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Preface to PCI Spring 96 Proceedings 

Prior to the development of PCI engineers developing products for the non-PC (Personal 
Computer) industry could only select between high performance proprietary buses or standard buses like 
VME and Multibus I&II. PC buses like ISA and EISA were simply insufficient for the non-PC industry. 
Proprietary buses by definition required development of all key hardware and software components. 
Components for VME buses were not always compatible. Multibus I components were compatible, but 
became overshadowed by Multibus II which required extensive software development. 

The size of the PC industry insured a diverse set oflow cost components and an unparalleled 
selection of software. However, the lack of easy configuration and low performance of ISA bus; and the 
complexity, limitations, and cost ofEISA bus did not provide a long term bus to replace proprietary or 
other standard buses. 

The existence of extensive PC compatible software, appreciation for easy system configuration, 
and the ever increasing ASIC functionally set the stage for a new bus standard. PCI began as a bus 
definition to provide an easy to configure, low cost, and high performance interconnection between PC 
software compatible ASICs. As it was fine turned into a PC industry standard it was expanded to include 
definitions for slots and add-in cards. As PCI became integral to mainstream PCs the PCI hardware costs 
decreased and the functional diversity of PCI ASICs and add-in cards increased. What evolved was a new 
bus standard that brought together performance, building block diversity, low cost, easy configuration, and 
compatibility with "limitless" PC compatible software. 

In the mobile environment the traditional PCMCIA standard (recently renamed PC-Card 16) is 
essentially an extension of low performance ISA bus with configuration enhancements and power-on 
installation. The recent enhancement of this standard with CardBus, brings all of the advantages of PCI to 
PCMCIA. CardBus is a small form factor version of PCI with the power-on installation. 

Most recently, the embedded systems world has also discovered the cost and software advantages, 
and building block diversity of PCI. 

It has become impossible for proprietary buses and standard buses like VME or Multibus 1&11 to 
compete with PCI due to the size of dynamics of the PC industry. The ever growing availability of PCI 
cards and slots will eventually replace all of the ISA and EISA cards and slots. Similarly, the eventual 
availability of combination PC-Card 16 I CardBus slots in the mobile and desktop environments will 
facilitate the eventual extinction of PC-Card 16. Consequently, these proceedings contain information 
about PCI and CardBus which are the future bus standards with the unique ability to address both the PC 
and non-PC industries. 

Ed Solari 

pc2 Consulting LLC 
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Docking for Mobile Computing 

Harish Nayak, Cirrus Logic, Inc. 

Systems Technology Products (STP) 

The gap in speed, capacity and functionality 
that has separated desktop systems from portable 
computers has rapidly narrowed. Today, more and 
more mobile computer users are relying on their 
portable systems to serve their needs while on the 
road and at the office. In this way, they avoid the 
problems of file transfers and version tracking that 
annoy their dual-computer-using colleagues. 

On the road, one can get by with the small 
display screens, but in the office, users want laiger 
screens, and to be able to attach networks, laser 
printers, scanners and other peripherals to their 
portable systems. 

At first, they did so using ad-hoc solutions­
display screen cables connected to monitor ports, 
network cables to network ports, and port replica­
tors, where the computer's 1/0 ports are replicated 
and consolidated into a single port-replication box. 
Having to unplug several cables each time one left 
on a business trip, then reconnect them each time one 
returned, proved to be discouraging. It also created 
an opportunity to solve the problem with "docking." 

In essence, a docking set up consists of the 
portable system plus a docking station to which are 
attached whatever peripherals the user requires. 
Docking's primary feature is its ability to quickly 
connect or disconnect the portable system from the 
docking station and its peripherals. But docking is far 
more than simply a mechanism for rapidly plugging 
or unplugging multiple interfaces. It must also ensure 
that in the process users cannot inadvertently lose or 
damage any data files. As such, docking approaches 
are both related to, and limited by, the operating 
system's features and functions, and the 1/0 buses 
involved. 

Docking is an evolving technology. With the 
advances of new 1/0 bus technologies and operating 
systems, docking is also advancing toward a fully 
automatic, any time, capability. 
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Docking Stations Today 
There are a range of docking solutions in place, 

today. They differ in terms of their physical docking 
attributes, and their electrical docking requirements. 

Physical 

A surprise-style docking/ejection mechanism is 
one of the simplest but requires that the user make 
sure the system is "ready" for docking or undocking. 
There is no fail-safe mechanism, here, that permits 
either the operating system or basic 1/0 system 
(BIOS) to override the operation. Hence, there is a 
risk of losing files. 

The VCR-style and locking-style docking/ 
ejection mechanisms provide a fail-safe system for 
docking or undocking. For undocking, an eject but­
ton or icon is pressed or selected which initiates a 
series of interactions between the BIOS and various 
hardware and software components. The result of 
these interactions is putting the computer into a safe 
undocking state. Only after the undocking is 
approved by all involved is the portable computer 
actually ejected. 

Electrical 

In addition to the various physical manifesta­
tions of docking, there are differences in docking 
electrical conditions. 

"Cold" docking, for example, refers to a 
docking scheme whereby both the computer and 
docking station must both be powered down before 
docking or undocking can take place. Afterward, the 
computer and docking station are powered up, and 
the computer must go through a boot up sequence. 

A so-called "warm" docking technique permits 
the systems to be powered up when docking, but 
requires that the computer be in a suspended opera­
tional state before docking or undocking. After dock­
ing or undocking, the computer must still go through 
a wake-up process to restore it to an operation-ready 



state, or it may require a full reboot, depending upon 
the operating system. 

In moving toward the ideal-a fully automatic, 
any time, docking capability-docking technology 
must first progress to the "hot" docking stage. Here, 
the computer and docking station are both powered 
up, and the computer is operational. The industry is 
on the brink of hot docking but there will be varying 
degrees of less-than-fully-automatic operation for 
a while. 

Operating Systems and Docking 
There are definite relationships between operat­

ing systems and docking capabilities. For example, 
portable computers running DOS and Windows 3 .1 
are limited to cold and wann docking. These operat­
ing systems simply lack the functional support 
needed for hot docking. 

Windows 95, however, has provided a founda­
tion for all three types of docking, including hot 
docking. Its penchant for hot docking is primarily 
due to its dynamic loadable drivers, device enumera­
tion, and operating system-to-BIOS links for 
automatically adding and removing resources. 

System Buses and Docking 
Designers have some choices. They can "dock" 

across an ISA-bus infrastructure, or do it across a 
PCI-bus infrastructure. There are obvious advantages 
to choosing PCI. It is broadband and fast with very 
short latency. ISA, on the other hand, is a 1980s 
technology, lacking in both bandwidth and speed. 

However, ISA does enjoy an important advan­
tage. It is the 110 standard for a large number of 
available and economical peripherals. That's why, for 
now, portable computers are being built with both 
ISA and PCI, and it's a good reason to equip a 
docking station with a secondary ISA interface, too. 

When an ISA bus is present both in the 
computer and the PCI-based docking station, it is 
referred to as a "dual ISA" design. Both systems­
portable computer and docking station -will take 
advantage of PCI-to-ISA bridging to connect ISA 
peripherals on both sides of the docking demarcation 
line via a PCI bus interface (see figure 1). 

In effect, the computer's ISA bus (primary) is 
connected to the docking station's ISA bus 
(secondary) through the PCI bus. 
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With the approach shown in figure 1, though, 

a DMA controller (DMAC) and Programmable 
Interrupt Controller (PIC) are implemented on both 
sides of the docking line, and they use the same 1/0 
address space. That poses a problem. 

There are two other concerns that must be 
addressed in implementing a dual ISA design, too. 
The "legacy" peripherals that use the ISA bus 
comply with ISA's Interrupt Request (IRQ) 
specifications. And these peripherals are also 
designed, in most cases, to use ISA Direct Memory 
Access (OMA). However, neither ISA, IRQ nor 
ISA DMA is part of the PCI standard. 

There are two open-standard mechanisms that 
can solve this dilemma. Serialized IRQ, or IRQSER, 
is a mechanism for communicating IRQ status 
between PCI-to-ISA bridges, and between legacy 
components and PCI-to-ISA bridges. Distributed 
DMA, or DDMA, is a mechanism for legacy DMA 
support on a PCI bus. 

The implementation in figure 2 solves both the 
ISA IRQ and DMA legacy support across the PCI 
bus through IRQSERp and IRQSERs and the DDMA 
mechanism. 

Here, only the PCl/ISA bridge in the computer 
has a master DMA controller, and all others are 
slaves, each having a base register and DRQ/IRQ 
definition. 



All slave devices positively decode their DMA 
1/0 registers. The PCI-to-PCI bridge and secondary 
PCI-to-ISA bridges subtractively decode the 
unclaimed DMA 1/0 registers. 

Multichannel- or channel-specific "write" (e.g., 
not on the primary ISA bus) is broadcast by the mas­
ter DMAC. Multichannel- or channel-specific "read" 
is also broadcast by the master DMAC. Where it is a 
multichannel read, the master DMAC will properly 
assemble the bit information, then it will return the 
8-bit word during the retry cycle. 

Instead of edge-triggered IRQ signals, creating 
a risk of glitches during docking, or a need for Q­
switch isolation, the serialized IRQs are passed from 
PCI-to-ISA bridge via the PCI-to-PCI bridge. With 
this implementation, the PCICLK is stopped during 
docking and undocking and the IRQSER signal is 
ignored during those times (patent pending). 

Issues and Limitations in 
Docking Today 

To reiterate, there have been step-wise 
enhancements to docking technologies as direct 
consequences of step-wise improvements in 
operating systems and 1/0 bus infrastructures. For 
example, PCI allows us a simple docking interface 
with high perfonnance. 

The availability and low cost ofISA­
compatible peripherals, and the reality that, for now, 
Sound Blaster compatibility requires the ISA inter­
face, necessitates designing the support for ISA and 
legacy peripherals in any serious docking solution. 

Today's operating systems, particularly 
Windows 95, have set the stage for hot docking by 
creating a foundation for it. Many of the plug-and­
play supporting features of Windows 95 play 
significant roles in hot docking (e.g., device 
enumeration). However, a foundation is meant to be 
built upon, and the next generation of the Windows 
'95 family promises to offer an even-more­
comprehensive set of features in support of hot 
docking among other functions. 

Power management is a critical feature in 
battery-powered portable systems. As such, power 
management support must be part of any full­
featured docking solution. 
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Solving Some Problems Addressing 
Design, Architecture, and Application 
Solutions 

Given the ultimate, fully-automatic, any-time 
docking objective, we are now far down the road, but 
not quite at our destination. 

As mentioned earlier, Windows '95 has set the 
stage for a step-wise leap in docking progress. It sup­
ports a dynamic loading of drivers, device enumera­
tion, and plug-and-play. But Windows '95 will only 
enumerate the devices connected to PCI bus 0, not 
those connected to bus 1. For that to occur, the dock­
ing station would need a plug-and-play BIOS to 
enumerate its devices and interact with Windows '95 
in order to load the drivers dynamically. 

The next generation of Windows '95 will take 
care of the Bus 1 enumeration situation, but in the 
meantime, a transparent bus extender (patent pend­
ing) can be used to make two physical PCI buses 
look like a single, logical bus 0. There is no bus 0-to­
bus 1 configuration cycle conversion, and no PCI 
configuration space involved (see figure 3). 
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On-Board or Off-Board? 

Hot docking hardware implementations can be 
done in two fundamental ways-putting the PCI-to­
PCI bridge on the computer, or putting it onto the 
docking station. There are some advantages to taking 
the off-board approach. 

By adding the bridge to the computer, a 
designer has to allow more space, increase the cost, 
as well as the power consumption. In addition, the 
on-board approach may require Q-switches to isolate 
the IRQ signals during docking and undocking 
(unless a IRQSER approach is used). This, too, adds 
cost. For those users who do not intend to dock their 
systems, it is unutilized cost (see figure 4). 
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By putting the PCI-to-PCI bridge on the 
docking station (e.g., off-board), docking and 
undocking glitches can be isolated from on-board 
PCI devices without need of Q-switches (see figure 
5). What's more, there is no pressure on computer 
board space, weight, power consumption, or cost. 
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Ensuring network compliance 

Since many docked computers will be part of 
some networking scheme, there is a need to ensure 
that the docked system can be compliant with net­
work requirements. 

For example, a computer in sleep mode must be 
able to rouse to full operation within a certain time 
(e.g., 100 milliseconds) to meet network polling 
requirements. This is a significant challenge to be 
met by forthcoming docking implementation 
approaches. 

Easy docking with Windows '95 

In sum, the advent of the next generation of 
Windows '95 and the proliferation of PCI peripherals 
will take us a long way toward the ideal docking 
infrastructure. Meanwhile, the current version of 
Windows '95 has already propelled us very far 
forward. 

Despite some of its evolutionary limitations, 
Wmdows '95 is a good basis not only for hot dock­
ing, but for a hot docking scheme that is reasonably 
automatic. 

Windows '95 is capable of supporting cold, 
warm and hot docking techniques, and matched by 
hardware that is equally capable of supporting all 
three modes, docking station and notebook designers 
will have the design flexibility and versatility they 
require. 
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The New Digital Media 

Tony Sheberman 
Intel Technical Marketing Engineer 

Intel Corporation FM3-77 
1900 Prairie City Road 

Folsom, CA 95661 
(916)356-7399/2703 (fax) 

The Presentation will cover the similarities and differences of the Miniature Card 
to the PC Card and some typical applications for Miniature Card. The Miniature Card 
(Minicard) is about one fourth the size of a PCM CIA card. Typical uses include the 
storage and exchange of image, text, and voice data for digital cameras, audio recorders, 
cellular phones, handheld computers (PDAs), and other portable consumer devices. The 
Minicard is also the smallest standard form factor for removable memory-expansion 
cards. It can accommodate up to 64 MB of flash, DRAM, or ROM. The card features a 
60-connection memory-only bus interface, with a 16-bit-wide, non-multiplexed data bus. 
Since the Minicard interface is a subset of the PC Card standard, data can be moved 
easily into the PC using a PC card adapter. 
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How to implement a CardBus solution 
Gary Gildersleeve 
Cirrus Logic, Inc 

3100 West Warren Ave. 
Fremont, CA 95438 

(510) 252- 6095/6080 (fax) 

This article describes how to implement a CardBus bridge host controller solution and some of the 
design choices the architect faces. Several terms are used in this article which need a basic definition. For 
example, CardBus bridge controller refers to a PCI to PC Card bridge host controller. PC Card 16 refers 
to the revision 2.1 compatible PC Cards or R2 Cards which have an ISA type 16 bit data path. PC Card 
32 refers to CardBus Cards that have a PCI type interface with a 32 bit data path. 

In a basic CardBus subsystem, there are three independent interfaces, which are stated below: 
1) Host bus bridge interface ( PCI ). _, 
2) Socket interface 
3) Socket Power control interface 

p 
c 
I 

B 
u 
s 

Power Control 

CardBus -----­
Host 

SocketO 

Socket 1 

For most CardBus designs, the host bridge interface signals are directly connected to the 
corresponding PCI bus signals. These signals are the multiplexed address/data, control and arbitration 
signals and interrupts. Most of the PCI bus signals are direct connections to the CardBus bridge host 
controller. Therefore, this article will focus on other areas of the CardBus design. There will be some 
discussion brought up in regard to specific signals in the component and layout section. Main areas of 
discussion will be the Interrupts, Power control and the optional feature of Zoomed Video (ZV). The last 
topic discussed is the testing and verification of the CardBus design. This article is not intended to sway 
the reader in anyway upon how to design their notebook system, but rather to help conger up ideas and 
possible problems that may occur in a CardBus design. 

Component and 'layout issues 

Component placement is another design issue that should be considered in a CardBus host 
controller implementation. Remembering that CardBus is similar in many aspects to the PCI bus. The 
tirning on the control signals are critical and have stringent requirements (11 ns max.). The CardBus host 
controller chip should be placed as closely as possible to the PC Card Connector. It is recommended that 
the trace length from the host bridge control to the PC Card socket does not exceed 5". Loading condition 
of these lines should also not exceed the loading specified in the PC Card specification. The CardBus 
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clock signal (CCLK/A16) should be give special attention since this is the 33 Mhz clock supplied to the 
PC Card socket from the CardBus host controller. To ensure a clean clock signal to the CardBus socket, a 
double wide trace should be used and additional guard-banding with a ground maybe preferable. To 
prevent Cross Talk on neighboring signals extra spacing can be added between the CCLK signal and 
other board signals. In the routing of the board good layout practice should be used by avoiding sharp 90 
degree corners. Always use 45 degree corners instead. Since there is a lot of simultaneous switching of 
signals at the PCI and CardBus interfaces, adequate bypassing of the power supply is essential. This can 
be achieved by placing quality capacitors close to the host controller. In a PC Card 16 host controller 
design, placement and routing were not as critical to ensure host functionality. The PC Card 16 bus was a 
slow bus with few critical timing requirements. As opposed to that in CardBus host design, component 
placement and layout considerations are major factors that govern successful operation .. Most of the of 
issues stated involve basic design and board layout principles which need to be taken into account in a 
CardBus subsystem design. 

CardBus host adapters typically support both ISA and PCI interrupts. ISA style interrupts are 
active high interrupts. These interrupts are used by PC Card 16 cards and typically are not shared 
between devices. Each device that requires an interrupt is assigned its own interrupt signal. PCI 
interrupts are active low and are designed to be shared in the system. If a CardBus card is installed in the 
socket which is defined as function 0, it is assigned the interrupt INTA#. 

There three different mechanisms in which the ISA interrupts can be generated. These methods are 
listed below along with a brief description 

External Hardware to generate the individual Interrupts 
PCl/Way interrupts 
PC/PCl interrupts 
Individual Interrupt pin from the host 

External Hardware method uses two output pins from the host (ISDAT and ISLD) and the PCI system 
clock. When a card interrupt in generated, the host then sends out the serial interrupt to the external 
hardware via the ISDAT line. Once the serial data is correctly aligned, the ISLD signal is sent to latch in 
the data and initiate the ISA interrupt. This is a unidirectional protocol from the host to the external 
hardware with no acknowledgment. 

PCVWay interrupt method only requires one pin (IRQSER) from the host controller and the PCI clock. 
This bi-directional data stream is use to communicate the state of the interrupt between the host controller 
and the core logic .. When an interrupt is generated by the controller, a start pulse is generated to begin 
the transaction. Within the start and stop time period, each interrupt is assigned three clocks which are 
used to show the state of the interrupt and each interrupt has its own time slot within the start and stop 
period. 

PC/PCI mode supports the Mobile computing model for serial interrupts. This method requires two pins 
( SOUT and SIN ) and the PCI clock to interface the SIC (serial interrupt controller). The number of 
interrupts supported is dependent upon the configuration of the SIC. For more information refer to the 
mobile computing specification. 

Individual Interrupts means that CardBus bridge has dedicated pins for each ISA interrupt. 
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The choice of interrupt method used is dependent upon the host bridge and core logic that will be used in 
the system design. 

Voltage Control & Power issues 

Earlier host controller designs that only supported PC Card 16 cards could sometimes exclude 
mixed voltage support to the PC Card socket without being severely penalized due to the limited number 
of low voltage cards in the marketplace. It is no longer feasible for designers to avoid mixed voltage 
designs with the trend shifting towards low voltage systems and power saving. Mixed voltage support is 
no longer an option for the CardBus controllers. The PC Card Standard specifies that the CardBus 
interface can only operate at 3.3V. PC Card socket power control switches are available from many 
different manufactures in the marketplace and provide integrated solution for power control. These 
switches are used to control the Vee and Vpp voltage levels of the PC Card socket. These switches come 
in either parallel or serial interface. Most of the CardBus host controllers today use the serial power 
control switch to free up pins. 

Power requirements for the CardBus system is another area the designer needs to be aware of to 
determine the total system power requirements. Typically, the designer needs to know the worst case 
power requirements for each subsystem. For the CardBus subsystem this can be easily calculated using 
the following formulas. 

Socket Power= (number sockets) * (max. voltage of the socket) * ( Amp) 
The 1 Amp value is derived from the PC Card Specification that states the maximum rating for pin of the 
PC Card socket is 500 ma per pin. 2 * 500mA = lA 

Host Power = (Highest Voltage applied to Host)* ( IA) 

Using the formulas above, the worst case power requirements for the CardBus host subsystem would be 15 
Watt of power dissipation using 5V as the maximum voltage to be used in the system. 

ZV (zoomed Video) 

The Zoomed Video (ZV) Port is a direct connection between a PC Card and a VGA controller I Audio 
DAC. It allows the PC Card to write video data directly to an input port of a graphics controller and audio 
data directly to a digital-to-analog converter. 

A few of PC Card host adapters are being introduced in to market that are capable of supporting the 
proposed ZV Port standard. There are two methods of supporting ZV Port capability. The first method is 
termed pass through in which all the ZV Port signals pass directly through the host controller. The 
second method is termed "bypass" mode. Bypass mode is where the signals are re-routed from the PC 
Card bus directly to the video port. The video port of the graphic controller is termed the "V Port". This 
re-routing is accomplished by tri-stating specific PC Card Bus signals from the PC Card host adapter. 
Once these signals are tri-stated by the host controller during ZV Port operation, the ZV Port compliant 
PC Card drives video and audio data on the same signals. Video signals from the PC Card are routed to 
the ZV Port capable Video controller. Audio signals from the PC Card are routed to the ZV Port 
compliant audio DAC in the host system. This mechanism allows for an inexpensive means to add 
video/audio capability to a notebook or desktop system without burdening the host bus. Figure 1 shows 
block diagram for a typical implementation. 

A ZV Port compliant PC Card, when inserted into a PC Card slot, is initialized the same way as a PC 
Card 16. This is specified in the PC Card standard. The ZV Port PC Card is thereafter recognized as a 
ZV Port card and is programmed accordingly by Card Services. In this example, the Host controller 
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enters into ZV Port mode by tri-stating address pins A[25 .. 4] of the PC Card bus when the Multimedia or 
ZV Port enable bit is set. 

The address pins are outputs•from ·the host controller during normal PC Card operation. Tri-stating of the 
address pins by the adapter, allows the A[25 . .4] signals to carry video data and video capture timing 
control signals directly to a video controller and the audio signals to the audio DAC. 

It should be noted that ZV Port implementations are likely to vary amongst platforms and that Socket 
Services software has to be customized to address these variability's. Controlling output enable inputs of 
the external buffers depends upon specific hardware design and Socket Services has to be aware of these 
specifics such as the 1/0 Port addresses. 

Validation and Test 

Once the design is done a very important aspect is validation and testing of the system. In most cases, 
the CardBus host bridge is typically the last subsystem tested and usually given the minimum time 
compared to other subsystems like Video controller. The CardBus interface may prove to be an even more 
difficult interface to validate. One reason is due to the enormous number of PC Cards in the marketplace. 
How can you test to ensure compatibility with every card? Also many of the PC Card 16 cards come with 
point enablers that bypass Socket and Card Services that can be a source of a problem. If a certain PC 
Card fails, how is one to determine the cause? Is the problem the CardBus bridge, the card manufacture, 
software, etc.. One suggestion during system validation is to start the validation of the CardBus bridge 
earlier. Plan on carrying out comprehensive tests to verify the bridge interface. Probe and measure the 
timing generated by the controller, look for timing violation, noise, Vee and Ground bounce. Any of 
these problem many cause the system layout to change, and cause the design schedule to slip. 
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Typical Example of the ZV Port Implementation 
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PCI Technology for Industrial Control Application 
Benefits and Issues 

Clyde Thomas 
Allen-Bradley Company, Inc., Rockwell Automation 

Historically, the large industrial automation vendors have used proprietary bus tech­
nologies in their control solutions. A number of market and technology drivers has cre­
ated interest in using standard and commercially available technologies such as PCI. 
This paper presents how one major control vendor, Allen-Bradley (A-B), has adopted 
PCI to help introduce a new line of PC-based controllers using existing A-B form fac­
tors and 1/0 products. The presentation will discuss the benefits of using existing PCI 
standards and technologies, and how the use of PCI allowed for shorter development 
time as well as access to additional technologies to broaden the application capability 
of A-B's industrial control solutions. In addition, several issues of adopting PCI tech­
nology from the commercial PC-based form factors as well as the emerging 
CompactPCI definitions will be addressed. 

I. Introduction to Industrial Automation Control Systems and 
Traditional Approaches 

II. Drivers for Change in the Industry Automation Market 

III. The Role of PCI and Its Suitability for Industrial Control 

IV. Benefits of Using PCI 

V. Unique Design Constraints 

VI. Issues Associated with Industrial Application 

VII. Close-A Trend Not a Fad 
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lJsing the PCI Bus for Packet 
Switching Applications 
R1~1·m1111J Kohne111. Pt'/ ( /ro11p Jeuder 
Fek111>r !11d1111nc1/ ( 'mnp111ers Inc 

•Abstract: 
Present packet switching applications 
are normally based on the use of 
custom designs. The use of off the shelf 
PC products is generally out of the 
question. This paper proposes a method 
of designing a medium rate 
communication switch, using standard 
industrial quality products. The use and 
applicationofthePCI bus and available 
industrial PC products is demonstrated. 

• Background: 
The basic architecture for most 
digital data communication circuits 
is the T-S-T, or Time-Space-Time 
data switch. This switching 
architecture allows messages to be 
handled in both the time and space 
domain. Most circuit switching 
systems and all packet switching 
systems use one form or another of 
the basic T-S-T architecture. 

T-Stage: A time switch has a fmite 
amount of memory to store 
incoming data packets. These data 
packets are subsequently routed to 
their intended destinations. The T­

outputs. The classical operator 
switchboard, used in the earlier half of 
this century, is an example of an S­
stage. Cross point switches are another 
example of the S-stage. 

AT-stage that includes multiple inputs 
and outputs can perform the operation 
of an S-stage, but there are physical 
size limitations on this switch 
architecture. The number of 
inputs/outputs can cause an electrical 
implementation of the circuit to 

s-stag 

stage will delay the data, if Figure 1 Typical Communication Switch Architecture. 

necessary, to assure that there are 
no clashes between concurrent data 
packets. A packet that cannot be 
immediately routed will be delayed a 
short time before being sent to its 
destination. This process arbitrates the 
packet access to the finite output 
resources by scheduling the access to 
these resources. This process can be 
applied to both packet and circuit 
switched data systems. 

S-Stue: A space switch provides 
independent concurrent cross­
connections between inputs and 

become 1/0 bound, whereas the 
physical size of the temporary storage 
memory will limit the number of 
channels that can be handled by one 
circuit assembly. 

This is the reason why the T-S-T 
architecture is so popular in switch 
designs. A simple T-S-T architecture 
allows a modular implementation for 
switching circuits. This modular 
implementation allows a single switch 
to be expandable in both the number of 
individual input/outputs that can be 
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serviced and the amount of data that can 
be handled by one central switch. 

Figure 1 shows the basic architecture 
for a typical T-S-T switch. The circuit 
includes a Switch Controller that is 
used to monitor and control the 
operation of the switch. Typical 
functions implemented by the Switch 
Controller include: 

• Switch Configuration; 
Circuit Synchronization; 
Status & Health Monitoring 
Billing & Customer Use 
Control; 
Circuit Switching Connection 
Control; 
Packet/Circuit Switch Priority 
Control; 

•Circuit Implementation: 
Present implementations of this 
system use proprietary hardware 
to implement most of the switch. 
This can be costly to design and 
manufacture. In many cases, the 
design and manufacture of the 
Switch Controller is based on 
current CPU and chipset 
technologies. Given the constant 
state of flux of the CPU market, 
especially the chipset market, 
the reliable supply of CPU's as 
Switch Controllers becomes a 
concern. 

The use of generic hardware can 
reduce the overall cost of such a 
circuit and remedy the CPU 
source supply problem. For 

instance if a standard backplane, 
cardcage and CPU is used, the cost of 
designing the Switch Controller is 
eliminated. A switch manufacturer 
could concentrate all of their efforts on 
designing switch hardware instead of 
spending their time redesigning Switch 
Controllers. Since the Controller is a 
standard product, it can be easily 
updated by just simply swapping 
boards. 

• PCIBus: 
By designing the T-stage components 
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of the switch as PCI compatible 
assemblies, the interface between T­
stages can be greatly simplified. ~ 
actual implewentation of the S-sta~e 
can be done with the PCI bus 
architecture. The PCI bus completely 
replaces the S-stage. 

The PCI bus supports burst transfer 
rates up to 33 Mcycles/sec, with data 
bus widths up to 64 bits. The bus 
therefor yields a peak data rate ofi: 

8lpoaii • 33.Mhz' x 64/Jtts/cycle 

8lJ!d • 2.ll2Gbits/Sec 

Given that the bus can be used at up to 
85% of its bandwidth, which is not 
unusual for synchronous access 
schemes such as time-division­
m ultiple-access (TDMAii iii), the net 
transfer rate of the PCI bus is: 

st,.,, • 2.112Gbit/Sec x 0.85 

a,,,, = l.195Gbit/Sec 

As a figure of merit, one can compare 
1his net rate to the number of telephone 
channels it can support. An 
tmcompresSed voice channel requires a 
channel rate of 64kbit/sec1• The PCI 
bus in this recommended application 
could support 33,000 simultaneous 
phone conversations! 

Reset 

Figure 3 Transition Diagram of PCI Bus Events. 

1 A standard telephone 
service uses a sampling rate of8kHz 
at 8 bits/sample. 

Since the probability of using all phone 
lines at the same time is quite remote, a 
multiplication factor is used to 
determine the total number of lines that 
such a switch could handle. If the 
probability of a line being used is 0.2, 
the total number of lines that can be 
serviced by such a system would be 
over 165,000. 

The use of such a circuit would find 
itself applicable to medium rate 
services. This would include such 
applications as PBX systems which are 
commonly installed in medium to large 
sized corporations. Since the system 
can support expansion by simply 
installing more T -stage elements, a 
common system would service many 
different clients. 

Other medium rate services include 
central phone office services. As stated 
above, each system could handle up to 
33,000 simultaneous calls. 

• Software Development: 
In the past, the software developed for 
data switching circuits was based on 
real time operating systems. The 
recommended solution discussed in this 
paper would maintain the use of this 
software database, however, the 
development platforms used to write 
the application software would be 
based on common PC technology. 
Because of the close relation between 
existing PC platforms and the 
recommended solution, the cost of 
developing software will come down. 

This is especially evident in 
development and coding of common 
drivers used in such a system. It is also 
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Figure 2 State Diagram of Communication 
Circuit. 

true for hardware and software 
development tools. 

Given the state of the art of today's PC 
technology and the reliable supply of 
industrial quality CPU's, the future 
development of data switches will be 
readily supported for years to come. 

• System Architecture: 
To implement 1he proposed system, the 
PCI bus must perform the same 
fimctions performed by the S-stage and 
provide interconnections between the 
T-stages & Switch Controller. 

The circuit will assume one of three 
mutually exclusive states (see Figure 
2). 

Neutral: The Neutral state is initially 
invoked after start-up and essentially 

forces the 
circuit 
t 0 

assume a failsafe operation mode. This 
mode affects all of the modules of the 
switch. 
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Con.fi'lJlrafion: The Configuration 
state is used to configure the switch. 
This mode is executed sequentially and 
is not bound by real-time operating 
requirements. This state may be used to 
perform software downloads from the 
Switch Controller to the T-stage 
modules. It may also be used to 
perform ofiline diagnostics and major 
switch reconfigurations. 

Run: The Run state requires the system 
to operate in a synchronous mode. 
Figure 3 illustrates the activity during 
this state. The PCI must perform all of 
the functions of the S-stage, and must 
also support the communications 
between the system modules. This 
process is synchronous, and must not 
be interrupted by other processes within 
the system. 

Industrial 
PC 

(Switch 
Controller) 

PCI 
Bus 

standard PICMG backplane using a 64 
bit PCI eidension. 

The T-stage modules are custom, in 
that they are specific to the switch 
implementation, however, the PC and 
backplane are based on standard 
products. An industrial PC such as 
Teknor's PCI-933 can easily implement 
the circuit described in this note. 
Because of the low bandwidth 
requirements of the Switch Controller. 
a standard 32 bit PCI interface is 
sufficient. 

The major advantage of using a PCI-
933. is that the ooeration of the PCI 
bus. E-IDE disk drives and the ISA bus 
are concurrent. This allows the system 
designer to base their design on the 
multi-master PCI bus. Figure 5 

illustrates the three 
The run process is invoked from the 
neutral state, and is triggered by the 
Frame Sync interrupt. The typical 
period of this event is 125µS. During 
this period of time, the Switch 
Controller will command each T -stage 
modlile to send data packets to their 
appropriate destination T-stage. The 
dwell time for each module is the same. 
Upon completing the four transfer 
processes, the Switch Controller will 
query each T-stage for status 
information and send commands for the 
next Frame Sync cycle. 

Figure 4 Physical Implementation of a T-S-T Communication Switch, Implemented with 
an Industrial PC and PCI bus. 

E-IDE 
Drives 

PCJ Bus 

Pentium 
CPU 

System 
Interface 

Cache 

Ethernet ........ ._ 
Interface 

ISA Bus 

Figure 5 Block Diagram of Major Components of the Teknor 
PCI-933. 

• Physical 
Implementation: 
The recommended 
implementation of the T -S-T 
switch is illustrated in 
Figure 4. This 
implementation includes 
four PCI T-stage 
assemblies, an industrial 
PC, a PCl/ISA bus 
backplane (PICMG) and an 

Ethernet controller for 
system management 
function interface. The 
PCl/ISA bus backplane 
is implemented with a 
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independent paths of the PCI and ISA 
busses, as well as the system disks. 

To maximize the switch traffic over the 
PCI bus, parallel processing paths must 
be used to assure that the PCI 
communication process is not 
interrupted. 
While the system is operating in the 
Run state, the Switch Controller must 
operate independent and in parallel with 
the S-stage process. Asynchronous 
communications between the Switch 
Controller and the Ethernet bus must 
not affect the operation the PCI bus. A 
T-S-T communication switch based on 
the PCl-933 will fuJfill all of these 
requirements. 



r 

PC! Spring: Industrial Applications 

Pentium Cache CPU 

System Ethernet 
Interface Interface 

PCI Bus 

PCI-ISA 
Bridge 

~ 

Since the IS A bus is an integral part of 
system, this blocking can any PC based 

occur quite often. 
System ev 
intemlpts and 
affect the op 

ents such as real-time 
refresh pulses can and do 

eration of the PCI bus. 

If other perip 
thePClbus 
of the PCI b 

ISA Bus 

herals are added to either 
or ISA bus, the bandwidth 
us is directly affected. In 

addition to this 
blocking mechanism, 
asynchronous system 
events such as 
Ethernet and disk 
access will directly 

J 
1 

~ 
E-IDE 
Drives 

affect the synchronous 
communication process 

between the T-stage 
assemblies. Figure 6 Block Diagram of Major Components of a CPU Using a 

PCl-ISA Bridge Interface. 

Alternate products base their industrial 
PC designs on PCI to ISA bridge 
implementations (see Figure 6). These 
implementations have the disadvantage 
of locking up the PCI bus anytime the 
ISA bus or disk drives are accessed. 

• References: 

•Conclusion: 
The architecture 

developed in this paper demonstrates 
the versatility of the PCI bus 
architecture. Furthermore, this 
architecture will allow communication 
switch designers the flexibility and 
choice of using standard Industrial PC 

i. PCI Local Bus Specification; Rev. 2.1, Oct. 21, 1994 
~PCI Special Interest Group; 1994 

ii. Local Networks; Franta,W.R & Chlamtac, Imrich 
3rd ed. D.C. Heath & Co.; Lexington Mass. 1981 

iii.A Study in Data Communication Networks; KoJment, Raymond 
Department of Electrical Engineering; New Jersey Institute of Technology 
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products in their new switch designs. 
The overall performance of the bus is 
quite substantial, and is capable of 
talcing on bigger and more complicated 
tasks. 

The use of the Teknor PCI-933 is 
compatible with the needs of advanced 
communication circuits and is capable 
of handling the multi-task environment 
of standard switch architectures. 
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New Jersey Institute of Technology, 
and his major studies include topics in 
communications systems. He had 
completed his Master's Thesis in 
switching theory. Mr KoJment is 
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design of advanced computer and 
communication products at Teknor 
Industrial Computers Inc. 616 Cure 
Boivin, Boisbriand, Quebec J7 G 2A 7 
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Impact of PCI Technology on Control Solutions 

by 
Edwin Lee (Pro-Log Corporation) 

Abstract: 
PCI Technology will accelerate the decade long process of replacing systems specifically designed for 
industrial applications, including Allen Bradley programmable controllers and VME bus products, with 
systems that meet the Intel/Microsoft standards. PCI Technology will help to make the Intel/Microsoft 
standards as dominant in control systems as they are in desktop PCS. 

PCI Technology bus speeds, 1/0 expand-ability, and multi-processing support are ample to concurrently 
handle real-time control, graphics intensive data processing, and high speed networking. The driving 
forces behind the move to Intel/Microsoft compatible solutions in Control Systems are: economics, the 
Mind Bus, and immediate access to the latest improvements in hardware, software, and design tools. 

PCI Technology is now available for Control Solutions in three packaging formats: desktop, Passive 

backplane, and CMJJ8Cll'Cf™l The desktop format provides the most economic and convenient 
solutions at the expense of ruggedness and mean-time-to-repair. The Passive backplane format improves 
ruggedness and slightly reduces the mean-time-to-repair. CIJRl/18CIPC/combines the IBM PC electrical 
and software standards with the Eurocard packaging standards to produce cost effective systems with the 
ruggedness and mean-times-to-repair required by the most demanding applications. 

Passive backplane PCI and CORl/18CIPC/are emerging, open standards supported by PICMG, the PCI 
Industrial Manufacturers Group. This two year old association already has over 90 member companies, 
and includes IBM, DEC, HP, and Force on its Board of Directors. Any company is free to make or buy 
products to the standards it supports. 

The Industrial Versions of PCI Technology 
PCI technology is available in three packages: desktop, Passive Backplane, and CompactPCI (Eurocard). 

Desktop computers have been used in control systems for the last decade. Although I don't have specific 
survey data, my estimate from experience and anecdotal data is that - 40% of control systems already 
use desktop computers because of their convenience and low costs. The trend started a decade ago. For 
example, in 1985, one user had already rigged a desktop IBM PC to control part of his process in a 
cement mixing plant. He protected the system from dust with a protective plastic covering. His backup 
system? His secretary's computer! 

Passive Backplane systems have approximately the same form factor as desktop systems. However, the 

lcompactPCI is a registered Trademark of PI CMG 
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motherboard is replaced with a plug-in system card and a passive backplane that includes both the PCI 
bus and the ISA bus. In addition, the systems have beefed up cooling, beefed up power supplies and far 
more rugged packaging. This family of products is already available from dozens of manufacturers, 
including Pro-Log. 

CompactPC/packages the desktop PC, including the PCI bus, in the Eurocard format. 
CompactPCI has a passive backplane and a system card. However, high density pin and sleeve 
connectors replace the card edge connectors of the desktop packages. The cards sizes are 
standardized in 3U and/or 6U Eurocard formats. The cards are locked in place and are supported 
on all four edges. The Eurocard packaging, required in Europe for industrial systems and 
popularized in this country by VME bus, vastly improves shock and vibration tolerances and 
thermal characteristics. The pin and sleeve connectors used by CompactPC/enhance grounding 
and shielding which improve performance margins and PCI bus fanout (A system card can drive 
7 peripheral cards for each set of bridge chips) and reduce EMI radiation and susceptibility. 

Users of CompactPC/can buy or make products that bring I/O out the front panel (as is now 
typical for Industrial Control systems) or out through a connector to the backplane (as required 
by Telecommunications systems to minimize down time during card replacement). 

The Economics of PCI Technology 
PCI Technology is driven by the >$150 billion desktop PC market. This juggernaut is driving chip 
development, chip production, applications development and software development. Products used in 
this market have such an overwhelming volume that their costs to produce are the lowest possible. 
Furthermore, they are supplied by low margin, aggressively competitive suppliers. 

By contrast the Controls market is somewhere around $4 billion (Including telecommunications, 
industrial control, instrumentation, and medical electronics). The income stream from the Controls 
market is not adequate to sustain leading edge product development (hardware or software) or to produce 
products at competitive prices. Furthermore, the traditional suppliers require high margins to support 
expensive technical support, sales and service infrastructures, and to earn reasonable profits. The result is 
product costs to users that are two to five times that of comparable desktop products. 

Apple computer, with its 7% share of the desktop PC market, has a far bigger market than the entire 
controls market. However, it hasn't been able to thrive by competing with the Intel/Microsoft standards. 
Motorola has given up on its CPU race with Intel. The income stream for the 680x0 CPUs produced by 
Apple, VME bus, and a captive market was not enough to sustain innovation. The Power PC is 
Motorola's.fig leaf, not a viable alternative. 

Just to clarify the economic perspective: $1.5 billion is the entire market for VME bus hardware, 
software and systems this year (fewer than 250 thousand VME bus systems). It is also Intel's market 
share of the PCI system logic chip sets (40 million)! Intel is only one of several suppliers. 

The Mind Bus and PCI Technology 
The Mind Bus is a term I use to describe a standard set of skills, expectations, and beliefs about 
computers held by the hundreds of millions of people who buy and use them. The Mind Bus has been 
created by the desktop PC market over the last 15 years. It is shared by engineers, executives, students 
and housewives (just to name a few). It's responsible for Apple's shrinking market share and with Allen 
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Bradley's difficulties over the last decade. 

The Mind Bus provides common expectations and value references. These expectations and value 
references didn't exist fifteen years ago. They already impact customer preferences in Control Solutions, 
and explain the wide use of desktop PC's in control systems. Because the PCI Technology removes 
performance restrictions, the Mind Bus will dominate how designers implement Control Solutions within 
five years. 

PCI Technology is part of the desktop PC standards and it is part and parcel of the Mind Bus. I don't 
have to sell it or explain it in any detail to engineers or to executives. However, I would have to spend 
considerable time and money to sell an alternative to Mind Bus skills, expectations, and beliefs. Just ask 
Apple. They are clinging to less than 8% of the market with products that may be easier to use, but don't 
fit mind bus standards. Within a few years we should see the same situation in Control solutions. 

Relevant Beliefs of the Mind Bus 
Computers are commodities, not esoteric products that require careful selection, special training, and 
annual service contracts. Significant elements of this core belief include: 

I expect industry standard computers to be cheap and reliable The best buys and latest 
innovations are always found in open-architecture, dominant standards supplied by many 
competing suppliers. Closed systems dominated computers until 1982. But, since then Wang, 
Apple, and IBM simply couldn't keep up with the rate of innovation and cost reductions 
provided by a host of suppliers vigorously competing to supply the IBM PC standards. 

I can configure my own system to meet my specific needs by using standard ''plug-in" hardware 
and software. I expect plug and play capabilities. Users routinely buy and successfully install 
third party modems, printers, and scanners. They no longer need to buy all products from a 
single supplier, or have suppliers install products or configure systems to specific applications. 
The customer thereby assigns little or no value to system configuration and system installation. 
Since customers can also update operating systems and applications software, they assign little 
value to these traditional, supplier furnished services. 

I can successfully use them without studying user manuals or paying/or special training by the 
manufacturer. User friendly software, built-in tutorials, third party books, or third party courses 
and workshops educate customers instead of User Manuals and manufacturer training. 

I can buy computers, peripherals, and software through distribution (retail) and get the lowest 
prices and most convenience. Buying direct from the manufacturer is more expensive and 
produces less effective support 

I can usually service my own computer with the "as needed" backup support of the 
manufacturer, distributor, or third party service organization when and if the need arises. A one­
year warranty supported by a telephone hotline is customary and expected. Beyond that, the 
failure rate is expected to be low enough that additional service is seldom needed, and annual 
service contracts are not cost effective. 

Other core beliefs that affect the Control markets are: 

Mass produced software is relatively cheap, reliable, and user friendly. It is worthwhile to solve my 
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problem using standard software rather than payingfor special purpose software. 
The desktop PC has created a value reference for software: price, performance, and user friendliness. 
That value reference is improving with time. Special purpose software is orders of magnitude more 
expensive, doesn't work as well, and is seldom as user friendly as the leading software for the PC 
standards. The customer asks himself: How can I use a standard word processor, accounting package, 
data base, customer contact package, etc. to fit my application? In the past customers would specify their 
needs and have software designed to meet them. That software was expensive, had bugs, and was 
horrible to maintain or update. 

I expect dramatic improvements in performance/dollar each and every year, therefore I want a system I 
can update or replace frequently. 
When a customer buys a desktop computer, she expects it to be competitively obsolete within 3 years. 
However, its architecture and its low costs give her the viable options to update it or replace it. The old 
belief was that the solution should be "competitive" for more than five years. 

How the Mind Bus and PCI technology will alter the Controls Solutions 
Designers will make commercial chips, operating systems, development systems, and applications 
software serve Control Applications. They will accept tradeoffs from the ideal solutions because of the 
overwhelming economic and performance benefits of making these tradeoffs. Two examples come to 
mind: multi-mastering as implemented on VME bus, and Hot Swap. 

PCI technology does not support true multi-mastering as does VME bus. On the VME bus, any 
CPU can take over the bus. PCI technology provides a more limited multi-mastering through a 
single Host that supports bus mastering for a limited number of peripheral processors. However, 
PCI technology has enough capability to solve any control problem. Designers will make PCI 
Technology fit their needs, rather than require it to add true peer-peer multi-processing. 

Hot Swap, changing a plug-in card without turning power off or rebooting the system, is a Holy 
Grail of many control system designers. Its benefit might be to reduce mean time to repair to a 
matter of seconds. (I seriously doubt that anyone would actually realize this benefit.) However, 
unless Intel makes it a standard feature of PCI chip technology, and unless someone modifies 
how Plug and Play software operates, the overwhelming majority (>99%) of control systems will 
continue to live without it. Plug and Play software, as it works today, analyzes the peripheral 
cards modifies their bioses during boot-up. If a peripheral card is hot swapped there would be not 
assurance that it would be compatible with the system unless that system were rebooted.). Of 
course there is no feasible way to "hot swap" a Host CPU card. 

In my opinion, we will live without Hot Swap for the foreseeable future. Let me put it another 
way: should VME bus, for example, successfully implement hot swap, it will not help them 
sustain market share in any significant way! 

Major accounts for Control Solutions will buy direct, smaller accounts will buy through Distribution. 
Major suppliers will trim their overhead by focusing on shipping large quantities of fewer, standard 
products to key accounts. Large Distributors will be some of their key accounts. OEMs, Distributors, and 
third party organizations (including VARs) will provide depot level and on-site service. 

PCI Technology and Legacy busses 
In the near-term, PCI Technology has to work with legacy buses, especially the ISA bus. These buses 
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have an established base of peripheral cards and operating software. PCI Technology can theoretically 
support as much 110 as anyone would need through PCl/PCI bridge chips. However, this solution is not 
yet fully implemented in the desktop world. 

In the long run, PCI technology should greatly reduce, or eliminate, ISA usage in the desktop 
environment. It should more swiftly eliminate the use ofISA and other legacy buses, including VME, in 
the controls environment for a few simple reasons: reduced costs, improved performance, and greater 
software compatibility. 

PCI Technology is supported, and will continue to be supported, by the latest in hardware and software 
tools. VME, for example, has different and far less up-to-date software tools to support it. It is far easier, 
far cheaper, and much more productive for suppliers to move their peripheral designs to the PCI bus, 
than to bridge the PCI bus to a legacy bus. A bridge is expensive and slows down one or both busses as it 
interprets one set of protocols to another. A PCINME bridge, for example, is like an English to Chinese 
interpreter passing information from one language to the other. Also, in a hybrid system of PCI and VME 
you can kiss plug and play goodbye. 

What about legacy 1/0 busses like Allen Bradley's data highway? They'll hang on for years because old­
timers will insist on sticking with what they know and will be able to hoodwink their management into 
paying enormous premiums to support their preferences. But new applications should move quickly to 
open-architecture 1/0 busses (like SCSI-2 or PCMCIA) supported by desktop software. There's a need 
for, and probably an opportunity for someone to develop an Industrial 1/0 bus that takes advantage of 
PCI technology. 

Conclusions 
The Industrial Market is already strongly influenced by the desktop PC. Because of PCI Technology and 
the packaging innovations of Passive backplane PCI and CtJHl/18CIPC/, Control Solutions will 
increasingly depend on the products, skills, and beliefs created by the desktop PC's. In the next five 
years, PCI technology will become the overwhelmingly dominant computer technology in Control 
Solutions. 
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ABSTRACT 

LEVERAGING PCI IN DATA ACQUISIDON APPLICATIONS 
Richard J. Bmk 

Data Translation, Inc. 
100 Locke Drive 

Marlboro,MA 01752 
(508) 481-3700/3080 (fax) 
e-mail: rbmk@datx.com 

PCI' s numerous performance and fimctional advantages are a critical benefit to data acquisition. Especially in data 
acquisition (DAQ) applications where users cannot compromise their data integrity, nor can they afford to compromise 
acquisition speed, PCI has emerged as the clear choice. Inherent design featmes of the PCI bus that boost performance and 
productivity in data acquisition include much faster bus speed, ease of installation and configuration, greater expandability and 
guarantee of future support. TCC Industries, a manufacturer of cellular phone accessories, recently migrated all of the 
company's testing PCs to PCI systems to achieve a higher degree of accmacy. TCC reduced testing time to 5 seconds using a 
PCI data acquisition system, compared with 12-16 seconds using a non-PC! setup. A professor from the University of 
Waterloo has invented a new scanning beam confocal microscope that utilizes a PCI-based DAQ board from Data Translation. 
This DAQ implementation would not have been possible without PCI' s unique performance advantages. 

PC/ Y.S'. ISA IN DATA ACQUISITION 

When evaluating a PC-based data acquisition system, the cw-rent state of technology leaves users faced with a choice 
between the ISA (industry standard architecture) bus or the newer PCI (peripheral component interconnect) bus. The 
numerous technical and performance advantages of the PCI bus make a PCI-based data acquisition system an easy choice, 
although certain applications may be more well-suited to a dedicated ISA-based system. 

ISA Drawbacks 

Across the ISA bus, applications can move a maximum of 400kS/sec (thousand samples per second). Th.at is to say, 
no more than 400,000 data samples can be transferred across the bus -- either to or from memory -- each second. When ISA 
peripherals begin to push the bandwidth limits of the ISA bus, the user begins to either pay for on-board memory, or for time 
(seen as system delays). Data that cannot be sent immediately across the bus as soon as it comes in must be stored locally or 
stalled -- or it is simply lost. 

A further limiting factor of this architecture is that ISA peripherals must pass all data through the CPU to system 
memory, consuming valuable system overltead as data travels to and from memory. While DMA (direct memory access) has 
been utilized to provide direct access to system memory, CPU clock cycles are still being applied to data movement, 
essentially stealing time from other applications and system calls. A further resomce drag is the ISA memory controller itself, 
which grabs CPU time every time it needs to write or read from memory. 

For some data acquisition applications, ISA's 400kS/sec bandwidth clearance can easily be enough, but since data 
acquisition applications often require bi-directional data flow, that bandwidth is quickly consumed and application 
performance suffers. For example, an application acquiring data ftom a laser microscope at 300kS/sec, and applying real-time 
control to an x/y-table that moves the item beneath the microscope at 200kS/sec, will quickly consume all available 
bandwidth and generate an Wlstable control loop. Dropped data bits force the application to sample data at a lower rate than 
the data is coming in, resulting in Wlstable or inaccmate readings. 

PCI: Ideal for DAQ 

PCI' s numerous performance and fimctional advantages are a critical benefit to data acquisition. As data acquisition 
has traditionally pushed the limits of system performance, dedicated systems for data acquisition have become a pervasive 
mindset in the industry. The emergence of PC I-based systems is changing that mindset, and promises to open up the number 
of PC-based data acquisition applications. Especially in data acquisition (DAQ) applications where users cannot compromise 
their data integrity, nor can they afford to compromise acquisition speed, PCI has emerged as the clear choice. Inherent design 
features of the PCI bus that boost performance and productivity in data acquisition include much faster bus speed, ease of 
installation and configuration, greater expandability and guarantee of future support. 
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Speed, Cost and Time Benefits 

PCI peripherals, nmning asynchronously, can send data along the 32-bit bus at a rate of 66MS/sec (megasamples per 
second). Jn addition, because the PCI architecture enables peripheral boards on the bus to access systems memory directly 
without using the CPU, DAQ boards can be acquiring data without wasting CPU overhead. Furthermore, PCI DAQ users can 
be acquiring data to memory while at the same time doing analysis in real-time on existing data, all while communicating 
with other fimctions on the network. 

Using PCI' s bridging capabilities, multiple PCI buses can be connected, ad infinitum, with standard, off-the-shelf 
PCI expansion hardware. This is done via a PCI-to PCI bridge chip, which offers the additional benefit of being able to get 
around capacitive load limitations and expand the number of plug-in slots. This enables DAQ users to set up multiple DAQ 
boards, and run them all simultaneously, without hitting the PCI bandwidth ceiling. Jn order to achieve this kind of expansion 
with ISA, users would have to add additional machines to their production setup. 

Furthermore, a DAQ board plugged into a PCI slot carries its own configuration information in software -- users do 
not need to set any jumpers or identify any base addresses -- a common headache with ISA DAQ boards. Not only does this 
provide extreme ease of installation and use, but because all hardware settings can be controlled in software, users can easily 
customize the configuration of their DAQ system at any stage of their operation. 

REAL-WORLD APPUCATIONS OF PCI IN DAQ 

A growing number of users are moving their data acquisition applications to the PCI bus, primarily to realize the 
benefit of higher throughput. Since petformance in many data acquisition applications is directly dependent on throughput, or 
how many points of data can be dumped into system memory for analysis, the bandwidth capabilities of the bus correlate 
directly to testing accuracy. Marlboro, Mass.-based Data Translation's new PCI-based data acquisition product line, the PCI­
EZ Series, by design, supports device input up to lOOOkS/sec (or 1 megasample per second), giving an immediate 2.5 times 
petformance increase over their ISA comterparts. 

PCI in Telecommunications 

Joey Nieves, production engineer for TCC Industries, Inc., a Cerritos, Calit:-based manufacturer of cellular phone 
accessories, recently migrated all of the company's testing PCs to PCI systems to achieve a higher degree of accuracy. TCC 
Industries has been using PCI-based data acquisition cards from Data Translation to test and grade high-sensitivity 
microphones using RMS (root mean squared) analysis of voltage output, where extremely high-speed acquisition is critical. 

''We were initially running two test systems and fomd that .our PCI system was registering more accurate results. 
The non-PCI system was dropping data points because of bus bandwidth limitations. It quickly became imperative to upgrade 
all our test systems to PCI," said Nieves. 

Nieves explains that during production a variety of variables are introduced which can compromise the sensitivity of 
the microphones, and inaccurate grading of these components will significantly impair overall product petformance in the 
field. "A single millisecond separation in signal pick-up can give us an inaccurate reading. Our PCI-based data acquisition 
machines now ensure that data is transferred to memory as fast as it comes in," said Nieves. Nieves reports that testing time 
has been reduced to 5 seconds per lUlit for each microphone test, compared with 12-16 seconds each with his non-PC! setup. 

Nieves is in the process of developing another application for his PCI DAQ implementation which will run a series of 
four tests in sequence on each finished unit. Whereas microphone testing was petformed prior to final assembly in the past, 
Nieves now plans to skip this step mtil the unit is fully assembled, and test the microphone as part of the final test suite. 
Testing of the fully assembled units will save time and ensure a higher degree of quality control. Nieves again compared test 
times between two test systems and fomd that the four-test routine took I 0-15 seconds on the PCI system, compared with 25-
30 on his ISA setup. Since he must run up to 1500 lUlits through final testing per day, the time savings is significant. 

Nieves reported that it took 2 programmers less than 6 hours to develop this test suite from start to finish using Data 
Translation's visual programming language, DT VEE. 

23 



PCI in Microscopy 

Another DAQ user leveraging the benefits ofPCI is A E. (fed) Dixon, Ph.D, from the University of Waterloo. 
Dixon has recently formed a new company, called Biomedical Photometrics, that will bring to market a new scanning beam 
confocal microscope that utilizes a PCl-based DAQ board from Data Translation. 

Confocal microscopy is the process of shining a focused laser beam onto a specimen or subject and measuring the 
level of reflected light using an avalanche photo diode (APD), a highly sensitive single-point light sensor. The APD, reading 
grayscale only, converts light levels into analog signal levels, which are fed into Data Translation's 12-bit AID (analog-to­
digital) converter. 

Data from a confocal microscopy device is ''point-source" data, whereby each frame is scanned in one pixel at a time 
and fed into system memory. Enabled by the high bandwidth of the PCI bus, this device creates a fimctional imaging 
application from a point-source detector, producing a field size and resolution that even a high-end imaging board is not 
capable of 

Biomedical Photometrics' device, for which the company has coined the term MACROscop~. combines the rapid 
scan of a scanning beam laser microscope with the large specimen capability of a scanning stage microscope. The 
MACROscope proves a significant step forward in microscopy because it can scan a 25-micron-sized object, with a 0.25 
micron resolution, as well as being able to scan a 7.5 cm object with 5 micron resolution, producing a zoom ratio of more than 
3000. 

''With this device, the PCI bus is actually enabling the advancement of microscopy," said Ted Dixon, president, 
Biomedical Photometrics Inc., "as this level of resolution and scanning field in the past simply required too much time to 
acquire data." 

The new device will be particularly useful in applications where large specimens must be examined at high 
resolutions, and where it is necessary to examine small areas of interest in the specimen at extremely high resolutions. 
Possible applications include: 
• biomedical, such as fluorescent gels used in gene sequencing; 
• materials science, such as imaging paper fibers and coatings; 
• semiconductor quality control, such as photoluminescence imaging of compolllld semiconductor epitaxial layers, wafers 

and devices; and 
• forensic science, such as latent fingei:print detection, or imaging of fluorescent gels for DNA fingerprinting. 

The MACROscope sends data across the PCI bus into system memory at rate of300 kS/sec. While this data rate 
would not, in and of itself: push ISA bandwidth limits ( 400 kS/sec ), the PCI bus provides the extra bandwidth necessary to run 
simultaneous control and analysis fimctions critical to the MACROscope application. 

Considered a "slow-scan" system, the single frame rate for an image with a resolution of 512x512 pixels is 5 
seconds, and for 2048x2048 resolution, the frame rate is 25 seconds. The higher the resolution, and the wider the scanning 
area, the slower the data acquisition, as both resolution and scanning area quickly increases the volume of data points being 
sent into the DAQ board. Based on the 2.5x improvement that the PCI bus offers, an ISA-based system would output images 
at rates of only 12.5 and 62.5 seconds, depending on the resolution. 

Biomedical Photometrics is cWTently rum:iing Data Translation's 12-bit AID converter at its top speed, 300 KHz, but 
for extremely high resolutions across wide scanning areas, the company will be looking to run Data Translation's next­
generation converters at upwards of3 MHz. The PCI bus ensures the viability of this growth path. 

Biomedical Photometrics' implementation benefits from several PCI bus strengths, not the least of which is reduced 
cost because the DAQ board requires no on-board memory. "Back when we first started specifying this kind of system, DAQ 
boards had to have a memory buffer on the board because the ISA bus couldn't handle the data fast enough to put through to 
system memory, which really drove up the total cost of our system" said Dixon. ''The PCI implementation gave us a way to 
eliminate the redlllldant memory and still get the throughput we needed." 
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PCI performance also enables the use of a 12-bit DAQ (as opposed to 8-bit), giving Biomedical Photometrics 
tremendous dynamic range in the data input signal. Using an 8-bit AID converter, this type of application would typically 
result in data bits that are outside the useable range (either too bright or too low), effectively narrowing the dynamic range of 
the image data (for example, resulting in only 6 bits ofreal data). Using a 12-bit AID converter ensures that even with 
unusable data points, the application still ends up with a 10-bit real, dynamic range (even an 8-bit dynamic range would be 
acceptable). 

This type of dynamic range is especially critical in optical tomography, \Were the device takes in a series of images 
at different focus positions in order to compose a three-dimensional image. Jn the past, optical tomography required taking a 
series of slices, then resetting the analog gain based on the maximum and minimum values, and then going back and taking all 
the slices again. Data Translation's PCI-based AID converter, an off-the-shelf 12-bit solution, eliminates this time-wasting 
step. 

Biomedical Photometrics also went with Data Translation's DAQ board for the ability to select different frame sizes 
in software. "Data Translation's programmable gain feature enables our users to select different frame si7.es in software 
depending on the particular specimen being viewed," said Dixon. "Other DAQ board implementations require setting of 
jumpers in hardware to change gain levels, and we wanted make this instrument as easy to use as possible." Furthermore, 
without programmable gain, the MACROscope would require additional optics to achieve such a high zoom ratio. 

Conclusion 

PCI is a future trend that has gathered significant momentum in recent years, and shows no signs ofletting up, \Wile 
the era ofISA is quickly coming to a close. Most new PCI systems are still manufactured with ISA add-in slots, but future 
systems will have fewer and fewer of these slots, until they ultimately cease to exist. PCI paves the way for lower cost 
products, as manufacturers no longer need to include large amounts of expensive on-board memory to handle large data 
transfers. 

The PCI bus offers many performance enhancements that make it ideal for high-bandwidth applications, and is sure 
to be a significant step forward in PC-based data acquisition. While not many users are buying new ISA-based PCs these 
days, a large number of''hand-me-down" ISA systems are making their way down the coi:porate ranks and into the production 
or testing department (typically the lowest level on the coi:porate PC food chain). Production managers must weigh the 
benefits of a new PCI system against an aging ISA system in perfect working order. A growing number of these managers are 
realizing that the performance benefits reali7.ed in PCI-based data acquisition applications are worth the investment. With 
plenty of room for growth into the foreseeable future of the PC, the PCI bus gives users the safest and most robust platform to 
build DAQ applications. 
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Efficient Use of PCI 

Frank Hady 

Platform Architecture Labs 

Intel Corporation 

Agenda 

u Define PCI Efficiency 

u Charting PCI Efficiency 

u Rules for an efficient design 

u Why you should follow the rules 

u Effect of PCI to PCI Bridges 

u Conclusions 
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PCI Metrics 

u Bus Utilization 
- Utilization= (Clocks Used) I (Total Clocks) 

• Clock is used if #Frame + #lrdy + #Trdy is True 

u Data Throughput 
- Thrptoata = Thrptpc1 - Thrptcontrol 

u PCI Efficiency 
- Maximize Thrptoata 
- Minimize utilization 

- Optimize system performance 

l~,.Y;l-84..,............Yf I 

What Isn't Overhead? 

CL 
FIKAME#~-~~~~~~~~­
IRD Y # 
TRDY# 

'-+-' 
AD 

C/BE# 

. . 
( 
( 

-CD---­
~--~~~~~-­

Overhead Clocks 
Idle 

Data Transfer Clock 
- Count scaled by BE# 
- Only application data counted 
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PCI Efficiency 

Objective: Quantify the efficiency of moving 
application data over the PCI bus. 

PCI Efficiency = 
Data Transfer Clocks 

Clocks Used 

Thrptnata / (PCIBusWidth) 
PCI Efficiency = 

Clocks Used 

PC Architecture 
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PCI Card 
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Chipset ISA Card 

PCI Card 
ISA Bus 
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PCI Efficiency Charted 
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PCI Command Usage Charted 
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Rules for Efficient PCI Use 

u Use long bursts 

u Use memory commands, not 1/0 commands 

u Implement advanced commands 
- Mem Read Line (MRL): 1 cache line reads 

- Mem Read Mult (MRM): Multiple cache line reads 

- Mem Write lnval. (MWI): Multiple cache line writes 
(must be aligned) 

u Minimize latency 

u Follow the rules, not experiments 
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Chipset Limited Burst Length 
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Use Advanced Read Commands 

u Memory Read (MR) 
- Short reads: 1 or 2 Dwords 

- Reads with side effects 

u Memory Read Line (MRL) 
- Medium Reads: - 1 cache line (8 Dwords) 

u Memory Read Multiple (MRM) 
- Long Reads: > 1 cache line 
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Which Read Cmds to Use 
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PCI to PCI Bridges 
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PCI to PCI Bridge - Writes 
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Conclusion 
u PCI Efficiency is the metric (Dwords/PCIClks) 

- Optimize your designs to this metric 
- Consider other designs by this metric 

u The Chipset/PCI card combination determines PCI 
efficiency (Don't Optimize for a single chipset! !) 

u Current PCl-PCI bridges impact PCI Efficiency 

u Achieve high efficiency across platforms by: 
- Implementing PCI Advanced Commands 
- Use Memory Commands, not 110 Commands 
- Use long bursts 
- Minimize read start latency 
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Abstract 

THE ROLE OF CARDBUS IN A PCI BUS HIERARCHY 
Claude A. Cruz 

National Semiconductor Corporation 
333 Western Avenue, MIS 10-26 

S. Portland, ME 04106 
(207) 775-8318; FAX: (207) 761-6137 

ccruz@fmis02.nsc.com 

CardBus is a high-speed 32-bit interface defined by the PC Card standard. This point-to-point architectural 
"cousin" of PCI shares PCI' s signals, synchronous protocol, and performance levels. These similarities give CardBus 
a natural place in a PCI system's bus hierarchy (see Figure 1). 

Early CardBus implementations utilize a PCI-to-CardBus controller which is located on a platform's level-0 PCI 
bus. This controller acts as a "bridge" which maps CardBus resources onto portions of a PCl-based host system's 
memory, 1/0 and Configuration address spaces. The bridge allows PCI bus cycles to be sent "downstream" from CPU 
to PCI agents, or "upstream" to the CPU. Thus, the PCI-to-CardBus bridge performs the same function as a PCI-to­
PCI bridge; both support the hierarchical connection of multiple Pel-protocol busses. 

This paper will sketch the close relationship between CardBus and PCI, as motivation for why these two busses 
fill complementary roles in a PCI bus hierarchy. We will then explore three of the several possible roles of CardBus 
within such a bus hierarchy: 
• CardBus as a link between a host-system PCI bus and a higher-level PCI bus residing on a CardBus PC Card; 
• CardBus as a docking link between a host PCI bus and a "dock-side" higher-level PCI bus; and 
• CardBus as a conduit for high-bandwidth video data flowing between a CardBus card and a host system's PCI­

resident main memory or video memory. 

PC/ 

CardBus CBrd Dockfngsration 

Figure 1: PCI Bus Hierarchy 
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CardBus and PCI 

Over the last two years or so, the Personal Computer Memory Card Industry Association (PCMCIA) standards 
body has developed an interface which extends the popular PC Card add-in standard. This "CardBus" interface 
extends both the performance and the functionality of the older "PC Card-16" interface. While the latter is ISA-like 
in its signaling and protocols, CardBus was deliberately designed to work seamlessly with the more recent PCI bus. 
Apart from electrical-environment differences, the similarity between CardBus and PCI is so marked that we may 
usefully think of CardBus as "point-to-point hot-insertable PCI" (see Figure 2). (By "hot insertion" we mean the 
ability to insert a PC Card into an operating platform, or to remove the card, without disrupting system operation). 

PERFORMANCE 
Data/Address Width (bits) 
Max. Clock Rate (MHz) 
Peak Transfer Rate (MB/sec) 
Bus-Master Capability 

CONFIGURATION 
Hot-Insertion Support 
Boot-Up Configuration Support 
Dynamic (Run-Time) Configuration 
Configuration-Software Level 

POWER MANAGEMENT 
Operating Voltage(s) 
Card-Clocking Hardware Support 

MECHANICAL DESIGN 
Card Form-Factor 

Connector Type 
Card Bridge Hardware Required 

PCI 

Desktop 
ISA-Like 

120-Pin Unshielded 
NO 

Card Bus 

YES 
YES 
High 

Card/Socket Services) 

Portable 
Credit-Card-Size 
68-Pln Shielded 

YES 

Figure 2: Comparison of CardBus and PCI 

CardBus retains all of the major attributes of PCI--- particularly its synchronous nature, multiplexed address/data 
lines, multi-master capability, local-bus performance levels (up to 33 MHz operations at 32-bit data/address width), 
joint master/target transaction control, and integrated system resource-configuration capability. While CardBus is not 
restricted to usage in PCI-based systems, it is there that it especially shines. 

Systems are now beginning to implement the hierarchical bus capability which PCI offers. This is especially true 
of high-end systems such as servers, in which higher-level PCI busses are needed to support high-bandwidth 1/0 
activity and/or to allow overlapped activity on multiple busses. This hierarchical capability also allows systems to 
accommodate more PCI agents than the half-dozen or so which PCl's electrical loading rules allow on any one bus. 

The constituent busses of such a hierarchy can be connected to or isolated from one another through "PCl-to-PCI 
bridge" devices. From the programming perspective, these bridges allow portions of a system's memory- and 1/0 
address spaces to be mapped onto the host processor's (flat) memory and 1/0 spaces. System configuration software 
accomplishes this by programming address-space "windows" in the bridge hardware with the upper and lower 
address limits of each address block. This configuration is normally accomplished at POST time, though PC Card­
equipped systems must be able to do this repeatedly as PC Cards are inserted into or removed from the host platform. 

A PCI-to-CardBus bridge performs exactly the same task as is described above, in order to map PC Card-resident 
resources into the host system. With minor differences (e.g. a 4-Byte l/0-window resolution and granularity, vs. 
PCI's 4-Kbyte resolution and granularity), a CardBus bridge simply acts as one of the inter-bus gateways in a 
hierarchical PCI system. Such a device typically supports two CardBus sockets, effectively adding two independent 
"branches" to the system bus "tree". Note that a system may include several such bridges, and that the PC Card 
standard requires each CardBus socket to support both CardBus cards and PC Card-16 cards. 
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The major difference between a PCI-to CardBus bridge and a PCI-to-PCI bridge is that the latter implements a 
full normal PCI bus on its secondary ("downstream") interface, while a CardBus bridge is limited to a single 
downstream load. (The PCM CIA committee is in the process of relaxing this requirement somewhat to allow a single 
additional "stub" connection, as we will discuss later). In spite of this electrical loading limitation, CardBus makes 
provisions for "multi-function" PC Cards, in which several distinct functions (analogous to PCI agents) can share a 
single CardBus card-side interface. 

Host-generated PCI Configuration bus cycles can be targeted at specific on-card functions (each of which has its 
own set of Configuration registers), just as they can with any PCI agent. These function Configuration registers 
include base-address registers which can be used to assign each function one or more sub-portions of the address 
blocks mapped by the CardBus bridge windows. Each CardBus-card function's Configuration registers also include a 
pointer to a standardized set of "CardBus function" registers which are used to control and communicate with that 
function (e.g. to support PC Card insertion and removal notification, remote "wake-up" events, etc.). 

System-level power management is taking on ever-increasing importance in computing platforms, and especially 
in mobile systems (for which extended battery life is a requisite). The "PCI Mobile" standard defines a "CLKRUN#" 
signal and associated protocol, through which a PCI bus clock can be turned off and on as needed to conserve 
dynamic-switching power; the system CPU and individual PCI agents on the bus negotiate for control of the clocking. 
The CardBus standard includes a "CCLKRUN#" mechanism which is patterned on the CLKRUN# protocol. Using 
this, systems which implement CCLKRUN# can extend power management to agents which reside on CardBus cards. 
PCI and CardBus thus share this important power-management mechanism, which can be implemented throughout a 
bus hierarchy. 

Continuing the Bus Hierarchy onto CardBus Cards 

We have seen how a PCl-to-CardBus bridge maps PC Card-resident resources onto the host's address spaces, and 
how a host can configure multiple card functions via PCI Configuration bus cycles. In all of this, PC Card functions 
behave just like PCI agents located downstream of a PCl-to-PCI bridge. Each such function can claim bus cycles 
within its programmed address windows. Conceptually, the card's CardBus interface "fans out" CardBus 
transactions to all of the card's functions, as if they resided on a local (PCI) bus. 

A PC Card CardBus interface must satisfy CardBus loading requirements, even though there may be multiple 
functions on the card. This means that it may be necessary to buffer the card's CardBus interface en route to the 
several functions. The card's CardBus interface must also combine the function-interrupt lines from the various 
functions, to drive the interface's single CINT line. (Since the interrupt line is shared by all functions on the card, 
software must poll for the source of an active interrupt. This can be done in accordance with the existing PC Card 
multi-function interrupt-sharing protocol.) Similarly, the card's CardBus interface must combine the card status­
change line from all functions to drive a single interface CSTSCHG interface signal. 

The system configuration mechanisms of PCI and CardBus are essentially identical, as shown in Figure 3. Both 
busses support "Type-0" Configuration bus-cycles, which are used to configure agents which reside on the bus which 
receives the Type-0 cycle. The upper 21 address bits of a Type-0 cycle are used to select a particular device (i.e. a 
PCI agent on a PCI bus, or a CardBus card on a CardBus interface). The lower address bits are used to direct 
Configuration cycles to a particular function (within a multi-function device), and to a particular Configuration 
register within that function. 

Both PCI and CardBus also support "Type-1" Configuration bus-cycles, which can be relayed down the bus 
hierarchy to destinations which lie behind bridge devices. When a Type-1 Configuration cycle reaches its target bus, 
it is converted to a Type-0 cycle, which is then processed as previously described. This allows devices to be found, 
classified and configured anywhere within the bus hierarchy. A particular usage of this mechanism also allows PCI 
"Special" cycles to be sent to destinations throughout the bus hierarchy. Special cycles can be used in lieu of 
dedicated special-purpose hardware signals, to perform tasks like information broadcasts. 

Throughout the hierarchy, PCI-to-PCI bridges and PCl-to-CardBus bridges include Configuration registers which 
are used to assign unique numbers to each system bus. Bridges also contain other Configuration registers which 
specify what range of bus numbers lie behind each particular bridge. A piece of system software called a "bus 
enumerator" is used to catalog system resources and program the preceding Configuration registers; this usually is 
done at POST time, but must be redone as PC Cards are inserted into or removed from the system. 
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Figure 3: PCI and CardBus Configuration Addressing 

In early CardBus cards, the card's functions may be viewed as terminal "leaves" of that branch of the system bus 
tree which lies downstream of a PCI-to-CardBus bridge. However, the bridge's PCI header includes a subordinate­
bus Configuration register similar to that found on PCl-to-PCI bridges. This register can be programmed so as to 
indicate that multiple busses lie downstream of the bridge. It should be possible to build a card-resident CardBus-to­
PCI interface, such that the card contains a local full PCI bus which can be populated with normal PCI agents; this 
would effectively continue the system's bus hierarchy onto the CardBus card. Since this is not a practical alternative 
in the near-term, we will not explore it further here. 

Unking Platform and Dock Busses via CardBus 
At present, specialized PCI-to-PCI bridges are being used as a mechanism for linking (''docking") a portable 

computer to a PCI-based "docking station", as illustrated in Figure 4a. (Earlier docking approaches used ISA-based 
mechanisms). In this application, a PCI-to-PCI bridge provides the necessary address-mapping facilities, and an 
associated set of buffers are used to electrically connect the bridge's "downstream" interface to the docking station. 
This electrical connection/isolation capability is referred to as "hot insertion". 

A PCI-to-CardBus bridge has inherent hot-insertion and dynamic configuration capabilities, making it an ideal 
candidate for docking applications (see Figure 4b). With a CardBus bridge, external isolation buffers are 
unnecessary, and existing CardBus system software (Card and Socket Services) provides a means for dynamically 
managing dock-resident resources as docking and undocking occur. The dock's resources (PCI agents) can be 
identified, configured and used by host-resident system software (e.g. a PCI bus enumerator), with the CardBus 
docking connection serving as a link in the combined host/dock PCI bus hierarchy. 

Using a CardBus bridge as a docking medium entails dealing with essentially the same issues as using such a 
bridge to continue the system bus hierarchy onto a card-resident PCI bus. In this case, though, the downstream bus 
resides in a docking station, rather than on a CardBus card. The dock can be fitted with a CardBus interface which 
can be used to generate functional interrupts and status-change signals to the mobile-platform processor. The dock's 
PCI bus can support PCI agents such as video controllers, storage-media controllers, and various connectivity 
adapters. In addition, if required, a PCl-to-ISA bridge can be added to the dock's PCI bus, to support legacy 
hardware and software. (Note that the new industry-standard "PClway" serialized interrupt and distributed OMA 
mechanisms provide purely PCI-based means to support ISA legacy functions, potentially eliminating the need for 
actual ISA hardware). 

This docking approach uses standardized CardBus hardware and software mechanisms to support dynamic system 
reconfiguration following docking and undocking; moreover, it does so in a way that is fully consistent with the 
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system's PCI bus hierarchy. The host's CardBus socket controller fulfills the same functions as three separate blocks 
in a PCI-to-PCI docking interface: isolation buffers, PCI bridge and status-change generator. These benefits make 
CardBus-based docking of PCI platforms and docks more attractive than today's more ad-hoc approaches. 
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Figure 4a: Docking via PCI-to-PCI Bridge 
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Figure 4b: Docking via PCI-to-CardBus Bridge 

Perhaps the biggest issues with this style of docking center on mechanical engineering issues, rather than on 
docking functionality problems. For this approach to support standardized docking across platforms and docking 
stations, manufacturers would have to agree on placement of the CardBus docking socket, as well as on how to 
handle any remaining non-CardBus "side-band" lines, such as serialized-interrupts (SIRQ) and service connections. 
(Use of a normal CardBus socket and connector are assumed, since the CardBus electrical specifications probably 
cannot be met using a connector cable). In addition, system manufacturers would need to see benefits to them in 
adopting a standardized docking approach, which would decrease the value of proprietary docking solutions. Still, 
the potential flexibility and cost-reduction benefits to the end-user are clear. 

CardBus and PC/ Multi-Media Busses 

CardBus is a useful adjunct in multi-media-capable PCI systems (see Figure 5). CardBus cards can be used to 
add or enhance video and audio capabilities to a system. As an example, a video "front-end" may be implemented on 
a CardBus card. In this arrangement, a PCI-to-CardBus bridge must provide a bandwidth-efficient video "gateway" 
from the Card onto the host's PCI bus(ses). To prevent the video data from consuming excessive bandwidth on the 
host's level-0 PCI bus (potentially on Paths A or B below), the CardBus bridge can direct video data onto a secondary 
host PCI bus (Path C), or onto a specialized video "side-band" path, as is done in Zoom Video (Path D). In this video 
application, CardBus serves as an important data-routing element within a system's overall bus hierarchy. 
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Multi-media applications can consume a considerable amount of bus bandwidth. If high-resolution, real-time 
video data flows over a system's primary PCI bus, it can detract from bandwidth which is needed by the system CPU. 
Conversely, CPU utilization of the primary bus can interfere with video-subsystem performance by introducing 
excessive video-data transfer latency, or by leaving inadequate bandwidth for the video data. 

::i,:::111.il!·.l!i 
Host Local Bus 

:::1111·1111::: 
Leve/-0 PCI Bus (Path A: 

Interactive 
Video) 

(Path B: 
Non-Interactive 
Video) 

---------' 
(Path D: "Side-band" Path) 

Figure 5: CardBus as a Multi-Media Bus 

fu a hierarchical PCI system, it is possible to direct high-bandwidth 1/0 or memory traffic over a secondary PCI 
bus, thus avoiding or greatly reducing the impact of this traffic on the primary bus. Such an arrangement is depicted 
for paths C and Din Figure 4. In path C, a PCl-to-CardBus bridge can be used to direct the video data onto a 
secondary PCI bus which is connected to the system's video controller. This requires a PCI-to-CardBus host-side 
controller which supports two distinct PCI interfaces, as well as CardBus sockets. fu path D, the video flows over a 
"side-band" path which circumvents the bridge altogether; the bridge simply provides bus isolation to keep the video 
data apart from the rest of the bus hierarchy. fu either arrangement, the video data is kept from interfering with the 
system's primary bus. 

Note that multi-media applications present special problems for system bus design. fu particular, both audio data 
and video data demand that certain timing constraints be met, or audio/video performance can be compromised (e.g. 
video "tearing", choppy audio, etc.). Meeting these timings requires careful analysis of the system busses, as well as 
appropriate design of bus arbiters and device buffers. This problem is substantially easier to solve on a dedicated 
multi-media secondary PCI bus, rather than on the overall system bus. 

PCI devices include required Configuration registers which can be used to tune device timing characteristics, such 
as maximum bus-acquisition latency, minimum tenure as master, and minimum acceptable bus-acquisition frequency. 
CardBus Configuration registers provide these same capabilities. Bus arbiters can be designed to devote a given 
fraction of total bandwidth to particular devices, so that they can equitably share a bus. Jointly, these mechanisms 
provide designers a relatively high (though not absolute) measure of control over bus utilization. However, proper 
usage of these mechanisms is application-dependent, and may be crudely supported by system software (e.g. BIOS). 

Software Support/or the Bus Hierarchy 

As we have seen, there is much hardware synergy between CardBus and PCI. To take advantage of this, though, 
applications must be supported by adequate system software. Today's system software cannot yet completely provide 
this support. 

As mentioned earlier, a PCI BIOS includes a bus enumerator which is used to find all PCI devices in a system, as 
well as all PCI busses in a multi-bus hierarchical system. The enumerator assigns unique numbers to all busses, and 
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writes these numbers to the primary-bus Configuration register of each such device. For bridge devices, such as PCI­
to-PCI bridges and PCI-to-CardBus bridges, the enumerator also writes the assigned bus numbers to each bridge's 
Secondary Bus Number and Subordinate Bus Number Configuration registers. 1bis device configuration activity 
captures a particular system's topology (connectivity pattern), and makes it available to software. 

In a PCI system without CardBus, the bus enumerator is invoked once after system boot-up, normally at POST 
(power-on self-test) time. 1bis is consistent with the fact that the resources in such a system do not change over time. 
The situation is much more complex when the system can change due to CardBus card insertion or removal. In that 
case, the bus-enumeration process has to be repeated with each card insertion or removal. Doing this involves adding 
mechanisms for detecting card events; this is the purpose of the CardBus (and PC Card-16) "status-change" signal. 

PC Card software supports dynamic system configuration. "Socket Services" is a hardware-dependent software 
layer which operates by making calls on lower-level BIOS functions. (Note that BIOS is tailored for a particular 
system). Socket Services allows a hardware-independent "Card Services" layer to manipulate a particular PC Card 
bridge and a particular type of PC Card in a standardized ~er, by making calls on Socket Services functions. 
Some Card Services functions can be used to ascertain the resources needed by a particular PC Card, such as 
interrupt level, Vee and Vpp voltages and currents, DMA channels, etc. This is done when a PC Card "registers" 
itself with Card Services after card insertion. Other Card Services functions can be used to allocate and free such 
resources for use by PC Cards. 

The boundaries between BIOS, OS and PC Card software are changing. The trend, which is driven by Microsoft, 
appears to be toward integration of BIOS functions into an OS "hardware Abstraction Layer" (or "HAL"), as well as 
absoi:ption of PC Card functions into the OS itself. 1bis trend is not yet complete; for example, Windows 95 does 
not include native support for CardBus (though it remains compatible with various implementations of CardBus­
capable Card and Socket Services. The direction appears clear, though. Over time, operating systems promise to 
provide uniform support for the various elements of a PCI hierarchy, be they PCI agents or CardBus cards. 

Summary 

CardBus is a natural complement to PCI in implementing a hierarchical PCI bus structure. CardBus and PCI 
share the same system resource-configuration mechanism, and these busses are well-matched in terms of 
performance. PCl-to-PCI bridges allow a set of PCI busses to be connected in a static (i.e. hard-wired) topology, so 
that these buses can subsequently be either connected to or isolated from one another under program control. PCI-to­
CardBus bridges allow portions of a bus hierarchy to be dynamically added to or removed from the system, either on 
CardBus cards or on a PCl-based docking station. 

The CardBus hardware standard supports this through a "hot-insertion" capability, automatic card-type 
determination, socket status-change and interrupt mechanisms, and a robust connector and card form-factor 
definition. In addition, the CardBus software standard (which consists of "Metaformat", "Socket Services" and 
"Card Services") prescribes a method for handling dynamic resource configuration and management. Taken together, 
PCI and CardBus constitute a unified solution to the needs of hierarchical PCI-based systems. 
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ABSTRACT 

As the number of identical PCI devices performing unique functions in one server increases, it 
becomes increasingly difficult to physically identify a specific PCI device. This paper will explain the 
need for communicating to the user the unique physical location of a specific PCI device, specifically the 
chassis and slot numbers. New PCI-to-PCI bridge registers designed to help solve this problem and defined 
in the upcoming revision to the PCI-to-PCI Bridge Architecture Specification are described. The algorithm 
for a proposed PCI BIOS call is also presented. The new BIOS call uses the new bridge registers to 
convert between logical bus and device number and physical chassis and slot number. 

THE NEED FOR SLOT NUMBERS 

The PCI standard has been able to deliver on the "plug and play" promise by requiring that any 
compliant device be able to accept any valid resource configuration at power-up. PCI BIOS assigns 
resources at power-up, automatically allocating system resources without conflict. However, unlike 
previous standards, the PCI standard does not include the concept of a "slot," that is, a physical geographic 
description of a device's location within the system. 

Desktop Computers 

In a standard desktop 
computer, there are usually few 
PCI expansion slots and rarely 
multiple instances of the same 
device, making it easy to identify 
physically any particular device. 
The typical desktop includes slots 
for a graphic controller, a network 
controller, and mass storage 
controller. There is one connector 
for each, and using shape and size 
alone, the cables can be 
successfully attached to proper 
devices. With PCI the 
configuration process executes 
each time the machine powers on, 
so resource conflicts do not occur, 
even if a controller has been 
exchanged or a new controller 
added. 

Figure 1-Desktop computer applications typically have few external 
connections and no duplicate connectors, simplifying the connection 

process. This one has only a video monitor and LAN. 
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Figure 2-A typical server (center) may have identical electrical connections to multiple storage subsystems 
(across the top), and multiple identical electrical connections to ditTerent LAN segments (bottom). 

Servers 
Identifying a particular physical device becomes confusing with PCI-based network servers. A PCI­

based server typically contains a large number of PCI expansion slots, averaging six to eight slots by mid-
1996. These expansion slots are likely to be filled with multiple, sometimes identical controller-types that 
provide support for network segments, and multiple disk channels. Servers containing four or more disk 
controllers or five network controllers are not uncommon, especially in large database configurations. 
While one disk controller may connect to a number of SCSI disks, another may control multiple tape 
drives. One network controller may connect to hundreds of systems in an office building, while another 
network controller handles a connection to the Internet. 

With PCI, the user no longer needs to manually allocate interrupts or memory address ranges. 
However, there are still situations in which a user must identify a particular controller both logically and 
physically. For example: 

1. When plugging in an external cable, the user must identify the correct connector. 

2. When configuring items such as the operating system, device drivers, and protocol stacks, the 
software will require a way to identify the device. For example, when configuring network 
controllers, the user must typically specify a controller (identified by slot number), and then assign 
a network address and the protocols to use with that controller. 

3. When a controller of any type fails in a system, software such as diagnostic tools must have a way 
to communicate which controller has failed so that the user can physically replace it. 
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Consider the following example: A PCI server with two identical Ethernet controllers has one 
controller cabled to a small number of workstations. The other controller is cabled to an Ethernet backbone 
that runs throughout the company. To properly configure all the software running on the server, the two 
network controllers must be assigned TCP/IP addresses. The user must match a software configuration 
parameter (the IP address) to a piece of hardware (one of the two controllers). Without a unique identifier 
such as a slot number, the user has no constant identifier that is guaranteed to remain the same no matter 
how the rest of the system is reconfigured. 

The system software, of course, can uniquely identify each controller logically, by a PCI bus number 
and device number. The problem is presenting this information to the user, so that the user can physically 
locate the controller. 

Why Can't the User Use Bus and Device Number? 

Although the PCI bus number and device number do uniquely identify each controller, this identifier 
falls short of the user's needs in two areas. First, the slot number is a familiar paradigm for users. Users 
already understand the concept of "slot number." Instructing a user to install a controller "at bus 0, device 
4" would require a shift in the user's thought process. The slot number provides an intuitive method for 
the user to physically identify a controller. 

But more importantly, using PCI bus numbers and device numbers as an identification method is 
deficient for another reason: PCI bus numbers do not necessarily remain constant. When multiple PCI host 
bridges, or PCI-to-PCI bridges are embedded in the system, there are multiple buses to enumerate, and 
these numbers can change when the system is reconfigured. Because bus numbers are assigned during the 
boot process, just like other system resources, there is no guarantee that they will remain constant across 
boot cycles. Thus, if the user configures software to use a controller found on "bus number 2, device 
number 7 ," and later adds another controller that happens to have its own PCI bus embedded, then any bus 
number beyond bus 0 will potentially 
be reassigned. The reassignments are 
based on the location of the controller, 
and in what order the system's BIOS 
finds and configures PCI devices 
during the boot process. If bus number 
2 is reassigned to bus number 3, then 
the user's software configuration would 
be incorrect, as would any slot 
markings or configuration notes he 
may have made to help locate the 
device. A physical identifier, such as a 
slot number, remains constant across 
boot cycles, and therefore provides a 
better solution to the problem. 

SLOT NUMBERS IN THE IRQ 
ROUTING TABLE 

These types of challenges brought 
about the creation of the IRQ Routing 
Table call in the PCI BIOS, which was 
added to the PC/ BIOS Specification, 
Revision 2.1. Using the bus number 
and device number, software can 
perform a table lookup to retrieve 
information about how each device in 
the main chassis is wired. One of the 
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Figure 3-An excerpt from a typical IRQ Routing Table defining 
how PCI interrupts are connected for devices in the main chassis. 

This table can be used to translate between PCI bus and device 
number, and slot number for.devices in the main chassis. 
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fields defined in the IRQ Routing Table is the device's slot number, as shown in Figure 3. The software 
uses the information in the IRQ Routing Table to. translate the physical slot number into PCI bus number 
and device number for devices in the main chassis. 

PC/ EXPANSION SYSTEMS 
A PCI expansion system can be described as an external cabinet containing PCI expansion slots, which 

connects to a server through one or more PCI-to-PCI bridges, as shown in Figure 4. Expansion systems are 
a recent addition to the PCI product landscape, because they are only useful in server environments where 
large numbers ofl/O controllers (i.e., disk controllers, network and communications controllers) are used. 
A network file server may require these expansion cabinets when all PCI slots in the server are already in 
use. 

Expansion cabinets complicate the problem of physically locating a device. Not only does the user 
need to locate a connector in a specific slot, he must also search multiple external cabinets for the 
controller. Furthermore, slots in expansion cabinets cannot be included in the IRQ Routing Table because 
the BIOS has no way of determining what expansion system might be installed by the user. 

-­. ------

Figure 4-ln a PCI expansion system additional PCI slots are provided in a separate cabinet, further 
complicating the problem of unique physical identification of a device. The slot numbering proposal assigns a 

unique "Chassis Number'' to each cabinet. 

A COMPREHENSIVE SLOT NUMBERING PROPOSAL 
Since the IRQ Routing Table solves the slot numbering problem in the main chassis, what is required 

is a standard method for determining slot number in a PCI expansion system. In mid 1995, Compaq 
Computer Corporation began circulating for review within the PCI community a proposal for a general 
solution to this problem. The hardware required to support this proposal is being included in Revision 1.1 
of the PCI-to-PCI Bridge Architecture Specification. At the time of this printing Revision 1.1 is nearing 
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the review process within the PCI-to-PCI Bridge Subcommittee. A standard BIOS call which uses the new 
hardware and the IRQ Routing Table is being proposed to the PCI BIOS Subcommittee as well. The 
following discussion presents the hardware aspects of the proposal, followed by the software aspects. 

The New Registers 

If we assume that the gateway to an expansion system is always a PCl-to-PCI bridge, then the logical 
place to define a standard solution to the slot numbering problem for expansion systems is the bridge. 
However, before a new standard feature could be added to the PCI-to-PCI bridge programming model, 
another problem had to be solved. The standard bridge Configuration Space Header was full, so additional 
space had to be reserved. As shown in Figure 5, configuration addresses FOh through FFh are defined by 
the proposal to provide additional standard configuration space. Bit 15 in the Bridge Control Register 
(3Eh) can be read to determine whether this additional space is supported. The two new registers shown in 
Figure 5, the Chassis Number register and the Expansion Slot register provide the necessary information to 
make the device number to slot number conversion. 

31 16 15 8 7 
Reserved 1 Chassis Number 1 

Reserved 
Reserved 
Reserved 

0 
E~ansion Slot FOh 

F4h 
FBh 
FCh 

Figure 5-The two newly defined registers for slot numbering are located in a newly defined extension to the 
standard Configuration Space Header for PCI-to-PCI bridges. 

Each cabinet in the system which contains PCI slots is assigned a unique chassis number, with the host 
system assigned chassis number 0. The new Chassis Number register in the PCI-to-PCI bridge contains a 
single 8-bit number that designates the chassis number in which the slots on the bridge's secondary bus 
reside. Multiple PCI buses contained in the same chassis should be assigned the same chassis number. 

The Chassis Number register can be initialized either by the power-up system configuration software 
or by hardware. If the register is to be initialized by software, then the register will be read-write, and can 
either be non-volatile or can be initialized to 0 at power-up. If software determines that the register is read­
write and the value is 0, or equals another chassis' number, then software will assign a new chassis 
number. If the register is initialized by hardware, then the register will be read-only, and the system 
designer must provide a means for the user to change the chassis number if there is a conflict. 

7 6 5 4 3 2 1 0 
Reserved Slots Expansion Slots Provided FOh 

Follow 
Parent 

Figure 6-Expansion Slot Register. The information encoded in this register includes the number of expansion 
slots provided directly behind this bridge, and the Slots Follow Parent bit that indicates whether multiple 

bridges with expansion slots are cascaded within one chassis. 

The details of the Expansion Slot Register are shown in Figure 6. Bits 4-0 of the Expansion Slot 
Provided field contains the binary encoded value of the number of expansion slots which are provided 
directly on the secondary bus of this bridge. If no expansion slots are implemented behind a particular 
bridge, then this register should be initialized to 0. 

To understand how the Slots Follow Parent bit is used it is first necessary to consider how PCI 
expansion systems might be configured. Fig1,1re 7 illustrates one such system. The bridge that controls the 
first slot in the expansion chassis (Bridge A in Figure 7) is referred to as the "parent" bridge. Its Slots 
Follow Parent bit is set to 0 to indicate that it is the parent. Additional bridges whose slot numbers follow 
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the parent slots (Bridges B and C in Figure 7) are referred to as "child" bridges, and their Slots Follow 
Parent bits will be set to 1. 

Because the Expansion Slot Register provides the power-up system configuration software with vital 
information about the physical arrangement of the system, this register must be initialized before the 
power-up system configuration software runs. This generally implies that the Expansion Slot register must 
be initialized by hardware. The means by which the system designer programs this information into the 
hardware is not specified, and is, therefore, left to the creativity of the bridge designer. The simplest 
approach would be to initialize the register contents with the state of certain device package pins at RST# 
time. However, more elaborate schemes involving shift registers or even serial EEPROMs could reduce 
pin count or provide more flexibility and convenience to the user at the cost of increased hardware 
complexity. 

Finding Chassis and Slot Number 

Chassis numbers are established by the system configuration software each time the system is 
reconfigured. The main chassis is always chassis 0, and expansion chassis numbers are stored in the 
Chassis Number registers in the appropriate bridges. After the system has been initialized, any software 
needing the chassis number for a device can first check the IRQ Routing Table to determine whether the 
device is in chassis 0. If not, the software must then find the bridge whose secondary bus number matches 
the bus number of the device in question. If this bridge supports expansion slots, then the chassis number 
can be read directly from the Chassis Number register. If this bridge does not support expansion slots, i.e. 
it is an embedded bridge, then the chassis number is read from the bridge which supports the slot in which 
the embedded bridge is installed. 

The slot number of a device in the main chassis can be found just as simply as chassis number by 
looking in the IRQ Routing Table. However, in an expansion chassis the slot number of a device must be 
calculated from the device number and Slots Provided Register. The following assumptions are made to 
calculate the slot number for a device in a PCI expansion system: 

1. Slot numbers within each expansion chassis start at 1 and increment sequentially. 

2. The PCI device number for each expansion slot starts at 1 and increments sequentially. 

3. If an expansion system has multiple child bridges with the same parent bridge, then the child 
bridge with the lower slot numbers must also have the lower device number on the parent bus. 

To calculate the slot number for a device in an expansion chassis the software must first find the bridge 
whose secondary bus number matches the device's bus number. If the Slots Follow Parent bit is not set in 
this bridge (this is a parent bridge), then the slot number is equal to the PCI device number. If the Slots 
Follow Parent bit is set in this bridge (this is a child bridge), the software calculates the slot number by 
adding the following three numbers: 

1. Device number for this device. 

2. Value from the Expansion Slots Provided field from the parent bridge. 

3. Value from the Expansion Slots Provided field from all other child bridges of this parent, whose 
device numbers are less than the device number of this child bridge. 

If the slot numbering algorithm encounters a bridge that does not support the Chassis Number and 
Expansion Slot Registers, then it is assumed that there are no expansion slots behind that bridge. All 
devices behind that bridge will inherit the same slot number as the bridge itself. In this way a card such as 
a multi-headed NIC or SCSI controller will report the same slot number for all devices on that card. 
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Figures 8 and 9 illustrate an algorithm of finding chassis and slot numbers for devices in an expansion 
chassis. The algorithm starts at the top of the configuration hierarchy and scans every device, 
accumulating chassis and slot information until the designated device is encountered. 

A Slot Numbering Example 

The diagram shown in Figure 7 contains all the elements that can effect the numbering of PCI 
expansion slots. It represents a single, external expansion chassis, which would be connected to the system 
via the PCl-to-PCI bridge on the left side (the arrow indicates the connection to the system). Above each 
expansion slot is the Slot Number that would be physically labeled on the slot. The other numbers shown 
are the PCI Device Numbers that would be assigned to each (potential) device in the chassis. 

The first PCI-to-PCI bridge (left side of the diagram) has four PCI expansion slots on its secondary 
interface (Bus 1). Since the Slots Follow Parent field (labeled "Follow" in the diagram) is not set, these 
slots must be the first slots within the chassis, and are therefore numbered 1through4. Also on Bus 1 is an 
embedded PCI device located at Device Number 5. 

8 9 10 

PCI Bridge .. c .. 
Chassis: #1 
Follow: Yes 

2 3 7 #Slots: 3 

Slot Numbers 

2 3 4 5 6 7 

PCI Bridge PCIBridge 
"A" "B" 

Chassis: #1 Bus 1 Chassis: #1 
Follow: No 

2 3 4 
Follow: Yes 

2 3 #Slots: 4 6 #Slots: 3 
Device Numbers 

Embedded 
PCI Device 

5 

Figure 7-PCI expansion chassis containing a hierarchy of bridges and devices. Bridge A is the ''parent'' since 
its slots come first and its Slots Follow Parent bit is reset Bridges B and C are "children" since their slots 

number sequentially after Bridge A, and their Slots Follow Parent bit is set. Bridge B's device number must 
come before Bridge C's since Bridge B's slots number first 

At Device Number 6 is a PCI-to-PCI bridge, which reports three expansion slots on its secondary 
interface. This child bridge reports the same Chassis Number as the parent bridge, and its slots should 
follow those of the parent bridge. Since this bridge is the lowest numbered bridge device on Bus 1, its slots 
follow the parent bridge before higher-device numbered bridges. Therefore, its slots are numbered 5, 6, 
and7. 

The final device on Bus 1, Device Number 7, holds another PCI-to-PCI bridge, also reporting three 
expansion slots. Because its slots follow the parent bridge, the slots are numbered 8, 9, and 10. 

The ''Find PCI Slot Number" BIOS Call 

The slot numbering proposal includes the addition of a "Find PCI Slot Number" BIOS call to simplify 
the conversion between bus-device numbers and chassis-slot numbers for those operating systems that use 
the BIOS. Operating systems that do not use the BIOS will be able to do the same conversions by 
duplicating this algorithm within the operating system itself. 

"Find PCI Slot Number" uses the IRQ Routing Table to find slot numbers in the main chassis (chassis 
0), and uses the algorithm in Figures 8 and 9 for expansion chassis. 
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Figure 8-Flowchart for "Find PCI Slot Number" BIOS Function. 
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If the Bridge does not 
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Yes 

No 

Yes 
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Provided by parent 

bridge 

Return to main routine 

Yes 
chassis_number = 
Chassis Number 

No slot_number = 0 

Figure 9-Flowchart for "Bridge Found" subroutine for the "Find PCI Slot Number" BIOS Function. 

The Future of PC/ Slot Numbering 

As mentioned previously, the hardware necessary to support this proposal in PCI expansion chassis is 
being added to version 1.1 of the PCI-to-PCI Bridge Architecture Specification. This same revision also 
specifies how Delayed Transactions work with PCI bridges. Compaq is encouraging multiple PCI-to-PCI 
bridge vendors to include the slot numbering register in their new Delayed Transaction bridge designs, 
even before the new revision of the bridge specification is released. Designers of PCI expansion chassis 
will naturally want to upgrade their products to take advantage of the performance gain of the new Delayed 
Transaction bridges as soon as they are available. When they do, we strongly encourage them to select a 
bridge that includes the hardware necessary to support PCI slot numbering. 

Now that the hardware support is being implemented, support for a new BIOS call needs to be added. 
Compaq has already begun circulating a proposal within the user communities for review and comment. 
The proposal would add a "Find PCI Slot Number" in the next revision of the PCI BIOS Specification. 
Although the new hardware for slot numbering can be used without the new BIOS call, the inclusion of the 
new call will simplify the delivery of an accurate implementation of the algorithm, especially in areas such 
as diagnostics, system management utilities and BIOS-compatible advanced operating systems. 
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We expect that advanced network operating systems will not wait for the introduction of the hardware 
registers for the expansion chassis or for the BIOS call. These OS vendors will begin to implement the 
algorithm shown above immediately. Since slot numbers were added to the IRQ routing table in the 
August 1994 release of version 2.1 of the PCI BIOS Specification, solutions for the main chassis will 
already work with the current BIOS. When expansion chassis with the new bridge registers become 
available, numbering slots in the expansion chassis will work, too. Device driver and application writers 
should watch closely for developments from their OS vendor. 

SUMMARY 
As the number of PCI slots grows to accommodate multiple identical controllers performing unique 

functions, it has become difficult to physically identify a particular controller. The inclusion of the slot 
number in the PCI BIOS IRQ Routing Table, and the Chassis Number and Expansion Slot Registers in new 
PCI-to-PCI bridge implementations will enable the translation from the logical bus and device number to 
the physical chassis and slot number for all controllers in the system. 
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Abstract 

As use of the PCI Bus has become more 
widespread, the number of devices needing PCI 
support and the number of PCI buses per 
system has increased. The PCI-to-PCI bridge 
has developed from a niche technology into an 
essential component in many types of systems. 
Design of an effective PCI-to-PCI bridge is not 
straightforward. This paper discusses some of 
the issues facing bridge designers and some key 
decisions that must be made to develop an 
effective solution. The topics discussed include 
PCI 2.1 requirements, bridge latency, support 
for asynchronous clock domains, interrupt 
handling and support for PC "legacy" devices 
behind a bridge. 

Introduction 

The PCI Bus has been widely adopted for a 
number of excellent reasons. Its precise 
specification and rich suite of transactions were 
key factors for early adopters. However, the 
physical expandability of the bus was limited by 
the drive characteristics and loading 
specifications chosen in the original PCI 
definition. Most manufacturers have found that 
modem silicon and packaging technologies limit 
their product solutions to no more than three 
compliant loads on the PCI bus. While this limit 
was acceptable for the first PCI-based personal 
computers, it is insufficient to support many 
applications demanded by today's system users. 
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The PCI SIG, working together with some of the 
interested silicon and systems manufacturers, 
developed a specification for the first PCl-to-PCI 
bridge. This specification was released in April 
of 1994 and has proven valuable in the rise of 
both commercially and privately developed 
bridging solutions. Through the use of PCI-to­
PCI bridges, system manufacturers have been 
able to provide the extra PCI connectivity that is 
needed in high-end server applications and is 
becoming more necessary in today's desktop 
solutions. 

This flexibility of the PCI specification has 
proven to be an additional incentive for adoption 
of PCI. Bridges provide a virtually unlimited 
ability to add additional PCI buses in 
hierarchical fashion. However, factors such as 
the latency of transactions across bridges and the 
flexibility in clocking the downstream buses can 
have a major effect on the performance and 
utility of a multi-bridge system. 

The design of a PCI-to-PCI bridge entails 
tradeoffs in a number of key areas. Failure to 
make these tradeoffs correctly has resulted in the 
commercial failure of some bridging based 
product solutions. Further, the continued 
evolution of the PCI specification and the 
increasing demands of PCI-based systems have 
produced some new challenges for designers. 
This paper reviews some basic design issues for 
PCI-to-PCI bridges, discusses some recent 
changes in the types of bridging solutions 



available, and outlines some major issues for the 
future. 

Baseline Features and Issues 

A basic PCI-to-PCI bridge supports two 
complete PCI buses; the primary bus is closest to 
the host processor and the source of 
configuration transactions while the secondary 
bus is effectively produced by the bridge itself. 
The bridge must be capable of acting as a master 
or target on either bus in a complementary 
fashion. When the bridge acts as a target on 
either bus, it must act as a master on the other 
bus in order to pass transactions to the final 
target. As such, a pure bridge provides no 
peripheral device functionality itself but acts 
merely as an agent to propagate transactions 
from one PCI bus to the other. When no 
communication is needed between the primary 
and secondary buses, a PCl-to-PCI bridge must 
allow independent, concurrent transactions on 
both buses. It is only when a device on one bus 
needs to communicate with a device on the other 
bus that the bridging function is activated. 

Even this baseline level of functionality raises 
some interesting design issues. The distinction 
between the two buses means that a bridge 
generally will not have equivalent interfaces on 
its two sides. The primary side interface must be 
capable of handling configuration transactions 
from the host processor and either taking 
appropriate action itself or passing the 
transactions on to devices on the secondary bus. 
This distinction in the operation of the primary 
and secondary interfaces of the bridge creates 
limitations in the use of the bridge. 

For example, a PCI-to-PCI bridge is not very 
useful as a mechanism for connecting two 
separate, but equal processing environments. It 
is capable of accepting configuration 
transactions only from the host connected to the 
primary bus, relegating the other host to a 
subordinate status. A more intelligent 
mechanism for differentiating the upstream and 
downstream addressing environments would be 
valuable in some system architectures. 

Since the PCI-to-PCI bridge effectively creates 
the secondary bus, it usually provides some basic 
support features. For example, the bridge may 
include the arbitration logic for the secondary 
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bus so that a dedicated external arbiter is not 
required. This is entirely analogous to the 
arbitration support provided by the chipset or 
host interface that creates the primary PCI bus. 
The bridge will often provide the clock for the 
secondary bus if it is to run synchronously with 
the primary bus. The bridge can buffer the 
primary side PCI clock and provide multiple 
copies in order to support the other devices on 
the secondary bus. 

PC/ Timing Design 

Of course, the bridge designer must also deal 
(twice) with the baseline design challenges of 
any PCI-compliant interface. Operating within 
the 7ns setup time on key signals can be one of 
the most daunting tasks in many PCI projects. It 
is most often the address decoding that consumes 
the largest portion of the available setup time. 
Since bridges that attempt to be compliant with 
all optional aspects of the PCl-to-PCI Bridge 
Architecture Specification have multiple address 
ranges to decode, the difficulty of meeting the 
setup time is greater than for a standard PCI 
device. 

Care should be taken in the specification of a 
PCI-to-PCI bridge to define its target 
environment and applications. Eliminating 
address decoders that are not necessary in the 
target system will help the designer to meet the 
PCI setup timing. As with any PCI interface, 
best performance is achieved with the fastest 
assertion of the device select and target ready 
signals. 

If, for instance, a bridge is to be used in an 
environment in which memory addressing is 
limited to 32 bits, then support of the 
Prefetchable Upper 32 bit registers (Base & 
Limit) should be excluded from that bridge's 
configuration space. A similar trade-off can be 
made with the VO addressing when bridging in 
an X86 based machine. Since the X86 
compatible processors provide addressing 
capability for only 64KB of 1/0 space, there is 
no requirement to support the 1/0 Base and 1/0 
Limit Upper 16 Bit registers. While each of 
these decoders by itself might appear to be an 
insignificant burden on the performance design 
of a bridge, their cumulative effect is often great 
and can affect both the timing specification and 
the timing margin in the final product. 



The clock insertion delay from the clock input 
pin to the state elements actually helps meet PCI 
bus setup requirements; However, the PCI bus 
also has strict requirements for hold time. It is 
fairly common to ease the hold time problem by 
using a minimally-delayed input clock for 
signals from the PCI bus, and then using clock 
buffers or a clock trunk to provide clocks to the 
rest of the bridge. A small clock insertion delay 
minimizes the skew between the input clock and 
the clocks at the internal state elements, thereby 
reducing the chance of races and hold time 
violations. As with any PCI interface design, 
delay elements are usually required on the fastest 
paths. Additionally, the PCI requirement for 
correct operation at very low frequencies 
prevents the use of a Phase-Locked Loop (PLL) 
to reduce internal clock skew 

Latency across the bridge is another dimension 
of performance affected by the requirements of 
PCI timing. Even if a bridge achieves fast 
assertion of device select it still can be difficult 
to achieve a one-cycle latency from one bus to 
the other. The combination of the PCI bus 7ns 
setup time and l lns clock-to-out requirement 
means that very little time is available around a 
single register stage to perform all logical 
functions needed for bridge operation. 

Burst Petformance of PCI-to-PCI Bridges 

For PCI systems to obtain maximum 
performance, the PCI bus must be able to operate 
as it was intended when originally specified: as a 
burst bus. Reasonable burst performance is best 
achieved when the bridge holds multiple data 
words in FIFOs. Commercially available PCI­
to-PCI bridges, to date, have had very shallow 
FIFOs and this has hindered the burst 
performance of the bus whenever the bridge is 
either the target or the initiator of the transaction. 
Technical papers presented at WinHEC and 
elsewhere have suggested that, for some chipsets 
to perform at or near the limits of the PCI 
specification, burst length should be at least 32 
double-words of data. While this suggests that 
FIFO structures in a bridge should be at least this 
deep, that is only part of the story. 

For more optimum performance, bridge FIFOs 
should be deep enough to allow for arbitration of 
the target PCI bus without stalling the device on 
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the initiating interface. The arbiter for the 
primary PCI bus, for fairness reasons, provides 
no special treatment for the bridge. Assuming 
that any given PCI interface may have as many 
as four devices operating on it, the bridge may 
have to wait for all other devices on the interface 
to access and transfer using the PCI bus prior to 
gaining access for its own purposes. If system 
software sets up the PCI device's latency timer 
values high enough to satisfy the burst 
performance criteria of the chipset then the 
bridge may find itself waiting for many tens, if 
not hundreds, of PCI clock cycles, prior to 
beginning its transfers on the bus. As I/O 
bandwidths available from disk and networking 
interfaces increase, and other PCI devices opt for 
longer bursts, PCI-to-PCI bridges will be 
required to significantly deepen their FIFOs to 
support high bandwidth 1/0 streams operating 
across their interfaces. 

Having multiple FIFOs is also an essential part 
of a robust bridge design. It is possible, with a 
good deal of complex logic, to configure a single 
FIFO to handle a variety of transactions at the 
same time. It is simpler and better for 
performance to have four FIFOs, a separate read 
and write FIFO for each of the two directions 
(primary target to secondary master and 
secondary target to primary master). Separating 
the FIFOs in this way fosters a clean design style 
in which the control and datapath for the two 
directions are symmetrical and as independent as 
possible. 

Maintaining Data Consistency on Interrupts 

As FIFOs are deepened in PCI-to-PCI bridges to 
improve burst performance, new problems are 
seen in the area of interrupt processing. PCI-to­
PCI bridges are not required to handle any of the 
interrupts generated by the devices downstream 
of them. The bridge user community has 
identified system problems that were caused by 
interrupts being delivered to the system prior to 
the data being delivered to memory. 

In systems that use token passing techniques to 
improve interrupt handling performance, a 
device may generate a token and write it to 
memory, and then generate an interrupt to 
inform the processor that it has completed its 
task. This sort of operation can significantly 
improve interrupt handling, especially when 



interrupts are shared. If the token is still residing 
in a posting FIFO internal to the bridge when the 
interrupt hits the processor, then the processor 
will check memory and not find the token, at 
which point the interrupt is effectively lost. 

This problem is potentially best so.lved in the 
device that generates the interrupt itself, as long 
as the bridge behind which it resides is properly 
designed. If the device that has written the token 
to memory performs a read of the token location 
in memory, then the bridge is forced, by 
ordering rules, to flush the FIFO before allowing 
the read transaction to proceed, thus 
guaranteeing correct operation. This sort of 
improvement in the basic system level operation 
of PCI devices will help, but PCI-to-PCI bridges 
will continue to operate with 2.0 compliant 
devices behind them that do not implement these 
sorts of safeguards. It is for this reason that 
bridge designers should consider implementation 
of interrupt handling logic for maintaining the 
consistency of the data in memory. 

New PCI-to-PCI bridge architectures could 
eliminate some of the problems discussed above 
through the use of intelligent interrupt 
monitoring and gating circuitry. This circuitry 
could be as simple as flushing FIFOs anytime an 
interrupt occurs. While this may seem like 
unnecessary overhead to the bridge designers 
today, the handling of hardware interrupts in 
systems of the future will certainly be more 
complicated as the number of PCI devices 
increases. 

Challenges of Asynchronous Design 

Most hostbus-to-PCI and PCI-to-PCI bridges are 
designed synchronously, with both sides of the 
bridge running on the primary side clock. This 
has resulted in some undesirable effects due to 
the secondary bus being tied to the primary bus. 
In some cases, as processor speed has increased, 
1/0 performance has decreased if convenient 
clock multiples were not available. For example, 
a 100-MHz processor conveniently drives a 
30nS PCI bus while a 125-MHz processor 
conveniently drives a 40nS PCI bus. With 
synchronous PCI-to-PCI bridge designs, this 
means that all PCI buses in the hierarchy would 
be running at 25-MHz, or nearly 25% slower 
than the 1/0 devices on these buses were 
designed to run. While PCI itself was supposed 
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to decouple the design of 1/0 devices from the 
design of the processor, this is one area where 
their performance may be definitively linked. 
Because of situations such as these, it is desirable 
to have the option to support independent clocks 
on both sides of a bridge. 

If the two sides of a PCI-to-PCI bridge are to 
have completely independent clocks then the 
designer must pay careful attention to all the 
issues associated with asynchronous design. 
This would include not only the data path, but all 
areas involving signaling between the primary 
and secondary state machines. The presence of 
FIFOs in the bridge can aid in the 
synchronization process; each FIFO may be 
filled at one clock rate and emptied in the other 
clock domain. While asynchronous design does 
pose some difficulties in today's synthesis­
centered design environments, it should be 
addressed if the highest performance metrics are 
to be met. 

It is convenient for the clocking of the PCI 
devices downstream of a PCl-to-PCI bridge to be 
handled by the bridge itself. Today's successful 
bridging products offer a reasonable minimum 
level of support for synchronous buses. Bridge 
clocking circuits can be enhanced to include 
support for externally provided asynchronous 
clocks and control of clock outputs for power 
management. 

Challenges of PCI 2.1 

The introduction of the 2.1 revision of the PCI 
Specification introduced a few new challenges to 
all PCI designers. Specifically for bridges, the 
delayed transaction feature has proved to be a 
major issue. This is evident from the delays 
suffered by the PCI-to-PCI Bridge Working 
Group as they have worked diligently to release 
the 2.1 revision of the PCI-to-PCI Bridge 
Architecture Specification. 

Delayed transactions were developed to provide 
a more bounded time period for individual 
transactions on the PCI bus. Whereas in the 
previous revisions of the specification there was 
no limit to the amount of time that a target might 
hold the bus prior to beginning the transfer of 
data, the 2.1 revision of the specification placed 
a 16 clock limit on the delay until the first data 
transaction. If a device finds itself unable to 



begin transfer of the data in that time period, 
then the device must store sufficient information 
to allow it to release the PCI bus, continue on 
with the transaction, recognize the same 
transaction when it is retried and then respond 
appropriately. A read or write transaction 
requires that the address, command and byte 
enables be stored, while a write also requires the 
data to be saved to insure proper response to a 
retry. 

This mechanism provides individual PCI devices 
with more potential access to the bus, with no 
additional silicon overhead, if they can always 
guarantee transfer of at least the first data 
transaction within this 16 clock boundary. For 
bridges though, the story is quite different. The 
very nature of a bridge means that it has no data 
on the devices operating behind it, and in fact 
may be posed with many layers of PCI bus 
hierarchy. The bridge therefore cannot 
guarantee a response within the 16 clock limit 
and must have significant delayed transaction 
capabilities if it is to maintain system 
performance. This aspect of operation has 
significantly complicated bridge design in the 
short term. 

Delayed transactions in a PCI-to-PCI bridge fall 
under a number of categories as they proceed 
toward completion. The PCI specification 
defines five such categories: 

• PMW, or Posted Memory Write 
• DRR, or Delayed Read Request 
• DWR, or Delayed Write Request 
• DRC, or Delayed Read Completion 
• DWC, or Delayed Write Completion 

The PCI specification determines that any 2.1 
compliant device may create a queue for these 
delayed transactions, and that the queue may be 
as deep as required. The specification then 
further defines that some transactions may, for 
performance reasons, be allowed to complete out 
of order, at least from the point of view of the 
bridge itself. This mechanism is known as The 
Ordering Rules. 

The operation of a specific bridge product 
defines which of the optional Ordering Rules the 
bridge will implement. Extreme care must be 
taken in this area of the specification since 
potential deadlock or live lock conditions can 
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arise. Significant work was done by the PCI SIG 
for the release of the 2.1 specification, and still, 
it is reported, that the PCI-to-PCI bridge 
Working Group found many inconsistencies in 
these rules with respect to PCI-to-PCI bridges. 
The bridge designer must be wary of the 
problems posed, work through all possible 
scenarios, and test these cases as thoroughly as 
possible in simulation. 

Legacy Devices Behind Bridges 

As the PCI bus has become nearly ubiquitous in 
PC systems, many designers are anticipating the 
gradual phase-out of the ISA bus. However, it 
seems unlikely that the ISA bus legacy devices 
(serial port, parallel port, floppy disk drive, 
interrupt controller, etc.) will disappear even as 
the ISA bus itself becomes extinct. The 
standards for these devices date back to AT-class 
systems and users have come to rely on their 
presence and compatibility. Since these devices 
have specific hard-wired addresses, they cannot 
be simply mapped to new locations by PCI 
configuration commands, nor can they be moved 
to new addresses without sacrificing AT 
compatibility. The original Bridge Architecture 
Specification takes this into account by 
specifying that none of the legacy addresses 
required for AT compatibility should exist 
downstream of a PCI-to-PCI bridge unless the 
bridge is configured for ISA compatibility. In 
this model all ISA compatibility must exist in 
one, and only one, portion of the system bus 
hierarchy. 

A new set of specifications, developed by a 
group of silicon and system companies, proposes 
the use of two evolutionary technologies. These 
technologies are known as Distributed DMA and 
Serial Interrupts. With the successful 
introduction of these proposals, AT class 
compatibility in the areas of the traditional DMA 
and interrupt servicing can be maintained even 
while the peripheral devices are located 
downstream of a PCI-to-PCI bridge. 
Unfortunately these two specifications do not 
tackle the problems associated with truly 
distributing the ISA legacy devices themselves to 
distinct locations in the hierarchy. For improved 
user configurability, resulting in fewer technical 
support questions, all PCI slots in a machine 
should meet a minimum level of functionality 



independent of the board level product that is 
plugged into them. 

For PC-AT compatible machines, a limited set of 
IIO address range decoding would need to be 
supported to allow legacy devices to be moved 
to any level of the PCI bus hierarchy. While this 
list may not be extensive, and since some of 
these technologies may be obsolete in the near 
future, the list should be used only as a potential 
checklist. The hexadecimal I/O addresses for the 
most standard legacy peripherals and system 
devices are: 

• OMA: 000-00F, OCO-ODF 
• IRQ: 020 - 021, OAO - OAI 
• Timers : 040 - 043, 048 - 04B 
• System Ports : 061, 092 
• IDE!: IFO - IF7, 3F6 
• IDE2: 170- 177, 376 
• Floppy : 3FO - 3F5, 3F7 
• Parallel Ports : 

3BC - 3BE, 378 - 37A, 278 - 27A 
• Serial Ports : 

3F8 - 3FF, 2F8 - 2FF 

The additional decoding logic required for the 
legacy devices does imply additional difficulties 
when attempting to operate within the 7ns setup 
time requirements of the PCI specification. In 
most cases the bridge will not achieve fast 
assertion of the device select signal. 

Arbitration for High Performance Operation 

As isocronous data streams become more 
commonplace in the PC of tomorrow, devices 
will need access to the bus in the most timely 
manner possible. While the delayed transaction 
capabilities of the 2.1 specification go a long 
way towards guaranteeing appropriate use of the 
bus once a device has gained access, this alone 
will not get a device onto the bus to begin the 
transfer. A well designed and integrated 
arbitration unit is necessary if the bridge is to 
maintain high system performance at the lowest 
overall system cost. The PCI 2.1 specification 
outlines a reasonable set of criteria for designing 
a multi-level arbiter. Future bridge designs 
should implement this as a baseline set of 
functionality, and then develop creative ways to 
help devices gain access based on time-slicing. 
It would be appropriate for the next revision of 
the PCI-to-PCI bridge specification to make 

91 

arbitration programming a defined mechanism 
so that system BIOS manufacturers could work 
toward supporting one solution. Today's bridges 
use individual programming mechanisms which 
require specific BIOS or driver support. It 
would be valuable to have a consistent 
programming model, supported by all BIOS 
manufacturers, that could guarantee high 
performance on the secondary bus of a bridge, 
without the system integrator having to resort to 
independent solutions. 

A Checklist for Advanced Operation 

Determining whether a bridge is appropriate for 
any given system design is of course the 
responsibility of the system architecture and 
integration team. The authors offer the following 
list of points for the team to consider when 
choosing a PCI-to-PCI bridge device. 

• Baseline operation as defined by the PCI 
SIG is appropriate for the system under 
development. No additional features are 
required for correct system operation. 

• The bridge is compliant with the memory 
and I/O addressing portions of the PCI 
SIG Bridge Architecture Specification 
appropriate for the system under 
development. 

• The bridge contains data buffering 
sufficient to support the burst 
performance of all I/O and computing 
devices that will be transferring data 
across its level of the hierarchy. 

• The bridge offers appropriate mechanisms 
for maintaining data consistency during 
all forms of interrupt processing, be they 
register based or token based. 

• The bridge is able to operate 
asynchronously across its interfaces to 
enable the highest performance operation 
possible on both interfaces. 

• The bridge implements an appropriate 
PCT 2.1 delayed transaction queue for 
both the upstream and downstream sides 
of the bridge. 



• The bridge allows the system architects an 
appropriate degree of freedom in the 
placement of AT class legacy devices, 
allowing for end user configuration 
options. 

• The bridge integrates all downstream 
clocking and arbitration functions 
necessary to support high performance 
transaction on its secondary interface. The 
arbitration unit must support the needs of 
isocronous data streams crossing its level 
of the busing hierarchy. 

PCI-to-PCI bridge designers should have a 
strong understanding of the system requirements 
for their bridge products if maximum 
performance is to be achieved. Bearing in mind 
that some of the above points may be mutually 
exclusive, the designers should include those 
features satisfying those requirements. 
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The demand.for more Peripheral CompUler lnlerr.onnecr {PC/} device configurations beyond the limit set in rhe PC/ 
local bus specification has prompted the development of several PCl·PCI bridge solutions. 1'his paper describes a new 
PC/ lnd1Urrial Computer Mamifacturers Group [PICMG/ PC/-ISA bus arcmtecrure implem.entarion using Digital 
Equipment Corporation [Dlgllal/ PCI-PCI bridge technology. Layered PC/ bus archirectures, PC/ Interrupt latency 
implications and performance optimisations for PCl-PCI bridge designs are discus;red. Reference will be made to 
Digitaf s family of 64 bit AlpJ1a Single Board Computers [SBC/ and PCl-ISA backplanes which have beef! .vpecifically 
de.dgned ro address multiple, low cost, high performance PC/ requirement.r t1saociatecl with high speed 
commimlcatio11s and araphics In embedded applicatifms. 

overview 
Digiial's Embedded and Real-time line or business has 
developed a serie..-; of modular computing products 
supporting an open systems environment ba8ed upon 
the PICMG PCI-ISA SBC standard. Two goals of the 
D.igiral Modular Computing Component [DMCC] 
program were to 

• develop a number of PCl based baclcplane 
products that would ennble cu.11tomers to 
procure and conragure industry swndard PCI 
and ISA TJO option cards. 

• provide extensive PCI JJO option card slols 
and maintain optimum bandwidth/ 
performance for bridged slots. 

Whilst the former requirement wa.-; a simple 
undertaking, lhe latter provided a greater challenge to 
the platform designers. Reduction m bandwidth, 
however moderate, could be encountered due to 
software or hardware inefficiencies i.e. i.legru.ded 
inlCl'rupt servicing (latency) or pcopaaation/liming 
delay due lo the bridge jmplemont.ation. 

Tho choice or Digital PCI-PCr bridge chip adequately 
meets the required timing specification, however 
interrupt Jines derived from secondary bus devicos 11rc 
not routed through the Digim.I PCI-PCI bridge chip. 
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'This allowed mo designers to thoroughly review and 
improve upon the s1ancl11rd interrupt binding stratogy 
for PCI buses, where multiple devices might have to 
share interrupt lines. 

The PICMO single board computtt connector has only 
four interrupt lines assigned to it: INT A#, INTO#, 
INTC# and INTO#, as doea each PCT slot connector. 

A routing or binding strategy is required to connect 
between the PCI option T/O and the SBC INTx# line it 
usos when requesting an interrupt. 

In hardware terms, Figure 1 PICMG Singlo PCI Bus 
Interrupt Binding, shows how this strucwro is mtended 
to bo provided. 

Figure 1 PICMG Sintkl PC/ Diu Interrupt Di11diflg 

The IDSBl line per slot is assigned to AD{31 :28] as per 
the PICMO Specification. Theae are used to identify 
device numbers as given in the configuration addross. 



The system firmware (or BIOS) code musi ~ an 
interrupt binding architecture ror its environmena. Tho 
PICMG specified binding for the primary PCI bus {PCI 
Bus OJ is shown in Figure I, i.e. it is hard coded. 
Because only the firmware (or BIOS) knows bow me 
PCI INTx# lines are roulCd to the system controller, a 
mechanism is required to inform the operating s~tem 
device driver of an intermp& occurrenc:o. Thia 
mechanism typiuaJly requiros a chained 'software' 
search of each device using a specifac hardware 
in&crrupt to identify the source. 

This can be achieved by lilh£ havlng the 
firmwareJBIOS poll all PCI devices to dc&ermine which 
odgjnaaed the .inwrupt request and then initiate the 
correct inierrupt service routine m alternatlvely have 
the operating system kernel interrupt dispatch routine 
sequenlially call each individual device interrupt 
service routine until the correct source has been 
identified and serviced. [The latter example is 
implemented by Microsoft Winck>WS NT). 

The binding s1ructmo becomes oven more congoated 
when additional (bridged) PCI busca are implemented 
in accordance wilh the PCJ.to-PCI Bridse Architectwe 
Specification Revilion 1.0. Their PCI bus interrupts 
must be C:Ol\nected 811 per Plgure 2 Secondary PCI Bus 
lntel'IUpt Binding. 

/ligun 2 &co"""'1 PC/ Bu.t lnMrrupl Binding 

This secondary binding architecture mllBt oo overlaid 
upon the respective primary slot binding that the 
bridge now occupies. The not effe<:& bei113 illustrated in 
the example for one PCI-t.o-PCI bridge In Figure 3 
PCl-to·PCI Bridge Implementallon. 
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Figure J PCl-to-PCI Bridge lmplmier11ario11 

'C'he use of mo wire-OR (110mctimes also known as 
:hareclJ binding de&ign, means that the polling and 
decode of an interrupt request can be significantly § 
&ban o.vtimal. The latency for this operation is also 
unpNdlctolJ/1 i.e. with N PCI slots, der.crmining the 
originator of the PCI interrupt requoat could rake a 
minimum or 1, up to a maximum of (N-1) bus read 
cycles. 

An alternative solution was investigated in order to 
improve upon this indusuy standard binding 
architeclUre if PCr interrupt latency performimco was 
not to be compromised in large PCI systems. (Any 
propoul would take cognisance of, and retain 11uppor& 
for, the traditional wire-OR scheme.] 

The design goal wwi to provide improved performance 
while maintaining an open system architecture capable 
of supporting both exi.'ltins and altema&ive modes. 

Interrupt Controller 
Assumptlona/Umltatlons 

The inrerrupt controllcf must be able to support up to 4 
primary PCI devices. A primary PCI device being 
either a PCl bridge or a physical connector. Each PCI 
bridge can have up to 4 secondary devices 
implemented behind tho bridge. 

The largest conf"iguration would mean 11 maximum or 
16 individual PCI connectors, as demo1111trated in 
Figure 4 Maximum Allowable PCI Configurat.ion. 



Pi1wc 4 MtWmwn Allowable PCI C111vit11U01ion 

.... :::.... 

This implies a maximum of 64 PCT interrupt .rourcea. 
A controller that can setVice all of these product 
scenarios, e>r some subsot thereof, must clo the 
following: 

• support up to 4 priWllY devices 

• be able to identify whether a primary dcvice ill 
~ilher 

• an on-board PCI-PCT bridge (with up to 4 
'bridged' secondary connecrors behind it) 
OR 

• a playsicsl connoctol' 

• be able to uniquely identify each of the 16 
pote11tinl inruruplS that can be generated from 
a PCI bridged device (i.e. four inrerrup1s from 
each of Ibo 4 ~condary devices) AND 

• bo able to uniquely identify each of tho 4 
pob!ntial interrupts that come from a physical 
connector 

This implies that the controller will have the following: 

• a register (or similar) to detail whether a 
primary device Is a physical connector or tm 
on-board PCl-PCI bridge 

• a reglstu (or similar) tor each primary device 
(i.e. 4 in total) to provide status for each PCI 
interrupt supported by lhat primary device. 
Note that the requirements for a brWged 
device are very different from a nao-bridged 
device and the format of 1he regisr.er will be 
different for each case. 

• a regisl'er (or s.imilar) to identify which 
primary device caused an interrupt (i.e. to 
prevent having to read all 4 interrupt registers 
to determine the interrupt source). 

The backplanes developed as part of the DMCC 
program aro Intended for use with many operating 
systems and non-Alpha single boord ccimputert. 
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Therefore.. lhey must ulso he compliant with the shared 
Interrupt scheme us defined in lhe PICMO PC/-ISA 
Card Edge Co,uaector Proposal for Single Board 
Computer [SBC! Specification, Revision 2.0 and PCl­
PCI Bridge Board Edgft Connftctor for Siriglc Board 
Compurer Specification. 

To meet this two fold requirt.'Dlent the proposed 
controller suppor18 two unique modes of operation with 
some means of switching between them. For 
convenience this was determined to be software 
selectable. 

The default mode, at power-up, makes the backplane 
compliant to the PICMG specification. This will be 
known as PICMG Modi. 

Operating systems [OS] wishing to make use of the 
interrupt oontroller moat explicitly swicch, via 
software. to the desired mode of operation. 

A bonus of this dea.ign is that the hardwiU"e is (in 
simple terms) a form of h11rdware intcm.apt accclcrutor 
usable by multiple opera1ing sysrems und hardware 
platforms, if their corresponding BIOS or firmware 
code is appropriately configured. Th.is mode Is known 
49 the Acc1loralor Modi. 

Generio Architecture 

The basic ft>rm of tho rnterr11pt controller ill shown in 
Figure S DMCC Interrupt Controller Block Diagram. 
The interrupt controller is split into multiple functional 
blocks, each seclion'11 usage being dependent on tho 
desired mode of operation: either PlCMG Mode oi 

Accoler-.ator Mode. Theae moclt-.11 arc mutually exclusive 
and are discussed in the following 9':Cqons. 

Pigun J DMCC l1t111'rrqn Contrqlkr Block Diag""" 

The OJWnplo and illmttra1ions used throughout this 
paper refer tu a specifac DBCchip 21064A PICMO 



PCI-ISA single board cornputu implementation. The 
concepts are generic and oan be fully utilised by 
alternative platforms. In Pig11re S, the interrupt 
controller functionality is shown within the shaded 
area and is physically located on rhe backplane; the 
System 1/0 and CPU being resident on the actual SBC. 

PICMGMode 

This is the default mode fur the Interrupt Controller on 
power-up. The Register Logic blocks are disabled and 
all inputs are fed into the Interrupt Routing logic 
block. It implements tho necessary binding to be 
compliant widl the appropriate PICMG specification 
(as per figures 1 & 2) and addrC$Sell the rooting tor 64 
individual interrupt request lines to 4 ou1pu18 i.e. the 
four SBC INTx#. When in lhis mode the Interrupt 
Controller appears as shown in Figure 6 DMCC 
Inrcrrupt Controller Block Diagram - PICMG Mode. 

Interrupt Registers 

The Master Intettupt Register and Tnterrupt R.cgistm 1 
throuah 4 are not available and have no meaning when 
accessed (i.e. wrires are not stored and reads give 
inderorminablc rosul&s). 

Configuration Register 

The Conftguradon Register again has no real moaning 
in this tnodc, however it is always active ainco it is tho 
moans to switch to Accelerator mode. See later fur 
details on how rhis is achieved. 

PCl Interrupt Routing 

In PICMG mode, PCt device intcrruprs aro uiken 
direc1ly to the lntermp1 .R.ouring Logic where they arc 
simply wire-or'd, lo provide INTA, lNTB, INTC and 
INTD, all specif'ted in 1hc P/CMG PCl-ISA C<Ud Edge 
Connector Proposal for Single Board Compwer [SBC/ 
Speciflcadon, Revision 2.0 and PICMG PC/-PCI 
Bridge Board Edge Connector Proposal for Single 
Board Computer [SBC/, Revision 1. Theae ace routed 
to the System l/O lRQ lines in lhe demonstration 
example provided. 
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Pigure 6 DMCC /nJerrupt Cor11mller Block. Dir1gram -
PJCMG M('I(# 

Accelerator Mode 

The interrupt controller or Accelerator Mode can Q!!!x 
be enabled via soCtware. To enable tbi,e; mode, the 
Control Register m11.'lt bo wriuen to, prior lO enobling 
intenupL<J. 

When in this mode the Interrupt Controller looks as 
shown in Figure 7 DMCC lnierrupt Controller Block 
Diagram - Accelerator Mode. 

Figure 1 DMCC /n111rrupt C1m1mllsr BltJck Dlasram • 
Acceleralor Mork 

The software sequence fur enabling Accelerator Mode 
Is shown in Figure 8 Accelerator Modo • Software 
Enabling Sequence. 
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FiflUTB 8 Accelerall)t Moek • !ioj'twure Enabling Sequence 

' .. 5~! ; Wrlel to : I c..inaun111oa : 
.Wllwft ' . I 

·~····· ............... ,, 
f'"'"""':t ........... , 
! Set MOOD ~It j 

1aci 
All Registers are implemented as 32 bit registers 
addressable in ISA space. [The interrupt controller 
could as easily have been implemented as a PCI dovice, 
however it would then be counted as a full PCI device 
load and COllld have had an adverse impact on the total 
10-load limitl. 

Configuration and Master Interrupt Reglale' 

Table 1 Configuration nnd Master Interrupt Register 
defines the register bit allocation. The Confi.gurar.ion 
Regisler ls alWl\ys active and is tho only means of 
controlling the Interrupt Controller's behaviour. The 
Configuration and Masrer Interrupt Register i.s located 
nt ISA 1/0 address OSOOh - OS03h. 

Apart Crom having the mode enable bit [MO.DB], it 
also stores the high order 1SA 1/0 address bias fur 
IntorruPl Rcgisun 1 throuah 4 [ADR[1S:4]1. '!be low 
orc.ter addrells bits [ADR[3:0]} ore fixed at 0000, 0100, 
1000, l lOO respectively. 

The bw:kplane CClllfiguration details are stored in 
CFG[4: 1], (bits [19:16] of the Configuration Register), 
defining which primary PCI slots arc conneccors and 
which are bridge chips i.e. which hnve four verSLIS 
sixteen po~nlially acrive interrupt lines. 

[n PICMG MorM, the PCIB bit defines wherher the four 
INTx# inlorrupta aro routed to the System l/O or 
whether the one PCI interrupt line is rou1ed diructly to 
the CPU. In typical PICMG applications ISA interrupts 
are heavily used and the PCIB bit can free up to four 
ISA inlel'rupts. It la always set in Accelerator Moth. 

MSKBN is used lO support in&errupt polling. When 
enabled the interrupi Status bilS in the four interr11pt 
registers are dependont upon their corresponding 
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MASK bits. Whon disabled they match she statwi of the 
interrup1 source. 

The Master lnterrupt Register is only enabled when in 
accelerator mode. This register ge~ its input from tho 4 
Intcrnipt Registers and is used io determine which 
Interrupt Regisru should be read to find the source of 
the PCI in&crmpt. 

INT[D:AJ reflects the swus of the corresponding 
lnrmrupt Regisler[4: t] i.e. INTO stntus is the logical 
OR'ing ot the sixteen ln&errupt Status bits s1orcd in 
Interrupt Register 4. 1NT[D:A) can be corr03p00dingly 
masked by MINT(O:Al. 

In this way the PCI interrupt ll'OUrce can be determined 
in two ISA read cycles; one to the Master Intermpt 
Rcgiater an<l one 10 the specific Intcrtupt Register. 

Interrupt Aeglstere[4:1) 

Bach of the 4 Interrupt Registers represent a primary 
PCI device. The following table maps the primary PCI 
device to it's associated Interrupt registers. The address 
of those Interrupt registera is defined by the contents of 
the ADR bits in tho Configuration Register. 

Table 2 Interrupt Register Mapping defines the 
Configuration Space Address for each of lhe primary 
PCI devices and givc.s an example of possible lSA 1/0 
address' for each Interrupt register. 

Table 2 lnterrupl RegLt1er Mappl1111 

I 
2 
3 
4 

2 
3 
4 

AD31 
AD30 
AD29 
ADi8 

0510h • OS13h 
OS14h • OSl7b 
0518h • OSIBh 
OSlOl· °'1Fh 

The exttc:t format of each interrupt register is 
dependent on whether a primary PCI device is a 
physical PCI connector or a PCI-PCI bridge. The 
formal of Interrupt Register 1 through 4 is defined by 
the CFG bits wilhin the Conflgunuion Register. This 
can be used to dcrormlne the exacr configuration of the 
backplane. and hence the number of poteruially active 
interrupt lines. Table 3 Interrupt R.esisters[4:11.definos 
the .rcgi11ter bit aJlocalion. 

Tobie 3 /nltlrrupt Rt1t1i.t141rs(4:J I. 



If the primary PCI device is a oonnc:ctor tho Interrupt 
Regisler only requires to siore the Sbltus and MASK 
bits for foor lnremapt lines i.e. only bits (3:0] and 
{19:16] havoany mca11ing. 

When the primary PCI device is a PCl-PCI bridge, the 
corresponding Interrupt Register must 910l'c the status 
of up to 16 interrupt linos t'or 4 secondary connt.erors 
implemented behind the .PCl·PCI bridge and also the 
MASK bits for each individual interrupc line i.e. all 
(31:0) bba ~valid. 

The in&errupt STATUS bits [lS:O] aro AND'd with 
their corrc:spondiq 16 lnterrupt Register MASK bi&s. 
The .results of each AND opcralion aro then OR'd 
toge1her to form a single INTxl signal that is rollfed in 
lhe .Master Interrupt Resister, us illustnUed in Figure 9 
Interrupt I Mask Opcraiion. 

Note : If a mulli-tunction option card (i.e. an · optioll 
with a bridge) Is p1111sed into a physical connec&or, 
1here is support tor the 4 primary lnterruplB from 
behind it's on-board bridge. lf more than four 
interrupts arc used (l.e. via sharing) they are DOI 
.suppormed. 

Accelerator Interrupt Decode 
Hardware Interrupt Architecture 

In Accelerator Mode. INT(D:A) in the Master Inwm1pt 
Regisrer reflects the slatus of the corre!lpODding 
Interrupt RegislCl'(4: t] i.e. INT[D:AJ status is tho 
logical OR'ing of tho sixteen Iaterrupt Status bits 
stored in each lntemapt Register [4:1). 

This two saage interrupt register strategy allows 1"'.ipid 
decoding or the inrerrupt source wif.hout expanding any 
individual regiSlel' set beyond 3'2 bits. 
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Figure 10 In1errup1 Deco• .'fchemo1iu 

The INT[D:AJ inserrupt lllatus bits are ANO'd with 
choir corresponding 4 Masrcr Interrupt Register MASK 
bits. The results of each AND operation are then OR'd 
togelher to fotm the PCI in1errupt reqllOSt signal tlw is 
routed to a single IRQ on the CPU, os illustraied in 
figure 10 lntonupt necode Schemutica. 

The final logical routing of the Master Interrupt 
register is not limited by the MSKEN bit 111atOB. 

Routing of the INT[D:A) Interrupts is only delcrmined 
by the ·value of the interrupt sratus bit and it's 
com:sponding mask bit. 

Firmware/BIOS Interrupt Decode 

The lntetrupt accelerator decode architecture 
influences the host CPU firmwaro/BlOS, and is 11.waUy 
transparent to the target opera1ing system. The 
firmwate/BIOS must imploolent a decode rou&inc as 
per Figure 11 Softwaro Decode Steps. 

Pigwe 11 Software Dttodll Step4 • Accelerutor Mode 

lllllln°" ....... I -... ...... 
RIAD Mallet . ........ , .... ...., 

DEGOOl­
in*"f1"'91!11r 

RIAO 
laMnupt .... lal•r . 

llECOllliwNc:h 
-upcl.M 

Ywo - MllllCYCUll 

The predictable and repea&ablc lime lO dispatch the 
appropriate inferrupt vector (service routino), nftct 
receipt of an interrupt requcat is two bus read Q}Cles. 
Tho dec."tlde operalion logically CCCIJl'S in par.'11el with 
the read cycile. 
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Interrupt Latency 

The interrupt dispa1ch latency is 1he elapsed time !mm, 
receipt of an interrupt reque.<it m dlspatch to the 
interrupt service routine. 

The interrupt service latency ls tho elc'lpsed time fmm 
enuy of the interrupt service routine m its completion. 

Exact Interrupt latency. for a given system 
conr&gumdon, wlll bo operating system dependent i.e. 
the interrupt .ver11ice latency may vary signifi.candy 
between OIJCl'aring sytUems even when the dispatch 
latency in firmware/BIOS is identical. 

Operating 8)'3tcms vary in interrupt service rou1ine 
efficiency and can be equally dissimilar across 
hardware platforms. The interrupt accelerAIOr 
optimises the hardware a.'J)ect of this process. 

PICMGMode 

'The wire-OR.»d binding strat-egy is not optimal in large 
PCI slot conflgurutions and most PCl-PCI bridge 
implemen1alions. 

It directly impacis the achievable lnte,,upt dispatch 
latency, Md some interrupt service methodologies [o.g. 
round robin, etc.1 can further reduce efficiency in these 
types or environments. 

The dispatch latency is also unpJ'ldlctablt i.e. wich N 
PCI slots, dcttrmining the originau0t or the PCI 
interrupt reque.-it conld take a minimum of 1, up to a 
maximum of (N-1) bus reald cycle.-;. 

Fl811H 12 Softwarc Det:otk Stq.1 - PICMG Modi! 

The interrupt di8patcla lartac:y in vory large systems 
can result in severe degradation of the system 
pedormance. This is caused by IJO devices 'stalling' 
because d\ey cannot get serviced efficlenUy. In extreme 
configurations. a parlicular device may 'never' get it's 
interrupt servi.ce<I, resuldng in failuio of 1hat 
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funclionality e.g. u network card n1ay 'drop' in-corning 
packets or a serial line may 'drop' received characters. 

Accelerator Mode 

The accelerator architecture offers prt1dktablt1 and 
consistent interrupt distJOtcJ& lattnr.y resulting in 
higher performance for largo PCl configurations. 
Pr1tllctabllhy is key in most real-time applications. 

The corresponding accelerator interrupt dl1pa1ch 
latency is always.J!!Q Bus read cycles. 

Physlcal lmplementatlon 

This paper is not intended to imply any panicular 
physical implemenaarion. The generic functionality for 
a PlCMO appUQllion can he implemented either as an 
ISA or PCI ba.~d de'llice.. howowr il could also bo 
supponed fo altemaiive bus a.rchit.ectW'Os. 

Summary 
Standard morhcrboord implementations provide PCI 
interrupt binding [for the firmware/BIOSl decode in 
the physical etch routing. 

This binding stnacture becomes congest\XI when 
additional (bridged] PCI buses ure implemcnLCd in the 
system. This means that the polling and decode of an 
Interrupt request can bo significantly less than optinutl. 
The Interrupt latency is also unpredictable. 

The proposed interrupt accelerator design cle.scribcd in 
this paper resulL~ In rhc predlc1trbl1, repeatable 
(consisront] nnd improved inierrupt di11patch latency, 
key /OI' tt1al·tlnu applkotlons. 
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1.0 Abstract 

The PCI bus has now become a defacto industry 
standard. Its high bandwidth makes it very 
attractive for high performance server and 
multimedia applications. However, the high 
speed of the bus also puts a limitation on its 
expansion capability. A PCI system can have 
only three to four expansion slots. This can 
become a severe limitation for contemporary 
applications. 

The PCI bus can support a load of upto ten 
devices. Each device on the motherboard is one 
load, while each device on an add-on card is two 
loads. Since, each motherboard has typically two 
to three on board PCI devices, this means that a 
motherboard can have only three to four 
expansion slots. The PCI bus also imposes 
limitations on the add-on cards. Each add-on 
card can present only one PCI load to the bus. 
This can also severely limit the :functionality 
that can be offered on PCI add-on cards. 
Currently, there are a variety of PCI chips in 
the market including SCSI, Ethernet, VGA etc. 
However, only one of these devices can be 
present on the PCI add-on card. 

There is clearly a need to enhance the 
:functionality of PCI systems both in terms of 
the expansion capability of motherboards, as 
well as the :functionality of the add-on cards. 
The PCI-to-PCI bridge provides a solution for 
both these requirements 

This paper will discuss the technical issues 
encountered in the design of a high performance 
PCI-to-PCI bridge chip. Thereafter, DCM's 
PCI-to-PCI bridge chip and its architecture will 
be presented. 
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2.0 Introduction 

A PCI-to-PCI bridge connects between two PCI 
buses and allows expansion of the PCI bus. A 
PCI-to-PCI bridge chip expands the electrical 
capacity of the PCI bus. It can be connected to 
the PCI bus closest to the Host CPU and used to 
increase the expansion capability of the system. 
In fact, multiple PCI bridges can be connected 
on the bus to provide theoretically unlimited 
expansion capability (Fig 1). The PCI-to-PCI 
bridge can also be used to increase the 
functionality of the add-on cards. One can build 
Multi-function combo cards (Fig 2) with 
:functions like Ethernet, SCSI and Graphics 
support. It is also possible to build Multi 
channel cards like Multi channel SCSI or Multi 
port Ethernet boards. 

In fact, a PCI-to-PCI bridge can go much 
beyond increasing the electrical loading 
capability of the systems. A bridge can also 
isolate the traffic on both the sides. It can also 
allow concurrent operations on the primary as 
well as the secondary bus (Fig 3). The 
transactions between master #0 and target #0 on 
the primary bus can go on concurrently with the 
transactions between master # 1 and target # 1 on 
the secondary bus. This can tremendously 
increase the bandwidth of the system. For 
example, if we have a graphics and a video 
device on the secondary PCI bus then the 
transactions between the two can take place 
without crossing the PCI bridge. The bridge 
chip can also boost the performance of the 
system by incorporating features like posted 
write, read pre-fetch etc. 



Level 2 
Cache 

System 
Memory 

Superl/O 

PCI Expansion Slots 

[ 1 CPU r 

[ l 
J 

Core logic [ 1 
r 

T 
ISA/EISA 
Expansion Graphics 

Bridge 

SCSI 1--- r l 1 

r J 
r-

l LAN 

r l 1 

ISA I EISA Expansion Slots 

Fig. 1 

Primary PCI Bus 

DCM PCI Bridge 

Secondary PCI Bus 

LAN/SCSI 
Chip 

LAN/SCSI 
Chip 

Fig. 2 

102 

DCMPCI 

LAN/SCSI 
Chip 

Bridge 

DCMPCI 
Bridge 

1 ] 1 

1 J 1 

_J ] l_ 

PCI Expansion Slots 



3.0 

Primary 
Target 

Primary 
Master 

Primary PCI Bus 

DCM PCI Bridge 

Secondary PCI Bus 

Secondary Secondary 
Target Master 

Fig. 3 

Design Issues 

Let us now look at the issues involved in the 
design ofa PCI-to-PCI bridge. The design of the 
bridge chip would have to necessarily look at the 
following issues:-

Transparency 

Compatibility 

Compliance 

Performance 

3.1 Transparency 

The PCI-to-PCI bridge would have to be totally 
transparent to the system. It should make no 
difference whether a device is connected before 
the bridge or after the bridge. The system should 
not need any device drivers to support the bridge 
chip. 
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3.2 Compatibility 

A major compatibility issue in terms of PCI-to­
PCI bridge design is the issue related to support 
of VGA compatible devices. These issues are 
mainly related to ISA compatible addressing and 
palette snooping. In order to support the VGA 
device downstream of a PCI-to-PCI bridge, the 
bridge must have the capability to be configured 
to recognize the ISA compatible addresses used 
by the VGA devices. The bridge must also 
support configurations where a graphics device 
downstream of a bridge needs to snoop VGA 
palette accesses. 

3.3 Compliance 

Some of the major compliance requirements for 
a PCI - to - PCI bridge chip are listed below. 

3.3.1 The PCI-to-PCI bridge must be 
compliant with the PCI Local Bus Specification. 
This would essentially mean the following:-

3. 3 .1.1 The bridge must adhere to the 
electrical loading limits for all the PCI signals. 
This means that the PCI bridge is limited to 
present a single load per connection. 

3.3.1.2 The bridge must maintain data 
coherency and consistency when transactions 
cross the bridge in either direction. 

3.3.2 The bridge must comply with the 
current PCI-to-PCI Bridge Architecture 
Specification. Some of the required capabilities 
are as follows:-

3.3.2.1 The bridge must support configuration 
space conforming to PCI-to-PCI bridge header 
format. 

3.3.2.2 The bridge must support memory 
mapped 1/0 address space. 

3.3.2.3 The bridge must have hierarchical 
configuration support. 

3.3.3 The bridge designs which support 
arbiter on the secondary bus must be designed to 
prevent deadlocks. 



3.4 Performance 

Performance is a major consideration in the 
design of a PCI-to-PCI bridge chip. In fact, it is 
possible to significantly improve the 
performance of a system by properly designing 
the bridge chip. Some of the design elements 
which can boost performance are as follows:-

High Speed FIFO Design 

The ability of the FIFO to support transfers with 
every PCI clock in either direction is a very 
crucial parameter in the design of the bridge 
chips. The FIFO needs to be designed in a way 
to support 1-1-1 transfers concurrently in either 
direction. 

Increased Buffer Size 

The size of the FIFO buffer also plays an 
important role in determining the performance 
of the bridge chip. The FIFO should have 
sufficient depth to be able to support sustained 
transfers in either direction. The FIFO design 
which includes the FIFO architecture and the 
FIFO depth plays a very crucial role in 
determining the performance of the bridge. 

Support for Delayed Transactions 

Support for Delayed transactions is one of the 
important features which has been added in the 
PCI Revision 2.1 specifications. Delayed 
transactions are used normally while accessing 
slow devices. One of the major advantages of 
delayed transactions is that the bus is not held in 
wait states while an access is being completed 
on a slow device. Delayed transactions are used 
for all those commands which can complete on 
the target bus before completing on the 
originating bus. A delayed transaction is 
composed of three phases : 

1. Request by the master 

2. Completion of the request by the target 

3. Completion of the request by the master 

During the first phase, the master would 
generate a request on the primary bus. The 
bridge would decode the cycle, latch the 
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information required to complete the access and 
terminate with a retry. 

During the second phase the bridge would 
independently complete the access on the 
secondary bus. The bridge would store the data 
and the status pertaining to the delayed request. 

During the third phase, the master would 
successfully arbitrate for the bus, acquire it, and 
reissue the original request. The bridge would 
decode the cycle and provide to the master the 
stored data and status. 

Multiple Delayed Transactions 

The bridge chips also have the capability to 
support multiple delayed transactions to improve 
the system performance and also to meet the 
initial latency requirements. The most important 
requirement for supporting multiple delayed 
transactions is that the ordering of the 
transactions be maintained and the deadlocks be 
avoided. 

Transaction Ordering 

The rules on transaction ordering accomplish 
three things. 
First of all, they ensure ordering of write results, 
which means that ordering is maintained across 
the system. 
Secondly, they allow for posting of transactions 
which improves system performance. 
Thirdly, the rules also prevent bus deadlock 
conditions. 

Combining, Merging, and Collapsing 

Bridges can also convert a transaction with 
single or multiple data phases into a larger 
transaction to optimize data transfer on the PCI 
bus. The various terms used for this are defined 
as: Combining, Collapsing and Merging. 

Combining 

Combining takes place whenever sequential 
memory write transactions are combined using a 
single PCI transaction by using linear burst 
ordering. Combining takes place within the 
bridge and the target sees the data in the same 
order in which the originating master generated 
it. 



Byte Merging 

Byte merging occurs whenever memory writes 
consisting of bytes and words are combined into 
DWORDS. Byte merging should only be done 
when the bytes in the data phase are within the 
prefetchable address range. 

Cacheline Merging 

This occurs whenever a sequence of memory 
writes are merged into a single cacheline. 

Collapsing 

Collapsing occurs whenever a sequence of 
memory writes to the same location are 
collapsed into a single bus transaction. 
Collapsing is normally not permitted in PCI 
bridges except in very specific conditions. 

4.0 DCM'S PC! - to - PC! Bridge 
Solution 

DCM DATASYSTEMS has designed a high 
performance PCI - to - PCI bridge chip. It 
supports the following features:-

4.1 Features 

• Supports two 32-bit PCI Rev 2.1 buses 

• Supports Delayed Transactions 

• Stores upto three Delayed Transactions 

• Supports maximum clock speed of 33 MHz 

• Implements PCI Rev 2.1 Drivers 

• Provides concurrent primary and secondary 
bus operation 

• Conditionally forwards the following 
transactions : 

Memory read and write transactions in 
either direction 
1/0 read and write transactions in 
either direction 
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Configuration read and write 
transactions in the downstream 
direction 
Configuration write transactions to 
special cycles in either direction 

• Supports memory transaction filtering 
through two programmable memory address 
regions - one prefetchable and one non­
prefetchable 

• Supports 64-bit addressing 

• Supports read prefetching for memory read 
transactions 

• Provides extensive buffering for - writes and 
reads - both in Up Stream and Down 
Stream directions 

• Provides upto 88 bytes of write posting for 
memory write transactions 

• Provides upto 72 bytes of read data 
buffering 

• Provide 1/0 transaction filtering through 
one programmable memory 1/0 address 
region 

• Provides ISA mode for 1/0 transaction 
filtering 

• Provides two programmable video graphics 
adapter (VGA) bits that support forwarding 
of VGA memory and 1/0 addresses, or 
forwarding of VGA palette 1/0 writes 

• Provides master latency timers and target 
wait timers, for each PCI interface, which 
limit the amount of latency on either bus 

• Provides concurrent resource lock operation 

• Propagates locks across the Bridge 

• Provides five secondary PCI bus clock 
outputs 

• Provides the following optional central 
functions: 



Programmable rotation arbitration 
function supporting upto six secondary 
bus masters 
Secondary PCI bus parking at the 
Bridge 

• Supports Perr and Serr signals through 
error checking :functionality 
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4.2 Architecture 

The block diagram of DCM's PCI-to-PCI 
bridge chip is shown in Fig-4. It consists of the 
following major blocks:-

Flg.4 
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Primary to Secondary Data Path 

This block contains the logic for driving the data 
received on the Primary bus onto the Secondary 



bus. It also contains the logic and the buffers for 
write posting as well as read pre-fetching. 

Secondary to Primary Data Path 

This block drives the data received on the 
Secondary bus onto the primary bus. This block 
also contains the logic as well as the buffers for 
write posting as well as read pre-fetching. 

Primary to 
.-----1 Secondary Delayed 

Transaction Register 
File 

Primary to Secondary 
Posted Write Address & Data FIFO 

Primary to Secondary 
Primary-to-Secondary Delayed Read Data 

FIFO 

Secondary to 
Primary Address 

Conitrol 

Primary Control 

Primary Control consists of the control logic and 
the state machines to handle all the transactions 
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Fig 5 shows an exploded version of the primary 
to secondary and secondary to primary data 
paths. Each data path supports logic element 
and FIFOs to support posted write, read pre­
fetch and support for delayed transactions. The 
FIFOs are designed in such a way to support 1-
1-1 transfers in both the directions. 
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Fig.5 
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initiated on the primary interface. It consists of 
the following logic elements:-

Primary Interface Control Logic 
Primary Interface Timers/Counters 

s ad 



Primary Interface Error generation and 
checking 

Secondary Control 

Secondary Control is used to handle all the 
transactions initiated on the secondary bus. It 
also consists of an arbiter for arbitrating the 
requests on the secondary bus. It consists of the 
following elements:-

Secondary Interface Control Logic 
Secondary Interface Timers/Counters 
Secondary Interface Error generation and 
checking 
Secondary arbiter 

Configuration Space 

Configuration space consists of the 
configuration registers for the bridge. 
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5.0 Conclusion 

The high bandwidth offered by the PCI systems 
coupled with the availability of high 
performance CPU's like the Intel Pentium Pro, 
DEC Alpha and the IBM Power PC has now 
made it possible to configure high performance 
systems for server as well as Multi-media 
applications. The only limitation on the PCI bus 
is its expansion capability. A typical PCI system 
would have only three to four expansion slots. In 
addition, the PCI add-on cards can have only 
one PCI device on the board. This creates a 
severe limitation on the expansion capability of 
PCI motherboards and the functionality of PCI 
add-on boards. The PCI-to-PCI bridge offers a 
solution to both these problems. In addition, 
properly designed PCI -to-PCI bridges can 
significantly boost the performance of PCI 
systems. The tremendous potential promised by 
PCI systems can be fully realized by the PCI-to­
PCI bridge chips. 
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A serious impediment to the development of PCI-only systems is the requirement for compatibility with 
existing PC DMA devices like floppy disk controllers, 16-bit PC Cards (PCMCIA cards), and sound cards. On 
December l, 1995, seven system and chipset manufacturers published a new open standard, Distributed DMA 
Support for PCI Systems, which defines a DMA architecture that is software compatible with PC DMA controllers 
yet works without using any sideband signals. 

INTRODUCTION 

The PCI bus has become the standard peripheral bus of choice, taking over the market quickly since its 
introduction by Intel in 1992. It is used in all kinds of computers, from supercomputers to portables. However, 
despite its numerous successes it has been unable to replace the traditional PC expansion buses (ISA, EISA, and 
Micro-Channel). These buses have not disappeared because the PCI bus was designed assuming an expansion bus 
would exist to provide PC legacy functions such as DMA. 

DMA was first introduced on the ISA bus in the original PC in 1981. DMA provided a mechanism for the 
processor to off-load the work of moving 1/0 data between an 1/0 device and system memory. The microprocessor 
still had to configure the block data transfer between the I/O device and memory, but the actual data transfer and its 
termination were handled solely by the DMA controller. Not only did it reduce the processor's workload, it also 
increased overall bus bandwidth. This increase in bandwidth was a result of the DMA Controller's ability to 
perform a "fly-by" transfer: an 1/0 read done simultaneously with a memory write, or an 1/0 write done 
simultaneously with a memory read. To perform the same task, the processor would have to run two bus cycles. 

With the wide acceptance of the PCI bus, there has been a natural migration of ISA devices to PCI. This 
migration, however, has not been able to include legacy PC DMA devices without losing software compatibility. 

THE PROBLEM 

The legacy DMA Controller was implemented using two Intel 8237s, each of which provided four separate 
DMA channels. The 8237s were connected in a cascaded configuration, providing a total of seven DMA Channels 
as illustrated in Figure 1. The first 8237 provided support for channels 0 through 3, while the second 8237 provided 
support for channels 5 through 7. Channel 4 of the second 8237 was used to link the two 8237s together. 

Bringing PC DMA to the PCI bus has a single fundamental requirement that must be met: the need to 
maintain the legacy 8237 DMA programming modeL This requires a solution that retains the I/O register 
interface provided by the pair of 8237s. It also requires a solution that provides a bus mastering service to replace 
the DMA controller functionality - mimicking the old DRQ and DACK# protocol and running 1/0 and memory 
cycles on behalf of the DMA device. In addition, it requires that the shared, multi-channel DMA registers be 
isolated so that the DMA channels could be separated on the PCI bus. This is because the PCI bus does not allow 
multiple devices to drive different data bits for a single access. 
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The Distributed OMA specification resolves all these issues and breaks the legacy hardware model of a 
centralized OMA controller, building instead on the fundamentals of the PCI bus mastering model. There are 
several advantages to the Distributed OMA approach: 

1. It provides the ability to separate and isolate the various DMA channels so that they can exist 
singularly in the PCI devices, tightly coupled to their 1/0 devices. The result is the removal of the 
DMA DRQ/DACK# signals from the PCI connection to a private 1/0 bus that exists behind the 
Distributed OMA Channel. 

2. It does not require any sideband signals, thereby complying with the existing PCI bus specification. 
This scheme is flexible enough to work from a generic PCI plug-in slot. 

3. It is fully PCI compatible even across PCI bridges, an attractive feature for PCI-only systems that use 
at least one PCI to PCI bridge to increase PCI bus connectivity. 

4. It allows for mobile PC docking across the PCI bus with no additional sideband signals. 

5. It removes the long 1/0 cycle portion of the transfer (which takes up to 1 µs on ISA) from the PCI bus. 
PCI bandwidth is only used for the faster system memory access portion of the transfer. 

6. Distributed OMA can also co-exist with an existing legacy OMA Controller on the standard expansion 
bus. This allows for upgrading existing PCI systems to support Distributed DMA. 

7. New drivers can be written to exploit PCI bus performance by communicating directly to the 
Distributed DMA Channel interfaces. 

8. Distributed DMA also provides for 32-bit extensions to the legacy DMA Controller's programming 
model, thereby facilitating porting 32-bit DMA devices from EISA and Micro-Channel. 
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THE SOLUTION 

There are two fundamental ideas to implementing Distributed DMA. The first is to isolate the DMA 
channels as Distributed PCI Channels. The second is to map all legacy DMA accesses to these new isolated DMA 
channels via a Remap Engine. Both the Distributed PCI Channels and the Remap Engine are illustrated in Figure 2. 
These fundamental ideas can be implemented using three main components: 

1. The Distributed PCI Channel's PCI Target Logic. A standard PCI target responsible for configuring 
the Distributed PCI Channel and the 1/0 device. 

2. The Distributed PCI Channel's PCI Initiator Logic. A standard PCI bus master responsible for 
moving data between memory and the 1/0 device. 

3. The Distributed DMA Remap Engine. Logic responsible for maintaining legacy software 
compatibility. 

Distributed PCI Channel 
PCI 

PCI Initiator I/O 
logic private I/O ---i device 

bus 

J Memory PCI Target 
Cycles Logic 110 Con.fig Cycle 

Remap 
Engine r--------------------------

I Distributed PCI Channel 
--, 

I 
I 110 Con.fig Cycle I 
I PCI target 

l I logic I 
I DRQ 
I 

I/O 
Memory I PCI Initiator DACK# device 
Cycles I 

logic I 
I private I/O I 
I bus L----------------------------

Figure 2 ·-A Distributed DMA System. This diagram illustrates the Remap Engine block and two 
Distributed PCI Channels. The top illustrates an integrated design while the bottom illustrates a more 

traditional protocol using DRQ/DACK#. 

The Distributed PCI Channel 

The Distributed PCI Channels combine specially defined target and initiator logic as illustrated in Figure 2. 
One or more original 1/0 devices are connected to these modules via some private interfaces. The interfaces could 
be a full legacy bus (e.g. to implement an ISA or PCMCIA bridge) or some private interface contained within a chip 
(e.g. to implement an audio card). 

Distributed PCI Channel Target -- PCI Target Logic 

The first major component of a Distributed DMA system, as shown in Figure 2, is the PCI Target Logic of 
the Distributed PCI Channel. It contains configuration registers for the DMA transfers and the mechanism for 
programming the 1/0 device. Like any PCI device using I/O addressing, it contains a Configuration Space Header 
defining its I/O base addresses. This is used to set up a separate 16-byte I/O window of registers for that channel, as 
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listed in Table 1. The register definitions are similar to those of the legacy DMA Controller, but they only operate 
on one channel. In addition, the programming interface is also extended to support 32-bit addressing. 

Table 1 -- Distributed PCI Channel's 1/0 Map. Arrows show legacy DMA channel 0 1/0 space being mapped 
into the new Distributed PCI Channel 1/0 space 

OOOOh W 0 Base Address 17:0] & [15:8] [7:0] 
OOOOh R 0 Current Address [7:0] & [15:8] 7:0] R 
OOOlh w 0 Base Count [7:0] & [15:![ [15:8] w Olh 
OOOlh R 0 Current Count [7:0] & [15:8] [15:8] R Olh 
0002h w 1 Base Address [7:0] & [15:8] [23:16] w 02h 
0002h R 1 Current Address [7:0] & [15:8] [23:16] R 02h 
0003h w 1 Base Count [7:0] & [15:8] [31:24] w 03h 
0003h R 1 Current Count [7:0] & [15:8] [31:24] R 03h 
0004h w 2 Base Address [7:0] & [15:8] [7:0] w 04h 
0004h R 2 Current Address [7:0] & [15:8] [7:0] R 04h 
0005h w 2 Base Count [7:0] & [15:8] [15:8 w 05h 
0005h R 2 Current Count [7:0] & [15:8] [15:8] R 05h 
0006h w 3 Base Address [7:0] & [15:8] *Base Word Count [23:16] w 06h 
0006h R 3 Current Address [7:0] & [15:8] *Current Word Count [23:16 R 06h 
0007h R./W 3 Base Count [7:0] & [15:8] Reserved w 07h 
0007h R./W 3 Current Count [7:0] & [15:8] Reserved R 07h 
0008h w 0,1,2,3 Command Command w 08h 
0008h R 0,1,2,3 Status Status R 08h 
0009h w 0,1,2,3 R~uest Re uest w 09h 
OOOAh R 0,1,2,3 Mask Reserved R OAh 
OOOBh w 0,1,2,3 Mode Mode w OBh 
OOOCh w 0,1,2,3 Clear B_.Y!e Pointer Reserved w OCh 
OOODh w 0,1,2,3 Master Clear w ODh 
OOODh R NIA Tem~rar_y_ NIA OEh 
OOOEh w 0,1,2,3 Clear Mask R./W OFh 
OOOFh R./W 0,1,2,3 Multi-Channel Mask 
0087h R./W 0 Low Mem. Pag_e [23:16] 
0083h R./W 1 Low Mem. Pag_e [23:16] 
0081h R./W 2 Low Mem. Pag_e [23:16] 
0082h R./W 3 Low Mem. Pag_e [23:16] 

This new programming model is designed for easy legacy DMA Controller compatibility, and allows new 
Distributed PCI Channel driver software to borrow existing 8237 legacy code. This reusability of existing legacy 
DMA drivers to drive what is effectively a new standard programming model for PCI masters has several benefits: 

1. It builds on an existing knowledge base resulting in a greater pool of people, experts, to choose from 
when it comes time to port existing PC DMA drivers to true native PCI bus masters' drivers. 

2. The majority of the changes required to write a Distributed PCI Channel driver only require changing 
the address location of the 1/0 device. That is, replacing the existing fixed legacy 8237 I/O addresses 
to a new set of 1/0 addresses that are offset from a programmable base. 

As shown in Table 1, the DMA registers Command, Status, Request, Mode and Master Clear are 
duplicated in function by each Distributed PCI Channel at offsets 08h, 08h, 09h, OBh, and ODh, respectively. The 
Mask, Clear Mask, and Multi-Channel Mask registers are all mapped into a single register called Mask at offset OFh. 
Unlike the original DMA controller registers, these are restricted to only affect a single channel. 
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The Address low and high bytes are directly accessible (no Byte Pointer controlling access through one 
register), and the Low Page registers are included to provide 24 bits of address at offsets OOh, Olh and 02h. 
Similarly, the Word Count low and high bytes are separated and mapped to offsets 04h and 05h. In addition to the 
legacy addressing support, bits were added to optionally allow 32-bit addresses and 24-bit word counts. These 
extensions allow for 4 GB of addressable memory space and a transfer count as high as 16 MB. 

The Clear Byte Pointer register is not needed since the Address and Word Count low and high bytes are 
individually accessible. The Temporary register is also not needed, because it does not affect channel configuration. 
The DMA Remap Engine will provide Temporary register support. 

Configuring the DMA 110 Device 

The Distributed DMA specification does not control how to configure the DMA 1/0 device that is serviced 
by the Distributed PCI Channel. However, the standard PCI configuration base address registers should provide the 
necessary 1/0 space required to configure the 1/0 device that is serviced by a Distributed PCI Channel. 

Some legacy DMA 1/0 devices, however, must carry their fixed legacy I/O addresses to the PCI bus. As 
such these devices must be placed on the primary PCI bus and positively decode these addresses in order to 
maintain legacy compatibility. For example, system audio compatibility requires legacy 1/0 address 0220h and 
0240h. If this device is placed on the primary PCI bus it can positively decode these addresses before the standard 
expansion bus bridge claims the cycles. 

Designs that must continue support of certain legacy 1/0 addresses may be required to support both the PCI 
programmable base address register scheme as well as a fixed legacy 1/0 addressing mode. This allows the design 
to be initialized as a generic PCI master with a relocatable 1/0 address range as its default. If the system needs to 
support the legacy mode, these devices can be reconfigured to use their fixed legacy 110 address decode ranges. The 
system software must resolve 1/0 conflicts on PCI when operating these devices in their legacy 1/0 decode modes. 

Distributed Channel Initiator -- PCI Initiator Logic 

The second major component of a Distributed DMA system, as shown in Figure 2, is the PCI Initiator 
Logic of the Distributed PCI Channel. This PCI Initiator Logic is responsible for servicing the DMA 1/0 device. 
For example, an 1/0 device requests a DMA transfer by signaling the Initiator Logic. If programmed correctly (with 
the channel enabled and unmasked), the Initiator Logic responds and begins PCI memory read or write transfers on 
behalf of the 1/0 device, using the programmed address, word count, and mode. If the 110 device is an ISA-based 
design, the request is made with a DRQ signal, the response is expected on a DACK# signal, and the transfers to the 
IIO device should be ISA 1/0 reads and writes. The 1/0 device may have some other interface; the communication 
protocol to the 1/0 device is undefined by the Distributed DMA specification. 

To increase performance, the PCI Initiator Logic can buffer and later burst write data. It can also read a 
full 32 bits at a time or perform burst read-ahead to increase read performance. Note that PCI bandwidth is only 
used for the memory transfer portion of the transfer. The 110 transfer (if it even exists) is not seen on the PCI bus. 

The Remap Engine 

The third major component of a Distributed DMA system, as shown in Figure 2, is the Remap Engine. Its 
function is to provide the appearance to the software that the channels are linked together in an identical fashion to 
the legacy DMA Controller programming model, even though the Distributed PCI Channels are in fact isolated. 

The Remap Engine accomplishes this by capturing the PCI cycles which would otherwise access an 8237 
register and spawning other PCI cycles that actually access the Distributed PCI Channels. These spawned cycles are 
used by the Remap Engine to update or gather status from the Distributed PCI Channels when a legacy DMA 
register is accessed. 
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For example, Figure 3 illustrates that when the Status register at UO address 0008h is accessed, four cycles 
are spawned. Each of the Distributed PCI Channels returns two bits of status: the terminal count (TC) replicated on 
bits 0-3 and channel request (REQ) replicated on bits 4-7. 

l l 
Channel 3 Channel 3 Channel 2 Channel 2 Channel I Channel 1 
REQ TC REQ TC REQ TC 

Channel OTC--------. 
Channel !Tc-------.. 
Channel 2 TC _____ _, 
Channel 3 TC 

Channel 0 REQ-------. 
Channel 1 REQ ___ _, 
Channel 2 REQ--~ 
Channel 3 REQ 

l l 
Channel 0 Channel 0 
REQ TC 

Remap Engine assembles the 
four read into a single byte 

Figure 3 •• Distributed DMA status read data merge. Shows the status read data merge from four 
Distributed PCI Channels. 

The actual sequence is illustrated in Figure 4, with the following steps: 

• Step 1 -- The initial PCI read of the legacy Status register occurs on the PCI bus. As a direct result of the 
processor's initial request, the Remap Engine will respond with a PCI delayed transaction reply (a Retry). 

• Step 2 -- The Remap Engine will then arbitrate for the PCI bus, and spawn a PCI read access to Distributed PCI 
Channel at I/O location 1008h (which was previously assigned to channel 0). The return data is then stored in a 
temporary holding register. 

• Step 3 -- The Remap Engine makes another request and runs a PCI read from the Distributed PCI Channel at 
1/0 location 4008h (previously assigned to channel 1). This Distributed PCI Channel is illustrated as existing 
on a secondary PCI bus behind a PCl-to-PCI bridge. The return data, consisting of the Terminal Count and the 
Request Bit, is then merged into the temporary holding register as illustrated in Figure 3 using the logical 
channel assignment as a guide to the correct bit positions. 

• Steps 4 & 5 -- The Remap Engine accesses Distributed PCI Channels at 1/0 locations 1018h, and 1028h, 
assigned to channels 2 and 3 respectively. As each read completes, that Status data is merged into the 
temporary holding register, using the channel's logical assignment as a guide to the correct bit positions. The 
result is a reassembled multi-channel legacy Status register in the Remap Engine. 

• Step 6 -- When the requesting PCI agent repeats the original 1/0 read transaction, the content of the temporary 
holding register is returned as the legacy Status register, thereby completing the delayed transaction cycle. 

114 



CPU 

host bus Remap 
Engine 

x chO = 1008h Distributed 
chl =4008h PCI Channel Host ch2=1018h 

Bridge ch3=1028h 
1028h 

(i)~~ .~ "'-- ®.J'primary P CI 

4 ®~ 
Distributed PC -PCI Distributed 
PCI Channel Bri ~ge PCI Channel 
1008h 1018h 

'l_ secondary PCI 

Distributed 
PCI Channel 
4008h 

Figure 4 •• Status read, with four spawned cycles 

Note that the Remap Engine is free to be placed anywhere on the primary PCI bus using delayed 
transactions to hide the 1/0 mapping. For better performance, the Remap Engine can be designed into the host 
bridge, eliminating the need for the retry cycles (step 1 and step 6 in the above example). 

The Distributed DMA specification recommends two techniques for configuring the Remap Engine with 
logical channel assignments for the Distributed PCI Channel. The two techniques are: 

1. The Remap Engine uses a single base address from which 128 bytes of contiguous 1/0 space are reserved for 
the Distributed PCI Channels. This 128 byte of 1/0 space is then divided into 16-byte 1/0 blocks. Each of the 
16-byte blocks corresponds to a different channel, with offsets OOh through OFh for Channel 0, offset lOh 
through lFh for channel 1, etc. A 16-byte hole is left for channel 4, which is not usable. The 110 base address 
of each Distributed PCI Channel must be programmed to make that channel's 1/0 map occupy the appropriate 
16-byte block. 

2. The Remap Engine has separate base address registers for each channel, thus removing the restriction that the 
1/0 spaces for the Distributed PCI Channels be in consecutive 16-bytes blocks. This technique allows for a 
more generic solution that can facilitate the PCI to PCI bridge requirement that 1/0 space assignments must be 
done in 4 Kbyte blocks. 

Table 2 and Table 3 show the legacy 1/0 address mapping for channels 0-3, along with the number of 
spawned cycles that the Remap Engine issues for each legacy access. Channels 5-7 are similar, with the maximum 
number of spawned cycles being 3 instead of 4. This is because channel 4 is used only for providing cascading 
support for channels 0-3; the channel is never used for 1/0 devices. This table assumes that Channel 4's cascading 
effects are ignored. 
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Table 2 •• Spawned cycles for the Secondary DMA channels 0-3 Control register access. 

0008h w Command 4 writes 08h 
0008h R Status 4 reads 08h 
0009h w Re uest l write 09h 
OOOAh w Mask l write OFh 
OOOBh w Mode 1 write OBh 
OOOCh w Clear B te Pointer Owrite NIA 
OOODh w Master Clear 4 writes ODh 
OOODh R Tern r 0 reads NIA 
OOOEh w Clear Mask 4 writes OFh 
OOOFh R/W Multi-Channel Mask 4R/Ws OFh 

Table 3 •• Spawned cycles for the Secondary DMA channels 0-3 Base Address and Word Count register access. 

OOOOh 0002h 0004h 0006h W/R Base Address Low [7 :O] 1 OOh 
OOOOh 0002h 0004h 0006h W/R Base Address Hi h [15:8] Olh 
0087h 0083h 008lh 0082h W/R Low Mem. Pa e [23:16] 1 02h 
OOOlh 0003h 0005h 0007h W/R Word Count Low [7:0] 1 04h 
OOOlh 0003h 0005h 0007h W/R Word Count Hi h [15:8] 05h 

Supporting the Cascading Effect of Channel 4 

The Distributed DMA Support for PC/ System revision 6.0 specification does not address supporting the 
cascading effect of channel 4 on channels 0-3. In the legacy DMA Controller channel 4 is not a usable DMA 
channel, and must be configured in cascade mode at system initialization. However, the channel 4 registers are still 
accessible, and some can be modified without reconfiguring the channel's cascade mode. This means channel 4 
settings can have an effect on channels 0, 1, 2, and 3. 

For example, if channel 4 is masked, Secondary DMA channels 0-3 are also effectively masked. Taking 
advantage of this global effect, though unorthodox, is still very much "PC legal." The following legacy Primary 
DMA registers can cascade onto channels 0-3: 

• Command Register (Port OODOh). A write to disable channels 4-7 must also disable channels 0-3. A write 
to enable channels 4-7 must also enable channels 0-3 if they were disabled only due to a previous write to 
disable channels 4-7. 

• Single Mask Bit (Port OOD4h). A write to mask channel 4 must also mask channels 0-3. 

• Multi-Channel Mask Bit (Port OODEh). A write which masks channel 4 must also mask channels 0-3. 

• Master Clear (Port OODAh). A write access masks and enables channels 4-7. This transaction must be 
handled as if a combination of Command and Multi-Channel Mask writes occurred. 

Supporting this cascading effect of channel 4 on channels 0-3 requires the Remap Engine use a more 
complicated mapping algorithm for updating the Distributed PCI Channels. 
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First, the Remap Engine needs to track the Primary and Secondary DMA Controller's Command register 
enable bit and the mask bits for channels 0-3 and channel 4. They must be tracked from system initialization to 
guarantee that both the Remap Engine and the Distributed PCI Channels remain coherent. 

Any write access to legacy DMA addresses OOD4h, OODAh, or OODFh which result in channel 4 being 
masked require the following modification to the Remap Engine algorithm: 

1. The standard update to the Primary DMA channels 5, 6, and 7 takes place as usual with the channel 4 tracking 
bit also being updated. In addition, new spawned cycles must set the mask bits of channels 0-3 to reflect 
channel 4 being masked. Note that the original mask status for channels 0-3 is not lost, as the Remap Engine 
has been recording their status in a tracking bit. 

2. New accesses to the Secondary DMA channels 0-3 that affect their mask status no longer result in spawned 
cycles. Instead, the Remap Engine just updates its mask tracking bits. As long as channel 4 remains masked, 
the corresponding bits in the Distributed PCI Channels will reflect this configuration. 

3. If a write access to legacy DMA registers OOD4h, OODAh or OODFh results in channel 4 being unmasked, the 
Primary DMA channels 5, 6, and 7 are again updated as usual. This time, the Remap Engine must update the 
Secondary DMA channels (0, 1, 2, and 3) with its tracking bit values. Note that just because channel 4 is 
unmasked does not automatically result in channels 0, 1, 2 and 3 being unmasked; instead, their recorded 
individual states are restored. 

4. Only when channel 4 is unmasked does the system return to a "standard" configuration mode where the 
individual mask settings for channels 0-3 control their channels' mask status. 

Similar to the effect of channel 4 on the mask bits is the effect of channel 4 being disabled. For example, 
when channel 4 is disabled, Secondary DMA channels 0, 1, 2, and 3 must also be disabled. When channel 4 is re­
enabled, the Remap Engine uses the tracking bit for the enable status of Secondary DMA channels 0-3 to update the 
enable bits for Secondary DMA channels 0, 1, 2, and 3. 

Upgrading Existing PCI Systems to Support Distributed DMA 

Field upgrades for Distributed DMA require the systems to provide at least one primary PCI bus slot. In 
addition, the legacy expansion bus must be connected to PCI via a subtractive decode agent. Specifically, the 
legacy DMA registers must be decoded using the PCI's subtractive decoding techniques. From this standard PCI 
slot a Distributed PCI Channel and Remap Engine upgrades can be retrofitted to any existing PCI system. 

In such a system the Distributed PCI Channel interface is identical to that described above, however, the 
Remap Engine's algorithm must to be modified to accommodate the legacy DMA Controller on the expansion bus. 
The Remap Engine intercepts all legacy DMA Controller's register accesses, as defined earlier, claiming these 
cycles before the subtractive agent, and spawning cycles to the Distributed PCI channels. After the Distributed PCI 
Channels are serviced, the Remap Engine reissues the original host access to the legacy DMA Controller's register 
onto the PCI bus. This time the expansion bus will accept the cycle as a subtractive agent and update the 8237s 
accordingly. The Remap Engine must guarantee that any reissued commands never unmask or activate any legacy 
DMA channels that were claimed by a Distributed PCI Channel. After the reissued cycle is complete the Remap 
Engine waits for the requesting PCI agent to return thereby completing the delay transaction cycle. 

The Performance Issue 

Table 4 compares the theoretical performance of Distributed DMA versus legacy DMA on ISA. 
Distributed DMA significantly improves the overall system performance while maintaining full PC compatibility 
with the legacy DMA Controller. 
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Table 4 •• ISA vs. Distributed DMA Performance 

8-bit 0.8 8 
16-bit 1.6 15 

16-bit F 4 30 
32-bit Not available 30 

32-bit burst Not available 100-132 

However, Distributed OMA carries a performance cost due to mapping and expanding the legacy DMA 1/0 
accesses to multiple Distributed PCI Channels. The greatest performance cost occurs when the share registers are 
mapped. The shared registers include the Command, Status, Master Clear, Multi-Channel Mask and Clear Mask 
registers. All these registers result in four PCI cycles being spawned for channels 0-3, and three PCI cycles being 
spawned for channels 5-7. However, the impact of this 1-to-4 cycle expansion on the overall system performance is 
not significant for several reasons: 

1. The number of programming cycles are negligible when compared to the number of data-transfer cycles. 

2. The majority of the remapped cycles for Distributed OMA result in one spawned cycle. 

3. The Distributed PCI Channel Initiator Logic can include data buffers, and burst their PCI cycles to memory to 
further improve performance. 

4. In the future, new PCI drivers can be written, bypassing the Remap Engine, thereby removing the spawned 
cycles that result. 

CONCLUSION 

As expansion bus devices move away from legacy buses to the PCI bus, the need to maintain the legacy 
buses slowly erodes but the need to maintain the legacy OMA programming model remains. Distributed DMA 
Support for PCI Systems is a solution that the PC industry is implementing today. This standard will aid in a 
smooth migration path for all legacy devices onto PCI. 
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Target Applications 

• Image Processing 
- Document Image Processing 

(OCR,ICR, Compression) 
- Medical Image Reconstruction 
- Biomedical Imaging 
- Pattern Recognition/Neural Networks 
- Automated Manufacturing 

• Digital Signal Processing 
- Digital Receivers 
- Radar/Sonar 

- Commercial TeleComm 
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PCIBus 
Architecture 

• Peripheral Component Interconnect Bus(PCI) 

- 132/264 MB/s 
- 33 MHz at 32 and 64 Bits Wide 

- Industry Wide Acceptance 

• Alpha, Power PC, Pentium 

- Hetereogenous Environment 

• PCI /ISA 

• PCI I EISA 

• PCI I NuBus 
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PCIBUSINTERFACE 

LOCAL BUS ... 1 1 -r ... 1 ... 
EIGHT-32 BIT PCI TW0-32BIT 

MAILBOX CONFIGURATION DOORBELL 
REGISTERS REGISTERS REGISTERS 

• -. ' ~ ~' 
FIRST SECOND FIFOed FIFOed Bl-DIRECTIONAL Bl-DIRECTIONAL SLAVE MASTER FIFOed OMA FIFOed OMA INTERFACE INTERFACE CHANNEL CHANNEL 

132 MB/S PCI BUS 

• FIFO'D MASTER, SLAVE, AND OMA INTERFACE 

• MAXIMUM BURSTS AT 132 MB/SEC 

• BLOCK TRANSFERS AT 70 MB/SEC 

• RANDOM READ/WRITES AT 8-12 MB/SEC 
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The ADSP-2106x 

40 MIPS 
CORE 

80/120 MFLOP/S 
FPU 

:a: a. 2!l 

1,2,and 4 MBIT DUAL PORT SRAM 

BUS UNIT 
OMA 

CONTROLLER 

160 MB/s 32 Bit BUS 

6 LINK 
PORTS 

AND 
2SERIAL 
PORTS 

40 MB/S_____. 

40 MB/S_____. 

40 MB/S_____. 

40 MB/S_____. 

40 MB/S_____. 

40 MB/S_____. 

~ SMB/S 

L.il•o---5 MB/S 
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ADl-2106X 'SHARC' 
SPECIFICATIONS 

• 40 MIPS 
• 120 MFLOPS (A+B,A-B) 
• 80 MFLOP (OTHERWISE) 
• 48 / 32 BIT EXTERNAL DATA BUS 

5 • 1,2, OR 4 MBIT ON CHIP SRAM (21061, 21062, 21060) 
• OMA CONTROLLER 
• 2 SERIAL PORT (40 MBIT/S) 
• 6 LINK POINTS (40 MBYTE/S) 
•SIMD AND MIMD OPERATION 
• DUAL PORTED SRAM 
•CONCURRENT OMA WITH COMPUTATION 
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PROCESSOR COMPARISON 
ADSP-21060 

Processor Attributes 
40MHZ 

Instruction Execution lime 25 ns 

MIPS 40 

Peak MFLOPS 120 

Latency of Floating Point 25 ns 
Inst. 

Internal RAM 128K 
(32-Bit Words) 

On-Chip Memory Bandwidth 640 MB/S 

1/0 Capability 

Serial Ports 2 

link Ports 6 

OMA Channels 10 

OMA Bandwidth (MB/S} 

link Ports/Port 40 MB/s 

OMA Bandwidth 240 MB/s 

FFT, 1 K Complex 460 usec 

Divide, 32-Bit Floating Point 150 ns 
6 cycles 

TMS320C40 

40MHZ 

40ns 

25 

50 

40 ns 

2K 

NIA 

0 

6 

6 

32 MB/s 

50 MB/s 

1,540 usec 

360 ns 
9 cycles 

i860 

50MHZ 

20 ns 

50 

100 

60 ns 

BK 

320 MB/S 

0 

0 

0 

N/A 

0 

520 usec 

200ns 
10 cycles 
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ALACRON'S SHARC DESIGN GOAL 

OPTIMIZE PROCESSOR AND MEMORY 
~ PERFORMANCE FOR MIMD AND SIMD 
0 

PROGRAM MODELS 
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MIMD programming model 

• Each SHARC Processor 

- operates as an individual coprocessor 
- has separate thread of execution 

- may run entirely different code 
- 2106X application can implement inter-

processor communication or 
cooperation if desired 
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SIMD programming model 

• All 2106X processors operate in lock-step 

- executing same instructions 
simultaneously 

- process using different data. 

- easy to write for algorithms that may be 
partitioned in the spatial domain 

- no overhead for inter-processor 
synchronization when compared to 
MIMD parallel algorithms 
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CLUSTER ARCHITECTURE 

GLOBAL 
1/0 

SHARC SHARC SHARC 

240 MB/S (48 BIT) AND 160 MB/S (32 BIT) CLUSTER BUS GLOBAL 
MEMORY 

SHARC SHARC SHARC 
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CLUSTER ARCHITECTURE 

Pros 
•Easy to Program 
• MIMD Operation 

Cons 
• Processor Contention for Global Memory and 1/0 
• No SIMD Operation 
• High Speed Memory Required 
• Usually Implemented with Static Link Port 
Connections 
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MESH ARCHITECTURE 
I\ I\ I\ I\ 

I'- SHARC lo-H SHARC lo-H SHARC 

' '\. T ~ '\.. I ~ " 1 :r J. 
I\ I\ I\ 

MESH SHARC lt-H SHARC lt-H SHARC 1/0 It-

t:;· 

°' ' "\: l '\ _J_ ~ '\: J_ 
J_ J_ 

I\ I\ I\ I\ 

MASTER 
SHARC 

lo- SHARC lo-H SHARC l'-H SHARC 

"\ "\: " l ~ ~ " ' "' '\ 
~ 

GLOBAL [)1 
,, ,, \ I\ • .. ,, 

GLOBAL 240 MB/S (48 BIT) AND 160 MB/S (32 BIT) CLUSTER BUS 

-v'' 
MEMORY 1/0 
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MESH ARCHITECTURE 

Pros 
• Scaleable over a wide range of 
Applications 
• Simple to understand and Program 
• Single Copy of Instructions Required 

Cons 
• Limited 1/0 Bandwidth 
• SIMD Operation Only 
• Fixed Link Port Topology 
• Microcoding Required for Peak 
Performance 
• Single Bus Passes All Instructions and 
Data 
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ALACRON ARCHITECTURE 
DYNAMIC LINK PORT SWITCHING 

I l j_ 
?'I 

j_ I I I j_ 

SHARC SHARC SHARC SHARC SHARC SHARC SHARC SHARC 

I l I j_ J j_ I I 
VRAM VRAM VRAM VRAM VRAM VRAM VRAM VRAM 

I J I I I I l I 
160 MB/S 32 BIT SYNCRONOUS OMA DATA BUS 

l l 

GLOBAL MEMORY 
OMA 

GLOBALl/O CONTROLER 

l I l J 
HOST CARRIER BUS 
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ALACRON ARCHITECTURE 
Pros 
• SISD, MISD, SIMD and MIMD operation support (all modes} 
•A continuation of the dual port memory concept in the SHARCs 
• Processors do not contend for data on a common bus 
• Link ports are configurable dynamically as required by the algorithms 
• Dual port memory augments the SRAM internal to the SHARC chips 
• Data and instruction duplication supported by OMA controller broadcast 

~ • Data flows through the system without bottle-necks or bus contention 
• Scaleable across many applications 

Cons 
• Processors can not directly pass data over a common parallel bus 
• SISD and MISD operation requires duplication of data 
• SISD and SIMD operation requires duplication of instructions 
• Microcoding required for peak perfromance 
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COMPETITIVE PERFORMANCE COMPARISON 
Bus Architecture Memory Link Port Link Port SIMD MIMD BusBW No 

Architecture Config Topology perSHARC Overhead 

Streaming 

Data Flow 

ALACRON PCl, ISA, Local 1 MB Dynamic Direct Yes Yes 80 MB/s Yes 

orVME 
Memory 

Private Universal Number Theoretic 

VRAM 

256 MB 

Global DRAM 

VENDOR 1 PCI Mesh Global Static Rectangular Yes No Not Yes 

SRAM Mesh Applicable 

VENDOR2 Proprietary Cluster Cluster Static Star No Yes 27 MB/s No -~ Shared Cluster to Cluster 
512 KB FLASH 

and 

SRAM 

VENDOR 3 VME Cluster 3x2 Static Star No Yes 20 MB/s No 

Cross Bar Adjustable by 

256 K SRAM 
Cabling 

128 MB DRAM 

VENDOR4 VME Cluster Cluster Static Adjustable by No Yes 40 MB/s No 
Shared Cabling 

3 MB SRAM 

512 K FLASH 
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SHARC MAIN BOARD DESIGN 
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SHARC BOARD FEATURES 

•Array of up to 8/16/24 2106xs (1-3 SHARC Modules) 

• 960/1920/2880 MFLOPS per Slot 

• Up to 256 MB of DRAM SIMM Memory. 

• Supports all Daughter Cards 

• Two Standard Daughter Card Connectors 

• Slave, Master, and OMA Interface 

• PCI Interface 
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UTILITY OF JTAG BOUNDRY SCAN 

~ • DESIGN FOR MANUFACTURE 

• EFFIECIENT GUI BASED HARDWARE 

DEBUGGER ENVIRONMENT 
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FUTURE ASIC BASED ENHANCEMENTS 

•Zero Wait State (160 MB/s) SHARC External Memory Accesses 

• 528 MB/s Peak OMA Bus Transfer Rates 

•Less Than 500 Microseconds 512x512x8 Image Transfer Time 

• Support For Both Video RAM and Graphic RAM 
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ARCHITECTURE COMPARISON 

ARCHITECTURE NUMBER TOTAL MFLOP/S MFLOP/S MEMORY MEMORY BANDWIDTH 

OF CPUs MFLOPS PER SQ-IN PER SQ-IN BANDWIDTH PER CPU DURING 

STD-SMT BGA PER CPU OMA 

i860 SHARED MEMORY 2 200 4 N/A 200 100 

SHARC PRIVATE VRAM 8 960 19 28 80 80 -~ SHARC PRIVATE VRAM 16 1920 24 39 160 160 

SHARC PRIVATE VRAM 32 3840 29 53 160 160 
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ARCHITECTURE COMPARISON 
ARCHITECTURE NUMBER RELATIVE SIZE Size MEMORY 

OF CPUs PRICE PER CPU STD-SMT BGA (MB) 

(SQ-IN) (SQ-IN) 

i860SHARED 2 1 54 N/A 16 
MEMORY 

SHARC PRIVATE 8 0.75 52 38 12 
VRAM 

SHARC PRIVATE 12 0.53 65 43 18 
VRAM 

SHARC PRIVATE 16 0.55 78 49 24 
VRAM 

SHARC PRIVATE 32 0.52 132 73 48 
VRAM 

POWER POWER 

5V Design 3.3VDesign 

WATTS WATTS 

37 N/A 

68 47 

80 53 

92 60 

140 92 

MFLOP/S 

PER WATT(5V) 

6 

14 

18 

21 

27 
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ALGORITHM PERFORMANCE 
COMPARISON 

1DCFFT 2DCFFT CONV5x5 
Architecture (1K) (1Kx1K) (512x512) 

(MSEC) (MSEC) (MSEC) 

1 x i860XP-50 0.547 1420 100 

2 x i860XP-50 0.32 816 100 

1 SHARC 0.457 1045 205 

2SHARC 0.26 527 103 

4SHARC 0.13 272 _52 

8SHARC 0.072 138 23.5 

16SHARC 0.046 74 11.8 

32SHARC 0.024 39 6.2 
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Length 

1,024 

2,048 

4,096 

8,192 

16,384 

32,768 

65,536 

131,072 

262,144 

524,288 

1048576 

FFT PERFORMANCE 
COMPARISON 

8-SHARC 16-SHARC 32-SHARC 64-SHARC 1-i860XP 2-i860-XP 
(MSEC) (MSEC) (MSEC) (MSEC) (MSEC) (MSEC) 

0.072 0.046 0.033 0.027 0.547 0.320 

0.148 0.084 0.052 0.036 1.300 0.825 

0.276 0.148 0.084 0.052 3.900 2.989 

0.620 0.320 0.170 0.095 9.500 7.121 

1.220 0.620 0.320 0.170 20.400 15.800 

2.764 1.392 0.706 0.363 45.700 36.400 

5.508 2.764 1.392 0.706 96.800 78.800 

12.370 6.194 3.106 1.562 213.600 177.600 

24.720 12.370 6.195 3.108 447.100 381.900 

54.920 27.470 13.745 6.883 976.700 845.200 

109.780 54.900 27.460 13.740 2133.623 1870.550 
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Alacron's SHARC Design 

• Scalable 

• High Perfomance 

• Allows MIMD/ SIMD Operation 

• Concurrent Data Tranfer with 
Calculation 



Abstract 

PMC: mE PCI MEZZANINE CARD 
Rodger H. Hosking 

Pentek, Inc. 
55 Walnut Street 

Norwood, NJ 07648 
201-767-3994 (fax) 

e-mail: rodger@pentek.com 

PMC solutions have the capacity to improve performance while reducing the cost of mezzanine I/O expansion cards. 
From its start in the personal computer area, the PCI bus is now coming to the VMEbus. 

A standard mezzanine card design, PMC is based on the Peripheral Component Interconnect (PCI) standard bus, 
which has been universally adopted for use as a high-performance local bus in Pentium-based personal computers. With 
its further adoption as a mezzanine expansion bus for VMEbus, VME board makers will be able to leverage off the 
economies of scale accruing to the personal computer industry. 

This development also opens the floodgate of compatibility with other types of computers such as workstations, 
industrial and commercial computers, and other standard buses such as Multibus. This standard mezzanine bus has the 
potential to penetrate market areas which had previously remained proprietary, closely guarded or with high barriers to 
entry. 

Meu.a.nine Cards 
Mezzanine cards can satisfy three basic system design requirements: 
• Provide a degree of flexibility to a host board such that a single host can be used in a variety of applications; 
• Make it possible to stuff more components into a board's limited space; 
• Add functions or enhancements to a board to extend product life. 

Through the years, such cards have gone in and out of favor. Early add-on boards used what is by today's standards 
crude connector technology that was frequently prone to failure. In addition, there was often no mechanical support for 
the daughter boards other than the connectors. 

But even as connectors improved, it was frequently considered a design goal to develop a board without add-ons. 
Boards with mezzanine expansion cards were looked upon as having design flaws and questionable reliability. 

Within the last four or five years though, there's been an almost universal change of thought about mezzanine board 
technology. Even the most adamant of the holdouts, the U.S. military, has grudgingly acknowledged the benefit of such 
approaches with a number of factors contributing to the turnaround in thought. And, if any holdouts remain, PCI/PMC is 
expected to make believers of everyone. 

Previous Meu.a.nine Buses 
One of the first steps toward bringing mezzanine cards to some level of respectability was their adoption by Intel and 
other Multibus board manufacturers, who accepted the simple I/O concept of iSBX. This standard bus provided 8-bit I/O 
with limited bandwidth. 

A short time later, Intel introduced its higher-performance iLBX which could serve as a local bus for memory 
expansion. This bus was migrated to Multibus II in the mid-80's and remains in use in many Multibus systems today. 

About the time of Multibus II introduction, VME board manufacturers developed their own proprietary buses 
because of incompatibilities between the Intel and Motorola processors. 

Still later, Intel developed its MIX bus for Multibus II. The MIX bus is in wide use in the Multibus community and 
has been successfully used by Pentek as an expansion bus for VME boards. 

ThePCI Bus 
PCI is a local bus that interfaces with the processor and memory bus on one side, while it provides a high-speed channel 
on the peripheral expansion side. Such a bus solves a variety of problems: 
• It provides local connection for other buses, such as ISA, EISA, or VMEbus; 
• It makes available simple means to implement I/O expansion; 
• It eliminates the need for motherboard redesign with each processor revision. 
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The PCI specification is inherently high performance allowing transfer rates of 132 Mbytes/sec in its 32-bit 
implementation. Options using the 64-bit version double that transfer rate. This kind of bandwidth brings PCI into the 
domain of very-high resolution graphics moving into the full motion video area. In addition, it lends itself to the new 
breed of high speed 1/0 such as Fiber Channel, ATM and FDDI. 

The PMC specification, now known as IEEE P1386, defines the mechanical and electrical properties of the bus and 
the card. The physical size of the expansion card is roughly 3 x 5 inches, so it will fit comfortably on a 3U VME board. 
Two of them will fit on a 6U VME or Multibus board, and four of them will fit on a Futurebus+ card. In addition, the 
height of the board and connectors are specified so that a PMC will fit in a single slot board, such as shown in Figure 1. 

PMCI/O 
1/0 for the PMC is brought out the backplane on the P2 connector. In addition, the specification allows for direct 
connection to the front panel of the VME board. 

A separate PMC front panel can protrude flush with the VME front panel through the knockout as shown in Figure 1 
and Figure 2. The pin connections have been specified to maximize signal integrity while assuring power distribution. For 
example, signal pins are guarded by ground or supply pins. 

PMC Benefits 
As an IEEE standard, PMC assures users that any host or module complying with the standard will function in any 
module or host that has been designed to the specifications. While this gives users the flexibility to mix-and-match 
different host cards with different option modules, it also gives vendors the ability to design basic host boards without 
special consideration to interface I/O. The fact that PMC is an open standard allows OEM's with nonstandard buses to 
take advantage of the same leverage as makers of standard buses. 

The second advantage of using PMC is that it provides a large measure of stability. PMC provides a standard, high­
performance local bus that will remain the same from processor to processor. Only the processor-to-memory bus need be 
modified. 

Performance, of course, is another key element of PMC. New graphics and GUl's, extensive use of imaging, video 
and faster communications have placed a major demand on processor, 1/0, and system bandwidth. PMC will go a long 
way to alleviate the 1/0 bottleneck. With a bandwidth of 132 Mbytes/sec for a 32-bit implementation and 264 Mbytes/sec 
for a 64-bit version, PMC is capable of handling just about everything up through A TM and full-motion video. 

PCI and PMC put the focus on the main objective of the standard-bus community trying to provide a standard, off­
the-shelf alternative to costly proprietary design. PMC will go a long way in providing that capability with a broad range 
of standard I/O. 

VME will continue to drag along a large number of mezzanine cards with special functions. Some will be low­
performance 8-bit I/O such as IndustryPack, others may be part of multiprocessing configurations. But there is little 
question that every system will include at least one or two PMC modules in the very near future. 

Pentek PMC Offerings 
Pentek is introducing a complete line of PMC modules which provide functions that utilize the same areas of expertise 
developed in our MIX module family. These include DSP coprocessors, Tl/El telecom interfaces, digital receivers and 
data acquisition functions. 

The Model 7110 'C44 DSP coprocessor shown in Figure 3 is our first coprocessor. Pentek is also introducing PMC 
baseboards capable of accepting one or two PMC modules. Shown in Figure 4, the Model 4285 Octal 'C40 VME board is 
our first PMC baseboard offering. 

As new devices for DSP peripherals become available, they will be incorporated in Pentek's product line in both 
MIX and PMC formats. 

References 
For more information on the PMC/PCI bus, refer to: 

1. Digital Equipment Corporation White Paper: PC/ PMC: A Local Bus with Global Importance, September 1994 
2. Dick Somes and Wayne Adams, Digital Equipment Corporation: A Case for the PC/ Mezzanine Card Standard, 
I&CS October 1995 
3. IEEE P1386.1: PC/ Mezzanine Card, IEEE Standards 
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"Alpha AXP VMEbus SBC with PCI Mezzanine Connector'' 

Figure 1. 6U VME Board shows the PCI connectors and front panel I/O 
knockout before the PMC is installed. (Courtesy of Digital Equipment Corp.) 
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Figure 3. Pentek Model 7110 TMS320C44 PMC Module 
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Figure 4. Pentek Model 4285 Octal 
TMS320C40 Processor PMC Baseboard 
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DSP AND 1/0 SYSTEM INTEGRATION FOR PCI 
Jack CarlL"f and J\fanish Kasliwal 

Stmilech International Inc. 
14 Mica Lane 

Wellesley. MA 02181 
(617)2~5-6824/25~1 (fax) 
e-mail jack@sonitech.com 

The high speed PCI bus oft'ers exciting integration possibilities for DSP systems requiring external 
110. Previous PC bus standards were incapable of providing the bandwidth needed for high 
performance real-time systems. Today, however. complex DSP based solutions can be implemented 
with dedicated boards residing on the PCI bus. This paper will address hardware and software 
issues related to integrating real-time DSP and 1/0 applications on PCI. Considerations for selecting 
DSP and 1/0 subsystems will be presented. System software issues will be examined. Finally, a 
sample application will be discussed including potential bottlenecks and pitfalls. 
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RACEWAY INTERLINK AS A PCI SWITCIDNG FABRIC 

ABSTRACT 

Bany Isenstein and Bob Blau 
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Chelmsford, MA 01824 USA 

(508) 256-1300 FAX (508) 256-3599 
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This paper introduces a high-performance methodology for linking large numbers of PCI devices. 
Since a single PCI bus segment can support only 10 loads, many multiprocessing and switching 
applications require extended PCI connectivity. The methodology described conforms to the PCI 1.0 
Bridge Specification, without imposing a hierarchical bus structure that limits scalability. Rather, a 
switching fabric is defined that facilitates multiple simultaneous PCI-to-PCI transactions. The switching 
fabric was designed specifically to provide maximum PCI bandwidth, low latency, and minimum 
contention. 

A new bridging device called the PXB from Cypress Semiconductor and Mercury Computer Systems 
enables an existing switching fabric called RACEway [l, 2] to be used with PCI endpoints. The PXB­
RACEway technology allows up to 256 PCI bus segments within a single system. 

PXB and RACEway can be used in many different packaging scenarios, including PC motherboard 
designs and backplane paradigms. A case study used for illustration is the VMEbus packaging format. 
Two standards in this environment have solved the many mechanical and electrical issues required to 
develop robust, open solutions. The PCI Mezzanine Card (PMC) [8] standard allows the VME 
community to exploit PCI devices and processors. The RACEway Interlink standard provides the high­
bandwidth, low-latency switched-fabric interconnect for VME and PMC. RACEway and PXB have no 
dependency on VME. Additional PCI switching applications are also being developed. 

PC LIMITATIONS AND HIERARCHICAL BUS STRUCTURES 

PCI has architectural and physical constraints which limit its ability to efficiently scale to support large 
numbers of high-speed processors and peripherals. 

Electrical Limitations 

On the physical side, PCI has electrical and mechanical constraints to ensure signal integrity. These 
include limits on loading, trace lengths, and connectors. These typically limit a single PCI bus segment to 
a total of 10 loads, with each connector considered as two loads. Thus, a motherboard or passive backplane 
typically has a limit of four plug-in boards on a single PCI bus segment. In the future, with 66MHz PCI, 
this limit will be two plug-in boards on a motherboard or a passive backplane due to a limit of only five 
loads per PCI bus segment. In five years time, the frequency requirements will mandate point-to-point 
connections, necessitating a switching fabric interconnect between PCI agents. 

Architectural Limitations 

To overcome the physical limitations of a single PCI bus segment, PCI-to-PCI bridges are used. 
Bridging allows connecting up to 256 PCI bus segments together. However, the bridge specification 
defines only dual ported PCI-to-PCI bus bridges (P2P), resulting in the need to connect the 256 bus 
segments as a hierarchical tree. This tree is an inefficient interconnect topology for larger systems with poor 
contention, latency, and bisection bandwidth characteristics. 
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Figure 1. A hierarchical tree u1ing PlP bridges. Latency ii protracted. For example, when A needs 
to communicate to B, arbitration must be completed on 4 bus segments. Contention is exacerbated. 
For example, when A ii communicating with B, C and D cannot, even though C's and D's bus 
se eats are not bus • 

IMPROVINGPCICONNECTIVITY 

The solution to improved PCI connectivity is to connect PCI bus segments using a switching fabric 
imtead of a bus hiemrchy. A switching fabric provides point-to-point interconnects with the following 
featmes: 

• high bandwidth 
• low latency 
• multiple simultaneous transactions 
• scalable interconnect topologies 
• real-time features desimble for I/O (priority-based preemption) 

Switching Fabrics 

A switching fabric is an interconnection architecture which uses multiple stages of switches to route 
transactions between an initiator and a target. One benefit of switching fabrics is that each connection is a 
point-to-point link. This inherently provides better electrical characteristics allowing higher frequencies and 
greater throughput than bus architectures. The use of multi-stage switching also allows flexibility and 
scalability in the sii;e and topology of the interconnect. Examples of prevalent switching-fabric standards are 
ATM at the WAN and LAN levels, and RACEway at the board and chassis levels. 

Each stage of a switching fabric typically comprises an intelligent, multi.port crossbar switch. The 
switch device recogniz.es a data-stream header message to dynamically route the interconnect tramaction 
through the appropriate port to the next stage. The PCI to switching-fabric interface must forward 
transactions from one PCI bus segment to another. In the fabric interface, PCI addresses are tramlated to 
crossbar switch route and fabric addresses, and then back to the original addresses at the destination PCI 
bus, as shown in figure 2. 

Switching fabrics typically provide redundant interconnection resources to allow multiple transactions 
to proceed at the same time. This improves aggregate throughput by reducing contention and latency, and 
can also provide improved fault resiliency. 
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Fi20re 2. Generic o_p_erations in a PCI fabric. 

RACEway Switching Fabric 

RACEway is a switching fabric for high-perfonnance, real-time embedded applications. Detailed 
descriptions can be found elsewhere (1, 2, 3, 4, 5, 9). RACEway interconnects are accomplished using a 
silicon building block called the RACEway Crossbar that occupies about one square inch of circuit-board 
real estate, and consumes about one watt of power. RACEway scales up to hundreds of nodes and provides 
for multiple Gbytes/second of throughput with deterministic latencies measured in microseconds. 
RACEway is commercially available as chips and modules from Cypress Semiconductor, and as board­
level products and integrated systems from Mercury and other vendors. 

'The current RACEway Crossbar is a six-ported device with each port capable of bidirectional transfers 
at 160 Mbytes/s. Since each crossbar is fully connected, three simultaneous transfers can take place for an 
aggregate 480 Mbytes/s. RACEway Crossbars connect gluelessly (no additional circuitry) to form various 
topologies. A key advantage ofRACEway is its topology independence; fat-trees (figure 3), meshes, rings, 
and pipelines have all been implemented using the same crossbar building block. 

Figure 3. A RACEway fat-tree. Each switch is a RACEway Crossbar. "N" stands for node which 
could represent a processor, an 110 device, or a bridge to a bus. 

RACEway employs a variant of circuit-switching but with additional features to remove the contention 
issues usually associated with circuit-switched networks. The circuit-switched nature ofRACEway 
provides for read and read-modify-write operations that are very important for low latency bus bridges. The 
other features; pre-emption, adaptive routing, and split transactions provide for fabric contention control. 
RACEway also supports broadcast and multicast operations for applications that require multiple 
destinations per single transfer. 

Aibitration in RACEway is fast, on the order of 125 nanoseconds per crossbar in a given path 
(collection of crossbar ports from master to slave). In the largest systems, typical latencies are under a few 
microseconds. RACEway features a priority pre-emption mechanism, so guaranteed worse-case latencies 
are still in the single digit microseconds. An adaptive routing mechanism provides a measure of 
transparent contention control for certain topologies by automatically selecting non-busy paths. 
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For slow devices, RACEway tramactions can be split For example, when reading a slow device the 
master requests a read over a RACEway path, releases the path, and waits for the slave to send the 
requested data In this way, crossbar ports are free for other transactions while the slow slave gathers the 
data. 

An example of a 32-node fat-tree topology is illustrated in figure 3. Fat-trees as large as 192 nodes 
have been implemented with larger systems planned. In figure 3, it is possible to have up to 16 
simultaneous transfers for a total aggregate peak bandwidth of 1.28 Gbytes/s with a bisection bandwidth of 
640 Mbytes/s. 

PXB 

The PXB (figure 4) is a single-chip bridge between PCI and RACEway, allowing nodes on RACEway 
to be PCI buses. In refening to figure 1, the PXB perfonns the "translate" functions on either side of the 
RACEway fabric. One port is a standard 2.1-compliant PCI interface at 33 MHz. The other port is a 
standard 1.5.1-compliantRACEway interface. Maximum burst rates of 132 Mbytes/s are supported with 
an anticipated 100 Mbytes/s sustained perfonnance on 256-byte blocks. 

Figure 4. The PXB is a single-chip (144-pin device) solution that bridges PCI and RACEway. 

Features supported by the PXB are: 

• ANSl/VIT A 5-1994 RACEway Specification compliant 
• 2.1 PCI Local Bus Specification compliant (see below) 
• 1.0 PCI to PCI Bridge Specification compliant 
• 256 PCI segments supported 
• · 100 Mbytes/s sustained 
• Memocy, I/O, and configuration operations 
• 32x32-bit write posting 
• 32x32-bit read prefetching 
• Coupled operations 
• PCI aibitration 
• JV/SY 1/0; SY logic 
• JTAG 
• 144-pin PQFP 

PCI options unsupported: 

• 64-bit data path 
• 66MHz 
• Interrupt Acknowledge command 
• Special Cycle command 
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• Dual Address Cycle command 
• Cache support 
• Sideband signals 

PCI-RACEWAY FABRIC CHARACTERISTICS 

There are several critical issues that any PCI fabric must address. This section outlines how the PXB 
with RACEway meet many of the difficult challenges facing PCI fabrics. 

Transparency 

Bridge-specific knowledge is necessary during initialization to configure the bridges for transparent 
operation. The PXB specification is an extension of the existing PCI bridge specification, not a 
redefinition. 

The underlying principles of the PXB are: 

• Normal run-time software does not need to know that a RACEway fabric is present. 

• The only software that needs knowledge about the RACEway switching fabric is the Power-On Self 
Test (POST) code in the BIOS and OS. 

• The only software that needs knowledge of the internals of the switching fabric is loadable from an 
expansion ROM by the POST code. 

During the POST execution, the PXB is initialized. In effect, RACEway becomes a virtual PCI bus 
segment (figure 5) with up to 16 bridges on that segment. (PCI configuration operations allow for a 
maximum of 32 devices or bridges on a PCI segment). 

RACEway Fabric 

Figure 5. After completion of POST, the RACEway fabric "looks" like a PCI bus with up to 16 
standard two-ported bridges. The numbers in the diagram represent PCI bus numbers that are 
assigned in the configuration phase of POST. 
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Unmodified driver and application software logically treat all PCI devices in this configuration as if 
they were bridged using the existing bridge specification Physically these 16 PCI bridges represent up to 
16 VMEbus slot. Each slot can represent up to 16 PCI bus segments, providing for a potential maximum 
of 256 PCI bus segments. 

The PXB automatically perfonns the necessaiy translation as shown in figure 2. The PXB is viewed 
as a two-ported bridge but actually provides the high performance and low contention benefits of a switched 
fabric. 

Performance: Bandwidth 

Each RACEway point-to-point link is capable of 160 Mbytes/s, well above PCI's 132 Mbytes/s rates. 
A major advantage of a switching fabric over a hienm:hical bridging topology is that aggregate and 
bisection bandwidth is improved by using point-to-point interconnects with multiple simultaneous 
transactions through the switching fabric. 

For example, consider the eight-node RACEway configuration in figure 6 and a 100 Mbytes/s 
sustained rate for PCI/PXB. Each PCI bus can operate independently or use RACEway to communicate 
between buses. With four simultaneous RACEway transfers, the system in figure 6 has an aggregate 
interconnect bandwidth of 400 Mbytes/s and a bisection bandwidth of 400 Mbytes/s (a nonblocking 
configuration). 

Figure 6. A small scale PCI RACEway switching fabric. 

Performance: Latency 

RACEway was designed for low-latency, real-time operation To completely establish and initiate an 
intemode transfer across RACEway, including all protocol overhead takes approximately 150 nanoseconds, 
plus 125 nanoseconds of latency per crossbar for the first data word and zero additional latency for each 
subsequent word in a block transfer. In figure 6, no more than three crossbar "hops" are necessaiy, resulting 
in a fabric interconnect latency of approximately 525 nanoseconds; total latency will be about one 
microsecond considering the PXBs and PCI latency. 

The RACEway protocol allows for variable size data blocks up to 2048 bytes, offering amortization 
benefits for applications that use long transfers. To support this, the PXB supports combining sequential 
data phases into bursts, write posting, and read prefetching. 

Performance: Contention 

The RACEway protocol and the PXB support delayed operations (referred to as split transactions in 
RACEway documentation) which lessen fabric contention For example, during a delayed read operation, 
the fabric is free for other transactions until the source of the read is ready to respond with data. 
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The RACEway protocol is priority-preemptable. Real-time applications with sensor data can choose 
to take advantage of priorities to minimize latency. Latency for the highest-priority data is 
detenninistically guaranteed regardless of fabric trafficl. 

PCI Reads and Locked Accesses 

RACEway is a preemptable circuit-switched fabric that supports split transactions. The circuit­
switched features of RACEway allow the PXB to accomplish PCI reads and locked accesses. These 
operations and PCI coupled operations require that the source and destination nodes establish a logical 
circuit to guarantee PCI response times for completion 

However, as noted above, the RACEway PCI fabric also supports write posting, read prefetching, 
delayed operations, multiple concurrent transactions, and priority preemption These features remove or 
alleviate the contention problems typically associated with conventional circuit-switched topologies. 

Packaging and Power 

RACEway is very efficient in power and real estate consumption. The RACEway Crossbar is 
packaged in a ball grid array that is about one square-inch and consumes approximately one watt. The 
PXB chip is targeted to be less than one square-inch and about one watt. 

Each RACEway port has 40 wires and uses conventional 40 MHz CMOS signaling. No exotic 
design or manufacturing techniques are required to overcome wire density or crosstalk problems. 
(RACEway signaling through VMEbus connectors, concurrent with VMEbus transactions, has been proven 
and field-tested in more than 500 systems to date.) 

RACEway's modest footprint and electrical requirements make it suitable for both embedded and 
desktop platforms. The total interconnect and interfacing requirement in figure 6 is accomplished with six 
crossbar chips and eight PXBs consuming less than 14 square inches and approximately 14 watts. If one 
considers an eight-slot system configuration for figure 6, this averages to 1. 75 square inches~ 1.75 watts 
per slot. (In the \TME packaging paradigm, we conservatively estimate that RACEway and PXB use less 
than two percent of the real estate budget and less than five percent of the power budget to execute the total 
interconnect and interfacing requirement.) 

Strong Ordering and Coupled Operations 

The PXB supports PCI 2.1 coupled operations. Drivers using 1/0 commands can be ensured of strong 
ordering. 

Interrupts 

Internally to the PXB and transparent to the PCI bus (and software), the PXB uses a mailbox scheme 
to handle interrupts through the fabric. A PCI interrupt is converted to a "message" at the source PXB that 
writes to a specific mailbox in the destination PXB. The destination PXB responds to that mailbox 
location by posting the appropriate PCI interrupt. Additional logic in the mailbox facility allows multiple 
devices on the secondary side of the switching fabric to share the same interrupt line. 

RACEWAY INTERLINK 

RACEway Interlink is an ANSI standard (1] that specifies the use of rows A and C of the VMEbus P2 
connector for a RACEway fabric. Using the P2 connector in this manner allows a system integrator to 
attach a RACEway Interlink module on the P2 backpanel, transforming the VMEbus chassis from a single 

I special driver features would have to be added to allow the user to assign RACEway priorities to either a 
device or specific transfers from a device. PCI transactions can be assigned priorities by PXB based on 
addresses. 
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bus system into a switched-fabric interconnect system. RACEway Interlink modules come in several sizes 
and topology options (figure 7) [6, 7). 

ILKC.W.to 
~llotNu ...... 

. ... ... ... 
VllE llolll 

ILK4 Architecture 

LKC:-...to 
HltMrllCllNu ...... 

... , ... ..., .... ... .. .. , ... ... •tt •tt 

VllEllate 

ILK12 Architecture 

VllEll"'8 

ILKS Architecture 

• .... .... ... .... ... ... .. , .. ... .. ..... , ............. a+tl 

VllEllm 

ILK16 Architecture 

Figure 7. Example topologies of RACEway Interlink modules. 

A RACEway Interlink Module consists of one or more RACEway Crossbar switches. Each crossbar is 
capable of 480 Mbytes/s of aggregate bandwidth. Analogous to VSB, these modules attach to the rear of a 
VMEbus backplane using the standard backpanel P2 connectors. All modules are expandable by adding 
additional modules. For example, an eight-slot solution is possible with two ILK4s, while an ILKS offers 
a better bisection bandwidth over eight slots. Not shown is the ILKl module (a simple cable with 
connectors) which adds one or two slots to any of the above modules or provides for a two-slot 
configuration 

PMC CASE STUDY 

PMC is a standard [8) that defines PCI mezzanine boards for VMEbus and other standard buses. The 
PMC VMEbus specification provides for a PN4 connector which brings rows A and C of P2 to the 
mezzanine board. PN4 pennits a PXB PMC module that bridges a motheiboard's PCI bus to the 
RACEway Interlink intetconnect on the backpanel (figure 8). In this manner, RACEway Interlink can be 
used to extend the PCI bus of a single board computer (SBC). 

The SBC in figure 8a can tie into other SBC modules. While adding multiple SBCs does not solve 
the problem of adding PMC locations economically, adding a full-function board just to obtain PMC 
locations is overkill. It is likely that a single, modem CPU is capable of servicing several PCI devices. To 
solve this problem, a PMC carrier board is offered (figure 8b ). 
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seceu Board Carrier 6U Board 

PCI 

VME P2 

RACEway 

Sa. Sb. 

Figure Sa shows the application of the PXB on a PMC card; while Sb illustrates the use of PXB on 
the base-board. 

Using the VME/PMC form factor with RACEway provides for up to 20-slot configurations. An 
illustrative example of an eight-slot configuration is shown in figure 9. 

Figure 9. A PMC-RACEway case study example. 
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The scalable system in figure 9 uses the RACEway Interlink switching fabric to connect all the PCI 
buses. Off-the-shelf motherboards and PMC daughterboards provide for varied configurations to address real­
time processing, digital signal processing, 110 routing, and various telecommunications and other 
application requirements. 

SUMMARY 

While a transparent PCI switching fabric poses many technical challenges, a solution is formulated by 
Mercwy Computer Systems and Cypress Semiconductor using the existing RACEway switching fabric. 
With the addition of a RACEway-to-PCI bridge chip, RACEway Crossbars will act as a transparent: PCI 
fabric. In the future, RACEway will evolve to support 64-bit features and higher frequencies needed for 
supporting future PCI devices. 
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• I-Cube has developed a switched PCI evaluation 
platform 

• Targeting shared memory applications 

• Goals 
- High aggregate bandwidth 

- Scalability 

- Leveraging 32 bit / 33 MHz PCI peripherals 
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Switch Dataflow Characteristics 

• Peer to peer 

• Transfers are evenly 
distributed between ports 

• Typical of distributed 
memory parallel 
processing systems 

• Concurrent transactions 
between ports 

3 

• Aggregation 

• Most transfers are to or 
from one port 

• Typical of shared memory 
applications parallel 
processing systems 

• Interleaved transactions 
through one port 

Title: (lOGO!iA.MEEPS) 
Creotor: A.dobe lllusbotar(TM) for Windows. version 4.C 
CreotionD<l\e: (2/23/j6) (1:15 PM) 

Aggregation Switching for Shared 
Memory 

• Requires one or more fat-pipes to memory 
- 66 MHz I 64 bit PCI 

- Pentium Pro 

- Other proprietary solutions 

• Very sensitive to switch latency 

- Writes can be posted 

- Reads cannot 
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Applications - Routers 

• PCI NICs on one or Title: i ROUTER 1 
Creobr: Adobe 
CrEatiJn['Jt::: 

fvr 'Nind·JNS . .i~rsiJr. -+.O 
R1:1J more ports 
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- 100 Mb Ethernet 
NIC =25 MB/s 
traffic 

• RISC CPU based 
routing engine 

• Shared memory for 
packet storage 
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Applications - Video On Demand 
Servers 
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• PCI SCSI controllers 
on one or more ports 
- Five SCSI controllers 

require 100 MB/s 

• PCI NICs on one or 
more ports 
- Two STS-3c ports 

require 80 MB/s 

• High bandwidth shared 
memory for stream 
buffers 
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Applications - File Servers 

Title: ( File_Ser·:er .eps) 
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Creationuote: (2/29/96) ( 1 :28 P~( • 1 penormance 
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for network file 
servers. 

- 100 Mb Ethernet 
NI Cs 

- SCSI 

• CPUs hang off of MP 
bus 

• Interface with system 
memory via MP bus. 

Tille: (lOGONAME.EPS) 
Cr~t01: Adobe llluslrotor!TM) for Windows, wtt"sion 4.C 
CiootiooOo•' (2/2B/96) (1,151'11) 

Shared Memory Reference Design 

Title: (Sh_Mem.eps) 
Creator: Adobe lllustrator(TM) 3.2 
CreationDate: (2/29/96) (3:55 PM) 
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• High speed SDRAM 
shared memory 

• Three target-only 
ports 

• Non-Standard 
switch to memory 
interface 

• 66 MHz switch 
frequency 

T~le: (lOGOW..u£.EPSj 
C1'?'ltor: Adob! 111us\r31~rfTU/ for Windows. v¥sion 4.G 
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Implementation 

9 

• 9" x 11" PCB 

• Three PCI Mezzanine 
Connectors (PMC) 

• Cypress pASIC 
FPGAs implement: 
- PCI port interfaces 

- Memory Controller 

• External FIFO' s 

• 1 MB ofMoSys 
MDRAM memory 

Tille: (L·XONAJJLEPS) 
C1eoto1: .l.~'lbe lllustr·1t11(11.!) for Windo .. s, •ersion H 
C!eofonDok (2/28/315) (1:15 Pl.I) 

Performance 

• 33 MHz PCI bus rate for up to 6 loads 

• 66 MHz FIFO I memory operating rate 

• 8 PCI cycle latency (worst case) for a memory read. 

• 7 PCI cycle latency (worst case) for a memory write. 
- Writes are posted 

• Performance is limited by FPGAs. 
- 99 MHz memory performance is achievable in standard 

cell design. 

• FPGA performance could be improved by 
incorporating FIFOs. 
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PSX Switch Fabric 

Title: (PSXBLK.EPS) 
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• 160 1/0 in a single 
device 

• 20Ns bus 
connection setup 
time 

• I 00 MHz Max data 
rate 

• 80 MHz internal 
TDMRate 

• Larger and smaller 
versions are on the 

Scaling 

Title: (Mem_Bank.eps) 
Creator: Adobe lllustrotor(TM) 3.2 
CreotionOote: (2/29/96) (3:14 PM) 

• Increasing aggregation 
bandwidth 
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- Increase bus width 

- place memory banks 
on separate switch 
ports 

• Increasing bus port 
count 

- LargerPSX 

Slice datapath 
between multiple 
PSXdevices 

Tmoo (LOGON.\UE.EPS) 
Ct<:!alor: 4dcbe Ulustr~lot{lM) for Windows, ~~sion 4.C 
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Summary 

• Shared memory switching is a key application for 
switched PCI 

• Crossbar switching fabrics provide a superior solution 
for shared memory switching. 
- Low latency 

- Scalability 

- Price/Performance (ASIC port controllers) 
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Position Statement 

Session: lA The Future of PCI, May I, 1996 
by Edwin Lee. 

CompactPCI is a well designed combination of the PCI bus electrical and software standards and the 
Industrial grade Eurocard packaging standards. It is an open architecture standard, supported by PI CMG, 
a rapidly expanding, two-year-old, manufacturer's association with over 90 member companies. 

Within 3 years, CompactPCI will become the dominant computer standard in markets that require 
rugged, reliable equipment. These markets include Telecommunications, Industrial Control, 
Instrumentation, Medical Electronics and Military equipment. 

Today the leading standard in these markets is VME bus, a well designed line of products effectively 
supported by VITA, one of the finest trade associations in business. But CompactPCI has a strategic 
advantage that no amount of effort on the part of VITA or its member companies can overcome: it can 
employ all the latest chips, systems and applications software, development tools, system designs, and 
educated customers that are developed and paid for by the more than $150 billion/ year desktop market 
for PCI. These products and tools are available to CompactPCI manufacturers and Users at desktop 
prices. VME bus adherents must develop and pay for all their comparable products and services within 
the income stream of their $1.5 billion market. That requires them to support expensive engineering and 
marketing infrastructures that require high margins and high prices. 

VME's problem is highlighted by the fact that Motorola has recently given up its development race with 
Intel and will no longer upgrade its 680x0 line of CPUs, the lion's share of processors in VME products. 
In a sense VME bus has a tougher uphill battle than Apple, since Apple still has 7% of the desktop 
market to fund its battle for survival, and Apple is adopting the PCI bus in its latest desktop computers. 

Ed Lee 
2122196 
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Pl 1•111 

The Next Industrial 
Computer Bus Standard 

presented by 

Edwin Lee 
for Pro-Log Corporation 

• 1 

,._..,.: a combination of 
established standards 

electrical and software standards 

PClbus 
+ 

Eurocard 
Industrial packaging standards 

•3 

Eurocard solves the industrial 
packaging challenge 

•5 
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'f Presentation Overview 

Pll•lll 

•YlhatCtlt/J/JllCIPC/is 

• Y/hat makes C•llllCll'CI 
exciting 

• ,_..ll'CI and industrial 
alternatives 

PC/ Bus contributes 

• Off-the-shelf Chips 
• State-of-the-art software 
• The best development tools 
• Educated customers 

•2 

•4 

Usual layout of PCI bus 
Pll•lll 
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111•111 

111•111 

Weaknesses of desktop 
packaging 

• Card seating 
• nme to repair/replace 

-Motherboard 
-Disassembly 

• Card edge connector issues 
-pin count for grounds and shields 
-long term reliability 

• Poor thermal design 
• 7 

Eurocard packaging standards 

• Worldwide standards for industrial 
applications 
-Popularized in USA by VME bus 

• Cards firmly seated, locked in place 
• Plug-in System card, passive 

backplane 
• Unblocked airflow 
• Front panel insertion and removal 
• Front or rear panel 110 

Connectors 

• JU card has a single bus connector 
• 6U card may include an additional 

connector for: 
-Bridge to another~ bus 
-Bridge to VME, ISA, or STD bus 
-User 110 (popular in telco 

applications) 

• 9 

• 11 
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C/Jmpactl'C/: Eurocard packagin 
111•111 .'.'.'.'.""------l" 

'j: 

.. 
•8 .. 

'-f7 CllRl18Cl/ICI uses Eurocard 
111•111 

• 3U and 6U form factor boards 
-3U: 100 mm x 160 mm 
-6U: 233 mm x 160 mm 

• Off-the-shelf chassis, housing, and 
mechanics widely available from 
-Rittal, Schroff, Vector, Vero, etc. 

• Shielded pin-and-socket connectors 

CllRl/18Cl/ICI connector 

• 2 mm pin-and-socket type 
-Socket half on plug-in cards 
-Pin half on backplane 

• Originally developed by Siemens for 
telecom applications in mid-80's 

•Meets IEC-917 and IEC-076-4-101 
standards 

• Bellcore qualified 

• 10 
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-f CompactPCI connector 
'11· l I I 

• Available from several vendors 
-AMP 
-Burndy 
-ERNI 
-Robinson-Nugent(new) 

4 7 rows for 64 bits 

• 220 pins: 5 pins/row (15 pins lost to 
keying area) + 47 pin shield 

•Includes 119 ground pins for 
-shielding 
-very low ground bounce 
-excellent noise immunity 
-low radiated emissions 

• 13 

• 15 

-f Pin Assignments for 64 bits 
P 11·l0 I 

• Rows 1-25 are 32 bit PCI signals 
-includes 6 reserved pins per 

Intel's PCI specification Rev 2.1 
• Rows 26-42 are 64 bit extensions 
• Rows 43-47 (20 pins) are reserved 

for future use 

• 17 

181 

25 Rows for 32 bits 

• 110 pins: 5 pins/row (15 pins lostto 
keying area) + 25 pin shield 

-f Benefits of shielding 
PI I• l I I 

Pll•lll 

• Reduced EMI 
• Reduced susceptibility 

• Easier to get CE certification 

CompactPCI signals 

• PCI signals are identical to Intel PCI 
standards (including 6 spares) 

• 6 additional signals 
-1 for Push Button Rest 
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• 16 

-2 for Power Supply Status (DEGRADE 
&FAIL) 

-2 for Legacy ISA interrupts 
-1 for System Slot Identification 

• 18 



'-f' Plug-in cards per system 
111•111 

111•111 

• 8 slots per ,,_,.IPC/ bus module 
-1 Host/PCI or PCUPCI bridge slot 
-7 expansion slots 

•Up to 256 1111/1#1/'111 bus modules 
linked by p.cvPCJ bridges 

8 Slots because: 

•End-end simulation 
•Choice of connector 
•Impedance matching 

• 19 

• 10 ohm stub tennination resistors 
on plug-fn 'boards 

• 21 
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~ Bridges also increase throughput ~ 
fll•UI fll•tl1 

8 Slots per bus module 
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·7·" ·: : ; 

~ - - •.... <; 

I~. ·• , 0 ·i1 
i •· •.. '. ·: .• , . 

I .·· . I "1 

256 bus modules /system 
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Exciting II I because: 

' NllWafk : G111phica 
tnlerf8ce : Adlpter2 • 23 • 24 
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P 11 • l 0 I 

Over $4 billion in markets 

•Telecommunications 

•Medical electronics 
•Military off-the-shelf (COTS) 

• Instrumentation 
• Industrial Control 

• 25 

-f Overwhelming cost advantages 
Pll•lll 

Pl I• l 81 

• $1.2-1.5 billion annual revenues 

- Total sales of VME bus products 
(<250 thousand systems) 

- Intel's share of PCI system logic chip sets 
(40 million chip sets x $30/set) 

Note: Intel is only one of several suppliers. 

Very High Performance 

• 133Mbytes/second 
@ 33MHz and 32 bits 

• Upgradable to 266Mbytes/second 
@ 33 MHz and 64 bits 

• Speeds of other buses 
-VME: -40 Mbytes/second 

-ISA: - 2 Mbytes/second 
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• 29 

183 

'f Overwhelming cost advantages 
'11 • l I I 

• Chips and software 
-developed and debugged by >$150 billion 

desktop PC market 
- prices driven down by low margin, high 

volume, cost competititive suppliers 
- readily available to industrial users, not 

forecast dependent 
... unique parts force accurate forecasts 

for market share and profits (a la Apple) 
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-f Overwhelming cost advantages 
'll•lll 

• Leverages customer knowledge 
-PClbus 
-applications software 
-software tools 

• Leverages third party education 
-books 
-training courses 

• 28 

..P Bridge chips link legacy buses 
Pl l•lll 

• PClllSA Bridge supports ISA 110 
(Neptune, Triton, etc. chip sets) 

• PCINME Bridge supports VME 110 
(Newbridge) 
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PCI to ISA bridge 
111•111 

Pll•lll 

Graphic• Diec : - Co_,.,. 

\\··--·-:~~i~-8~;.-,(~:--··) 
··~ ,... ,. 

- Using legacy buses -

• It Is probably In a user's best long term 
Interests to migrate from legacy buses 

- Improved performance 
-Added features (110 bus Initiators) 
- Plug-and-play 
- Simpllfles support 
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... but hybrid systems can make sense for some 
period of time and for some applications 
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~ First to market solutions 

• &U Eurocard has more area than full 
sized PC plug-in card (58 sq in vs 53 sq 
in) 

- chips and peripherals 
- applications software 
- development tools 
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PCI to VME bridge 

• 32 

~ C•1at:IJICI links to 110 buses 
Pll•lll 

•SCSI 
• PCMCIA 
• AB Data Highway 
•GE Genius 
• CANIDevlceNet 

• Fieldbus 
• PMC, lndustryPack 
• etc. 

Simple to use 

• Familiar concepts 

• Leverages desktop PC knowledge 

• Clear benefits 

• Few technical details 

• Plug and play 
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~ C11m11acll'C/: an Open standard 
'll•l 11 

• Supported by PICMG 
- Now over 90 member companies 
- Growing rapidly 
- President: Joe Pavlat of Pro-Log 

• Customers can make and/or buy 
- ,._,,,, Standard ver 1.0 now available 

from PICMG 
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C11•11actPC/ rides the 
Intel/Microsoft 

/ll/11/llrDBUI 
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Position Statement 
Future of PCI Panel 

Session lA 

PCI in· all of its incarnations will replace the venerable ISA bus in the not too distant future. Chipset and 
peripheral chip manufacturers will produce their wares with only PCI, no ISA bus. Like ISA there will be 
many physical formats: motherboards, passive backplanes, industrial/rugged card shapes/sizes. The 
formats with the best defined implementation will be the ones that succeed. The leverage of common 
silicon will help PCI edge out old technologies, as will the software support implicit in the PCI design. 

The hot topics in the future will be: 
• Hot swap, especially for telecom applications, will require cooperation of the silicon manufacturers. 
• Slot count-innovation is needed to overcome this limitation-needs innovation in three areas: devices, 

bridging or switching 'fabrics'. 
• Industrial uses: Will Compact PCI replace VME? 
• Bridging to other legacy buses: board limits, J/o availability, backwards compatibility. 
• Multiprocessing: is there a place for anything besides what Intel is providing on chip? 

Bert Forbes 
Ziatecla Corporation 
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ABSTRACT 

After many years of struggling with the 
performance limitations of the ISA bus, PCI is a 
welcome newcomer to the world of data acquisition. 
In the beginning of PC-based data acquisition, the 
computer's resources were almost exclusively 
dedicated to the job of collecting and analyzing data. 
With the advent of GUI-based multitasking 
operating systems, and high performance I/O 
hardware such as local-area networking boards, high 
resolution video cards, and bus mastering hard drive 
controllers today's data acquisition products are in 
stiff competition for system resources. This paper 
describes the benefits of PCI to the world of data 
acquisition, how PCI can eliminate system resource 
issues and also presents some architectural and 
design considerations. 

PC BASED DATA ACQUISITION 
BACKGROUND 

In the old days, a PC had a video card, a couple 
Megs of memory, a serial port, a parallel port, a hard 
drive and a floppy drive. There were a handful of 
interrupt levels and DMA channels as the 
mechanisms for data transfer. A user played with the 
base address dip switch so the software could find 
the board then set some jumpers to select an 
interrupt level that didn't conflict with something 
else in the computer and another switch to pick a 
DMA channel if the board supported DMA. The 
operating system was simple, i.e. DOS, and the 
processor was slow so it couldn't handle much 
anyway. 

With this limited set of resources, the user had 
little choice but to dedicate the computer completely 
for the use of data acquisition and analysis. Since the 
system was simple, there was usually little to conflict 
with the process of acquiring data and a user could 
acquire at a rate of 1 OOK samples per second under 
DMA with little problem even ifthe hardware had 
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little or no FIFO buffering. Many systems even used 
polling to acquire data which would completely tie 
up the processor but was of no consequence since 
very little could occur while acquiring anyway. 
When a user wanted to go much faster, they bought a 
card that had a significant amount of on-board 
memory , usually in the form of DRAM. Life was 
simple then. 

As the processors got faster and the operating 
system more flexible, the computer was expected to 
do much more than simple data acquisition tasks. 
What with networking, multimedia, CD drives and 
everything else that is now standard on a modern 
PC, there were smaller and smaller portions left of 
the pie. Large FIFO's became the order of the day 
and still data could be lost. Bus mastering and 
demand mode DMA helped, but many PCs had 
problems with these advanced features of their non­
standard ISA bus and DMA transfers were limited 
to 64K words before having to reprogram the DMA 
controller on the motherboard. Resources and 
bandwidth had been stretched to the limit. Micro 
Channel and EISA were available but neither was as 
widely accepted as ISA and therefore had a much 
smaller customer base. 

ENTERPCI 

The promise of low latencies and high 
throughput on a bus with a true specification is 
exciting. On top of that, the PCI bus has quickly 
been embraced by most if not all of the industry. As 
opposed to Micro Channel or EISA, this is truly the 
bus that will replace the ISA bus. With lower 
latencies (in bus mastering mode) large and 
expensive FIFO's on the data acquisition board are 
not needed and with the high throughput, 
accumulated data is transferred before a FIFO 
overflow occurs. In addition, plug and play 
eliminates all switches on the board. Another added 
benefit is peer-to-peer communications across the 
PCI bus. This allows a data acquisition board to be 



an initiator and a signal processing board as a target 
and visa versa. Finally, CPU independence allows 
selling a product over a wider range of platforms. 

The following describes the architectural and 
design considerations for a PCI based Data 
Acquisition System (DAS) product. 

DATA TRANSFER CONSIDERATIONS 

In the world of data acquisition, long latencies 
are intolerable. Not one byte of data can afford to be 
lost. Unlike with audio where small amounts of 
delayed or missing data may be tolerated as added 
distortion or in video where picture distortion or 
jerky motion can occur, missing data in data 
acquisition could mean a corrupted experiment or 
inappropriate action taken on the part of a control 
loop. This could lead to disastrous results. 

There are two major data transfer 
considerations; the mechanism used to indicate the 
need for a data transfer and the mechanism for 
actually transferring the data. The first consideration 
is related to the issue of latency or how long it will 
take from the time data is available until a transfer 
can start. The second has to do with throughput or 
how fast a transfer can be completed. 

How Long 

There are several methods for determining 
when a data transfer is required. These are polling, 
interrupt and initiator bus request (used in 
conjunction with bus mastering). 

Polling : This is probably the easiest method for 
determining when a transfer is required and is the 
least desirable from a performance point of view. 
Although polling was a viable alternative in the DOS 
world, this is not so in a multitasking world. 

In Windows 3. lx, polling will hang the system 
until the desired event is reached. This is because 
Windows 3 .1 x is not a preemptive multitasking 
operating system. This means that your system can 
do nothing else but wait for data and transfer it. Not 
a very useful system. 

In a preemptive multitasking operating system 
like Win95 or NT, a polling algorithm will only run 
while its time slice is active so the system will not 
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hang. However, the non-deterministic nature of this 
method leads to unpredictable and typically 
intolerable latencies. 

Interrupt: Under today's operating systems, 
interrupt latencies can be from tens of microseconds 
( an idle system) to several milliseconds and tend to 
be non-deterministic. This necessitates using very 
large and expensive FIFO's at best and limits total 
data acquisition system performance at worst. 

Writing an ISR as a VXD can minimize 
interrupt latencies, but latencies can still suffer under 
a heavily loaded system especially if interrupt 
sharing is used. 

Initiator Bus Request : Initiating a bus request 
at the lowest level of hardware handshaking results 
in the shortest latencies for communicating the need 
for data transfers. Latencies using this method range 
from hundreds of nanoseconds to tens of 
microseconds and require the least amount of data 
buffer memory. This method necessitates, however, 
that the board be capable of bus mastering and also 
requires on board DMA hardware. Usually this 
capability is built into the PCI controller chip. 

How Fast 

There are several methods for transferring data. 
These are a single read/write operation in a loop, 
using the "REP" instruction prefix with a read/write 
instruction (for an x86 processor) and bus mastering. 

Read/Write : After recognizing that a data 
transfer must occur, the system CPU reads or writes 
data in a loop to transfer data. The problem with this 
method is that it requires many clock cycles for each 
transfer (i.e. it's slow) and uses up large amounts of 
CPU time. 

"Rep" Prefix : This method is essentially the 
. same as above except it uses a single, more efficient 
instruction. The problem is that too much CPU 
overhead is still required. 

Bus Master : This is a background operation 
that does not require CPU bandwidth. Once the bus 
has been granted to.the bus master initiator, transfers 
can occur at PCI clock rates (i.e.) one DWORD 
every 30 ns. 



Data Transfer Conclusions 

After analyzing all of the options for 
transferring data, it is obvious that the most reliable 
option offering the highest throughput and lowest 
latencies is bus mastering. It is also the only method 
that frees the system processor to do what it is meant 
for (i.e.) processing, not transferring large amounts 
of data across the bus. Also, since latencies are low 
and transfer rates are high, smaller and slower 
primary buffering may be used. 

BUS MASTERING AND CREATING DMA 
CHANNELS 

Although bus mastering is possible on the ISA 
bus, the total throughput is still limited to about 2.5 
Mega Bytes per second, conflicts with memory 
refresh need to be resolved and it does not work well 
with all motherboards. PCI, on the other hand, is 
designed for this type of operation. 

Since DMA is not an integral part of PCI, 
DMA control must reside on the DAS board and 
utilize bus mastering as the mechanism for data 
transfer on the bus. One way to provide this control, 
is to create virtual DMA channels on the DAS board 
using a digital signal processing device. In this way 
several DMA channels are available for multiple, 
high speed functions on a single board. The DSP 
chip computes the 32 bit system address, keeps track 
of data in the board's primary data buffer FIFO and 
creates a terminal count interrupt. The DSP can also 
perform scatter I gather DMA when contiguous 
memory is not available. Since the DMA channels 
are created on the board, there is no longer the 
problem of running out of bus specific DMA 
resources, each DAS board carries with it its own 
DMA resources. 

The board's primary data buffer FIFO is 
comprised of a dual port SRAM and several address 
generators in an FPGA. Multiple, bi-directional 
FIFO's are created in this way. The FIFO's are 
needed to compensate for latencies in acquiring the 
bus so that no data is lost. This FIFO operates at the 
slower board speeds as opposed to the 33 :Miiz PCI 
clock rates. This allows for a more simple and cost 
effective design. Data is transferred in bursts to the 
PCI controller device's FIFO. These smaller FIFO's 
of just 16 words each for input and output are able to 
transfer data in bursts at PCI rates. 
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This architecture supports an aggregate data 
transfer rate of up to 10 Mega Bytes per second. As 
an example, one configuration utilizes a single, 12 
bit ADC converting at a up to 5 Mega Samples per 
second, while a second configuration utilizes a 
combination of four analog and digital 1/0 devices, 
each converting at 1 Mega sample per second. Even 
for these high data rates, there is no need for on 
board DRAM because of the low latencies and high 
throughput available on the PCI bus. 

Device 
(16 word In/Out 

FIFOs) 

PCIBus 

The above figure shows a DAS configuration of 
an analog and digital 1/0. Each of these 1/0 
functions are assigned an on board DMA channel. 
An arbiter (not shown) allows each of these 
functions to be multiplexed onto a port of the 
primary data buffer FIFO. The DSP keeps track of 
data in the FIFO, signals the PCI controller when a 
transfer is required and provides the starting address 
of the transfer to system memory. To initiate a 
transfer, first data is transferred from the second port 
of the primary data buffer FIFO to the smaller and 
faster FIFO in the PCI controller as an off line 
process. Then, the PCI controller device initiates a 
bus request and completes the transfer at bus rates 
while the DSP is calculating the next start of transfer 
address. 

THE PC/ CONTROLLER 

Another major consideration in a PCI based 
DAS design is the bus controller chip. There are 
several possible options for this device. An ASIC 



(Application Specific Gate Array) may be built, an 
FPGA (Field Programmable Gate Array) can be 
designed or an off-the-shelf device can be used. The 
selection of a device type must be based on the 
following requirements: high performance, fast 
turnaround, low cost and ease of use. These are some 
of the pros and cons of each potential solution. 

ASIC Solution 

+ Customizable to specific needs 
+ High performance 
+Lowest piece price (for large volumes) 
- High NRE (on the order of $25K to $35K) 
- Time to market 

- Very large development and verification time 
- Long lead time {proto to production-16wks) 

- Re-spins due to: PCI spec revisions, design errors 
and system changes 
- Minimum volumes required 

FPGA Solution 

+ Low volumes OK 
+NoNRE 
+ Customizable (limited by density) 
+ Can be turned into masked device (see ASIC pros 
and cons) 
- Very high piece price (on the order of$200 to $300 
per bus mastering device) 
- Lowest performance (extra PCI clock cycles often 
needed) 
- Large development and verification time (helped by 
vendor macrocell availability) 
- Lowest density 
- Redesign and reverification of compliance left to 
user with new PCI spec revisions 

Off-The-Shelf Solution 

+ Already designed 
+ Proven PCI compliance 
+No volume minimums 
+ High performance 
+ Low piece price 
+Vendor redesigns the device when new PCI spec 
revisions occur 
- Not customizable 
- Will require glue logic for tailoring to specific 
system needs 
- Need to learn device and its idiosyncrasies 

190 

PCI Controller Selection Conclusion 

Given the typical production volumes for data 
acquisition products, the off-the-shelf device solution 
is the best choice. These volumes do not justify a 
gate array device and the prospect of continually re­
spinning the ASIC due to PCI spec revisions seem 
daunting. The FPGA approach is not recommended 
because of its extremely high piece price and the 
increased difficulty of fitting a full bus master 
controller in a device without compromising 
performance. In addition, the off-the-shelf approach 
does not require as much verification time since it 
has already been tested for PCI compliance. Also, 
since vendors of an off-the-shelf controller has the 
highest production volumes and smallest die size 
(i.e. greater yields), the price of this device is low 
and should continue to decrease. 

SUMMARY 

The PCI bus is a high performance and well 
accepted mechanism for transferring data in the PC. 
This makes it a perfect choice for new data 
acquisition product designs. Unlike other buses that 
have come and gone, PCI is here to stay. This bus, 
however, requires a much greater design effort and 
attention to technical details. New architectures and 
design methodologies are also required. Every effort 
should be made to take advantage of the benefits of 
the PCI bus and to comply with explicit and implicit 
design requirements. In the next few years this bus 
will undergo changes. The designs we do today 
should try to anticipate these changes and be as 
flexible as possible. 
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This paper discusses the key elements that must be addressed when designing high-performance data 
acquisition boards for the PCI bus. Elements of handling high-speed bi-directional data flow, such as the interface 
design, on-board memory and the management of the bus, are examined. 

Why design a data-acquisition board for the PCI bus? Simple: Speed. If there is one sought-after commodity 
in many data-acquisition applications, it is data throughput. The more data that is collected, acquired, and converted 
to digital form, the greater the urgency to move it to where it can be stored, analyzed and displayed. PCI is a way to 
satisfy that need, to transfer data with the highest possible throughput in a PC environment. 

Thus, PCI brings an immediate advantage to the art of data acquisition: Significantly faster data transfer to 
the PC's memory and display. Not only can data continuously stream to the display but PCI sets the stage for 
simultaneous operation of the front-end conversion as well. At the same time, the host processor is free to perform 
other tasks. Because speed is now at a premium, such a concurrent environment has become essential. The CPU and 
its memory and cache subsystems must operate independently of the peripherals bus, and information must be 
interchanged in the form of large blocks of sequential data. 

Of course, data acquisition can benefit from Pei's many other advantages: 
• The multiplexed address and data scheme is more efficient than other buses. 
• There is the possibility of bus mastering, which, because of the low latency, lets peripheral cards take 

control of the bus in one-tenth the time of other buses. 
• Pei's Plug N Play and autoconfiguration capability forever banishes jumpers and DIP switches. 
• And PCI offers a known roadmap for future developments: 3.3-V operation in portable acquisition 

systems, bridging to outboard racks of acquisition boards--and even faster throughputs than ever. 

But before PCI can be placed on board, a designer must make a number of key decisions concerning the 
overall architecture, the PCI interface, the analog aspects of the board, the amount of on-board control and processing, 
and more. Some of the decisions will be interdependent. 

Data Rates Dictate the Design 

Functionally, the total data rate to be managed bi-directionally will determine much of the board's eventual 
configuration. Hinging on the anticipated data rates will be the amount of on-board memory, and whether to make the 
board a PCI master or slave. 

That is, the PCI bus bandwidth allows board designers to create an architecture that supports the high-speed 
operations of not only the input and output converters, but also other board functions. For even more speed, designers 
can pull out all the stops by bus mastering, letting the acquisition board take control of the PCI bus. 

The required digital support, then, follows from these data sampling requirements. A designer will need to 
pin down the specific performance levels for all the subsystems before he or she can design the PCI interface 
architecture. 

191 



Master Or Slave? 

Because PCI supports two options for the transfer of data, a designer of PCI data acquisition hardware has 
choices to make. When the required data sampling rates are slow (<1000 kS/second), the board can function 
adequately as a PCI slave. FIFOs can buffer the bi-directional data and the host computer, with a Pentium processor, 
takes care of the reads and writes of the data samples by talking to and commanding the board -- a minor task for the 
Pentium. 

A bus master offers more flexibility, especially when support is needed for high speed data transfers. 
Controlling the PCI bus offers the benefits of increased throughput--theoretically, data transfers can approach 66 
Msample/s. More realistically, 40 Msample/s probably can be achieved. Of course, the board complexity goes up 
because the PCI interface must be designed to incorporate the master logic, which can be placed in an FPGA, or a 
commercial off-the-shelf interface chip can be used (if one can be found with the desired performance and 
characteristics). 

Related to the overall complexity of the hardware's architecture is the level of on-board control utilized. 
Implementing a high level control architecture simplifies the PCI interface and board architecture, but adds a new 
level of overhead that can affect the data transfer efficiency across the bus. Whereas if the designer opts for a low­
level controller, the Pentium must do the "nitty gritty" work of directly accessing the on-board register data, which 
reduces the amount of redundant functions between the board and the PCI bus but increases the complexity of the PCI 
interface. As the majority of the functions required to move and control data flow and modes on the board exist 
within the PCI architecture, there is little need to re-create these functions on the board. This makes more work for 
the CPU, but eliminating the added overhead of the high-level controller significantly increases the efficiency of the 
data transfer. The design balance is between the complexity of the interface architecture and the aggregate bi­
directional data transfer speed required for the product. 

These issues impact the final design configuration and must.be weighed against such factors as the 
availability of the resource skills needed to design a PCI interface chip in-house and the achievable performance of an 
in-house design vs. that of a commercial part. 

In-House PCI Interface Or Commercial? 

In-house designs offer the opportunity for innovation and the ability to get to market first. Several 
operations within Data Translation--from multimedia to imaging to data acquisition--have taken advantage of that 
opportunity and, as a result, strong PCI knowledge has disseminated within the company. 

Although a standard part would offer a board designer the luxury of concentrating on the acquisition or 
analog functions, commercial interface chips-which try to be all things to all people--do not look promising at the 
moment. For example, one of the design challenges is to accommodate the various chip sets found in X86-based PCs. 
Intel alone has developed at least three different-generation chip sets--the Mercury, Neptune and Triton --for its 
Pentium and P6 microprocessors. Each chip set has its own timing requirements, quirks, and design issues. 
Consequently, a commercial interface chip may work correctly in one machine but encounter a problem in another. 
The commercial interface-chip vendor may correct problems, or errata-eventually; however, with an in-house design, 
any problem can be resolved immediately by reprogramming the FPGA-no waiting for the reporting and correcting of 
such errata. 

A good example of a such a potential problem is the Neptune's buffer depth--it can accept only four data 
transfers in a burst, that is, four at a time, with no wait states. The Triton accepts a much longer burst of data but 
occasionally inserts an unexpected wait for a clock or so. If the interface chip does not accommodate that wait, data 
can become corrupted or disappear after being put out on the 
bus at the wrong time. 

In addition, a flexible in-house design based on FPGAs provides for quick reaction to periodic updates and 
changes to the PCI specification, which continually evolves over time. If the time ever comes when the interface 
design can be safely frozen, there is always the option of migrating to quick-turnaround, plug-compatible gate arrays 
for the same cost savings afforded by an off-the-shelf part. 

Once the decision to go in-house has been made, the stringent electrical interface specifications narrow the 
field--few FPGAs can satisfy the requirements. For instance, the input capacitance had to be under 10 pF per signal. 
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Even so, the timing characteristics form the tougher task, especially if the designer attempts to hit the top 132 
Mbyte/s PCI specification. Setup-and-hold times are 7 and 0 ns respectively, and the clock-to-output time is only 11 
ns. Then there is the AC drive. Because the PCI bus is not terminated, it relies on reflective signaling. This translates 
to the need for an output driver with carefully controlled output impedance and drive characteristics. 

Data Translation designers not only managed to satisfy the PCI bus interfacing in one FPGA, but also 
included much of the acquisition board's internal circuitry, including glue and triggering logic, the interface to the 
counters and DACs, the decoding and digital controls for the analog circuits, and the PCI configuration registers. 

Depending on the relative speeds involved, it is the designer's decision to bus master or not and how to 
move data. A complicating factor is that mastering can be designed in on the input or output side. The input side may 
be going so fast, it needs to be a master; however, other than a slight inefficiency, there may not be a problem in 
being a slave on the cl/a side, assuming there is enough throughput on the bus. That is so because the cl/a converter 
may be working at only 200 kHz, certainly not megahertz. Other situations may dictate mastering on both sides. 

From the hardware design standpoint, the level of bus mastering implemented is a complex issue; mastering 
in both directions takes more logic to ensure that multiple masters cooperate among one another. All things being 
equal, a designer may opt for a dumb slave with no memory because it is the "cheap and easy" way to go. Like 
everything else, it is a tradeoff. 

How Much Memory? 

In designing a PCI board, one objective is to reach the best balance between bus access and on-board 
memory capacity. For example, taking over the bus means less memory buffering is needed, and there is less 
overhead. The board can wait until it accumulates a number of samples, then burst data and give up the bus. That 
calls for a small FIFO buffer within the interface FPGA. It saves money because the improved bus management 
obviates the need to put expensive memory on the board. The PCI specification limits the time a board can be held off 
the bus; otherwise, a large buffer would be necessary to back up data when other activity takes place, such as on the 
ISA bus. The moral: By controlling the bus, not only is throughput improved and less memory is needed on the board, 
but the host processor is off-loaded to service other tasks. 

Take, for example, an acquisition board that is set to sample analog input at a 3 to 5 MHz rate. As a bus 
master in that application, almost no memory is needed. Certainly, whatever memory is still required is much less 
than if operating on the ISA bus. Data flows at higher speed, in a more-efficient, more-continuous manner. There are 
no significant latencies. And the pace is more predictable because the board is not held off for interminable periods 
by other boards within the system. 

Other Considerations 

One thing to watch for as boards speed up: Meeting the European CE (emissions and susceptibility) and 
EMI specifications. The faster speeds of PCI bus operation call for a more careful layout of board traces and 
components to prevent interference, crosstalk, and the like. Filtering and shielding may also be necessary. 

Challenges For the Future 

Only time and money prevent a designer from expanding horizons. For instance, once it has been decided to 
put a controller on board, why not let the controller also perform some digital signal processing? With, say, a C52 
serving as the controller, the board can be made even more independent from the CPU. And the door then opens to 
PCl-based real-time control and test-and-measurement applications. 

The bridging aspects of the PCI bus are intriguing. Thanks to PCI bridge chips, multiple acquisition and 
other boards can be designed into a rack or other system or, as computers appear with more PCI slots, into a PC itself. 
Many more channels can be gained and the aggregate speed goes up. A multiboard design may move twice as much 
data so the boards efficient utilization of the bus interface will be important. Of course, that may affect the memory 
and other requirements. 

Conclusions 
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The PCI interface bus has eliminated many of the problems associated with the ISA bus and has widened the 
technology horizons for data-acquisition boards. Throughput has especially benefited. A thorough understanding of 
the PCI specifications is necessary to achieve the best performance and feature set within a specific board. 
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Abstract 

The use of personal computers for test and measurement applications is gaining more and more 
acceptance in the test and measurement market. However, a major hindrance to the use of personal 
computers in certain test and measurement applications has been the lack of a standard, high-speed bus 
architecture. PCI is an enabling technology that dramatically increases the domain of test and 
measurement applications suitable for PC-based test and measurement. Applying PCI to the test and 
measurement industry presents several technical and architectural issues that must be resolved to fully 
realize the potential of PCI. This paper discusses the impact of PCI on the test and measurement industry 
and presents National Instruments technology that addresses the technical and architectural challenges 
with integrating PCI to the test and measurement industry's formal and de facto standards, such as data 
acquisition, VXIbus, IEEE 488, and virtual instrumentation. 

Introduction 

The Peripheral Component Interconnect (PCI) standard is profoundly affecting the computer industry; 
the influence of PCI is spreading to other computer-related areas, such as the test and measurement 
industry. Test and measurement applications and products typically use three primary technology areas. 
The first is the IEEE 488 standard, commonly referred to as the General Purpose Interface Bus (GPIB). 
GPIB is the protocol of choice for connecting remote instrumentation to a PC. The second is the VME 
extensions for instrumentation (VXI) bus while the third is computer-based data acquisition. PCI impacts 
all three areas. The high bandwidth of PCI provides opportunities for PCs to directly handle more 
applications based on GPIB, VXI and data acquisition. To fully use all PCI advantages, it is important for 
test and measurement vendors to provide PCI products that address the needs of VXI, GPIB, and data 
acquisition. Having this global view helps customers take full advantage of PCI capabilities in their 
applications. This paper examines the technical challenges and possible solutions for applying PCI to 
VXI, GPIB, and data acquisition (DAQ) products and applications. 

PCI Encompassing More Test and Measurement Applications 

It is common in the test and measurement industry to link a computer to a set of instruments or sensors 
to stimulate and check a device under test. The computer, by its very nature, can perform many different 
roles in these systems. The flexibility of the computer has given rise to virtual instrumentation, in which 
a computer running appropriate software can be programmed to mimic a more expensive instrument, 
customize the interface of an instrument, or perform a function for which there is no commercially 
available product. 

Applying virtual instrumentation to a problem includes evaluating the data bandwidth and processing 
requirements. Some applications involve small amounts of data or low-bandwidth data streams while 
other applications are more data-intensive. With the high bandwidth of PCI, computers can handle more 
data- intensive tasks than was previously possible with other bus standards, such as ISA or NuBus. The 
acceptance of PCI has also brought with it increased processing power in the form of the Pentium, 
Pentium Pro, Alpha, and PowerPC processors. 
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While PCI addresses the data bandwidth issues in virtual instrumentation, it also addresses a more 
subtle problem in computer architecture. Although many test and measurement customers use a "Wintel'' 
computer, a sizable group of users do not. With more computer vendors adopting PCI, computers will 
share common architectures and differ only in the processor and operating systems they support, making 
it easier to change computing platforms if system requirements change. With PCI, a variety of computer 
system vendors can serve test and measurement customers who were previously locked into one vendor's 
computer system. 

Getting the most out of PCI for test and measurement applications requires a great deal of architectural 
planning. Customer requirements differ when using VXI, GPIB or data acquisition. Therefore, it is 
important for vendors to address all these issues up front to provide customers with PCI test and 
measurement products that realize all the potential of PCI and satisfy customer needs. 

Applying PCI to VXI Products 

VXIbus is a superset of the VME standard that includes interrupt and triggering protocols suitable for 
instruments. VXI instruments exist as separate cards inserted into a backplane. All VXlbus systems 
require some device to act as a controller that configures and operates the other VXI devices. Three types 
of controllers exist. The first is an embedded computer that is plugged into the backplane just like any 
other VXI instrument. A second method connects a personal computer to the VXI backplane using one 
GPIB hardware interface installed in the computer and another on the VXI backplane. A third method 
connects a personal computer to the VXI backplane using the MXlbus, which provides a memory mapped 
architecture with higher bandwidth than GPIB. PCI can improve VXI controller performance, but to do 
so, a PCI to VXI interface must address several technical issues. 

VXIbus defmes more address spaces than PCI. 

VXlbus uses big endian byte ordering while PCI is little endian. 

VXlbus and PCI have significantly different signal protocols. 

VXIbus and PCI support multiple masters but have different latency and arbitration 
requirements. 

VXlbus bas multiple address spaces that are 64 KB, 16 MB and 4 GB long. To map PCI bus cycles to 
the VXlbus, interface cards require configurable window hardware to map specific blocks of PCI address 
space to specific VXI addresses and address spaces. Further, because VXIbus handles multiple masters, a 
PCl/VXI bridge needs window hardware to map portions of VXI address spaces back to PCI. 

The PCI bus employs little endian byte ordering; the VXIbus is big endian. Simply swapping data 
bytes does not adequately address the byte ordering problem. For example, if a 32-bit quantity is 
comprised of four 8-bit characters, then the bytes should be swapped. However, if the 32~bit value is an 
integer, then the value should not be swapped. Incorporating byte transposing hardware into a PCl/VXI 
bridge alleviates control software from much of the byte ordering task, but is important to implement the 
byte transposing hardware so it can be disabled by control software when necessary. 

VXIbus employs different signal conventions than PCI. PCI master and slave devices indicate when 
they are ready to transfer data; it is implied that data transfers whenever both devices are "ready" on the 
rising edge of the bus clock. With this approach, master and slave devices can decide independently when 
they are ready. VXIbus, however, uses a more strict initiate/respond protocol in which the master device 
asserts a data strobe signal to begin a transfer and the slave responds to the data strobe by asserting a 
data acknowledge (DT ACK). A slave cannot assert a DT ACK, however, until a master has asserted a 
data strobe; so, the slave device behavior is dependent on the master device. 
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The main implication of the differences in signal protocol is that a PCI cycle will eventually have to be 
converted to the more restrictive initiate/respond protocol on the VXIbus as the cycle crosses a PCINXI 
bridge device. Write post buffers help alleviate the problem for write cycles, but on read transfers, a PCI 
to VXIbus bridge needs to support PCI delayed transactions. 

Latency and arbitration differ between PCI and the VXIbus. VXI device response times can exceed 
PCI latency requirements. The initiate/respond protocol issue previously discussed can reduce 
performance as the internal buffers are filled over long transfers. A good way to address these problems is 
to support DMA controllers within the PCINXI bridge. These DMA controllers, equipped with FIFO 
buffering, can be optimized to perform VXI and PCI cycles efficiently. Further, the host CPU does not 
have to deal with moving data over the PCINXI bridge, but can delegate that task to the DMA controller. 
The end result is the PCINXI bridge device can act as a "good citizen" on both the VXIbus and PCI. 

Interfacing PCI to GPIB 

GPIB is a long-established standard in the test and measurement industry. GPIB interface products are 
available from many vendors to connect virtually every type of computer to GPIB equipment. Because 
PCI is such a significant standard in the computer industry, it is important to provide a PCI interface to 
GPIB. Indeed, some new computers, such as Apple's Power Macintosh, provide only PCI slots; in these 
cases, it is important to provide PCI/GPIB support so that customers can take advantage of these high­
performance, PCI-only computers. 

The GPIB bus is slow by comparison to PCI and is only eight bits wide. Simply porting an ISA-style 
GPIB card to PCI would slow down performance over the PCI bus. A PCI to GPIB interface should use 
the full bandwidth of GPIB and prevent its lower performance from degrading PCI performance. Several 
means exist to address this problem. First, a PCI to GPIB interface should provide write post buffering. 
This buffering helps decouple PCI and GPIB. Second, supporting delayed transaction, as described in 
Version 2.1 of the PCI specification, prevents GPIB read cycles to slow instruments from occupying PCI. 

A third method to improve system performance is to support byte packing in the PCI to GPIB interface. 
Such capability can convert a single 32-bit PCI cycle into individual 8-bit GPIB cycles. Hence, PCI does 
not have to routinely carry 8 and 16-bit cycles. Finally, a DMA controller on the PCI/GPIB interface 
would use PCI efficiently for large blocks of data. 

PCI offers further benefits to GPIB performance. Recently, a high-speed protocol was added to the 
GPIB standard called HS488. The maximum throughput of HS488 is 8 Mbytes/s. The throughput of 
HS488 is higher than the typical performance for ISA and other common bus standards. PCI, by contrast, 
can use all of the potential bandwidth for HS488. 

PCI for Data Acquisition 

PCI has clear benefits for data acquisition. The average bandwidth on older bus architectures, such as 
ISA, is 1-2 Mbytes/s. PCI, however, offers average system performance of 20-30 Mbytes/s currently; this 
number is increasing with the introduction of more efficient PCI devices and chip sets. Assuming 16-bit 
sampling, PCI's bandwidth could support 10-15 MHz sampling applications without the need for memory 
on the card. 

A key point to remember about applying PCI to data acquisition problems is that PCI is not necessarily 
appropriate to all data acquisition applications. It is important to assess the data bandwidth requirements 
of the customer before throwing a PCI card at the application. If the customer requires a single DAQ 
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board sampling at 40 kHz, then an ISA-style PCI card may be more than sufficient for the application. In 
such applications, the update rate of the DAQ card is slower than either the cycle time on PCI or ISA. In 
the case of low bandwidth sampling, a customer is better off using one of the many ISA slots on typical 
"Wintel" machines instead of using one of the few PCI slots. 

Developing a PCI DAQ card; even for the 100-300 kHz sampling range, requires more than simply 
porting an existing ISA bus design over to PCI. Porting such an ISA design implies that the DAQ card 
will operate as a PCI slave device, but developing the slave interface will require many of the architectural 
features associated with the GPIB products. This similarity in architecture is not surprising because the 
bandwidth of a 100-300 kHz DAQ card is similar to the GPIB. PCI slave DAQ cards can benefit from 
features such as byte packing, write post buffers, and delayed transaction support. 

Many PCI DAQ products on the market handle PCI slave-only functionality, but to fully realize PCI 
benefits, a PCI DAQ card should have PCI master capability. Such master capability would probably be 
driven by a DMA controller on the DAQ card. Bus master capability uses the PCI bus more efficiently 
than relying on the host processor to move the data. Bus master capability is almost a requirement for 
sampling rates above 10 MHz because the processor would have trouble moving data from the card while 
performing other operations. Bus master capability also becomes important in systems with multiple data 
acquisition cards whose aggregate bandwidth requirements approach 10 Mbytes/second. 

Implementing PCI Capability for Test and Measurement 

National Instruments has been a major test and measurement vendor for many years. Thus, it was 
important for us to provide PCI products to our customers. The goal of the PCI product development was 
to develop a series of PCI cards that addresses the key technology foundations of the test and measurement 
industry (specifically, VXlbus, GPIB, and data acquisition). Because National Instruments focuses on 
T &M applications, general off-the-shelf ASICs didn't provide the special features we needed. 

National Instruments developed an ASIC that could address specific customer needs for test and 
measurement PCI products. The resulting ASIC is a multiport device that includes ports to MXI, PCI, 
and VXI. It also incorporates a general-putpose IO port for data acquisition and GPIB applications. The 
ASIC includes DMA controllers that can transfer data at a peak rate of 132 Mbytes/s. The DMA 
controllers themselves operate in several different modes. These modes can perform operations such as 
ring-buffer transfers, large contiguous block transfers, and noncontiguous transfers by reading and 
executing DMA instructions stored in system memory. The noncontiguous transfer capability is especially 
important in virtual memory operating systems, such as Windows and Mac OS. 

All of the National Instruments PCI cards use the ASIC, thereby providing a unified PCI architecture 
for these cards. Providing a unified PCI architecture for test and measurement products benefits both 
developer and user. For the developer, it means that a single interface can be used on a variety of 
computer platforms, reducing time to market. Because the ASIC directly addresses the needs of test and 
measurement, the products can also attain maximum bandwidth for GPIB, VXI, and data acquisition 
Users automatically have a migration path to new computer systems. This saves money, because the user 
doesn't need to buy a new board if he or she wants to use another vendor's computers. The user 
automatically has more computing platforms to choose from and the users' s tests run faster because of the 
improved bandwidth. 
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Chip Makers Roundtable 

Programmable Logic Implementations of PCI 

David Ridgeway, Xilinx 

This tutorial will cover implementation of custom PCI compliant J/F solutions. The 
focus will be on the design considerations for PCI logic design, PCI configuration, 
back-end interface issues and maximizing data throughput. The presentation will also 
review the use of Xilinx PCI Interface Modules to increase design efficiency and accel­
erate the engineering/manufacturing of new products. 
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PCI is not just for PCs: 
Embedded Systems Migrate to PCI Architecture 

PCI is a well-accepted standard in Personal Computer systems. The architecture is also rapidly gaining 
popularity in embedded systems, replacing proprietary buses. PCI offers many advantages to hubs, routers, 
printer engines, set-top boxes and other embedded systems that require a high-speed, low latency backplane. 

Bandwidth is the most obvious, but not most important, benefit. With data rates of 132 (32 bits) and 264 
(64 bits) Megabytes per second, PCI is the first standard personal computer bus to deliver bandwidths 
comparable to proprietary buses. ISA, EISA and Micro Channel, which ranged in throughput from 5 to 40 
Megabytes/second, were rarely attractive outside of the PC architecture world. 

Perhaps more important than bandwidth are the other benefits that embedded systems designers gain from 
using PCI: wide availability of low-cost J/O silicon (e.g. LAN, SCSI and video controllers), a proven high 
integrity bus standard, and compatibility with other manufacturer's hardware. 

Most suppliers of high volume J/O and graphics chips now provide a PCI interface, and sometimes only a 
PCI interface, for their newest products. This makes it simple and inexpensive to connect the component to 
the embedded system if the embedded system uses PCI. Conversely, if the embedded system does not use 
PCL it incurs a cost, and sometimes a performance penalty when connecting to a PCI J/O chip. 

Many embedded system designers believe, and correctly so, that they can design a higher performance and 
lower latency proprietary bus system that is better tailored to their products than PCI. However, the faster 
time to market of using a proven architecture like PCI often outweighs the marginal performance benefit of 
the proprietary bus. 

"Open Embedded Systems" are now much easier to realize with PCI. Already manufacturers of 
communications equipment are taking advantage of PCI by using third party PCI adapters (for example Tl 
or ISDN boards) in their embedded systems. Using these adapters saves them the time and expense of 
designing all the embedded system peripheral devices in-house, allowing them to focus their resources on 
their area of expertise. 

PLX and PCI Embedded Systems 

PLX Technology is the leading supplier of .interface chips for PCI embedded systems and adapters. PLX 
PCI chips are used in hundreds of such products connected to many varieties of embedded CPUs including 
the Intel i960® processors, 186, 386, 486, 68K, PowerPC, R3000, ARM, Inmos transputer and many DSP 
and intelligent J/O controllers. 
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PCI Performance Analysis for 
High-Speed Networking 

Integrated Device Technology, Inc. 

Peter N. Glaskowsky, Senior Engineer 
2972 Stender Way, Santa Clara, CA 95054 

408-988-5636 png@ldt.com 

Copyright 1996 IDT, Inc. 

Goal of this presentation 

• To show how to analyze the In-system perfonnance 
of IDT's NICStAR ATM controller, based on: 

- NICStAR system requirements 

- NICStAR operations 

- System behavior 

- Other software and hardware Issues 

• This same process may be used to analyze the 
perfonnance of any PCI device 

RCI 2 
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NICStAR requirements 

• NICStAR Interfaces between PO and a full-duplex 
OC-3 (155 Mbps) ATM network 

- Handles ATM processing 

• Segmentation and Reassembly for ATM 
Adaptation layers 0, 1, 3/4, and 5 

- Also supports 25 and 52 Mbps ATM 

• NICStAR Is a 5V, 32-blt, 33 MHz PCI device 

• Acts as a PCI target for configuration and control 
- control registers can be In 1/0 or memory space 

• NICStAR also operates as a PCI master to transfer 
Its own transmit and receive data over PCI 

3 

Example NICStAR PCI System 

ISNEISA/MCA 
....---'~ 

AlJD[) 
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Bandwidth analysis 

• We'll begin with cell data transfer over the PCI bus 

• 155 Mbps ATM actually yields about 135 Mbps 
after SONET and ATM layer overhead 

- That's about 17 MBps each way, or 34 MBps of 
data to be transferred over the PCI bus 

· This data is transferred in 12 word bursts (max) 

- Some chipsets break transfers on cache line 
boundaries (average 6 words per transaction) 

• Let's plot this against representative PCI bandwidth 
curves and see where we are ••• 

5 

Burst Read Performance 
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Burst Write Performance 
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Cell data transfer conclusions 

• Don't put too much trust In these curves! 
- They are representative of current chipsets, but 

older chipsets can be much less efficient 

• Note that longer read bursts can use the more 
efficient Memory Read Multiple transaction 

• We can now calculate bus utilization: 

- We need (17 /42) + (17 /70} = 64% 
of the PCI bus for our 34 MBps of data 

• Therefore, cell data transfer alone does not exceed 
available PCI bandwidth 

P-CCI 8 
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Latency analysis 

• We also have to meet NICStAR's latency specs 

• On average, we transmit or receive a 53-byte ATM 
cell every 2.8 µsec at 155 Mbps 

• The NICStAR transmit FIFO holds 12 cells of 
transmit data, so the maximum tolerable PCI read 
latency Is about 33 µsec (non-cumulative) 

• The NICStAR receive FIFO Is In off-chip SRAM, and 
holds 315 cells, so the maximum tolerable PCI write 
latency Is about 890 µsec (non-cumulative) 

• Most PCI systems meet these requirements easily 

e.c1 9 

Driver overhead 

• The device driver wlll communicate with NICStAR to 
open or close the ATM virtual connections 

• The driver must also work with the operating 
system and applications software to allocate and 
release buffer space In host memory 

• Interrupt sharing Imposes additional overhead 

- Drivers get called when they have nothing to do 

ec• 10 
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Interrupts and queue maintenance 

• NICStAR interrupt overhead varies depending on 
type of traffic and NICStAR configuration 

- Could be multiple Interrupts per cell if NICStAR 
must assemble a cell from all over host memory 

- ATM-aware applications can transfer very large 
blocks of data with only one interrupt per block 

· NICStAR maintains status queues in host memory 

• The host CPU maintains buffers for transmit and 
receive data, and notifies NICStAR where they are 

• Only PCI writes are needed for this maintenance 
- Posted writes reduce PCI bus overhead 

l1 

Protocol overhead 

• Current network protocols have a lot of overhead 
for the protocol stacks and drivers 

· Users think of "wire rate" as a guideline at best 

- 2-4 Mbps over 10 Mbps Ethernet Is common 

• IP LAN emulation over 155 Mbps ATM will inherit 
all the same overhead, plus more 

• (Today, the bottleneck Is here, not In the hardware) 

12 
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Limits to performance 

· The more data being transmitted or received by 
NICStAR, the more work there ls to be done by the 
host CPU and other system resources 

• At some point, you may run out of bandwidth on 
the CPU, or main memory, or the PCI bus 

· The limits on each system resource must be 
considered when Integrating any device like 
NICStAR Into the system 

13 

Applications- server vs. workstation 

• Servers will have a rough balance between transmit 
and receive traffic, requiring full duplex operation 

· Workstations will typically spend more time 
receiving data, more like half-duplex operation 

• Receiving also uses less PCI bandwidth and 
tolerates more latency than transmitting, so Is 
easier to support 

l4 
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Application issues 

• Applications which require the data to pass over 
the same PCI bus twice can be a problem 

- For example, network » host memory » hard disk 

- 32-blt 33 MHz PCI simply Isn't fast enough to 
support this with full-duplex 155 Mbps ATM 

- For workstation applications this Is no problem 

• Applications which decompress the received data 
(such as MPEG decoders) are even worse 

15 

Towards better software 

• Support native ATM protocols In drivers and 
applications Instead of emulating old LAN protocols 

- New data types allow more efficient CPU use 
and more efficient use of the wire 

- Therefore more net bandwidth for the user, but ••. 

- ... Therefore more traffic on the PCI bus 

- •.• Therefore more user demand for even faster 
PCI Implementations 

16 
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Hardware to avoid 

· Older chlpsets 
- Some don't support PCI bursts 

- Many are bad at sharing host memory with PCI 

· Important peripherals on ISA (or E.ISA, or MCA) 

- Hard disk controllers, video, etc. 

• Non-bus-master IDE controllers 

- Some ·Of these wlll de up the CPU for hundreds 
of microseconds 

· Slow PCI devices on the same bus 

17 

Towards better hardware 

• Today: 
- NICStAR has specific support for video data, 

MPEG bltstreams, etc. 

- Use new chlpsets, PCI bus-master disk 
controllers, muldple PCI host bridges 

- Avoid sharing Interrupts 

• Tomonow: 
- Wider/faster PCI, more concunency, longer 

bursts, more use of Memory Write and Invalidate 

- Avoid use of host memory to buffer disk data 

- Faster ATM protocols: OC-12 (622 Mbps), etc. 

18 
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Summary 

• 32-bit, 33 MHz PCI Is fast enough to support 
current high-speed networking devices like IDT's 
NICStAR ATM controller 

• NICStAR is ideal for workstations, especially if the 
software can take advantage of ATM protocols 

• NICStAR can be used in servers but the system 
requirements are much more demanding 

• OEMs and system Integrators must consider many 
factors to ensure good system performance 

ec• 19 

For more Information on IDT's 
PCl-bus products: 

• NICStAR and other ATM products 

- Michael Olsen, IDT ATM marketing: 

• 408-944-2153 

• The R4761/R4762 chlpset with PCI host bridge 

- for IDT's R4600/R4650/R4700 MIPS RISC CPUs 

- Jamal Halder, IDT RISC marketing: 

• 408-492-8623 
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THE PCI MULTI-FUNCTION DEVICE: BENEFITS AND DESIGN CONSIDERATIONS 
Margit E. Stearns 

Symbios Logic, Inc. 
1635 Aeroplaza Drive 

Colorado Springs, CO 80916 
719-573-3228/3037 (fax) 

e-mail: margit.stearns@symbios.com 

ABSTRACT 

As system perfonnance becomes increasingly 
important in PCs today, we are seeing a movement 
away from the legacy buses towards the PCI local 
bus as the bus of choice. As that switch takes place, 
OEMs are faced with one of the most serious 
limitations of the PCI Bus: the small number of 
loads on the motherboard and the number of 
expansion connectors that can be supported. Other 
factors restraining the system designer include 
limited real estate available on the motherboard, and 
in some cases, a constraint on the number of bus 
masters supported by the chip set. One solution to 
these design issues is the PCI multi-function device, 
which may contain two or more functions within one 
device, while presenting only one load to the PCI 
bus. 

This paper will define the multi-function device, 
and highlight the design rules and issues associated 
with its use. 

WHY CONSIDER A MULTI-FUNCTION 
DEVICE? 

It is generally recommended that each PCI bus in 
a system have a maximum of ten loads. A load is 
defined as a PCI device on the motherboard. When 
the device is on an add-in card, the connector on the 
card is considered one load, and the PCI device on 
the card is considered a separate load. Therefore, a 
PCI add-in card counts as two loads. If more than 
one load is desired behind the connector, a PCI/PCI 
bridge must be used on the card. Examples of 
common PCI loads in a desktop, workstation, or 
server include Ethernet, SCSI, Host/PCI bridge, 
PCI/Legacy bridge, video, sound, and E-IDE. 

A typical PCI system design has two or three card 
slots, and two or three PCI loads on the motherboard. 
In some designs, however, the limitation on the 
number of devices and add-in cards can present a 
problem. These designs may be high-end servers 
where many features are demanded by the customer, 
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or a workstation or desktop where the customer is 
very sensitive to the number of card slots available 
for system expansion. 

Many systems designers are constrained by the 
physical dimensions of the chassis and motherboard. 
In a feature rich design, it is difficult to fit all of the 
required components on the motherboard, and still 
offer the number of slots that customers demand. 

Another restriction may be the number of bus 
masters allowed by the chip set in the system. Some 
processor chip sets limit the number of bus masters to 
four, for example, because that is the number of 
Request/Grant (REQ#/GNT#) pairs that are available 
from the arbiter. 

All of these design constraints lead to the PCI 
multi-function device as an effective solution. On 
the motherboard, the multi-function device represents 
one load to the bus, and can contain from two to 
eight functions. An add-in card with a multi-function 
device represents two loads, but contains from two to 
eight functions instead of one for a single-function 
device. By integrating more than one function on a 
single chip, it is not necessary to use a costly PCl/PCI 
bridge on the add-in card. This results in the freeing 
up of valuable PCI slots in the system, optimizing the 
number of features offered to the end user. 

The multi-function device takes up less space on 
the motherboard than multiple single-function 
devices, leaving room for more features. And the 
multi-function device has only one REQ#/GNT# pair 
connection, and represents one bus master to the 
central arbiter, allowing the system designer to add 
more bus masters to the system. 

These powerful attributes of the multi-function 
device give the system designer more flexibility and 
the opportunity to offer more features in the system, 
which leads to a competitive advantage for the OEM. 
The multi-function device also offers improved 
system reliability over a multi-chip solution, and 



allows the OEM to buy multiple functions from the 
same vendor, simplifying the buying and design 
processes. 

The remainder of the paper will be devoted to 
specifics on how to design a multi-function device 
into a system. The main considerations when using a 
multi-function device in a design are configuration 
accesses, interrupts, system BIOS, and arbitration. 

ACCESSING A MULTI-FUNCTION DEVICE ON 
THEPCI BUS 

A PCI device can contain one to eight 
configuration spaces. A single-function PCI device 
has one configuration space, and a multi-function 
device has between two and eight. A bit in the 
device's "Header Type" configuration register, offset 
OEh, defines whether or not the chip contains one or 
more functions. Bit 7 of the "Header Type" register, 
if set to 0, defines a single-function device, and if set 
to 1, defines a multi-function device. 

A multi-function device, like a single-function 
device, uses one of the 21 individual Initialization 
Device Select (IDSEL) lines to determine whether or 
not to respond to an access. Assertion ofa device's 
IDS EL during the address phase of a configuration 
access selects the device for a configuration access. 

During a configuration access, AD[10::8] identify 
the function number of the configuration space 
within the device. For a single-function device, 
AD[l0::8] is always [000]. Multi-function devices 
must always implement Function 0 (AD[l0::8] = 
[000]), but may assign other functions in any order. 
For example, a two-function device must implement 
Function 0, but can choose any of the other function 
numbers ( 1-7) for the second function. Any function 
number that is not implemented should be ignored by 
the device; i.e., the device should not assert Device 
Select (DEVSEL#). 

Whereas a single-function device only looks at the 
IDSEL line to determine whether or not it is 
accessed, a multi-function device uses the asserted 
IDS EL line fJl1fi. the function number in the 
AD[10::8] signal lines to determine if it is being 
accessed. If IDSEL is asserted and the function 
corresponding to the function number in AD[l0::8] 
has been implemented, the multi-function device 
asserts DEVSEL# to claim the transaction. 
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INTERRUPTS 

The PCI bus defines four interrupt signal lines: 
INTA#, INTB#, INTC#, and INTD#. These signals 
are individually wired, or combined in various ways 
back to the interrupt controller by the system 
designer. It is important that all connectors have all 
four interrupt signals routed back to the PCI Interrupt 
Controller to accommodate any single- or multi­
function application. The PCI Interrupt Controller 
must be capable of routing each individual interrupt 
to an IRQ, or must be able to support shared 
interrupts. The preferred design provides individual 
routing because some systems do not fully support 
shared interrupts. 

The "Interrupt Pin" register, offset 3Dh, in the 
configuration header of the PCI device, defines 
which of the four PCI interrupt request pins (INT A#­
INTD#) the device, or the function in the device, is 
wired to, as follows: 

• OOh = the device or function does not 
use the interrupt pin 

• Olh = INTA# used 
• 02h = INTB# used 
• 03h = INTC# used 
• 04h = INTD# used 

A single-function device must always wire the 
device's interrupt request signal to INT A# (Interrupt 
Pin register must be hardwired to Olh), and must 
never use INTB#, INTC#, or INTD#. A multi­
function device, however, can implement one or 
more interrupt pins. There are two rules for multi­
function chips and interrupts: 

• Each function in the device can only be 
wired to one of the four interrupt pins 
(device must have at least as many 
functions as interrupt pins). 

• If the device implements only one 
interrupt pin, it must be INT A#. If it 
implements two interrupt pins, it must 
use INTA# and INTB#, etc. 

Functions in the multi-function device can share 
interrupt pins, e.g. an eight-function device can have 
all eight functions assigned to INT A#; or three could 
be assigned to INTA#, one to INTB#, two to INTC#, 
and two to INTD#; etc. This is called interrupt 
sharing, or interrupt chaining. 

The PCI Specification states that" ... the device 
driver may not make any assumptions about interrupt 
sharing. All PCI device drivers must be able to share 



an interrupt (chaining) with any other logical device, 
including devices in the same multi-function 
package." It is also important for operating system 
vendors to implement shared interrupts. 

SYSTEM BIOS 

Systems designers must work with their BIOS 
vendors to make sure the system BIOS decodes 
functions 0-7 in the multi-function controller. The 
BIOS should do a configuration access to all 
functions if it detects that bit 7 of the "Header Type" 
register is set. 

ARBITRATION 

There is a central PCI resource, usually part of the 
Host/PCI bridge, known as the central arbiter. The 
central arbiter connects to each bus master in the 
system via a separate pair of REQ#/GNT# signals. 
As mentioned earlier, a multi-function PCI device, 
like a single-function device, has a single 
REQ#/GNT# pair connected to it. A PCI bus master 
asserts its REQ# to tell the central arbiter that it 
wishes to be granted access to the bus. The central 
arbiter asserts the device's GNT# signal to grant it 
access to the bus. 

There is no defined arbitration scheme in the PCI 
specification; however, if more than one bus master 
is present in the system, the spec requires a fairness 
algorithm to avoid deadlocks, and to balance the 
different priorities of the various devices. 

A multi-function device, since it represents one 
bus master to the central arbiter in the Host/PCI 
bridge, must implement an internal arbiter that is 
completely separate from the system's central arbiter. 
The internal arbiter allows the different bus 
mastering functions within the chip to arbitrate 
among themselves for the privilege of arbitrating for 
PCI bus access. There may be multiple bus masters 
within the multi-function device. For example, in a 
SCSI/Ethernet multi-function device, there may be 
three separate internal bus masters: one for SCSI, 
one for Ethernet transmit, and one for Ethernet 
receive. It is the responsibility of the internal arbiter 
to arbitrate between these internal bus masters. 

The PCI specification does not define internal 
device arbitration for multi-function devices. One 
method is to use priority levels. If there are three 
different channels in the device, for example, each 
can be assigned a programmable priority level. The 
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internal arbiter uses the priority levels to decide 
which internal function may arbitrate for access to 
the PCI bus. If two functions request access to the 
PCI bus simultaneously, the function with the higher 
arbitration priority level is granted access first. This 
priority scheme should be programmable so that the 
system can be tuned for different data requirements. 
A fairness algorithm should be implemented, similar 
to the central arbiter, to insure that no function gets 
starved for access to the PCI bus due to activity on 
other functions with higher arbitration priority levels. 

SUMMARY 

The multi-function device, because of its single 
REQ#/GNT# pair, lends itself to either a 
motherboard or add-in card design. The device is a 
single bus master to the PCI host bridge, although 
internally it may be arbitrating for two, three, or more 
bus mastering functions. From the software 
perspective, the multi-function device contains a 
separate configuration space for each function. 

There are a few considerations that must be taken 
into account when designing a multi-function device 
into a system; though as outlined above, the rules are 
simple and straightforward, and the benefits are 
numerous. The benefits of a multi-function PCI 
device include reducing the number of electrical 
loads and bus masters in the system, and freeing up 
valuable space on the motherboard and/or card slots 
for other features. As OEM customers continue to 
demand more and more features, PCI bus loading 
will become more of an issue. The multi-function 
device offers the OEM an opportunity to offer its 
customers the features they want and still meet the 
requirements of PCI. 
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XVideo Family for PCI 

XVideo, the developer's choice for high performance video, brings 
full-motion. 24-bit color, full resolution video to PCI-equipped Intel 
and PowerPC workstations. With a wide array of options to suit 
advanced users, XVideo supports multiple live video displays, JPEG 
compressed capture, storage, and broadcast. The Video Development 
Environment (API, sample applications, source code programs, etc.) is 
available to speed custom development and system integration. 
XVideo's fast JPEG hardware compression and decompression support 
desktop videoconferencing, multimedia authoring, distance learning, 
telemedicine, networked video distribution, and live video capture to 
disk. The VIO feature adds a second simultaneous live video display 
(composite, or S-VHS video format) from a second source and analog 
video output to monitor or VCR. Third-party software applications 
available. The PCI products interoperate with Parallax's Unix 
products for Sun and HP. 

214 



3Dlabs 

New Gener 
3D 

3Dlabslnc. 
181 Metro Drive, Suite 520, San Jose CA 95110 
(408) 436 3456 
neil.trevett@3dlabs.oom 
http://www.3dlabs.com 

3D Graphics on PCI Is Hott 
Topics Covered 

•Rapid market growth for 3D accelerator hardware 
• Professional-class 3D 

• Breaking bottlenecks for more perfonnance 

• Consumer-class 3D 
• Making 3D pervasive 

• Future directions for 3D 
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3D Aooeleratlon Market D,namlos 
Applications driving hardware sales 

3D-0Uls, 3D Presentations 

1994 1995 1996 
• Two long-term market segments - Professional and Pervasive 
• Games will be subsumed by Pervasive market 

P1ofesslonal 3D Market Forces 
Driving the need for high-speed 3D 

•Applications 
• CAD - Pro/ENO:INEER, MicroStation, SDRCIIDEAS 
• Multimedia Authoring - 3D Studio MAX, Softlmage, Lightwave 
• Scientific VisuaJimtion - A VS, Visual Numerics 
• Game Authoring - Gemini, Vigra, Multigen, Silicon Studio 
• Web Page Authoring - Microso~ Netscape, SGI 
• Virtual Reality I Simulation - Sense8, Da~ Gemini. 

• Pentium Pro 
• A true replacement for workstations I RISC CPUs 
• Needs high performance 3D to service applications 
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Pervasive 3D Market Forces 
What after Games? 

• Games are an important application of 3D acceleration, 
but 30 is becoming far more pervasive 

• 30 will be used in 
everyday applications 
• You and I will use it! 

• "Pervasive 3D, 
• Subsumes 2D 
• Anything that manipulates pixels 

3D API Landscape 
The Rush to Service Pervasive Applications 

I 

Games Pervasive Professional 

3Dlabs is developing drivers for the above APis 
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3Dlabs' Business 
A strongly focused company 

• Sell chips, technology and software for 3D graphics 
• Including 2D graphics and multimedia 

• A 'Complete Partnership' approach to our customers 
• Not just silicon devices but chips, drivers and applications 

3Dlabs-Chlp Roadmap 
Extending leadership for 3D silicon 

Shipping 
sinceJan95 

Adds 
performance and 
texture 

2nd Generation 
.~ 
I· ······Jst-<Jeneration··········-Geometry· 

ca;. acceleration 

Creative 
Specific. 
Shipping since 
mid-95. 

Q195 Q395 
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Pervasive 3D graphics 
Faster, video. 

Ql96 Q396 



GUNTSOOTX 
The next generation - half a million polygons/sec 

• I 00% Pin Compatible with GLINT 300SX 
• Uses single cycle EDO DRAM for localbuffer 

• Doubles pixel rendering rate to 25 Mpixels/sec 
• SOOK polygons/sec - 32 bit shaded, Z buffered~ 25 pixel 

•Full Texture Mapping in silicon 
• Full perspective, filtered texture mapping 

•Enhanced 20 Perfonnance 
• Advanced optimized span operations 
• 2M vectors/sec 

• Parallel GLINT SOOTXs can drive a single framebuffer 
• Increased rasterization perfonnance 

But where's the bottleneck? 
Geometry! 

• The fastest Pentium Pro cannot keep even a first 
generation GLINT saturated if running the geometry in 
software 

lK polygons/MHz on a 
Pentium Class machine 

(90K polygons on a PS/90) 

3DAPI 
Transforms 

Lighting 
Delta Cales 

100% of /_Ras_tenza_·_no_n_ 
Rasterization / 

in GLINT 
silicon 
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70%ofthe 
CPU cycles 
spent in setup! 



GLINTDelta 
Breaking the Geometry Bottleneck 
• GLINT Delta Chip - Hardwired 3D Pipeline Processing 

• lM vertex/sec Vertex Setup Processor 
• Performs all delta calculations and floating point conversions 
• 100 MFlop floating point processor 
• Seamlessly integrates with GLINT software drivers 

• Reduces PCI Bandwidth - just passing vertices - no slopes 

3DAPI 
Transforms 

Lighting 
Delta Cales 

34 Mbyteslsec for --=-....-· PCI 

300K polyslsec GUNT 
300SX 

3DAPI 
Transforms 

Lighting 

PCI [ __ 

GUNT 
Delta 

GUNT 
300SX 

Triples CPU 
Geometry 
Performance 
~ 

10 Mbyte/sec for 
300K polys/sec 

The first Professional-class 3D accelerator for the PC 

0-48 Mbytes of 
DRAMforZ, 

fast clear, 
stencils and 

texture 

GLINT 300SX-
100% 0penGL 

in Silicon. 
PCIMaster 

l-16Mbytes 
VRAM driving 
upto 
2Kx2.5Kx32 bit 
displays 

64or 128 bit 
RAMDAC. Per 
window double 
buffering, 
overlays 

•GLINT connects directly to PCI, RAM and RAMDAC 
• Two RAM banks for simultaneous, independent access 
• Workstation class performance and functionality 
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2nd Generation GUNT Boards 
A Sx speedup for the end-user 
•First Generation GLINT boards 

• Setup calculations bottleneck to about 90K polygons on PS/90 

• Today's GLINT Boards 
• GLINT Delta breaks setup bottleneck 
• GLINT SOOTX will deliver SOOK polygons/sec 
• P6 - will drive geometry for SOOK polygons/sec through Delta 

• Jump from 90K to SOOK polygons/sec in 12 months 

GLINTDella 
Measured Performance with 
GLINT 300SX on Pentium Pro 

iP~@l!?Old:ll:i, U~~~. 1'.~9>lor,]~.ll:E Screen Ref!esh 

. 'J:~\i},c))lj~?~.···· : SX Only SX+))elta Speedup 

:M;;Bh..;dfr (?,$~)~~i>!><~P~1'.s.;.,,~ci ............................................ , )~,5,146 ... 2:38,99? ............... 1.,5 
Mesltecl T~gles (Z, f111t) 50 Pixel per secol\d . .... + 205,870 321,247 .. 1.6 
i Mesl\ecl'J:rial\gles(Z, Shaciec:i) 25pjxelp~r second. 180,744 427,242 2.4 
! Meslt~c:i_I~sil!!l (:Z:,_~!t~ l'ix~l 1'1!1'.secollc:i .......................... ' .. 2:3~~?8 ........ .5?:3,2!2 ....... 2.5 
!.Mesltecl Triangles (Z, !iltac:iecll .. Small .Tl'.iaflgles per se.C()lld 187,454 599 ,762 3.2 
l Meshed Triangles (Z, flat) Small Triangles per second 249,629 586,527 2.3 
, Meshed Triangles (:Z:, Sltadecl) Singl(! Pixel Triangles per second 187,454 600,476 3.2 
i . .Ml!!llted.I!iangi!'.•. (:Z:, A<t!J!iil\gl!' Pix!'~J):i"llgl.1!!1 P<!!secollc:i .... 74?,Ei2? ........... ~M.27. ... 2.3 
LMeshed Tl'.jangles(NoZ,!)l\ad!'d) 50 J'.il<elper secol\d 182,048 277,016 1.5 
: M!'slt!'c:i Iriansl.!'.~ ~<>:Z:, A;ttl?!! l'ix!'l p~r~~ .... . ....................... ~.!.?? .. 3(;5,412 1.6 
' Meshed Triangles (!'lo Z, Shaded) .25 Pixel per second 199,290 514,781 .2.6 
: Meshed Triangles (!'lo Z, flat) 25 Pixel per second 272,531 585,847 2.1 
i Meshed Jl'.iaflgl(!s (!'lo Z,Shaciecl) Small. Triangles per second 200,159 646,607 3.2 
LMeslt~c:iI~sll!~ ~<> Z, f111t) !ill\~l1Tria11gies Pl!! ~eco11c:i ... .. ... ... . .. 271,C>~~ 586,527 2.2 ..... 
'Meslt.ed Triafls.les. (!'lo z, Shaded)Single Pil<el Triangles per second 200,079 646,607 3.2 
iMeslt~c:iT~gl!'~(l'l():Z:,f111t)!)il\gl.~.l'ix!'ITria1lgiesPl!".•ecollc:i. 271,214... 586,527 .2.2. 
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What's makes a Pervasive 3D Chip? 
No compromises! 

JD for games 3D for productivity 

\\ '* Video Acceleration -. Pervasive 3D ~ 3D for cool new stuff 

' Fast Windows Acceleration Fast VGA for DOS games 

•If you could get all this for the cost of20, 
no-one would need to buy graphics without 30, 
and so 30 would become pervasive ... 

The first Pervasive 3D Graphics chip 
• No 20 compromises 

• More Windows performance than 64 bit VRAM controllers 
• Accelerated VGA for fast DOS games 
• Hardware video acceleration 

• Fast 30 performance 
• Balanced performance for both textures and polygons 
• 500,000 textured polygons/second 
• Much more thanjust a games chip 
• Fully Compliant with D3D~ OpenGL, Heidi,. QD3D ..• 

• Lowcost 
• Uses unified SGRAM memory= low cost, high performance 
• A $50 chip, selling on a $250 board (2MBytes) 
• Inexpensive enough to be a games chip 
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Performance Highlights 

• 25 Million texture mapped pixels/sec 
• Bilinear-filtered with per pixel perspective correction 

• 40 Frames/second textured frame rate 
• (640x400 screen, fully texture mapped, 2.5 depth complexity) 

• 500 K texture mapped polygons/sec 
• Bilinear-filtered. with per pixel perspective correction 

• 1.6 GByte/sec 2D fill rate 
• Expecting 2x '968' class windows performance 

• 30 fps video playback at 640x480 
• On-chip RGB-YUV conversioDt scaling and bilinear filtering 

Board Design 
Low component count 
• Single PERMEDIA Chip 

• plus SGRAMi RAMDAC, ROM and oscillator 

• External interfaces 
• Glueless PCI Interface 
• High perfonnance 64-bit SGRAM Interface 
• High speed pixel port 

• PERMEDIA Packaging 
•BGA 
• 0.35µ. 
• 3Wat3.3V 
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Typically 2MBytes, 
with optional upgrade 

to 4, 6 or 8MBytes 



Extensive Software Support 
• 3Dlabs, develops high quality, optimized drivers 

• Drivers provided free of charge to board customers 

• Extensive API support 
• Microsoft's 3D APis: Direct3D and D3D Retained Mode 
• Criterlon,s RenderWare 
• Productivity APis -Heid~~ QuiclcDraw 3D 

• Creative has licensed COL to 3Dlabs 
• COL will be available on PERMEDIA-based boards 

•Any Creative games title will run on PERMEDIA 
• Using COL or other standard API 

• Creative are pro-actively working with 3Dlabs to ensure 
PERMED IA is the industry, s leading silicon architecture 

Puture 3D Hardware Trends 
Exploring an unbounded opportunity space ... 

• More Geometry in Hardwired Logic 
• Geometry processors that are pin-compatible with GLINT Delta 

•Unified Memory 
• Using System Memory for texture, VESA 's VUMA standard 

• 3D Graphics on the Motherboard 
• High integration, unified memory 

• A million polygon chip - in '96! 
• Including geometry! 
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ABSTRACT 

HIGH-SPEED DRAMS FOR PCI SYSTEMS 
Billy Garrett 

Manager of Graphics Development 
Rambus Inc. 

2465 Latham Street 
Mountain View, CA 94040 

garrett@rambus.com 

A minimum design requirement for every PCI device is to understand the memory used in a PCI system. 
Although PCI technology is designed to separate the CPU, memory, and 1/0 buses in a PC, many of the 
chips in a PCI system must interface directly to memory. Designers of such chips today must deal with the 
changing landscape of DRAM memory selections available. A few years ago, page-mode and fast page­
mode DRAMs were all that was available to designers. Today, high-bandwidth DRAMs (such as EDO, 
burst EDO, SDRAMs, RDRAMs, and a host of specialty graphics DRAMs, such as CDRAMs, 3DRAMs, 
MDRAMs, VRAMs, WRAMs, and SGRAMs) are available. Broadly speaking, these memory types can fall 
into three possible memory subsections: main memory, graphics memory, and a unified memory pool where 
both graphics and main memory exist. Each memory technology has advantages and disadvantages targeted 
at one or more of these memory pools. This paper explores the types of high bandwidth DRAMs and their 
characteristics targeted toward various memory subsystems found in PCI systems. 

MAIN MEMORY ALTERNATIVES 
As page-mode DRAMS have evolved, two trends have become evident: 

• Denser parts require wider 110 interfaces to maintain acceptable bandwidth. 

• Memory granularity is minimized. 

Until recently, only page-mode and fast page-mode (PPM) devices were available to designers. PPM 
devices allow processors to burst data at a maximum speed of X:3:3:3 (number of cycles for a cacheline 
burst) for a single bank; with bank interleaving, processors might be able to reach a speed of X:2:2:2 or 
X:2:3:2 (with a 66MHz Pentium bus). Xis usually equal to 5 or 6, depending on the core technology used 
(i.e., -SOns or -60ns cores). -60ns cores are more standard today, but-SOns cores are expected to be 
standard in the near future. 

Main memory performance is increased by decreasing the average number of wait states. Caches, write 
buffers, and a host of other techniques are used to mitigate DRAM accesses. However, sometimes it is 
necessary to access the DRAMs directly, and this access must be as short as possible. 

For code fetches, the Intel Pentuim processor bursts four 64-bit words at a time. The initial code fetch is 
for the instruction needed for the processor (not always at an offset of 0). The remaining fetches are for the 
remaining cache line entries. The initial latency is determined primarily by the RAS interval and any 
additional buffering or pipelining. The subsequent accesses are dominated by how fast a memory 
technology can return data specified by an "Intel order" during the burst. For the Pentium processor, 
the burst is always three additional clocks, and memory technologies take advantage of their highest 
speed page-mode transfers (or burst transfers) to satisfy this demand. 

EDODRAMs 
Extended Data Out (EDO) DRAMs are like conventional page-mode DRAMs with one exception: the 

way in which data is disabled on a read is changed from the rising edge of CAS to WE; the outputs are held 
when CAS rises. This difference, combined with a few other changes, allows EDO DRAMs to cycle faster 
in page mode, thereby offering additional bandwidth. The signals RAS, CAS, WE, and OE remain the same 
as for a page-mode DRAM, making the design transition to EDO straightforward. This also allows EDO 
parts to exist on stand x32 (or x36) memory SIMMs. EDO parts are one of the few main memory 
technologies that are applicable to both graphics and main memory. 
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For main memory applications, the denser 16Mbit parts are used in the x16 configuration, providing a 
minimum memory size of 8MBytes/bank. This minimum size is acceptable for the low-end Pentium systems 
in which Microsoft requires a minimum memory subsystem of 8MBytes for Windows 95 certification. 

EDO devices increase performance for main memory applications to about X:2:2:2, which provides 
about a one- to three-percent performance boost for users. Although this performance increase is small, it 
has essentially no additional cost for users. Some people have even said that EDO is what DRAMs should 
have been all along. 

BEDODRAMs 
BEDO DRAMs further add burst sequence counters into the DRAMs to help decrease CAS cycle time. 

Although faster core (-50) devices allow 1: 1: 1 burst operation, for the same core timing as that used 
in EDO DRAM today BEDO adds an additional wait state for the first access resulting in an (X+ 1): 1: 1: 1 
access. Although this is an overall improvement in access latency, the initial latency keeps the CPU 
stalling longer than EDO, although the entire burst is completed in two less cycles. 

Overall, the jury is out on BEDO. Micron and several other companies are strongly supporting its 
use. Large users, such as Intel as well as the top DRAM companies, are working in different directions 
for high bandwidth memory solutions. The future success of BEDO is unclear, but it is currently a 
design alternative. 

BEDODRAMs 
SDRAMs have an evolutionary design compared to conventional DRAMs. Internally, they are arranged 

in two banks-each independent and holding half of the DRAM bits. Available in several bus widths (x4, 
x8, and x16), mostly the wider parts on the 16Mbit DRAM density are suitable for main memory. 

Although the interface to an SDRAM appears similar to a conventional DRAM, the timing and 
"commands" sent to a SDRAM are different from the RAS/CAS timing normally associated with a DRAM. 
The memory controller designer must develop a new state machine in order to support SDRAMs. 

Most SDRAM vendors offer parts that operate up to lOOMHz, although the only interesting design point 
for Pentium systems today is synchronous with the 66MHz Pentium bus. Achieving even 66MHz operation 
on a board, using L VTTL signaling will be very difficult because of board layout, clock/data trace routing, 
and skew issues. Memory expansion sockets further complicate the board design such that SDRAM DIMM 
modules must take into account loading of modules inserted and not inserted, as well as clock distribution. 

Because of the pipelining in an SD RAM, it can achieve only (X + 2): 1: 1: 1 performance. This additional 
lead-off latency would negatively affect performance if the two banks were not used efficiently. By taking 
advantage of the two banks, some of the RAS precharge time can be hidden. If future addresses are known 
or can be estimated, some of the access time can be overlapped with the data transfer of the previous access. 
Systems implemented using such techniques are not available, but studies suggest that a two- to three­
percent increase in overall performance can be gained by using these prefetching techniques. 

RD RAMs 

Rambus DRAMs offer the highest bandwidth of the DRAM alternatives, transferring data at a burst 
rate of 533MBytes/s and now 600MBytes/s. 16Mbit densities are currently available with both x8 and x9 
configurations. 64Mbit concurrent RDRAMs are under development with availability projected for early 
1997. Suppliers include Hitachi, LG Semicon (Goldstar), NEC, Oki, Samsung and Toshiba. The RDRAMs 
are all pin-compatible and are offered in two surface-mounted packages: a vertical package for high-density 
packing on motherboards and a horizontal package for low-profile add-in cards. 

The 64Mbit RDRAM has four banks which can be accessed concurrently. That is, while the contents of 
one bank are being read or written, another bank can be doing a RAS access cycle. The present 16Mbit 
RDRAM has a dual-bank architecture, whereas the 8Mbit version has a single bank. Instead of the 
conventional DRAM RAS/CAS interface, the Rambus Channel uses a multiplexed address/data bus. The 
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controller initializes each RDRAM on the Rambus Channel with a specific major address. When the 
controller is ready to perform an operation, it issues a packet on the Channel that requests the address of the 
data to be transferred. Only one RDRAM matches that address; the data is written or read at a burst rate of 
up to 600MHz. 

Rambus DRAMs can transfer data much faster than conventional DRAMs because they use a new 
electrical interface referred to as Rambus Signaling Level (RSL). The Rambus Channel achieves its 
high speed with low-voltage signaling, terminated transmission line board layout, and precise clocking. The 
Rambus memory subsystem is a fully engineered solution using conventional printed circuit board layout 
and manufacturing processes. 

Unlike other DRAM technologies, RDRAMs have been specifically designed to fit a wide range of 
applications, including main memory. The same RDRAM finds its way into graphics systems as well. 
Additional system solutions, such as sockets, expansion modules, and clock sources, are available from 
multiple suppliers. 

The following table summarizes characteristics of DRAM technologies used for main memory 
applications. 

Table 1: 16MBytes Main Memory DRAM Comparisons 

EDODRAM BEDO SD RAM RD RAM RD RAM 

Organization lMKx 16 lMx 16 lM x 16 2Mx8orx9 8Mx8 
Number of Chips 8 8 8 8 2 
RJ:quired 
Bandwidth Per 100 MBytes/s 132 MBytes/s 264- 400 533 - 600 533 - 600 MBytes/s 
Ch!P_ MB_1!._es/s MB_}'.!es/s 
Initial Lead-off x X+l X+2 X+4 X+2 
Laten9'._ 
Burst Laten9'._ 3:3:3 to 2:2:2 1:1:1 1:1 :1 l :1 :l 1:1 :1: 
Package 40SOJ or 44/50-pin TSOP 44150 32SVPorSHP 32SVPorSHP 

40/44TSOP or 42:PJn SOJ TSOP 
Pins Required on 95 - 110 80- 160 68- 72 or 31 31 
the Controller 115-120 

GRAPHICS DRAM ALTERNATIVES 
Until recently, there were only two DRAM choices: page-mode DRAM and video-RAM (VRAM). 

Today, the number choices has greatly increased. Page-mode DRAMs are being replaced with EDO 
DRAMs, which provide added bandwidth by reducing page-mode cycle times. Synchronous DRAMs 
(SDRAMs) and Synchronous Graphics RAMs (SGRAMs) attempt to solve the bandwidth issue by 
adding a new synchronous interface to a standard DRAM core. Denser VRAMs, Window-RAMs 
(WRAMs), and Synchronous VRAMs (SVRAMs) are available for dual-ported frame buffers. MoSys 
DRAMs (MDRAMs) as well as a host of specialty DRAMs such as CDRAM, 3DRAM, etc. are available to 
the developer as well. But these parts are generally not applicable to cost sensitive PC designs as these 
parts are either expensive, or not widely available. The Rambus DRAM (RDRAM™) represents a 
revolutionary approach to increasing bandwidth. RDRAMs transfer data at 533MHz over a narrow, byte­
wide bus referred to as the Rambus Channel. 

Whereas latency for burst fills is the common metric for main memory systems, graphics systems 
tend toward sustainable bandwidth. Because of the burst nature of so many of the graphics operations 
(display refresh, bit-blit, and so on), larger transfer sizes are normal. 

EDODRAMs 

EDO DRAMs for graphics systems are generally the same as those used in main memory designs except for 
one important difference. In order to provide sufficient bandwidth for graphics applications, the wide 16-bit 
I/O versions of these DRAMs are used in the 4Mbit generation parts. A 16Mbit EDO DRAM is not suitable 
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for graphics due to granularity and bandwidth issues. Although a 16Mbit DRAM provides sufficient storage 
for a 2MByte frame buffer, it does not provide sufficient bandwidth to meet associated display 
requirements. EDO parts are usually combined with a 64-bit bus by using four parts and require a minimum 
of 2MBytes of memory to make a 64-bit bus. EDO parts generally can be run with a CAS cycle time of up 
to 50MHz, providing a peak bandwidth of 400MBytes/s. 

In order to achieve the bandwidth necessary to support these display resolutions using conventional 
DRAMs, designers have used two or four DRAM components in 32- or 64-bit wide data buses. These 
conventional DRAMs present a granularity issue. For example, implementing a 64-bit bus requires four 
x16 DRAMs (DRAMs with 16-bit I/O). Using 4Mbit DRAM technology, this leads to using four 256Kx16 
DRAMs (page-mode, EDO or SDRAM) adding up to a 2MByte frame buffer. A lMByte frame buffer uses 
two DRAMs in a 32-bit bus. Most 64-bit graphics controllers use only a 32-bit bus when configured with 
lMBytes of memory. Most consumers are unaware that a 2MByte frame buffer is required to take full 
advantage of the card's advertised bandwidth and rated performance. 

Single-Ported DRAM Approach 

Special versions of these parts are typically used in graphics systems, concentrating on reduced RAS 
cycle times. Core speed of -50 and even -40 are available, reducing the RAS overhead and keeping the 
usable bandwidth high, sometimes even approaching 80 or 90 percent of the peak bandwidth. Such a wide 
bus is accompanied by a "pin cost" on a controller-usually 90 to 100 pins. 

Frame buffers using a 32-bit data bus to interface to single-ported DRAMs (EDO, SDRAM, SGRAM) 
use 52 to 55 signal pins plus 12 to 18 power and ground pins for a total of 64 to 73 pins. 

BEDO Devices 
BEDO devices do not exist in densities that would be applicable to graphics. 

SDRAMs and SGRAMs 
SDRAMs and a graphics specific SGRAM are alternatives for high-bandwidth graphics systems. These 

devices are applicable for graphics at the 4Mbit (xl6) and 8Mbit SGRAM (x32) densities. Although 16Mbit 
SDRAMs are applicable to main memory applications, the 16-bit wide bus is too narrow to support the 
display refresh performance requirements of the majority of important display sizes. 

SGRAMs, which are based on SDRAMs, are offered in the 8Mbit density. They use a x32 interface to 
provide higher bandwidth for graphics. SGRAMs include the block write function, which allows SGRAMs 
to write as much as 32 bytes in parallel (but only on every other clock cycle). They also have a single-color 
register, so color expansion requires two passes for a font. Block write increases bandwidth up to four times 
for pattern fills and up to two times for fonts. In addition to the wider bus, SGRAMs have one more pin, 
DSF, that is used to encode "commands" to the SGRAM. 

Data sheets have become available for SGRAMs, with some vendors showing 1 OOMHz bin split parts. 
Because of board layout, clock/data trace, and skew issues, achieving 1 OOMHz operation on a board using 
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L VTIL signaling will be very difficult. Memory expansion sockets further complicate the board design; 
SGRAM configurations supporting expandable frame buffers are not expected to achieve the component's 
specified lOOMHz operation in a system environment. 

A few controllers using SGRAM have been announced but are not yet shipping. Highest speed claims 
are currently for 83MHz operation. Wide bus versions of the interface still have a significant pin penalty 
(usually higher than EDO) due to the higher frequency operation requiring more ground pins to minimize 
ground bounce. For a 32-bit bus running at 66MHz, the bandwidth is just 267MBytes/s. Running at 83MHz, 
it would be 333MBytes/s; at lOOMHz, it would yield burst speeds of 400MBytes/s. Doubling the bus width 
to 64-bits would double these numbers. 

VRAMs and WRAMs 
VRAMs are available in up to 4Mbit densities. The 4Mbit parts are arranged as x16 devices (for both 

parallel and serial ports) and are contained in 64-pin packages. Because of the their dual-port design and 
other features, VRAMs traditionally have been significantly more expensive than single-ported DRAMs 
and, therefore, have been used only in high performance add-in cards. Most current card designs are moving 
away from VRAMs because of cost and the additional pin count incurred due to the second port. 

Samsung offers the WRAM, a special version of an 8Mbit VRAM, which is intended to be priced 40 
to 50 percent higher than conventional DRAMs. The WRAM has a 32-bit parallel interface and a 16-bit 
serial interface (for video). It also includes dual-color block write capability and some aligned block move 
capability-positioning the part for high-performance add-in cards. The WRAM is currently single-sourced, 
which is a concern to graphics card manufacturers. 

In general, dual-ported memories are being bypassed for cost-sensitive applications, since the fixed 
bandwidth partitioning of the two buses offers no advantage at low-resolutions and the serial bus cannot be 
used for extra drawing bandwidth. Also, the trend for cost-sensitive, high-volume applications encourages 
chip designers to integrate the RAMDAC, causing the pins of the VRAM serial port to go back to the GUI 
chip, further increasing the pins and cost. 

Dual-Ported DRAM Approach 

Dual-ported memory, such as VRAM or WRAM, contribute to higher subsystem costs in two ways: 

• The dual-ported DRAMs are higher cost than single-ported DRAMs. 

• The DRAM interface can require more pins on the controller. 

In the past, the serial port was connected to a separate RAMDAC chip. As controller silicon has 
moved to smaller geometries and can accommodate more circuitry, many controller vendors have 
integrated the RAMDACs into their GUI controllers to reduce overall component costs. With the 
RAMDAC on the controller, the serial port must be connected back to the graphics controller. This 
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situation further reduces the total number of available controller pins and could force the controller into 
a larger, more expensive package. 

MD RAMs 
A relatively new entrant in this crowded field of graphics specialty memories is MoSys. They have 

copied the Rambus approach by providing multiplexed address data on a data bus that transfers data on 
both edges of the clock. Their data bus width is 16 bits. Unlike all other DRAMs, MDRAMs differentiate 
by providing many banks, as many as 96 banks, according to their data sheet. Because of the granularity of 
the banks, MoSys claims to be able to offer parts in memory sizes other than powers of two (such as 
.75MByte, 1.125MBytes, and 2.3MBytes). There are a total of 26 active signal pins and 16 power and 
ground pins on each MDRAM. MDRAMs are offered in either an 86-pin PLCC package or a 160-pin 
PQFP. 

Although the granularity offers specific sizing, it also requires eight standard parts. Fitting display size 
to the exact storage requirements also results in no off-screen storage. In all versions of hardware 
requirements necessary for Windows 95 certification (and beyond), Microsoft requires lMByte or larger 
display buffers. MoSys also claims to be able to run up to 166MHz, with an effective bandwidth of 
666MBytes/s, using standard L VCMOS signaling. 

RD RAMs 
Rambus DRAMs offer the highest speed DRAM alternatives, transferring data at a burst rate of 533 

or 600 MHz. 8Mbit x8 and 16Mbit x8 and x9 densities are available targeting graphics applications. All 
RDRAMs are pin-compatible and are offered in two surface-mounted packages: a vertical package for high­
density packing on motherboards and a horizontal package for low-profile add-in cards. 

The 16Mbit RDRAM has a dual-bank architecture, whereas the 8Mbit version has a single bank. 
Enhancements to existing RDRAMs are being released which substantially reduce latency and increase 
operating frequency to 600MHz. These parts will be available this year and the additional bandwidth can be 
used in graphics applications for higher-resolution, deeper frame buffers, higher refresh rate monitors, 
better performance or additional functionality. 

Rambus Approach 

Rambus technology is well suited for graphics due to its high bandwidth and the flexibility of product 
offerings that it allows. A single 600 MBytes/s Rambus Channel supports sufficient bandwidth for display 
resolutions up to 1280 x 1024 x 24bpp (or even 1600 x 1200 x 16bpp). A single Rambus Channel is 
able to cover most PC display market requirements and up to 4MByte display buffers. GUI controllers can 
also support two Rambus Channels providing up to 1.2 gigabyte-per-second in bandwidth for higher 
resolutions or higher performance systems. The 8Mbit and 16Mbit RDRAMs allow the lowest-cost, single­
component lMByte or 2MByte frame buffers. The 8Mbit and 16Mbit RDRAMs are pin-compatible, 
allowing the manufacturer to support multiple frame buffer sizes with one board layout. By incorporating a 
low-profile RSocket™ on the Rambus Channel, memory can be expanded at product build time by the 
dealer or even by the consumer with low-cost memory modules (RModulesTM). 

Rambus DRAMs provide high bandwidth from the lowest pin-count interface. The interface to the byte­
wide Rambus Channel takes only 31 pins on the controller. The interface consists of 15 active pins for data, 
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control, and enable functions, with most of the rest of the pins for power and grounds. The Rambus frame 
buffer saves up to 80 pins over alternative frame buffers. The pin-savings frees up the pad area on the 
controller die, allowing savings on controller die costs and controller package costs. The graphics designer 
is able to incorporate additional functions into the controller, such as support for video interfaces, feature 
connectors, or 3D graphics support. The Rambus-based frame buffer allows the lowest cost controllers and 
lowest cost support for expanded feature sets. 

Unlike the SGRAMs or dual-ported DRAMs, RDRAMs have been specifically designed to fit a wide 
range of applications, including, but not limited to, graphics. The advantage to graphics designers is that 
broadly used memories ramp in volume and descend price curves faster than components targeted for 
specific application segments. A comparison summary of the alternatives is shown is Table 2. 

Due to its compact design, Rambus technology helps to reduce board space. Most PC graphics frame 
buffers can be implemented with a single 8Mbit or 16Mbit RDRAM component. With the possible 
exception of SI/SO), all of the signals are routed as straight traces on the top of the board, leaving no signals 
on the bottom of the board underneath the memory array. The Rambus-based frame buffer can use only one 
to two square inches of board space, even if memory expansion is supported. 

Smaller boards help to reduce the overall cost of the PC. The board size determines how many boards 
can fit on a single panel for PC board manufacture; the more cards per panel, the lower the PC cost. In 
addition, minimizing the "footprint" on the motherboard increases the feasibility of putting the graphics 
controller directly on the motherboard. 

Table 2: 2MByte Frame Buffer Comparisons 

EDO 4Mbit WRAM SD RAM SGRAM MD RAM RD RAM 
DRAM VRAM 

O~anization 256Kx 16 256Kx 16 256Kx 32 256Kx 16 256Kx32 197K x 32 2Mx8 orx9 
Number of Chips 4 4 2 4 2 2 1 
~uired 

Peak Bandwidth 100 50 160 132- 200 264- 400 400- 666 533 - 600 
PerChi__Q_ MBytes/s MB~s/s MB_l!_es/s MB~s/s MBj'._tes/s MB_}'!es/s MB~s/s 

Relative Cost 1.00 1.9 1.5 1.1 l.3-1.6 ? 1.05 
Board Area 1.83 sq. in . 8 sq. in 1.58 sq. in 1.54 sq. 1.1 sq. in 1.0 sq. in . 0.1 sq. in 
(component 1.36 sq. in in. vertical 
foo....!E_rint on!x) 0.5 ~ in horiz. 
Package 40SOJ or 64ZIP 120PQFP 44150 lOOTQFP 68pinPLCC 32SVPorSHP 

40/44 TSOP or 128 pin 
TSOP PQFP 

Pins Required on 95 - 110 80- 160 85 - 170 67 -72or 68-72 or 70- 80 31 
the Controller 114- 119 115-120 

BEYOND MAIN MEMORY AND GRAPHICS 
As DRAM densities continue to increase, fewer DRAMs are needed for a given memory subsystems. 

Already in graphics subsystems, a single DRAM can satisfy most of the graphics operations for a PC. 
Inevitably, main memory will be forced to one or two chips, which will spur designers to try to integrate 
graphics and main memory into the same memory space. These types of unified memory subsystems are 
the likely future for PC systems. 

Already, game machines are showing the way. Nintendo is introducing its revolutionary Nintendo 64 
game system with a unified memory subsystem. Consisting of a single Rambus channel, all graphics data, 
display refresh, executable code, and data are contained in one memory space. Because of Nintendo's use 
of RD RAMs, they were able to accomplish this in an extremely low-cost consumer product. 

CONCLUSIONS 
1996 will be the first year any of the new high-bandwidth DRAM memory type reach any significant 

volume. Several graphics companies (SOI, Cirrus Logic, and Chromatic) all will be shipping systems or 

231 



chips that use the Rambus interface. An important game platform, the Nintendo 64, is using RDRAM 
technology as a unified memory subsystem. Reaching unparalleled graphics capability in an $250 base 
system, this machine promises to raise the bar on expectations from 3D subsystems and cost. 
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Using PCI Interface in Routers 

Aamer Mahmood, Cisco Systems 

For its existing and next generation routers, Cisco has chosen network interface archi­
tecture that uses PCI bus as a common interface between various network media 
adapters, called Port Adapters, and the rest of the system. This allows leveraging of 
industry standard chips and also makes it possible to use the Port Adapters across mul­
tiple platforms. The Port Adapters interface to the network media (ethernet, token ring, 
fddi, etc.) on one end and connect to the rest of the system at the other end using PCI 
bus. The adapters are compliant to PCI electrical specifications. Mechanically they are 
6.5 x 5.5 (roughly), double-sided boards that use 200-pin AMP connector that supports 
hot swap across the PCI bus. The system uses multiple levels of PCI buses. There can 
be many Port Adapters in a system and each Port Adapter can in tum support 1-8 PCI 
agents. External Arbiter on the Port Adapter is used for arbitrating bus between the host 
system (to which Port Adapter is connected) and multiple agents on the PCI bus on the 
Adapter. All the Adapters have master capability and transfer data from/to network 
interface using 16-byte (or larger) bursts. All Adapters are required to support 
scatter/gather DMA with no alignment restrictions. As most of systems are big-endian, 
it is highly desirable that adapters support both little and big endian nodes. As latency 
is of concern, all Adapters are required to have big enough fifos to support the network 
interface at line rate. Since there are multiple Port adapters in a system, PCI bus 
utilization by each PCI interface is of primary importance. 
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RoadRunnerPCI Technical Overview 

Introduction 

In addition to providing a full line of HIPPI switches, gateways and related 
products, Essential Communications has developed a number of network interface 
cards supporting different bus interfaces, thus providing Serial-HIPPI networking 
for a wide range of workstations and personal computers. The heart of these cards 
is a custom ASIC known as the "RoadRunnerPCI." 

RoadRunnerPCI Serial-HIPPI adapters are designed to provide flexibility and high 
performance, and feature: 

• PCI (Version 2.1) host interface, 

• 800 Mbit/sec HIPPI data rates in both directions simultaneously, 

• on-board intelligence that reduces requirements on the host processor, 

• event-driven rather than interrupt-driven processing, 

• unique ring-buffer approach to data movement, 

• low latency, 

• TCP/IP checksum assistance, 

• Endian data conversion. 

Conceptually, the RoadRunnerPCI Serial-HIPP! adapter utilizes a "building 
blocks" architecture: in addition to its internal processor, the various interfaces 
provided on the card are virtually independent objects that can be easily replaced or 
upgraded. This allows, for example, creation of a new card that maintains the same 
host interaction but uses a different bus interface. Or, the on-board processor could 
be replaced with one that is more powerful. Even the HIPPI interfaces can be 
replaced with other network interfaces. 

What Is Serial-HIPPI? 

High Performance Parallel Interface, or ''HIPPI," is today's industry standard for 
high-bandwidth networking in both system-to-system and system-to-peripheral 
environments. Standardized by the American National Standards Institute (ANSI), 
HIPPI has been widely adopted by research, higher-education and engineering 
organizations worldwide. This transition is occurring because other standard 
networks, previously thought of as high bandwidth (e.g., FIDDI, ATM-OC3), 
cannot keep up with today's systems. 

With built-in features for high-bandwidth network switching, HIPPI defines 
multiple point-to-point channels between CPUs, and from CPUs to storage 
systems, displays and other peripherals. HIPPI provides a bandwidth of 800 
megabits (100 megabytes) per second over a distance of 50 meters on copper 
cables. Serial-HIPP! extends this distance to one kilometer on multi-mode, and 
10 kilometers on single-mode fiber optic cables, while providing two channels, 
one each for simultaneous transmit and receive. 

HIPPI networking has long been used in production supercomputing environments 
for peripheral connectivity, clustering and high-speed LANs. Workstation-based 
HIPPI networks were difficult to implement because of the bulky 50-pair copper 
cables that were required. Now, however, with Serial-HIPP! available on network 
interface cards, large-scale HIPPI LANs are not only viable, but easy to implement. 
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RoadRunnerPCI Technlcal Overview 

Basic NIC Architecture 

In addition to this PCI card and a PCI mezzanine card, the NIC family includes 
cards designed for use with Silicon Graphics' GI0-64, Sun's SBus and IBM's 
MicroChannel architectures. The latter cards feature a bridge between the particular 
bus interface and the RoadRunnerPCI (the bridge is not needed on the PCl-bus 
cards); this hardware bridge is transparent to the RoadRunnerPCI's host interaction 
software. Thus, the complete range of host software drivers and utilities developed 
by Essential is available for all of the network interface cards. 

The basic NIC hardware consists of a Serial-HIPPI fiber transceiver, two HP 
GLINK chips, the RoadRunnerPCI ASIC, and a memory chip. 

Serial 
HIPPI 

Figure 1. Network interface card layout 

PClorPMC, 
GI0-64, SBus, 
MicroChannel, 

EISA 

The RoadRunnerPCI interfaces directly with the PCI bus and contains an on-board 
32-bit RISC processor, DMA engine, PCI registers, and local registers. The internal 
CPU manages the independent DMA channels between the host and the on-board 
memory (256 KB of SRAM), and between this local memory and the HP GLINK 
HIPPI serializer chips. Conversion between serialized and optical data is via a 
Methode optical transceiver. The NIC operates on a single +5V source. 

PCI mezzanine cards (PMCs) are used where slim, parallel board mounting is 
necessary, such as in a single-board computer host, or for media interface in 
systems with no PCI bus. This PMC HIPPI card, with the Essential driver suite, is 
intended for use in embedded systems and previous-generation workstations with 
bus architectures such as HP Precision or VME. 

Essential is the first vendor to provide completely integrated Serial-HIPPI network 
interface cards-all previous HIPPI NICs were parallel, copper versions. The 
RoadRunnerPCI ASIC also dramatically reduces the NI C's complexity and number 
of components; thus these cards are much lower in cost and directly competitive 
with the latest ATM and Fibre Channel offerings. The Essential driver supports 
TCP/IP HIPPI ARP (RFC 1374), the HIPPI Network Forum API, and IPI-3 
diagnostics and performance-monitoring utilities. 

Supported bus platforms are PCI Version 2.1, PCI Mezzanine card (PMC), GI0-64, 
SBus, MicroChannel, and EISA. Supported operating systems are Digital UNIX, 
Windows NT, Novell Netware, SGI's IRIX, Sun's Solaris, IBM's AIX, HP-UX, 
Wind River's VX Works, and FreeBSD. 
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1.0 Features 

The RoadRunnerPCI Serial-HIPPI NIC is a programmable device that includes two 
network interfaces: data transmission is via a single-wide Source port, and 
reception occurs over a single-wide Destination port-these are separate, 800 Mbit/ 
sec. optical-fiber channels. The two ports are usually used together to form a shared 
full-duplex device, but the channels can be used independently as two non-shared 
private devices. This means that the network interface card can separately support 
an application that just sends and another application that just receives, as well as 
applications that both send and receive. 

The RoadRunnerPCI's CPU performs all necessary HIPPI-PH physical-layer 
processing. The host processor and software simply provides packets to be sent and 
accepts received packets-all HIPPI operations are transparent to the host. Special 
provisions are included for dealing with unlimited size packets, as well as for 
concatenating several packets within the same connection. 

---+ 

PCI 
Interface 

G 
--aJ ~-- ---+ 

+-

HIPPI 
Sert.I 

lnte"-

1 =- I -- .__ _ ___. +-

HOST INTERFACE NETWORK INTERFACE 

Figure 2. The AOlldAunnerPCI ASIC. 

The PCI Local Bus Specification Version 2.1 supports a 64-bit data path in addition 
to the standard 32-bit data path. The RoadRunnerPCI Serial-HIPPI adapter 
provides a 32-bit interface. However, the RoadRunnerPCI utilizes a 64-bit datapath 
internally, so future versions of the RoadRunnerPCI Serial-HIPPI adapter could 
easily support a 64-bit PCI host interface. 

1.1 Internal Processor 

The primary interaction between host and adapter is between two processors-the 
host is considered as one, and the CPU on the RoadRunnerPCI is the other. This 
approach allows the addition of new or unique features via simple software 
upgrades. The RoadRunnerPCI processor can be set up to accommodate different 
buffer descriptor formats, providing the ability to adapt to the communication 
method which best suits the host. 
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Processor execution is according to an "event" model rather than an "interrupt" 
model, meaning that the frequency of host interruptions is greatly reduced, which 
contributes to higher performance execution. A small instruction cache is provided 
so the processor does not use any of the NIC's local memory bandwidth. 

The NIC architecture uses card-based, master-mode DMA (direct memory access) 
to move data efficiently between host memory and the NIC memory over the PCI 
bus. The RoadRunnerPCI processor performs all tasks required to operate the fiber 
HIPPI interfaces and control the DMA channels. The processor directs the 
operation of the adapter, based on downloaded configuration parameters; it also 
keeps processing and interface statistics, which are accessible to the host. 

1.2 OMA Channels 

The RoadRunnerPCI Serial-HIPP! adapter provides DMA functions for moving 
data to and from host memory, eliminating the need for the host to perform these 
operations. Two independent DMA channels are provided-one is used exclusively 
for host memory reads while the other is used exclusively for host memory writes. 
These channels provide the primary means by which the PCI accesses host memory 
(mailboxes are also implemented, as discussed in a following section), and they are 
used for the transfer of control information, as well as network data, all of which is 
managed by the internal processor. 

1.3 Buffer Rings 

Data is moved by means of host-provided memory buffers. Each buffer is identified 
by a descriptor which includes a pointer to the buffer location, the length of the 
buffer, and control flags that indicate the content of the buffer. 

8 I Descriptor I _. , Buffer I I Buffer I 
(' ..... .:; (_,~, I/ 

i j '-...... ( Consumer ) 

( Producer ) --+ ,.--De-sc-rlp-to_r___,I I Descriptor I 

/ ~ / ~ 
I Buffer I I Descriptor I _. , Buffer I I Buffer I 

Figure 3. A buffer-descriptor ring. 

All bytes in a buffer are physically contiguous when viewed from both the host and 
the NIC. (Buffers are frequently one virtual page long.) Note that this buffer­
descriptor approach supports the "scatter/gather" method of memory usage. 
Removing the responsibility for buffer coordination from the host processor 
increases its efficiency and overall system performance. 
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Buffer descriptors are collected into fixed-sized rings for processing (see the 
previous figure). In addition to pointing a buffer in host memory, each descriptor 
points to the next descriptor, and the last descriptor points to the first. 

Internally, a ring is an array of descriptors. Processing proceeds from descriptor to 
descriptor around the ring. The agent that adds buffers to the ring is called the 
"Producer," and the agent that removes buffers is called the "Consumer." The 
Consumer chases the Producer, as shown in Figure 4; when the Producer and the 
Consumer reference the same descriptor, the ring is empty. (The Producer is not 
allowed to "catch" the Consumer.) 

1 
Descriptor 

( Consumer)~ Descriptor 

Descriptor 

( Producer )~ Descriptor 

Descriptor 

Descriptor 

J 

Figure 4. Descriptor-ring processing. 
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As described earlier, data is actually transferred between the host and the NIC by 
means of master-mode OMA channels, controlled by the RoadRunnerPCI. 

1.3.1 Ring Management 

The RoadRunnerPCI ASIC supports four types of rings: Receive, Send, Event, and 
Command. All data processed by the NIC pass through a data ring-there is one 
Send ring and one or more Receive Rings (when operating in HIPPI-PH mode, 
there is only one Receive Ring). Receive Rings handle incoming data and the Send 
Ring handles outgoing data. Receive Rings are created and destroyed as device 
interfaces are opened and closed. 

The two control rings manage the operation of the RoadRunnerPCI Serial-HIPP! 
adapter. The Command Ring handles commands from the host software that the 
NIC will process, and the Event Ring contains the results of NIC processing. 
'fypical commands include notification that there is more data to send, and a 
notification to the NIC that there are more empty buffers for a Receive Ring. 
'fypical Events include "Packet has been sent" and "Packet has arrived." 

Data buffering is managed through the ring-buffering mechanism described earlier. 
Received packets are multiplexed by the NIC based on the HIPPl-FP ULP field and 
placed in the appropriate Receive Ring. The frequency of host interrupts is reduced 
by the RoadRunnerPCI placing Event notifications in an Event Ring-interrupts 
are then generated based on conditions in the Event Ring instead of for each Event. 
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1.4 Data Synchronization and Buffer Alignment 

The NIC also incorporates local Send and Receive Rings that are not visible to the 
host (see Figure 5). These rings are used for buffering and proper synchronization 
of data as it passes between the host and the HIPPI interfaces. 

Host 

, ___ @ 
-1 -1---@ 1 
+-+ I Configuration , ._____. 'EJ 
+-- I Statlatlca I Praceuor 

~ 
- ,.... Q"'c ___ J __ 
.__ DMA ~ _ Source Interface ) 

Deatlnatlon Interface ) 

Figure 5. The RoadRunnerPCI Serlal-HIPPI adapter model. 

This approach supports automatic handling of misaligned buffers, which means that 
data can be transferred between any two buffers, regardless of the alignment of 
either. In addition, this feature can eliminate the need for the host to make copies of 
the data, providing a major improvement in performance. 

1.4.1 Buffer Alignment 

Not all DMA transfers will be nicely aligned to 32-bit boundaries; in fact, the data 
could be on any byte boundary. Traditionally, most adapters have placed the burden 
on the host to align the buffers prior to data transfer. This is time consuming and 
degrades system performance. The RoadRunnerPCI alleviates the problem by 
providing the byte steering logic necessary to compensate for misaligned buffers. 

Data from any host byte address can be aligned to any byte offset of the 
RoadRunner's internal memory. This flexible scheme allows multiple odd-length, 
odd-boundary buffers to be directly concatenated into the proper 32-bit HIPPI 
words. This process also aids in the generation of the internal TCP/IP checksums. 

1.5 Programmable Configuration and Operating Firmware 

An on-board EEPROM is used for storage of important configuration and 
manufacturing information. The internal processor initially executes from this 
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EEPROM, loading all of the internal PCI registers. (Note that the present register 
configuration will remain on the adapter even if it is moved between machines.) 

Use of the EEPROM allows vital adapter information to be accessed and updated 
via software whenever necessary-both the host and local processor can read and 
write this information. The EEPROM also can store non-PCI information, such as 
addresses, manufacturing data, diagnostic results, etc. 

1.5.1 Operating Firmware 

The software running on the internal processor is referred to as ''firmware" to 
prevent confusion with the host driver. The firmware image runs from on-board 
SRAM, which is loaded during initialization, either from host memory or from the 
on-board EEPROM. The host also can store firmware in the EEPROM. Thus, 
software conflicts (e.g., incompatible or outdated versions) between host driver and 
adapter are reduced. In addition, installation of new software is simplified-PROM 
swapping or use of a special firmware-loading utility is not required. 

Firmware images include operating images and diagnostic images. Each mode 
is independent of the other modes. There is an operating image that supports 
HIPPI-FP operation, with checksum extensions, and a separate image that supports 
HIPPI-PH processing. The NIC can be configured either as a shared device 
supporting HIPPI-FP, or as a dedicated point-to-point, private-protocol device 
supporting HIPPI-PH. 

The shared model is suitable for network operation using IP concurrently with 
applications using private protocols. In the shared mode, a single connection can 
pass a limited amount of data in one or more packets. The NIC is configured for 
maximum number of bytes that can be passed over a single connection. In all cases 
the NIC handles the HIPPI-PH state transitions and all request, confirm, indicate 
and response primitives. 

1.5.2 Checksums 

In addition to support for TCP/IP and UDP/IP checksum generation and validation 
during HIPPI-FP operation, a TCP/IP-style checksum is calculated on all data 
transferred through the RoadRunnerPCI's internal data rings. This can improve the 
performance of a host implementation that supports hardware checksum assist 

1.6 Error Handling 

There are two possible error types defined by the PCI specification, parity errors 
and system errors. The RoadRunnerPCI controller supports both of these error 
reporting mechanisms. 

Parity errors are checked across the data bus by the receiving agent on the PCI bus 
during transactions. System errors are checked across the address bus, and across 
the data bus during a Special Cycle command. Any interface on the PCI bus can 
indicate a system error. Certain error conditions cause events to be sent directly to 
the ASIC internal processor. This allows flexibility in the implementation of an 
error-recovery mechanism. 
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1.7 Memory Arbitration 

There are six entities that arbitrate for the use of the local SRAM. A priority 
scheme between these six requesters ensures no requester can cause a loss or 
corruption of the dataflow. 

The two HIPPI network interfaces have the highest priority so they never underrun 
or overrun. The HIPPI Transmit interface is guaranteed access to the local memory 
on the clock cycle after it makes a request; the HIPPI Receive interface is 
guaranteed memory access within two clock cycles of making a request. The 
Transmit or Receive hardware then ensures that there is at least one, and sometimes 
two, clock cycles between memory accesses-this enables other requesters access 
to the memory. 

Host access to the RoadRunnerPCI also must occur in a timely fashion, and is next 
in priority. Depending on the level of HIPPI activity, a host access request is 
serviced between one and five internal clock cycles. 

The internal processor is considered lowest priority as long as any data transfers are 
in progress. Since the primary job of the processor is to keep the data moving, it's 
job is most critical prior to data movement beginning, at which time there will be 
plenty of bandwidth for the processor. The processor is never starved for 
bandwidth, since it has an instruction cache, as well as a mechanism that advances 
its priority if its request has been waiting too long. 

1.8 Mailboxes 

A common technique for communication between a host processor and an adapter 
is use of "mailboxes." Typically these are locations that are written to by one 
processor, causing an interrupt to the other processor. The value written may or may 
not have any significance, and each processor is allowed to read the mailbox only 
once before it is cleared by the hardware. 

In the RoadRunnerPCI, the main mechanism for communications between the host 
and the RoadRunnerPCI adapter is via buffer descriptors. Use of host buffer 
descriptors is more efficient, allowing larger amounts of data to be passed without 
requiring the host to access the PCI bus or process interrupts. However, generalized 
mailboxes also have been implemented to provide greater flexibility in the 
interaction between the host and the adapter. The value in the mailbox is significant 
in this mailbox scheme. Also, mailboxes can vary in size, and can be read as many 
times as necessary without the contents being erased. 

1.9 Endlan Conversion 

There are two basic formats for storing data in memory: "Little Endian" and "Big 
Endian." The PCI Local Bus Specification (Version 2.1) prescribes a Little-Endian 
format for PCI buses; however, not all hosts accept data presented in this format. 
Therefore, to facilitate communication between hosts and adapters with Big Endian 
designs, the RoadRunnerPCI can perform Little-Endian to Big-Endian byte swaps, 
translating between the two formats. This flexibility means the RoadRunnerPCI 
also can be the basis for a non-PCI interface where data is expected in Big-Endian 
format, and it enhances the performance of PCI bridges to other bus systems such 
as GI0-64, SBus and MicroChannel. 
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Abstract: This paper traces the history of Mylex RAID controller development and the migration to the 
PCI bus. The features of the PCI RAID controllers now in production are described along with the 
platforms and operating systems that are supported. Some of the issues relating to different platforms 
and operating systems are discussed. A look at some of the future developments is presented. 

FROM EISA TO PCI -A HISTORY OF 
MYLEX RAID CONTROLLER 
DEVEWPMENT 

The 90' s began with expected growth in client/ 
server solutions, and Mylex recognized the need for 
reliable mass storage at prices suitable for the PC 
server market. RAID technology offered the solution, 
but this necessitated the development of a host-adap­
ter-based disk array controller. 

Mylex RAID controller development began in 
June, 1991. The first product used an embedded 
RISC-based processor, the Intel i960CA, and was 
based on the EISA-bus. The controller provided five 
SCSI channels to interface with the disk subsystem, 
and it supported RAID levels 0, 1, 5, and O+ 1, as well 
as single drive control capability ("JBOD"). Called 
the DAC960-5, it went into production in April, 1992. 

Subsequently, 3-, 2- and I-channel versions of 
this product were developed, which proved to be more 
cost-effective than the original 5-channel version. 
Further, the migration to different busses commenced. 

The Migration Steps to PCI 

The first migration was to the MicroChannel™ 
bus. The MicroChannel product, the DAC960M-2, 
was sampled in December, 1992 and went into 
production in April, 1993. The migration to a host 
SCSI bus, to achieve platform independence, com­
menced in the summer of 1993 around the same time 
that the development of a PCI RAID controller began. 

The first Mylex PCI controller, the DAC960P, 
went into production in September, 1994. Subse­
quently, two other products, the DAC960PD and the 
DAC960PL, were introduced in December, 1994 and 
March, 1995 respectively. 

To date (February, 1996), Mylex has shipped in 
excess of 250,000 RAID controllers, of which more 
than 90,000 are PCI based. 
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PCl's Special Challenges. The migration to 
PCI presented some special challenges, especially in 
terms of time to market. For both EISA and Micro­
Channel busses, an off-the-shelf bus master interface 
controller chip was available. This made the hardware 
design relatively quick, since no ASIC development 
was needed. However, for the PCI bus, no such 
device was available, given that PCI started off as, 
(and still is, primarily), a component bus - while a 
RAID controller requires an entire embedded proces­
sor system. 

RAID TERMINOLOGY 

RAID - Redundant Array of Independent Disks 

RAID level 0 - Block striping is provided, which 
yields higher performance than with individual 
disk drives. There is no redundancy. 

RAID level 1- Drives are paired and mirrored. 
All data is 100% duplicated on an equivalent 
drive (fully redundant). 

RAID level S - Data is striped across several disk 
drives. Parity protection provides redundancy. 

RAID level O+ 1 - Combines RAID levels 0 and 1. 
This level provides both striping across drives 
and redundancy through mirroring. 

JBOD- "Just a Bunch of Drives." Each drive 
can operate independently, like with a common 
host bus adapter; or multiple drives may be 
spanned and seen as a single, very-large drive. 
No redundancy is provided. 
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ARCHITECTURE OF MYLEX PCI RAID 
CONTROLLERS 

All of the Mylex PCI RAID controllers that are 
currently shipping share a common architecture 
similar to that shown in Figure 1, the block diagram of 
the My lex DAC960PD. 

The PCI architecture and the DRAM subsystem 
are the keys to the high performance of the Mylex 
RAID controller. The DAC960P and the DAC960PD 
provide two options for DRAM - a standard fast-page 
mode DRAM, which operates with one wait state and 
can provide a peak memory bandwidth of 66 Mbytes/ 
second; and an EDRAM, which operates at zero wait 
states with a peak bandwidth of 133 Mbytesl sec. 

At power-up, the i960 copies code from the flash 
EEPROM into the DRAM and executes it from the 
DRAM. 

~ CACHE MEMORY SIMM I 
Drive 

ChannelO 

II 

Mylex PCI RAID Controllers 

Array configuration information is maintained in 
the EEPROM, with a backup copy in the NVRAM. 

Commands from the host CPU(s) are posted into 
mailbox registers in the PCI interface component (the 
PCU). These commands are analyzed by the i960, 
which instructs the SCSI 1/0 processors (SIOPs) to 
initiate one or more SCSI commands to the drives. 

The DRAM is also used as a cache, controlled by 
the memory control unit (MCU) - thus, system read 
commands which have cache hits result in data trans­
fers directly from the cache to the PCI bus through the 
PCU. The cache can be configured as write-through 
or write-back on a logical drive basis. 

An optional battery backup module (not shown) 
will maintain any write data that may be remaining in 
the cache in the event of a power failure. 

Drive Drive 
Channel1 Channel2 

, ........ __ Il ___________________ Il _____ ..... . 
i960CF n 
CPU B 

i Optional i -=========1 i 

·F~w~~~_1 II II 
32-Bit Bus 

II 

B 
Il 

Host PCI 32-Bit Bus 

Figure 1. Block Diagram of Mylex DAC960PD PCI RAID Controller 
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Figure 2. Mylex DAC960PD PCI RAID Controller 

PCI RAID CONTROLLER FEATURES 

The features listed below are generally common 
to all three Mylex PCI RAID controllers - DAC960P, 
the DAC960PD (shown in Figure 2) and DAC960PL. 
Differences between the controllers are indicated 
wherever applicable. 

• All three models are full-size PCI boards . 

• The DAC960P and the DAC960PD use an 
i960CF at the core. The DAC960PL uses an 
i960JF at the core. 

• 1-, 2- and 3-channel versions are available. The 
basic board layout accommodates three channels. 
2- and I-channel versions are realized by 
depopulating the standard layout. 

• All SCSI channels are Fast (lOM transfers per 
second) and Wide (16-bit). Ultra-SCSI (20M 
transfers/second) versions of the DAC960P and 
the DAC960PD are currently sampling, and will 
be in production in April, 1996. 

• Cache memory options are 2, 4, 8, 16 and 32 
Mbytes with fast-page mode DRAMs, and (not 
available for the DAC960PL) 4 and 8 Mbytes 
with EDRAMs. 

• Data transfers between cache memory and the 
PCI bus are sustained at almost 133 Mbytes/ 
second with EDRAM and almost 66 Mbytes/ 
second with DRAM~ 

• 

• 

• 

• 

• 
• 

• 

• 
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The battery backup module option is available for 
all models. 

The DAC960P has a single 68-pin high-density 
connector on the back-plane for connecting one 
SCSI channel externally. 
The DAC960PD and the DAC960PL have two 
68-pin ultra-high-density connectors on the back­
plane providing for two external SCSI channels . 

Supported RAID levels are 0, 1, 5, O+l and 
JBOD. 

Multiple disks can be designated as hot spares, to 
dynamically replace failed drives. 

Hot swapping of disk drives is supported . 

A pass-though mode is available for non-disk 
devices, such as CDROMs and tape drives. 

Multiple-drive subsystem enclosure management 
schemes are supported: Digital StorageWorks™, 
Conner, Mylex AEMI, SAF-TE, as well as some 
proprietary schemes for key OEM customers. 

The DAC960P and the DAC960PD can deliver 
29 Mbytes/ second of sustained sequential read 
performance from the disk drives to the system 
memory, and 2000 iops random performance. 
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OPERATING SYSTEM AND PLATFORM 
SUPPORT 

In general, support for an operating system con­
sists of a RAID controller device driver and one or 
more administration and monitoring utilities which 
notify system administrators of hardware, software, or 
network-related events requiring attention. 

Mylex development efforts are on-going in sup­
port of the major client-server operating environments 
and platforms. 

Intel (x86) Architecture Platforms 

The Intel x86-based operating systems that are 
supported are: 

• Novell Netware 3. lx and 4.x, 
• Microsoft Windows NT 3.51, 
• IBM OS/2 2.x and 3.x, 
• SCO ODT 3.0 and Openserver Rel 5.0, 
• Unixware 2.01, 
• Banyan Vines 6.0. 

Administration and monitoring utilities for all the 
above are server-based. In addition, a client/ server­
based GUI utility, the Global Array Manager™, is 
available for the following servers and clients: 

Servers 
• Windows NT 3.51 
• Novell NetWare 3.lx and 4.x 

Clients 
• Microsoft Windows 
• Windows for Workgroups 
• Windows NT. 

Initial array configuration is through a DOS­
based utility (DACCF.EXE). Booting from the array 
is possible through the DAC960 BIOS. 

PowerPC Platforms 

The supported operating system for the PowerPC 
is Microsoft Windows NT 3.51. Initial array configur­
ation is through an Open Firmware based utility. 
Booting from the array is through an Open Firmware 
boot ROM. 
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Figure 3. Mylo: RAID Controller 
Architecture 

Digital Alpha™ Platforms 

Supported operating systems for Digital Alpha 
platforms are: 

• Microsoft Windows NT 3.51, 
• OSF-1, 
• VMS. 

Initial array configuration is through an ARC 
(Advanced .RISC .Computing standard) based utility. 
Booting from the array requires support from the 
system firmware and is available on several platforms. 

MIPs R4000 Platforms 

The supported operating system for MI~ R4000 
platforms is Microsoft Windows NT 3.51. Initial 
array configuration is through an ARC based utility. 
Booting from the array requires support from the 
system firmware and is available on several platforms. 

·);.#·,; 
. ;~·;~ 

·, 
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PCl-REIATED ISSUES WITH PIATFORMS 
AND OPERATING SYSTEMS 

Most of the PCl-related issues that My lex faced 
when developing for different platforms and operating 
systems were due to the relative infancy of PCI. Some 
issues were due to the ambiguity in the 2.0 PCI Speci­
fication. The 2. l Specification addressed many of 
these issues. 

Protocol and Timing Issues 

The initial PCI implementations in the Intel 
architecture - the Mercury and Neptune chipsets -
were aimed primarily at the desktop markets. System 
memories could only support transfer rates in the 
order of 40 to 50 Mbytes/second. Thus, the full PCI 
bandwidth was not being tested at that time. With the 
emergence of the newer Triton chipsets, that was no 
longer the case, giving rise to some protocol and 
timing problems. 

The 2.0 Specification indicated that accesses to 
registers on devices had to be provided in both 
memory and 1/0 spaces in order to support processors 
which did not have explicit 1/0 instructions. How­
ever, this was mentioned at only one place in the 
specification and was overlooked by many imple­
menters causing problems in porting to non-x86 
platforms. The 2. l Specification came out with a very 
clear recommendation to implementers to provide 
both kinds of accesses to registers. 

In installations with multiple adapters from the 
same vendor, the addressing of specific controllers 
from a utility and user interface perspective is an 
issue. The 2. l BIOS Specification provides a new call 
which returns a slot number given a bus, device and 
function number. However, in operating systems such 
as Windows NT, where BIOS calls are not possible 
and PCI configuration information is provided 
through operating system functions, the physical slot 
number cannot be obtained. 

Boot Device Order Issues 

Boot device ordering, when using heterogeneous 
host bus adapters, is another major issue. In earlier 
busses (e.g. ISA, EISA and MicroChannel), the boot 
device could be selected by the user through config­
uration options. 

One of the advantages of PCI is that it is intended 
to function as plug-and-play, thus eliminating the need 
for users to deal with configurations, BIOS addresses, 
and so on. A disadvantage of automatic configuration 
is that user flexibility is lost. For example, it is 
entirely possible that the boot device can change when 
a user inserts a new adapter in a system. 
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Typically, there is no way for the user to change 
the boot device in a PCI system. Mylex has addressed 
this issue by providing an INT13 support enable/dis­
able feature. 

FUTURE DEVEWPMENTS­
FUTURE CHAUENGES 

The current PCI bandwidth of 133 Mbytes/sec is 
fairly adequate for the state-of-the-art in storage tech­
nology (Ultra SCSI, 40 Mbytes/ second), even for a 
3-channel RAID controller product. The challenges in 
achieving maximum bandwidth on the storage bus 
through a RAID controller are bigger than those 
related to saturating the PCI bus. 

266MBs 

133MBs 

33M9/s 

90 95 98 

Figure 4. RAID Controller Bandwidth Needs 

As newer and faster interfaces such as Fibre 
Channel, SSA and Fast-40 SCSI begin to appear, 
however, the PCI bus will bottleneck easily at its 
present 32-bit, 33 MHz rate. This will necessitate a 
migration to a higher bandwidth bus, either through a 
faster clock, 66 MHz, or increased width, 64-bit. 

The former appears to be a lower-cost alternative, 
since there will be no need to increase pin count on IC 
packages. However, the challenges in making a 
system work at 66 MHz with adapters from different 
vendors can be significant. Further, the lack of back­
ward compatibility can be another issue - a 66 MHz 
PCI bus will run at 66 MHz only when all devices and 
adapters on it are 66 MHz capable. 

The advantage of a 64-bit PCI bus is that _it is 
backward compatible - devices which are 64-bit 
capable (typically, system memory and the bus master 
in question) can communicate at the faster rate, allow­
ing all other devices to operate at their own rate. On 
the other hand, the disadvantages of 64-bit PCI are the 
costs associated with increased pin count and the 
board layout issues when dealing with the wider bus. 
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CONCLUSION 

Future needs for larger bandwidth for PCI RAID 
controllers can be satisfied relatively easily by means 
of the 64-bit PCI bus. This conclusion is based on 
experiences that My lex has encountered during the 
development of RAID controllers for different host 
busses since 1991; and validated during and the pro­
duction of over 250,000 controllers to date (specifi­
cally the three PCI RAID controllers that Mylex has 
been shipping for some time), to support a wide range 
of operating systems and platforms. Up to now, most 
of the issues with PCI were due to the relative infancy 
of the PCI specification and have been addressed in 
the version 2.1 specification. 
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Since the advent of the personal computer the increase in bandwidth of both the main processor 
and 110 devices is substantial. On the processor side, raw bandwidth has been increased from 10 MB/s to 
1064 MB/s in a little more than 10 years. In early systems floppy drives were the fastest devices attached. 
Soon after 110 devices like IDE and SCSI hard disk drives started pushing the limits of the ISAbus with 
burst speeds ofless than 10 MB/s. As a result of this, migration of the host bus has happened as well; 
from the XT to AT/ISA to EISA to Microchannel to PCI. The increase in bandwidth from 4 MB/s to 132 
MB/s is substantial. However, PCI is unique in its acceptance. It has been adopted in low end PCs to the 
highest end workstation/servers and even in subsystems such as RAID and telecom boxes. The need to 
perform, yet be cost effective, is evident. Today 32 bit 33 MHz PCI has more than enough bandwidth for 
lower end PCs, but higher end systems are starting to push the limits once again. This push is being 
intensified by higher and higher performing video requirements and is also very pronounced in the 110 
arena where both ANSI and the IEEE have developed new 110 interface standards that have surpassed 10 
MB/s and are starting to exceed data rates of 100 MB/s. These 110 interface standards include Ultra-2 
SCSI (Fast-40), Fibre Channel, IEEE-1394 and SSA, which operate in the 40 to 100 MB/s range. In this 
paper Ultra-2 SCSI, the newest of the four mentioned above, will be the topic of discussion. However, 
most of the system level issues touched on in this paper apply to any 110 device, and will become more 
important as these new 110 technologies approach 60% or more of the 32 bit 33 MHz PCI buses 
theoretical bandwidth of 132 MB/s. 

Ultra-2 SCSI (Fast-40) Overview 

Ultra-2 SCSI is an incremental step in the migration of SCSI to higher and higher data rates. 
ANSI X3T10 SPI-2 Study Group is defining this addition to the SCSI-3 standard. The primary difference 
between Ultra-2 SCSI and its predecessors is the adoption of Low Voltage Differential (L VD) transceivers 
which allow synchronous data transfer of greater than 80 mega-transfers per second at cable lengths of 12 
meters with 15 L VD devices attached. The transceivers can be implemented using generic CMOS 
processes which allow the integration of the transceivers and the SCSI processor. This enhancement 
provides the connectivity, distance and reliability ofRS-485 based differential SCSI without the space and 
cost penalty. 

The software changes required to implement Ultra-2 SCSI are very similar to the migration from 
Fast SCSI to Ultra SCSI (Fast-20), mainly synchronous negotiation. However, the key is to create a device 
that has the bandwidth to fully support Ultra-2 SCSI's 80 MB/sand not over burden the host bus (PCI). 
An intelligent implementation is a must. Intelligence here assumes very little assistance from the host to 
complete an 110. 
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Bandwidth 

From a system level point of view the performance increase when migrating from Ultra SCSI, 
which when running wide transfers has a peak synchronous transfer rate of 40 MB/s, to Ultra-2 SCSI, 
which when running wide transfers has a peak synchronous transfer rate of 80 MB/s, is considerable. 
With 60% of the potential PCI bandwidth being consumed by one device, the chip hardware, software, 
and PCI chip set designers must pay particular attention to each segment of their design to insure 
optimum performance. In early tests, Symbios Logic has found that PCI chip sets limit wide Ultra-2 SCSI 
performance. When running Ultra-2 SCSI narrow the SCSI bus is limited to 40 MB/s synchronous. In the 
test environment 37 MB/s was achieved using a low latency target. Running this same test, only this time 
using wide transfers, resulted in 56 MB/s out of a possible 80 MB/s available on Ultra-2 SCSI bus. A few 
of the questions posed by this paper are: How far can the current 32 bit, 33 MHz architecture be perfected 
before most systems require 64 bit or 66 MHz PCI or both? What can host implementations do to prolong 
its life? 

PC/ Arbitration 

Before the meat of an 1/0 transfer can be looked at, how the PCI bus handles arbitration is 
important. On the PCI bus, arbitration is controlled by a central entity known as the bus arbiter. The 
arbiter is usually physically located in the PCI chip set. Specifically, it may be integrated into the host/PCI 
or the PCI expansion bus bridge device. The PCI specification does not define the algorithm used by the 
bus arbiter to decide the winner of a arbitration. The bus arbiter can use any scheme as long as it is fair 
and avoids deadlock. This vagueness allows many different implementations and provides an area for 
improvement. The arbiter could implement a fairness algorithm based on fixed order, or rotationally or a 
combination of them both. 

To describe PCI bus arbitration in short, when a PCI master wishes to gain control of the PCI bus 
it asserts it's REQ# signal. The bus arbiter sees the request and based on the algorithm used to determine 
ownership grants the bus to the requesting master by asserting GNT#. Arbitration Latency is the time 
from the assertion of REQ# to the assertion of the corresponding GNT#. This time period is highly 
variable and can take several clocks. In cases where only one device is competing for the bus, 10 PCI 
clocks have been observed. When the device receives the grant it cannot begin its cycle until the PCI bus 
goes idle. This time is known as Bus Acquisition Latency and is defined as the time from the reception of 
GNT# to when the current master surrenders the bus. This is controlled by the current master's Latency 
Timer expiration or completion of its data transfer. The last piece of this puzzle is the Target Latency 
which is the time from the beginning of the transfer cycle to the beginning of the data transfer. The total 
Bus Access Latency is the summation of the Arbitration Latency, Bus Acquisition Latency, and Target 
Latency. 

The PCI specification has placed several hooks that allow Bus Access Latency to be controlled 
and those hooks are being put to better use in newer designs. The use of the maximum latency, minimum 
grant, and Latency timer are describe here and are very useful if the bus arbiter is programmable. The 
programmable bus arbiter should be configured by configuration software at startup. The configuration 
software determines the priority to be assigned to master capable members of the PCI bus. This is 
accomplished by reading each members maximum latency (Max_Lat) and minimum grant (Min_Gnt) 
registers. Each bus master (the Ultra-2 SCSI device) indicates in these registers how quickly it requires 
access to the bus and how long it would like to retain the bus in order to achieve its required performance. 
The smart programmable bus arbiter based on this information, programs the Latency Timer in the device 
and establishes the priority each device will have in its arbitration algorithm. Therefore it is imperative 
that master capable devices set the Max_ Lat and Min_ Gnt registers to values appropriate for their device. 
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UO Transfers 

In this example a single SCSI 1/0 is broken down to better understand how an intelligent Ultra-2 
SCSI 1/0 device can push current PCI bus implementations to the point where it hinders the Ultra-2 SCSI 
bus performance. It is important to point out here that non-intelligent implementations will over burden 
the system and will not allow 80 MB/s over the SCSI bus and will reduce the performance of other 
devices connect to the PCI. 

The system used for this experiment consisted of a 100 MHz Pentium machine with 32 MB of 
memory. The memory sub-system was able to receive 64 dword bursts without inserting wait states. The 
PCI bus was loaded with three devices (host bridge, video, and SCSI). The SCSI bus controller was mostly 
intelligent with all hardwire specific code running local and all data structure information for the 1/0 was 
running in host memory. The target device emulates a heavily loaded SCSI bus which is sustaining as 
close to 80 MB/s as possible. It will be paced by the initiator. A 1 mega-byte file is being transferred from 
the target to the initiator. This file is broken down into 32 - 32 KB SCSI transactions. The initial seek 
time is 5 ms but the remainder of the transaction is completed with a minimal latency between 
disconnects. 

The purpose of this example is to show how an Ultra-2 SCSI device can and does exceed the 
effective data transfer rates of the PCI system under test. This example also illustrates how an intelligent 
Ultra-2 SCSI device reduces the PCI traffic for non-data transfers and increases the data throughput of the 
Ultra-2 SCSI device. The goal is to have 80 MB/s across SCSI and PCI. 

Table I describes the flow of a simple SCSI read transaction and will provide the baseline for 
understanding the bandwidth required to meet Ultra-2 SCSI's needs. 

SCSI Phase Descri~tion Time 
Albitration Time from BUS FREE through the time when the 

Initiator has won the SCSI Bus. 
Selection Time from Arbitration through the time when a 

device has been selected and asserted BUSY 
Message Out Initiator sends Identify message 

_(assume ~ch done) 
Command Initiator sends Read Command to target RAID 
Mes~In Target Disconnects from Initiator 
Sub Total 
Disconnect Time 
Albitration Time from BUS FREE through the time when the 

Tar~t has won the SCSI Bus. 
Reselection Time from Arbitration through the time when the 

initiator has been selected and asserts BUSY 
Messa_.s._e In Target sends Identify message 
Data In RAID sends data to Initiator (32 KB transfer) 
Message In Save Data Pointers and Disconnect 
Sub Total 

-5µs 

-0.6µs 

-0.lµs 

-0.5µs 
-0.2µs 
6.~ 
5ms 

-5µs 

-0.6µs 

-0.lµs 
-400..l:!:_S 
-0.2~ 

405.9µ.s 
*********** Rc:.t!_eated 31 Times ************* 
Disconnect Time lµs 
Albitration Time from BUS FREE through the time when the -5µs 

Tar_g_et has won the SCSI Bus. 
Reselection Time from Arbitration through the time when the -0.6µs 

initiator has been selected and asserted BUSY 
Message In Target sends Identify message and Restore -0.lµs 
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Pointers 
Data In RAID sends data to Initiator (32 KB transfer) -400µs 
Sub Total 12.6ms 
*********** End R~eated 15 Times ************* 
Status Target sends status to initiator --0.1~ 
Message In Target sends complete message --0.lµs 
Total 13 ms+5ms 
Table 1. Example SCSI Transfer. 

This SCSI J/O takes 13 ms plus the 5 ms seek latency to transfer the IMB file (76.92 MB/s). 
This is very consistent with the actual data obtained using the Ultra-2 SCSI device doing narrow 
transfers. If you remember 37 MB/s was achieved from a possible 40 MB/s. The SCSI overhead for both 
narrow and wide transfers will remain constant. The following paragraphs will examine some of the 
system overhead that is needed to generate and service this request, and how that translates into PCI bus 
latency. 

Host Based Operation 

The application makes a read request to the operating system (OS). The operating system sends 
the request to the SCSI device driver which translates the J/O request into a data structure. This structure 
consists of a scatter/gather list, pointers to the SCSI message and command, and where the SCSI status 
will be written. Even though the SCSI bus transaction has not been started, hundreds of PCI transactions 
have already taken place. Reads from the hard disk drive' s FAT and sector tables, host buffer allocation, 
and memory transaction have been executed to allow the SCSI driver to formulate this data structure. The 
PCI chipset, by supporting Memory Write & Invalidate and Read Multiple ensures that these transactions 
are done optimally. The I/O device driver needs to ensure that the translation from the OS's I/O request to 
the data structure is as clean as possible. 

SCSI Controller Operation 

At this point, the implementation used to execute this SCSI J/O is crucial to maintaining PCI 
bandwidth optimiration. Good SCSI devices are "intelligent" and do not require constant attention. An 
example of an intelligent device would be one that requires less than one interrupt per J/O and only needs 
to access the PCI bus for start up, data transfer, end of J/O, and perhaps some exception handling. Non­
intelligent devices would require assistance in servicing two or more of the SCSI phases and must go 
across the PCI bus to fetch all instructions and data structure information. 

Symbios Logic's SYM53C8xx family of SCSI controllers allow for designs that can operate with one 
interrupt per I/O and only need to access the PCI bus for startup, data transfers, I/O completion, and some 
exception cases. This sort of performance advantage requires the following features: 

1) On chip or on board intelligence (RISC processor). 
2) On chip or on board memory dedicated to processor code and context information. 

Without intelligent Ultra-2 SCSI devices for host applications the host processor, memory, and the PCI 
bus can be over burdened by just one J/O connect. 
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Intelligent Implementation 

Once the data structure information is formulated it is loaded from host memory. The SCSI 
device requires one more write to begin the SCSI bus I/O transaction. When the starting address has been 
written to the SCSI device, the first instruction can be fetched from local memory. In this case the first 
command would be a Select with Attention. This starts the SCSI bus arbitration, see Table 1. Once the 
device has won arbitration and selection has taken place, each SCSI command is fetched from local 
memory. When the disconnect message is received, the SCSI processor saves the relative information and 
it proceeds to another I/O or waits to be reselected. Once reselection takes place the target identifies itself, 
which enables the SCSI processor to reestablish the nexus for this I/O. As data is received the 
scatter/gather buffer information is retrieved from host memory and the data is written to host memory 
across the PCI bus. Again the target disconnects from the SCSI bus and the relative information is saved 
to host memory. For this example this process repeats itself 31 more times and on the last transfer the 
target finishes normally with status and the target resonds with the completion message. The initiator then 
interrupts the host telling it that the I/O is complete. 

In this intelligent implementation example the PCI bus was only used for data structure updates, 
data transfer and only one interrupt had to be serviced. The number of PCI clock cycles required to service 
an interrupt is OS dependent but typically takes about 2500 PCI clock cycles to service. If the average PCI 
bus access latency is 2.5µs and data is burst at a rate of 64 dword per ownership it would consume 
another 1.94 µs. The time required to transfer the entire 1 MB file would be 18.19 ms (54.97 MB/s). This 
again is very consistent with the actual data taken. 

Conclusion 

Many of the PCI systems out there today will not support sustained transfer rates of75 MB/sand 
above. However, it not as bleak as it might seem, most I/Os are bursty and do not require very high 
sustained data rates. For applications where high sustained rates are needed, two PCI buses will most 
likely be implemented; one for slow devices (32 bit, 33 MHz) and one for higher bandwidth applications 
(64 bit, 33 MHz or 32 bit, 66 MHz). From an I/O implementor's point of view the following design 
feature should be supported: 

1) Intelligent implementation: 
- Reduce the number of interrupts per I/O to 1 or less. 
- Optimize such that the PCI bus is used for data transfer, not fetches of commands and data 
structures. 

2) Use the PCI performance commands 
- Memory Read Line or Memory Read Multiple 
- Memory Write and Invalidate 

3) Support bursts of at least 256 bytes 

4) Appropriately set the Max_ Lat and Min_Gnt registers and allow the Latency Timer to be set 
accordingly. 

If all devices implement these features the PCI bus will be optimized for data transfer, latency will be 
predictable, and I/O devices will work at their performance requirement, not PCI' s limitations. 
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Abstract: 

This white paper discusses the system level issues encountered when connecting high perfonnance 1/0 
devices, such as Ultra-2 SCSI (Fast-40), to PCI. With the theoretical maximum bandwidth of a 32 bit, 33 
:MHz PCI bus being 132 MB/s one might not expect that most systems cannot support the 70-80 MB/s 
sustained data rate of a Ultra-2 SCSI interconnect. This paper walks thru a SCSI I/O and looks at the 
areas where intelligent SCSI implementations reduce overhead traffic on PCI and increases the data 
through put. 
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+ Transparent to all OS's and applications 

+ Equal or better performance than non-UMA 
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What's Bad about UMA 

+ Asynchronous memory technologies 

+ Sharing memory control signals at high frequencies 

+ Exposing low level hardware to applications 

+ Multi-chip solutions do not off load PCI 

+ @ 16MBit memory, UMA is not compelling 
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Unified Memory Architecture 
What's Good About UMA 

+ Addresses the increase in memory granularity 

+ Can put graphics (et.al.) at the core of the machine 

+ Can be transparent to all OS's and applications 

+ Integrated solutions can off load the PCI bus 

+ Enables even higher system integration 

+ @ 64MBit memory, UMA is compelling 
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"Leveraging PCI Bus Bandwidth and High Performance CPUs in Designing 
MPEG-1 and H.261 Video CODECs" 

Frank Schapfel 
Multimedia Engineering Manager 

Digital Equipment Corporation 
77 Reed Rd. HL02-l/H12 

Hudson, MA 01749 
(508) 568-4861/6371 (fax) 

Digital Semiconductor, a Digital Equipment Corporation business, headquartered in 
Hudson, Massachusetts, designs, manufactures and markets industry-leading 
semiconductor products including Alpha microprocessors and PCI chips for networking, 
bridging and multimedia, as well as low power Strong ARM microprocessors under 
license from Advanced RISC machines Ltd. Digital Semiconductor's PCI multimedia 
chips deliver quality compressed video to Windows-based desktop computers for 
applications such as MPEG-1 authoring, MPEG-1 video editing, H.320-based 
videoconferencing. Using a systems-oriented approach to both hardware and software 
design, Digital Semiconductor's multimedia chips deliver a more complete solution 
leveraging standard operationg system applications programming interfaces (APis), host 
CPU performance and industry standard PCI-bus interfaces. More information about the 
complete line of Digital Semiconductor products visit our World Wide Web site: 
http://www.digital.com/info/semiconductor. 
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TRIMEDIA - The Processor for PC-Consumer Multimedia 

Selliah Rathnam, Gert Slavenburg 

Philips Semiconductors 
811 E. Arques Avenue, Sunnyvale, CA 94088 

e-mail: selliah@trimedia.scs.philips.com 

ABSTRACT 
TM-1 is the first in a family of programmable multimedia 
processors from the Trimedia product group of Philips 
Semiconductors. This PC/ bus based "C" programma­
ble processor has a high performance VLIW-CPU core 
with video and audio peripheral units designed to sup­
port the popular multimedia applications. TM-I is de­
signed to concurrently process video, audio, graphics, 
and communication data. The VLIW-CPU core is capa­
ble of executing a maximum of twenty seven operations 
per cycle; and the sustained execution rate is about five 
operations per cycle for the tuned applications. The au­
dio unit easily handles different audio formats including 
the 16-bit stereo data. Tlie video unit is capable of pro­
cessing different YUV and RGB pixel formats with hori­
wntal and vertical scaling and color space conversion. 

PCIBus 

Ster~o digital audio 
I SDC-80kHz 

12C bus to 
camera, etc. 

Figure 1. TM-1 block diagram. 

Audio In 

Audio Out 
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The pixel image data in RGB format can be sent to the 
graphics device through PC/ bus. TM-1 applications can 
range from low-cost, stand alone systems such as video 
phones to programmable, multipurpose plug-in cards for 
traditional computers. 

1.0 INTRODUCTION 
TM- I is a building-block for high-performance multi­

media applications that deal with high-quality video and 
audio. TM-I easily implements popular multimedia stan­
dards such as MPEG-1 and MPEG-2, but its orientation 
around a powerful general-purpose CPU makes it capa­
ble of implementing a variety of multimedia algorithms, 
whether open or proprietary. 

CCIR601/656 
YUV 4:2:2 

V.34orlSDN 
Front End 

SDRAM 



SDRAM 

JTAG 

PCI Bus 

CCIR601/656 
YUV 4:2:2 

V.34 Modem 
Front End 

Figure 2. TM-1 system connections. A minimal 
TM-1 system requires few supporting compo­
nents. 

More than just an integrated '!1icroprocesso~ with u~­
usual peripherals, the TM- I m1croprocess~r 1s a flmd 
computer system controlled by a small real-time OS k~r­
nel that runs on the VLIW processor core. T~-1 contains 
a CPU, a high-bandwidth internal bus, and internal bus­
mastering DMA peripherals. 

TM- I is the first member of a family of chips that will 
carry investments i_n software f~rward in time. Compati­
bility between fan:1l.Y. members is at t~e source-cod~ lev­
el; binary compat1b1hty between family mem~ers IS not 
guaranteed. All family members, how~ver,, will be .able 
to perform the most important multimedia functions, 
such as running MPEG-2 software. 

Defining software compatibility. at the so.urce-code 
level gives Philips the freedom to stnke the optimum bal­
ance between cost and performance for all the chips in 
the TM-I family. Powerful compilers ensure that pro­
grammers seldom!)' need to resort to non-portable as­
sembler programming. Programmers use TM-1 's power­
ful low-level operations from. source ~~de; thes~ DSP­
like operations are invoked with a fam1har funct10n-call 
syntax. Trimedia also provides hand-code~ and tuned 
multimedia libraries which can be used to increase the 
performance of the multimedia applications. 

As the first member of the family, TM- I is tailored for 
use in PC-based applications. Because it is based on a 
general-purpose CPU, T:t\:1-1 can ~erve as a multi-func­
tion PC enhancement vehicle. Typically, a PC must deal 
with multi-standard video and audio streams, and users 
desire both decompression ~nd compression, _if possible. 
While the CPU chips u~ed in .PCs are becomu:~g cap~ble 
of low-resolution real-time video decompress10n, h1gh­
quality video decompression-not to mention compres­
sion-is still out of reach. Further, users demand that 
their systems provide live v~deo and audio without sacri­
ficing the responsiveness of the system. 

TM-1 enhances a PC system to provide real-time ~ul­
timedia and it does so with the advantages of a spec1al­
purposd, embedded solution-low cost and chip count­
and the advantages of a general-pu~pose processor-re­
programmability. For PC applicat10ns, TM-1 far sur-
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passes the capabilities of fixed-function multimedia 
chips. 

Other Trimedia family members will have different 
sets of interfaces appropriate for their intended use. For 
example, a TM-1 chip for a cable-TV decoder box would 
eliminate the video-in interface. 

2.0 TM-1 CIIlP OVERVIEW 
The key features of TM-1 are: 

• A very powerful, general-purpose VLIW proces­
sor core that coordinates all on-chip activities. In 
addition to implementing the non-trivial parts of 
multimedia algorithms, this proc.essor runs a ~mall 
real-time operating system that 1s dnven by inter­
rupts from the other units. 

• DMA-driven multimedia input/output units that 
operate independently and that properly format 
data to make processing efficient. 

• DMA-driven multimedia coprocess.ors that operate 
independently .and perform. operat10ns specific to 
important multimedia algonthms. 

• A high-performance bus and memory s~stem that 
prov1d~s communication between TM-1 s process­
ing umts. 

Figure 1 shows a block diagram of the TM-I chip. The 
bulk of a TM-1 system consists of the TM-1 micropro­
cessor itself, a block of synchronous DRAM (SD~AM), 
and minimal external circuitry to interface to the incom­
ing and/or outgoing multimedia data streams. TM-1 can 
gluelessly interface to the standard PCI bus for personal­
computer-based applications; thus, TM-1 can be placed 
directly on the PC mainboard or on a plug-in card. 

Figure 2 shows a possible TM-.1 system application. A 
video-input stream if present, might come d1rectly from 
a CCIR 601-comJ?llant dig~tal video c~me~a chip in YUV 
4:2:2 format; the interface 1s glueless in this case,. A non­
standard camera chip can be connected via a video de­
coder chip (such as t~e Phil~ps Sf\A711 l). A CCIR 601 
output video stream 1s _rrov1ded .directly from th.e ~M-1 
to drive a dedicated video monitor. Stereo aud10 input 
and output require external AJ?C.and DAC s~pport: The 
operation of the video and aud10 interface um ts 1s highly 
customizable through programmable parameters. 

The glueless PCI interface allows the TM-1 to ?is~lay 
video via a host PC's video card and to play aud10 via a 
host PC's sound hardware: The. Image Copro.cessor pro­
vides display support for live video in an arbitrary num­
ber of arbitrarily overlapped windows. 

Finally, the V.34 interface requi~es ~mly an external 
modem front-end chip a!1d phone !me interface to pro­
vide remote commumcat10n support. The modem can be 
used to connect TM- I-based systems for video phone or 
video conferencing applications, or it can be used for 
general-purpose data communication in PC systems. 



3.0 BRIEF EXAMPLES OF OPERATION 
The key to understanding TM- I operation is observing 

that the CPU and peripherals are time-shared and that 
communication between units is through SDRAM mem­
ory. The CPU switches from one task to the next; first it 
decompresses a video frame, then it decompresses a slice 
of the audio stream, then back to video, etc. As neces­
sary, the CPU issues commands to the peripheral units to 
orchestrate their operation. 

The TM- I CPU can enlist the ICP and video-in units 
to help with some of the straightforward, tedious tasks 
associated with video processing. The function of these 
units is programmable. For example, some video streams 
are-or need to be-scaled horizontally, so these units 
can handle the most common cases of horizontal down­
and up-scaling without intervention from the TM-1 
CPU. 

3.1 Video Decompression in a PC 
A typical mode of operation for a TM-1 system is to 

serve as a video-decompression engine on a PCI card in 
a PC. In this case, the PC doesn't know the TM-1 has a 
powerful, general-purpose CPU; rather, the PC just treats 
the hardware on the PCI card as a "black-box" engine. 

Video decompression begins when the PC operating 
system hands the TM-1 a pointer to compressed video 
data in the PC's memory (the details of the communica­
tion protocol are typically handled by a software driver 
installed in the PC's operating system). 

The TM-I CPU fetches data from the compressed vid­
eo stream via the PCI bus, decompresses frames from the 
video stream, and places them into local SDRAM. De­
compression may be aided by the VLD (variable-length 
decoder) unit, which implements Huffman decoding and 
is controlled by the TM-1 CPU. 

When a frame is ready for disflay, the TM-1 CPU 
gives the ICP (image coprocessor a display command. 
The ICP then autonomously fetches the decompressed 
frame data from SDRAM and transfers it over the PCI 
bus to the frame buffer in the PC's video display card (or 
the frame buffer in PC system memory if the PC uses a 
UMA (Unified Memory Architecture) frame buffer). 
The ICP accommodates arbitrary window size, position, 
and overlaps. 

3.2 Video Compression 
Another typical application for TM-I is in video com­

pression. In this case, uncompressed video is usually 
SUJ?plied directly to the TM-1 system via the video-in 
umt. A camera chip connected directly to the video-in 
unit supplies YUV data in eight-bit, 4:2:2 format. The 
video-in unit takes care of sampling the data from the 
camera chip and demultiplexing the raw video to 
SDRAM in three separate areas, one each for Y, U, and 
V. 

When a complete video frame has been read from the 
camera chip by the video-in unit, it interrupts the TM- I 
CPU. The CPU compresses the video data in software 
(using a set of powerful data-parallel operations) and 
writes the compressed data to a separate area of 

SD RAM. 

The compressed video data can now be disposed of in 
any of several ways. It can be sent to a host system over 
the PCI bus for archival on local mass storage, or the host 
can transfer the compressed video over a network, such 
as ISDN. The data can also be sent to a remote system us­
ing the integrated V.34 interface to create, for example, 
a video phone or video conferencing system. 

Since the powerful, general-purpose TM-1 CPU is 
available, the compressed data can be encrypted before 
being transferred for security. 

4.0 VLIW CORE AND PERIPHERAL 
UNITS 

4.1 VLIW Processor Core 
The heart of TM-1 is its powerful 32-bit CPU core. 

The CPU implements a 32-bit linear address space and 
128, fully general-purpose 32-bit registers. The registers 
are not separated into banks; any operation can use any 
register for any operand. 

The core uses a VLIW instruction-set architecture and 
is fully general-purpose. TM-1 uses a VLIW instruction 
length that allows up to five simultaneous operations to 
be issued. These operations can target any five of the 27 

Instruction Cache (32Kb) 

Instr. Fetch Buffer 
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Decompression Hardware 

Issue Register ( 5 Ops ) 

Operation Routing Network 

Execution Unit ( 27 Functions ) 

Register Routing and Forwarding Network 

Register File ( 128 X 32 ) 

Figure 3. VLIW Processor Core and Instruction 
Cache. 



functional units in the CPU, including integer and float­
ing-point arithmetic units and data-parallel DSP-like 
um ts. 

Although the processor core runs a tiny real-time op­
erating system to coordinate all activities in the TM- I 
system, the processor core is not intended for true gener­
al-purpose use as the only CPU in a computer system. 
For example, the processor core does not implement vir­
tual memory address translation, an essentia feature in a 
general-purpose computer system. 

TM-I uses a VLIW architecture to maximize proces­
sor throughput at the lowest possible cost. VLIW archi­
tectures have performance exceeding that of superscalar 
general-purpose CPUs without the extreme complexity 
of a superscalar implementation. The hardware saved by 
eliminating superscalar logic reduces cost and allows the 
integration of multimedia-specific features that enhance 
the power of the processor core. 

The TM-! operation set includes all traditional micro­
processor operations. In addition, multimedia-specific 
operations are included that dramatically accelerate stan­
dard video compression and decompression algorithms. 
As just one of the five operations issued in a single TM­
! instruction, a single special or "custom" operation can 
implement up to 11 traditional microprocessor opera­
tions. Multimedia-specific operations combined with the 
VLIW architecture result in tremendous throughput for 
multimedia applications. 

4.2 Internal "Data Highway" Bus 
The internal data bus connects all internal blocks to­

gether and provides access to internal control registers 
(in each on-chip peripheral units), external SDRAM, and 
the external PCI bus. The internal bus consists of sepa­
rate 32-bit data and address buses, and transactions on 
the bus use a block-transfer protocol. Peripherals can be 
masters or slaves on the bus. 

Access to the internal bus is controlled by a central ar­
biter, which has a request line from each potential bus 
master. The arbiter is configurable in a number of differ­
ent modes so that the arbitration algorithm can be tai­
lored for different applications. Peripheral units make re­
quests to the arbiter for bus access, and depending on the 
arbitration mode, bus bandwidth is allocated to the units 
in different amounts. Each mode allocates bandwidth 
differently, but each mode guarantees each unit a mini­
mum bandwidth and maximum service latency. All un­
used bandwidth is allocated to the TM-1 CPU. 

The bus allocation mechanism is one of the features of 
TM-1 that makes it a true real-time system instead of just 
a highly integrated microprocessor with unusual penph­
erals. 

4.3 Memory and Cache Units 
TM- I's memory hierarchy satisfies the low cost and 

high bandwidth requirement of multimedia markets. 
Since multimedia video streams can require relatively 
large temporary storage, a significant amount of DRAM 
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is required. 

TM-1 has a glueless interface with synchronous 
DRAM (SDRAM) or synchronous graphics RAM 
(SGRAM), which provide higher bandwidth than the 
standard DRAM. As the SDRAM has been supported by 
major DRAM vendors, the competition among those 
vendors will keep the SDRAM pnce in par with that of 
the standard DRAM. TM- I's DRAM memory size can 
range from 2Mbytes to 64 Mbytes. 

The TM-1 CPU core is supported by separate 16-KB 
data and 32-KB instruction caches. The data cache is 
dual-ported in order to allow two simultaneous load/ 
store accesses, and both caches are eight-way set-asso­
ciative with a 64-byte block size. 

4.4 Video-In Unit 
The video-in unit interfaces directly to any CCIR 60 I I 

656-compliant device that outputs eight-bit parallel, 
4:2:2 YUV time-multiplexed data. Such devices include 
direct digital camera systems, which can connect glue­
lessly to TM-1 or through the standard CCIR 656 con­
nector with only the addition of ECL level converters. 
Non-CCIR-compliant devices can use a digital decoder 
chip, such as the Philips SAA 7111, to interface to TM- I . 
Older front ends with a 16-bit interface can connect with 
a small amount of glue logic. 

The video-in unit demultiplexes the captured YUV 
data before writing it into local TM-I SDRAM. Separate 
data structures are maintained for Y, U, and V. 

The video-in unit can be programmed to perform on­
the-fly horizontal resolution subsampling by a factor of 
two if needed. Many camera systems capture a 640-pix­
el/line or 720-pixel/line image; with subsampling, d1Tect 
conversion to a 320-pixel/line or a 360-pixel/line image 
can be performed with no CPU intervention. Further, if 
subsampling is required eventually, performing this 
function during data capture reduces initial storage re­
quirements. 

4.5 Video-Out Unit 
The video-out unit essentially performs the inverse 

function of the video-in unit. Video-out generates an 
eight-bit, multiplexed YUV data stream by gathering bits 
from the separate Y, U, and V data structures in 
SDRAM. While generating the multiplexed stream, the 
video-out unit can also up-scale horizontally by a factor 
of two to convert from CIF to native CCIR resolution. 

Since the video-out unit likely drives a separate video 
monitor-not the PC's video screen-the PC itself can­
not be used to generate the graphics and text of a user in­
terface. To remedy this, the video-out unit can generate 
graphics overlays in a limited number of configurations. 

4.6 Image Coprocessor (ICP) 
The image coprocessor (ICP) is used for several pur­

poses to off-load tasks from the TM-1 CPU, such as 
copying an image from SDRAM to the host's video 
frame buffer. Although these tasks can be easily per­
formed by the CPU, they are a poor use of the relatively 



expensive CPU resource. When performed in parallel by 
the ICP, these tasks are performed efficiently by simple 
hardware, which aJlows the CPU to continue with more 
complex tasks. 

The ICP can operate as either a memory-to-memory or 
a memory-to-PCI coprocessor device. 

In memory-to-memory mode, the ICP can perform ei­
ther horizontal or vertical image filtering and resizing. 
The ICP implements 32 FIR filters of five adjacent pixel 
input values. The filter coefficients are fully programma­
ble, and the position of the output pixel in the output ras­
ter determines which of the 32 FIR filters is applied to 
seneratc that output pixel value. Thus, the output raster 
1s on a 32-times finer grid than the input raster. The fil­
tering is done in either the horizontal or vertical direction 
but not both. Two applications of the ICP are required to 
filter and scale in both directions. 

In memory-to-PC! mode, the ICP can perform hori­
zontal resizing foJlowed by color-space conversion. For 
example, assume an n x m pixel array is to be disJ?layed 
in a window on the PC video screen while the PC IS run­
ning a graphical user interface. The first step (if neces­
sary) would use the ICP in memory-to-memory mode to 
perform a vertical resizing. The second step would use 
the ICP in memory-to-PC! mode to perform a horizontal 
resizing (if necessary) and colorspace conversion from 
YUVtoRGB. 

While sending the final, resampled and converted pix­
els over the PCI bus to the video frame buffer, the ICP 
uses a full, per-pixel occlusion bit mask-accessed in 
destination coordinates-to determine which pixels are 
actually stored in the frame buffer for display. Condi-

PC Screen 

Image 1 lmage2 

tioning the transfer with the bit mask allows TM-1 to ac­
commodate an arbitrary arrangement of overlapping 
windows on the PC video screen. 

Figure 3 illustrates a possible display situation and the 
data structures in SDRAM that support the ICP's opera­
tion. On the left in Figure 3, the PC's video screen has 
four overlapping windows. Two, Image 1 and Image 2, 
are being used to display video generated by TM- I. 

The right side of Figure 3 shows a conceptual view of 
SDRAM contents. Two data structures are present, one 
for Image 1 and the other for Image 2. Figure 3 repre­
sents a point in time during which the ICP 1s displaying 
Image 2. 

When the ICP is displaying an image (i.e., copying it 
from SDRAM to a frame buffer), it mamtains four pomt­
ers to the data structures in SDRAM. Three pointers lo­
cate the Y, U, and V data arrays, and the fourth locates 
the per-pixel occlusion bit map. The Y, U, and V arrays 
are mdexed by source coordinates while the occlusion bit 
map is accessed with screen coordinates. 

As the ICP generates pixels for display, it performs 
horizontal scaling and colorspace conversion. The final 
RGB pixel value IS then copied to the destination address 
in the screen's frame buffer only if the corresponding bit 
in the occlusion bit map is a one. 

As shown in the conceptual diagram, the occlusion bit 
map has a pattern of Is and Os that corresl?onds to the 
shape of the visible area of the destination wmdow in the 
frame buffer. When the arrangement of windows on the 
PC screen is changed, modifications to the occlusion bit 
maps may be necessary. 

lnSDRAM 

Figure 4. ICP operation. Windows on the PC screen and data structures in SDRAM for two live video 
windows. -
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It is important to note that there is no preset limit on the 
number and sizes of windows that can be handled by the 
ICP. The only limit is the available bandwidth. Thus, the 
ICP can handle a few large windows or many small win­
dows. The ICP can sustain a transfer rate of 50 megapix­
els per second, which is more than enough to saturate 
PCI when transferring images to video frame buffers. 

ICP has a micro-programmable engine. All ICP oper­
ations such as filtering, scaling and color space conver­
sions and their formats are programmable. The ICP's mi­
cro programs loads itself from the SDRAM memory. 

4.7 Variable-Length Decoder (VLD) 
The variable-length decoder (VLD) is included to re­

lieve the TM-1 CPU of the task of decoding Huffman­
encoded video data streams. It can be used to help de­
code MPEG-1 and MPEG-2 video streams. 

The VLD is a memory-to-memory coprocessor. The 
TM- I CPU hands the VLD a pointer to a Huffman-en­
coded bit stream, and the VLD produces a tokenized bit 
stream that is very convenient for the TM-1 image de­
compression software to use. The format of the output to­
ken stream is optimized for the MPEG-2 decompression 
software so that communication between the CPU and 
VLD is minimized. 

As with the other processing-intensive coprocessors, 
the VLD is included mainly to relieve the CPU of a task 
that wastes its performance potential. When dealing with 
the high bit rates of MPEG-2 data streams, too much of 
the CPU's time is devoted to this task, which prevents its 
special capabilities from being used. 

4.8 Audio-In and Audio-Out Units 
The audio-in and audio-out units are similar to the vid­

eo units. They connect to most serial ADC and DAC 
chips, and are programmable enough to handle most rea­
sonable protocols. These units can transfer MSB or LSB 
first and left or right channel first. 

The sampling clock is driven by TM-I and is software 
programmable within a wide range from DC to 80 kHz 
with a resolution of 0.02 Hz. The clock circuit allows the 
programmer subtle control over the sampling frequency 
so that audio and video synchronization can be achieved 
in any system configuration. When changing the fre­
quency, the instantaneous phase does not change, which 
allows frequency manipulation without introducing dis-

PC! Agent PCIAgent 

a) TM-1 as peripheral 

Host CPU 
(e.g., x86) 

PC! Agent 

tortion. 

As with the video units, the audio-in and audio-out 
units buffer incoming and outgoing audio data in 
SDRAM. The audio-in unit buffers samples in either 
eight- or 16-bit format, mono or stereo. The audio-out 
unit simply transfers sample data from memory to the ex­
ternal DAC; any manipulation of sound data is per­
formed by the TM-I CPU since this processing will re­
quire at most a few percent of the CPU resource. 

5.0 PCI BUS INTERFACE UNIT (BIU) 

TM 1 is capable of operating either as a main CPU in a 
stand alone system or as a PCI peripheral device in a 
desktop PC (Figure 5). 

This unit connects the internal Data Highway Bus to 
an external PCI bus. It has a PCI master to initiate mem­
ory read/write cycles for TM- I-CPU requested read/ 
write transactions including burst read/write DMA trans­
actions. The PCI target within the BIU responds to the 
transactions initiated by external PCI master devices to 
read/write the TM-1 's memory space, and it satisfies 
their requests. External devices can access the TM-1 's 
MMIO registers through this unit. 

The ICP unit has a direct connection to the BIU unit in 
order to transfer the pixel image data efficiently from 
TM- I to the graphics device or host memory through the 
PCI bus. 

5.1 PCI INTERFACE AS AN INITIATOR 
Three classes of operations invoked by TM-1 cause 

the PCI interface to act as a PCI initiator: 

• Transparent, single-word (or smaller) transactions 
caused by DSPCPU loads and stores to the PCI 
address aperture. 

• Explicitly programmed single-word PCI-bus I/O 
transactions. 

• Explicitly programmed multi-word DMA transac­
tions. 

5.2 DSPCPU Single-Word Loads/Stores 
From the point of view of programs executed by TM-

1 's DSPCPU, there are three apertures into TM-1's4-GB 

PC! Bus 
Arbiter 

PC! Agent 

b) TM-1 as host CPU 

PC! Agent 

Fihure 5. Two typical system implementations. (a) shows TM-1 as a PCI peripheral in a desktop PC. (b) shows an embedded system 
with TM-1 as the host CPU. 

280 



memory address space: 

• SDRAM space (0.5 to 64 MB in size). 
• MMIO space (2 MB in size). 
• PCI space. 

MMIO registers control the positions and extent C?f the 
address-space apertures. The SDRAM aperture beg1i:is at 
the address specified in the MMIO register 
DRAM BASE and extends upward to the address m the 
DRAM:=LIMIT register. The 2-MB MMIO aperture be­
gins at the address in MMIO_BASE. All addresses that 
fall outside these two apertures are assumed to be part of 
the PCI address aperture. References by DSPCPU loads 
and stores to the PCI aperture are reflected to external 
PCI devices by the coordinated action of the data cache 
and PCI interface. 

When a DSPCPU load or store targets the PCI aperture 
(i.e., neither of the other two ~pertures), the: DSPCPU's 
data cache automatically carnes out a special sequenc_e 
of events. The data cache writes to the PCI_ADR and ~1f 
the DSPCPU operation is a store) the PCI_DATA regis­
ters in the PCI interface and asserts (loaq) or deasserts 
(store) the internal signal pci_read_operat10n. 

While the PCI interface executes the PCI bus transac­
tion the DSPCPU is held in the stall state by the data 
cache. When the PCI interface has completed the trans­
action, it asserts the internal signal pci_ready. 

When pci_ready is asse~ted, the dat~ cache finishes the 
original DSPCPU operat10n by readmg data. from the 
PCI DAT A register (if the DSPCPU operat10n was a 
load) and releasing the DSPCPU from the stall state. 

5.3 1/0 Operations 
Explicit programming by DSPCPU software is the 

way to perform transactions to PG! I/O ~pace. DSPCpU 
software writes three MMIO registers m the followmg 
sequence: 

1. The IO_ADR register. 
2. The IO_DATA register (ii PC! operation is a write). 
3. The IO_CTL register (controls direction of data movement 

and which bytes participate). 

The PCI interface starts the PCI-bus I/O transaction 
when software writes to IO_CTL. The interface can raise 
a DSPCPU interrupt at the completion of ~he I/O trans.ac­
tion or the DSPCPU can poll the appropnate status bit. 

5.4 DMA Operations 
The PCI interface can operate as an a~tonomous pMA 

engine, executing block-transfer operat1~ms at.maximum 
PCI bandwidth. As with I/O and conf1gurat10n opera­
tions, DSPCPU software explicitly programs DMA op­
erations. 

General-purpose OMA 

For DMA between SDRAM and PCI, DSPCPU soft-
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ware writes three MMIO registers in the following se­
quence: 

1. The SRC_ADR and DEST _ADR registers. 
2. The DMA_CTL register (controls direction of data 

movement and amount of data transferred). 

The PCI interface begins the PCI-bus transactions 
when software writes to DMA_CTL. As with the I/O and 
configuration operations, the BIU_STATUS ~nd 
BIU CTL registers monitor the status of the operation 
and control interrupt signalling. 

Image-Coprocessor OMA 

The PCI interface also executes DMA transactions for 
the Image Coprocessor (ICP). The _ICP_ performs rapid 
post-processing of pixel data and wntes 1t at DMA speed 
to an external video frame buffer.The ICP cannot per­
form PCI read transactions. 

The DMA transactions are considered as background 
transactions. To reduce the latency of the single _word 
read/write transactions on the PCI bus, the BIU mter­
leaves the burst read/write DMA cycles with single word 
read/write transactions. 

6.0 APPLICATIONS 
TM-1 has the potential to be used in ri:iany multimedia 

applications and only few of them are discussed. 

6.1 Video Teleconferencing/Digital White 
Board 

Businesses are increasingly turning towards i~tc:rac­
tive computing as a means of becommg more efficu:;nt. 
Collaborative computing, for instance, involves shanng 
applications amongst multiple. personal computers and 
multipoint video teleconferencmg. 

TM- I is a single chip video teleconferencing solution 
that runs all current video codecs across all common 
transport mechanisms. This may also includes H.324 
(POTS), H.320 (ISDN) and H.323 (LAN). 

6.2 Multimedia Card for Consumer 
Multimedia Applications 

The achievement of true computer based realism \s 
only possible with a fully integrated approach to. mu\t1-
media -- one that permits the smooth flow of aud10, vid­
eo, graphics and communications. To.day's co~puter 
user wants a highly interactive af!d reah.st1c expenence. 
The Trimedia processor makes this possible. 

TM-1 is a low-cost, programmable processor. for the 
consumer multimedia market. This product provides the 
additional processing power required for a true-to-life 
computer based experience. The Trimedia processor 
concurrently processes multiple d~ta ~ypes inclu~ing au­
dio, video, graphics and commumc.at10ns. The first ver­
sion of this chip, designated TM-I, 1s targeted for the PC 
market. 



7.0 SUMMARY 
The TM- I is the first programmable multimedia pro­

cessor from the Trimedia division of the Philips Semi­
conductors. The PCI based TM-1 has high performance 
VLIW CPU core, efficient 'C' compiler witfi multimedia 
library functions, glueless logic to high-bandwidth 
SDRAM, standard PCI bus interface, and standard inter­
faces to video and audio stream that make the TM-1 the 
next generation multimedia processor for stand-alone 
systems such as the video phone, video conferencing 
system and plug-in multimedia cards for the PC systems. 
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Multimedia Bandwidth Issues over PCI 
Author: Girl Venkat 

Abstract 

With the increasing integration of multimedia processors into the mainstream PC environment, 
comes an increasing demand on the system's peripheral bus. This paper will analyze some of the 
issues relating to multimedia over the PCI bus. Topics such as MPEG-2, 30 graphics and full 
motion video will be explored es they relate to PCI. Following a brief overview of multimedia 
technologies and their bandwidth requirements will be a discussion of a mezzanine PCI 
architecture that will ease the bandwidth demands over the main PCI bus. Finally, a comparison 
of a standard PCI system vs. a mezzanine implementation will be presented to demonstrate the 
advantages of a mezzanine architecture for multimedia applications. 
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Board Maker's Roundtable 

Steve Cooper, /-Bus 

The bus/board marketplace continues to be an exciting, growing marketplace that pro­
vides: 

• a standard way for system designers to build systems from higher-level building 
blocks available from multiple companies (boards versus components) 

• the rapid availability and infusion of new technologies into systems designs 

The advent of the PCI bus is playing a significant role in the ongoing evolution of bus 
structures. A,s a number of other popular buses (Multibus, STD, VME) grow older, var­
ious forms of the PCI bus are stepping in to solve solutions problems. 

One version of the PCI bus, known as the PICMG standard for passive backplane PCs, 
is among the fastest growing new bus structures available. This standard was approved 
in October 1994 and already has become a dominant standard in many market sectors. 
The future of this new bus can be seen by observing that the latest technologies are 
appearing on this bus structure prior to other bus structures. For example, the first bus 
structure (other than the office PC motherboard) to host Intel's latest P6 Pentium Pro 
CPU chips is this PICMG-compliant PCI/ISA bus. 

Another version of the PCI bus, known as the CompactPCI standard, is now poised to 
move into more embedded applications. This bus structure was recently completed by 
the PICMG standardization group, and the first products from a variety of vendors are 
beginning to appear. 

Compared with many computer components, bus structures tend to be relatively long­
lived. Many bus structures have remained viable for over 20 years, continually finding 
ways to accommodate to the industries ever-changing components. Thus, the develop­
ment and evolution of these new PCI-based buses marks a significant event for the 
bus/board suppliers as well as the marketplace that use them. 
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Bus-to-Bus Connections 

Stephan Ohr, Computer Design 

There is a wealth of peripherals like digital cameras, scanners, and data acquisition 
equipment that take advantage of PCl's high data transfer rates. Since the variety of 
peripherals for Apple computers and digital signal processors is not as great, bridge 
cards and devices are emerging which link PCI peripherals with other bus topologies. 
Presenters in this session offer insights into the process of interfacing PCI to the Apple 
NuBus, the Pl394 video bus, even the IBM Serial Storage Architecture (SSA). 
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PCI and Multiprocessing 

George P. White 

PCI Spring Developers' Conference 
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Multiple PCI Bridges for 
Specialized Multiprocessor Bus 

+ Eight Pentiums supported 

+ Two peer PCI buses supported 

+ One chip PCI interface 
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C-bus II Features 

+ 400 MB/sec. bandwidth 

+ 32 GB physical memory space 

., + 64-bit multiplexed address and data 
'° 0 

+ ECC protection on bus transactions 

+ Multiple 1/0 buses supported 

+ Simple control protocol related to N uBus 

CO"OLLAG:'( 
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Innovative Technology 

C-bus II 

GTL signaling 

ECC on bus 

SO MHz 

64 bits 

Multiplexed 
address/data 

P6bus 

GTL +signaling 

ECC on bus 

66MHz 

64 bits 

Pipelined bus 
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C-bus II Signal Summary 

I Signal No. Description I 
CBCLK 1 System Clock (50 MHz) 
CD [63 .. 0] 64 Multiplexed Address/Data 
CDE [7 .. 0] 8 Address/Data Error Correction Code (ECC 

STRT# 1 Tran sf er Start 
TM [3 .. 0]# 4 Transfer Mode (including parity) 
ACK# 1 Transfer Acknowledge 
CID [3 .. 0] 4 Geographical Slot Identification 
CARB [3 .. 0] 4 Distributed Arbitration 
LOCK CB# 1 Bus Lock 
FAULT# 1 Hardware Fault Indicator 
CRST# 1 System Reset 
LED# 1 Light Emitting 

I Total 91 Active Signals I 
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Cached Transactions 

Clock 1 1 1 1 • 
I I I I I I 

Read 
H:'':}~- ... :;tl\tk4W&F'> 

Data3 

I I 
I 

Read cache line 

Eviction 

I I I I 
I I 

Evict cache line Read cache line 



PCI Bridge (PCIB) 
+ Direct connection to C-bus II 

+ Direct connection to PCI bus 

+ Single chip solution 

Ii! + DMA cache with pref etch buffers for 
maximum burst rate support 

+ Contains PCI central resource functions 

+ Handles distributed interrupts 

+ 240 pin, Plastic Quad Flat Pack (PQFP) 



PCIB (PCI to C-bus II) ASIC 

PCIB 
Address/Data .. , { .. 

37 I _________________ 72 
{] Control .. ' .. I '6 =-19 t -----------: ----- ~ = rl.l I 

L ---........_ 
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Arbitration -........ 'o - ~ 
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Utility 



Caching PCI lnterf ace 
Performance optimized by cache 

coherent inter/ ace 

!l1 + Eight 32 byte cache lines 

+ Fully associative cache 

+ Leap-frogging read-ahead buffers 



Support for Peer Bridges 

+ Architecturally supports four PCI bridges, 

now shipping with two 

.., + Separate address space for each bus 
\0 
-..l 

mapped into system address space 

+ Supported by Corollary HAL for 

Windows NT 



Who's Using this Technology ? 

Chen 
DG 
Fujitsu 

N Hitachi 
\0 
00 

IBM 

Intergraph 

NEC 
Olivetti 
Samsung 

Chen 1000 
A ViiON 4700, 4800, 5800 

FM-Server 7500SV 

3100LP 
PC Server 720 

InterServe MP6 Servers 

Express5800/170 

SNX 400/RS Systems 

SSM500 

CPUs 
8 

2,4,8 
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Example - PC Company 
Moving Up 

+ IBM's first symmetric 
MP PC server 

~ + Packaged like PC server 

+Six CPUs 

+ One PCI bus supported 
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Midrange Computer Company 
Getting More Open 

DG A ViiON Models 4700, 4800, 5800 

+ Packaged like mini 
computer 

+ 8 CPUs, 2 megabyte 
cache each 

+ Two PCI buses 
supported 

G:Y 
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Summary 

C-bus II optimized for cache-coherent 
multiprocessing Pentium design supports 
multiple peer PCI buses for high I/O 
throughput. 

True caching and read-ahead for optimum 
performance. 



1394 and PCI 

s Larry Blackledge 
1394 Market Development Manager 

Texas Instruments 
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Isochronous Data Over PCI 
Isochronous Data Providers 
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Isochronous Data Formats 

+ Rawdata 

+ Audio: AC3, mLAN, others 

+ DV format, video (5:1) & audio 
~ Digital Camcorders & VCRs 

+ MPEG-2 
~ DVD, DVHS, DTV, DSS, S 
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1394 Isochronous Cycle 

cycle #X cycle #X+1 

cycle 
start 
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isochronous phase asynchronous phase 

nominal cycle period = 125 usec 

actual cycle period = (125 - z) usec 
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start delay = z cycle 
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PCI Latency Issues 

+ PCI arbitration latency (arb to grant) 
and PCI Burst length 
~ older PCI SIOs are very poor (~lOMB/sec) 

);;-- newer ones are much better (~lOOMB/sec) 

+ Nuinber of PCI nodes active? 

+ PCI bus speed & width 



PCI Latency vs. FIFO Size 

(KB) 
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PCI and Other Solutions 
.•. 

_/:~~'.:::::· :~::.·~#1~·.'.~:.:: .• 

+ PCl's great for 100-400 Mbps ~J#n:·'~:; ·· 
~.·. ~:~: 

+ Raising the bar: 1394 @ 2 Gbi}S ' 

+ PCl's future: 
~ 33 vs. 66 MHz & 32 vs. 64 bits wide 

+ Zoo01 Video port (ZV) 

+ Northbridge integration 
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Don't Miss THE Bus 

+ 1394 Consu01er Electronics tidal wave 
in 1Q97, BE PREPARED!!! 

+ PCl-to-1394 chips are available today 
~ 100 & 200 Mbps now 

~ 400 Mbps & 2 Gbps very soon 

+ All of the pieces are in place 

~ Silicon 

~ Windows Software 
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:>Combines the Bandwidth of CompactPCI 

with the Flexibility of STD 32 

:>Keeps Fast and Slow 1/0 on 

Separate Buses 

:>Allows for Multiprocessing 

:> Growth Path for STD 32 Customers 

:1ll1zlA1:!£J:! 



---'i'j'I 

320 



321 



322 



w 
N 
w 

CompactPCI cards for 
Video, Network, 
Vision etc .. 

Other STD 32 Processors, Digital and Analog 10, Seria11ll1zlATECH 
MIL-1553, PLC Connections, Motion Control - caRPDRATIDN 



:> Synchronizing two separate 
Synchronous buses 

~ :> Providing PCI Plug & Play 
Configuration registers 

:>Support for ISA peripherals on 
BOTH sides of the bridge 

:>Legacy 10 compatibility 

:>Creating PCI parity cycles 
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This paper provides an overview of SSA (Serial Storage Architecture). Bringing a new and much-needed standard 
serial contender to the world of disk drive interfaces, SSA combines the speed and robustness of a comprehensive DC­
balanced 8B/10B coding system with the low cost of CMOS driver electronics, the cabling benefits afforded by a low 
signal count, and the performance advantages obtained by use of a loop topology. The paper outlines the benefits and 
design details of the serial interface, and gives examples of its use in practice in large disk arrays. It also gives a status 
of SSA's standardization in ANSI, and an indication of the silicon and software that is available to SSA developers. 

Introduction 

High Speed 110 Buses 
As the perfonnance of personal computers and workstations grows in leaps and bounds, so the requirements of their I/O bus increases 
dramatically. Since 1981, personal computer development has seen the standard I/O bus go from the humble 8-bit 'expansion bus' of 
the IBM PC/XT, through the ever-popular 16-bit 'Indl15try Standard Architecture' (ISA) of the IBM PC/AT, to the 32-bit EISA, Micro 
Channel, VESA Local-Bus and PC! buses. For the future, PC! defines a 64-bit extension, and VESA is also has a 64 bit version of its 
VLbus. 

These developments recognize that as clock speeds of data transfer within a computer system reach reasonable economic maximums 
(where electromagnetic interference is to be minimized), the only way to increase the data transfer rate is to increase (and this usually 
means double) the data width. 

External VO Connections 
Going beyond the bounds of the computer's motherboard, however, it is a different story. Frequently, attachment devices such as CD­
ROMs, tape drives and particularly extra disks and disk arrays need a fast, low-cost external attachment. While many 'out-of-box' 
connection methods exists, most notably the "Small Computer Systems Interface (SCSI)", speed improvement on such buses is not so 
easy. Increasing the data width, which in practice means doubling it, has two problems. 

• The cable and connector almost double in size. Of necessity, such cables are invariably low-cost (ribbon cable or twisted-pair) and 
usually bulky anyway. 

• The risk of crosstalk between data signals increases. 

In addition, the ability to increase the clock speed on such buses is limited by the EMI and data skew complications, if an expensive 
shielded cable is to be avoided. 

The SCSI specification has introduced versions which increase its clock speed and its data width allowing it to operate at up to 
40MBytes/s, but it is recognized that further expansion possibilities are limited. 

328 



The Serial Alternative 
As the problem with expanding the effective data rate of such l/O buses are due to the physical size of the cable, an alternative approach 
is to reduce the size of the cable, ultimately to a single signal. As a narrow communication path usually involves serializing the wider 
data units that the computer uses, such connections are invariably referred to as Serial links or buses. 

Given the performance advantages of the wide data bus, such a move would appear to be a backwards step. However, a serial 1/0 
connection can have several advantages: 

• The ASICs that implement the connection can have very few pins devoted to the connection itself In most technologies it is the 
number of pins, rather than the number of logic cells, that dictate the ASIC cost. 

• The AS!Cs have less of their circuitry devoted to the drivers and receivers of the signals. These components are often in short 
supply, are difficult to place on an LSI chip optimally, and usually consume a lot of power. Also, many such signals changing at 
once, as is characteristic of wide data buses, can cause severe 'ground bounce' problems. 

• The connecting cable has less wire. Apart from the cost and bulkiness advantages, it means that more sophisticated shielding can be 
applied inexpensively than would be possible on multi-signal cables. 

• With a single data signal there is no clock skew to consider as the data rate or the length of the cable increases. 

• The !10 connection may be continued across other transmission media (than conventional copper wire), that don't lend themselves 
easily to parallel transfers (e.g. optical, radio, telephone). 

These advantages can more than compensate for the reduced data width, and in tum allow more bandwidth expansion possibilities. 

How Many Signals? 
It is tempting to think that a serial connection always consists of one wire. Unfortunately, the nature of the transmission medium, the 
speed of the data, and the requirements of the connection protocol make the 'one-wire-only' serial connection a rarity. The most 
famous serial link, RS232, requires some 9 connections! The bus frequently requires extra connections for the following reasons: 

• A reliable transmission protocol often demands two-way, or.full-duplex communication. The second communication path may be 
used for simple acknowledgement, for bi-directional concurrent data transfer, or both. When used in a loop, such as may be found 
in disk arrays, the second path may be used to double the bandwidth to that drive, or provides an alternative route to a drive whose 
cormection has failed. 

• The nature of copper wire means that high frequency signals can most effectively be transmitted using "differential pairs", wherein 
the same signal is transmitted with opposite polarity on the other wire of a pair. The two wires suffer similar noise and distortion 
corruption during transmission and the signal may be extracted by subtracting the output of one member of the pair from the other. 

• Some serial links transmit the clock on a second signal. This means that reception of the data is simplified, and variation of the clock 
speed may be accomplished somewhat transparently (albeit with clock skew considerations). However, the addition of a second 
signal for a clock represents a I 00% increase in signals required while adding little or no information content (in the classical sense). 

Examples of serial buses include: Philips Inter-Integrated-Circuit bus (12 C), which is a !OOKbits/sec two-signal (clock and data) bus for 
connecting integrated circuits; IEEE Pl394, an up to 393MBits/s two signal (data and strobe) point-to-point connection for desktop 
computers; and Fibre Channel (FCS), a 1 GBits/s high-end fibre optic link for LANs (Local Area Networks) and WANs (Wide Area 
Networks). 

Serial Storage Architecture 
Serial Storage Architecture (SSA) is a serial link designed especially for !ow-cost high-performance connection to disk drives and other 
peripherals. It is a two signal connection (transmit and receive), providing full duplex communication. It uses a self-clocking code, 
which means that the data clock is recovered from the data signal itself rather than being transmitted as a separate signal. For 
transmission along copper wire, it uses the differential pair method, requiring four wires, but it can also be transmitted along fibre optic 
cable. 

The copper wire transmission rate is currently 20MBytes/sec in each direction, for a maximum of 25 metres cable length. 

SSA Components 
Serial Storage Architecture currently comprises two components: 

SSA-PH/TL The physical and transport layers. These are the physical and electrical specifications of the serial link 
and the low-level transport protocol, and is what is described in this article. 
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SSA-SCSI The SCSI-2 mapping. It is recognized that the logical aspects of the SCSI specification remain quite 
appropriate for addressing serially attached peripherals, and so this aspect of SCSI has been mapped 
to the physical SSA interface. This means that a transition may be achieved from SCSI to SSA with 
the absolute minimum of code rewrite. 

In addition, it is planned that similar mappings will be provided for the SCSI-3 specification when it is approved by the American 
National Standards Institute (ANSI). 

SSA Characteristics 
The SSA serial link has the following characteristics : 

Topowgy: 
A flexible addressing scheme that allows connections as strings, loops, and switched loops. "Hot swapping" is also permitted. 

Distance: 
Point-to-point connection for up to 25 metres (cable). Fibre-optic connections could support distances ofup to lkm between nodes. 

BandwUlth: 
Full duplex communication. 20MBytes/s (200Mb/s) in each direction. The protocol allows for speed increases as technology permits. 
Work is currently under way to develop and standardize a 40MB/s version. 

Format: 
The unit of transmission is the frame, which can be up to 128 bytes. The minimum overhead per frame is 8 bytes, or about 6%. 

Reliability: 
The link is highly reliable. The design provides considerable detection of errors of all kinds, and a large amount of transparent error 
recovery. 

Physical· 
The cables and connectors have a small fonn-factor. 

Topology 
The SSA design allows an extremely flexible assortment of connection options. SSA networks can be connected in simple strings or 
loops, or more complex switched strings or cyclic paths. This flexibility allows trade-offs to be made between cost, perfonnance and 
availability. 

This variation is afforded by three different types of SSA nodes: 

• Single Port 
• Dual Port 
• Switch 

I-port 2-port 2-port 2-port I-port 

Figure I. An SSA String 

Strings 
A string is a simple linear network of two or more nodes, as shown in Figure 1. The port at either end can be single-port nodes, while 
the others are dual-port nodes. 
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A special case of a string is the dedicated connection, where two single-port nodes connect to each other across one link. 

~ 
2-port ~ 2-port ~ 2-port ~ 2-port ~ 2-port 

~ 
Figure 2. An SSA Loop 

Loops 
The commonest form of connection is the loop, shown in Figure 2. A loop is a cyclic net.work containing only dual-port nodes. Loops 
have the benefit of higher bandwidth (there are two data paths available between any two nodes) and higher reliability (any single node 
can fail without prohibiting communication between nodes) than strings. In addition, a node may be inserted into the loop without 
breaking communication. 

Switches 

~String String 

I-port 2-port I-port 

2-port 2-port 2-port 

Cyclic path 

Figure 3. An SSA Switched Network 

Figure 3 shows an example of a complex network involving a switch. 

A switch can have up to 126 ports. Switches allow large numbers of nodes to be connected together, and also enable alternative paths to 
be established to provide fault tolerance. 

Note that a switch network can also include other cycling paths; these are not loops by definition, as they involve other than dual-port 
nodes. 
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Figure 4. A lligb AvallablUty Server. 

High Availabilily Server 

Array 
Controller 

~SSA links 

LAN connection 

kl an example of an SSA network (usually referred to as a Web), Figure 4 shows a configuration for a IDgh A vaUabUi1y File Server. 
Here, high availability means that the network is tolerant of a single fault; a failing link can be identified, and there may be some loss of 
bandwidth, but otherwise the operation of the network is not impaired. 

11ris network contains two loops. The outer one connects the servers and the array controllers; the inner one connects the controllers 
and devices. Spatial Reuse (see "Spatial Reuse") allows each path to provide up to 4 times the bandwidth of a single link. 

Coding 
Despite the serial nature of the link, the unit ofinfonnation transmitted remains the byte. Conventionally, an 8-bit is serialized and sent 
as a bit stream. However, if these bytes were serialized and sent one after another with no intervening control bits (as would be 
necessary for maximum throughput), the following problems would arise: 

• There would be no way to recover and synchronize the data clock, especially with a stream o~ say, all 'O's; 

• There would be no indication of when a byte began and ended; 

• Any exrors occuning would be undetected and uncOITected; 

• There would likely be a DC bias in the data signa~ as more bits were sent of one polarity than the other. 

To overcome these problems, a serialized bit stream is usually at a fixed clock rate, and is interspersed with control bits (e.g. Start, Stop 
and Parity) which go some way towards solving the first three problems at the expense of some bandwidth. 

The last point, the DC bias, is usually ignored, and yet it is sometimes this one that prevents the serial link from moving to higher 
speeds. 11ris is because as the data rate increases, the data signal contains more and more components at higher frequencies. To extract 
these signals reliably sometimes requires AC-coupled amplifier circuits at the receiver end. For example, the average value of DC-free 
signal (obtained by simple integration) can be used to provide the slicing point, the level that distinguishes a one from a zero. 11ris is 
particularly useful for fibre-optic receivers, and is also the principle used in coding on Compact Disk and CD-ROMs. 
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BB/JOB code 
Because of these and other considerations, SSA uses a fonn of coding called '8B/IOB' encoding. The name reflects the fact that the 8 
bits to be coded become 10 bits of data. Thus there is a 25% redundancy in the signal, but as will be seen, this overhead is well spent. 

Obviously, a 10 bit value can take on any of 1024 combinations, but many of those combinations are not valid, being excluded by the 
following rules: 

1. There are no more than 5 consecutive bits of the same value (this applies between adjacent bytes as well as across a byte), 

2. The maximum 'Digital Sum Variation' (DSV) is 6 (+3 to -3). 

The run length limit ensures that the clock can be successfully recovered at all times, and will remain in synchronism. 

The DSV is defined as follows: Counting a' l' as+ 1 and a 'O' as -1, then a running count is kept as the bits are coded. The maximum 
value of this count minus the minimum value is the DSV. If this value is constrained, then the DC component of the transmitted signal 
is effectively zero; there are as many' l's as 'O's in the stream overall. 

For this to be achieved, the codes that are selected for transmission are dependent on the codes that have been previously been used, as 
well as the data that is to be transmitted. Thus each byte to be encoded can map to more that one code that is transmitted. This accounts 
for most of the redundancy in the 8B/10B coding method. 

In practice, the 8-bit byte to be encoded maps to one or two codes. The byte is split into two parts, a 5-bit string and a 3-bit string. The 
substrings are then encoded using a 5B/6B code for the first substring and a 3B/ 4B code for the second. Each substring has either an 
exact number of' l's and 'O's, or is unbalanced by 2. An imbalance is corrected by selecting the version of the next byte's code that has 
the opposite imbalance. 

Special Characters 
This coding method successfully encodes all 256 possible values for a byte, but also allows a further 12 codes to be included that obey 
the coding rules. Of these 12, three have the unique property of containing a string of bits within them ('0011111 'b) that can never 
occur in any other bit position, either within a code or across a boundary between two code words. This property dubs them Comma 
codes, and may be used by the receiver to synchronize its clock to the correct codeword boundary. The remaining codes are used by the 
SSA protocol as 'special' characters, as they are readily identified as non-data. 

The special characters in SSA are: 

FLAG 

ABORT 

SAT 

SAT' 

DIS 

ACK 

vv 

Used to delimit the start and end of a Frame. It is also a comma character 

Prematurely aborts the transmission of a frame. 

With SAT', used for arbitration. 

With SAT, used for arbitration. 

Indicates the disabled state. It is also a comma character. 

Acknowledges correct reception of a frame. 
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1. ABSTRACT 

Developing a customized PC! 
design to one's exact specifications can be 
an expensive, if not daunting, venture, 
involving NRE costs, lengthy design and 
debug cycles, and months of ASIC 
turnaround time. Off-the-shelf PC! 
interface ASIC or PC! chipsets decrease the 
resources required for in-house 
development, but lack the flexibility for 
customization. That may in turn increase 
the components count on board, resulting in 
higher production cost and lower reliability. 

To address these problems, a set of 
PC! interface designs has been created for 
use with complex programmable logic 
devices (CPLD). These reference designs 
serve as foundations for PC! interface 
applications, asserting the necessary state 
machine controls and bus transaction 
signals. Complex Programmable Logic 
Devices (CPLD), coupled with this 
customizable PC! design foundation, 
provide a highly integrated methodology 
that can be tailored to the end application 
needs with minimum development effort and 
time. 

This article describes the major 
features of this set of designs, and also 
covers important design considerations in 
developing a CPLD based PC! application. 
These considerations include device 
performance, resource utilization, electrical 
characteristics and other desirable features 
such as open drain 110 and on-board RAM 
Finally, the paper then describes the 
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strategies this set of reference designs 
employ to address these issues and how one 
might customize the junction to his/her 
particular needs. 

2. DESCRIPTION OF THE DESIGN 
FOUNDATIONS 

The PCI Design Foundations 
contains high-level behavioral descriptions 
files of both Target and Master. Under 
each type of interface are the design files 
optimized for different CPLD architectures. 
These design files, written in AHDL, take 
advantages of the unique features associated 
with each device family. These special 
features includes parallel and shared 
expanders for MAX 7000E; carry and 
cascade chains for FLEX 8000A; and the 
identity comparator for FLASHLogic. 
Associated with each design are the 
Assignments and Configuration Files (ACF) 
developed for each family. The ACF files 
direct MAX +PLUS II, the Altera PLD 
development system, to synthesize and place 
logic intelligently, enabling the underlying 
components to be PCI compliant. 

In addition, sample test vectors, 
written in the form of waveforms, are 
provided as foundations of extensive 
functional and timing verifications. The 
verification can be performed in 
MAX +PLUS II or other standard EDA 
tools. 



Figure 1. PCI Reference design Architecture 
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2.1 Target Interface 

The PCI Target interface is a 
passive data path between the PCI bus and 
the back-end application. As a passive 
interface, it can not initiate a data transfer. 

In accordance with PCI Spec. 2.1, 
the Target reference design respond to all 
valid transactions as indicated by the 
C_BE[3 .. 0] signals. In addition, the Target 
reference design supports a 32 bit Data Bus 
with 128 MB of address space. The address 
space is determined by 27 bits of address 
which compares to the 27-bit Base Address 
Registers (BAR) of the configuration space. 
The BAR determines the address of the 
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back-end application. It can be changed by 
executing a Write_BAR operation, enabling 
auto configuration, alleviating the need for 
DIP switches. 

2.2 Master Interface 

The PCI Master interface is an 
active data path. It can initiate data transfers 
to and from Target interfaces. When the 
back-end application requests a transaction, 
the Master responds by requesting the 
system arbiter for bus control. After the 
arbiter grants control, the Master provides 
the necessary interface Control signals, 
address, and Command/Byte Enable to the 
PCI bus. Since it issues addresses, the 
Master reference design is not required to 
provide address decoding. It supports the 
same types of transactions that the Target 
reference design supports. 

The Master reference design 
supports the 32-bit bus data transfers and a 
6-bit addressing for the Master 
configuration space. The 6-bit configuration 
address is sufficient for addressing 64 
DWORDs which maps to the 256 Byte 
configuration space. 

The reference designs are easy to 
modify, allowing designers to tailor to their 
system specifications. For instance, PCI 
protocol supports three decoding modes: 
fast, medium, and slow. This set of design 
foundations implement medium decode, 
where the address is decoded on the next 
clock cycle after FRAME# is asserted. PCI 
designers might want to change it to a 
different decoding mode. Another example 
is the address space. If the address space is 
smaller, the number of address bits and the 
corresponding BAR can be reduced. 



3. DESIGN CONSIDERATIONS 

3.1 Timing Considerations 

Strict timing requirements are 
imposed on PCI bus signals. In particular, 
the Specification 2.1 requires that PCI 
signals meet 7 nsec external Setup time, 0 
nsec external Hold time, and I I nsec Clock­
to-Out time. Furthermore, it requires 33 
Mhz operation for off-the-shelf PCI cards. 
Due to these timing restrictions, only high 
performance components with predictable 
timing should be considered for PCI 
interface applications. High density 
programmable logic devices such as the 
MAX 7000E-l OP, FLEX 8000A-2 devices, 
and the EPX 8160-10 meet these 
requirements. 

These PCI timing requirements do 
not apply to the signals that go to or come 
from the back-end application. It is only the 
signals on the PCI bus that need to meet the 
specification. The only constraint that the 
back-end has to meet is the system 
frequency of operation. For off-the-shelf 
cards, this requirement is 33 Mhz. 
Proprietary or closed PCI systems could be 
designed for a lower frequency of operation. 

The PCI reference designs 
implement several design strategies to meet 
PCI Specifications with the target devices. 
These strategies are employed for designers 
in the form of Assignment and 
Configuration File (ACF). Explanations for 
those assignments are given by the 
following sections. 

3.1.1 Target Timing 

For MAX 7000E, the -lOP speed 
grade devices easily meet the required 0 
nsec external Hold time and 1 lnsec Clock­
to-Out when the tri-state is enabled one 
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cycle before the Address/Data is clocked 
out. The way MAX 7000E family meet 7 
nsec Setup time requirements depends on 
the decoding mode. 

In medium decoding mode, the 
address get decoded on the next clock cycle 
with reference to FRAME#. If the address 
needs to be decoded on the same clock cycle 
as the FRAME#, the Address/Data bus lines 
and Command/Byte Enable lines are 
registered before it gets decoded. The 
interface control signals are not registered 
to allow the interface to respond on the same 
clock cycle. The Setup time can then be met 
by using parallel expanders on the state 
machine decode. Parallel expanders are 
product term routed from an adjacent Logic 
Cell, as opposed to shared expanders, which 
are product term routed from the same 
Logic Array Block. I 

In the FLEX 8000A family, the 
basic building block of the devices are 
called Logic Elements. These Logic 
Elements are interconnected together by 
continuous rows and columns channels. At 
the end of rows and columns are 1/0 
elements, each contains an 1/0 cell register 
that feed an 1/0 pin. The delay from column 
pins to Logic Elements and the delay from 
row pins to Logic Elements are fixed but 
different. In order to meet the 0 nsec 
external Hold time in FLEX devices, PCI 
bus signals are assigned to column pins to 
generate a greater delay difference between 
clock-to-register and data-to-register signals. 
For the 11 nsec of Clock-to-Out time 
requirement, outgoing signals to the PCI bus 
should be latched from 1/0 cell registers. 
Furthermore, tri-state is enabled one cycle 
before the data is clocked. 

To meet the 7 nsec Setup time, the 
Address/Data and Command/Byte Enable 
are registered before they get decoded. 

1 See detail descriptions of MAX 7000E device architecture 
in Altera 1996 Databook. 



Since FLEX 8000A is a register-rich family, 
one-hot state encoding scheme is used for 
the target state machine. Furthermore, the 
reference design take advantage of the 
cascade chain, a dedicated path between two 
Logic Element, to speed up control signals 
decoding. 2 

3.1.2 Master Timing 

With MAX 7000E, the same 
strategies as used in the Target apply. The 
only difference is the absence of address 
comparison to the BAR, resulting in less 
register usage. 

In the case of FLEX 8000A, since 
Master interface has a more complex state 
machine decode than the Target. In order to 
meet the 7 nsec Setup, interface control 
signals are registered, resulting in one clock 
cycle latency. The other strategies for the 
Target also apply. 

3.2 Logic Usage Considerations 

In addition to timing specifications, 
PCI bus interface requires certain number of 
logic capacity and I/Os. Table 1 shows the 
logic cell and I/O utilization for timing 
optimized Target and Master reference 
designs in some sample programmable logic 
devices. 

Table I: PC! Utilization on Different Devices 

PCI Device LCELL No. of 
Interface Utilization I/Os 

Target EPM7160E-IOP 155 (96%) 98 
Target EPF81188A-2 306 (30%) IOI 
Master EPM7160E-10P 123 (76%) 103 
Master EPF81188A-2 285 (28%) 134 

Note that in the higher density 
devices, plenty of logic capacity is available 
for additional custom integration. 

2 See detail descriptions of FLEX 8000A device architecture 
in Altera 1996 Databook. 

3.3 Other Resource Considerations 

In addition to 1/0 pins and logic cell 
usage, PCI interface logic necessitates a 
certain number of control signals, including 
clear, preset, and output enable. Designers 
need to pay particular attention to the output 
enable signals needed to control the data 
flow. It is important to allocate the OEs 
required to the system specification. The 
Target and the Master don't have the same 
output enable requirement. These are 
itemized in the following subsections. 

3.3.l Target 

Table II and Table III shows the 
required output enable and their functions as 
defined by PCI specification Rev 2.1 . 

Table II. Signals that Target handles: 

Signals Equations 
OE [AD[31 .. 0]] (S_data + Backotl) & Tar_dly *(cmd 

=read) 
OE[TRDY#] Backoff + S data + Tum ar 
OE[STOP#] Backoff + S data + Tum ar 
OE[DEVSEL#] Backoff + S data + Tum ar 
OE[PAR] OE[AD[31..0]] (delayed by 1 elk) 
OE[PERR#] R_perr + R_perr (delayed by I elk) 
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Output enable signals can be 
consolidated if that are driven by the same 
logic. Resources are conserved as follows: 

I. AD oe 
2. DATA oe 
3. PERR oe 

=> controls AD[] and PAR 
=> controls the DA TA[] 3 
=> controls the PERR# 4 

3 DAT AO represents 32 bi-directional pins interfacing with 
the back-end function. 
• PERR# and SERR# are not required (PCI Local Bus 
Specification Rev 2.1) for the following classes of devices: 
Devices that are designed exclusively for use on the 
motherboard or planar; e.g. chip sets. System vendors have 
control over the use of these devices since they will never 
appear on add-in boards. 
Devices that never deal with or contain or access any data 
which represent permanent or residual system or application 
state, e.g. , human interface and video/audio .devices. These 
devices only touch data which is a temporary representation 



4. TRDY oe => controls the TROY#, 
DEVSEL# , and STOP# 

3.3.2 Master 

Table Ill Output enables required in a Master 
Interface: 

Signals Equations 
OE[FRAME#] ADDR+ M data 
OE [AD[3 I .. O]) (S_data + Backoff) & Tar_dly 

*(cmd =read) 
if ADDR drive address 
ifM_data drive data 
if DR_bus if (step * request ) 

drive address else drive lines to a 
valid state 

OE[IRDY#] (previous) M_data + ADDR 
OE[LOCK#) Own lock & M data + 

OE[LOCK#] * (FRAME# + 
!LOCK#) 

OE[C_BE[3 .. 0)] ADDR + M data+ DR bus - -
if ADDR drive command 
ifM_data drive byte enable 
if DR_Bus if (step * Request) 

drive address else drive lines to a 
known state 

OE[PAR] OE[AD[3 l..O]] (delayed by I elk) 

OE[PERR#] R_perr + R_perr (delayed by 
1 elk) 

The output enables for Master can 
be grouped as follow: 
1. FRAME oe => controls FRAME# and 

C BE[] 
2. IRDY oe => controls IRDY# 
3. AD oe =>controls AD[] and PAR 
4. DAT A oe => controls DAT A[] 
5. PERR oe =>controls PERR# 
6. SERR oe => controls SERR# 

3.3.3 Master & Target 

The following Output Enables are 
required for a combined Master and Target 
interface. 

1. FRAME oe => controls FRAME# and 
C_BE[] 

(e.g. pixels) of permanent or residual system or application 
state, and therefore, are not prone to create system integrity 
problems in the event of undetected failure. 
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2. IRDY oe 
3. TROY oe 

4. AD oe 
5. DATA oe 
6. PERR oe 
7. SERR oe 

=> controls IRDY# 
=> controls the TROY#, 
DEVSEL#, STOP# 
=> controls AD[] and PAR 
=>controls DATA[] 
=> controls PERR# 
=> controls SERR# 

Combined Master and Target 
interface can be implemented in a single 
EPM7160EQC160-10P if PERR# and 
SERR# reporting is not required. 
Otherwise, an additional EPM7032-7 can be 
used for the implementation. For FLEX 
8000A, an additional EPM7032-7 can be 
used to complement the output enable 
buffer. 

Note that the back-end bi­
directional DAT A[] bus can be divided into 
two 32-bit input and 32-bit output bus. This 
scheme will increase the number of 1/0 pins 
used but reduce the number of output enable 
required. 

4. MUL Tl-CHIP SOLUTION 

A single chip implementation of a 
PCI interface is preferable, but a multi-chip 
implementation is feasible. There are many 
reasons that make a multi-chip 
implementation necessary. They are 
insufficient logic capacity, insufficient pin 
count, insufficient output enable, or a 
combination of the above. 

There are Loading, Timing, and 
Layout issues to deal with on a multi-chip 
PCI interface design. These topics· are 
discussed in the following subsections. 

4.1 Multichip-Loading 

The PCI Local Bus Specification 
limits the load on a PCI signal to a single 
pin. Therefore, when design is partitioned, 



none of the PCI interface signals can drive 
multiple pins. 

One aspect of the multi-chip scheme 
that cannot be avoided is multiple clock 
fanout. Using one of the many available 
clock distribution chips on the market limits 
the load on the PCI clock to the specified 
12pF while providing multiple clocks. 5 

4.2 Multichip-Timing 

Irrespective of the implementation, 
the PCI interface must meet the specified 
Setup (Tsu), Hold (Th), Clock-to-out (T c0 ), 

and Register Frequency for off-the-shelf 
card. These requirements dictate how the 
PCI design is partitioned in a multi-chip 
implementation. The control signals 
generated from one chip must be available 
to the other chip in time. 

First, the Output Enable signals 
generated from one chip has to be able to 
enable a tri-state buffer on another chip in 
less than (11 nsec - Output driver delay). 
For example, an Output Enable control 
signal from an EPM7032-7 will take 7 nsec 
to get to the tri-state OE control of 
EPM7128E-10P. This number was 
calculated by adding: Teo ofEPM7032-7 + 
(Ti/o + Tpia + Tioe) of EPM7128E-10P. 
Notice that this is less than 9 nsec (11 nsec 
Teo - 2 nsec Todl). A similar calculation 
can be done between FLEX SOOOA devices, 
and it will show that this requirement is also 
satisfied. FLEX 8000A meets this 
constraint irrespective of whether the 
outgoing Output Enable signal is from an 
1/0 cell register or not. A combination 
MAX 7000E and FLEX 8000A is also 
feasible. 

5 Vendors such as Motorola and Cypress make devices for 
this purpose. Examples are CY7B991/2 Programmable Skew 
Clock Buffers from Cypress Semiconductor, or MC88915*70 
Low Skew CMOS PLL Clock driver from Motorola. 
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Secondly, signals from one chip that 
are needed for implementing a decode in 
another chip needs to be available within the 
required 30 nsec period. T co for MAX 
7000E- l OP is 5 nsec, and that of MAX7000-
7 is 4.5 nsec. FLEX SOOOA devices have 
very fast T co from 110 cell register, and 
comparable T co from a core register to a 
column pin. Refer to the FLEX8000 Data 
Sheet for the Timing Model and timing 
values. The chip implementing the decode 
has 30 nsec - T co time to decode the logic 
and meet the internal register setup. 

4.3 Multichip-Layout 

PCI Local Bus Specification 2.1 
requires that signal trace to a PCI interface 
chip be no longer than 1.5 inches for a 32-
bit implementation. The PCI Connector 
Pinout is given in Table 4-11 of the Rev 2.1 
specification. In order to meet the 1.5 
inches requirement with this pinout, PCI 
chips have to be mounted on both sides of 
the board. 

5. Burst Mode Operation 

To realize the full performance 
potential of the PCI bus, zero wait state 
burst mode operation must be incorporated 
in the design. High speed CPLD such as 
EPF8 l l 88A-2 can execute zero wait state 
read and write operations for an indefinite 
period of time, thus supporting the 
maximum transfer rate of 133 MB/s. The 
burst design for other Altera devices will be 
offered in second half of 1996. 

5.1 Burst Mode Signals 

This target interface performs a 
basic PCI burst mode protocol. There are 
three handshake signals between the target 
interface chip and the back-end: wr _wait, 
rd_wait and i_wait. They are defined in 
Table IV. 



Table IV Burst Mode Back-end control signals 
wr_wait Input signal to our chip from the back-end 

indicating that the back-end can not accept 
data this clock cycle. It is an active high 
signal. 

Rd_wai Input signal to our chip from the back-end 
t indicating that the back-end can not provide 

data this clock cycle. It is an active high 
signal. 

i wait Output signal from our chip to the back-end 
indicating that the Master can not accept or 
provide data this clock cycle. It is an active 
high signal. 

Burst addressing is handled by the 
back-end application. The target interface 
provides the first address. Currently, the PCI 
burst interface does not have data FIFO or 
register bank implemented. In register­
intensive devices such as FLEX 8000A, 
these functions can be added as required. 

5.2 Error Recovery in Burst Mode 

The current burst mode 
implementation does not limit length of data 
transfer. At any intermediate point in the 
data transfer, a parity error can be detected. 
PCI specification does not explicitly state 
what should be done in this case. There are, 
however, two scenarios that can be 
explored. The choice is up to the hardware 
designer and BIOS developer: 

The first option is to perform a 
complete retransmit. The advantage of this 
approach is that designers don't need a 
counter to keep track of the address. The 
second option is to restart transmission 
where the error was detected. It requires a 
loadable counter that is wide enough for the 
address space. The starting address of the 
data transfer gets loaded to the counter, and 
it keeps track of the address of succeeding 
data transfers. 

The Target burst reference designs 
implement the first recovery scheme. When 
a burst is interrupted, the transaction 
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terminates and it starts from the very 
beginning when the burst restarts. 

5.3 Implementation 

This section describes the 
handshaking between the PCI bus and the 
back-end during burst write, burst read and 
master initiated termination. 

5.3.1 Burst write transaction: 

During a burst write, the target 
interface outputs new data on the DAT A bus 
every clock cycle to the back-end when 
IROY# is asserted unless the back-end 
requests a wait, in which case, an input 
signal wr _wait from the back-end will be 
received. The target interface de-asserts 
TROY# one cycle after wr_wait is observed 
on the rising edge of elk. Data on the Data 
bus is one cycle delayed version of the data 
on the AD bus. Figure 2 is the timing 
diagram for this transaction. 

When IROY# is de-asserted, the 
target interface generates an i _wait signal to 
the back-end the same cycle when IROY# is 
observed. In this case, the back-end will 
hold the current address when i_ wait is 
observed on the rising edge of elk. Figure 3 
is the timing diagram for this transaction. 

5.3.2 Burst read transaction: 

During a burst read, the target 
interface receives new data on the Data bus 
every clock cycle when IROY# is asserted 
unless the back-end requests a wait, in 
which case a rd wait will be received from ' -
the back-end. The target interface de-asserts 
TROY# one cycle after rd_ wait is observed. 
This will cause the PCI bus to enter a wait 
cycle. The back-end holds its data on the 
Data bus after asserting rd_ wait. Figure 4 



shows the timing diagram for this 
transaction. 

When IRDY# is de-asserted, the 
target interface generates an i_ wait signal to 
the back-end in the same cycle when IRDY# 
is observed. In this case, back-end will hold 
the data when i wait is observed on the 
rising edge of elk. Data on the AD bus is 
NOT a one cycle delayed version of the data 
on the Data bus. In order to provide correct 
data to the AD bus, both the Data register 
and the AD register must output the 
previous data when IRDY# is de-asserted. 
Figure 5 shows the timing diagram for this 
transaction. Figure 6 is a block diagram of 
the data path for this operation. 

Figure 2. Datapath for burst read 

PCI Bus Back-end 

5.3.3 Master initiated termination: 

When FRAME# is de-asserted and 
IRDY# is asserted (indicating the last data 
transition), the target must transfer this last 
data when it is ready. After this transfer, 
both IRDY# and TRDY# are de-asserted, 
and the PCI bus goes into the turn around 
state. The PCI target control signals 
TRDY#, STOP# and DEVSEL# are all de­
asserted during the turn around cycle and 
are tri-stated the following cycle. 
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6. OTHERS 

6.1 Implementing Open-Drain (0/D) pin: 

Section 2.1 of the PCI Local 
Specification 2.1 states that certain pins on 
the PCI bus must be open-drain. This 
allows several devices to share a signal as a 
wire-OR. These signals consist of SERR# 
and INTA# - INTO#. Note again that 
SERR# and INT A# - INTO# are not 
necessarily required. INT A# - INTO# 
signals are used by PCI devices to assert an 
active-low signal to the system interrupt 
controller. The system designer determines 
whether this is required or not. 

EPX8 l 60 supports open-drain 
outputs. MAX 7000 and FLEX 8000 
devices implement the open-drain structure 
by using an output enable to control an 
output pin that is configured to drive low. 
In effect, when SERR# needs to be asserted, 
the output is enabled. A pull-up resistor on 
the board ensures that the SERR# signal on 
the PCI bus is at a logic high in its quiescent 
staty. 

6.2 Low Power Options 

MAX 7000 and FLEX 8000A PCI 
devices can be used with 3.3 V 1/0 option. 
This only impacts the Output Driver delay 
time, increasing it by 0.5 nsec. The Setup 
and Hold time remain unchanged when the 
3.3V 110 option is used. 

7. CONCLUSION 

As the provider of the highest 
density and highest performance 
programmable logic devices, Altera has 
been proven to bring the benefits of time-to­
market and flexibility to designers. With the 
introduction of the PCI reference design, 



unprecedented level of design re-use and 
customization power are brought to the PCI 
design community. 
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Abstract 

A NEW FPGA FAMILY FORPCI INTERFACE DESIGNS 

Brian Small, QuickLogic Customer Engineering Manager 
2933 Bunker Hill Lane 
Santa Clara, CA 95054 

(408) 987-2003 
email: small@quick.mhs.compuserve.com 

The flexibility ofFPGAs has made them popular for implementing interfaces for buses such as the Peripheral 
Component Interconnect (PCI) bus. However, the PCI timing and electrical specifications are difficult for most 
FPGAs to meet, even for many of the FPGAs advertised as "PCI-compliant". This paper identifies and explains the 
most critical PCI specifications and how they relate to FPGA-based designs. It also explains how the features of 
QuickLogic's new pASIC 2 FPGAs allow them to meet these critical specifications, and why these devices are often 
the best choice for FPGA-based PCI designs. 

PCIIFPGA Design Requirements 

To design a PCI interface into an FPGA, the design/FPGA combination must provide a set of minimal criteria. 
This set includes, but is not necessarily limited to: 

• PCI Electrical Compliance on I/O pins attached directly to the bus 

• PCI Timing Requirements 
- 7 ns setup time 
- 11 ns clock-to-output time 
- 33 MHz clock frequency 

• Density and pinout to support master/target designs and back-end logic 

• JTAG support (optional in PCI Specification) 

These criteria will be addressed in the following sections. Also, it will be demonstrated how the QuickLogic 
pASIC 2 family FPGAs meet these criteria. 

PC/ Electrical Compliance for 110 Pins 

Pins which attach directly to the PCI bus must have electrical characteristics which are somewhat unique to PCI. 
Because the PCI bus is unterminated, and relies on reflected signal propagation to provide a strong signal to a load on 
the bus, all pins on the bus must meet AC switching requirements as well as DC drive requirements. These 
requirements are best illustrated with a Voltage vs Current diagram, showing the compliance region falling within an 
area of the graph. Below are shown the VI diagrams for low to high (IOH) and high to low (IOL) transitions. 

Vout 

so 100 

IOH (mA) 

ISO 200 

Vout 

100 200 

lOL(mA) 

Figure 1: PCI 1/0 Buffer Electrical Requirements 
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The QuickLogic pASIC 2 I/O buffer performance is shown as dotted lines (Measured Min/Max) in the above 
diagrams. This data demonstrates the results of careful design of the I/O buffers for this FPGA family to meet PCI 
electrical requirements. 

Timing Requirements (Setup, Clock-to-Output, and Frequency) 
A FPGA device should not claim to be PCI compliant without proof of timing compliance. This requires a 

reference design that illustrates that the device is capable of meeting the 7 ns setup times, 11 ns clock to output 
times, 33 MHz frequency, etc ... This section will discuss the more critical problems with meeting these PCI timing 
requirements. 

Setup Time 

The PCI bus specification requires that all signals must be registered by the destination device within 7 ns of the 
rising edge of the clock. This equates to a 7 ns setup time on the FPGA. For a PCI Target Inteiface design, this is 
not a difficult requirement, because the PCI signals can be registered immediately upon entering the device - so there 
is little or no logic between the input pin and the flip-flop. The Quicklogic pASIC 2 FPGA family offers input 
registers on all I/O pins for this purpose. These input registers are useful for the PCI Address and Byte enable 
signals. By using the input flip-flops in the PAD cells, more flip-flops and logic cells are free in the internal array. 

Figure 2: pASIC 2 Family Input Register 

In the case of a PCIMaster!Target Inteiface design, the 7 ns setup time requirement is a little more difficult to 
meet, because some of the PCI control signals must be interpreted and an output control signal needs to change on the 
same clock edge. This means that there must be logic between the input pin and the flip-flop, so input registers as in 
Figure 2 will not be adequate for these control pins. An example of one of the critical PCI output control signals that 
needs to respond to a change in the input control signals in the next clock cycle is IRDY (the signal that indicates that 
the master device is ready to receive/transmit data). 

GIRdyCnd-----~ 

HldR Q 

Figure 3: Example of SETUP logic for IRDY signal in PCI Master 

The example in Figure 3 of the IRDY setup logic comes from the PCI Masterffarget Interface Applications 
design that QuickLogic includes in their PCI Design Kit. Other designs may implement the logic with slight 
differences, but the point to be made is the same. IRDY must change based on the previous clock's STOP and TRDY 
signals for a proper PCI master implementation. This means that the setup time includes the logic necessary to 
interpret the TRDY and STOP signals on the PCI bus. The pASIC 2 architecture can easily implement this logic such 
that the path from TRDY and STOP to the IRDY flip-flop takes only one logic cell delay. When this total delay from 
TRDY or STOP to the IRDY flip flop is calculated, the minimum CLK pin to IRDY flip-flop delay is subtracted to 
determine the SETI.JP time. This falls well under the 7ns setup time requirement of the PCI specification, because of 
the versatility of the pASIC 2 Logic Cell, combined with fast routing. 
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Clock-to-Output 

The PCI specification requires that all signals driving the PCI bus must be available to the output pins of the 
device within 11 ns of the rising edge of the clock. This timing is based on a 50 pF load on the output pin. 

[9;[>--~--, 
CKPAD I 

~' :.:.," ~ h·.~ 
DFFC , OUTPAD 

i 
-~F~L_J 

Buffered Feedback Signal j - -

Figure 4: Achieving 9 ns Clock-Output Delay in the pASIC 2 Architecture 

Figure 4 uses a conceptual schematic drawing to demonstrate how a 9 ns clock to output delay can be achieved 
in QuickLogic's pASIC 2 programmable device architecture. Notice that the fanout on the output of the flip-flop that 
drives the output pin in minimized by buffering the feedback path. This approach limits the fanout on the output of 
the flip-flop to 2 loads (the pin and the feedback buffer). In the pASIC 2 architecture, the Clock to flip-flop delay is 
fixed through the clock network at about 4 ns. The delay from the flip-flop output through the wire with a fanout of 
2, and to the output pin with a 50 pF load, is about 5 ns. These numbers add up to a 9 us elk-to-out time, well within 
the PCI requirement of 11 ns. 

In some FPGA architectures, it is necessary to include a flip-flop in the output pad in order to reduce the delay 
from the flip-flop to the output pin. However, in these cases the same flip-flop must be duplicated in the internal 
array in order to provide a registered feedback signal. QuickLogic's pASIC 2 architecture permits the use of the 
internal array flip-flops for fast clock-to-output delays, making flip-flops in the output cell unnecessary 

Frequency 

The PCI specification requires a PCI interface device to run at up to 33 MHz. Since most PCI board designs run 
at the maximum 33 MHz, then an FPGA PCI interface should be able to function at this maximum speed to be 
considered PCI compliant. One example of a critical path in a PCI interface is the 37-bit parity circuit, which must 
produce even parity across the 32-bit PCI data bus, the 4 PCI byte enables, and the PARITY input signal in one 33 
MHz cycle (30 ns). Figure 5 illustrates how a pASIC 2 device can implement a 5-input parity function (equivalent to 
a five input XOR gate) in a single logic cell. A 37 bit parity function requires just three levels of these 5-bit parity 
blocks. 

IN[4)---r-----l----<l 

IN[3)----+---------->.." 

IN[1)--L-t---t------/1 

IN[O)i--'--r---+------' 

----+----+-ODD_PARITY 

Figure 5: pASIC 2 Logic Cell Showing Implementation of a 5-input Parity Function 

The Logic Optimizer Tool, built into the pASIC 2 place and route software automatically maps XOR functions 
efficiently from synthesis tools or schematics into the pASIC 2 logic cell. Therefore, the designer does not need to 
understand the complexity of the pASIC 2 logic cell to benefit from it. Using QuickLogic's pASIC 2 FPGAs, the 37-
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bit parity circuit takes only 9.5 logic cells, and the critical path goes through only 3 logic cells. In a "-2" speed grade 
device (the fastest grade), the delay through this circuit is about 12 ns. This is only a little more than 1/3 of the 30 ns 
clock period allowed in a PCI interface design. 

Density and Pinout 
PCI designs vary widely in their requirement for pins and gate density, but this paper will include some general 

guidelines based on experience with real-world PCI designs. 

PCI Target-only designs require only 47 pins for the PCI interface, plus 5 pins for JTAG (optional), plus 
whatever pins are necessary for the back-end datapath and control. A typical back-end interface for PCI Target 
designs includes a 32-bit address bus, 32-bit data bus, 4 byte enables, and no more than I 0 control signals. This adds 
up to a need for about 125 pins on the target device, not including VCC, GND, and JTAG interface pins. As far as 
logic density is concerned, many PCI Target designs are implemented in 4000-gate FPGAs, with more complex 
Target interfaces seen sometimes in 6000- to 8000-gate devices. Therefore, the appropriate pASIC 2 devices include 
the 5000-gate QL2005 and the 7000-gate QL2007. 

PCI Master!Target designs are more complex than PCI Target-only designs. Typically, some sort ofDMA 
controller resides on the device as well as the Master!Target Interface and the back-end interface logic. Also, the 
minimum pinout on the PCI end increases to 49. For these applications, the 7000-gate QL2007 and 9000-gate 
QL2009 are most appropriate. The density and pinout information is shown in Table 1. 

Table 1: QuickLogic pASIC 2 PCI Devices 

pASIC 2 Device Density User Pins JTAG? Appropriate 
PCI Interface 

QL2005 5000 usable gates 156 Yes Target-Only 

QL2007 7000 usable gates 192 Yes Target-Only 
or Master!Tar~t 

QL2009 9000 usable gates 228 Yes Master!T arget 

JTA G Support 

The PCI 2.1 specification indicates that JTAG (IEEE standard 1149.1) is an optional component of a PCI 
interface design. The JTAG port on an FPGA consists of either 4 or 5 pins which are used on the board only (not 
across the PCI bus) for the purpose of verifying the pin connections of each device to the board and the 
interconnection between devices. All QuickLogic pASIC 2 devices have a 5-port JTAG interface. All I/O pins can be 
loaded, read, and enabled with the JTAG interface. 

Conclusion 

PCI Interface designs offer many new challenges for FPGA designers. A designer needs to look carefully before 
making a decision about which FPGA offers the best solution. QuickLogic's pASIC 2 FPGA devices are designed to 
meet the needs of many new high-speed, high-density, and high-pinout designs - including PCI. Aspects of the device 
architecture such as input registers, flexible logic cells, high speed routing, PCI I/O buffer compliance, and a IT AG 
interface makes it possible to design PCI interfaces in the shortest possible development time. 

346 



PCI Implementation Kits for ORCA FPGAs: 
Features and Design Considerations 

James F. Hoff 
Lucent Technologies 
555 Union Boulevard 

Allentown, PA 18103-1229 
800-372-2447/610-712-4666 (fax) 

e-mail: hoff@lucent.com 

This paper discusses the three components which have provided designers with a way of generating 
high-speed bus designs in very short times. A particular product, Lucent Technologies' ORCA PC! Kit, is 
presented which provides some distinct advantages for the designer, and some issues are discussed 
regarding its implementation. 

A quantum leap in computer high-speed bus architecture functionality is now occurring, enabled by 
advancements in several related areas. The first advancement is the emergence of a bus specification that 
has enough proponents to become a de facto standard - the PCI Bus. This bus architecture has achieved 
this status by being fast, well defined, and by having an inexpensive direct-to-silicon interface. The second 
advancement is the migration to Hardware Description Languages (HDLs). HDLs have enabled logic 
designers to generate huge quantities of complex logic in a short time by breaking a design down into a 
text-based hierarchical tree ofreuseable modules. The third advancement is the FPGA, which has 
revolutionized logic design by providing a design medium somewhere between discrete logic and the 
traditional ASIC and which provides the advantages of both in many applications, plus some uniquely its 
own. 

These three catalysts have ignited an explosion of new designs. The HDL-based PCI Bus on an FPGA 
puts complex, flexible, quick-tum bus designs within the reach ofa wide range of potential applications. 
What is more, the designer only needs to deal with issues specific to a particular design, with little 
duplicated effort. 

This paper discusses some of the characteristics of this new bus design implementation medium, and 
then goes on to explain in more detail an implementation based on Lucent Technologies' (formerly AT&T 
Microelectronics') ORCA FPGA. The rationale for choosing this FPGA is presented. Finally, some specific 
design issues are considered. 

Advancement #1: The PCI Bus 

It is assumed that readers of this paper are familiar with the features of the PCI Bus; however, several 
characteristics of the PCI Bus have been crucial to its success as a standard in this area: 
• The bus interface is specified as a single-chip interface with no "glue logic" (pull-up resistors, buffers 

and drivers) necessary, which is especially important in an integrated FPGA solution. 
• It is fast - so fast, in fact, that it is often not the system's bottleneck to throughput, and can support 

bandwidth-intensive peripherals such as SCSI, LAN and video. 
• The PCI Bus is flexible, allowing individual implementations to select from an extensive suite of 

optional features without encumbering all implementations with those features' overhead. 
• Resistance to obsolescence has been designed into the standard. 
• It was developed just as the need was emerging for a bus with the above features (i.e., it was timely). 
• Now that it is the standard in its field, it enjoys all the benefits attendant to that position, such as 

familiarity and interoperability. 

On the other hand, certain PCI Bus characteristics cause problems for the designer, particularly in the 
connector interface: 
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• To meet the PCI Bus' stringent timing requirements, demanding propagation delay specifications were 
imposed which thin out the field of prospective FPGAs considerably. 

• The requirement that the PCI Bus interface directly to a single chip with no "glue logic" also means 
that there is no way to "fix" an FPGA with unsuitable DC, AC or parasitic characteristics. 

Advancement #2: The Hardware Description Language (HDL) 

The format of the design medium has had a significant impact on the rate of success of PCI Bus 
designs, and especially FPGA-based designs, which tend to have short design cycles. Also, as designs have 
become very large (15,000 or more gates), it has become difficult to design with traditional design-entry 
methods, such as schematics and programmable-logic equations. These methods also tend to be 
technology-dependent, and often require the designer to make trivial low-level design decisions (e.g., 
muxes versus NANDs). Finally, design media such as schematics do not easily lend themselves to 
hierarchical techniques and modular reusability. For these and other reasons, HDLs are overtaking older 
methods as the standard for design entry. Two HDLs have developed more or less simultaneously, but 
neither seems to be emerging as the winner in the battle for acceptance. VHDL, which is of military origin, 
is very rich in capability and, like its sister programming language, ADA, tends to be wordy and structured. 
Verilog, on the other hand, is less capable and, like its sister language, C, is concise and permissive. The 
military/commercial distinction has since blurred, and now the difference is more a matter of region and 
company culture. 

Regardless of which HDL is chosen, the advantages of high-level design are many. Vendors can (and 
do) now offer "design kits", pre-designed modules that perform complex but generic functionality. All that 
is necessary is to tailor the design to a specific application. Within a company, there is a high likelihood 
that a module designed for one project can be easily adapted for use on a subsequent project, and a design 
defined in HDL can be quickly converted from one implementation medium, such as FPGA, to another, 
such as ASIC. Quick design tum is the result, a necessity in the current marketplace. And just as designers 
have come to develop products with components like processors and LAN controllers with inner workings 
that are unfamiliar, designers can now design with kits such as PCI Bus or DSP, without extensive 
experience with their internals. 

Advancement #3: The FPGA 

The FPGA has been on the digital design scene for about a decade now, but its popularity seems to be 
only increasing. On the low-density end, it has all but replaced discrete digital logic. On the high-density 
end, it is even making forays into territory formerly held by ASICs. The reasons for this are clear: the low­
end SRAM-based FPGA is now as inexpensive as two or three PLAs, yet it provides a host of advantages. 
Among them are: functional universality; reprogramability; remote-, MPU- or MCU-based downloading; 
I 00% testing; protection against obsolescence; low power consumption; high speed; multiplexed 
functionality in a single chip; a standard CMOS interface;and invisible last-minute (or even in-field) bug 
fixing. The features that enable an FPGA to compete against ASICs on the high-density end are no less 
impressive. Once thought of only as an ASIC development tool, the FPGA is refusing to relinquish its 
socket. Once designed in, the design never seems to settle down enough to justify the stiffNRE and 
accompanying risk of error or obsolescence. Meanwhile, FPGA equivalent gate sizes continue to soar and 
prices to plummet, as feature geometries shrink. 

ORCA 

This paper focuses on a particular series ofFPGAs that has been designed with the PCI Bus 
application in mind. The ORCA 2C series, from Lucent Technologies, and its derivatives provide many 
features that facilitate their use in a PCI application. Among them: 
• Size: the PCI Bus module alone requires 6k-10k gates for implementation. Thus parts with 10k-40k or 

more gates are necessary to accommodate the PCI bus and its back-end application. The ORCA 2C 
provides this. 
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• Speed : as mentioned earlier, the PCI Bus standard requires very strict clock-to-out propagation delays 
of only 11 nanoseconds, which the ORCA 2C can meet. 

• Compliant with other PCI interface requirements. A host of other parametrics constrains the 1/0 
pins on the PCI interface, since the FPGA provides the sole and direct connection to a very high-speed 
bus. This includes V /I relationships, slew rates, pin capacitances and inductances, leakage currents, 
and others. 

• Routability: ORCA's abundant nibble-based resources are necessary not only to make routing 
possible, but also to make it meet the 33-MHz clock requirements. 

• RAMs: most PCI Bus peripherals require buffering, and the ORCA provides it in the form ofhigh­
density RAMs, both asynchronous and synchronous, both single-port and dual-port. For a given 
equivalent-gate rating, ORCA offers larger RAMs than other FPGAs. 

• Bounteous 1/0 : as with RAM size, the amount ofl/O that ORCA possesses is greater than for other 
FPGAs claiming the same equivalent-gate rating. This is important, since both the PCI Bus interface 
and the back-end peripheral interface can be highly 1/0 intensive. 

• 5V and 3.3V: In addition to standard SV capability (type "C"), ORCA provides 3.3V parts (type "T"), 
allowing the PCI Bus to utilize its 3.3V optional capability as well. 

• We own the foundry: ORCA's benefits stem not only from its efficient architectural specification; 
Lucent is the only major FPGA manufacturer that owns its own foundries. As such, Lucent has 
consistently provided denser, faster, lower-power parts to its customers by being first to migrate to 
ever-finer gate geometries. Presently, while others are announcing migration to 0.5 micron feature 
sizes, Lucent has devices available today in 0.35 micron sizes. In addition, in-house foundries allow 
for greater control over production scheduling, priorities, and quality. 

• Design kits: Lucent has provided two design kits, called Configurable Solution Cores (CSCs), 
specifically for PCI Bus use: one for initiator applications, and one for target applications. 

ORCA's PCI Design Kits 

Design kits make the job of integrating a complex logic entity into an overall design much easier. For 
the most part, the PCI Bus interface is well-defined, and special needs can be accommodated using PCI 
optional features that provide variations on the main theme. The PCI design kits offered by Lucent provide 
enough power and flexibility to meet most any need. Here are some of its features: 
• Separate kits are available for initiator and target applications. 
• The kits take advantage of the power ofHDL logic definition. Both VHDL and Verilog source code 

are available. 
• Multiple design flows for sysnthesis are supported: Synopsys and Exemplar Galileo. 
• Workstation and PC platforms are supported. 

The kits provide all necessary functionality as called for in Revision 2.1 of the PCI Local Bus Specifi­
cation; in addition, many optional features are either incorporated or easily added to the design. 

Some of the incorporated optional features include: 
• Full 33 MHz clock speed; 
• Full 32-bit 1/0 and memory address spaces; 
• 64-bit address/data bus on master; 
• Burst Mode support (zero-wait state in some cases); 
• Retry, Disconnect and Target-Abort; 
• 3.3V operation (using "T"-series parts; no software impact) 
• Parity generation/checking (usually required); 
• Single interrupt capability; 
• Subsystem ID and Subsystem Vendor ID; 
• Latency timer on master; 
• Min_ Gnt and Max_ Lat registers on master; 
• 16 X 64 SRAM buffer on master's local peripheral interface. 
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Features that can be added to the design as extensions, by modification of the HDL code, include: 
• 64-bit address/data bus extension on target or 32-bit reduction on the master. 
• Multiple interrupt capability may be added to support more complex interrupt schemes. 
• Special Cycle. This is useful if sideband control signals are needed for inter-bus agent communication. 
• Delayed transactions. This allows a PCI read to be handled in two parts, one to initiate the data fetch in 

the target, and the other to effect the data transfer over the PCI bus. 
• Exclusive access ("LOCK#"). This may be useful for bridge applications. 
• Address stepping can be added to reduce noise on the PCI bus. 
• An asynchronous interface to the local peripheral allows the peripheral to operate from a different 

clock than the PCI Bus' 33 MHz (or other) clock. 
• PCI-side controlled bus master. Some local applications do not have a processor to initiate data 

transfers. Rather than add a processor, it may be more practical to give another PCI master that task. 
This can be achieved by making the local address and command registers accessible over the PCI bus 
by adding them to the configuration register space. 

• Modification ofSRAM buffer. The implemented scheme may provide more, less, or different 
capability than the local peripheral requires. For example, some applications may not require the 
SRAM buffer at all. Others may require a dual-port FIFO which supports uninterrupted data bursts of 
any length. 

This does not imply that implementation code exists for all of the above features, but rather that the 
supplied HDL code provides a good starting point from which to design them in. 

Special Design Considerations 

A major advantage of specifying a design in HDL is its technology-independence. However, this can 
become an impediment when it is important to extract every bit of performance from a logic family in 
order to meet demanding requirements. This is the case with the PCI Bus' 1/0 interface. In order to meet 
the 11-ns clock-to-output propagation delay requirement, the paths from registers to output pads must use 
special direct-out routing. To accomplish this, Lucent's PCI Design Kits for ORCA supply a "preference 
file" that contains the necessary predefined register placements and routing priorities. 

Another especially demanding portion of the PCI design is the control logic. Here, signals such as 
"trdy#" must be evaluated as a function of large numbers of other signals. To achieve this within the 
confines of a 30-nanosecond clock period requires maximum utilization of the ORCA PFU's capability of 
handling functions of up to eleven variables. For this reason, "trdy#" and several other key signal decodes 
are provided in the design kit as precompiled macros. 

In addition to the special requirements above, control of the compilation process and analysis of the 
results is provided by constraints specified in the preference file. This includes the clock speed of 33 MHz 
and all necessary propagation delay, setup, and hold time requirements. 

Back-End Interface Design 

The back-end interface is one place where the end-user will surely need to customize the supplied 
HDL code. Although a standard interface is defined, individual requirements will generally require 
modifications. Nevertheless, the functionality supplied and protocol used will make the fitting process as 
painless as possible. 

Lucent's two PCI implementation kits, master and target, have significantly different local-side 
interfaces, which is necessary because the origin of all control in a PCI interchange is the master's local 
peripheral logic. The master's local peripheral controls the master's PCI logic, which controls the target's 
PCI logic, which controls the target's local peripheral. The following paragraphs describe the target and 
master blocks and their local interfaces. 
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The target local interface is the simpler of the two, since it never issues commands but only responds. 
The signal pins are listed below: 

• resetR# OUT LO = re-clocked PCI reset 
• ireq# IN LO = interrupt request 
• clkout OUT buffered PCI clock 
• ldi[31 :O] IN input data bus 

• ldoR[31:0] OUT output data bus 
• burstadr[l 7:0] OUT address 

• datavld# OUT LO = data valid 
• addrvld# OUT LO = address valid 
• rdwr# OUT LO = write, HI = read 
• memio# OUT LO = 1/0, HI =memory 
• busy# IN LO causes wait-state in subsequent data in (write) or out (read) 
• retry# IN LO causes bus transaction to terminate in "retry" 
• tremina# IN LO causes bus transaction to terminate in "disconnect" 
• abort# IN LO causes bus transaction to terminate in "target-abort" 

All data transfers are initiated by the PCI side. The local peripheral side can deliver/accept data, cause 
a wait state, or terminate the transaction (in a retry, disconnect or target-abort). All signals are synchronous 
to "clkout" except "ireq#". 
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Figure 1: Block Diagram of PCI Bus Master 

The PCI Bus master block diagram is shown in Figure I. Its local interface is more complex for two 
reasons; first, it must be capable of initiating commands, and second, it includes a l 6x64 buffer. The local 
interface signal pins are listed below: 

• resetR# OUT LO = re-clocked PCI reset 
• irq IN HI = interrupt request 
• clkout OUT buffered PCI clock 
• ldi[63:0] IN input data bus 
• ldoR[63:0] OUT output data bus 
• ramreg# IN HI = RAM buffer, LO = register 
• adrcom# IN HI = address register, LO = command register 
• rdwr# IN HI = read command, LO = write command 
• strobe IN HI = command strobe 
• masabrt OUT HI = PCI master abort occurred 
• trgabrt OUT HI = PCI target abort occurred 
• pcibusyr OUT HI = PCI master busy transferring data 
• xfrdoneR OUT HI = PCI data transfer complete 

All data transfers are initiated by the local peripheral side. Data can be transferred over the PCI bus in 
burst mode to/from the 16x64 buffer. To initiate a PCI bus transfer, the local peripheral supplies an address 
and a command word to the PCI block. The command word contains a transfer count and a read/write bit, 
plus other bits. When the command register is written, a read or write is initiated, and "pcibusyR" is 
asserted. If more than sixteen words are to be transferred, the PCI transaction is ended and "pcibusyR" is 
de-asserted, signaling to the local peripheral to supply the next data block. The PCI block will 
automatically update its address and restart the PCI bus transfer when it receives the next sixteen words. 

Summary 

A PCI design kit for FPGAs that is defined in HDL allows the designer to define, build and test a bus­
based peripheral in minimum time. Lucent Technologies' ORCA PCI Configurable Solution Core offers 
many unique features to enhance performance and reduce design time. 
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MPEG Video has become the industry standard method of digitally encoding moving pictures into a compressed 
bit stream. Once converted, MPEG data can be transmitted between computers using Tl lines before being stored or 
decompressed for display. The match is very close between the Tl rate, which is 1. 544 Mbits/s and MPEG 1 video 
encoded to give comparable quality to a VCR. This paper will discuss the MPEG bit stream and how it may be 
transmitted as a series of frames as used by data communications protocols. Each stage of the process will be 
described, including potential problems due to errors caused by transmission noise. The serial communication card 
used to convert the serial MPEG stream into frames of data will be described along with the CSU/DSU used to 
convert the serial data stream into the time division multiplexed Tl stream. 

THE COMPONENTS OF A Tl BRIDGE 

Let us assume that we need to build a bridge which will connect two computers, A and B. For the sake of our 
discussion we will assume that they are ISA or PCI bus computers, of 486 or Pentium class, that is, the sort of 
computers which are commonly used for multimedia applications. We wish to link A and B with a full duplex Tl 
Bridge so that A can transmit to B and B can also transmit to A, simultaneously. 

We also assume that we have a source ofMPEG digital program material at each end. This program material can 
be from a live can1era, or from a hard disk or CD ROM which contains stored program material. Whether live or 
from memory, this program material must be encoded at a rate which the Tl link can support, that is, somewhat less 
than 1.544 Mbits/sec. This is a limiting factor. The program material is buffered into system RAM memory and then 
directed to the serial communications card. The card performs a parallel to serial conversion and sends the data to 
the CSU/DSU. The CSU/DSU takes the serial data stream and multiplexes it into Extended Super Frame (ESF) 
fonnat which is compatible with North American Tl switches. The serial data is transmitted over the Tl line to the 
central office where it is sent over the telephone system to it's destination. When it arrives at the destination it 
demultiplexed and is converted to it's original form as an MPEG data stream ready to be decompressed by a decoder 
and then displayed or stored for future use. Because the Tl service is full duplex, there can be two nnrelated MPEG 
streams transmitted at the same time in opposite directions. 

BIT RATE, A CONTROL/NG FACTOR 

Video by it's very nature is time dependent. The fact that a film or video tape is converted to a serial bit pattern 
doesn't change this. If it is late, it will be observed as an error. Tl will limit the bit rate to a maximum of 1.544 
Mbit/s. In practice the MPEG bit rate should be lower because the Tl actually provides a dear channel of 1.536 
Mbit/s for carrying data. This is because a certain amount of the Tl bandwidtli is used for synchronization and 
control signaling. 

Another loss in bit rate can be caused by the efficiency of the transmission framing used by the communications 
card. The communications card sends data in a series of fran1es. Each frame consists of a series of fields including 
flag, address field, control field, information (data) field and a frame check sequence (FCS) field. This overhead will 
further lower the actual throughput. It should be noted that you can use longer frames, say 2K byies or so to increase 
efficiency by increasing the amount of data relative to the fran1ing information. Furtliem1ore if an error correcting 
protocol is used for the link, then acknowledgments frames will be returned for each frame of data. You can 
therefore estimate that only about 90 to 92% of the available bandwidth is used for transmitting data. Assuming a 
90% efficiency, this means that with Tl, you can actually send at a rate of 1.38 M bit/s 

A third cause in loss of available bandwidth can be the computer system itself. If the transmitting computer is 
delayed in sending a frame of data because it had to service another task, running concurrently, tlien the 

353 



communications card will fill the missing space with flags. Flags are used by communications protocols to dileneate 
the frames and to maintain synchronization in the absence of data. We will assume that we will use a computer with 
sufficient CPU cycles to handle the communications task and any other task that may have to run concurrently such as 
MPEG encoding and decoding. 

A fourth cause of lost bit rate can be caused by the communication protocol itself when it corrects an error in the 
received data. If a full error correcting protocol is used such as HDLC or PPP protocols, then acknowledgments are 
constantly being sent back to the transmitter by the receiver saying that each frame has been received and that there 
are no errors. If an error is detected, then the transmitter is instructed to resend a frame. lbis can be very disruptive 
to the smooth flow of data required by MPEG I. 

MPEG compressed video is a stream digital information. Both video and audio are combined in the bit stream. 
The method used by MPEG-1 to compress the video will not be described here in this paper. It is a topic on it's own. 
We will assume that the bit rate of this stream is determined by the encoding process. Let us assume that the encoder 
is set to provide a nominal MPEG l video (352 x 240 x 30, l .15 Mbit/s) rate. Lets forget about the fact that MPEG 
talks about video frames being transmitted at a rate of 30 per second, it is still a stream of l's and O's and there is no 
need to make any sense out of it until it reaches the decoder. Lets consider it to be just a stream of data with a bit 
rate no greater than l .15 Mbit/s. At this rate we can see that there should be no problems in sending it over a Tl line 
through our computer system, ifthe transmission system has a capacity of 1.38 Mbit/s. 

THECSUJDSU 

The Channel Service Unit/Digital Service Unit (CSU/DSU) is a fairly complex piece of equipment. It takes the 
serial data stream, for example our MPEG l bit stream, and converts it to a format that can be accepted by the DSX-1 
interface for Tl required by the telephone company. In a sense it acts like a digital modem. 

We will describe the CSU/DSU as it is used to format the MPEG data stream into the Extended Super Frame 
(ESF) fonnat. This is one of the frame formats required by the communications switches in the telephone company 
central offices. We have chosen ESF framing because it can be used to transmit a continuous stream of data at the 
maximwn rate possible through a Tl line. 

The ESF frame consists of24 eight bit words, or time slots transmitted at a speed of 1.544 Mbit/s. The 
combination of24 time slots produces a data rate of 1.536 Mbit/s. Each time slot has a framing bit associated with it. 
The eight bit word along with it's associated fran1ing bit is called a D4 frame. The framing bit is used to maintain 
synchronization and in effect provides a timing clock for decoding the data at the receiver. The extra framing bit adds 
an extra 8,000 bit/s for a total bit rate of 1.544 Mbit/s. 

It is an interesting aside that by using Pulse Code Modulation (PCM) to encode the voice digitally, that 8 bits of 
resolution gives a reasonable signal to noise ratio for telephone applications. It could have been 7 bits or 9 bits, and 
then we would not have the synimetry between computer bytes and the D4 frame. 

The 24 framing bits which are contained in the ESF frame are not all needed for synchronization and therefore 
only every fourth D4 frame (4, 8, 12, 16, 20 and 24) in the superframe is used for synchronization. The result is that 
6,000 bit/s can be used for other functions. lbis is used for performing continuous error checking on the ESF frame 
and for signaling back to the central office. This signaling is called the facilities data link (FDL) and is used by the 
phone company to test the operation of Tl circuits with diagnostics such as loop backs and statistics. The net result 
of this is that all CSU/DSUs which support ESF are capable of testing and storing 24 hours of statistics on Tl line 
quality. This can be a source of useful infonnation about line quality ifit becomes an issue in your application. 

The frame synchronization which the CSU/DSU decodes from the Tl data stream is used to create a local clock. 
In a sense, the clock rate is determined by the central office. This is a precise frequency, accurate to+/- 50 ppm 
accuracy and is used by the communications card as a reference clock frequency when it sends data to and receives 
data from the CSU/DSU. 

The CSU/DSU can appear in several fom1s. It may be a small box, about the size of a modem which sits on the 
desk top and is powered by a battery eliminator. It may also be a larger piece of rack mounted equipment which 
requires al l5V power supply. A third incarnation may be as a small module or daughter board which plugs into the 
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serial commWlications card in your computer, or as an integral part of the commWlications card. We have experience 
with both the small box and the daughter board fonu which we have developed and call the IM CSU. 

THE SERIAL COMMUN/CA TIO NS CARD 

Our experience with using commWlications cards for compressed video applications lies with two different PC 
designs. The first is called the Tl Master which uses an ISA bus and the second is called the WAN Master which 
uses a PCI bus. Both designs can be used in 486 and Pentium class personal computers, to provide two serial 
interfaces at Tl rates. 

The Tl Master 

The Tl Master has two chaimels and has an ISA bus interface which is capable of an aggregate data rate of 
approximately 6 M bit/s. It uses the Zilog l6C32 ruse Serial Communications Controller, which is also known as 
the ruse. The performance of the card is an excellent match for Tl providing the computer is not busy with other 
tasks other than the main commWlications task. The Tl Master is a Bus Master DMA design . It does not have a 
large internal data buffer or an on board processor. It uses a very high performance DMA which is built into the 
ruse which also cascades with the host system DMA. By selecting the size of the circular queues, it is easy to keep 
the data buffers on the ruse serviced in spite of latencies which may appear in the operating system when other tasks 
are rmming, or when very high priority tasks are serviced. The size of the queues is limited only by the size of the 
system memory. 

The FIFO memory in each of the ruse is therefore only necessary to compensate for the very short time delays 
due to hardware latency. For example, when the Tl Master does a DMA request, there will be a variable short time 
before it is available. This is easily acconunodated by the relatively small FIFO buffer in the ruse. 

The DMA can address the full 16 Mbytes ofISA system memory and can be used effectively in Linked List DMA 
mode. Using this mode, the software driver can utilize circular data queues of arbitrary size to store data for transmit 
and receive. The queues can be designed to circulate without interrupting the host processor. Data can therefore be 
transmitted and received without host processor intervention. The host processor must only get involved when data is 
moved or protocol processing must be done. The ultimate speed of the Tl Master appears to be limited by the latency 
ai1d clocking rate of the host system DMA controller. The ISA bus is limited to a clock rate of 8 MHz. This can be 
adjusted higher in some system BIOS options, but the higher rate is non stai1dard and not always supported by all 
cards in the system. 

The WAN Master 

The Wan Master is a further development of the Tl Master. It eliminates the bottleneck to data flow caused by 
the ISA bus DMA and provides a plug and play environment for interrupt and address selection. The WAN Master is 
also a two channel board which uses the same ruse as the Tl Master. This makes porting software easier between 
the two boards. The WAN Master uses a slightly different interface philosophy in that it has 256 Kbytes of on board 
buffer memory. The advanced DMA modes of the ruse can transfer large ainounts of transmit and receive data 
between the buffer memory and the ruses without host intervention. The data is buffered by the saine type of 
circular queues in this memory area except that there is no need to cascade DMA controllers. The ruse DMA 
controllers can now run at maximum rates and the DMA request latency is eliminated. 

The host system has direct access to the buffer memory through the PCI bridge interface. Data can be transferred 
in two ways. One met11od uses stai1dard memory block move instructions which are Wlder processor control. This is 
adequate in many applications. However, for applications where the processor may be busy, a DMA controller is 
available in tl1e PCI bridge chip to move data. The result of the high perforniance PCI bus interface is that the ruse 
can operate at much higher rates. The WAN Master supports serial data rates of up to IO Mbit/s (full duplex) on 
both charmels simultaiieously. Using high speed interfaces such as HSSI, the WAN Master can support data rates of 
up to 20 Mbit/s full duplex. These data rates are high enough to drive MPEG 2 video applications to the fullest 
extent. 

The large bus bandwidth of the PCI interface can be used to its fullest potential when fuere is a need for multiple 
WAN Master cards in one host systen1. Installing four WAN Masters in a system can create a throughput of80 
Mbit/sec, which is less fuan 7% oftl1e 132 Mbyte/sec potential offue bus. 
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SOFTWARE DRIVERS 

There are two approaches which we use to provide a driver interface to the communications cards. One is to use a 
standardized structured approach such as a network driver. Options include Network Driver Interface Specification, 
(NDIS) driver, the Open Data Link Interface (Om), and the Crynwr Packet Driver for MS-DOS and Windows 3.1. In 
our example we will concentrate on the NDIS driver and TCP/IP (PPP) or NetBEUI, with which we have the most 
experience in testing. 

The NDIS specification was written by Microsoft and 3Com to provide a shareable device interface for LAN 
Manager. om is a Novell standard (Open Data-Link Interface) which allows other protocols including TCP/IP (PPP) 
to work simultaneously with NetWare. NDIS and om can support multiple protocol stacks. The Packet Driver is a 
small and relatively simple interface and has the potential for the highest efficiency. 

While there is a choice of protocols which can be used for the data link layer, TCP/IP (PPP) appears to be a good 
solution especially in comparison to the well-proven HDLC protocol. HDLC is very good for transmitting data with a 
very high accuracy at the data link level. It acknowledges each frame and checks the sequence of frames received 
continuously. In addition, a sliding window allows only a small number of frames to be outstanding without 
acknowledgment. If an error is detected, it is corrected in the data link layer. For noisy analog lines where the 
probability of an error is high and data rates are relatively low, this is a good solution. However, when sending data 

over high quality links such as a satellite or fiber optic links, bit error rates as low as 10-10 are typical. Also, given 
the fact that compressed video is rather forgiving to the occasional error, it then becomes feasible to use a link layer 
protocol which is optimized more for speed and etliciency. With this error rate, an error may crop up once every two 
hours or so. 

PPP is therefore a good protocol to use for MPEG Video since the frames are transmitted without requiring frame 
by frame acknowledgments at the link layer. This means that the link layer software can be designed with large 
DMA ring buffers which can be filled and transmitted or received continuously. This improves the efficiency of the 
driver. When an error correction is required it is handled by the transport layer which is TCP. 

The most simple, direct and obvious way to move the MPEG data between two computers is to use the file system 
which is built into the operating system. If you are using DOS or Windows 3.1, the NDIS 2 driver may be loaded and 
a transport protocol such as NetBEUI or TCP/IP (PPP) can be bound to it. The file system approach gives acceptable 
results with a fairly powerful computer such as a 486/100 or Pentium 120 operating on the client end, but may have 
some problems maintaining the data flow rate on the server system. The problem appears as a jerky image with gaps 
in the sound. If you are using the Windows NT operating system on the server the file system seems to be much more 
etlicient and can give smooth video and sound on the Client. As an additional note, generally the Client computer 
has a heavier load because of the MPEG decompression process and it also benefits from having a powerful CPU. 

Is an Error Correcting Protocol Needed 

If the only function of the Tl link is to transmit compressed video then some consideration has to be given to 
whether or not the extra overhead of ru1 error correcting protocol is needed. When an error is detected, the upper 
layers of the protocol will request that the data be resent. This can cause a noticeable glitch in a video stream. If 
there are no critical files, programs, etc. to be transmitted and the bit error rate of the communications link is of the 

order of 10-IO then it is possible to avoid using any protocol and to simply "strean1" the data from server to client. It 
all depends on the particular application. This bit error rate may produce a small glitch which may or may not be 
noticed over a period of several hours numing at Tl speeds. If the error occurs in a data field of the MPEG frames 
then it may not even be noticed. A much more noticeable error occurs if it's in a motion prediction area or the 
discrete cosine transfonn area. 

For this purpose, a character driver may be provided for the MS DOS operating system. In Windows NT, a kernel 
mode character driver can be used. These drivers provide the necessary buffering and interrupt handling interface to 
the communications card. They pennit a custom application to be written which may bypass the file system ru1d 
network drivers to give better real time control and better timing perfonnance. When using this type of driver, there 
is no error correcting protocol. Errors may however be detected and recorded for later reference. HDLC type framing 
will be used with the frame size detennined by the buffer size. All of the HDLC fran1ing will be transparent to the 
data being transmitted. The character driver allows direct access to the hardware through Windows NT HAL 
(Hardware Abstraction Layer) calls whereas the NDIS driver can only talk to the HAL through the NDIS Wrapper 
functions. 
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ADSL Technology 

If data is transmitted in this way with no error correction then there is no need for acknowledgment in the reverse 
direction. The MPEG data link can then be half-duplex. This opens the possibility of using Asymmetrical Digital 
Subscriber Loop (ADSL) technology. With ADSL, only a single pair of the two twisted pairs of Tl cable are used for 
point to point connections. The data is further encoded using proprietary techniques to provide a 1.544 Mbit/sec 
forward channel and a 16 Kbit/s full duplex control channel. In addition, a plane old telephone (POTS) connection is 
provided for an analog phone Variations on ADSL are available which will give much higher rates that a standard 
Tl. 

SUMMARY 

The MPEG-1 video format is a good match with Tl lines and is a practical way to transport VCR quality video 
images with CD quality stereo sound. A system can be assembled using PC class computers and off the shelf board 
level products to transmit real time compressed video. The system can be either half or full duplex depending on the 
application. 
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This paper presents i) A design for high performance vision processing hardware for the PCI Bus ii) The use of the PCI 
Bus as an optimized data transfer pipeline between imaging capture/processing hardware and upcoming, high speed, 
general purpose CPU's. iii) What we have learned from designs on previous buses and different hardware architectures 
and how we have implemented some of these techniques on the PCI Bus architecture. iv) The principles behind the 
design of a frame grabber on the new PCI Bus and how this technology was to be applied to the follow-on designs of 
new vision hardware. 

How the PCI Frame Grabber Came About 

Image capture technology within the PC market was limited by the speed at which data could be transferred between 
the data capture hardware and the host memory. Another limitation was the lack of unattended bus master OMA data 
transfers. During the period when the 386/486 and ISA/Vesa local Bus architecture dominated the market, image 
capture hardware for the PC was limited by the speed of the CPU and the bus. As the speed of CPUs improved the data 
transfer rate also improved, but the transfer speed improvement realized was not enough. The maximum data transfer 
speed that could be achieved was about 10 Mbytes/sec, using the Vesa Local Bus and a 486 CPU running at 66 MHz. 
These speeds can only support the data transfer speeds required while capturing an RS-170/CCIR 8-bit video signal. 
ITI provided products for the ISA, and later, VL buses and became knowledgeable about framegrabber design for the 
PC environment. .Still, since the main processor was tasked with managing the data transfer from the framegrabber, 
there was not enough CPU bandwidth left for it to actually process the data. This made it almost impossible to keep up 
with real time image processing, which is required by a variety of vision applications. As a result, many applications 
had to be developed for different architectures, such as the VME bus. ITI gained considerable experience in high speed 
vision and image processing designs via our Modular Vision Computer (MVC) 150/40, a high performance pipeline 
processing architecture VME bus product which was modular in nature. 

With the introduction of the PCI bus, ITI as a company looked at what had been learned from our previous products 
and how to apply some of this experience to the PCI Bus. We took the best features of our previous designs, like 
flexibility and modularity and combined these with the data transfer speed features of the PCI Bus. We had already 
developed an extremely flexible data input capability in our MVC 150/40 products for the VME bus, which is 
provided by a variety of acquisition modules. These acquisition modules give the MVC 150/40 the ability to acquired 
true color, variable-scan to 50 MHz, 8 to 24-bit digital and multi-tap camera formats. Figure l illustrates this 
modularity as provided by the MVC IC-PCI, one of ITI' s recent PCI bus based products. The acquisition modules 
have been used by customers in applications that range from low end image processing systems to high speed vision 
systems. 
ITI had also developed expertise in framegrabbers for less demanding applications and saw needs for two different PCI 
bus based products. One product would use the PCI bus to overcome the data transfer limitations of previous PC buses 
and dramatically advance the capabilities of framegrabbers within the PC architecture. The other product would bring 
the full performance capabilities of pipeline image and vision processing to the PCI bus 

By using the input flexibility already available on the MVC 150/40, the next step was to determine the what features to 
implement on the framegrabber (image capture) motherboard called the MVC IC-PCI. The main goal for the design of 
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the IC-PC! was to transfer the data that was acquired through the acquisition module onto the PC! Bus as fast as 
possible. With this in mind, achieving the highest sustained speed data transfer rates possible required the framegrabber 
to be a PC! Bus master DMA device. Allowing the framegrabber to fully control the data transfer onto the PC! Bus or 
onto a slave device on the PC! Bus gave the IC-PCI a significant advantage over designs for earlier PC buses. Now the 
CPU was able to be available to process the data resident in memory instead of managing the data transfer from the 
framegrabber. 

As the IC-PC! was to be DMA Bus Master device, the next step of the design was to determined what type of memory 
scheme to implement on the motherboard. Even though the IC-PCI was to be a DMA Bus Master device, it could be 
problematic for a given application to guarantee that the PCI Bus and the CPU bandwidth would always be available 
on demand. The need for local memory on the framegrabber become a clear requirement; this addressed the case of 
"what if' the acquisition input rate was faster than the processing rate. A linear memory buffer was implemented as the 
IC-PCI memory format, allowing the buffer to be independent of the size of the input device's resolution. The memory 
buffer was partitioned as a 4 Mbytes buffer (a 2 Mbytes version is also offered), making it possible to acquire data up 
to 4 million 8-bit pixels to accommodate newer digital cameras with resolutions of up to 2k x 2k pixels, which are 
becoming increasingly common. 

Cam era Camera 

+ Interface + Motherboard + Soltw are Solution 

- - - - - - - - - - - - -
Plug-on MVC IC [g Ac ulslllon M odul•• t Im age Capture 

All 

standard & 

ITEX Libraries 

PCI 
Dlgltal 

I Figure I - M VC-IC Options 

This linear buffer memory also offers the capability to sub-divide the image buffer into smaller buffers, which makes it 
possible to use these smaller buffers as Ping-Pong buffers. By using Ping-Pong buffers, data can be FIFO' d inside the 
IC-PCI to prevent the CPU from loosing frames, while processing a frame at a time. Linear memory also offers the 
capability of packing pixels to be transferred to a VGA (display) device; this allows the IC-PCI to transfer data to the 
display without requiring any pre-processing (packing the pixels). The memory was designed as dual ported memory to 
provide simultaneous read and write capability. 

Figure 2 shows a block diagram of the IC-PCI. There are other features that were implemented inside the address 
generator and the PCI Bus Master controller circuitry. These features included the capability of de-interlacing data as it 
gets transferred to the PCI Bus from the linear buffer. A Region Of Interest ROI capability was also implemented in the 
design, allowing an independent rectangular region in the buffer to be transferred to the PCI the Bus. 
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Some of the data transfer speeds achieved by using the IC-PCI in conjunction with an Intel Endeavor PC! motherboard 
with a l 33Mhz pentium, 16 Mbytes of EDO RAM and a Number 9 Motion 771 PCI VGA card running Windows 3.11 
are: 
I) A sustained data transfer of 105 Mbytes/sec between the IC-PCI and host memory. 
ii) A sustained data transfer of 76 Mbytes/sec between the IC-PCI and the VGA controller, while using DCI (Display 
Control Interface) protocol. 

Pipeline Vision Architecture on the PCI Bus 

While the data transfer speeds of the PCI Bus have made a substantial contribution to host based vision processing 
requirements, there are still cases where there is too much data for even the fastest Pentium or PentiumPro to process 
within the time constraints imposed by the application .. As noted, ITI has provided a pipeline architecture on the VME 
Bus that provides independent processing with minimal CPU involvement for these demanding applications. The PCI 
bus however has now made it possible for ITI to provide a combined pipeline and host based solution which can work 
as two independent pipelines to streamline vision applications. 

Figure 3 shows the modular architecture of the MVC 150/40; the input or camera interface side of the hardware is fully 
compatible with the IC side of the family. On the processing side the MVC 150/40 features nine separate processing 
modules, making the pipeline very flexible to accommodate virtually all high speed vision algorithms. 
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The MVC-150/40 has a built-in 40 MHz 24-bit wide bus; this bus is divided into the Global Bus and the Pipeline Bus. 
The Global Bus is a general broadcast bus used by the Image Manager motherboard to send digital image data to any 
other pipeline processing boards of the MVC-150/40 family. This bus is always driven by a master device and data can 
be independently transferred to one or more modules at the same time. The pipeline bus is used to transfer data from 
one module to another. The two main. buses are totally independent and they can be used either asynchronously or 
synchronous! y. 

There are two kinds of PCI motherboards within the MVC 150/40 architecture. They are the Image Manager (also 
refered to as the IM-PCI) and the Computation Module Controller (also refered to as the CMC-PCI). The IM-PCI is 
the main vision device on the PCI Bus; this motherboard has the frame capture, cross-port switch, memory, timing 
controls, PCI DMA Bus master controller and a built-in secondary display. The CMC-PCI is a PCI Slave device; it 
serves as a carrier device for computational modules and also provides a cross-port switch. The main function of the 
cross-port switch on the CMC-PCI is to provide flexibility in the data paths into and out of the modules and the two 
video buses. 

Located on the image managers are a number of frame buffers; these frame buffer memories are also independent in 
size and accessibility. The IM-PCI is offered in a variety frame buffer configurations, starting with a single frame buffer 
with 1 Mbyte of image buffer memory. The architectural maximum of the IM-PCI can accommodate up to 6 Mbytes of 
total memory where all three buffers are configured with 2 Mbytes each (although the market currently requires only 3 
buffers of 1 Mbyte each, which is the current 3 buffer product offering). There is also an independent display generator 
which can be used to drive a secondary color or monochrome monitor in the range ofRS-170/CCIR up to 1280x1024 
non-interlaced VGA. The secondary monitor becomes a crucial part of many machine vision applications where the 
image needs to be displayed independently of the windows/menu based application residing on the system VGA. It also 
saves the PCI bus from being used to transfer the images for display instead of data to be processed. 
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Figure 4 illustrates the architecture of the Image Manager for the PCI Bus. As shown on the block diagram each 
memory has three ports that can be used with the internal pipeline. This feature allows the image memories to be used 
as two independent frame buffers, making the architecture highly flexible. As an example vision application, the same 
frame buffer can be used as two of the image sources required to perform a two image subtraction, placing the resulting 
image back into the same buffer. The secondary port is used by the DMA controller to transfer data from the frame 
buffer to the host via the PCI bus while using Bus Mastering. There is also a fourth port to each memory. This port is 
mainly used by the host CPU for host read/write functions. 

The power of the MVC-150/40 pipeline architecture can be measured by the following benchmark - a 512 x 480 8-bit 
pixel image can be piped through any number of processing modules with the result available only 7.5 msec later. The 
regular frame rate for RS-170 video is about 33 msec, making it possible for the 40 MHz pipeline architecture to 
process four complete frames before a new capture frame comes onto the pipeline. The built-in 40 MHz AOI ( Area Of 
Interest) generator enables the MVC 150/40 to have total processing independence from the incoming video timing. 
The MVC 150/40 can also be synchronized with the input timing, or the AOI generator can be synchronized to events 
generated from the input device such as vertical sync, frame reset signals, external sync, etc. 

For the IM-PCI DMA controller, some features have been implemented in addition to the features carried over from the 
IC-PCI product design. The DMA PCI controller section of the Image Manager can also pack the pixels from the frame 
buffers, making it possible to directly transfer packed pixels to those VGA devices which require such data formats. 
The same section of the device can clip the pixel data at both ends of the 8-bit range, making the elimination of 
Windows 3.11 related color dots an "on-the-fly" function of the hardware. The DMA controller can sustain data 
transfer from the IM-PCI image memories to host memory at a rate of 66 Mbytes/sec. 
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Ease-Of-Use Software For The MVC 150140 PC/ 

Beyond the challenge of developing state-of-the-art high performance hardware for the PCI bus is the 
requirement to provide software which allows the user to exploit the full capabilities of the hardware. 
Further, users want the software to be easy to use as well as powerful. The task to delivering "easy to use" is 
quite complicated, since in the vision markets no two applications are the same. By providing OEMs and 
system integrators the tools required to make their product development easy and system deployment cycles 
shorter, ITI helps users realize the full benefit of the advanced hardware 
The MVC product family is supported by a software development environment called ITEX. This is a "C" 
language based tool set which provides all the programmability for the Image Capture product as well as the 
pipeline product line. ITEX supports development under DOS, Windows 3.1.1, Windows NT, and OS2, 
with Windows 95 support scheduled shortly. 

As part of the ITEX development environment, other tools are provided with the product. A camera 
configuration utility is supplied with all MVC offerings. This utility makes interfacing to complex cameras 
extremely simple, both for current off-the-shelf cameras and new cameras as they are introduced into the 
market. The camera configuration utility is a MS-Windows based tool which provides an interface to a 
continuously growing camera database, as well as complete access to all the MVC family acquisition 
modules. With the combination of ready made interface cables to most cameras in the market, the 
configurator makes camera interface a plug-and-play function. 

Figure 5 shows an example of the ITEX camera configurator graphical interface. As the figure shows, the 
developer can customize with a mouse click any camera interface to meet the specific application 
requirements. 

Figure 5 ITEX Camera Configuration Utility 
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There are a variety of third party applications software packages that range from generic image processing 
to bio-medical cell analysis. These packages have been developed with the MVC IC-PCI used as the date 
capture front-end. Now with the data transfer speeds provided by the IC-PCI, host based applications can 
run very close to real-time. 

As part of the MVC 150/40 pipeline product, ITI has developed a graphical programming tool for the 
pipeline architecture called ITEX-VIP (Visual ITEX Programmer). !TEX-VIP is a Windows based "point 
and click" development environment, which generates well structured and optimized ITEX code. ITEX-VIP 
allows developers to create pipeline connections, frame buffer actions, and set-up all the computational 
characteristics of an algorithm to be executed on the MVC 150/40 pipeline. Figure 6 illustrates one of 
!TEX-VIP' s graphical representations of an MVC 150/40 motherboard. This tool generates ANSI "C" 
code that can be compiled under any of the platforms supported by ITEX for the MVC 150/40. ITEX-VIP 
is a standalone software development environment. The presence of the pipeline hardware is not required 
in order to develop application code. Based on a hardware configuration file, ITEX-VIP provides the 
developer all the flexibility to generate applications with just the use of a laptop computer running MS­
Windows. This tool also has a built-in benchmark facility, which generates processing times based on the 
size of the image to be processed through a specified pipeline. 

While ITEX-VIP is an MS-Windows application, it was designed with portability in mind. Applications 
developed under the MVC 150/40 PCI can be easily ported to other platforms by regenerating the data 
flow. ITEX code can then be generated for the MVC 150/40 VME. ITEX-VIP also provides extensive on­
line context sensitive help, which provides complete information to the user about all the functionality of 
the MVC 150/40. VIP also allows developers to insert notes as comments as well as previously developed 
"C" code fragments. 

Figure 6 ITEX-VIP Graphical View of the IM-PCI motherboard 

364 



Summary 

IT! believes that the MVC IC-PC! and MVC 150/40 for PC! have realized the goals of bringing our high speed vision 
technology to the PC! Bus. The future holds developments in interfaces for new cameras, new computational modules 
for more flexibility and new software tools to continue improving the product's ease-of-use. We will continue the 
enhancement of our PC! products as the technology advances and will keep performance and flexibility as key design 

goals. 
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The PCI Bus and Broadcast Quality Video and Audio 

Abstract 

Very recently, we have seen the increasing convergence of the television 
broadcast, telephony and computer markets. Near video on demand (NVOD), video 
on demand (VOD) and the associated video file servers have spurred the 
imagination of both manufacturers and service providers. The PCI Bus provides a 
mechanism which allows the processing of real-time video in uncompressed format 
as well as compressed. The key element in achieving this goal is the interface 
between the broadcast world and the PCI Bus itself. 

Introduction 

This paper will provide an overview of one approach to the issues surrounding a 
successful interface of the technologies in question. In order to fully appreciate all 
of the factors involved, we will present a brief history of video compression formats 
with a view towards the bandwidth requirements of each and their practical uses. 
From here, we will move on to Leitch's approach to the PCI interface module 
describing the various blocks involved for each stage. 

Video Compression 

It is worth noting, at the outset of this discussion, that both film and video are simply 
a sequence of still pictures shown at a rate which is sufficient to impart what 
appears to be a smooth, continuous flow. Although somewhat obvious, it is 
important to point out for a couple of key reasons: (i) given that the frame rate of 
the still pictures is finite, it is obvious that information is lost in the capture process, 
and (ii) in any still picture there is bound to be a great deal Ot repetitive and 
redundant information. 

The basic trick then in the compression of video (whether it originates from film, 
television camera, or server is immaterial) is to take these two premises to their 
ultimate conclusion. That is, reduce the information transmitted to the point whereby 
the image quality is acceptable, remember that "what is acceptable" will be 
governed by the particular application at hand. 
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It is not possible to provide a complete review of all of the various compression 
types within this paper, however, there are many articles which have been written 
on the subject and we encourage you to do further reading on the subject1• 

Compression formats can be summarized into four types as follows: 

• JPEG 
• Motion JPEG (or M-JPEG) 
• MPEG-1 
• MPEG-2 

The computer industry has been using lossless data compression techniques for 
many years in order to cram more data onto hard disks and for modem 
transmission. In fad, it was the computer industry which came up with JPEG (Joint 
Photographic Experts Group) standard for compressing high-resolution digital still 
pictures. The progression to M-JPEG was fairly rapid as the novelty of moving video 
on the computer was too tempting to resist. 

The Moving Picture Experts Group (MPEG) was formed in 1988 in order to 
formulate international standards for the digital compression of moving pictures, 
particularly to satisfy the growing interest in CD-ROMs. 

M-JPEG and MPEG-1 techniques are now used extensively for computer imaging 
and can be very cost-effective for disk recording, CD-ROMs, etc. but neither offer 
the optimum results required for broadcast level quality. What has emerged, as a 
result, is the MPEG-2 standard (an ISO/IEC ratified standard). 

The following is a summary of the various compression formats indicating their 
respective bandwidths, uses and restrictions where applicable. 

JPEG 

Basically, JPEG is used only for single still images. Quality can be very good as the 
processing is almost always non-real time and therefore the results can be 
optimized. Also, it is relatively easy to control the bandwidth, again due to the non­
real time nature of the process. 

Recommended - The SMPTE Journal, Vol. 105, No. 2, February 
1996. 
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M-JPEG 

M-JPEG relies on the processing techniques of JPEG in order to accommodate a 
set of still images on a field by field basis. The bandwidth becomes much more of 
an issue as we are now dealing with real-time processing. Unless great care is 
taken in the implementation, the bandwidth can quickly become unmanageable. An 
optimal solution is use a two-pass compression process whereby the results of the 
first pass are used to optimize the second pass, thus producing better results with 
tighter control of the bandwidth (more on this process later). 

MPEG-1 

As previously mentioned MPEG-1 is used primarily with CD-ROMs. While it can be 
used for broadcast applications, the results generally negate any benefits. The 
bandwidth utilized is typically 1.25Mb/s and the quality (a subjective issue at best) 
can be described as "VHS like". MPEG-1 utilizes a 4:1:0 video format. What this 
means is that there is only one chrominance sample for every four luminance 
samples. 

As a side note, full broadcast quality video is 4:2:2. That is, for every 
four luminance samples there are two samples each of the color 
difference signals, Cr and Cb. 

MPEG-2 

The MPEG-2 standard has been described as more of a "tool kit" than a standard 
and perhaps this is fairly accurate. A standard generally defines a specific format, 
but the MPEG-2 standard provides a number of different modes of operation. Again, 
it is not possible to explore MPEG-2 in full detail within this paper, so we will focus 
on a couple of the more pertinent operating "modes"2. 

The MPEG-2 tool kit consists of a number of operating levels and profiles. Levels 
refer to the available compression rates which may be employed for computer 
compressed data high definition television, at rates of less than 4Mb/s up to 
80Mb/s respectively. Profiles refer to the compression type used which may vary 
from the full 4:2:2 signal to the elimination of complete frames. 

The most common format used is the Main Profile at Main Level (MP@ML). This 
format utilizes a 4:2:0 structure. The quality associated with MP@ML is quite 
sufficient for distribution but will not survive in a production environment where 
multiple passes are required. One of the problems of MP@ML is the fact that GOP 
(Group Of Pictures) does not facilitate easy editing (due to the information content 
of the P and B frames). 

2 Refer to Appendix A for an overview of the MPEG-2 standard. 
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The other format worth noting is the ML@4:2:2. The obvious advantage is that the 
number of chrominance samples, or blocks, is doubled from the MP@ML format, 
providing better resolution. 

Bandwidth Issues 

Broadcast quality 4:2:2 video at 10-bits has an associated data rate of 270Mb/s, or 
27MB/s. With the addition of two channels of AES audio (for a total of four monaural 
audio channels), the bandwidth requirement approaches 30MB/s. 

The PCI Bus has a theoretical bandwidth of 132MB/s. As depicted in the typical 
system shown below, this means that the PCI Bus has the bandwidth required to 
support full broadcast video and audio. 

Serial 4:2:2 
Video & Dual 
AESAucfio 

MediaPort 

30MB/s 

Network 
Interface 

30MB/s 

Serial 4:2:2 
Vldeo&Dual 
AES Audio 

Media Port 

30MB/s 

30MB/s 

Memory CPU 

Such a system would have uses as a commercial insertion file server for example, 
or possibly for editing applications. Note that the higher bandwidth requirements are 
reserved for the operation's revenue generation - commercials. 

At M-JPEG compression ratios of up to 5: 1 there are no visible artifacts and the 
quality is excellent. With ratios approaching 8: 1 a few artifacts are visible but the 
quality is still very good. 
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The PCI Bus Interface Module • MediaPort® 

The Leitch MediaPort module utilizes M-JPEG technology. The reason for this is 
that the achievable quality is very good and the hardware is both readily available 
and meets physical and practical design considerations. 

The MediaPort interface module has the following attributes: 

• support of full 10-bit 4:2:2 digital video 110 
• compressed and uncompressed video support 
• dual AES 110 channels 
• timecode 110 
• full genlock 
• audio and VBI remain uncompressed 

Leitch designed the MediaPort interface module in conjunction with Digital 
Equipment Corporation. It was determined that one of the key features that the 
module should have was the ability to handle full bandwidth, uncompressed video. 
Please refer to the block diagram of the MediaPort which follows. 

Another key element in the overall design was the handling of the associate audio 
channels and the vertical blanking interval (VBI). Although AES audio can be 
compressed there was really nothing to be gained in this particular case and 
therefore it was decided to leave it uncompressed. It was important to preserve the 
VBI also, so that user data, such as Closed Captioning, would not be destroyed. 
Therefore the VBI is left uncompressed (lines 14 to 21) regardless of the 
compression used for the active video portion of the signal. 

In uncompressed mode, the video data is buffered and then routed directly to the 
PCI Bus, or is routed from the PCI Bus to the output. The module also supports an 
E-E mode of operation (electronics to electronics) whereby the input video is 
passed, via the buffers, to the output. 

... Frame ... JPEG ..... .... Delay .... .... 

.4~ 

_..... 
JPEG 

_..... 
Estimation ,,... ,,... 

Compression Engine 
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The compression engine shown on the previous page is the heart of the MediaPort 
module. Standard M-JPEG compression techniques will generally suffer from one 
of two problems: Either they resulting image quality is highly variable, or the size 
of the resulting compressed image will be highly variable. 

Neither of these two problems were acceptable in our design. Therefore it was 
determined that the optimum method of performing the compression was to utilize 
a two-pass system as depicted in the aforementioned drawing. 

Very simply put, the image is compressed twice. The first compression pass is used 
to modify the algorithms used in the second pass (the video data is delayed by an 
amount corresponding to the JPEG compression pass). This provides a much 
superior result in terms of image quality and also allows the size to be controlled 
(which translates to a fixed compression ratio). 

Design Challenges 

As with any ''first time" venture into a new area, there is an associated learning 
curve. Surprisingly, the implementation issues associated with the PCI Bus itself 
proved to be the least of our problems. 

Since one of our main requirements was to support full bandwidth, uncompressed 
video, we truly required a bus bandwidth of 60MB/s. This was due to the fact that 
the data was transferred into buffers in memory and then subsequently into the 
storage media. The early available hardware showed itself to be somewhat 
challenged by this requirement to say the least. The PCI to host bridges were 
inadequate in terms of bandwidth performance. 

One remaining problem was the size of the on-board OMA FIFO buffers used within 
the interface chip. In order to ensure the maximum data transfer possible it was 
necessary to spend considerable time arbitrating the ''fill" or "empty" the buffer 
actions (depending upon whetherthe action was "record" or "play"). Again, this was 
due to the real-time nature of the operations involved and the quantity of data which 
had to be handled. 

Conclusion 

Happily many of the above issues have since been resolved and PCI Bus 
implementation of real-time broadcast Video has been eased to the point where it 
is possible to utilize a Pentium platform using an NT operating system. 
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Appendix A 

An Overview of the MPEG-2 Standard 

JPEG, MPEG-1 and MPEG-2 

The computer industry has been using lossless compression techniques for 
many years to cram data onto hard disks and for transmission over modems. It was 
the computer industry that came up with the JPEG (Joint Photographic Expert 
Group) standard for compressing high resolution digital still pictures and it wasn't 
long before somebody thought it would be 'cool' to show video on their computer 
too, so along came motion JPEG. The MPEG (Moving Picture Expert Group) was 
formed in 1988 to determine international standards for the digital compression of 
moving pictures, particularly to satisfy the growing interest in CD-ROM's. 

Motion JPEG and MPEG-1 techniques are now used extensively for 
computer imaging and can be very cost effective for disk recording, CD-ROM's, etc. 
but neither offer optimum results for broadcasting. What has emerged however is 
MPEG-2 (an ISO/IEC ratified standard) and the industry has adopted this at an 
amazing speed, driven almost entirely by the strong desire to provide viewers with 
a huge choice of programs delivered direct to home (DTH) via satellite or cable TV, 
using set top decoders. 

The Technical Challenge 

As the purist will testify, you cannot compress video to any extent without 
throwing something away and thereby reducing the picture quality. Fortunately 
however, the human visual system is incapable of absorbing all of the material 
presented in a complex moving image, so by skilfully choosing compression 
techniques which selectively discards information which the eye is unlikely to 
notice, impressive results can be achieved. 

Each television picture comprises a finite number of tiny pixels. In the 
conventional 4:2:2 representation of NTSC and PAL television, there are 720 pixels 
along the active part of each horizontal line. In NTSC there are 486 active lines per 
frame (576 active lines in PAL) and 30 frames per second (25 in PAL). Each pixel 
is made up of 8 bits for luminance and 4 bits each for the two color difference 
signals (R-Yand B-Y, also known as Cr and Cb), a total of 16 bits. So the bit rate 
for the active part of the video only, is: 

NTSC 
PAL 

720 x 486 x 29.97 x 16"' 168Mbits/s 
720 x 576 x 25 x 16 "' 166Mbits/s 
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The sole purpose of MPEG-2 is to reduce these bit rates to something more 
manageable and its success relies on data reduction primarily in two areas of the 
motion picture. The first area is the information contained in each frame (spatial; 
relating to space, e.g. surplus blue sky, etc.) and the second is detail which does 
not change from frame to frame (temporal; relating to time). 

Levels and Profiles 

Much credit must go to the MPEG team for the international standardization 
of MPEG-2. The published ISO/IEC documents 13818 (-1 to -4) cover video and 
audio compression and the multiplexing structure needed for combining video, 
audio and timing data for successful reproduction of video with synchronized audio. 
Not only is MPEG-2 truly a world standard, but the system encompasses 
everything from computer compressed data rates of less than 4Mb/s, through 
conventional TV at 10 to 15Mb/s and High Definition Television operating at up to 
80 Mb/s. These are known as different levels and the MPEG-2 architecture supports 
all the levels shown in Fig. 1. 

PROFILES 

S~lal 
....oludon Slmple Main SNR SpaUal High 

layer 

Enhancement 1920x1152 1920x 1152 
llO 80 

High 

Lower - &e0x578 
L 30 

E 
v Enhancement 1.UO x 1152 

80 
1440 x1152 

60 
1440x 1152 

60 
E Hlgh·1440 
L Lower - 720x578 720lo578 
s 30 

Enhancement 720x576 720x576 720x576 720x576 
30 30 30 30 

Main 
Lower - - - 3sz;02aa 

Enhancement 352x288 352x2&& 
30 30 

Low 

Lower - -
Notes: 1920 x 1152 represents samples per lne x Ines per frame 

60/30 represents frames per second. 
The enclosed box represents conventional televlslon {MP@ML) 

Le-I Low Main Hlgh-1440 High 

Mblts/s 4 15 60 80 

Levels and bit rates - main profle 

i:!g_ 1 Prolflles end levels 

374 



MPEG-2 also provides for flexibility in the type of compression used for each 
level. Compression types are known as profiles and may vary from use of the full 
4:2:2 signal at the high end, to the elimination of complete frames at the simple end. 
Encoders can vary considerably depending upon the application, so details of the 
encoding scheme must be transmitted along with the data, to enable the decoder 
to reconstruction the signal. In this way encoders can be designed to handle the 
various levels using different profiles at the same time as keeping the cost of the 
decoders to a minimum for the desired application. Most 525 and 625 line 
broadcasting uses main profile at main level (MP@ML). 

Layers and Scalability 

One of the most ingenious features of MPEG-2, is its ability to transmit video 
signals of widely ranging quality. A relatively inexpensive MPEG-2 decoder can 
reconstruct a useful picture by using only part of the encoded video bitstream, the 
rest of the data being reserved for quality enhancements. Coded video data 
consists of a series of video bitstreams called layers. The first layer is known as the 
base layer and this can always be decoded independently. The other layers are 
called enhancement layers. 

These layers may be used for spatial, temporal and other scalable 
extensions. (More information on this in next month's article on HDTV). If there is 
only one layer, the coded video data is said to have a non-scalable video bitstream. 
If there are two or more layers, the data is said to have a scalable hierarchy. 
Scalability has a further benefit, in that it helps to make the video resilient to 
transmission path errors. Transmission paths with the best error performance can 
be reserved for critical base layer information, while the enhancement layer data 
can be sent over a channel with inferior error performance. 

Video Bitstream 

The video bitstream is made up of blocks of pixels, macroblocks, pictures, 
groups of pictures and video sequences as follows: 

• Block 
• Macroblock (MB) 
• Slice 
• Picture 
• Group of Pictures (GOP) 
• Video Sequence 
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The smallest element, a block consists of 8 lines x 8 pixels per line. Blocks 
are grouped into macroblocks (MB), according to one of the MPEG-2 predefined 
profiles. The 4:2:0 macroblock format has 4 blocks for luminance, 1 block for Cr and 
1 block for Cb.· The 4:2:2 MB format has 4 luminance blocks, 2 Cr blocks and 2 Cb 
blocks. 4:4:4 again has 4 luminance blocks but this version contains 4 Cr blocks 
and 4 Cb blocks. These are illustrated in Fig.2. As can be seen, a 4:2:2 MB will 
contain 8 blocks and therefore 8 x 8 x 8 {512) pixels. 

0 I 4 5 

00 ~[I] 
Cr y Cb Cr 

4:2:0 4:2:2 4:4:4 

Fi 2 Macroblock structures 

Slices are strings of macroblocks arranged horizontally along the raster. 
Slices can vary in length from a minimum of one macroblock to a maximum of one 
line. Pictures and groups of pictures will be examined during our discussions about 
temporal compression. 

Temporal Compression 

Temporal compression is designed to minimize the duplication of data 
contained in successive pictures. This is achieved by only transmitting motion 
vector data and not the whole picture over again. To facilitate motion predicting, 
MPEG-2 separates the video into 3 types of pictures (see Fig 4): 

• I {Intra-coded) Pictures 
• P {Predictive coded) Pictures 
• B {Bidirectionally interpolated) Pictures 

ical Grou Of Pictures GOP 
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I-Pictures are the key reference for the other two picture types. They are 
derived by compressing the information in a single chosen field or frame (spatial 
compression). Still pictures are best preserved by using complete frames, but as 
the field rate is 2 x the frame rate, movement is better served by using field based 
pictures. Some MPEG-2 encoders are capable of analyzing the incoming video to 
determine the changes between successive fields. If there are no changes between 
odd and even fields, the encoder presumes that the two fields are part of the same 
frame and encodes them as such. 

Changes between fields are noted and converted into motion vectors, which 
are encoded into data for later interception by the decoder. In this way, substantial 
bit rate reduction is achieved. The changes are transmitted in the form of P-Pictures 
and B-Pictures. P-Pictures are predicted directly from the previous I-Picture (see 
Fig 5). B-Pictures are derived using either I-Picture or P-Picture information and 
these reference sources may be either ahead of or behind the B-Picture being 
created (see Fig. 6). Hence the term bi-directional interpolation. Both P and B type 
pictures are also compressed spatially prior to transmission. The technique of 
motion compensation using the above method is known as temporal compression. 

i 5 Bidirectional rediction 
Fig 6 Forward prediction 

The three types of pictures are transmitted sequentially in a Group of Pictures 
(GOP) as shown in Fig 4, with the first picture always being an I-Picture. There are 
typically 12 pictures in a GOP, but as stated before, some encoders can detect 
changes between successive fields and, if the change is substantial, the encoder 
assumes that there has been a scene change, so it forces a new I-Picture. This 
causes the sequence to start over again. The GOP's are sent in a Video Sequence, 
which contains data defining picture size, rates and quantization matrices. The 
video sequence and all elements down to the slice size, provide unique start codes 
to facilitate detection by the decoder. 
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The only drawback of generating these virtual pictures is that engineers have 
yet to find an easy way to edit on B or P pictures. Consequently television stations 
are likely to continue using motion JPEG techniques for in-house television 
contribution (as you can edit on any field), until a solution is found for this problem. 
Nevertheless compression ratios of up to 10:1 can still be achieved using JPEG. 
Compression ratios in the order of 25: 1 are achievable with MPEG-2. MPEG-2 is 
considered to be a distribution compression format. 

Spatial Compression 

The word spatial refers to the space in a single picture and the goal of spatial 
compression is to minimize the duplication of data in each picture. Bit rate reduction 
in spatial compression, is achieved by first transforming the video data from the 
time domain into the frequency domain using the Discrete Cosine Transform (OCT) 
method and then applying quantization and variable length coding techniques to 
reduce the bit rate. 

Video is normally displayed on a time based device such as a waveform 
monitor rather than on a frequency based spectrum analyzer, but to accomplish 
data reduction, we must first transform the video data into the frequency domain. 
This is where OCT (a trigonometrical formula derived from Fourier analysis theory) 
is used to transform the data in each block of 8x8 pixels into blocks of 8x8 
frequency coefficients. In the frequency domain, most of the high energy (and 
therefore most noticeable) picture elements are represented by low frequencies at 
the top left comer of the block and the less important details are revealed as higher 
frequencies towards the bottom right. (See Fig. 8). Note that at this stage we have 
not yet discarded any bits. 
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After OCT encoding, the data is subjected to a quantization process, 
weighted to reduce data in the high frequency areas, where the eye is less 
sensitive. We use more bits per pixel to quantize the important low frequency 
coefficients and less bits per pixel for the high frequency coefficients. The DC 
components are normally quantized at 10 bits, because if we employ coarser 
quantization of very low frequencies, the blocks themselves can start to become 
visible in the pictures. We have now achieved the first step in spatial bit rate 
reduction. 

To create the video bitstream, the 64 frequency coefficients are scanned in 
a zig-zag fashion from top left to bottom right and, as can be seen from Fig.8, the 
high frequency areas are represented by strings of zeros. Further data reduction 
can now be achieved by transmitting only the number of zeros instead of the usual 
values of the coefficients. 
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The last stage in the spacial compression process employs Variable Length 
Coding (VLC). The encoder can assign shorter code words for anticipated events 
and longer code words for unusual events. In this way, unexpected changes in the 
picture are given the highest priority. Also, where there is a high degree of 
correlation between one part of the picture and an adjacent part of the same picture, 
there is said to be spatial redundancy. The DC coefficients are encoded using VLC 
and the current block is compared with a predicted value from the previous block. 
This helps to ensure that adjacent blocks are restored with equal brightness so that 
the blocks themselves are not seen. JPEG and MPEG systems use the above 
methods of spatial compression for bit rate reduction. 

Program Streams and Transport Streams 

So we have compressed the video. Now what? Before we can store or 
transmit the data, we have to multiplex the audio, video and system information 
together. 

There are normally two audio/video multiplexers. One takes the video and 
audio packetized elementary streams and produces the program stream and the 
other uses the same data to generate the transport stream. Program streams are 
normally reserved for robust transmission paths where errors are unlikely to occur. 
The program stream data packets may be of different lengths and can contain a 
relatively large number of bytes. A transport stream on the other hand, can contain 
one or many programs with one or many independent time bases. Multiple TV 
channels can therefore be multiplexed together in this way. Transport stream 
packets are always 188 bytes in length. The transport stream is designed for use 
in environments where errors are likely to occur. 

Conclusions 

JPEG and MPEG compression techniques will continue to be used for low 
cost computer compression requirements and wherever editing is needed in 
professional television. 

MPEG-2 has become the international standard for video compression for 
any signals which are to be simply stored, distributed and viewed. CD-ROM's are 
being developed employing MPEG-2 compression methods. MPEG-2 has been 
adopted world wide as the compression standard for satellite delivered Direct To 
Home (DTH) television and for future cable and Digital Terrestrial Television 
(DTTV), including High Definition Television (HDTV). 
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ABSTRACT 

This paper describes a PCI board that combines image scaling and JPEG compression in order to increase compression 
ratios without sacrificing image quality. By using high-quality scaling before compression, the controlled reduction in image 
bandwidth can reduce DCT coefficient quantization artifacts, which are visible as "blocks" in an image. The board 
demonstrates the processing of real-time video and still images. It uses the Genesis Microchip gm833x2 for image scaling and 
the C-Cube CL560 for JPEG compression. This paper discusses the board architecture, compression improvements with 
horizontal and vertical scaling for various scale factors and the implications for moving video and images on the PCI bus. 
While this paper describes the use of image scaling with JPEG compression, other compression methods also benefit from 
image scaling. 

INTRODUCTION TO IMAGE SCALING AND COMPRESSION 

Bandwidth and storage limitations have always been the biggest obstacles to the popular use of digital imaging 
technology. Applications such as video editing, teleconferencing, video-on-demand, etc., all demand tremendous amount of 
storage space or transmission bandwidth. Image and video compression techniques offer a partial solution to the above 
problems - data is compressed, transmitted or stored, then decompressed when it is to be used. However, there is a upper limit 
to the achievable compression ratio - at very high compression ratios, details are lost and annoying artifacts are often introduced 
in the image. 

Image scaling technology is an essential part of digital imaging. This technology is used from desktop ''video-in-a­
window" applications to the projection of huge images in conference halls. A correctly scaled image should be visually 
indistinguishable from the original - information lost should be minimized and no artifacts should be introduced. One 
important, although not obvious, application ofscaling technology is in image compression. An image can first be shrunk 
before being fed into an image compression system, and the resulting image from the decompression process can be zoomed 
back to its original size. This additional step to traditional image compression can greatly reduce the amount of raw data to be 
compressed, thus enabling higher compression ratios to be achieved without sacrificing quality. 

Overview of Image Scaling 

Although the problem of scaling a digital 
image has been around for some time, few 
satisfactory solutions exist. Popular scaling 
techniques such as pixel dropping and bilinear 
transformation offer simple solutions, but their 
results are often poor. Pixel dropping involves 
selecting the source pixel that is closest to the 
target pixel (see Figure 1, top). This technique is 
quick and simple, but the resulting images are 
often distorted and unwanted aliasing is often 
introduced. Linear interpolation generates a target 
pixel by taking a weighted average between the 
two closest source pixels. This technique offers 
slightly better quality than pixel dropping, but the 
results are still unsatisfactory and deteriorate 
quickly when the scaling factor is greater than 50% 
(see Figure l, bottom). 

Source Pixels 

Target Pixels 

i---4/3------4'413------413---i 

Source Pixels 

Target Pixels 

i---8/3----1·---8/3-------8/3---1 

Figure 1: Pixel dropping {top) and bilinear interpolation (bottom) 

There are two principal "correcf' methods of scaling a digital image. The first one, which is extremely complicated, 
involves the use of switched filters. With this method, a target pixel is generated directly from a group of source pixels through 
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a filter. However, a new filter is required for each source and target image size combination, and for each pixel a new phase of 
the given filter is necessary. Thus, the number and complexity of filters required to implement this algorithm is high. 
Furthermore, in order to generate the exact phase shift required for each pixel, the filter coefficients must be precise. This 
method is seldom used. 

The other "textbook-correct" method of 
image scaling involves the use ofmultirate DSP 
theory. The challenge in image scaling is changing Source Pixels 

the sampling rate of a signal. In order to properly 
scale an image, an intermediate stage is required in 
the process. The source pixels are interpolated in 
order to generate a large number of intermediate 
pixels, consequently increasing the sampling rate 
of the original signal. The target pixels are then 
obtained by filtering the intermediate pixels with a 
decimation filter, thus decreasing the sampling rate 
to the required rate. There are a number of 
difficulties with implementing the above scaling 
method, including complexity of control circuitry, 
large memory requirements and differences in 

Intermediate 
Stage 

Target Pixels 

Figure 2: The "textbook-correct" multirate image scaling 
algorithm 

input/output sampling rates. The family of high-quality real-time image scaling integrated circuits (ICs) offered by Genesis 
Microchip Inc. (Markham, Ontario) have overcome these difficulties in implementation. The scaling ICs have been 
implemented with a "silicon efficient" patented algorithm based on the ''textbook-correct" multirate DSP approach. 

Overview of JPEG Compression 

The JPEG (Joint Photographic Experts Group) standard has been in popular use in the imaging industry for the 
compression of natural images. JPEG implementations are usually lossy, which means that after the 
compression/decompression process, the resulting image is similar but not identical to the source. This compression algorithm 
divides an image into blocks of 8x8 pixels, and samples the pixels with cosine functions in order to obtain their frequency 
components. Since the human eye is insensitive to high frequencies, many of the high frequencies can be coarsely quantized 
(or reduced to 0) without adversely affecting the quality of the image. The remaining frequency components are then 
rearranged in a zigzag manner, and the Huffinan encoding scheme is used to compress the data. In order to decompress an 
image, the above process can be reversed. 

It should be noted that the JPEG compression algorithm (or any other compression algorithm, for that matter) cannot be 
used to infinitely compress an image. At compression ratios beyond a certain threshold, too many high-frequency quantization 
levels would have to be removed, resulting in missing details and blocky images. Thus, in order to achieve the extremely high 
compression ratios required in today's imaging applications, image scaling can be used in association with JPEG compression. 

Benefits of Combining Image Scaling and Compression 

There are a number of benefits in combining image scaling with compression. By shrinking an image before it is fed into 
the JPEG compression engine, the amount of raw data to be compressed is significantly reduced. (If an image is shrunk by 
50% on each side, the amount of raw data is reduced by 75%.) Thus, the effective compression ratio achievable is greatly 
increased. Moreover, during the decimation stage of the scaling process, high-frequency components in the image are reduced. 
This reduction facilitates the quantization step of the JPEG compression process. It should be noted that although only JPEG 
compression is covered in this topic, other image compression algorithms also benefit from scaling. For example, MPEG 
(Moving Pictures Experts Group) compression can benefit in a similar way as JPEG, since the two are closely related. The 
emerging wavelet compression technique can also be paired with scaling, with an additional benefit Since the optimal use of a 
filter bank requires a signal to be of length 2 n, with n being an integer, an image scaler can be used to resize a rectangular 
image to a 2n x2n square before it is fed into the wavelet compression engine. The result can be scaled back to its original 
shape. 

In order to provide a reference design for developers and to demonstrate the benefits of pairing image scaling and 
compression, Genesis Microchip and C-Cube Microsystems have joined forces to produce PCI-833/560 "Edit Pro", a PCI board 
which performs JPEG compression with scaling on still and video images. 
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Data Processing Modes 

D YCrCb 4:2:2 

Genesis 
gm833x2 Scaler 

YCrCb 4:2:2 TI 

PCI i+-----t~ Bidirectional Local Bus 
lntertace FIFO ---..iControl EPLD 

PCI Bus 

Figure 3: Block diagram for Edit Pro 

The board architecture provides the processing and data flows fypically used for video editing and image storage/retrieval 
operations. Four primary data processing paths provide support for the capture of external video, playback of previously 
captured video, as well as memory-to-memory compression and decompression operations. Additional paths support video 
input to output scaling and memory-to-memory scaling. 

While in the External Video Capture mode, the Edit Pro accepts digital YCrCb data from an external video source and 
processes the video by first scaling and then JPEG compressing the video stream. The resulting compressed video stream is 
then fed to the PCI bus using bus master burst transfers to system memory, where the CPU manages the subsequent storage of 
compressed data onto the system hard disk. The scaled data prior to JPEG compression is also available through the digital 
video output port for monitoring the captured video in real time on an external display device (see Figure 4). 

11 YCrCb4:2:2 

Exlernol Video 
lnpu1Pof1 

YCrCb4:2:2 

2 . ...... _ 
FIFO 

PClllia 

Genesis 
gm833x2 Scaler 

Figure 4: External Video Capture mode 
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In the External Video Playback mode, the Edit Pro performs PCI bus master burst transfers from system memory to the 
board's JPEG engine for decompression. The decompressed image is then scaled (zoomed or shrunk) with the results then fed 
to the External Video Output Port. The host CPU performs file management by accessing compressed video from the system 
hard disk and writing the retrieved compressed image data to the buffers in system memory in real time. This mode is typically 
used for playing back video clips that have been edited or rendered into compressed files on the system hard disk (see Figure 
5). 

32 

1---,--.pi Bidirectional 
FIFO 

PCI Bus 

Genesis 
gm833x2 Scaler 

YCrCb4:2:2 u 

Figure 5: External Video Playback mode 

In the Memory-to-Memory Compression mode the Edit Pro performs PCI bus master burst transfers from system memory 
to the scaler which pre-scales video data for the JPEG compression engine. The JPEG engine compresses the image data and 
feeds the results to the PCI interface which performs burst transfers to the system memory for subsequent storage on the system 
hard disk. Memory-to-memory compression is typically used for re-compressing fields or frames modified during an editing or 
rendering process (see Figure 6). 

Figure 6: Memory-to-Memory Compression mode 

While in the Memory-to-Memory Decompression mode, the Edit Pro transfers compressed fields or frames using PCI bus 
master burst transfers from system memory to the board's JPEG engine. The resulting uncompressed data stream is routed 
through the scaler data path and then fed to the PCI bus using bus master transfers. The decompressed and scaled data is 
transferred to system memory for subsequent storage on the hard disk. This mode is typically used for expanding compressed 
fields or frames so editing functions can be performed (see Figure 7). 
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Figure 7: Memory-to-Memory Decompression mode 

PCI Interface 

The Edit Pro's PCI interface consists of an AMCC PCI interface controller and bi-directional synchronous FIFO memory. 
The PCI controller provides support for bus master DMA operations and is capable of handling concurrent bus master read and 
write flows to and from the PCI bus. These simultaneous burst transfers can occur independently of the host processor. 

The FIFO memory, or "Up/Down FIFO", is provided to compensate for the latency in acquiring the PCI bus. Once the 
bus is acquired, data can be bursted to or from the PCI bus at a peak rate of 132 Mbytes/sec. The Up/Down FIFO also 
provides a mechanism for crossing from the PCI clock domain to the CODEC clock domain. 

Also provided with the PCI interface are mailboxes. All on board registers are accessed through the mailboxes which 
provide a bi-directional data path for transmitting control/status information to and from the board. These mailboxes are 
accessed through the PCI interface and can be either 1/0 mapped or memory mapped. 

The Edit Pro provides support for expansion BIOS code. This code would share space in a serial EEPROM with a boot­
up configuration image for the PCI controller. It would allow the system designer to establish field upgrade strategies. The 
PCI specification establishes a standardized interface between software and hardware peripherals via this BIOS. The 
expansion BIOS ROM is limited to a 2K byte serial NVRAM, of which a portion would be dedicated to the initialization of the 
PCI controller. 

LAD Bus and JPEG CODEC Interface 

The Local Address Data (LAD) bus connects to the host bus interface of the CL560 and provides both compressed video 
data, decompressed data, and CL560 initialization and control. The host bus HBUS[3 l :O] is a multiplexed address and data 
bus. For video data transfer, the CL560 provides an interface to the CODEC FIFO that eliminates the address phase on the 
data bus. 

For video capture and compression, the CL560 is programmed to generate a DMA request (DRQ) when its CODEC FIFO 
is not empty. The DRQ signal indicates to the LAD controller that data is available in the CODEC FIFO and data will be 
transferred over the LAD bus to the Up/Down FIFO. At the end of a file, the FRMEND interrupt in the CL560 is triggered 
when the last word of the compressed field is processed by the CL560 and subsequently transferred to the Up/Down FIFO. 
Depending on PCI bus latency, data is either accumulating in the Up/Down FIFO or being bursted to memory over the PCI bus. 

For video decompression and playback, the host processor configures the controller for PCI bus mastering. This allows 
the controller to independently move data from system memory into the Up/Down FIFO. The LAD controller then transfers 
data over the LAD bus and into the decompression engine of the CL560. The CL560 is programmed to generate a DRQ output 
whenever its CODEC FIFO is not full. The DRQ indicates to the LAD controller that a word can be transferred to the CODEC 
FIFO. Data is transferred to the CODEC FIFO until the end of the field has been reached. 

The LAD bus also connects indirectly to the Source Video Pixel Bus (SVPB) and Target Video Pixel Bus (TVPB) (See 
Figure 3). If scaling is required prior to compression, raw pixel data is routed from the PCI bus to the SVPB for pre-
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compression scaling. If video scaling is required after decompression, data is routed from the TVPB onto the LAD bus, 
through the Up/Down FIFO, and finally out onto the PCI bus. The LAD bus connects to the host interface of other devices on 
the board and is used for updating control parameters in the gm833x2 scaler and the various control EPLDs. Therefore the 
LAD bus also provides a mechanism to transfer status and control information to and from these devices. 

External Video Input and Output 

External digital video is fed to the Edit Pro board using a 34-pin ribbon cable connector that supplies a 2x pixel clock, 
pixel controls such as HSYNC, VSYNC, BLANK, PIXEL_ENABLE and the 16-bit YUV 4:2:2 pixel stream. An external video 
UO board can be used to decode analog video inputs (NTSC/PAL, SVHS/Composite) to generate the digital video stream used 
as input to the Edit Pro. Alternatively, the design could be modified to provide on-board analog video decoding to generate the 
digital video input stream. 

The output process is similar. Decompressed, scaled or pass-through video output is available at another 34-pin ribbon 
cable connector that supplies a 2x pixel clock, pixel controls such as VSYNC, PIXEL_ENABLE as well as the 16-bit YUV 
4:2:2 pixel stream. This digital video output is used to transfer pixels to an external video UO board that provides encoding to 
generate analog video outputs (NTSC/PAL, SVHS/Composite) for an external display device. Alternatively the design could be 
modified to provide on board analog video encoding to generate the analog video output. 

A video 1/0 board (PC833x2-T) is available from Genesis for use with the Edit Pro board to provide the analog video 
input/output capability. The Edit Pro design is modular so systems integrators with other video UO requirements can use the 
existing UO digital video connectors and tailor the EPLDs to meet specific video UO requirements. 

Image Scaler Datapath 

The image scaler datapath consists ofa zoom buffer, the Genesis gm833x2 scaling engine, an output FIFO, and EPLD 
controllers. The zoom buffer contains two dual-port SRAM devices, one for the Y data and one for UV (CrCb) data. Source 
video data is fed to the scaler path from the external video input port, PCI bus interface (via the LAD bus), or the JPEG engine. 
Lines of source video data to be scaled are written into the zoom buffer, which can store two lines of 1024 pixels per line. 
When a source line has been written into the zoom buffer, the zoom buffer control EPLD then begins transferring that line into 
the gm833x2 scaler for scaling. While the current line is being scaled, the next source pixel line is captured into the other line 
store of the zoom buffer. The zoom buffer is continuously operated in this swap buffer arrangement until the entire image has 
been processed. The scaler runs at 27 MHz, which is twice the input pixel rate, so that during zoom operations more output 
pixels than input pixels can be generated during one input source line period. The zoom buffer also provides the mechanism 
for crossing from the source video clock domain to the scaler clock domain. Also, the zoom buffer can repeat source lines as 
requested by the scaler during vertical zooming of the source image. 

Cropping of the source image is implemented using the zoom buffer control EPLD to perform horizontal cropping of 
source lines by controlling addressing into the zoom buffer. Vertical cropping is supported using the internal vertical blanking 
and source image size parameters within the gm833x2 scaler. 

The gm833x2 performs source image scaling using interpolation followed by low-pass filtering and decimation to 
generate the desired output image size. Up to 33 taps of FIR filtering are provided in both horizontal and vertical dimensions 
for optimal scaling quality within a single monolithic device. 

An output FIFO is used after the scaling engine to buffer data for transfers over the Target Video Pixel Bus (TVPB). The 
TPB provides a path to the external video output port, the JPEG engine video pixel port, or the Up/Down FIFO used for 
queuing up burst transfers for the PCI bus. 

PERFORMANCE RESULTS 

Quality Improvements on Still Images 

By adjusting scaling ratio and JPEG quality factor, a compressed image file can be generated with the same size as 
another file generated by JPEG compression alone. The compressed file generated with scaling will exhibit less JPEG DCT 
quantization artifacts, as the scaler filtering removes high-frequency components as part of the scaling process. Due to the 
reduction of the raw amount of image pixels, there is also less data for the JPEG engine to compress. Also, the JPEG engine 
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can be adjusted for fmer quantization to reduce the JPEG DCT quantization artifacts. Effectively, the JPEG DCT quantization 
artifacts can be exchanged for the scaler's reduction in higher frequency components - in other words, a highly compressed 
JPEG image can be made less "blocky" if a slight increase in softness can be tolerated. 

A still image of "Lena" was compressed with the Edit Pro board to demonstrate the reduction in DCT quantization 
artifacts when scaling is used. For each image that was compressed with JPEG only, a corresponding hybrid compressed image 
was generated using a mix of compression and scaling. The hybrid compression had the scaling and Q factors adjusted to 
achieve the same target compressed file size as the JPEG-only compressed file. With similar file sizes, a quality comparison 
between the JPEG- only and hybrid compression methods can then be made. 

The measurement of reduction in DCT quantization artifacts achieved by the hybrid approach is subjective and must be 
evaluated by viewing images. The raw full-size image and resulting file sizes for various Q factors and scaled sizes are shown 
in the following table. (The raw full-image size was 720 pixels by 480 lines.) 

Test QFactor Pre-compress Post-compress File size File size - Artifacts 
scaling scaling zoomed percent 
shrink frame frame format original size 
~rmat 

Raw -NIA- -NIA- -NIA- 691,212 100.0 None, full-size 
un..P!_ocessed ima_g_e 

JPGll 20 No scalin_g_ 720x480 54,276 7.9 No artifacts 
JSCll 15 624x480 720x480 54,956 8.0 No artifacts 
JPG4 85 No scalin_g_ 720x480 21,452 3.1 Some DCT artifacts 
JSC4 22 304x408 720x480 21,536 3.1 No artifacts 
JPG3 150 No scaling 720x480 15,524 2.2 Extreme DCT artifacts 

i.e., "blocks" clearly 
visible 

JSC3 23 208x400 720x480 15,380 2.2 No blockiness, image 
slight!l_ softer 

The images JPG3 and JSC3 have been reproduced on the next page. 
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Figure II: Image JPGJ. JPEG only (Otnpressioo 

Figure 9: Image JSC.l - JPEG <omp,..,..ion with ~uling 
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Reduced File Sizes on Video Sequences 

By using high quality scaling before compression, the image size is reduced and therefore the amount of raw image data 
to be compressed is also reduced. When compressing fields of video with a constant JPEG quality factor of 20, compressed 
image file sizes could be varied linearly with the amount of scaling. 

A video sequence titled "FLOWERS" was compressed by the Edit Pro board using JPEG-only compression during one 
capture sequence and using JPEG compression with scaling during another. The video sequence consisted of a video panning 
shot with numerous detailed and moving objects. In the background are trees, a house with many geometric lines, a windmill 
in which the windmill sails are rotating and a large quantity of flowers with petals moving in the breeze. The use of scaling 
together with compression resulted in significant reduction in file sizes, as well as reduced data throughput requirements 
during capture and playback. During playback, the motion video scaling resulted in minimal image degradation and some 
reduction in the amount of JPEG OCT quantization artifacts. The resulting data is summarized in the following table: 

Test Percent QFactor Pre-compress scaling Post-compress 5 second Artifacts 
original shrink frame format scaling zoomed video clip 
size frame format file size 

.f!!x!e~ 
Raw 100.0 -NIA- No scalin_g_ (720x48Ql 720x480 103,680,000 None 
JPGVID 12.9 20 Noscalin_gJJ20x48Ql 720x480 13,360,004 Some OCT artifacts 

JSCVID 6.8 20 Horizontal shrink 720x480 7,078,088 Some OCT artifacts, 
_1352x48Ql softened im!!8_e 

CONCLUSIONS: 

Scaling can be used to enhance compression to achieve better compression ratios. At the same time, scaling can also 
reduce OCT quantization artifacts or "block" artifacts by trading image spatial bandwidth for less OCT quantization artifacts. 
The Edit Pro design provides the ability to vary both the amount of scaling (image size fonnat) and the OCT quantization (Q 
factor). This results in an additional degree of freedom in controlling the compressed image file sizes, image bandwidth and 
OCT quantization artifacts as a result of the compression process. The use of scaling to enhance compression is also applicable 
to other OCT-based compression schemes such as MPEG, as well as other non-OCT-based algorithms. 

Scaling is almost always in the video processing chain for playback applications such as picture-in-picture or overlay 
windows. By providing quality scaling in the video processing chain, additional benefits are provided to the compression/ 
decompression process. Only good-quality scaling using multirate DSP techniques with proper FIR filtering can be used to 
enhance compression. Other scaling methods such as pixel/line replication/dropping or bilinear interpolation do not filter the 
image properly and may result in more high-frequency OCT quantizer coefficients. Poor scaling, therefore, reduces the 
efficiency of compression. 

With this hybrid compression technique, file sizes are reduced and bandwidth demands on the PCI bus are also lowered. 
This provides opportunities for better live video throughput, more channels of live video, and ability to store more video data. 

A possible future improvement to this system is the incorporation of image enhancement algorithms to improve the high 
frequency content of the decompressed images. This would result in sharper, higher quality images. 
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Abstract 

This paper discusses how VMETRO's new PCI and PMC 
analyzer boards can assist engineers who are involved in 
design, testing and debugging of PCI-based PCs, 
workstations or embedded computers. Operated from a 
PC or terminal, the analyzers are powerful tools that 
offers a considerable increase in debugging productivity, 
for hardware as well as software tasks, compared to 
general-purpose instruments. 

Figure J. The PBT-315 PC! Bus Analyzer is a full­
featured Logic Analyzer on a short PC! card form factor, 

for analysis of PC/ systems like PCs, servers etc. 

Introduction 

Testing and debugging PCI bus systems can be a 
challenge. The comprehensive PCI specifications require 
careful timing design of the hardware, as well as a 
thorough understanding of a number of complex 
mechanisms for data transactions, error conditions and 
cache operations. In addition, software issues play a 
major role, when several complex devices must play 
together. Potential problems often relate to configuration 

and initialization, hardware and software 
incompatibilities, incorrect byte-swapping, interrupts, and 
soon. 

The common factor for most of these problems is 
that they relate to interactions between chips or boards 
that all reside on the PCI bus. This means that observing 
the activity on the PCI bus is the key to finding and 
solving problems. For this reason, VMETRO is offering 
PCI Bus Analyzers that greatly simplifies test and 
debugging of PCI and PMC (PCI Mezzanine Card) 
systems. 

Various Form Factors 

Short PCI card 

The model PBT-315 is an advanced self-contained 
Bus Analyzer for the PCI bus, implemented as a short PCI 
card. The analyzer is designed to be plugged directly into 
a spare slot on a PCI motherboard as found in PCs and 
servers, for immediate tracing capability of all PCI 
channels. This eliminates tedious installation and setup 
procedures as required by general purpose logic analyzers. 

PMC - PCI Mezzanine Card 

Similarly, the PBTM-315 PMC Analyzer for PCI 
Mezzanine Cards plugs into a PMC slot on e.g. VMEbus 
boards. As a unique feature, the PMC version of the 
analyzer is equipped with both male and female PMC 
connectors, allowing one standard PMC module to be 
piggybacked on the analyzer, eliminating the need for a 
spare PMC slot. The analyzer may also operate from a 
separate power supply. 

CompactPCI 

The Compact PCI standard, which is PCI with 
Eurocard mechanics for the embedded market, is 
supported by the PBTM-315 by means of a standard PMC 
adapter (carrier) card that fits in 3U or 6U sizes. 
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Figure 2. The PBTM-315 is a PC! Bus Analyzer for PC! 
on a PMC - PC! Mezzanine Card. 

Complex Triggering 

To trigger on the most complex problems, VMETRO's 
PCI analyzers offer four parallel trigger words and a 16-
levels trigger sequencer with If-Then-Else operators. The 
sequencer include 20-bit event counters, allowing up to 
1 M occurrences of an event in the trigger program. Delay 
counters are also included, providing programmable 
delays anywhere in the triggering sequence. This is 
particularly useful in real-time systems. Figure 3 shows an 
example of the setup screen with a complex trigger 
condition. 
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PCII , A/D32-FFl9U1x XJCallXXlllX XXXX OK "" xxxx 

xxxx ···~ PCI1 : A/DH MHtlri XXXXICXXX XXHABCD xani:x . .. XICXX XJCXX XXX~ 
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Figure 3 : PC! analyzer setup screen with example of how 
to form a complex trigger condition. 

Protocol-sensitive Bus Sampling 

One of the most fundamental properties of the 
PBT(M)-315 is the protocol-sensitive sampling of bus 
cycles for state analysis. Unlike general-purpose logic 
analyzers, VMETRO bus analyzers know the bus protocol 
of the target bus to ensure that sampling takes place at the 
right moments. This gives a trace that clearly displays all 
kinds of bus activity, like arbitration, commands, 

interrupts, cache cycles etc., and it ensures that the bus is 
not sampled at unimportant times. 

Demultiplexed Address I Data 

The PCI bus multiplexes Address and Data into a 
common 32-bit bus. In a similar way, the bus 
COMMAND signals are multiplexed with the data byte 
enables (BEx#). This saves system cost, since the number 
of pins on chips and connectors is reduced. However, it 
makes it more difficult to analyze the bus using a regular 
logic analyzer, since a given sample does not contain all 
information about a bus transfer. 

To overcome this, the PBT(M)-315 has the 
capability to demultiplex Address/Data and 
COMMAND/BEx# into separate trace channels. This is 
possible since the analyzer has as many as 128 trace 
channels, a luxury found only on the most expensive logic 
analyzers. 

This important feature not only simplifies readability 
of the trace, but allows powerful triggers and store 
qualifiers involving both address and data to be defined 
easily. 

Sin COll•.,d AclclnH Date BEi Statue Err INTd 
8ne .... A/032 MMWri 88881898 ...... 55 ...• 1118 Ol 

38n9 .•.• A/D3Z MHMri 81818118 .... AA ...... 1111 OK 
1ZIM '8nt A/032 Me.Wri 88118188 FFFF •••••..• 1811 GI. 
15Gn• '8n• A/DU l/ORd 881881H 81888B88 • , .• 8188 OK 
&Gl\8 • • . • A/032 l/DRd 18Rl888: DDDIJODUO ••.• 8888 • 
Sina , • • • A/032 l/OAd 88M8818 EEEEEEE£ • . . . ... m 

128ns 3BM ABll MiMIRd FEDCttAH'PiS113218 
18na .. . • D3Z , . . . . . . . 111Z3Mll .... 9181 CIC 
.... •••• 032 ••.•.•.• S!IHTTlt .••• - OK 

1 nne 38M AM Mlllrlnu CAFECAFEIBIAlllA .....•.• 
.... . ... DM . . . . mazw1111- - Dlt 
IGn9 .•.• DH .... TT USll ....... Ol 

13 Una .••. A/032 MAdL.n eetaaa 18112233 ....... 01. 
tit 38M .••• A/032 MAdLn 88181118 lfllSSllT? .••• llHI DI. 
1S .... . ... A/OIZ MRdLn 881- 189- .... 8818 81191 PERR •••• 
16 IBM Jens A/DU .... n 881 ..... tlStHBB ........ 01t 
17 Z't&M 118ft9 A/DU COnftlr 8l29IH8 . . • • . . . . . ..• 1111 llAbort •• 
18 98ftt SIM A/032 ""*'ri 88ft8l8l8 33333H3 ...• 1818 QI. 
19 38n1 .••. A/032 MHlllri 89lf88888 'iltltlllt ........ 1898 Ol 
ZI Sine .••• AJDJZ ttullri IM18818 lflflflftKlllf •.•. ICl88 TAbort -- ----
21 128n• 98ns A/032 Ml'.wri 88388181 11111111 ...• 8181 Ok 
22 388ne Z18ne A/032 l/Olilri aeoaaaea ssssssss . . . ..... 11881 SERR ----

1 

Figure 4 : The TRANSFER sampling mode gives a 
demultiplexed and decoded PC! trace, suitable for 

software analysis. 

Various Sampling Modes 

When sampling the PCI bus, the PBT(M)-315 stores 
a 128-bit sampling word (full 64-bit PCI + 8 external 
signals+ time tags and utility bits) into a Trace Memory 
32K to 256K deep. To give the user the most suitable 
display for different applications, the analyzer can sample 
the activity of the PCI bus in four different ways. 

The four Sampling Modes are: 

CLOCK sampling: Stores one sample per each PCI CLK 
cycle. This captures all the details of how the PCI bus is 
exercised, clock-cycle by clock-cycle, useful to verify the 
behaviour of bus interface state machines etc. This mode 
is suitable for hardware analysis. 
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TRANSFER sampling: Stores one sample per valid Data 
Phase, each sample includes the Address and Command 
which is latched from the address phase. This is the 
optimum way to analyze bus transactions as seen from a 
software point of view. 

TRANSFER DETAILS sampling: Stores one sample per 
each PCI CLK cycle only within a bus transaction, i.e. 
when the signals FRAME# or IRDY# are active. In this 
mode, all idle clock cycles are skipped, conserving space 
in the trace buffer. 

200MHz Timing Sampling: Stores one sample every 5ns 
with an optional 200MHz Timing Analyzer piggyback 
module. This is for detailed HW analysis of PCI bus 
timing. 

.... ' 
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Figure 5 : The CLOCK sampling mode gives a raw 
undecoded PC/ trace, suitable for hardware analysis. 

Slot-Specific or User-Defined Signals 

The PCI bus has certain slot-specific signals, such as 
the Request (REQ#) and Grant (GNT#) signals used for 
arbitration. In many cases these signals are of high interest 
for analysis, and in order to make them available for the 
analyzer, these signals can be brought to eight external 
inputs on pin headers in the front panel. 

These external inputs, fully available in the trigger 
words, can also be used by any user-specific signals. 

Investigation of Software Problems 

The PBT-315 analyzer can be of great assistance in 
investigating certain types of software errors in a PCI bus 
system, especially those kind of errors where a board or 
device fails to implement some kind of software protocol 
correctly. In these cases a clear view of the traffic on the 
PCI bus may identify not only what kind of error 
occurred, but also which board or device caused it and 
how. 

Automatic PC/ Protocol checking 

As an optional piggyback module to the PBT-315, a 
unique piece of hardware called the PBA T - fCI I!us 
Anomaly Irigger - is offered. This automatically looks for 
hardware errors in a PCI system by watching every bus 
cycle during actual operation. It has rule-based trigger 
elements that continuously and simultaneously screen all 
PCI signals, looking for a number of timing and state 
violations of the PCI protocol. When a violation is found, 
a message is written on the "Violation screen" and a 
trigger output signal is generated to cross-trigger the 
analyzer or to trigger an external instrument like an 
oscilloscope. Also, a detailed explanation that corresponds 
to rules given in the PCI Specifications is available for 
each violation. This will assist the user understanding and 
correcting the problem. 

Statistics of System Performance 

The PCI analyzer may also be used to look at the 
performance of a PCI bus system. For this purpose, the 
PBT-315 Bus Analyzer system is equipped with a 
Statistics module that contains a number of real-time 
counters controlled by the event word recognizers. This 
allows the user to gather many different kinds of data as 
to how the traffic on the PCI bus behaves and to spot 
uneven distribution of system load and other symptoms 
that may represent performance bottlenecks. 

Event counting 

The Event Counting function, which is based on HW 
counters, provides a real-time count of the occurrence of 
four user-defined events. This very powerful function 
may for example be used to count the number of e.g. 
IACK cycles per second displayed as a function of time, 
or to investigate access patterns to the bus in multi­
processor systems, etc. 
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Bus Utilization 

The Bus Utilization function provides a direct 
readout of the percentage of time the bus is occupied. This 
is ideal to determine whether the system bus has spare 
capacity to support another 1/0-device or processor etc. 

This function, which is based on hardware counters 
and a pre-programmed usage of the word recognizers, 
provides an immediate response readout of how the bus is 
being used at any time. 

Bus Transfer Rate 

The Bus Transfer Rate function presents how much 
data is transferred over the bus, shown as MBytes/s and in 
Mtransfers/s. This can either be shown between selected 
lines directly in the trace buffer, to measure burst transfer 
rate, or as histograms that show the average transfer rate 
over a certain period of time. 

This function can be used to characterize a system, 
to verify if performance specifications have been fulfilled 
and to assist in system tuning. 

Conclusion 

In this paper we have discussed how PCI and PMC 
Bus Analyzers can be a very powerful tool in detecting, 
locating and fixing different kinds of PCI bus system 
problems. These cover all aspects of systems debugging, 
from low-level hardware to complex software problems. 
In addition, remarkable statistics functions offers 
performance measurement functions that allow for system 
tuning. 

Altogether, the PBT-315 PCI Bus Analyzer and the 
PBTM-315 PMC Analyzer constitute very important tools 
when building and integrating PCI bus based systems. In 
many cases these tools could save a very considerable 
amount of time in debugging such systems, as well as 
greatly simplify the quality of testing. 
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PCI: THE BUS THAT GLUES? 
Mark Bronson 

Aeon Systems, Inc. 
840 I Washington PI. N .E. 
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PCI has exploded with a diversity of boards, chips, and systems that promote high performance inter-operability. 
While there is, indeed, much improved inter-connection with respect to earlier busses, not all performance expectations will 
always be met. PCI offers a number of "tuning" opportunities that are available on a per device basis. This paper presents 
design experiences in developing a complex system where PCI bridges and devices are used. An order of magnitude change in 
system performance by changing configuration fields is analyzed, and some general implications in the use of PCI are discussed. 

INTRODUCTION 

PCI is unprecedented as a bus standard in the rapidity and diversity with which both board and component 
implementations are being developed and offered for general consumption. This encourages both vendors of add in boards and 
developers of stand alone product that need to integrate multiple devices. While delivering an ability to glue, PCI does not 
always deliver the anticipated performance. A naive expectation of observing the touted bandwidth (132 Mbytes/second) is 
frequently dashed. Presentented here are some experiences in creating a processor module that includes two processors (ALPHA 
AXP and i960), two bus bridges (to secondary PCI and VMEbus), and I/O devices (Enet, SCSI). There are three major 
considerations: I) the basic implementation and "glue" necessary to integrate the components, 2) the interconnect facilities 
offered by the bridges and how they aided/impeded our system design, and 3) system performance, in particular how PCI 
"tuning" parameters can result in a data rate change from 4 Mbyte/second to 60 Mbyte/second. 

HARDWARE IMPLEMENTATION 

One point of consideration for developing a PCI-bridged system is implementation of the hardware. Figure I shows a 
block diagram of the module. The components attached to the PCI include: I) ALPHA Host memory bridge, 2) PLX to i960 bus 
bridge, 3) PCI to VMEbus bridge, 4) PCI to PCI bridge, 5) SCSI, and 6) Ethernet. 

ALPHA Host memory bridge. This provides bi-directional access to the ALPHA processor and memory subsystem. 
Read/writes mastered external to the ALPHA processor are bridged into the 128 bit memory bus. The bridge maintains cache 
coherence between the ALPHA secondary and primary caches and the contents of memory. 

PLX to i960 bus bridge. During system design, a performance mismatch was recognized between the ALPHA( which 
executes at 275Mhz) and the low level 1/0 frequently required with VMEbus devices. Thus the i960 was included as an I/O Co­
processor. To accomplish this task requires full access to the PCI bus, as low level system devices are on the i960 bus (e.g. 
RS232 console) the bridge must also allow slave access from external masters (e.g. ALPHA CPU). 

PCI to VMEbus bridge. There have been two implementations used. Initially the combination of PCI to 68040 bridge 
(Newbridge Spanner) connected to the Newbridge SVC VMEbus controller. A second pass design used the Newbridge 
UNIVERSE, a direct PCINMEbus bridge. 

PCI to PCI bridge. In order to provide the option to support additional PCI devices, a bridge can be added. To date 
this has been used to add both custom devices and, in conjunction with a second bridge to connect devices in a PMC form factor. 

SCSI. NCR PCI/SCSI integrated controller. 

Ethernet. Digital 21040 integrated Ethernet/PCI controller. 
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At the first level, all components are integrated as would be anticipated from compliance to the PCI specification. The 
devil is in the details. An implicit assumption is frequently made by PCI designers that the end system will be a PC with the 
ancillary defined infrastructure. For example, including a "standard" interrupt controller is not the most effective solution for the 
very high performance ALPHA; requiring extra external cycles to the interrupt controller impedes the ALPHA in performing 
useful computation. In addition, in this system, some interrupts may be routed to the i960 (and this decision may be dynamic). 
Our solution is to make a combination of direct connects to the ALPHA interrupt lines and to incorporate an interrupt controller 
on the i960 bus. A problem related to interrupts is mediating between the requirements of the various protocols. VMEbus defines 
seven levels of interrupt priority with a per device vector for multiplexing. Solutions to this problem depend upon a combination 
of 1) evaluating the mechanisms embodied in the bridge and 2) melding them with the facilities available in the design. The 
major interconnections (i.e. address/data and control signaling) did just glue together and inter-operate. In total, the necessary 
logic was implemented in a single PCI arbitration PAL and an interrupt controller. The latter is connected to the i960 bus. 
Integration of i960 memory and slave devices required a single additional PAL implementing address decode and device 
acknowledge signals. 

BRIDGE FACILITIES 

When designing a bridge, consideration must be given to what overall facilities will be provided. Unlike a PCl/PCI 
connection, bridges to other bus protocols must provide a translation and, to be effective, some control of the translation to allow 
each user to make the most effective connection. In addition, the generic assumptions suitable for a straight forward PCI/PCI 
extension are not sufficient. If bridging to a processor bus (e.g. i960), one needs to assume that a CPU could be included, either 
as primary or auxiliary system host. The VMEbus is even more drastic; it has long been used to support multiple hosts, which 
need to be gracefully integrated to the PCI. The facilities of ALPHA host bridge, PLX 9060, and Universe provides a basis for 
comparison: 
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(plus expansion ROM) 

Mask 
Yes 

Yes Yes 

Table 1: Comparison of ALPHA host bridge, PLX 9060, and Universe Facilities 

3 
(1 I/O 
1 coupled memory 
1 refetch) 

None 
No 
Yes 

9 
(5 PCI ->VMEbus 

4 VMEbus -> PCI) 

Adder 
Yes 
Yes 

Address translation is required when processor(s) on the target bus have their own address map. Multiple windows aid by 
offering simultaneous protocol conversion profiles between the PCI and dissimilar target bus. 

Utility of Multiple Windows 

The multiple windows provided by the Universe was a major advantage as was the addition-based address translation. 
There are several benefits to having a larger number of windows. One is that multiple windows allow greater flexibility in 
overcoming the difficulties inherent in connecting multiple 32 bit address spaces. As most devices currently available only 
support a 32 bit address space, not all portions of all buses can be constantly visible. Occupation of address regions on the 
various buses may be quite sparse. On the i960, this is true in order to take advantage of the bus segments within the processor. 
In our design, local memory (SRAM), EEPROM, and devices each have different control protocols. The i960 can be 
programmed to exhibit different bus behaviors, based upon 256Mbyte segments. As a result, the i960 address decode covers 
small portions of a large (3 x 256Mbyte) address region. VMEbus presents similar difficulties for different reasons. Since the 
goal was to create an addition for existing VMEbus systems, fewer boundary conditions are better. Two large windows (512 
Mbyte) from PCI to VMEbus were set up in the top of PCI address space, one with zero offset (translating directly to the top of 
VMEbus address space) the other with an offset that makes it zero-based within the VMEbus. One window is configured during 
system initialization (based upon system specific parameters). An additional window is provided for "on the fly" connection to 
the rest of VMEbus space. Multiple windows also allow access in both PCI 110 and memory space. This can be very useful in 
extending the 32 bit address range as some portions can be placed in 1/0 space. This is appropriate when mapping in 1/0 devices, 
where the facilities of memory space (e.g. prefetch) could not be utilized. 

Window Profiles 

Bridging to the VMEbus poses difficulty in exporting to PCI the various features that are exclusive to VMEbus. These 
include three address spaces (A16, A24, and A32), several transaction types (Block and Single Cycle), etc. Two mechanisms 
were provided within the Universe, and both are convenient. The most obvious is allowing a per window profile, such that PCI 
transactions are forced to translate to the target protocol type. The second causes portions of a window to have specific attributes 
(e.g. placing the 64Kbyte Al6 region at the top of an A24 region). 

Mechanisms for Address Translation 

The three bridges offer three solutions from sophisticated scatter gather to direct mask. Only the ALPHA offered , or 
really requires, scatter gather. Since the ALPHA executes operating systems that use virtual memory, a contiguous application 
buffer will not map to physically adjacent pages. While convenient for the user, maintaining the scatter/gather entries greatly 
increases software complexity. In addition, it adds a performance burden, as the translation must be fetched from memory. This is 
mitigated in the ALPHA bridge with an on-chip lookaside cache at the cost of increased chip complexity. Most requirements can 
be met with a simple offset translation, but the adder mechanism is much more convenient and flexible than a mask. In the latter, 
address lines on the target bus are replaced with a specified pattern. This restricts both the decode flexibility (as the bits replaced 
are also those used in decode) and precludes most "on the fly" dynamic changes; The base, bound, offset triple of the Universe 
allowed a number of powerful software facilities to be created for the user. 

Interrupt Handling 

As noted earlier, interrupts can generally be a problem when using PCI in a specialized configuration. It is made more 
difficult when the interrupt protocols are very different. To meet the requirement of full VMEbus support, it was necessary to 
support all 7 VMEbus levels and to create an acknowledge cycle to retrieve the interrupt vector. In the initial implementation 
with the SPANNER (PCI to 68Kbus), there was a single interrupt signal external to the bridge with a set of registers to create the 
per level IACK. This precluded easy support of hierarchical interrupts (i.e. allowing a higher priority interrupt to suspend a 
processing of a lower priority). The Universe enhanced interrupt support with multiple external lines and an internal mapping to 

396 



allow flexible distribution. For our purposes, we route each interrupt line independently to an interrupt controller, allowing 
preemption. A different setup would funnel all interrupts to a single external line. 

Flexibility is Good 

The conclusion: when designing a bridge that is targeted to a broad market, avoid preconceptions of how the end 
systems will be structured. In particular, avoid taking too centric a view; perspective from both sides of the bridge must be 
maintained. 

TUNING THE SYSTEM 

The PCI specification provides a number of mechanisms for adjusting system performance (e.g. Latency timer, burst 
control, etc.) When first considering working with PCI, an excitement is generated by the repetition of theoretical bandwidth 
(132 Mbyte/seconds). It is critical to realize how rapidly this can be squandered. To obtain any significant fraction of the 
bandwidth, it is essential that (reasonably long) burst transfers be supported, and that they be full speed (i.e. transfer on each 
clock). Table 2 shows bandwidth as a function of burst length: 

8 16 32 64 256 
33.3 80 88.9 94.1 97 99.2 
44 105.6 117.3 124 128 130.9 

Table 2: Throughput as a Function of Burst Length 1 

Support of coherent, hierarchical memory systems will usually induce a long latency when reading, but may be able to 
deliver one or more cache lines thereafter. (In the case of the ALPHA host bridge, the latency for first read can exceed 21 PCI 
clocks. Once started up to 16 Dwords can be transferred in no wait data beats.) 

Example: Write to VMEbus 

As a concrete example, when first evaluating the OMA performance of the Universe, transferring data from ALPHA 
host memory to the VMEbus the data rate was -4 Mbyte/second. Analysis showed that the culprit was a result of the extended 
delay on starting the pipe into the ALPHA memory system. When a read request is received, the ALPHA bridge probes cache 
and forces consistency with memory. Then up to two 128 bit transfers (total of 16 dwords) are transferred into a buffer for 
response to the PCI master. With the Max Latency field loaded with too low a value, the Universe, after an -20 clock delay, 
performed two data transfers and terminated the cycle (as required by the specification). The result: two useful cycles in -24 
(counting device select and arbitration overhead). Increasing the timer to a larger value resulted in an increase to 27 
Mbytes/second. Modifying the previous table to allow for the delay to first access, we obtain: 

1•-1 1 
1

2 
1

8 
1

16 I -~ ..... 2 ... ~~-=r~- 6 . 11.5 . 34 . 56 . 
Table 3: Throughput vs. Burst Length in the Presence of Delay to First Data Transfer 

The single data phase write transaction is presented in the following figure. We assumed that master has already been granted to 
the bus and that the bus was in Idle state, so there is not any delay due to bus arbitration. Target for this transaction has fast 
DEVSEL# signal timing and no wait states were involved in the transactions. By not taking into account possibility of back-to­
back write transactions on PCI bus, the next transactions on the bus may be started at cycle 4. Therefore, single longword write 
transaction requires 3 periods of bus clock to be performed and real performance in this case will equal one third of the 
theoretical maximum. For 33Mhz, the bus maximum is 132Mbyte/sec and real bandwidth is 44Mbyte/sec. 

Clk 

FRAME II 

IRDY# '----+--' 
TRDY# ......... ~~ .......... '---+---'--....... ~~---
DVSEL# '---+--' 

1 2 t 4 
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The next measurement of the PCI performance showed that, while the Universe was willing to continue the burst, the 
ALPHA bridge was terminating it at 8 cycles. Changing the configuration of the ALPHA bridge to permit 16 dword long bursts 
increased the PCI performance to the expected 56 Mbytes/second (where VMEbus becomes the throttle). 

Implications of needing Burst Data 

This example demonstrates the enormous impact that tuning the system can have, it also indicates the need for long 
bursts. Burst transactions will be the only method to maintain performance when using PCl/PCI bridges. The convenience of the 
bridge, in combination with the structural restrictions of the PCI (i.e. number of possible nodes and line lengths), makes them 
appear a panacea. There is a substantial delay for transactions to transit the bridge (5 clocks on the Digital 21052). This delay 
does not affect all transactions equally; posted writes may see very little delay while single cycle reads will suffer the full effect. 
Again, the only general approach is to ensure that transfers are multi-word bursts. A direct consequence of requiring data to be 
transferred as larger blocks, is that subsystems need to have internal buffer resources and probably local intelligence to ensure 
full utilization of the buffer. This is in direct contrast to many previous protocols where the intention was to concentrate the 
intelligence at a single host. Fortunately, the rapid proliferation of low cost, extremely powerful engines (e.g. i960, ARM, 68K 
etc.) make distributing intelligence possible. The burden on software remains to be addressed. 

1/0 Co-Processor 

In our system, the i960 acts as an 1/0 Co-processor, allowing it to consolidate data transfers for the ALPHA host. In 
this implementation, the serial lines (which reside on the i960 local bus) can be turned from very high overhead single byte 
devices to a more efficient, line oriented protocol. While very advantageous to the ALPHA, the small grain transactions 
performed by the i960 still adversely affect PCI bandwidth. To fully realize the potential of the i960, there needs to be a 
decoupling bridge between the primary PCI and a secondary PCI on which devices reside. Announced products (e.g. Intel 
i960RP) will deliver exactly this capability in a single package. 

CONCLUSION 

Designing around PCI greatly reduces the effort required to "glue" components together. Given the relatively recent 
creation of the specification he number of already available parts and vendors is remarkable. Interest in PCI is increasing very 
rapidly; there is a continuous litany of new announcements for new parts that attach to PCI, or bridges to directly connect 
existing processors into a PCI system. Simplifying the implementation process does promote the potential to overlook system 
performance issues. Without careful analysis of data flow, device PCI usage characteristics and queuing delays a very misleading 
assumption of final performance will be made. When considering a device's PCI performance it is important to look at both the 
direct transfer rate (number of cycles between each data transfer within a burst) and the delay incurred in starting a transaction. 
The latter is most likely to be an issue on reads from a memory system (e.g. across host processor bridge). 
As processing power is packaged for PCI, distribution of intelligence will become more prevalent. Using this in any kind of a 
generic (i.e. standard) manner will pose a very interesting challenge. In the meantime specialized configurations will add to the 
understanding and interest in the potential that PCI brings to system implementation. 
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Published results for MPC105 (also known informally as "Eagle") throughput performance are 
available but cache line latency performance is less clearly deterministic and more problematical. This 
paper defines important issues, illustrates a range of cases with specific numerical results, and discusses a 
true worst case and its preclusion. 

INTRODUCTION 

An article by Wang et al appearing in the April 1995 issue of IEEE Micro describes the maximum 
PCl-to-system memory throughput numbers for an MPC105 PCI bridge/memory controller 
implementation.1 That article makes many simplifying assumptions about latency issues. For instance, it 
states " ... A PCI master can read from system memory at a data transfer rate of 9-1-1-1" PCI clocks. Actual 
performance may be affected by time to gain mastership of the system memory bus, time associated with 
snooping memory to maintain cache coherency, and time to transfer the first beat of data. Further 
investigation is needed to bound and characterize performance. 

This paper discusses the specific PowerPC 603/603e/604 microprocessor and MPC 105 PCI 
bridge/memory controller implementation found in Motorola PowerPC reference platform products such as 
the MVME1603, MVME1604, MVME1300, Ultra, Atlas, and Chameleon. It backgrounds the basic issues 
of latency and throughput. It clarifies the important parameters, and describes the best, typical, and worse or 
worst cases involved in computing figures of merit. During this discussion, a worst case scenario is 
described, and a range of potential remedies to preclude worst case are proposed. Finally, the results are 
summarized and some general conclusions are drawn. 

LATENCY AND THROUGHPUT BACKGROUND 

The PCI bus master to system memory transfer latency and throughput are points of primary concern 
in real-time embedded system design. Table 1 summarizes the related MPC105 PCI performance 
parameters. 

Table 1: MPClOS PCI Bus Performance 

Transf!!.r type PCI clocks _il3 MHz bus]_ 
Si~le read (4 ~es) 9 
Read line (32 ~es) 9-1-1-1-1-l-1-1 
Read mul~eJ..successive 32 b_yte bursts) 9-1- l-1- l-1-1- l/4-1- l-1- l-1-1-1/4-1-1- l-1-1- l-1/ ... 
Sil!.&!e write (4 b_ytes) 2 
Write line i_32 b_ytes) 2-1-1-1-l-l-1-1 
Write mult~e (successive 32 b_yte bursts) 2-1-1-1-l-1-1-1/2-l-1-l-1-1-1-1/2-l-1-l-1-1-l-1/ ... 

1 Karl Wang et al, "Designing the MPCI05 PCI Bridge/Memory Controller," IEEE Micro, April 1995, pp. 44-49. 
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Another important MPC105 parameter is the PowerPC local bus performance. On a burst transfer to 
local DRAM with 60 nsec access time, with a local bus speed of 66 MHz, the PowerPC 603/603e/604 
transfers four 64-bit double words (total of 32 bytes) in 20 clocks (8-4-4-4) for a total transfer time of 0.300 
µsec. 

From this data, the limiting factor in PCI to system memory performance is the PCI read, which is 
studied in more detail in the following discussion. 

In a high performance system, PCI reads are 32 byte burst transfers (8 beats of 4 bytes each) by PCI 
bus mastering devices. Latency and throughput for a given 32 byte burst can be defined by examining the 
states of the transfer and stating assumptions about those states. A PCI read of DRAM proceeds as follows: 

PC/ bus master presents addresses to MPC105 
• Assume no other PCI traffic, and PCI bus master is highest priority PCI requester and is not held off. 

MPCJ05 removes local bus grant to PowerPC processor 
• Time to remove grant is insignificant 

MPC105 gains local bus mastership 
• PowerPC processor can complete up to 2 four beat (32 byte) external transactions to local DRAM after 

its grant is removed. 
MPCJ05 snoops transaction to ensure cache coherency 

• Snoop collision may occur, caused by internal resource conflict in PowerPC processor and signaled by 
ARTRY. Collision is retried every 4 local bus clocks until resolved. Most collisions resolve after one 
retry. 

MPC105 completes burst read of 32 bytes from DRAM and forwards transfer onto PC/ master 
• MPC105 has 32 byte read buffer, which does not have to be filled prior to data being presented to PCI 

bus. Once burst begins, it proceeds to completion. · 
• Assume no other PCI traffic, and PCI transaction finishes concurrently with DRAM read with no 

additional overhead. 

Given this transfer sequence, latency and throughput are defined as follows: 

PCI read latency = tpRL = ti.BM + tsRc + tn2B 

where: 
tLBM = time for MPCl 05 to gain local bus mastership, 
tsRc = time for MPC105 to snoop and resolve collision, 
t1328 =time for MPC105 to transfer 32 bytes to PCI. 

PCI read throughput for 32 bytes = 32 I tpRL 

With these definitions, each parameter can be examined in more detail in best, typical, and worse or 
worst cases, and figures of merit for latency and throughput derived. 

WCAL BUS MASTERSHIP 

In the best case, the MPC105 already has mastership of the PowerPC local bus, and no other 
contention occurs, so tLBM = 0. This would be the case in the steady state portion (after the first cycle) of a 
PCI DMA transfer. 

In a typical case, assuming a 70% processor hit rate in cache, the MPC105 has a 30% chance of 
waiting for the processor to complete a single external burst transaction. Previously, the time for a processor 
burst transfer to local DRAM was shown as 0.300 µsec. This creates a typical tLBM over a relatively large 
data transfer of 30% of 0.300 µsec, or 0.090 µsec. 
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In a worst case, the MPC 105 is held off while the processor completes two burst transactions, so tLBM 
= 0.600 µsec. This is an upper bound on tLBM given the 60 nsec DRAM access time assumed earlier. 

SNOOPING AND RESOLVING COUISIONS 

The best case for a snoop is no collision, or tsRc = 0. 

The PowerPC 604 microprocessor implements dual-ported cache address tags on its LI cache, and 
allows snooping to occur concurrently with cache accesses. This improves performance and minimizes 
collisions to situations where cache buffer cast-outs are required to maintain coherency. The current 
PowerPC 604 microprocessor has only one cast-out buffer, so only one cast-out can be pending. 

The PowerPC 603/603e microprocessor implements single-ported cache address tags on its LI cache, 
and thus presents several snoop collision scenarios. These include snoop hits during a burst load operation, 
snoop hits while a cast-out is pending (one cast-out buffer is present), and snoop attempts while the LI 
cache is being accessed by a load or store operation. 

The MPC105 retries a collided snoop every 4 local bus clock cycles, and most collisions resolve after 
one retry. Collisions occur rather infrequently, so typically tsRc = 0 over a relatively long transfer. 

A worse case for a normal snoop collision is when a cast-out is required, and the cast-out data phase 
overlaps the previous burst. ARTRY is signaled after the first beat (8 clocks) of the cast-out burst. A worse 
case for a snoop hit followed by a burst write is very similar in overall timing. The PowerPC split 
transaction bus allows transaction overlap, but in general, the worse case snoop latency under normal 
circumstances is 36 clocks (remaining 3 beats of transaction at 4 clocks each, plus another transaction at 8-
4-4-4, plus one more MPC105 retry). This puts a worse case tsRc = 0.540 µsec. This is normally also the 
worst case. 

A true worst case, with remedies to preclude it, is discussed later. 

TRANSFERRING PC/ DATA 

Once the MPC105 actually begins to transfer data, it completes and there is no other PCI overhead 
involved. 

Best case for the PCI read of 32 bytes is when the speculative read feature of the MPC105 is enabled, 
and a multiple read with successive bursts is in progress. As described previously, this results in a transfer 
time for 32 bytes of 11 clocks ( 4-1-1-1-1-1- l-1) so tT32B = 0.333 µsec on the 33 MHz PCI bus. 

Typical and worst cases for the data transfer time are 16 clocks (9-1-1-1-1-l-1-1) so tT328 = 0.485 
µsec. 

FIGURES OF MERIT 

Given this discussion of local bus mastership, snooping and collision resolution, and PCI read transfer 
time, the latency and throughput formulas can be used to develop the figures of merit shown in Table 2. 
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Table 2: PCI Read Figures of Merit 

Case tLBM lsRc tT32B LoJency Throughput 

~cl. l!!!_ecl_ (JJSecl_ (µsec) (MB/sec) 

Best 0 0 0.333 0.333 96.0 
T_xp!cal 0.090 0 0.485 0.575 55.7 
Worse I Worst 0.600 0.540 0.485 1.625 19.7 
Worse/worst, with low priority PCI transfer in progress 3.250 9.85 

before start of PCI read 

Although the PCI read is a relatively low priority transaction on the processor local bus (page 8-8 of 
the MPC105 User's Manual lists it as priority 11), most of the other higher priority local transactions have 
been accounted for in the worse cases in the form of up to two PowerPC microprocessor external burst 
transactions in our assumption. L2 cache would affect this model somewhat, but has not been considered in 
this analysis. 

If a lower priority PCI master were to have a transfer in progress, a high priority PCI read discussed 
here would be held off by one PCI burst transaction. The worse/worst case discussed would double in 
latency and halve in throughput, as shown in the last line of Table 2. 

TRUE WORST CASE SNOOP COLUSIONS 

A pathologically worst case problem has been identified as a remote possibility on the PowerPC 
603/603e microprocessor due to its single-ported Ll cache address tags. On the PowerPC 603/603e, a 
collision is signaled if a snoop is attempted while the L1 cache is being accessed by a load or store 
operation. The MPC105 retries a collided snoop every 4 clocks until successful. If the MPC105 snoop retry 
period of 4 clocks were aligned with a cached loop writing to the L1 cache address tags on the same 4 clock 
timing, snoop collisions would potentially occur until the cached loop terminated. 

Writing the cache address tags, not just reading them, creates the potential for this scenario. Cache 
control instructions which write the tags are the user instruction DCBZ (data cache block zero) and the 
supervisor instruction DCBI (data cache block invalidate). 

An example would be executing a cached loop consisting of a DCBI followed by an ADD to a counter 
and a BCND. This instruction sequence would write the cache address tags 1 out of every 4 clocks. An 
instruction sequence such as this is not particularly useful and is not considered likely to occur, but 
nonetheless is a possibility and must be considered. 

Table 3 shows the effect on typical latency and throughput for this situation. The snoop collisions are 
assumed to occur on every retry by the MPC105, adding 4 local bus clocks (60 nsec) to the latency for 
every collision. 

Table 3: Repeated Snoop Retries, Typical PCI Read Case 

# Sno'!l!_ Retries Laten~ecl Throu_g_h]!_ut (MB/sec) 
0 0.575 55.7 
4 0.815 39.3 
16 1.535 20.8 
64 4.415 7.3 
128 8.255 3.9 

As shown by Table 3, should a long loop of this true worst case occur, latency can be severely 
impacted. What begins as good performance in the typical case degrades severely under these 
circumstances. 
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There are many possible remedies to this behavior. Disabling the MPC105 snoop capability (by not 
asserting the GBL signal) would prevent snoop collisions altogether, but would severely impact 
performance by introducing software overhead to maintain cache coherency. Implementing the PCI lock 
protocol and executing longer PCI transfers would reduce the impact of a single collision episode and 
increase average throughput. However, these hardware approaches are not generic and have other 
undesirable performance impacts. 

Truly precluding this worst case behavior in a general way requires a software approach, and there are 
two solutions which are plausible. 

First, all data could be marked global, or if not global at least cache-inhibited and guarded (see the 
WIMG bit definitions of the PowerPC 603 and PowerPC 604 User's Manuals). This forces the processor to 
execute external cycles. During a snoop collision the MPC105 is local bus master, and the processor must 
wait to execute the external cycle. Most snoop collisions are prevented, and any snoop collision that does 
occur is resolved on the first retry. This impacts CPU performance by reducing the data cache hits, and is a 
severe workaround. 

The best solution is to ensure that use of the cache control address tag write instructions, DCBZ and 
DCBI, do not occur in loops of 4 or 8 clocks. This can be done by avoidance of these instructions, or by 
insertion of no-op instructions to change the loop timing. This results in snoop collision resolution on the 
first retry. 

SUMMARY 

Motorola PowerPC microprocessor platforms using the MPC105 PCI Bridge/Memory controller can 
achieve significant real-time throughput with low latency. A limiting case of a PCI read was studied and 
found to have a typical latency of 0.575 µsec and a typical throughput of 55.7 MB/sec. Both best and worse 
case scenarios were considered to place upper and lower bounds on performance. A truly worst case 
scenario, while a very remote possibility, was considered for the PowerPC 603/603e microprocessor. A 
precise workaround involving care with DCBZ and DCBI instructions to preclude the true worst case from 
occurring was illustrated. 
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::J Embedded designs usually have 
real-time response criteria 
v Latency 
v Throughput .. VMEboards: 

MVME1600 
MVME1300 

u What can PowerPC 
microprocessors and PCI bus do? 
.,. What affects performance? 
v What is best, worst case? 

• 
Motherboards: 

Ultra 
Atlas 

Chameleon 

o Given microprocessor and chipset 
parameters, analysis can be done 
and performance characterized 
v Best, typical, worse cases 
v True worst case scenario, 

remedies 
v Conclusions 
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MPC105 uEagle" Performance 

Basic Performance Parameters (33 MHz PC/ bus) 
A Single read (4 bytes): 9 PCI clocks 
A Read line (32 bytes): 9-1-1-1-1-1-1-1-1 
A Read multiple: 9-1-1-1-1-1-1-1-1/4-1·1·1-1-1-1·1/ ... 

A Single write (up to 32-blt): 
A Write multiple: 

2 PCI clocks 
2-1-1-1-1-1-1-1-1 

DRAM Bandwidth (66 MHz PPCbus, 64-bit, 60 nsec DRAM) 
A Burst access: 8-4-4-4 

Limiting factor is PCI read -- case is studied in detail 

® MOTOROl.A 
Computer Group 

l..lltel'lcy Issues in PoT.VerPC 
Reference Platfonn Architectures 

PCI Read Sequence 

PCI Read Latency 

PCI Spring '96 
llothMbolud• and Bolll'd Compur.,. 

PCI Read Throughput = 32 + tPRL 
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Local Bus Mastership 

o Best case - MPC105 already has local bus mastership 
... tLBM=O 
..,, true In case of ongoing DMA transfer 

u Typical case - 30% chance of 1 processor cycle 
. v assumes 70% L 1 cache hit rate 
v tLBM = 30% of 0.300µsec = 0.090 µsec 

r:i Worst case - processor completes two burst cycles 
..,, tLBM = 2 x 0.300µsec = 0.600 µsec 

Latency Issues in PowerPC 
Reference Platform Architectures 

Snooping and Resolving 
Cache Collisions 

u Best case - no collision 
"'tsRc=O 

PCI Spring 'S6 
M-lllldBoardCo,,,,..,,.,. 

t..l Typical case - very low percentages of collisions 
v most collisions resolve after one retry 
v tsRc = O over long term 

u Worse case -- cast-out overlap with another burst 
t/ collision signaled after first beat of burst 
v tsRc = (4+4+4 + 8+4+4+4 + 4) x 0.015 µsec = 0.540 µsec 

\ ' MPC105 retry 

® MOTOROLA 
Computer Group 

Burst transaction 

------ Remaining cast-out cycles 

Latency Issues in PowerPC 
Reference Platform Architectures 
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Transferring PCI Data 

Once PCI transfer begins, It completes - no other PCI overhead 

u Best case -- MPC105 in progress with speculative read 
v tn28 = (4-1-1-1-1-1-1-1) x 0.030 µsec = 0.333 µsec 

o Typical and worst case 
v tT328 = (9-1-1-1-1-1-1-1) x 0.030 µsec = 0.485 µsec 

® MOTOROUI 
CompulflrGroup 

Latency Issues in PowerPC 
Reference Platform Architectures 

Figures of Merit 

Typical 0.090 0 0.485 

Worse/worst 0.600 0.540 0.485 

Worse/worst, with low priority PCI transfer 
in progress before start of PCI read 

J Most other MPC105 transactions 
accounted for in worst case 

J Model does not account for possible 
effect of L2 cache 

®= 
Latency Issues in PowerPC 

Reference Platform Architectures 
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®MOTOROLA 
Computer Group 

True Worst Case and Remedies 

II 

Best remedy 
• DCBZ, DCBI instructions 
write cache address tags and 
create collision scenario 
.a. Manage these instructions 
so they don't occur ••• 
• ... or alter timing so they 
don't beat in 4 cycle loop 

Other remedy 
... Mark data cache-inhibited 
and guarded to force external 
cycles 
... Impacts performance, but 
may be acceptable 

I..atencylssues in PowerPC 
Reference Platform Architectures 

PC/ Spring '96 
----Comput«S 

Conclusions 

u PowerPC microprocessor and MPC105 can 
achieve significant throughput 

:::i PCI read limiting case 
w PCI read latency 

v Best 0.333 µsec, Typical 0.575 µsec 
:::i PCI read throughput 

,; Best 96.0 MB/sec, Typical 55.7 MB/sec 
:::i True worst case scenario on PowerPC 

603/603e is explicitly avoidable 
,; DCBZ, DBCI instructions can be 

managed 
:::J Framework developed here can be used to 

analyze other PCI chipsets and perform 
comparisons 

Latency Issues in PowerPC 
Reference Platform Architectures 
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The Industrial World Needs a 
Platform: 

e Fast Enough to Support new CPU's & 
Peripherals (>100 Mbytes/sec) 

s 1111 e Supports 15-20+ Plug-in Cards 

e Able to Support CPU's from all Major 
Manufacturers (Intel, DEC, Motorola) 

.... PCI Meets That Need. 



PCI- Born in the Desktop 
World 

e Developed by Intel 

e Embraced by Major Microprocessor 
~ , 11, Manufacturers: 

- INTEL (Pentium, PentiumPRO) 

- MOTOROLA, IBM (PowerPC) 

- DEC (Alpha) 
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PCI - Born in the Desktop 
World 

e Used in over 80% of Desktop PC's 
(continually increasing) 

e Desktop Market >$150 billion 

e PCI Has Won the "Local Bus War" 



PCI - Very High Performance 

e 133 MBytes/sec. Transfer Rate (32 bits, 
33 MHz Bus Clock) 

~ 1111 e Up to 532 MBytes/sec. Transfer Rate 
(64 bits, 66 MHz Bus Clock) 

e Other Buses Much Slower: 
- VME: ,__ 40 MBytes/sec. 

- VME64: ,__ 80 Mbytes/sec. 

- ISA: ,__ 2 MBytes/sec. 



PCI - Very High Performance 

e These High Speeds Needed For: 

~ 1111 - Real-Time Video Processing 

- Next Generation, High Speed Networking 

Applications seem to grow to use all 
available bandwidth ..... . 



Desktop PCI Limitations 

e Small Number of Expansion Slots (----4) 
e Less-Than-Optimal Form Factor: 

~ 1111 - Horizontal, Long, Skinny Cards 

- Small Connector Edge 

- Poor Cooling, Card Retention 

- Hard to Mount in a Cabinet 

e Active Motherboards Have High MTTR 
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PCI is Great, but. ..... 

Desktop Form Factor Not Suitable 
for Many Industrial & 
Telecommunications 

Applications ·· 



Industrial/Telecom Needs: 

e A Bus Fast Enough to Support new 
CPU's and Peripherals (>100 MB/sec.) 

~ 1111 e A Bus Able to Support CPU's from all 
Major Manufacturers (Intel, DEC, 
Motorola, Sun, etc.) 



Industrial/Telecom Needs: 

e Rugged Packaging: 
- Good Shock, Vibration, Temperature specs 

~ 1111 - Better Cooling 
- Bigger, More Reliable Power Supplies 

e Modularity: 
- 15-20 Slots a Typical Requirement 

- Must be Simple to Add Functions 



lndustrial/Telcom Needs: 

e Better Serviceability - Low MTTR 

e More Mounting Flexibility: 
tJ 1111 -19" Rack 

- NEMA Cabinets 

e Configuration Control - Can't have the 
BIOS or Video Chip changing every 
week. 
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0 

Industrial/Telecom Needs: 

e Better Connectoring: 
- Industrial User Wants 1/0 out front - often 

needs screw terminals 

- Telecom User Wants 1/0 out rear - clean 
front panels and quick-to-replace modules 

Everybody Hates Flat Cables ....... . 
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Passive Backplane PCI 

e All Active Circuitry Moved To a Plug-in 
Card - Has PCI and ISA Buses 

s 1111 • Motherboard Replaced With a Passive 
Backplane - Connectors Only 

e PCI Industrial Computer Manufacturers 
Group (PICMG) Standard Published 
1994 
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Passive Backplane PCI 

e Usually 4 PCI and 8-15 ISA Slots 

e Changing or Upgrading a CPU takes 
only Minutes 

e Rugged Chassis Available: 
- Bigger, Better Power supplies - often Dual 

- Card Retention Mechanism 

- Usually 19" Rack Mount 
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Passive Backplane PCI 
STRENGTHS 

e Low MTTR (----Minutes) 

e Easy to Upgrade CPU 

~ 1111 e Can Use Existing ISA 1/0 Cards 

e Rackmount, Desktop, or Tower 
Packaging 



Passive Backplane PCI 
WEAKNESSES 

e Still Limited to 4 PCI Slots (although this 
can be expanded with Bridge chips) 

~ 1111 e Poor Cooling, Card Retention 

e Limited External Connector Area 

e Hard to Mount in NEMA-type Enclosure 



CompactPCI 

e New Standard (PICMG Approved 
12/95) 

~ 1111 e Simple Concept: Commercial PCI 
Silicon in Eurocard Packaging 

e Uses High Density Pin-and-Socket Bus 
Connectors 

e 3U (100mm x 160mm) and 6U (233 mm 
x 160 mm) Sizes Defined 
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CompaciPCI - STRENGTHS 

e Rugged Packaging 

e Packaging Well Accepted - VME Uses 

e Excellent Card Retention, Cooling 

e Good Shock & Vibration Characteristics 

e Can be Easily Rack or Panel Mounted 

e 1/0 out Front or Rear -
e 8 Slots (More with Bridge Chips) 



CompaciPCl-STRENGTHS 

e Connector IEC Standard (IEC-917 & 
IEC-1076) 

ra 1111 e Connector Bellcore Qualified (Tr-NWT-
001217) 

e Connector Widely Accepted in Europe 

e CE Certification Straightforward 

e Can Bridge to VME, ISA, STD Buses 
(Hybrid Systems) 
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CompactPCI - WEAKNESSES 

e Brand New - Limited Number OF 
Suppliers Today 

e 8 Slot Maximum in Basic Configuration -
Needs Bridge Chips to Expand (One 
Chip Every 8 Additional Slots) 
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Driven by Commercial Silicon 
& Standards 

e Commercial Standards have >100 times 
the Sales of Industrial Standards 

e People are Familiar with and Educated 
About Commercial Standards 

e Hottest New Hardware & Software 
Developed for Desktop PCI First 

e Best Software Development Tools 
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"I Want PCI Performance -
Which Version Do I Choose?" 
e Desktop PCI When: 

- Initial Hardware Cost is Very Important 
(i.e., You're Cheap) 

- Your Application can Tolerate Lack of 
Revision Control (unexpected BIOS 
changes, etc.) 

- Desktop Environment (Clean, Cool, etc.) 
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"I Want PCI Performance -
Which Version Do I Choose) 

e Passive Backplane PCI When: 
- Low MTTR Important 

- Simple CPU Changes or Upgrades 
Important 

- "Light Industrial" Environment 
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"I Want PCI Performance -
Which Version do I Choose?" 

e CompactPCI When: 
- Robust Packaging Required 

- Front or Rear Panel 1/0 Required 

- Environment Requires Good Shock, 
Vubration, and Temperature Specs 

- Bridge to Bus Other Than ISA Needed: 
• VME 

•STD 

• etc. 
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Industrial/Telecom PCI -
Conclusions 

e PCI Provides Highest Performance, 
Speed Available Today 

e Uses High Volume, Low Cost Silicon 

e Leverages Commercial PCI Innovations 

e Well Positioned for next 5 Years 

e Choice of Form Factors (CompactPCI, 
Passive Backplane) 
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The A TX Form-Factor 

Presentation Objectives 
P.~.'1t~~n'I •Understand the Goal of Creating ATX 

•Understand Industry Forces Driving A TX 
+Perspective on Motherboard FF Evolution 

•Understand ATX Specification Guidelines 
+Features of ATX 
+Rearl/O 
+Mounting Hole Configuration 
+Power supply 
+Thermals 

•Summary 
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ATX Goals and Guidelines 

•Goals 
+Enable new technologies that other FF's do not support 
+Reduce cost 

• Higher integration on motherboard 
• One system fan 

•ATX is an open guideline specification 
+No licence fee 
+Freely available via World Wide Web 
+Mounting hole configurations 
+Component placements 
+Keep out zones 

Market Forces Driving ATX 

•The PC in the 80's 
+Stand alone business tool 
+High costs 
+Low integration 
+Word processing, databases 

•The PC in 1996 
+Consumer product 
+Cost sensitive = High integration 
+Net surfing, video editing, 3D gaming 
+Connectivity/networking crucial 
+New applications drive new I/O 
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PC Form-Factor EvolutionA~ : 
J\ll7In-One : 

~~ ~ 

Integration, 
Lower Profile 

1990 1991 

Consumer 
Appliance 

1992 1993 

Baby AT Design Issues 
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LPX chassis design 
P.~.11t~1,1!'l" BLPX is more integrated than BAT, but.. .. 

+Expandability is still lower than desired 
+Riser card adds cost 
+No built in support for multimedia and communications 

• No room for audio, midi/game, video in etc. 
+ Second fan required 
+Poor end-user access for upgrades 
+No firm standard - riser dependant on chassis 

The ATX Design 
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System Level Savings of ATX 
Baby AT LPX ATX 

2nd System fan i $3.00 · $3.00 Not Required 

Parallel and Serial ·+ ·54:00" -1··--oii'"ii.oar(f ... On-Board 

~~.~ .. ~- .... - ... -.............. _ _l ___ ,,,_ ................ _ ........ ~ .................................... _,_ ,, __ .................. _,_,, .......... . 
I Video Riser Card i $2.50 I On Board 1 On Board 

f As.M .... 1;~0·1~nilt .. s-,1.' .. _oy·~o·-wisee ... rr.CR .. a1'serdr 'or ' $5.00 ~.11... ss:oo .............. L. ........... Oii .. ~bOard 
k ---., __,_ __ On_B_o_ar_d_ .. $is:oo .. ··---L- .. On .. Board ... 

~ 

~~!:;;:;~upply I Not Required I. Not .. Requf..Cll '------s1.50 ___ _ 

!fo1•1·srs•~.. . '_~f~J.~~~~~--~t "sz~~o·· ... :[' .·-·s:1_"so~-· .. i 

Note: ATX can be used for 
BOTH highly integrated boards 
and very basic boards. 

ATX Features 

• Imp~oved functionality 
•Full length slots 
•Future 1/0 flexibility 

•Improved ease of use 
•Easy upgrade 
• Serviceability 

•Reduced system level cost 
•Material cost reductions 
•Improved manufacturability 
•Cost efficient cooling 
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ATX Guideline Specification 
Summary 

•Rear 1/0 Panel 

•Mounting Holes 

•Power Supply 

•Thermals 

•How to get Information 

Double Height Flexible 1/0 
P.'.rJtl.11!1'1 •ATX 1/0 aperture provides more 1/0 area 

6.25" (159mm) 

= PaHllcl Midi/Gamtport 

I• •• ar l•\·.·.·.·.·.·.·.·.·.·.·.·.·7•1 l•\·.·-·-·-·-·-·-·(•I 
Im 111111 ml l•\·.·.·.·.·l•l•l·.·.·.·.·l•I e e CD 

MS 
KB 

USB Serial 1 VGAJSerial 2 

•New 1/0 needs include 

Audio 

+Universal Serial Bus, Video Input, Video Output, TV input, TV 
output, ISDN, Cable 
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Mounting Holes For Backward 
P.~mi~~rri Compatibility 

• • 

• 
0 

• 

• 
0 

·.: 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

··: 

I I 
I I 
I I 
I I 
I I 

: a: 

0 

I I 

: • • : Q: 
I I : 
•------------------------------4---------·····-·-·-··--···' 

ATX Power Supply 

•One power connector 

~ 
ATX 

Baby AT 

Full AT 

® Full AT hole 

• Baby AT hole 

0 ATXhole 

Hole not used 
byATX 

# Optional hole 

Example specification 
• 28 CFM Forced Cool 

• 200 Watts 
• 62% Efficiency 

• PS/2 Size 
• External 92mm Fan 

13 

replaces four 
+±5V 
+±12V 
+3.3V 
+Soft-power 

• One 20 Pin Power Connector 

•Improved 
manufacturability 

+installation time 
+single keyed connector= 

fewer defects 

•Lower cost 

•Easier for users and 
service 

14 
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ATX Thermal Test Results 
(In-System Test) 

P.'.l'!ti.llf(I VGA 

Get the ATX specification on the 
P.'ntlll"' WWW 

•The A TX specification 
+http://www.intel.com/pc-supp/motherbd/atx.html 
+Available in Microsoft Word for Windows 6.0 and Adobe Acrobat 

format 

•Summary on the PC Platform and What's New 
Pages 

+http://www.intel.com/pc-supp/platform.html 
+http://www.intel.com/pc-supp/whatsnew /index.html 
+ http://www.teleport.com/-A TX 

450 

15 

16 



Summary 
•The PC marketplace has changed 

+Current fonn-factors not optimised for new needs 

•ATX delivers 
+Improved functionality 

• Full length slots 
• Future 110 flexibility 

+Improved ease of use 
• Easy upgrade 
• Serviceability 

+Reduced system level cost 
• Material cost reductions 
• Improved manufacturability 
• Cost efficient cooling 

• ATX transition is well underway 
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BIOS BOOT SELECTION 
Frances Cohen 

Phoenix Technologies Ltd. 
2575 McCabe Way 
Irvine, CA 92714 

e-mail: frances_cohen@ptltd.com 

BIOS Boot Selection is a feature which permits increased flexibility of a user's selection 
of boot devices. It is based on the BIOS Boot Specification which describes a 
methodology by which the BIOS will identify all IPL (Initial Program Load) devices in 
the system, prioritize them in the order the user selects, and then sequentially go through 
each device and attempt to boot. The BIOS must become more intelligent about booting 
because the PC '95 Specification places additional requirements on the BIOS during the 
boot process, and there are now more devices that are bootable such as CD-ROM, 
network remote boot, PCMCIA, etc. It is important that this specification define a boot 
scheme that is generic and flexible enough to allow booting from virtually any existing 
IPL device, and for the definition of future IPL devices as well. 

The BIOS Boot Specification defines a feature within the BIOS that creates and 
maintains a list of all the IPL devices found in the system and stores this list in NV 
memory. IPL devices come in three flavors: BAID (Bios Aware IPL Device), PnP Card, 
and Legacy. Only BAIDs and PnP Cards are enumerated. Legacy devices are not 
supported for several reasons. First, they tend to take control of the boot process 
altogether making them rather unfriendly. Second, they provide no means for identifying 
themselves as an IPL device. Finally, the BIOS cannot selectively boot from one of 
several Legacy IPL devices in a system. 

The BIOS Boot Specification provides one basic feature, the IPL Priority. The IPL 
Priority is a user-specified priority of IPL devices that is arranged in Setup. This boot 
order is similar to the common feature of boot A: then C: or vice versa, but supports 
additional IPL devices. Also, the number of IPL devices in the system may vary from 
one power-on to another. Each time the user turns on the system all IPL devices in the 
system are enumerated. 

Additionally, the BIOS Boot Specification defines the BCV (Boot Connection Vector) 
Priority. The BCV Priority is a user-specified priority list of INT 13h Device Controllers 
that is arranged in Setup. This list specifies the order that the controllers will be called to 
install their INT 13h drive support during POST. 

If an IPL device fails to load an O/S, the BIOS regains control and attempts to boot from 
the next available IPL device. This procedure will continue until all possible IPL devices 
have been exhausted. Only then will the BIOS display a message that an O/S cannot be 
found, wait for a key stroke, and then invoke INT 19h again. This method ensures that 
the BIOS has intelligently made every attempt to boot. 
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The BIOS Boot Specification encompasses the boot process of both PnP and non-PnP 
systems. A standard AT compatible system (also called a Legacy system) is much 
simpler than one with a PnP BIOS because it only supports BAIDs. A Legacy system 
does not need to provide any dynamic IPL device enumeration or configuration, nor does 
it support PnP Cards in their native mode. This is because the number of IPL devices in 
such a system will never change. 

* Excerpt from the BIOS Boot Specification Version 1.00, October 11, 1995 
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Notebook Docking: 
Techniques and Considerations 

Jim Kelsey, Technologist 
SystemSoft Corporation 

2 Vision Drive 
Natick, MA 01760 
(508) 651-0088 

jkelsey@systemsoft.com 

January 12, 1996 
(excerpts from article published in Personal Engineering, January, 1996) 
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Introduction 

The debut of Windows '95 and its Plug and Play capabilities has spurred a new interest in 
dockable PC's, that is notebooks that connect to a convenience base to become a super­
notebook or desktop equivalent system. This article talks about the styles, benefits and 
pitfalls of buying into "Desktop To Go". 

While docking station technology is by no means new (in its simplest form, the docking 
station is simply an extension of the portable's internal ISA bus), it's capabilities have been 
redefined by Windows '95 to include hot docking, in which case the notebook and dock 
station can connect while the operating system is active, without requiring the user to re­
boot or cycle power. During a hot dock, the Plug and Play operating system (Windows 
'95 for now) and system firmware work together to detect, enable and configure the 
newly arrived peripherals in the docking station. 

As you might expect, docking station systems come in all sizes, shapes, capabilities and 
price ranges. Some vendors even stretch the capabilities of Windows '95 by offering a 
choice of docking stations that connect to single notebook. This allows users to plug in to 
a multi-drive, high-resolution video, networked power-user station at the office, or a 
scaled-back home dock that contains a sound blaster and external connectors for a favorite 
external keyboard or mouse. 

Styles of docking stations. 

Docking stations come in one of three styles -- the mini-dock, the port replicator and the 
convenience base. 

The simplest of the three, the mini-dock, allows users to connect to a single, or small 
handful of peripherals. For example, the DEC HiNote machine can be outfitted with 
floppy drive/PCM CIA mini-dock or a more sophisticated multi-media mini-dock that 
provides a CD-ROM drive as well as sound capabilities. Mini-docks allow users to tailor 
their portable system to the chore at hand; a quick business trip across town might 
involve simple data entry, in which case the larger multimedia mini-dock can stay back at 
the office. A graphic business presentation, on the other hand, might require multi-media 
capabilities, so at the expense of size and weight the user would pack both the notebook 
unit and the multimedia mini-dock. 
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Docking Stations -- A Comparison 

Dock Bus Type Slots Portability Peripherals 
Su__QQ_ort 

Mini-Dock Hot VL No Good CD-ROM, PCMCIA, floppy 
Warm ISA 
Cold PCM CIA 

Proprietar 
y_ 

Port Replicator Hot VL No Fair to Serial/Parallel, IR Port, External 
Warm ISA Good Keyboard, External Mouse, 
Cold PCI External Video, etc. 

Convenience Hot VL Maybe Poor Additional Fixed Disks, Floppy 
Base Warm ISA Disks, Battery Charger, CD-

Cold PCI ROM, Network, Plug-In Slots, 
etc. 

Next in terms of price/performance, port replicators generally serve two purposes. First, 
they act as a semi-permanent base for the more cumbersome, desktop peripherals such as 
full-size keyboards, external mice and monitors. Second, port-replicators often introduce 
new functions, such as an infrared port or network connector to the basic notebook 
system, enabling it to become more like a desktop, although without adding any mass 
storage or plug-in adapter slots. As the name suggests, a port replicator simply replicates 
the plug-in ports located at the rear of the machine by routing the internal VL/ISA or PCI 
bus to duplicate connectors in the replicator unit. High-end port replicators might provide 
additional serial or parallel ports not available on the notebook due to size constraints 
caused by the connectors or the notebook chassis. 

At the top of the docking station food chain sits the convenience base. This type of unit is 
designed to fully transform the portable system into a true, desktop unit. Because of its 
size, weight and reliance on wall-power, it rarely, if ever leaves the top of the desk. 
Convenience bases generally come in one of two flavors -- those with slots and those 
without. Units without slots are not necessarily less elegant. As I'll mention later, 
designers of this type of unit often wish to forego the complexity introduced by opening 
the system's architecture up to plug-in boards. 

Docking Methods 

Docking capable systems support up to three dock modes -- cold docking, warm docking, 
and the newly possible Windows '95 style hot dock. 

All docking-capable systems support cold-docking, in which case power is removed from 
the system when the notebook is either inserted in, or removed from its counterpart mini-
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dock, port replicator or convenience base hardware. The simplest docking systems 
support cold docking only. 

Units that support warm docking can be inserted into, or removed from their docking 
station either when totally off, or when in low-power suspend mode. Since the docking 
station is often powered by wall-current, many units disable power-savings modes and 
automatically power on or resume when the system is fully docked. Since power-saving 
are disabled in a docked system, the notebook unit cannot suspend and a warm-undock is 
not possible. Additionally, if the user resumes a newly docked notebook, he or she is 
effectively completing a hot dock. Because the circuitry required to transform warm-dock 
systems to hot-dock systems is relatively simple, many IHV's absorb the additional cost 
and complexity to achieve true hot docking. As a result, the number of true, warm-dock­
only systems is quite small. 

Hot-docking capable systems allow the user to insert the notebook system into its docking 
station when the unit is powered off, in low-power suspend mode, or fully powered and 
executing within the operating system. Hot docking requires support from the Plug and 
Play operating system (such as Windows '95). During its boot sequence, the Plug and 
Play operating system broadcasts its presence to the system firmware. Since the system 
firmware (Plug and Play BIOS) is aware of the Plug and Play operating system (or lack 
thereof) many systems will intentionally reboot if the user attempts to hot-dock while 
running a non Plug and Play OS. 

Physical docking mechanisms: 

In terms of the physical mechanism used to insert and/or eject a notebook from its dock, 
there are the following three variations, listed in the order of their ability to prevent data 
loss. 

Surprise Style (Least Expensive, Least Effective at Preventing Data Loss) A user of this 
type of system can insert the notebook in, or remove the notebook from its docking 
station at any time. 

Honor System (More Expensive, Medium Effectiveness at Preventing Data Loss) A user 
of this type of system must activate a switch or OS applet to inform the operating system 
that the notebook is about to be removed from its docking station during an undock. 
Once the OS has determined that undocking is safe, a message appears on the screen 
signaling to the user that the notebook can now be removed. 

VCR-Style (Most Expensive, Highest Effectiveness at Preventing Data Loss) A user of 
this system activates an OS applet or system switch to indicate that he/she wishes to 
undock the notebook from its convenience base. Upon receipt of a special message from 
the Plug and Play operating system signaling that it is safe to undock, the system firmware 
ejects the notebook via a VCR-like mechanically locking servo motor apparatus. 
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The Dock/U ndock Sequences. 

Users and designers alike must take care to handle the somewhat delicate process of 
inserting or removing a unit from its docking station. In a cold-dock only system, both the 
notebook and the docking station must be powered off before a dock or undock is allowed 
to occur. As far as warm-docking is concerned, the number of true warm dock/undock 
systems available is too small to be worth discussing. This leaves the hot-dock capable 
system, whose capabilities present a plethora of challenges not only to the designers of the 
system, but to the architects of Plug and Play operating systems who must deal with the 
almost instantaneous addition or removal of peripherals and mass storage devices in the 
system. 

Consider that a fully docked notebook system might have files open in a number of places 
-- on a docking station-based fixed disk, network connection or even a PC (PCMCIA) 
SRAM card. Prior to any physical undock, the Plug and Play operating system must take 
care to flush and close all open data files and remove the docking station-based mass 
storage device (and other peripherals) from its registry, which maintains a catalog of all 
currently attached peripherals. 

The OS' task of managing an undocked notebook is equally daunting if you consider that 
at any time, the user might dock to any of a number of dissimilar docking stations, each of 
which contains new and additional devices, each of which requires initialization and 
system resources, such as IRQ channels, DMA channels and 1/0 space. 

The key to successful docking and undocking depends on close coordination between the 
system's hardware, firmware and Plug and Play operating system. The following section 
details the exact sequence that occurs between a Plug and Play BIOS-equipped <lockable 
notebook and Windows '95. Remember that a dock or undock generates an SMI (System 
Management Interrupt) that allows the system firmware to execute regardless of the 
foreground mode of the OS and its applications. 

The Docking Sequence 

During a dock sequence, the system firmware and Plug and Play operating system are 
responsible for locating, enabling and configuring (assigning resources to) any peripherals 
in the docking station. The Plug and Play operating system and system firmware share the 
responsibility of locating, configuring (assigning resources to) and enabling docking 
station devices. The docking sequence proceeds like this: 

Step #1: The user docks his or her portable system to its port replicator, mini-dock 
or convenience base. This generates an SMI (System Management Interrupt) that 
transfers control to the system's Plug and Play firmware. Interestingly, all dock events are 
treated as if the system were a Surprise Style docking station, as described above. The 
more elaborate Honor System and VCR-style hardware is used only during an undock to 
prevent data loss. 
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Step #2: The portable system identifies the docking station, configures any slot­
based PCI devices (Plug and Play ISA devices are handled completely by the OS) and 
prepares a DOCKING_STATION_INFO structure for the operating system. 

Step #3: The system firmware activates any VCR-style or other locking hardware to 
insert the notebook into its dock and broadcasts the message DOCK_ CHANGED to the 
operating system by setting bit 0 in the Plug and Play BIOS event flag and supplying the 
Plug and Play BIOS event handler with the DOCK_ CHANGED message. 

Step #4: The Plug and Play operating system (which has polled bit 0 of the event 
flag and found it set) invokes the Plug and Play BIOS GetEvent function to find that the 
system has docked. The Plug and Play BIOS clears bit 0 of the event flag during the 
GetEvent function. 

Step #5: The Plug and Play operating system invokes the Plug and Play BIOS 
GetDockingStationinfo function to find out the type of docking station to which the 
notebook has been docked, re-enumerates the system, arbitrates the system's resource 
(IRQ, DMA channel, I/O range and address range) usage, notifies its drivers of any 
resource changes and resumes foreground execution. 

Peripheral Support 

Docking station peripherals belong to one of two classes -- internal and slot-based. 
Internal peripherals are those managed by the system's Plug and Play BIOS. Slot-based 
peripherals are those that can be identified by the Plug and Play operating system, but 
might need system firmware support during the dock. The following list shows the rules 
involved in docking: 

No late-arriving ROMs. Neither the system firmware nor the Plug and Play operating 
system will invoke an expansion ROM that belongs to a device in the docking station. 
This is because the real-mode address space in which the expansion ROMs normally exist 
has already been spoken for by virtual mode RAM UMBs (Upper Memory Blocks) 
PCMCIA controller memory windows or other memory mapped devices. Although the 
Plug and Play OS has a record of how expansion ROM space has been allocated, it is 
unable to deal with the specifics of the system's PCI controller shadow RAM, ROM chip 
select regions, etc. Such devices must be configured by OS level device drivers. 

No OS Support For PCI Devices Behind A PCI Bridge. The Plug and Play operating 
system can enable (via the PCI configuration space command register) but not configure 
PCI devices that reside behind a PCI-PCI bridge. Therefore, if the system firmware does 
not configure such PCI devices, they remain unusable after a dock has completed. 

No hot docking support for late-arriving video controllers. Generally, the Plug and Play 
operating system is unable to switch video adapters during a dock. For instance, the video 
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card in the docking station might not support the video mode in which the portable system 
is currently executing prior to the dock. 

No hot docking in a non-Plug and Play operating system. Unless the operating system can 
handle the messaging that must occur between the OS, its drivers and file system and the 
system firmware when a dock occurs, hot docking might result in data loss or system 
crashes. Currently, Windows '95 is the only operating system that completely supports 
hot docking. Support for hot docking is expected to arrive next year in other operating 
systems, such as OS/2 and Windows/NT. 

The Undocking Sequence 

The undocking sequence is usually more critical because it implies "pulling the plug" on 
devices that are currently playing. The following list details the communication that 
occurs between the system firmware and Plug and Play operating system during an undock 
operation. NOTE: This list applies only to Honor-System or VCR-style docking stations 
as described previously. If a user removes a Surprise Style docking station, the OS' only 
job is to try and recover from the undock with minimal data loss. 

Step #1: The user signals an undock via an OS applet or physical switch on the 
portable or docking station unit. 

Step #2: Having detected that the user is about to remove the portable from its 
docking station, the Plug and Play BIOS sets its event flag and posts the message 
ABOUT_TO_CHANGE_CONFIG. 

Step #3: The Plug and Play operating system, which constantly polls the Plug and 
Play BIOS event flag, detects a Plug and Play BIOS event and invokes the BIOS 
GetEvent function. It receives the message ABOUT_TO_CHANGE_CONFIG. During 
the GetEvent call, the Plug and Play BIOS clears its event flag so the event will not 
accidentally be detected twice. 

Step #4: The Plug and Play operating system determines if it is safe for the user to 
undock. If so, it closes any files residing on docking station-based file systems, such as 
PC Cards, network adapters, etc and it invokes the Plug and Play BIOS SendMessage 
function with the OK message. Otherwise, it invokes the SendMessage function with the 
ABORT message. If the OS aborts the undock, the notebook system remains attached to 
its docking station and the user is free to try undocking again at a later time. 

Step #5: Upon receipt of the OK message, the Plug and Play BIOS ejects the 
portable PC from its docking station if necessary. It then broadcasts the message 
DOCK_ CHANGED to the operating system via its event flag/GetEvent messaging 
mechanism. 
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Step #6: The operating system re-enumerates and reconfigures the portable system's 
devices and continues execution in the foreground. 

So far, it seems that docking is pretty straightforward, provided that the OS/system 
coordination shown above occurs in the proper order and the engineers who have 
implemented this support code stayed up late ensuring that everything works as 
advertised. 

Hot docking is hot for users that frequently switch between docked and undocked state. 
Rather than having to repeatedly sit through system boot sequences, these users are 
quickly back to work after the OS completes its re-enumeration and reconfiguration 
process. 

Hot docking is also hot for users that have ISA cards plugged into their docking station. 
Despite its Plug and Play capabilites, Windows '95 relies heavily on its ability to snoop for 
and detect the current configuration of legacy ISA plug-in adapters. Fortunately for the 
user, Windows '95 built in legacy ISA adapter support is both robust and accurate. 

Hot docking is not for the user of a non-Plug and Play operating system. If you hot dock 
in normal, bare-bones DOS, don't expect peripherals in the docking station to magically 
start working -- the support simply doesn't exist. For this type of user, however, the boot 
process is probably much faster than Windows '95 so the process of cold booting should 
be less painful. 

Hot docking is also not for the user who's constantly swapping ISA or PCI cards in and 
out of the docking station. Windows '95's detection algorithms are sophisticated, but if 
you keep adding and removing hardware, they're not exactly fast and the benefits of the 
speed of hot docking are sometimes nullified by the time Windows '95 needs to figure out 
what you've added and removed from the system. 

For more information on this topic, the Plug and Play BIOS Specification version l .OA is 
available on the CompuServe Plug and Play forum by logging into CompuServe and 
typing: GO PLUGPLA Y. 
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Multimedia Roundtable 

Multimedia applications are the most demanding clients of the PCI bus. Video, 3D, and 
audio data streams consume large portions of the PCI bandwidth while imposing strict 
latency requirements. Interactive multimedia applications must attain a high frame rate 
in order to be compelling. Once they have achieved a high frame rate, the focus changes 
to increasing quality. Quality is improved by increasing the amount of detail and thus 
the amount of data that needs to be transferred. Thus, the relentless press for the high­
est level of realism stresses PCI bridge chips to their limit. Devices optimized for CPU­
to-Memory accesses at the expense of CPU-to-PCI or PCI-to-Memory accesses will 
suffer. The challenge for chipset designers is to balance the requirements of spread­
sheets with those of interactive multimedia. Future PCI bus utilization indicates a trend 
towards bus mastering multimedia devices streaming ever increasing volumes of 3D 
textures, audio, video, and communications data. 
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Bridging the PCI to a Secondary Multimedia Bus 
Can We Plug and Play? 

Larry Chisvin, S3 Incorporated 

A trend that has already started and is expected to accelerate over the next several years 
is the use of a secondary dedicated bus to handle multimedia devices such as MPEG 
decoders, audio devices, and videoconferencing solutions. These devices are often 
attached directly to the graphics device through a side port, and the data for the device 
is routed to and from the PCI bus using the graphics chip as a bridge. One major prob­
lem faced by this type of configuration is how to handle the Plug and Play function 
when both multiple devices and multiple bus operating nodes need to be supported. 
This presentation discusses the problem briefly, explaining why it exists and what the 
obstacles are, then suggests some general solutions. 
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CAD Tools 

Jim Lipman, EON 

The proliferation of the PCI standard has spawned a number of companies offering both 
hardware and software products for the designer of systems using this interface. 
Hardware products for ASIC-based systems include pre-designed and pre-verified syn­
thesizable cores that you can embed into your chips. Software tools encompass those 
used to design PCI cores as well as those needed for designing the chips that use them. 
The CAD category also includes software tools required to measure PCI-based system 
performance. 

In the CAD Tools session, you will hear papers from companies at the forefront of 
available CAD tools for the development, verification, and optimization of PCI-based 
designs. 
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David L. Evans 
Vice President, Strategic Marketing 

Technical Data Freeway 1996 

• Technical Data Freeway 
•Customer Profile 

• Customer Issues 

+ PCI Core 

• Designing with the PCI Core 
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1Tb~n~ Company 

• Founded in 1992 
• 500 Plus Years of Complex ASIC Design 

Experience 

+ Over 100 years of Sales, Marketing Experience 

Technical Data Freeway 1996 DLE-3 

Company 

Mission Statement 

Technical Data Freeway is in the business of 
providing process independent products and 
services to companies that develop complex, 
integrated ASIC systems with compressed 
development schedules. 

Technical Data Freeway 1996 
DLE-4 
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Customer Profile 

Technical Data Freeway's objective is to be a 
strategic Partnerto high-technology companies 
with fast moving product development cycles 
to: 

•Reduce Risk 
•Shorten Time to Market 
• Preserve Alternatives 
• Cost Effective 

Technical Data Freeway 1996 

1r~~ Customer Profile 

Market Trends 
• Increased Global Competition 
•Shrinking Product Life Cycles 

• Increasing Product Complexity 

• Varied Technology Choices 

• Faster Clock and Data Rates 

• Limited, Changing and Uncertain Fab 
Capacity 

Technical Data Freeway 1996 
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1flr~~ Customer Issues 

• Late To Market 

+ Increase Design Productivity 

• Increase Design Complexity 

• Reduce Design Cycle Time 

•Technology Independence 

•Preserve CAE/CAD Investment 

Technical Data Freeway 1996 

1flr~~ Customer Issues 

Late to Market Issues 
+Miss Market Leader Margins 

•Lengthen time to recover R&D 

+Playing Catch-up 

Product Life (months) 18 
Total Expected Revenue $25 Mil. 

1 Day $137,000 
1 Week $953,000 
1 Month $4 Mil. 

18 
$50 Mil. 

$274,000 
$2 Mil. 
$8 Mil. 

Technical Data Freeway 1996 
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18 
$100Mil 

$547,000 
$3.8 Mil. 
$16 Mil. 
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1f"b~n~ Customer Issues 

What is good Design ·- 1 
c.... 7 

Productivity? t.: l' 
• 1965 - One Transistor per Day ~ :~ 7 

• 1985 - 1 0 Gates Per Day l ·: r:::l l 
y • ........... _._ 

• 1995 - 100 Gates Per Day .... .... .... .... .... .... ... 
Time 

• 2000 - 25,000 Gates Per Day 

In two years we will be able to routinely fabricate IC's 
with over 2 million gate but they will take longer than 

10 man years to design. 

In four years we can fabricate 25 million gate IC's 
Technical Data Freeway 1996 oLe-9 

1f~"~ Customer Issues 

What is good Design 
Productivity? 

1995 AVERAGE ASIC DESIGN 
+ 30,000 Gates 

+ Design Cycle Time 45 Weeks 

5 YEARS AVERAGE ASIC DESIGN 

+ 300,000 Gates 

• Design Cycle Time 25 Weeks 

Technical Data Freeway 1996 
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1i~~ Customer Issues 

How to Improve Productivity? 

• Good People 

•Good Tools 

• Good Methods 

• Reusable Logic 

Relative Effect 

Low 

Medium 

Medium 

High 

Technical Data Freeway 1996 

Core Li ® 

Deliverables 

•RT Level Source Code 

•Synthesis Script 

+ Documentation 

+Test Bench 

+Training 

Technical Data Freeway 1996 
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Core Lib® 

TELECOM FAX/MODEM MULTIMEDIA MICROPROCESSORS 

SONET-Generator 320C25 Equivalent VGA 
CONTROLLERS 

SAR622/15S AID DIA 6S02 66HC11 

SONET Framer Fax/Modem Functions 
MPEGl 6605 6086 

10/l 00 Ethernet Function Software 
MPEG2 8051 8088 

VITERBI v.17, v29, v32, v.32bis 
NTSC Encoder• Z80 80186 

Reed-Soloman 
AudioMPEGl 8031/32 80188 

8031 Turbo R-3000 

BUS LIBRARY FUNCTION LIBRARY DSP FUNCTION LIBRARY 

PCI 32 INTERRUPT ALU, etc.. MATH FUNCTIONS 
PCI 64* BASIC 1/0 RT CLOCK FIR FUNCTIONS 
PCMCIA UART INPUT/OUTPUT IRR FUNCTIONS 
11c• TIMER UART-16450 OTHER FILTERS 
FIREWIRE* OMA UART -16550 VITERBI 
CARD BUS* 

• Under Development 

Technical Data Freeway 1996 
DLE-13 

=;r=rrecnnical 
111 Data Freewciy 

Core Li 

Quality Support 
• Knowledge Transfer 

• Direct Access to the Developers 

• Architectural Options 

• Implementation 

• Custom Development 

Technical Data Freeway 1996 
DLE-14 
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1Tb~n~ 
Core Lib® 

Product Development Organization 
+TELECOM 25 Engineers 

+MULTIMEDIA 25 Engineers 

+ BUS LIBRARY 15 Engineers 

+ MICROPROCESSORS 15 Engineers 

+ DSP FUNCTION LIBRARY 15 Engineers 

+FAX/MODEM 10 Engineers 

+ BASIC FUNCTIONS LIBRARY 10 Engineers 

+ R&D 10 Engineers 

TOTAL 125 Engineers 
Technical Data Freeway 1996 DLE·15 

1fr];~n~ Core Lib® 

Product Development 
Program 

+ Market Research 

+ Product Specification 

+ Create Test Bench 

+ Create Synthesizable 
code and Script 

+ Floor planning & Place/ 
Route 

+ Verify Against Specifications 

• Evaluation Boards/Software 
Drivers Development 

+ Complete Documentation 

Technical Data Freeway 1996 
DLE·16 
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Core Lib® 

BUILD vs 
Late to Market 
Have or Develop Expertise 
Developmental Risk 
Partial Completeness 
Partial Documentation 
Next Generation 
Exceed Budget 

BUY 
Ready Now 
Center of Excellence 
Silicon Proven 
Complete Coverage 
Complete Documentation 
Migration Path 
Known Cost 

Technical Data Freeway 1996 DLE-17 

_... --Additional Cores 

..... 
~ Integration Logic 

Test Philosophy _... 

Core Methodology 

Silicon Proven Core 
Register Transfer 

Level HDL Source 
Code 

I 
Synthesis 

' Targeted Netlist 

t 
Physical Layout 

----
Your Requirements 

New Design Logic 

Your Technology 
Choice 

Technical Data Freeway 1996 DLE-18 
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TOUCAN 
TECHNOLOGY 

OVERVIEW 
• Toucan Technology is an company specialising in the design of 

• Electronic Systems 

+ ASICs 

• Synthesisable cores with custom features 

• Satisfied customers to date include Hewlett-Packard, Apple, Digital UK 
and other multinational clients. 

• Proven systems expertise in Telecommunications, Data Networking and 
Computer Bus Technology. 

• Staff have worked on 30+ ASIC projects with 11 different ASIC vendors. 

• Proven 1509001 based design process. 

Technical Data freeway 1996 DLE·19 

=;Fr Technical 
111 Data Freeway r PCICOREPROJECT 

OVERVIEW/ GOALS 

• High performance (132 MB/Sec)/ Zero Wait State operation 

• Provide a guaranteed data delivery service to application 

• Core maintains transaction context (address and data) 

• Application only has to re-initiate transaction 

• Customisable Functionality 

• Full compliance to Rev 2.1 PCI Specifications 

• Simple generic application interface 

• Request I Ready handshake protocol 

• Separate Target and Initiator busses 

• Single clock, synchronous design supporting a scan based test 
methodology 

• Technology independent 

Technical Data Freeway 1996 
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1--rTedmical r PCI CORE DESIGN 
I Data freeway METHODOLOGY VHDL 

AND VERILOG 
• PCI CORE (without FIFO block) consists of 4,200 lines of 

synthesisable VHDUVerilog Code 

• PCI CORE with guaranteed data delivery synthesises to: 

• 6,500 gates in Tl TGC2000 (0.65um) Gate Array technology 

• 7,000 gates in TSMC (0.65um) Std Cell technology 

• 9,000 gates in NEC CMOS 8 (0.65um) Gate Array technology 

• FIFO block (16 x 32) synthesises to 3,000 gates in NEC CMOS 8 

• All code is IEEE 1076-1993Nerilog HDL compliant 

• Coding style is based on internal Toucan procedure which provides 
guidelines for hardware design using VHDUVerilog 

• Extensive code commenting 

• Consistent code structure 

Technical Data Freeway 1996 
DLE·21 

llr~niral rCI CORE DESIGN DETAIL/ 
freeway DESIGN GOALS 

• Provide simple backport design with high performance features. 

• Data buffering used to balance the data flow between the 

application and the PCI Bus. 

• Design for a direct or FIFO based interface. 

• Simple handshaking protocol (Bus-Req, Skt-Rdy, BP-Rdy, 

Last-Data, D-Beat). 

• Designed for zero wait state initiator and target performance. 

• Separate initiator and target control and data paths. 

• Provide full error condition handling while meeting the goal of 

providing a guaranteed data delivery service. 

Technical Data Freeway 1996 
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PCI 
Bus 

PC/ CORE DESIGN 
BLOCK DIAGRAM 

Technical Data Freeway 1996 

PC/ CORE DESIGN 
DETAIL/ BLOCK 

DIAGRAM 

PCI Back 
Bua Port" 

I"""'! l""'""1 

t- 1--1 FIFO 
Block 

t- 1-- - (Fl) PCI 
CORE 

~ (PS) 

........ 

Back Port": Aa datlned by this -mcatlon 

Back 
Port"" 

-: : -~ +-: 

---

....... 

-

~ 

-
Back Port-: As -n by _..cation• using the FIFO bl-k. 
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(DM) 
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lnterteca 
(HI) 

Back Port 
Interface 

DL.E-23 

DLE-24 



White Box: LMC PCI Bua Tranaactoro 
Black Box: TOUCAN Teal Bench llome 
Grey Box: TOUCAN PCI SynthnlllBble Core 

PC/ CORE TEST 
VER/FICA T/ON /TEST BENCH 

Technical Data freeway 1996 DLE-25 

lllr~~ r System Test Bench 

Resource 
Arbiter 

• = LMC PCI Transactor Component ____ _., 

a..t--.i Channal o Memory 

----~Channel 1 Memory 

Technical Data Freeway 1996 
DLE-26 
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,--r"oernatanFi~ 
1 ·-··-, PC/ Core Summary 
• PCI Core Architected for Maximum 

Continuous Throughput 

• Designed for Fast Synthesis 

• Well Documented 

• User Interface is Easy to Use, Efficient 
and Flexible 

• 2nd Customer from Purchase to Tapeout 
in 6 Weeks with First Silicon Success 

Technical Data Freeway 1996 DLE-27 
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THE PROBLEM OF MODEL AVAILABILITY FOR SIMULATION OF DEVICES 
AND SYSTEMS 

Dave Apte 

Omniview, Inc. 

100 HighTower Blvd., Suite 201 

Pittsburgh, PA 15235 

Phone: (412) 788 9492 

Fax: (412) 788 0308 

e-mail: apte@omnivw.com 

ABSTRACT 

The complexity and speed of devices and systems is ever increasing, and so is the pressure of 
time-to-market. To design a system which works the.first time without costly redesign cycles, it is becom­
ing necessary to use simulation in the design flow. This becomes even more critical when designing with 
devices that are not currently available for prototyping. However, not many people use simulation 
because of the lack of good simulation models, especially of the latest devices. Expertise in HD Ls is also 
scarce, which makes it difficult to create necessary models in-house. ALCHEMIST® is a tool that can 
be used by both semiconductor vendors and system designers to solve this problem. ALCHEMIST cre­
ates VHDL and Verilog® source models of devices using graphical input. No expertise in an HDL is 
needed. ALCHEMIST can be used by semiconductor vendors to distribute simulation models of their 
latest (and even future) devices. System designers can use it to create the models as they need them. It 
is easier to upgrade and change models as necessary, since the users have control over the model. The 
models include accurate timing information, thus making it easy to detect problems with timing viola­
tions in the system before prototyping. 

INTRODUCTION 

The complexity of I Cs and systems is ever increasing. At the same time, time-to-market pres­
sures are reducing design time, and increasing pressure on designers to "get it right" the first time. 
Designers no longer have the luxury of multiple design cycles, building prototypes and verifying the 
design each time. They may not even have all the ICs in the system available to prototype. Under such 
circumstances, simulation of the design becomes a very important part of the design flow. Full simula­
tion of the system is the only way to verify that all the devices in the system (whether ASICs or off-the­
shelf components) work as designed, and also work together as a system. Physical prototypes do pro­
vide full functional verification, but cannot provide min and max timing verification, which is critical 
in high speed designs. Static timing verifiers and other such tools provide a degree of verification of the 
design, but it is necessary to do a full simulation to explore all the different interactions between devices 
of the system and verify them. 

Simulation, however, brings its own set of problems. Simulation models for the latest devices 
are not available or are expensive. Writing your own models requires VHDL/Verilog expertise. Even if 
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you are an expert in an HDL, you may need to distribute the model to other designers, which means that 
the model must be effectively documented for proper use of the model. VHDL or Verilog source code 
is not really good documentation, since the other designers will also need to be HDL experts. Separate 
documentation (say, in the form of descriptions/diagrams, etc.) is difficult to maintain. Chip vendors 
face the problem of distributing models of new devices in such a way that designers can use these 
devices in systems before silicon is available, while at the same time protecting their intellectual prop­
erty. All these problems have limited the use of simulation as an alternative to prototyping. 

ALCHEMIST is a tool that addresses these problems. ALCHEMIST converts a graphical 
description of devices into VHDL or Verilog source code. These generated models are simulation mod­
els of the specified device, while the graphical description serves as the documentation of the model. 
The models are not synthesizable, thus protecting proprietary designs and intellectual property. 

ALCHEMIST: AN OVERVIEW 

ALCHEMIST uses familiar representations of device behavior as input: state diagrams. timing 
diagrams and truth tables. All input is graphical; there is no need to write VHDLNerilog directly. The 
generated models are VHDL and Verilog source, and are directly simulatable with any simulator. The 
graphical input specification can be used as documentation, since ALCHEMIST produces PostScript® 
output. Flow-chart based test-benches can also be specified, easing the task of testing and verifying the 
models. 

ALCHEMIST models can be full-functional or bus-interface. Bus-interface models (BIMs) can 
be defined as "bit-accurate and timing-accurate" models of a device's interface. Bus-interface models 
will accurately model all of the external interface of the device, but may or may not model the internal 
functionality. For example, for a microprocessor model, a bus-interface model will correctly model all 
of the control signals and bus cycles (such as read and write cycles), but will not provide simulation of 
actual instructions. Thus, the actual values on its data and address buses (which can only be provided 
by the instruction being executed) will be arbitrary. The advantage of using BIMs is that they are con­
siderably smaller and faster than a full-functional model, thus using much less resources during simu­
lation. BIMs can be used to quickly verify that all devices work together in a system as specified. Even 
though the values on the address/data buses of a microprocessor are arbitrary, you can still place specific 
values on these buses, thus allowing you to test the system thoroughly. 

Conceptually, ALCHEMIST divides a device into two parts, the bus-interface, and the internal 
circuitry that provides the functionality of the device. Figure 1 depicts this division. The ALCHEMIST 
BIM model simulates the bus-interface part of the device. This includes simulation ofall the signals of 
the interface with correct timing checks and delays and simulation of all the transactions of the interface. 

Ports 
_.. 

..... ,... .. 
~ ~· Internal ...._ Bus-Interface 

,... 
External ..... 

~ Circuitry/ .____. Model .. Test Bench 
TestBench .____. 

,..- ,... 

Device 

Figure 1 ALCHEMIST division of a device model 
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The device definition starts with defining the signals, which can be single or multi-bit. Timing 
information is represented by timing symbols, which are used throughout the model to represent timing 
constraints (setup and hold times, etc.) and output delays. Each device can have one or more part num­
bers, which are differentiated by different values for each timing parameters. Thus, part numbers are 
used to represent different speed grades of a device. Internal variables can be used to represent registers 
and memories in the device, which allows full functional modeling of a memory device. 

The interface of a device is divided into one or more cycles. Each cycle represents a complete, 
independent transaction on the bus. For example, a PCI memory read transaction can be modeled as a 
cycle of the device. Cycles are associated with an initiation condition, which determines which cycle is 
simulated. Cycles are executed sequentially, and at the end of the current cycle, all the initiation condi­
tions of the different cycles are tested to determine the next cycle. 

Each cycle can have an optional state diagram, which indicates the states and transitions 
between them. Figure 2. is an example of a state diagram depicting a PCI bus master transaction. This 
shows the various states that the PCI master goes through while completing a transaction. The 
ADDRESS state is not a simple state, but a hierarchical representation for a group of states that manage 
the address phase of the PCI transaction. These include states that will terminate the transaction (for 
example, for a master abort, target abort etc.). The arcs connecting the states have boolean transition 
conditions associated with them. 

Figure 2 State Diagram of PCI Bus Master Cycle 

The state diagram indicates the states and their transitions, but contains no timing information. 
The timing diagram for each cycle defines the timing and behavior of each signal. Figure 3 depicts the 
timing diagram for the master cycle of the PCI device corresponding to the state diagram in Figure 2. 
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The states shown at the top correspond to the states defined in the state diagram. 

PCIQ.K 

FRAtlE_bar T JJ 

IRDYJ>ar 

ADC31:0J 

C_BE_barC3:0J 

Figure 3 Timing Diagram of PCI Bus Master Cycle 

The timing diagram indicates the different waveforms of each signal, and the timing relation­
ships between the events on each signal. These timing links define setup and hold times, and output 
delays. The timing links are defined in terms of the timing symbols of the device. Values of output sig­
nals can be defined on the timing diagram, or they can be defined in truth tables. 

<LRDY> Defined Actions 

CJ 0 
IROY_bar/2 = "1": 
IRDY_bar/3 = "1 ": 
IRDY _bar/2 = "O"; 

Figure 4 Action Table to determine value of IRDY _bar signal 

ALCHEMIST calls the truth tables action tables, because they define actions on output signals 
based on some combination of conditions. Action tables can have zero or more columns, which test for 
specific values on signals or a boolean condition. The different combinations of these column variables 
define the different rows of an action table. Each row can define a value for one or more output signals. 
Each timing diagram can have any number of action tables associated with it, to define various output 
signal values. Figure 4 shows a small action table that defines the output value of the IRDY_bar signal, 

482 



determined from an internal condition depending upon the state of the device. 

The above specifications can be used to define the bus interface of a device. However, these 
specification methods are not really sufficient to fully model a complex device, such as a microproces­
sor. For example, the instruction execution of a processor cannot be easily modeled using simple truth 
tables. But you can define a test-bench in ALCHEMIST to model such functionality. This test-bench 
(more properly called a model driver) takes the place of the internal circuitry shown in Figure 1. This 
test-bench is attached to the bus-interface model via control signals. The test-bench is used to sequence 
the model through different cycles, and to specify values to be placed on the various signals, such as 
address and data. 

Figure 5 shows the flow-chart of a simple test-bench used to drive the PCI bus master device. 
This test-bench exercises various transactions on the PCI bus, providing the address and data for each 
transaction. The test-bench connects to the BIM through a simple interface. Each test-bench consists of 
one or more parallel processes, as well as any number of procedures. Defining procedures allows con­
struction of a very modular test-bench, making it easier to construct complex test-benches. 

Figure 5 

Wait until after reset. 
STROBE = value< "O" > ••• 
wait onO until(IN_R ••• 
wait onO until<PCIC ••• 

Do some writes. 
1Jrite<"H12345600" , •• , 
1Jrite("H00345600" , ... 

Do sol'l'le reads. 
Read< "HB7654300" , 1. .. 
Read("H00654300" • ll: 

TestBench for PCI Bus Master Device 

An external test-bench can also be defined for any device. This allows the user validate the 
model, and to exercise the bus interface of a device, particularly a device that is a bus slave, such as a 
memory or a PCI target. An external test-bench of such a device can be used to drive the various signals 
of the device, and observe the response of the device model. 

Based on these inputs, ALCHEMIST generates VHDLNerilog source code. The source code 
is ready for simulation. The generated BIM will correctly simulate all state and cycle transitions, check 
all input timing constraints (such as setup and hold times), and drive all output signals with the specified 
value and delay. In addition, the graphical input can be output as Postscript documentation, for use in 
documenting the device and model. 
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ALCHEMIST MODEL USES 

ALCHEMIST models are not synthesizable. This means that IC vendors can distribute 
ALCHEMIST models of their new devices without risking intellectual property. These models can be 
created and distributed in advance of the actual silicon to provide designers with a way to create designs 
early, speeding up time-to-market. ASIC vendors can use ALCHEMIST to provide simulation models 
of their cell library, particularly for large cells such as embedded µC and DSP cores. The graphical 
input, such as state and timing diagrams, can be exported to word processors and the like for use in data 
sheets of the devices. 

ASIC designers can create an ALCHEMIST model of their ASIC to be used as a reference doc­
ument. The model can be used for simulation, before the synthesis of the ASIC is complete. This allows 
parallel development of the ASIC and the board. An ASIC test-bench can also be defined to exercise 
the device. 

System designers can use ALCHEMIST to quickly create device models that are otherwise 
unavailable. These models will be created on an as-needed basis, reducing cost and delay. The models 
can be partial or complete, as necessary. The user has complete control over what goes into the model, 
thus making the models easy to change as necessary, as well as to debug. 

ALCHEMIST models can also be used to design and verify bus protocols, for example the next 
generation of PCI. 

CONCLUSIONS 

Simulation is an increasingly important part of the design flow, but lack of models is a major 
hindrance to its widespread use. ALCHEMIST addresses this problem by providing a way of creating 
simulation models without VHDLNerilog expertise. These models can be used in various ways to 
improve the simulation of boards and systems, to reduce the overall design cycle and time-to-market. 
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VERIFYING PCI BUS SYSTEM AT MEGAHERTZ SPEED 
Sanjay Sawant 

Quickturn Design Systems 
440 Clyde Ave. 

Mountain View, CA 94043 
(415) 694-6580/ (415) 967-3199 (FAX) 

e-mail: ssawant@qcktrn.com 

Abstract: The Peripheral Component Interface bus, perhaps the most defacto standard since IBM PC 
and Sun Workstations, is going into chips, boards and boxes. It is well accepted in many applications 
as makers of computer-related equipment hop on the bandwagon to share in PCI's well known 
price/performance gains. Designers charged with developing PCI products must make the right design 
choice and then right verification choice to get on to the bus. This presentation is focused on a 
verification methodology for PCI designs and slow down issues associated with iL It gives an overview 
of Logic Emulation and its application to PCI verification. 

VERIFICATION CRISIS 
Managing design complexity is becoming more challenging in the face of widely available submicron 

manufacturing capabilities, top-down design and the demand for the fastest time-to-market. As a result, the 
need for higher levels of design abstraction has become a key issue in submicron design. Eventhough, 
Hardware Description Languages (HDLs) have managed to generate millions of gates using logic synthesis, 
verifying gates using traditional software simulators has proven to be inefficient. Today's design 
methodologies have shifted towards concurrent hardware/software development. Majority of design teams 
are therefore staffed by hardware and software designers, both working in parallel on firmware design. 

In addition to significant enhancement in the design complexity of PCI designs, designers are 
challenged by verification crisis. It is extremely difficult to thoroughly specify all system requirements to 
insure adequate test coverage as per PCI specifications. Traditional verification tools are too slow for 
complex designs. Many aspects of today's PCI designs can not be verified using event based simulators. 
This is because the performance of simulators change exponentially with the complexity of a design. For 
example PCI protocols and PCI applications that require real time video can not be verified using any 
software simulators. These applications require billions of clock cycles for system verification sign-off. 

The verification problem is further compounded because designers not only have to verify their chips under 
development but also their interfaces with rest of the system. Above changes in the design methodology 
demands changes in the verification methodology. 

INTRODUCTION TO EMULATION 

To bridge this verification gap a new technology has emerged called an Emulation. An emulation is a 
technology that enable designers to imitate logic of their design either in the form of a programmable 
devices or processors. As indicated in the figure 1, an emulator can be a resource shared on the network by 
multiple designers. 
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figure 1 

Emulation enable designers to automatically generate hardware prototypes of their designs. It takes 
away the burden of debugging the prototype so that designers can concentrate on debugging their design. 
This is a only technology that provides full system-level verification, up to 4 MHz speed, full design 
visibility and hardware/software co-verification capability. As indicated in the following speed chart, 
emulation runs orders of magnitude faster than traditional verification techniques. 
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RTL EMULATION 

Recently, a technology has emerged that couples fast RTL mapping with emulation. RTL emulation is 
directed at simplifying the emulation use model and to reduce time-to-emulation to bring emulation 
upstream where it can be used for performing architectural trade-offs. This enable PCI designers to validate 
their RTL in context of an entire system and verify whether RTL is really golden. This technology allows 
designers to visualize an effect of plugging their RTL into final target environment. Unlike gate-level 
emulation, designers need not wait for gate-level netlist to be available, or be concern about specific ASIC 
library, or Central Delay Calculators, or wire-load models. RTL emulation technology offers full visibility 
over a design through net name preservation and hundred percent readback. This enable designers to design 
and debug at RTL-level. Also quick design changes are made possible through incremental synthesis which 
is tightly coupled with incremental compilation. Most of the logic emulation systems have builtin logic 
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analyzer that allows designers to trace primary I/Os as well as internal nodes. Given below is an example of 
an emulation flow when RTL Emulation is used. 

Behavioral RTL 

Without RTL 
Emulation 

With RTL 
Emulation 

Synthesis 

SLOW-DOWN ISSUES 

• Physical design Fab i Redesign 

first Silicon 

Emulation 

.. 
Time 

The beauty of PCI is its practical price/performance ratio. A typical PCI application runs at 33 MHZ. 
One of the caviar in using logic emulation for PCI verification is building a target system and then 
slowing it down to few megahertz. The trick is to slow down the global PCI clock when it is used in a 
system running at a slower speed (approx. 1 MHZ). Eventhough, the PCI Local Bus Specification does not 
recommend this frequency, it has been tested on several projects. Whenever PCI bus is used to transfer data 
from a master to an agent. the agent's clock is synchronized with the PCI bus clock. A typical case would 
be data transfer to the frame buffer of a graphics card. Also, the timing out is based on the number of 
clocks and not on the absolute time, which implies that, if you have an entire system running at low 
speeds , then only slowing down the PCI clock should solve the problem. Video cards are relatively easy 
to slow down. One can literally stop the bus without any ill effects. We have successfully slowed down a 
720K floppy in a 1.44 Mbytes drive to approximately 500 KHZ. The slower read/write speeds keep the 
floppy from overflowing. Similarly, MFM and IDE controllers can be easily slowed down to 500 KHZ 
range. Finally, BIOS may need some modification as well. One may have to reprogram refresh timers in 
BIOS to increase bandwidth. An extra 150 KHZ margin can be gained by increasing the FIFO depth for 
floppy controller (to max 15). 

Thus with an ability to verify PCI designs, in-circuit at megahertz speed, logic emulation has become 
next frontier in the system verification. 
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ABSTRACT 

There are design and verification tools available in the market which facilitate the development 
of PCI based designs. They include PCI synthesizable cores which accelerate development of PCI based 
ASICs and PCI bus simulation models which facilitate verification of PCI designs for compliance with the 
specification. However, no tools are available which enable designers to measure and more importantly 
optimize the performance of their PCI designs in simulation. In order to arrive at meaningful performance 
data, designers currently need to visually analyze the thousands of cycles of simulation data and manually 
calculate the performance numbers. This process can not only be very time consuming but also error 
prone. Therefore, designers tend to randomly spot check the simulation data to get a general idea of the 
performance. However, this method is highly inaccurate since the performance calculation is based on a 
few cycles of simulation data and not on the entire simulation run. Furthermore, design changes which 
impact performance could be overlooked, resulting in silicon being fabricated that may be functionally 
correct but may not meet the performance requirements. This paper presents a method for analyzing and 
optimizing performance of PCI designs in simulation prior to silicon fabrication. 

TRADITIONAL DESIGN FLOW 

In the 1980s, most ASIC-based systems designs used a low-level design methodology: ASIC 
foundries provided customers with a set of primitive functions represented by gates. These gates became 
the building blocks used to develop digital systems. By interconnecting these gates, designers were able to 
develop application-specific functions. This approach is rapidly becoming obsolete as designs are 
becoming more complex. 

This low-level design methodology has two primary disadvantages: 
1. The design is tied to a technology or foundry, since the designers are using foundry-specific building 

blocks. Therefore, changing the technology or foundry becomes difficult and time consuming. 
2. The more complex the design, the more difficult it is to understand. It is difficult for designers to 

keep track of a complex design and it is even more difficult for someone other than original designer 
to understand the design, since there may be a large number of gates interconnected with each other. 

ASIC-based system design methodology has changed for the better, as we enter the next 
millennium. Designers, today, are using a high-level design (HLD) methodology and hardware 
description languages (HDLs) such as Verilog and VHDL to describe a design's functional behavior. The 
design is simulated and checked for functionality using the simulators provided by HDL vendors. 
Designers typically write numerous test cases for verification, and use the waveform display tools for 
debugging. Next, the design is synthesized and mapped into one of the foundry specific libraries. Finally, 
the gate level netlist is simulated to make sure that the design meets the timing requirements before 
tapeout. This approach has several advantages: 
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1. Engineers can be more productive if they design at higher levels of abstraction. They can add value 
or analyze tradeoffs quicker at behavioral level than at the gate level. 

2. By using a high-level design approach, designers can express design functionality in a technology 
independent language. And, instead of having the design based on a single foundry or technology, 
designers can choose from multiple foundries and technologies. 

3. Hardware description language (HDL) usage ensures an easier to understand and better documented 
design. 

THE NEED FOR AUTOMATIC PERFORMANCE ANALYSIS 

Changes to system design methodologies have resulted in the introduction and continued 
improvement of tools for designers. For example, HDL simulators, synthesis tools, and timing analysis 
tools help analyze a design's functionality and timing, but they do not measure performance of the design 
before silicon production. 

Designers have been left to their own resources to analyze and predict performance. They 
visually analyze simulation data and waveforms cycle by cycle, and manually calculate performance 
numbers. Unfortunately, simulation data can represent anywhere from a few hundred cycles to a few 
million cycles of simulation. Done manually, this is time-consuming and error-prone. Therefore, 
designers randomly spot check the simulation data to get some idea of performance. 

This approach is not accurate because performance calculations are based on only selected cycles 
of simulation data, and designers could miss simulation cycles that significantly impact performance. 
Also, during the design process, several design changes are typically made including ones that can impact 
performance. Very rarely does a designer think to go back and re-calculate performance. 

Once actual silicon is available, there are commercial tools that evaluate performance. The main 
drawback to having performance data at this point is that the system's performance may not be what was 
expected and it is too late to change the design. The designer options are accepting lower performance or 
making changes to improve performance by going through another design iteration. This typically takes 
months, can cost $25,000 or more for another round of silicon fabrication, and delays a product's 
introduction. 

PCI AND THE PCI MARKET 

PCI is the solution for performance-hungry applications. PCI-based systems usually include 
graphics, video, disk and network cards. PCI design starts are increasing dramatically. Published 
Dataquest figures indicate that from less than a million units of PCI silicon in 1993, the market is 
expected to expand to more than 49 million units in 1996. 

Developing a PCI-based component is a complex exercise. The specifications are very strict. 
Therefore, the growing PCI market is compelling EDA suppliers to provide system designers with easy-to­
use PCI bus models. These pre-built, pre-tested models have relieved designers from the "will it work?" 
pressures. "Is this best possible design?" then becomes the next question. 

THE PCI DESIGN PROBLEM 

The PCI bandwidth of 132 Mbytes/sec. is sufficient for most applications, including real-time 
video. However, designers must ask if enough bandwidth is available to manage multiple simultaneous 
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applications in a system-level configuration. For example, system latencies such as arbitration and wait 
states due to variations in fifo-depths affect available bandwidth. 

WHAT IS PCI PERFORMANCE ANALYZER? 

The proposed Sand's patent pending PCI Performance Analyzer (PPA) allows the designer to 
evaluate the performance impact of changes in the parameters of their design, such as the number of 
masters, FIFO depths, arbitration schemes, latencies and wait states. The designer can evaluate the 
impact on the PCI bandwidth of adding additional components. 

PPA ARCHITECTURE 

In a typical PCI design simulation environment the designer uses a PCI Bus Functional Model to 
generate bus cycles against his/her Design Under Test. The PPA connects to the PCI bus as shown below. 
It consists of three major blocks, a Monitor, a Parser and a Graphical User Interface. 

Figure 1 Typical Simulation Environment 
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Monitor 

The Monitor was implemented in Verilog and VHDL to support both the simulation 
environments. Monitor connects to the PCI Bus and logs the states of all the PCI signals on every rising 
edge of the clock into a file. This file is then analyzed by the Parser to calculate the performance data. In 
addition to logging, the Monitor also checks for PCI Rev2. l Compliance and reports all the Protocol 
Violations and Timing Violations into two different files, which will later be displayed through GUI. 

Parser 

The Parser was implemented in C. It parses the log file created by the Monitor, one 
transaction(burst/non-burst) at a time, and stores the parsed data in a Linked List Data Structure. This 
linked list is then analyzed to extract the relevant information needed for the subsequent calculations. As 
each transaction is extracted, a set of global data structures are updated with the transaction data like 
Command, Address, Wait States, Number of bytes, Transaction begin and end times etc. This procedure 
is repeated, until the entire log file is parsed. Finally data is filtered according to the user configuration 
provided through GUI, and stored in yet another set of data structures, ready to be display by GUI. User 
configuration will be explained in the following section. 

Graphical User Interface (GUI) 

The GUI is an user friendly front-end tool, developed using Motif. The GUI supports both SUN 
& HP platforms. Depending on the type of the data it provides, the GUI can be divided into three 
different windows, namely Statistics, Performance, and Protocol & Timing windows. Each of these will 
be explained below. 

Figure 2 Statistics Window 
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Statistics Window: The Statistics Window provides the designer with an exhaustive statistical 
analysis of all the possible cycles on the PCI bus for a particular simulation run. Generated data 
includes information such as best and worst case wait states, number of read and write cycles, 
and abnormal termination conditions. This window features a user configurable sub-window, 
where designer has the options to display all the cycles that took place on the bus, or selectively 
look at the data on a target by target basis/master by master basis. This enables the designer to 
look at the data related only to his/her design in a system level simulation environment, where 
multiple blocks from different designers are combined. Instead of watching data for entire 
simulation, designer can choose to display information that belongs to a particular time-window 
in simulation. The statistics window also provides event time stamps that provide links back to 
the simulation environment to help debug the design. 

Figure 3 Performance Window 

Performance Window: This . window mainly focuses on the performance data related to 
arbitration schemes and bus band width. It displays the data, such as how frequently PCI bus 
masters are getting on and off the bus, and what data transfer rates they are achieving. It also 
provides other information such as request to grant latency, individual bus utilization of all the 
bus masters, and percentage of total simulation time masters are waiting in queue to get onto the 
bus. 

Protocol & Timing Window: If during simulation, the PPA detects a Master/Device violating the 
PCI Protocol or PCI Timing, all such errors are flagged for review in these windows. 
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CONCLUSION 

A method has been presented to measure and optimize the performance of PCI based designs in 
simulation environment, prior to the fabrication. Though current implementation focuses only on the PCI 
bus, this concept can be readily extended to other 1/0 buses, process buses, and memory buses. 
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ABSTRACT 

This paper describes a design 
approach to implementing a Peripheral 
Component Interconnect (PC!) interface 
that allows for the maximum amount of 
design .flexibility while achieving an actual 
working solution in a relatively short 
amount of time. The approach involves two 
key elements: VHDL and programmable 
logic devices. The portability of VHDL and 
the rapid prototyping time of programmable 
logic, combined with the .flexibility afforded 
by both creates a design approach that 
provides the designer the opportunity to 
make changes to the design while still 
working towards a final hardware solution. 
In the experience of the ZeitNet project (an 
interface for an ATM adapter card), this 
approach yielded a demonstratable product 
in four months; in another three months, 
burst mode was added to the design and 
final testing was completed, resulting in a 
finished product in only seven months from 
product inception. Furthermore, 
considerations for future development of 
PC! interface are also included. 

1. INTRODUCTION 
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Most engineers are faced with the 
challenges of ever shorter production cycle, 
higher performance requirements as well as 
cost pressure in every project. A well 
defined design methodology is critical in 
meeting these goals. Our sample design is a 
PCI bus A TM adapter card. Table I shows 
the requirements of the project. 

Table 1 Project objectives 

High Full PCI and A TM 
Performance compliance; Zero-wait-state 

Burst transaction; 
Sustaining full duplex line 
speed 

Interoperability Product should be accepted 
by multiple platform for 
maximum customer appeal. 

Vendor Need flexibility to migrate 
Independence to future silicon technology 

if desired. 
Meet product Three to four month design 
rollout deadline cycle time limit from 

concept to silicon. 

The following sections will discuss 
these objectives in details and explain how 
these objectives are met by the proposed 
methodology. 



2. ARCHITECTURE CONSIDERATIONS 
Figure I . Typical PCI Bus System with A TM 
Adapter 
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Bus bandwidth is important not 
only to networking performance but also 
system performance. The PCI Bus is 
capable of high performance data transfer 
through its high bus bandwidth capacity. 
The maximum PCI Bus transfer rate is: 

Clock Frequency 
Bus Width 
Max Transfer Rate 

=33Mhz 
= 4 Bytes = 32 bits 
= 133MB/sec 
= l.06Gbit/sec 

The SONET 155 Mbps ATM 
requires 134 MBps transfer rate, 
significantly less than the maximum PCI 
bus transfer rate. 

Performance, however, does not 
depend on bandwidth alone. In order to 
realize the full potential of the PCI bus, 
burst transaction is expected to be 
implemented by the interface. PCI Bus 
specification enables variable burst 
transaction size. The interface component 
should be able to handle variable burst size. 
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Moreover, a low bus latency is 
necessary to provide a quick turnaround 
time. The overall bus latency is comprised 
of three parts: 

• Arbitration latency - the time the 
Master waits after asserting REQ# 
until it receives GNT# 

• Bus acquisition latency the 
amount of time the device waits for 
the bus to become free after GNT# 
has been asserted. 

• Target latency - the amount of time 
that the target takes to assert 
TRDY# for the first data transfer. 

While the A TM adapter project is a 
Master and Target combined PCI interface, 
all three types of latency should be taken in 
careful consideration. The PCI interface 
component is challenged to implement the 
design that meet the aforementioned 
performance requirements. 

2.2 Interoperability 

To ensure the widest possible 
market acceptance, products should be 
accepted by as many platforms as possible. 
As a bus architecture, PCI promises 
processor independence. However, due to 
the evolving nature of the PCI architecture, 
there are systems that does not adhere 
strictly to the latest standard. It is highly 
desirable to have a versatile PCI interface 
component to implement the required 
modifications in accordance with the 
operating platform. 

2.3 Vendor Independence 

Depending on the market demand 
and thus production volume, engineers 
should have the flexibility to switch from 
one silicon technology to another. For 
instance, at mid-to-lower volume 
production, programmable logic device is 
ideal for its flexibility, zero NRE cost and 
low inventory risk. In high volume 
production, it might be more cost effective 



to migrate to a Masked Programmable 
Logic Device (MPLD) or an ASIC solution. 

An ideal engineering methodology 
should provide a quick migration path to the 
most cost effective silicon solution in 
reaction to market demand. Proven 
transition path from one silicon technology 
to another should be provided. 

2.4 Design cycle 

The A TM adapter project was under 
tremendous time pressure. The month was 
March, and ZeitNet was scheduled to 
demonstrate their A TM adapter card at the 
Tokyo Interop show in July. There were 
fourteen weeks available from product 
definition to silicon realization. 

3. System Methodology 

To achieve the project's challenging 
goals: fully PCI and A TM compliant, low 
cost and flexibility within three-to-four 
months, designers must weigh several inter­
depending aspects of their engineering 
cycles. Critical to a project's success are 
the design entry method, EDA tools and the 
silicon choice. 

3.1 Hardware Selection 
At the time, to implement a PCI 

interface for the A TM card, there are mainly 
two selection: PCI chipsets or 
programmable logic device. 

Off-the-shelf PCI interface ASIC or 
PCI chipsets decrease the resources required 
for in-house development, but the ones 
available on the market lacked the 
flexibility for customization. Due to this 
shortcoming, the chipsets were deemed 
inappropriate for the project. 
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3.2 Design Entry 

An industry standard high-level 
hardware description language is desirable 
to ensure smooth future migration in 
technology. VHDL satisfied the need 
because of its wide acceptance in the EDA 
community. 

While designers usually need to 
instantiate device specific primitive for 
optimal performance and area results, 
careful modularization can lead to high 
degree of design re-use in future silicon 
technology. 

By modularizing design, designers 
separate the universal behavioral code from 
the device specific primitives instantiation. 
The behavioral core, written in VHDL, can 
be re-used in other synthesis tools when 
porting to other silicon technologies. While 
the primitive instantiations maintain close 
and effective control over the interface 
component. 

3.3 PLO Selection 
The next decision was to choose a 

programmable logic device that could 
implement a combined master/target PCI 
interface within a reasonable amount of 
time. Among the range of PCI-compliant 
devices offered by programmable logic 
vendors, FLASHlogic devices and MAX 
7000E devices from Altera, and XC7000 
EPLDs from Xilinx were explored. 

The first concern for a 
programmable logic implementation was 
fitting the entire combined master/target 
interface into a single device. The 
FlashLogic devices were examined and their 
logic capacity is deemed insufficient to fit 
all functionalities into the largest member of 
that family, although it did offer several 
features that were attractive for PCI 
interface design, including very predictable 
timing, on-board RAM, and open-drain 
outputs. The same resource limitations 
seemed to hold true for the XC7000 devices 
from Xilinx, in addition to suspicions that 



the critical timing required for the PCI 
interface would be difficult to achieve in 
those devices. 

The final potential set of devices 
proved to be the ideal choice: MAX 7000E. 
By estimation, the largest devices from the 
family would accommodate a combined 
master/target design. 

3.3 EDA tool selection 

Traditionally, there has always been 
tradeoff between design abstraction and 
efficient silicon control. On one hand, 
using a proprietary semiconductor vendor 
tool provide efficient design and synthesis 
support for the specific component, but it is 
usually difficult to port the design to other 
technologies. On the other hand, by 
choosing a standard EDA design platform, 
designers risk sacrificing the tight 
integration, but gain the ease of migration to 
various ASIC or gate array technologies. 

The development tools chosen for 
this A TM project is MAX +PLUS II, which 
includes a VHDL compiler. The tool can 
directly accept VHDL text entry, synthesize, 
place & route, simulate and generating 
programming file for MAX 7000E device 
without the burden of third-party tool 
translation. This design flow provides tight 
integration, allowing quick design changes 
and iterations. Moreover, MAX+PLUS II 
offers proven migration path interfacing 
with major third party EDA tools through 
EDIF netlists and vendor libraries. 

To simulate the design on a board 
level, tools from Model Technology was 
employed. The process of developing the 
VHDL code required for the design took 
about 2 weeks; simulation was completed 
one month later. 

4. IMPLEMENTATION 
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4.1 Implementing Functionality 

In order to shorten the design cycle, 
VHDL design code was developed in 
parallel with the device selection process; 
the goal was to work towards creating a 
functionally correct VHDL design using a 
VHDL simulator, and by the time of its 
completion, place the design into a device. 

After a month of simulating the 
VHDL design and fine-tuning its 
functionality, ZeitNet was ready to fit the 
design into their chosen device family. The 
date was nearing the end of May, which left 
the month of June and some of July to fit 
the design, lay out the PCB, and test the 
overall product. In order to reduce the 
development time, it was decided to proceed 
with the design without implementing the 
burst mode, since it was not deemed 
absolutely necessary to demonstrate the 
basic functionality of the product in July. 
After the show in July, ZeitNet's engineers 
would revisit the design and add the burst 
mode. There was, of course, an amount of 
risk associated with this decision, but 
ZeitNet's engineers remained confident that 
they could add the burst functionality to the 
MAX 7000E device without negatively 
impacting the overall product. 

Compiling their VHDL with 
MAX +PLUS II revealed that the MAX 
7000E device required would be the 256-
macrocell EPM7256E in the 208-pin QFP 
package. Without the burst-mode 



ility, the design occupied about 75% 
.e device's logic resources and used 

,t 100 pins. 

Implementing Burst Mode 

After exhibiting their product at the 
Interop show in July, ZeitNet set about 
adding burst mode to their PCI interface. 
During the initial testing of their card, they 
discovered that most existing systems used 
host bridges that limited transfers to host 
memory. Specifically, the limits were: 32 
bytes for a burst read cycle and 16 bytes for 
a burst write cycle. They designed their 
burst mode for 32-byte capability 

This segment of the design process 
took a little over a month and a half, with 
much of the time devoted to ensuring that 
burst capability would function in all tested 
platforms. These platforms include 
different PCI machines such as Compaq, 
Dell, DEC-PC, Gateway, Micron, NEC PC 
and various other clones. With burst mode, 
the entire combined Master/Target interface 
design occupied 220 macrocells, or about 
86% of the EPM7256E device. Even with 
the increased utilization, the ZeitNet 
designers were able to keep the same pinout 
for the EPM7256E, and eventually brought 
the completed ZATM PCI-bus ATM 
adapter card to market at the end of 
October. 

5. PCI EXPERIENCE 

The proposed platform: VHDL 
design entry and programmable logic silicon 
implementation successfully meet all goals 
set forth at the beginning of the project. 

On the side of PCI Bus, the A TM 
adapter card was able implement variable 
burst size transaction. In addition, zero wait 
state read and write transaction was also 
achieved, providing the lowest possible bus 
latency. These abilities actualize the full 
performance potential of the PCI bus. On 
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the backend A TM network, full duplex line 
speed was sustained. 

In terms of migration ease, with the 
help of the tool, designers estimate that they 
would able to re-use 80-90% of their VHDL 
code to port their design to an ASIC in the 
future. The versatility of the proposed 
platform was proven as the same design was 
re-target for another programmable logic 
device, an EPF8820A, a member of the 
FLEX 8000 PLD family, later in the 
production cycle.1 

More importantly, Zeitnet was able 
to achieve all goals within the specified 
time frame: the product meet the trade 
show demonstration as well as the 
production deadline. 

6. FUTURE ROADMAP 

Looking forward, there are several 
paths of modifications, mostly related to the 
evolving nature of the PCI standard and 
systems offering PCI compatibility. 

(1) As noted earlier, the host bridges in 
most of the tested systems limited 
transfers to the host memory. The 
adapter card was designed accordingly, 
but future host bridges is expected to 
provide larger transfers in the future. 

(2) None of the tested system had 
implemented the latency timer. 
Correspondingly, no latency timer was 
implemented in the adapter card. This 
functionality is expected to be added 
when latency is supported by more 
systems. 

These are functionality concerns for 
the future of PCI as an evolving 
architecture. Meanwhile, the interface 
component should be versatile enough to 
handle these modifications. 

1 While MAX 7000E is a AND-OR gates-based 
CPLD built on E2PROM technology, FLEX 8000 is a 
Look-Up Table based SRAM technology. 



Conclusion 
From this case study, one can 

conclude that all engineering challenges 
were met. While the final product not only 
meet release schedule, it also attain high 
performance and maintain a versatile future 
growth path. 

It is obvious that the benefits of the 
proposed methodology can readily be 
extended to other areas of electronic 
engineering. Flexible engineering control 
such as shortened time-to-market, versatile 
volume adjustment, and vendor 
independence; high performance silicon 
technologies coupled with easy to use 
software are universal advantages alt 
designers should utilize. 
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The GALNETTM Architecture 

• An architecture that allows for easy 
interconnection and expansion of 
networking chips over the PCI bus 

• A family of GALNET chips is being 
developed by Galileo 
• The first is the GT-48001 Switched 

Ethernet Controller (SEC) 
A 10/20Mbps, 8 ports 

• The second will support 1 OOMbps 
a. Introduction in 2096 

• Several others will follow 
A Various LAN and WAN technologies 

• Simple protocol used in the SEC 
• GALNET protocol 
• 5 instructions 
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GT-48001 Key Benefits 

• High· integration 
• 300,000 gates, 1.5Million transistors 
• A complete system on a chip 
• 8 10/20Mbps ports in a 208PQFP 

• Lowest cost in the industry 
• Integrated serial transceiver logic requires 

inexpensive external electronics per port 
• Uses standard DRAM instead of SRAMs 

orCAMs 

• High performance 
• Filtering and forwarding at full wire speed 
• Minimizes dropped packets 

• Intelligent switching and management 
• Enhanced network management 
• Differentiation via management hooks 

• Easy expansion and connectivity 
• Expand to 256 ports 
• Interface to other LAN technologies via PCI 
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GT-48001 Switched Ethernet Controller 

PCIBus 

PO<IO .... , ..... ..... ..... ..... ..... PO<l7 

APRIL 1996 

Pin out 
GT-48001 32 

Rsr 0Data[31 :OJ 

Clk DAddrj8:0) 
DRAM 

RAS[1:0)" Req• 

Gnr CAS• 

PErr• we· 
SErr• ChipSel• 

ldSel 

DevSer• 

PCI 
Interface 

Stop• 

Frame• 

Par 

Trdy• TxEn[7:0) 

IRdy• Tx0[7:0) 

CBE[3:0j 
Serial Tx0Del[7:0) 

32 Interfaces 
AD[31:0) ...,.... CrSJRxEn[7:0) 

Int• Rx0[7:0) 
RxLP/Co11[7:0) 

LEDData Pol[7:1) 

LEDStb LED Pol[O)/SynClk10 

LEDClk 
Interface 

SClk/SynClk20 

RstQueue• 

En Dev" Miscellaneous 
Scan• Interfaces 
TriState• 
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Wide Product Spectrum Feasible 
.::::::. . 
::: .. Galileo 
·::,;1: Technology 

• The GT-48001 is a flexible building 
block 
• Departmental to enterprise 

• Various system capabilities possible 
• Low cost unmanaged switches 

• Stackable switches 

• Low cost managed switches 

• High performance systems with 
sophisticated management 

• High product differentiation possible 
• Many management hooks provided 

• More engineering applied --> more 
sophisticated product produced 

APRIL 1996 

Unmanaged Switches 

• Simple implementation 
• AddDRAM 

• Add serial interfaces 

• Add LEDs 

• Add power supply and case 
A. GO! 

• Lowest cost in the industry 

• Simple expansion via PCI bus 

• Auto-learning mechanism 

APRIL 1996 
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Switch Expansion (< 48 Ports) 
• Simple expansion by connecting 

devices via the PCI bus 
• Full wire speed, full duplex switching, 

guaranteed for up to 6 GT-48001 's 

• Add management via PCI 
• CPU can access Address Table 

APRIL 1996 

Switch Expansion (> 48 Ports) 
• Simple expansion by using PCl-to­

PCI bridges 
• 1 Gbps bandwidth is preserved for 

every 6 GT-48001 's 

• Full wire speed, full duplex switching, 
guaranteed for up to 32 GT-48001's 

•••• 
48 Ports 
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>48-Port Managed Switch 
(Up to 256 Ports) 

•••• 
48 Ports 
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Switch With RMON 

• Control storage of connectivity matrix 
• The GT-48001 controls an external 

FIFO 

• CPU implements AMON 
• Based on Fl FO data it reads 

.::::::. . 
::: .. Galileo 
•;::;!l Technology 

l Managed Switch With AMON l 

To System Controller Local Bus 

APRIL 1996 

Connectivi'ty to Fast Ethernet 
• Connect with GALNET family member 

SEC-100 
• Sampling 2096 

• Alternatively, use high speed CPU 
local bus with standard 1 OOMbps chips 
• System Controller's OMA facilitates the 

SEC to 1 OOMbps interface 
•Uplink 
• Serverconnection 

APRIL 1996 
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.:::::. 
Connectivity to Fast Ethernet (cont'd) ::: .. Galileo 

·=:::il Technology 

• Another alternative is to use a 
1 OOMbps PCI subsystem I Managed Switch With Fast Ethernet I 
• Connect via PCl-PCI bridge 
• System Controller's OMA 

facilitates the SEC to 1 OOMbps 
interface 

•Uplink 
• Server connection 

APRIL 1996 

Connectivity to ATM 

• Connect via PCI bus 
• Interface/translate to GALNET protocol 

• Alternatively, use high speed CPU 
local bus with standard ATM chips 
• Communicate via System Controller 

APRIL 1996 
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Switch In A Card 

• High integration of the SEC makes 
this possible 

• Client-servercomputing 

• Limited port applications 

• Small professional offices 
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Architectural· Overview 

• Interfaces 
• DRAM interface 

• PCI interface 

• Serial interfaces 

• LED interface 

• Switching & address recognition engines 

• Packet forwarding buffers & queues 

• Management support 
• Intervention mode 

• Statistics counters 

•AMON 

•Sniffer 

• Spanning tree 

• Watchdog timer 

• Default configuration 

APRIL1996 
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DRAM Controller 
.::::::. . 
::: .. Galtleo 
·::,,;: Technology 

• Direct 32-bit interface to 1 or 2MByte 
DRAM 

• Support for 60ns standard or EDO 
• EDO shortens latency between 

packets 
• Auto-configuring interface timing 

DData[31 :OJ • DRAM stores BK address table DAddr[S:O] 

• DRAM used for storing packets RAS[1:0J* 
CAS* 

• Fixed receive buffer size of 1.5KBytes WE* 

• Supports 1024 buffers (2MB) or 384 ChipSel* 
buffers (1 MB) 

• Buffers dynamically allocated to the 
ports and the PCI bus 

• ChipSel* signal used for interfacing to 
an external FIFO 
• Store destination, source & byte count 

observed on DData[31 :OJ for RMON 
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.:.::::. 
PC/ Interface m .. GaJileo 

·1:;:i: Technology 

• 1 Gbps bandwidth 
• 133MBytes/sec Bandwidth @33Mhz 

Ast* • Provides expansion and connectivity Clk 
• GALNET protocol operates on the PCI Req* 

• Up to 32 SEC Devices (256 Ports) 
Gnt• 
PErr* 

• Up to 6 SEC Devices Without PCl-PCI SErr* 
Bridges ldSel 

• CPU Connection for Management DevSel* 

• High Speed LAN (100Mbps, ATM,etc.) 
Stop* 
Frame• 

• PCI Master and Slave Functionality Par 

• Supports version 2.1 specification TRdy* 
IRdy* 

• Supports clock frequencies of 25-33MHz CBE[3:0]* 

• External reset AD[31:0] 
Int* 

• Full parity support 
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Tx and Rx Serial Interfaces 

• 8 Ethernet ports 
• MAC, Manchester Encoder/Decoder, 

Link integrity, Auto-Polarity, Dual 32-
Byte FIFOs, 7 LEDs 

• Compliance with Ethernet and 802.3 
• Production-proven MAC 

• Full-duplex support (20Mbps) 

• <$2.00/port in external drivers/filters 
in 10baseT 

• Supports different PHY options, each 
can be set individually per port 
• 10base-T 

• 10base-F 

• AUi 

• NRZSynch. 

• All digital logic, no analog elements 

• 80MHz serial clock 

APRIL 1996 

Tx and Rx FIFOs 

• Used to buffer incoming and outgoing 
packets 
• Fully bidirectional and independent 

• 32-bytes for receive & 32-bytes for 
transmit 

• One pair per port 

• Interfaces between the Frame 
Controller/Switching Engine and the 
MA Cs 

APRIL 1996 
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Tx 
FIFO 
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TxEn[7:0] 

Tx0[7:0] 

Tx0Del[7:0] 

CrS/RxEn[7:0) 

Rx0[7:0] 

RxLP/Co11[7:0] 

Po1[7:1] 

Pol[OVSynClk10 

SClk/SynClk20 
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10-Base-T Implementation 

• Low cost components required 
externally 

APRIL 1996 

LED Interface 
• Serial shift register output 

contains 7 LED indicators 
per port 

• LED indicators 
• 7 Data (one set per port) 

k Receive, Transmit, 
Collision, Forward 
Unknown, Sniffer, 
Half/Full Duplex, Link 
Status 

•Strobe 
A Indicates start of valid 

data 

•Clock 

APRIL 1996 

A Used to clock the serial 
data out 
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Transmtt 
--1'-+- Receive 
--t-+- Collision 
--f-+- Forwarding Unknown 

Sniffer 
Half/Full Duplex 
Status 
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Switching Engine 
• Store and Forward architecture 

• Patent pending technology 

• Provides the switching function between: 
• 8 Ethernet ports and PCI bus 

• Guarantees full wire speed for all ports 
with NO latencies 

• Supports the management features 
• Spanning tree, station-to-station 

connectivity matrix, etc 

• Supports the powerful Intervention Mode 

• Allocates the buffer sizes 

APRIL 1996 

Switching Engine Performance 

• High aggregate 
throughput 
• > 650K Unicast 

packets/sec (using 3 
SECs) 

• > 90K Multicast 
packets/sec (using 3 
SECs) 

• Low last bit-to-first bit 
delay 
• Ports at the same SEC: 

A Short packet 3us; 
long packet: 3us 

• Ports at different SECs: 
&. 2SECs-

APRIL 1996 

short packet: 4us; long 
packet: 18us 

&4SECs-
short packet Bus; long 
packet: 30us 

1. Last bil In 2. Firs! bil oul 
(Store) (Forward) 
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Address Recognition 
• The Address Recognition 

Engine looks for the 
destination address in the 
incoming packet 
• A match will occur if the 

same destination address 
has been received before 

• The associated data 
containing the port address 
directs the packet to the 
specified port 

• Unicast addresses 
• Port # and Device # match 

A Packet is discarded 

• Port # is different, Device# 
matches 

A Packet is forwarded to the 
proper Port # in the same 
device 

• Device # is different 

APRIL 1996 

A Packet is forwarded to 
another SEC via PCI bus 

Address Recognition 
• Intelligent address recognition 

Source Destlnallon 
Port Port 

• Supports up to BK MAC addresses 

• Full speed frame forwarding 

• Self learning mechanism 
• CPU optional 

• Address Table stored in DRAM 
• Very cost effective 

• Additional bits for: 
• Device number (Dev#, 5-bits) 

• Port number (Port#, 3-bits) 

•Valid (V) 

•Skip (Sk) 

• Aging(A) 

• Static address (St) 

• Multiple (M) 

• Intervention for DA (Id) 

• Intervention for SA (Is) 

• Broadcast storm rate filtering 

APRIL 1996 

63 62 61 60 59 58-56 55-51 50 

Is Id M St R Port# Dev# 

' SK 
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Buffers and Queues 
• 9 transmit queues 

• B ports and PCI bus 
• Both transmit queues and receive 

buffers are held in DRAM 

• Tx descriptors 
• 9 descriptor rings, each containing 

512 descriptors 
A. Size is 32-bits, includes Block 

Address/1536, Byte Count, Packet 
Type (Multicast or Unicast) 

• Read/Write Pointers 
• 9 pairs of pointers to the transmit 

descriptors 

• Rx Buffer 
• Common for all ports 
• 384 blocks (1 M DRAM) or 1024 blocks 

(2M DRAM) of 1536 bytes each 

• Rx Empty List 
• Each block (384 or 1024) contains 

a bit which specifies Empty or 
Occupied 

APRIL 1996 

GALNET Protocol 

• 5 simple messages on the PCI 

• Efficient mechanism 
• Takes advantage of PCl's high 

bandwidth with little overhead 

• Enables communication 
between SECs 
• With or without CPU 

• Enables communication with 
other GALNET family members 

.::::::. . 
::: .. Gahleo 
'::::1E Technology 

Rx Empty Ust Tx Descriptors: 
512x9 

Rx Buffer 
(for all ports and 

PCI bus) 
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• 1 : new_address' message 
• Message between GT -48001 s 

or GT -48001 and the CPU 
• Indicates a new address 
• Also used by the CPU to update 

the Address Table 

Aclclreu 

.,... Target device number 
'new_address' message Identifier 

Data 0 MAC address [19:47) 
Aging 
Skip 
Valid 

Data 1 Unknown/new address 
Multiple 
Static Address 
Portt 
Device. 
MAC address [0:18) 

Data 2 Intervention mode for DA 
Intervention mode for SA 

APRIL 1996 28 
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GALNET Protocol (cont'd) 
.::::::. . 
m :: Galileo 
':m: Technology 

• 2. 'buffer_request' message • 3. 'start_of_packet' message 

• A message from the source device to 
the target device to request a buffer 

Addreu 

Data 
DataO 

APRIL 1986 

Target device number 
·buffer _requesf message identifier 
Source device number 

Sniffer type 
Unknown message 
Source port # 
Target port # 
Multicast/Unicast 
Byte count 
Source buffer address 

GALNET Protocol (cont'd) 

• Message from the target device to 
the source device which contains the 
empty buffer 

Addreu 

Data 
DataO 

Data 1 

Source device number 
"start_of_packef message identifier 

Sniffer type 
Target port # 
Multicast/Unicast 
Byte count 
Target buffer address 

Source port # 
Source buffer address 
Target device number 

···•··· 
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• 4. 'packet_transfer' message • 5. 'end_of_packet' message 
• Burst of 8 32-bit words from the 

source device to the target device 
which contains the packet 

Address 

DataO 

Data7 

APRIL1986 

Target device number 
"packet_transfer' message identifier 
DRAM location 

DataO 

Data7 

514 

• Message from the source device to 
the target device which indicates end 
of packet 

Addre88 

DataO 

Target device number 
"end_of_packef message identifier 

Unknown packet 
Target port # 
Multicast/Unicast 
Byte count 
Target buffer address 
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Management: Multicast Intervention Mode 
• Intervention mode for Multicast 

packets 
• All multicast packets forwarded 

to CPU memory 

• CPU decides which ports to 
send the packets to 

•Sequence 

APRIL 1996 

A 1. Incoming packet is received & 
stored in GT-48001 (A) DRAM 

& 2. GT-48001 (A) transfers packet 
to CPU main memory 

A 3. CPU transfers packet to the 
selected devices GT -48001 
(A,B) 

A 4. When finished sending 
packets, CPU sends 
'end_of_packet' message to tag 
selected ports 

A 5. Packet is transmitted on 
selected ports 

Management: Unicast Intervention Mode 
• Intervention Mode for Unicast packets 

• Optional per MAC source or 
destination address or both 

• Sequence 

APRIL1996 

A 1.Unicast packet is received & stored 
in GT48001 (A) memory 

A 2. If an intervention bit is set, 
GT48001 (A) sends a 'buffer_requesf 
to the CPU, including the source port 
& the destination port/device 

.a. CPU alternative· a' 
+ 3. Discard the packet 

.a. CPU alternative 'b' 
+ 4. Signal to forward the packet to the 

destination device. 
+ 5. Buffer allocated at GT48001(B), 

which sends a • start_of_packet' to 
GT48001(A) 

+ 6. GT48001(A) sends packet to 
GT48001(B) 

A CPU alternative • c' 
+ 7.Take the packet and modify it. 

GT48001(A) sends the packet to the 
CPU main memory. 
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Management: Statistics Counters 

• Repeater MIB & PCI counters 
• MIB: 15, 32-bit wrap-around counters per port 

.t. Bytes received 
A Multicast bytes received 
.t. Broadcast bytes received 
A. Bytes sent 
A Frames received 
.t. Multicast frames received 
A Broadcast frames received 
A Frames sent 
A Collision 
A Late collision 

A CRC +alignment 
A.Jabber 
A Frame too short 
A Frame too long 

A Bad (CRC error, frame too long) bytes received 

• Global PCI traffic 32-bit counters for ALL ports 
A PCI frames received 
A PCI frames sent 

APRIL1996 

Management: RMON 

• Station-to-station connectivity matrix 
• Records destination address, source 

address, and byte count for all 
forwarded packets 

• Used for AMON support 
• Stored in an external FIFO 

• ChipSel* signal used for interfacing to 
an external FIFO 
• Store destination, source & byte 

count observed on 0Data[31 :O} for 
AMON 

APRIL 1996 
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Management: Sniffer Mode 
• Monitoring (Sniffer) mode 

• Target can be the ports within the 
same SEC or ports in another SEC 

• One port is set to monitor 

• All traffic from other ports and/or 
SECs is received by the Sniffer port 

• Target Sniffer is written to the CPU 
and the Sniffer Numbers register 

• LED active on Sniffer port 

APRIL 1996 

Management: Spanning Tree 

• Spanning Tree support 
• GT-48001 provides the hardware 

assistance to implement the spanning 
tree algorithm 

• CPU executes the algorithm 

APRIL 1996 
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Source Target Target 
Sniffer Sniffer Sniffer 
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LAN1 LAN2 

•••• 
SWITCH 

LAN3 

LAN4 LANS 
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Watchdog Timer 

• Used for every transmit queue 

• Used to empty packets from the 
queue when the timer expires 

• When timer expires: 
• GT48001 clears the used blocks & 

sends an interrupt (Int*) to the CPU 

• Default value 60ms 

• Range is 10 - 160ms 

APRIL 1996 

Configuration at Reset 
• SEC acquires basic system 

knowledge during initialization 
• Certain pins must have pull­

up or pull-down resistors 

• SEC samples them at reset 

• Allows operation without CPU 

• Basic parameters set 
• Duplex mode per port 

• Serial mode per port 

• Device number per GALNET 
protocol 

•DRAM size 

•DRAM type 

APRIL 1996 

OxO 
OxO 
oxo 
OxO 
OxO 
OxO 
OxO 

Ox1 
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0000 
0001 
0010 
0011 
0100 
0101 
0110 

0000 

.::::::. ~ 
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Illegal 
10ms 
20 
30 
40 
50 
60 (DEFAULT Ox6) 

160 (MAX Ox10) 
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DUPLEX MODE 
O=Half-duplex 
1 =Full-duplex 

SERIAL MODE 
00=1 Obase-T 
01=10base-F 
10=AUI 
11=Sync 

DEVICE NUMBER 
Per GALNET Protocol 

DRAM SIZE 
0=2Mbyte 
1= 1Mbyte 

DRAM TYPE 
O=Standard 
1=EDO 
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Conclusion 

• The GALNET architecture offers a 
flexible high performance path to 
design advanced intemetworking 
equipment 

• Use the PCI as a robust and 
expandable backbone 
• 32-bit, 33MHz 

• 64-bit and 66-MHz in the future 

• The GT-48001 SEC addresses with 
excellent price/performance the large 
1 OM bps switched market 

• Low end to high end equipment may 
be built 
• Unmanaged low end (no CPU) to 

heavily managed high end (advanced 
RISC CPU) 

APRIL 1996 
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ABSTRACT 

USING FPGAs FOR HIGH-PERFORMANCE PCI 

James D. Joseph 
Actel Corporation 

955 East Arques Avenue 
Sunnyvale, CA 94086-4533 
e-mail: jjoseph@actel.com 

Supporting PCI interfaces in programmable logic is now mandatory. Even systems not currently using PCI add a PCI 
interface "just in case." However, merely supporting the PCI protocol is inadequate, in our opinion. Unleashing the full 
potential of PCI system bandwidth requires support for zero-wait-state operation. 

The Actel Act-3 FPGA family provides high density, high speed, and compact registered I/O cells. This combination allows 
implementation of high-performance target, master, and bridge functions in FPGAs. Designers are able to use these 
functions in conjunction with on-chip programmable logic to generate cost-effective PCI system solutions. 

Actel's target, master, and PCI-PCI bridge are all oriented toward high-perfomance data transfer while still meeting the 
stringent PCI 1/0 drive requirements. The result is an effective system-oriented solution for 5-volt, 33-Mhz PCI. The target 
macro is compatible with a number of synthesis and simulation paths including Synplicity, Model Technologies, Exemplar, 
and Synopys. 

THE PROBLEMS 

The PCI bus standard was created to improve data transfer rates among peripherals, main memory, and CPUs. The major 
competition at the time the standard was created was the VESA local bus, and most VL controllers did not support bursting. 
In addition, early PCI chipsets had mediocre transfer rates, so even a target or master that could support zero-wait-state 
bursting or fast leadoff cycles was often strangled by an inefficient chipset. 

All that has now changed. As familiarity with the PCI bus has grown, so have the systems ready to take advantage of its high 
performance. Higher speeds in FPGAs make the job of designing a target, master, or bridge much easier. Zero-wait-state 
bursting is available in chipsets supporting PCI interfaces. Better arbitration logic also allows faster PCI leadoff cycles. This 
high performance also must be achieved with the convenience of a high-level model. The model must be available in a 
VHDL and/or Verilog format compatible with today's synthesis tools from multiple vendors. 

The third issue is flexibility. The designer wants to customize the models to meet application-specific requirements with a 
minimum of fuss. 

The final major issue is I/O compliance. The PCI 5v specification, defined in terms of a voltage-current map, demands both 
high drive and high slew rate. One comment - the 33 MHz, 5v implementation of the PCI bus is by far the most common. 
The discussion and timings presented here all assume use of that version. 

The discussion which follows does not include configuration cycles. These, of course, are handled by the Actel PCI macros, 
but the speed of configuration cycles is not an issue in high-performance systems. We begin with a discussion of 
requirements for a PCI target macro in the Actel ACT3 FPGA family. 
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ACT3 FEATURES 

The ACT3 family offers a collection of features well-suited to 33-Mhz PCI design. These include the following: 

• Acceptable speed (tco = 7.5 ns) 
• Fast, low-skew clock networks 
• High number of user I/Os (up to 228) 

In addition, the ACT3 family has been extended to provide l/O buffers which are fully PCI compliant. 

PC/ TARGET REQUIREMENTS/GOALS 

The example chosen is a peripheral controller having both I/O and memory requirements. The vast majority of target 
designs support either memory cycles alone or both memory and l/O cycles. The I/O space is composed of 64 contiguous 
bytes with a memory space of 16 megabytes. 

The design goal was implementation in generic VHDL where possible. Key features include the following: 

• Memory Read/Write Bursting Support 
• : 1: 1: 1 Sustained Performance Possible 
• Fast Back-to-Back Transaction Support 

In addition, we wanted a modular structure that would accommodate a wide range of target designs. This required not only 
easily-modified code segments but also a flexible back-end interface. 

SUPPORTED COMMANDS 

The supported command types for the target macro are briefly described below. 

I/O Read and I/O Write 

These commands read data from/write data to the target's 1/0 address space. The macro as defined has a 64 byte 110 address 
space. 

Memory Read and Memory Write 

These commands read data from/write data to the target's memory-mapped address space. The memory as defined in the 
macro is 16 megabytes which can be located anywhere in 32-bit address space. 

Configuration Read and Write 

These commands access the configuration space of the target. A PCI target, master, or bridge MUST implement these 
commands. All required configuration registers are supported in the Actel target macro. In addition, the target supports 
memory and I/O base address registers. 

Memory Read Multiple 

This command is similar to a memory read command, but it indicates that the master may intend to fetch more than one 
cache line. The memory controller should continue to fetch data so long as FRAMEn is asserted. 
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THE BACK-END INTERFACE 

A number of signals are provided for maximum flexibility in interfacing the target's PCI bus to th user's 32-bit external 
logic. Naturally, address, data, and byte-enables are available to/provided from the user's logic. In addition, the target 
provides signals which allow a variety of data flow control for the user application depending on required performance and 
acceptable complexity. Both read and write functions can operate in the following transfer modes: 

• Burst mode where a DWORD is transferred every cycle (some limitations exist for read commands) 

• Fast mode where a DWORD can be transferred every other cycle (all configuration transactions are in the Fast 
mode) 

• Handshake mode for lower-performance peripherals (maximum of one DWORD every 3rd cycle) 

In addition, the target can throttle the speed of the master in either burst or fast mode to allow occasional reductions in 
transfer rates (e.g., memory refresh). 

The key signals that support this flexible interface are: 

TARGET_ACTIVEn - Active low signal indicating that the target has claimed the bus and is active. This signal will remain 
active as long as the PCI DEVSELn signal is active. 

LAST_ CYCLE - Active high signal indicating that the PCI bus transaction is in its last phase of transfer. 

DATAPHASE - Active high signal indicating that a data phase (IRDYn and TRDYn both low) occurred on the previous 
cycle. DAT APHASE is used as a handshake mechanism for both read and write cycles. 

MEM_READ -Active high output indicating a read from the target's memory space has been detected. 

IO_ READ - Active high output indicating a read from the target's 1/0 space has been detected. 

READ_ OK - Active high input indicating that the user defined function is ready to transfer data to the PCI bus. 

NEXT_READ_OK - Active high input indicating that a burst is possible because more than one DWORD is available to 
transfer at the 33 Mhz rate. 

MEM_ WRITE - Active high signal indicating a write to the target's memory space has been detected. 

IO _READ - Active high signal indicating a read from the target's I/O space has been detected. 

WRITE_ OK - Active high input indicating that the user function is ready to receive data from the PCI bus. 

NEXT_ WRITE_ OK - Active high input indicating that a burst is possible because more than one DWORD is available to 
transfer at the 33 Mhz rate. 

BUSY - Active high input indicating the user-defined function cannot currently respond to a PCI request. 

ERROR - Active high input indicating that an error has occurred and will initiate a Target Abort cycle. 

FATAL_ ERROR - Active high input indicating that an error has occurred and will initiate a Target Abort cycle and assert 
the SERRn signal on the PCI bus. 

Figures I and 2 illustrates the timing in burst mode and fast mode, respectively, for the Actel PCI target macro. 

EXTENDING MACRO PERFORMANCE 

All of these goals were met in the behavioral version of the target macro. Nevertheless, we chose to improve performance 
further by instantiating a high-speed Actel ACTgen counter macro. The result was a smaller AND faster design. 

Table I summarizes the device usage in the Actel 1460A FPGA. Two different versions are illustrated. The first is a target 
that responds to both memory and 1/0 accesses, while the second case is a memory-only target. 
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• Memory+ 1/0 
Combinational Cells: 
Sequential Cells: 
Total Cells: 

• Memory Only 
Combinational Cells: 
Sequential Cells: 
Total Cells: 

CONCLUSION 

Table 1 
FPGA Usage for Target Macros 

277 
163 
440 of 848 (53%) 

208 
122 
330 of 848 (39%) 

Zero-wait-state performance for PCI target, master, and bridge macros can be achieved in FPGAs using high-level design 
and synthesis techniques with a combination of high-performance parts, careful design, and Actel's ACTgen macros. The 
designs presented here achieve full 5-volt PCI compliance at 33 MHz. 
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