 
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on the address lines ( AD [ 31 •• 5 ] ) 
logically ANDed with the binary signal 
Write BAR (defined outside of this 
fragment) OR the value from the q 
outputs of the BAR anded with the 
complement ofWrite_BAR. 



BAR[31 •. 5].d =Write BAR & AD[31 •. 5] # !Write BAR & 
BAR[31 .• 5] .q; 

The last item of interest in both 
AHDL fragments is the use of the two 
sequential dashes to indicate a comment. 
This notation can also be used to prevent 
lines of text in an AHDL design 
description from being compiled into the 
hardware implementation of the design. 

SUBDESIGN target 
( 

PCI Interface Signals 

) 

CLK 
AD[31 •. O] 
RST 

Figure 4 

: INPUT; 
: BIDIR; 
: INPUT; 

The other means of commenting 
out a line of AHDL code is with the 
percent symbol (%). Unlike the 
sequential dashes, use of a single percent 
sign indicates the beginning of a 
comment, while the second percent sign 

SUBDESIGN target, 
( 

PCI Interface Signals 

% 

) 

CLK 
AD[ 31.. O] 
RST 

Figure 5 

INPUT; 
: BIDIR; 

INPUT; 
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For example, if a designer did not wish to 
include a PCI master rest input signal 
(listed as RST in figure 4) in the design, 
he or she could add two dashes to the 
beginning of that line as indicated in 
figure 4 below: 

PCI Clock 
Multiplexed address/data 
PCI Master Reset 

indicates the end of the comment. For 
example, if a designer wished to 
comment out the last two lines of the 
AHDL fragment in Figure 4 using 
percent signs, the resulting text would 
look like Figure 5: 

PCI Clock 
Multiplexed address/data 
PCI Master Reset % 



AHDL designs are saved as files . 
with a .tdf (Text Design File) extension. 
MAX +PLUS II recognizes files with the 
. tdf extension as AHDL design files to be 
compiled or incorporated into designs for 
Altera programmable logic devices. 

Modifying/Customizing 
Macrofunctions 

the 

There are a number of ways a 
designer might customize the PCI 
macrofunctions to suit the needs of a 
particular design. This section of the 
paper will describe a few of them. The 
whole range of possible variations on a 
PCI interface design can not, of course, 
be encapsulated into any single 
document, but the intention of covering a 
few examples here is to convey the effort 
involved in such changes. The 
customizations that will be discussed are: 

(I) Adjusting the width of the 
address and data buses connecting the 
interface to the 
back-end function 

(2) Including/excluding a 
parity check/parity error function 

Other customizations that will be 
discussed (in somewhat less detail) are: 

(I) Including some or all of 
the Configuration Space in the PLD 

(2) Generating signals for the 
back-end function 

SUBDESIGN tar max 
( 

-- PCI Interface Signals 
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The means for customization will 
be modification of the AHDL design files 
using any standard ASCII text editor. In 
this paper, the design file referenced will 
be the design for the target interface for 
Altera's product-term based devices. 
This file is called TAR_ MAX. TDF. 

Adjusting the Width of Address/Data 
Buses 

The width requirement for the 
address and data buses connecting the 
PCI interface and the back-end function 
vary with the needs of the back-end 
function. Changing these widths requires 
three modifications to the AHDL design. 

(I) The number and names of the 
device pins corresponding to these buses 
must be changed to fit the desired 
number and names of the signals. 

(2) The number of registers that hold 
the address and/or data information must 
be modified accordingly. 

(3) .The number of tri-state buffers 
that control the passage of the address 
and/or data information to the outside 
world must be changed to correspond to 
the new number of address and/ or data 
lines. 

In the TAR_MAX.TDF file, 
signals that connect to the outside world 
(via device pins) are defined in the first 
part of the Subdesign section. This 
section is excerpted in Figure 6 below: 



CLK 
AD[31. .O] 
C_BE[3 •• O] 
PAR 
PERR 
SERR 
FRAME 
IRDY 

PCI Clock 
Multiplexed address/data 
Command/Byte enable 
Parity 
Parity Error 
System Error 
Transfer Frame 
Initiator Ready 

TROY 
DEVSEL 
IDS EL 

: INPUT; 
BI DIR; 
INPUT; 
BIDIR; 
BIDIR; 
OUTPUT; 
INPUT; 
INPUT; 
BIDIR; 
BI DIR; 
INPUT; 
INPUT; 
BI DIR; 

-- Target Ready 
Device Select 
ID Select 

RST 
STOP 

PCI Master Reset 
Stop Request 

-- Interface Back-End Device Signals 

) 

Addr[7 •• O] 
Data[31 •• 0] 
-- Dpar 
BE [ 3 •• 0] 
Dev_req 
Dev ack 
Rd Wr 
Cnf g 
T abort 
Retry 
Reset 

Figure 6 

: OUTPUT; 
: BIDIR; 

INPUT; 
OUTPUT; 
INPUT; 
OUTPUT; 
OUTPUT; 
OUTPUT; 
INPUT; 
INPUT; 
OUTPUT; 

The address and data buses to the 
back-end function are the two lines 
(bolded) directly underneath the 
comment line "Interface Back­
End Device Signals". Note that 
the keyword OUTPUT after the colon 
indicates that the "objects" declared by 
the name Addr [ 7 •• o ] are output pins. 

Address From Device 
Data To/From Device 
Data Parity From Device 
Configuration Byte Enables 
Request From Device 
Transfer Complete Ack. 
Read/Write 
Configuration Cycle 
Fatal Error has occured 
Target signaled a retry 
PCI Reset 

The first step to modifying the width of 
these buses is to change the number 
ranges in the brackets following the 
names of the signals. For example, the 
address bus (shown as being 8 bits in 
width) can be modified to be a 4-bit bus 
by changing the line: 

Addr[7 .• O] OUTPUT; -- Address From Device 

to 

Addr[3 •• 0] : OUTPUT; 
Likewise, the data bus 

Data [ 31 •• o ) can be modified to any 
width with a similar operation. Note that 
the data bus signals are defined to be of 

-- Address From Device 
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type BIDIR, indicating that they are 
bidirectional signals. 

The second step is to change the 
number of registers that hold the address 



and/or data infonnation and before going 
to the tri -state buffers. The registers for. 
the address infonnation are called 
Addr_reg. The line of AHDL in the 
TAR MAX.TDF file that indicates the 
number (and name) of the address 

Addr_reg[31 •• 0] : DFF; 
The line of AHDL responsible for 

naming and numbering the data signals is 

Data_reg[31 •• 0] : DFF; 
The lines of AHDL that state the 

number of tri-state buffers associated 
with the address and data pins are in the 
same section (Variable). These lines are 
listed below (note that the keyword TRI 

AD_tri [31.. O] 
Data_tri (31.. O] 

: TRI; 
: TRI; 

Including/Excluding a Parity 
Function 

Check 

The capability to check parity, 
produce a parity signal and produce a 
parity error signal exist within the AHDL 
designs for both the Master and Target 
Interface. Parity is produced via another 
macrofunction, called pci_par, which 
is referenced within the Master and 
Target interface designs (in Altera 
terminology, the use of lower-level 
macrofunctions within higher-level 
macrofunctions is called "instantiation"). 

Exclusion of the parity check 
signal and/or parity error signal involves 
"commenting out" portions of AHDL 
code (commenting a line out is generally 
preferable to outright deletion for 
reasons of ease for future modification, 

PAR : BIDIR; 
PERR : BIDIR; 

After being commented out, these lines 
would appear like this: 
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registers is in the VARIABLE section. 
The line is below (note that the keyword 
OFF after the colon indicates that the 
"objects" declared by the name 
Addr _reg [ 31 •• o] are D-type 
flipflops): 

-- Register the AD[] 
a few lines below the address register 
line: 

after the colon indicates that the 
"objects" declared by the names 
AD_tri[31 •• 0] and 
Data tri [ 31 •• o] are tri-state 
buffers): 

but deletion is an option as well). The 
lines of AHDL to be commented out 
correspond to: 

(1) The parity and/or parity error 
pins 

(2) The registers and node that hold 
the parity and/or parity error signals and 
their output enables 

(3) The logic and connections for the 
parity and/or parity error signals 

The declaration of the parity and 
parity error pins is included in the 
Subdesign section of the design file. In 
the MAX_TAR.TDF file, they appear 
like this: 

Parity 
Parity Error 



% PAR 
PERR 

: BIDIR; 
: BIDIR; 

-- Parity 
-- Parity Error % 

The registers for the parity and 
parity error signals (and their output 

enables) are declared in the Variable 
section. They appear like this: 

PERR_reg OFF; 
PERRoe OFF; 

PAR_reg OFF; 
PARoe OFF; 

Par_flagl : OFF; 
Par_flag2 : OFF; 
Parity NODE; 
The above signals can be 

commented out by placing a percent sign 
before the first line and a second percent 
sign after the last. Finally, the logic and 
connections for the parity and parity 

error signals appear in the main body of 
the design file; percent signs can be used 
to comment them out in the same manner 
described above. The signals to be 
commented out are shown below. 

PCI_parity.(AD[31 •• 0], C_BE[3 •• 0]) = (AD[31 •• 0], 
C _BE [ 3 .• 0 ]) ; 
Parity= PCI_parity.(Parity); 

PAR= TRI(PAR_reg, TRDYoe); 

PAR_reg.clk = 
PAR_reg.clrn = 
PAR_reg = 

PARoe.clk = 
PARoe.clrn = 
PARoe = 

PERR = 

PERR_reg.clk = 
PERR_reg.clrn = 
PERR_reg = 

Par_flagl.clk = 
Par_flagl.clrn = 
Par_flagl = 

CLK; 
RST; 
Read_BAR & Parity 
# !Read BAR & PAR reg; - -
CLK; 
RST; 
ADoe; 

TRI(!PERR_reg, PERRoe); 

CLK; 
RST; 
Par_flagl & Parity; 

CLK; 
RST; 
s data & !Rd Wr & !IRDY & !TROY 
#-Write BAR & !RD WR & !IRDY & 
!TROY; -

Par_flag2.clk = CLK; 
Par_flag2.clrn = RST; 
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Par_flag2 

PERRoe.clk 
PERRoe.clrn 
PERRoe 

= Par_flagl; 

== 
= 

CLK; 
RST; 

= S data & !Rd Wr & !IRDY & !TROY 
#-Backoff & TRd Wr 
# Turn ar & !Rd-Wr 
#.Idle-& Par_flag2; 

A designer who wishes to 
implement the parity check but not the 
parity error, can comment out only the 
AHDL code corresponding to the parity 
error signal, and this will produce the 
desired result. 

Other Customizations 

There are a number of other ways 
for a designer to modify these 
macrofunctions. Any number of signals 
might also be generated for the 
requirements of the back-end function. 
Modification of the AHDL code to 
include the logic equations for these 
signals is all that is required to implement 
these signals. Another possible change is 
to vary the amount of Configuration 
Space inside the programmable logic 
device itself. The TAR MAX. TDF 
design includes a 27-bit wide register for 
the BAR. Less registers might be used if 
the memory requirements did not require 
the full 27-bit range. A designer might 
also wish to include more of the 
Configuration Space inside the 
programmable logic device, for example 
the Command or Status Registers. 
Including more of the Configuration 
Space inside the programmable logic 
device is particularly suited to devices 
that have on-board RAM (such as the 
FLASIDogic family). 

Hardware Implementation 
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This section discusses the actual 
implementation of a PCI interface in a 
programmable logic device. The 
example that will be used is the Target 
interface placed into a MAX 7000 
EPM7160E device. By understanding 
how the Target interface fits into the 
EPM7160E, designers can get a clearer 
idea of the capabilties of programmable 
logic in PCI interface applications. 

The design file TAR_MAX.TDF 
was submitted to MAX +PLUS TI and 
compiled, with MAX 7000 as the target 
family. The design's major features are 
listed below; a complete listing of the 
TAR_MAX.TDF design file is available 
from a number of sources listed at the 
end of this paper 

(1) PCI Target interface with 32-bit 
address/data connection to PCI bus 
(2) 8-bit address and 32-bit data bus 
to back-end function 
(3) Generates parity and parity error 
signals 
( 4) Generates system error signal 
(5) Includes 27-bit Base Address 
Register 

MAX +PLUS TI placed the design 
into the smallest possible device in the 
family that would accommodate the 
design: an EPM7160E in the 160-pin 
QFP package. The following excerpt 
from the report file (produced by 
MAX +PLUS TI during compilation) 
indicates some of the resource utilization: 



Total dedicated input pins used: 4 I 4 (100%) 
Total I/O pins used: 94 I 100 ( 94%) 
Total logic cells used: 153 I 160 ( 95%) 

Total input pins required: 12 
Total output pins required: 17 
Total bidirectional pins required: 69 
Total logic cells required: 
Total flipflops required: 

As indicated in the report file 
excerpt, the design used all of the four 
dedicated input pins, 94% of the 100 I/O 
pins and, and 95% of the 160 macrocells. 
The reamining device resources are 
available for other functions. Placed into 
the 12-ns version of the EPM7160E, the 
design also meets the 33-:MH.z 
performance requirement for open PCI 
systems. 

Many PCI Target designs do not 
require all of the functionality provided 
by the TAR_ MAX. TDF design. For 
example, some PCI interfaces might 
require fewer registers in the BAR, or no 
parity or system error signal generation. 
Below, Table 1 lists some of these 
optional functions and the macrocell 
resources they require; removing these 
functions (in the case that they were not 
required) would free up a corresponding 
amount of resources. 

Table 1 

Function Macrocells Used 
Parity_ Check 4 
Pari!Y_ Error 4 
Base Address R~isters 1 _Qer r~ster 

If extra resources are required, a 
designer also has the option to choose a 
larger device. Two other members of the 
MAX 7000 family are larger than the 
EPM7160E: The 192-macrocell 
EPM7 l 92E and the 256-macrocell 
EPM7256E. The same PCI Target 
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123 

interface design placed in these devices 
would yield more extra resources (53 
macrocells in the EPM7192E and 103 
macrocells in the EPM7256E). The 
FLEX 8000 devices are also an option; 
this target interface design occupies 
about 65% of the resources of the 4,000-
gate EPF8452A, leaving about 150 
registers and associated logic for other 
functionality. 

Conclusion 

A programmable logic solution to 
a PCI interface offers flexibility and 
options that a dedicated chip set cannot. 
These options include the ability to 
customize the interaction with the back-
end design, include or exclude functions 
that may or may not be needed, and 
include back-end function logic into the 
programmable logic device to conserve 
board real estate. Altera's PCI interface 
macrofunctions are designed to serve 
engineers as foundations upon which to 
build their own PCI interfaces. A 
number of Altera's devices are suitable 
for impementing PCI interface designs in 
addition to the one discussed in this 
paper, including several members of the 
MAX 7000, FLEX 8000, MAX 9000, 
and FLASIDogic families. Finally, 
Altera's Applications group is available 
at (800) 800-EPLD to assist any engineer 
in utilizing the macrofunctions to their 
best potential. 



Obtaining the Macrofunctions 

The PCI macrofunctions are 
available from several sources, including: 

(1) Altera' s PCI Design Kit 
(obtainable from Altera Marketing at 
( 408) 894-7000) 
(2) Altera's Applications group at 
(800) 800-EPLD or (408) 894-7000 
(3) Altera Applications BBS at (408) 
954-0104 in the form of the file 
PCI IO.EXE 
(4) Altera's ftp site: ftp.altera.com 
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PCI TO VME: BUILDING THE BRIDGE 

D. Lisk, T.P. Wilson, A Sheedy, J. Morris, I. Dobson 
Newbridge Microsystems, Kanata, Ontario, K2K 2M5 

ABSTRACT 

The Peripheral Component Interconnect (PCI) bus 
has emerged as a popular cure for the local bus bottle­
neck developing between CPUs and bandwidth-hungry 
peripherals. Data-intensive real time systems can partic­
ularly benefit from the increases in response time 
allowed by a high performance local bus. Consider also 
that PCI is welcomed by the likes of IBM, DEC and 
Apple, and we can predict with some confidence that a 
PCI interface will be tacked onto a number of high-end 
peripheral devices. This article addresses some of the 
technical issues encountered when interfacing PCI with 
the VMEbus. We discuss maximizing bus performance, 
cycle mapping (which includes translation of command 
information, byte lane enabling, endian conversion and 
address mapping), VMEbus interrupt handling, and the 
architectural impacts on real time operating systems. 

WHY PCI TO VME? 

Here's a challenge for you. Pick up a trade journal in 
computing design or embedded systems and try not to 
find a mention of PCI (Peripheral Component 
Interconnect), a hot new local bus sweeping the PC 
industry. It won't be easy, and indicates the industry­
wide acceptance of PCI that promises high volume, low 
cost PCI peripherals at the right price/performance 
level. Although originally destined for the PC market, 
PCI is migrating to industrial applications in the guise of 
a mezzanine card specification (PMC, IEEE 1386.1). This 
is where VMEbus enters stage left: an industrial, open 
standard backplane, inexpensive because of its ubiquity 
but in need of a local bus partner to take it into the next 
couple decades. 

Just as the VMEbus industry can take advantage of 
the new spectrum of high end, low cost PCI peripherals, 
a PCl/VME bridge provides PCI device vendors a win­
dow to a large and diverse embedded systems market. 
Although there have been some rumblings of an indus­
trial strength PCI (ISPCI) rising to compete with 
VMEbus, there is more incentive at this time to merge the 
two into one system. 

Intriguing technical issues arise when you bridge 
two such different buses as PCI and VME. The differ­
ences go beyond just bandwidth (in 64-bit mode PCI 
heats up the data bus at over three times the theoretical 
limit of VMEbus). Fundamental differences also exist in 
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addressing, cycle protocols and interrupt management. 
One approach in bridging mismatched buses is a decou­
pled architecture, where the operation of one bus is kept 
isolated from the operation of the other. This approach 
is particularly important in bridging PCI and VME, and 
we'll show that some transactions can only be directly 
communicated across the PCl/VME bridge by decou­
pling the buses. Since the following discussion of a 
PCl/VME bridge focuses on decoupled architecture, it's 
worth spending page space on a general comparison 
between coupled and decoupled bridges. 

COUPLED VERSUS DECOUPLED 

At the risk of over-simplification, you might view a 
coupled system as a fire brigade of two men and one 
bucket. One fire-fighter brings water from the river in 
the bucket and passes it to the second fellow who rushes 
to splash the water on a burning barn. The bandwidth 
(flow of water) is only as good as the lowest performance 
bus, and the first bus must wait while the transaction 
completes on the second bus (the first firefighter waits 
for the return of the bucket). Beyond the loss of local bus 
performance and increase in local bus latency this incurs, 
there is also the issue of latency constraints on the PCI 
bus. After the first data beat, the PCI bus will only wait 
for a limited period before timing out. 

In a decoupled system, the fire brigade has two 
buckets and a big washtub at the halfway point. The first 
firefighter brings water from the river in his bucket, 
dumps it in the washtub and rushes back for more. 
Meanwhile, the second fellow monitors the washtub and 
as soon as water appears, he uses his bucket to transport 
water to the fire. The washtub is akin to a decoupling 
FIFO that passes data from the first bus to the second 
bus. Since there's no waiting for remote bus arbitration 
and data acknowledgment, each bus operates at its opti­
mum performance level. 

The fire brigade analogy addresses the advantages of 
decoupling in terms of bandwidth utilization and 
decreased local bus latency, but masks several technical 
issues that arise with mismatched protocols in a 
PCl/VME bridge. These issues revolve around cycle 
mapping and interrupt translation. In addition, there are 
considerations for system architects wishing to use a 
decoupled PCl/VME bridge in their real-time systems. 



CYCLE MAPPING 

In mapping PCI to VME, keep in mind one over-rid­
ing goal. Ideally the PCI bus should be bridged to 
VMEbus without having to mimic VME. Just because a 
PCI initiator is sending a transaction to the VMEbus 
doesn't mean that the PCI bus should suffer from limita­
tions of the VMEbus. The following discussion points 
out differences between the buses that introduce obsta­
cles to reaching this goal, but also presents ways to sur­
mount these obstacles through decoupled architecture. 

Addressing 

The two specifications take a fundamentally differ­
ent approach to address mapping. In PCI, addresses are 
divided functionally into three separate spaces: Memory, 
I/ 0 and Configuration. VMEbus on the other hand has 
a plethora of available address spaces, mostly differenti­
ated according to address width (A16, A24, A32, A40 and 
A64), although the VME64 specification introduced a 
configuration space (CR/CSR). To guarantee that a par­
ticular PCI address space can be accessed through the 
VMEbus, you must incorporate the type of PCI access in 
the VME transaction. This problem is solved by using a 
PCI/VME bridge with PCI and VMEbus slave images 
that can be configured to symmetrically map to certain 
address spaces on the PCI buses. 

Beyond the problem of different types of address 
spaces, VMEbus and PCI have an even more fundamen­
tal difference that results from their different evolution­
ary histories. PCI was spawned in the Intel world mak­
ing it little-endian, while VMEbus inherited Motorola's 
big-endian 68K lineage. These different endian systems 
can be mapped either through Data Invariance or 
Address Invariance. Using Data Invariance, the 
PCI/VME bridge would perform operations on primi­
tive data structures (like 8-bit, 16-bit, or 32-bit integers) 
so that either endian-type processor could read the struc­
ture without byte swapping. Unfortunately, the problem 
with this approach is that Data Invariance scrambles 
other data structures. The scrambling depends upon the 
word width used for mapping, and may also depend 
upon the bus width the data traveled through. A Data 
Invariant scheme would require software to unscramble 
the data structures at the destination. 

A better approach with a PCI/VME bridge is 
Address Invariant mapping, which preserves the byte 
addresses between endian systems. With Address 
Invariance, the PCI/VME bridge doesn't worry about 
word width and data structure, but just manipulates 
byte lane mapping so that the byte ordering appears the 
same in memory when it goes to either endian system. 
Note that with this system it is up to software to know 
the endian interpretation of each multi-byte data field 
and initiate the required cross addressing or byte swap­
ping. 
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Command Information 

More problems arise in trying to transparently com­
municate PCI command information across the VMEbus. 
For example, there are no VMEbus equivalents to PCI's 
cache line transactions: multiple memory read, memory 
read line, and memory write invalidate These cache line 
transactions are meant to optimize bus performance for 
bulk sequential data transfers. As with the address space 
problem above, a possible solution would be allowing 
the PCI/VME bridge to tag VMEbus slave images for 
certain transactions. For example, a particular VMEbus 
slave image in the PCI/VME bridge could be pro­
grammed to always generate cache line transactions on 
the local bus. Note that with this solution the system 
architect must assure that these cache line dependent 
VMEbus slave images ONLY receive cache line accesses. 

Byte Lane Translation 

The major difference between PCI and VMEbus in 
byte lane usage is that PCI follows a much more flexible 
scheme than VME. VMEbus has a specific and limited 
set of byte lane "patterns" it can use, while PCI can freely 
enable or disable byte lanes as required. This difference 
works in our favor for VMEbus to PCI transactions; the 
PCI/VME bridge just matches the byte lanes on the PCI 
bus to the active byte lanes on the VMEbus. In a decou­
pled architecture, you have the extra advantage of using 
the decoupling FIFO to pack the VMEbus cycles to the 
full (64 bit) width of the PCI bus (this is like the second 
firefighter using a bigger bucket to fetch water from the 
washtub). 

Going the other way (from PCI to VME) raises com­
plications. The byte lane pattern in a particular PCI 
transaction might not fit with the limited set of available 
VME cycle types. Under these circumstances, what 
could be a single transaction on the PCI bus requires 
multiple cycles on the VMEbus (see Figure 1). In a cou­
pled system, local logic on the PCI board has to abide by 
VME rules and send its data out to the VMEbus such that 
it fits with VME cycle types, resulting in loss of PCI 
bandwidth. However, in a decoupled system the PCI 
initiator can write its single transaction to the FIFO, 
receive its handshake, and let the PCI/VME bridge sort 
out how the transaction should be transmitted on the 
VMEbus. 

Locked Transactions 

On the VMEbus, there are two variations of exclu­
sive access. A Read-Modify-Write (RMW) is really an 
exclusive (indivisible) access to a resource for a read and 
subsequent write cycle. Note that the locked nature of an 
RMW is not apparent until the read is completed and the 
write is begun on the VMEbus. To expand the capabili­
ties of the VMEbus, the VME64 specification introduced 



Single PCI Transaction 
with One Byte Lane Disabled 

... PCl/VME 
Bridge 

Two Single Cycle VMEbus Transactions 

... 

Single Unaligned 
Tri-byte Cycle 

+ 

Single 32-bit 
Cycle 

Figure 1 PCI to VMEbus Byte Lane Translation 

a locking protocol using the Address-Only-Handshake 
(ADOH) cycle. After locking a resource, the VMEbus 
master has exclusive access to that resource for any num­
ber of reads and writes in whatever order while it main­
tains VMEbus mastership. 

On the PCI bus, a locked transaction occurs when a 
local initiator asserts the LOCK# signal. When a 
resource is locked, the initiator has exclusive read/write 
access to that resource independent of bus tenure. 

Translating a RMW transaction from the VMEbus to 
the PCI bus presents some difficulties because PCI has 
no transaction directly corresponding to a RMW cycle. 
However, the PCI/VME bridge must ensure that a 
RMW cycle maintains its indivisibility on the local bus. 
To ensure RMW mapping, the PCI/VME bridge needs to 
be programmed to honor RMW cycles. This means that 
a particular VMEbus slave image would generate locked 
cycles on the PCI bus any time it was accessed by a 
VMEbus read cycle (the PCI/VME bridge could be simi­
larly programmed to respond to VMEbus lock cycles 
with a lock cycle on the PCI bus). This guarantees the 
PCI/VME bridge exclusive access to the local target dur­
ing the RMW transaction. However, treating every 
incoming read as a locked access can cause some perfor­
mance loss on the local bus, and the PCI/VME bridge 
may hog the LOCK# signal. For these reasons, honoring 
RMW cycles should be made a programmable slave 
image option in the PCI/VME bridge. 

Translating PCI locked transactions to the VMEbus 
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presents more of a problem because of the different effect 
bus ownership has on exclusive access on the two buses. 
Let's work through the chain of events. A local initiator 
obtains exclusive access to a VMEbus resource by lock­
ing the local bus and then locking the VMEbus. Since 
the PCI initiator assumes that it has exclusive access to 
the resource over multiple transactions, the PCI/VME 
bridge must not release the VMEbus after each PCI 
transaction. If the PCI/VME bridge releases the 
VMEbus, then it loses exclusive access to the VMEbus 
resource. So how does the PCI/VME bridge know when 
the local processor is finished with its exclusive access? 

At first glance, you might think that end of the local 
lock would be a reasonable indication that the exclusive 
access is complete. However, the LOCK# signal is not in 
general use in all PCI systems, so a more general solution 
would be desirable. One way to override the bridge's 
requirement to release the VMEbus after each PCI trans­
action is by allowing the PCI/VME bridge to park on the 
VMEbus. This might be implemented through a 
VMEbus ownership toggle that could be set by local 
logic. It is then up to local logic to tell the PCI/VME 
bridge when the local initiator is finished with its exclu­
sive access to the VMEbus resource. 

Block (Burst) Transactions 

A block (or burst) transaction transfers large 
amounts of data by issuing several data beats within a 
single transaction. A major hurdle in translating block 



transfers between the VMEbus and PCI is PCI' s latency 
requirements. For instance, with block writes from the 
PCI bus to the VMEbus, the PCI device cannot wait for 
data acknowledgment from the remote slave and the 
transaction times out. Likewise with block writes from 
the VMEbus to the PCI, the time required for handshakes 
to propagate from the remote bus causes the PCI bus to 
time out between data beats. In a coupled system, the 
PCI/VME bridge must always break block writes from 
one bus into single cycles on the destination bus. This 
creates a significant degradation in performance, an iron­
ic result since block transfers are designed to improve 
data transfer rates. 

The only way to directly translate block writes 
between the PCI bus and the VMEbus is through decou­
pling. With a decoupled architecture, block writes can be 
loaded into one end of a FIFO at the optimum data trans­
fer rate for that bus. The data can then be unloaded as 
block transfers to the destination bus from the other end 
of the FIFO. 

A slightly different approach is used for block reads 
from the VMEbus (VME master reading from a PCI 
resource). In a coupled system, the PCI resource pro­
vides the first block and waits for the VMEbus master to 
ask for more (the second beat). However, the VME mas­
ter is unable to respond quickly enough and PCI latency 
constraints will time out the transaction. The only way a 
VME master can perform its block read is if the 
PCI/VME bridge pre-fetches. Pre-fetching means that 
when the PCl/VME bridge receives a block read request 
from a VME master, it fills its FIFO from the local 
resource using local block reads. The VME master can 
then perform block reads on the VMEbus from the other 
end of the FIFO. To return to the fire brigade, imagine 
one fire-fighter sees a burning barn and tells the other 
fellow. The second fire-fighter then rushes back and 
forth between the wash tub and the river until the wash 
tub is full. If the entire contents of the washtub is used 
on the fire and the first fire-fighter says the barn is still 
burning, then the other fellow fills the tub again. 

That takes care of block reads from the VMEbus to 
the PCI bus, but how about the other direction (PCI mas­
ter reading from a VME resource)? In a coupled system, 
PCI latency requirements will make the PCI/VME 
bridge terminate the local transaction after every data 
beat because the VME resource cannot respond quickly 
enough. Unfortunately, pre-fetching won't help under 
these circumstances because even with block transfers 
the VMEbus cannot load a FIFO quickly enough to keep 
up with the data transfer rate on the PCI bus. The bot­
tom line is that block reads from the PCI bus to the 
VMEbus will always be broken into single read cycles. 

Interrupts 

Interrupt mapping presents special problems 
because the VMEbus provides a much richer interrupt 
environment than PCI. As compared to the seven avail­
able interrupt levels per module on the VMEbus, PCI bus 
allows for only one interrupt per single function device. 
The interrupt acknowledgment (IACK) cycles on the two 
buses are also fundamentally different. The VMEbus has 
a 68K-like interrupt acknowledgment cycle while PCI 
follows an interrupt control protocol from the PC world. 

Interrupts translated from the VMEbus to PCI can­
not be coupled to the PCI interrupt controller because 
the coupled read to obtain the VMEbus interrupt vector 
does not fit within teh timing requirements of the PCI 
interrupt cycle. One way around this is to decouple the 
interrupter from the interrupt handler. When the 
PCl/VME bridge receives an appropriate VMEbus inter­
rupt, it immediately acknowledges the VMEbus inter­
rupter and obtains the interrupt vector. Once the inter­
rupt vector is obtained, the PCI/VME bridge relays the 
interrupt to the PCI interrupt controller. 

Timing constraints also keep the PCI/VME bridge 
from coupling local interrupts to the VMEbus. It is not 
possible for the PCI/VME bridge to obtain interrupt 
acknowledgment from the VMEbus interrupt handler 
quickly enough to meet the timing requirements of the 
PCI interrupt cycle. Any locally initiated interrupts 
relayed to the VMEbus will require the PCI/VME bridge 
to supply an interrupt vector. 

DECOUPLING IMPACT ON REAL-TIME SYSTEMS 

Earlier, we showed that decoupling is the only 
means to directly translate block transfers between PCI 
and VMEbus. By real-time, we mean a system with a 
large number of independent tasks, each with their own 
particular deadline. The success of the system depends 
not only on tasks being performed, but also on whether 
the task is completed before its deadline. This means 
that timing constraints must be guaranteed in a real-time 
system. These timing constraints are affected by three 
parameters: bandwidth, latency, and priority. Beyond 
just getting the job done in time, the tasks must also be 
completed within a certain fault tolerance. 

Bandwidth and Latency 

Completing a particular task before its deadline 
depends upon how quickly previous tasks are per­
formed. Decoupling makes better use of bandwidth by 
allowing the CPU to perform some tasks in parallel, 
something not possible in a coupled architecture. A bet­
ter use of bandwidth decreases latency and increases sys­
tem performance. Figure 2 below illustrates how this 
works. In a decoupled system, a CPU on the PCI bus can 
write data to a decoupling FIFO and then perform vari-
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Figure 2 Parallel Task Performance with Decoupling 

ous local tasks while the PCI/VME bridge sends the data 
to the remote resource across the VMEbus. After a cer­
tain programmed period (perhaps an interrupt is sent 
back to indicate processing is complete), the CPU reads 
the processed data back from the remote bus. In a cou­
pled system, the CPU would write the data to the remote 
resource, Wait while the data was processed, and then 
read the results back (it's better to have the CPU wait 
than re-arbitrate the entire coupled link twice). Only 
after this coupled procedure is completed can the CPU 
perform the pending local tasks. 

An argument could be made that increases in band­
width utilization through decoupling incur some cost in 
latency. For example, a local processor queues a transac­
tion in a decoupling FIFO, but the queued transaction 
must wait while entries closer to the front of the FIFO are 
processed. However, this FIFO latency is compensated 
for by the decrease in local bus latency brought about by 
decoupling. To make this point, let's say an 1/0 port on 
the PCI bus receives data that must be transferred to its 
destination across the VMEbus within a certain deadline 
(due to FIFO constraints in the 1/0 device). The 1/0 
device cannot wait too long while the local processor is 
tied up arbitrating access to a remote local bus or the 
older 1/0 data will be over-written. In a decoupled sys­
tem, the processor writes the 1/0 data to the decoupling 
FIFO with a minimum latency. What little latency there 
is in the FIFO is probably less important than the imme­
diate servicing of local tasks (low local bus latency). 

Along these same lines, real-time system architects 
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are often concerned with low interrupt latency on the 
local bus. If a processor in a coupled system is tied up 
with accessing remote buses, then there may be inordi­
nate delays in servicing local interrupts. A decoupled 
system guarantees system designers a lower interrupt 
latency on the local bus. 

Priority 

Prioritization in a real-time system is an issue when 
several tasks compete for bandwidth. In some instances, 
a deadline for one task will slip (experience inappropri­
ate latency) so that a higher priority task meets its correct 
timing requirements. For example, system control in a 
battle ship might need to decide between activating the 
laundry mechanism in time for Thursday's wash or 
responding to incoming missiles. Regardless of the 
ripeness of the laundry, the priority of the two tasks is 
clearly defined in the system. 

Priority inversion can occur in a system where a high 
priority task (that pesky missile attack) is queued behind 
a low priority task (Thursday's laundry). As discussed 
above in Bandwidth and Latency, transactions are com­
pleted with less latency in a high performance decoupled 
system than in a high latency coupled system. There is 
some latency introduced in a decoupled system while a 
FIFO entry works its way to the head of the queue, and 
the system architect will need to allow for worst case 
FIFO latency in designing the decoupled system. 



Fault Tolerance 

One other crucial aspect of a real-time system is fault 
tolerance. All tasks have some degree of fault tolerance 
(think again about that laundry /missile comparison). Fault 
tolerance is divided into fault detection, fault isolation, and 
fault recovery. Decoupling doesn't really affect the first 
two, but does impact fault recovery. Let's revisit the fire 
brigade analogy. Even though it is known that a bucket of 
water is dropped by a particular fire fighter (fault detection 
and fault isolation), the decoupled system makes it difficult 
to ask for a replacement (fault recovery). In a real-time sys­
tem, by the time the error is detected and isolated, the ori­
gin for the data may be over-written or the deadline for the 
task may have passed. 

The fault recovery mechanism employed depends on 
the type of error. For example, if there's a bus error and 
only command information is lost, then the PCl/VME 
bridge can retry the transaction from the data in the origi­
nal FIFO entry. If there's an error where the data received 
at the far end is mostly corrupted, then there's more of a 
problem. One way around this problem in a decoupled sys­
tem would be to buffer past transactions as insurance 
against errors. For example, you might want to buffer 1/0 
data in case there is a transmission problem across the 
VMEbus. You can also use barrier transactions to check on 
previous transactions. A system might read from a location 
that has just received data to ensure that the correct infor­
mation is present. 

THE BRIDGE IS BUILT 

This discussion of a PCl/VME bridge is not completely 
rhetorical, and indeed comes from practical silicon design 
experience. Newbridge Microsystems has already used a 
decoupled approach to construct such a PCl/VME bridge: 
humbly dubbed the Universe™. The Universe™ provides 
the PCl/VMEbus interface that will allow embedded sys­
tems designers to bring the new wave of high end compo­
nents with a PCI interface to their open VMEbus systems 
(Andrews, 1994a). This is especially important considering 
the modular approach VMEbus board designers are taking 
with their PCI products, where boards can be assembled 
from PMC modules with a standard (PCI) interface 
(Andrews, 1994b). Beyond just having processor/DRAM 
modules and PCI-based 1/0 modules at their disposal, 
board designers can now rely on an off-the-shelf PCI/VME 
bridge that will bring all this PCI local bus power to the 
VMEbus. 

REFERENCES 

Andrews, W. 1994a. "VME bridge chip clears way for 
industrial PCI," Computer Design, July 1994, pp 44-47. 

Andrews, W. 1994b. "VME gets facelift with new-gen­
eration processor," Computer Design, July 1994, pp 38-40. 

502 



Designing A PCMCIA Add-In Card for the PCI Bus 

By Allen M. Light 
Technical Marketing Engineer 

Intel Corporation 
1900 Prairie City Rd. 
Folsom, CA 95630 
Ph. (916) 356-4486 

The PCI bus, a 32- or 64-bit 
interface designed for use in PC systems 
and performance peripherals, is regarded 
by many OEMs and system developers as 
the leading edge in affordable, 
performance local buses. Built with 
peripheral compatibility, processor 
independence and upgradeability as key 
requirements, PCI protects end user 
investments in technology and interfaces. 
For these reasons and more, the PCI bus 
provides a relatively easy interface for 
most add-in cards. This article describes 
how a PCMCIA controller -- the 
82092AA -- was designed to enable a 
PCMCIA add-in card to interface with 
the PCI local bus. The process for 
designing controllers for other add-in 
cards is nearly identical. 

Why build a PCI add-in card? 
There are many viable reasons. First, 
industry analysts estimate that PCI will 
ship in almost 60 million PC systems by 
the end of 1997, a six-fold increase over 
the estimated 10 million systems sold by 
the end of this year (Dataquest and In­
Stat figures). Second, PCI delivers the 
advantages of superior power, 
performance, plug-and-play compatibility 
and price necessary for todays and 
tommorow' s PC systems. By way of 
introduction to the PCI local bus, some 
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of these advantages are briefly detailed 
below. 

About the PCI bus 

Most PC's implemement PCI as a 
32-bit, 33MHz local bus capable of 
throughput rates of 133MB per second in 
burst mode. Although PCI' s 
performance is similar to that of a direct 
connection to the processor local bus, it 
is in fact physically removed from the 
processor by a PCI bridge. This PCI 
bridge provides a managing layer 
between the CPU and peripherals and 
presents a uniform interface that provides 
streamlined, efficient data transfer. It also 
provides support for bus mastering, 
which enables intelligent devices to 
directly access main memory. PCI also 
includes an optional burst mode that 
enables accelerated throughput of data 
across the bus. Peripherals are 
synchronized to the PCI clock, which is 
typically based on the microprocessor 
and its support circuitry. The PCI local 
bus specification, revision 2.0, defines an 
operating clock rate ranging from DC to 
33MHz. 

The key to a successful PCI add­
in card design is simply a good 
understanding . of the PCI 2. O 
specification. By carefully following the 
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elements in the specification, developers 
are assured of building performance, high 
value add-in cards for PC systems. 
Among the benefits of using PCI is auto­
configuration which eliminates the need 
to set switches or jumpers. 

Finally, there are several inherent 
features of PCI contribute to the low 
cost of the system. These include 
multiplexed pins for lower pin count and 
packaging costs; the elimination of high­
powered bus drivers; and glue-less 
connections. This simplifies the 
controller design. 

Although it performs like a direct 
connection to the processor bus, the PCI 
bus is, in fact, physically removed from 
the processor by a bridge (see Figure I). 
The bridge serves as a managing layer 
between the CPU and peripherals, 
presenting a uniform interface that 
streamlines data transfers. The bridge 
also gives intelligent devices (serving as 
bus masters) direct access to main 
memory. 

Peripheral devices are 
synchronized to the PCI clock, which. Is 
typically tied to the microprocessor and 
its support circuits. Revision 2.0 of the 
PCI Local Bus Specification calls for a 
clock frequency up to 33 MHz. The 
specification also defines two types of 
peripherals: targets and-intiators 
(formally, master I slave). A target can 
receive or send data, but only under the 
control of a master (initator), which can 
drive address, data and control signals on 
the J>CI bus. 
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Although PCI is described as a 
"glueless" interface, this characterization 
needs clarification. Logic is needed to 
connect a peripheral to the PCI bus. 
Where the interface logic can be 
integrated into the peripheral device, the 
connection is effectively glueless. Where 
it cannot, a separate controller chip is 
needed. In this example, we used a 208 
pin ASIC device as our PCMCIA 
controller. 

A typical target transaction starts 
when the PCI controller decodes its 
address by comparing the PCI address 
against the target base address register. 
In response, the controller sends address 
bus and byte enable signals and, for write 
operations, data to the back-end device. 
It also issues read/write control and 
configuration access signals to tell the 
back-end device what kind of transaction 
is taking place, as well as a device 
acknowledge signal, which indicates that 
all signals are being driven with valid 
values. 

When the back-end I/O device 
finishes the transaction, it asserts a 
device request signal, saying that it has 
finished the transaction, while at the 
same time issuing the requested data for 
read transactions. When the controller 
finishes the PCI transfer, it de-asserts a 
device acknowledge line on the back-end 
IIO. At that time, the back-end device 
de-asserts its request signal or, if 
warranted, sends an error (abort or retry) 
signal to the controller. 

Adapter Operation 

Rev 2. 0 of the PCI specification 
defines several types of bus commands. 
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Among them are memory, VO, and 
configuration read and write cycles. The 
different cycles are identified by the Bus 
Command and Byte Enable pins 
(C/BE[3::0]#). These commands provide 
compatibility for the typical memory and 
VO bus commands on X86 architecture 
machines as well as additional commands 
for performance and configuration. 

A generic read transaction (see 
Figure 2) begins when the master asserts 
Cycle Frame (FRAME#), then a valid 
address AD[31: :00] and valid bus 
command C/BE[3: :O]#. The target 
device will then assert Device Select 
(DEVSEL#) and have access to the 
shared address and data bus AD[31: :00]. 
The data is transferred and the cycle is 
complete when the both the Initiator 
Ready (IRDY#) and Target Ready 
(TRDY#) are asserted. 

A generic write transaction (see 
Figure 3) is similar to a read operation 
except no turnaround cycle is required 
following the address phase. In this case 
the master provides both address and 
data. The data phase works the same for 
both read and write transactions. 

PCI-based PCM CIA Controller 
Architecture 

To start designers on the way to 
building a custom peripheral interface to 
the PCI bus, the PCI System Design 
Guide suggests a generic VO controller 
architecture consisting of PCI interface 
logic, control logic for the "back-end" 
VO function, configuration register space 
and optional expansion ROM (see Figure 
4). Elements such as buffers (including 
FIFO buffers) and registers comprise the 
device-specific function of the controller. 
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All signals between the back-end 
VO device and the PCI interface are 
synchronous. In this way, the controller 
can accommodate the widest range of 
device speeds and prevent data 
contention on bi-directional signal wires. 
Certain signals and functions within the 
controller distinguish target from master 
devices, but the basic architecture is the 
same for both. In the case of the 
82092AA PCMCIA controller, it is a 
target (slave) device. 

Since the 82092AA is a multi­
function PCI device, it connects the PCI 
bus to several back-end devices. In this 
case there are five back-end (four 
PCMCIA sockets and one IDE 
controller) devices bridged to the PCI 
bus via the 82092AA (see Figure 5). This 
allows for several expansion options for 
PCMCIA and IDE while physically only 
taking up one PCI slot on the system (or 
one PCI load if implemented on the 
mother board). 

This approach has several 
advantages over ISA based PCMCIA 
and IDE bridges. For the IDE controller, 
the 82092AA provides fully 
programmable timings providing support 
for mode O through mode 3 IDE devices. 
Standard ISA IDE controllers are not 
capable of supporting the faster cycle 
time required by the new enhanced IDE 
specification. Similarly, the PCMCIA 
specification supports memory reads and 
writes with 80ns window timings. The 
PCI bus has the bandwidth to support 
these timings where the ISA based 
devices stop at 250ns window timings. 
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Pin Descriptions 

The 82092AA is a 208-pin 
component. Of the 124 pins on a 32-bit 
PCI connector, only 47 are essential for a 
target device; only 49 for a master. These 
pins comprise the address, data and 
control functions and are identical 
between target and master, except for the 
Request and Grant arbitration lines that 
are exclusive to a master. 

The essential signals are divided 
into four types. The first two types are 
conventional input-only and tri-state 
(high, low and high-impedance) I/O 
signals commonly found on 
programmable chips. The remaining two, 
however, are another matter. Of these, 
one is called a sustained tri-state signal 
and must be actively de-asserted -- pulled 
high, since it is active low -- for one 
cycle before it switches to a high­
impedance state. 

Active de-assertion serves two 
purposes; it improves system 
performance by relinquishing the line in 
at most one cycle, and it saves power by 
minimizing the time the CMOS bus 
floats. Pull-up resistors on the system 
board sustain the de-asserted state until 
the signal line is again actively pulled 
low. The fourth pin type is an open 
drain, which allows several devices to be 
connected in a wire-OR configuration. 
Of the essential signals, only system 
error, SERR#, requires an open drain 
pm. 

The efficiency of the PCI 
interface is evident when you compare 
the 47 pins on the PCI interface (the 32 
address, data, and control signals are 
multiplexed) to the 85 pins used for the 
PCMCIA interface. 
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Reflective Wave Technology 

Because the PCI bus is an 
unterminated transmission medium with 
CMOS loads, its steady state current is 
very low. As an unterminated bus, PCI's 
signaling technology takes advantage of 
reflected and incident waves to maintain 
strong signal integrity. Simply put, when 
an incident wave traveling along the bus 
reflects off the unterminated end, the 
reflected wave combines with the 
incident wave, doubling the effective 
voltage at the receiver input. 
Consequently, a PCI driver need only 
drive the bus to -- ideally -- half the 
receiver's required high (Vih) or low 
(Vil) switching level. 

During the propagation of the 
wave, the signal level is in the middle of 
the switching range. Propagation time 
varies with the electrical length of the bus 
and can last up to I 0 ns (one third of a 
clock period at 33 MHz). A controller 
that does not adhere to the V-I 
specification must reduce its operating 
frequency to 25 MHz, extending the bus 
cycle by I 0 ns, thereby allowing for an 
additional reflection to drive the receiver 
input to its required level. 

Due to the reflective nature of the 
PCI unterminated medium, an ASIC used 
as a controller cannot be evaluated solely 
on the basis of I/O buffer DC sink (I0 I) 
or source (I0 h) capabilities. When 
selecting a suitable ASIC, you must 
verify that the I/O buffers adhere to the 
V-I specification stated in the Rev 2.0 of 
the PCI specifiecation. This is crucial to 
verifiy the signal integrity of the entire 
system. If the ASIC vendor does not 
supply V-I characterization or simulation 
models (SPICE or IBIS), verification can 
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be achieved through curve trace 
measurements. 

The PCI electrical definition 
allows both 3.3- and 5-Volt (V) logic 
levels. Although a trend toward 3.3V is 
underway to reduce power consumption, 
the predominant interface is still SV. PCI 
drive requirements are specified as AC 
characteristics plotted in V-I curves, 
rather than as DC drive levels. The 
curves assume a maximum of 10 loads, 
where peripherals on the system board 
count as one load and PCI peripherals in 
slots count as two. (It should be noted 
that AC characteristics are shown in the 
PCI specification as V-I plots, not DC 
loads.) 

Auto-configuration 

Autoconfiguration -- the ability of 
system software to automatically identify 
and configure add-in cards -- eliminates 
the configuration switches and jumpers 
commonly found on ISA cards. 
Importantly, it takes the technical 
complexity out of adding expansion 
cards and makes the PC system much 
easier to enhance. To accommodate 
autoconfiguration, the PCI specification 
calls for PCI agents to include registers 
for storing configuration information. It 
also reserves 256 addresses, 64 of which 
have been defined, for accessing those 
registers. 

As a mm1mum requirement for 
supporting autoconfiguration, a PCI 
component must store its vendor ID, 
device ID, command register and status 
registers, revision ID, class code and 
header type. In addition, a target device 
that contains addressable memory or I/O 
space should also have a base address 
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register. Making this register available 
lets autoconfiguration software move the 
device's address range and, therefore, 
avoid conflicting address among multiple 
targets. In the case of the 82092AA, one 
I/O base address register is available for 
the PCMCIA port. This can be set to 
3EOh to be compatible with the standard 
82365SL ISA PCMCIA controller or to 
any other I/O address. It also allows for 
four base addresses for the IDE function. 
These can be set to the standard IDE 
addresses for primary and secondary or 
any other I/O address. 

General Considerations 

Bus Loading 
When designing for the PCI 

specification, a number of bus loading 
considerations should be kept in mind. 
Specifically, it is a violation of the PCI 
spec to: 
• Attach an expansion ROM 
directly (or via transceivers) to any PCI 
pms. 
• Attach two or more PCI devices 
on an expansion board, unless they are 
placed behind a PCI-to-PCI bridge. 
• Attach any logic (other that a 
single PCI device) that looks at PCI pins. 
• Use a PCI component set that 
places more than one load on each PCI 
pin; e.g., separate address and data 
path components. 
• Use a PCI component that has 
more than 1 OpF capacitance per pin. 
• Attach any pull-up resistors or 
other discrete devices to the PCI signals. 
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Layout Considerations 

Transmissions Line effects 
To keep a lid on transmission line 

effects, the PCI specification 
recommends a pin-out configuration that 
minimizes signal trace lengths, or 
"stubs" (see Figure 6). The maximum 
allowable trace length for 32-bit signals 
is I. 5 inches. Other signals are limited to 
two inches, except for the clock signal, 
which can extend to a maximum of 2.5 
inches. The suggested pinout refers to a 
132-pin plastic quad flat pack (PQFP) 
component. Using a device with more 
package pins, however, can further 
reduce trace capacitance and inductance 
if it can be configured with fewer traces 
wrapping around it. 

Load Capacitance 

Other important specifications 
address load capacitance, timing 
parameters and device protection. These 
are spelled out fully in the official 
specification. Briefly, to· avoid excess 
loading, the capacitance of a system 
board PCI peripheral input pin should 
not exceed .10 pF on a signal line or 12 
pF on a clock line. PCI peripheral card 
designs (two PCI loads per the 
specification) should keep the combined 
capacitive load of the PCI controller 
device, PCI connector and printed circuit 
trace below 20pF. Also, because of the 
electrically reactive nature of the PCI 
environment, the specification 
recommends that PCI agents withstand 
an 11-V overshoot and a 5 .5-V 
undershoot pulse of 11-ns duration. 
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Conclusion 

PCI add-in card design is a simple 
process, if you have a clear 
understanding of the PCI specification, 
and the system approach that was used 
to develop the spec. By using these 
tools, and carefully considering the 
unique aspects of the PCI local bus, 
developers can build reliable, high 
performance, high value add-in cards for 
PCI-based PC systems. 

Allen M Light is a Technical Marketing 
Engineer in Intel Corporation's PC/ 
Chipset Division. 
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