
DEVELOPERS' CONFERENCE AND EXPO

APRIL 29-MAY 3, 1996
SAN JOSE, CALIFORNIA

AL BUS

'

You are welcome to send us comments or questions
concerning this or other Annabooks products,

or to request a catalog of our other products and seminars.

Anna books
11838 Bernardo Plaza Court
San Diego, CA 92128-2414

800-462-1042
619-673-0870

619-673-1432 FAX
73204.3405 @ compuserve.com

ISBN 0-929392-34-5

ii

Proceedings of PCI SPRING 1 96
Developers' Conference and Expo

April 29-May 3, 1996 • San Jose, California

Preface
Ed Solari, PC2 Consulting LLC

Session Fl
Docking for Mobile Computing

Harish Nayak, Cirrus Logic
The New Digital Media

Tony Sheberman, Intel Corporation
How to Implement a CardBus Solution

Gary Gildersleeve, Cirrus Logic
Session F2
PCI Technology for Industrial Control Systems-Benefits and Issues

Clyde Thomas, Allen-Bradley Company, Inc., Rockwell Automation
Using the PCI Bus for Packet Switching Applications

Raymond Kolment, Teknor Industrial Computers
Impact of PCI Technology on Control Solutions

Edwin Lee, Pro-Log Corporation
Leveraging PCI in Data Acquisition Applications

Richard J. Burk, Data Translation, Inc.
Session F3
Efficient Use of PCI

Frank Hady, Intel Corporation

Session F4
The Role of CardBus in a PCI Bus Hierarchy

Claude A. Cruz, National Semiconductor Corporation
Session F7
Where Do I Plug the Cable? Solving the Logical-Physical Slot
Numbering Problem

Jeff Autor and Alan Goodrum, Compaq Computer Corporation
Session FS
Power PC™ Platform

Mike Becker, Motorola
Session F9
The Standard in PCI to PCI Bridges

Tracy Richardson, Digital Semiconductor
Design Issues for PCI-to-PO Bridges

Thomas L. Anderson and Mark W. Knecht, Virtual Chips, Inc.;
Jacques Wong, Advanced Micro Devices

iii

ix

1

7

8

12

13

17

22

26

44

51

61

71

86

PCI Interrupt Controller for Industry Standard PCI-ISA Bus Architecture
Using PCI-to-PCI Bridge Technology 93

Ross L. Armstrong, Digital Equipment Corporation
DCM's PCI-to-PCI Bridge Solution 101

Kamal Mansharamani, DCM DataSystems
Session F12
PC-DMAand PCI: New Open Standard Blends Both 109

Dwight D. Riley, Compaq Computer Corporation
Session F13
A PCI Accelerator Architecture for the ADI SHARC DSP 119

Joseph A. Sgro, Alacron, Inc.
PMC: The PCI Mezzanine Card 154

Rodger H. Hosking, Pentek, Inc.
DSP and I/0 System Integration for PCI 160

Jack Carter and Manish Kasliwal, Sonitech International Inc.
Session F14
RACEway Interlink as a PCI Switching Fabric 161

Barry Isenstein and Bob Blau, Mercury Computer Systems, Inc.
PCI Bus Switching with the PSX 171

Kent Dahlgren, I-Cube Incorporated

Session lA
The Future of PCI 178

Edwin Lee, Ed Lee Executive Workshop
The Future of PCI 186

Bert Forbes, Ziatech Corporation
Session lB
PCI and Data Acquisition 187

Jim Fitzgerald, Keithley MetraByte
Design Considerations for Data Acquisition Hardware on the PCI Bus 191

Richard f. Burk, Data Translation, Inc.
The Impact of PCI on the Test and Measurement Industry 195

Arthur Ryan, National Instruments

Session lC
Programmable Logic Implementations of PCI 199

David Ridgeway, Xilinx
PCI Is Not Just for PCs: Embedded Systems Migrate to PCI Architecture 200

Mike Salameh, PLX Technology, Inc.

Session lD
PCI Performance Analysis for High-Speed Networking 201

Peter N. Glaskowsky, Integrated Device Technology, Inc.
The PCI Multi-Function Device: Benefits and Design Considerations 211

Margit E. Stearns, Symbios Logic, Inc.

Session 2A
XVideo Family for PCI 214

Bob Goodwin, Parallax Graphics

iv

New Generation Silicon for 3D Graphics on PCI
Neil Trevett, 3Dlabs Inc.

High-Speed DRAMs for PCI Systems
Billy Garrett, Rambus Inc.

Session 2B

215

225

Using PCI Interface in Routers 233
Aamer Mahmood, Cisco Systems

Serial-HIPP! Network Interfaces Using the RoadRunnerPCI ASIC 234
Michael McGowen, Essential Communications

Session 2C
Computer Makers Roundtable 243

Donald F. McCook, Dolch Computer Systems
Session 20
PO RAID Controllers 255

K. K. Rao, Mylex Corporation
Embedded RAID Presentation 261

Scott Jensen, Adaptec
Fast-40 SCSI, Pushing PCI to the Limit 262

Richard Mourn, Symbios Logic Inc.
Session 3A
What's Good & What's Bad About Unified Memory Architectures (UMA) 268

Desi Rhoden, VLSI Technology, Inc.
Session 3B
Leveraging PCI Bus Bandwidth and High Performance CPUs in
Designing MPEG-1 and H.261 Video CODECs 274

Frank Schapfel, Digital Equipment Corporation
Trimedia-The Processor for PC-Consumer Multimedia 275

Selliah Rathnam and Gert Slavenburg, Philips Semiconductors
Multimedia Bandwidth Issues Over PCI 283

Giri Venkat, Yamaha Systems Technology, Inc.
Session 3C
Board Maker's Roundtable 284

Steve Cooper, I-Bus
Session 30
Bus-to-Bus Connections 285

Stephan Ohr, Computer Design
PCI and Multiprocessing 286

George P. White, Corollary, Inc.
1394 and PO 302

Larry Blackledge, Texas Instruments
CompactPCI™ to STD32 312

Jim Medeiros, Ziatech Corporation
Serial Storage Architecture: A Low-Cost, High-Speed Serial Connection
for Disk Subsystems 328

Allge Hawes, IBM Havant

v

Session4A
Using a Design Foundation for Flexible and Rapid PCI Interface Development 334

Leo K. Wong, Altera Corporation
A New FPGA Family for PCI Interface Designs 343

Brian Small, QuickLogic Corporation
PCT Implementation Kits for ORCA FPGAs: Features and
Design Considerations 347

fames F. Hoff, Lucent Technologies
Session4B
MPEG Bridges Using Tl Lines 353

Tom Thorsteinson, Linear Systems Ltd.
High Performance VlSion Processing for the PCI Bus 358

Fernando Serra, Imaging Technology, Inc.
The PCI Bus and Broadcast Quality Video and Audio 366

Richard A. Kupnicki, Leitch Technology
Board Improves JPEG Compression Using Pre- and Post-Compression
Image Scaling 381

Harold Schiefer, Ernest Yeung, Steven Hanna, and Lance Greggain,
Genesis Microchip Inc.

Session4D
PCI Bus Analyzer Simplifies Systems Test & Debugging 390

Thomas Nygaard, VMETRO, Inc.
PCI: The Bus That Glues? 394

Mark Bronson, Aeon Systems, Inc.
Latency Issues in PowerPC Reference Platform Architectures 399

Don Dingee, Motorola Computer Group
PCI Passive Backplane Technologies 409

foe Pavlat, Pro-Log Corporation
PCI Shifts in the PC Landscape 440

Yong Yao, MicroDesign Resources
The ATX Form-Factor 443

Tim Craven, Intel
Session SA
BIOS Boot Selection 452

Frances Cohen, Phoenix Technologies Ltd.
Notebook Docking: Techniques and Considerations 454

fim Kelsey, SystemSoft Corporation
Session SC
Multimedia Roundtable 462
Bridging the PCI to a Secondary Multimedia Bus:
Can We Plug and Play? 463

Larry Chisvin, S3 Incorporated
Session SD
CAD Tools 464

fim Lipman, EDN

vi

Getting Quality Products to Market Faster with a Synthesizable PCI Core 465
David L. Evans, Technical Data Freeway

The Problem of Model Availability for Simulation of Devices and Systems 479
Dave Apte, Omniview, Inc.

Verifying PCI Bus System at Megahertz Speed 485
Sanjay Sawant, Quickturn Design Systems

Measuring and Optimizing Performance of PCI Based Designs 488
Venkatesh Arunarthi, Sand Microelectronics, Inc.

A VHDL Design Approach to a Master /Target PCI Interface 494
"Leo K. Wong and Martin Won, Altera Corporation;
Subbu Ganesan, ZeitNet, Inc.

Late Papers
The GALNET Architecture: APCI-Based Solution for High Performance
Internetworking 500

Manuel Alba, Galileo Technology
Using FPGAs for High-Performance PCI 520

/ames D. Joseph, Actel Corporation

Author Index 525

Keyword Index 527

Participant Index 529

vii

Preface to PCI Spring 96 Proceedings

Prior to the development of PCI engineers developing products for the non-PC (Personal
Computer) industry could only select between high performance proprietary buses or standard buses like
VME and Multibus I&II. PC buses like ISA and EISA were simply insufficient for the non-PC industry.
Proprietary buses by definition required development of all key hardware and software components.
Components for VME buses were not always compatible. Multibus I components were compatible, but
became overshadowed by Multibus II which required extensive software development.

The size of the PC industry insured a diverse set oflow cost components and an unparalleled
selection of software. However, the lack of easy configuration and low performance of ISA bus; and the
complexity, limitations, and cost ofEISA bus did not provide a long term bus to replace proprietary or
other standard buses.

The existence of extensive PC compatible software, appreciation for easy system configuration,
and the ever increasing ASIC functionally set the stage for a new bus standard. PCI began as a bus
definition to provide an easy to configure, low cost, and high performance interconnection between PC
software compatible ASICs. As it was fine turned into a PC industry standard it was expanded to include
definitions for slots and add-in cards. As PCI became integral to mainstream PCs the PCI hardware costs
decreased and the functional diversity of PCI ASICs and add-in cards increased. What evolved was a new
bus standard that brought together performance, building block diversity, low cost, easy configuration, and
compatibility with "limitless" PC compatible software.

In the mobile environment the traditional PCMCIA standard (recently renamed PC-Card 16) is
essentially an extension of low performance ISA bus with configuration enhancements and power-on
installation. The recent enhancement of this standard with CardBus, brings all of the advantages of PCI to
PCMCIA. CardBus is a small form factor version of PCI with the power-on installation.

Most recently, the embedded systems world has also discovered the cost and software advantages,
and building block diversity of PCI.

It has become impossible for proprietary buses and standard buses like VME or Multibus 1&11 to
compete with PCI due to the size of dynamics of the PC industry. The ever growing availability of PCI
cards and slots will eventually replace all of the ISA and EISA cards and slots. Similarly, the eventual
availability of combination PC-Card 16 I CardBus slots in the mobile and desktop environments will
facilitate the eventual extinction of PC-Card 16. Consequently, these proceedings contain information
about PCI and CardBus which are the future bus standards with the unique ability to address both the PC
and non-PC industries.

Ed Solari

pc2 Consulting LLC

ix

Docking for Mobile Computing

Harish Nayak, Cirrus Logic, Inc.

Systems Technology Products (STP)

The gap in speed, capacity and functionality
that has separated desktop systems from portable
computers has rapidly narrowed. Today, more and
more mobile computer users are relying on their
portable systems to serve their needs while on the
road and at the office. In this way, they avoid the
problems of file transfers and version tracking that
annoy their dual-computer-using colleagues.

On the road, one can get by with the small
display screens, but in the office, users want laiger
screens, and to be able to attach networks, laser
printers, scanners and other peripherals to their
portable systems.

At first, they did so using ad-hoc solutions­
display screen cables connected to monitor ports,
network cables to network ports, and port replica­
tors, where the computer's 1/0 ports are replicated
and consolidated into a single port-replication box.
Having to unplug several cables each time one left
on a business trip, then reconnect them each time one
returned, proved to be discouraging. It also created
an opportunity to solve the problem with "docking."

In essence, a docking set up consists of the
portable system plus a docking station to which are
attached whatever peripherals the user requires.
Docking's primary feature is its ability to quickly
connect or disconnect the portable system from the
docking station and its peripherals. But docking is far
more than simply a mechanism for rapidly plugging
or unplugging multiple interfaces. It must also ensure
that in the process users cannot inadvertently lose or
damage any data files. As such, docking approaches
are both related to, and limited by, the operating
system's features and functions, and the 1/0 buses
involved.

Docking is an evolving technology. With the
advances of new 1/0 bus technologies and operating
systems, docking is also advancing toward a fully
automatic, any time, capability.

1

Docking Stations Today
There are a range of docking solutions in place,

today. They differ in terms of their physical docking
attributes, and their electrical docking requirements.

Physical

A surprise-style docking/ejection mechanism is
one of the simplest but requires that the user make
sure the system is "ready" for docking or undocking.
There is no fail-safe mechanism, here, that permits
either the operating system or basic 1/0 system
(BIOS) to override the operation. Hence, there is a
risk of losing files.

The VCR-style and locking-style docking/
ejection mechanisms provide a fail-safe system for
docking or undocking. For undocking, an eject but­
ton or icon is pressed or selected which initiates a
series of interactions between the BIOS and various
hardware and software components. The result of
these interactions is putting the computer into a safe
undocking state. Only after the undocking is
approved by all involved is the portable computer
actually ejected.

Electrical

In addition to the various physical manifesta­
tions of docking, there are differences in docking
electrical conditions.

"Cold" docking, for example, refers to a
docking scheme whereby both the computer and
docking station must both be powered down before
docking or undocking can take place. Afterward, the
computer and docking station are powered up, and
the computer must go through a boot up sequence.

A so-called "warm" docking technique permits
the systems to be powered up when docking, but
requires that the computer be in a suspended opera­
tional state before docking or undocking. After dock­
ing or undocking, the computer must still go through
a wake-up process to restore it to an operation-ready

state, or it may require a full reboot, depending upon
the operating system.

In moving toward the ideal-a fully automatic,
any time, docking capability-docking technology
must first progress to the "hot" docking stage. Here,
the computer and docking station are both powered
up, and the computer is operational. The industry is
on the brink of hot docking but there will be varying
degrees of less-than-fully-automatic operation for
a while.

Operating Systems and Docking
There are definite relationships between operat­

ing systems and docking capabilities. For example,
portable computers running DOS and Windows 3 .1
are limited to cold and wann docking. These operat­
ing systems simply lack the functional support
needed for hot docking.

Windows 95, however, has provided a founda­
tion for all three types of docking, including hot
docking. Its penchant for hot docking is primarily
due to its dynamic loadable drivers, device enumera­
tion, and operating system-to-BIOS links for
automatically adding and removing resources.

System Buses and Docking
Designers have some choices. They can "dock"

across an ISA-bus infrastructure, or do it across a
PCI-bus infrastructure. There are obvious advantages
to choosing PCI. It is broadband and fast with very
short latency. ISA, on the other hand, is a 1980s
technology, lacking in both bandwidth and speed.

However, ISA does enjoy an important advan­
tage. It is the 110 standard for a large number of
available and economical peripherals. That's why, for
now, portable computers are being built with both
ISA and PCI, and it's a good reason to equip a
docking station with a secondary ISA interface, too.

When an ISA bus is present both in the
computer and the PCI-based docking station, it is
referred to as a "dual ISA" design. Both systems­
portable computer and docking station -will take
advantage of PCI-to-ISA bridging to connect ISA
peripherals on both sides of the docking demarcation
line via a PCI bus interface (see figure 1).

In effect, the computer's ISA bus (primary) is
connected to the docking station's ISA bus
(secondary) through the PCI bus.

2

..... ,

, ___
I
I I .. _,

!Y
With the approach shown in figure 1, though,

a DMA controller (DMAC) and Programmable
Interrupt Controller (PIC) are implemented on both
sides of the docking line, and they use the same 1/0
address space. That poses a problem.

There are two other concerns that must be
addressed in implementing a dual ISA design, too.
The "legacy" peripherals that use the ISA bus
comply with ISA's Interrupt Request (IRQ)
specifications. And these peripherals are also
designed, in most cases, to use ISA Direct Memory
Access (OMA). However, neither ISA, IRQ nor
ISA DMA is part of the PCI standard.

There are two open-standard mechanisms that
can solve this dilemma. Serialized IRQ, or IRQSER,
is a mechanism for communicating IRQ status
between PCI-to-ISA bridges, and between legacy
components and PCI-to-ISA bridges. Distributed
DMA, or DDMA, is a mechanism for legacy DMA
support on a PCI bus.

The implementation in figure 2 solves both the
ISA IRQ and DMA legacy support across the PCI
bus through IRQSERp and IRQSERs and the DDMA
mechanism.

Here, only the PCl/ISA bridge in the computer
has a master DMA controller, and all others are
slaves, each having a base register and DRQ/IRQ
definition.

All slave devices positively decode their DMA
1/0 registers. The PCI-to-PCI bridge and secondary
PCI-to-ISA bridges subtractively decode the
unclaimed DMA 1/0 registers.

Multichannel- or channel-specific "write" (e.g.,
not on the primary ISA bus) is broadcast by the mas­
ter DMAC. Multichannel- or channel-specific "read"
is also broadcast by the master DMAC. Where it is a
multichannel read, the master DMAC will properly
assemble the bit information, then it will return the
8-bit word during the retry cycle.

Instead of edge-triggered IRQ signals, creating
a risk of glitches during docking, or a need for Q­
switch isolation, the serialized IRQs are passed from
PCI-to-ISA bridge via the PCI-to-PCI bridge. With
this implementation, the PCICLK is stopped during
docking and undocking and the IRQSER signal is
ignored during those times (patent pending).

Issues and Limitations in
Docking Today

To reiterate, there have been step-wise
enhancements to docking technologies as direct
consequences of step-wise improvements in
operating systems and 1/0 bus infrastructures. For
example, PCI allows us a simple docking interface
with high perfonnance.

The availability and low cost ofISA­
compatible peripherals, and the reality that, for now,
Sound Blaster compatibility requires the ISA inter­
face, necessitates designing the support for ISA and
legacy peripherals in any serious docking solution.

Today's operating systems, particularly
Windows 95, have set the stage for hot docking by
creating a foundation for it. Many of the plug-and­
play supporting features of Windows 95 play
significant roles in hot docking (e.g., device
enumeration). However, a foundation is meant to be
built upon, and the next generation of the Windows
'95 family promises to offer an even-more­
comprehensive set of features in support of hot
docking among other functions.

Power management is a critical feature in
battery-powered portable systems. As such, power
management support must be part of any full­
featured docking solution.

3

Solving Some Problems Addressing
Design, Architecture, and Application
Solutions

Given the ultimate, fully-automatic, any-time
docking objective, we are now far down the road, but
not quite at our destination.

As mentioned earlier, Windows '95 has set the
stage for a step-wise leap in docking progress. It sup­
ports a dynamic loading of drivers, device enumera­
tion, and plug-and-play. But Windows '95 will only
enumerate the devices connected to PCI bus 0, not
those connected to bus 1. For that to occur, the dock­
ing station would need a plug-and-play BIOS to
enumerate its devices and interact with Windows '95
in order to load the drivers dynamically.

The next generation of Windows '95 will take
care of the Bus 1 enumeration situation, but in the
meantime, a transparent bus extender (patent pend­
ing) can be used to make two physical PCI buses
look like a single, logical bus 0. There is no bus 0-to­
bus 1 configuration cycle conversion, and no PCI
configuration space involved (see figure 3).

... 11·­-r-·· aw ---,
1-- ,__ri I

I --------.-~~-~-f.

I
I
I
I 1 _______ _

I
I I

l - 1--1:
I ' "-.. -----.. -----~---' -·

On-Board or Off-Board?

Hot docking hardware implementations can be
done in two fundamental ways-putting the PCI-to­
PCI bridge on the computer, or putting it onto the
docking station. There are some advantages to taking
the off-board approach.

By adding the bridge to the computer, a
designer has to allow more space, increase the cost,
as well as the power consumption. In addition, the
on-board approach may require Q-switches to isolate
the IRQ signals during docking and undocking
(unless a IRQSER approach is used). This, too, adds
cost. For those users who do not intend to dock their
systems, it is unutilized cost (see figure 4).

,.-----..... •Notebook I OlWIOARD
Syatem COmput8r I DESIGN
ConVDllW I

I
PCl(COmp&MrJ I ____.. ____ .-;,...__,;. ___ ,

I
I
f
I

.---~---- -----

Doddfts
llmlon

By putting the PCI-to-PCI bridge on the
docking station (e.g., off-board), docking and
undocking glitches can be isolated from on-board
PCI devices without need of Q-switches (see figure
5). What's more, there is no pressure on computer
board space, weight, power consumption, or cost.

Nocebook
ap.m Computer
ContrDlllr

I OW-BOARD
I DESIGN
I

Pct (Computat) II
~--..... --~-.-~~---I

Flg.5

.... ~~~ Docldng -..order"

PCI (Docklnt StatlOn)

Dacldng
S'latfan

PCMcHSA

4

Ensuring network compliance

Since many docked computers will be part of
some networking scheme, there is a need to ensure
that the docked system can be compliant with net­
work requirements.

For example, a computer in sleep mode must be
able to rouse to full operation within a certain time
(e.g., 100 milliseconds) to meet network polling
requirements. This is a significant challenge to be
met by forthcoming docking implementation
approaches.

Easy docking with Windows '95

In sum, the advent of the next generation of
Windows '95 and the proliferation of PCI peripherals
will take us a long way toward the ideal docking
infrastructure. Meanwhile, the current version of
Windows '95 has already propelled us very far
forward.

Despite some of its evolutionary limitations,
Wmdows '95 is a good basis not only for hot dock­
ing, but for a hot docking scheme that is reasonably
automatic.

Windows '95 is capable of supporting cold,
warm and hot docking techniques, and matched by
hardware that is equally capable of supporting all
three modes, docking station and notebook designers
will have the design flexibility and versatility they
require.

PCM'Alt.E COMP~

PCl .. 1 PCll
PCI

Pdmuyl'SA

,....,

Notebook Computer

CPU lsa•Reg. f
~=:::!.J

PCI

I
I DOCICINQ STAT10N

I
I
I
I
1~

PCl8ut

I~ I I I
I

1111 ..
SeoondllfJ ISA

Dooking Station

I fOEngfneJ
: (Base Reg. I
I
I
I

..-----' I
PCI PCI

I IRQSERs

I
I
I
I

PrlmarylSA Secondary ISA

Flg&area

5

~

r-DOCKiiciiTT110if- - - - - - - f NOTEBOOKCOllPUTER

S.aatlDMf PCI Bus TMNUMINf . I PlmMltf PCIBus

PCJJPCI - l --4 .. Exn!laR - .1 4. ----- - T

4~ I
I ·~

I
I
I
I
I
I
l
I
I
I
I
l
I

PCI/
ISA -- I ~ PCf/

'IAQS!R . l8A -RQSD(sa:c:nau""
l(PRmM't)

• .. A lmoe!Wl\'ISABul I , - .. I - ~~ 1
-

I
I

ISA...,_ I

I I
L---..-----~--- ---EJ I

System
Controller

Notebook
Computer

I ON-BOARD
I DESIGN

I
I
I

------------------~-,

PCJ.to..
PCI
Brld e

I
I
I
I ------- _,_ __ _

Flg.4

Doelclng
Station

PCI

Docking
Station

PCMo-ISA

6

- ' --1
...

A~ ,,
•AMMllR ISAllAala

Flg.5

Notebook
System Camputer
Controll•

PCI (Computer)

I OFF-BOARD
I DESIGN
I
I
I __ __.....__

Dooklng
Station

PCI (Cooking StaUon)

Docking
Station

PCJ.to-ISA

The New Digital Media

Tony Sheberman
Intel Technical Marketing Engineer

Intel Corporation FM3-77
1900 Prairie City Road

Folsom, CA 95661
(916)356-7399/2703 (fax)

The Presentation will cover the similarities and differences of the Miniature Card
to the PC Card and some typical applications for Miniature Card. The Miniature Card
(Minicard) is about one fourth the size of a PCM CIA card. Typical uses include the
storage and exchange of image, text, and voice data for digital cameras, audio recorders,
cellular phones, handheld computers (PDAs), and other portable consumer devices. The
Minicard is also the smallest standard form factor for removable memory-expansion
cards. It can accommodate up to 64 MB of flash, DRAM, or ROM. The card features a
60-connection memory-only bus interface, with a 16-bit-wide, non-multiplexed data bus.
Since the Minicard interface is a subset of the PC Card standard, data can be moved
easily into the PC using a PC card adapter.

7

How to implement a CardBus solution
Gary Gildersleeve
Cirrus Logic, Inc

3100 West Warren Ave.
Fremont, CA 95438

(510) 252- 6095/6080 (fax)

This article describes how to implement a CardBus bridge host controller solution and some of the
design choices the architect faces. Several terms are used in this article which need a basic definition. For
example, CardBus bridge controller refers to a PCI to PC Card bridge host controller. PC Card 16 refers
to the revision 2.1 compatible PC Cards or R2 Cards which have an ISA type 16 bit data path. PC Card
32 refers to CardBus Cards that have a PCI type interface with a 32 bit data path.

In a basic CardBus subsystem, there are three independent interfaces, which are stated below:
1) Host bus bridge interface (PCI). _,
2) Socket interface
3) Socket Power control interface

p
c
I

B
u
s

Power Control

CardBus -----­
Host

SocketO

Socket 1

For most CardBus designs, the host bridge interface signals are directly connected to the
corresponding PCI bus signals. These signals are the multiplexed address/data, control and arbitration
signals and interrupts. Most of the PCI bus signals are direct connections to the CardBus bridge host
controller. Therefore, this article will focus on other areas of the CardBus design. There will be some
discussion brought up in regard to specific signals in the component and layout section. Main areas of
discussion will be the Interrupts, Power control and the optional feature of Zoomed Video (ZV). The last
topic discussed is the testing and verification of the CardBus design. This article is not intended to sway
the reader in anyway upon how to design their notebook system, but rather to help conger up ideas and
possible problems that may occur in a CardBus design.

Component and 'layout issues

Component placement is another design issue that should be considered in a CardBus host
controller implementation. Remembering that CardBus is similar in many aspects to the PCI bus. The
tirning on the control signals are critical and have stringent requirements (11 ns max.). The CardBus host
controller chip should be placed as closely as possible to the PC Card Connector. It is recommended that
the trace length from the host bridge control to the PC Card socket does not exceed 5". Loading condition
of these lines should also not exceed the loading specified in the PC Card specification. The CardBus

8

clock signal (CCLK/A16) should be give special attention since this is the 33 Mhz clock supplied to the
PC Card socket from the CardBus host controller. To ensure a clean clock signal to the CardBus socket, a
double wide trace should be used and additional guard-banding with a ground maybe preferable. To
prevent Cross Talk on neighboring signals extra spacing can be added between the CCLK signal and
other board signals. In the routing of the board good layout practice should be used by avoiding sharp 90
degree corners. Always use 45 degree corners instead. Since there is a lot of simultaneous switching of
signals at the PCI and CardBus interfaces, adequate bypassing of the power supply is essential. This can
be achieved by placing quality capacitors close to the host controller. In a PC Card 16 host controller
design, placement and routing were not as critical to ensure host functionality. The PC Card 16 bus was a
slow bus with few critical timing requirements. As opposed to that in CardBus host design, component
placement and layout considerations are major factors that govern successful operation .. Most of the of
issues stated involve basic design and board layout principles which need to be taken into account in a
CardBus subsystem design.

CardBus host adapters typically support both ISA and PCI interrupts. ISA style interrupts are
active high interrupts. These interrupts are used by PC Card 16 cards and typically are not shared
between devices. Each device that requires an interrupt is assigned its own interrupt signal. PCI
interrupts are active low and are designed to be shared in the system. If a CardBus card is installed in the
socket which is defined as function 0, it is assigned the interrupt INTA#.

There three different mechanisms in which the ISA interrupts can be generated. These methods are
listed below along with a brief description

External Hardware to generate the individual Interrupts
PCl/Way interrupts
PC/PCl interrupts
Individual Interrupt pin from the host

External Hardware method uses two output pins from the host (ISDAT and ISLD) and the PCI system
clock. When a card interrupt in generated, the host then sends out the serial interrupt to the external
hardware via the ISDAT line. Once the serial data is correctly aligned, the ISLD signal is sent to latch in
the data and initiate the ISA interrupt. This is a unidirectional protocol from the host to the external
hardware with no acknowledgment.

PCVWay interrupt method only requires one pin (IRQSER) from the host controller and the PCI clock.
This bi-directional data stream is use to communicate the state of the interrupt between the host controller
and the core logic .. When an interrupt is generated by the controller, a start pulse is generated to begin
the transaction. Within the start and stop time period, each interrupt is assigned three clocks which are
used to show the state of the interrupt and each interrupt has its own time slot within the start and stop
period.

PC/PCI mode supports the Mobile computing model for serial interrupts. This method requires two pins
(SOUT and SIN) and the PCI clock to interface the SIC (serial interrupt controller). The number of
interrupts supported is dependent upon the configuration of the SIC. For more information refer to the
mobile computing specification.

Individual Interrupts means that CardBus bridge has dedicated pins for each ISA interrupt.

9

The choice of interrupt method used is dependent upon the host bridge and core logic that will be used in
the system design.

Voltage Control & Power issues

Earlier host controller designs that only supported PC Card 16 cards could sometimes exclude
mixed voltage support to the PC Card socket without being severely penalized due to the limited number
of low voltage cards in the marketplace. It is no longer feasible for designers to avoid mixed voltage
designs with the trend shifting towards low voltage systems and power saving. Mixed voltage support is
no longer an option for the CardBus controllers. The PC Card Standard specifies that the CardBus
interface can only operate at 3.3V. PC Card socket power control switches are available from many
different manufactures in the marketplace and provide integrated solution for power control. These
switches are used to control the Vee and Vpp voltage levels of the PC Card socket. These switches come
in either parallel or serial interface. Most of the CardBus host controllers today use the serial power
control switch to free up pins.

Power requirements for the CardBus system is another area the designer needs to be aware of to
determine the total system power requirements. Typically, the designer needs to know the worst case
power requirements for each subsystem. For the CardBus subsystem this can be easily calculated using
the following formulas.

Socket Power= (number sockets) * (max. voltage of the socket) * (Amp)
The 1 Amp value is derived from the PC Card Specification that states the maximum rating for pin of the
PC Card socket is 500 ma per pin. 2 * 500mA = lA

Host Power = (Highest Voltage applied to Host)* (IA)

Using the formulas above, the worst case power requirements for the CardBus host subsystem would be 15
Watt of power dissipation using 5V as the maximum voltage to be used in the system.

ZV (zoomed Video)

The Zoomed Video (ZV) Port is a direct connection between a PC Card and a VGA controller I Audio
DAC. It allows the PC Card to write video data directly to an input port of a graphics controller and audio
data directly to a digital-to-analog converter.

A few of PC Card host adapters are being introduced in to market that are capable of supporting the
proposed ZV Port standard. There are two methods of supporting ZV Port capability. The first method is
termed pass through in which all the ZV Port signals pass directly through the host controller. The
second method is termed "bypass" mode. Bypass mode is where the signals are re-routed from the PC
Card bus directly to the video port. The video port of the graphic controller is termed the "V Port". This
re-routing is accomplished by tri-stating specific PC Card Bus signals from the PC Card host adapter.
Once these signals are tri-stated by the host controller during ZV Port operation, the ZV Port compliant
PC Card drives video and audio data on the same signals. Video signals from the PC Card are routed to
the ZV Port capable Video controller. Audio signals from the PC Card are routed to the ZV Port
compliant audio DAC in the host system. This mechanism allows for an inexpensive means to add
video/audio capability to a notebook or desktop system without burdening the host bus. Figure 1 shows
block diagram for a typical implementation.

A ZV Port compliant PC Card, when inserted into a PC Card slot, is initialized the same way as a PC
Card 16. This is specified in the PC Card standard. The ZV Port PC Card is thereafter recognized as a
ZV Port card and is programmed accordingly by Card Services. In this example, the Host controller

10

enters into ZV Port mode by tri-stating address pins A[25 .. 4] of the PC Card bus when the Multimedia or
ZV Port enable bit is set.

The address pins are outputs•from ·the host controller during normal PC Card operation. Tri-stating of the
address pins by the adapter, allows the A[25 . .4] signals to carry video data and video capture timing
control signals directly to a video controller and the audio signals to the audio DAC.

It should be noted that ZV Port implementations are likely to vary amongst platforms and that Socket
Services software has to be customized to address these variability's. Controlling output enable inputs of
the external buffers depends upon specific hardware design and Socket Services has to be aware of these
specifics such as the 1/0 Port addresses.

Validation and Test

Once the design is done a very important aspect is validation and testing of the system. In most cases,
the CardBus host bridge is typically the last subsystem tested and usually given the minimum time
compared to other subsystems like Video controller. The CardBus interface may prove to be an even more
difficult interface to validate. One reason is due to the enormous number of PC Cards in the marketplace.
How can you test to ensure compatibility with every card? Also many of the PC Card 16 cards come with
point enablers that bypass Socket and Card Services that can be a source of a problem. If a certain PC
Card fails, how is one to determine the cause? Is the problem the CardBus bridge, the card manufacture,
software, etc.. One suggestion during system validation is to start the validation of the CardBus bridge
earlier. Plan on carrying out comprehensive tests to verify the bridge interface. Probe and measure the
timing generated by the controller, look for timing violation, noise, Vee and Ground bounce. Any of
these problem many cause the system layout to change, and cause the design schedule to slip.

HOST
BUS

TV LCD

•
r------------i------~
~

tT
GD7548

CL-PD6722

'ZV Port
(Video) 19

CRT

SPEAKERS

PCClntSlqt

...
i 4,Audlo ~ i . ! !. ... ; r ::... i.·--Audlo

PC Card
• : .., Interface Video ~ Video _+-I --... ~ CL-PD6729/30 --+-----'-

: CL·PD6832

: 19 Decoder i ~~~L
:.. ... i

I
I

: Mothecboarcf 1

L------------------------------~ Video & Control

Figure 1

Typical Example of the ZV Port Implementation

11

PCI Technology for Industrial Control Application
Benefits and Issues

Clyde Thomas
Allen-Bradley Company, Inc., Rockwell Automation

Historically, the large industrial automation vendors have used proprietary bus tech­
nologies in their control solutions. A number of market and technology drivers has cre­
ated interest in using standard and commercially available technologies such as PCI.
This paper presents how one major control vendor, Allen-Bradley (A-B), has adopted
PCI to help introduce a new line of PC-based controllers using existing A-B form fac­
tors and 1/0 products. The presentation will discuss the benefits of using existing PCI
standards and technologies, and how the use of PCI allowed for shorter development
time as well as access to additional technologies to broaden the application capability
of A-B's industrial control solutions. In addition, several issues of adopting PCI tech­
nology from the commercial PC-based form factors as well as the emerging
CompactPCI definitions will be addressed.

I. Introduction to Industrial Automation Control Systems and
Traditional Approaches

II. Drivers for Change in the Industry Automation Market

III. The Role of PCI and Its Suitability for Industrial Control

IV. Benefits of Using PCI

V. Unique Design Constraints

VI. Issues Associated with Industrial Application

VII. Close-A Trend Not a Fad

12

PCI Spring: Industrial Applications

lJsing the PCI Bus for Packet
Switching Applications
R1~1·m1111J Kohne111. Pt'/ (/ro11p Jeuder
Fek111>r !11d1111nc1/ ('mnp111ers Inc

•Abstract:
Present packet switching applications
are normally based on the use of
custom designs. The use of off the shelf
PC products is generally out of the
question. This paper proposes a method
of designing a medium rate
communication switch, using standard
industrial quality products. The use and
applicationofthePCI bus and available
industrial PC products is demonstrated.

• Background:
The basic architecture for most
digital data communication circuits
is the T-S-T, or Time-Space-Time
data switch. This switching
architecture allows messages to be
handled in both the time and space
domain. Most circuit switching
systems and all packet switching
systems use one form or another of
the basic T-S-T architecture.

T-Stage: A time switch has a fmite
amount of memory to store
incoming data packets. These data
packets are subsequently routed to
their intended destinations. The T­

outputs. The classical operator
switchboard, used in the earlier half of
this century, is an example of an S­
stage. Cross point switches are another
example of the S-stage.

AT-stage that includes multiple inputs
and outputs can perform the operation
of an S-stage, but there are physical
size limitations on this switch
architecture. The number of
inputs/outputs can cause an electrical
implementation of the circuit to

s-stag

stage will delay the data, if Figure 1 Typical Communication Switch Architecture.

necessary, to assure that there are
no clashes between concurrent data
packets. A packet that cannot be
immediately routed will be delayed a
short time before being sent to its
destination. This process arbitrates the
packet access to the finite output
resources by scheduling the access to
these resources. This process can be
applied to both packet and circuit
switched data systems.

S-Stue: A space switch provides
independent concurrent cross­
connections between inputs and

become 1/0 bound, whereas the
physical size of the temporary storage
memory will limit the number of
channels that can be handled by one
circuit assembly.

This is the reason why the T-S-T
architecture is so popular in switch
designs. A simple T-S-T architecture
allows a modular implementation for
switching circuits. This modular
implementation allows a single switch
to be expandable in both the number of
individual input/outputs that can be

.13

serviced and the amount of data that can
be handled by one central switch.

Figure 1 shows the basic architecture
for a typical T-S-T switch. The circuit
includes a Switch Controller that is
used to monitor and control the
operation of the switch. Typical
functions implemented by the Switch
Controller include:

• Switch Configuration;
Circuit Synchronization;
Status & Health Monitoring
Billing & Customer Use
Control;
Circuit Switching Connection
Control;
Packet/Circuit Switch Priority
Control;

•Circuit Implementation:
Present implementations of this
system use proprietary hardware
to implement most of the switch.
This can be costly to design and
manufacture. In many cases, the
design and manufacture of the
Switch Controller is based on
current CPU and chipset
technologies. Given the constant
state of flux of the CPU market,
especially the chipset market,
the reliable supply of CPU's as
Switch Controllers becomes a
concern.

The use of generic hardware can
reduce the overall cost of such a
circuit and remedy the CPU
source supply problem. For

instance if a standard backplane,
cardcage and CPU is used, the cost of
designing the Switch Controller is
eliminated. A switch manufacturer
could concentrate all of their efforts on
designing switch hardware instead of
spending their time redesigning Switch
Controllers. Since the Controller is a
standard product, it can be easily
updated by just simply swapping
boards.

• PCIBus:
By designing the T-stage components

PC! Spring: Industrial Applications

of the switch as PCI compatible
assemblies, the interface between T­
stages can be greatly simplified. ~
actual implewentation of the S-sta~e
can be done with the PCI bus
architecture. The PCI bus completely
replaces the S-stage.

The PCI bus supports burst transfer
rates up to 33 Mcycles/sec, with data
bus widths up to 64 bits. The bus
therefor yields a peak data rate ofi:

8lpoaii • 33.Mhz' x 64/Jtts/cycle

8lJ!d • 2.ll2Gbits/Sec

Given that the bus can be used at up to
85% of its bandwidth, which is not
unusual for synchronous access
schemes such as time-division­
m ultiple-access (TDMAii iii), the net
transfer rate of the PCI bus is:

st,.,, • 2.112Gbit/Sec x 0.85

a,,,, = l.195Gbit/Sec

As a figure of merit, one can compare
1his net rate to the number of telephone
channels it can support. An
tmcompresSed voice channel requires a
channel rate of 64kbit/sec1• The PCI
bus in this recommended application
could support 33,000 simultaneous
phone conversations!

Reset

Figure 3 Transition Diagram of PCI Bus Events.

1 A standard telephone
service uses a sampling rate of8kHz
at 8 bits/sample.

Since the probability of using all phone
lines at the same time is quite remote, a
multiplication factor is used to
determine the total number of lines that
such a switch could handle. If the
probability of a line being used is 0.2,
the total number of lines that can be
serviced by such a system would be
over 165,000.

The use of such a circuit would find
itself applicable to medium rate
services. This would include such
applications as PBX systems which are
commonly installed in medium to large
sized corporations. Since the system
can support expansion by simply
installing more T -stage elements, a
common system would service many
different clients.

Other medium rate services include
central phone office services. As stated
above, each system could handle up to
33,000 simultaneous calls.

• Software Development:
In the past, the software developed for
data switching circuits was based on
real time operating systems. The
recommended solution discussed in this
paper would maintain the use of this
software database, however, the
development platforms used to write
the application software would be
based on common PC technology.
Because of the close relation between
existing PC platforms and the
recommended solution, the cost of
developing software will come down.

This is especially evident in
development and coding of common
drivers used in such a system. It is also

14

Figure 2 State Diagram of Communication
Circuit.

true for hardware and software
development tools.

Given the state of the art of today's PC
technology and the reliable supply of
industrial quality CPU's, the future
development of data switches will be
readily supported for years to come.

• System Architecture:
To implement 1he proposed system, the
PCI bus must perform the same
fimctions performed by the S-stage and
provide interconnections between the
T-stages & Switch Controller.

The circuit will assume one of three
mutually exclusive states (see Figure
2).

Neutral: The Neutral state is initially
invoked after start-up and essentially

forces the
circuit
t 0

assume a failsafe operation mode. This
mode affects all of the modules of the
switch.

PC! Spring: Industrial Applications

Con.fi'lJlrafion: The Configuration
state is used to configure the switch.
This mode is executed sequentially and
is not bound by real-time operating
requirements. This state may be used to
perform software downloads from the
Switch Controller to the T-stage
modules. It may also be used to
perform ofiline diagnostics and major
switch reconfigurations.

Run: The Run state requires the system
to operate in a synchronous mode.
Figure 3 illustrates the activity during
this state. The PCI must perform all of
the functions of the S-stage, and must
also support the communications
between the system modules. This
process is synchronous, and must not
be interrupted by other processes within
the system.

Industrial
PC

(Switch
Controller)

PCI
Bus

standard PICMG backplane using a 64
bit PCI eidension.

The T-stage modules are custom, in
that they are specific to the switch
implementation, however, the PC and
backplane are based on standard
products. An industrial PC such as
Teknor's PCI-933 can easily implement
the circuit described in this note.
Because of the low bandwidth
requirements of the Switch Controller.
a standard 32 bit PCI interface is
sufficient.

The major advantage of using a PCI-
933. is that the ooeration of the PCI
bus. E-IDE disk drives and the ISA bus
are concurrent. This allows the system
designer to base their design on the
multi-master PCI bus. Figure 5

illustrates the three
The run process is invoked from the
neutral state, and is triggered by the
Frame Sync interrupt. The typical
period of this event is 125µS. During
this period of time, the Switch
Controller will command each T -stage
modlile to send data packets to their
appropriate destination T-stage. The
dwell time for each module is the same.
Upon completing the four transfer
processes, the Switch Controller will
query each T-stage for status
information and send commands for the
next Frame Sync cycle.

Figure 4 Physical Implementation of a T-S-T Communication Switch, Implemented with
an Industrial PC and PCI bus.

E-IDE
Drives

PCJ Bus

Pentium
CPU

System
Interface

Cache

Ethernet_
Interface

ISA Bus

Figure 5 Block Diagram of Major Components of the Teknor
PCI-933.

• Physical
Implementation:
The recommended
implementation of the T -S-T
switch is illustrated in
Figure 4. This
implementation includes
four PCI T-stage
assemblies, an industrial
PC, a PCl/ISA bus
backplane (PICMG) and an

Ethernet controller for
system management
function interface. The
PCl/ISA bus backplane
is implemented with a

15

independent paths of the PCI and ISA
busses, as well as the system disks.

To maximize the switch traffic over the
PCI bus, parallel processing paths must
be used to assure that the PCI
communication process is not
interrupted.
While the system is operating in the
Run state, the Switch Controller must
operate independent and in parallel with
the S-stage process. Asynchronous
communications between the Switch
Controller and the Ethernet bus must
not affect the operation the PCI bus. A
T-S-T communication switch based on
the PCl-933 will fuJfill all of these
requirements.

r

PC! Spring: Industrial Applications

Pentium Cache CPU

System Ethernet
Interface Interface

PCI Bus

PCI-ISA
Bridge

~

Since the IS A bus is an integral part of
system, this blocking can any PC based

occur quite often.
System ev
intemlpts and
affect the op

ents such as real-time
refresh pulses can and do

eration of the PCI bus.

If other perip
thePClbus
of the PCI b

ISA Bus

herals are added to either
or ISA bus, the bandwidth
us is directly affected. In

addition to this
blocking mechanism,
asynchronous system
events such as
Ethernet and disk
access will directly

J
1

~
E-IDE
Drives

affect the synchronous
communication process

between the T-stage
assemblies. Figure 6 Block Diagram of Major Components of a CPU Using a

PCl-ISA Bridge Interface.

Alternate products base their industrial
PC designs on PCI to ISA bridge
implementations (see Figure 6). These
implementations have the disadvantage
of locking up the PCI bus anytime the
ISA bus or disk drives are accessed.

• References:

•Conclusion:
The architecture

developed in this paper demonstrates
the versatility of the PCI bus
architecture. Furthermore, this
architecture will allow communication
switch designers the flexibility and
choice of using standard Industrial PC

i. PCI Local Bus Specification; Rev. 2.1, Oct. 21, 1994
~PCI Special Interest Group; 1994

ii. Local Networks; Franta,W.R & Chlamtac, Imrich
3rd ed. D.C. Heath & Co.; Lexington Mass. 1981

iii.A Study in Data Communication Networks; KoJment, Raymond
Department of Electrical Engineering; New Jersey Institute of Technology
July 1988

16

products in their new switch designs.
The overall performance of the bus is
quite substantial, and is capable of
talcing on bigger and more complicated
tasks.

The use of the Teknor PCI-933 is
compatible with the needs of advanced
communication circuits and is capable
of handling the multi-task environment
of standard switch architectures.

•Biography:
Ray KoJment is the PCI Group Leader
for Teknor Jndustrial Computers Inc. in
Montreal.Quebec. He holds a Masters
Degree in Electrical Engineering from
New Jersey Institute of Technology,
and his major studies include topics in
communications systems. He had
completed his Master's Thesis in
switching theory. Mr KoJment is
presently involved in the definition and
design of advanced computer and
communication products at Teknor
Industrial Computers Inc. 616 Cure
Boivin, Boisbriand, Quebec J7 G 2A 7
(514)-437-5682.

PCI Spring 96 Conference

Session F2: Industrial Applications Forum

Impact of PCI Technology on Control Solutions

by
Edwin Lee (Pro-Log Corporation)

Abstract:
PCI Technology will accelerate the decade long process of replacing systems specifically designed for
industrial applications, including Allen Bradley programmable controllers and VME bus products, with
systems that meet the Intel/Microsoft standards. PCI Technology will help to make the Intel/Microsoft
standards as dominant in control systems as they are in desktop PCS.

PCI Technology bus speeds, 1/0 expand-ability, and multi-processing support are ample to concurrently
handle real-time control, graphics intensive data processing, and high speed networking. The driving
forces behind the move to Intel/Microsoft compatible solutions in Control Systems are: economics, the
Mind Bus, and immediate access to the latest improvements in hardware, software, and design tools.

PCI Technology is now available for Control Solutions in three packaging formats: desktop, Passive

backplane, and CMJJ8Cll'Cf™l The desktop format provides the most economic and convenient
solutions at the expense of ruggedness and mean-time-to-repair. The Passive backplane format improves
ruggedness and slightly reduces the mean-time-to-repair. CIJRl/18CIPC/combines the IBM PC electrical
and software standards with the Eurocard packaging standards to produce cost effective systems with the
ruggedness and mean-times-to-repair required by the most demanding applications.

Passive backplane PCI and CORl/18CIPC/are emerging, open standards supported by PICMG, the PCI
Industrial Manufacturers Group. This two year old association already has over 90 member companies,
and includes IBM, DEC, HP, and Force on its Board of Directors. Any company is free to make or buy
products to the standards it supports.

The Industrial Versions of PCI Technology
PCI technology is available in three packages: desktop, Passive Backplane, and CompactPCI (Eurocard).

Desktop computers have been used in control systems for the last decade. Although I don't have specific
survey data, my estimate from experience and anecdotal data is that - 40% of control systems already
use desktop computers because of their convenience and low costs. The trend started a decade ago. For
example, in 1985, one user had already rigged a desktop IBM PC to control part of his process in a
cement mixing plant. He protected the system from dust with a protective plastic covering. His backup
system? His secretary's computer!

Passive Backplane systems have approximately the same form factor as desktop systems. However, the

lcompactPCI is a registered Trademark of PI CMG

17

motherboard is replaced with a plug-in system card and a passive backplane that includes both the PCI
bus and the ISA bus. In addition, the systems have beefed up cooling, beefed up power supplies and far
more rugged packaging. This family of products is already available from dozens of manufacturers,
including Pro-Log.

CompactPC/packages the desktop PC, including the PCI bus, in the Eurocard format.
CompactPCI has a passive backplane and a system card. However, high density pin and sleeve
connectors replace the card edge connectors of the desktop packages. The cards sizes are
standardized in 3U and/or 6U Eurocard formats. The cards are locked in place and are supported
on all four edges. The Eurocard packaging, required in Europe for industrial systems and
popularized in this country by VME bus, vastly improves shock and vibration tolerances and
thermal characteristics. The pin and sleeve connectors used by CompactPC/enhance grounding
and shielding which improve performance margins and PCI bus fanout (A system card can drive
7 peripheral cards for each set of bridge chips) and reduce EMI radiation and susceptibility.

Users of CompactPC/can buy or make products that bring I/O out the front panel (as is now
typical for Industrial Control systems) or out through a connector to the backplane (as required
by Telecommunications systems to minimize down time during card replacement).

The Economics of PCI Technology
PCI Technology is driven by the >$150 billion desktop PC market. This juggernaut is driving chip
development, chip production, applications development and software development. Products used in
this market have such an overwhelming volume that their costs to produce are the lowest possible.
Furthermore, they are supplied by low margin, aggressively competitive suppliers.

By contrast the Controls market is somewhere around $4 billion (Including telecommunications,
industrial control, instrumentation, and medical electronics). The income stream from the Controls
market is not adequate to sustain leading edge product development (hardware or software) or to produce
products at competitive prices. Furthermore, the traditional suppliers require high margins to support
expensive technical support, sales and service infrastructures, and to earn reasonable profits. The result is
product costs to users that are two to five times that of comparable desktop products.

Apple computer, with its 7% share of the desktop PC market, has a far bigger market than the entire
controls market. However, it hasn't been able to thrive by competing with the Intel/Microsoft standards.
Motorola has given up on its CPU race with Intel. The income stream for the 680x0 CPUs produced by
Apple, VME bus, and a captive market was not enough to sustain innovation. The Power PC is
Motorola's.fig leaf, not a viable alternative.

Just to clarify the economic perspective: $1.5 billion is the entire market for VME bus hardware,
software and systems this year (fewer than 250 thousand VME bus systems). It is also Intel's market
share of the PCI system logic chip sets (40 million)! Intel is only one of several suppliers.

The Mind Bus and PCI Technology
The Mind Bus is a term I use to describe a standard set of skills, expectations, and beliefs about
computers held by the hundreds of millions of people who buy and use them. The Mind Bus has been
created by the desktop PC market over the last 15 years. It is shared by engineers, executives, students
and housewives (just to name a few). It's responsible for Apple's shrinking market share and with Allen

18

Bradley's difficulties over the last decade.

The Mind Bus provides common expectations and value references. These expectations and value
references didn't exist fifteen years ago. They already impact customer preferences in Control Solutions,
and explain the wide use of desktop PC's in control systems. Because the PCI Technology removes
performance restrictions, the Mind Bus will dominate how designers implement Control Solutions within
five years.

PCI Technology is part of the desktop PC standards and it is part and parcel of the Mind Bus. I don't
have to sell it or explain it in any detail to engineers or to executives. However, I would have to spend
considerable time and money to sell an alternative to Mind Bus skills, expectations, and beliefs. Just ask
Apple. They are clinging to less than 8% of the market with products that may be easier to use, but don't
fit mind bus standards. Within a few years we should see the same situation in Control solutions.

Relevant Beliefs of the Mind Bus
Computers are commodities, not esoteric products that require careful selection, special training, and
annual service contracts. Significant elements of this core belief include:

I expect industry standard computers to be cheap and reliable The best buys and latest
innovations are always found in open-architecture, dominant standards supplied by many
competing suppliers. Closed systems dominated computers until 1982. But, since then Wang,
Apple, and IBM simply couldn't keep up with the rate of innovation and cost reductions
provided by a host of suppliers vigorously competing to supply the IBM PC standards.

I can configure my own system to meet my specific needs by using standard ''plug-in" hardware
and software. I expect plug and play capabilities. Users routinely buy and successfully install
third party modems, printers, and scanners. They no longer need to buy all products from a
single supplier, or have suppliers install products or configure systems to specific applications.
The customer thereby assigns little or no value to system configuration and system installation.
Since customers can also update operating systems and applications software, they assign little
value to these traditional, supplier furnished services.

I can successfully use them without studying user manuals or paying/or special training by the
manufacturer. User friendly software, built-in tutorials, third party books, or third party courses
and workshops educate customers instead of User Manuals and manufacturer training.

I can buy computers, peripherals, and software through distribution (retail) and get the lowest
prices and most convenience. Buying direct from the manufacturer is more expensive and
produces less effective support

I can usually service my own computer with the "as needed" backup support of the
manufacturer, distributor, or third party service organization when and if the need arises. A one­
year warranty supported by a telephone hotline is customary and expected. Beyond that, the
failure rate is expected to be low enough that additional service is seldom needed, and annual
service contracts are not cost effective.

Other core beliefs that affect the Control markets are:

Mass produced software is relatively cheap, reliable, and user friendly. It is worthwhile to solve my

19

problem using standard software rather than payingfor special purpose software.
The desktop PC has created a value reference for software: price, performance, and user friendliness.
That value reference is improving with time. Special purpose software is orders of magnitude more
expensive, doesn't work as well, and is seldom as user friendly as the leading software for the PC
standards. The customer asks himself: How can I use a standard word processor, accounting package,
data base, customer contact package, etc. to fit my application? In the past customers would specify their
needs and have software designed to meet them. That software was expensive, had bugs, and was
horrible to maintain or update.

I expect dramatic improvements in performance/dollar each and every year, therefore I want a system I
can update or replace frequently.
When a customer buys a desktop computer, she expects it to be competitively obsolete within 3 years.
However, its architecture and its low costs give her the viable options to update it or replace it. The old
belief was that the solution should be "competitive" for more than five years.

How the Mind Bus and PCI technology will alter the Controls Solutions
Designers will make commercial chips, operating systems, development systems, and applications
software serve Control Applications. They will accept tradeoffs from the ideal solutions because of the
overwhelming economic and performance benefits of making these tradeoffs. Two examples come to
mind: multi-mastering as implemented on VME bus, and Hot Swap.

PCI technology does not support true multi-mastering as does VME bus. On the VME bus, any
CPU can take over the bus. PCI technology provides a more limited multi-mastering through a
single Host that supports bus mastering for a limited number of peripheral processors. However,
PCI technology has enough capability to solve any control problem. Designers will make PCI
Technology fit their needs, rather than require it to add true peer-peer multi-processing.

Hot Swap, changing a plug-in card without turning power off or rebooting the system, is a Holy
Grail of many control system designers. Its benefit might be to reduce mean time to repair to a
matter of seconds. (I seriously doubt that anyone would actually realize this benefit.) However,
unless Intel makes it a standard feature of PCI chip technology, and unless someone modifies
how Plug and Play software operates, the overwhelming majority (>99%) of control systems will
continue to live without it. Plug and Play software, as it works today, analyzes the peripheral
cards modifies their bioses during boot-up. If a peripheral card is hot swapped there would be not
assurance that it would be compatible with the system unless that system were rebooted.). Of
course there is no feasible way to "hot swap" a Host CPU card.

In my opinion, we will live without Hot Swap for the foreseeable future. Let me put it another
way: should VME bus, for example, successfully implement hot swap, it will not help them
sustain market share in any significant way!

Major accounts for Control Solutions will buy direct, smaller accounts will buy through Distribution.
Major suppliers will trim their overhead by focusing on shipping large quantities of fewer, standard
products to key accounts. Large Distributors will be some of their key accounts. OEMs, Distributors, and
third party organizations (including VARs) will provide depot level and on-site service.

PCI Technology and Legacy busses
In the near-term, PCI Technology has to work with legacy buses, especially the ISA bus. These buses

20

have an established base of peripheral cards and operating software. PCI Technology can theoretically
support as much 110 as anyone would need through PCl/PCI bridge chips. However, this solution is not
yet fully implemented in the desktop world.

In the long run, PCI technology should greatly reduce, or eliminate, ISA usage in the desktop
environment. It should more swiftly eliminate the use ofISA and other legacy buses, including VME, in
the controls environment for a few simple reasons: reduced costs, improved performance, and greater
software compatibility.

PCI Technology is supported, and will continue to be supported, by the latest in hardware and software
tools. VME, for example, has different and far less up-to-date software tools to support it. It is far easier,
far cheaper, and much more productive for suppliers to move their peripheral designs to the PCI bus,
than to bridge the PCI bus to a legacy bus. A bridge is expensive and slows down one or both busses as it
interprets one set of protocols to another. A PCINME bridge, for example, is like an English to Chinese
interpreter passing information from one language to the other. Also, in a hybrid system of PCI and VME
you can kiss plug and play goodbye.

What about legacy 1/0 busses like Allen Bradley's data highway? They'll hang on for years because old­
timers will insist on sticking with what they know and will be able to hoodwink their management into
paying enormous premiums to support their preferences. But new applications should move quickly to
open-architecture 1/0 busses (like SCSI-2 or PCMCIA) supported by desktop software. There's a need
for, and probably an opportunity for someone to develop an Industrial 1/0 bus that takes advantage of
PCI technology.

Conclusions
The Industrial Market is already strongly influenced by the desktop PC. Because of PCI Technology and
the packaging innovations of Passive backplane PCI and CtJHl/18CIPC/, Control Solutions will
increasingly depend on the products, skills, and beliefs created by the desktop PC's. In the next five
years, PCI technology will become the overwhelmingly dominant computer technology in Control
Solutions.

21

ABSTRACT

LEVERAGING PCI IN DATA ACQUISIDON APPLICATIONS
Richard J. Bmk

Data Translation, Inc.
100 Locke Drive

Marlboro,MA 01752
(508) 481-3700/3080 (fax)
e-mail: rbmk@datx.com

PCI' s numerous performance and fimctional advantages are a critical benefit to data acquisition. Especially in data
acquisition (DAQ) applications where users cannot compromise their data integrity, nor can they afford to compromise
acquisition speed, PCI has emerged as the clear choice. Inherent design featmes of the PCI bus that boost performance and
productivity in data acquisition include much faster bus speed, ease of installation and configuration, greater expandability and
guarantee of future support. TCC Industries, a manufacturer of cellular phone accessories, recently migrated all of the
company's testing PCs to PCI systems to achieve a higher degree of accmacy. TCC reduced testing time to 5 seconds using a
PCI data acquisition system, compared with 12-16 seconds using a non-PC! setup. A professor from the University of
Waterloo has invented a new scanning beam confocal microscope that utilizes a PCI-based DAQ board from Data Translation.
This DAQ implementation would not have been possible without PCI' s unique performance advantages.

PC/ Y.S'. ISA IN DATA ACQUISITION

When evaluating a PC-based data acquisition system, the cw-rent state of technology leaves users faced with a choice
between the ISA (industry standard architecture) bus or the newer PCI (peripheral component interconnect) bus. The
numerous technical and performance advantages of the PCI bus make a PCI-based data acquisition system an easy choice,
although certain applications may be more well-suited to a dedicated ISA-based system.

ISA Drawbacks

Across the ISA bus, applications can move a maximum of 400kS/sec (thousand samples per second). Th.at is to say,
no more than 400,000 data samples can be transferred across the bus -- either to or from memory -- each second. When ISA
peripherals begin to push the bandwidth limits of the ISA bus, the user begins to either pay for on-board memory, or for time
(seen as system delays). Data that cannot be sent immediately across the bus as soon as it comes in must be stored locally or
stalled -- or it is simply lost.

A further limiting factor of this architecture is that ISA peripherals must pass all data through the CPU to system
memory, consuming valuable system overltead as data travels to and from memory. While DMA (direct memory access) has
been utilized to provide direct access to system memory, CPU clock cycles are still being applied to data movement,
essentially stealing time from other applications and system calls. A further resomce drag is the ISA memory controller itself,
which grabs CPU time every time it needs to write or read from memory.

For some data acquisition applications, ISA's 400kS/sec bandwidth clearance can easily be enough, but since data
acquisition applications often require bi-directional data flow, that bandwidth is quickly consumed and application
performance suffers. For example, an application acquiring data ftom a laser microscope at 300kS/sec, and applying real-time
control to an x/y-table that moves the item beneath the microscope at 200kS/sec, will quickly consume all available
bandwidth and generate an Wlstable control loop. Dropped data bits force the application to sample data at a lower rate than
the data is coming in, resulting in Wlstable or inaccmate readings.

PCI: Ideal for DAQ

PCI' s numerous performance and fimctional advantages are a critical benefit to data acquisition. As data acquisition
has traditionally pushed the limits of system performance, dedicated systems for data acquisition have become a pervasive
mindset in the industry. The emergence of PC I-based systems is changing that mindset, and promises to open up the number
of PC-based data acquisition applications. Especially in data acquisition (DAQ) applications where users cannot compromise
their data integrity, nor can they afford to compromise acquisition speed, PCI has emerged as the clear choice. Inherent design
features of the PCI bus that boost performance and productivity in data acquisition include much faster bus speed, ease of
installation and configuration, greater expandability and guarantee of future support.

22

Speed, Cost and Time Benefits

PCI peripherals, nmning asynchronously, can send data along the 32-bit bus at a rate of 66MS/sec (megasamples per
second). Jn addition, because the PCI architecture enables peripheral boards on the bus to access systems memory directly
without using the CPU, DAQ boards can be acquiring data without wasting CPU overhead. Furthermore, PCI DAQ users can
be acquiring data to memory while at the same time doing analysis in real-time on existing data, all while communicating
with other fimctions on the network.

Using PCI' s bridging capabilities, multiple PCI buses can be connected, ad infinitum, with standard, off-the-shelf
PCI expansion hardware. This is done via a PCI-to PCI bridge chip, which offers the additional benefit of being able to get
around capacitive load limitations and expand the number of plug-in slots. This enables DAQ users to set up multiple DAQ
boards, and run them all simultaneously, without hitting the PCI bandwidth ceiling. Jn order to achieve this kind of expansion
with ISA, users would have to add additional machines to their production setup.

Furthermore, a DAQ board plugged into a PCI slot carries its own configuration information in software -- users do
not need to set any jumpers or identify any base addresses -- a common headache with ISA DAQ boards. Not only does this
provide extreme ease of installation and use, but because all hardware settings can be controlled in software, users can easily
customize the configuration of their DAQ system at any stage of their operation.

REAL-WORLD APPUCATIONS OF PCI IN DAQ

A growing number of users are moving their data acquisition applications to the PCI bus, primarily to realize the
benefit of higher throughput. Since petformance in many data acquisition applications is directly dependent on throughput, or
how many points of data can be dumped into system memory for analysis, the bandwidth capabilities of the bus correlate
directly to testing accuracy. Marlboro, Mass.-based Data Translation's new PCI-based data acquisition product line, the PCI­
EZ Series, by design, supports device input up to lOOOkS/sec (or 1 megasample per second), giving an immediate 2.5 times
petformance increase over their ISA comterparts.

PCI in Telecommunications

Joey Nieves, production engineer for TCC Industries, Inc., a Cerritos, Calit:-based manufacturer of cellular phone
accessories, recently migrated all of the company's testing PCs to PCI systems to achieve a higher degree of accuracy. TCC
Industries has been using PCI-based data acquisition cards from Data Translation to test and grade high-sensitivity
microphones using RMS (root mean squared) analysis of voltage output, where extremely high-speed acquisition is critical.

''We were initially running two test systems and fomd that .our PCI system was registering more accurate results.
The non-PCI system was dropping data points because of bus bandwidth limitations. It quickly became imperative to upgrade
all our test systems to PCI," said Nieves.

Nieves explains that during production a variety of variables are introduced which can compromise the sensitivity of
the microphones, and inaccurate grading of these components will significantly impair overall product petformance in the
field. "A single millisecond separation in signal pick-up can give us an inaccurate reading. Our PCI-based data acquisition
machines now ensure that data is transferred to memory as fast as it comes in," said Nieves. Nieves reports that testing time
has been reduced to 5 seconds per lUlit for each microphone test, compared with 12-16 seconds each with his non-PC! setup.

Nieves is in the process of developing another application for his PCI DAQ implementation which will run a series of
four tests in sequence on each finished unit. Whereas microphone testing was petformed prior to final assembly in the past,
Nieves now plans to skip this step mtil the unit is fully assembled, and test the microphone as part of the final test suite.
Testing of the fully assembled units will save time and ensure a higher degree of quality control. Nieves again compared test
times between two test systems and fomd that the four-test routine took I 0-15 seconds on the PCI system, compared with 25-
30 on his ISA setup. Since he must run up to 1500 lUlits through final testing per day, the time savings is significant.

Nieves reported that it took 2 programmers less than 6 hours to develop this test suite from start to finish using Data
Translation's visual programming language, DT VEE.

23

PCI in Microscopy

Another DAQ user leveraging the benefits ofPCI is A E. (fed) Dixon, Ph.D, from the University of Waterloo.
Dixon has recently formed a new company, called Biomedical Photometrics, that will bring to market a new scanning beam
confocal microscope that utilizes a PCl-based DAQ board from Data Translation.

Confocal microscopy is the process of shining a focused laser beam onto a specimen or subject and measuring the
level of reflected light using an avalanche photo diode (APD), a highly sensitive single-point light sensor. The APD, reading
grayscale only, converts light levels into analog signal levels, which are fed into Data Translation's 12-bit AID (analog-to­
digital) converter.

Data from a confocal microscopy device is ''point-source" data, whereby each frame is scanned in one pixel at a time
and fed into system memory. Enabled by the high bandwidth of the PCI bus, this device creates a fimctional imaging
application from a point-source detector, producing a field size and resolution that even a high-end imaging board is not
capable of

Biomedical Photometrics' device, for which the company has coined the term MACROscop~. combines the rapid
scan of a scanning beam laser microscope with the large specimen capability of a scanning stage microscope. The
MACROscope proves a significant step forward in microscopy because it can scan a 25-micron-sized object, with a 0.25
micron resolution, as well as being able to scan a 7.5 cm object with 5 micron resolution, producing a zoom ratio of more than
3000.

''With this device, the PCI bus is actually enabling the advancement of microscopy," said Ted Dixon, president,
Biomedical Photometrics Inc., "as this level of resolution and scanning field in the past simply required too much time to
acquire data."

The new device will be particularly useful in applications where large specimens must be examined at high
resolutions, and where it is necessary to examine small areas of interest in the specimen at extremely high resolutions.
Possible applications include:
• biomedical, such as fluorescent gels used in gene sequencing;
• materials science, such as imaging paper fibers and coatings;
• semiconductor quality control, such as photoluminescence imaging of compolllld semiconductor epitaxial layers, wafers

and devices; and
• forensic science, such as latent fingei:print detection, or imaging of fluorescent gels for DNA fingerprinting.

The MACROscope sends data across the PCI bus into system memory at rate of300 kS/sec. While this data rate
would not, in and of itself: push ISA bandwidth limits (400 kS/sec), the PCI bus provides the extra bandwidth necessary to run
simultaneous control and analysis fimctions critical to the MACROscope application.

Considered a "slow-scan" system, the single frame rate for an image with a resolution of 512x512 pixels is 5
seconds, and for 2048x2048 resolution, the frame rate is 25 seconds. The higher the resolution, and the wider the scanning
area, the slower the data acquisition, as both resolution and scanning area quickly increases the volume of data points being
sent into the DAQ board. Based on the 2.5x improvement that the PCI bus offers, an ISA-based system would output images
at rates of only 12.5 and 62.5 seconds, depending on the resolution.

Biomedical Photometrics is cWTently rum:iing Data Translation's 12-bit AID converter at its top speed, 300 KHz, but
for extremely high resolutions across wide scanning areas, the company will be looking to run Data Translation's next­
generation converters at upwards of3 MHz. The PCI bus ensures the viability of this growth path.

Biomedical Photometrics' implementation benefits from several PCI bus strengths, not the least of which is reduced
cost because the DAQ board requires no on-board memory. "Back when we first started specifying this kind of system, DAQ
boards had to have a memory buffer on the board because the ISA bus couldn't handle the data fast enough to put through to
system memory, which really drove up the total cost of our system" said Dixon. ''The PCI implementation gave us a way to
eliminate the redlllldant memory and still get the throughput we needed."

24

PCI performance also enables the use of a 12-bit DAQ (as opposed to 8-bit), giving Biomedical Photometrics
tremendous dynamic range in the data input signal. Using an 8-bit AID converter, this type of application would typically
result in data bits that are outside the useable range (either too bright or too low), effectively narrowing the dynamic range of
the image data (for example, resulting in only 6 bits ofreal data). Using a 12-bit AID converter ensures that even with
unusable data points, the application still ends up with a 10-bit real, dynamic range (even an 8-bit dynamic range would be
acceptable).

This type of dynamic range is especially critical in optical tomography, \Were the device takes in a series of images
at different focus positions in order to compose a three-dimensional image. Jn the past, optical tomography required taking a
series of slices, then resetting the analog gain based on the maximum and minimum values, and then going back and taking all
the slices again. Data Translation's PCI-based AID converter, an off-the-shelf 12-bit solution, eliminates this time-wasting
step.

Biomedical Photometrics also went with Data Translation's DAQ board for the ability to select different frame sizes
in software. "Data Translation's programmable gain feature enables our users to select different frame si7.es in software
depending on the particular specimen being viewed," said Dixon. "Other DAQ board implementations require setting of
jumpers in hardware to change gain levels, and we wanted make this instrument as easy to use as possible." Furthermore,
without programmable gain, the MACROscope would require additional optics to achieve such a high zoom ratio.

Conclusion

PCI is a future trend that has gathered significant momentum in recent years, and shows no signs ofletting up, \Wile
the era ofISA is quickly coming to a close. Most new PCI systems are still manufactured with ISA add-in slots, but future
systems will have fewer and fewer of these slots, until they ultimately cease to exist. PCI paves the way for lower cost
products, as manufacturers no longer need to include large amounts of expensive on-board memory to handle large data
transfers.

The PCI bus offers many performance enhancements that make it ideal for high-bandwidth applications, and is sure
to be a significant step forward in PC-based data acquisition. While not many users are buying new ISA-based PCs these
days, a large number of''hand-me-down" ISA systems are making their way down the coi:porate ranks and into the production
or testing department (typically the lowest level on the coi:porate PC food chain). Production managers must weigh the
benefits of a new PCI system against an aging ISA system in perfect working order. A growing number of these managers are
realizing that the performance benefits reali7.ed in PCI-based data acquisition applications are worth the investment. With
plenty of room for growth into the foreseeable future of the PC, the PCI bus gives users the safest and most robust platform to
build DAQ applications.

25

Efficient Use of PCI

Frank Hady

Platform Architecture Labs

Intel Corporation

Agenda

u Define PCI Efficiency

u Charting PCI Efficiency

u Rules for an efficient design

u Why you should follow the rules

u Effect of PCI to PCI Bridges

u Conclusions

26

PCI Metrics

u Bus Utilization
- Utilization= (Clocks Used) I (Total Clocks)

• Clock is used if #Frame + #lrdy + #Trdy is True

u Data Throughput
- Thrptoata = Thrptpc1 - Thrptcontrol

u PCI Efficiency
- Maximize Thrptoata
- Minimize utilization

- Optimize system performance

l~,.Y;l-84..,............Yf I

What Isn't Overhead?

CL
FIKAME#~-~~~~~~~~­
IRD Y #
TRDY#

'-+-'
AD

C/BE#

. .
(
(

-CD---­
~--~~~~~-­

Overhead Clocks
Idle

Data Transfer Clock
- Count scaled by BE#
- Only application data counted

27

. .
Di)
g~)

PCI Efficiency

Objective: Quantify the efficiency of moving
application data over the PCI bus.

PCI Efficiency =
Data Transfer Clocks

Clocks Used

Thrptnata / (PCIBusWidth)
PCI Efficiency =

Clocks Used

PC Architecture

Pentium ® Processor

Processor Bus

PCI Card

PCI Bus PCl-PCI PCI Bus
... _lllillliililiiliiiiill ---t

Bridge ...-----
Chipset ISA Card

PCI Card
ISA Bus

28

PCI Efficiency Charted

0.9

• 0.8
• £ 0.7

'Cl 0.6
• ~ 0.5

'S 0.4
g u 0.3

J: 0.2

0.1

0

Command Name

•Overhead PCI Utilization
•Data 10%

~ft
PCI Throughput

9%1%

156% Efficient I

PCI Burst Length and Efficiency

0.9

0.8

0.7

0.8

0.5

0.4

0.3

0.2

0.1

~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ' '
Burst Size (Dwords)

29

numw.

PCI Command Usage Charted

12000

10000

8000
:
E 6000 i= ...
0

"" 4000

2000

0

--l"" _______ _JmlntAck

•IOWr
1!Jil0Rd

•MemWr

Burst Size (Dword)

• Mem Wr lnval
11111MemRd
•MemRdLn

•MemRd Mult

Rules for Efficient PCI Use

u Use long bursts

u Use memory commands, not 1/0 commands

u Implement advanced commands
- Mem Read Line (MRL): 1 cache line reads

- Mem Read Mult (MRM): Multiple cache line reads

- Mem Write lnval. (MWI): Multiple cache line writes
(must be aligned)

u Minimize latency

u Follow the rules, not experiments

30

0.9

.!! 0.8

~ 0.7

= 0.6
:::> 0.5

~ 0.4
0 ti 0.3

l2. 0.2

0.1

Use Long Bursts
PCIUlll~:.

L_~
[PCi"Throughput
I / 3%1"
I

lNIC B- 57% Efficient I

I NIC A- 30% Efficient I

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Use Long Bursts (cont.)

Burst Size (Dwonls)

NICA:
- 8 Dword Bursts
- 45% Efficient Bursts

0.7

0.8

0.5

0.4

0.3

0.2

0.1

Jl

NICB:
- 16 Dword Bursts
- 65% Efficient Bursts

0.9

.. a.a
~ 0.7

1 0.8

:I 0.5
'5 r·· 0.3

""' 0.2

0.1

0

Short Bursts = Low Efficiency
•

0.5 -+---+---+---+---+---+--_1--·---+---t

•
(;' 0.4 -+---+---+---~--t----t---f-------1----l
c:
CD •
~ 0.3 -+---+---+--------t----t----t---f-------1----l
w •
0 a. 0.2 -+---+---+----t----t----t---f-------1----l

0.1 -+----+----+--+--

0 2 4 6_ 8 10 12 14 16

Average PCI Burst Size (Dwords)

Chipsets Can Limit Burst Length
PCI Uliliulion ...
~ ..

PCI Throughpul I Chipset B: 28% Effi

~ I I
PCI

--~ ----i! 5 i ~ l i! ~ ~ To.1
I i i! i! i ~ 2 2 I r· i i i 0.5

CommandN- '5 PCI

0.3 r·· I Chipset A: 53% Efficient I .. 0.2

O.! • o. -

32

Chipset Limited Burst Length

12000

10000

• 8000

~ 6000

'S
.. 4000

2000

I Chipset A I :iow-
._. _ _ olORd

•MlmW' I
•MlmW'llMll

l•MemRd I
.MemRdln I

\•MemRdMull.

u Don't design to a specific chipset

u Follow the rules to achieve high PCI
efficiency on all chipsets

I_..,.... ""..,,,.,,._~--4 Vll I n~

1/0 Address Space Accesses

u Poor PCI Efficiency

u Forces Ordering in System
- May serialize CPU

- Serializes Chipset

33

• u
>o
u
i
:!
'S
c:
0

i
I&.

Avoid Expensive 1/0 Commands
1 1r.==============i11

o.9 I PCI NIC A - 1/0 Cmds. I o. PCI NIC B - Mem. Cmds.
0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

MRM - 68% Eff .
0.8

0.7

0.6

0.

0.4
1110 Read- 7% Eff. I
. - 0.3

0.2

0.1

o...-.~ ~ __... _,
i! ~ ~ i! .5 i ~ > i! ~

..
.5 :i! g g i E i! i! Ii ~

g g s • :I Ii Ii :I
Ii

Command Name
:Ii :I :I

D~.

Use Advanced Read Commands

u Memory Read (MR)
- Short reads: 1 or 2 Dwords

- Reads with side effects

u Memory Read Line (MRL)
- Medium Reads: - 1 cache line (8 Dwords)

u Memory Read Multiple (MRM)
- Long Reads: > 1 cache line

34

Which Read Cmds to Use

12000

10000

2000

0

clntAck
•IOWr
clORd
•MemWr
•Mam Wr lnval

•MemRd I
•MemRdln
•MemRdMult

Read Command - Chipset A
,

0.8
PCIUlllzation

.... 3 ...
.!! 0.8

~ ~ 0.7

i O.B NIC B, Chipset ~ 0.5

: 0.4 PCI T111·-hput 57% Efficient i 0.3 4"o"
£ 0.2 C) 0.1

0 --- --- ~ PCllJIR
il! s !i ~ 1 il! ~ ~ •
i il! il! Ii ~ Q Q l ! ::: E j " j :I

command Name i O.B

A:

:I 0.5
'O PCI c 0.4

NIC A, Chipset A: 0 • ti 0.3

57% Efficient
£ 0.2

0.1

lbroughput

0 --- • ---il! s ~ 1 il! ~ ~
! il! ! ~ Q Q 1

E E
:I :I

n~. Command Name

35

0.0

...
0.7

...

...

...

...

...
•..

Read Commands - Bridge B

ii s !I • l ii • :I
I ii ii I • !! !! I

I I I --
NIC A, Chipset B:
3% Efficient

PCIUll-...

'it-..
PCI Th!Ollllhput
C)

"""
s- 07

i 0.8

:I 0.5

?u t 0.3

.. Cl.2

0.1

0 --.

I

_.

NIC B,Ch
40%Effici

ipset B:
ent

Read Commands - NIC A

NIC A, Chipset A:
-57% Efficient
-16 Dword MRs

0 .

1 2 s 4

36

NIC A, Chipset B:
-3% Efficient
-All 1 Dword MRs

S I 7 8
1ur11 sa (Dwordl)

• 10 11 12

o.o

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Read Commands - NIC B

o.•

0.8

NIC B, Chipset B:
-40% Efficient
-HugeMRL

o~----~~~~--~
- "' ca ~ ~ N ~ Ill ::1 :::; ~ ~ 1t :a r;; "' 1 m t! f:: a; :a m 0-7

Burst Size (Dwonlsl

NIC B, Chipset A:
-57% Efficient
-LargeMRL

o.a

0.5

0.4

0.3

0.2

0.1

Use Advanced Write Commands

u Memory Write
- Short writes: < 1 cache line

- Long unaligned writes

- Writes ending in incomplete cache lines

- Do not terminate to start a MWI

u Memory Write Invalidate
- Long cache line aligned writes

37

Write Commands - Chipset A
0.1

1~:
1 0.1

:! 0.5

i ::
... 0.2

O.t -il! 5 I ' .t
j I I j ' I j j --
IC A, Chipset A: N

5 0% Efficient

• il! ' g g

.. um
PCI Throughput

3 .. , ..

C)
~ u
J: I 0.7

I 0.1
0.5 .. r· 0.3

.. 0.2

O.t

0 ---

NICB,C hipsetA:
cient 66%Effi

I --

Write Commands - Chipset B

5J NIC B, Chipset B:
PCITll""'llllPUI ... , .. 60% Efficient

~ ·-- PCIUlll-IMI

I s I • .t I • ~ r .. ~ j il! I I • g g J: 0.7 i j j
10.8 -N- :i 0.5
'Ii PCI Tivougltpul ~ 0.4

O.t

~ 03
NIC A, Chipset B: ! 02 C) 38% Efficient

0.1 --· 0

38

Write Commands - NIC A

0.1

...

..• ..
"
D.2

- .., "' ... • :: !'.'.! ~ t:: S! N
..... Slze(DwanlaJ

NIC A, Chipset A:
-50% Efficient
-10 Dword Bursts

0.7

0.8

0.5

0.4

0.3

02

0.1

NIC A, Chipset B:
- 38% Efficient
- 4 Dword Bursts

- ~ ~ ~ m = ~ = ~ ~
...... (Dlfw*I

Write Commands - NIC B
...

0.1

NIC B, Chipset A:
-66% Efficient
-Large MW and
MWIBursts

0.9

0.1

0.1

0.5

0.4

0.3

0.2

0.1

NIC B, Chipset B:
-60% Efficient
-Large MWI Bursts

o~~-i.. -...~ ~~ -......_..j
- ~ ~ ~ e ~ ! ~ ~ ~ " ~ ~ ¥ q ' t ~ I I 5 I

llurstSln(Dwanlsl n~.

39

PCI to PCI Bridges

No Bridge

PCI Bus PCl-PCI PCI Bus ____ liililll --t

Bridge

Chipset ISA Card
On Bridge

ISA Bus

PCI to PCI Bridge - Reads
1

0.9
PCllllillutlon

15'4 2"111
J 0.1

~ So 07

1 0.1 On Bridge:
::t 0.5
is I PCIThroughput

l 53% efficient r· 0.3
, .. 0%

... 0.2

1 ~ 0.1

0 I PCllllU~:i I
ii! 5 !I ~ .ii ii! ~ i 0.9

I I d! d! I ~ Q Q !I .!! 0.8
I

~
E I E S-0.1 I
~ " I 1 Conmand Namo 10.8

I ::> 0.5

No Bridge:
'O

I PCI Th~hput I r· . 0.3

I 75% Efficient .;: 0.2 IC) I 0.1

0

40

i
I

PCI to PCI Bridge - Reads
I No Bridge-8 Clk Latency I I On Bridge-15 Clk Latency I

12000 .. 10000 .,
"

9000
10000 .

""
8000

>: :
. .._ ,. ..

" 8000 l! . . "!I . . 1!
8000 .·. . ~~
4000,.J . .

ll
.

7000
.

8000 . . .
5000 . .
4000 "' . .
3000

f.-..., ~·--·.·· ·.:
.

.[
.

!l. ..1. .l '

2000 l
1000 ;[... , I J 0 I

~ ~ ~ ~ R ~ i 2 I I ~ ~ I ~ ~
QkslCommlnd -

u Adds 7 Clks in read latency dropping PCI Eff from 75% to 53%

u Future bridges may minimize this latency, but not eliminate it

Read Latency and 64 bit PCI
::I
Q.
.c
g> 100
e
F

0-1--+-+-l--l--+--+--+--+--+-+--+--+--+--+--+--i-+-+-+--1
0 N IO CD S! ~ ;!:

Latency + x PCI Clks

41

" ·~
.. 'I?
~ .a:e

.,":
t .,c

" ..

PCI to PCI Bridge - Writes
0.9

J 0.8

s- 07

1 0.8

~ 0.5

0 j 0.4

~ 0.3

~ 0.2

0.1

: PCIUllllUllan

i C)1""
1
.. :.i

I :
! ! F Pa Throughput i On Bridge:

i.,

1 ri\ !,__ ____ s_o_o/c_o -E~ffi~ci_e_nt--~
• ______) i PCI lllillzatlon ,__ __ _.,............_......_.~__,_--1 I 10%

il!5!1~Jil!~" ·~

j 1 i~LQ Q ~ f:~ i \J3
..

:I 0.5 .___

No Bridge:
92% Efficient

'I j 04

I o.3
... 0.2

0.1

PCI to PCI Bridge - Writes
12000

10000

8000

Iii~
I·'.~~ I
1
.,10•• I
•MtlmWr
aMemWrlnvatl
mMem Rd :

aMem Rd Ln

aMem Rd Mutt

100000
90000
aoooo
70000
80000

Burst Size (Dwonl~ = , ~ :?

u Bridge turns 65 Dword Bursts into 8 Dword bursts, dropping
efficiency from 92% to 80%

u Write posting minimizes drop in efficiency

u Future PCI to PCI bridges may eliminate this problem

42

Conclusion
u PCI Efficiency is the metric (Dwords/PCIClks)

- Optimize your designs to this metric
- Consider other designs by this metric

u The Chipset/PCI card combination determines PCI
efficiency (Don't Optimize for a single chipset! !)

u Current PCl-PCI bridges impact PCI Efficiency

u Achieve high efficiency across platforms by:
- Implementing PCI Advanced Commands
- Use Memory Commands, not 110 Commands
- Use long bursts
- Minimize read start latency

43

Abstract

THE ROLE OF CARDBUS IN A PCI BUS HIERARCHY
Claude A. Cruz

National Semiconductor Corporation
333 Western Avenue, MIS 10-26

S. Portland, ME 04106
(207) 775-8318; FAX: (207) 761-6137

ccruz@fmis02.nsc.com

CardBus is a high-speed 32-bit interface defined by the PC Card standard. This point-to-point architectural
"cousin" of PCI shares PCI' s signals, synchronous protocol, and performance levels. These similarities give CardBus
a natural place in a PCI system's bus hierarchy (see Figure 1).

Early CardBus implementations utilize a PCI-to-CardBus controller which is located on a platform's level-0 PCI
bus. This controller acts as a "bridge" which maps CardBus resources onto portions of a PCl-based host system's
memory, 1/0 and Configuration address spaces. The bridge allows PCI bus cycles to be sent "downstream" from CPU
to PCI agents, or "upstream" to the CPU. Thus, the PCI-to-CardBus bridge performs the same function as a PCI-to­
PCI bridge; both support the hierarchical connection of multiple Pel-protocol busses.

This paper will sketch the close relationship between CardBus and PCI, as motivation for why these two busses
fill complementary roles in a PCI bus hierarchy. We will then explore three of the several possible roles of CardBus
within such a bus hierarchy:
• CardBus as a link between a host-system PCI bus and a higher-level PCI bus residing on a CardBus PC Card;
• CardBus as a docking link between a host PCI bus and a "dock-side" higher-level PCI bus; and
• CardBus as a conduit for high-bandwidth video data flowing between a CardBus card and a host system's PCI­

resident main memory or video memory.

PC/

CardBus CBrd Dockfngsration

Figure 1: PCI Bus Hierarchy

44

CardBus and PCI

Over the last two years or so, the Personal Computer Memory Card Industry Association (PCMCIA) standards
body has developed an interface which extends the popular PC Card add-in standard. This "CardBus" interface
extends both the performance and the functionality of the older "PC Card-16" interface. While the latter is ISA-like
in its signaling and protocols, CardBus was deliberately designed to work seamlessly with the more recent PCI bus.
Apart from electrical-environment differences, the similarity between CardBus and PCI is so marked that we may
usefully think of CardBus as "point-to-point hot-insertable PCI" (see Figure 2). (By "hot insertion" we mean the
ability to insert a PC Card into an operating platform, or to remove the card, without disrupting system operation).

PERFORMANCE
Data/Address Width (bits)
Max. Clock Rate (MHz)
Peak Transfer Rate (MB/sec)
Bus-Master Capability

CONFIGURATION
Hot-Insertion Support
Boot-Up Configuration Support
Dynamic (Run-Time) Configuration
Configuration-Software Level

POWER MANAGEMENT
Operating Voltage(s)
Card-Clocking Hardware Support

MECHANICAL DESIGN
Card Form-Factor

Connector Type
Card Bridge Hardware Required

PCI

Desktop
ISA-Like

120-Pin Unshielded
NO

Card Bus

YES
YES
High

Card/Socket Services)

Portable
Credit-Card-Size
68-Pln Shielded

YES

Figure 2: Comparison of CardBus and PCI

CardBus retains all of the major attributes of PCI--- particularly its synchronous nature, multiplexed address/data
lines, multi-master capability, local-bus performance levels (up to 33 MHz operations at 32-bit data/address width),
joint master/target transaction control, and integrated system resource-configuration capability. While CardBus is not
restricted to usage in PCI-based systems, it is there that it especially shines.

Systems are now beginning to implement the hierarchical bus capability which PCI offers. This is especially true
of high-end systems such as servers, in which higher-level PCI busses are needed to support high-bandwidth 1/0
activity and/or to allow overlapped activity on multiple busses. This hierarchical capability also allows systems to
accommodate more PCI agents than the half-dozen or so which PCl's electrical loading rules allow on any one bus.

The constituent busses of such a hierarchy can be connected to or isolated from one another through "PCl-to-PCI
bridge" devices. From the programming perspective, these bridges allow portions of a system's memory- and 1/0
address spaces to be mapped onto the host processor's (flat) memory and 1/0 spaces. System configuration software
accomplishes this by programming address-space "windows" in the bridge hardware with the upper and lower
address limits of each address block. This configuration is normally accomplished at POST time, though PC Card­
equipped systems must be able to do this repeatedly as PC Cards are inserted into or removed from the host platform.

A PCI-to-CardBus bridge performs exactly the same task as is described above, in order to map PC Card-resident
resources into the host system. With minor differences (e.g. a 4-Byte l/0-window resolution and granularity, vs.
PCI's 4-Kbyte resolution and granularity), a CardBus bridge simply acts as one of the inter-bus gateways in a
hierarchical PCI system. Such a device typically supports two CardBus sockets, effectively adding two independent
"branches" to the system bus "tree". Note that a system may include several such bridges, and that the PC Card
standard requires each CardBus socket to support both CardBus cards and PC Card-16 cards.

45

The major difference between a PCI-to CardBus bridge and a PCI-to-PCI bridge is that the latter implements a
full normal PCI bus on its secondary ("downstream") interface, while a CardBus bridge is limited to a single
downstream load. (The PCM CIA committee is in the process of relaxing this requirement somewhat to allow a single
additional "stub" connection, as we will discuss later). In spite of this electrical loading limitation, CardBus makes
provisions for "multi-function" PC Cards, in which several distinct functions (analogous to PCI agents) can share a
single CardBus card-side interface.

Host-generated PCI Configuration bus cycles can be targeted at specific on-card functions (each of which has its
own set of Configuration registers), just as they can with any PCI agent. These function Configuration registers
include base-address registers which can be used to assign each function one or more sub-portions of the address
blocks mapped by the CardBus bridge windows. Each CardBus-card function's Configuration registers also include a
pointer to a standardized set of "CardBus function" registers which are used to control and communicate with that
function (e.g. to support PC Card insertion and removal notification, remote "wake-up" events, etc.).

System-level power management is taking on ever-increasing importance in computing platforms, and especially
in mobile systems (for which extended battery life is a requisite). The "PCI Mobile" standard defines a "CLKRUN#"
signal and associated protocol, through which a PCI bus clock can be turned off and on as needed to conserve
dynamic-switching power; the system CPU and individual PCI agents on the bus negotiate for control of the clocking.
The CardBus standard includes a "CCLKRUN#" mechanism which is patterned on the CLKRUN# protocol. Using
this, systems which implement CCLKRUN# can extend power management to agents which reside on CardBus cards.
PCI and CardBus thus share this important power-management mechanism, which can be implemented throughout a
bus hierarchy.

Continuing the Bus Hierarchy onto CardBus Cards

We have seen how a PCl-to-CardBus bridge maps PC Card-resident resources onto the host's address spaces, and
how a host can configure multiple card functions via PCI Configuration bus cycles. In all of this, PC Card functions
behave just like PCI agents located downstream of a PCl-to-PCI bridge. Each such function can claim bus cycles
within its programmed address windows. Conceptually, the card's CardBus interface "fans out" CardBus
transactions to all of the card's functions, as if they resided on a local (PCI) bus.

A PC Card CardBus interface must satisfy CardBus loading requirements, even though there may be multiple
functions on the card. This means that it may be necessary to buffer the card's CardBus interface en route to the
several functions. The card's CardBus interface must also combine the function-interrupt lines from the various
functions, to drive the interface's single CINT line. (Since the interrupt line is shared by all functions on the card,
software must poll for the source of an active interrupt. This can be done in accordance with the existing PC Card
multi-function interrupt-sharing protocol.) Similarly, the card's CardBus interface must combine the card status­
change line from all functions to drive a single interface CSTSCHG interface signal.

The system configuration mechanisms of PCI and CardBus are essentially identical, as shown in Figure 3. Both
busses support "Type-0" Configuration bus-cycles, which are used to configure agents which reside on the bus which
receives the Type-0 cycle. The upper 21 address bits of a Type-0 cycle are used to select a particular device (i.e. a
PCI agent on a PCI bus, or a CardBus card on a CardBus interface). The lower address bits are used to direct
Configuration cycles to a particular function (within a multi-function device), and to a particular Configuration
register within that function.

Both PCI and CardBus also support "Type-1" Configuration bus-cycles, which can be relayed down the bus
hierarchy to destinations which lie behind bridge devices. When a Type-1 Configuration cycle reaches its target bus,
it is converted to a Type-0 cycle, which is then processed as previously described. This allows devices to be found,
classified and configured anywhere within the bus hierarchy. A particular usage of this mechanism also allows PCI
"Special" cycles to be sent to destinations throughout the bus hierarchy. Special cycles can be used in lieu of
dedicated special-purpose hardware signals, to perform tasks like information broadcasts.

Throughout the hierarchy, PCI-to-PCI bridges and PCl-to-CardBus bridges include Configuration registers which
are used to assign unique numbers to each system bus. Bridges also contain other Configuration registers which
specify what range of bus numbers lie behind each particular bridge. A piece of system software called a "bus
enumerator" is used to catalog system resources and program the preceding Configuration registers; this usually is
done at POST time, but must be redone as PC Cards are inserted into or removed from the system.

46

~~--. =.Cdnfig·:· I (Undeffned) I Fun:t1onj" ~.~1st;,# I o o L ·.
;:::=~!~::·i,,::l~:1:1·i:::::::::>=:.· :, . ·====·:===i;.:i:,:~:1::,:-::'.i::::lh\!:!:!::::::!:(~=;:,:1,;:_:::::<===::::· ;~ ==~~=J.:::::::.:=:::=~=::,,:::::(.-·.:·_::::_::::;~::~. ::;>:.= = ::=<,!

;·,; ~~~!~::-:'!~+ -~eserv~) ·1 ··· ··· · · 8~·# I a.v1ce # IFun:tioj. ··Reg/~~~;·~ l 0 1 L::=:

=<j;lliE!·::r:d::,;,;:::::,,:::=L=:,,;xiE!:/i=i:}t=i:ii::=::::::=>; ,,,,),,.,., ,;:;,:,_=.: .. :.::::: .. ,=,,, :.:::::=:,,,,,,,;,,, ,;',::::,, ::::=:::J:t:::::::;:A\(:==:::::= ,,:;:::===:::::;,:;:,,;:; . tr
Figure 3: PCI and CardBus Configuration Addressing

In early CardBus cards, the card's functions may be viewed as terminal "leaves" of that branch of the system bus
tree which lies downstream of a PCI-to-CardBus bridge. However, the bridge's PCI header includes a subordinate­
bus Configuration register similar to that found on PCl-to-PCI bridges. This register can be programmed so as to
indicate that multiple busses lie downstream of the bridge. It should be possible to build a card-resident CardBus-to­
PCI interface, such that the card contains a local full PCI bus which can be populated with normal PCI agents; this
would effectively continue the system's bus hierarchy onto the CardBus card. Since this is not a practical alternative
in the near-term, we will not explore it further here.

Unking Platform and Dock Busses via CardBus
At present, specialized PCI-to-PCI bridges are being used as a mechanism for linking (''docking") a portable

computer to a PCI-based "docking station", as illustrated in Figure 4a. (Earlier docking approaches used ISA-based
mechanisms). In this application, a PCI-to-PCI bridge provides the necessary address-mapping facilities, and an
associated set of buffers are used to electrically connect the bridge's "downstream" interface to the docking station.
This electrical connection/isolation capability is referred to as "hot insertion".

A PCI-to-CardBus bridge has inherent hot-insertion and dynamic configuration capabilities, making it an ideal
candidate for docking applications (see Figure 4b). With a CardBus bridge, external isolation buffers are
unnecessary, and existing CardBus system software (Card and Socket Services) provides a means for dynamically
managing dock-resident resources as docking and undocking occur. The dock's resources (PCI agents) can be
identified, configured and used by host-resident system software (e.g. a PCI bus enumerator), with the CardBus
docking connection serving as a link in the combined host/dock PCI bus hierarchy.

Using a CardBus bridge as a docking medium entails dealing with essentially the same issues as using such a
bridge to continue the system bus hierarchy onto a card-resident PCI bus. In this case, though, the downstream bus
resides in a docking station, rather than on a CardBus card. The dock can be fitted with a CardBus interface which
can be used to generate functional interrupts and status-change signals to the mobile-platform processor. The dock's
PCI bus can support PCI agents such as video controllers, storage-media controllers, and various connectivity
adapters. In addition, if required, a PCl-to-ISA bridge can be added to the dock's PCI bus, to support legacy
hardware and software. (Note that the new industry-standard "PClway" serialized interrupt and distributed OMA
mechanisms provide purely PCI-based means to support ISA legacy functions, potentially eliminating the need for
actual ISA hardware).

This docking approach uses standardized CardBus hardware and software mechanisms to support dynamic system
reconfiguration following docking and undocking; moreover, it does so in a way that is fully consistent with the

47

system's PCI bus hierarchy. The host's CardBus socket controller fulfills the same functions as three separate blocks
in a PCI-to-PCI docking interface: isolation buffers, PCI bridge and status-change generator. These benefits make
CardBus-based docking of PCI platforms and docks more attractive than today's more ad-hoc approaches.

Hos1CPU Bus ···················•·•·•·•·•'•'•'•·•'""•'•·•·•·•·•·•·•·•·•·• /SA Dock

·_ •·.·.·· ... •.··_ .. •.•· ... •.· ... •· .. ···· ... •.• ... •.·_.• .. •·.~.•· .. ·.·.•·.HQ .. •'" .. ·.······.•· .. ·.d··.····· .. ·.$.·9• ... •·.•·.~.e• .. • .. ··.•··•·· ... •.·.···.·.:·_· ... •.· .. :•· .. ·.•.· .. :•· •· ... •· ... ··•·· .. :•· : .. t~i:,;;;:;,:ge •./.$.:.·.• .•. •.r.~ ... •·.•"• ... ·con·m··~·.1_•• .• ~ .• ,• •. ·.·• .•. '.:.-• .•. •.:.~.:.c .••. _ .•• r .. •.•ru•·.'.· .. ·.•.~.·.~.··.~ .. •.QO.•·en•.•1.'·.;··.•.•.!.•• .. •/.:. Biii • /Ras ,ff•IBu,;, tllA$:E:n:a;:(l!jNfil~J..s:"'eSl-r~-~-r'-:-:"-;p-':c:\D~i;c~,=~=:=T)9""j.~:":"""::::::..m-.::S/;aN;:;T:-f--I. 1111
ia.~ lll1ll~JIBl+i-.. ---+--_.__l__.__P_c_1_1N_r_s ____ !.._ __ ~._

PC/Bus -- _... -- Service ~ Platform Dock
.. Unes

Figure 4a: Docking via PCI-to-PCI Bridge

Host.CPU Bus l /SA Dock

F····7······2······rr}-'1······S······S······S······l·· 111..._~S:!:e~ti:!!ia~/1'.!·:z!ed~ln!!:te~r.~ru~p~t!sf(O~pEt~i~~na~l):.__-1_J..•: .••.•. : .• ·.:.i.•.· .•.•. ·.1.·.$A·•.· .• • .•. R .•..•...•.••.•.•.. ~ .•. •• .•.•..•.. ' A_.·, •• te Qs .•. • .•.•. · .•••.•.•.•.•.•••.•.. • .•. •·.1.i .•.•. · 'R_O_s_.,..~.,tS_A1-r-B-u-!-•s.._ J •H§@ % -- SINT -
••••••.I~~"· _status-Change Interrupts pg ff'(#IJ§t

• J~jrtm!~> .191~~'-I·
Interrupts from Dock :Jrfl1~J!!Hfh .}~!!~ff

(INTs, SINT or1----1...D :@pg'~~f:nj

1, Special lnte~t) ·e~±:•• .L PC/ INTs 1 ... __ .~-'-------->JP1--1..-~· CardBUS:?1o1--• .. +---..._ ____________ _... __ ,....::::
Host PC/ Bus • ~t@g~·]

-- _...
-- Service --Platform Dock

....................... ._........................ Unes_ .. ~

Figure 4b: Docking via PCI-to-CardBus Bridge

Perhaps the biggest issues with this style of docking center on mechanical engineering issues, rather than on
docking functionality problems. For this approach to support standardized docking across platforms and docking
stations, manufacturers would have to agree on placement of the CardBus docking socket, as well as on how to
handle any remaining non-CardBus "side-band" lines, such as serialized-interrupts (SIRQ) and service connections.
(Use of a normal CardBus socket and connector are assumed, since the CardBus electrical specifications probably
cannot be met using a connector cable). In addition, system manufacturers would need to see benefits to them in
adopting a standardized docking approach, which would decrease the value of proprietary docking solutions. Still,
the potential flexibility and cost-reduction benefits to the end-user are clear.

CardBus and PC/ Multi-Media Busses

CardBus is a useful adjunct in multi-media-capable PCI systems (see Figure 5). CardBus cards can be used to
add or enhance video and audio capabilities to a system. As an example, a video "front-end" may be implemented on
a CardBus card. In this arrangement, a PCI-to-CardBus bridge must provide a bandwidth-efficient video "gateway"
from the Card onto the host's PCI bus(ses). To prevent the video data from consuming excessive bandwidth on the
host's level-0 PCI bus (potentially on Paths A or B below), the CardBus bridge can direct video data onto a secondary
host PCI bus (Path C), or onto a specialized video "side-band" path, as is done in Zoom Video (Path D). In this video
application, CardBus serves as an important data-routing element within a system's overall bus hierarchy.

48

Multi-media applications can consume a considerable amount of bus bandwidth. If high-resolution, real-time
video data flows over a system's primary PCI bus, it can detract from bandwidth which is needed by the system CPU.
Conversely, CPU utilization of the primary bus can interfere with video-subsystem performance by introducing
excessive video-data transfer latency, or by leaving inadequate bandwidth for the video data.

::i,:::111.il!·.l!i
Host Local Bus

:::1111·1111:::
Leve/-0 PCI Bus (Path A:

Interactive
Video)

(Path B:
Non-Interactive
Video)

---------'
(Path D: "Side-band" Path)

Figure 5: CardBus as a Multi-Media Bus

fu a hierarchical PCI system, it is possible to direct high-bandwidth 1/0 or memory traffic over a secondary PCI
bus, thus avoiding or greatly reducing the impact of this traffic on the primary bus. Such an arrangement is depicted
for paths C and Din Figure 4. In path C, a PCl-to-CardBus bridge can be used to direct the video data onto a
secondary PCI bus which is connected to the system's video controller. This requires a PCI-to-CardBus host-side
controller which supports two distinct PCI interfaces, as well as CardBus sockets. fu path D, the video flows over a
"side-band" path which circumvents the bridge altogether; the bridge simply provides bus isolation to keep the video
data apart from the rest of the bus hierarchy. fu either arrangement, the video data is kept from interfering with the
system's primary bus.

Note that multi-media applications present special problems for system bus design. fu particular, both audio data
and video data demand that certain timing constraints be met, or audio/video performance can be compromised (e.g.
video "tearing", choppy audio, etc.). Meeting these timings requires careful analysis of the system busses, as well as
appropriate design of bus arbiters and device buffers. This problem is substantially easier to solve on a dedicated
multi-media secondary PCI bus, rather than on the overall system bus.

PCI devices include required Configuration registers which can be used to tune device timing characteristics, such
as maximum bus-acquisition latency, minimum tenure as master, and minimum acceptable bus-acquisition frequency.
CardBus Configuration registers provide these same capabilities. Bus arbiters can be designed to devote a given
fraction of total bandwidth to particular devices, so that they can equitably share a bus. Jointly, these mechanisms
provide designers a relatively high (though not absolute) measure of control over bus utilization. However, proper
usage of these mechanisms is application-dependent, and may be crudely supported by system software (e.g. BIOS).

Software Support/or the Bus Hierarchy

As we have seen, there is much hardware synergy between CardBus and PCI. To take advantage of this, though,
applications must be supported by adequate system software. Today's system software cannot yet completely provide
this support.

As mentioned earlier, a PCI BIOS includes a bus enumerator which is used to find all PCI devices in a system, as
well as all PCI busses in a multi-bus hierarchical system. The enumerator assigns unique numbers to all busses, and

49

writes these numbers to the primary-bus Configuration register of each such device. For bridge devices, such as PCI­
to-PCI bridges and PCI-to-CardBus bridges, the enumerator also writes the assigned bus numbers to each bridge's
Secondary Bus Number and Subordinate Bus Number Configuration registers. 1bis device configuration activity
captures a particular system's topology (connectivity pattern), and makes it available to software.

In a PCI system without CardBus, the bus enumerator is invoked once after system boot-up, normally at POST
(power-on self-test) time. 1bis is consistent with the fact that the resources in such a system do not change over time.
The situation is much more complex when the system can change due to CardBus card insertion or removal. In that
case, the bus-enumeration process has to be repeated with each card insertion or removal. Doing this involves adding
mechanisms for detecting card events; this is the purpose of the CardBus (and PC Card-16) "status-change" signal.

PC Card software supports dynamic system configuration. "Socket Services" is a hardware-dependent software
layer which operates by making calls on lower-level BIOS functions. (Note that BIOS is tailored for a particular
system). Socket Services allows a hardware-independent "Card Services" layer to manipulate a particular PC Card
bridge and a particular type of PC Card in a standardized ~er, by making calls on Socket Services functions.
Some Card Services functions can be used to ascertain the resources needed by a particular PC Card, such as
interrupt level, Vee and Vpp voltages and currents, DMA channels, etc. This is done when a PC Card "registers"
itself with Card Services after card insertion. Other Card Services functions can be used to allocate and free such
resources for use by PC Cards.

The boundaries between BIOS, OS and PC Card software are changing. The trend, which is driven by Microsoft,
appears to be toward integration of BIOS functions into an OS "hardware Abstraction Layer" (or "HAL"), as well as
absoi:ption of PC Card functions into the OS itself. 1bis trend is not yet complete; for example, Windows 95 does
not include native support for CardBus (though it remains compatible with various implementations of CardBus­
capable Card and Socket Services. The direction appears clear, though. Over time, operating systems promise to
provide uniform support for the various elements of a PCI hierarchy, be they PCI agents or CardBus cards.

Summary

CardBus is a natural complement to PCI in implementing a hierarchical PCI bus structure. CardBus and PCI
share the same system resource-configuration mechanism, and these busses are well-matched in terms of
performance. PCl-to-PCI bridges allow a set of PCI busses to be connected in a static (i.e. hard-wired) topology, so
that these buses can subsequently be either connected to or isolated from one another under program control. PCI-to­
CardBus bridges allow portions of a bus hierarchy to be dynamically added to or removed from the system, either on
CardBus cards or on a PCl-based docking station.

The CardBus hardware standard supports this through a "hot-insertion" capability, automatic card-type
determination, socket status-change and interrupt mechanisms, and a robust connector and card form-factor
definition. In addition, the CardBus software standard (which consists of "Metaformat", "Socket Services" and
"Card Services") prescribes a method for handling dynamic resource configuration and management. Taken together,
PCI and CardBus constitute a unified solution to the needs of hierarchical PCI-based systems.

Author's Biography

Claude Cruz is a PCMCIA Product Architect with National Semiconductor Corporation in South Portland, Maine,
where he focuses on CardBus-related products. Mr. Cruz has extensive digital systems design experience, including 11
years as an IBM designer and technologist, and 7 years as a consultant in parallel-processing and DSP systems, neural
networks, fuzzy logic and Al. He holds a double BS in Electrical and Biomedical Engineering from the University of
Southern CaUfornia, and a joint MS in these same fields from the University of Illinois at Champaign-Urbana.

50

WHERE DO I PLUG THE CABLE?
SOLVING THE LOGICAL-PHYSICAL SLOT NUMBERING PROBLEM

Jeff Autor and Alan Goodrum
Compaq Computer Corporation

PO Box 692000
Houston TX 77269-2000

jautor@bangate.compaq.com agoodrum@bangate.compaq.com

ABSTRACT

As the number of identical PCI devices performing unique functions in one server increases, it
becomes increasingly difficult to physically identify a specific PCI device. This paper will explain the
need for communicating to the user the unique physical location of a specific PCI device, specifically the
chassis and slot numbers. New PCI-to-PCI bridge registers designed to help solve this problem and defined
in the upcoming revision to the PCI-to-PCI Bridge Architecture Specification are described. The algorithm
for a proposed PCI BIOS call is also presented. The new BIOS call uses the new bridge registers to
convert between logical bus and device number and physical chassis and slot number.

THE NEED FOR SLOT NUMBERS

The PCI standard has been able to deliver on the "plug and play" promise by requiring that any
compliant device be able to accept any valid resource configuration at power-up. PCI BIOS assigns
resources at power-up, automatically allocating system resources without conflict. However, unlike
previous standards, the PCI standard does not include the concept of a "slot," that is, a physical geographic
description of a device's location within the system.

Desktop Computers

In a standard desktop
computer, there are usually few
PCI expansion slots and rarely
multiple instances of the same
device, making it easy to identify
physically any particular device.
The typical desktop includes slots
for a graphic controller, a network
controller, and mass storage
controller. There is one connector
for each, and using shape and size
alone, the cables can be
successfully attached to proper
devices. With PCI the
configuration process executes
each time the machine powers on,
so resource conflicts do not occur,
even if a controller has been
exchanged or a new controller
added.

Figure 1-Desktop computer applications typically have few external
connections and no duplicate connectors, simplifying the connection

process. This one has only a video monitor and LAN.

51

Figure 2-A typical server (center) may have identical electrical connections to multiple storage subsystems
(across the top), and multiple identical electrical connections to ditTerent LAN segments (bottom).

Servers
Identifying a particular physical device becomes confusing with PCI-based network servers. A PCI­

based server typically contains a large number of PCI expansion slots, averaging six to eight slots by mid-
1996. These expansion slots are likely to be filled with multiple, sometimes identical controller-types that
provide support for network segments, and multiple disk channels. Servers containing four or more disk
controllers or five network controllers are not uncommon, especially in large database configurations.
While one disk controller may connect to a number of SCSI disks, another may control multiple tape
drives. One network controller may connect to hundreds of systems in an office building, while another
network controller handles a connection to the Internet.

With PCI, the user no longer needs to manually allocate interrupts or memory address ranges.
However, there are still situations in which a user must identify a particular controller both logically and
physically. For example:

1. When plugging in an external cable, the user must identify the correct connector.

2. When configuring items such as the operating system, device drivers, and protocol stacks, the
software will require a way to identify the device. For example, when configuring network
controllers, the user must typically specify a controller (identified by slot number), and then assign
a network address and the protocols to use with that controller.

3. When a controller of any type fails in a system, software such as diagnostic tools must have a way
to communicate which controller has failed so that the user can physically replace it.

·52

Consider the following example: A PCI server with two identical Ethernet controllers has one
controller cabled to a small number of workstations. The other controller is cabled to an Ethernet backbone
that runs throughout the company. To properly configure all the software running on the server, the two
network controllers must be assigned TCP/IP addresses. The user must match a software configuration
parameter (the IP address) to a piece of hardware (one of the two controllers). Without a unique identifier
such as a slot number, the user has no constant identifier that is guaranteed to remain the same no matter
how the rest of the system is reconfigured.

The system software, of course, can uniquely identify each controller logically, by a PCI bus number
and device number. The problem is presenting this information to the user, so that the user can physically
locate the controller.

Why Can't the User Use Bus and Device Number?

Although the PCI bus number and device number do uniquely identify each controller, this identifier
falls short of the user's needs in two areas. First, the slot number is a familiar paradigm for users. Users
already understand the concept of "slot number." Instructing a user to install a controller "at bus 0, device
4" would require a shift in the user's thought process. The slot number provides an intuitive method for
the user to physically identify a controller.

But more importantly, using PCI bus numbers and device numbers as an identification method is
deficient for another reason: PCI bus numbers do not necessarily remain constant. When multiple PCI host
bridges, or PCI-to-PCI bridges are embedded in the system, there are multiple buses to enumerate, and
these numbers can change when the system is reconfigured. Because bus numbers are assigned during the
boot process, just like other system resources, there is no guarantee that they will remain constant across
boot cycles. Thus, if the user configures software to use a controller found on "bus number 2, device
number 7 ," and later adds another controller that happens to have its own PCI bus embedded, then any bus
number beyond bus 0 will potentially
be reassigned. The reassignments are
based on the location of the controller,
and in what order the system's BIOS
finds and configures PCI devices
during the boot process. If bus number
2 is reassigned to bus number 3, then
the user's software configuration would
be incorrect, as would any slot
markings or configuration notes he
may have made to help locate the
device. A physical identifier, such as a
slot number, remains constant across
boot cycles, and therefore provides a
better solution to the problem.

SLOT NUMBERS IN THE IRQ
ROUTING TABLE

These types of challenges brought
about the creation of the IRQ Routing
Table call in the PCI BIOS, which was
added to the PC/ BIOS Specification,
Revision 2.1. Using the bus number
and device number, software can
perform a table lookup to retrieve
information about how each device in
the main chassis is wired. One of the

0
1
2
3
5
6
8
9
11
12
14
15
16
17
18
19
21
22
24
25
27
28
30
31
32 .. xx

byte
byte
byte
word
byte
word
byte
word
byte
word
byte
byte
byte
byte
byte
word
byte
word
byte
word
byte
word
byte
byte

PCI Bus Number
PCI Device Number (in upper 5 bits)
Link value for INT A#
IRQ bit-map for INT A#
Link value for INTB#
IRQ bit-map for INTB#
Link value for INTC#
IRQ bit-map for INTC#
Link value for INTD#
IRQ bit-map for INTD#
Physical Slot Number
Reserved
PCI Bus Number
PCI Device Number (in upper 5 bits)
Link value for INT A#
IRQ bit-map for INTA#
Link value for INTB#
IRQ bit-map for INTB#
Link value for INTC#
IRQ bit-map for INTC#
Link value for INTD#
IRQ bit-map for INTD#
Physical Slot Number
Reserved
Additional PC/ Device Entries

OOh
58h
3
OFFFFh
4
OFFFFh
3
OFFFFh
4
OFFFFh
5
0
OOh
70h
5
OFFFFh
6
OFFFFh
5
OFFFFh
6
OFFFFh
6
0

Figure 3-An excerpt from a typical IRQ Routing Table defining
how PCI interrupts are connected for devices in the main chassis.

This table can be used to translate between PCI bus and device
number, and slot number for.devices in the main chassis.

53

fields defined in the IRQ Routing Table is the device's slot number, as shown in Figure 3. The software
uses the information in the IRQ Routing Table to. translate the physical slot number into PCI bus number
and device number for devices in the main chassis.

PC/ EXPANSION SYSTEMS
A PCI expansion system can be described as an external cabinet containing PCI expansion slots, which

connects to a server through one or more PCI-to-PCI bridges, as shown in Figure 4. Expansion systems are
a recent addition to the PCI product landscape, because they are only useful in server environments where
large numbers ofl/O controllers (i.e., disk controllers, network and communications controllers) are used.
A network file server may require these expansion cabinets when all PCI slots in the server are already in
use.

Expansion cabinets complicate the problem of physically locating a device. Not only does the user
need to locate a connector in a specific slot, he must also search multiple external cabinets for the
controller. Furthermore, slots in expansion cabinets cannot be included in the IRQ Routing Table because
the BIOS has no way of determining what expansion system might be installed by the user.

-­. ------

Figure 4-ln a PCI expansion system additional PCI slots are provided in a separate cabinet, further
complicating the problem of unique physical identification of a device. The slot numbering proposal assigns a

unique "Chassis Number'' to each cabinet.

A COMPREHENSIVE SLOT NUMBERING PROPOSAL
Since the IRQ Routing Table solves the slot numbering problem in the main chassis, what is required

is a standard method for determining slot number in a PCI expansion system. In mid 1995, Compaq
Computer Corporation began circulating for review within the PCI community a proposal for a general
solution to this problem. The hardware required to support this proposal is being included in Revision 1.1
of the PCI-to-PCI Bridge Architecture Specification. At the time of this printing Revision 1.1 is nearing

54

the review process within the PCI-to-PCI Bridge Subcommittee. A standard BIOS call which uses the new
hardware and the IRQ Routing Table is being proposed to the PCI BIOS Subcommittee as well. The
following discussion presents the hardware aspects of the proposal, followed by the software aspects.

The New Registers

If we assume that the gateway to an expansion system is always a PCl-to-PCI bridge, then the logical
place to define a standard solution to the slot numbering problem for expansion systems is the bridge.
However, before a new standard feature could be added to the PCI-to-PCI bridge programming model,
another problem had to be solved. The standard bridge Configuration Space Header was full, so additional
space had to be reserved. As shown in Figure 5, configuration addresses FOh through FFh are defined by
the proposal to provide additional standard configuration space. Bit 15 in the Bridge Control Register
(3Eh) can be read to determine whether this additional space is supported. The two new registers shown in
Figure 5, the Chassis Number register and the Expansion Slot register provide the necessary information to
make the device number to slot number conversion.

31 16 15 8 7
Reserved 1 Chassis Number 1

Reserved
Reserved
Reserved

0
E~ansion Slot FOh

F4h
FBh
FCh

Figure 5-The two newly defined registers for slot numbering are located in a newly defined extension to the
standard Configuration Space Header for PCI-to-PCI bridges.

Each cabinet in the system which contains PCI slots is assigned a unique chassis number, with the host
system assigned chassis number 0. The new Chassis Number register in the PCI-to-PCI bridge contains a
single 8-bit number that designates the chassis number in which the slots on the bridge's secondary bus
reside. Multiple PCI buses contained in the same chassis should be assigned the same chassis number.

The Chassis Number register can be initialized either by the power-up system configuration software
or by hardware. If the register is to be initialized by software, then the register will be read-write, and can
either be non-volatile or can be initialized to 0 at power-up. If software determines that the register is read­
write and the value is 0, or equals another chassis' number, then software will assign a new chassis
number. If the register is initialized by hardware, then the register will be read-only, and the system
designer must provide a means for the user to change the chassis number if there is a conflict.

7 6 5 4 3 2 1 0
Reserved Slots Expansion Slots Provided FOh

Follow
Parent

Figure 6-Expansion Slot Register. The information encoded in this register includes the number of expansion
slots provided directly behind this bridge, and the Slots Follow Parent bit that indicates whether multiple

bridges with expansion slots are cascaded within one chassis.

The details of the Expansion Slot Register are shown in Figure 6. Bits 4-0 of the Expansion Slot
Provided field contains the binary encoded value of the number of expansion slots which are provided
directly on the secondary bus of this bridge. If no expansion slots are implemented behind a particular
bridge, then this register should be initialized to 0.

To understand how the Slots Follow Parent bit is used it is first necessary to consider how PCI
expansion systems might be configured. Fig1,1re 7 illustrates one such system. The bridge that controls the
first slot in the expansion chassis (Bridge A in Figure 7) is referred to as the "parent" bridge. Its Slots
Follow Parent bit is set to 0 to indicate that it is the parent. Additional bridges whose slot numbers follow

55

the parent slots (Bridges B and C in Figure 7) are referred to as "child" bridges, and their Slots Follow
Parent bits will be set to 1.

Because the Expansion Slot Register provides the power-up system configuration software with vital
information about the physical arrangement of the system, this register must be initialized before the
power-up system configuration software runs. This generally implies that the Expansion Slot register must
be initialized by hardware. The means by which the system designer programs this information into the
hardware is not specified, and is, therefore, left to the creativity of the bridge designer. The simplest
approach would be to initialize the register contents with the state of certain device package pins at RST#
time. However, more elaborate schemes involving shift registers or even serial EEPROMs could reduce
pin count or provide more flexibility and convenience to the user at the cost of increased hardware
complexity.

Finding Chassis and Slot Number

Chassis numbers are established by the system configuration software each time the system is
reconfigured. The main chassis is always chassis 0, and expansion chassis numbers are stored in the
Chassis Number registers in the appropriate bridges. After the system has been initialized, any software
needing the chassis number for a device can first check the IRQ Routing Table to determine whether the
device is in chassis 0. If not, the software must then find the bridge whose secondary bus number matches
the bus number of the device in question. If this bridge supports expansion slots, then the chassis number
can be read directly from the Chassis Number register. If this bridge does not support expansion slots, i.e.
it is an embedded bridge, then the chassis number is read from the bridge which supports the slot in which
the embedded bridge is installed.

The slot number of a device in the main chassis can be found just as simply as chassis number by
looking in the IRQ Routing Table. However, in an expansion chassis the slot number of a device must be
calculated from the device number and Slots Provided Register. The following assumptions are made to
calculate the slot number for a device in a PCI expansion system:

1. Slot numbers within each expansion chassis start at 1 and increment sequentially.

2. The PCI device number for each expansion slot starts at 1 and increments sequentially.

3. If an expansion system has multiple child bridges with the same parent bridge, then the child
bridge with the lower slot numbers must also have the lower device number on the parent bus.

To calculate the slot number for a device in an expansion chassis the software must first find the bridge
whose secondary bus number matches the device's bus number. If the Slots Follow Parent bit is not set in
this bridge (this is a parent bridge), then the slot number is equal to the PCI device number. If the Slots
Follow Parent bit is set in this bridge (this is a child bridge), the software calculates the slot number by
adding the following three numbers:

1. Device number for this device.

2. Value from the Expansion Slots Provided field from the parent bridge.

3. Value from the Expansion Slots Provided field from all other child bridges of this parent, whose
device numbers are less than the device number of this child bridge.

If the slot numbering algorithm encounters a bridge that does not support the Chassis Number and
Expansion Slot Registers, then it is assumed that there are no expansion slots behind that bridge. All
devices behind that bridge will inherit the same slot number as the bridge itself. In this way a card such as
a multi-headed NIC or SCSI controller will report the same slot number for all devices on that card.

56

Figures 8 and 9 illustrate an algorithm of finding chassis and slot numbers for devices in an expansion
chassis. The algorithm starts at the top of the configuration hierarchy and scans every device,
accumulating chassis and slot information until the designated device is encountered.

A Slot Numbering Example

The diagram shown in Figure 7 contains all the elements that can effect the numbering of PCI
expansion slots. It represents a single, external expansion chassis, which would be connected to the system
via the PCl-to-PCI bridge on the left side (the arrow indicates the connection to the system). Above each
expansion slot is the Slot Number that would be physically labeled on the slot. The other numbers shown
are the PCI Device Numbers that would be assigned to each (potential) device in the chassis.

The first PCI-to-PCI bridge (left side of the diagram) has four PCI expansion slots on its secondary
interface (Bus 1). Since the Slots Follow Parent field (labeled "Follow" in the diagram) is not set, these
slots must be the first slots within the chassis, and are therefore numbered 1through4. Also on Bus 1 is an
embedded PCI device located at Device Number 5.

8 9 10

PCI Bridge .. c ..
Chassis: #1
Follow: Yes

2 3 7 #Slots: 3

Slot Numbers

2 3 4 5 6 7

PCI Bridge PCIBridge
"A" "B"

Chassis: #1 Bus 1 Chassis: #1
Follow: No

2 3 4
Follow: Yes

2 3 #Slots: 4 6 #Slots: 3
Device Numbers

Embedded
PCI Device

5

Figure 7-PCI expansion chassis containing a hierarchy of bridges and devices. Bridge A is the ''parent'' since
its slots come first and its Slots Follow Parent bit is reset Bridges B and C are "children" since their slots

number sequentially after Bridge A, and their Slots Follow Parent bit is set. Bridge B's device number must
come before Bridge C's since Bridge B's slots number first

At Device Number 6 is a PCI-to-PCI bridge, which reports three expansion slots on its secondary
interface. This child bridge reports the same Chassis Number as the parent bridge, and its slots should
follow those of the parent bridge. Since this bridge is the lowest numbered bridge device on Bus 1, its slots
follow the parent bridge before higher-device numbered bridges. Therefore, its slots are numbered 5, 6,
and7.

The final device on Bus 1, Device Number 7, holds another PCI-to-PCI bridge, also reporting three
expansion slots. Because its slots follow the parent bridge, the slots are numbered 8, 9, and 10.

The ''Find PCI Slot Number" BIOS Call

The slot numbering proposal includes the addition of a "Find PCI Slot Number" BIOS call to simplify
the conversion between bus-device numbers and chassis-slot numbers for those operating systems that use
the BIOS. Operating systems that do not use the BIOS will be able to do the same conversions by
duplicating this algorithm within the operating system itself.

"Find PCI Slot Number" uses the IRQ Routing Table to find slot numbers in the main chassis (chassis
0), and uses the algorithm in Figures 8 and 9 for expansion chassis.

57

Begin

bus_number = 0,
devlce_number = 0,

sloLnumber = 0

No

Increment
device_number,

sloLnurnber

Yes

Yes

Execute Bridge
subroutine

devlce_number = O

Yes

. No

Return failure

Yes

No

Return Chassis,
Slot Number

Yes

Return Chassis,
Embedded Slot

Figure 8-Flowchart for "Find PCI Slot Number" BIOS Function.

58

If the Bridge does not
provide slots behind It, then

it must be an embedded
bridge on a PCI adapter

Bridge subroutine

Yes

No

Yes

slot_number = Slots
Provided by parent

bridge

Return to main routine

Yes
chassis_number =
Chassis Number

No slot_number = 0

Figure 9-Flowchart for "Bridge Found" subroutine for the "Find PCI Slot Number" BIOS Function.

The Future of PC/ Slot Numbering

As mentioned previously, the hardware necessary to support this proposal in PCI expansion chassis is
being added to version 1.1 of the PCI-to-PCI Bridge Architecture Specification. This same revision also
specifies how Delayed Transactions work with PCI bridges. Compaq is encouraging multiple PCI-to-PCI
bridge vendors to include the slot numbering register in their new Delayed Transaction bridge designs,
even before the new revision of the bridge specification is released. Designers of PCI expansion chassis
will naturally want to upgrade their products to take advantage of the performance gain of the new Delayed
Transaction bridges as soon as they are available. When they do, we strongly encourage them to select a
bridge that includes the hardware necessary to support PCI slot numbering.

Now that the hardware support is being implemented, support for a new BIOS call needs to be added.
Compaq has already begun circulating a proposal within the user communities for review and comment.
The proposal would add a "Find PCI Slot Number" in the next revision of the PCI BIOS Specification.
Although the new hardware for slot numbering can be used without the new BIOS call, the inclusion of the
new call will simplify the delivery of an accurate implementation of the algorithm, especially in areas such
as diagnostics, system management utilities and BIOS-compatible advanced operating systems.

59

We expect that advanced network operating systems will not wait for the introduction of the hardware
registers for the expansion chassis or for the BIOS call. These OS vendors will begin to implement the
algorithm shown above immediately. Since slot numbers were added to the IRQ routing table in the
August 1994 release of version 2.1 of the PCI BIOS Specification, solutions for the main chassis will
already work with the current BIOS. When expansion chassis with the new bridge registers become
available, numbering slots in the expansion chassis will work, too. Device driver and application writers
should watch closely for developments from their OS vendor.

SUMMARY
As the number of PCI slots grows to accommodate multiple identical controllers performing unique

functions, it has become difficult to physically identify a particular controller. The inclusion of the slot
number in the PCI BIOS IRQ Routing Table, and the Chassis Number and Expansion Slot Registers in new
PCI-to-PCI bridge implementations will enable the translation from the logical bus and device number to
the physical chassis and slot number for all controllers in the system.

THE AUTHORS
Jeff Autor is a Systems Software Engineer at Compaq Computer Corporation. He has been designing

and developing system management products for Compaq for the last five years. As part of the NetWare
device driver development team, he co-designed Compaq's SNMP MIB, software for Compaq's Server
Manager product, and most recently the Compaq ProLiant servers. He is currently working on systems
management software for next-generation PCI-based server products. Jeff received a Bachelor's degree in
Computer Engineering from the University of lliinois at Urbana-Champaign.

Alan Goodrum is a Principle Member of the Technical Staff in Compaq's Systems Division. He
currently is involved with development of new technology which will be needed by file, print, and
application servers several years in the future. Previously he was a senior architect in several hardware
product development groups in the Systems Division since its creation in 1991, and a senior engineer at
Compaq since 1985. Alan received his BSEE in 1975 and MSEE in 1984 from the University of Houston,
where he has been a guest instructor.

60

61

O'I
N

What Is PowerPC Platform?
-::,-::,·.';_',::·=-', ... ·~.:-:::"· --~~~-.. "{-· ,. ' ,- •. ' '·,,·~-.. ~~'::~ ··-~'{··"'-".t-.''"'-.' .. : ... ''~-.:>"' -~,··'':·'·,".·~··"","'""'"', ., .. ·, .--::·.~·". "~ ~. :'"·'·""..,''•,';,'~·-, ... ~ .. ,.'«>~·.··~ .. , ... '.,,::.~.:·"_":::;;

'Y PowerPC Platform supporting all PowerPC operating systems
'Y Open architecture built by any vendor with NO special licensing fees
'Y PowerPC Platform will run ALL applications developed for today's

PowerPC systems including PowerMac systems

...

"'
IBM Apple PowerMacs Motorola

.. - .:·_. ;-.. _ _. __ ..;-:·.~;. ·:_-~/~r:·~:(

ijj;;:i
Other OEMS

.. · ., ' ... ,. \·~·--· ·.::<·-~ ·- - ., .. "-"' ' _ ,-,.,. _ _., ··-·.:·~:-·, ·._ .. ,- <:.

/lowel'PCN PowerPC Pla11olTll PRESENTATION • 2 ® IW07QROLA

Combining· PowerPC Efforts
... '•'• - ... ,\ • , •• " .,' : ... -.'," _ ... ;.. '"'':.;: :-; •• ._, H; ,.......,.,"?:''-' , ... -,>-:- :_..,~).. ~ _, .. _ , , .. , ~,~::-:=,_:. ·,~ ,,·::-· .. -:- ,_,, ,,.._ •• ' ',~ _,_,' ,,~\~< ~' .. ,

PRP Implementations

. 601 .J 603 / 604
·u.nl/MP · ·
PCI
PC 1/0
ARC Firmware

......

~ PowerMacs ______ ;,,,.. ___,,.....

1995

~

6011603 / 604
Proprietary logic
Apple· 1/0·
NuBUS & PCI Bus
Open Firmware

1996
Powert>C Plalorm PRESENTATION- 3

PowerPC Platform

603/604
Uni/ MP
PCI
PC and Apple 1/0
Open Firmware

® MOrOROLA

0\
~

11rnww!r2?f~J!:~~~2J!~~r~•

•
PCIBus

ISA Bus

PowerPC Platform PRESENTATION- 4

11 Mac Specific

II CHRP Specific

Ill Std PC devices

®MOTOROLA

°' VI

ADBMo ... ·
•K8Jboanl

Locan'

scat-

PowerPC Platform ·initial Implementation

Available from Motorola SPS

:__cpl»: I 0 Contrcll"1
HYDRil.

'NP.GM
:;:;i<.B I

Mouse

Super i O
Co:)(IOllPr

sr.f(CrDC37C93[.,

Gnlph1c81
Video·

PCI Stote

ISA Bus

SoundBlaltlr Audio

·ISASlols

n.vJNl<W » z;:;wwc i40Wlll'J4WUOW.OlGONUO'<ii 0 C:CGJWWWCDCJQDJM :ewxe a ;c;;a i44t44J.OA.4:W4Ck.4W:4t44WMWJC WJiQ(.-44.4 wweaeeseaucwct&ciUAJ J.4W& SZ4M4MUUCI iACN4A4Wl&OAi24A444LiiWWW4>S:U4M '" Oh'4Nm

/ltJwwPCW Powe!PC Pladform PRESENTATION - 6

MotoroJa Confidential Proprietary

O'I
O'I

m2_nrn!~!'zS!!!~5:1!!!.i.~i!n-1____, -------------------· -------------·--- ... , ---------------~-----~--~

T PowerPC 60X to PCI Bridge
- Available from Motorola
- PowerPC Platform Compliant
- Interface to 601, 603 and 604
- Integrated DRAM controJJer for

EDO and Page Mode DRAM
- Integrated l2 cache controller

for Asynchronous and
BurstRAM ..

.

- PCI Interface
- Power Management Logic
- Parity or ECC support
- .5µm CMOS, 3.3 Volt
- 304 pin Ball-Grid Array

Package
- 1st silicon in August,95
- Mass Production Q1 ,96

60X ·Data.Bus

60X Address Bus

60X Control Bus

"""1111/1C~
PowerPC Platform PRESENTATION· 8

Data

PCI to ISA Bridge

T PCI to ISA Bridge
- Available from Winbond Systems Lab
.:.. PowerPC Platform Compliant
- PCI (Rev 2.1) Compliant
- Integrated Dual channel bus master

I DE controller
- Integrated OMA, Interrupt controller

~ and timer
- Supports PCI arbiter with host bridge

and 5 PCI masters
- Power Management Logic
- 208 pin QFP package
- 1st silicon in October

PCI Bus

ISA Bus

,·,-.. .,., ',-;,·v: ,,,,- ,- ,-. ,·-;._·,·; .,-,.-, ,-,,-\··-,:,··.:·"-,·,

/lowrll'PC- PowerPC Plalfonn PRESENTATION • 7

@a.n~n.1·

·Apple Peripheral Chip

Y Apple Peripheral Chip (HYDRA)
- PCI Bus interface
- Integrated MPIC controller to support

dual processor
- Integrated SCSI controller
· - Integrated SCC controller for Local

Talk
~ - Integrated ADB controller for Keyboard

and mouse
- 160 pin QFP package
- 1st silicon in October

~
PowerPC Platform PRESENTATION· 8

PCI Bus

HYDRA

® .aTOllOLA

0\
\0

· OS· Licensi·ng for PowerPC Platform
D1:1itil1lil··rrmrnmrffr111errn11mrmm11rrrrwr·1··..,rrr11ai1mrlM1llllLrr•nwnwrrr111:.:"'fnt·1nwrnwm•twrn1~1rwra~·,,.·ij·ma1 - ---------·--·--

~ Apple will license Mac OS, including ROM code, to ANY
OEM developing PowerPC Platform system

ROM SIMM Containing Mac Toolbox

~ Other OS licensing follows normal X86 business model

., . .._ .. , ·• \\·,:.:··,. ··:·,·,~•-,; .•• .,_,·~·-,.,·-· -,··.· "'•"\<'<''\".'"<-' ·,:· '<V ,,. .., .. ,. •·.··:c-1' ··•ty·<-;·,···-,.•··•··,· ··"<··,······ · ., '\\',., ..

~
PowarPC Plalfonn PRESENTATION· 9

.....:a
0

llP?PWMSl'?i .. wrwxwsa..Uuw1ttJ>.£fipi--p·m11•W"an

• OS Independent
- Required to Boot Mac OS on PowerPC Platform
- Veneer Available to Boot Windows NT •
- Bi-Endian Firmware Callbacks

•Features
- Boot Time Debugger for Firmware and Drivers

~ Plug and Play via FCode Drivers

• Processor/Bus Independent
- Single Peripheral Driver for Multiple Platforms

- IEEE Bindings for PCI and ISA

• Industry Standard
- IEEE P1275 Standard for Boot Firmware

- ANSI Forth Programming Language Standard

PowerPC Plattorm PRESENTATION - 10
'

71

,!tlllllllllllli~~:

21050 PCI to PCI Bridge

~

-J w

21. · o··· ~~2 .. , P .. ·c··· ·1· t. .· p=· ,c~ .. ·1·.· u· , ~d~ .. · · : .. ».Ja ... :--: .. :../ ... · :/o .. : · ' :_ ,fl. : ... : .. ge

.;,,l~&tl:ll:IJ1\i:\l\l!ilil'li.::1:·11=··l:._1:1:111:·::::1:1

-...J
+:>-

The New,
211Sx PCI to PCI Bridge Family

~

Industry Leading Features
of the 211Sx Family

ilil!!ll1:11:::::.:.

-....l

°'

Other Benefits of the 2115x
Enhanced Buffer Architecture

,........,.,..,.,.,._.,..,_,_~..,.,.~,.~•.o.~.-~•--,.•~~~----~-~------,.,..,..,.,.,.,.,.,.,.~,.,u~,.....,.~....,--~"••~,... •,.,.,.,.,_.,.,~•----,.,.,,..,.,.~,.,.,.,.,.,.~,.,.~,.,.;.~

··------ - -- --·---------------------··--··---·

D• •t I S • d· · t ' lgt .. a .· .elll.lCOD .. U.C · .. Or s

PCl to PCI Bridge Product R.oadntap

New

Products
-....)
-....)

if'.l.'.'I.'l'l''.H1l ___...
• 1')111:ll

PCI revision 2.1

-=·······.· .. · ''" Pin compatible ~

····~1111111::!iliii:

2105CV21052 Datapath

~

-..J
\.0

2115x Family Downstream Datapath

00
0

'--~--

211Sx Family Upstream Datapath

-~~~---·-,-----~--

"'?.lll1\111i!1iliill\lli:i:,i·iiJ_:·::1:.

2115x Family at a Glance

Interface Features Interface Features I Features
elk

. Delayed . Delayed '
Write I Read I . PCI Write Read . req#,

B I B ff B ff Transaction 8 8 ff 8 ff Transaction #
us u er u er Q us u er u er Q gnt

~. 1 I I , , ueue ueue pons

e; i•' •·•••· : ' b:s I ~!s I 3 entries I : I :es I b! J 3 entr~s J s!s I yes I yes

32 I 88 I 72
bit bytes bytes

11;:es l~!s
3 entries

3 entries

32 I 88 I 72
bit bytes bytes

:J\)){fr:3T:ll}:::::::::O::::: }:/::

3 entries

!~ -· 3 entries

00
N

_______ ._._&6 -----·

Common 211Sx Family Features

00
w

,_._,., ___ ~,..,..,,,._,,,,,,.,,..,~~~~·~--~----·-----·--•"'""'~~ ,._.,,,.,,,,.u. ,,.,,.....,.,,.,..,..,,,. u.o,.•u ~,..,.,._,.,•_.,,.,,,.,,,,__~.•~U<.O~•~""""~•~~·~~,._,.,,_.,._..,.,,.,.,.

..,.,~...,__~,,.,.,,,..~----.-.---.v.-.,.-...-~~~.---~-~

Ev ... ·a}> :u·· ·a'ti:··o·n:· u:· oar.:: : :d, !5·.
·.l ••• •• .:.. ... • • ' •••••• ~ • . ..' _}~ ••••• ·' •••.• :, • .' ' •• • : . •.• :

;,J:~111:11111:11:1:11::1:11:·111:1~: __ :1:

Conclusion

oo:
VI'-

DESIGN ISSUES FOR PCI-TO-PCI BRIDGES

Thomas L. Anderson and Mark W. Knecht
Virtual Chips, Inc.

2107 North First St.
San Jose, CA 95131

(408) 452-1600
e-mail: toma@vchips.com

e-mail: markk@vchips.com

Jacques Wong
Advanced Micro Devices
P. 0. Box 3453, MIS 59

Sunnyvale, CA 94088
(408) 749-4918

e-mail: jacques.wong@amd.com

Abstract

As use of the PCI Bus has become more
widespread, the number of devices needing PCI
support and the number of PCI buses per
system has increased. The PCI-to-PCI bridge
has developed from a niche technology into an
essential component in many types of systems.
Design of an effective PCI-to-PCI bridge is not
straightforward. This paper discusses some of
the issues facing bridge designers and some key
decisions that must be made to develop an
effective solution. The topics discussed include
PCI 2.1 requirements, bridge latency, support
for asynchronous clock domains, interrupt
handling and support for PC "legacy" devices
behind a bridge.

Introduction

The PCI Bus has been widely adopted for a
number of excellent reasons. Its precise
specification and rich suite of transactions were
key factors for early adopters. However, the
physical expandability of the bus was limited by
the drive characteristics and loading
specifications chosen in the original PCI
definition. Most manufacturers have found that
modem silicon and packaging technologies limit
their product solutions to no more than three
compliant loads on the PCI bus. While this limit
was acceptable for the first PCI-based personal
computers, it is insufficient to support many
applications demanded by today's system users.

86

The PCI SIG, working together with some of the
interested silicon and systems manufacturers,
developed a specification for the first PCl-to-PCI
bridge. This specification was released in April
of 1994 and has proven valuable in the rise of
both commercially and privately developed
bridging solutions. Through the use of PCI-to­
PCI bridges, system manufacturers have been
able to provide the extra PCI connectivity that is
needed in high-end server applications and is
becoming more necessary in today's desktop
solutions.

This flexibility of the PCI specification has
proven to be an additional incentive for adoption
of PCI. Bridges provide a virtually unlimited
ability to add additional PCI buses in
hierarchical fashion. However, factors such as
the latency of transactions across bridges and the
flexibility in clocking the downstream buses can
have a major effect on the performance and
utility of a multi-bridge system.

The design of a PCI-to-PCI bridge entails
tradeoffs in a number of key areas. Failure to
make these tradeoffs correctly has resulted in the
commercial failure of some bridging based
product solutions. Further, the continued
evolution of the PCI specification and the
increasing demands of PCI-based systems have
produced some new challenges for designers.
This paper reviews some basic design issues for
PCI-to-PCI bridges, discusses some recent
changes in the types of bridging solutions

available, and outlines some major issues for the
future.

Baseline Features and Issues

A basic PCI-to-PCI bridge supports two
complete PCI buses; the primary bus is closest to
the host processor and the source of
configuration transactions while the secondary
bus is effectively produced by the bridge itself.
The bridge must be capable of acting as a master
or target on either bus in a complementary
fashion. When the bridge acts as a target on
either bus, it must act as a master on the other
bus in order to pass transactions to the final
target. As such, a pure bridge provides no
peripheral device functionality itself but acts
merely as an agent to propagate transactions
from one PCI bus to the other. When no
communication is needed between the primary
and secondary buses, a PCl-to-PCI bridge must
allow independent, concurrent transactions on
both buses. It is only when a device on one bus
needs to communicate with a device on the other
bus that the bridging function is activated.

Even this baseline level of functionality raises
some interesting design issues. The distinction
between the two buses means that a bridge
generally will not have equivalent interfaces on
its two sides. The primary side interface must be
capable of handling configuration transactions
from the host processor and either taking
appropriate action itself or passing the
transactions on to devices on the secondary bus.
This distinction in the operation of the primary
and secondary interfaces of the bridge creates
limitations in the use of the bridge.

For example, a PCI-to-PCI bridge is not very
useful as a mechanism for connecting two
separate, but equal processing environments. It
is capable of accepting configuration
transactions only from the host connected to the
primary bus, relegating the other host to a
subordinate status. A more intelligent
mechanism for differentiating the upstream and
downstream addressing environments would be
valuable in some system architectures.

Since the PCI-to-PCI bridge effectively creates
the secondary bus, it usually provides some basic
support features. For example, the bridge may
include the arbitration logic for the secondary

87

bus so that a dedicated external arbiter is not
required. This is entirely analogous to the
arbitration support provided by the chipset or
host interface that creates the primary PCI bus.
The bridge will often provide the clock for the
secondary bus if it is to run synchronously with
the primary bus. The bridge can buffer the
primary side PCI clock and provide multiple
copies in order to support the other devices on
the secondary bus.

PC/ Timing Design

Of course, the bridge designer must also deal
(twice) with the baseline design challenges of
any PCI-compliant interface. Operating within
the 7ns setup time on key signals can be one of
the most daunting tasks in many PCI projects. It
is most often the address decoding that consumes
the largest portion of the available setup time.
Since bridges that attempt to be compliant with
all optional aspects of the PCl-to-PCI Bridge
Architecture Specification have multiple address
ranges to decode, the difficulty of meeting the
setup time is greater than for a standard PCI
device.

Care should be taken in the specification of a
PCI-to-PCI bridge to define its target
environment and applications. Eliminating
address decoders that are not necessary in the
target system will help the designer to meet the
PCI setup timing. As with any PCI interface,
best performance is achieved with the fastest
assertion of the device select and target ready
signals.

If, for instance, a bridge is to be used in an
environment in which memory addressing is
limited to 32 bits, then support of the
Prefetchable Upper 32 bit registers (Base &
Limit) should be excluded from that bridge's
configuration space. A similar trade-off can be
made with the VO addressing when bridging in
an X86 based machine. Since the X86
compatible processors provide addressing
capability for only 64KB of 1/0 space, there is
no requirement to support the 1/0 Base and 1/0
Limit Upper 16 Bit registers. While each of
these decoders by itself might appear to be an
insignificant burden on the performance design
of a bridge, their cumulative effect is often great
and can affect both the timing specification and
the timing margin in the final product.

The clock insertion delay from the clock input
pin to the state elements actually helps meet PCI
bus setup requirements; However, the PCI bus
also has strict requirements for hold time. It is
fairly common to ease the hold time problem by
using a minimally-delayed input clock for
signals from the PCI bus, and then using clock
buffers or a clock trunk to provide clocks to the
rest of the bridge. A small clock insertion delay
minimizes the skew between the input clock and
the clocks at the internal state elements, thereby
reducing the chance of races and hold time
violations. As with any PCI interface design,
delay elements are usually required on the fastest
paths. Additionally, the PCI requirement for
correct operation at very low frequencies
prevents the use of a Phase-Locked Loop (PLL)
to reduce internal clock skew

Latency across the bridge is another dimension
of performance affected by the requirements of
PCI timing. Even if a bridge achieves fast
assertion of device select it still can be difficult
to achieve a one-cycle latency from one bus to
the other. The combination of the PCI bus 7ns
setup time and l lns clock-to-out requirement
means that very little time is available around a
single register stage to perform all logical
functions needed for bridge operation.

Burst Petformance of PCI-to-PCI Bridges

For PCI systems to obtain maximum
performance, the PCI bus must be able to operate
as it was intended when originally specified: as a
burst bus. Reasonable burst performance is best
achieved when the bridge holds multiple data
words in FIFOs. Commercially available PCI­
to-PCI bridges, to date, have had very shallow
FIFOs and this has hindered the burst
performance of the bus whenever the bridge is
either the target or the initiator of the transaction.
Technical papers presented at WinHEC and
elsewhere have suggested that, for some chipsets
to perform at or near the limits of the PCI
specification, burst length should be at least 32
double-words of data. While this suggests that
FIFO structures in a bridge should be at least this
deep, that is only part of the story.

For more optimum performance, bridge FIFOs
should be deep enough to allow for arbitration of
the target PCI bus without stalling the device on

88

the initiating interface. The arbiter for the
primary PCI bus, for fairness reasons, provides
no special treatment for the bridge. Assuming
that any given PCI interface may have as many
as four devices operating on it, the bridge may
have to wait for all other devices on the interface
to access and transfer using the PCI bus prior to
gaining access for its own purposes. If system
software sets up the PCI device's latency timer
values high enough to satisfy the burst
performance criteria of the chipset then the
bridge may find itself waiting for many tens, if
not hundreds, of PCI clock cycles, prior to
beginning its transfers on the bus. As I/O
bandwidths available from disk and networking
interfaces increase, and other PCI devices opt for
longer bursts, PCI-to-PCI bridges will be
required to significantly deepen their FIFOs to
support high bandwidth 1/0 streams operating
across their interfaces.

Having multiple FIFOs is also an essential part
of a robust bridge design. It is possible, with a
good deal of complex logic, to configure a single
FIFO to handle a variety of transactions at the
same time. It is simpler and better for
performance to have four FIFOs, a separate read
and write FIFO for each of the two directions
(primary target to secondary master and
secondary target to primary master). Separating
the FIFOs in this way fosters a clean design style
in which the control and datapath for the two
directions are symmetrical and as independent as
possible.

Maintaining Data Consistency on Interrupts

As FIFOs are deepened in PCI-to-PCI bridges to
improve burst performance, new problems are
seen in the area of interrupt processing. PCI-to­
PCI bridges are not required to handle any of the
interrupts generated by the devices downstream
of them. The bridge user community has
identified system problems that were caused by
interrupts being delivered to the system prior to
the data being delivered to memory.

In systems that use token passing techniques to
improve interrupt handling performance, a
device may generate a token and write it to
memory, and then generate an interrupt to
inform the processor that it has completed its
task. This sort of operation can significantly
improve interrupt handling, especially when

interrupts are shared. If the token is still residing
in a posting FIFO internal to the bridge when the
interrupt hits the processor, then the processor
will check memory and not find the token, at
which point the interrupt is effectively lost.

This problem is potentially best so.lved in the
device that generates the interrupt itself, as long
as the bridge behind which it resides is properly
designed. If the device that has written the token
to memory performs a read of the token location
in memory, then the bridge is forced, by
ordering rules, to flush the FIFO before allowing
the read transaction to proceed, thus
guaranteeing correct operation. This sort of
improvement in the basic system level operation
of PCI devices will help, but PCI-to-PCI bridges
will continue to operate with 2.0 compliant
devices behind them that do not implement these
sorts of safeguards. It is for this reason that
bridge designers should consider implementation
of interrupt handling logic for maintaining the
consistency of the data in memory.

New PCI-to-PCI bridge architectures could
eliminate some of the problems discussed above
through the use of intelligent interrupt
monitoring and gating circuitry. This circuitry
could be as simple as flushing FIFOs anytime an
interrupt occurs. While this may seem like
unnecessary overhead to the bridge designers
today, the handling of hardware interrupts in
systems of the future will certainly be more
complicated as the number of PCI devices
increases.

Challenges of Asynchronous Design

Most hostbus-to-PCI and PCI-to-PCI bridges are
designed synchronously, with both sides of the
bridge running on the primary side clock. This
has resulted in some undesirable effects due to
the secondary bus being tied to the primary bus.
In some cases, as processor speed has increased,
1/0 performance has decreased if convenient
clock multiples were not available. For example,
a 100-MHz processor conveniently drives a
30nS PCI bus while a 125-MHz processor
conveniently drives a 40nS PCI bus. With
synchronous PCI-to-PCI bridge designs, this
means that all PCI buses in the hierarchy would
be running at 25-MHz, or nearly 25% slower
than the 1/0 devices on these buses were
designed to run. While PCI itself was supposed

89

to decouple the design of 1/0 devices from the
design of the processor, this is one area where
their performance may be definitively linked.
Because of situations such as these, it is desirable
to have the option to support independent clocks
on both sides of a bridge.

If the two sides of a PCI-to-PCI bridge are to
have completely independent clocks then the
designer must pay careful attention to all the
issues associated with asynchronous design.
This would include not only the data path, but all
areas involving signaling between the primary
and secondary state machines. The presence of
FIFOs in the bridge can aid in the
synchronization process; each FIFO may be
filled at one clock rate and emptied in the other
clock domain. While asynchronous design does
pose some difficulties in today's synthesis­
centered design environments, it should be
addressed if the highest performance metrics are
to be met.

It is convenient for the clocking of the PCI
devices downstream of a PCl-to-PCI bridge to be
handled by the bridge itself. Today's successful
bridging products offer a reasonable minimum
level of support for synchronous buses. Bridge
clocking circuits can be enhanced to include
support for externally provided asynchronous
clocks and control of clock outputs for power
management.

Challenges of PCI 2.1

The introduction of the 2.1 revision of the PCI
Specification introduced a few new challenges to
all PCI designers. Specifically for bridges, the
delayed transaction feature has proved to be a
major issue. This is evident from the delays
suffered by the PCI-to-PCI Bridge Working
Group as they have worked diligently to release
the 2.1 revision of the PCI-to-PCI Bridge
Architecture Specification.

Delayed transactions were developed to provide
a more bounded time period for individual
transactions on the PCI bus. Whereas in the
previous revisions of the specification there was
no limit to the amount of time that a target might
hold the bus prior to beginning the transfer of
data, the 2.1 revision of the specification placed
a 16 clock limit on the delay until the first data
transaction. If a device finds itself unable to

begin transfer of the data in that time period,
then the device must store sufficient information
to allow it to release the PCI bus, continue on
with the transaction, recognize the same
transaction when it is retried and then respond
appropriately. A read or write transaction
requires that the address, command and byte
enables be stored, while a write also requires the
data to be saved to insure proper response to a
retry.

This mechanism provides individual PCI devices
with more potential access to the bus, with no
additional silicon overhead, if they can always
guarantee transfer of at least the first data
transaction within this 16 clock boundary. For
bridges though, the story is quite different. The
very nature of a bridge means that it has no data
on the devices operating behind it, and in fact
may be posed with many layers of PCI bus
hierarchy. The bridge therefore cannot
guarantee a response within the 16 clock limit
and must have significant delayed transaction
capabilities if it is to maintain system
performance. This aspect of operation has
significantly complicated bridge design in the
short term.

Delayed transactions in a PCI-to-PCI bridge fall
under a number of categories as they proceed
toward completion. The PCI specification
defines five such categories:

• PMW, or Posted Memory Write
• DRR, or Delayed Read Request
• DWR, or Delayed Write Request
• DRC, or Delayed Read Completion
• DWC, or Delayed Write Completion

The PCI specification determines that any 2.1
compliant device may create a queue for these
delayed transactions, and that the queue may be
as deep as required. The specification then
further defines that some transactions may, for
performance reasons, be allowed to complete out
of order, at least from the point of view of the
bridge itself. This mechanism is known as The
Ordering Rules.

The operation of a specific bridge product
defines which of the optional Ordering Rules the
bridge will implement. Extreme care must be
taken in this area of the specification since
potential deadlock or live lock conditions can

90

arise. Significant work was done by the PCI SIG
for the release of the 2.1 specification, and still,
it is reported, that the PCI-to-PCI bridge
Working Group found many inconsistencies in
these rules with respect to PCI-to-PCI bridges.
The bridge designer must be wary of the
problems posed, work through all possible
scenarios, and test these cases as thoroughly as
possible in simulation.

Legacy Devices Behind Bridges

As the PCI bus has become nearly ubiquitous in
PC systems, many designers are anticipating the
gradual phase-out of the ISA bus. However, it
seems unlikely that the ISA bus legacy devices
(serial port, parallel port, floppy disk drive,
interrupt controller, etc.) will disappear even as
the ISA bus itself becomes extinct. The
standards for these devices date back to AT-class
systems and users have come to rely on their
presence and compatibility. Since these devices
have specific hard-wired addresses, they cannot
be simply mapped to new locations by PCI
configuration commands, nor can they be moved
to new addresses without sacrificing AT
compatibility. The original Bridge Architecture
Specification takes this into account by
specifying that none of the legacy addresses
required for AT compatibility should exist
downstream of a PCI-to-PCI bridge unless the
bridge is configured for ISA compatibility. In
this model all ISA compatibility must exist in
one, and only one, portion of the system bus
hierarchy.

A new set of specifications, developed by a
group of silicon and system companies, proposes
the use of two evolutionary technologies. These
technologies are known as Distributed DMA and
Serial Interrupts. With the successful
introduction of these proposals, AT class
compatibility in the areas of the traditional DMA
and interrupt servicing can be maintained even
while the peripheral devices are located
downstream of a PCI-to-PCI bridge.
Unfortunately these two specifications do not
tackle the problems associated with truly
distributing the ISA legacy devices themselves to
distinct locations in the hierarchy. For improved
user configurability, resulting in fewer technical
support questions, all PCI slots in a machine
should meet a minimum level of functionality

independent of the board level product that is
plugged into them.

For PC-AT compatible machines, a limited set of
IIO address range decoding would need to be
supported to allow legacy devices to be moved
to any level of the PCI bus hierarchy. While this
list may not be extensive, and since some of
these technologies may be obsolete in the near
future, the list should be used only as a potential
checklist. The hexadecimal I/O addresses for the
most standard legacy peripherals and system
devices are:

• OMA: 000-00F, OCO-ODF
• IRQ: 020 - 021, OAO - OAI
• Timers : 040 - 043, 048 - 04B
• System Ports : 061, 092
• IDE!: IFO - IF7, 3F6
• IDE2: 170- 177, 376
• Floppy : 3FO - 3F5, 3F7
• Parallel Ports :

3BC - 3BE, 378 - 37A, 278 - 27A
• Serial Ports :

3F8 - 3FF, 2F8 - 2FF

The additional decoding logic required for the
legacy devices does imply additional difficulties
when attempting to operate within the 7ns setup
time requirements of the PCI specification. In
most cases the bridge will not achieve fast
assertion of the device select signal.

Arbitration for High Performance Operation

As isocronous data streams become more
commonplace in the PC of tomorrow, devices
will need access to the bus in the most timely
manner possible. While the delayed transaction
capabilities of the 2.1 specification go a long
way towards guaranteeing appropriate use of the
bus once a device has gained access, this alone
will not get a device onto the bus to begin the
transfer. A well designed and integrated
arbitration unit is necessary if the bridge is to
maintain high system performance at the lowest
overall system cost. The PCI 2.1 specification
outlines a reasonable set of criteria for designing
a multi-level arbiter. Future bridge designs
should implement this as a baseline set of
functionality, and then develop creative ways to
help devices gain access based on time-slicing.
It would be appropriate for the next revision of
the PCI-to-PCI bridge specification to make

91

arbitration programming a defined mechanism
so that system BIOS manufacturers could work
toward supporting one solution. Today's bridges
use individual programming mechanisms which
require specific BIOS or driver support. It
would be valuable to have a consistent
programming model, supported by all BIOS
manufacturers, that could guarantee high
performance on the secondary bus of a bridge,
without the system integrator having to resort to
independent solutions.

A Checklist for Advanced Operation

Determining whether a bridge is appropriate for
any given system design is of course the
responsibility of the system architecture and
integration team. The authors offer the following
list of points for the team to consider when
choosing a PCI-to-PCI bridge device.

• Baseline operation as defined by the PCI
SIG is appropriate for the system under
development. No additional features are
required for correct system operation.

• The bridge is compliant with the memory
and I/O addressing portions of the PCI
SIG Bridge Architecture Specification
appropriate for the system under
development.

• The bridge contains data buffering
sufficient to support the burst
performance of all I/O and computing
devices that will be transferring data
across its level of the hierarchy.

• The bridge offers appropriate mechanisms
for maintaining data consistency during
all forms of interrupt processing, be they
register based or token based.

• The bridge is able to operate
asynchronously across its interfaces to
enable the highest performance operation
possible on both interfaces.

• The bridge implements an appropriate
PCT 2.1 delayed transaction queue for
both the upstream and downstream sides
of the bridge.

• The bridge allows the system architects an
appropriate degree of freedom in the
placement of AT class legacy devices,
allowing for end user configuration
options.

• The bridge integrates all downstream
clocking and arbitration functions
necessary to support high performance
transaction on its secondary interface. The
arbitration unit must support the needs of
isocronous data streams crossing its level
of the busing hierarchy.

PCI-to-PCI bridge designers should have a
strong understanding of the system requirements
for their bridge products if maximum
performance is to be achieved. Bearing in mind
that some of the above points may be mutually
exclusive, the designers should include those
features satisfying those requirements.

The Authors

Thomas L. Anderson is Vice President of
Engineering at Virtual Chips, the leading
supplier of synthesizable PCI cores and PCI
verification environments. He was previously an
Engineering Manager in the 1/0 and Network
Division of Advanced Micro Devices.

Mark W. Knecht is a senior architect at Virtual
Chips, designing PC system solutions. He was
previously a Senior Member of Technical Staff
at Advanced Micro Devices, where he developed
PCI-based multi-function 1/0 devices.

Jacques Wong is a Senior Designer in the 1/0
and Network Division of Advanced Micro
Devices. He has been a lead engineer on
numerous projects involving SCSI, Ethernet and
PCI bridge technologies.

92

PCI Interrupt Controller
for Industry Standard PCl-ISA Bus Architecture using

PCl-to-PCI Bridge Technology

Ross L. Armstrong
Digital Equipment Corpo...iion [Scotland) Ltd.,

MouhlN lnd1.1etrlal &tale,

Ayr, &odand. KA6 8BE.

Fax: [44) 129288S241

a-mail: rannstrong@neebit.onot.dec.com

The demand.for more Peripheral CompUler lnlerr.onnecr {PC/} device configurations beyond the limit set in rhe PC/
local bus specification has prompted the development of several PCl·PCI bridge solutions. 1'his paper describes a new
PC/ lnd1Urrial Computer Mamifacturers Group [PICMG/ PC/-ISA bus arcmtecrure implem.entarion using Digital
Equipment Corporation [Dlgllal/ PCI-PCI bridge technology. Layered PC/ bus archirectures, PC/ Interrupt latency
implications and performance optimisations for PCl-PCI bridge designs are discus;red. Reference will be made to
Digitaf s family of 64 bit AlpJ1a Single Board Computers [SBC/ and PCl-ISA backplanes which have beef! .vpecifically
de.dgned ro address multiple, low cost, high performance PC/ requirement.r t1saociatecl with high speed
commimlcatio11s and araphics In embedded applicatifms.

overview
Digiial's Embedded and Real-time line or business has
developed a serie..-; of modular computing products
supporting an open systems environment ba8ed upon
the PICMG PCI-ISA SBC standard. Two goals of the
D.igiral Modular Computing Component [DMCC]
program were to

• develop a number of PCl based baclcplane
products that would ennble cu.11tomers to
procure and conragure industry swndard PCI
and ISA TJO option cards.

• provide extensive PCI JJO option card slols
and maintain optimum bandwidth/
performance for bridged slots.

Whilst the former requirement wa.-; a simple
undertaking, lhe latter provided a greater challenge to
the platform designers. Reduction m bandwidth,
however moderate, could be encountered due to
software or hardware inefficiencies i.e. i.legru.ded
inlCl'rupt servicing (latency) or pcopaaation/liming
delay due lo the bridge jmplemont.ation.

Tho choice or Digital PCI-PCr bridge chip adequately
meets the required timing specification, however
interrupt Jines derived from secondary bus devicos 11rc
not routed through the Digim.I PCI-PCI bridge chip.

Copyright Digiral P.quipmont Corpora&l.on, 1996
93

'This allowed mo designers to thoroughly review and
improve upon the s1ancl11rd interrupt binding stratogy
for PCI buses, where multiple devices might have to
share interrupt lines.

The PICMO single board computtt connector has only
four interrupt lines assigned to it: INT A#, INTO#,
INTC# and INTO#, as doea each PCT slot connector.

A routing or binding strategy is required to connect
between the PCI option T/O and the SBC INTx# line it
usos when requesting an interrupt.

In hardware terms, Figure 1 PICMG Singlo PCI Bus
Interrupt Binding, shows how this strucwro is mtended
to bo provided.

Figure 1 PICMG Sintkl PC/ Diu Interrupt Di11diflg

The IDSBl line per slot is assigned to AD{31 :28] as per
the PICMO Specification. Theae are used to identify
device numbers as given in the configuration addross.

The system firmware (or BIOS) code musi ~ an
interrupt binding architecture ror its environmena. Tho
PICMG specified binding for the primary PCI bus {PCI
Bus OJ is shown in Figure I, i.e. it is hard coded.
Because only the firmware (or BIOS) knows bow me
PCI INTx# lines are roulCd to the system controller, a
mechanism is required to inform the operating s~tem
device driver of an intermp& occurrenc:o. Thia
mechanism typiuaJly requiros a chained 'software'
search of each device using a specifac hardware
in&crrupt to identify the source.

This can be achieved by lilh£ havlng the
firmwareJBIOS poll all PCI devices to dc&ermine which
odgjnaaed the .inwrupt request and then initiate the
correct inierrupt service routine m alternatlvely have
the operating system kernel interrupt dispatch routine
sequenlially call each individual device interrupt
service routine until the correct source has been
identified and serviced. [The latter example is
implemented by Microsoft Winck>WS NT).

The binding s1ructmo becomes oven more congoated
when additional (bridged) PCI busca are implemented
in accordance wilh the PCJ.to-PCI Bridse Architectwe
Specification Revilion 1.0. Their PCI bus interrupts
must be C:Ol\nected 811 per Plgure 2 Secondary PCI Bus
lntel'IUpt Binding.

/ligun 2 &co"""'1 PC/ Bu.t lnMrrupl Binding

This secondary binding architecture mllBt oo overlaid
upon the respective primary slot binding that the
bridge now occupies. The not effe<:& bei113 illustrated in
the example for one PCI-t.o-PCI bridge In Figure 3
PCl-to·PCI Bridge Implementallon.

Copyright Dlgilat ~uipment Corporation, 1996

94

Figure J PCl-to-PCI Bridge lmplmier11ario11

'C'he use of mo wire-OR (110mctimes also known as
:hareclJ binding de&ign, means that the polling and
decode of an interrupt request can be significantly §
&ban o.vtimal. The latency for this operation is also
unpNdlctolJ/1 i.e. with N PCI slots, der.crmining the
originator of the PCI interrupt requoat could rake a
minimum or 1, up to a maximum of (N-1) bus read
cycles.

An alternative solution was investigated in order to
improve upon this indusuy standard binding
architeclUre if PCr interrupt latency performimco was
not to be compromised in large PCI systems. (Any
propoul would take cognisance of, and retain 11uppor&
for, the traditional wire-OR scheme.]

The design goal wwi to provide improved performance
while maintaining an open system architecture capable
of supporting both exi.'ltins and altema&ive modes.

Interrupt Controller
Assumptlona/Umltatlons

The inrerrupt controllcf must be able to support up to 4
primary PCI devices. A primary PCI device being
either a PCl bridge or a physical connector. Each PCI
bridge can have up to 4 secondary devices
implemented behind tho bridge.

The largest conf"iguration would mean 11 maximum or
16 individual PCI connectors, as demo1111trated in
Figure 4 Maximum Allowable PCI Configurat.ion.

Pi1wc 4 MtWmwn Allowable PCI C111vit11U01ion

.... :::....

This implies a maximum of 64 PCT interrupt .rourcea.
A controller that can setVice all of these product
scenarios, e>r some subsot thereof, must clo the
following:

• support up to 4 priWllY devices

• be able to identify whether a primary dcvice ill
~ilher

• an on-board PCI-PCT bridge (with up to 4
'bridged' secondary connecrors behind it)
OR

• a playsicsl connoctol'

• be able to uniquely identify each of the 16
pote11tinl inruruplS that can be generated from
a PCI bridged device (i.e. four inrerrup1s from
each of Ibo 4 ~condary devices) AND

• bo able to uniquely identify each of tho 4
pob!ntial interrupts that come from a physical
connector

This implies that the controller will have the following:

• a register (or similar) to detail whether a
primary device Is a physical connector or tm
on-board PCl-PCI bridge

• a reglstu (or similar) tor each primary device
(i.e. 4 in total) to provide status for each PCI
interrupt supported by lhat primary device.
Note that the requirements for a brWged
device are very different from a nao-bridged
device and the format of 1he regisr.er will be
different for each case.

• a regisl'er (or s.imilar) to identify which
primary device caused an interrupt (i.e. to
prevent having to read all 4 interrupt registers
to determine the interrupt source).

The backplanes developed as part of the DMCC
program aro Intended for use with many operating
systems and non-Alpha single boord ccimputert.

Copyright Digital P.quipment Coiporarion, 1996

95

Therefore.. lhey must ulso he compliant with the shared
Interrupt scheme us defined in lhe PICMO PC/-ISA
Card Edge Co,uaector Proposal for Single Board
Computer [SBC! Specification, Revision 2.0 and PCl­
PCI Bridge Board Edgft Connftctor for Siriglc Board
Compurer Specification.

To meet this two fold requirt.'Dlent the proposed
controller suppor18 two unique modes of operation with
some means of switching between them. For
convenience this was determined to be software
selectable.

The default mode, at power-up, makes the backplane
compliant to the PICMG specification. This will be
known as PICMG Modi.

Operating systems [OS] wishing to make use of the
interrupt oontroller moat explicitly swicch, via
software. to the desired mode of operation.

A bonus of this dea.ign is that the hardwiU"e is (in
simple terms) a form of h11rdware intcm.apt accclcrutor
usable by multiple opera1ing sysrems und hardware
platforms, if their corresponding BIOS or firmware
code is appropriately configured. Th.is mode Is known
49 the Acc1loralor Modi.

Generio Architecture

The basic ft>rm of tho rnterr11pt controller ill shown in
Figure S DMCC Interrupt Controller Block Diagram.
The interrupt controller is split into multiple functional
blocks, each seclion'11 usage being dependent on tho
desired mode of operation: either PlCMG Mode oi

Accoler-.ator Mode. Theae moclt-.11 arc mutually exclusive
and are discussed in the following 9':Cqons.

Pigun J DMCC l1t111'rrqn Contrqlkr Block Diag"""

The OJWnplo and illmttra1ions used throughout this
paper refer tu a specifac DBCchip 21064A PICMO

PCI-ISA single board cornputu implementation. The
concepts are generic and oan be fully utilised by
alternative platforms. In Pig11re S, the interrupt
controller functionality is shown within the shaded
area and is physically located on rhe backplane; the
System 1/0 and CPU being resident on the actual SBC.

PICMGMode

This is the default mode fur the Interrupt Controller on
power-up. The Register Logic blocks are disabled and
all inputs are fed into the Interrupt Routing logic
block. It implements tho necessary binding to be
compliant widl the appropriate PICMG specification
(as per figures 1 & 2) and addrC$Sell the rooting tor 64
individual interrupt request lines to 4 ou1pu18 i.e. the
four SBC INTx#. When in lhis mode the Interrupt
Controller appears as shown in Figure 6 DMCC
Inrcrrupt Controller Block Diagram - PICMG Mode.

Interrupt Registers

The Master Intettupt Register and Tnterrupt R.cgistm 1
throuah 4 are not available and have no meaning when
accessed (i.e. wrires are not stored and reads give
inderorminablc rosul&s).

Configuration Register

The Conftguradon Register again has no real moaning
in this tnodc, however it is always active ainco it is tho
moans to switch to Accelerator mode. See later fur
details on how rhis is achieved.

PCl Interrupt Routing

In PICMG mode, PCt device intcrruprs aro uiken
direc1ly to the lntermp1 .R.ouring Logic where they arc
simply wire-or'd, lo provide INTA, lNTB, INTC and
INTD, all specif'ted in 1hc P/CMG PCl-ISA C<Ud Edge
Connector Proposal for Single Board Compwer [SBC/
Speciflcadon, Revision 2.0 and PICMG PC/-PCI
Bridge Board Edge Connector Proposal for Single
Board Computer [SBC/, Revision 1. Theae ace routed
to the System l/O lRQ lines in lhe demonstration
example provided.

Copyright Digital F..quipment Corporution, 1996

Pigure 6 DMCC /nJerrupt Cor11mller Block. Dir1gram -
PJCMG M('I(#

Accelerator Mode

The interrupt controller or Accelerator Mode can Q!!!x
be enabled via soCtware. To enable tbi,e; mode, the
Control Register m11.'lt bo wriuen to, prior lO enobling
intenupL<J.

When in this mode the Interrupt Controller looks as
shown in Figure 7 DMCC lnierrupt Controller Block
Diagram - Accelerator Mode.

Figure 1 DMCC /n111rrupt C1m1mllsr BltJck Dlasram •
Acceleralor Mork

The software sequence fur enabling Accelerator Mode
Is shown in Figure 8 Accelerator Modo • Software
Enabling Sequence.

96

FiflUTB 8 Accelerall)t Moek • !ioj'twure Enabling Sequence

' .. 5~! ; Wrlel to : I c..inaun111oa :
.Wllwft ' . I

·~····· ,,
f'"'"""':t ,
! Set MOOD ~It j

1aci
All Registers are implemented as 32 bit registers
addressable in ISA space. [The interrupt controller
could as easily have been implemented as a PCI dovice,
however it would then be counted as a full PCI device
load and COllld have had an adverse impact on the total
10-load limitl.

Configuration and Master Interrupt Reglale'

Table 1 Configuration nnd Master Interrupt Register
defines the register bit allocation. The Confi.gurar.ion
Regisler ls alWl\ys active and is tho only means of
controlling the Interrupt Controller's behaviour. The
Configuration and Masrer Interrupt Register i.s located
nt ISA 1/0 address OSOOh - OS03h.

Apart Crom having the mode enable bit [MO.DB], it
also stores the high order 1SA 1/0 address bias fur
IntorruPl Rcgisun 1 throuah 4 [ADR[1S:4]1. '!be low
orc.ter addrells bits [ADR[3:0]} ore fixed at 0000, 0100,
1000, l lOO respectively.

The bw:kplane CClllfiguration details are stored in
CFG[4: 1], (bits [19:16] of the Configuration Register),
defining which primary PCI slots arc conneccors and
which are bridge chips i.e. which hnve four verSLIS
sixteen po~nlially acrive interrupt lines.

[n PICMG MorM, the PCIB bit defines wherher the four
INTx# inlorrupta aro routed to the System l/O or
whether the one PCI interrupt line is rou1ed diructly to
the CPU. In typical PICMG applications ISA interrupts
are heavily used and the PCIB bit can free up to four
ISA inlel'rupts. It la always set in Accelerator Moth.

MSKBN is used lO support in&errupt polling. When
enabled the interrupi Status bilS in the four interr11pt
registers are dependont upon their corresponding

Copyriaht Djgiral E!quipmont Corporation, 1996

97

MASK bits. Whon disabled they match she statwi of the
interrup1 source.

The Master lnterrupt Register is only enabled when in
accelerator mode. This register ge~ its input from tho 4
Intcrnipt Registers and is used io determine which
Interrupt Regisru should be read to find the source of
the PCI in&crmpt.

INT[D:AJ reflects the swus of the corresponding
lnrmrupt Regisler[4: t] i.e. INTO stntus is the logical
OR'ing ot the sixteen ln&errupt Status bits s1orcd in
Interrupt Register 4. 1NT[D:A) can be corr03p00dingly
masked by MINT(O:Al.

In this way the PCI interrupt ll'OUrce can be determined
in two ISA read cycles; one to the Master Intermpt
Rcgiater an<l one 10 the specific Intcrtupt Register.

Interrupt Aeglstere[4:1)

Bach of the 4 Interrupt Registers represent a primary
PCI device. The following table maps the primary PCI
device to it's associated Interrupt registers. The address
of those Interrupt registera is defined by the contents of
the ADR bits in tho Configuration Register.

Table 2 Interrupt Register Mapping defines the
Configuration Space Address for each of lhe primary
PCI devices and givc.s an example of possible lSA 1/0
address' for each Interrupt register.

Table 2 lnterrupl RegLt1er Mappl1111

I
2
3
4

2
3
4

AD31
AD30
AD29
ADi8

0510h • OS13h
OS14h • OSl7b
0518h • OSIBh
OSlOl· °'1Fh

The exttc:t format of each interrupt register is
dependent on whether a primary PCI device is a
physical PCI connector or a PCI-PCI bridge. The
formal of Interrupt Register 1 through 4 is defined by
the CFG bits wilhin the Conflgunuion Register. This
can be used to dcrormlne the exacr configuration of the
backplane. and hence the number of poteruially active
interrupt lines. Table 3 Interrupt R.esisters[4:11.definos
the .rcgi11ter bit aJlocalion.

Tobie 3 /nltlrrupt Rt1t1i.t141rs(4:J I.

If the primary PCI device is a oonnc:ctor tho Interrupt
Regisler only requires to siore the Sbltus and MASK
bits for foor lnremapt lines i.e. only bits (3:0] and
{19:16] havoany mca11ing.

When the primary PCI device is a PCl-PCI bridge, the
corresponding Interrupt Register must 910l'c the status
of up to 16 interrupt linos t'or 4 secondary connt.erors
implemented behind the .PCl·PCI bridge and also the
MASK bits for each individual interrupc line i.e. all
(31:0) bba ~valid.

The in&errupt STATUS bits [lS:O] aro AND'd with
their corrc:spondiq 16 lnterrupt Register MASK bi&s.
The .results of each AND opcralion aro then OR'd
toge1her to form a single INTxl signal that is rollfed in
lhe .Master Interrupt Resister, us illustnUed in Figure 9
Interrupt I Mask Opcraiion.

Note : If a mulli-tunction option card (i.e. an · optioll
with a bridge) Is p1111sed into a physical connec&or,
1here is support tor the 4 primary lnterruplB from
behind it's on-board bridge. lf more than four
interrupts arc used (l.e. via sharing) they are DOI
.suppormed.

Accelerator Interrupt Decode
Hardware Interrupt Architecture

In Accelerator Mode. INT(D:A) in the Master Inwm1pt
Regisrer reflects the slatus of the corre!lpODding
Interrupt RegislCl'(4: t] i.e. INT[D:AJ status is tho
logical OR'ing of tho sixteen Iaterrupt Status bits
stored in each lntemapt Register [4:1).

This two saage interrupt register strategy allows 1"'.ipid
decoding or the inrerrupt source wif.hout expanding any
individual regiSlel' set beyond 3'2 bits.

Copyright Ditital Equipment Corporation, 1996

Figure 10 In1errup1 Deco• .'fchemo1iu

The INT[D:AJ inserrupt lllatus bits are ANO'd with
choir corresponding 4 Masrcr Interrupt Register MASK
bits. The results of each AND operation are then OR'd
togelher to fotm the PCI in1errupt reqllOSt signal tlw is
routed to a single IRQ on the CPU, os illustraied in
figure 10 lntonupt necode Schemutica.

The final logical routing of the Master Interrupt
register is not limited by the MSKEN bit 111atOB.

Routing of the INT[D:A) Interrupts is only delcrmined
by the ·value of the interrupt sratus bit and it's
com:sponding mask bit.

Firmware/BIOS Interrupt Decode

The lntetrupt accelerator decode architecture
influences the host CPU firmwaro/BlOS, and is 11.waUy
transparent to the target opera1ing system. The
firmwate/BIOS must imploolent a decode rou&inc as
per Figure 11 Softwaro Decode Steps.

Pigwe 11 Software Dttodll Step4 • Accelerutor Mode

lllllln°" I -...
RIAD Mallet ,,

DEGOOl­
in*"f1"'91!11r

RIAO
laMnupt lal•r .

llECOllliwNc:h
-upcl.M

Ywo - MllllCYCUll

The predictable and repea&ablc lime lO dispatch the
appropriate inferrupt vector (service routino), nftct
receipt of an interrupt requcat is two bus read Q}Cles.
Tho dec."tlde operalion logically CCCIJl'S in par.'11el with
the read cycile.

98

Interrupt Latency

The interrupt dispa1ch latency is 1he elapsed time !mm,
receipt of an interrupt reque.<it m dlspatch to the
interrupt service routine.

The interrupt service latency ls tho elc'lpsed time fmm
enuy of the interrupt service routine m its completion.

Exact Interrupt latency. for a given system
conr&gumdon, wlll bo operating system dependent i.e.
the interrupt .ver11ice latency may vary signifi.candy
between OIJCl'aring sytUems even when the dispatch
latency in firmware/BIOS is identical.

Operating 8)'3tcms vary in interrupt service rou1ine
efficiency and can be equally dissimilar across
hardware platforms. The interrupt accelerAIOr
optimises the hardware a.'J)ect of this process.

PICMGMode

'The wire-OR.»d binding strat-egy is not optimal in large
PCI slot conflgurutions and most PCl-PCI bridge
implemen1alions.

It directly impacis the achievable lnte,,upt dispatch
latency, Md some interrupt service methodologies [o.g.
round robin, etc.1 can further reduce efficiency in these
types or environments.

The dispatch latency is also unpJ'ldlctablt i.e. wich N
PCI slots, dcttrmining the originau0t or the PCI
interrupt reque.-it conld take a minimum of 1, up to a
maximum of (N-1) bus reald cycle.-;.

Fl811H 12 Softwarc Det:otk Stq.1 - PICMG Modi!

The interrupt di8patcla lartac:y in vory large systems
can result in severe degradation of the system
pedormance. This is caused by IJO devices 'stalling'
because d\ey cannot get serviced efficlenUy. In extreme
configurations. a parlicular device may 'never' get it's
interrupt servi.ce<I, resuldng in failuio of 1hat

CopyriKht Dlsltat Bquipmem Colporalion, 1996

99

funclionality e.g. u network card n1ay 'drop' in-corning
packets or a serial line may 'drop' received characters.

Accelerator Mode

The accelerator architecture offers prt1dktablt1 and
consistent interrupt distJOtcJ& lattnr.y resulting in
higher performance for largo PCl configurations.
Pr1tllctabllhy is key in most real-time applications.

The corresponding accelerator interrupt dl1pa1ch
latency is always.J!!Q Bus read cycles.

Physlcal lmplementatlon

This paper is not intended to imply any panicular
physical implemenaarion. The generic functionality for
a PlCMO appUQllion can he implemented either as an
ISA or PCI ba.~d de'llice.. howowr il could also bo
supponed fo altemaiive bus a.rchit.ectW'Os.

Summary
Standard morhcrboord implementations provide PCI
interrupt binding [for the firmware/BIOSl decode in
the physical etch routing.

This binding stnacture becomes congest\XI when
additional (bridged] PCI buses ure implemcnLCd in the
system. This means that the polling and decode of an
Interrupt request can bo significantly less than optinutl.
The Interrupt latency is also unpredictable.

The proposed interrupt accelerator design cle.scribcd in
this paper resulL~ In rhc predlc1trbl1, repeatable
(consisront] nnd improved inierrupt di11patch latency,
key /OI' tt1al·tlnu applkotlons.

Acknowledgements
The DMCC program was the co-operative effort of a
large number of enginccrs whose initiatives have
oomributed to rhis paper. Thanks in particular to Alan
Milne, Scan McGrane, Robin Alexander, Vikas
Sontakke and John Lenthall, all of whom have work<ld
within the E&Rt engineering deaip team to ensure the
successful product implementation or the concepts
detailed in this paper.

References
1. PCI Loca1 'Bus Specification, Revision 2.0

2. PlCMO, PCI-ISA Card Edge Connector
PropOBal f0t Single Board Computers,
Revision 2.0

3. PICMG, PCI-PCI Brklge Board Bdge
Connector Proposal for Single Board
Compuwn, Rcviliion 1.01

4, PC1 IO PCI Bridge Arcb.ltecuire Specification,
Revision 1.0

Author
Ress Armstrong, the Projec:t Leader for the Disital
Modular Computing Components {DMCCJ progtam, is
a principal hardware design engineer with Disital's
Embedded and Real-Ume [E&Ral engineering
orsanisadoo. Ro.u hokis a B.Sc. (Ens.) Mon'11 from
Aberdeen UnivetSity and a joint Master of Technology
Management (M.T.M.J from Strathclyde and Herlot
Watt Universities.

Copyright Disiial Equipment Cotp0ration, 1996

100

DCM'S PCI - TO - PCI BRIDGE SOLUTION
Kamal Mansharamani

DCM DATASYSTEMS
Vikrant Tower

4, Rajendra Place
New Delhi - 110008, India

91-11-5737397/575573 l(fax)
email: dcmds@giasdlO 1. vsnl. net.in

1.0 Abstract

The PCI bus has now become a defacto industry
standard. Its high bandwidth makes it very
attractive for high performance server and
multimedia applications. However, the high
speed of the bus also puts a limitation on its
expansion capability. A PCI system can have
only three to four expansion slots. This can
become a severe limitation for contemporary
applications.

The PCI bus can support a load of upto ten
devices. Each device on the motherboard is one
load, while each device on an add-on card is two
loads. Since, each motherboard has typically two
to three on board PCI devices, this means that a
motherboard can have only three to four
expansion slots. The PCI bus also imposes
limitations on the add-on cards. Each add-on
card can present only one PCI load to the bus.
This can also severely limit the :functionality
that can be offered on PCI add-on cards.
Currently, there are a variety of PCI chips in
the market including SCSI, Ethernet, VGA etc.
However, only one of these devices can be
present on the PCI add-on card.

There is clearly a need to enhance the
:functionality of PCI systems both in terms of
the expansion capability of motherboards, as
well as the :functionality of the add-on cards.
The PCI-to-PCI bridge provides a solution for
both these requirements

This paper will discuss the technical issues
encountered in the design of a high performance
PCI-to-PCI bridge chip. Thereafter, DCM's
PCI-to-PCI bridge chip and its architecture will
be presented.

101

2.0 Introduction

A PCI-to-PCI bridge connects between two PCI
buses and allows expansion of the PCI bus. A
PCI-to-PCI bridge chip expands the electrical
capacity of the PCI bus. It can be connected to
the PCI bus closest to the Host CPU and used to
increase the expansion capability of the system.
In fact, multiple PCI bridges can be connected
on the bus to provide theoretically unlimited
expansion capability (Fig 1). The PCI-to-PCI
bridge can also be used to increase the
functionality of the add-on cards. One can build
Multi-function combo cards (Fig 2) with
:functions like Ethernet, SCSI and Graphics
support. It is also possible to build Multi
channel cards like Multi channel SCSI or Multi
port Ethernet boards.

In fact, a PCI-to-PCI bridge can go much
beyond increasing the electrical loading
capability of the systems. A bridge can also
isolate the traffic on both the sides. It can also
allow concurrent operations on the primary as
well as the secondary bus (Fig 3). The
transactions between master #0 and target #0 on
the primary bus can go on concurrently with the
transactions between master # 1 and target # 1 on
the secondary bus. This can tremendously
increase the bandwidth of the system. For
example, if we have a graphics and a video
device on the secondary PCI bus then the
transactions between the two can take place
without crossing the PCI bridge. The bridge
chip can also boost the performance of the
system by incorporating features like posted
write, read pre-fetch etc.

Level 2
Cache

System
Memory

Superl/O

PCI Expansion Slots

[1 CPU r

[l
J

Core logic [1
r

T
ISA/EISA
Expansion Graphics

Bridge

SCSI 1--- r l 1

r J
r-

l LAN

r l 1

ISA I EISA Expansion Slots

Fig. 1

Primary PCI Bus

DCM PCI Bridge

Secondary PCI Bus

LAN/SCSI
Chip

LAN/SCSI
Chip

Fig. 2

102

DCMPCI

LAN/SCSI
Chip

Bridge

DCMPCI
Bridge

1] 1

1 J 1

J] l

PCI Expansion Slots

3.0

Primary
Target

Primary
Master

Primary PCI Bus

DCM PCI Bridge

Secondary PCI Bus

Secondary Secondary
Target Master

Fig. 3

Design Issues

Let us now look at the issues involved in the
design ofa PCI-to-PCI bridge. The design of the
bridge chip would have to necessarily look at the
following issues:-

Transparency

Compatibility

Compliance

Performance

3.1 Transparency

The PCI-to-PCI bridge would have to be totally
transparent to the system. It should make no
difference whether a device is connected before
the bridge or after the bridge. The system should
not need any device drivers to support the bridge
chip.

103

3.2 Compatibility

A major compatibility issue in terms of PCI-to­
PCI bridge design is the issue related to support
of VGA compatible devices. These issues are
mainly related to ISA compatible addressing and
palette snooping. In order to support the VGA
device downstream of a PCI-to-PCI bridge, the
bridge must have the capability to be configured
to recognize the ISA compatible addresses used
by the VGA devices. The bridge must also
support configurations where a graphics device
downstream of a bridge needs to snoop VGA
palette accesses.

3.3 Compliance

Some of the major compliance requirements for
a PCI - to - PCI bridge chip are listed below.

3.3.1 The PCI-to-PCI bridge must be
compliant with the PCI Local Bus Specification.
This would essentially mean the following:-

3. 3 .1.1 The bridge must adhere to the
electrical loading limits for all the PCI signals.
This means that the PCI bridge is limited to
present a single load per connection.

3.3.1.2 The bridge must maintain data
coherency and consistency when transactions
cross the bridge in either direction.

3.3.2 The bridge must comply with the
current PCI-to-PCI Bridge Architecture
Specification. Some of the required capabilities
are as follows:-

3.3.2.1 The bridge must support configuration
space conforming to PCI-to-PCI bridge header
format.

3.3.2.2 The bridge must support memory
mapped 1/0 address space.

3.3.2.3 The bridge must have hierarchical
configuration support.

3.3.3 The bridge designs which support
arbiter on the secondary bus must be designed to
prevent deadlocks.

3.4 Performance

Performance is a major consideration in the
design of a PCI-to-PCI bridge chip. In fact, it is
possible to significantly improve the
performance of a system by properly designing
the bridge chip. Some of the design elements
which can boost performance are as follows:-

High Speed FIFO Design

The ability of the FIFO to support transfers with
every PCI clock in either direction is a very
crucial parameter in the design of the bridge
chips. The FIFO needs to be designed in a way
to support 1-1-1 transfers concurrently in either
direction.

Increased Buffer Size

The size of the FIFO buffer also plays an
important role in determining the performance
of the bridge chip. The FIFO should have
sufficient depth to be able to support sustained
transfers in either direction. The FIFO design
which includes the FIFO architecture and the
FIFO depth plays a very crucial role in
determining the performance of the bridge.

Support for Delayed Transactions

Support for Delayed transactions is one of the
important features which has been added in the
PCI Revision 2.1 specifications. Delayed
transactions are used normally while accessing
slow devices. One of the major advantages of
delayed transactions is that the bus is not held in
wait states while an access is being completed
on a slow device. Delayed transactions are used
for all those commands which can complete on
the target bus before completing on the
originating bus. A delayed transaction is
composed of three phases :

1. Request by the master

2. Completion of the request by the target

3. Completion of the request by the master

During the first phase, the master would
generate a request on the primary bus. The
bridge would decode the cycle, latch the

104

information required to complete the access and
terminate with a retry.

During the second phase the bridge would
independently complete the access on the
secondary bus. The bridge would store the data
and the status pertaining to the delayed request.

During the third phase, the master would
successfully arbitrate for the bus, acquire it, and
reissue the original request. The bridge would
decode the cycle and provide to the master the
stored data and status.

Multiple Delayed Transactions

The bridge chips also have the capability to
support multiple delayed transactions to improve
the system performance and also to meet the
initial latency requirements. The most important
requirement for supporting multiple delayed
transactions is that the ordering of the
transactions be maintained and the deadlocks be
avoided.

Transaction Ordering

The rules on transaction ordering accomplish
three things.
First of all, they ensure ordering of write results,
which means that ordering is maintained across
the system.
Secondly, they allow for posting of transactions
which improves system performance.
Thirdly, the rules also prevent bus deadlock
conditions.

Combining, Merging, and Collapsing

Bridges can also convert a transaction with
single or multiple data phases into a larger
transaction to optimize data transfer on the PCI
bus. The various terms used for this are defined
as: Combining, Collapsing and Merging.

Combining

Combining takes place whenever sequential
memory write transactions are combined using a
single PCI transaction by using linear burst
ordering. Combining takes place within the
bridge and the target sees the data in the same
order in which the originating master generated
it.

Byte Merging

Byte merging occurs whenever memory writes
consisting of bytes and words are combined into
DWORDS. Byte merging should only be done
when the bytes in the data phase are within the
prefetchable address range.

Cacheline Merging

This occurs whenever a sequence of memory
writes are merged into a single cacheline.

Collapsing

Collapsing occurs whenever a sequence of
memory writes to the same location are
collapsed into a single bus transaction.
Collapsing is normally not permitted in PCI
bridges except in very specific conditions.

4.0 DCM'S PC! - to - PC! Bridge
Solution

DCM DATASYSTEMS has designed a high
performance PCI - to - PCI bridge chip. It
supports the following features:-

4.1 Features

• Supports two 32-bit PCI Rev 2.1 buses

• Supports Delayed Transactions

• Stores upto three Delayed Transactions

• Supports maximum clock speed of 33 MHz

• Implements PCI Rev 2.1 Drivers

• Provides concurrent primary and secondary
bus operation

• Conditionally forwards the following
transactions :

Memory read and write transactions in
either direction
1/0 read and write transactions in
either direction

105

Configuration read and write
transactions in the downstream
direction
Configuration write transactions to
special cycles in either direction

• Supports memory transaction filtering
through two programmable memory address
regions - one prefetchable and one non­
prefetchable

• Supports 64-bit addressing

• Supports read prefetching for memory read
transactions

• Provides extensive buffering for - writes and
reads - both in Up Stream and Down
Stream directions

• Provides upto 88 bytes of write posting for
memory write transactions

• Provides upto 72 bytes of read data
buffering

• Provide 1/0 transaction filtering through
one programmable memory 1/0 address
region

• Provides ISA mode for 1/0 transaction
filtering

• Provides two programmable video graphics
adapter (VGA) bits that support forwarding
of VGA memory and 1/0 addresses, or
forwarding of VGA palette 1/0 writes

• Provides master latency timers and target
wait timers, for each PCI interface, which
limit the amount of latency on either bus

• Provides concurrent resource lock operation

• Propagates locks across the Bridge

• Provides five secondary PCI bus clock
outputs

• Provides the following optional central
functions:

Programmable rotation arbitration
function supporting upto six secondary
bus masters
Secondary PCI bus parking at the
Bridge

• Supports Perr and Serr signals through
error checking :functionality

Secondary PCI BUS

Clock
Buffer

!

l

Secondary
Interface ErroL
Generation & r -1

Checki119_

Secondary
Interface ~

Control Logic

Primary
Interface Erro f<-.
Generation &

Checking

Primary
Interface
Timers/
Counters

Primary
Interface f<-.

Control Logic

Secondary
Arbiter

Secondary
Interface
Timers/
Counters

l
1

Configuration
Space

Primary to
Secondary
Data Path

Secondary to
Primary Data

Path

Primary PCI BUS

4.2 Architecture

The block diagram of DCM's PCI-to-PCI
bridge chip is shown in Fig-4. It consists of the
following major blocks:-

Flg.4

106

Primary to Secondary Data Path

This block contains the logic for driving the data
received on the Primary bus onto the Secondary

bus. It also contains the logic and the buffers for
write posting as well as read pre-fetching.

Secondary to Primary Data Path

This block drives the data received on the
Secondary bus onto the primary bus. This block
also contains the logic as well as the buffers for
write posting as well as read pre-fetching.

Primary to
.-----1 Secondary Delayed

Transaction Register
File

Primary to Secondary
Posted Write Address & Data FIFO

Primary to Secondary
Primary-to-Secondary Delayed Read Data

FIFO

Secondary to
Primary Address

Conitrol

Primary Control

Primary Control consists of the control logic and
the state machines to handle all the transactions

107

Fig 5 shows an exploded version of the primary
to secondary and secondary to primary data
paths. Each data path supports logic element
and FIFOs to support posted write, read pre­
fetch and support for delayed transactions. The
FIFOs are designed in such a way to support 1-
1-1 transfers in both the directions.

Primary to
Secondary

Address Control

Fig.5

Secondary to
Primary Delayed

Transaction Register
File

Secondary to Primary
Posted Write Address & Data FIFO

Secondary to Primary
Delayed Read Data FIFO

initiated on the primary interface. It consists of
the following logic elements:-

Primary Interface Control Logic
Primary Interface Timers/Counters

s ad

Primary Interface Error generation and
checking

Secondary Control

Secondary Control is used to handle all the
transactions initiated on the secondary bus. It
also consists of an arbiter for arbitrating the
requests on the secondary bus. It consists of the
following elements:-

Secondary Interface Control Logic
Secondary Interface Timers/Counters
Secondary Interface Error generation and
checking
Secondary arbiter

Configuration Space

Configuration space consists of the
configuration registers for the bridge.

108

5.0 Conclusion

The high bandwidth offered by the PCI systems
coupled with the availability of high
performance CPU's like the Intel Pentium Pro,
DEC Alpha and the IBM Power PC has now
made it possible to configure high performance
systems for server as well as Multi-media
applications. The only limitation on the PCI bus
is its expansion capability. A typical PCI system
would have only three to four expansion slots. In
addition, the PCI add-on cards can have only
one PCI device on the board. This creates a
severe limitation on the expansion capability of
PCI motherboards and the functionality of PCI
add-on boards. The PCI-to-PCI bridge offers a
solution to both these problems. In addition,
properly designed PCI -to-PCI bridges can
significantly boost the performance of PCI
systems. The tremendous potential promised by
PCI systems can be fully realized by the PCI-to­
PCI bridge chips.

ABSTRACT

PC-OMA AND PCI: NEW OPEN STANDARD BLENDS BOTH
Dwight D. Riley

Systems Technology Development
Compaq Computer Corporation

MS 100505
20555 S.H. 249

Houston, TX 77070-2698
Fax (713) 518-0025

e-mail: driley@bangate.compaq.com

A serious impediment to the development of PCI-only systems is the requirement for compatibility with
existing PC DMA devices like floppy disk controllers, 16-bit PC Cards (PCMCIA cards), and sound cards. On
December l, 1995, seven system and chipset manufacturers published a new open standard, Distributed DMA
Support for PCI Systems, which defines a DMA architecture that is software compatible with PC DMA controllers
yet works without using any sideband signals.

INTRODUCTION

The PCI bus has become the standard peripheral bus of choice, taking over the market quickly since its
introduction by Intel in 1992. It is used in all kinds of computers, from supercomputers to portables. However,
despite its numerous successes it has been unable to replace the traditional PC expansion buses (ISA, EISA, and
Micro-Channel). These buses have not disappeared because the PCI bus was designed assuming an expansion bus
would exist to provide PC legacy functions such as DMA.

DMA was first introduced on the ISA bus in the original PC in 1981. DMA provided a mechanism for the
processor to off-load the work of moving 1/0 data between an 1/0 device and system memory. The microprocessor
still had to configure the block data transfer between the I/O device and memory, but the actual data transfer and its
termination were handled solely by the DMA controller. Not only did it reduce the processor's workload, it also
increased overall bus bandwidth. This increase in bandwidth was a result of the DMA Controller's ability to
perform a "fly-by" transfer: an 1/0 read done simultaneously with a memory write, or an 1/0 write done
simultaneously with a memory read. To perform the same task, the processor would have to run two bus cycles.

With the wide acceptance of the PCI bus, there has been a natural migration of ISA devices to PCI. This
migration, however, has not been able to include legacy PC DMA devices without losing software compatibility.

THE PROBLEM

The legacy DMA Controller was implemented using two Intel 8237s, each of which provided four separate
DMA channels. The 8237s were connected in a cascaded configuration, providing a total of seven DMA Channels
as illustrated in Figure 1. The first 8237 provided support for channels 0 through 3, while the second 8237 provided
support for channels 5 through 7. Channel 4 of the second 8237 was used to link the two 8237s together.

Bringing PC DMA to the PCI bus has a single fundamental requirement that must be met: the need to
maintain the legacy 8237 DMA programming modeL This requires a solution that retains the I/O register
interface provided by the pair of 8237s. It also requires a solution that provides a bus mastering service to replace
the DMA controller functionality - mimicking the old DRQ and DACK# protocol and running 1/0 and memory
cycles on behalf of the DMA device. In addition, it requires that the shared, multi-channel DMA registers be
isolated so that the DMA channels could be separated on the PCI bus. This is because the PCI bus does not allow
multiple devices to drive different data bits for a single access.

109

DRQ3
DACK3#

DRQ2
DACK2#

DRQl
DACKl#

DRQO
DACKO#

DRQ7 "I
DACK?# .._

DRQ6 Primary
DACK6# OMA
DRQ5 Controller
DACK5# (8237) t-------i DRQ4 f---1

DACK4#

~ ~

HOl.D

....
Secondary HI.DA

.... OMA
Controller

(8237)

~ H

Figure 1: Legacy DMA Controller. ISA systems contained two cascaded 8237s.

_.
~

_.
--..-

H 01.D
HI.DA

I
I

MRDC#
MWTC#
ORC#
OWC#

D7:DO

A24:AO

The Distributed OMA specification resolves all these issues and breaks the legacy hardware model of a
centralized OMA controller, building instead on the fundamentals of the PCI bus mastering model. There are
several advantages to the Distributed OMA approach:

1. It provides the ability to separate and isolate the various DMA channels so that they can exist
singularly in the PCI devices, tightly coupled to their 1/0 devices. The result is the removal of the
DMA DRQ/DACK# signals from the PCI connection to a private 1/0 bus that exists behind the
Distributed OMA Channel.

2. It does not require any sideband signals, thereby complying with the existing PCI bus specification.
This scheme is flexible enough to work from a generic PCI plug-in slot.

3. It is fully PCI compatible even across PCI bridges, an attractive feature for PCI-only systems that use
at least one PCI to PCI bridge to increase PCI bus connectivity.

4. It allows for mobile PC docking across the PCI bus with no additional sideband signals.

5. It removes the long 1/0 cycle portion of the transfer (which takes up to 1 µs on ISA) from the PCI bus.
PCI bandwidth is only used for the faster system memory access portion of the transfer.

6. Distributed OMA can also co-exist with an existing legacy OMA Controller on the standard expansion
bus. This allows for upgrading existing PCI systems to support Distributed DMA.

7. New drivers can be written to exploit PCI bus performance by communicating directly to the
Distributed DMA Channel interfaces.

8. Distributed DMA also provides for 32-bit extensions to the legacy DMA Controller's programming
model, thereby facilitating porting 32-bit DMA devices from EISA and Micro-Channel.

110

THE SOLUTION

There are two fundamental ideas to implementing Distributed DMA. The first is to isolate the DMA
channels as Distributed PCI Channels. The second is to map all legacy DMA accesses to these new isolated DMA
channels via a Remap Engine. Both the Distributed PCI Channels and the Remap Engine are illustrated in Figure 2.
These fundamental ideas can be implemented using three main components:

1. The Distributed PCI Channel's PCI Target Logic. A standard PCI target responsible for configuring
the Distributed PCI Channel and the 1/0 device.

2. The Distributed PCI Channel's PCI Initiator Logic. A standard PCI bus master responsible for
moving data between memory and the 1/0 device.

3. The Distributed DMA Remap Engine. Logic responsible for maintaining legacy software
compatibility.

Distributed PCI Channel
PCI

PCI Initiator I/O
logic private I/O ---i device

bus

J Memory PCI Target
Cycles Logic 110 Con.fig Cycle

Remap
Engine r--------------------------

I Distributed PCI Channel
--,

I
I 110 Con.fig Cycle I
I PCI target

l I logic I
I DRQ
I

I/O
Memory I PCI Initiator DACK# device
Cycles I

logic I
I private I/O I
I bus L----------------------------

Figure 2 ·-A Distributed DMA System. This diagram illustrates the Remap Engine block and two
Distributed PCI Channels. The top illustrates an integrated design while the bottom illustrates a more

traditional protocol using DRQ/DACK#.

The Distributed PCI Channel

The Distributed PCI Channels combine specially defined target and initiator logic as illustrated in Figure 2.
One or more original 1/0 devices are connected to these modules via some private interfaces. The interfaces could
be a full legacy bus (e.g. to implement an ISA or PCMCIA bridge) or some private interface contained within a chip
(e.g. to implement an audio card).

Distributed PCI Channel Target -- PCI Target Logic

The first major component of a Distributed DMA system, as shown in Figure 2, is the PCI Target Logic of
the Distributed PCI Channel. It contains configuration registers for the DMA transfers and the mechanism for
programming the 1/0 device. Like any PCI device using I/O addressing, it contains a Configuration Space Header
defining its I/O base addresses. This is used to set up a separate 16-byte I/O window of registers for that channel, as

111

listed in Table 1. The register definitions are similar to those of the legacy DMA Controller, but they only operate
on one channel. In addition, the programming interface is also extended to support 32-bit addressing.

Table 1 -- Distributed PCI Channel's 1/0 Map. Arrows show legacy DMA channel 0 1/0 space being mapped
into the new Distributed PCI Channel 1/0 space

OOOOh W 0 Base Address 17:0] & [15:8] [7:0]
OOOOh R 0 Current Address [7:0] & [15:8] 7:0] R
OOOlh w 0 Base Count [7:0] & [15:![[15:8] w Olh
OOOlh R 0 Current Count [7:0] & [15:8] [15:8] R Olh
0002h w 1 Base Address [7:0] & [15:8] [23:16] w 02h
0002h R 1 Current Address [7:0] & [15:8] [23:16] R 02h
0003h w 1 Base Count [7:0] & [15:8] [31:24] w 03h
0003h R 1 Current Count [7:0] & [15:8] [31:24] R 03h
0004h w 2 Base Address [7:0] & [15:8] [7:0] w 04h
0004h R 2 Current Address [7:0] & [15:8] [7:0] R 04h
0005h w 2 Base Count [7:0] & [15:8] [15:8 w 05h
0005h R 2 Current Count [7:0] & [15:8] [15:8] R 05h
0006h w 3 Base Address [7:0] & [15:8] *Base Word Count [23:16] w 06h
0006h R 3 Current Address [7:0] & [15:8] *Current Word Count [23:16 R 06h
0007h R./W 3 Base Count [7:0] & [15:8] Reserved w 07h
0007h R./W 3 Current Count [7:0] & [15:8] Reserved R 07h
0008h w 0,1,2,3 Command Command w 08h
0008h R 0,1,2,3 Status Status R 08h
0009h w 0,1,2,3 R~uest Re uest w 09h
OOOAh R 0,1,2,3 Mask Reserved R OAh
OOOBh w 0,1,2,3 Mode Mode w OBh
OOOCh w 0,1,2,3 Clear B_.Y!e Pointer Reserved w OCh
OOODh w 0,1,2,3 Master Clear w ODh
OOODh R NIA Tem~rar_y_ NIA OEh
OOOEh w 0,1,2,3 Clear Mask R./W OFh
OOOFh R./W 0,1,2,3 Multi-Channel Mask
0087h R./W 0 Low Mem. Pag_e [23:16]
0083h R./W 1 Low Mem. Pag_e [23:16]
0081h R./W 2 Low Mem. Pag_e [23:16]
0082h R./W 3 Low Mem. Pag_e [23:16]

This new programming model is designed for easy legacy DMA Controller compatibility, and allows new
Distributed PCI Channel driver software to borrow existing 8237 legacy code. This reusability of existing legacy
DMA drivers to drive what is effectively a new standard programming model for PCI masters has several benefits:

1. It builds on an existing knowledge base resulting in a greater pool of people, experts, to choose from
when it comes time to port existing PC DMA drivers to true native PCI bus masters' drivers.

2. The majority of the changes required to write a Distributed PCI Channel driver only require changing
the address location of the 1/0 device. That is, replacing the existing fixed legacy 8237 I/O addresses
to a new set of 1/0 addresses that are offset from a programmable base.

As shown in Table 1, the DMA registers Command, Status, Request, Mode and Master Clear are
duplicated in function by each Distributed PCI Channel at offsets 08h, 08h, 09h, OBh, and ODh, respectively. The
Mask, Clear Mask, and Multi-Channel Mask registers are all mapped into a single register called Mask at offset OFh.
Unlike the original DMA controller registers, these are restricted to only affect a single channel.

112

The Address low and high bytes are directly accessible (no Byte Pointer controlling access through one
register), and the Low Page registers are included to provide 24 bits of address at offsets OOh, Olh and 02h.
Similarly, the Word Count low and high bytes are separated and mapped to offsets 04h and 05h. In addition to the
legacy addressing support, bits were added to optionally allow 32-bit addresses and 24-bit word counts. These
extensions allow for 4 GB of addressable memory space and a transfer count as high as 16 MB.

The Clear Byte Pointer register is not needed since the Address and Word Count low and high bytes are
individually accessible. The Temporary register is also not needed, because it does not affect channel configuration.
The DMA Remap Engine will provide Temporary register support.

Configuring the DMA 110 Device

The Distributed DMA specification does not control how to configure the DMA 1/0 device that is serviced
by the Distributed PCI Channel. However, the standard PCI configuration base address registers should provide the
necessary 1/0 space required to configure the 1/0 device that is serviced by a Distributed PCI Channel.

Some legacy DMA 1/0 devices, however, must carry their fixed legacy I/O addresses to the PCI bus. As
such these devices must be placed on the primary PCI bus and positively decode these addresses in order to
maintain legacy compatibility. For example, system audio compatibility requires legacy 1/0 address 0220h and
0240h. If this device is placed on the primary PCI bus it can positively decode these addresses before the standard
expansion bus bridge claims the cycles.

Designs that must continue support of certain legacy 1/0 addresses may be required to support both the PCI
programmable base address register scheme as well as a fixed legacy 1/0 addressing mode. This allows the design
to be initialized as a generic PCI master with a relocatable 1/0 address range as its default. If the system needs to
support the legacy mode, these devices can be reconfigured to use their fixed legacy 110 address decode ranges. The
system software must resolve 1/0 conflicts on PCI when operating these devices in their legacy 1/0 decode modes.

Distributed Channel Initiator -- PCI Initiator Logic

The second major component of a Distributed DMA system, as shown in Figure 2, is the PCI Initiator
Logic of the Distributed PCI Channel. This PCI Initiator Logic is responsible for servicing the DMA 1/0 device.
For example, an 1/0 device requests a DMA transfer by signaling the Initiator Logic. If programmed correctly (with
the channel enabled and unmasked), the Initiator Logic responds and begins PCI memory read or write transfers on
behalf of the 1/0 device, using the programmed address, word count, and mode. If the 110 device is an ISA-based
design, the request is made with a DRQ signal, the response is expected on a DACK# signal, and the transfers to the
IIO device should be ISA 1/0 reads and writes. The 1/0 device may have some other interface; the communication
protocol to the 1/0 device is undefined by the Distributed DMA specification.

To increase performance, the PCI Initiator Logic can buffer and later burst write data. It can also read a
full 32 bits at a time or perform burst read-ahead to increase read performance. Note that PCI bandwidth is only
used for the memory transfer portion of the transfer. The 110 transfer (if it even exists) is not seen on the PCI bus.

The Remap Engine

The third major component of a Distributed DMA system, as shown in Figure 2, is the Remap Engine. Its
function is to provide the appearance to the software that the channels are linked together in an identical fashion to
the legacy DMA Controller programming model, even though the Distributed PCI Channels are in fact isolated.

The Remap Engine accomplishes this by capturing the PCI cycles which would otherwise access an 8237
register and spawning other PCI cycles that actually access the Distributed PCI Channels. These spawned cycles are
used by the Remap Engine to update or gather status from the Distributed PCI Channels when a legacy DMA
register is accessed.

113

For example, Figure 3 illustrates that when the Status register at UO address 0008h is accessed, four cycles
are spawned. Each of the Distributed PCI Channels returns two bits of status: the terminal count (TC) replicated on
bits 0-3 and channel request (REQ) replicated on bits 4-7.

l l
Channel 3 Channel 3 Channel 2 Channel 2 Channel I Channel 1
REQ TC REQ TC REQ TC

Channel OTC--------.
Channel !Tc-------..
Channel 2 TC _____ _,
Channel 3 TC

Channel 0 REQ-------.
Channel 1 REQ ___ _,
Channel 2 REQ--~
Channel 3 REQ

l l
Channel 0 Channel 0
REQ TC

Remap Engine assembles the
four read into a single byte

Figure 3 •• Distributed DMA status read data merge. Shows the status read data merge from four
Distributed PCI Channels.

The actual sequence is illustrated in Figure 4, with the following steps:

• Step 1 -- The initial PCI read of the legacy Status register occurs on the PCI bus. As a direct result of the
processor's initial request, the Remap Engine will respond with a PCI delayed transaction reply (a Retry).

• Step 2 -- The Remap Engine will then arbitrate for the PCI bus, and spawn a PCI read access to Distributed PCI
Channel at I/O location 1008h (which was previously assigned to channel 0). The return data is then stored in a
temporary holding register.

• Step 3 -- The Remap Engine makes another request and runs a PCI read from the Distributed PCI Channel at
1/0 location 4008h (previously assigned to channel 1). This Distributed PCI Channel is illustrated as existing
on a secondary PCI bus behind a PCl-to-PCI bridge. The return data, consisting of the Terminal Count and the
Request Bit, is then merged into the temporary holding register as illustrated in Figure 3 using the logical
channel assignment as a guide to the correct bit positions.

• Steps 4 & 5 -- The Remap Engine accesses Distributed PCI Channels at 1/0 locations 1018h, and 1028h,
assigned to channels 2 and 3 respectively. As each read completes, that Status data is merged into the
temporary holding register, using the channel's logical assignment as a guide to the correct bit positions. The
result is a reassembled multi-channel legacy Status register in the Remap Engine.

• Step 6 -- When the requesting PCI agent repeats the original 1/0 read transaction, the content of the temporary
holding register is returned as the legacy Status register, thereby completing the delayed transaction cycle.

114

CPU

host bus Remap
Engine

x chO = 1008h Distributed
chl =4008h PCI Channel Host ch2=1018h

Bridge ch3=1028h
1028h

(i)~~ .~ "'-- ®.J'primary P CI

4 ®~
Distributed PC -PCI Distributed
PCI Channel Bri ~ge PCI Channel
1008h 1018h

'l_ secondary PCI

Distributed
PCI Channel
4008h

Figure 4 •• Status read, with four spawned cycles

Note that the Remap Engine is free to be placed anywhere on the primary PCI bus using delayed
transactions to hide the 1/0 mapping. For better performance, the Remap Engine can be designed into the host
bridge, eliminating the need for the retry cycles (step 1 and step 6 in the above example).

The Distributed DMA specification recommends two techniques for configuring the Remap Engine with
logical channel assignments for the Distributed PCI Channel. The two techniques are:

1. The Remap Engine uses a single base address from which 128 bytes of contiguous 1/0 space are reserved for
the Distributed PCI Channels. This 128 byte of 1/0 space is then divided into 16-byte 1/0 blocks. Each of the
16-byte blocks corresponds to a different channel, with offsets OOh through OFh for Channel 0, offset lOh
through lFh for channel 1, etc. A 16-byte hole is left for channel 4, which is not usable. The 110 base address
of each Distributed PCI Channel must be programmed to make that channel's 1/0 map occupy the appropriate
16-byte block.

2. The Remap Engine has separate base address registers for each channel, thus removing the restriction that the
1/0 spaces for the Distributed PCI Channels be in consecutive 16-bytes blocks. This technique allows for a
more generic solution that can facilitate the PCI to PCI bridge requirement that 1/0 space assignments must be
done in 4 Kbyte blocks.

Table 2 and Table 3 show the legacy 1/0 address mapping for channels 0-3, along with the number of
spawned cycles that the Remap Engine issues for each legacy access. Channels 5-7 are similar, with the maximum
number of spawned cycles being 3 instead of 4. This is because channel 4 is used only for providing cascading
support for channels 0-3; the channel is never used for 1/0 devices. This table assumes that Channel 4's cascading
effects are ignored.

115

Table 2 •• Spawned cycles for the Secondary DMA channels 0-3 Control register access.

0008h w Command 4 writes 08h
0008h R Status 4 reads 08h
0009h w Re uest l write 09h
OOOAh w Mask l write OFh
OOOBh w Mode 1 write OBh
OOOCh w Clear B te Pointer Owrite NIA
OOODh w Master Clear 4 writes ODh
OOODh R Tern r 0 reads NIA
OOOEh w Clear Mask 4 writes OFh
OOOFh R/W Multi-Channel Mask 4R/Ws OFh

Table 3 •• Spawned cycles for the Secondary DMA channels 0-3 Base Address and Word Count register access.

OOOOh 0002h 0004h 0006h W/R Base Address Low [7 :O] 1 OOh
OOOOh 0002h 0004h 0006h W/R Base Address Hi h [15:8] Olh
0087h 0083h 008lh 0082h W/R Low Mem. Pa e [23:16] 1 02h
OOOlh 0003h 0005h 0007h W/R Word Count Low [7:0] 1 04h
OOOlh 0003h 0005h 0007h W/R Word Count Hi h [15:8] 05h

Supporting the Cascading Effect of Channel 4

The Distributed DMA Support for PC/ System revision 6.0 specification does not address supporting the
cascading effect of channel 4 on channels 0-3. In the legacy DMA Controller channel 4 is not a usable DMA
channel, and must be configured in cascade mode at system initialization. However, the channel 4 registers are still
accessible, and some can be modified without reconfiguring the channel's cascade mode. This means channel 4
settings can have an effect on channels 0, 1, 2, and 3.

For example, if channel 4 is masked, Secondary DMA channels 0-3 are also effectively masked. Taking
advantage of this global effect, though unorthodox, is still very much "PC legal." The following legacy Primary
DMA registers can cascade onto channels 0-3:

• Command Register (Port OODOh). A write to disable channels 4-7 must also disable channels 0-3. A write
to enable channels 4-7 must also enable channels 0-3 if they were disabled only due to a previous write to
disable channels 4-7.

• Single Mask Bit (Port OOD4h). A write to mask channel 4 must also mask channels 0-3.

• Multi-Channel Mask Bit (Port OODEh). A write which masks channel 4 must also mask channels 0-3.

• Master Clear (Port OODAh). A write access masks and enables channels 4-7. This transaction must be
handled as if a combination of Command and Multi-Channel Mask writes occurred.

Supporting this cascading effect of channel 4 on channels 0-3 requires the Remap Engine use a more
complicated mapping algorithm for updating the Distributed PCI Channels.

116

First, the Remap Engine needs to track the Primary and Secondary DMA Controller's Command register
enable bit and the mask bits for channels 0-3 and channel 4. They must be tracked from system initialization to
guarantee that both the Remap Engine and the Distributed PCI Channels remain coherent.

Any write access to legacy DMA addresses OOD4h, OODAh, or OODFh which result in channel 4 being
masked require the following modification to the Remap Engine algorithm:

1. The standard update to the Primary DMA channels 5, 6, and 7 takes place as usual with the channel 4 tracking
bit also being updated. In addition, new spawned cycles must set the mask bits of channels 0-3 to reflect
channel 4 being masked. Note that the original mask status for channels 0-3 is not lost, as the Remap Engine
has been recording their status in a tracking bit.

2. New accesses to the Secondary DMA channels 0-3 that affect their mask status no longer result in spawned
cycles. Instead, the Remap Engine just updates its mask tracking bits. As long as channel 4 remains masked,
the corresponding bits in the Distributed PCI Channels will reflect this configuration.

3. If a write access to legacy DMA registers OOD4h, OODAh or OODFh results in channel 4 being unmasked, the
Primary DMA channels 5, 6, and 7 are again updated as usual. This time, the Remap Engine must update the
Secondary DMA channels (0, 1, 2, and 3) with its tracking bit values. Note that just because channel 4 is
unmasked does not automatically result in channels 0, 1, 2 and 3 being unmasked; instead, their recorded
individual states are restored.

4. Only when channel 4 is unmasked does the system return to a "standard" configuration mode where the
individual mask settings for channels 0-3 control their channels' mask status.

Similar to the effect of channel 4 on the mask bits is the effect of channel 4 being disabled. For example,
when channel 4 is disabled, Secondary DMA channels 0, 1, 2, and 3 must also be disabled. When channel 4 is re­
enabled, the Remap Engine uses the tracking bit for the enable status of Secondary DMA channels 0-3 to update the
enable bits for Secondary DMA channels 0, 1, 2, and 3.

Upgrading Existing PCI Systems to Support Distributed DMA

Field upgrades for Distributed DMA require the systems to provide at least one primary PCI bus slot. In
addition, the legacy expansion bus must be connected to PCI via a subtractive decode agent. Specifically, the
legacy DMA registers must be decoded using the PCI's subtractive decoding techniques. From this standard PCI
slot a Distributed PCI Channel and Remap Engine upgrades can be retrofitted to any existing PCI system.

In such a system the Distributed PCI Channel interface is identical to that described above, however, the
Remap Engine's algorithm must to be modified to accommodate the legacy DMA Controller on the expansion bus.
The Remap Engine intercepts all legacy DMA Controller's register accesses, as defined earlier, claiming these
cycles before the subtractive agent, and spawning cycles to the Distributed PCI channels. After the Distributed PCI
Channels are serviced, the Remap Engine reissues the original host access to the legacy DMA Controller's register
onto the PCI bus. This time the expansion bus will accept the cycle as a subtractive agent and update the 8237s
accordingly. The Remap Engine must guarantee that any reissued commands never unmask or activate any legacy
DMA channels that were claimed by a Distributed PCI Channel. After the reissued cycle is complete the Remap
Engine waits for the requesting PCI agent to return thereby completing the delay transaction cycle.

The Performance Issue

Table 4 compares the theoretical performance of Distributed DMA versus legacy DMA on ISA.
Distributed DMA significantly improves the overall system performance while maintaining full PC compatibility
with the legacy DMA Controller.

117

Table 4 •• ISA vs. Distributed DMA Performance

8-bit 0.8 8
16-bit 1.6 15

16-bit F 4 30
32-bit Not available 30

32-bit burst Not available 100-132

However, Distributed OMA carries a performance cost due to mapping and expanding the legacy DMA 1/0
accesses to multiple Distributed PCI Channels. The greatest performance cost occurs when the share registers are
mapped. The shared registers include the Command, Status, Master Clear, Multi-Channel Mask and Clear Mask
registers. All these registers result in four PCI cycles being spawned for channels 0-3, and three PCI cycles being
spawned for channels 5-7. However, the impact of this 1-to-4 cycle expansion on the overall system performance is
not significant for several reasons:

1. The number of programming cycles are negligible when compared to the number of data-transfer cycles.

2. The majority of the remapped cycles for Distributed OMA result in one spawned cycle.

3. The Distributed PCI Channel Initiator Logic can include data buffers, and burst their PCI cycles to memory to
further improve performance.

4. In the future, new PCI drivers can be written, bypassing the Remap Engine, thereby removing the spawned
cycles that result.

CONCLUSION

As expansion bus devices move away from legacy buses to the PCI bus, the need to maintain the legacy
buses slowly erodes but the need to maintain the legacy OMA programming model remains. Distributed DMA
Support for PCI Systems is a solution that the PC industry is implementing today. This standard will aid in a
smooth migration path for all legacy devices onto PCI.

BIOGRAPHY

Dwight Riley is the primary liaison for Distributed OMA at Compaq. His work experience at Compaq has
encompassed the technology groups in the Portable PC Division and the Systems Division. Prior to joining
Compaq, he worked for IBM's Commercial Desktop Technology group and was also involved with the early OS/2
Development efforts in Boca Raton, FL.

REFERENCES

Compaq Computer Corporation. "OMA Operations'', Technical Reference Guide, Extended Industry
Standard Architecture Expansion Bus, Second Edition, August 1990.

Evoy, David. "Distributed-OMA Techniques Allow Easy Migration from the ISA bus to the PCI bus."
EDN, November 23, 1995.

Cirrus Logic, Compaq Computer Corporation, National Semiconductor, OPTi, Standard Microsystems
Corporation, Texas Instruments, and VLSI Technology. Distributed DMA Support for PCI Systems.
Available from http://www.compaq.com, December 1, 1995.

118

-c
<C

et:: w
0 ::c
I- I-
~ et:: a. w 0 Cl)
..Ju.c
wwo
0 et:: et::
0 ::::> <C
<C I- ::c
- 0 Cl) ow
a. 1--<C ::c

0
et::
<C

119

" ------------- --. ---

ALACRON, INC.

• I. Target Applications

~ • 11. ADI 2106X ARCHITECTURE

• Ill. Alacron's PCI Acce·lerator

• IV. Summary

......
N

Target Applications

• Image Processing
- Document Image Processing

(OCR,ICR, Compression)
- Medical Image Reconstruction
- Biomedical Imaging
- Pattern Recognition/Neural Networks
- Automated Manufacturing

• Digital Signal Processing
- Digital Receivers
- Radar/Sonar

- Commercial TeleComm

.....
N
N

PCIBus
Architecture

• Peripheral Component Interconnect Bus(PCI)

- 132/264 MB/s
- 33 MHz at 32 and 64 Bits Wide

- Industry Wide Acceptance

• Alpha, Power PC, Pentium

- Hetereogenous Environment

• PCI /ISA

• PCI I EISA

• PCI I NuBus

////$1.ALACRON

~
N
w

PCIBUSINTERFACE

LOCAL BUS ... 1 1 -r ... 1 ...
EIGHT-32 BIT PCI TW0-32BIT

MAILBOX CONFIGURATION DOORBELL
REGISTERS REGISTERS REGISTERS

• -. ' ~ ~'
FIRST SECOND FIFOed FIFOed Bl-DIRECTIONAL Bl-DIRECTIONAL SLAVE MASTER FIFOed OMA FIFOed OMA INTERFACE INTERFACE CHANNEL CHANNEL

132 MB/S PCI BUS

• FIFO'D MASTER, SLAVE, AND OMA INTERFACE

• MAXIMUM BURSTS AT 132 MB/SEC

• BLOCK TRANSFERS AT 70 MB/SEC

• RANDOM READ/WRITES AT 8-12 MB/SEC
'//; i if/ i /if' I I I , /II '

I i /;i I /11ffi.fi I I I 11 /If/
!1 jlli:!/• 1

I I I I' I 11/!1
• /I ;!;!1·11

Jll4CRON

w
et:
::>
l­
o w
1--:::c:
0
et:
<C
><

U)
0
~

N -c
<C
w
:::c:
I-

!J ------:=:

124

,_.
~

The ADSP-2106x

40 MIPS
CORE

80/120 MFLOP/S
FPU

:a: a. 2!l

1,2,and 4 MBIT DUAL PORT SRAM

BUS UNIT
OMA

CONTROLLER

160 MB/s 32 Bit BUS

6 LINK
PORTS

AND
2SERIAL
PORTS

40 MB/S_____.

40 MB/S_____.

40 MB/S_____.

40 MB/S_____.

40 MB/S_____.

40 MB/S_____.

~ SMB/S

L.il•o---5 MB/S

1/fiil/;/ 1/1//#J i I •If lfi I I.! if:!i"
: I• 11//i I 1 1,; r 1 n·t

• •

::::>
a..
LL

>< U)
0
~

N
I a..

en c
<C

126

ADl-2106X 'SHARC'
SPECIFICATIONS

• 40 MIPS
• 120 MFLOPS (A+B,A-B)
• 80 MFLOP (OTHERWISE)
• 48 / 32 BIT EXTERNAL DATA BUS

5 • 1,2, OR 4 MBIT ON CHIP SRAM (21061, 21062, 21060)
• OMA CONTROLLER
• 2 SERIAL PORT (40 MBIT/S)
• 6 LINK POINTS (40 MBYTE/S)
•SIMD AND MIMD OPERATION
• DUAL PORTED SRAM
•CONCURRENT OMA WITH COMPUTATION

//l/1/1/AlllCRON
I ! I ! I I i: ! ! 1ll/f!

-~

PROCESSOR COMPARISON
ADSP-21060

Processor Attributes
40MHZ

Instruction Execution lime 25 ns

MIPS 40

Peak MFLOPS 120

Latency of Floating Point 25 ns
Inst.

Internal RAM 128K
(32-Bit Words)

On-Chip Memory Bandwidth 640 MB/S

1/0 Capability

Serial Ports 2

link Ports 6

OMA Channels 10

OMA Bandwidth (MB/S}

link Ports/Port 40 MB/s

OMA Bandwidth 240 MB/s

FFT, 1 K Complex 460 usec

Divide, 32-Bit Floating Point 150 ns
6 cycles

TMS320C40

40MHZ

40ns

25

50

40 ns

2K

NIA

0

6

6

32 MB/s

50 MB/s

1,540 usec

360 ns
9 cycles

i860

50MHZ

20 ns

50

100

60 ns

BK

320 MB/S

0

0

0

N/A

0

520 usec

200ns
10 cycles

·1i~ '~/i/il' I I/ ;/l/ffe
II ft ;ffflfi

I ' I '"'l, ! I! i I I. f, ... ,,11
rll4CRON

....
0 ca
Cl) -Cl)
u
u

<C
~ c:
0 C> ·-~ UJ
N Cl)

-c c
<C
UJ
~

c: e
u ca -<C

• -- ~ ------- ---------

129

ALACRON'S SHARC DESIGN GOAL

OPTIMIZE PROCESSOR AND MEMORY
~ PERFORMANCE FOR MIMD AND SIMD
0

PROGRAM MODELS

......
~

MIMD programming model

• Each SHARC Processor

- operates as an individual coprocessor
- has separate thread of execution

- may run entirely different code
- 2106X application can implement inter-

processor communication or
cooperation if desired

////$1.AlllCRON

~
~
N

SIMD programming model

• All 2106X processors operate in lock-step

- executing same instructions
simultaneously

- process using different data.

- easy to write for algorithms that may be
partitioned in the spatial domain

- no overhead for inter-processor
synchronization when compared to
MIMD parallel algorithms

en w
> -!;;:
z a::
w
1-
....1
<C
z
(!) -en w
c
0 a::
<C
l:
en

o:=
w
1-(1) :c z
::> (I) (!)
..J w -
0 ::!: ffi
CCC
o:= o:= z
<C <(0 c c o:=
zzo
1-<C <(<(

I- ..J
.(I) (I) <C
• • •

133

~ ---:::--::::.: -- --::: -- -------= -- . -

.....
Vl
.p..

CLUSTER ARCHITECTURE

GLOBAL
1/0

SHARC SHARC SHARC

240 MB/S (48 BIT) AND 160 MB/S (32 BIT) CLUSTER BUS GLOBAL
MEMORY

SHARC SHARC SHARC

ti I i!'/l'/i»'' I f ,; . ,, I

! ~Ii ///ii)
I ''/;'////• / 'i i,.fjf

II I I I Ii i1,·li • • r I•/. •I

-w
tA

CLUSTER ARCHITECTURE

Pros
•Easy to Program
• MIMD Operation

Cons
• Processor Contention for Global Memory and 1/0
• No SIMD Operation
• High Speed Memory Required
• Usually Implemented with Static Link Port
Connections

//!!••Al.ACRON

MESH ARCHITECTURE
I\ I\ I\ I\

I'- SHARC lo-H SHARC lo-H SHARC

' '\. T ~ '\.. I ~ " 1 :r J.
I\ I\ I\

MESH SHARC lt-H SHARC lt-H SHARC 1/0 It-

t:;·

°' ' "\: l '\ _J_ ~ '\: J_
J_ J_

I\ I\ I\ I\

MASTER
SHARC

lo- SHARC lo-H SHARC l'-H SHARC

"\ "\: " l ~ ~ " ' "' '\
~

GLOBAL [)1
,, ,, \ I\ • .. ,,

GLOBAL 240 MB/S (48 BIT) AND 160 MB/S (32 BIT) CLUSTER BUS

-v''
MEMORY 1/0

j'J
~ \.

11!/; Ii /l/f,iliJ
//; /·1''11 I I 1 / ;/''

I ;f /ir/,I•
I I 1• i i!i/;/i

' I l•I.'

-~ -..J

MESH ARCHITECTURE

Pros
• Scaleable over a wide range of
Applications
• Simple to understand and Program
• Single Copy of Instructions Required

Cons
• Limited 1/0 Bandwidth
• SIMD Operation Only
• Fixed Link Port Topology
• Microcoding Required for Peak
Performance
• Single Bus Passes All Instructions and
Data

////lllJALACRON

......
~
00

t

f

t

ALACRON ARCHITECTURE
DYNAMIC LINK PORT SWITCHING

I l j_
?'I

j_ I I I j_

SHARC SHARC SHARC SHARC SHARC SHARC SHARC SHARC

I l I j_ J j_ I I
VRAM VRAM VRAM VRAM VRAM VRAM VRAM VRAM

I J I I I I l I
160 MB/S 32 BIT SYNCRONOUS OMA DATA BUS

l l

GLOBAL MEMORY
OMA

GLOBALl/O CONTROLER

l I l J
HOST CARRIER BUS

/'//; l~i i II if'{, I I I; I I!/.
• I 1 f /111 I Ii Iii.Ji'
I I •" I ,,,,:,,fl

~LllCRON

ALACRON ARCHITECTURE
Pros
• SISD, MISD, SIMD and MIMD operation support (all modes}
•A continuation of the dual port memory concept in the SHARCs
• Processors do not contend for data on a common bus
• Link ports are configurable dynamically as required by the algorithms
• Dual port memory augments the SRAM internal to the SHARC chips
• Data and instruction duplication supported by OMA controller broadcast

~ • Data flows through the system without bottle-necks or bus contention
• Scaleable across many applications

Cons
• Processors can not directly pass data over a common parallel bus
• SISD and MISD operation requires duplication of data
• SISD and SIMD operation requires duplication of instructions
• Microcoding required for peak perfromance

f f; /·~; iilif;'.I/
I I I I 11 i I !/tl i I I ' i I /;1:

I I I I I i 1 /111!
I I I I ! i ! i/lh

' •I I /f!Uf//J

COMPETITIVE PERFORMANCE COMPARISON
Bus Architecture Memory Link Port Link Port SIMD MIMD BusBW No

Architecture Config Topology perSHARC Overhead

Streaming

Data Flow

ALACRON PCl, ISA, Local 1 MB Dynamic Direct Yes Yes 80 MB/s Yes

orVME
Memory

Private Universal Number Theoretic

VRAM

256 MB

Global DRAM

VENDOR 1 PCI Mesh Global Static Rectangular Yes No Not Yes

SRAM Mesh Applicable

VENDOR2 Proprietary Cluster Cluster Static Star No Yes 27 MB/s No -~ Shared Cluster to Cluster
512 KB FLASH

and

SRAM

VENDOR 3 VME Cluster 3x2 Static Star No Yes 20 MB/s No

Cross Bar Adjustable by

256 K SRAM
Cabling

128 MB DRAM

VENDOR4 VME Cluster Cluster Static Adjustable by No Yes 40 MB/s No
Shared Cabling

3 MB SRAM

512 K FLASH

1/f;/~/ I// ffe I 1,1 ltit1/i
II•/•'

I I! !!l!tfi

......
~

ALACRON ARCHITECTURE
I • ...

DYNAMIC LINK PORT SWITCHING •• ••
·~:: --~-:::::::: --~-:::::::: --~-:::::::: _,_.::::::::;a.:::::::::~--:::::::: .i:::::::::'::: _J!

•.... t. ...•
•• ••

SHARC •' •• •• I I

-- -- -- ·.s. -- -- --

- - - .t. - - - •
• ••
I jl

VRAM •' •• •• I I

-. •• -. ·-.i. -- -- --

.... t. ...•
•• ••

SHARC •' •• •• • • -. -- -. ·.s. ·- ·. --

•.... t. ...•
•• •• VRAM 1•
•• •• ._ ___ ,, ___

.... t. ...• : ,.
••

SHARC •' •• •• • •
·- -- -- • • .i. -- ·- --

.... t. ...•
• ••
I jl

VRAM •' •• •• I I

-- -- -- ·.s. -- -- --

- - - .t. - - - •
• • •
I jl

SHARC 1•
•• •• I I

-. -- -- --.i. -- -- --

- - - .t. - - - • : ,.
••

VRAM •' •• •• • • -- -- -- ·.s. -- -- --

•.... t. ..••
•• ••

SHARC •' •• •• • •
-. -- -- -• .i. -- -- --

.... t. .•.• : ..
••

VRAM •' •• •• I I

-- -- -. ·.s. -- -- -......

- - - .t. - - - •
I jl

• ••
SHARC •' •• • • I I

-- -- -- ·.s. -- -- --

.- - - .t. - - - •
•• • •

VRAM ••
• • •• . ____ ,, ___

.... t .•..•
I jl

• •
SHARC •' • •

• • I I

-. -- -. • • .i. -- -- --

.... t. ...•
•• •• VRAM 1•

•• • • I I

-- -- ._ ·.s. -- -. -......

.... t•
I jl

• •
SHARC •' •• • • I I

-- -- -- ·-.i. ·- -- -......

. ... t•
• • ••

VRAM •' •• • • I I

-. -- -- ·-.i. -- -- --,
1 lo • • • t • • • • • • • • • i; • • • • • • • • .1:. • • • • • • • • • 't. • • • • • • • • .'t. • • • • • • • • .'t. • • • • • • • • ;j • • • • • o • • • :t • • • • I •

160 MB/S 32 BIT SYNCRONOUS OMA DATA BUS

• •• - - - - - - - - - - • - - - - - - - - - - - - - - - - - - - • - • - - - - - - .i - - •• - • - •• '
' I '. • •............•....•. - ... :: OMA : GLOBAL 1/0 :: ~ : ::
~ GLOBAL MEMORY :~ [CONTROLER :: :: :: : :: :: "':::::::::: ~
~ - - . - - - - - - - - i : : : : : : : : : : : ~ . ----------. .

•• •
'·- - - - - - - - - - - !. - - - . - - - - - - . - - . - - - - - - - - - - - .t - - . - .t - - - - -

• ______ .,

HOST CARRIER BUS

' --------. -----------. --. -------. ---. - ---. ------------I I

'
• I '

II

I '/ i 11111111/i

/ 11 I.JI I I IJ;W.
1, i;!J/f!/
I I I I! i!MI. • ft,J:;//:;J.

~L4CRON

>--"

~

TWO DIMENSIONAL OMA

i.-~~~~~~~row-stride--~~~~~~--.i

~ line-length •I
r---1---r---T----
1 I I
I ,. I I
I
I
I
I
I
I
I
I
I
I
I
I
I I
I I I
L.words-L ___ L ___ L __ _

I+- per +I
share

---~~~~~~row-s1ride-~~~~~----..

I• 1ne-length-----+

SHARC 1

T ~-----I --------,

iws-per-sharc I l'O\YS-P'

SHARC2

SHARC3

SHARC4

11 1----- I I --------1
I I
I
~------- I I ------1
I I
I
1-------- I I -----1
I I
I L _____________ !

• THE OMA ENGINE ALLOWS STRIDED TRANSFERS FROM
MEMORY AND ALLOWS ON-THE-FLY TRANSPOSES

1 ~ i 1 / i / li.1/t I I i j;' '/:Ii//!.
I I i i I I /!/i

II I ii i!l//fi , , I f•t, •I

SHARC1

SHARC2

SHARC3

SHARC4

~
.;...
VJ

SHARC MAIN BOARD DESIGN

8 AD210x Processor SHARC
Array

with private VRAM
]\

Control
160 MB/S Processor

OMA Controller

f I
160 MByte/Second Expansion! Bus

\J I I I I
2·256MB l Real-Time l Expansion

J

Expansion ~ DRAM Clock #1 #2

PCI Local Bus Interface
Slave/Master

/1- J_

PCI Host Bus
I

'

111 ii/!////!.
i I'/;{ . I! !ii/!' I ' ' I// I/•

I 1' I I!, t1I,
I I / ' ! Ii i/'t'f f, I . It ,J:i. •I/

.......

.i:..

.i:..

SHARC BOARD FEATURES

•Array of up to 8/16/24 2106xs (1-3 SHARC Modules)

• 960/1920/2880 MFLOPS per Slot

• Up to 256 MB of DRAM SIMM Memory.

• Supports all Daughter Cards

• Two Standard Daughter Card Connectors

• Slave, Master, and OMA Interface

• PCI Interface

////$1.ALACRON

"""" ~

JTAG DEBUGGER ARCHITECTURE

I I
JTAG

I

c SIMD I MIMD APPLICATION CODE .)
UNDER TEST

I- 1-·· -r- -----r-----1 I I- I
I I I I I I I I

~ ~
:I! :I!

~
i

~
:I!
i

1/0
DAUGHTER

CARO

~
:I!
i

~ lS
:I! :I!
2 2

OMA
CONTROLLER

64 BIT LOCAL BUS

PCI
INTERFACE

PCIBUS

HOST CPU

~ lS
:I! :I!
0 0 .. .,

CONTROL
CPU

JTAG EMULATOR
APPLICATION

'//; ii//; I j,!i''/I I ; I iii JI II
I I f • 111 I i/1/1 ' I ' I' f /"J
I I ,: /111/;iif.%
' , ! /I I ;r /•' I I t i 1 I:; 1 /:J

~LllCRON

UTILITY OF JTAG BOUNDRY SCAN

~ • DESIGN FOR MANUFACTURE

• EFFIECIENT GUI BASED HARDWARE

DEBUGGER ENVIRONMENT

11/~~i~.1 I II /ffi i if/111 I I I 1; 111

I I i , i j i Ith

---------...

•
~
3 :z

I
O>
.j:>.

OJ
=i
O>
O>
~
I
N

I
0
(/)
-I
OJ c
(/)

(/)

-<
ZO>
() .j:>.

I OJ
:;a -
0-t
Zm
00>
c~
(f) I
ON

~
~

IC:=

n

()
0
Zo
-I~
:;a)>
0
r
m
:;a

)> z ()
oO
G) z
r-1
0 :;a
OJO
)>r
rO
::::: '"'Cl
QC

O'I
I\.)
CX>

~

~
(/)

-< z
()
I
:;a
0 z
0
c
(/)

0
~
)>

~
OJ
c
(/)

lvI

(/)

64 BIT SERIA ~ 32 BIT --1
528 MB/Sffi-160 MB/S

~ RANDOM
$ I­
~ u)

(/) {D-160MB/S
528 MB/S 32 BIT -

64 BIT SERI RANDOM LI J
$ 1-
:;a
0

528 MB/S 32 BIT-

(/)

$ 1-
:;a
0

.....--

~
ffi-

160 MB/S

64 BIT SERI RANDOM U I

Ui ~
528 MB/S 32 BIT-

ffi-

160 MB/S

64 BIT SERI RANDOM

-
0
c

0 z
7'

(/) ffi-160 MB/S
528 MB/S 32 BIT-

64 BIT SERI RANDOM IJ
1

$ 1-
:;a
0

(/) ffi-160MB/S
528 MB/S 32 BIT-

64 BIT SERI RANDOM IJ }
$ 1-
:;a
0

ill 1]
160 MB/S I

528 MB/S 32 BIT)> 1---
64 BIT SERI RANDOM ~

(/) ffi-160MB/S !

528 MB/S 32 BIT-

64 BIT SERI RANDOM ~)
$ 1-
:;a
0

"U
0

~
(/)

~
=i
()
I
z
G)

~

••

•

.....
to

FUTURE ASIC BASED ENHANCEMENTS

•Zero Wait State (160 MB/s) SHARC External Memory Accesses

• 528 MB/s Peak OMA Bus Transfer Rates

•Less Than 500 Microseconds 512x512x8 Image Transfer Time

• Support For Both Video RAM and Graphic RAM

////$1.ALACRON

ARCHITECTURE COMPARISON

ARCHITECTURE NUMBER TOTAL MFLOP/S MFLOP/S MEMORY MEMORY BANDWIDTH

OF CPUs MFLOPS PER SQ-IN PER SQ-IN BANDWIDTH PER CPU DURING

STD-SMT BGA PER CPU OMA

i860 SHARED MEMORY 2 200 4 N/A 200 100

SHARC PRIVATE VRAM 8 960 19 28 80 80 -~ SHARC PRIVATE VRAM 16 1920 24 39 160 160

SHARC PRIVATE VRAM 32 3840 29 53 160 160

/·;;,. '/' ,, j I If I ff ;I.'

I jiil////11
i I if;! /Ii/iii I / I I: I 1111, • • 1111 .. 1 I ! I ! ; I :; u 1/11

~LllCRON

'""" Vi
0

ARCHITECTURE COMPARISON
ARCHITECTURE NUMBER RELATIVE SIZE Size MEMORY

OF CPUs PRICE PER CPU STD-SMT BGA (MB)

(SQ-IN) (SQ-IN)

i860SHARED 2 1 54 N/A 16
MEMORY

SHARC PRIVATE 8 0.75 52 38 12
VRAM

SHARC PRIVATE 12 0.53 65 43 18
VRAM

SHARC PRIVATE 16 0.55 78 49 24
VRAM

SHARC PRIVATE 32 0.52 132 73 48
VRAM

POWER POWER

5V Design 3.3VDesign

WATTS WATTS

37 N/A

68 47

80 53

92 60

140 92

MFLOP/S

PER WATT(5V)

6

14

18

21

27

'/fi j~' Ii'!.'' I I I I ;/1/. I , , ; 1/t
I' ! 1,,1,, ..

i f/ '·i
I I i I ii I ff•
I I 1!.i//1//;

MFLOP/S

PER WATT(3.3V)

N/A

23

27

32

41

-lJ\ -

ALGORITHM PERFORMANCE
COMPARISON

1DCFFT 2DCFFT CONV5x5
Architecture (1K) (1Kx1K) (512x512)

(MSEC) (MSEC) (MSEC)

1 x i860XP-50 0.547 1420 100

2 x i860XP-50 0.32 816 100

1 SHARC 0.457 1045 205

2SHARC 0.26 527 103

4SHARC 0.13 272 _52

8SHARC 0.072 138 23.5

16SHARC 0.046 74 11.8

32SHARC 0.024 39 6.2

/'//;I I I li!llh
I i/•ifi!!J/
I I i ff/ 1/i
I I ; : i //'I
I I Ii ~!!!!lh

-Ut
N

Length

1,024

2,048

4,096

8,192

16,384

32,768

65,536

131,072

262,144

524,288

1048576

FFT PERFORMANCE
COMPARISON

8-SHARC 16-SHARC 32-SHARC 64-SHARC 1-i860XP 2-i860-XP
(MSEC) (MSEC) (MSEC) (MSEC) (MSEC) (MSEC)

0.072 0.046 0.033 0.027 0.547 0.320

0.148 0.084 0.052 0.036 1.300 0.825

0.276 0.148 0.084 0.052 3.900 2.989

0.620 0.320 0.170 0.095 9.500 7.121

1.220 0.620 0.320 0.170 20.400 15.800

2.764 1.392 0.706 0.363 45.700 36.400

5.508 2.764 1.392 0.706 96.800 78.800

12.370 6.194 3.106 1.562 213.600 177.600

24.720 12.370 6.195 3.108 447.100 381.900

54.920 27.470 13.745 6.883 976.700 845.200

109.780 54.900 27.460 13.740 2133.623 1870.550

1/
11 f;!~i I //ft,~ I • 'f/' "

I ii i1 jf;/1 I I I If i/jh
• I 1 !•I!•

-Vt
w

Alacron's SHARC Design

• Scalable

• High Perfomance

• Allows MIMD/ SIMD Operation

• Concurrent Data Tranfer with
Calculation

Abstract

PMC: mE PCI MEZZANINE CARD
Rodger H. Hosking

Pentek, Inc.
55 Walnut Street

Norwood, NJ 07648
201-767-3994 (fax)

e-mail: rodger@pentek.com

PMC solutions have the capacity to improve performance while reducing the cost of mezzanine I/O expansion cards.
From its start in the personal computer area, the PCI bus is now coming to the VMEbus.

A standard mezzanine card design, PMC is based on the Peripheral Component Interconnect (PCI) standard bus,
which has been universally adopted for use as a high-performance local bus in Pentium-based personal computers. With
its further adoption as a mezzanine expansion bus for VMEbus, VME board makers will be able to leverage off the
economies of scale accruing to the personal computer industry.

This development also opens the floodgate of compatibility with other types of computers such as workstations,
industrial and commercial computers, and other standard buses such as Multibus. This standard mezzanine bus has the
potential to penetrate market areas which had previously remained proprietary, closely guarded or with high barriers to
entry.

Meu.a.nine Cards
Mezzanine cards can satisfy three basic system design requirements:
• Provide a degree of flexibility to a host board such that a single host can be used in a variety of applications;
• Make it possible to stuff more components into a board's limited space;
• Add functions or enhancements to a board to extend product life.

Through the years, such cards have gone in and out of favor. Early add-on boards used what is by today's standards
crude connector technology that was frequently prone to failure. In addition, there was often no mechanical support for
the daughter boards other than the connectors.

But even as connectors improved, it was frequently considered a design goal to develop a board without add-ons.
Boards with mezzanine expansion cards were looked upon as having design flaws and questionable reliability.

Within the last four or five years though, there's been an almost universal change of thought about mezzanine board
technology. Even the most adamant of the holdouts, the U.S. military, has grudgingly acknowledged the benefit of such
approaches with a number of factors contributing to the turnaround in thought. And, if any holdouts remain, PCI/PMC is
expected to make believers of everyone.

Previous Meu.a.nine Buses
One of the first steps toward bringing mezzanine cards to some level of respectability was their adoption by Intel and
other Multibus board manufacturers, who accepted the simple I/O concept of iSBX. This standard bus provided 8-bit I/O
with limited bandwidth.

A short time later, Intel introduced its higher-performance iLBX which could serve as a local bus for memory
expansion. This bus was migrated to Multibus II in the mid-80's and remains in use in many Multibus systems today.

About the time of Multibus II introduction, VME board manufacturers developed their own proprietary buses
because of incompatibilities between the Intel and Motorola processors.

Still later, Intel developed its MIX bus for Multibus II. The MIX bus is in wide use in the Multibus community and
has been successfully used by Pentek as an expansion bus for VME boards.

ThePCI Bus
PCI is a local bus that interfaces with the processor and memory bus on one side, while it provides a high-speed channel
on the peripheral expansion side. Such a bus solves a variety of problems:
• It provides local connection for other buses, such as ISA, EISA, or VMEbus;
• It makes available simple means to implement I/O expansion;
• It eliminates the need for motherboard redesign with each processor revision.

154

The PCI specification is inherently high performance allowing transfer rates of 132 Mbytes/sec in its 32-bit
implementation. Options using the 64-bit version double that transfer rate. This kind of bandwidth brings PCI into the
domain of very-high resolution graphics moving into the full motion video area. In addition, it lends itself to the new
breed of high speed 1/0 such as Fiber Channel, ATM and FDDI.

The PMC specification, now known as IEEE P1386, defines the mechanical and electrical properties of the bus and
the card. The physical size of the expansion card is roughly 3 x 5 inches, so it will fit comfortably on a 3U VME board.
Two of them will fit on a 6U VME or Multibus board, and four of them will fit on a Futurebus+ card. In addition, the
height of the board and connectors are specified so that a PMC will fit in a single slot board, such as shown in Figure 1.

PMCI/O
1/0 for the PMC is brought out the backplane on the P2 connector. In addition, the specification allows for direct
connection to the front panel of the VME board.

A separate PMC front panel can protrude flush with the VME front panel through the knockout as shown in Figure 1
and Figure 2. The pin connections have been specified to maximize signal integrity while assuring power distribution. For
example, signal pins are guarded by ground or supply pins.

PMC Benefits
As an IEEE standard, PMC assures users that any host or module complying with the standard will function in any
module or host that has been designed to the specifications. While this gives users the flexibility to mix-and-match
different host cards with different option modules, it also gives vendors the ability to design basic host boards without
special consideration to interface I/O. The fact that PMC is an open standard allows OEM's with nonstandard buses to
take advantage of the same leverage as makers of standard buses.

The second advantage of using PMC is that it provides a large measure of stability. PMC provides a standard, high­
performance local bus that will remain the same from processor to processor. Only the processor-to-memory bus need be
modified.

Performance, of course, is another key element of PMC. New graphics and GUl's, extensive use of imaging, video
and faster communications have placed a major demand on processor, 1/0, and system bandwidth. PMC will go a long
way to alleviate the 1/0 bottleneck. With a bandwidth of 132 Mbytes/sec for a 32-bit implementation and 264 Mbytes/sec
for a 64-bit version, PMC is capable of handling just about everything up through A TM and full-motion video.

PCI and PMC put the focus on the main objective of the standard-bus community trying to provide a standard, off­
the-shelf alternative to costly proprietary design. PMC will go a long way in providing that capability with a broad range
of standard I/O.

VME will continue to drag along a large number of mezzanine cards with special functions. Some will be low­
performance 8-bit I/O such as IndustryPack, others may be part of multiprocessing configurations. But there is little
question that every system will include at least one or two PMC modules in the very near future.

Pentek PMC Offerings
Pentek is introducing a complete line of PMC modules which provide functions that utilize the same areas of expertise
developed in our MIX module family. These include DSP coprocessors, Tl/El telecom interfaces, digital receivers and
data acquisition functions.

The Model 7110 'C44 DSP coprocessor shown in Figure 3 is our first coprocessor. Pentek is also introducing PMC
baseboards capable of accepting one or two PMC modules. Shown in Figure 4, the Model 4285 Octal 'C40 VME board is
our first PMC baseboard offering.

As new devices for DSP peripherals become available, they will be incorporated in Pentek's product line in both
MIX and PMC formats.

References
For more information on the PMC/PCI bus, refer to:

1. Digital Equipment Corporation White Paper: PC/ PMC: A Local Bus with Global Importance, September 1994
2. Dick Somes and Wayne Adams, Digital Equipment Corporation: A Case for the PC/ Mezzanine Card Standard,
I&CS October 1995
3. IEEE P1386.1: PC/ Mezzanine Card, IEEE Standards

155

"Alpha AXP VMEbus SBC with PCI Mezzanine Connector''

Figure 1. 6U VME Board shows the PCI connectors and front panel I/O
knockout before the PMC is installed. (Courtesy of Digital Equipment Corp.)

156

I
I

i,'
I

figure 2. "fhis figure illustrate< hoW the pM.C is installed on the VM.B ooard and
shows the standoffs and mounting screws. Note now VO cal' be taken d<fectlY
out fro"' the front panel lh!OUgh th< pM.C knockoU'· (Com1<SY of Digital

Equipment Corp.)

"\nsta\\ing PC\ Mezzanine card on vMEbUS ssC"

157

Figure 3. Pentek Model 7110 TMS320C44 PMC Module

158

Figure 4. Pentek Model 4285 Octal
TMS320C40 Processor PMC Baseboard

159

DSP AND 1/0 SYSTEM INTEGRATION FOR PCI
Jack CarlL"f and J\fanish Kasliwal

Stmilech International Inc.
14 Mica Lane

Wellesley. MA 02181
(617)2~5-6824/25~1 (fax)
e-mail jack@sonitech.com

The high speed PCI bus oft'ers exciting integration possibilities for DSP systems requiring external
110. Previous PC bus standards were incapable of providing the bandwidth needed for high
performance real-time systems. Today, however. complex DSP based solutions can be implemented
with dedicated boards residing on the PCI bus. This paper will address hardware and software
issues related to integrating real-time DSP and 1/0 applications on PCI. Considerations for selecting
DSP and 1/0 subsystems will be presented. System software issues will be examined. Finally, a
sample application will be discussed including potential bottlenecks and pitfalls.

160

RACEWAY INTERLINK AS A PCI SWITCIDNG FABRIC

ABSTRACT

Bany Isenstein and Bob Blau
Mercury Computer Systems, Inc.

199 Rivemeck Road
Chelmsford, MA 01824 USA

(508) 256-1300 FAX (508) 256-3599
email: bany_isenstein@mc.com bob_blau@mc.com

URL: http://www.mc.com

This paper introduces a high-performance methodology for linking large numbers of PCI devices.
Since a single PCI bus segment can support only 10 loads, many multiprocessing and switching
applications require extended PCI connectivity. The methodology described conforms to the PCI 1.0
Bridge Specification, without imposing a hierarchical bus structure that limits scalability. Rather, a
switching fabric is defined that facilitates multiple simultaneous PCI-to-PCI transactions. The switching
fabric was designed specifically to provide maximum PCI bandwidth, low latency, and minimum
contention.

A new bridging device called the PXB from Cypress Semiconductor and Mercury Computer Systems
enables an existing switching fabric called RACEway [l, 2] to be used with PCI endpoints. The PXB­
RACEway technology allows up to 256 PCI bus segments within a single system.

PXB and RACEway can be used in many different packaging scenarios, including PC motherboard
designs and backplane paradigms. A case study used for illustration is the VMEbus packaging format.
Two standards in this environment have solved the many mechanical and electrical issues required to
develop robust, open solutions. The PCI Mezzanine Card (PMC) [8] standard allows the VME
community to exploit PCI devices and processors. The RACEway Interlink standard provides the high­
bandwidth, low-latency switched-fabric interconnect for VME and PMC. RACEway and PXB have no
dependency on VME. Additional PCI switching applications are also being developed.

PC LIMITATIONS AND HIERARCHICAL BUS STRUCTURES

PCI has architectural and physical constraints which limit its ability to efficiently scale to support large
numbers of high-speed processors and peripherals.

Electrical Limitations

On the physical side, PCI has electrical and mechanical constraints to ensure signal integrity. These
include limits on loading, trace lengths, and connectors. These typically limit a single PCI bus segment to
a total of 10 loads, with each connector considered as two loads. Thus, a motherboard or passive backplane
typically has a limit of four plug-in boards on a single PCI bus segment. In the future, with 66MHz PCI,
this limit will be two plug-in boards on a motherboard or a passive backplane due to a limit of only five
loads per PCI bus segment. In five years time, the frequency requirements will mandate point-to-point
connections, necessitating a switching fabric interconnect between PCI agents.

Architectural Limitations

To overcome the physical limitations of a single PCI bus segment, PCI-to-PCI bridges are used.
Bridging allows connecting up to 256 PCI bus segments together. However, the bridge specification
defines only dual ported PCI-to-PCI bus bridges (P2P), resulting in the need to connect the 256 bus
segments as a hierarchical tree. This tree is an inefficient interconnect topology for larger systems with poor
contention, latency, and bisection bandwidth characteristics.

161

•

•
081..cl:..por-.:I
POI-to-POI b._e

' POldnlce

Figure 1. A hierarchical tree u1ing PlP bridges. Latency ii protracted. For example, when A needs
to communicate to B, arbitration must be completed on 4 bus segments. Contention is exacerbated.
For example, when A ii communicating with B, C and D cannot, even though C's and D's bus
se eats are not bus •

IMPROVINGPCICONNECTIVITY

The solution to improved PCI connectivity is to connect PCI bus segments using a switching fabric
imtead of a bus hiemrchy. A switching fabric provides point-to-point interconnects with the following
featmes:

• high bandwidth
• low latency
• multiple simultaneous transactions
• scalable interconnect topologies
• real-time features desimble for I/O (priority-based preemption)

Switching Fabrics

A switching fabric is an interconnection architecture which uses multiple stages of switches to route
transactions between an initiator and a target. One benefit of switching fabrics is that each connection is a
point-to-point link. This inherently provides better electrical characteristics allowing higher frequencies and
greater throughput than bus architectures. The use of multi-stage switching also allows flexibility and
scalability in the sii;e and topology of the interconnect. Examples of prevalent switching-fabric standards are
ATM at the WAN and LAN levels, and RACEway at the board and chassis levels.

Each stage of a switching fabric typically comprises an intelligent, multi.port crossbar switch. The
switch device recogniz.es a data-stream header message to dynamically route the interconnect tramaction
through the appropriate port to the next stage. The PCI to switching-fabric interface must forward
transactions from one PCI bus segment to another. In the fabric interface, PCI addresses are tramlated to
crossbar switch route and fabric addresses, and then back to the original addresses at the destination PCI
bus, as shown in figure 2.

Switching fabrics typically provide redundant interconnection resources to allow multiple transactions
to proceed at the same time. This improves aggregate throughput by reducing contention and latency, and
can also provide improved fault resiliency.

162

PCI Adrr,

~
Translate

~
Go

~
Translate

~
PCI Addr,

Command, to Fabric Through Back to Command,
and Data Route Fabric PCIOP and Data

PCI Master PCI Slave

Fi20re 2. Generic o_p_erations in a PCI fabric.

RACEway Switching Fabric

RACEway is a switching fabric for high-perfonnance, real-time embedded applications. Detailed
descriptions can be found elsewhere (1, 2, 3, 4, 5, 9). RACEway interconnects are accomplished using a
silicon building block called the RACEway Crossbar that occupies about one square inch of circuit-board
real estate, and consumes about one watt of power. RACEway scales up to hundreds of nodes and provides
for multiple Gbytes/second of throughput with deterministic latencies measured in microseconds.
RACEway is commercially available as chips and modules from Cypress Semiconductor, and as board­
level products and integrated systems from Mercury and other vendors.

'The current RACEway Crossbar is a six-ported device with each port capable of bidirectional transfers
at 160 Mbytes/s. Since each crossbar is fully connected, three simultaneous transfers can take place for an
aggregate 480 Mbytes/s. RACEway Crossbars connect gluelessly (no additional circuitry) to form various
topologies. A key advantage ofRACEway is its topology independence; fat-trees (figure 3), meshes, rings,
and pipelines have all been implemented using the same crossbar building block.

Figure 3. A RACEway fat-tree. Each switch is a RACEway Crossbar. "N" stands for node which
could represent a processor, an 110 device, or a bridge to a bus.

RACEway employs a variant of circuit-switching but with additional features to remove the contention
issues usually associated with circuit-switched networks. The circuit-switched nature ofRACEway
provides for read and read-modify-write operations that are very important for low latency bus bridges. The
other features; pre-emption, adaptive routing, and split transactions provide for fabric contention control.
RACEway also supports broadcast and multicast operations for applications that require multiple
destinations per single transfer.

Aibitration in RACEway is fast, on the order of 125 nanoseconds per crossbar in a given path
(collection of crossbar ports from master to slave). In the largest systems, typical latencies are under a few
microseconds. RACEway features a priority pre-emption mechanism, so guaranteed worse-case latencies
are still in the single digit microseconds. An adaptive routing mechanism provides a measure of
transparent contention control for certain topologies by automatically selecting non-busy paths.

163

For slow devices, RACEway tramactions can be split For example, when reading a slow device the
master requests a read over a RACEway path, releases the path, and waits for the slave to send the
requested data In this way, crossbar ports are free for other transactions while the slow slave gathers the
data.

An example of a 32-node fat-tree topology is illustrated in figure 3. Fat-trees as large as 192 nodes
have been implemented with larger systems planned. In figure 3, it is possible to have up to 16
simultaneous transfers for a total aggregate peak bandwidth of 1.28 Gbytes/s with a bisection bandwidth of
640 Mbytes/s.

PXB

The PXB (figure 4) is a single-chip bridge between PCI and RACEway, allowing nodes on RACEway
to be PCI buses. In refening to figure 1, the PXB perfonns the "translate" functions on either side of the
RACEway fabric. One port is a standard 2.1-compliant PCI interface at 33 MHz. The other port is a
standard 1.5.1-compliantRACEway interface. Maximum burst rates of 132 Mbytes/s are supported with
an anticipated 100 Mbytes/s sustained perfonnance on 256-byte blocks.

Figure 4. The PXB is a single-chip (144-pin device) solution that bridges PCI and RACEway.

Features supported by the PXB are:

• ANSl/VIT A 5-1994 RACEway Specification compliant
• 2.1 PCI Local Bus Specification compliant (see below)
• 1.0 PCI to PCI Bridge Specification compliant
• 256 PCI segments supported
• · 100 Mbytes/s sustained
• Memocy, I/O, and configuration operations
• 32x32-bit write posting
• 32x32-bit read prefetching
• Coupled operations
• PCI aibitration
• JV/SY 1/0; SY logic
• JTAG
• 144-pin PQFP

PCI options unsupported:

• 64-bit data path
• 66MHz
• Interrupt Acknowledge command
• Special Cycle command

164

• Dual Address Cycle command
• Cache support
• Sideband signals

PCI-RACEWAY FABRIC CHARACTERISTICS

There are several critical issues that any PCI fabric must address. This section outlines how the PXB
with RACEway meet many of the difficult challenges facing PCI fabrics.

Transparency

Bridge-specific knowledge is necessary during initialization to configure the bridges for transparent
operation. The PXB specification is an extension of the existing PCI bridge specification, not a
redefinition.

The underlying principles of the PXB are:

• Normal run-time software does not need to know that a RACEway fabric is present.

• The only software that needs knowledge about the RACEway switching fabric is the Power-On Self
Test (POST) code in the BIOS and OS.

• The only software that needs knowledge of the internals of the switching fabric is loadable from an
expansion ROM by the POST code.

During the POST execution, the PXB is initialized. In effect, RACEway becomes a virtual PCI bus
segment (figure 5) with up to 16 bridges on that segment. (PCI configuration operations allow for a
maximum of 32 devices or bridges on a PCI segment).

RACEway Fabric

Figure 5. After completion of POST, the RACEway fabric "looks" like a PCI bus with up to 16
standard two-ported bridges. The numbers in the diagram represent PCI bus numbers that are
assigned in the configuration phase of POST.

165

Unmodified driver and application software logically treat all PCI devices in this configuration as if
they were bridged using the existing bridge specification Physically these 16 PCI bridges represent up to
16 VMEbus slot. Each slot can represent up to 16 PCI bus segments, providing for a potential maximum
of 256 PCI bus segments.

The PXB automatically perfonns the necessaiy translation as shown in figure 2. The PXB is viewed
as a two-ported bridge but actually provides the high performance and low contention benefits of a switched
fabric.

Performance: Bandwidth

Each RACEway point-to-point link is capable of 160 Mbytes/s, well above PCI's 132 Mbytes/s rates.
A major advantage of a switching fabric over a hienm:hical bridging topology is that aggregate and
bisection bandwidth is improved by using point-to-point interconnects with multiple simultaneous
transactions through the switching fabric.

For example, consider the eight-node RACEway configuration in figure 6 and a 100 Mbytes/s
sustained rate for PCI/PXB. Each PCI bus can operate independently or use RACEway to communicate
between buses. With four simultaneous RACEway transfers, the system in figure 6 has an aggregate
interconnect bandwidth of 400 Mbytes/s and a bisection bandwidth of 400 Mbytes/s (a nonblocking
configuration).

Figure 6. A small scale PCI RACEway switching fabric.

Performance: Latency

RACEway was designed for low-latency, real-time operation To completely establish and initiate an
intemode transfer across RACEway, including all protocol overhead takes approximately 150 nanoseconds,
plus 125 nanoseconds of latency per crossbar for the first data word and zero additional latency for each
subsequent word in a block transfer. In figure 6, no more than three crossbar "hops" are necessaiy, resulting
in a fabric interconnect latency of approximately 525 nanoseconds; total latency will be about one
microsecond considering the PXBs and PCI latency.

The RACEway protocol allows for variable size data blocks up to 2048 bytes, offering amortization
benefits for applications that use long transfers. To support this, the PXB supports combining sequential
data phases into bursts, write posting, and read prefetching.

Performance: Contention

The RACEway protocol and the PXB support delayed operations (referred to as split transactions in
RACEway documentation) which lessen fabric contention For example, during a delayed read operation,
the fabric is free for other transactions until the source of the read is ready to respond with data.

166

The RACEway protocol is priority-preemptable. Real-time applications with sensor data can choose
to take advantage of priorities to minimize latency. Latency for the highest-priority data is
detenninistically guaranteed regardless of fabric trafficl.

PCI Reads and Locked Accesses

RACEway is a preemptable circuit-switched fabric that supports split transactions. The circuit­
switched features of RACEway allow the PXB to accomplish PCI reads and locked accesses. These
operations and PCI coupled operations require that the source and destination nodes establish a logical
circuit to guarantee PCI response times for completion

However, as noted above, the RACEway PCI fabric also supports write posting, read prefetching,
delayed operations, multiple concurrent transactions, and priority preemption These features remove or
alleviate the contention problems typically associated with conventional circuit-switched topologies.

Packaging and Power

RACEway is very efficient in power and real estate consumption. The RACEway Crossbar is
packaged in a ball grid array that is about one square-inch and consumes approximately one watt. The
PXB chip is targeted to be less than one square-inch and about one watt.

Each RACEway port has 40 wires and uses conventional 40 MHz CMOS signaling. No exotic
design or manufacturing techniques are required to overcome wire density or crosstalk problems.
(RACEway signaling through VMEbus connectors, concurrent with VMEbus transactions, has been proven
and field-tested in more than 500 systems to date.)

RACEway's modest footprint and electrical requirements make it suitable for both embedded and
desktop platforms. The total interconnect and interfacing requirement in figure 6 is accomplished with six
crossbar chips and eight PXBs consuming less than 14 square inches and approximately 14 watts. If one
considers an eight-slot system configuration for figure 6, this averages to 1. 75 square inches~ 1.75 watts
per slot. (In the \TME packaging paradigm, we conservatively estimate that RACEway and PXB use less
than two percent of the real estate budget and less than five percent of the power budget to execute the total
interconnect and interfacing requirement.)

Strong Ordering and Coupled Operations

The PXB supports PCI 2.1 coupled operations. Drivers using 1/0 commands can be ensured of strong
ordering.

Interrupts

Internally to the PXB and transparent to the PCI bus (and software), the PXB uses a mailbox scheme
to handle interrupts through the fabric. A PCI interrupt is converted to a "message" at the source PXB that
writes to a specific mailbox in the destination PXB. The destination PXB responds to that mailbox
location by posting the appropriate PCI interrupt. Additional logic in the mailbox facility allows multiple
devices on the secondary side of the switching fabric to share the same interrupt line.

RACEWAY INTERLINK

RACEway Interlink is an ANSI standard (1] that specifies the use of rows A and C of the VMEbus P2
connector for a RACEway fabric. Using the P2 connector in this manner allows a system integrator to
attach a RACEway Interlink module on the P2 backpanel, transforming the VMEbus chassis from a single

I special driver features would have to be added to allow the user to assign RACEway priorities to either a
device or specific transfers from a device. PCI transactions can be assigned priorities by PXB based on
addresses.

167

bus system into a switched-fabric interconnect system. RACEway Interlink modules come in several sizes
and topology options (figure 7) [6, 7).

ILKC.W.to
~llotNu

.
VllE llolll

ILK4 Architecture

LKC:-...to
HltMrllCllNu

... ,, , •tt •tt

VllEllate

ILK12 Architecture

VllEll"'8

ILKS Architecture

• , , a+tl

VllEllm

ILK16 Architecture

Figure 7. Example topologies of RACEway Interlink modules.

A RACEway Interlink Module consists of one or more RACEway Crossbar switches. Each crossbar is
capable of 480 Mbytes/s of aggregate bandwidth. Analogous to VSB, these modules attach to the rear of a
VMEbus backplane using the standard backpanel P2 connectors. All modules are expandable by adding
additional modules. For example, an eight-slot solution is possible with two ILK4s, while an ILKS offers
a better bisection bandwidth over eight slots. Not shown is the ILKl module (a simple cable with
connectors) which adds one or two slots to any of the above modules or provides for a two-slot
configuration

PMC CASE STUDY

PMC is a standard [8) that defines PCI mezzanine boards for VMEbus and other standard buses. The
PMC VMEbus specification provides for a PN4 connector which brings rows A and C of P2 to the
mezzanine board. PN4 pennits a PXB PMC module that bridges a motheiboard's PCI bus to the
RACEway Interlink intetconnect on the backpanel (figure 8). In this manner, RACEway Interlink can be
used to extend the PCI bus of a single board computer (SBC).

The SBC in figure 8a can tie into other SBC modules. While adding multiple SBCs does not solve
the problem of adding PMC locations economically, adding a full-function board just to obtain PMC
locations is overkill. It is likely that a single, modem CPU is capable of servicing several PCI devices. To
solve this problem, a PMC carrier board is offered (figure 8b).

168

seceu Board Carrier 6U Board

PCI

VME P2

RACEway

Sa. Sb.

Figure Sa shows the application of the PXB on a PMC card; while Sb illustrates the use of PXB on
the base-board.

Using the VME/PMC form factor with RACEway provides for up to 20-slot configurations. An
illustrative example of an eight-slot configuration is shown in figure 9.

Figure 9. A PMC-RACEway case study example.

169

The scalable system in figure 9 uses the RACEway Interlink switching fabric to connect all the PCI
buses. Off-the-shelf motherboards and PMC daughterboards provide for varied configurations to address real­
time processing, digital signal processing, 110 routing, and various telecommunications and other
application requirements.

SUMMARY

While a transparent PCI switching fabric poses many technical challenges, a solution is formulated by
Mercwy Computer Systems and Cypress Semiconductor using the existing RACEway switching fabric.
With the addition of a RACEway-to-PCI bridge chip, RACEway Crossbars will act as a transparent: PCI
fabric. In the future, RACEway will evolve to support 64-bit features and higher frequencies needed for
supporting future PCI devices.

BIBLIOGRAPHY

[1] "VITA 5-1994, RACEway Interlink - Data Link and Physical Layer Specification," VFEA International
Trade Association (VITA), Scottsdale, Ariz., Rev. 1.5.1, May 10, 1995.
[2] Einstein, Thomas, "RACEway Interlink-A Real-time Multicomputing Interconnect Fabric for High­
Perfonnance VME Systems," VMEbus Systems, Februacy 1996.
[3] Blau, Bob, and Isenstein, Bany, "Introduction to RACEway Interlink," VITA Journal, October 1993.
[4] Einstein, Thomas, "The RACE Multicomputer- Processors, 110 and the RACEway Interconnect,"
Vol. 1, Ver. 12., June 1995.
[5] Kuszmaul, Bradley C., "The RACE Network Architecture," 1994.
[6] RACEway Interlink Modules data sheet, DS-42-20, Mercury Computer Systems, Inc., 1994.
[7] Cypress RACEway Interlink Modules data sheet, Cypress Semiconductor, June 1995.
[8] IEEE 1386.1, April 1995, 02.0 Physical/Environmental Layers for PCI Mezzanine Cards, PMC.
[9] Many of these references and additional information on RACEway and PXB are located at URL:
http://www.mc.com/technology .html

BIOGRAPHY

Bany Isenstein, director of strategic marketing, is responsible for product planning, message
development: and strategic planning at Mercury. Before joining the company in 1984, he was senior project
scient:ist at Coulter Biomedical Research Corporation, a mamifacturer of digital image based analysis
systems. There he was responsible for design and implementation of image processing algorithms for
automated cytology. Previously, he spent three years on staff at Case Western Reserve University at the
Picture Processing Laboratory facility of the Biomedical Engineering department:. There he worked on
image processing and pattern recognition projects. Isenstein earned a master's and bachelor's degree in
biomedical engineering from Case Western Reserve University.

170

PCI Spring '96

PCI Bus Switching
With the PSX

Kent Dahlgren

Director Marketing

I-Cube Incorporated

Overview

Title. (LOGONAUE.EP5}
CrMtor- ~Gbt lllus\r'Jtor/TU) f~r 'Nin-t~.-s. ~sion H
Cr!<!IK!n!J.lt~: (2/25/:tfi} (1:15 PM)

• I-Cube has developed a switched PCI evaluation
platform

• Targeting shared memory applications

• Goals
- High aggregate bandwidth

- Scalability

- Leveraging 32 bit / 33 MHz PCI peripherals

2

171

Switch Dataflow Characteristics

• Peer to peer

• Transfers are evenly
distributed between ports

• Typical of distributed
memory parallel
processing systems

• Concurrent transactions
between ports

3

• Aggregation

• Most transfers are to or
from one port

• Typical of shared memory
applications parallel
processing systems

• Interleaved transactions
through one port

Title: (lOGO!iA.MEEPS)
Creotor: A.dobe lllusbotar(TM) for Windows. version 4.C
CreotionD<l\e: (2/23/j6) (1:15 PM)

Aggregation Switching for Shared
Memory

• Requires one or more fat-pipes to memory
- 66 MHz I 64 bit PCI

- Pentium Pro

- Other proprietary solutions

• Very sensitive to switch latency

- Writes can be posted

- Reads cannot

4

172

TiU~: iL·);Ott:.ME.[Vi'i
Creat~r: ~d'lb~ llhJst1]br(TM) for Win1>;;~S. ·1~1sio~ 4 C
Cr'!ationDa!e. i2/25/~:' {1:1:: PM:•

Applications - Routers

• PCI NICs on one or Title: i ROUTER 1
Creobr: Adobe
CrEatiJn['Jt:::

fvr 'Nind·JNS . .i~rsiJr. -+.O
R1:1J more ports

5

- 100 Mb Ethernet
NIC =25 MB/s
traffic

• RISC CPU based
routing engine

• Shared memory for
packet storage

Title: (LOGOW.MLEP5)
Cr.,al~r: . .l..~ob~ m~sh.Jt.Jr(ll.I) for Windows, ~ersion 4.C
Cfe'ltion[){ile: (2/2iij?ij) (1:15 Pl.I)

Applications - Video On Demand
Servers

Title: (VIQ_SRVR.EPS)
~reat?r: Adober lll1u~)r?}?.r(~~1), for lh'.indows, version 4.0
·Je·:JtionDate: \2/ 2'j, :10) ;,L: '1- PM)

6

173

• PCI SCSI controllers
on one or more ports
- Five SCSI controllers

require 100 MB/s

• PCI NICs on one or
more ports
- Two STS-3c ports

require 80 MB/s

• High bandwidth shared
memory for stream
buffers

Till~: IL•XO!lAMLEPS'1
Creolc,i: ~ob-: lllus11jl;r(TMj fo1 Nin1o.,s, v.,rsion 4.C
O~!ion01le: \2/lii/3~) {1:15 Pt(r

Applications - File Servers

Title: (File_Ser·:er .eps)
Creator: Adobe lllustrotor(TM) 3.2 H"ghc. IJO
Creationuote: (2/29/96) (1 :28 P~(• 1 penormance

7

for network file
servers.

- 100 Mb Ethernet
NI Cs

- SCSI

• CPUs hang off of MP
bus

• Interface with system
memory via MP bus.

Tille: (lOGONAME.EPS)
Cr~t01: Adobe llluslrotor!TM) for Windows, wtt"sion 4.C
CiootiooOo•' (2/2B/96) (1,151'11)

Shared Memory Reference Design

Title: (Sh_Mem.eps)
Creator: Adobe lllustrator(TM) 3.2
CreationDate: (2/29/96) (3:55 PM)

8

174

• High speed SDRAM
shared memory

• Three target-only
ports

• Non-Standard
switch to memory
interface

• 66 MHz switch
frequency

T~le: (lOGOW..u£.EPSj
C1'?'ltor: Adob! 111us\r31~rfTU/ for Windows. v¥sion 4.G
CteationUille: (2/25/9e) (1:15 PIA}

Implementation

9

• 9" x 11" PCB

• Three PCI Mezzanine
Connectors (PMC)

• Cypress pASIC
FPGAs implement:
- PCI port interfaces

- Memory Controller

• External FIFO' s

• 1 MB ofMoSys
MDRAM memory

Tille: (L·XONAJJLEPS)
C1eoto1: .l.~'lbe lllustr·1t11(11.!) for Windo .. s, •ersion H
C!eofonDok (2/28/315) (1:15 Pl.I)

Performance

• 33 MHz PCI bus rate for up to 6 loads

• 66 MHz FIFO I memory operating rate

• 8 PCI cycle latency (worst case) for a memory read.

• 7 PCI cycle latency (worst case) for a memory write.
- Writes are posted

• Performance is limited by FPGAs.
- 99 MHz memory performance is achievable in standard

cell design.

• FPGA performance could be improved by
incorporating FIFOs.

10

175

Title: {LJG0ti;.ME.EPS:•
Creoto1: f.1i:ibe llluslr'lt~rlH.t) for Win10ll'S, version 4::
Creu!ionDak (2/25/~€) (1:1.S PM)

PSX Switch Fabric

Title: (PSXBLK.EPS)
Creator: "dobe lllustrotorlTM) for Windows, wsion 4.0
CreotionDote: 12/28/96) (12:13 Pf,!)

11

• 160 1/0 in a single
device

• 20Ns bus
connection setup
time

• I 00 MHz Max data
rate

• 80 MHz internal
TDMRate

• Larger and smaller
versions are on the

Scaling

Title: (Mem_Bank.eps)
Creator: Adobe lllustrotor(TM) 3.2
CreotionOote: (2/29/96) (3:14 PM)

• Increasing aggregation
bandwidth

12

- Increase bus width

- place memory banks
on separate switch
ports

• Increasing bus port
count

- LargerPSX

Slice datapath
between multiple
PSXdevices

Tmoo (LOGON.\UE.EPS)
Ct<:!alor: 4dcbe Ulustr~lot{lM) for Windows, ~~sion 4.C
CrecrtionOate: {2/25/S€) i U~ PM)

176

Summary

• Shared memory switching is a key application for
switched PCI

• Crossbar switching fabrics provide a superior solution
for shared memory switching.
- Low latency

- Scalability

- Price/Performance (ASIC port controllers)

13

177

Title: (lOGO~UPS)
Cr~Q.t~r: ~·fob~ lllusjrnlof(TU) for Win1o"'5. wsian H
Cr~c1ki"D~l~: (2/25/%) (1:15 Pr.I)

Position Statement

Session: lA The Future of PCI, May I, 1996
by Edwin Lee.

CompactPCI is a well designed combination of the PCI bus electrical and software standards and the
Industrial grade Eurocard packaging standards. It is an open architecture standard, supported by PI CMG,
a rapidly expanding, two-year-old, manufacturer's association with over 90 member companies.

Within 3 years, CompactPCI will become the dominant computer standard in markets that require
rugged, reliable equipment. These markets include Telecommunications, Industrial Control,
Instrumentation, Medical Electronics and Military equipment.

Today the leading standard in these markets is VME bus, a well designed line of products effectively
supported by VITA, one of the finest trade associations in business. But CompactPCI has a strategic
advantage that no amount of effort on the part of VITA or its member companies can overcome: it can
employ all the latest chips, systems and applications software, development tools, system designs, and
educated customers that are developed and paid for by the more than $150 billion/ year desktop market
for PCI. These products and tools are available to CompactPCI manufacturers and Users at desktop
prices. VME bus adherents must develop and pay for all their comparable products and services within
the income stream of their $1.5 billion market. That requires them to support expensive engineering and
marketing infrastructures that require high margins and high prices.

VME's problem is highlighted by the fact that Motorola has recently given up its development race with
Intel and will no longer upgrade its 680x0 line of CPUs, the lion's share of processors in VME products.
In a sense VME bus has a tougher uphill battle than Apple, since Apple still has 7% of the desktop
market to fund its battle for survival, and Apple is adopting the PCI bus in its latest desktop computers.

Ed Lee
2122196

178

Pl 1•111

The Next Industrial
Computer Bus Standard

presented by

Edwin Lee
for Pro-Log Corporation

• 1

,._..,.: a combination of
established standards

electrical and software standards

PClbus
+

Eurocard
Industrial packaging standards

•3

Eurocard solves the industrial
packaging challenge

•5

179

'f Presentation Overview

Pll•lll

•YlhatCtlt/J/JllCIPC/is

• Y/hat makes C•llllCll'CI
exciting

• ,_..ll'CI and industrial
alternatives

PC/ Bus contributes

• Off-the-shelf Chips
• State-of-the-art software
• The best development tools
• Educated customers

•2

•4

Usual layout of PCI bus
Pll•lll

1u·
'I - -

! :
4.1·,

~:· -·· . i .

•6

111•111

111•111

Weaknesses of desktop
packaging

• Card seating
• nme to repair/replace

-Motherboard
-Disassembly

• Card edge connector issues
-pin count for grounds and shields
-long term reliability

• Poor thermal design
• 7

Eurocard packaging standards

• Worldwide standards for industrial
applications
-Popularized in USA by VME bus

• Cards firmly seated, locked in place
• Plug-in System card, passive

backplane
• Unblocked airflow
• Front panel insertion and removal
• Front or rear panel 110

Connectors

• JU card has a single bus connector
• 6U card may include an additional

connector for:
-Bridge to another~ bus
-Bridge to VME, ISA, or STD bus
-User 110 (popular in telco

applications)

• 9

• 11

180

C/Jmpactl'C/: Eurocard packagin
111•111 .'.'.'.'.""------l"

'j:

..
•8 ..

'-f7 CllRl18Cl/ICI uses Eurocard
111•111

• 3U and 6U form factor boards
-3U: 100 mm x 160 mm
-6U: 233 mm x 160 mm

• Off-the-shelf chassis, housing, and
mechanics widely available from
-Rittal, Schroff, Vector, Vero, etc.

• Shielded pin-and-socket connectors

CllRl/18Cl/ICI connector

• 2 mm pin-and-socket type
-Socket half on plug-in cards
-Pin half on backplane

• Originally developed by Siemens for
telecom applications in mid-80's

•Meets IEC-917 and IEC-076-4-101
standards

• Bellcore qualified

• 10

• 12

-f CompactPCI connector
'11· l I I

• Available from several vendors
-AMP
-Burndy
-ERNI
-Robinson-Nugent(new)

4 7 rows for 64 bits

• 220 pins: 5 pins/row (15 pins lost to
keying area) + 47 pin shield

•Includes 119 ground pins for
-shielding
-very low ground bounce
-excellent noise immunity
-low radiated emissions

• 13

• 15

-f Pin Assignments for 64 bits
P 11·l0 I

• Rows 1-25 are 32 bit PCI signals
-includes 6 reserved pins per

Intel's PCI specification Rev 2.1
• Rows 26-42 are 64 bit extensions
• Rows 43-47 (20 pins) are reserved

for future use

• 17

181

25 Rows for 32 bits

• 110 pins: 5 pins/row (15 pins lostto
keying area) + 25 pin shield

-f Benefits of shielding
PI I• l I I

Pll•lll

• Reduced EMI
• Reduced susceptibility

• Easier to get CE certification

CompactPCI signals

• PCI signals are identical to Intel PCI
standards (including 6 spares)

• 6 additional signals
-1 for Push Button Rest

• 14

• 16

-2 for Power Supply Status (DEGRADE
&FAIL)

-2 for Legacy ISA interrupts
-1 for System Slot Identification

• 18

'-f' Plug-in cards per system
111•111

111•111

• 8 slots per ,,_,.IPC/ bus module
-1 Host/PCI or PCUPCI bridge slot
-7 expansion slots

•Up to 256 1111/1#1/'111 bus modules
linked by p.cvPCJ bridges

8 Slots because:

•End-end simulation
•Choice of connector
•Impedance matching

• 19

• 10 ohm stub tennination resistors
on plug-fn 'boards

• 21

H.l•IH

~ Bridges also increase throughput ~
fll•UI fll•tl1

8 Slots per bus module

.!.,

~ ..•.. ·-;
·7·" ·: : ;

~ - - •.... <;

I~. ·• , 0 ·i1
i •· •.. '. ·: .• , .

I .·· . I "1

256 bus modules /system

• 22

Exciting II I because:

' NllWafk : G111phica
tnlerf8ce : Adlpter2 • 23 • 24

182

P 11 • l 0 I

Over $4 billion in markets

•Telecommunications

•Medical electronics
•Military off-the-shelf (COTS)

• Instrumentation
• Industrial Control

• 25

-f Overwhelming cost advantages
Pll•lll

Pl I• l 81

• $1.2-1.5 billion annual revenues

- Total sales of VME bus products
(<250 thousand systems)

- Intel's share of PCI system logic chip sets
(40 million chip sets x $30/set)

Note: Intel is only one of several suppliers.

Very High Performance

• 133Mbytes/second
@ 33MHz and 32 bits

• Upgradable to 266Mbytes/second
@ 33 MHz and 64 bits

• Speeds of other buses
-VME: -40 Mbytes/second

-ISA: - 2 Mbytes/second

• 27

• 29

183

'f Overwhelming cost advantages
'11 • l I I

• Chips and software
-developed and debugged by >$150 billion

desktop PC market
- prices driven down by low margin, high

volume, cost competititive suppliers
- readily available to industrial users, not

forecast dependent
... unique parts force accurate forecasts

for market share and profits (a la Apple)

• 26

-f Overwhelming cost advantages
'll•lll

• Leverages customer knowledge
-PClbus
-applications software
-software tools

• Leverages third party education
-books
-training courses

• 28

..P Bridge chips link legacy buses
Pl l•lll

• PClllSA Bridge supports ISA 110
(Neptune, Triton, etc. chip sets)

• PCINME Bridge supports VME 110
(Newbridge)

• 30

PCI to ISA bridge
111•111

Pll•lll

Graphic• Diec : - Co_,.,.

\\··--·-:~~i~-8~;.-,(~:--··)
··~ ,... ,.

- Using legacy buses -

• It Is probably In a user's best long term
Interests to migrate from legacy buses

- Improved performance
-Added features (110 bus Initiators)
- Plug-and-play
- Simpllfles support

• 31

... but hybrid systems can make sense for some
period of time and for some applications

• 33

~ First to market solutions

• &U Eurocard has more area than full
sized PC plug-in card (58 sq in vs 53 sq
in)

- chips and peripherals
- applications software
- development tools

• 35

184

PCI to VME bridge

• 32

~ C•1at:IJICI links to 110 buses
Pll•lll

•SCSI
• PCMCIA
• AB Data Highway
•GE Genius
• CANIDevlceNet

• Fieldbus
• PMC, lndustryPack
• etc.

Simple to use

• Familiar concepts

• Leverages desktop PC knowledge

• Clear benefits

• Few technical details

• Plug and play

• 34

• 36

~ C11m11acll'C/: an Open standard
'll•l 11

• Supported by PICMG
- Now over 90 member companies
- Growing rapidly
- President: Joe Pavlat of Pro-Log

• Customers can make and/or buy
- ,._,,,, Standard ver 1.0 now available

from PICMG

• 37

11 l•lll

185

C11•11actPC/ rides the
Intel/Microsoft

/ll/11/llrDBUI

• 38

Position Statement
Future of PCI Panel

Session lA

PCI in· all of its incarnations will replace the venerable ISA bus in the not too distant future. Chipset and
peripheral chip manufacturers will produce their wares with only PCI, no ISA bus. Like ISA there will be
many physical formats: motherboards, passive backplanes, industrial/rugged card shapes/sizes. The
formats with the best defined implementation will be the ones that succeed. The leverage of common
silicon will help PCI edge out old technologies, as will the software support implicit in the PCI design.

The hot topics in the future will be:
• Hot swap, especially for telecom applications, will require cooperation of the silicon manufacturers.
• Slot count-innovation is needed to overcome this limitation-needs innovation in three areas: devices,

bridging or switching 'fabrics'.
• Industrial uses: Will Compact PCI replace VME?
• Bridging to other legacy buses: board limits, J/o availability, backwards compatibility.
• Multiprocessing: is there a place for anything besides what Intel is providing on chip?

Bert Forbes
Ziatecla Corporation

186

PCI AND DATA ACQUISITION
Jim Fitzgerald

Keithley MetraByte
440 Myles Standish Blvd.

Taunton, MA 02780
508-880-3000

508-823-5162 (fax)
e-mail: fitzgeraldjim@keithley.com

ABSTRACT

After many years of struggling with the
performance limitations of the ISA bus, PCI is a
welcome newcomer to the world of data acquisition.
In the beginning of PC-based data acquisition, the
computer's resources were almost exclusively
dedicated to the job of collecting and analyzing data.
With the advent of GUI-based multitasking
operating systems, and high performance I/O
hardware such as local-area networking boards, high
resolution video cards, and bus mastering hard drive
controllers today's data acquisition products are in
stiff competition for system resources. This paper
describes the benefits of PCI to the world of data
acquisition, how PCI can eliminate system resource
issues and also presents some architectural and
design considerations.

PC BASED DATA ACQUISITION
BACKGROUND

In the old days, a PC had a video card, a couple
Megs of memory, a serial port, a parallel port, a hard
drive and a floppy drive. There were a handful of
interrupt levels and DMA channels as the
mechanisms for data transfer. A user played with the
base address dip switch so the software could find
the board then set some jumpers to select an
interrupt level that didn't conflict with something
else in the computer and another switch to pick a
DMA channel if the board supported DMA. The
operating system was simple, i.e. DOS, and the
processor was slow so it couldn't handle much
anyway.

With this limited set of resources, the user had
little choice but to dedicate the computer completely
for the use of data acquisition and analysis. Since the
system was simple, there was usually little to conflict
with the process of acquiring data and a user could
acquire at a rate of 1 OOK samples per second under
DMA with little problem even ifthe hardware had

187

little or no FIFO buffering. Many systems even used
polling to acquire data which would completely tie
up the processor but was of no consequence since
very little could occur while acquiring anyway.
When a user wanted to go much faster, they bought a
card that had a significant amount of on-board
memory , usually in the form of DRAM. Life was
simple then.

As the processors got faster and the operating
system more flexible, the computer was expected to
do much more than simple data acquisition tasks.
What with networking, multimedia, CD drives and
everything else that is now standard on a modern
PC, there were smaller and smaller portions left of
the pie. Large FIFO's became the order of the day
and still data could be lost. Bus mastering and
demand mode DMA helped, but many PCs had
problems with these advanced features of their non­
standard ISA bus and DMA transfers were limited
to 64K words before having to reprogram the DMA
controller on the motherboard. Resources and
bandwidth had been stretched to the limit. Micro
Channel and EISA were available but neither was as
widely accepted as ISA and therefore had a much
smaller customer base.

ENTERPCI

The promise of low latencies and high
throughput on a bus with a true specification is
exciting. On top of that, the PCI bus has quickly
been embraced by most if not all of the industry. As
opposed to Micro Channel or EISA, this is truly the
bus that will replace the ISA bus. With lower
latencies (in bus mastering mode) large and
expensive FIFO's on the data acquisition board are
not needed and with the high throughput,
accumulated data is transferred before a FIFO
overflow occurs. In addition, plug and play
eliminates all switches on the board. Another added
benefit is peer-to-peer communications across the
PCI bus. This allows a data acquisition board to be

an initiator and a signal processing board as a target
and visa versa. Finally, CPU independence allows
selling a product over a wider range of platforms.

The following describes the architectural and
design considerations for a PCI based Data
Acquisition System (DAS) product.

DATA TRANSFER CONSIDERATIONS

In the world of data acquisition, long latencies
are intolerable. Not one byte of data can afford to be
lost. Unlike with audio where small amounts of
delayed or missing data may be tolerated as added
distortion or in video where picture distortion or
jerky motion can occur, missing data in data
acquisition could mean a corrupted experiment or
inappropriate action taken on the part of a control
loop. This could lead to disastrous results.

There are two major data transfer
considerations; the mechanism used to indicate the
need for a data transfer and the mechanism for
actually transferring the data. The first consideration
is related to the issue of latency or how long it will
take from the time data is available until a transfer
can start. The second has to do with throughput or
how fast a transfer can be completed.

How Long

There are several methods for determining
when a data transfer is required. These are polling,
interrupt and initiator bus request (used in
conjunction with bus mastering).

Polling : This is probably the easiest method for
determining when a transfer is required and is the
least desirable from a performance point of view.
Although polling was a viable alternative in the DOS
world, this is not so in a multitasking world.

In Windows 3. lx, polling will hang the system
until the desired event is reached. This is because
Windows 3 .1 x is not a preemptive multitasking
operating system. This means that your system can
do nothing else but wait for data and transfer it. Not
a very useful system.

In a preemptive multitasking operating system
like Win95 or NT, a polling algorithm will only run
while its time slice is active so the system will not

188

hang. However, the non-deterministic nature of this
method leads to unpredictable and typically
intolerable latencies.

Interrupt: Under today's operating systems,
interrupt latencies can be from tens of microseconds
(an idle system) to several milliseconds and tend to
be non-deterministic. This necessitates using very
large and expensive FIFO's at best and limits total
data acquisition system performance at worst.

Writing an ISR as a VXD can minimize
interrupt latencies, but latencies can still suffer under
a heavily loaded system especially if interrupt
sharing is used.

Initiator Bus Request : Initiating a bus request
at the lowest level of hardware handshaking results
in the shortest latencies for communicating the need
for data transfers. Latencies using this method range
from hundreds of nanoseconds to tens of
microseconds and require the least amount of data
buffer memory. This method necessitates, however,
that the board be capable of bus mastering and also
requires on board DMA hardware. Usually this
capability is built into the PCI controller chip.

How Fast

There are several methods for transferring data.
These are a single read/write operation in a loop,
using the "REP" instruction prefix with a read/write
instruction (for an x86 processor) and bus mastering.

Read/Write : After recognizing that a data
transfer must occur, the system CPU reads or writes
data in a loop to transfer data. The problem with this
method is that it requires many clock cycles for each
transfer (i.e. it's slow) and uses up large amounts of
CPU time.

"Rep" Prefix : This method is essentially the
. same as above except it uses a single, more efficient
instruction. The problem is that too much CPU
overhead is still required.

Bus Master : This is a background operation
that does not require CPU bandwidth. Once the bus
has been granted to.the bus master initiator, transfers
can occur at PCI clock rates (i.e.) one DWORD
every 30 ns.

Data Transfer Conclusions

After analyzing all of the options for
transferring data, it is obvious that the most reliable
option offering the highest throughput and lowest
latencies is bus mastering. It is also the only method
that frees the system processor to do what it is meant
for (i.e.) processing, not transferring large amounts
of data across the bus. Also, since latencies are low
and transfer rates are high, smaller and slower
primary buffering may be used.

BUS MASTERING AND CREATING DMA
CHANNELS

Although bus mastering is possible on the ISA
bus, the total throughput is still limited to about 2.5
Mega Bytes per second, conflicts with memory
refresh need to be resolved and it does not work well
with all motherboards. PCI, on the other hand, is
designed for this type of operation.

Since DMA is not an integral part of PCI,
DMA control must reside on the DAS board and
utilize bus mastering as the mechanism for data
transfer on the bus. One way to provide this control,
is to create virtual DMA channels on the DAS board
using a digital signal processing device. In this way
several DMA channels are available for multiple,
high speed functions on a single board. The DSP
chip computes the 32 bit system address, keeps track
of data in the board's primary data buffer FIFO and
creates a terminal count interrupt. The DSP can also
perform scatter I gather DMA when contiguous
memory is not available. Since the DMA channels
are created on the board, there is no longer the
problem of running out of bus specific DMA
resources, each DAS board carries with it its own
DMA resources.

The board's primary data buffer FIFO is
comprised of a dual port SRAM and several address
generators in an FPGA. Multiple, bi-directional
FIFO's are created in this way. The FIFO's are
needed to compensate for latencies in acquiring the
bus so that no data is lost. This FIFO operates at the
slower board speeds as opposed to the 33 :Miiz PCI
clock rates. This allows for a more simple and cost
effective design. Data is transferred in bursts to the
PCI controller device's FIFO. These smaller FIFO's
of just 16 words each for input and output are able to
transfer data in bursts at PCI rates.

189

This architecture supports an aggregate data
transfer rate of up to 10 Mega Bytes per second. As
an example, one configuration utilizes a single, 12
bit ADC converting at a up to 5 Mega Samples per
second, while a second configuration utilizes a
combination of four analog and digital 1/0 devices,
each converting at 1 Mega sample per second. Even
for these high data rates, there is no need for on
board DRAM because of the low latencies and high
throughput available on the PCI bus.

Device
(16 word In/Out

FIFOs)

PCIBus

The above figure shows a DAS configuration of
an analog and digital 1/0. Each of these 1/0
functions are assigned an on board DMA channel.
An arbiter (not shown) allows each of these
functions to be multiplexed onto a port of the
primary data buffer FIFO. The DSP keeps track of
data in the FIFO, signals the PCI controller when a
transfer is required and provides the starting address
of the transfer to system memory. To initiate a
transfer, first data is transferred from the second port
of the primary data buffer FIFO to the smaller and
faster FIFO in the PCI controller as an off line
process. Then, the PCI controller device initiates a
bus request and completes the transfer at bus rates
while the DSP is calculating the next start of transfer
address.

THE PC/ CONTROLLER

Another major consideration in a PCI based
DAS design is the bus controller chip. There are
several possible options for this device. An ASIC

(Application Specific Gate Array) may be built, an
FPGA (Field Programmable Gate Array) can be
designed or an off-the-shelf device can be used. The
selection of a device type must be based on the
following requirements: high performance, fast
turnaround, low cost and ease of use. These are some
of the pros and cons of each potential solution.

ASIC Solution

+ Customizable to specific needs
+ High performance
+Lowest piece price (for large volumes)
- High NRE (on the order of $25K to $35K)
- Time to market

- Very large development and verification time
- Long lead time {proto to production-16wks)

- Re-spins due to: PCI spec revisions, design errors
and system changes
- Minimum volumes required

FPGA Solution

+ Low volumes OK
+NoNRE
+ Customizable (limited by density)
+ Can be turned into masked device (see ASIC pros
and cons)
- Very high piece price (on the order of$200 to $300
per bus mastering device)
- Lowest performance (extra PCI clock cycles often
needed)
- Large development and verification time (helped by
vendor macrocell availability)
- Lowest density
- Redesign and reverification of compliance left to
user with new PCI spec revisions

Off-The-Shelf Solution

+ Already designed
+ Proven PCI compliance
+No volume minimums
+ High performance
+ Low piece price
+Vendor redesigns the device when new PCI spec
revisions occur
- Not customizable
- Will require glue logic for tailoring to specific
system needs
- Need to learn device and its idiosyncrasies

190

PCI Controller Selection Conclusion

Given the typical production volumes for data
acquisition products, the off-the-shelf device solution
is the best choice. These volumes do not justify a
gate array device and the prospect of continually re­
spinning the ASIC due to PCI spec revisions seem
daunting. The FPGA approach is not recommended
because of its extremely high piece price and the
increased difficulty of fitting a full bus master
controller in a device without compromising
performance. In addition, the off-the-shelf approach
does not require as much verification time since it
has already been tested for PCI compliance. Also,
since vendors of an off-the-shelf controller has the
highest production volumes and smallest die size
(i.e. greater yields), the price of this device is low
and should continue to decrease.

SUMMARY

The PCI bus is a high performance and well
accepted mechanism for transferring data in the PC.
This makes it a perfect choice for new data
acquisition product designs. Unlike other buses that
have come and gone, PCI is here to stay. This bus,
however, requires a much greater design effort and
attention to technical details. New architectures and
design methodologies are also required. Every effort
should be made to take advantage of the benefits of
the PCI bus and to comply with explicit and implicit
design requirements. In the next few years this bus
will undergo changes. The designs we do today
should try to anticipate these changes and be as
flexible as possible.

BIOGRAPHY

Jim Fitzgerald is a senior staff engineer at
Keithley MetraByte where he has enjoyed working
for the past eight years. He has designed the digital
sections of the DAS-1600 family and DAS-1800
family of flagship products and is currently in the
process of developing Keithley MetraByte's next
generation of data acquisition products based on the
PCI bus. He has also designed several gate array
devices for the company. Jim holds a BSEE degree
from Drexel University in Philadelphia and has over
15 years of design experience. In his spare time, Jim
brews and judges beer and plays drums in a local
blues band.

DESIGN CONSIDERATIONS FOR DATA ACQUISITION HARDWARE ON THE PCI BUS

ABSTRACT

Richard J. Burk
Data Translation, Inc.

100 Locke Drive
Marlboro, MA 01752

508-481-3700/3080 (fax)
rburk@datx.com

This paper discusses the key elements that must be addressed when designing high-performance data
acquisition boards for the PCI bus. Elements of handling high-speed bi-directional data flow, such as the interface
design, on-board memory and the management of the bus, are examined.

Why design a data-acquisition board for the PCI bus? Simple: Speed. If there is one sought-after commodity
in many data-acquisition applications, it is data throughput. The more data that is collected, acquired, and converted
to digital form, the greater the urgency to move it to where it can be stored, analyzed and displayed. PCI is a way to
satisfy that need, to transfer data with the highest possible throughput in a PC environment.

Thus, PCI brings an immediate advantage to the art of data acquisition: Significantly faster data transfer to
the PC's memory and display. Not only can data continuously stream to the display but PCI sets the stage for
simultaneous operation of the front-end conversion as well. At the same time, the host processor is free to perform
other tasks. Because speed is now at a premium, such a concurrent environment has become essential. The CPU and
its memory and cache subsystems must operate independently of the peripherals bus, and information must be
interchanged in the form of large blocks of sequential data.

Of course, data acquisition can benefit from Pei's many other advantages:
• The multiplexed address and data scheme is more efficient than other buses.
• There is the possibility of bus mastering, which, because of the low latency, lets peripheral cards take

control of the bus in one-tenth the time of other buses.
• Pei's Plug N Play and autoconfiguration capability forever banishes jumpers and DIP switches.
• And PCI offers a known roadmap for future developments: 3.3-V operation in portable acquisition

systems, bridging to outboard racks of acquisition boards--and even faster throughputs than ever.

But before PCI can be placed on board, a designer must make a number of key decisions concerning the
overall architecture, the PCI interface, the analog aspects of the board, the amount of on-board control and processing,
and more. Some of the decisions will be interdependent.

Data Rates Dictate the Design

Functionally, the total data rate to be managed bi-directionally will determine much of the board's eventual
configuration. Hinging on the anticipated data rates will be the amount of on-board memory, and whether to make the
board a PCI master or slave.

That is, the PCI bus bandwidth allows board designers to create an architecture that supports the high-speed
operations of not only the input and output converters, but also other board functions. For even more speed, designers
can pull out all the stops by bus mastering, letting the acquisition board take control of the PCI bus.

The required digital support, then, follows from these data sampling requirements. A designer will need to
pin down the specific performance levels for all the subsystems before he or she can design the PCI interface
architecture.

191

Master Or Slave?

Because PCI supports two options for the transfer of data, a designer of PCI data acquisition hardware has
choices to make. When the required data sampling rates are slow (<1000 kS/second), the board can function
adequately as a PCI slave. FIFOs can buffer the bi-directional data and the host computer, with a Pentium processor,
takes care of the reads and writes of the data samples by talking to and commanding the board -- a minor task for the
Pentium.

A bus master offers more flexibility, especially when support is needed for high speed data transfers.
Controlling the PCI bus offers the benefits of increased throughput--theoretically, data transfers can approach 66
Msample/s. More realistically, 40 Msample/s probably can be achieved. Of course, the board complexity goes up
because the PCI interface must be designed to incorporate the master logic, which can be placed in an FPGA, or a
commercial off-the-shelf interface chip can be used (if one can be found with the desired performance and
characteristics).

Related to the overall complexity of the hardware's architecture is the level of on-board control utilized.
Implementing a high level control architecture simplifies the PCI interface and board architecture, but adds a new
level of overhead that can affect the data transfer efficiency across the bus. Whereas if the designer opts for a low­
level controller, the Pentium must do the "nitty gritty" work of directly accessing the on-board register data, which
reduces the amount of redundant functions between the board and the PCI bus but increases the complexity of the PCI
interface. As the majority of the functions required to move and control data flow and modes on the board exist
within the PCI architecture, there is little need to re-create these functions on the board. This makes more work for
the CPU, but eliminating the added overhead of the high-level controller significantly increases the efficiency of the
data transfer. The design balance is between the complexity of the interface architecture and the aggregate bi­
directional data transfer speed required for the product.

These issues impact the final design configuration and must.be weighed against such factors as the
availability of the resource skills needed to design a PCI interface chip in-house and the achievable performance of an
in-house design vs. that of a commercial part.

In-House PCI Interface Or Commercial?

In-house designs offer the opportunity for innovation and the ability to get to market first. Several
operations within Data Translation--from multimedia to imaging to data acquisition--have taken advantage of that
opportunity and, as a result, strong PCI knowledge has disseminated within the company.

Although a standard part would offer a board designer the luxury of concentrating on the acquisition or
analog functions, commercial interface chips-which try to be all things to all people--do not look promising at the
moment. For example, one of the design challenges is to accommodate the various chip sets found in X86-based PCs.
Intel alone has developed at least three different-generation chip sets--the Mercury, Neptune and Triton --for its
Pentium and P6 microprocessors. Each chip set has its own timing requirements, quirks, and design issues.
Consequently, a commercial interface chip may work correctly in one machine but encounter a problem in another.
The commercial interface-chip vendor may correct problems, or errata-eventually; however, with an in-house design,
any problem can be resolved immediately by reprogramming the FPGA-no waiting for the reporting and correcting of
such errata.

A good example of a such a potential problem is the Neptune's buffer depth--it can accept only four data
transfers in a burst, that is, four at a time, with no wait states. The Triton accepts a much longer burst of data but
occasionally inserts an unexpected wait for a clock or so. If the interface chip does not accommodate that wait, data
can become corrupted or disappear after being put out on the
bus at the wrong time.

In addition, a flexible in-house design based on FPGAs provides for quick reaction to periodic updates and
changes to the PCI specification, which continually evolves over time. If the time ever comes when the interface
design can be safely frozen, there is always the option of migrating to quick-turnaround, plug-compatible gate arrays
for the same cost savings afforded by an off-the-shelf part.

Once the decision to go in-house has been made, the stringent electrical interface specifications narrow the
field--few FPGAs can satisfy the requirements. For instance, the input capacitance had to be under 10 pF per signal.

192

Even so, the timing characteristics form the tougher task, especially if the designer attempts to hit the top 132
Mbyte/s PCI specification. Setup-and-hold times are 7 and 0 ns respectively, and the clock-to-output time is only 11
ns. Then there is the AC drive. Because the PCI bus is not terminated, it relies on reflective signaling. This translates
to the need for an output driver with carefully controlled output impedance and drive characteristics.

Data Translation designers not only managed to satisfy the PCI bus interfacing in one FPGA, but also
included much of the acquisition board's internal circuitry, including glue and triggering logic, the interface to the
counters and DACs, the decoding and digital controls for the analog circuits, and the PCI configuration registers.

Depending on the relative speeds involved, it is the designer's decision to bus master or not and how to
move data. A complicating factor is that mastering can be designed in on the input or output side. The input side may
be going so fast, it needs to be a master; however, other than a slight inefficiency, there may not be a problem in
being a slave on the cl/a side, assuming there is enough throughput on the bus. That is so because the cl/a converter
may be working at only 200 kHz, certainly not megahertz. Other situations may dictate mastering on both sides.

From the hardware design standpoint, the level of bus mastering implemented is a complex issue; mastering
in both directions takes more logic to ensure that multiple masters cooperate among one another. All things being
equal, a designer may opt for a dumb slave with no memory because it is the "cheap and easy" way to go. Like
everything else, it is a tradeoff.

How Much Memory?

In designing a PCI board, one objective is to reach the best balance between bus access and on-board
memory capacity. For example, taking over the bus means less memory buffering is needed, and there is less
overhead. The board can wait until it accumulates a number of samples, then burst data and give up the bus. That
calls for a small FIFO buffer within the interface FPGA. It saves money because the improved bus management
obviates the need to put expensive memory on the board. The PCI specification limits the time a board can be held off
the bus; otherwise, a large buffer would be necessary to back up data when other activity takes place, such as on the
ISA bus. The moral: By controlling the bus, not only is throughput improved and less memory is needed on the board,
but the host processor is off-loaded to service other tasks.

Take, for example, an acquisition board that is set to sample analog input at a 3 to 5 MHz rate. As a bus
master in that application, almost no memory is needed. Certainly, whatever memory is still required is much less
than if operating on the ISA bus. Data flows at higher speed, in a more-efficient, more-continuous manner. There are
no significant latencies. And the pace is more predictable because the board is not held off for interminable periods
by other boards within the system.

Other Considerations

One thing to watch for as boards speed up: Meeting the European CE (emissions and susceptibility) and
EMI specifications. The faster speeds of PCI bus operation call for a more careful layout of board traces and
components to prevent interference, crosstalk, and the like. Filtering and shielding may also be necessary.

Challenges For the Future

Only time and money prevent a designer from expanding horizons. For instance, once it has been decided to
put a controller on board, why not let the controller also perform some digital signal processing? With, say, a C52
serving as the controller, the board can be made even more independent from the CPU. And the door then opens to
PCl-based real-time control and test-and-measurement applications.

The bridging aspects of the PCI bus are intriguing. Thanks to PCI bridge chips, multiple acquisition and
other boards can be designed into a rack or other system or, as computers appear with more PCI slots, into a PC itself.
Many more channels can be gained and the aggregate speed goes up. A multiboard design may move twice as much
data so the boards efficient utilization of the bus interface will be important. Of course, that may affect the memory
and other requirements.

Conclusions

193

The PCI interface bus has eliminated many of the problems associated with the ISA bus and has widened the
technology horizons for data-acquisition boards. Throughput has especially benefited. A thorough understanding of
the PCI specifications is necessary to achieve the best performance and feature set within a specific board.

Author Biography

Richard Burk joined Data Translation in mid-1995 as senior hardware design engineer, resf)Onsible for
leading the company's data acquisition board design projects.

Burk has extensive experience in system concept, design simulation and integration. While at Concurrent
Computer Corporation as principal engineer, he evaluated superscalar microprocessors for next generation computers.
Previously, Burk worked at Raytheon as senior design engineer, where he designed several VMEbus controller
mcxlules and IO controller ASICs for use in systems such as electrical to fiber optic translation, data communication
and target simulators.

Burk graduated Magna Cum Laude with a Bachelor of Science degree in Electrical Engineering from Tufts
Univerisity in Medford, MA.

194

THE IMPACT OF PCI ON THE TEST AND MEASUREMENT INDUSTRY
Arthur Ryan

National Instruments
6504 Bridge Point Parkway, Austin, TX 78730

(512) 433 - 8845 I 8641 (fax)
e-mail: ryana@natinst.com

Abstract

The use of personal computers for test and measurement applications is gaining more and more
acceptance in the test and measurement market. However, a major hindrance to the use of personal
computers in certain test and measurement applications has been the lack of a standard, high-speed bus
architecture. PCI is an enabling technology that dramatically increases the domain of test and
measurement applications suitable for PC-based test and measurement. Applying PCI to the test and
measurement industry presents several technical and architectural issues that must be resolved to fully
realize the potential of PCI. This paper discusses the impact of PCI on the test and measurement industry
and presents National Instruments technology that addresses the technical and architectural challenges
with integrating PCI to the test and measurement industry's formal and de facto standards, such as data
acquisition, VXIbus, IEEE 488, and virtual instrumentation.

Introduction

The Peripheral Component Interconnect (PCI) standard is profoundly affecting the computer industry;
the influence of PCI is spreading to other computer-related areas, such as the test and measurement
industry. Test and measurement applications and products typically use three primary technology areas.
The first is the IEEE 488 standard, commonly referred to as the General Purpose Interface Bus (GPIB).
GPIB is the protocol of choice for connecting remote instrumentation to a PC. The second is the VME
extensions for instrumentation (VXI) bus while the third is computer-based data acquisition. PCI impacts
all three areas. The high bandwidth of PCI provides opportunities for PCs to directly handle more
applications based on GPIB, VXI and data acquisition. To fully use all PCI advantages, it is important for
test and measurement vendors to provide PCI products that address the needs of VXI, GPIB, and data
acquisition. Having this global view helps customers take full advantage of PCI capabilities in their
applications. This paper examines the technical challenges and possible solutions for applying PCI to
VXI, GPIB, and data acquisition (DAQ) products and applications.

PCI Encompassing More Test and Measurement Applications

It is common in the test and measurement industry to link a computer to a set of instruments or sensors
to stimulate and check a device under test. The computer, by its very nature, can perform many different
roles in these systems. The flexibility of the computer has given rise to virtual instrumentation, in which
a computer running appropriate software can be programmed to mimic a more expensive instrument,
customize the interface of an instrument, or perform a function for which there is no commercially
available product.

Applying virtual instrumentation to a problem includes evaluating the data bandwidth and processing
requirements. Some applications involve small amounts of data or low-bandwidth data streams while
other applications are more data-intensive. With the high bandwidth of PCI, computers can handle more
data- intensive tasks than was previously possible with other bus standards, such as ISA or NuBus. The
acceptance of PCI has also brought with it increased processing power in the form of the Pentium,
Pentium Pro, Alpha, and PowerPC processors.

195

While PCI addresses the data bandwidth issues in virtual instrumentation, it also addresses a more
subtle problem in computer architecture. Although many test and measurement customers use a "Wintel''
computer, a sizable group of users do not. With more computer vendors adopting PCI, computers will
share common architectures and differ only in the processor and operating systems they support, making
it easier to change computing platforms if system requirements change. With PCI, a variety of computer
system vendors can serve test and measurement customers who were previously locked into one vendor's
computer system.

Getting the most out of PCI for test and measurement applications requires a great deal of architectural
planning. Customer requirements differ when using VXI, GPIB or data acquisition. Therefore, it is
important for vendors to address all these issues up front to provide customers with PCI test and
measurement products that realize all the potential of PCI and satisfy customer needs.

Applying PCI to VXI Products

VXIbus is a superset of the VME standard that includes interrupt and triggering protocols suitable for
instruments. VXI instruments exist as separate cards inserted into a backplane. All VXlbus systems
require some device to act as a controller that configures and operates the other VXI devices. Three types
of controllers exist. The first is an embedded computer that is plugged into the backplane just like any
other VXI instrument. A second method connects a personal computer to the VXI backplane using one
GPIB hardware interface installed in the computer and another on the VXI backplane. A third method
connects a personal computer to the VXI backplane using the MXlbus, which provides a memory mapped
architecture with higher bandwidth than GPIB. PCI can improve VXI controller performance, but to do
so, a PCI to VXI interface must address several technical issues.

VXIbus defmes more address spaces than PCI.

VXlbus uses big endian byte ordering while PCI is little endian.

VXlbus and PCI have significantly different signal protocols.

VXIbus and PCI support multiple masters but have different latency and arbitration
requirements.

VXlbus bas multiple address spaces that are 64 KB, 16 MB and 4 GB long. To map PCI bus cycles to
the VXlbus, interface cards require configurable window hardware to map specific blocks of PCI address
space to specific VXI addresses and address spaces. Further, because VXIbus handles multiple masters, a
PCl/VXI bridge needs window hardware to map portions of VXI address spaces back to PCI.

The PCI bus employs little endian byte ordering; the VXIbus is big endian. Simply swapping data
bytes does not adequately address the byte ordering problem. For example, if a 32-bit quantity is
comprised of four 8-bit characters, then the bytes should be swapped. However, if the 32~bit value is an
integer, then the value should not be swapped. Incorporating byte transposing hardware into a PCl/VXI
bridge alleviates control software from much of the byte ordering task, but is important to implement the
byte transposing hardware so it can be disabled by control software when necessary.

VXIbus employs different signal conventions than PCI. PCI master and slave devices indicate when
they are ready to transfer data; it is implied that data transfers whenever both devices are "ready" on the
rising edge of the bus clock. With this approach, master and slave devices can decide independently when
they are ready. VXIbus, however, uses a more strict initiate/respond protocol in which the master device
asserts a data strobe signal to begin a transfer and the slave responds to the data strobe by asserting a
data acknowledge (DT ACK). A slave cannot assert a DT ACK, however, until a master has asserted a
data strobe; so, the slave device behavior is dependent on the master device.

196

The main implication of the differences in signal protocol is that a PCI cycle will eventually have to be
converted to the more restrictive initiate/respond protocol on the VXIbus as the cycle crosses a PCINXI
bridge device. Write post buffers help alleviate the problem for write cycles, but on read transfers, a PCI
to VXIbus bridge needs to support PCI delayed transactions.

Latency and arbitration differ between PCI and the VXIbus. VXI device response times can exceed
PCI latency requirements. The initiate/respond protocol issue previously discussed can reduce
performance as the internal buffers are filled over long transfers. A good way to address these problems is
to support DMA controllers within the PCINXI bridge. These DMA controllers, equipped with FIFO
buffering, can be optimized to perform VXI and PCI cycles efficiently. Further, the host CPU does not
have to deal with moving data over the PCINXI bridge, but can delegate that task to the DMA controller.
The end result is the PCINXI bridge device can act as a "good citizen" on both the VXIbus and PCI.

Interfacing PCI to GPIB

GPIB is a long-established standard in the test and measurement industry. GPIB interface products are
available from many vendors to connect virtually every type of computer to GPIB equipment. Because
PCI is such a significant standard in the computer industry, it is important to provide a PCI interface to
GPIB. Indeed, some new computers, such as Apple's Power Macintosh, provide only PCI slots; in these
cases, it is important to provide PCI/GPIB support so that customers can take advantage of these high­
performance, PCI-only computers.

The GPIB bus is slow by comparison to PCI and is only eight bits wide. Simply porting an ISA-style
GPIB card to PCI would slow down performance over the PCI bus. A PCI to GPIB interface should use
the full bandwidth of GPIB and prevent its lower performance from degrading PCI performance. Several
means exist to address this problem. First, a PCI to GPIB interface should provide write post buffering.
This buffering helps decouple PCI and GPIB. Second, supporting delayed transaction, as described in
Version 2.1 of the PCI specification, prevents GPIB read cycles to slow instruments from occupying PCI.

A third method to improve system performance is to support byte packing in the PCI to GPIB interface.
Such capability can convert a single 32-bit PCI cycle into individual 8-bit GPIB cycles. Hence, PCI does
not have to routinely carry 8 and 16-bit cycles. Finally, a DMA controller on the PCI/GPIB interface
would use PCI efficiently for large blocks of data.

PCI offers further benefits to GPIB performance. Recently, a high-speed protocol was added to the
GPIB standard called HS488. The maximum throughput of HS488 is 8 Mbytes/s. The throughput of
HS488 is higher than the typical performance for ISA and other common bus standards. PCI, by contrast,
can use all of the potential bandwidth for HS488.

PCI for Data Acquisition

PCI has clear benefits for data acquisition. The average bandwidth on older bus architectures, such as
ISA, is 1-2 Mbytes/s. PCI, however, offers average system performance of 20-30 Mbytes/s currently; this
number is increasing with the introduction of more efficient PCI devices and chip sets. Assuming 16-bit
sampling, PCI's bandwidth could support 10-15 MHz sampling applications without the need for memory
on the card.

A key point to remember about applying PCI to data acquisition problems is that PCI is not necessarily
appropriate to all data acquisition applications. It is important to assess the data bandwidth requirements
of the customer before throwing a PCI card at the application. If the customer requires a single DAQ

197

board sampling at 40 kHz, then an ISA-style PCI card may be more than sufficient for the application. In
such applications, the update rate of the DAQ card is slower than either the cycle time on PCI or ISA. In
the case of low bandwidth sampling, a customer is better off using one of the many ISA slots on typical
"Wintel" machines instead of using one of the few PCI slots.

Developing a PCI DAQ card; even for the 100-300 kHz sampling range, requires more than simply
porting an existing ISA bus design over to PCI. Porting such an ISA design implies that the DAQ card
will operate as a PCI slave device, but developing the slave interface will require many of the architectural
features associated with the GPIB products. This similarity in architecture is not surprising because the
bandwidth of a 100-300 kHz DAQ card is similar to the GPIB. PCI slave DAQ cards can benefit from
features such as byte packing, write post buffers, and delayed transaction support.

Many PCI DAQ products on the market handle PCI slave-only functionality, but to fully realize PCI
benefits, a PCI DAQ card should have PCI master capability. Such master capability would probably be
driven by a DMA controller on the DAQ card. Bus master capability uses the PCI bus more efficiently
than relying on the host processor to move the data. Bus master capability is almost a requirement for
sampling rates above 10 MHz because the processor would have trouble moving data from the card while
performing other operations. Bus master capability also becomes important in systems with multiple data
acquisition cards whose aggregate bandwidth requirements approach 10 Mbytes/second.

Implementing PCI Capability for Test and Measurement

National Instruments has been a major test and measurement vendor for many years. Thus, it was
important for us to provide PCI products to our customers. The goal of the PCI product development was
to develop a series of PCI cards that addresses the key technology foundations of the test and measurement
industry (specifically, VXlbus, GPIB, and data acquisition). Because National Instruments focuses on
T &M applications, general off-the-shelf ASICs didn't provide the special features we needed.

National Instruments developed an ASIC that could address specific customer needs for test and
measurement PCI products. The resulting ASIC is a multiport device that includes ports to MXI, PCI,
and VXI. It also incorporates a general-putpose IO port for data acquisition and GPIB applications. The
ASIC includes DMA controllers that can transfer data at a peak rate of 132 Mbytes/s. The DMA
controllers themselves operate in several different modes. These modes can perform operations such as
ring-buffer transfers, large contiguous block transfers, and noncontiguous transfers by reading and
executing DMA instructions stored in system memory. The noncontiguous transfer capability is especially
important in virtual memory operating systems, such as Windows and Mac OS.

All of the National Instruments PCI cards use the ASIC, thereby providing a unified PCI architecture
for these cards. Providing a unified PCI architecture for test and measurement products benefits both
developer and user. For the developer, it means that a single interface can be used on a variety of
computer platforms, reducing time to market. Because the ASIC directly addresses the needs of test and
measurement, the products can also attain maximum bandwidth for GPIB, VXI, and data acquisition
Users automatically have a migration path to new computer systems. This saves money, because the user
doesn't need to buy a new board if he or she wants to use another vendor's computers. The user
automatically has more computing platforms to choose from and the users' s tests run faster because of the
improved bandwidth.

198

Chip Makers Roundtable

Programmable Logic Implementations of PCI

David Ridgeway, Xilinx

This tutorial will cover implementation of custom PCI compliant J/F solutions. The
focus will be on the design considerations for PCI logic design, PCI configuration,
back-end interface issues and maximizing data throughput. The presentation will also
review the use of Xilinx PCI Interface Modules to increase design efficiency and accel­
erate the engineering/manufacturing of new products.

199

MIKE SALAMEH
President
PLX Technology

POSffiON STATEMENT
for Chipmakers Rountable

PCI is not just for PCs:
Embedded Systems Migrate to PCI Architecture

PCI is a well-accepted standard in Personal Computer systems. The architecture is also rapidly gaining
popularity in embedded systems, replacing proprietary buses. PCI offers many advantages to hubs, routers,
printer engines, set-top boxes and other embedded systems that require a high-speed, low latency backplane.

Bandwidth is the most obvious, but not most important, benefit. With data rates of 132 (32 bits) and 264
(64 bits) Megabytes per second, PCI is the first standard personal computer bus to deliver bandwidths
comparable to proprietary buses. ISA, EISA and Micro Channel, which ranged in throughput from 5 to 40
Megabytes/second, were rarely attractive outside of the PC architecture world.

Perhaps more important than bandwidth are the other benefits that embedded systems designers gain from
using PCI: wide availability of low-cost J/O silicon (e.g. LAN, SCSI and video controllers), a proven high
integrity bus standard, and compatibility with other manufacturer's hardware.

Most suppliers of high volume J/O and graphics chips now provide a PCI interface, and sometimes only a
PCI interface, for their newest products. This makes it simple and inexpensive to connect the component to
the embedded system if the embedded system uses PCI. Conversely, if the embedded system does not use
PCL it incurs a cost, and sometimes a performance penalty when connecting to a PCI J/O chip.

Many embedded system designers believe, and correctly so, that they can design a higher performance and
lower latency proprietary bus system that is better tailored to their products than PCI. However, the faster
time to market of using a proven architecture like PCI often outweighs the marginal performance benefit of
the proprietary bus.

"Open Embedded Systems" are now much easier to realize with PCI. Already manufacturers of
communications equipment are taking advantage of PCI by using third party PCI adapters (for example Tl
or ISDN boards) in their embedded systems. Using these adapters saves them the time and expense of
designing all the embedded system peripheral devices in-house, allowing them to focus their resources on
their area of expertise.

PLX and PCI Embedded Systems

PLX Technology is the leading supplier of .interface chips for PCI embedded systems and adapters. PLX
PCI chips are used in hundreds of such products connected to many varieties of embedded CPUs including
the Intel i960® processors, 186, 386, 486, 68K, PowerPC, R3000, ARM, Inmos transputer and many DSP
and intelligent J/O controllers.

200

PCI Performance Analysis for
High-Speed Networking

Integrated Device Technology, Inc.

Peter N. Glaskowsky, Senior Engineer
2972 Stender Way, Santa Clara, CA 95054

408-988-5636 png@ldt.com

Copyright 1996 IDT, Inc.

Goal of this presentation

• To show how to analyze the In-system perfonnance
of IDT's NICStAR ATM controller, based on:

- NICStAR system requirements

- NICStAR operations

- System behavior

- Other software and hardware Issues

• This same process may be used to analyze the
perfonnance of any PCI device

RCI 2

201

NICStAR requirements

• NICStAR Interfaces between PO and a full-duplex
OC-3 (155 Mbps) ATM network

- Handles ATM processing

• Segmentation and Reassembly for ATM
Adaptation layers 0, 1, 3/4, and 5

- Also supports 25 and 52 Mbps ATM

• NICStAR Is a 5V, 32-blt, 33 MHz PCI device

• Acts as a PCI target for configuration and control
- control registers can be In 1/0 or memory space

• NICStAR also operates as a PCI master to transfer
Its own transmit and receive data over PCI

3

Example NICStAR PCI System

ISNEISA/MCA
....---'~

AlJD[)

4

202

Bandwidth analysis

• We'll begin with cell data transfer over the PCI bus

• 155 Mbps ATM actually yields about 135 Mbps
after SONET and ATM layer overhead

- That's about 17 MBps each way, or 34 MBps of
data to be transferred over the PCI bus

· This data is transferred in 12 word bursts (max)

- Some chipsets break transfers on cache line
boundaries (average 6 words per transaction)

• Let's plot this against representative PCI bandwidth
curves and see where we are •••

5

Burst Read Performance

24.0 48.0
120.0

- MRead
100.0 -a- MIU.lne

.... MRMultlple

80.0 ..
a.

I 60.0

I 40.0
JI

10.0

0.0
4.0 8.0 16.0 31.0 64.0 128.0 156.0 512.0

Burst size (bytes)

ec1 6

203

Burst Write Performance

120.0

100.0

Mwrlte range depends
on dlnlness

- Mwrlte (Dirty)
- MWrlte (dean)
• MWlnvalldate

24.0 48.0

•
•

•

o.o '--------+--1---+----------'
4.0 8.0 16.0 32.0 64.0 128.0 256.0 s 12.0

Burst size (bytes)

7

Cell data transfer conclusions

• Don't put too much trust In these curves!
- They are representative of current chipsets, but

older chipsets can be much less efficient

• Note that longer read bursts can use the more
efficient Memory Read Multiple transaction

• We can now calculate bus utilization:

- We need (17 /42) + (17 /70} = 64%
of the PCI bus for our 34 MBps of data

• Therefore, cell data transfer alone does not exceed
available PCI bandwidth

P-CCI 8

204

Latency analysis

• We also have to meet NICStAR's latency specs

• On average, we transmit or receive a 53-byte ATM
cell every 2.8 µsec at 155 Mbps

• The NICStAR transmit FIFO holds 12 cells of
transmit data, so the maximum tolerable PCI read
latency Is about 33 µsec (non-cumulative)

• The NICStAR receive FIFO Is In off-chip SRAM, and
holds 315 cells, so the maximum tolerable PCI write
latency Is about 890 µsec (non-cumulative)

• Most PCI systems meet these requirements easily

e.c1 9

Driver overhead

• The device driver wlll communicate with NICStAR to
open or close the ATM virtual connections

• The driver must also work with the operating
system and applications software to allocate and
release buffer space In host memory

• Interrupt sharing Imposes additional overhead

- Drivers get called when they have nothing to do

ec• 10

205

Interrupts and queue maintenance

• NICStAR interrupt overhead varies depending on
type of traffic and NICStAR configuration

- Could be multiple Interrupts per cell if NICStAR
must assemble a cell from all over host memory

- ATM-aware applications can transfer very large
blocks of data with only one interrupt per block

· NICStAR maintains status queues in host memory

• The host CPU maintains buffers for transmit and
receive data, and notifies NICStAR where they are

• Only PCI writes are needed for this maintenance
- Posted writes reduce PCI bus overhead

l1

Protocol overhead

• Current network protocols have a lot of overhead
for the protocol stacks and drivers

· Users think of "wire rate" as a guideline at best

- 2-4 Mbps over 10 Mbps Ethernet Is common

• IP LAN emulation over 155 Mbps ATM will inherit
all the same overhead, plus more

• (Today, the bottleneck Is here, not In the hardware)

12

206

Limits to performance

· The more data being transmitted or received by
NICStAR, the more work there ls to be done by the
host CPU and other system resources

• At some point, you may run out of bandwidth on
the CPU, or main memory, or the PCI bus

· The limits on each system resource must be
considered when Integrating any device like
NICStAR Into the system

13

Applications- server vs. workstation

• Servers will have a rough balance between transmit
and receive traffic, requiring full duplex operation

· Workstations will typically spend more time
receiving data, more like half-duplex operation

• Receiving also uses less PCI bandwidth and
tolerates more latency than transmitting, so Is
easier to support

l4

207

Application issues

• Applications which require the data to pass over
the same PCI bus twice can be a problem

- For example, network » host memory » hard disk

- 32-blt 33 MHz PCI simply Isn't fast enough to
support this with full-duplex 155 Mbps ATM

- For workstation applications this Is no problem

• Applications which decompress the received data
(such as MPEG decoders) are even worse

15

Towards better software

• Support native ATM protocols In drivers and
applications Instead of emulating old LAN protocols

- New data types allow more efficient CPU use
and more efficient use of the wire

- Therefore more net bandwidth for the user, but ••.

- ... Therefore more traffic on the PCI bus

- •.• Therefore more user demand for even faster
PCI Implementations

16

208

Hardware to avoid

· Older chlpsets
- Some don't support PCI bursts

- Many are bad at sharing host memory with PCI

· Important peripherals on ISA (or E.ISA, or MCA)

- Hard disk controllers, video, etc.

• Non-bus-master IDE controllers

- Some ·Of these wlll de up the CPU for hundreds
of microseconds

· Slow PCI devices on the same bus

17

Towards better hardware

• Today:
- NICStAR has specific support for video data,

MPEG bltstreams, etc.

- Use new chlpsets, PCI bus-master disk
controllers, muldple PCI host bridges

- Avoid sharing Interrupts

• Tomonow:
- Wider/faster PCI, more concunency, longer

bursts, more use of Memory Write and Invalidate

- Avoid use of host memory to buffer disk data

- Faster ATM protocols: OC-12 (622 Mbps), etc.

18

209

Summary

• 32-bit, 33 MHz PCI Is fast enough to support
current high-speed networking devices like IDT's
NICStAR ATM controller

• NICStAR is ideal for workstations, especially if the
software can take advantage of ATM protocols

• NICStAR can be used in servers but the system
requirements are much more demanding

• OEMs and system Integrators must consider many
factors to ensure good system performance

ec• 19

For more Information on IDT's
PCl-bus products:

• NICStAR and other ATM products

- Michael Olsen, IDT ATM marketing:

• 408-944-2153

• The R4761/R4762 chlpset with PCI host bridge

- for IDT's R4600/R4650/R4700 MIPS RISC CPUs

- Jamal Halder, IDT RISC marketing:

• 408-492-8623

20

210

THE PCI MULTI-FUNCTION DEVICE: BENEFITS AND DESIGN CONSIDERATIONS
Margit E. Stearns

Symbios Logic, Inc.
1635 Aeroplaza Drive

Colorado Springs, CO 80916
719-573-3228/3037 (fax)

e-mail: margit.stearns@symbios.com

ABSTRACT

As system perfonnance becomes increasingly
important in PCs today, we are seeing a movement
away from the legacy buses towards the PCI local
bus as the bus of choice. As that switch takes place,
OEMs are faced with one of the most serious
limitations of the PCI Bus: the small number of
loads on the motherboard and the number of
expansion connectors that can be supported. Other
factors restraining the system designer include
limited real estate available on the motherboard, and
in some cases, a constraint on the number of bus
masters supported by the chip set. One solution to
these design issues is the PCI multi-function device,
which may contain two or more functions within one
device, while presenting only one load to the PCI
bus.

This paper will define the multi-function device,
and highlight the design rules and issues associated
with its use.

WHY CONSIDER A MULTI-FUNCTION
DEVICE?

It is generally recommended that each PCI bus in
a system have a maximum of ten loads. A load is
defined as a PCI device on the motherboard. When
the device is on an add-in card, the connector on the
card is considered one load, and the PCI device on
the card is considered a separate load. Therefore, a
PCI add-in card counts as two loads. If more than
one load is desired behind the connector, a PCI/PCI
bridge must be used on the card. Examples of
common PCI loads in a desktop, workstation, or
server include Ethernet, SCSI, Host/PCI bridge,
PCI/Legacy bridge, video, sound, and E-IDE.

A typical PCI system design has two or three card
slots, and two or three PCI loads on the motherboard.
In some designs, however, the limitation on the
number of devices and add-in cards can present a
problem. These designs may be high-end servers
where many features are demanded by the customer,

211

or a workstation or desktop where the customer is
very sensitive to the number of card slots available
for system expansion.

Many systems designers are constrained by the
physical dimensions of the chassis and motherboard.
In a feature rich design, it is difficult to fit all of the
required components on the motherboard, and still
offer the number of slots that customers demand.

Another restriction may be the number of bus
masters allowed by the chip set in the system. Some
processor chip sets limit the number of bus masters to
four, for example, because that is the number of
Request/Grant (REQ#/GNT#) pairs that are available
from the arbiter.

All of these design constraints lead to the PCI
multi-function device as an effective solution. On
the motherboard, the multi-function device represents
one load to the bus, and can contain from two to
eight functions. An add-in card with a multi-function
device represents two loads, but contains from two to
eight functions instead of one for a single-function
device. By integrating more than one function on a
single chip, it is not necessary to use a costly PCl/PCI
bridge on the add-in card. This results in the freeing
up of valuable PCI slots in the system, optimizing the
number of features offered to the end user.

The multi-function device takes up less space on
the motherboard than multiple single-function
devices, leaving room for more features. And the
multi-function device has only one REQ#/GNT# pair
connection, and represents one bus master to the
central arbiter, allowing the system designer to add
more bus masters to the system.

These powerful attributes of the multi-function
device give the system designer more flexibility and
the opportunity to offer more features in the system,
which leads to a competitive advantage for the OEM.
The multi-function device also offers improved
system reliability over a multi-chip solution, and

allows the OEM to buy multiple functions from the
same vendor, simplifying the buying and design
processes.

The remainder of the paper will be devoted to
specifics on how to design a multi-function device
into a system. The main considerations when using a
multi-function device in a design are configuration
accesses, interrupts, system BIOS, and arbitration.

ACCESSING A MULTI-FUNCTION DEVICE ON
THEPCI BUS

A PCI device can contain one to eight
configuration spaces. A single-function PCI device
has one configuration space, and a multi-function
device has between two and eight. A bit in the
device's "Header Type" configuration register, offset
OEh, defines whether or not the chip contains one or
more functions. Bit 7 of the "Header Type" register,
if set to 0, defines a single-function device, and if set
to 1, defines a multi-function device.

A multi-function device, like a single-function
device, uses one of the 21 individual Initialization
Device Select (IDSEL) lines to determine whether or
not to respond to an access. Assertion ofa device's
IDS EL during the address phase of a configuration
access selects the device for a configuration access.

During a configuration access, AD[10::8] identify
the function number of the configuration space
within the device. For a single-function device,
AD[l0::8] is always [000]. Multi-function devices
must always implement Function 0 (AD[l0::8] =
[000]), but may assign other functions in any order.
For example, a two-function device must implement
Function 0, but can choose any of the other function
numbers (1-7) for the second function. Any function
number that is not implemented should be ignored by
the device; i.e., the device should not assert Device
Select (DEVSEL#).

Whereas a single-function device only looks at the
IDSEL line to determine whether or not it is
accessed, a multi-function device uses the asserted
IDS EL line fJl1fi. the function number in the
AD[10::8] signal lines to determine if it is being
accessed. If IDSEL is asserted and the function
corresponding to the function number in AD[l0::8]
has been implemented, the multi-function device
asserts DEVSEL# to claim the transaction.

212

INTERRUPTS

The PCI bus defines four interrupt signal lines:
INTA#, INTB#, INTC#, and INTD#. These signals
are individually wired, or combined in various ways
back to the interrupt controller by the system
designer. It is important that all connectors have all
four interrupt signals routed back to the PCI Interrupt
Controller to accommodate any single- or multi­
function application. The PCI Interrupt Controller
must be capable of routing each individual interrupt
to an IRQ, or must be able to support shared
interrupts. The preferred design provides individual
routing because some systems do not fully support
shared interrupts.

The "Interrupt Pin" register, offset 3Dh, in the
configuration header of the PCI device, defines
which of the four PCI interrupt request pins (INT A#­
INTD#) the device, or the function in the device, is
wired to, as follows:

• OOh = the device or function does not
use the interrupt pin

• Olh = INTA# used
• 02h = INTB# used
• 03h = INTC# used
• 04h = INTD# used

A single-function device must always wire the
device's interrupt request signal to INT A# (Interrupt
Pin register must be hardwired to Olh), and must
never use INTB#, INTC#, or INTD#. A multi­
function device, however, can implement one or
more interrupt pins. There are two rules for multi­
function chips and interrupts:

• Each function in the device can only be
wired to one of the four interrupt pins
(device must have at least as many
functions as interrupt pins).

• If the device implements only one
interrupt pin, it must be INT A#. If it
implements two interrupt pins, it must
use INTA# and INTB#, etc.

Functions in the multi-function device can share
interrupt pins, e.g. an eight-function device can have
all eight functions assigned to INT A#; or three could
be assigned to INTA#, one to INTB#, two to INTC#,
and two to INTD#; etc. This is called interrupt
sharing, or interrupt chaining.

The PCI Specification states that" ... the device
driver may not make any assumptions about interrupt
sharing. All PCI device drivers must be able to share

an interrupt (chaining) with any other logical device,
including devices in the same multi-function
package." It is also important for operating system
vendors to implement shared interrupts.

SYSTEM BIOS

Systems designers must work with their BIOS
vendors to make sure the system BIOS decodes
functions 0-7 in the multi-function controller. The
BIOS should do a configuration access to all
functions if it detects that bit 7 of the "Header Type"
register is set.

ARBITRATION

There is a central PCI resource, usually part of the
Host/PCI bridge, known as the central arbiter. The
central arbiter connects to each bus master in the
system via a separate pair of REQ#/GNT# signals.
As mentioned earlier, a multi-function PCI device,
like a single-function device, has a single
REQ#/GNT# pair connected to it. A PCI bus master
asserts its REQ# to tell the central arbiter that it
wishes to be granted access to the bus. The central
arbiter asserts the device's GNT# signal to grant it
access to the bus.

There is no defined arbitration scheme in the PCI
specification; however, if more than one bus master
is present in the system, the spec requires a fairness
algorithm to avoid deadlocks, and to balance the
different priorities of the various devices.

A multi-function device, since it represents one
bus master to the central arbiter in the Host/PCI
bridge, must implement an internal arbiter that is
completely separate from the system's central arbiter.
The internal arbiter allows the different bus
mastering functions within the chip to arbitrate
among themselves for the privilege of arbitrating for
PCI bus access. There may be multiple bus masters
within the multi-function device. For example, in a
SCSI/Ethernet multi-function device, there may be
three separate internal bus masters: one for SCSI,
one for Ethernet transmit, and one for Ethernet
receive. It is the responsibility of the internal arbiter
to arbitrate between these internal bus masters.

The PCI specification does not define internal
device arbitration for multi-function devices. One
method is to use priority levels. If there are three
different channels in the device, for example, each
can be assigned a programmable priority level. The

213

internal arbiter uses the priority levels to decide
which internal function may arbitrate for access to
the PCI bus. If two functions request access to the
PCI bus simultaneously, the function with the higher
arbitration priority level is granted access first. This
priority scheme should be programmable so that the
system can be tuned for different data requirements.
A fairness algorithm should be implemented, similar
to the central arbiter, to insure that no function gets
starved for access to the PCI bus due to activity on
other functions with higher arbitration priority levels.

SUMMARY

The multi-function device, because of its single
REQ#/GNT# pair, lends itself to either a
motherboard or add-in card design. The device is a
single bus master to the PCI host bridge, although
internally it may be arbitrating for two, three, or more
bus mastering functions. From the software
perspective, the multi-function device contains a
separate configuration space for each function.

There are a few considerations that must be taken
into account when designing a multi-function device
into a system; though as outlined above, the rules are
simple and straightforward, and the benefits are
numerous. The benefits of a multi-function PCI
device include reducing the number of electrical
loads and bus masters in the system, and freeing up
valuable space on the motherboard and/or card slots
for other features. As OEM customers continue to
demand more and more features, PCI bus loading
will become more of an issue. The multi-function
device offers the OEM an opportunity to offer its
customers the features they want and still meet the
requirements of PCI.

REFERENCES

[1] PCI Special Interest Group, "PCI Local Bus
Specification Revision 2.1," June 1, 1995.

[2] Edward Solari, George Willse, PC! Hardware
and Software, Second Edition, San Diego:
Annabooks, 1995.

[3] Tom Shanley, Don Anderson, PC/ System
Architecture, Third Edition, New York: Addison­
Wesley, 1995.

XVideo Family for PCI

XVideo, the developer's choice for high performance video, brings
full-motion. 24-bit color, full resolution video to PCI-equipped Intel
and PowerPC workstations. With a wide array of options to suit
advanced users, XVideo supports multiple live video displays, JPEG
compressed capture, storage, and broadcast. The Video Development
Environment (API, sample applications, source code programs, etc.) is
available to speed custom development and system integration.
XVideo's fast JPEG hardware compression and decompression support
desktop videoconferencing, multimedia authoring, distance learning,
telemedicine, networked video distribution, and live video capture to
disk. The VIO feature adds a second simultaneous live video display
(composite, or S-VHS video format) from a second source and analog
video output to monitor or VCR. Third-party software applications
available. The PCI products interoperate with Parallax's Unix
products for Sun and HP.

214

3Dlabs

New Gener
3D

3Dlabslnc.
181 Metro Drive, Suite 520, San Jose CA 95110
(408) 436 3456
neil.trevett@3dlabs.oom
http://www.3dlabs.com

3D Graphics on PCI Is Hott
Topics Covered

•Rapid market growth for 3D accelerator hardware
• Professional-class 3D

• Breaking bottlenecks for more perfonnance

• Consumer-class 3D
• Making 3D pervasive

• Future directions for 3D

215

3D Aooeleratlon Market D,namlos
Applications driving hardware sales

3D-0Uls, 3D Presentations

1994 1995 1996
• Two long-term market segments - Professional and Pervasive
• Games will be subsumed by Pervasive market

P1ofesslonal 3D Market Forces
Driving the need for high-speed 3D

•Applications
• CAD - Pro/ENO:INEER, MicroStation, SDRCIIDEAS
• Multimedia Authoring - 3D Studio MAX, Softlmage, Lightwave
• Scientific VisuaJimtion - A VS, Visual Numerics
• Game Authoring - Gemini, Vigra, Multigen, Silicon Studio
• Web Page Authoring - Microso~ Netscape, SGI
• Virtual Reality I Simulation - Sense8, Da~ Gemini.

• Pentium Pro
• A true replacement for workstations I RISC CPUs
• Needs high performance 3D to service applications

216

Pervasive 3D Market Forces
What after Games?

• Games are an important application of 3D acceleration,
but 30 is becoming far more pervasive

• 30 will be used in
everyday applications
• You and I will use it!

• "Pervasive 3D,
• Subsumes 2D
• Anything that manipulates pixels

3D API Landscape
The Rush to Service Pervasive Applications

I

Games Pervasive Professional

3Dlabs is developing drivers for the above APis

217

3Dlabs' Business
A strongly focused company

• Sell chips, technology and software for 3D graphics
• Including 2D graphics and multimedia

• A 'Complete Partnership' approach to our customers
• Not just silicon devices but chips, drivers and applications

3Dlabs-Chlp Roadmap
Extending leadership for 3D silicon

Shipping
sinceJan95

Adds
performance and
texture

2nd Generation
.~
I· ······Jst-<Jeneration··········-Geometry·

ca;. acceleration

Creative
Specific.
Shipping since
mid-95.

Q195 Q395

218

Pervasive 3D graphics
Faster, video.

Ql96 Q396

GUNTSOOTX
The next generation - half a million polygons/sec

• I 00% Pin Compatible with GLINT 300SX
• Uses single cycle EDO DRAM for localbuffer

• Doubles pixel rendering rate to 25 Mpixels/sec
• SOOK polygons/sec - 32 bit shaded, Z buffered~ 25 pixel

•Full Texture Mapping in silicon
• Full perspective, filtered texture mapping

•Enhanced 20 Perfonnance
• Advanced optimized span operations
• 2M vectors/sec

• Parallel GLINT SOOTXs can drive a single framebuffer
• Increased rasterization perfonnance

But where's the bottleneck?
Geometry!

• The fastest Pentium Pro cannot keep even a first
generation GLINT saturated if running the geometry in
software

lK polygons/MHz on a
Pentium Class machine

(90K polygons on a PS/90)

3DAPI
Transforms

Lighting
Delta Cales

100% of /_Ras_tenza_·_no_n_
Rasterization /

in GLINT
silicon

219

70%ofthe
CPU cycles
spent in setup!

GLINTDelta
Breaking the Geometry Bottleneck
• GLINT Delta Chip - Hardwired 3D Pipeline Processing

• lM vertex/sec Vertex Setup Processor
• Performs all delta calculations and floating point conversions
• 100 MFlop floating point processor
• Seamlessly integrates with GLINT software drivers

• Reduces PCI Bandwidth - just passing vertices - no slopes

3DAPI
Transforms

Lighting
Delta Cales

34 Mbyteslsec for --=-....-· PCI

300K polyslsec GUNT
300SX

3DAPI
Transforms

Lighting

PCI [__

GUNT
Delta

GUNT
300SX

Triples CPU
Geometry
Performance
~

10 Mbyte/sec for
300K polys/sec

The first Professional-class 3D accelerator for the PC

0-48 Mbytes of
DRAMforZ,

fast clear,
stencils and

texture

GLINT 300SX-
100% 0penGL

in Silicon.
PCIMaster

l-16Mbytes
VRAM driving
upto
2Kx2.5Kx32 bit
displays

64or 128 bit
RAMDAC. Per
window double
buffering,
overlays

•GLINT connects directly to PCI, RAM and RAMDAC
• Two RAM banks for simultaneous, independent access
• Workstation class performance and functionality

220

2nd Generation GUNT Boards
A Sx speedup for the end-user
•First Generation GLINT boards

• Setup calculations bottleneck to about 90K polygons on PS/90

• Today's GLINT Boards
• GLINT Delta breaks setup bottleneck
• GLINT SOOTX will deliver SOOK polygons/sec
• P6 - will drive geometry for SOOK polygons/sec through Delta

• Jump from 90K to SOOK polygons/sec in 12 months

GLINTDella
Measured Performance with
GLINT 300SX on Pentium Pro

iP~@l!?Old:ll:i, U~~~. 1'.~9>lor,]~.ll:E Screen Ref!esh

. 'J:~\i},c))lj~?~.···· : SX Only SX+))elta Speedup

:M;;Bh..;dfr (?,$~)~~i>!><~P~1'.s.;.,,~ci .. ,)~,5,146 ... 2:38,99? 1.,5
Mesltecl T~gles (Z, f111t) 50 Pixel per secol\d + 205,870 321,247 .. 1.6
i Mesl\ecl'J:rial\gles(Z, Shaciec:i) 25pjxelp~r second. 180,744 427,242 2.4
! Meslt~c:i_I~sil!!l (:Z:,_~!t~ l'ix~l 1'1!1'.secollc:i ' .. 2:3~~?85?:3,2!2 2.5
!.Mesltecl Triangles (Z, !iltac:iecll .. Small .Tl'.iaflgles per se.C()lld 187,454 599 ,762 3.2
l Meshed Triangles (Z, flat) Small Triangles per second 249,629 586,527 2.3
, Meshed Triangles (:Z:, Sltadecl) Singl(! Pixel Triangles per second 187,454 600,476 3.2
i . .Ml!!llted.I!iangi!'.•. (:Z:, A<t!J!iil\gl!' Pix!'~J):i"llgl.1!!1 P<!!secollc:i 74?,Ei2? ~M.27. ... 2.3
LMeshed Tl'.jangles(NoZ,!)l\ad!'d) 50 J'.il<elper secol\d 182,048 277,016 1.5
: M!'slt!'c:i Iriansl.!'.~ ~<>:Z:, A;ttl?!! l'ix!'l p~r~~ ~.!.?? .. 3(;5,412 1.6
' Meshed Triangles (!'lo Z, Shaded) .25 Pixel per second 199,290 514,781 .2.6
: Meshed Triangles (!'lo Z, flat) 25 Pixel per second 272,531 585,847 2.1
i Meshed Jl'.iaflgl(!s (!'lo Z,Shaciecl) Small. Triangles per second 200,159 646,607 3.2
LMeslt~c:iI~sll!~ ~<> Z, f111t) !ill\~l1Tria11gies Pl!! ~eco11c:i 271,C>~~ 586,527 2.2
'Meslt.ed Triafls.les. (!'lo z, Shaded)Single Pil<el Triangles per second 200,079 646,607 3.2
iMeslt~c:iT~gl!'~(l'l():Z:,f111t)!)il\gl.~.l'ix!'ITria1lgiesPl!".•ecollc:i. 271,214... 586,527 .2.2.

221

What's makes a Pervasive 3D Chip?
No compromises!

JD for games 3D for productivity

\\ '* Video Acceleration -. Pervasive 3D ~ 3D for cool new stuff

' Fast Windows Acceleration Fast VGA for DOS games

•If you could get all this for the cost of20,
no-one would need to buy graphics without 30,
and so 30 would become pervasive ...

The first Pervasive 3D Graphics chip
• No 20 compromises

• More Windows performance than 64 bit VRAM controllers
• Accelerated VGA for fast DOS games
• Hardware video acceleration

• Fast 30 performance
• Balanced performance for both textures and polygons
• 500,000 textured polygons/second
• Much more thanjust a games chip
• Fully Compliant with D3D~ OpenGL, Heidi,. QD3D ..•

• Lowcost
• Uses unified SGRAM memory= low cost, high performance
• A $50 chip, selling on a $250 board (2MBytes)
• Inexpensive enough to be a games chip

222

Performance Highlights

• 25 Million texture mapped pixels/sec
• Bilinear-filtered with per pixel perspective correction

• 40 Frames/second textured frame rate
• (640x400 screen, fully texture mapped, 2.5 depth complexity)

• 500 K texture mapped polygons/sec
• Bilinear-filtered. with per pixel perspective correction

• 1.6 GByte/sec 2D fill rate
• Expecting 2x '968' class windows performance

• 30 fps video playback at 640x480
• On-chip RGB-YUV conversioDt scaling and bilinear filtering

Board Design
Low component count
• Single PERMEDIA Chip

• plus SGRAMi RAMDAC, ROM and oscillator

• External interfaces
• Glueless PCI Interface
• High perfonnance 64-bit SGRAM Interface
• High speed pixel port

• PERMEDIA Packaging
•BGA
• 0.35µ.
• 3Wat3.3V

223

Typically 2MBytes,
with optional upgrade

to 4, 6 or 8MBytes

Extensive Software Support
• 3Dlabs, develops high quality, optimized drivers

• Drivers provided free of charge to board customers

• Extensive API support
• Microsoft's 3D APis: Direct3D and D3D Retained Mode
• Criterlon,s RenderWare
• Productivity APis -Heid~~ QuiclcDraw 3D

• Creative has licensed COL to 3Dlabs
• COL will be available on PERMEDIA-based boards

•Any Creative games title will run on PERMEDIA
• Using COL or other standard API

• Creative are pro-actively working with 3Dlabs to ensure
PERMED IA is the industry, s leading silicon architecture

Puture 3D Hardware Trends
Exploring an unbounded opportunity space ...

• More Geometry in Hardwired Logic
• Geometry processors that are pin-compatible with GLINT Delta

•Unified Memory
• Using System Memory for texture, VESA 's VUMA standard

• 3D Graphics on the Motherboard
• High integration, unified memory

• A million polygon chip - in '96!
• Including geometry!

224

ABSTRACT

HIGH-SPEED DRAMS FOR PCI SYSTEMS
Billy Garrett

Manager of Graphics Development
Rambus Inc.

2465 Latham Street
Mountain View, CA 94040

garrett@rambus.com

A minimum design requirement for every PCI device is to understand the memory used in a PCI system.
Although PCI technology is designed to separate the CPU, memory, and 1/0 buses in a PC, many of the
chips in a PCI system must interface directly to memory. Designers of such chips today must deal with the
changing landscape of DRAM memory selections available. A few years ago, page-mode and fast page­
mode DRAMs were all that was available to designers. Today, high-bandwidth DRAMs (such as EDO,
burst EDO, SDRAMs, RDRAMs, and a host of specialty graphics DRAMs, such as CDRAMs, 3DRAMs,
MDRAMs, VRAMs, WRAMs, and SGRAMs) are available. Broadly speaking, these memory types can fall
into three possible memory subsections: main memory, graphics memory, and a unified memory pool where
both graphics and main memory exist. Each memory technology has advantages and disadvantages targeted
at one or more of these memory pools. This paper explores the types of high bandwidth DRAMs and their
characteristics targeted toward various memory subsystems found in PCI systems.

MAIN MEMORY ALTERNATIVES
As page-mode DRAMS have evolved, two trends have become evident:

• Denser parts require wider 110 interfaces to maintain acceptable bandwidth.

• Memory granularity is minimized.

Until recently, only page-mode and fast page-mode (PPM) devices were available to designers. PPM
devices allow processors to burst data at a maximum speed of X:3:3:3 (number of cycles for a cacheline
burst) for a single bank; with bank interleaving, processors might be able to reach a speed of X:2:2:2 or
X:2:3:2 (with a 66MHz Pentium bus). Xis usually equal to 5 or 6, depending on the core technology used
(i.e., -SOns or -60ns cores). -60ns cores are more standard today, but-SOns cores are expected to be
standard in the near future.

Main memory performance is increased by decreasing the average number of wait states. Caches, write
buffers, and a host of other techniques are used to mitigate DRAM accesses. However, sometimes it is
necessary to access the DRAMs directly, and this access must be as short as possible.

For code fetches, the Intel Pentuim processor bursts four 64-bit words at a time. The initial code fetch is
for the instruction needed for the processor (not always at an offset of 0). The remaining fetches are for the
remaining cache line entries. The initial latency is determined primarily by the RAS interval and any
additional buffering or pipelining. The subsequent accesses are dominated by how fast a memory
technology can return data specified by an "Intel order" during the burst. For the Pentium processor,
the burst is always three additional clocks, and memory technologies take advantage of their highest
speed page-mode transfers (or burst transfers) to satisfy this demand.

EDODRAMs
Extended Data Out (EDO) DRAMs are like conventional page-mode DRAMs with one exception: the

way in which data is disabled on a read is changed from the rising edge of CAS to WE; the outputs are held
when CAS rises. This difference, combined with a few other changes, allows EDO DRAMs to cycle faster
in page mode, thereby offering additional bandwidth. The signals RAS, CAS, WE, and OE remain the same
as for a page-mode DRAM, making the design transition to EDO straightforward. This also allows EDO
parts to exist on stand x32 (or x36) memory SIMMs. EDO parts are one of the few main memory
technologies that are applicable to both graphics and main memory.

225

For main memory applications, the denser 16Mbit parts are used in the x16 configuration, providing a
minimum memory size of 8MBytes/bank. This minimum size is acceptable for the low-end Pentium systems
in which Microsoft requires a minimum memory subsystem of 8MBytes for Windows 95 certification.

EDO devices increase performance for main memory applications to about X:2:2:2, which provides
about a one- to three-percent performance boost for users. Although this performance increase is small, it
has essentially no additional cost for users. Some people have even said that EDO is what DRAMs should
have been all along.

BEDODRAMs
BEDO DRAMs further add burst sequence counters into the DRAMs to help decrease CAS cycle time.

Although faster core (-50) devices allow 1: 1: 1 burst operation, for the same core timing as that used
in EDO DRAM today BEDO adds an additional wait state for the first access resulting in an (X+ 1): 1: 1: 1
access. Although this is an overall improvement in access latency, the initial latency keeps the CPU
stalling longer than EDO, although the entire burst is completed in two less cycles.

Overall, the jury is out on BEDO. Micron and several other companies are strongly supporting its
use. Large users, such as Intel as well as the top DRAM companies, are working in different directions
for high bandwidth memory solutions. The future success of BEDO is unclear, but it is currently a
design alternative.

BEDODRAMs
SDRAMs have an evolutionary design compared to conventional DRAMs. Internally, they are arranged

in two banks-each independent and holding half of the DRAM bits. Available in several bus widths (x4,
x8, and x16), mostly the wider parts on the 16Mbit DRAM density are suitable for main memory.

Although the interface to an SDRAM appears similar to a conventional DRAM, the timing and
"commands" sent to a SDRAM are different from the RAS/CAS timing normally associated with a DRAM.
The memory controller designer must develop a new state machine in order to support SDRAMs.

Most SDRAM vendors offer parts that operate up to lOOMHz, although the only interesting design point
for Pentium systems today is synchronous with the 66MHz Pentium bus. Achieving even 66MHz operation
on a board, using L VTTL signaling will be very difficult because of board layout, clock/data trace routing,
and skew issues. Memory expansion sockets further complicate the board design such that SDRAM DIMM
modules must take into account loading of modules inserted and not inserted, as well as clock distribution.

Because of the pipelining in an SD RAM, it can achieve only (X + 2): 1: 1: 1 performance. This additional
lead-off latency would negatively affect performance if the two banks were not used efficiently. By taking
advantage of the two banks, some of the RAS precharge time can be hidden. If future addresses are known
or can be estimated, some of the access time can be overlapped with the data transfer of the previous access.
Systems implemented using such techniques are not available, but studies suggest that a two- to three­
percent increase in overall performance can be gained by using these prefetching techniques.

RD RAMs

Rambus DRAMs offer the highest bandwidth of the DRAM alternatives, transferring data at a burst
rate of 533MBytes/s and now 600MBytes/s. 16Mbit densities are currently available with both x8 and x9
configurations. 64Mbit concurrent RDRAMs are under development with availability projected for early
1997. Suppliers include Hitachi, LG Semicon (Goldstar), NEC, Oki, Samsung and Toshiba. The RDRAMs
are all pin-compatible and are offered in two surface-mounted packages: a vertical package for high-density
packing on motherboards and a horizontal package for low-profile add-in cards.

The 64Mbit RDRAM has four banks which can be accessed concurrently. That is, while the contents of
one bank are being read or written, another bank can be doing a RAS access cycle. The present 16Mbit
RDRAM has a dual-bank architecture, whereas the 8Mbit version has a single bank. Instead of the
conventional DRAM RAS/CAS interface, the Rambus Channel uses a multiplexed address/data bus. The

226

controller initializes each RDRAM on the Rambus Channel with a specific major address. When the
controller is ready to perform an operation, it issues a packet on the Channel that requests the address of the
data to be transferred. Only one RDRAM matches that address; the data is written or read at a burst rate of
up to 600MHz.

Rambus DRAMs can transfer data much faster than conventional DRAMs because they use a new
electrical interface referred to as Rambus Signaling Level (RSL). The Rambus Channel achieves its
high speed with low-voltage signaling, terminated transmission line board layout, and precise clocking. The
Rambus memory subsystem is a fully engineered solution using conventional printed circuit board layout
and manufacturing processes.

Unlike other DRAM technologies, RDRAMs have been specifically designed to fit a wide range of
applications, including main memory. The same RDRAM finds its way into graphics systems as well.
Additional system solutions, such as sockets, expansion modules, and clock sources, are available from
multiple suppliers.

The following table summarizes characteristics of DRAM technologies used for main memory
applications.

Table 1: 16MBytes Main Memory DRAM Comparisons

EDODRAM BEDO SD RAM RD RAM RD RAM

Organization lMKx 16 lMx 16 lM x 16 2Mx8orx9 8Mx8
Number of Chips 8 8 8 8 2
RJ:quired
Bandwidth Per 100 MBytes/s 132 MBytes/s 264- 400 533 - 600 533 - 600 MBytes/s
Ch!P_ MB_1!._es/s MB_}'.!es/s
Initial Lead-off x X+l X+2 X+4 X+2
Laten9'._
Burst Laten9'._ 3:3:3 to 2:2:2 1:1:1 1:1 :1 l :1 :l 1:1 :1:
Package 40SOJ or 44/50-pin TSOP 44150 32SVPorSHP 32SVPorSHP

40/44TSOP or 42:PJn SOJ TSOP
Pins Required on 95 - 110 80- 160 68- 72 or 31 31
the Controller 115-120

GRAPHICS DRAM ALTERNATIVES
Until recently, there were only two DRAM choices: page-mode DRAM and video-RAM (VRAM).

Today, the number choices has greatly increased. Page-mode DRAMs are being replaced with EDO
DRAMs, which provide added bandwidth by reducing page-mode cycle times. Synchronous DRAMs
(SDRAMs) and Synchronous Graphics RAMs (SGRAMs) attempt to solve the bandwidth issue by
adding a new synchronous interface to a standard DRAM core. Denser VRAMs, Window-RAMs
(WRAMs), and Synchronous VRAMs (SVRAMs) are available for dual-ported frame buffers. MoSys
DRAMs (MDRAMs) as well as a host of specialty DRAMs such as CDRAM, 3DRAM, etc. are available to
the developer as well. But these parts are generally not applicable to cost sensitive PC designs as these
parts are either expensive, or not widely available. The Rambus DRAM (RDRAM™) represents a
revolutionary approach to increasing bandwidth. RDRAMs transfer data at 533MHz over a narrow, byte­
wide bus referred to as the Rambus Channel.

Whereas latency for burst fills is the common metric for main memory systems, graphics systems
tend toward sustainable bandwidth. Because of the burst nature of so many of the graphics operations
(display refresh, bit-blit, and so on), larger transfer sizes are normal.

EDODRAMs

EDO DRAMs for graphics systems are generally the same as those used in main memory designs except for
one important difference. In order to provide sufficient bandwidth for graphics applications, the wide 16-bit
I/O versions of these DRAMs are used in the 4Mbit generation parts. A 16Mbit EDO DRAM is not suitable

227

for graphics due to granularity and bandwidth issues. Although a 16Mbit DRAM provides sufficient storage
for a 2MByte frame buffer, it does not provide sufficient bandwidth to meet associated display
requirements. EDO parts are usually combined with a 64-bit bus by using four parts and require a minimum
of 2MBytes of memory to make a 64-bit bus. EDO parts generally can be run with a CAS cycle time of up
to 50MHz, providing a peak bandwidth of 400MBytes/s.

In order to achieve the bandwidth necessary to support these display resolutions using conventional
DRAMs, designers have used two or four DRAM components in 32- or 64-bit wide data buses. These
conventional DRAMs present a granularity issue. For example, implementing a 64-bit bus requires four
x16 DRAMs (DRAMs with 16-bit I/O). Using 4Mbit DRAM technology, this leads to using four 256Kx16
DRAMs (page-mode, EDO or SDRAM) adding up to a 2MByte frame buffer. A lMByte frame buffer uses
two DRAMs in a 32-bit bus. Most 64-bit graphics controllers use only a 32-bit bus when configured with
lMBytes of memory. Most consumers are unaware that a 2MByte frame buffer is required to take full
advantage of the card's advertised bandwidth and rated performance.

Single-Ported DRAM Approach

Special versions of these parts are typically used in graphics systems, concentrating on reduced RAS
cycle times. Core speed of -50 and even -40 are available, reducing the RAS overhead and keeping the
usable bandwidth high, sometimes even approaching 80 or 90 percent of the peak bandwidth. Such a wide
bus is accompanied by a "pin cost" on a controller-usually 90 to 100 pins.

Frame buffers using a 32-bit data bus to interface to single-ported DRAMs (EDO, SDRAM, SGRAM)
use 52 to 55 signal pins plus 12 to 18 power and ground pins for a total of 64 to 73 pins.

BEDO Devices
BEDO devices do not exist in densities that would be applicable to graphics.

SDRAMs and SGRAMs
SDRAMs and a graphics specific SGRAM are alternatives for high-bandwidth graphics systems. These

devices are applicable for graphics at the 4Mbit (xl6) and 8Mbit SGRAM (x32) densities. Although 16Mbit
SDRAMs are applicable to main memory applications, the 16-bit wide bus is too narrow to support the
display refresh performance requirements of the majority of important display sizes.

SGRAMs, which are based on SDRAMs, are offered in the 8Mbit density. They use a x32 interface to
provide higher bandwidth for graphics. SGRAMs include the block write function, which allows SGRAMs
to write as much as 32 bytes in parallel (but only on every other clock cycle). They also have a single-color
register, so color expansion requires two passes for a font. Block write increases bandwidth up to four times
for pattern fills and up to two times for fonts. In addition to the wider bus, SGRAMs have one more pin,
DSF, that is used to encode "commands" to the SGRAM.

Data sheets have become available for SGRAMs, with some vendors showing 1 OOMHz bin split parts.
Because of board layout, clock/data trace, and skew issues, achieving 1 OOMHz operation on a board using

228

L VTIL signaling will be very difficult. Memory expansion sockets further complicate the board design;
SGRAM configurations supporting expandable frame buffers are not expected to achieve the component's
specified lOOMHz operation in a system environment.

A few controllers using SGRAM have been announced but are not yet shipping. Highest speed claims
are currently for 83MHz operation. Wide bus versions of the interface still have a significant pin penalty
(usually higher than EDO) due to the higher frequency operation requiring more ground pins to minimize
ground bounce. For a 32-bit bus running at 66MHz, the bandwidth is just 267MBytes/s. Running at 83MHz,
it would be 333MBytes/s; at lOOMHz, it would yield burst speeds of 400MBytes/s. Doubling the bus width
to 64-bits would double these numbers.

VRAMs and WRAMs
VRAMs are available in up to 4Mbit densities. The 4Mbit parts are arranged as x16 devices (for both

parallel and serial ports) and are contained in 64-pin packages. Because of the their dual-port design and
other features, VRAMs traditionally have been significantly more expensive than single-ported DRAMs
and, therefore, have been used only in high performance add-in cards. Most current card designs are moving
away from VRAMs because of cost and the additional pin count incurred due to the second port.

Samsung offers the WRAM, a special version of an 8Mbit VRAM, which is intended to be priced 40
to 50 percent higher than conventional DRAMs. The WRAM has a 32-bit parallel interface and a 16-bit
serial interface (for video). It also includes dual-color block write capability and some aligned block move
capability-positioning the part for high-performance add-in cards. The WRAM is currently single-sourced,
which is a concern to graphics card manufacturers.

In general, dual-ported memories are being bypassed for cost-sensitive applications, since the fixed
bandwidth partitioning of the two buses offers no advantage at low-resolutions and the serial bus cannot be
used for extra drawing bandwidth. Also, the trend for cost-sensitive, high-volume applications encourages
chip designers to integrate the RAMDAC, causing the pins of the VRAM serial port to go back to the GUI
chip, further increasing the pins and cost.

Dual-Ported DRAM Approach

Dual-ported memory, such as VRAM or WRAM, contribute to higher subsystem costs in two ways:

• The dual-ported DRAMs are higher cost than single-ported DRAMs.

• The DRAM interface can require more pins on the controller.

In the past, the serial port was connected to a separate RAMDAC chip. As controller silicon has
moved to smaller geometries and can accommodate more circuitry, many controller vendors have
integrated the RAMDACs into their GUI controllers to reduce overall component costs. With the
RAMDAC on the controller, the serial port must be connected back to the graphics controller. This

229

situation further reduces the total number of available controller pins and could force the controller into
a larger, more expensive package.

MD RAMs
A relatively new entrant in this crowded field of graphics specialty memories is MoSys. They have

copied the Rambus approach by providing multiplexed address data on a data bus that transfers data on
both edges of the clock. Their data bus width is 16 bits. Unlike all other DRAMs, MDRAMs differentiate
by providing many banks, as many as 96 banks, according to their data sheet. Because of the granularity of
the banks, MoSys claims to be able to offer parts in memory sizes other than powers of two (such as
.75MByte, 1.125MBytes, and 2.3MBytes). There are a total of 26 active signal pins and 16 power and
ground pins on each MDRAM. MDRAMs are offered in either an 86-pin PLCC package or a 160-pin
PQFP.

Although the granularity offers specific sizing, it also requires eight standard parts. Fitting display size
to the exact storage requirements also results in no off-screen storage. In all versions of hardware
requirements necessary for Windows 95 certification (and beyond), Microsoft requires lMByte or larger
display buffers. MoSys also claims to be able to run up to 166MHz, with an effective bandwidth of
666MBytes/s, using standard L VCMOS signaling.

RD RAMs
Rambus DRAMs offer the highest speed DRAM alternatives, transferring data at a burst rate of 533

or 600 MHz. 8Mbit x8 and 16Mbit x8 and x9 densities are available targeting graphics applications. All
RDRAMs are pin-compatible and are offered in two surface-mounted packages: a vertical package for high­
density packing on motherboards and a horizontal package for low-profile add-in cards.

The 16Mbit RDRAM has a dual-bank architecture, whereas the 8Mbit version has a single bank.
Enhancements to existing RDRAMs are being released which substantially reduce latency and increase
operating frequency to 600MHz. These parts will be available this year and the additional bandwidth can be
used in graphics applications for higher-resolution, deeper frame buffers, higher refresh rate monitors,
better performance or additional functionality.

Rambus Approach

Rambus technology is well suited for graphics due to its high bandwidth and the flexibility of product
offerings that it allows. A single 600 MBytes/s Rambus Channel supports sufficient bandwidth for display
resolutions up to 1280 x 1024 x 24bpp (or even 1600 x 1200 x 16bpp). A single Rambus Channel is
able to cover most PC display market requirements and up to 4MByte display buffers. GUI controllers can
also support two Rambus Channels providing up to 1.2 gigabyte-per-second in bandwidth for higher
resolutions or higher performance systems. The 8Mbit and 16Mbit RDRAMs allow the lowest-cost, single­
component lMByte or 2MByte frame buffers. The 8Mbit and 16Mbit RDRAMs are pin-compatible,
allowing the manufacturer to support multiple frame buffer sizes with one board layout. By incorporating a
low-profile RSocket™ on the Rambus Channel, memory can be expanded at product build time by the
dealer or even by the consumer with low-cost memory modules (RModulesTM).

Rambus DRAMs provide high bandwidth from the lowest pin-count interface. The interface to the byte­
wide Rambus Channel takes only 31 pins on the controller. The interface consists of 15 active pins for data,

230

control, and enable functions, with most of the rest of the pins for power and grounds. The Rambus frame
buffer saves up to 80 pins over alternative frame buffers. The pin-savings frees up the pad area on the
controller die, allowing savings on controller die costs and controller package costs. The graphics designer
is able to incorporate additional functions into the controller, such as support for video interfaces, feature
connectors, or 3D graphics support. The Rambus-based frame buffer allows the lowest cost controllers and
lowest cost support for expanded feature sets.

Unlike the SGRAMs or dual-ported DRAMs, RDRAMs have been specifically designed to fit a wide
range of applications, including, but not limited to, graphics. The advantage to graphics designers is that
broadly used memories ramp in volume and descend price curves faster than components targeted for
specific application segments. A comparison summary of the alternatives is shown is Table 2.

Due to its compact design, Rambus technology helps to reduce board space. Most PC graphics frame
buffers can be implemented with a single 8Mbit or 16Mbit RDRAM component. With the possible
exception of SI/SO), all of the signals are routed as straight traces on the top of the board, leaving no signals
on the bottom of the board underneath the memory array. The Rambus-based frame buffer can use only one
to two square inches of board space, even if memory expansion is supported.

Smaller boards help to reduce the overall cost of the PC. The board size determines how many boards
can fit on a single panel for PC board manufacture; the more cards per panel, the lower the PC cost. In
addition, minimizing the "footprint" on the motherboard increases the feasibility of putting the graphics
controller directly on the motherboard.

Table 2: 2MByte Frame Buffer Comparisons

EDO 4Mbit WRAM SD RAM SGRAM MD RAM RD RAM
DRAM VRAM

O~anization 256Kx 16 256Kx 16 256Kx 32 256Kx 16 256Kx32 197K x 32 2Mx8 orx9
Number of Chips 4 4 2 4 2 2 1
~uired

Peak Bandwidth 100 50 160 132- 200 264- 400 400- 666 533 - 600
PerChi__Q_ MBytes/s MB~s/s MB_l!_es/s MB~s/s MBj'._tes/s MB_}'!es/s MB~s/s

Relative Cost 1.00 1.9 1.5 1.1 l.3-1.6 ? 1.05
Board Area 1.83 sq. in . 8 sq. in 1.58 sq. in 1.54 sq. 1.1 sq. in 1.0 sq. in . 0.1 sq. in
(component 1.36 sq. in in. vertical
foo....!E_rint on!x) 0.5 ~ in horiz.
Package 40SOJ or 64ZIP 120PQFP 44150 lOOTQFP 68pinPLCC 32SVPorSHP

40/44 TSOP or 128 pin
TSOP PQFP

Pins Required on 95 - 110 80- 160 85 - 170 67 -72or 68-72 or 70- 80 31
the Controller 114- 119 115-120

BEYOND MAIN MEMORY AND GRAPHICS
As DRAM densities continue to increase, fewer DRAMs are needed for a given memory subsystems.

Already in graphics subsystems, a single DRAM can satisfy most of the graphics operations for a PC.
Inevitably, main memory will be forced to one or two chips, which will spur designers to try to integrate
graphics and main memory into the same memory space. These types of unified memory subsystems are
the likely future for PC systems.

Already, game machines are showing the way. Nintendo is introducing its revolutionary Nintendo 64
game system with a unified memory subsystem. Consisting of a single Rambus channel, all graphics data,
display refresh, executable code, and data are contained in one memory space. Because of Nintendo's use
of RD RAMs, they were able to accomplish this in an extremely low-cost consumer product.

CONCLUSIONS
1996 will be the first year any of the new high-bandwidth DRAM memory type reach any significant

volume. Several graphics companies (SOI, Cirrus Logic, and Chromatic) all will be shipping systems or

231

chips that use the Rambus interface. An important game platform, the Nintendo 64, is using RDRAM
technology as a unified memory subsystem. Reaching unparalleled graphics capability in an $250 base
system, this machine promises to raise the bar on expectations from 3D subsystems and cost.

BIOGRAPHY
Billy Garrett is the manager of graphics development at Rambus Inc. While at Rambus Inc. he has

worked on the development of Rambus technology for high volume personal, portable, and multimedia
systems. Mr. Garrett holds both a BSEE ('82) and an MBA ('88) from the University of South Carolina. He
has worked on a variety of design projects including PC graphics boards, semi-custom ASICs for graphics
and main memory applications, PC systems, UNIX servers, and X terminals. Mr. Garrett holds several
patents in these areas.

TRADEMARKS
Rambus, RD RAM, RSocket, RModule are trademarks of Rambus Inc. All other brand and product

names used may be trademarks of their respective companies.

232

Using PCI Interface in Routers

Aamer Mahmood, Cisco Systems

For its existing and next generation routers, Cisco has chosen network interface archi­
tecture that uses PCI bus as a common interface between various network media
adapters, called Port Adapters, and the rest of the system. This allows leveraging of
industry standard chips and also makes it possible to use the Port Adapters across mul­
tiple platforms. The Port Adapters interface to the network media (ethernet, token ring,
fddi, etc.) on one end and connect to the rest of the system at the other end using PCI
bus. The adapters are compliant to PCI electrical specifications. Mechanically they are
6.5 x 5.5 (roughly), double-sided boards that use 200-pin AMP connector that supports
hot swap across the PCI bus. The system uses multiple levels of PCI buses. There can
be many Port Adapters in a system and each Port Adapter can in tum support 1-8 PCI
agents. External Arbiter on the Port Adapter is used for arbitrating bus between the host
system (to which Port Adapter is connected) and multiple agents on the PCI bus on the
Adapter. All the Adapters have master capability and transfer data from/to network
interface using 16-byte (or larger) bursts. All Adapters are required to support
scatter/gather DMA with no alignment restrictions. As most of systems are big-endian,
it is highly desirable that adapters support both little and big endian nodes. As latency
is of concern, all Adapters are required to have big enough fifos to support the network
interface at line rate. Since there are multiple Port adapters in a system, PCI bus
utilization by each PCI interface is of primary importance.

233

,,. ~~ ESSENTIAL
~~...,. Communications

Serial-HIPPI Network Interfaces
Using the RoadRunnerPCI ASIC
Michael McGowen
Chief Technical Officer

Copyright 1995, Essential Communications.
All rights reserved under International and Pan-American
Copyright Conventions.

World Fast Networking is a trademark of Essential Communications.
All other trademarks and copyrights belong to their respective companies.

Material in this overview subject to change without notice. Essential
Communications assumes no liability for errors or inaccuracies in this document.

Essential Communications
4374 Alexander Blvd., Suite T
Albuquerque, New Mexico 87107
U.S.A.

Tel. 1-505-344-0080
Fax. 1-505-344-0408

info@esscom.com
http://www.esscom.com

234

RoadRunnerPCI Technical Overview

Introduction

In addition to providing a full line of HIPPI switches, gateways and related
products, Essential Communications has developed a number of network interface
cards supporting different bus interfaces, thus providing Serial-HIPPI networking
for a wide range of workstations and personal computers. The heart of these cards
is a custom ASIC known as the "RoadRunnerPCI."

RoadRunnerPCI Serial-HIPPI adapters are designed to provide flexibility and high
performance, and feature:

• PCI (Version 2.1) host interface,

• 800 Mbit/sec HIPPI data rates in both directions simultaneously,

• on-board intelligence that reduces requirements on the host processor,

• event-driven rather than interrupt-driven processing,

• unique ring-buffer approach to data movement,

• low latency,

• TCP/IP checksum assistance,

• Endian data conversion.

Conceptually, the RoadRunnerPCI Serial-HIPP! adapter utilizes a "building
blocks" architecture: in addition to its internal processor, the various interfaces
provided on the card are virtually independent objects that can be easily replaced or
upgraded. This allows, for example, creation of a new card that maintains the same
host interaction but uses a different bus interface. Or, the on-board processor could
be replaced with one that is more powerful. Even the HIPPI interfaces can be
replaced with other network interfaces.

What Is Serial-HIPPI?

High Performance Parallel Interface, or ''HIPPI," is today's industry standard for
high-bandwidth networking in both system-to-system and system-to-peripheral
environments. Standardized by the American National Standards Institute (ANSI),
HIPPI has been widely adopted by research, higher-education and engineering
organizations worldwide. This transition is occurring because other standard
networks, previously thought of as high bandwidth (e.g., FIDDI, ATM-OC3),
cannot keep up with today's systems.

With built-in features for high-bandwidth network switching, HIPPI defines
multiple point-to-point channels between CPUs, and from CPUs to storage
systems, displays and other peripherals. HIPPI provides a bandwidth of 800
megabits (100 megabytes) per second over a distance of 50 meters on copper
cables. Serial-HIPP! extends this distance to one kilometer on multi-mode, and
10 kilometers on single-mode fiber optic cables, while providing two channels,
one each for simultaneous transmit and receive.

HIPPI networking has long been used in production supercomputing environments
for peripheral connectivity, clustering and high-speed LANs. Workstation-based
HIPPI networks were difficult to implement because of the bulky 50-pair copper
cables that were required. Now, however, with Serial-HIPP! available on network
interface cards, large-scale HIPPI LANs are not only viable, but easy to implement.

Essential Communications World Fast Networldng™ (Tel) 1·505-344-0080 (Fax) 1-505-344-0408 http://www.esscom.com

235

RoadRunnerPCI Technlcal Overview

Basic NIC Architecture

In addition to this PCI card and a PCI mezzanine card, the NIC family includes
cards designed for use with Silicon Graphics' GI0-64, Sun's SBus and IBM's
MicroChannel architectures. The latter cards feature a bridge between the particular
bus interface and the RoadRunnerPCI (the bridge is not needed on the PCl-bus
cards); this hardware bridge is transparent to the RoadRunnerPCI's host interaction
software. Thus, the complete range of host software drivers and utilities developed
by Essential is available for all of the network interface cards.

The basic NIC hardware consists of a Serial-HIPPI fiber transceiver, two HP
GLINK chips, the RoadRunnerPCI ASIC, and a memory chip.

Serial
HIPPI

Figure 1. Network interface card layout

PClorPMC,
GI0-64, SBus,
MicroChannel,

EISA

The RoadRunnerPCI interfaces directly with the PCI bus and contains an on-board
32-bit RISC processor, DMA engine, PCI registers, and local registers. The internal
CPU manages the independent DMA channels between the host and the on-board
memory (256 KB of SRAM), and between this local memory and the HP GLINK
HIPPI serializer chips. Conversion between serialized and optical data is via a
Methode optical transceiver. The NIC operates on a single +5V source.

PCI mezzanine cards (PMCs) are used where slim, parallel board mounting is
necessary, such as in a single-board computer host, or for media interface in
systems with no PCI bus. This PMC HIPPI card, with the Essential driver suite, is
intended for use in embedded systems and previous-generation workstations with
bus architectures such as HP Precision or VME.

Essential is the first vendor to provide completely integrated Serial-HIPPI network
interface cards-all previous HIPPI NICs were parallel, copper versions. The
RoadRunnerPCI ASIC also dramatically reduces the NI C's complexity and number
of components; thus these cards are much lower in cost and directly competitive
with the latest ATM and Fibre Channel offerings. The Essential driver supports
TCP/IP HIPPI ARP (RFC 1374), the HIPPI Network Forum API, and IPI-3
diagnostics and performance-monitoring utilities.

Supported bus platforms are PCI Version 2.1, PCI Mezzanine card (PMC), GI0-64,
SBus, MicroChannel, and EISA. Supported operating systems are Digital UNIX,
Windows NT, Novell Netware, SGI's IRIX, Sun's Solaris, IBM's AIX, HP-UX,
Wind River's VX Works, and FreeBSD.

Essential Communications WOrld Fast NetworlclngTM (Tel) 1-505-344-0080 (Fax) 1-505-344-0408 http://www.esscom.com

236

RoadRunnarPCI Tachnlcal Ovarvl-

1.0 Features

The RoadRunnerPCI Serial-HIPPI NIC is a programmable device that includes two
network interfaces: data transmission is via a single-wide Source port, and
reception occurs over a single-wide Destination port-these are separate, 800 Mbit/
sec. optical-fiber channels. The two ports are usually used together to form a shared
full-duplex device, but the channels can be used independently as two non-shared
private devices. This means that the network interface card can separately support
an application that just sends and another application that just receives, as well as
applications that both send and receive.

The RoadRunnerPCI's CPU performs all necessary HIPPI-PH physical-layer
processing. The host processor and software simply provides packets to be sent and
accepts received packets-all HIPPI operations are transparent to the host. Special
provisions are included for dealing with unlimited size packets, as well as for
concatenating several packets within the same connection.

---+

PCI
Interface

G
--aJ ~-- ---+

+-

HIPPI
Sert.I

lnte"-

1 =- I -- .__ _ ___. +-

HOST INTERFACE NETWORK INTERFACE

Figure 2. The AOlldAunnerPCI ASIC.

The PCI Local Bus Specification Version 2.1 supports a 64-bit data path in addition
to the standard 32-bit data path. The RoadRunnerPCI Serial-HIPPI adapter
provides a 32-bit interface. However, the RoadRunnerPCI utilizes a 64-bit datapath
internally, so future versions of the RoadRunnerPCI Serial-HIPPI adapter could
easily support a 64-bit PCI host interface.

1.1 Internal Processor

The primary interaction between host and adapter is between two processors-the
host is considered as one, and the CPU on the RoadRunnerPCI is the other. This
approach allows the addition of new or unique features via simple software
upgrades. The RoadRunnerPCI processor can be set up to accommodate different
buffer descriptor formats, providing the ability to adapt to the communication
method which best suits the host.

Enantlal Communications World Fut Networking™ (Tai) 1-505-344-0080 (Fax) 1-505-344-0408 http://www.asecom.com

237

RoadRunnerPCI Technical Overview

Processor execution is according to an "event" model rather than an "interrupt"
model, meaning that the frequency of host interruptions is greatly reduced, which
contributes to higher performance execution. A small instruction cache is provided
so the processor does not use any of the NIC's local memory bandwidth.

The NIC architecture uses card-based, master-mode DMA (direct memory access)
to move data efficiently between host memory and the NIC memory over the PCI
bus. The RoadRunnerPCI processor performs all tasks required to operate the fiber
HIPPI interfaces and control the DMA channels. The processor directs the
operation of the adapter, based on downloaded configuration parameters; it also
keeps processing and interface statistics, which are accessible to the host.

1.2 OMA Channels

The RoadRunnerPCI Serial-HIPP! adapter provides DMA functions for moving
data to and from host memory, eliminating the need for the host to perform these
operations. Two independent DMA channels are provided-one is used exclusively
for host memory reads while the other is used exclusively for host memory writes.
These channels provide the primary means by which the PCI accesses host memory
(mailboxes are also implemented, as discussed in a following section), and they are
used for the transfer of control information, as well as network data, all of which is
managed by the internal processor.

1.3 Buffer Rings

Data is moved by means of host-provided memory buffers. Each buffer is identified
by a descriptor which includes a pointer to the buffer location, the length of the
buffer, and control flags that indicate the content of the buffer.

8 I Descriptor I _. , Buffer I I Buffer I
(':; (_,~, I/

i j '-...... (Consumer)

(Producer) --+ ,.--De-sc-rlp-to_r___,I I Descriptor I

/ ~ / ~
I Buffer I I Descriptor I _. , Buffer I I Buffer I

Figure 3. A buffer-descriptor ring.

All bytes in a buffer are physically contiguous when viewed from both the host and
the NIC. (Buffers are frequently one virtual page long.) Note that this buffer­
descriptor approach supports the "scatter/gather" method of memory usage.
Removing the responsibility for buffer coordination from the host processor
increases its efficiency and overall system performance.

Essential Communications World Fast Networking™ (Tel) 1-505-344-0080 (Fax) 1-505-344-0408 http://www.esscom.com

238

RoedRunnerPCI Technical Overview

Buffer descriptors are collected into fixed-sized rings for processing (see the
previous figure). In addition to pointing a buffer in host memory, each descriptor
points to the next descriptor, and the last descriptor points to the first.

Internally, a ring is an array of descriptors. Processing proceeds from descriptor to
descriptor around the ring. The agent that adds buffers to the ring is called the
"Producer," and the agent that removes buffers is called the "Consumer." The
Consumer chases the Producer, as shown in Figure 4; when the Producer and the
Consumer reference the same descriptor, the ring is empty. (The Producer is not
allowed to "catch" the Consumer.)

1
Descriptor

(Consumer)~ Descriptor

Descriptor

(Producer)~ Descriptor

Descriptor

Descriptor

J

Figure 4. Descriptor-ring processing.

BBr=i
:::----: LJ
~
____., Buffer I
____ ,Buffer I

I Buffer I

As described earlier, data is actually transferred between the host and the NIC by
means of master-mode OMA channels, controlled by the RoadRunnerPCI.

1.3.1 Ring Management

The RoadRunnerPCI ASIC supports four types of rings: Receive, Send, Event, and
Command. All data processed by the NIC pass through a data ring-there is one
Send ring and one or more Receive Rings (when operating in HIPPI-PH mode,
there is only one Receive Ring). Receive Rings handle incoming data and the Send
Ring handles outgoing data. Receive Rings are created and destroyed as device
interfaces are opened and closed.

The two control rings manage the operation of the RoadRunnerPCI Serial-HIPP!
adapter. The Command Ring handles commands from the host software that the
NIC will process, and the Event Ring contains the results of NIC processing.
'fypical commands include notification that there is more data to send, and a
notification to the NIC that there are more empty buffers for a Receive Ring.
'fypical Events include "Packet has been sent" and "Packet has arrived."

Data buffering is managed through the ring-buffering mechanism described earlier.
Received packets are multiplexed by the NIC based on the HIPPl-FP ULP field and
placed in the appropriate Receive Ring. The frequency of host interrupts is reduced
by the RoadRunnerPCI placing Event notifications in an Event Ring-interrupts
are then generated based on conditions in the Event Ring instead of for each Event.

Essendal Communications !Mlrld F•t Networldng™ {Tel) 1..SCJ5-344..Q08 (Fax) 1-505-344-0408 http://www.esscom.com

239

RoadRunnerPCI Technical Overvl-

1.4 Data Synchronization and Buffer Alignment

The NIC also incorporates local Send and Receive Rings that are not visible to the
host (see Figure 5). These rings are used for buffering and proper synchronization
of data as it passes between the host and the HIPPI interfaces.

Host

, ___ @
-1 -1---@ 1
+-+ I Configuration , ._____. 'EJ
+-- I Statlatlca I Praceuor

~
- ,.... Q"'c ___ J __
.__ DMA ~ _ Source Interface)

Deatlnatlon Interface)

Figure 5. The RoadRunnerPCI Serlal-HIPPI adapter model.

This approach supports automatic handling of misaligned buffers, which means that
data can be transferred between any two buffers, regardless of the alignment of
either. In addition, this feature can eliminate the need for the host to make copies of
the data, providing a major improvement in performance.

1.4.1 Buffer Alignment

Not all DMA transfers will be nicely aligned to 32-bit boundaries; in fact, the data
could be on any byte boundary. Traditionally, most adapters have placed the burden
on the host to align the buffers prior to data transfer. This is time consuming and
degrades system performance. The RoadRunnerPCI alleviates the problem by
providing the byte steering logic necessary to compensate for misaligned buffers.

Data from any host byte address can be aligned to any byte offset of the
RoadRunner's internal memory. This flexible scheme allows multiple odd-length,
odd-boundary buffers to be directly concatenated into the proper 32-bit HIPPI
words. This process also aids in the generation of the internal TCP/IP checksums.

1.5 Programmable Configuration and Operating Firmware

An on-board EEPROM is used for storage of important configuration and
manufacturing information. The internal processor initially executes from this

E&1entlal Communlcatlona Mt>rld Fast Networlclng™ (Tel) 1-505-344-0080 (Fax) 1-505-344-0408 http://www.e&1com.com

240

RoaclRunnerPCI Technical overview

EEPROM, loading all of the internal PCI registers. (Note that the present register
configuration will remain on the adapter even if it is moved between machines.)

Use of the EEPROM allows vital adapter information to be accessed and updated
via software whenever necessary-both the host and local processor can read and
write this information. The EEPROM also can store non-PCI information, such as
addresses, manufacturing data, diagnostic results, etc.

1.5.1 Operating Firmware

The software running on the internal processor is referred to as ''firmware" to
prevent confusion with the host driver. The firmware image runs from on-board
SRAM, which is loaded during initialization, either from host memory or from the
on-board EEPROM. The host also can store firmware in the EEPROM. Thus,
software conflicts (e.g., incompatible or outdated versions) between host driver and
adapter are reduced. In addition, installation of new software is simplified-PROM
swapping or use of a special firmware-loading utility is not required.

Firmware images include operating images and diagnostic images. Each mode
is independent of the other modes. There is an operating image that supports
HIPPI-FP operation, with checksum extensions, and a separate image that supports
HIPPI-PH processing. The NIC can be configured either as a shared device
supporting HIPPI-FP, or as a dedicated point-to-point, private-protocol device
supporting HIPPI-PH.

The shared model is suitable for network operation using IP concurrently with
applications using private protocols. In the shared mode, a single connection can
pass a limited amount of data in one or more packets. The NIC is configured for
maximum number of bytes that can be passed over a single connection. In all cases
the NIC handles the HIPPI-PH state transitions and all request, confirm, indicate
and response primitives.

1.5.2 Checksums

In addition to support for TCP/IP and UDP/IP checksum generation and validation
during HIPPI-FP operation, a TCP/IP-style checksum is calculated on all data
transferred through the RoadRunnerPCI's internal data rings. This can improve the
performance of a host implementation that supports hardware checksum assist

1.6 Error Handling

There are two possible error types defined by the PCI specification, parity errors
and system errors. The RoadRunnerPCI controller supports both of these error
reporting mechanisms.

Parity errors are checked across the data bus by the receiving agent on the PCI bus
during transactions. System errors are checked across the address bus, and across
the data bus during a Special Cycle command. Any interface on the PCI bus can
indicate a system error. Certain error conditions cause events to be sent directly to
the ASIC internal processor. This allows flexibility in the implementation of an
error-recovery mechanism.

Esaentlal Communications World Fast NetworlcfngTM (Tel) 1-505-344-0080 {Fax) 1-505-344-0408 http://www.esscom.com

241

RoadRunnerPCI Technical OVervtew

1.7 Memory Arbitration

There are six entities that arbitrate for the use of the local SRAM. A priority
scheme between these six requesters ensures no requester can cause a loss or
corruption of the dataflow.

The two HIPPI network interfaces have the highest priority so they never underrun
or overrun. The HIPPI Transmit interface is guaranteed access to the local memory
on the clock cycle after it makes a request; the HIPPI Receive interface is
guaranteed memory access within two clock cycles of making a request. The
Transmit or Receive hardware then ensures that there is at least one, and sometimes
two, clock cycles between memory accesses-this enables other requesters access
to the memory.

Host access to the RoadRunnerPCI also must occur in a timely fashion, and is next
in priority. Depending on the level of HIPPI activity, a host access request is
serviced between one and five internal clock cycles.

The internal processor is considered lowest priority as long as any data transfers are
in progress. Since the primary job of the processor is to keep the data moving, it's
job is most critical prior to data movement beginning, at which time there will be
plenty of bandwidth for the processor. The processor is never starved for
bandwidth, since it has an instruction cache, as well as a mechanism that advances
its priority if its request has been waiting too long.

1.8 Mailboxes

A common technique for communication between a host processor and an adapter
is use of "mailboxes." Typically these are locations that are written to by one
processor, causing an interrupt to the other processor. The value written may or may
not have any significance, and each processor is allowed to read the mailbox only
once before it is cleared by the hardware.

In the RoadRunnerPCI, the main mechanism for communications between the host
and the RoadRunnerPCI adapter is via buffer descriptors. Use of host buffer
descriptors is more efficient, allowing larger amounts of data to be passed without
requiring the host to access the PCI bus or process interrupts. However, generalized
mailboxes also have been implemented to provide greater flexibility in the
interaction between the host and the adapter. The value in the mailbox is significant
in this mailbox scheme. Also, mailboxes can vary in size, and can be read as many
times as necessary without the contents being erased.

1.9 Endlan Conversion

There are two basic formats for storing data in memory: "Little Endian" and "Big
Endian." The PCI Local Bus Specification (Version 2.1) prescribes a Little-Endian
format for PCI buses; however, not all hosts accept data presented in this format.
Therefore, to facilitate communication between hosts and adapters with Big Endian
designs, the RoadRunnerPCI can perform Little-Endian to Big-Endian byte swaps,
translating between the two formats. This flexibility means the RoadRunnerPCI
also can be the basis for a non-PCI interface where data is expected in Big-Endian
format, and it enhances the performance of PCI bridges to other bus systems such
as GI0-64, SBus and MicroChannel.

Essential Communications Mbrld Fast Networlclng™ (Tel) 1-505-344-0080 (Fax) 1-505-344-0408 http://www.esscom.com

242

Dolch Computer Systems

Introduction

Introduction

243

Dolch Computer Systems

DOLCH'S
CORE COMPETENCE

DOLCH'S
CORE COMPETENCE

244

Dolch Computer Systems

DOLCH'S
CORE COMPETENCE

MARKET FOCUS

PORTABLE INDUSTRIAL
APPLICATIONS

245

Dolch Computer Systems

PRODUCT SYNERGY
INDUSTRIAL
PORTABLES

246

Dolch Computer Systems

PRODUCT SYNERGY

PRODUCT SYNERGY

247

Dolch Computer Systems

LEADING EDGE
MOBILE COMPUTING

FIVE SLOT
PAC

!II ••••••• "

LEADING EDGE
MOBILE COMPUTING

..

.

248

..

... , ..

.

. . .
•

.

Dolch Computer Systems

MASSIVE EXPANSION

Allll.: ••••••

MASSIVE EXPANSION

Allll.:

249

. . .

Dolch Computer Systems

OPTIMIZED EXPANSION

TWO SLOT

• . . .
•

L.PAC • • • • • • • • • • . .
•

MOBILE
BUSINESS COMMUNICATION

250

Dolch Computer Systems

MOBILE
BUSINESS COMMUNICATION

Power Portable
Product Differentiation

251

Dolch Computer Systems

Power Portable
Product Differentiation

Power Portable
Product Differentiation

252

Dolch Computer Systems

Power Portable
Product Differentiation

Power Portable
Product Differentiation

253

Dolch Computer Systems

Power Portable
Product Differentiation

254

PCI RAID CONTROLLERS
K. K. Rao

Mylex Corporation
34551, Ardenwood Blvd
Fremont, CA 94555 USA

(510) 742-7515/ (510) 797-4907 (fax)
kkr@mylex.com

Abstract: This paper traces the history of Mylex RAID controller development and the migration to the
PCI bus. The features of the PCI RAID controllers now in production are described along with the
platforms and operating systems that are supported. Some of the issues relating to different platforms
and operating systems are discussed. A look at some of the future developments is presented.

FROM EISA TO PCI -A HISTORY OF
MYLEX RAID CONTROLLER
DEVEWPMENT

The 90' s began with expected growth in client/
server solutions, and Mylex recognized the need for
reliable mass storage at prices suitable for the PC
server market. RAID technology offered the solution,
but this necessitated the development of a host-adap­
ter-based disk array controller.

Mylex RAID controller development began in
June, 1991. The first product used an embedded
RISC-based processor, the Intel i960CA, and was
based on the EISA-bus. The controller provided five
SCSI channels to interface with the disk subsystem,
and it supported RAID levels 0, 1, 5, and O+ 1, as well
as single drive control capability ("JBOD"). Called
the DAC960-5, it went into production in April, 1992.

Subsequently, 3-, 2- and I-channel versions of
this product were developed, which proved to be more
cost-effective than the original 5-channel version.
Further, the migration to different busses commenced.

The Migration Steps to PCI

The first migration was to the MicroChannel™
bus. The MicroChannel product, the DAC960M-2,
was sampled in December, 1992 and went into
production in April, 1993. The migration to a host
SCSI bus, to achieve platform independence, com­
menced in the summer of 1993 around the same time
that the development of a PCI RAID controller began.

The first Mylex PCI controller, the DAC960P,
went into production in September, 1994. Subse­
quently, two other products, the DAC960PD and the
DAC960PL, were introduced in December, 1994 and
March, 1995 respectively.

To date (February, 1996), Mylex has shipped in
excess of 250,000 RAID controllers, of which more
than 90,000 are PCI based.

255

PCl's Special Challenges. The migration to
PCI presented some special challenges, especially in
terms of time to market. For both EISA and Micro­
Channel busses, an off-the-shelf bus master interface
controller chip was available. This made the hardware
design relatively quick, since no ASIC development
was needed. However, for the PCI bus, no such
device was available, given that PCI started off as,
(and still is, primarily), a component bus - while a
RAID controller requires an entire embedded proces­
sor system.

RAID TERMINOLOGY

RAID - Redundant Array of Independent Disks

RAID level 0 - Block striping is provided, which
yields higher performance than with individual
disk drives. There is no redundancy.

RAID level 1- Drives are paired and mirrored.
All data is 100% duplicated on an equivalent
drive (fully redundant).

RAID level S - Data is striped across several disk
drives. Parity protection provides redundancy.

RAID level O+ 1 - Combines RAID levels 0 and 1.
This level provides both striping across drives
and redundancy through mirroring.

JBOD- "Just a Bunch of Drives." Each drive
can operate independently, like with a common
host bus adapter; or multiple drives may be
spanned and seen as a single, very-large drive.
No redundancy is provided.

KKRao

ARCHITECTURE OF MYLEX PCI RAID
CONTROLLERS

All of the Mylex PCI RAID controllers that are
currently shipping share a common architecture
similar to that shown in Figure 1, the block diagram of
the My lex DAC960PD.

The PCI architecture and the DRAM subsystem
are the keys to the high performance of the Mylex
RAID controller. The DAC960P and the DAC960PD
provide two options for DRAM - a standard fast-page
mode DRAM, which operates with one wait state and
can provide a peak memory bandwidth of 66 Mbytes/
second; and an EDRAM, which operates at zero wait
states with a peak bandwidth of 133 Mbytesl sec.

At power-up, the i960 copies code from the flash
EEPROM into the DRAM and executes it from the
DRAM.

~ CACHE MEMORY SIMM I
Drive

ChannelO

II

Mylex PCI RAID Controllers

Array configuration information is maintained in
the EEPROM, with a backup copy in the NVRAM.

Commands from the host CPU(s) are posted into
mailbox registers in the PCI interface component (the
PCU). These commands are analyzed by the i960,
which instructs the SCSI 1/0 processors (SIOPs) to
initiate one or more SCSI commands to the drives.

The DRAM is also used as a cache, controlled by
the memory control unit (MCU) - thus, system read
commands which have cache hits result in data trans­
fers directly from the cache to the PCI bus through the
PCU. The cache can be configured as write-through
or write-back on a logical drive basis.

An optional battery backup module (not shown)
will maintain any write data that may be remaining in
the cache in the event of a power failure.

Drive Drive
Channel1 Channel2

, __ Il ___________________ Il _____
i960CF n
CPU B

i Optional i -=========1 i

·F~w~~~_1 II II
32-Bit Bus

II

B
Il

Host PCI 32-Bit Bus

Figure 1. Block Diagram of Mylex DAC960PD PCI RAID Controller

256

KKRao Mylex PCI RAID Controllers

Figure 2. Mylex DAC960PD PCI RAID Controller

PCI RAID CONTROLLER FEATURES

The features listed below are generally common
to all three Mylex PCI RAID controllers - DAC960P,
the DAC960PD (shown in Figure 2) and DAC960PL.
Differences between the controllers are indicated
wherever applicable.

• All three models are full-size PCI boards .

• The DAC960P and the DAC960PD use an
i960CF at the core. The DAC960PL uses an
i960JF at the core.

• 1-, 2- and 3-channel versions are available. The
basic board layout accommodates three channels.
2- and I-channel versions are realized by
depopulating the standard layout.

• All SCSI channels are Fast (lOM transfers per
second) and Wide (16-bit). Ultra-SCSI (20M
transfers/second) versions of the DAC960P and
the DAC960PD are currently sampling, and will
be in production in April, 1996.

• Cache memory options are 2, 4, 8, 16 and 32
Mbytes with fast-page mode DRAMs, and (not
available for the DAC960PL) 4 and 8 Mbytes
with EDRAMs.

• Data transfers between cache memory and the
PCI bus are sustained at almost 133 Mbytes/
second with EDRAM and almost 66 Mbytes/
second with DRAM~

•

•

•

•

•
•

•

•

257

The battery backup module option is available for
all models.

The DAC960P has a single 68-pin high-density
connector on the back-plane for connecting one
SCSI channel externally.
The DAC960PD and the DAC960PL have two
68-pin ultra-high-density connectors on the back­
plane providing for two external SCSI channels .

Supported RAID levels are 0, 1, 5, O+l and
JBOD.

Multiple disks can be designated as hot spares, to
dynamically replace failed drives.

Hot swapping of disk drives is supported .

A pass-though mode is available for non-disk
devices, such as CDROMs and tape drives.

Multiple-drive subsystem enclosure management
schemes are supported: Digital StorageWorks™,
Conner, Mylex AEMI, SAF-TE, as well as some
proprietary schemes for key OEM customers.

The DAC960P and the DAC960PD can deliver
29 Mbytes/ second of sustained sequential read
performance from the disk drives to the system
memory, and 2000 iops random performance.

KKRao

OPERATING SYSTEM AND PLATFORM
SUPPORT

In general, support for an operating system con­
sists of a RAID controller device driver and one or
more administration and monitoring utilities which
notify system administrators of hardware, software, or
network-related events requiring attention.

Mylex development efforts are on-going in sup­
port of the major client-server operating environments
and platforms.

Intel (x86) Architecture Platforms

The Intel x86-based operating systems that are
supported are:

• Novell Netware 3. lx and 4.x,
• Microsoft Windows NT 3.51,
• IBM OS/2 2.x and 3.x,
• SCO ODT 3.0 and Openserver Rel 5.0,
• Unixware 2.01,
• Banyan Vines 6.0.

Administration and monitoring utilities for all the
above are server-based. In addition, a client/ server­
based GUI utility, the Global Array Manager™, is
available for the following servers and clients:

Servers
• Windows NT 3.51
• Novell NetWare 3.lx and 4.x

Clients
• Microsoft Windows
• Windows for Workgroups
• Windows NT.

Initial array configuration is through a DOS­
based utility (DACCF.EXE). Booting from the array
is possible through the DAC960 BIOS.

PowerPC Platforms

The supported operating system for the PowerPC
is Microsoft Windows NT 3.51. Initial array configur­
ation is through an Open Firmware based utility.
Booting from the array is through an Open Firmware
boot ROM.

258

Mylex PCI RAID Controllers

Figure 3. Mylo: RAID Controller
Architecture

Digital Alpha™ Platforms

Supported operating systems for Digital Alpha
platforms are:

• Microsoft Windows NT 3.51,
• OSF-1,
• VMS.

Initial array configuration is through an ARC
(Advanced .RISC .Computing standard) based utility.
Booting from the array requires support from the
system firmware and is available on several platforms.

MIPs R4000 Platforms

The supported operating system for MI~ R4000
platforms is Microsoft Windows NT 3.51. Initial
array configuration is through an ARC based utility.
Booting from the array requires support from the
system firmware and is available on several platforms.

·);.#·,;
. ;~·;~

·,

KKRao

PCl-REIATED ISSUES WITH PIATFORMS
AND OPERATING SYSTEMS

Most of the PCl-related issues that My lex faced
when developing for different platforms and operating
systems were due to the relative infancy of PCI. Some
issues were due to the ambiguity in the 2.0 PCI Speci­
fication. The 2. l Specification addressed many of
these issues.

Protocol and Timing Issues

The initial PCI implementations in the Intel
architecture - the Mercury and Neptune chipsets -
were aimed primarily at the desktop markets. System
memories could only support transfer rates in the
order of 40 to 50 Mbytes/second. Thus, the full PCI
bandwidth was not being tested at that time. With the
emergence of the newer Triton chipsets, that was no
longer the case, giving rise to some protocol and
timing problems.

The 2.0 Specification indicated that accesses to
registers on devices had to be provided in both
memory and 1/0 spaces in order to support processors
which did not have explicit 1/0 instructions. How­
ever, this was mentioned at only one place in the
specification and was overlooked by many imple­
menters causing problems in porting to non-x86
platforms. The 2. l Specification came out with a very
clear recommendation to implementers to provide
both kinds of accesses to registers.

In installations with multiple adapters from the
same vendor, the addressing of specific controllers
from a utility and user interface perspective is an
issue. The 2. l BIOS Specification provides a new call
which returns a slot number given a bus, device and
function number. However, in operating systems such
as Windows NT, where BIOS calls are not possible
and PCI configuration information is provided
through operating system functions, the physical slot
number cannot be obtained.

Boot Device Order Issues

Boot device ordering, when using heterogeneous
host bus adapters, is another major issue. In earlier
busses (e.g. ISA, EISA and MicroChannel), the boot
device could be selected by the user through config­
uration options.

One of the advantages of PCI is that it is intended
to function as plug-and-play, thus eliminating the need
for users to deal with configurations, BIOS addresses,
and so on. A disadvantage of automatic configuration
is that user flexibility is lost. For example, it is
entirely possible that the boot device can change when
a user inserts a new adapter in a system.

259

Mylex PCI RAID Controllers

Typically, there is no way for the user to change
the boot device in a PCI system. Mylex has addressed
this issue by providing an INT13 support enable/dis­
able feature.

FUTURE DEVEWPMENTS­
FUTURE CHAUENGES

The current PCI bandwidth of 133 Mbytes/sec is
fairly adequate for the state-of-the-art in storage tech­
nology (Ultra SCSI, 40 Mbytes/ second), even for a
3-channel RAID controller product. The challenges in
achieving maximum bandwidth on the storage bus
through a RAID controller are bigger than those
related to saturating the PCI bus.

266MBs

133MBs

33M9/s

90 95 98

Figure 4. RAID Controller Bandwidth Needs

As newer and faster interfaces such as Fibre
Channel, SSA and Fast-40 SCSI begin to appear,
however, the PCI bus will bottleneck easily at its
present 32-bit, 33 MHz rate. This will necessitate a
migration to a higher bandwidth bus, either through a
faster clock, 66 MHz, or increased width, 64-bit.

The former appears to be a lower-cost alternative,
since there will be no need to increase pin count on IC
packages. However, the challenges in making a
system work at 66 MHz with adapters from different
vendors can be significant. Further, the lack of back­
ward compatibility can be another issue - a 66 MHz
PCI bus will run at 66 MHz only when all devices and
adapters on it are 66 MHz capable.

The advantage of a 64-bit PCI bus is that _it is
backward compatible - devices which are 64-bit
capable (typically, system memory and the bus master
in question) can communicate at the faster rate, allow­
ing all other devices to operate at their own rate. On
the other hand, the disadvantages of 64-bit PCI are the
costs associated with increased pin count and the
board layout issues when dealing with the wider bus.

KKRao

CONCLUSION

Future needs for larger bandwidth for PCI RAID
controllers can be satisfied relatively easily by means
of the 64-bit PCI bus. This conclusion is based on
experiences that My lex has encountered during the
development of RAID controllers for different host
busses since 1991; and validated during and the pro­
duction of over 250,000 controllers to date (specifi­
cally the three PCI RAID controllers that Mylex has
been shipping for some time), to support a wide range
of operating systems and platforms. Up to now, most
of the issues with PCI were due to the relative infancy
of the PCI specification and have been addressed in
the version 2.1 specification.

260

Mylex PCI RAID Controllers

ABOUT THE AUTHOR

K. K. Rao, Vice President of Engineering, Mylex
Corporation, Fremont CA. Mr. Rao has been leading
the Mylex RAID program since joining the company
in 1991. Prior to joining Mylex, Mr. Rao was respon­
sible for hardware and firmware design at Processor
Systems, India. He holds MSEE and BSEE degrees
from the Indian Institute of Technology, Bombay.

PCI Conference/May 1996
Embedded RAID presentation

Absttaot: RAID has gained in popularity and acceptance in the last two years. Many
recent improvements in fealures and architecture have increased the performance and
dramatically affected the price/performance tbr both entry level and. mldrange server
RAID options. This presentation ex.amines the cwrent market for creating a scaleable
embedded 1/0 architecture for RAID that offers low cost, high performance and
compliance with current industry standards.

Outline

Market Issues
- JJO architecture
-Industzy Standard Architectures (PCI)
- Cost/PeifoIIDance

Why RAID on the Motherboard
- Demand for architecture
- Dealing with cache issues

Technology Issues
- Silicon developmenL
- Software and engineering
- The interface
- Utilities and the GUI
- Remote management

The Future
- RAID on the desktop
- Scaling the architecture
-Serial JJO

261

~· ... • .

Introduction

FAST-40 SCSI, PUSHING PCI TO THE LIMIT
Richard Mourn

Symbios Logic Inc.
1635 Aeroplaza Dr.

Colorado Springs, CO 80916
richard.moum@Symbios.com

Since the advent of the personal computer the increase in bandwidth of both the main processor
and 110 devices is substantial. On the processor side, raw bandwidth has been increased from 10 MB/s to
1064 MB/s in a little more than 10 years. In early systems floppy drives were the fastest devices attached.
Soon after 110 devices like IDE and SCSI hard disk drives started pushing the limits of the ISAbus with
burst speeds ofless than 10 MB/s. As a result of this, migration of the host bus has happened as well;
from the XT to AT/ISA to EISA to Microchannel to PCI. The increase in bandwidth from 4 MB/s to 132
MB/s is substantial. However, PCI is unique in its acceptance. It has been adopted in low end PCs to the
highest end workstation/servers and even in subsystems such as RAID and telecom boxes. The need to
perform, yet be cost effective, is evident. Today 32 bit 33 MHz PCI has more than enough bandwidth for
lower end PCs, but higher end systems are starting to push the limits once again. This push is being
intensified by higher and higher performing video requirements and is also very pronounced in the 110
arena where both ANSI and the IEEE have developed new 110 interface standards that have surpassed 10
MB/s and are starting to exceed data rates of 100 MB/s. These 110 interface standards include Ultra-2
SCSI (Fast-40), Fibre Channel, IEEE-1394 and SSA, which operate in the 40 to 100 MB/s range. In this
paper Ultra-2 SCSI, the newest of the four mentioned above, will be the topic of discussion. However,
most of the system level issues touched on in this paper apply to any 110 device, and will become more
important as these new 110 technologies approach 60% or more of the 32 bit 33 MHz PCI buses
theoretical bandwidth of 132 MB/s.

Ultra-2 SCSI (Fast-40) Overview

Ultra-2 SCSI is an incremental step in the migration of SCSI to higher and higher data rates.
ANSI X3T10 SPI-2 Study Group is defining this addition to the SCSI-3 standard. The primary difference
between Ultra-2 SCSI and its predecessors is the adoption of Low Voltage Differential (L VD) transceivers
which allow synchronous data transfer of greater than 80 mega-transfers per second at cable lengths of 12
meters with 15 L VD devices attached. The transceivers can be implemented using generic CMOS
processes which allow the integration of the transceivers and the SCSI processor. This enhancement
provides the connectivity, distance and reliability ofRS-485 based differential SCSI without the space and
cost penalty.

The software changes required to implement Ultra-2 SCSI are very similar to the migration from
Fast SCSI to Ultra SCSI (Fast-20), mainly synchronous negotiation. However, the key is to create a device
that has the bandwidth to fully support Ultra-2 SCSI's 80 MB/sand not over burden the host bus (PCI).
An intelligent implementation is a must. Intelligence here assumes very little assistance from the host to
complete an 110.

262

Bandwidth

From a system level point of view the performance increase when migrating from Ultra SCSI,
which when running wide transfers has a peak synchronous transfer rate of 40 MB/s, to Ultra-2 SCSI,
which when running wide transfers has a peak synchronous transfer rate of 80 MB/s, is considerable.
With 60% of the potential PCI bandwidth being consumed by one device, the chip hardware, software,
and PCI chip set designers must pay particular attention to each segment of their design to insure
optimum performance. In early tests, Symbios Logic has found that PCI chip sets limit wide Ultra-2 SCSI
performance. When running Ultra-2 SCSI narrow the SCSI bus is limited to 40 MB/s synchronous. In the
test environment 37 MB/s was achieved using a low latency target. Running this same test, only this time
using wide transfers, resulted in 56 MB/s out of a possible 80 MB/s available on Ultra-2 SCSI bus. A few
of the questions posed by this paper are: How far can the current 32 bit, 33 MHz architecture be perfected
before most systems require 64 bit or 66 MHz PCI or both? What can host implementations do to prolong
its life?

PC/ Arbitration

Before the meat of an 1/0 transfer can be looked at, how the PCI bus handles arbitration is
important. On the PCI bus, arbitration is controlled by a central entity known as the bus arbiter. The
arbiter is usually physically located in the PCI chip set. Specifically, it may be integrated into the host/PCI
or the PCI expansion bus bridge device. The PCI specification does not define the algorithm used by the
bus arbiter to decide the winner of a arbitration. The bus arbiter can use any scheme as long as it is fair
and avoids deadlock. This vagueness allows many different implementations and provides an area for
improvement. The arbiter could implement a fairness algorithm based on fixed order, or rotationally or a
combination of them both.

To describe PCI bus arbitration in short, when a PCI master wishes to gain control of the PCI bus
it asserts it's REQ# signal. The bus arbiter sees the request and based on the algorithm used to determine
ownership grants the bus to the requesting master by asserting GNT#. Arbitration Latency is the time
from the assertion of REQ# to the assertion of the corresponding GNT#. This time period is highly
variable and can take several clocks. In cases where only one device is competing for the bus, 10 PCI
clocks have been observed. When the device receives the grant it cannot begin its cycle until the PCI bus
goes idle. This time is known as Bus Acquisition Latency and is defined as the time from the reception of
GNT# to when the current master surrenders the bus. This is controlled by the current master's Latency
Timer expiration or completion of its data transfer. The last piece of this puzzle is the Target Latency
which is the time from the beginning of the transfer cycle to the beginning of the data transfer. The total
Bus Access Latency is the summation of the Arbitration Latency, Bus Acquisition Latency, and Target
Latency.

The PCI specification has placed several hooks that allow Bus Access Latency to be controlled
and those hooks are being put to better use in newer designs. The use of the maximum latency, minimum
grant, and Latency timer are describe here and are very useful if the bus arbiter is programmable. The
programmable bus arbiter should be configured by configuration software at startup. The configuration
software determines the priority to be assigned to master capable members of the PCI bus. This is
accomplished by reading each members maximum latency (Max_Lat) and minimum grant (Min_Gnt)
registers. Each bus master (the Ultra-2 SCSI device) indicates in these registers how quickly it requires
access to the bus and how long it would like to retain the bus in order to achieve its required performance.
The smart programmable bus arbiter based on this information, programs the Latency Timer in the device
and establishes the priority each device will have in its arbitration algorithm. Therefore it is imperative
that master capable devices set the Max_ Lat and Min_ Gnt registers to values appropriate for their device.

263

UO Transfers

In this example a single SCSI 1/0 is broken down to better understand how an intelligent Ultra-2
SCSI 1/0 device can push current PCI bus implementations to the point where it hinders the Ultra-2 SCSI
bus performance. It is important to point out here that non-intelligent implementations will over burden
the system and will not allow 80 MB/s over the SCSI bus and will reduce the performance of other
devices connect to the PCI.

The system used for this experiment consisted of a 100 MHz Pentium machine with 32 MB of
memory. The memory sub-system was able to receive 64 dword bursts without inserting wait states. The
PCI bus was loaded with three devices (host bridge, video, and SCSI). The SCSI bus controller was mostly
intelligent with all hardwire specific code running local and all data structure information for the 1/0 was
running in host memory. The target device emulates a heavily loaded SCSI bus which is sustaining as
close to 80 MB/s as possible. It will be paced by the initiator. A 1 mega-byte file is being transferred from
the target to the initiator. This file is broken down into 32 - 32 KB SCSI transactions. The initial seek
time is 5 ms but the remainder of the transaction is completed with a minimal latency between
disconnects.

The purpose of this example is to show how an Ultra-2 SCSI device can and does exceed the
effective data transfer rates of the PCI system under test. This example also illustrates how an intelligent
Ultra-2 SCSI device reduces the PCI traffic for non-data transfers and increases the data throughput of the
Ultra-2 SCSI device. The goal is to have 80 MB/s across SCSI and PCI.

Table I describes the flow of a simple SCSI read transaction and will provide the baseline for
understanding the bandwidth required to meet Ultra-2 SCSI's needs.

SCSI Phase Descri~tion Time
Albitration Time from BUS FREE through the time when the

Initiator has won the SCSI Bus.
Selection Time from Arbitration through the time when a

device has been selected and asserted BUSY
Message Out Initiator sends Identify message

_(assume ~ch done)
Command Initiator sends Read Command to target RAID
Mes~In Target Disconnects from Initiator
Sub Total
Disconnect Time
Albitration Time from BUS FREE through the time when the

Tar~t has won the SCSI Bus.
Reselection Time from Arbitration through the time when the

initiator has been selected and asserts BUSY
Messa_.s._e In Target sends Identify message
Data In RAID sends data to Initiator (32 KB transfer)
Message In Save Data Pointers and Disconnect
Sub Total

-5µs

-0.6µs

-0.lµs

-0.5µs
-0.2µs
6.~
5ms

-5µs

-0.6µs

-0.lµs
-400..l:!:_S
-0.2~

405.9µ.s
*********** Rc:.t!_eated 31 Times *************
Disconnect Time lµs
Albitration Time from BUS FREE through the time when the -5µs

Tar_g_et has won the SCSI Bus.
Reselection Time from Arbitration through the time when the -0.6µs

initiator has been selected and asserted BUSY
Message In Target sends Identify message and Restore -0.lµs

264

Pointers
Data In RAID sends data to Initiator (32 KB transfer) -400µs
Sub Total 12.6ms
*********** End R~eated 15 Times *************
Status Target sends status to initiator --0.1~
Message In Target sends complete message --0.lµs
Total 13 ms+5ms
Table 1. Example SCSI Transfer.

This SCSI J/O takes 13 ms plus the 5 ms seek latency to transfer the IMB file (76.92 MB/s).
This is very consistent with the actual data obtained using the Ultra-2 SCSI device doing narrow
transfers. If you remember 37 MB/s was achieved from a possible 40 MB/s. The SCSI overhead for both
narrow and wide transfers will remain constant. The following paragraphs will examine some of the
system overhead that is needed to generate and service this request, and how that translates into PCI bus
latency.

Host Based Operation

The application makes a read request to the operating system (OS). The operating system sends
the request to the SCSI device driver which translates the J/O request into a data structure. This structure
consists of a scatter/gather list, pointers to the SCSI message and command, and where the SCSI status
will be written. Even though the SCSI bus transaction has not been started, hundreds of PCI transactions
have already taken place. Reads from the hard disk drive' s FAT and sector tables, host buffer allocation,
and memory transaction have been executed to allow the SCSI driver to formulate this data structure. The
PCI chipset, by supporting Memory Write & Invalidate and Read Multiple ensures that these transactions
are done optimally. The I/O device driver needs to ensure that the translation from the OS's I/O request to
the data structure is as clean as possible.

SCSI Controller Operation

At this point, the implementation used to execute this SCSI J/O is crucial to maintaining PCI
bandwidth optimiration. Good SCSI devices are "intelligent" and do not require constant attention. An
example of an intelligent device would be one that requires less than one interrupt per J/O and only needs
to access the PCI bus for start up, data transfer, end of J/O, and perhaps some exception handling. Non­
intelligent devices would require assistance in servicing two or more of the SCSI phases and must go
across the PCI bus to fetch all instructions and data structure information.

Symbios Logic's SYM53C8xx family of SCSI controllers allow for designs that can operate with one
interrupt per I/O and only need to access the PCI bus for startup, data transfers, I/O completion, and some
exception cases. This sort of performance advantage requires the following features:

1) On chip or on board intelligence (RISC processor).
2) On chip or on board memory dedicated to processor code and context information.

Without intelligent Ultra-2 SCSI devices for host applications the host processor, memory, and the PCI
bus can be over burdened by just one J/O connect.

265

Intelligent Implementation

Once the data structure information is formulated it is loaded from host memory. The SCSI
device requires one more write to begin the SCSI bus I/O transaction. When the starting address has been
written to the SCSI device, the first instruction can be fetched from local memory. In this case the first
command would be a Select with Attention. This starts the SCSI bus arbitration, see Table 1. Once the
device has won arbitration and selection has taken place, each SCSI command is fetched from local
memory. When the disconnect message is received, the SCSI processor saves the relative information and
it proceeds to another I/O or waits to be reselected. Once reselection takes place the target identifies itself,
which enables the SCSI processor to reestablish the nexus for this I/O. As data is received the
scatter/gather buffer information is retrieved from host memory and the data is written to host memory
across the PCI bus. Again the target disconnects from the SCSI bus and the relative information is saved
to host memory. For this example this process repeats itself 31 more times and on the last transfer the
target finishes normally with status and the target resonds with the completion message. The initiator then
interrupts the host telling it that the I/O is complete.

In this intelligent implementation example the PCI bus was only used for data structure updates,
data transfer and only one interrupt had to be serviced. The number of PCI clock cycles required to service
an interrupt is OS dependent but typically takes about 2500 PCI clock cycles to service. If the average PCI
bus access latency is 2.5µs and data is burst at a rate of 64 dword per ownership it would consume
another 1.94 µs. The time required to transfer the entire 1 MB file would be 18.19 ms (54.97 MB/s). This
again is very consistent with the actual data taken.

Conclusion

Many of the PCI systems out there today will not support sustained transfer rates of75 MB/sand
above. However, it not as bleak as it might seem, most I/Os are bursty and do not require very high
sustained data rates. For applications where high sustained rates are needed, two PCI buses will most
likely be implemented; one for slow devices (32 bit, 33 MHz) and one for higher bandwidth applications
(64 bit, 33 MHz or 32 bit, 66 MHz). From an I/O implementor's point of view the following design
feature should be supported:

1) Intelligent implementation:
- Reduce the number of interrupts per I/O to 1 or less.
- Optimize such that the PCI bus is used for data transfer, not fetches of commands and data
structures.

2) Use the PCI performance commands
- Memory Read Line or Memory Read Multiple
- Memory Write and Invalidate

3) Support bursts of at least 256 bytes

4) Appropriately set the Max_ Lat and Min_Gnt registers and allow the Latency Timer to be set
accordingly.

If all devices implement these features the PCI bus will be optimized for data transfer, latency will be
predictable, and I/O devices will work at their performance requirement, not PCI' s limitations.

266

Abstract:

This white paper discusses the system level issues encountered when connecting high perfonnance 1/0
devices, such as Ultra-2 SCSI (Fast-40), to PCI. With the theoretical maximum bandwidth of a 32 bit, 33
:MHz PCI bus being 132 MB/s one might not expect that most systems cannot support the 70-80 MB/s
sustained data rate of a Ultra-2 SCSI interconnect. This paper walks thru a SCSI I/O and looks at the
areas where intelligent SCSI implementations reduce overhead traffic on PCI and increases the data
through put.

267

Unified Memory Architectu

What's Good
&

What's Bad
~ AboutUnified Memory Architectures

(UMA)

Desi Rhoden

Desi Rhoden
Manager, Strategic Programs

VLSI Technology, Inc.
8375 S. River Parkway

Tempe, AZ 85234
602-752-6323

desi. rhoden @vlsi.com

VLSI
VLSI Technology, Inc.

N
O'I

'°

Unified Memory Architecture
What UMA Should Be

+ Transparent to all OS's and applications

+ Equal or better performance than non-UMA

+ Compelling value to the industry

+ Simple to implement and use

VLSI
Desi Rhoden VLSI Technology, Inc.

N
-l
0

Unified fVlemory Architecture
What's Bad about UMA

+ Asynchronous memory technologies

+ Sharing memory control signals at high frequencies

+ Exposing low level hardware to applications

+ Multi-chip solutions do not off load PCI

+ @ 16MBit memory, UMA is not compelling

Desi Rhoden VLSI
VLSI Technology, Inc.

N
-:a ,_.

Un
Current Industry State of UMA

PCI Slots
PCIBus

Address

Control

Address

Control
Data -

VLSI
Desi Rhoden VLSI Technology, Inc.

N
-....)
N

Unified Memory Architecture
What's Good About UMA

+ Addresses the increase in memory granularity

+ Can put graphics (et.al.) at the core of the machine

+ Can be transparent to all OS's and applications

+ Integrated solutions can off load the PCI bus

+ Enables even higher system integration

+ @ 64MBit memory, UMA is compelling

Desi Rhoden VLSI
VLSI Technology, Inc.

273

c:
Q)

"8 s::.
a:
-~
c

"Leveraging PCI Bus Bandwidth and High Performance CPUs in Designing
MPEG-1 and H.261 Video CODECs"

Frank Schapfel
Multimedia Engineering Manager

Digital Equipment Corporation
77 Reed Rd. HL02-l/H12

Hudson, MA 01749
(508) 568-4861/6371 (fax)

Digital Semiconductor, a Digital Equipment Corporation business, headquartered in
Hudson, Massachusetts, designs, manufactures and markets industry-leading
semiconductor products including Alpha microprocessors and PCI chips for networking,
bridging and multimedia, as well as low power Strong ARM microprocessors under
license from Advanced RISC machines Ltd. Digital Semiconductor's PCI multimedia
chips deliver quality compressed video to Windows-based desktop computers for
applications such as MPEG-1 authoring, MPEG-1 video editing, H.320-based
videoconferencing. Using a systems-oriented approach to both hardware and software
design, Digital Semiconductor's multimedia chips deliver a more complete solution
leveraging standard operationg system applications programming interfaces (APis), host
CPU performance and industry standard PCI-bus interfaces. More information about the
complete line of Digital Semiconductor products visit our World Wide Web site:
http://www.digital.com/info/semiconductor.

274

TRIMEDIA - The Processor for PC-Consumer Multimedia

Selliah Rathnam, Gert Slavenburg

Philips Semiconductors
811 E. Arques Avenue, Sunnyvale, CA 94088

e-mail: selliah@trimedia.scs.philips.com

ABSTRACT
TM-1 is the first in a family of programmable multimedia
processors from the Trimedia product group of Philips
Semiconductors. This PC/ bus based "C" programma­
ble processor has a high performance VLIW-CPU core
with video and audio peripheral units designed to sup­
port the popular multimedia applications. TM-I is de­
signed to concurrently process video, audio, graphics,
and communication data. The VLIW-CPU core is capa­
ble of executing a maximum of twenty seven operations
per cycle; and the sustained execution rate is about five
operations per cycle for the tuned applications. The au­
dio unit easily handles different audio formats including
the 16-bit stereo data. Tlie video unit is capable of pro­
cessing different YUV and RGB pixel formats with hori­
wntal and vertical scaling and color space conversion.

PCIBus

Ster~o digital audio
I SDC-80kHz

12C bus to
camera, etc.

Figure 1. TM-1 block diagram.

Audio In

Audio Out

275

The pixel image data in RGB format can be sent to the
graphics device through PC/ bus. TM-1 applications can
range from low-cost, stand alone systems such as video
phones to programmable, multipurpose plug-in cards for
traditional computers.

1.0 INTRODUCTION
TM- I is a building-block for high-performance multi­

media applications that deal with high-quality video and
audio. TM-I easily implements popular multimedia stan­
dards such as MPEG-1 and MPEG-2, but its orientation
around a powerful general-purpose CPU makes it capa­
ble of implementing a variety of multimedia algorithms,
whether open or proprietary.

CCIR601/656
YUV 4:2:2

V.34orlSDN
Front End

SDRAM

SDRAM

JTAG

PCI Bus

CCIR601/656
YUV 4:2:2

V.34 Modem
Front End

Figure 2. TM-1 system connections. A minimal
TM-1 system requires few supporting compo­
nents.

More than just an integrated '!1icroprocesso~ with u~­
usual peripherals, the TM- I m1croprocess~r 1s a flmd
computer system controlled by a small real-time OS k~r­
nel that runs on the VLIW processor core. T~-1 contains
a CPU, a high-bandwidth internal bus, and internal bus­
mastering DMA peripherals.

TM- I is the first member of a family of chips that will
carry investments i_n software f~rward in time. Compati­
bility between fan:1l.Y. members is at t~e source-cod~ lev­
el; binary compat1b1hty between family mem~ers IS not
guaranteed. All family members, how~ver,, will be .able
to perform the most important multimedia functions,
such as running MPEG-2 software.

Defining software compatibility. at the so.urce-code
level gives Philips the freedom to stnke the optimum bal­
ance between cost and performance for all the chips in
the TM-I family. Powerful compilers ensure that pro­
grammers seldom!)' need to resort to non-portable as­
sembler programming. Programmers use TM-1 's power­
ful low-level operations from. source ~~de; thes~ DSP­
like operations are invoked with a fam1har funct10n-call
syntax. Trimedia also provides hand-code~ and tuned
multimedia libraries which can be used to increase the
performance of the multimedia applications.

As the first member of the family, TM- I is tailored for
use in PC-based applications. Because it is based on a
general-purpose CPU, T:t\:1-1 can ~erve as a multi-func­
tion PC enhancement vehicle. Typically, a PC must deal
with multi-standard video and audio streams, and users
desire both decompression ~nd compression, _if possible.
While the CPU chips u~ed in .PCs are becomu:~g cap~ble
of low-resolution real-time video decompress10n, h1gh­
quality video decompression-not to mention compres­
sion-is still out of reach. Further, users demand that
their systems provide live v~deo and audio without sacri­
ficing the responsiveness of the system.

TM-1 enhances a PC system to provide real-time ~ul­
timedia and it does so with the advantages of a spec1al­
purposd, embedded solution-low cost and chip count­
and the advantages of a general-pu~pose processor-re­
programmability. For PC applicat10ns, TM-1 far sur-

276

passes the capabilities of fixed-function multimedia
chips.

Other Trimedia family members will have different
sets of interfaces appropriate for their intended use. For
example, a TM-1 chip for a cable-TV decoder box would
eliminate the video-in interface.

2.0 TM-1 CIIlP OVERVIEW
The key features of TM-1 are:

• A very powerful, general-purpose VLIW proces­
sor core that coordinates all on-chip activities. In
addition to implementing the non-trivial parts of
multimedia algorithms, this proc.essor runs a ~mall
real-time operating system that 1s dnven by inter­
rupts from the other units.

• DMA-driven multimedia input/output units that
operate independently and that properly format
data to make processing efficient.

• DMA-driven multimedia coprocess.ors that operate
independently .and perform. operat10ns specific to
important multimedia algonthms.

• A high-performance bus and memory s~stem that
prov1d~s communication between TM-1 s process­
ing umts.

Figure 1 shows a block diagram of the TM-I chip. The
bulk of a TM-1 system consists of the TM-1 micropro­
cessor itself, a block of synchronous DRAM (SD~AM),
and minimal external circuitry to interface to the incom­
ing and/or outgoing multimedia data streams. TM-1 can
gluelessly interface to the standard PCI bus for personal­
computer-based applications; thus, TM-1 can be placed
directly on the PC mainboard or on a plug-in card.

Figure 2 shows a possible TM-.1 system application. A
video-input stream if present, might come d1rectly from
a CCIR 601-comJ?llant dig~tal video c~me~a chip in YUV
4:2:2 format; the interface 1s glueless in this case,. A non­
standard camera chip can be connected via a video de­
coder chip (such as t~e Phil~ps Sf\A711 l). A CCIR 601
output video stream 1s _rrov1ded .directly from th.e ~M-1
to drive a dedicated video monitor. Stereo aud10 input
and output require external AJ?C.and DAC s~pport: The
operation of the video and aud10 interface um ts 1s highly
customizable through programmable parameters.

The glueless PCI interface allows the TM-1 to ?is~lay
video via a host PC's video card and to play aud10 via a
host PC's sound hardware: The. Image Copro.cessor pro­
vides display support for live video in an arbitrary num­
ber of arbitrarily overlapped windows.

Finally, the V.34 interface requi~es ~mly an external
modem front-end chip a!1d phone !me interface to pro­
vide remote commumcat10n support. The modem can be
used to connect TM- I-based systems for video phone or
video conferencing applications, or it can be used for
general-purpose data communication in PC systems.

3.0 BRIEF EXAMPLES OF OPERATION
The key to understanding TM- I operation is observing

that the CPU and peripherals are time-shared and that
communication between units is through SDRAM mem­
ory. The CPU switches from one task to the next; first it
decompresses a video frame, then it decompresses a slice
of the audio stream, then back to video, etc. As neces­
sary, the CPU issues commands to the peripheral units to
orchestrate their operation.

The TM- I CPU can enlist the ICP and video-in units
to help with some of the straightforward, tedious tasks
associated with video processing. The function of these
units is programmable. For example, some video streams
are-or need to be-scaled horizontally, so these units
can handle the most common cases of horizontal down­
and up-scaling without intervention from the TM-1
CPU.

3.1 Video Decompression in a PC
A typical mode of operation for a TM-1 system is to

serve as a video-decompression engine on a PCI card in
a PC. In this case, the PC doesn't know the TM-1 has a
powerful, general-purpose CPU; rather, the PC just treats
the hardware on the PCI card as a "black-box" engine.

Video decompression begins when the PC operating
system hands the TM-1 a pointer to compressed video
data in the PC's memory (the details of the communica­
tion protocol are typically handled by a software driver
installed in the PC's operating system).

The TM-I CPU fetches data from the compressed vid­
eo stream via the PCI bus, decompresses frames from the
video stream, and places them into local SDRAM. De­
compression may be aided by the VLD (variable-length
decoder) unit, which implements Huffman decoding and
is controlled by the TM-1 CPU.

When a frame is ready for disflay, the TM-1 CPU
gives the ICP (image coprocessor a display command.
The ICP then autonomously fetches the decompressed
frame data from SDRAM and transfers it over the PCI
bus to the frame buffer in the PC's video display card (or
the frame buffer in PC system memory if the PC uses a
UMA (Unified Memory Architecture) frame buffer).
The ICP accommodates arbitrary window size, position,
and overlaps.

3.2 Video Compression
Another typical application for TM-I is in video com­

pression. In this case, uncompressed video is usually
SUJ?plied directly to the TM-1 system via the video-in
umt. A camera chip connected directly to the video-in
unit supplies YUV data in eight-bit, 4:2:2 format. The
video-in unit takes care of sampling the data from the
camera chip and demultiplexing the raw video to
SDRAM in three separate areas, one each for Y, U, and
V.

When a complete video frame has been read from the
camera chip by the video-in unit, it interrupts the TM- I
CPU. The CPU compresses the video data in software
(using a set of powerful data-parallel operations) and
writes the compressed data to a separate area of

SD RAM.

The compressed video data can now be disposed of in
any of several ways. It can be sent to a host system over
the PCI bus for archival on local mass storage, or the host
can transfer the compressed video over a network, such
as ISDN. The data can also be sent to a remote system us­
ing the integrated V.34 interface to create, for example,
a video phone or video conferencing system.

Since the powerful, general-purpose TM-1 CPU is
available, the compressed data can be encrypted before
being transferred for security.

4.0 VLIW CORE AND PERIPHERAL
UNITS

4.1 VLIW Processor Core
The heart of TM-1 is its powerful 32-bit CPU core.

The CPU implements a 32-bit linear address space and
128, fully general-purpose 32-bit registers. The registers
are not separated into banks; any operation can use any
register for any operand.

The core uses a VLIW instruction-set architecture and
is fully general-purpose. TM-1 uses a VLIW instruction
length that allows up to five simultaneous operations to
be issued. These operations can target any five of the 27

Instruction Cache (32Kb)

Instr. Fetch Buffer

277

Decompression Hardware

Issue Register (5 Ops)

Operation Routing Network

Execution Unit (27 Functions)

Register Routing and Forwarding Network

Register File (128 X 32)

Figure 3. VLIW Processor Core and Instruction
Cache.

functional units in the CPU, including integer and float­
ing-point arithmetic units and data-parallel DSP-like
um ts.

Although the processor core runs a tiny real-time op­
erating system to coordinate all activities in the TM- I
system, the processor core is not intended for true gener­
al-purpose use as the only CPU in a computer system.
For example, the processor core does not implement vir­
tual memory address translation, an essentia feature in a
general-purpose computer system.

TM-I uses a VLIW architecture to maximize proces­
sor throughput at the lowest possible cost. VLIW archi­
tectures have performance exceeding that of superscalar
general-purpose CPUs without the extreme complexity
of a superscalar implementation. The hardware saved by
eliminating superscalar logic reduces cost and allows the
integration of multimedia-specific features that enhance
the power of the processor core.

The TM-! operation set includes all traditional micro­
processor operations. In addition, multimedia-specific
operations are included that dramatically accelerate stan­
dard video compression and decompression algorithms.
As just one of the five operations issued in a single TM­
! instruction, a single special or "custom" operation can
implement up to 11 traditional microprocessor opera­
tions. Multimedia-specific operations combined with the
VLIW architecture result in tremendous throughput for
multimedia applications.

4.2 Internal "Data Highway" Bus
The internal data bus connects all internal blocks to­

gether and provides access to internal control registers
(in each on-chip peripheral units), external SDRAM, and
the external PCI bus. The internal bus consists of sepa­
rate 32-bit data and address buses, and transactions on
the bus use a block-transfer protocol. Peripherals can be
masters or slaves on the bus.

Access to the internal bus is controlled by a central ar­
biter, which has a request line from each potential bus
master. The arbiter is configurable in a number of differ­
ent modes so that the arbitration algorithm can be tai­
lored for different applications. Peripheral units make re­
quests to the arbiter for bus access, and depending on the
arbitration mode, bus bandwidth is allocated to the units
in different amounts. Each mode allocates bandwidth
differently, but each mode guarantees each unit a mini­
mum bandwidth and maximum service latency. All un­
used bandwidth is allocated to the TM-1 CPU.

The bus allocation mechanism is one of the features of
TM-1 that makes it a true real-time system instead of just
a highly integrated microprocessor with unusual penph­
erals.

4.3 Memory and Cache Units
TM- I's memory hierarchy satisfies the low cost and

high bandwidth requirement of multimedia markets.
Since multimedia video streams can require relatively
large temporary storage, a significant amount of DRAM

278

is required.

TM-1 has a glueless interface with synchronous
DRAM (SDRAM) or synchronous graphics RAM
(SGRAM), which provide higher bandwidth than the
standard DRAM. As the SDRAM has been supported by
major DRAM vendors, the competition among those
vendors will keep the SDRAM pnce in par with that of
the standard DRAM. TM- I's DRAM memory size can
range from 2Mbytes to 64 Mbytes.

The TM-1 CPU core is supported by separate 16-KB
data and 32-KB instruction caches. The data cache is
dual-ported in order to allow two simultaneous load/
store accesses, and both caches are eight-way set-asso­
ciative with a 64-byte block size.

4.4 Video-In Unit
The video-in unit interfaces directly to any CCIR 60 I I

656-compliant device that outputs eight-bit parallel,
4:2:2 YUV time-multiplexed data. Such devices include
direct digital camera systems, which can connect glue­
lessly to TM-1 or through the standard CCIR 656 con­
nector with only the addition of ECL level converters.
Non-CCIR-compliant devices can use a digital decoder
chip, such as the Philips SAA 7111, to interface to TM- I .
Older front ends with a 16-bit interface can connect with
a small amount of glue logic.

The video-in unit demultiplexes the captured YUV
data before writing it into local TM-I SDRAM. Separate
data structures are maintained for Y, U, and V.

The video-in unit can be programmed to perform on­
the-fly horizontal resolution subsampling by a factor of
two if needed. Many camera systems capture a 640-pix­
el/line or 720-pixel/line image; with subsampling, d1Tect
conversion to a 320-pixel/line or a 360-pixel/line image
can be performed with no CPU intervention. Further, if
subsampling is required eventually, performing this
function during data capture reduces initial storage re­
quirements.

4.5 Video-Out Unit
The video-out unit essentially performs the inverse

function of the video-in unit. Video-out generates an
eight-bit, multiplexed YUV data stream by gathering bits
from the separate Y, U, and V data structures in
SDRAM. While generating the multiplexed stream, the
video-out unit can also up-scale horizontally by a factor
of two to convert from CIF to native CCIR resolution.

Since the video-out unit likely drives a separate video
monitor-not the PC's video screen-the PC itself can­
not be used to generate the graphics and text of a user in­
terface. To remedy this, the video-out unit can generate
graphics overlays in a limited number of configurations.

4.6 Image Coprocessor (ICP)
The image coprocessor (ICP) is used for several pur­

poses to off-load tasks from the TM-1 CPU, such as
copying an image from SDRAM to the host's video
frame buffer. Although these tasks can be easily per­
formed by the CPU, they are a poor use of the relatively

expensive CPU resource. When performed in parallel by
the ICP, these tasks are performed efficiently by simple
hardware, which aJlows the CPU to continue with more
complex tasks.

The ICP can operate as either a memory-to-memory or
a memory-to-PCI coprocessor device.

In memory-to-memory mode, the ICP can perform ei­
ther horizontal or vertical image filtering and resizing.
The ICP implements 32 FIR filters of five adjacent pixel
input values. The filter coefficients are fully programma­
ble, and the position of the output pixel in the output ras­
ter determines which of the 32 FIR filters is applied to
seneratc that output pixel value. Thus, the output raster
1s on a 32-times finer grid than the input raster. The fil­
tering is done in either the horizontal or vertical direction
but not both. Two applications of the ICP are required to
filter and scale in both directions.

In memory-to-PC! mode, the ICP can perform hori­
zontal resizing foJlowed by color-space conversion. For
example, assume an n x m pixel array is to be disJ?layed
in a window on the PC video screen while the PC IS run­
ning a graphical user interface. The first step (if neces­
sary) would use the ICP in memory-to-memory mode to
perform a vertical resizing. The second step would use
the ICP in memory-to-PC! mode to perform a horizontal
resizing (if necessary) and colorspace conversion from
YUVtoRGB.

While sending the final, resampled and converted pix­
els over the PCI bus to the video frame buffer, the ICP
uses a full, per-pixel occlusion bit mask-accessed in
destination coordinates-to determine which pixels are
actually stored in the frame buffer for display. Condi-

PC Screen

Image 1 lmage2

tioning the transfer with the bit mask allows TM-1 to ac­
commodate an arbitrary arrangement of overlapping
windows on the PC video screen.

Figure 3 illustrates a possible display situation and the
data structures in SDRAM that support the ICP's opera­
tion. On the left in Figure 3, the PC's video screen has
four overlapping windows. Two, Image 1 and Image 2,
are being used to display video generated by TM- I.

The right side of Figure 3 shows a conceptual view of
SDRAM contents. Two data structures are present, one
for Image 1 and the other for Image 2. Figure 3 repre­
sents a point in time during which the ICP 1s displaying
Image 2.

When the ICP is displaying an image (i.e., copying it
from SDRAM to a frame buffer), it mamtains four pomt­
ers to the data structures in SDRAM. Three pointers lo­
cate the Y, U, and V data arrays, and the fourth locates
the per-pixel occlusion bit map. The Y, U, and V arrays
are mdexed by source coordinates while the occlusion bit
map is accessed with screen coordinates.

As the ICP generates pixels for display, it performs
horizontal scaling and colorspace conversion. The final
RGB pixel value IS then copied to the destination address
in the screen's frame buffer only if the corresponding bit
in the occlusion bit map is a one.

As shown in the conceptual diagram, the occlusion bit
map has a pattern of Is and Os that corresl?onds to the
shape of the visible area of the destination wmdow in the
frame buffer. When the arrangement of windows on the
PC screen is changed, modifications to the occlusion bit
maps may be necessary.

lnSDRAM

Figure 4. ICP operation. Windows on the PC screen and data structures in SDRAM for two live video
windows. -

279

It is important to note that there is no preset limit on the
number and sizes of windows that can be handled by the
ICP. The only limit is the available bandwidth. Thus, the
ICP can handle a few large windows or many small win­
dows. The ICP can sustain a transfer rate of 50 megapix­
els per second, which is more than enough to saturate
PCI when transferring images to video frame buffers.

ICP has a micro-programmable engine. All ICP oper­
ations such as filtering, scaling and color space conver­
sions and their formats are programmable. The ICP's mi­
cro programs loads itself from the SDRAM memory.

4.7 Variable-Length Decoder (VLD)
The variable-length decoder (VLD) is included to re­

lieve the TM-1 CPU of the task of decoding Huffman­
encoded video data streams. It can be used to help de­
code MPEG-1 and MPEG-2 video streams.

The VLD is a memory-to-memory coprocessor. The
TM- I CPU hands the VLD a pointer to a Huffman-en­
coded bit stream, and the VLD produces a tokenized bit
stream that is very convenient for the TM-1 image de­
compression software to use. The format of the output to­
ken stream is optimized for the MPEG-2 decompression
software so that communication between the CPU and
VLD is minimized.

As with the other processing-intensive coprocessors,
the VLD is included mainly to relieve the CPU of a task
that wastes its performance potential. When dealing with
the high bit rates of MPEG-2 data streams, too much of
the CPU's time is devoted to this task, which prevents its
special capabilities from being used.

4.8 Audio-In and Audio-Out Units
The audio-in and audio-out units are similar to the vid­

eo units. They connect to most serial ADC and DAC
chips, and are programmable enough to handle most rea­
sonable protocols. These units can transfer MSB or LSB
first and left or right channel first.

The sampling clock is driven by TM-I and is software
programmable within a wide range from DC to 80 kHz
with a resolution of 0.02 Hz. The clock circuit allows the
programmer subtle control over the sampling frequency
so that audio and video synchronization can be achieved
in any system configuration. When changing the fre­
quency, the instantaneous phase does not change, which
allows frequency manipulation without introducing dis-

PC! Agent PCIAgent

a) TM-1 as peripheral

Host CPU
(e.g., x86)

PC! Agent

tortion.

As with the video units, the audio-in and audio-out
units buffer incoming and outgoing audio data in
SDRAM. The audio-in unit buffers samples in either
eight- or 16-bit format, mono or stereo. The audio-out
unit simply transfers sample data from memory to the ex­
ternal DAC; any manipulation of sound data is per­
formed by the TM-I CPU since this processing will re­
quire at most a few percent of the CPU resource.

5.0 PCI BUS INTERFACE UNIT (BIU)

TM 1 is capable of operating either as a main CPU in a
stand alone system or as a PCI peripheral device in a
desktop PC (Figure 5).

This unit connects the internal Data Highway Bus to
an external PCI bus. It has a PCI master to initiate mem­
ory read/write cycles for TM- I-CPU requested read/
write transactions including burst read/write DMA trans­
actions. The PCI target within the BIU responds to the
transactions initiated by external PCI master devices to
read/write the TM-1 's memory space, and it satisfies
their requests. External devices can access the TM-1 's
MMIO registers through this unit.

The ICP unit has a direct connection to the BIU unit in
order to transfer the pixel image data efficiently from
TM- I to the graphics device or host memory through the
PCI bus.

5.1 PCI INTERFACE AS AN INITIATOR
Three classes of operations invoked by TM-1 cause

the PCI interface to act as a PCI initiator:

• Transparent, single-word (or smaller) transactions
caused by DSPCPU loads and stores to the PCI
address aperture.

• Explicitly programmed single-word PCI-bus I/O
transactions.

• Explicitly programmed multi-word DMA transac­
tions.

5.2 DSPCPU Single-Word Loads/Stores
From the point of view of programs executed by TM-

1 's DSPCPU, there are three apertures into TM-1's4-GB

PC! Bus
Arbiter

PC! Agent

b) TM-1 as host CPU

PC! Agent

Fihure 5. Two typical system implementations. (a) shows TM-1 as a PCI peripheral in a desktop PC. (b) shows an embedded system
with TM-1 as the host CPU.

280

memory address space:

• SDRAM space (0.5 to 64 MB in size).
• MMIO space (2 MB in size).
• PCI space.

MMIO registers control the positions and extent C?f the
address-space apertures. The SDRAM aperture beg1i:is at
the address specified in the MMIO register
DRAM BASE and extends upward to the address m the
DRAM:=LIMIT register. The 2-MB MMIO aperture be­
gins at the address in MMIO_BASE. All addresses that
fall outside these two apertures are assumed to be part of
the PCI address aperture. References by DSPCPU loads
and stores to the PCI aperture are reflected to external
PCI devices by the coordinated action of the data cache
and PCI interface.

When a DSPCPU load or store targets the PCI aperture
(i.e., neither of the other two ~pertures), the: DSPCPU's
data cache automatically carnes out a special sequenc_e
of events. The data cache writes to the PCI_ADR and ~1f
the DSPCPU operation is a store) the PCI_DATA regis­
ters in the PCI interface and asserts (loaq) or deasserts
(store) the internal signal pci_read_operat10n.

While the PCI interface executes the PCI bus transac­
tion the DSPCPU is held in the stall state by the data
cache. When the PCI interface has completed the trans­
action, it asserts the internal signal pci_ready.

When pci_ready is asse~ted, the dat~ cache finishes the
original DSPCPU operat10n by readmg data. from the
PCI DAT A register (if the DSPCPU operat10n was a
load) and releasing the DSPCPU from the stall state.

5.3 1/0 Operations
Explicit programming by DSPCPU software is the

way to perform transactions to PG! I/O ~pace. DSPCpU
software writes three MMIO registers m the followmg
sequence:

1. The IO_ADR register.
2. The IO_DATA register (ii PC! operation is a write).
3. The IO_CTL register (controls direction of data movement

and which bytes participate).

The PCI interface starts the PCI-bus I/O transaction
when software writes to IO_CTL. The interface can raise
a DSPCPU interrupt at the completion of ~he I/O trans.ac­
tion or the DSPCPU can poll the appropnate status bit.

5.4 DMA Operations
The PCI interface can operate as an a~tonomous pMA

engine, executing block-transfer operat1~ms at.maximum
PCI bandwidth. As with I/O and conf1gurat10n opera­
tions, DSPCPU software explicitly programs DMA op­
erations.

General-purpose OMA

For DMA between SDRAM and PCI, DSPCPU soft-

281

ware writes three MMIO registers in the following se­
quence:

1. The SRC_ADR and DEST _ADR registers.
2. The DMA_CTL register (controls direction of data

movement and amount of data transferred).

The PCI interface begins the PCI-bus transactions
when software writes to DMA_CTL. As with the I/O and
configuration operations, the BIU_STATUS ~nd
BIU CTL registers monitor the status of the operation
and control interrupt signalling.

Image-Coprocessor OMA

The PCI interface also executes DMA transactions for
the Image Coprocessor (ICP). The _ICP_ performs rapid
post-processing of pixel data and wntes 1t at DMA speed
to an external video frame buffer.The ICP cannot per­
form PCI read transactions.

The DMA transactions are considered as background
transactions. To reduce the latency of the single _word
read/write transactions on the PCI bus, the BIU mter­
leaves the burst read/write DMA cycles with single word
read/write transactions.

6.0 APPLICATIONS
TM-1 has the potential to be used in ri:iany multimedia

applications and only few of them are discussed.

6.1 Video Teleconferencing/Digital White
Board

Businesses are increasingly turning towards i~tc:rac­
tive computing as a means of becommg more efficu:;nt.
Collaborative computing, for instance, involves shanng
applications amongst multiple. personal computers and
multipoint video teleconferencmg.

TM- I is a single chip video teleconferencing solution
that runs all current video codecs across all common
transport mechanisms. This may also includes H.324
(POTS), H.320 (ISDN) and H.323 (LAN).

6.2 Multimedia Card for Consumer
Multimedia Applications

The achievement of true computer based realism \s
only possible with a fully integrated approach to. mu\t1-
media -- one that permits the smooth flow of aud10, vid­
eo, graphics and communications. To.day's co~puter
user wants a highly interactive af!d reah.st1c expenence.
The Trimedia processor makes this possible.

TM-1 is a low-cost, programmable processor. for the
consumer multimedia market. This product provides the
additional processing power required for a true-to-life
computer based experience. The Trimedia processor
concurrently processes multiple d~ta ~ypes inclu~ing au­
dio, video, graphics and commumc.at10ns. The first ver­
sion of this chip, designated TM-I, 1s targeted for the PC
market.

7.0 SUMMARY
The TM- I is the first programmable multimedia pro­

cessor from the Trimedia division of the Philips Semi­
conductors. The PCI based TM-1 has high performance
VLIW CPU core, efficient 'C' compiler witfi multimedia
library functions, glueless logic to high-bandwidth
SDRAM, standard PCI bus interface, and standard inter­
faces to video and audio stream that make the TM-1 the
next generation multimedia processor for stand-alone
systems such as the video phone, video conferencing
system and plug-in multimedia cards for the PC systems.

8.0 REFERENCES
[I] J. Labrousse, G. A Slavenburg. "A 50MHz Micropro­

cessor with a VLIW Architecture." ISSCC, 1990.

[2] J. Labrousse, G. A. Slavenburg. "CREATE-LIFE: A
Design System for High Performances VLSI Circuits"
ICCD-88. 1988.

[3] J. Labrousse, G. A. Slavenburg. "CREATE-LIFE: A
Modular Design 'Approach for High Performances
AS I C's." Compean Conference 1990.

[4] Brian Case. "Philips Hopes to Displace DSPs with
VLIW" Microprocessor Report, December 5, 1994.

[5] Brian Case. "First Trimedia Chip Boards PCI Bus."
Microprocessor Report, November I 995.

[6] Gert Slavenburg. "The Trimedia VLIW-Based PCI Mul­
timedia Processor" In Microprocessor Forum, October,
1995.

[7] A.S. Huang, G. Slavenburg, J.P. Shen. "Speculative Dis­
ambiguation: A compilation Technique for Dynamic
Memory Disambiguation". In 21st Annual International
Symposium on Computer Architecture, April, 1994.

[8] R.P. Colwell, R.P. Nix, J.J O'Donnell, D.B. Papworth,
P.K. Rodman. " A VLIW Architecture for a Trace Sched­
uling Compiler." Proc. of ASPLOS II. October, 1987.

[9] J.A. Fisher. "Trace Scheduling: A Technique for Global
Microcode Compaction." IEEE Trans on Computers.
July 1981.

[I OJ P. Y.T. Hsu and E.S. Davidson. "Highly Concurrent Sca­
lar Processing." Proc. of the 13th Symposium on Com­
puter Architecture, 1986

282

Multimedia Bandwidth Issues over PCI
Author: Girl Venkat

Abstract

With the increasing integration of multimedia processors into the mainstream PC environment,
comes an increasing demand on the system's peripheral bus. This paper will analyze some of the
issues relating to multimedia over the PCI bus. Topics such as MPEG-2, 30 graphics and full
motion video will be explored es they relate to PCI. Following a brief overview of multimedia
technologies and their bandwidth requirements will be a discussion of a mezzanine PCI
architecture that will ease the bandwidth demands over the main PCI bus. Finally, a comparison
of a standard PCI system vs. a mezzanine implementation will be presented to demonstrate the
advantages of a mezzanine architecture for multimedia applications.

283

Board Maker's Roundtable

Steve Cooper, /-Bus

The bus/board marketplace continues to be an exciting, growing marketplace that pro­
vides:

• a standard way for system designers to build systems from higher-level building
blocks available from multiple companies (boards versus components)

• the rapid availability and infusion of new technologies into systems designs

The advent of the PCI bus is playing a significant role in the ongoing evolution of bus
structures. A,s a number of other popular buses (Multibus, STD, VME) grow older, var­
ious forms of the PCI bus are stepping in to solve solutions problems.

One version of the PCI bus, known as the PICMG standard for passive backplane PCs,
is among the fastest growing new bus structures available. This standard was approved
in October 1994 and already has become a dominant standard in many market sectors.
The future of this new bus can be seen by observing that the latest technologies are
appearing on this bus structure prior to other bus structures. For example, the first bus
structure (other than the office PC motherboard) to host Intel's latest P6 Pentium Pro
CPU chips is this PICMG-compliant PCI/ISA bus.

Another version of the PCI bus, known as the CompactPCI standard, is now poised to
move into more embedded applications. This bus structure was recently completed by
the PICMG standardization group, and the first products from a variety of vendors are
beginning to appear.

Compared with many computer components, bus structures tend to be relatively long­
lived. Many bus structures have remained viable for over 20 years, continually finding
ways to accommodate to the industries ever-changing components. Thus, the develop­
ment and evolution of these new PCI-based buses marks a significant event for the
bus/board suppliers as well as the marketplace that use them.

284

Bus-to-Bus Connections

Stephan Ohr, Computer Design

There is a wealth of peripherals like digital cameras, scanners, and data acquisition
equipment that take advantage of PCl's high data transfer rates. Since the variety of
peripherals for Apple computers and digital signal processors is not as great, bridge
cards and devices are emerging which link PCI peripherals with other bus topologies.
Presenters in this session offer insights into the process of interfacing PCI to the Apple
NuBus, the Pl394 video bus, even the IBM Serial Storage Architecture (SSA).

285

N
00

°'

PCI and Multiprocessing

George P. White

PCI Spring Developers' Conference
April 29 - May 3, 1996

San Jose, CA

N
00
-.J

Multiple PCI Bridges for
Specialized Multiprocessor Bus

+ Eight Pentiums supported

+ Two peer PCI buses supported

+ One chip PCI interface

288

••
~
~
rlj

= ,..Q
I

u

289

C-bus II Features

+ 400 MB/sec. bandwidth

+ 32 GB physical memory space

., + 64-bit multiplexed address and data
'° 0

+ ECC protection on bus transactions

+ Multiple 1/0 buses supported

+ Simple control protocol related to N uBus

CO"OLLAG:'(

N

'° I-'

Innovative Technology

C-bus II

GTL signaling

ECC on bus

SO MHz

64 bits

Multiplexed
address/data

P6bus

GTL +signaling

ECC on bus

66MHz

64 bits

Pipelined bus

N
\0
N

C-bus II Signal Summary

I Signal No. Description I
CBCLK 1 System Clock (50 MHz)
CD [63 .. 0] 64 Multiplexed Address/Data
CDE [7 .. 0] 8 Address/Data Error Correction Code (ECC

STRT# 1 Tran sf er Start
TM [3 .. 0]# 4 Transfer Mode (including parity)
ACK# 1 Transfer Acknowledge
CID [3 .. 0] 4 Geographical Slot Identification
CARB [3 .. 0] 4 Distributed Arbitration
LOCK CB# 1 Bus Lock
FAULT# 1 Hardware Fault Indicator
CRST# 1 System Reset
LED# 1 Light Emitting

I Total 91 Active Signals I

)

~y

~ w

Cached Transactions

Clock 1 1 1 1 •
I I I I I I

Read
H:'':}~- ... :;tl\tk4W&F'>

Data3

I I
I

Read cache line

Eviction

I I I I
I I

Evict cache line Read cache line

PCI Bridge (PCIB)
+ Direct connection to C-bus II

+ Direct connection to PCI bus

+ Single chip solution

Ii! + DMA cache with pref etch buffers for
maximum burst rate support

+ Contains PCI central resource functions

+ Handles distributed interrupts

+ 240 pin, Plastic Quad Flat Pack (PQFP)

PCIB (PCI to C-bus II) ASIC

PCIB
Address/Data .. , { ..

37 I _________________ 72
{] Control .. ' .. I '6 =-19 t -----------: ----- ~ = rl.l I

L ---........_
~

N

Arbitration -........ 'o - ~

\0
Vt

2 - I

- - - - - - - - - - - - - - -- - -
Utility

Caching PCI lnterf ace
Performance optimized by cache

coherent inter/ ace

!l1 + Eight 32 byte cache lines

+ Fully associative cache

+ Leap-frogging read-ahead buffers

Support for Peer Bridges

+ Architecturally supports four PCI bridges,

now shipping with two

.., + Separate address space for each bus
\0
-..l

mapped into system address space

+ Supported by Corollary HAL for

Windows NT

Who's Using this Technology ?

Chen
DG
Fujitsu

N Hitachi
\0
00

IBM

Intergraph

NEC
Olivetti
Samsung

Chen 1000
A ViiON 4700, 4800, 5800

FM-Server 7500SV

3100LP
PC Server 720

InterServe MP6 Servers

Express5800/170

SNX 400/RS Systems

SSM500

CPUs
8

2,4,8
8

8

6

6

6

4
4

Example - PC Company
Moving Up

+ IBM's first symmetric
MP PC server

~ + Packaged like PC server

+Six CPUs

+ One PCI bus supported

w
8

Midrange Computer Company
Getting More Open

DG A ViiON Models 4700, 4800, 5800

+ Packaged like mini
computer

+ 8 CPUs, 2 megabyte
cache each

+ Two PCI buses
supported

G:Y

v.>
0

Summary

C-bus II optimized for cache-coherent
multiprocessing Pentium design supports
multiple peer PCI buses for high I/O
throughput.

True caching and read-ahead for optimum
performance.

1394 and PCI

s Larry Blackledge
1394 Market Development Manager

Texas Instruments

w
0 w

Isochronous Data Over PCI
Isochronous Data Providers

·--~· ~
.... ~., - ~

,. .

-----tll•···"'•""""""""""""'•"'•"""'""• . r
HDTV ,! l • ...

Stereo

VJ
0
+>-

•

Isochronous Data Formats

+ Rawdata

+ Audio: AC3, mLAN, others

+ DV format, video (5:1) & audio
~ Digital Camcorders & VCRs

+ MPEG-2
~ DVD, DVHS, DTV, DSS, S

w
0
Vl

cycle #X-1

pkt
A

•

(.)

ro

cycle
synch

1394 Isochronous Cycle

cycle #X cycle #X+1

cycle
start

data= ___ ___. I ch 0 11 ch g 1-- -I ch 51 ! I p~t ~ 11 p~t 1~11 p~t ~ I :~~~ = y I ch 0 I

isochronous phase asynchronous phase

nominal cycle period = 125 usec

actual cycle period = (125 - z) usec

i<J----cycle #X
start delay = z cycle

synch

~
0\
~
~

u
~
~
~

= • -
~
0
~

~

= =
~
~
~
~
~

306

w
0
-.)

PCI Latency Issues

+ PCI arbitration latency (arb to grant)
and PCI Burst length
~ older PCI SIOs are very poor (~lOMB/sec)

);;-- newer ones are much better (~lOOMB/sec)

+ Nuinber of PCI nodes active?

+ PCI bus speed & width

PCI Latency vs. FIFO Size

(KB)

2.5
w
0

oo F 2.0
I
F 1.5

0 1.0

0.5

0.0
0
~

10 20 30 40 50
PCILatency(usec)

2 Gbps *
400 Mbps

200 Mbps

100 Mbps

* 2 Gbps not recommended over PCI bus

w
0
\0

PCI and Other Solutions
.•.

_/:~~'.:::::· :~::.·~#1~·.'.~:.:: .•

+ PCl's great for 100-400 Mbps ~J#n:·'~:; ··
~.·. ~:~:

+ Raising the bar: 1394 @ 2 Gbi}S '

+ PCl's future:
~ 33 vs. 66 MHz & 32 vs. 64 bits wide

+ Zoo01 Video port (ZV)

+ Northbridge integration

~
0

Don't Miss THE Bus

+ 1394 Consu01er Electronics tidal wave
in 1Q97, BE PREPARED!!!

+ PCl-to-1394 chips are available today
~ 100 & 200 Mbps now

~ 400 Mbps & 2 Gbps very soon

+ All of the pieces are in place

~ Silicon

~ Windows Software

~
~
~
~__
~

~ rlj

• a..
........__

~ e = • = = ~ ~ a.. • •• • • ••
~

...-
~ •

~ a. ~

Q a..

! ••
~ ~:

•• ••
~ ~ ...- ...-...- ...-,.c= ,.c=

• •

311

cc

.s O>
O>
~

:E C>

~
c:

E
·-s..
c..
en

\'! I

I
-0
a..

I
Ci

312

-c
s..
as
-c
c:
s en -0
Q.

~
Cl)
c:
as

'+- s..
00
c:
0 (.)

:t:l ~
ca E
Cl) s.. s..
o2
0

313

C>
c: ·-..... en ·-)(en

~ Cl) Cl> ; .s 5
.~ C>
g> Cg N
·- ·- (1)
~ C>·- c
·- :2-§ ~ m s..s..UJ
• cc ca •

0

-
1111

-0,
c:
0
0

:c~
....
a

ui UJ
w~ s
i-!B :J

Q. C(E - 0 N 0

" 1111 Q)
C>
C>
:J

0:::
~ --ca

E en
314

--
•11•

315

----•11•

UJ ...
s c.
m
1l m

- E
UJ Q) .s
~ UJ UJ_. .c 0 ~

s C> c. u ...
0 c ~ c ·-- UJ c. C> UJ UJ ·-......_._. - UJ
UJ

Q) m Q) u ...
~ Q) 1l 0 .c ... c .s Q) c. Q)

C> :;::; C> ~ ... - ... UJ
m ~ 0 m
_J ~ u. w
0 0 0 0

316

•
a~
wi

<(~B
c:c en -N - -w -
1111

"' "' <(
:l Q) -c en cc -.c '- -
c ·- m .s
I- m ()

Q. 0 '-en E c: m -Q) C) - C) ·-0 E .r:. c: 't- ·-'"'C () ·- 0 "' ·-'t-
Q) I

"' Q) Q) "' 0
.c Q)

"' c "' '- C) >. ·- Q) - m c: 0 -c: .c () -
0 .s ~ 0 m I- m

'- () ·- "' '-"' w Q) ·-c: 0 c. -c - '-- Q. - "' ·- m Q) Q) () - 0 E ~ 0 :l Q) x '- ·- -w • a.. :E cc en w
0 0 0 0 0 0

317

~ ·-- N ·-.c M ·- c)(
CD I--

"' u.

318

-0
c..
(,)
as
Q.

E
0
0

II
u~
wi
~B
~ -N ---
'II'

Vl
l.O

:>Combines the Bandwidth of CompactPCI

with the Flexibility of STD 32

:>Keeps Fast and Slow 1/0 on

Separate Buses

:>Allows for Multiprocessing

:> Growth Path for STD 32 Customers

:1ll1zlA1:!£J:!

---'i'j'I

320

321

322

w
N
w

CompactPCI cards for
Video, Network,
Vision etc ..

Other STD 32 Processors, Digital and Analog 10, Seria11ll1zlATECH
MIL-1553, PLC Connections, Motion Control - caRPDRATIDN

:> Synchronizing two separate
Synchronous buses

~ :> Providing PCI Plug & Play
Configuration registers

:>Support for ISA peripherals on
BOTH sides of the bridge

:>Legacy 10 compatibility

:>Creating PCI parity cycles
-=f lllzlAT§Sit!

~ FPGA solution for ongoing PCI Bus

flexibility
~ ~Separate State Machines

~Coexisting with a subtractive
bridge (ISA)

STD 32 Bus

:1lllzlA1:~£Jj

-c
Q)
UJ

UJ ca
- Q) ca s... UJ

CJ') Q) Q)
0 .r:, (.)
- a. s...
al ·c: ::l
c: Q) 0
0 Q. ~
;; C\I s... ca CW') ,,, c:
L.. \IJ 0
::l c Q+:i
C> ~ M~
ti= CJ') l.M c
c: -c Q) Q)
o c: UJ E
o ca 5 a>
0 <t ..c: a.
a.. en C:E
o o o·-

326

-
'iii'"

327

-·,
c:

~
0
c.
E ·-

--
1111

Serial Storage Architecture
A Low-Cost, High-Speed Serial Connection for Disk Subsystems

AdgeHawes
Advisory Architect

Storage Subsystems Development
IBM Havant
POBox6

Havant, Hampshire, P09ISA
United Kingdom

+44 1 705 486363
Fax: +44 1705 499278

adge@ukibm.com

February 1996

This paper provides an overview of SSA (Serial Storage Architecture). Bringing a new and much-needed standard
serial contender to the world of disk drive interfaces, SSA combines the speed and robustness of a comprehensive DC­
balanced 8B/10B coding system with the low cost of CMOS driver electronics, the cabling benefits afforded by a low
signal count, and the performance advantages obtained by use of a loop topology. The paper outlines the benefits and
design details of the serial interface, and gives examples of its use in practice in large disk arrays. It also gives a status
of SSA's standardization in ANSI, and an indication of the silicon and software that is available to SSA developers.

Introduction

High Speed 110 Buses
As the perfonnance of personal computers and workstations grows in leaps and bounds, so the requirements of their I/O bus increases
dramatically. Since 1981, personal computer development has seen the standard I/O bus go from the humble 8-bit 'expansion bus' of
the IBM PC/XT, through the ever-popular 16-bit 'Indl15try Standard Architecture' (ISA) of the IBM PC/AT, to the 32-bit EISA, Micro
Channel, VESA Local-Bus and PC! buses. For the future, PC! defines a 64-bit extension, and VESA is also has a 64 bit version of its
VLbus.

These developments recognize that as clock speeds of data transfer within a computer system reach reasonable economic maximums
(where electromagnetic interference is to be minimized), the only way to increase the data transfer rate is to increase (and this usually
means double) the data width.

External VO Connections
Going beyond the bounds of the computer's motherboard, however, it is a different story. Frequently, attachment devices such as CD­
ROMs, tape drives and particularly extra disks and disk arrays need a fast, low-cost external attachment. While many 'out-of-box'
connection methods exists, most notably the "Small Computer Systems Interface (SCSI)", speed improvement on such buses is not so
easy. Increasing the data width, which in practice means doubling it, has two problems.

• The cable and connector almost double in size. Of necessity, such cables are invariably low-cost (ribbon cable or twisted-pair) and
usually bulky anyway.

• The risk of crosstalk between data signals increases.

In addition, the ability to increase the clock speed on such buses is limited by the EMI and data skew complications, if an expensive
shielded cable is to be avoided.

The SCSI specification has introduced versions which increase its clock speed and its data width allowing it to operate at up to
40MBytes/s, but it is recognized that further expansion possibilities are limited.

328

The Serial Alternative
As the problem with expanding the effective data rate of such l/O buses are due to the physical size of the cable, an alternative approach
is to reduce the size of the cable, ultimately to a single signal. As a narrow communication path usually involves serializing the wider
data units that the computer uses, such connections are invariably referred to as Serial links or buses.

Given the performance advantages of the wide data bus, such a move would appear to be a backwards step. However, a serial 1/0
connection can have several advantages:

• The ASICs that implement the connection can have very few pins devoted to the connection itself In most technologies it is the
number of pins, rather than the number of logic cells, that dictate the ASIC cost.

• The AS!Cs have less of their circuitry devoted to the drivers and receivers of the signals. These components are often in short
supply, are difficult to place on an LSI chip optimally, and usually consume a lot of power. Also, many such signals changing at
once, as is characteristic of wide data buses, can cause severe 'ground bounce' problems.

• The connecting cable has less wire. Apart from the cost and bulkiness advantages, it means that more sophisticated shielding can be
applied inexpensively than would be possible on multi-signal cables.

• With a single data signal there is no clock skew to consider as the data rate or the length of the cable increases.

• The !10 connection may be continued across other transmission media (than conventional copper wire), that don't lend themselves
easily to parallel transfers (e.g. optical, radio, telephone).

These advantages can more than compensate for the reduced data width, and in tum allow more bandwidth expansion possibilities.

How Many Signals?
It is tempting to think that a serial connection always consists of one wire. Unfortunately, the nature of the transmission medium, the
speed of the data, and the requirements of the connection protocol make the 'one-wire-only' serial connection a rarity. The most
famous serial link, RS232, requires some 9 connections! The bus frequently requires extra connections for the following reasons:

• A reliable transmission protocol often demands two-way, or.full-duplex communication. The second communication path may be
used for simple acknowledgement, for bi-directional concurrent data transfer, or both. When used in a loop, such as may be found
in disk arrays, the second path may be used to double the bandwidth to that drive, or provides an alternative route to a drive whose
cormection has failed.

• The nature of copper wire means that high frequency signals can most effectively be transmitted using "differential pairs", wherein
the same signal is transmitted with opposite polarity on the other wire of a pair. The two wires suffer similar noise and distortion
corruption during transmission and the signal may be extracted by subtracting the output of one member of the pair from the other.

• Some serial links transmit the clock on a second signal. This means that reception of the data is simplified, and variation of the clock
speed may be accomplished somewhat transparently (albeit with clock skew considerations). However, the addition of a second
signal for a clock represents a I 00% increase in signals required while adding little or no information content (in the classical sense).

Examples of serial buses include: Philips Inter-Integrated-Circuit bus (12 C), which is a !OOKbits/sec two-signal (clock and data) bus for
connecting integrated circuits; IEEE Pl394, an up to 393MBits/s two signal (data and strobe) point-to-point connection for desktop
computers; and Fibre Channel (FCS), a 1 GBits/s high-end fibre optic link for LANs (Local Area Networks) and WANs (Wide Area
Networks).

Serial Storage Architecture
Serial Storage Architecture (SSA) is a serial link designed especially for !ow-cost high-performance connection to disk drives and other
peripherals. It is a two signal connection (transmit and receive), providing full duplex communication. It uses a self-clocking code,
which means that the data clock is recovered from the data signal itself rather than being transmitted as a separate signal. For
transmission along copper wire, it uses the differential pair method, requiring four wires, but it can also be transmitted along fibre optic
cable.

The copper wire transmission rate is currently 20MBytes/sec in each direction, for a maximum of 25 metres cable length.

SSA Components
Serial Storage Architecture currently comprises two components:

SSA-PH/TL The physical and transport layers. These are the physical and electrical specifications of the serial link
and the low-level transport protocol, and is what is described in this article.

329

SSA-SCSI The SCSI-2 mapping. It is recognized that the logical aspects of the SCSI specification remain quite
appropriate for addressing serially attached peripherals, and so this aspect of SCSI has been mapped
to the physical SSA interface. This means that a transition may be achieved from SCSI to SSA with
the absolute minimum of code rewrite.

In addition, it is planned that similar mappings will be provided for the SCSI-3 specification when it is approved by the American
National Standards Institute (ANSI).

SSA Characteristics
The SSA serial link has the following characteristics :

Topowgy:
A flexible addressing scheme that allows connections as strings, loops, and switched loops. "Hot swapping" is also permitted.

Distance:
Point-to-point connection for up to 25 metres (cable). Fibre-optic connections could support distances ofup to lkm between nodes.

BandwUlth:
Full duplex communication. 20MBytes/s (200Mb/s) in each direction. The protocol allows for speed increases as technology permits.
Work is currently under way to develop and standardize a 40MB/s version.

Format:
The unit of transmission is the frame, which can be up to 128 bytes. The minimum overhead per frame is 8 bytes, or about 6%.

Reliability:
The link is highly reliable. The design provides considerable detection of errors of all kinds, and a large amount of transparent error
recovery.

Physical·
The cables and connectors have a small fonn-factor.

Topology
The SSA design allows an extremely flexible assortment of connection options. SSA networks can be connected in simple strings or
loops, or more complex switched strings or cyclic paths. This flexibility allows trade-offs to be made between cost, perfonnance and
availability.

This variation is afforded by three different types of SSA nodes:

• Single Port
• Dual Port
• Switch

I-port 2-port 2-port 2-port I-port

Figure I. An SSA String

Strings
A string is a simple linear network of two or more nodes, as shown in Figure 1. The port at either end can be single-port nodes, while
the others are dual-port nodes.

330

A special case of a string is the dedicated connection, where two single-port nodes connect to each other across one link.

~
2-port ~ 2-port ~ 2-port ~ 2-port ~ 2-port

~
Figure 2. An SSA Loop

Loops
The commonest form of connection is the loop, shown in Figure 2. A loop is a cyclic net.work containing only dual-port nodes. Loops
have the benefit of higher bandwidth (there are two data paths available between any two nodes) and higher reliability (any single node
can fail without prohibiting communication between nodes) than strings. In addition, a node may be inserted into the loop without
breaking communication.

Switches

~String String

I-port 2-port I-port

2-port 2-port 2-port

Cyclic path

Figure 3. An SSA Switched Network

Figure 3 shows an example of a complex network involving a switch.

A switch can have up to 126 ports. Switches allow large numbers of nodes to be connected together, and also enable alternative paths to
be established to provide fault tolerance.

Note that a switch network can also include other cycling paths; these are not loops by definition, as they involve other than dual-port
nodes.

331

I
~----------------

Array
Controller :

'
Server

Server

,----------------~"'-

Figure 4. A lligb AvallablUty Server.

High Availabilily Server

Array
Controller

~SSA links

LAN connection

kl an example of an SSA network (usually referred to as a Web), Figure 4 shows a configuration for a IDgh A vaUabUi1y File Server.
Here, high availability means that the network is tolerant of a single fault; a failing link can be identified, and there may be some loss of
bandwidth, but otherwise the operation of the network is not impaired.

11ris network contains two loops. The outer one connects the servers and the array controllers; the inner one connects the controllers
and devices. Spatial Reuse (see "Spatial Reuse") allows each path to provide up to 4 times the bandwidth of a single link.

Coding
Despite the serial nature of the link, the unit ofinfonnation transmitted remains the byte. Conventionally, an 8-bit is serialized and sent
as a bit stream. However, if these bytes were serialized and sent one after another with no intervening control bits (as would be
necessary for maximum throughput), the following problems would arise:

• There would be no way to recover and synchronize the data clock, especially with a stream o~ say, all 'O's;

• There would be no indication of when a byte began and ended;

• Any exrors occuning would be undetected and uncOITected;

• There would likely be a DC bias in the data signa~ as more bits were sent of one polarity than the other.

To overcome these problems, a serialized bit stream is usually at a fixed clock rate, and is interspersed with control bits (e.g. Start, Stop
and Parity) which go some way towards solving the first three problems at the expense of some bandwidth.

The last point, the DC bias, is usually ignored, and yet it is sometimes this one that prevents the serial link from moving to higher
speeds. 11ris is because as the data rate increases, the data signal contains more and more components at higher frequencies. To extract
these signals reliably sometimes requires AC-coupled amplifier circuits at the receiver end. For example, the average value of DC-free
signal (obtained by simple integration) can be used to provide the slicing point, the level that distinguishes a one from a zero. 11ris is
particularly useful for fibre-optic receivers, and is also the principle used in coding on Compact Disk and CD-ROMs.

332

BB/JOB code
Because of these and other considerations, SSA uses a fonn of coding called '8B/IOB' encoding. The name reflects the fact that the 8
bits to be coded become 10 bits of data. Thus there is a 25% redundancy in the signal, but as will be seen, this overhead is well spent.

Obviously, a 10 bit value can take on any of 1024 combinations, but many of those combinations are not valid, being excluded by the
following rules:

1. There are no more than 5 consecutive bits of the same value (this applies between adjacent bytes as well as across a byte),

2. The maximum 'Digital Sum Variation' (DSV) is 6 (+3 to -3).

The run length limit ensures that the clock can be successfully recovered at all times, and will remain in synchronism.

The DSV is defined as follows: Counting a' l' as+ 1 and a 'O' as -1, then a running count is kept as the bits are coded. The maximum
value of this count minus the minimum value is the DSV. If this value is constrained, then the DC component of the transmitted signal
is effectively zero; there are as many' l's as 'O's in the stream overall.

For this to be achieved, the codes that are selected for transmission are dependent on the codes that have been previously been used, as
well as the data that is to be transmitted. Thus each byte to be encoded can map to more that one code that is transmitted. This accounts
for most of the redundancy in the 8B/10B coding method.

In practice, the 8-bit byte to be encoded maps to one or two codes. The byte is split into two parts, a 5-bit string and a 3-bit string. The
substrings are then encoded using a 5B/6B code for the first substring and a 3B/ 4B code for the second. Each substring has either an
exact number of' l's and 'O's, or is unbalanced by 2. An imbalance is corrected by selecting the version of the next byte's code that has
the opposite imbalance.

Special Characters
This coding method successfully encodes all 256 possible values for a byte, but also allows a further 12 codes to be included that obey
the coding rules. Of these 12, three have the unique property of containing a string of bits within them ('0011111 'b) that can never
occur in any other bit position, either within a code or across a boundary between two code words. This property dubs them Comma
codes, and may be used by the receiver to synchronize its clock to the correct codeword boundary. The remaining codes are used by the
SSA protocol as 'special' characters, as they are readily identified as non-data.

The special characters in SSA are:

FLAG

ABORT

SAT

SAT'

DIS

ACK

vv

Used to delimit the start and end of a Frame. It is also a comma character

Prematurely aborts the transmission of a frame.

With SAT', used for arbitration.

With SAT, used for arbitration.

Indicates the disabled state. It is also a comma character.

Acknowledges correct reception of a frame.

333

Using A Design Foundation for Flexible and Rapid PCI Interface
Development

Leo K. Wong
Applications Engineer

Altera Corporation
San Jose, CA

Email: lwong@altera.com

1. ABSTRACT

Developing a customized PC!
design to one's exact specifications can be
an expensive, if not daunting, venture,
involving NRE costs, lengthy design and
debug cycles, and months of ASIC
turnaround time. Off-the-shelf PC!
interface ASIC or PC! chipsets decrease the
resources required for in-house
development, but lack the flexibility for
customization. That may in turn increase
the components count on board, resulting in
higher production cost and lower reliability.

To address these problems, a set of
PC! interface designs has been created for
use with complex programmable logic
devices (CPLD). These reference designs
serve as foundations for PC! interface
applications, asserting the necessary state
machine controls and bus transaction
signals. Complex Programmable Logic
Devices (CPLD), coupled with this
customizable PC! design foundation,
provide a highly integrated methodology
that can be tailored to the end application
needs with minimum development effort and
time.

This article describes the major
features of this set of designs, and also
covers important design considerations in
developing a CPLD based PC! application.
These considerations include device
performance, resource utilization, electrical
characteristics and other desirable features
such as open drain 110 and on-board RAM
Finally, the paper then describes the

334

strategies this set of reference designs
employ to address these issues and how one
might customize the junction to his/her
particular needs.

2. DESCRIPTION OF THE DESIGN
FOUNDATIONS

The PCI Design Foundations
contains high-level behavioral descriptions
files of both Target and Master. Under
each type of interface are the design files
optimized for different CPLD architectures.
These design files, written in AHDL, take
advantages of the unique features associated
with each device family. These special
features includes parallel and shared
expanders for MAX 7000E; carry and
cascade chains for FLEX 8000A; and the
identity comparator for FLASHLogic.
Associated with each design are the
Assignments and Configuration Files (ACF)
developed for each family. The ACF files
direct MAX +PLUS II, the Altera PLD
development system, to synthesize and place
logic intelligently, enabling the underlying
components to be PCI compliant.

In addition, sample test vectors,
written in the form of waveforms, are
provided as foundations of extensive
functional and timing verifications. The
verification can be performed in
MAX +PLUS II or other standard EDA
tools.

Figure 1. PCI Reference design Architecture
Block Diagram
~~_;;~--------------~~--------------------------!

~ I.·

nDE\/SEL
PAR nFR.'ME Aq:Jf..OJ J
nPERR ...:lNT n::_BE{3.D] l
!\SERR nlRDV IDSEL !

---------- -------- --------------------- ------~

' ' ' ' ' ' '
.
i Atf.)t..O] i STPJ'~ . .O]

Ccn•gi~r- l
~~eot !

;
t

' ' ' ' ' :

,1. Cl>iontl O..oe- IO c.n..i Lht
s,ec;io Logic !

~;_;;::::::::::: ~~~:: :~~~;:::: ~~:::j
~~R :
rBE{3..0] Conig.,.,;.,, l
nDEV_ACK 11<g;,,,, ~- i
nDEV_RSl ~.DJ (M<Mor)I) i

·-·-·-·-·--·-·-·-·--·-·-·-·-·-·----~~=~~-·-·-·--·--·--·-·-·-·-·-·-·-·-·-·-·-·--·-·J

2.1 Target Interface

The PCI Target interface is a
passive data path between the PCI bus and
the back-end application. As a passive
interface, it can not initiate a data transfer.

In accordance with PCI Spec. 2.1,
the Target reference design respond to all
valid transactions as indicated by the
C_BE[3 .. 0] signals. In addition, the Target
reference design supports a 32 bit Data Bus
with 128 MB of address space. The address
space is determined by 27 bits of address
which compares to the 27-bit Base Address
Registers (BAR) of the configuration space.
The BAR determines the address of the

335

back-end application. It can be changed by
executing a Write_BAR operation, enabling
auto configuration, alleviating the need for
DIP switches.

2.2 Master Interface

The PCI Master interface is an
active data path. It can initiate data transfers
to and from Target interfaces. When the
back-end application requests a transaction,
the Master responds by requesting the
system arbiter for bus control. After the
arbiter grants control, the Master provides
the necessary interface Control signals,
address, and Command/Byte Enable to the
PCI bus. Since it issues addresses, the
Master reference design is not required to
provide address decoding. It supports the
same types of transactions that the Target
reference design supports.

The Master reference design
supports the 32-bit bus data transfers and a
6-bit addressing for the Master
configuration space. The 6-bit configuration
address is sufficient for addressing 64
DWORDs which maps to the 256 Byte
configuration space.

The reference designs are easy to
modify, allowing designers to tailor to their
system specifications. For instance, PCI
protocol supports three decoding modes:
fast, medium, and slow. This set of design
foundations implement medium decode,
where the address is decoded on the next
clock cycle after FRAME# is asserted. PCI
designers might want to change it to a
different decoding mode. Another example
is the address space. If the address space is
smaller, the number of address bits and the
corresponding BAR can be reduced.

3. DESIGN CONSIDERATIONS

3.1 Timing Considerations

Strict timing requirements are
imposed on PCI bus signals. In particular,
the Specification 2.1 requires that PCI
signals meet 7 nsec external Setup time, 0
nsec external Hold time, and I I nsec Clock­
to-Out time. Furthermore, it requires 33
Mhz operation for off-the-shelf PCI cards.
Due to these timing restrictions, only high
performance components with predictable
timing should be considered for PCI
interface applications. High density
programmable logic devices such as the
MAX 7000E-l OP, FLEX 8000A-2 devices,
and the EPX 8160-10 meet these
requirements.

These PCI timing requirements do
not apply to the signals that go to or come
from the back-end application. It is only the
signals on the PCI bus that need to meet the
specification. The only constraint that the
back-end has to meet is the system
frequency of operation. For off-the-shelf
cards, this requirement is 33 Mhz.
Proprietary or closed PCI systems could be
designed for a lower frequency of operation.

The PCI reference designs
implement several design strategies to meet
PCI Specifications with the target devices.
These strategies are employed for designers
in the form of Assignment and
Configuration File (ACF). Explanations for
those assignments are given by the
following sections.

3.1.1 Target Timing

For MAX 7000E, the -lOP speed
grade devices easily meet the required 0
nsec external Hold time and 1 lnsec Clock­
to-Out when the tri-state is enabled one

336

cycle before the Address/Data is clocked
out. The way MAX 7000E family meet 7
nsec Setup time requirements depends on
the decoding mode.

In medium decoding mode, the
address get decoded on the next clock cycle
with reference to FRAME#. If the address
needs to be decoded on the same clock cycle
as the FRAME#, the Address/Data bus lines
and Command/Byte Enable lines are
registered before it gets decoded. The
interface control signals are not registered
to allow the interface to respond on the same
clock cycle. The Setup time can then be met
by using parallel expanders on the state
machine decode. Parallel expanders are
product term routed from an adjacent Logic
Cell, as opposed to shared expanders, which
are product term routed from the same
Logic Array Block. I

In the FLEX 8000A family, the
basic building block of the devices are
called Logic Elements. These Logic
Elements are interconnected together by
continuous rows and columns channels. At
the end of rows and columns are 1/0
elements, each contains an 1/0 cell register
that feed an 1/0 pin. The delay from column
pins to Logic Elements and the delay from
row pins to Logic Elements are fixed but
different. In order to meet the 0 nsec
external Hold time in FLEX devices, PCI
bus signals are assigned to column pins to
generate a greater delay difference between
clock-to-register and data-to-register signals.
For the 11 nsec of Clock-to-Out time
requirement, outgoing signals to the PCI bus
should be latched from 1/0 cell registers.
Furthermore, tri-state is enabled one cycle
before the data is clocked.

To meet the 7 nsec Setup time, the
Address/Data and Command/Byte Enable
are registered before they get decoded.

1 See detail descriptions of MAX 7000E device architecture
in Altera 1996 Databook.

Since FLEX 8000A is a register-rich family,
one-hot state encoding scheme is used for
the target state machine. Furthermore, the
reference design take advantage of the
cascade chain, a dedicated path between two
Logic Element, to speed up control signals
decoding. 2

3.1.2 Master Timing

With MAX 7000E, the same
strategies as used in the Target apply. The
only difference is the absence of address
comparison to the BAR, resulting in less
register usage.

In the case of FLEX 8000A, since
Master interface has a more complex state
machine decode than the Target. In order to
meet the 7 nsec Setup, interface control
signals are registered, resulting in one clock
cycle latency. The other strategies for the
Target also apply.

3.2 Logic Usage Considerations

In addition to timing specifications,
PCI bus interface requires certain number of
logic capacity and I/Os. Table 1 shows the
logic cell and I/O utilization for timing
optimized Target and Master reference
designs in some sample programmable logic
devices.

Table I: PC! Utilization on Different Devices

PCI Device LCELL No. of
Interface Utilization I/Os

Target EPM7160E-IOP 155 (96%) 98
Target EPF81188A-2 306 (30%) IOI
Master EPM7160E-10P 123 (76%) 103
Master EPF81188A-2 285 (28%) 134

Note that in the higher density
devices, plenty of logic capacity is available
for additional custom integration.

2 See detail descriptions of FLEX 8000A device architecture
in Altera 1996 Databook.

3.3 Other Resource Considerations

In addition to 1/0 pins and logic cell
usage, PCI interface logic necessitates a
certain number of control signals, including
clear, preset, and output enable. Designers
need to pay particular attention to the output
enable signals needed to control the data
flow. It is important to allocate the OEs
required to the system specification. The
Target and the Master don't have the same
output enable requirement. These are
itemized in the following subsections.

3.3.l Target

Table II and Table III shows the
required output enable and their functions as
defined by PCI specification Rev 2.1 .

Table II. Signals that Target handles:

Signals Equations
OE [AD[31 .. 0]] (S_data + Backotl) & Tar_dly *(cmd

=read)
OE[TRDY#] Backoff + S data + Tum ar
OE[STOP#] Backoff + S data + Tum ar
OE[DEVSEL#] Backoff + S data + Tum ar
OE[PAR] OE[AD[31..0]] (delayed by 1 elk)
OE[PERR#] R_perr + R_perr (delayed by I elk)

337

Output enable signals can be
consolidated if that are driven by the same
logic. Resources are conserved as follows:

I. AD oe
2. DATA oe
3. PERR oe

=> controls AD[] and PAR
=> controls the DA TA[] 3
=> controls the PERR# 4

3 DAT AO represents 32 bi-directional pins interfacing with
the back-end function.
• PERR# and SERR# are not required (PCI Local Bus
Specification Rev 2.1) for the following classes of devices:
Devices that are designed exclusively for use on the
motherboard or planar; e.g. chip sets. System vendors have
control over the use of these devices since they will never
appear on add-in boards.
Devices that never deal with or contain or access any data
which represent permanent or residual system or application
state, e.g. , human interface and video/audio .devices. These
devices only touch data which is a temporary representation

4. TRDY oe => controls the TROY#,
DEVSEL# , and STOP#

3.3.2 Master

Table Ill Output enables required in a Master
Interface:

Signals Equations
OE[FRAME#] ADDR+ M data
OE [AD[3 I .. O]) (S_data + Backoff) & Tar_dly

*(cmd =read)
if ADDR drive address
ifM_data drive data
if DR_bus if (step * request)

drive address else drive lines to a
valid state

OE[IRDY#] (previous) M_data + ADDR
OE[LOCK#) Own lock & M data +

OE[LOCK#] * (FRAME# +
!LOCK#)

OE[C_BE[3 .. 0)] ADDR + M data+ DR bus - -
if ADDR drive command
ifM_data drive byte enable
if DR_Bus if (step * Request)

drive address else drive lines to a
known state

OE[PAR] OE[AD[3 l..O]] (delayed by I elk)

OE[PERR#] R_perr + R_perr (delayed by
1 elk)

The output enables for Master can
be grouped as follow:
1. FRAME oe => controls FRAME# and

C BE[]
2. IRDY oe => controls IRDY#
3. AD oe =>controls AD[] and PAR
4. DAT A oe => controls DAT A[]
5. PERR oe =>controls PERR#
6. SERR oe => controls SERR#

3.3.3 Master & Target

The following Output Enables are
required for a combined Master and Target
interface.

1. FRAME oe => controls FRAME# and
C_BE[]

(e.g. pixels) of permanent or residual system or application
state, and therefore, are not prone to create system integrity
problems in the event of undetected failure.

338

2. IRDY oe
3. TROY oe

4. AD oe
5. DATA oe
6. PERR oe
7. SERR oe

=> controls IRDY#
=> controls the TROY#,
DEVSEL#, STOP#
=> controls AD[] and PAR
=>controls DATA[]
=> controls PERR#
=> controls SERR#

Combined Master and Target
interface can be implemented in a single
EPM7160EQC160-10P if PERR# and
SERR# reporting is not required.
Otherwise, an additional EPM7032-7 can be
used for the implementation. For FLEX
8000A, an additional EPM7032-7 can be
used to complement the output enable
buffer.

Note that the back-end bi­
directional DAT A[] bus can be divided into
two 32-bit input and 32-bit output bus. This
scheme will increase the number of 1/0 pins
used but reduce the number of output enable
required.

4. MUL Tl-CHIP SOLUTION

A single chip implementation of a
PCI interface is preferable, but a multi-chip
implementation is feasible. There are many
reasons that make a multi-chip
implementation necessary. They are
insufficient logic capacity, insufficient pin
count, insufficient output enable, or a
combination of the above.

There are Loading, Timing, and
Layout issues to deal with on a multi-chip
PCI interface design. These topics· are
discussed in the following subsections.

4.1 Multichip-Loading

The PCI Local Bus Specification
limits the load on a PCI signal to a single
pin. Therefore, when design is partitioned,

none of the PCI interface signals can drive
multiple pins.

One aspect of the multi-chip scheme
that cannot be avoided is multiple clock
fanout. Using one of the many available
clock distribution chips on the market limits
the load on the PCI clock to the specified
12pF while providing multiple clocks. 5

4.2 Multichip-Timing

Irrespective of the implementation,
the PCI interface must meet the specified
Setup (Tsu), Hold (Th), Clock-to-out (T c0),

and Register Frequency for off-the-shelf
card. These requirements dictate how the
PCI design is partitioned in a multi-chip
implementation. The control signals
generated from one chip must be available
to the other chip in time.

First, the Output Enable signals
generated from one chip has to be able to
enable a tri-state buffer on another chip in
less than (11 nsec - Output driver delay).
For example, an Output Enable control
signal from an EPM7032-7 will take 7 nsec
to get to the tri-state OE control of
EPM7128E-10P. This number was
calculated by adding: Teo ofEPM7032-7 +
(Ti/o + Tpia + Tioe) of EPM7128E-10P.
Notice that this is less than 9 nsec (11 nsec
Teo - 2 nsec Todl). A similar calculation
can be done between FLEX SOOOA devices,
and it will show that this requirement is also
satisfied. FLEX 8000A meets this
constraint irrespective of whether the
outgoing Output Enable signal is from an
1/0 cell register or not. A combination
MAX 7000E and FLEX 8000A is also
feasible.

5 Vendors such as Motorola and Cypress make devices for
this purpose. Examples are CY7B991/2 Programmable Skew
Clock Buffers from Cypress Semiconductor, or MC88915*70
Low Skew CMOS PLL Clock driver from Motorola.

339

Secondly, signals from one chip that
are needed for implementing a decode in
another chip needs to be available within the
required 30 nsec period. T co for MAX
7000E- l OP is 5 nsec, and that of MAX7000-
7 is 4.5 nsec. FLEX SOOOA devices have
very fast T co from 110 cell register, and
comparable T co from a core register to a
column pin. Refer to the FLEX8000 Data
Sheet for the Timing Model and timing
values. The chip implementing the decode
has 30 nsec - T co time to decode the logic
and meet the internal register setup.

4.3 Multichip-Layout

PCI Local Bus Specification 2.1
requires that signal trace to a PCI interface
chip be no longer than 1.5 inches for a 32-
bit implementation. The PCI Connector
Pinout is given in Table 4-11 of the Rev 2.1
specification. In order to meet the 1.5
inches requirement with this pinout, PCI
chips have to be mounted on both sides of
the board.

5. Burst Mode Operation

To realize the full performance
potential of the PCI bus, zero wait state
burst mode operation must be incorporated
in the design. High speed CPLD such as
EPF8 l l 88A-2 can execute zero wait state
read and write operations for an indefinite
period of time, thus supporting the
maximum transfer rate of 133 MB/s. The
burst design for other Altera devices will be
offered in second half of 1996.

5.1 Burst Mode Signals

This target interface performs a
basic PCI burst mode protocol. There are
three handshake signals between the target
interface chip and the back-end: wr _wait,
rd_wait and i_wait. They are defined in
Table IV.

Table IV Burst Mode Back-end control signals
wr_wait Input signal to our chip from the back-end

indicating that the back-end can not accept
data this clock cycle. It is an active high
signal.

Rd_wai Input signal to our chip from the back-end
t indicating that the back-end can not provide

data this clock cycle. It is an active high
signal.

i wait Output signal from our chip to the back-end
indicating that the Master can not accept or
provide data this clock cycle. It is an active
high signal.

Burst addressing is handled by the
back-end application. The target interface
provides the first address. Currently, the PCI
burst interface does not have data FIFO or
register bank implemented. In register­
intensive devices such as FLEX 8000A,
these functions can be added as required.

5.2 Error Recovery in Burst Mode

The current burst mode
implementation does not limit length of data
transfer. At any intermediate point in the
data transfer, a parity error can be detected.
PCI specification does not explicitly state
what should be done in this case. There are,
however, two scenarios that can be
explored. The choice is up to the hardware
designer and BIOS developer:

The first option is to perform a
complete retransmit. The advantage of this
approach is that designers don't need a
counter to keep track of the address. The
second option is to restart transmission
where the error was detected. It requires a
loadable counter that is wide enough for the
address space. The starting address of the
data transfer gets loaded to the counter, and
it keeps track of the address of succeeding
data transfers.

The Target burst reference designs
implement the first recovery scheme. When
a burst is interrupted, the transaction

340

terminates and it starts from the very
beginning when the burst restarts.

5.3 Implementation

This section describes the
handshaking between the PCI bus and the
back-end during burst write, burst read and
master initiated termination.

5.3.1 Burst write transaction:

During a burst write, the target
interface outputs new data on the DAT A bus
every clock cycle to the back-end when
IROY# is asserted unless the back-end
requests a wait, in which case, an input
signal wr _wait from the back-end will be
received. The target interface de-asserts
TROY# one cycle after wr_wait is observed
on the rising edge of elk. Data on the Data
bus is one cycle delayed version of the data
on the AD bus. Figure 2 is the timing
diagram for this transaction.

When IROY# is de-asserted, the
target interface generates an i _wait signal to
the back-end the same cycle when IROY# is
observed. In this case, the back-end will
hold the current address when i_ wait is
observed on the rising edge of elk. Figure 3
is the timing diagram for this transaction.

5.3.2 Burst read transaction:

During a burst read, the target
interface receives new data on the Data bus
every clock cycle when IROY# is asserted
unless the back-end requests a wait, in
which case a rd wait will be received from ' -
the back-end. The target interface de-asserts
TROY# one cycle after rd_ wait is observed.
This will cause the PCI bus to enter a wait
cycle. The back-end holds its data on the
Data bus after asserting rd_ wait. Figure 4

shows the timing diagram for this
transaction.

When IRDY# is de-asserted, the
target interface generates an i_ wait signal to
the back-end in the same cycle when IRDY#
is observed. In this case, back-end will hold
the data when i wait is observed on the
rising edge of elk. Data on the AD bus is
NOT a one cycle delayed version of the data
on the Data bus. In order to provide correct
data to the AD bus, both the Data register
and the AD register must output the
previous data when IRDY# is de-asserted.
Figure 5 shows the timing diagram for this
transaction. Figure 6 is a block diagram of
the data path for this operation.

Figure 2. Datapath for burst read

PCI Bus Back-end

5.3.3 Master initiated termination:

When FRAME# is de-asserted and
IRDY# is asserted (indicating the last data
transition), the target must transfer this last
data when it is ready. After this transfer,
both IRDY# and TRDY# are de-asserted,
and the PCI bus goes into the turn around
state. The PCI target control signals
TRDY#, STOP# and DEVSEL# are all de­
asserted during the turn around cycle and
are tri-stated the following cycle.

341

6. OTHERS

6.1 Implementing Open-Drain (0/D) pin:

Section 2.1 of the PCI Local
Specification 2.1 states that certain pins on
the PCI bus must be open-drain. This
allows several devices to share a signal as a
wire-OR. These signals consist of SERR#
and INTA# - INTO#. Note again that
SERR# and INT A# - INTO# are not
necessarily required. INT A# - INTO#
signals are used by PCI devices to assert an
active-low signal to the system interrupt
controller. The system designer determines
whether this is required or not.

EPX8 l 60 supports open-drain
outputs. MAX 7000 and FLEX 8000
devices implement the open-drain structure
by using an output enable to control an
output pin that is configured to drive low.
In effect, when SERR# needs to be asserted,
the output is enabled. A pull-up resistor on
the board ensures that the SERR# signal on
the PCI bus is at a logic high in its quiescent
staty.

6.2 Low Power Options

MAX 7000 and FLEX 8000A PCI
devices can be used with 3.3 V 1/0 option.
This only impacts the Output Driver delay
time, increasing it by 0.5 nsec. The Setup
and Hold time remain unchanged when the
3.3V 110 option is used.

7. CONCLUSION

As the provider of the highest
density and highest performance
programmable logic devices, Altera has
been proven to bring the benefits of time-to­
market and flexibility to designers. With the
introduction of the PCI reference design,

unprecedented level of design re-use and
customization power are brought to the PCI
design community.

AUTHOR BIOGRAPHY

Leo Wong is an applications
engineer with Altera Corporation, where he
is involved in PCI design implementation,
strategic partners liaison, and programmable
logic application consultations. He holds
BS degree in electrical engineering and
computer science from University of
California at Berkeley.

REFERENCE
PCI Specification Rev. 2.1
Altera Application Brief 143: Understanding FLEX
8000 Timing
Altera Application Brief I 00: Understanding Classic.
MAX 7000, & MAX 9000 Timing
Altera 1995 Databook, FLEX8000 Programmable
Logic Device Family
Altera 1995 Databook, MAX 7000E Programmable
Logic Device Family

342

Abstract

A NEW FPGA FAMILY FORPCI INTERFACE DESIGNS

Brian Small, QuickLogic Customer Engineering Manager
2933 Bunker Hill Lane
Santa Clara, CA 95054

(408) 987-2003
email: small@quick.mhs.compuserve.com

The flexibility ofFPGAs has made them popular for implementing interfaces for buses such as the Peripheral
Component Interconnect (PCI) bus. However, the PCI timing and electrical specifications are difficult for most
FPGAs to meet, even for many of the FPGAs advertised as "PCI-compliant". This paper identifies and explains the
most critical PCI specifications and how they relate to FPGA-based designs. It also explains how the features of
QuickLogic's new pASIC 2 FPGAs allow them to meet these critical specifications, and why these devices are often
the best choice for FPGA-based PCI designs.

PCIIFPGA Design Requirements

To design a PCI interface into an FPGA, the design/FPGA combination must provide a set of minimal criteria.
This set includes, but is not necessarily limited to:

• PCI Electrical Compliance on I/O pins attached directly to the bus

• PCI Timing Requirements
- 7 ns setup time
- 11 ns clock-to-output time
- 33 MHz clock frequency

• Density and pinout to support master/target designs and back-end logic

• JTAG support (optional in PCI Specification)

These criteria will be addressed in the following sections. Also, it will be demonstrated how the QuickLogic
pASIC 2 family FPGAs meet these criteria.

PC/ Electrical Compliance for 110 Pins

Pins which attach directly to the PCI bus must have electrical characteristics which are somewhat unique to PCI.
Because the PCI bus is unterminated, and relies on reflected signal propagation to provide a strong signal to a load on
the bus, all pins on the bus must meet AC switching requirements as well as DC drive requirements. These
requirements are best illustrated with a Voltage vs Current diagram, showing the compliance region falling within an
area of the graph. Below are shown the VI diagrams for low to high (IOH) and high to low (IOL) transitions.

Vout

so 100

IOH (mA)

ISO 200

Vout

100 200

lOL(mA)

Figure 1: PCI 1/0 Buffer Electrical Requirements

343

300 400

The QuickLogic pASIC 2 I/O buffer performance is shown as dotted lines (Measured Min/Max) in the above
diagrams. This data demonstrates the results of careful design of the I/O buffers for this FPGA family to meet PCI
electrical requirements.

Timing Requirements (Setup, Clock-to-Output, and Frequency)
A FPGA device should not claim to be PCI compliant without proof of timing compliance. This requires a

reference design that illustrates that the device is capable of meeting the 7 ns setup times, 11 ns clock to output
times, 33 MHz frequency, etc ... This section will discuss the more critical problems with meeting these PCI timing
requirements.

Setup Time

The PCI bus specification requires that all signals must be registered by the destination device within 7 ns of the
rising edge of the clock. This equates to a 7 ns setup time on the FPGA. For a PCI Target Inteiface design, this is
not a difficult requirement, because the PCI signals can be registered immediately upon entering the device - so there
is little or no logic between the input pin and the flip-flop. The Quicklogic pASIC 2 FPGA family offers input
registers on all I/O pins for this purpose. These input registers are useful for the PCI Address and Byte enable
signals. By using the input flip-flops in the PAD cells, more flip-flops and logic cells are free in the internal array.

Figure 2: pASIC 2 Family Input Register

In the case of a PCIMaster!Target Inteiface design, the 7 ns setup time requirement is a little more difficult to
meet, because some of the PCI control signals must be interpreted and an output control signal needs to change on the
same clock edge. This means that there must be logic between the input pin and the flip-flop, so input registers as in
Figure 2 will not be adequate for these control pins. An example of one of the critical PCI output control signals that
needs to respond to a change in the input control signals in the next clock cycle is IRDY (the signal that indicates that
the master device is ready to receive/transmit data).

GIRdyCnd-----~

HldR Q

Figure 3: Example of SETUP logic for IRDY signal in PCI Master

The example in Figure 3 of the IRDY setup logic comes from the PCI Masterffarget Interface Applications
design that QuickLogic includes in their PCI Design Kit. Other designs may implement the logic with slight
differences, but the point to be made is the same. IRDY must change based on the previous clock's STOP and TRDY
signals for a proper PCI master implementation. This means that the setup time includes the logic necessary to
interpret the TRDY and STOP signals on the PCI bus. The pASIC 2 architecture can easily implement this logic such
that the path from TRDY and STOP to the IRDY flip-flop takes only one logic cell delay. When this total delay from
TRDY or STOP to the IRDY flip flop is calculated, the minimum CLK pin to IRDY flip-flop delay is subtracted to
determine the SETI.JP time. This falls well under the 7ns setup time requirement of the PCI specification, because of
the versatility of the pASIC 2 Logic Cell, combined with fast routing.

344

Clock-to-Output

The PCI specification requires that all signals driving the PCI bus must be available to the output pins of the
device within 11 ns of the rising edge of the clock. This timing is based on a 50 pF load on the output pin.

[9;[>--~--,
CKPAD I

~' :.:.," ~ h·.~
DFFC , OUTPAD

i
-~F~L_J

Buffered Feedback Signal j - -

Figure 4: Achieving 9 ns Clock-Output Delay in the pASIC 2 Architecture

Figure 4 uses a conceptual schematic drawing to demonstrate how a 9 ns clock to output delay can be achieved
in QuickLogic's pASIC 2 programmable device architecture. Notice that the fanout on the output of the flip-flop that
drives the output pin in minimized by buffering the feedback path. This approach limits the fanout on the output of
the flip-flop to 2 loads (the pin and the feedback buffer). In the pASIC 2 architecture, the Clock to flip-flop delay is
fixed through the clock network at about 4 ns. The delay from the flip-flop output through the wire with a fanout of
2, and to the output pin with a 50 pF load, is about 5 ns. These numbers add up to a 9 us elk-to-out time, well within
the PCI requirement of 11 ns.

In some FPGA architectures, it is necessary to include a flip-flop in the output pad in order to reduce the delay
from the flip-flop to the output pin. However, in these cases the same flip-flop must be duplicated in the internal
array in order to provide a registered feedback signal. QuickLogic's pASIC 2 architecture permits the use of the
internal array flip-flops for fast clock-to-output delays, making flip-flops in the output cell unnecessary

Frequency

The PCI specification requires a PCI interface device to run at up to 33 MHz. Since most PCI board designs run
at the maximum 33 MHz, then an FPGA PCI interface should be able to function at this maximum speed to be
considered PCI compliant. One example of a critical path in a PCI interface is the 37-bit parity circuit, which must
produce even parity across the 32-bit PCI data bus, the 4 PCI byte enables, and the PARITY input signal in one 33
MHz cycle (30 ns). Figure 5 illustrates how a pASIC 2 device can implement a 5-input parity function (equivalent to
a five input XOR gate) in a single logic cell. A 37 bit parity function requires just three levels of these 5-bit parity
blocks.

IN[4)---r-----l----<l

IN[3)----+---------->.."

IN[1)--L-t---t------/1

IN[O)i--'--r---+------'

----+----+-ODD_PARITY

Figure 5: pASIC 2 Logic Cell Showing Implementation of a 5-input Parity Function

The Logic Optimizer Tool, built into the pASIC 2 place and route software automatically maps XOR functions
efficiently from synthesis tools or schematics into the pASIC 2 logic cell. Therefore, the designer does not need to
understand the complexity of the pASIC 2 logic cell to benefit from it. Using QuickLogic's pASIC 2 FPGAs, the 37-

345

bit parity circuit takes only 9.5 logic cells, and the critical path goes through only 3 logic cells. In a "-2" speed grade
device (the fastest grade), the delay through this circuit is about 12 ns. This is only a little more than 1/3 of the 30 ns
clock period allowed in a PCI interface design.

Density and Pinout
PCI designs vary widely in their requirement for pins and gate density, but this paper will include some general

guidelines based on experience with real-world PCI designs.

PCI Target-only designs require only 47 pins for the PCI interface, plus 5 pins for JTAG (optional), plus
whatever pins are necessary for the back-end datapath and control. A typical back-end interface for PCI Target
designs includes a 32-bit address bus, 32-bit data bus, 4 byte enables, and no more than I 0 control signals. This adds
up to a need for about 125 pins on the target device, not including VCC, GND, and JTAG interface pins. As far as
logic density is concerned, many PCI Target designs are implemented in 4000-gate FPGAs, with more complex
Target interfaces seen sometimes in 6000- to 8000-gate devices. Therefore, the appropriate pASIC 2 devices include
the 5000-gate QL2005 and the 7000-gate QL2007.

PCI Master!Target designs are more complex than PCI Target-only designs. Typically, some sort ofDMA
controller resides on the device as well as the Master!Target Interface and the back-end interface logic. Also, the
minimum pinout on the PCI end increases to 49. For these applications, the 7000-gate QL2007 and 9000-gate
QL2009 are most appropriate. The density and pinout information is shown in Table 1.

Table 1: QuickLogic pASIC 2 PCI Devices

pASIC 2 Device Density User Pins JTAG? Appropriate
PCI Interface

QL2005 5000 usable gates 156 Yes Target-Only

QL2007 7000 usable gates 192 Yes Target-Only
or Master!Tar~t

QL2009 9000 usable gates 228 Yes Master!T arget

JTA G Support

The PCI 2.1 specification indicates that JTAG (IEEE standard 1149.1) is an optional component of a PCI
interface design. The JTAG port on an FPGA consists of either 4 or 5 pins which are used on the board only (not
across the PCI bus) for the purpose of verifying the pin connections of each device to the board and the
interconnection between devices. All QuickLogic pASIC 2 devices have a 5-port JTAG interface. All I/O pins can be
loaded, read, and enabled with the JTAG interface.

Conclusion

PCI Interface designs offer many new challenges for FPGA designers. A designer needs to look carefully before
making a decision about which FPGA offers the best solution. QuickLogic's pASIC 2 FPGA devices are designed to
meet the needs of many new high-speed, high-density, and high-pinout designs - including PCI. Aspects of the device
architecture such as input registers, flexible logic cells, high speed routing, PCI I/O buffer compliance, and a IT AG
interface makes it possible to design PCI interfaces in the shortest possible development time.

346

PCI Implementation Kits for ORCA FPGAs:
Features and Design Considerations

James F. Hoff
Lucent Technologies
555 Union Boulevard

Allentown, PA 18103-1229
800-372-2447/610-712-4666 (fax)

e-mail: hoff@lucent.com

This paper discusses the three components which have provided designers with a way of generating
high-speed bus designs in very short times. A particular product, Lucent Technologies' ORCA PC! Kit, is
presented which provides some distinct advantages for the designer, and some issues are discussed
regarding its implementation.

A quantum leap in computer high-speed bus architecture functionality is now occurring, enabled by
advancements in several related areas. The first advancement is the emergence of a bus specification that
has enough proponents to become a de facto standard - the PCI Bus. This bus architecture has achieved
this status by being fast, well defined, and by having an inexpensive direct-to-silicon interface. The second
advancement is the migration to Hardware Description Languages (HDLs). HDLs have enabled logic
designers to generate huge quantities of complex logic in a short time by breaking a design down into a
text-based hierarchical tree ofreuseable modules. The third advancement is the FPGA, which has
revolutionized logic design by providing a design medium somewhere between discrete logic and the
traditional ASIC and which provides the advantages of both in many applications, plus some uniquely its
own.

These three catalysts have ignited an explosion of new designs. The HDL-based PCI Bus on an FPGA
puts complex, flexible, quick-tum bus designs within the reach ofa wide range of potential applications.
What is more, the designer only needs to deal with issues specific to a particular design, with little
duplicated effort.

This paper discusses some of the characteristics of this new bus design implementation medium, and
then goes on to explain in more detail an implementation based on Lucent Technologies' (formerly AT&T
Microelectronics') ORCA FPGA. The rationale for choosing this FPGA is presented. Finally, some specific
design issues are considered.

Advancement #1: The PCI Bus

It is assumed that readers of this paper are familiar with the features of the PCI Bus; however, several
characteristics of the PCI Bus have been crucial to its success as a standard in this area:
• The bus interface is specified as a single-chip interface with no "glue logic" (pull-up resistors, buffers

and drivers) necessary, which is especially important in an integrated FPGA solution.
• It is fast - so fast, in fact, that it is often not the system's bottleneck to throughput, and can support

bandwidth-intensive peripherals such as SCSI, LAN and video.
• The PCI Bus is flexible, allowing individual implementations to select from an extensive suite of

optional features without encumbering all implementations with those features' overhead.
• Resistance to obsolescence has been designed into the standard.
• It was developed just as the need was emerging for a bus with the above features (i.e., it was timely).
• Now that it is the standard in its field, it enjoys all the benefits attendant to that position, such as

familiarity and interoperability.

On the other hand, certain PCI Bus characteristics cause problems for the designer, particularly in the
connector interface:

347

• To meet the PCI Bus' stringent timing requirements, demanding propagation delay specifications were
imposed which thin out the field of prospective FPGAs considerably.

• The requirement that the PCI Bus interface directly to a single chip with no "glue logic" also means
that there is no way to "fix" an FPGA with unsuitable DC, AC or parasitic characteristics.

Advancement #2: The Hardware Description Language (HDL)

The format of the design medium has had a significant impact on the rate of success of PCI Bus
designs, and especially FPGA-based designs, which tend to have short design cycles. Also, as designs have
become very large (15,000 or more gates), it has become difficult to design with traditional design-entry
methods, such as schematics and programmable-logic equations. These methods also tend to be
technology-dependent, and often require the designer to make trivial low-level design decisions (e.g.,
muxes versus NANDs). Finally, design media such as schematics do not easily lend themselves to
hierarchical techniques and modular reusability. For these and other reasons, HDLs are overtaking older
methods as the standard for design entry. Two HDLs have developed more or less simultaneously, but
neither seems to be emerging as the winner in the battle for acceptance. VHDL, which is of military origin,
is very rich in capability and, like its sister programming language, ADA, tends to be wordy and structured.
Verilog, on the other hand, is less capable and, like its sister language, C, is concise and permissive. The
military/commercial distinction has since blurred, and now the difference is more a matter of region and
company culture.

Regardless of which HDL is chosen, the advantages of high-level design are many. Vendors can (and
do) now offer "design kits", pre-designed modules that perform complex but generic functionality. All that
is necessary is to tailor the design to a specific application. Within a company, there is a high likelihood
that a module designed for one project can be easily adapted for use on a subsequent project, and a design
defined in HDL can be quickly converted from one implementation medium, such as FPGA, to another,
such as ASIC. Quick design tum is the result, a necessity in the current marketplace. And just as designers
have come to develop products with components like processors and LAN controllers with inner workings
that are unfamiliar, designers can now design with kits such as PCI Bus or DSP, without extensive
experience with their internals.

Advancement #3: The FPGA

The FPGA has been on the digital design scene for about a decade now, but its popularity seems to be
only increasing. On the low-density end, it has all but replaced discrete digital logic. On the high-density
end, it is even making forays into territory formerly held by ASICs. The reasons for this are clear: the low­
end SRAM-based FPGA is now as inexpensive as two or three PLAs, yet it provides a host of advantages.
Among them are: functional universality; reprogramability; remote-, MPU- or MCU-based downloading;
I 00% testing; protection against obsolescence; low power consumption; high speed; multiplexed
functionality in a single chip; a standard CMOS interface;and invisible last-minute (or even in-field) bug
fixing. The features that enable an FPGA to compete against ASICs on the high-density end are no less
impressive. Once thought of only as an ASIC development tool, the FPGA is refusing to relinquish its
socket. Once designed in, the design never seems to settle down enough to justify the stiffNRE and
accompanying risk of error or obsolescence. Meanwhile, FPGA equivalent gate sizes continue to soar and
prices to plummet, as feature geometries shrink.

ORCA

This paper focuses on a particular series ofFPGAs that has been designed with the PCI Bus
application in mind. The ORCA 2C series, from Lucent Technologies, and its derivatives provide many
features that facilitate their use in a PCI application. Among them:
• Size: the PCI Bus module alone requires 6k-10k gates for implementation. Thus parts with 10k-40k or

more gates are necessary to accommodate the PCI bus and its back-end application. The ORCA 2C
provides this.

348

• Speed : as mentioned earlier, the PCI Bus standard requires very strict clock-to-out propagation delays
of only 11 nanoseconds, which the ORCA 2C can meet.

• Compliant with other PCI interface requirements. A host of other parametrics constrains the 1/0
pins on the PCI interface, since the FPGA provides the sole and direct connection to a very high-speed
bus. This includes V /I relationships, slew rates, pin capacitances and inductances, leakage currents,
and others.

• Routability: ORCA's abundant nibble-based resources are necessary not only to make routing
possible, but also to make it meet the 33-MHz clock requirements.

• RAMs: most PCI Bus peripherals require buffering, and the ORCA provides it in the form ofhigh­
density RAMs, both asynchronous and synchronous, both single-port and dual-port. For a given
equivalent-gate rating, ORCA offers larger RAMs than other FPGAs.

• Bounteous 1/0 : as with RAM size, the amount ofl/O that ORCA possesses is greater than for other
FPGAs claiming the same equivalent-gate rating. This is important, since both the PCI Bus interface
and the back-end peripheral interface can be highly 1/0 intensive.

• 5V and 3.3V: In addition to standard SV capability (type "C"), ORCA provides 3.3V parts (type "T"),
allowing the PCI Bus to utilize its 3.3V optional capability as well.

• We own the foundry: ORCA's benefits stem not only from its efficient architectural specification;
Lucent is the only major FPGA manufacturer that owns its own foundries. As such, Lucent has
consistently provided denser, faster, lower-power parts to its customers by being first to migrate to
ever-finer gate geometries. Presently, while others are announcing migration to 0.5 micron feature
sizes, Lucent has devices available today in 0.35 micron sizes. In addition, in-house foundries allow
for greater control over production scheduling, priorities, and quality.

• Design kits: Lucent has provided two design kits, called Configurable Solution Cores (CSCs),
specifically for PCI Bus use: one for initiator applications, and one for target applications.

ORCA's PCI Design Kits

Design kits make the job of integrating a complex logic entity into an overall design much easier. For
the most part, the PCI Bus interface is well-defined, and special needs can be accommodated using PCI
optional features that provide variations on the main theme. The PCI design kits offered by Lucent provide
enough power and flexibility to meet most any need. Here are some of its features:
• Separate kits are available for initiator and target applications.
• The kits take advantage of the power ofHDL logic definition. Both VHDL and Verilog source code

are available.
• Multiple design flows for sysnthesis are supported: Synopsys and Exemplar Galileo.
• Workstation and PC platforms are supported.

The kits provide all necessary functionality as called for in Revision 2.1 of the PCI Local Bus Specifi­
cation; in addition, many optional features are either incorporated or easily added to the design.

Some of the incorporated optional features include:
• Full 33 MHz clock speed;
• Full 32-bit 1/0 and memory address spaces;
• 64-bit address/data bus on master;
• Burst Mode support (zero-wait state in some cases);
• Retry, Disconnect and Target-Abort;
• 3.3V operation (using "T"-series parts; no software impact)
• Parity generation/checking (usually required);
• Single interrupt capability;
• Subsystem ID and Subsystem Vendor ID;
• Latency timer on master;
• Min_ Gnt and Max_ Lat registers on master;
• 16 X 64 SRAM buffer on master's local peripheral interface.

349

Features that can be added to the design as extensions, by modification of the HDL code, include:
• 64-bit address/data bus extension on target or 32-bit reduction on the master.
• Multiple interrupt capability may be added to support more complex interrupt schemes.
• Special Cycle. This is useful if sideband control signals are needed for inter-bus agent communication.
• Delayed transactions. This allows a PCI read to be handled in two parts, one to initiate the data fetch in

the target, and the other to effect the data transfer over the PCI bus.
• Exclusive access ("LOCK#"). This may be useful for bridge applications.
• Address stepping can be added to reduce noise on the PCI bus.
• An asynchronous interface to the local peripheral allows the peripheral to operate from a different

clock than the PCI Bus' 33 MHz (or other) clock.
• PCI-side controlled bus master. Some local applications do not have a processor to initiate data

transfers. Rather than add a processor, it may be more practical to give another PCI master that task.
This can be achieved by making the local address and command registers accessible over the PCI bus
by adding them to the configuration register space.

• Modification ofSRAM buffer. The implemented scheme may provide more, less, or different
capability than the local peripheral requires. For example, some applications may not require the
SRAM buffer at all. Others may require a dual-port FIFO which supports uninterrupted data bursts of
any length.

This does not imply that implementation code exists for all of the above features, but rather that the
supplied HDL code provides a good starting point from which to design them in.

Special Design Considerations

A major advantage of specifying a design in HDL is its technology-independence. However, this can
become an impediment when it is important to extract every bit of performance from a logic family in
order to meet demanding requirements. This is the case with the PCI Bus' 1/0 interface. In order to meet
the 11-ns clock-to-output propagation delay requirement, the paths from registers to output pads must use
special direct-out routing. To accomplish this, Lucent's PCI Design Kits for ORCA supply a "preference
file" that contains the necessary predefined register placements and routing priorities.

Another especially demanding portion of the PCI design is the control logic. Here, signals such as
"trdy#" must be evaluated as a function of large numbers of other signals. To achieve this within the
confines of a 30-nanosecond clock period requires maximum utilization of the ORCA PFU's capability of
handling functions of up to eleven variables. For this reason, "trdy#" and several other key signal decodes
are provided in the design kit as precompiled macros.

In addition to the special requirements above, control of the compilation process and analysis of the
results is provided by constraints specified in the preference file. This includes the clock speed of 33 MHz
and all necessary propagation delay, setup, and hold time requirements.

Back-End Interface Design

The back-end interface is one place where the end-user will surely need to customize the supplied
HDL code. Although a standard interface is defined, individual requirements will generally require
modifications. Nevertheless, the functionality supplied and protocol used will make the fitting process as
painless as possible.

Lucent's two PCI implementation kits, master and target, have significantly different local-side
interfaces, which is necessary because the origin of all control in a PCI interchange is the master's local
peripheral logic. The master's local peripheral controls the master's PCI logic, which controls the target's
PCI logic, which controls the target's local peripheral. The following paragraphs describe the target and
master blocks and their local interfaces.

350

...
~

The target local interface is the simpler of the two, since it never issues commands but only responds.
The signal pins are listed below:

• resetR# OUT LO = re-clocked PCI reset
• ireq# IN LO = interrupt request
• clkout OUT buffered PCI clock
• ldi[31 :O] IN input data bus

• ldoR[31:0] OUT output data bus
• burstadr[l 7:0] OUT address

• datavld# OUT LO = data valid
• addrvld# OUT LO = address valid
• rdwr# OUT LO = write, HI = read
• memio# OUT LO = 1/0, HI =memory
• busy# IN LO causes wait-state in subsequent data in (write) or out (read)
• retry# IN LO causes bus transaction to terminate in "retry"
• tremina# IN LO causes bus transaction to terminate in "disconnect"
• abort# IN LO causes bus transaction to terminate in "target-abort"

All data transfers are initiated by the PCI side. The local peripheral side can deliver/accept data, cause
a wait state, or terminate the transaction (in a retry, disconnect or target-abort). All signals are synchronous
to "clkout" except "ireq#".

3 STATE
BUFFER :.... REG ~ MUX I+

~ LOCAL
,----+ REGISTERS I-----'

~-·······ficr··-----

~INTERFACE PARITY
-----·-····--···--···· GEN

~

CONFIG-
URATION LOCAL

4 REG REGISTERS
1-- CONTROL

DECODE

PARITY
1---+ CHECK

REG i.....

4
MUX

::~~~~~:~~!-~~-~~~-~_] L.....+ ~
SRAM
16X64

~
MUX I--+ REG f---+

PCI SRAM ~
.....

CONTROL CONTROL
LOGIC

351

Figure 1: Block Diagram of PCI Bus Master

The PCI Bus master block diagram is shown in Figure I. Its local interface is more complex for two
reasons; first, it must be capable of initiating commands, and second, it includes a l 6x64 buffer. The local
interface signal pins are listed below:

• resetR# OUT LO = re-clocked PCI reset
• irq IN HI = interrupt request
• clkout OUT buffered PCI clock
• ldi[63:0] IN input data bus
• ldoR[63:0] OUT output data bus
• ramreg# IN HI = RAM buffer, LO = register
• adrcom# IN HI = address register, LO = command register
• rdwr# IN HI = read command, LO = write command
• strobe IN HI = command strobe
• masabrt OUT HI = PCI master abort occurred
• trgabrt OUT HI = PCI target abort occurred
• pcibusyr OUT HI = PCI master busy transferring data
• xfrdoneR OUT HI = PCI data transfer complete

All data transfers are initiated by the local peripheral side. Data can be transferred over the PCI bus in
burst mode to/from the 16x64 buffer. To initiate a PCI bus transfer, the local peripheral supplies an address
and a command word to the PCI block. The command word contains a transfer count and a read/write bit,
plus other bits. When the command register is written, a read or write is initiated, and "pcibusyR" is
asserted. If more than sixteen words are to be transferred, the PCI transaction is ended and "pcibusyR" is
de-asserted, signaling to the local peripheral to supply the next data block. The PCI block will
automatically update its address and restart the PCI bus transfer when it receives the next sixteen words.

Summary

A PCI design kit for FPGAs that is defined in HDL allows the designer to define, build and test a bus­
based peripheral in minimum time. Lucent Technologies' ORCA PCI Configurable Solution Core offers
many unique features to enhance performance and reduce design time.

352

ABSTRACT

MPEG BRIDGES USING Tl LINES
Tom Thorsteinson

Linear Systems Ltd.
959 Powell Ave.

Winnipeg, MB Canada, R3H OH4
Ph (204) 632-4300, Fx (204) 697-2417

e-mail: thor@magic.mb.ca

MPEG Video has become the industry standard method of digitally encoding moving pictures into a compressed
bit stream. Once converted, MPEG data can be transmitted between computers using Tl lines before being stored or
decompressed for display. The match is very close between the Tl rate, which is 1. 544 Mbits/s and MPEG 1 video
encoded to give comparable quality to a VCR. This paper will discuss the MPEG bit stream and how it may be
transmitted as a series of frames as used by data communications protocols. Each stage of the process will be
described, including potential problems due to errors caused by transmission noise. The serial communication card
used to convert the serial MPEG stream into frames of data will be described along with the CSU/DSU used to
convert the serial data stream into the time division multiplexed Tl stream.

THE COMPONENTS OF A Tl BRIDGE

Let us assume that we need to build a bridge which will connect two computers, A and B. For the sake of our
discussion we will assume that they are ISA or PCI bus computers, of 486 or Pentium class, that is, the sort of
computers which are commonly used for multimedia applications. We wish to link A and B with a full duplex Tl
Bridge so that A can transmit to B and B can also transmit to A, simultaneously.

We also assume that we have a source ofMPEG digital program material at each end. This program material can
be from a live can1era, or from a hard disk or CD ROM which contains stored program material. Whether live or
from memory, this program material must be encoded at a rate which the Tl link can support, that is, somewhat less
than 1.544 Mbits/sec. This is a limiting factor. The program material is buffered into system RAM memory and then
directed to the serial communications card. The card performs a parallel to serial conversion and sends the data to
the CSU/DSU. The CSU/DSU takes the serial data stream and multiplexes it into Extended Super Frame (ESF)
fonnat which is compatible with North American Tl switches. The serial data is transmitted over the Tl line to the
central office where it is sent over the telephone system to it's destination. When it arrives at the destination it
demultiplexed and is converted to it's original form as an MPEG data stream ready to be decompressed by a decoder
and then displayed or stored for future use. Because the Tl service is full duplex, there can be two nnrelated MPEG
streams transmitted at the same time in opposite directions.

BIT RATE, A CONTROL/NG FACTOR

Video by it's very nature is time dependent. The fact that a film or video tape is converted to a serial bit pattern
doesn't change this. If it is late, it will be observed as an error. Tl will limit the bit rate to a maximum of 1.544
Mbit/s. In practice the MPEG bit rate should be lower because the Tl actually provides a dear channel of 1.536
Mbit/s for carrying data. This is because a certain amount of the Tl bandwidtli is used for synchronization and
control signaling.

Another loss in bit rate can be caused by the efficiency of the transmission framing used by the communications
card. The communications card sends data in a series of fran1es. Each frame consists of a series of fields including
flag, address field, control field, information (data) field and a frame check sequence (FCS) field. This overhead will
further lower the actual throughput. It should be noted that you can use longer frames, say 2K byies or so to increase
efficiency by increasing the amount of data relative to the fran1ing information. Furtliem1ore if an error correcting
protocol is used for the link, then acknowledgments frames will be returned for each frame of data. You can
therefore estimate that only about 90 to 92% of the available bandwidth is used for transmitting data. Assuming a
90% efficiency, this means that with Tl, you can actually send at a rate of 1.38 M bit/s

A third cause in loss of available bandwidth can be the computer system itself. If the transmitting computer is
delayed in sending a frame of data because it had to service another task, running concurrently, tlien the

353

communications card will fill the missing space with flags. Flags are used by communications protocols to dileneate
the frames and to maintain synchronization in the absence of data. We will assume that we will use a computer with
sufficient CPU cycles to handle the communications task and any other task that may have to run concurrently such as
MPEG encoding and decoding.

A fourth cause of lost bit rate can be caused by the communication protocol itself when it corrects an error in the
received data. If a full error correcting protocol is used such as HDLC or PPP protocols, then acknowledgments are
constantly being sent back to the transmitter by the receiver saying that each frame has been received and that there
are no errors. If an error is detected, then the transmitter is instructed to resend a frame. lbis can be very disruptive
to the smooth flow of data required by MPEG I.

MPEG compressed video is a stream digital information. Both video and audio are combined in the bit stream.
The method used by MPEG-1 to compress the video will not be described here in this paper. It is a topic on it's own.
We will assume that the bit rate of this stream is determined by the encoding process. Let us assume that the encoder
is set to provide a nominal MPEG l video (352 x 240 x 30, l .15 Mbit/s) rate. Lets forget about the fact that MPEG
talks about video frames being transmitted at a rate of 30 per second, it is still a stream of l's and O's and there is no
need to make any sense out of it until it reaches the decoder. Lets consider it to be just a stream of data with a bit
rate no greater than l .15 Mbit/s. At this rate we can see that there should be no problems in sending it over a Tl line
through our computer system, ifthe transmission system has a capacity of 1.38 Mbit/s.

THECSUJDSU

The Channel Service Unit/Digital Service Unit (CSU/DSU) is a fairly complex piece of equipment. It takes the
serial data stream, for example our MPEG l bit stream, and converts it to a format that can be accepted by the DSX-1
interface for Tl required by the telephone company. In a sense it acts like a digital modem.

We will describe the CSU/DSU as it is used to format the MPEG data stream into the Extended Super Frame
(ESF) fonnat. This is one of the frame formats required by the communications switches in the telephone company
central offices. We have chosen ESF framing because it can be used to transmit a continuous stream of data at the
maximwn rate possible through a Tl line.

The ESF frame consists of24 eight bit words, or time slots transmitted at a speed of 1.544 Mbit/s. The
combination of24 time slots produces a data rate of 1.536 Mbit/s. Each time slot has a framing bit associated with it.
The eight bit word along with it's associated fran1ing bit is called a D4 frame. The framing bit is used to maintain
synchronization and in effect provides a timing clock for decoding the data at the receiver. The extra framing bit adds
an extra 8,000 bit/s for a total bit rate of 1.544 Mbit/s.

It is an interesting aside that by using Pulse Code Modulation (PCM) to encode the voice digitally, that 8 bits of
resolution gives a reasonable signal to noise ratio for telephone applications. It could have been 7 bits or 9 bits, and
then we would not have the synimetry between computer bytes and the D4 frame.

The 24 framing bits which are contained in the ESF frame are not all needed for synchronization and therefore
only every fourth D4 frame (4, 8, 12, 16, 20 and 24) in the superframe is used for synchronization. The result is that
6,000 bit/s can be used for other functions. lbis is used for performing continuous error checking on the ESF frame
and for signaling back to the central office. This signaling is called the facilities data link (FDL) and is used by the
phone company to test the operation of Tl circuits with diagnostics such as loop backs and statistics. The net result
of this is that all CSU/DSUs which support ESF are capable of testing and storing 24 hours of statistics on Tl line
quality. This can be a source of useful infonnation about line quality ifit becomes an issue in your application.

The frame synchronization which the CSU/DSU decodes from the Tl data stream is used to create a local clock.
In a sense, the clock rate is determined by the central office. This is a precise frequency, accurate to+/- 50 ppm
accuracy and is used by the communications card as a reference clock frequency when it sends data to and receives
data from the CSU/DSU.

The CSU/DSU can appear in several fom1s. It may be a small box, about the size of a modem which sits on the
desk top and is powered by a battery eliminator. It may also be a larger piece of rack mounted equipment which
requires al l5V power supply. A third incarnation may be as a small module or daughter board which plugs into the

354

serial commWlications card in your computer, or as an integral part of the commWlications card. We have experience
with both the small box and the daughter board fonu which we have developed and call the IM CSU.

THE SERIAL COMMUN/CA TIO NS CARD

Our experience with using commWlications cards for compressed video applications lies with two different PC
designs. The first is called the Tl Master which uses an ISA bus and the second is called the WAN Master which
uses a PCI bus. Both designs can be used in 486 and Pentium class personal computers, to provide two serial
interfaces at Tl rates.

The Tl Master

The Tl Master has two chaimels and has an ISA bus interface which is capable of an aggregate data rate of
approximately 6 M bit/s. It uses the Zilog l6C32 ruse Serial Communications Controller, which is also known as
the ruse. The performance of the card is an excellent match for Tl providing the computer is not busy with other
tasks other than the main commWlications task. The Tl Master is a Bus Master DMA design . It does not have a
large internal data buffer or an on board processor. It uses a very high performance DMA which is built into the
ruse which also cascades with the host system DMA. By selecting the size of the circular queues, it is easy to keep
the data buffers on the ruse serviced in spite of latencies which may appear in the operating system when other tasks
are rmming, or when very high priority tasks are serviced. The size of the queues is limited only by the size of the
system memory.

The FIFO memory in each of the ruse is therefore only necessary to compensate for the very short time delays
due to hardware latency. For example, when the Tl Master does a DMA request, there will be a variable short time
before it is available. This is easily acconunodated by the relatively small FIFO buffer in the ruse.

The DMA can address the full 16 Mbytes ofISA system memory and can be used effectively in Linked List DMA
mode. Using this mode, the software driver can utilize circular data queues of arbitrary size to store data for transmit
and receive. The queues can be designed to circulate without interrupting the host processor. Data can therefore be
transmitted and received without host processor intervention. The host processor must only get involved when data is
moved or protocol processing must be done. The ultimate speed of the Tl Master appears to be limited by the latency
ai1d clocking rate of the host system DMA controller. The ISA bus is limited to a clock rate of 8 MHz. This can be
adjusted higher in some system BIOS options, but the higher rate is non stai1dard and not always supported by all
cards in the system.

The WAN Master

The Wan Master is a further development of the Tl Master. It eliminates the bottleneck to data flow caused by
the ISA bus DMA and provides a plug and play environment for interrupt and address selection. The WAN Master is
also a two channel board which uses the same ruse as the Tl Master. This makes porting software easier between
the two boards. The WAN Master uses a slightly different interface philosophy in that it has 256 Kbytes of on board
buffer memory. The advanced DMA modes of the ruse can transfer large ainounts of transmit and receive data
between the buffer memory and the ruses without host intervention. The data is buffered by the saine type of
circular queues in this memory area except that there is no need to cascade DMA controllers. The ruse DMA
controllers can now run at maximum rates and the DMA request latency is eliminated.

The host system has direct access to the buffer memory through the PCI bridge interface. Data can be transferred
in two ways. One met11od uses stai1dard memory block move instructions which are Wlder processor control. This is
adequate in many applications. However, for applications where the processor may be busy, a DMA controller is
available in tl1e PCI bridge chip to move data. The result of the high perforniance PCI bus interface is that the ruse
can operate at much higher rates. The WAN Master supports serial data rates of up to IO Mbit/s (full duplex) on
both charmels simultaiieously. Using high speed interfaces such as HSSI, the WAN Master can support data rates of
up to 20 Mbit/s full duplex. These data rates are high enough to drive MPEG 2 video applications to the fullest
extent.

The large bus bandwidth of the PCI interface can be used to its fullest potential when fuere is a need for multiple
WAN Master cards in one host systen1. Installing four WAN Masters in a system can create a throughput of80
Mbit/sec, which is less fuan 7% oftl1e 132 Mbyte/sec potential offue bus.

355

SOFTWARE DRIVERS

There are two approaches which we use to provide a driver interface to the communications cards. One is to use a
standardized structured approach such as a network driver. Options include Network Driver Interface Specification,
(NDIS) driver, the Open Data Link Interface (Om), and the Crynwr Packet Driver for MS-DOS and Windows 3.1. In
our example we will concentrate on the NDIS driver and TCP/IP (PPP) or NetBEUI, with which we have the most
experience in testing.

The NDIS specification was written by Microsoft and 3Com to provide a shareable device interface for LAN
Manager. om is a Novell standard (Open Data-Link Interface) which allows other protocols including TCP/IP (PPP)
to work simultaneously with NetWare. NDIS and om can support multiple protocol stacks. The Packet Driver is a
small and relatively simple interface and has the potential for the highest efficiency.

While there is a choice of protocols which can be used for the data link layer, TCP/IP (PPP) appears to be a good
solution especially in comparison to the well-proven HDLC protocol. HDLC is very good for transmitting data with a
very high accuracy at the data link level. It acknowledges each frame and checks the sequence of frames received
continuously. In addition, a sliding window allows only a small number of frames to be outstanding without
acknowledgment. If an error is detected, it is corrected in the data link layer. For noisy analog lines where the
probability of an error is high and data rates are relatively low, this is a good solution. However, when sending data

over high quality links such as a satellite or fiber optic links, bit error rates as low as 10-10 are typical. Also, given
the fact that compressed video is rather forgiving to the occasional error, it then becomes feasible to use a link layer
protocol which is optimized more for speed and etliciency. With this error rate, an error may crop up once every two
hours or so.

PPP is therefore a good protocol to use for MPEG Video since the frames are transmitted without requiring frame
by frame acknowledgments at the link layer. This means that the link layer software can be designed with large
DMA ring buffers which can be filled and transmitted or received continuously. This improves the efficiency of the
driver. When an error correction is required it is handled by the transport layer which is TCP.

The most simple, direct and obvious way to move the MPEG data between two computers is to use the file system
which is built into the operating system. If you are using DOS or Windows 3.1, the NDIS 2 driver may be loaded and
a transport protocol such as NetBEUI or TCP/IP (PPP) can be bound to it. The file system approach gives acceptable
results with a fairly powerful computer such as a 486/100 or Pentium 120 operating on the client end, but may have
some problems maintaining the data flow rate on the server system. The problem appears as a jerky image with gaps
in the sound. If you are using the Windows NT operating system on the server the file system seems to be much more
etlicient and can give smooth video and sound on the Client. As an additional note, generally the Client computer
has a heavier load because of the MPEG decompression process and it also benefits from having a powerful CPU.

Is an Error Correcting Protocol Needed

If the only function of the Tl link is to transmit compressed video then some consideration has to be given to
whether or not the extra overhead of ru1 error correcting protocol is needed. When an error is detected, the upper
layers of the protocol will request that the data be resent. This can cause a noticeable glitch in a video stream. If
there are no critical files, programs, etc. to be transmitted and the bit error rate of the communications link is of the

order of 10-IO then it is possible to avoid using any protocol and to simply "strean1" the data from server to client. It
all depends on the particular application. This bit error rate may produce a small glitch which may or may not be
noticed over a period of several hours numing at Tl speeds. If the error occurs in a data field of the MPEG frames
then it may not even be noticed. A much more noticeable error occurs if it's in a motion prediction area or the
discrete cosine transfonn area.

For this purpose, a character driver may be provided for the MS DOS operating system. In Windows NT, a kernel
mode character driver can be used. These drivers provide the necessary buffering and interrupt handling interface to
the communications card. They pennit a custom application to be written which may bypass the file system ru1d
network drivers to give better real time control and better timing perfonnance. When using this type of driver, there
is no error correcting protocol. Errors may however be detected and recorded for later reference. HDLC type framing
will be used with the frame size detennined by the buffer size. All of the HDLC fran1ing will be transparent to the
data being transmitted. The character driver allows direct access to the hardware through Windows NT HAL
(Hardware Abstraction Layer) calls whereas the NDIS driver can only talk to the HAL through the NDIS Wrapper
functions.

356

ADSL Technology

If data is transmitted in this way with no error correction then there is no need for acknowledgment in the reverse
direction. The MPEG data link can then be half-duplex. This opens the possibility of using Asymmetrical Digital
Subscriber Loop (ADSL) technology. With ADSL, only a single pair of the two twisted pairs of Tl cable are used for
point to point connections. The data is further encoded using proprietary techniques to provide a 1.544 Mbit/sec
forward channel and a 16 Kbit/s full duplex control channel. In addition, a plane old telephone (POTS) connection is
provided for an analog phone Variations on ADSL are available which will give much higher rates that a standard
Tl.

SUMMARY

The MPEG-1 video format is a good match with Tl lines and is a practical way to transport VCR quality video
images with CD quality stereo sound. A system can be assembled using PC class computers and off the shelf board
level products to transmit real time compressed video. The system can be either half or full duplex depending on the
application.

357

HIGH PERFORMANCE VISION PROCESSING FOR THE PCI BUS

Abstract

Fernando Serra
Imaging Technology, Inc.
55 Middlesex Turnpike

Bedford, MA. 01730
(617)275-2700 FAX: (617)275-9590

e-mail: fernando@imaging.com

This paper presents i) A design for high performance vision processing hardware for the PCI Bus ii) The use of the PCI
Bus as an optimized data transfer pipeline between imaging capture/processing hardware and upcoming, high speed,
general purpose CPU's. iii) What we have learned from designs on previous buses and different hardware architectures
and how we have implemented some of these techniques on the PCI Bus architecture. iv) The principles behind the
design of a frame grabber on the new PCI Bus and how this technology was to be applied to the follow-on designs of
new vision hardware.

How the PCI Frame Grabber Came About

Image capture technology within the PC market was limited by the speed at which data could be transferred between
the data capture hardware and the host memory. Another limitation was the lack of unattended bus master OMA data
transfers. During the period when the 386/486 and ISA/Vesa local Bus architecture dominated the market, image
capture hardware for the PC was limited by the speed of the CPU and the bus. As the speed of CPUs improved the data
transfer rate also improved, but the transfer speed improvement realized was not enough. The maximum data transfer
speed that could be achieved was about 10 Mbytes/sec, using the Vesa Local Bus and a 486 CPU running at 66 MHz.
These speeds can only support the data transfer speeds required while capturing an RS-170/CCIR 8-bit video signal.
ITI provided products for the ISA, and later, VL buses and became knowledgeable about framegrabber design for the
PC environment. .Still, since the main processor was tasked with managing the data transfer from the framegrabber,
there was not enough CPU bandwidth left for it to actually process the data. This made it almost impossible to keep up
with real time image processing, which is required by a variety of vision applications. As a result, many applications
had to be developed for different architectures, such as the VME bus. ITI gained considerable experience in high speed
vision and image processing designs via our Modular Vision Computer (MVC) 150/40, a high performance pipeline
processing architecture VME bus product which was modular in nature.

With the introduction of the PCI bus, ITI as a company looked at what had been learned from our previous products
and how to apply some of this experience to the PCI Bus. We took the best features of our previous designs, like
flexibility and modularity and combined these with the data transfer speed features of the PCI Bus. We had already
developed an extremely flexible data input capability in our MVC 150/40 products for the VME bus, which is
provided by a variety of acquisition modules. These acquisition modules give the MVC 150/40 the ability to acquired
true color, variable-scan to 50 MHz, 8 to 24-bit digital and multi-tap camera formats. Figure l illustrates this
modularity as provided by the MVC IC-PCI, one of ITI' s recent PCI bus based products. The acquisition modules
have been used by customers in applications that range from low end image processing systems to high speed vision
systems.
ITI had also developed expertise in framegrabbers for less demanding applications and saw needs for two different PCI
bus based products. One product would use the PCI bus to overcome the data transfer limitations of previous PC buses
and dramatically advance the capabilities of framegrabbers within the PC architecture. The other product would bring
the full performance capabilities of pipeline image and vision processing to the PCI bus

By using the input flexibility already available on the MVC 150/40, the next step was to determine the what features to
implement on the framegrabber (image capture) motherboard called the MVC IC-PCI. The main goal for the design of

358

the IC-PC! was to transfer the data that was acquired through the acquisition module onto the PC! Bus as fast as
possible. With this in mind, achieving the highest sustained speed data transfer rates possible required the framegrabber
to be a PC! Bus master DMA device. Allowing the framegrabber to fully control the data transfer onto the PC! Bus or
onto a slave device on the PC! Bus gave the IC-PCI a significant advantage over designs for earlier PC buses. Now the
CPU was able to be available to process the data resident in memory instead of managing the data transfer from the
framegrabber.

As the IC-PC! was to be DMA Bus Master device, the next step of the design was to determined what type of memory
scheme to implement on the motherboard. Even though the IC-PCI was to be a DMA Bus Master device, it could be
problematic for a given application to guarantee that the PCI Bus and the CPU bandwidth would always be available
on demand. The need for local memory on the framegrabber become a clear requirement; this addressed the case of
"what if' the acquisition input rate was faster than the processing rate. A linear memory buffer was implemented as the
IC-PCI memory format, allowing the buffer to be independent of the size of the input device's resolution. The memory
buffer was partitioned as a 4 Mbytes buffer (a 2 Mbytes version is also offered), making it possible to acquire data up
to 4 million 8-bit pixels to accommodate newer digital cameras with resolutions of up to 2k x 2k pixels, which are
becoming increasingly common.

Cam era Camera

+ Interface + Motherboard + Soltw are Solution

- - - - - - - - - - - - -
Plug-on MVC IC [g Ac ulslllon M odul•• t Im age Capture

All

standard &

ITEX Libraries

PCI
Dlgltal

I Figure I - M VC-IC Options

This linear buffer memory also offers the capability to sub-divide the image buffer into smaller buffers, which makes it
possible to use these smaller buffers as Ping-Pong buffers. By using Ping-Pong buffers, data can be FIFO' d inside the
IC-PCI to prevent the CPU from loosing frames, while processing a frame at a time. Linear memory also offers the
capability of packing pixels to be transferred to a VGA (display) device; this allows the IC-PCI to transfer data to the
display without requiring any pre-processing (packing the pixels). The memory was designed as dual ported memory to
provide simultaneous read and write capability.

Figure 2 shows a block diagram of the IC-PCI. There are other features that were implemented inside the address
generator and the PCI Bus Master controller circuitry. These features included the capability of de-interlacing data as it
gets transferred to the PCI Bus from the linear buffer. A Region Of Interest ROI capability was also implemented in the
design, allowing an independent rectangular region in the buffer to be transferred to the PCI the Bus.

359

AM
Module

I Figure 2

8/1~4

7

IC-PCI Architecture

AM
Data
Mux 7

PCI Host
Controller

2 or 4MB
VRAM

8 by 32
FIFO

v···· Address
Generator

PCI Bus
Master

Controller

Some of the data transfer speeds achieved by using the IC-PCI in conjunction with an Intel Endeavor PC! motherboard
with a l 33Mhz pentium, 16 Mbytes of EDO RAM and a Number 9 Motion 771 PCI VGA card running Windows 3.11
are:
I) A sustained data transfer of 105 Mbytes/sec between the IC-PCI and host memory.
ii) A sustained data transfer of 76 Mbytes/sec between the IC-PCI and the VGA controller, while using DCI (Display
Control Interface) protocol.

Pipeline Vision Architecture on the PCI Bus

While the data transfer speeds of the PCI Bus have made a substantial contribution to host based vision processing
requirements, there are still cases where there is too much data for even the fastest Pentium or PentiumPro to process
within the time constraints imposed by the application .. As noted, ITI has provided a pipeline architecture on the VME
Bus that provides independent processing with minimal CPU involvement for these demanding applications. The PCI
bus however has now made it possible for ITI to provide a combined pipeline and host based solution which can work
as two independent pipelines to streamline vision applications.

Figure 3 shows the modular architecture of the MVC 150/40; the input or camera interface side of the hardware is fully
compatible with the IC side of the family. On the processing side the MVC 150/40 features nine separate processing
modules, making the pipeline very flexible to accommodate virtually all high speed vision algorithms.

360

Camera
Camera+ Interface

All Plug-on

standard &Pcuisition lvbdules

+

Configurator

(Windows

tvbtherboard +

Ml/C

Pipeline

Processing

PCI bus +

Processing Speed

Plug-on

Computational

+ Software = Solution

ITEX Libraries

Automatic code
generator (ITEX-VIP)

Perfomiance

= Driven
Applications

Figure 3 - MVClS0/40
Prochct Flmily

The MVC-150/40 has a built-in 40 MHz 24-bit wide bus; this bus is divided into the Global Bus and the Pipeline Bus.
The Global Bus is a general broadcast bus used by the Image Manager motherboard to send digital image data to any
other pipeline processing boards of the MVC-150/40 family. This bus is always driven by a master device and data can
be independently transferred to one or more modules at the same time. The pipeline bus is used to transfer data from
one module to another. The two main. buses are totally independent and they can be used either asynchronously or
synchronous! y.

There are two kinds of PCI motherboards within the MVC 150/40 architecture. They are the Image Manager (also
refered to as the IM-PCI) and the Computation Module Controller (also refered to as the CMC-PCI). The IM-PCI is
the main vision device on the PCI Bus; this motherboard has the frame capture, cross-port switch, memory, timing
controls, PCI DMA Bus master controller and a built-in secondary display. The CMC-PCI is a PCI Slave device; it
serves as a carrier device for computational modules and also provides a cross-port switch. The main function of the
cross-port switch on the CMC-PCI is to provide flexibility in the data paths into and out of the modules and the two
video buses.

Located on the image managers are a number of frame buffers; these frame buffer memories are also independent in
size and accessibility. The IM-PCI is offered in a variety frame buffer configurations, starting with a single frame buffer
with 1 Mbyte of image buffer memory. The architectural maximum of the IM-PCI can accommodate up to 6 Mbytes of
total memory where all three buffers are configured with 2 Mbytes each (although the market currently requires only 3
buffers of 1 Mbyte each, which is the current 3 buffer product offering). There is also an independent display generator
which can be used to drive a secondary color or monochrome monitor in the range ofRS-170/CCIR up to 1280x1024
non-interlaced VGA. The secondary monitor becomes a crucial part of many machine vision applications where the
image needs to be displayed independently of the windows/menu based application residing on the system VGA. It also
saves the PCI bus from being used to transfer the images for display instead of data to be processed.

361

AM Module----

IM-PC!
Control Regs

----1 "xel Data Cross PoJ--...:::==::...lffii::====-------

:===: Swildt ""o_ra_m-Acces-s--D-MA__,,P_o_rt_A_M/_CM--'U._O_P_ort-

-~

Port Port
PCI Interface

Figure 4 IM-PCI Block

Diagram

Figure 4 illustrates the architecture of the Image Manager for the PCI Bus. As shown on the block diagram each
memory has three ports that can be used with the internal pipeline. This feature allows the image memories to be used
as two independent frame buffers, making the architecture highly flexible. As an example vision application, the same
frame buffer can be used as two of the image sources required to perform a two image subtraction, placing the resulting
image back into the same buffer. The secondary port is used by the DMA controller to transfer data from the frame
buffer to the host via the PCI bus while using Bus Mastering. There is also a fourth port to each memory. This port is
mainly used by the host CPU for host read/write functions.

The power of the MVC-150/40 pipeline architecture can be measured by the following benchmark - a 512 x 480 8-bit
pixel image can be piped through any number of processing modules with the result available only 7.5 msec later. The
regular frame rate for RS-170 video is about 33 msec, making it possible for the 40 MHz pipeline architecture to
process four complete frames before a new capture frame comes onto the pipeline. The built-in 40 MHz AOI (Area Of
Interest) generator enables the MVC 150/40 to have total processing independence from the incoming video timing.
The MVC 150/40 can also be synchronized with the input timing, or the AOI generator can be synchronized to events
generated from the input device such as vertical sync, frame reset signals, external sync, etc.

For the IM-PCI DMA controller, some features have been implemented in addition to the features carried over from the
IC-PCI product design. The DMA PCI controller section of the Image Manager can also pack the pixels from the frame
buffers, making it possible to directly transfer packed pixels to those VGA devices which require such data formats.
The same section of the device can clip the pixel data at both ends of the 8-bit range, making the elimination of
Windows 3.11 related color dots an "on-the-fly" function of the hardware. The DMA controller can sustain data
transfer from the IM-PCI image memories to host memory at a rate of 66 Mbytes/sec.

362

Ease-Of-Use Software For The MVC 150140 PC/

Beyond the challenge of developing state-of-the-art high performance hardware for the PCI bus is the
requirement to provide software which allows the user to exploit the full capabilities of the hardware.
Further, users want the software to be easy to use as well as powerful. The task to delivering "easy to use" is
quite complicated, since in the vision markets no two applications are the same. By providing OEMs and
system integrators the tools required to make their product development easy and system deployment cycles
shorter, ITI helps users realize the full benefit of the advanced hardware
The MVC product family is supported by a software development environment called ITEX. This is a "C"
language based tool set which provides all the programmability for the Image Capture product as well as the
pipeline product line. ITEX supports development under DOS, Windows 3.1.1, Windows NT, and OS2,
with Windows 95 support scheduled shortly.

As part of the ITEX development environment, other tools are provided with the product. A camera
configuration utility is supplied with all MVC offerings. This utility makes interfacing to complex cameras
extremely simple, both for current off-the-shelf cameras and new cameras as they are introduced into the
market. The camera configuration utility is a MS-Windows based tool which provides an interface to a
continuously growing camera database, as well as complete access to all the MVC family acquisition
modules. With the combination of ready made interface cables to most cameras in the market, the
configurator makes camera interface a plug-and-play function.

Figure 5 shows an example of the ITEX camera configurator graphical interface. As the figure shows, the
developer can customize with a mouse click any camera interface to meet the specific application
requirements.

Figure 5 ITEX Camera Configuration Utility

363

There are a variety of third party applications software packages that range from generic image processing
to bio-medical cell analysis. These packages have been developed with the MVC IC-PCI used as the date
capture front-end. Now with the data transfer speeds provided by the IC-PCI, host based applications can
run very close to real-time.

As part of the MVC 150/40 pipeline product, ITI has developed a graphical programming tool for the
pipeline architecture called ITEX-VIP (Visual ITEX Programmer). !TEX-VIP is a Windows based "point
and click" development environment, which generates well structured and optimized ITEX code. ITEX-VIP
allows developers to create pipeline connections, frame buffer actions, and set-up all the computational
characteristics of an algorithm to be executed on the MVC 150/40 pipeline. Figure 6 illustrates one of
!TEX-VIP' s graphical representations of an MVC 150/40 motherboard. This tool generates ANSI "C"
code that can be compiled under any of the platforms supported by ITEX for the MVC 150/40. ITEX-VIP
is a standalone software development environment. The presence of the pipeline hardware is not required
in order to develop application code. Based on a hardware configuration file, ITEX-VIP provides the
developer all the flexibility to generate applications with just the use of a laptop computer running MS­
Windows. This tool also has a built-in benchmark facility, which generates processing times based on the
size of the image to be processed through a specified pipeline.

While ITEX-VIP is an MS-Windows application, it was designed with portability in mind. Applications
developed under the MVC 150/40 PCI can be easily ported to other platforms by regenerating the data
flow. ITEX code can then be generated for the MVC 150/40 VME. ITEX-VIP also provides extensive on­
line context sensitive help, which provides complete information to the user about all the functionality of
the MVC 150/40. VIP also allows developers to insert notes as comments as well as previously developed
"C" code fragments.

Figure 6 ITEX-VIP Graphical View of the IM-PCI motherboard

364

Summary

IT! believes that the MVC IC-PC! and MVC 150/40 for PC! have realized the goals of bringing our high speed vision
technology to the PC! Bus. The future holds developments in interfaces for new cameras, new computational modules
for more flexibility and new software tools to continue improving the product's ease-of-use. We will continue the
enhancement of our PC! products as the technology advances and will keep performance and flexibility as key design

goals.

365

THE PCI BUS

AND

BROADCAST QUALITY VIDEO AND AUDIO

presented by

Richard A. Kupnicki

LEITCH®

366

The PCI Bus and Broadcast Quality Video and Audio

Abstract

Very recently, we have seen the increasing convergence of the television
broadcast, telephony and computer markets. Near video on demand (NVOD), video
on demand (VOD) and the associated video file servers have spurred the
imagination of both manufacturers and service providers. The PCI Bus provides a
mechanism which allows the processing of real-time video in uncompressed format
as well as compressed. The key element in achieving this goal is the interface
between the broadcast world and the PCI Bus itself.

Introduction

This paper will provide an overview of one approach to the issues surrounding a
successful interface of the technologies in question. In order to fully appreciate all
of the factors involved, we will present a brief history of video compression formats
with a view towards the bandwidth requirements of each and their practical uses.
From here, we will move on to Leitch's approach to the PCI interface module
describing the various blocks involved for each stage.

Video Compression

It is worth noting, at the outset of this discussion, that both film and video are simply
a sequence of still pictures shown at a rate which is sufficient to impart what
appears to be a smooth, continuous flow. Although somewhat obvious, it is
important to point out for a couple of key reasons: (i) given that the frame rate of
the still pictures is finite, it is obvious that information is lost in the capture process,
and (ii) in any still picture there is bound to be a great deal Ot repetitive and
redundant information.

The basic trick then in the compression of video (whether it originates from film,
television camera, or server is immaterial) is to take these two premises to their
ultimate conclusion. That is, reduce the information transmitted to the point whereby
the image quality is acceptable, remember that "what is acceptable" will be
governed by the particular application at hand.

367

It is not possible to provide a complete review of all of the various compression
types within this paper, however, there are many articles which have been written
on the subject and we encourage you to do further reading on the subject1•

Compression formats can be summarized into four types as follows:

• JPEG
• Motion JPEG (or M-JPEG)
• MPEG-1
• MPEG-2

The computer industry has been using lossless data compression techniques for
many years in order to cram more data onto hard disks and for modem
transmission. In fad, it was the computer industry which came up with JPEG (Joint
Photographic Experts Group) standard for compressing high-resolution digital still
pictures. The progression to M-JPEG was fairly rapid as the novelty of moving video
on the computer was too tempting to resist.

The Moving Picture Experts Group (MPEG) was formed in 1988 in order to
formulate international standards for the digital compression of moving pictures,
particularly to satisfy the growing interest in CD-ROMs.

M-JPEG and MPEG-1 techniques are now used extensively for computer imaging
and can be very cost-effective for disk recording, CD-ROMs, etc. but neither offer
the optimum results required for broadcast level quality. What has emerged, as a
result, is the MPEG-2 standard (an ISO/IEC ratified standard).

The following is a summary of the various compression formats indicating their
respective bandwidths, uses and restrictions where applicable.

JPEG

Basically, JPEG is used only for single still images. Quality can be very good as the
processing is almost always non-real time and therefore the results can be
optimized. Also, it is relatively easy to control the bandwidth, again due to the non­
real time nature of the process.

Recommended - The SMPTE Journal, Vol. 105, No. 2, February
1996.

368

M-JPEG

M-JPEG relies on the processing techniques of JPEG in order to accommodate a
set of still images on a field by field basis. The bandwidth becomes much more of
an issue as we are now dealing with real-time processing. Unless great care is
taken in the implementation, the bandwidth can quickly become unmanageable. An
optimal solution is use a two-pass compression process whereby the results of the
first pass are used to optimize the second pass, thus producing better results with
tighter control of the bandwidth (more on this process later).

MPEG-1

As previously mentioned MPEG-1 is used primarily with CD-ROMs. While it can be
used for broadcast applications, the results generally negate any benefits. The
bandwidth utilized is typically 1.25Mb/s and the quality (a subjective issue at best)
can be described as "VHS like". MPEG-1 utilizes a 4:1:0 video format. What this
means is that there is only one chrominance sample for every four luminance
samples.

As a side note, full broadcast quality video is 4:2:2. That is, for every
four luminance samples there are two samples each of the color
difference signals, Cr and Cb.

MPEG-2

The MPEG-2 standard has been described as more of a "tool kit" than a standard
and perhaps this is fairly accurate. A standard generally defines a specific format,
but the MPEG-2 standard provides a number of different modes of operation. Again,
it is not possible to explore MPEG-2 in full detail within this paper, so we will focus
on a couple of the more pertinent operating "modes"2.

The MPEG-2 tool kit consists of a number of operating levels and profiles. Levels
refer to the available compression rates which may be employed for computer
compressed data high definition television, at rates of less than 4Mb/s up to
80Mb/s respectively. Profiles refer to the compression type used which may vary
from the full 4:2:2 signal to the elimination of complete frames.

The most common format used is the Main Profile at Main Level (MP@ML). This
format utilizes a 4:2:0 structure. The quality associated with MP@ML is quite
sufficient for distribution but will not survive in a production environment where
multiple passes are required. One of the problems of MP@ML is the fact that GOP
(Group Of Pictures) does not facilitate easy editing (due to the information content
of the P and B frames).

2 Refer to Appendix A for an overview of the MPEG-2 standard.

369

The other format worth noting is the ML@4:2:2. The obvious advantage is that the
number of chrominance samples, or blocks, is doubled from the MP@ML format,
providing better resolution.

Bandwidth Issues

Broadcast quality 4:2:2 video at 10-bits has an associated data rate of 270Mb/s, or
27MB/s. With the addition of two channels of AES audio (for a total of four monaural
audio channels), the bandwidth requirement approaches 30MB/s.

The PCI Bus has a theoretical bandwidth of 132MB/s. As depicted in the typical
system shown below, this means that the PCI Bus has the bandwidth required to
support full broadcast video and audio.

Serial 4:2:2
Video & Dual
AESAucfio

MediaPort

30MB/s

Network
Interface

30MB/s

Serial 4:2:2
Vldeo&Dual
AES Audio

Media Port

30MB/s

30MB/s

Memory CPU

Such a system would have uses as a commercial insertion file server for example,
or possibly for editing applications. Note that the higher bandwidth requirements are
reserved for the operation's revenue generation - commercials.

At M-JPEG compression ratios of up to 5: 1 there are no visible artifacts and the
quality is excellent. With ratios approaching 8: 1 a few artifacts are visible but the
quality is still very good.

370

The PCI Bus Interface Module • MediaPort®

The Leitch MediaPort module utilizes M-JPEG technology. The reason for this is
that the achievable quality is very good and the hardware is both readily available
and meets physical and practical design considerations.

The MediaPort interface module has the following attributes:

• support of full 10-bit 4:2:2 digital video 110
• compressed and uncompressed video support
• dual AES 110 channels
• timecode 110
• full genlock
• audio and VBI remain uncompressed

Leitch designed the MediaPort interface module in conjunction with Digital
Equipment Corporation. It was determined that one of the key features that the
module should have was the ability to handle full bandwidth, uncompressed video.
Please refer to the block diagram of the MediaPort which follows.

Another key element in the overall design was the handling of the associate audio
channels and the vertical blanking interval (VBI). Although AES audio can be
compressed there was really nothing to be gained in this particular case and
therefore it was decided to leave it uncompressed. It was important to preserve the
VBI also, so that user data, such as Closed Captioning, would not be destroyed.
Therefore the VBI is left uncompressed (lines 14 to 21) regardless of the
compression used for the active video portion of the signal.

In uncompressed mode, the video data is buffered and then routed directly to the
PCI Bus, or is routed from the PCI Bus to the output. The module also supports an
E-E mode of operation (electronics to electronics) whereby the input video is
passed, via the buffers, to the output.

... Frame ... JPEG Delay

.4~

_.....
JPEG

_.....
Estimation ,,... ,,...

Compression Engine

371

The compression engine shown on the previous page is the heart of the MediaPort
module. Standard M-JPEG compression techniques will generally suffer from one
of two problems: Either they resulting image quality is highly variable, or the size
of the resulting compressed image will be highly variable.

Neither of these two problems were acceptable in our design. Therefore it was
determined that the optimum method of performing the compression was to utilize
a two-pass system as depicted in the aforementioned drawing.

Very simply put, the image is compressed twice. The first compression pass is used
to modify the algorithms used in the second pass (the video data is delayed by an
amount corresponding to the JPEG compression pass). This provides a much
superior result in terms of image quality and also allows the size to be controlled
(which translates to a fixed compression ratio).

Design Challenges

As with any ''first time" venture into a new area, there is an associated learning
curve. Surprisingly, the implementation issues associated with the PCI Bus itself
proved to be the least of our problems.

Since one of our main requirements was to support full bandwidth, uncompressed
video, we truly required a bus bandwidth of 60MB/s. This was due to the fact that
the data was transferred into buffers in memory and then subsequently into the
storage media. The early available hardware showed itself to be somewhat
challenged by this requirement to say the least. The PCI to host bridges were
inadequate in terms of bandwidth performance.

One remaining problem was the size of the on-board OMA FIFO buffers used within
the interface chip. In order to ensure the maximum data transfer possible it was
necessary to spend considerable time arbitrating the ''fill" or "empty" the buffer
actions (depending upon whetherthe action was "record" or "play"). Again, this was
due to the real-time nature of the operations involved and the quantity of data which
had to be handled.

Conclusion

Happily many of the above issues have since been resolved and PCI Bus
implementation of real-time broadcast Video has been eased to the point where it
is possible to utilize a Pentium platform using an NT operating system.

372

Appendix A

An Overview of the MPEG-2 Standard

JPEG, MPEG-1 and MPEG-2

The computer industry has been using lossless compression techniques for
many years to cram data onto hard disks and for transmission over modems. It was
the computer industry that came up with the JPEG (Joint Photographic Expert
Group) standard for compressing high resolution digital still pictures and it wasn't
long before somebody thought it would be 'cool' to show video on their computer
too, so along came motion JPEG. The MPEG (Moving Picture Expert Group) was
formed in 1988 to determine international standards for the digital compression of
moving pictures, particularly to satisfy the growing interest in CD-ROM's.

Motion JPEG and MPEG-1 techniques are now used extensively for
computer imaging and can be very cost effective for disk recording, CD-ROM's, etc.
but neither offer optimum results for broadcasting. What has emerged however is
MPEG-2 (an ISO/IEC ratified standard) and the industry has adopted this at an
amazing speed, driven almost entirely by the strong desire to provide viewers with
a huge choice of programs delivered direct to home (DTH) via satellite or cable TV,
using set top decoders.

The Technical Challenge

As the purist will testify, you cannot compress video to any extent without
throwing something away and thereby reducing the picture quality. Fortunately
however, the human visual system is incapable of absorbing all of the material
presented in a complex moving image, so by skilfully choosing compression
techniques which selectively discards information which the eye is unlikely to
notice, impressive results can be achieved.

Each television picture comprises a finite number of tiny pixels. In the
conventional 4:2:2 representation of NTSC and PAL television, there are 720 pixels
along the active part of each horizontal line. In NTSC there are 486 active lines per
frame (576 active lines in PAL) and 30 frames per second (25 in PAL). Each pixel
is made up of 8 bits for luminance and 4 bits each for the two color difference
signals (R-Yand B-Y, also known as Cr and Cb), a total of 16 bits. So the bit rate
for the active part of the video only, is:

NTSC
PAL

720 x 486 x 29.97 x 16"' 168Mbits/s
720 x 576 x 25 x 16 "' 166Mbits/s

373

The sole purpose of MPEG-2 is to reduce these bit rates to something more
manageable and its success relies on data reduction primarily in two areas of the
motion picture. The first area is the information contained in each frame (spatial;
relating to space, e.g. surplus blue sky, etc.) and the second is detail which does
not change from frame to frame (temporal; relating to time).

Levels and Profiles

Much credit must go to the MPEG team for the international standardization
of MPEG-2. The published ISO/IEC documents 13818 (-1 to -4) cover video and
audio compression and the multiplexing structure needed for combining video,
audio and timing data for successful reproduction of video with synchronized audio.
Not only is MPEG-2 truly a world standard, but the system encompasses
everything from computer compressed data rates of less than 4Mb/s, through
conventional TV at 10 to 15Mb/s and High Definition Television operating at up to
80 Mb/s. These are known as different levels and the MPEG-2 architecture supports
all the levels shown in Fig. 1.

PROFILES

S~lal
....oludon Slmple Main SNR SpaUal High

layer

Enhancement 1920x1152 1920x 1152
llO 80

High

Lower - &e0x578
L 30

E
v Enhancement 1.UO x 1152

80
1440 x1152

60
1440x 1152

60
E Hlgh·1440
L Lower - 720x578 720lo578
s 30

Enhancement 720x576 720x576 720x576 720x576
30 30 30 30

Main
Lower - - - 3sz;02aa

Enhancement 352x288 352x2&&
30 30

Low

Lower - -
Notes: 1920 x 1152 represents samples per lne x Ines per frame

60/30 represents frames per second.
The enclosed box represents conventional televlslon {MP@ML)

Le-I Low Main Hlgh-1440 High

Mblts/s 4 15 60 80

Levels and bit rates - main profle

i:!g_ 1 Prolflles end levels

374

MPEG-2 also provides for flexibility in the type of compression used for each
level. Compression types are known as profiles and may vary from use of the full
4:2:2 signal at the high end, to the elimination of complete frames at the simple end.
Encoders can vary considerably depending upon the application, so details of the
encoding scheme must be transmitted along with the data, to enable the decoder
to reconstruction the signal. In this way encoders can be designed to handle the
various levels using different profiles at the same time as keeping the cost of the
decoders to a minimum for the desired application. Most 525 and 625 line
broadcasting uses main profile at main level (MP@ML).

Layers and Scalability

One of the most ingenious features of MPEG-2, is its ability to transmit video
signals of widely ranging quality. A relatively inexpensive MPEG-2 decoder can
reconstruct a useful picture by using only part of the encoded video bitstream, the
rest of the data being reserved for quality enhancements. Coded video data
consists of a series of video bitstreams called layers. The first layer is known as the
base layer and this can always be decoded independently. The other layers are
called enhancement layers.

These layers may be used for spatial, temporal and other scalable
extensions. (More information on this in next month's article on HDTV). If there is
only one layer, the coded video data is said to have a non-scalable video bitstream.
If there are two or more layers, the data is said to have a scalable hierarchy.
Scalability has a further benefit, in that it helps to make the video resilient to
transmission path errors. Transmission paths with the best error performance can
be reserved for critical base layer information, while the enhancement layer data
can be sent over a channel with inferior error performance.

Video Bitstream

The video bitstream is made up of blocks of pixels, macroblocks, pictures,
groups of pictures and video sequences as follows:

• Block
• Macroblock (MB)
• Slice
• Picture
• Group of Pictures (GOP)
• Video Sequence

375

The smallest element, a block consists of 8 lines x 8 pixels per line. Blocks
are grouped into macroblocks (MB), according to one of the MPEG-2 predefined
profiles. The 4:2:0 macroblock format has 4 blocks for luminance, 1 block for Cr and
1 block for Cb.· The 4:2:2 MB format has 4 luminance blocks, 2 Cr blocks and 2 Cb
blocks. 4:4:4 again has 4 luminance blocks but this version contains 4 Cr blocks
and 4 Cb blocks. These are illustrated in Fig.2. As can be seen, a 4:2:2 MB will
contain 8 blocks and therefore 8 x 8 x 8 {512) pixels.

0 I 4 5

00 ~[I]
Cr y Cb Cr

4:2:0 4:2:2 4:4:4

Fi 2 Macroblock structures

Slices are strings of macroblocks arranged horizontally along the raster.
Slices can vary in length from a minimum of one macroblock to a maximum of one
line. Pictures and groups of pictures will be examined during our discussions about
temporal compression.

Temporal Compression

Temporal compression is designed to minimize the duplication of data
contained in successive pictures. This is achieved by only transmitting motion
vector data and not the whole picture over again. To facilitate motion predicting,
MPEG-2 separates the video into 3 types of pictures (see Fig 4):

• I {Intra-coded) Pictures
• P {Predictive coded) Pictures
• B {Bidirectionally interpolated) Pictures

ical Grou Of Pictures GOP

376

I-Pictures are the key reference for the other two picture types. They are
derived by compressing the information in a single chosen field or frame (spatial
compression). Still pictures are best preserved by using complete frames, but as
the field rate is 2 x the frame rate, movement is better served by using field based
pictures. Some MPEG-2 encoders are capable of analyzing the incoming video to
determine the changes between successive fields. If there are no changes between
odd and even fields, the encoder presumes that the two fields are part of the same
frame and encodes them as such.

Changes between fields are noted and converted into motion vectors, which
are encoded into data for later interception by the decoder. In this way, substantial
bit rate reduction is achieved. The changes are transmitted in the form of P-Pictures
and B-Pictures. P-Pictures are predicted directly from the previous I-Picture (see
Fig 5). B-Pictures are derived using either I-Picture or P-Picture information and
these reference sources may be either ahead of or behind the B-Picture being
created (see Fig. 6). Hence the term bi-directional interpolation. Both P and B type
pictures are also compressed spatially prior to transmission. The technique of
motion compensation using the above method is known as temporal compression.

i 5 Bidirectional rediction
Fig 6 Forward prediction

The three types of pictures are transmitted sequentially in a Group of Pictures
(GOP) as shown in Fig 4, with the first picture always being an I-Picture. There are
typically 12 pictures in a GOP, but as stated before, some encoders can detect
changes between successive fields and, if the change is substantial, the encoder
assumes that there has been a scene change, so it forces a new I-Picture. This
causes the sequence to start over again. The GOP's are sent in a Video Sequence,
which contains data defining picture size, rates and quantization matrices. The
video sequence and all elements down to the slice size, provide unique start codes
to facilitate detection by the decoder.

377

The only drawback of generating these virtual pictures is that engineers have
yet to find an easy way to edit on B or P pictures. Consequently television stations
are likely to continue using motion JPEG techniques for in-house television
contribution (as you can edit on any field), until a solution is found for this problem.
Nevertheless compression ratios of up to 10:1 can still be achieved using JPEG.
Compression ratios in the order of 25: 1 are achievable with MPEG-2. MPEG-2 is
considered to be a distribution compression format.

Spatial Compression

The word spatial refers to the space in a single picture and the goal of spatial
compression is to minimize the duplication of data in each picture. Bit rate reduction
in spatial compression, is achieved by first transforming the video data from the
time domain into the frequency domain using the Discrete Cosine Transform (OCT)
method and then applying quantization and variable length coding techniques to
reduce the bit rate.

Video is normally displayed on a time based device such as a waveform
monitor rather than on a frequency based spectrum analyzer, but to accomplish
data reduction, we must first transform the video data into the frequency domain.
This is where OCT (a trigonometrical formula derived from Fourier analysis theory)
is used to transform the data in each block of 8x8 pixels into blocks of 8x8
frequency coefficients. In the frequency domain, most of the high energy (and
therefore most noticeable) picture elements are represented by low frequencies at
the top left comer of the block and the less important details are revealed as higher
frequencies towards the bottom right. (See Fig. 8). Note that at this stage we have
not yet discarded any bits.

378

8

Spatial Pixels

OCT

QUANTIZATION
TABLE

WEIGHTED
QUANTIZER

Frequency Coefficients

~240000002812 .. -
Vldeo Bltstream

Figure 8 OCT coding and quantization
numbBIS are h helical

After OCT encoding, the data is subjected to a quantization process,
weighted to reduce data in the high frequency areas, where the eye is less
sensitive. We use more bits per pixel to quantize the important low frequency
coefficients and less bits per pixel for the high frequency coefficients. The DC
components are normally quantized at 10 bits, because if we employ coarser
quantization of very low frequencies, the blocks themselves can start to become
visible in the pictures. We have now achieved the first step in spatial bit rate
reduction.

To create the video bitstream, the 64 frequency coefficients are scanned in
a zig-zag fashion from top left to bottom right and, as can be seen from Fig.8, the
high frequency areas are represented by strings of zeros. Further data reduction
can now be achieved by transmitting only the number of zeros instead of the usual
values of the coefficients.

379

The last stage in the spacial compression process employs Variable Length
Coding (VLC). The encoder can assign shorter code words for anticipated events
and longer code words for unusual events. In this way, unexpected changes in the
picture are given the highest priority. Also, where there is a high degree of
correlation between one part of the picture and an adjacent part of the same picture,
there is said to be spatial redundancy. The DC coefficients are encoded using VLC
and the current block is compared with a predicted value from the previous block.
This helps to ensure that adjacent blocks are restored with equal brightness so that
the blocks themselves are not seen. JPEG and MPEG systems use the above
methods of spatial compression for bit rate reduction.

Program Streams and Transport Streams

So we have compressed the video. Now what? Before we can store or
transmit the data, we have to multiplex the audio, video and system information
together.

There are normally two audio/video multiplexers. One takes the video and
audio packetized elementary streams and produces the program stream and the
other uses the same data to generate the transport stream. Program streams are
normally reserved for robust transmission paths where errors are unlikely to occur.
The program stream data packets may be of different lengths and can contain a
relatively large number of bytes. A transport stream on the other hand, can contain
one or many programs with one or many independent time bases. Multiple TV
channels can therefore be multiplexed together in this way. Transport stream
packets are always 188 bytes in length. The transport stream is designed for use
in environments where errors are likely to occur.

Conclusions

JPEG and MPEG compression techniques will continue to be used for low
cost computer compression requirements and wherever editing is needed in
professional television.

MPEG-2 has become the international standard for video compression for
any signals which are to be simply stored, distributed and viewed. CD-ROM's are
being developed employing MPEG-2 compression methods. MPEG-2 has been
adopted world wide as the compression standard for satellite delivered Direct To
Home (DTH) television and for future cable and Digital Terrestrial Television
(DTTV), including High Definition Television (HDTV).

380

BOARD IMPROVES JPEG COMPRESSION USING PRE- AND POST-COMPRESSION IMAGE SCALING
Harold Schiefer, Ernest Yeung, Steven Hanna and Lance Greggain

Genesis Microchip Inc.
200 Town Centre Blvd., Suite 400

Markham, Ontario, Canada
(905)470-2742

E-mail: harold/emest/steven/lance@genesis-microchip.on.ca

ABSTRACT

This paper describes a PCI board that combines image scaling and JPEG compression in order to increase compression
ratios without sacrificing image quality. By using high-quality scaling before compression, the controlled reduction in image
bandwidth can reduce DCT coefficient quantization artifacts, which are visible as "blocks" in an image. The board
demonstrates the processing of real-time video and still images. It uses the Genesis Microchip gm833x2 for image scaling and
the C-Cube CL560 for JPEG compression. This paper discusses the board architecture, compression improvements with
horizontal and vertical scaling for various scale factors and the implications for moving video and images on the PCI bus.
While this paper describes the use of image scaling with JPEG compression, other compression methods also benefit from
image scaling.

INTRODUCTION TO IMAGE SCALING AND COMPRESSION

Bandwidth and storage limitations have always been the biggest obstacles to the popular use of digital imaging
technology. Applications such as video editing, teleconferencing, video-on-demand, etc., all demand tremendous amount of
storage space or transmission bandwidth. Image and video compression techniques offer a partial solution to the above
problems - data is compressed, transmitted or stored, then decompressed when it is to be used. However, there is a upper limit
to the achievable compression ratio - at very high compression ratios, details are lost and annoying artifacts are often introduced
in the image.

Image scaling technology is an essential part of digital imaging. This technology is used from desktop ''video-in-a­
window" applications to the projection of huge images in conference halls. A correctly scaled image should be visually
indistinguishable from the original - information lost should be minimized and no artifacts should be introduced. One
important, although not obvious, application ofscaling technology is in image compression. An image can first be shrunk
before being fed into an image compression system, and the resulting image from the decompression process can be zoomed
back to its original size. This additional step to traditional image compression can greatly reduce the amount of raw data to be
compressed, thus enabling higher compression ratios to be achieved without sacrificing quality.

Overview of Image Scaling

Although the problem of scaling a digital
image has been around for some time, few
satisfactory solutions exist. Popular scaling
techniques such as pixel dropping and bilinear
transformation offer simple solutions, but their
results are often poor. Pixel dropping involves
selecting the source pixel that is closest to the
target pixel (see Figure 1, top). This technique is
quick and simple, but the resulting images are
often distorted and unwanted aliasing is often
introduced. Linear interpolation generates a target
pixel by taking a weighted average between the
two closest source pixels. This technique offers
slightly better quality than pixel dropping, but the
results are still unsatisfactory and deteriorate
quickly when the scaling factor is greater than 50%
(see Figure l, bottom).

Source Pixels

Target Pixels

i---4/3------4'413------413---i

Source Pixels

Target Pixels

i---8/3----1·---8/3-------8/3---1

Figure 1: Pixel dropping {top) and bilinear interpolation (bottom)

There are two principal "correcf' methods of scaling a digital image. The first one, which is extremely complicated,
involves the use of switched filters. With this method, a target pixel is generated directly from a group of source pixels through

381

a filter. However, a new filter is required for each source and target image size combination, and for each pixel a new phase of
the given filter is necessary. Thus, the number and complexity of filters required to implement this algorithm is high.
Furthermore, in order to generate the exact phase shift required for each pixel, the filter coefficients must be precise. This
method is seldom used.

The other "textbook-correct" method of
image scaling involves the use ofmultirate DSP
theory. The challenge in image scaling is changing Source Pixels

the sampling rate of a signal. In order to properly
scale an image, an intermediate stage is required in
the process. The source pixels are interpolated in
order to generate a large number of intermediate
pixels, consequently increasing the sampling rate
of the original signal. The target pixels are then
obtained by filtering the intermediate pixels with a
decimation filter, thus decreasing the sampling rate
to the required rate. There are a number of
difficulties with implementing the above scaling
method, including complexity of control circuitry,
large memory requirements and differences in

Intermediate
Stage

Target Pixels

Figure 2: The "textbook-correct" multirate image scaling
algorithm

input/output sampling rates. The family of high-quality real-time image scaling integrated circuits (ICs) offered by Genesis
Microchip Inc. (Markham, Ontario) have overcome these difficulties in implementation. The scaling ICs have been
implemented with a "silicon efficient" patented algorithm based on the ''textbook-correct" multirate DSP approach.

Overview of JPEG Compression

The JPEG (Joint Photographic Experts Group) standard has been in popular use in the imaging industry for the
compression of natural images. JPEG implementations are usually lossy, which means that after the
compression/decompression process, the resulting image is similar but not identical to the source. This compression algorithm
divides an image into blocks of 8x8 pixels, and samples the pixels with cosine functions in order to obtain their frequency
components. Since the human eye is insensitive to high frequencies, many of the high frequencies can be coarsely quantized
(or reduced to 0) without adversely affecting the quality of the image. The remaining frequency components are then
rearranged in a zigzag manner, and the Huffinan encoding scheme is used to compress the data. In order to decompress an
image, the above process can be reversed.

It should be noted that the JPEG compression algorithm (or any other compression algorithm, for that matter) cannot be
used to infinitely compress an image. At compression ratios beyond a certain threshold, too many high-frequency quantization
levels would have to be removed, resulting in missing details and blocky images. Thus, in order to achieve the extremely high
compression ratios required in today's imaging applications, image scaling can be used in association with JPEG compression.

Benefits of Combining Image Scaling and Compression

There are a number of benefits in combining image scaling with compression. By shrinking an image before it is fed into
the JPEG compression engine, the amount of raw data to be compressed is significantly reduced. (If an image is shrunk by
50% on each side, the amount of raw data is reduced by 75%.) Thus, the effective compression ratio achievable is greatly
increased. Moreover, during the decimation stage of the scaling process, high-frequency components in the image are reduced.
This reduction facilitates the quantization step of the JPEG compression process. It should be noted that although only JPEG
compression is covered in this topic, other image compression algorithms also benefit from scaling. For example, MPEG
(Moving Pictures Experts Group) compression can benefit in a similar way as JPEG, since the two are closely related. The
emerging wavelet compression technique can also be paired with scaling, with an additional benefit Since the optimal use of a
filter bank requires a signal to be of length 2 n, with n being an integer, an image scaler can be used to resize a rectangular
image to a 2n x2n square before it is fed into the wavelet compression engine. The result can be scaled back to its original
shape.

In order to provide a reference design for developers and to demonstrate the benefits of pairing image scaling and
compression, Genesis Microchip and C-Cube Microsystems have joined forces to produce PCI-833/560 "Edit Pro", a PCI board
which performs JPEG compression with scaling on still and video images.

382

Data Processing Modes

D YCrCb 4:2:2

Genesis
gm833x2 Scaler

YCrCb 4:2:2 TI

PCI i+-----t~ Bidirectional Local Bus
lntertace FIFO ---..iControl EPLD

PCI Bus

Figure 3: Block diagram for Edit Pro

The board architecture provides the processing and data flows fypically used for video editing and image storage/retrieval
operations. Four primary data processing paths provide support for the capture of external video, playback of previously
captured video, as well as memory-to-memory compression and decompression operations. Additional paths support video
input to output scaling and memory-to-memory scaling.

While in the External Video Capture mode, the Edit Pro accepts digital YCrCb data from an external video source and
processes the video by first scaling and then JPEG compressing the video stream. The resulting compressed video stream is
then fed to the PCI bus using bus master burst transfers to system memory, where the CPU manages the subsequent storage of
compressed data onto the system hard disk. The scaled data prior to JPEG compression is also available through the digital
video output port for monitoring the captured video in real time on an external display device (see Figure 4).

11 YCrCb4:2:2

Exlernol Video
lnpu1Pof1

YCrCb4:2:2

2 _
FIFO

PClllia

Genesis
gm833x2 Scaler

Figure 4: External Video Capture mode

383

In the External Video Playback mode, the Edit Pro performs PCI bus master burst transfers from system memory to the
board's JPEG engine for decompression. The decompressed image is then scaled (zoomed or shrunk) with the results then fed
to the External Video Output Port. The host CPU performs file management by accessing compressed video from the system
hard disk and writing the retrieved compressed image data to the buffers in system memory in real time. This mode is typically
used for playing back video clips that have been edited or rendered into compressed files on the system hard disk (see Figure
5).

32

1---,--.pi Bidirectional
FIFO

PCI Bus

Genesis
gm833x2 Scaler

YCrCb4:2:2 u

Figure 5: External Video Playback mode

In the Memory-to-Memory Compression mode the Edit Pro performs PCI bus master burst transfers from system memory
to the scaler which pre-scales video data for the JPEG compression engine. The JPEG engine compresses the image data and
feeds the results to the PCI interface which performs burst transfers to the system memory for subsequent storage on the system
hard disk. Memory-to-memory compression is typically used for re-compressing fields or frames modified during an editing or
rendering process (see Figure 6).

Figure 6: Memory-to-Memory Compression mode

While in the Memory-to-Memory Decompression mode, the Edit Pro transfers compressed fields or frames using PCI bus
master burst transfers from system memory to the board's JPEG engine. The resulting uncompressed data stream is routed
through the scaler data path and then fed to the PCI bus using bus master transfers. The decompressed and scaled data is
transferred to system memory for subsequent storage on the hard disk. This mode is typically used for expanding compressed
fields or frames so editing functions can be performed (see Figure 7).

384

32

i...---+I Bidlrac1ional
FIFO

PCI Bus

Figure 7: Memory-to-Memory Decompression mode

PCI Interface

The Edit Pro's PCI interface consists of an AMCC PCI interface controller and bi-directional synchronous FIFO memory.
The PCI controller provides support for bus master DMA operations and is capable of handling concurrent bus master read and
write flows to and from the PCI bus. These simultaneous burst transfers can occur independently of the host processor.

The FIFO memory, or "Up/Down FIFO", is provided to compensate for the latency in acquiring the PCI bus. Once the
bus is acquired, data can be bursted to or from the PCI bus at a peak rate of 132 Mbytes/sec. The Up/Down FIFO also
provides a mechanism for crossing from the PCI clock domain to the CODEC clock domain.

Also provided with the PCI interface are mailboxes. All on board registers are accessed through the mailboxes which
provide a bi-directional data path for transmitting control/status information to and from the board. These mailboxes are
accessed through the PCI interface and can be either 1/0 mapped or memory mapped.

The Edit Pro provides support for expansion BIOS code. This code would share space in a serial EEPROM with a boot­
up configuration image for the PCI controller. It would allow the system designer to establish field upgrade strategies. The
PCI specification establishes a standardized interface between software and hardware peripherals via this BIOS. The
expansion BIOS ROM is limited to a 2K byte serial NVRAM, of which a portion would be dedicated to the initialization of the
PCI controller.

LAD Bus and JPEG CODEC Interface

The Local Address Data (LAD) bus connects to the host bus interface of the CL560 and provides both compressed video
data, decompressed data, and CL560 initialization and control. The host bus HBUS[3 l :O] is a multiplexed address and data
bus. For video data transfer, the CL560 provides an interface to the CODEC FIFO that eliminates the address phase on the
data bus.

For video capture and compression, the CL560 is programmed to generate a DMA request (DRQ) when its CODEC FIFO
is not empty. The DRQ signal indicates to the LAD controller that data is available in the CODEC FIFO and data will be
transferred over the LAD bus to the Up/Down FIFO. At the end of a file, the FRMEND interrupt in the CL560 is triggered
when the last word of the compressed field is processed by the CL560 and subsequently transferred to the Up/Down FIFO.
Depending on PCI bus latency, data is either accumulating in the Up/Down FIFO or being bursted to memory over the PCI bus.

For video decompression and playback, the host processor configures the controller for PCI bus mastering. This allows
the controller to independently move data from system memory into the Up/Down FIFO. The LAD controller then transfers
data over the LAD bus and into the decompression engine of the CL560. The CL560 is programmed to generate a DRQ output
whenever its CODEC FIFO is not full. The DRQ indicates to the LAD controller that a word can be transferred to the CODEC
FIFO. Data is transferred to the CODEC FIFO until the end of the field has been reached.

The LAD bus also connects indirectly to the Source Video Pixel Bus (SVPB) and Target Video Pixel Bus (TVPB) (See
Figure 3). If scaling is required prior to compression, raw pixel data is routed from the PCI bus to the SVPB for pre-

385

compression scaling. If video scaling is required after decompression, data is routed from the TVPB onto the LAD bus,
through the Up/Down FIFO, and finally out onto the PCI bus. The LAD bus connects to the host interface of other devices on
the board and is used for updating control parameters in the gm833x2 scaler and the various control EPLDs. Therefore the
LAD bus also provides a mechanism to transfer status and control information to and from these devices.

External Video Input and Output

External digital video is fed to the Edit Pro board using a 34-pin ribbon cable connector that supplies a 2x pixel clock,
pixel controls such as HSYNC, VSYNC, BLANK, PIXEL_ENABLE and the 16-bit YUV 4:2:2 pixel stream. An external video
UO board can be used to decode analog video inputs (NTSC/PAL, SVHS/Composite) to generate the digital video stream used
as input to the Edit Pro. Alternatively, the design could be modified to provide on-board analog video decoding to generate the
digital video input stream.

The output process is similar. Decompressed, scaled or pass-through video output is available at another 34-pin ribbon
cable connector that supplies a 2x pixel clock, pixel controls such as VSYNC, PIXEL_ENABLE as well as the 16-bit YUV
4:2:2 pixel stream. This digital video output is used to transfer pixels to an external video UO board that provides encoding to
generate analog video outputs (NTSC/PAL, SVHS/Composite) for an external display device. Alternatively the design could be
modified to provide on board analog video encoding to generate the analog video output.

A video 1/0 board (PC833x2-T) is available from Genesis for use with the Edit Pro board to provide the analog video
input/output capability. The Edit Pro design is modular so systems integrators with other video UO requirements can use the
existing UO digital video connectors and tailor the EPLDs to meet specific video UO requirements.

Image Scaler Datapath

The image scaler datapath consists ofa zoom buffer, the Genesis gm833x2 scaling engine, an output FIFO, and EPLD
controllers. The zoom buffer contains two dual-port SRAM devices, one for the Y data and one for UV (CrCb) data. Source
video data is fed to the scaler path from the external video input port, PCI bus interface (via the LAD bus), or the JPEG engine.
Lines of source video data to be scaled are written into the zoom buffer, which can store two lines of 1024 pixels per line.
When a source line has been written into the zoom buffer, the zoom buffer control EPLD then begins transferring that line into
the gm833x2 scaler for scaling. While the current line is being scaled, the next source pixel line is captured into the other line
store of the zoom buffer. The zoom buffer is continuously operated in this swap buffer arrangement until the entire image has
been processed. The scaler runs at 27 MHz, which is twice the input pixel rate, so that during zoom operations more output
pixels than input pixels can be generated during one input source line period. The zoom buffer also provides the mechanism
for crossing from the source video clock domain to the scaler clock domain. Also, the zoom buffer can repeat source lines as
requested by the scaler during vertical zooming of the source image.

Cropping of the source image is implemented using the zoom buffer control EPLD to perform horizontal cropping of
source lines by controlling addressing into the zoom buffer. Vertical cropping is supported using the internal vertical blanking
and source image size parameters within the gm833x2 scaler.

The gm833x2 performs source image scaling using interpolation followed by low-pass filtering and decimation to
generate the desired output image size. Up to 33 taps of FIR filtering are provided in both horizontal and vertical dimensions
for optimal scaling quality within a single monolithic device.

An output FIFO is used after the scaling engine to buffer data for transfers over the Target Video Pixel Bus (TVPB). The
TPB provides a path to the external video output port, the JPEG engine video pixel port, or the Up/Down FIFO used for
queuing up burst transfers for the PCI bus.

PERFORMANCE RESULTS

Quality Improvements on Still Images

By adjusting scaling ratio and JPEG quality factor, a compressed image file can be generated with the same size as
another file generated by JPEG compression alone. The compressed file generated with scaling will exhibit less JPEG DCT
quantization artifacts, as the scaler filtering removes high-frequency components as part of the scaling process. Due to the
reduction of the raw amount of image pixels, there is also less data for the JPEG engine to compress. Also, the JPEG engine

386

can be adjusted for fmer quantization to reduce the JPEG DCT quantization artifacts. Effectively, the JPEG DCT quantization
artifacts can be exchanged for the scaler's reduction in higher frequency components - in other words, a highly compressed
JPEG image can be made less "blocky" if a slight increase in softness can be tolerated.

A still image of "Lena" was compressed with the Edit Pro board to demonstrate the reduction in DCT quantization
artifacts when scaling is used. For each image that was compressed with JPEG only, a corresponding hybrid compressed image
was generated using a mix of compression and scaling. The hybrid compression had the scaling and Q factors adjusted to
achieve the same target compressed file size as the JPEG-only compressed file. With similar file sizes, a quality comparison
between the JPEG- only and hybrid compression methods can then be made.

The measurement of reduction in DCT quantization artifacts achieved by the hybrid approach is subjective and must be
evaluated by viewing images. The raw full-size image and resulting file sizes for various Q factors and scaled sizes are shown
in the following table. (The raw full-image size was 720 pixels by 480 lines.)

Test QFactor Pre-compress Post-compress File size File size - Artifacts
scaling scaling zoomed percent
shrink frame frame format original size
~rmat

Raw -NIA- -NIA- -NIA- 691,212 100.0 None, full-size
un..P!_ocessed ima_g_e

JPGll 20 No scalin_g_ 720x480 54,276 7.9 No artifacts
JSCll 15 624x480 720x480 54,956 8.0 No artifacts
JPG4 85 No scalin_g_ 720x480 21,452 3.1 Some DCT artifacts
JSC4 22 304x408 720x480 21,536 3.1 No artifacts
JPG3 150 No scaling 720x480 15,524 2.2 Extreme DCT artifacts

i.e., "blocks" clearly
visible

JSC3 23 208x400 720x480 15,380 2.2 No blockiness, image
slight!l_ softer

The images JPG3 and JSC3 have been reproduced on the next page.

387

Figure II: Image JPGJ. JPEG only (Otnpressioo

Figure 9: Image JSC.l - JPEG <omp,..,..ion with ~uling

388

Reduced File Sizes on Video Sequences

By using high quality scaling before compression, the image size is reduced and therefore the amount of raw image data
to be compressed is also reduced. When compressing fields of video with a constant JPEG quality factor of 20, compressed
image file sizes could be varied linearly with the amount of scaling.

A video sequence titled "FLOWERS" was compressed by the Edit Pro board using JPEG-only compression during one
capture sequence and using JPEG compression with scaling during another. The video sequence consisted of a video panning
shot with numerous detailed and moving objects. In the background are trees, a house with many geometric lines, a windmill
in which the windmill sails are rotating and a large quantity of flowers with petals moving in the breeze. The use of scaling
together with compression resulted in significant reduction in file sizes, as well as reduced data throughput requirements
during capture and playback. During playback, the motion video scaling resulted in minimal image degradation and some
reduction in the amount of JPEG OCT quantization artifacts. The resulting data is summarized in the following table:

Test Percent QFactor Pre-compress scaling Post-compress 5 second Artifacts
original shrink frame format scaling zoomed video clip
size frame format file size

.f!!x!e~
Raw 100.0 -NIA- No scalin_g_ (720x48Ql 720x480 103,680,000 None
JPGVID 12.9 20 Noscalin_gJJ20x48Ql 720x480 13,360,004 Some OCT artifacts

JSCVID 6.8 20 Horizontal shrink 720x480 7,078,088 Some OCT artifacts,
_1352x48Ql softened im!!8_e

CONCLUSIONS:

Scaling can be used to enhance compression to achieve better compression ratios. At the same time, scaling can also
reduce OCT quantization artifacts or "block" artifacts by trading image spatial bandwidth for less OCT quantization artifacts.
The Edit Pro design provides the ability to vary both the amount of scaling (image size fonnat) and the OCT quantization (Q
factor). This results in an additional degree of freedom in controlling the compressed image file sizes, image bandwidth and
OCT quantization artifacts as a result of the compression process. The use of scaling to enhance compression is also applicable
to other OCT-based compression schemes such as MPEG, as well as other non-OCT-based algorithms.

Scaling is almost always in the video processing chain for playback applications such as picture-in-picture or overlay
windows. By providing quality scaling in the video processing chain, additional benefits are provided to the compression/
decompression process. Only good-quality scaling using multirate DSP techniques with proper FIR filtering can be used to
enhance compression. Other scaling methods such as pixel/line replication/dropping or bilinear interpolation do not filter the
image properly and may result in more high-frequency OCT quantizer coefficients. Poor scaling, therefore, reduces the
efficiency of compression.

With this hybrid compression technique, file sizes are reduced and bandwidth demands on the PCI bus are also lowered.
This provides opportunities for better live video throughput, more channels of live video, and ability to store more video data.

A possible future improvement to this system is the incorporation of image enhancement algorithms to improve the high
frequency content of the decompressed images. This would result in sharper, higher quality images.

389

PCI BUS ANALYZER SIMPLIFIES SYSTEMS
TEST & DEBUGGING

Thomas Nygaard
Vice President, VMETRO, Inc.

1880 Dairy Ashford, #535, Houston, TX 77077, USA
Tel.: (713) 584-0728, Fax: (713) 584-9034

Email: thomas@vmetro.com

Abstract

This paper discusses how VMETRO's new PCI and PMC
analyzer boards can assist engineers who are involved in
design, testing and debugging of PCI-based PCs,
workstations or embedded computers. Operated from a
PC or terminal, the analyzers are powerful tools that
offers a considerable increase in debugging productivity,
for hardware as well as software tasks, compared to
general-purpose instruments.

Figure J. The PBT-315 PC! Bus Analyzer is a full­
featured Logic Analyzer on a short PC! card form factor,

for analysis of PC/ systems like PCs, servers etc.

Introduction

Testing and debugging PCI bus systems can be a
challenge. The comprehensive PCI specifications require
careful timing design of the hardware, as well as a
thorough understanding of a number of complex
mechanisms for data transactions, error conditions and
cache operations. In addition, software issues play a
major role, when several complex devices must play
together. Potential problems often relate to configuration

and initialization, hardware and software
incompatibilities, incorrect byte-swapping, interrupts, and
soon.

The common factor for most of these problems is
that they relate to interactions between chips or boards
that all reside on the PCI bus. This means that observing
the activity on the PCI bus is the key to finding and
solving problems. For this reason, VMETRO is offering
PCI Bus Analyzers that greatly simplifies test and
debugging of PCI and PMC (PCI Mezzanine Card)
systems.

Various Form Factors

Short PCI card

The model PBT-315 is an advanced self-contained
Bus Analyzer for the PCI bus, implemented as a short PCI
card. The analyzer is designed to be plugged directly into
a spare slot on a PCI motherboard as found in PCs and
servers, for immediate tracing capability of all PCI
channels. This eliminates tedious installation and setup
procedures as required by general purpose logic analyzers.

PMC - PCI Mezzanine Card

Similarly, the PBTM-315 PMC Analyzer for PCI
Mezzanine Cards plugs into a PMC slot on e.g. VMEbus
boards. As a unique feature, the PMC version of the
analyzer is equipped with both male and female PMC
connectors, allowing one standard PMC module to be
piggybacked on the analyzer, eliminating the need for a
spare PMC slot. The analyzer may also operate from a
separate power supply.

CompactPCI

The Compact PCI standard, which is PCI with
Eurocard mechanics for the embedded market, is
supported by the PBTM-315 by means of a standard PMC
adapter (carrier) card that fits in 3U or 6U sizes.

390

Figure 2. The PBTM-315 is a PC! Bus Analyzer for PC!
on a PMC - PC! Mezzanine Card.

Complex Triggering

To trigger on the most complex problems, VMETRO's
PCI analyzers offer four parallel trigger words and a 16-
levels trigger sequencer with If-Then-Else operators. The
sequencer include 20-bit event counters, allowing up to
1 M occurrences of an event in the trigger program. Delay
counters are also included, providing programmable
delays anywhere in the triggering sequence. This is
particularly useful in real-time systems. Figure 3 shows an
example of the setup screen with a complex trigger
condition.

$1 i" 11-'\l).: §§
PCI Euent Patterne

£uont Size COMMCI Address Dato BEi Stotuo Err INTxtl t;NTI Ex~
Af\y'Thiftl : X X XXXXXXXllC XXXX>OOCllC XXQ • "" xxxx xxtc~
PCII , A/D32-FFl9U1x XJCallXXlllX XXXX OK "" xxxx

xxxx ···~ PCI1 : A/DH MHtlri XXXXICXXX XXHABCD xani:x . .. XICXX XJCXX XXX~
PCIZ ' A/032 ConfRd xxxxxxxx XXllOCXXXX XXd • XXO: XXICX

PCI3 : AJD32 x 11223388-112211581' XXXXXDllC XJOCX TAbort xx xxxx xxxxj

.. ' '· . '
PCI Soquoncor

1 .a: Sup lint in TRANSFER aode
1.b, Store (ALL).
1.c, If (PCI8) t-
2.a: If (PCI!+IPCIZ) thOn
3.a: SMpling in TRANSFER DETAILS _..
3.b, Delay •n na thim if (ANYTHING) thin
3.c: Trigger at 7Sl of tr.r:e
2.b, ElH : co ... 1 182'1,.. or (Ptr3l •-

Figure 3 : PC! analyzer setup screen with example of how
to form a complex trigger condition.

Protocol-sensitive Bus Sampling

One of the most fundamental properties of the
PBT(M)-315 is the protocol-sensitive sampling of bus
cycles for state analysis. Unlike general-purpose logic
analyzers, VMETRO bus analyzers know the bus protocol
of the target bus to ensure that sampling takes place at the
right moments. This gives a trace that clearly displays all
kinds of bus activity, like arbitration, commands,

interrupts, cache cycles etc., and it ensures that the bus is
not sampled at unimportant times.

Demultiplexed Address I Data

The PCI bus multiplexes Address and Data into a
common 32-bit bus. In a similar way, the bus
COMMAND signals are multiplexed with the data byte
enables (BEx#). This saves system cost, since the number
of pins on chips and connectors is reduced. However, it
makes it more difficult to analyze the bus using a regular
logic analyzer, since a given sample does not contain all
information about a bus transfer.

To overcome this, the PBT(M)-315 has the
capability to demultiplex Address/Data and
COMMAND/BEx# into separate trace channels. This is
possible since the analyzer has as many as 128 trace
channels, a luxury found only on the most expensive logic
analyzers.

This important feature not only simplifies readability
of the trace, but allows powerful triggers and store
qualifiers involving both address and data to be defined
easily.

Sin COll•.,d AclclnH Date BEi Statue Err INTd
8ne A/032 MMWri 88881898 55 ...• 1118 Ol

38n9 .•.• A/D3Z MHMri 81818118 AA 1111 OK
1ZIM '8nt A/032 Me.Wri 88118188 FFFF •••••..• 1811 GI.
15Gn• '8n• A/DU l/ORd 881881H 81888B88 • , .• 8188 OK
&Gl\8 • • . • A/032 l/DRd 18Rl888: DDDIJODUO ••.• 8888 •
Sina , • • • A/032 l/OAd 88M8818 EEEEEEE£ • m

128ns 3BM ABll MiMIRd FEDCttAH'PiS113218
18na .. . • D3Z , 111Z3Mll 9181 CIC
.... •••• 032 ••.•.•.• S!IHTTlt .••• - OK

1 nne 38M AM Mlllrlnu CAFECAFEIBIAlllA•.•
.... DM mazw1111- - Dlt
IGn9 .•.• DH TT USll Ol

13 Una .••. A/032 MAdL.n eetaaa 18112233 01.
tit 38M .••• A/032 MAdLn 88181118 lfllSSllT? .••• llHI DI.
1S A/OIZ MRdLn 881- 189- 8818 81191 PERR ••••
16 IBM Jens A/DU n 881 tlStHBB 01t
17 Z't&M 118ft9 A/DU COnftlr 8l29IH8 . . • •• 1111 llAbort ••
18 98ftt SIM A/032 ""*'ri 88ft8l8l8 33333H3 ...• 1818 QI.
19 38n1 .••. A/032 MHlllri 89lf88888 'iltltlllt 1898 Ol
ZI Sine .••• AJDJZ ttullri IM18818 lflflflftKlllf •.•. ICl88 TAbort -- ----
21 128n• 98ns A/032 Ml'.wri 88388181 11111111 ...• 8181 Ok
22 388ne Z18ne A/032 l/Olilri aeoaaaea ssssssss 11881 SERR ----

1

Figure 4 : The TRANSFER sampling mode gives a
demultiplexed and decoded PC! trace, suitable for

software analysis.

Various Sampling Modes

When sampling the PCI bus, the PBT(M)-315 stores
a 128-bit sampling word (full 64-bit PCI + 8 external
signals+ time tags and utility bits) into a Trace Memory
32K to 256K deep. To give the user the most suitable
display for different applications, the analyzer can sample
the activity of the PCI bus in four different ways.

The four Sampling Modes are:

CLOCK sampling: Stores one sample per each PCI CLK
cycle. This captures all the details of how the PCI bus is
exercised, clock-cycle by clock-cycle, useful to verify the
behaviour of bus interface state machines etc. This mode
is suitable for hardware analysis.

391

TRANSFER sampling: Stores one sample per valid Data
Phase, each sample includes the Address and Command
which is latched from the address phase. This is the
optimum way to analyze bus transactions as seen from a
software point of view.

TRANSFER DETAILS sampling: Stores one sample per
each PCI CLK cycle only within a bus transaction, i.e.
when the signals FRAME# or IRDY# are active. In this
mode, all idle clock cycles are skipped, conserving space
in the trace buffer.

200MHz Timing Sampling: Stores one sample every 5ns
with an optional 200MHz Timing Analyzer piggyback
module. This is for detailed HW analysis of PCI bus
timing.

.... '
!

-=-u=--··ir··-~
Err IADYI TADYI PM STOPI Ext74

111 - 1 8112'112C 1111 11 1 1 1 1 1111
112 - 1 8112'112C 8111 11 1 1 1 1 1111
113 -.·e 813'1f"Ell 8111 11 1 1 1 1 1111

114 -· --
11 a 1 1 1 1111

115 -· -·-
11 8 I 8 I 1111

111 -· ---
11 8 1 8 I 1111

117 -· --
11 8 1 8 I 1111

118 11 • 1 8 1'11

111 -· --
11 a 1 a 1111

Figure 5 : The CLOCK sampling mode gives a raw
undecoded PC/ trace, suitable for hardware analysis.

Slot-Specific or User-Defined Signals

The PCI bus has certain slot-specific signals, such as
the Request (REQ#) and Grant (GNT#) signals used for
arbitration. In many cases these signals are of high interest
for analysis, and in order to make them available for the
analyzer, these signals can be brought to eight external
inputs on pin headers in the front panel.

These external inputs, fully available in the trigger
words, can also be used by any user-specific signals.

Investigation of Software Problems

The PBT-315 analyzer can be of great assistance in
investigating certain types of software errors in a PCI bus
system, especially those kind of errors where a board or
device fails to implement some kind of software protocol
correctly. In these cases a clear view of the traffic on the
PCI bus may identify not only what kind of error
occurred, but also which board or device caused it and
how.

Automatic PC/ Protocol checking

As an optional piggyback module to the PBT-315, a
unique piece of hardware called the PBA T - fCI I!us
Anomaly Irigger - is offered. This automatically looks for
hardware errors in a PCI system by watching every bus
cycle during actual operation. It has rule-based trigger
elements that continuously and simultaneously screen all
PCI signals, looking for a number of timing and state
violations of the PCI protocol. When a violation is found,
a message is written on the "Violation screen" and a
trigger output signal is generated to cross-trigger the
analyzer or to trigger an external instrument like an
oscilloscope. Also, a detailed explanation that corresponds
to rules given in the PCI Specifications is available for
each violation. This will assist the user understanding and
correcting the problem.

Statistics of System Performance

The PCI analyzer may also be used to look at the
performance of a PCI bus system. For this purpose, the
PBT-315 Bus Analyzer system is equipped with a
Statistics module that contains a number of real-time
counters controlled by the event word recognizers. This
allows the user to gather many different kinds of data as
to how the traffic on the PCI bus behaves and to spot
uneven distribution of system load and other symptoms
that may represent performance bottlenecks.

Event counting

The Event Counting function, which is based on HW
counters, provides a real-time count of the occurrence of
four user-defined events. This very powerful function
may for example be used to count the number of e.g.
IACK cycles per second displayed as a function of time,
or to investigate access patterns to the bus in multi­
processor systems, etc.

392

... ·······················J-······················

: dl~i~~~J : : ·:~1¥!r~n\
JdilL-. ,._WJi. JOW 10M

441% 33% '-"' 11'6
3H8 28111 317 14'5

Figure 6: The STAT/ST/CS functions gives valuable
information about PC/ performance and traffic patterns.

Bus Utilization

The Bus Utilization function provides a direct
readout of the percentage of time the bus is occupied. This
is ideal to determine whether the system bus has spare
capacity to support another 1/0-device or processor etc.

This function, which is based on hardware counters
and a pre-programmed usage of the word recognizers,
provides an immediate response readout of how the bus is
being used at any time.

Bus Transfer Rate

The Bus Transfer Rate function presents how much
data is transferred over the bus, shown as MBytes/s and in
Mtransfers/s. This can either be shown between selected
lines directly in the trace buffer, to measure burst transfer
rate, or as histograms that show the average transfer rate
over a certain period of time.

This function can be used to characterize a system,
to verify if performance specifications have been fulfilled
and to assist in system tuning.

Conclusion

In this paper we have discussed how PCI and PMC
Bus Analyzers can be a very powerful tool in detecting,
locating and fixing different kinds of PCI bus system
problems. These cover all aspects of systems debugging,
from low-level hardware to complex software problems.
In addition, remarkable statistics functions offers
performance measurement functions that allow for system
tuning.

Altogether, the PBT-315 PCI Bus Analyzer and the
PBTM-315 PMC Analyzer constitute very important tools
when building and integrating PCI bus based systems. In
many cases these tools could save a very considerable
amount of time in debugging such systems, as well as
greatly simplify the quality of testing.

393

ABSTRACT

PCI: THE BUS THAT GLUES?
Mark Bronson

Aeon Systems, Inc.
840 I Washington PI. N .E.

Albuquerque, NM 87113 USA
(505)828-9120/9115 (fax)

e-mail: bronson@aquilagroup.com

PCI has exploded with a diversity of boards, chips, and systems that promote high performance inter-operability.
While there is, indeed, much improved inter-connection with respect to earlier busses, not all performance expectations will
always be met. PCI offers a number of "tuning" opportunities that are available on a per device basis. This paper presents
design experiences in developing a complex system where PCI bridges and devices are used. An order of magnitude change in
system performance by changing configuration fields is analyzed, and some general implications in the use of PCI are discussed.

INTRODUCTION

PCI is unprecedented as a bus standard in the rapidity and diversity with which both board and component
implementations are being developed and offered for general consumption. This encourages both vendors of add in boards and
developers of stand alone product that need to integrate multiple devices. While delivering an ability to glue, PCI does not
always deliver the anticipated performance. A naive expectation of observing the touted bandwidth (132 Mbytes/second) is
frequently dashed. Presentented here are some experiences in creating a processor module that includes two processors (ALPHA
AXP and i960), two bus bridges (to secondary PCI and VMEbus), and I/O devices (Enet, SCSI). There are three major
considerations: I) the basic implementation and "glue" necessary to integrate the components, 2) the interconnect facilities
offered by the bridges and how they aided/impeded our system design, and 3) system performance, in particular how PCI
"tuning" parameters can result in a data rate change from 4 Mbyte/second to 60 Mbyte/second.

HARDWARE IMPLEMENTATION

One point of consideration for developing a PCI-bridged system is implementation of the hardware. Figure I shows a
block diagram of the module. The components attached to the PCI include: I) ALPHA Host memory bridge, 2) PLX to i960 bus
bridge, 3) PCI to VMEbus bridge, 4) PCI to PCI bridge, 5) SCSI, and 6) Ethernet.

ALPHA Host memory bridge. This provides bi-directional access to the ALPHA processor and memory subsystem.
Read/writes mastered external to the ALPHA processor are bridged into the 128 bit memory bus. The bridge maintains cache
coherence between the ALPHA secondary and primary caches and the contents of memory.

PLX to i960 bus bridge. During system design, a performance mismatch was recognized between the ALPHA(which
executes at 275Mhz) and the low level 1/0 frequently required with VMEbus devices. Thus the i960 was included as an I/O Co­
processor. To accomplish this task requires full access to the PCI bus, as low level system devices are on the i960 bus (e.g.
RS232 console) the bridge must also allow slave access from external masters (e.g. ALPHA CPU).

PCI to VMEbus bridge. There have been two implementations used. Initially the combination of PCI to 68040 bridge
(Newbridge Spanner) connected to the Newbridge SVC VMEbus controller. A second pass design used the Newbridge
UNIVERSE, a direct PCINMEbus bridge.

PCI to PCI bridge. In order to provide the option to support additional PCI devices, a bridge can be added. To date
this has been used to add both custom devices and, in conjunction with a second bridge to connect devices in a PMC form factor.

SCSI. NCR PCI/SCSI integrated controller.

Ethernet. Digital 21040 integrated Ethernet/PCI controller.

394

ALPHA
21164

275 MHz
Host CPU

Putting The Pieces Together

VMEbus Devices

I PCl/PCI
1 Bridge 1

Digital 1

\ 21052 ,'

'

ALPHA/
PCI Bridge

'

'VMEbusl'
I \

1 PCI Bridge ,
I Newbridge I
I UNIVERSE or I
I Spanner/SCV I

I

System Block Diagram
Figure 1

...
'

,

I I
\~

PCI bus Devices

RS232
TOY

1960 CF
33MHz

Co-Processor

Serial
Controller

At the first level, all components are integrated as would be anticipated from compliance to the PCI specification. The
devil is in the details. An implicit assumption is frequently made by PCI designers that the end system will be a PC with the
ancillary defined infrastructure. For example, including a "standard" interrupt controller is not the most effective solution for the
very high performance ALPHA; requiring extra external cycles to the interrupt controller impedes the ALPHA in performing
useful computation. In addition, in this system, some interrupts may be routed to the i960 (and this decision may be dynamic).
Our solution is to make a combination of direct connects to the ALPHA interrupt lines and to incorporate an interrupt controller
on the i960 bus. A problem related to interrupts is mediating between the requirements of the various protocols. VMEbus defines
seven levels of interrupt priority with a per device vector for multiplexing. Solutions to this problem depend upon a combination
of 1) evaluating the mechanisms embodied in the bridge and 2) melding them with the facilities available in the design. The
major interconnections (i.e. address/data and control signaling) did just glue together and inter-operate. In total, the necessary
logic was implemented in a single PCI arbitration PAL and an interrupt controller. The latter is connected to the i960 bus.
Integration of i960 memory and slave devices required a single additional PAL implementing address decode and device
acknowledge signals.

BRIDGE FACILITIES

When designing a bridge, consideration must be given to what overall facilities will be provided. Unlike a PCl/PCI
connection, bridges to other bus protocols must provide a translation and, to be effective, some control of the translation to allow
each user to make the most effective connection. In addition, the generic assumptions suitable for a straight forward PCI/PCI
extension are not sufficient. If bridging to a processor bus (e.g. i960), one needs to assume that a CPU could be included, either
as primary or auxiliary system host. The VMEbus is even more drastic; it has long been used to support multiple hosts, which
need to be gracefully integrated to the PCI. The facilities of ALPHA host bridge, PLX 9060, and Universe provides a basis for
comparison:

395

(plus expansion ROM)

Mask
Yes

Yes Yes

Table 1: Comparison of ALPHA host bridge, PLX 9060, and Universe Facilities

3
(1 I/O
1 coupled memory
1 refetch)

None
No
Yes

9
(5 PCI ->VMEbus

4 VMEbus -> PCI)

Adder
Yes
Yes

Address translation is required when processor(s) on the target bus have their own address map. Multiple windows aid by
offering simultaneous protocol conversion profiles between the PCI and dissimilar target bus.

Utility of Multiple Windows

The multiple windows provided by the Universe was a major advantage as was the addition-based address translation.
There are several benefits to having a larger number of windows. One is that multiple windows allow greater flexibility in
overcoming the difficulties inherent in connecting multiple 32 bit address spaces. As most devices currently available only
support a 32 bit address space, not all portions of all buses can be constantly visible. Occupation of address regions on the
various buses may be quite sparse. On the i960, this is true in order to take advantage of the bus segments within the processor.
In our design, local memory (SRAM), EEPROM, and devices each have different control protocols. The i960 can be
programmed to exhibit different bus behaviors, based upon 256Mbyte segments. As a result, the i960 address decode covers
small portions of a large (3 x 256Mbyte) address region. VMEbus presents similar difficulties for different reasons. Since the
goal was to create an addition for existing VMEbus systems, fewer boundary conditions are better. Two large windows (512
Mbyte) from PCI to VMEbus were set up in the top of PCI address space, one with zero offset (translating directly to the top of
VMEbus address space) the other with an offset that makes it zero-based within the VMEbus. One window is configured during
system initialization (based upon system specific parameters). An additional window is provided for "on the fly" connection to
the rest of VMEbus space. Multiple windows also allow access in both PCI 110 and memory space. This can be very useful in
extending the 32 bit address range as some portions can be placed in 1/0 space. This is appropriate when mapping in 1/0 devices,
where the facilities of memory space (e.g. prefetch) could not be utilized.

Window Profiles

Bridging to the VMEbus poses difficulty in exporting to PCI the various features that are exclusive to VMEbus. These
include three address spaces (A16, A24, and A32), several transaction types (Block and Single Cycle), etc. Two mechanisms
were provided within the Universe, and both are convenient. The most obvious is allowing a per window profile, such that PCI
transactions are forced to translate to the target protocol type. The second causes portions of a window to have specific attributes
(e.g. placing the 64Kbyte Al6 region at the top of an A24 region).

Mechanisms for Address Translation

The three bridges offer three solutions from sophisticated scatter gather to direct mask. Only the ALPHA offered , or
really requires, scatter gather. Since the ALPHA executes operating systems that use virtual memory, a contiguous application
buffer will not map to physically adjacent pages. While convenient for the user, maintaining the scatter/gather entries greatly
increases software complexity. In addition, it adds a performance burden, as the translation must be fetched from memory. This is
mitigated in the ALPHA bridge with an on-chip lookaside cache at the cost of increased chip complexity. Most requirements can
be met with a simple offset translation, but the adder mechanism is much more convenient and flexible than a mask. In the latter,
address lines on the target bus are replaced with a specified pattern. This restricts both the decode flexibility (as the bits replaced
are also those used in decode) and precludes most "on the fly" dynamic changes; The base, bound, offset triple of the Universe
allowed a number of powerful software facilities to be created for the user.

Interrupt Handling

As noted earlier, interrupts can generally be a problem when using PCI in a specialized configuration. It is made more
difficult when the interrupt protocols are very different. To meet the requirement of full VMEbus support, it was necessary to
support all 7 VMEbus levels and to create an acknowledge cycle to retrieve the interrupt vector. In the initial implementation
with the SPANNER (PCI to 68Kbus), there was a single interrupt signal external to the bridge with a set of registers to create the
per level IACK. This precluded easy support of hierarchical interrupts (i.e. allowing a higher priority interrupt to suspend a
processing of a lower priority). The Universe enhanced interrupt support with multiple external lines and an internal mapping to

396

allow flexible distribution. For our purposes, we route each interrupt line independently to an interrupt controller, allowing
preemption. A different setup would funnel all interrupts to a single external line.

Flexibility is Good

The conclusion: when designing a bridge that is targeted to a broad market, avoid preconceptions of how the end
systems will be structured. In particular, avoid taking too centric a view; perspective from both sides of the bridge must be
maintained.

TUNING THE SYSTEM

The PCI specification provides a number of mechanisms for adjusting system performance (e.g. Latency timer, burst
control, etc.) When first considering working with PCI, an excitement is generated by the repetition of theoretical bandwidth
(132 Mbyte/seconds). It is critical to realize how rapidly this can be squandered. To obtain any significant fraction of the
bandwidth, it is essential that (reasonably long) burst transfers be supported, and that they be full speed (i.e. transfer on each
clock). Table 2 shows bandwidth as a function of burst length:

8 16 32 64 256
33.3 80 88.9 94.1 97 99.2
44 105.6 117.3 124 128 130.9

Table 2: Throughput as a Function of Burst Length 1

Support of coherent, hierarchical memory systems will usually induce a long latency when reading, but may be able to
deliver one or more cache lines thereafter. (In the case of the ALPHA host bridge, the latency for first read can exceed 21 PCI
clocks. Once started up to 16 Dwords can be transferred in no wait data beats.)

Example: Write to VMEbus

As a concrete example, when first evaluating the OMA performance of the Universe, transferring data from ALPHA
host memory to the VMEbus the data rate was -4 Mbyte/second. Analysis showed that the culprit was a result of the extended
delay on starting the pipe into the ALPHA memory system. When a read request is received, the ALPHA bridge probes cache
and forces consistency with memory. Then up to two 128 bit transfers (total of 16 dwords) are transferred into a buffer for
response to the PCI master. With the Max Latency field loaded with too low a value, the Universe, after an -20 clock delay,
performed two data transfers and terminated the cycle (as required by the specification). The result: two useful cycles in -24
(counting device select and arbitration overhead). Increasing the timer to a larger value resulted in an increase to 27
Mbytes/second. Modifying the previous table to allow for the delay to first access, we obtain:

1•-1 1
1

2
1

8
1

16 I -~ 2 ... ~~-=r~- 6 . 11.5 . 34 . 56 .
Table 3: Throughput vs. Burst Length in the Presence of Delay to First Data Transfer

The single data phase write transaction is presented in the following figure. We assumed that master has already been granted to
the bus and that the bus was in Idle state, so there is not any delay due to bus arbitration. Target for this transaction has fast
DEVSEL# signal timing and no wait states were involved in the transactions. By not taking into account possibility of back-to­
back write transactions on PCI bus, the next transactions on the bus may be started at cycle 4. Therefore, single longword write
transaction requires 3 periods of bus clock to be performed and real performance in this case will equal one third of the
theoretical maximum. For 33Mhz, the bus maximum is 132Mbyte/sec and real bandwidth is 44Mbyte/sec.

Clk

FRAME II

IRDY# '----+--'
TRDY# ~~ '---+---'--....... ~~---
DVSEL# '---+--'

1 2 t 4

397

The next measurement of the PCI performance showed that, while the Universe was willing to continue the burst, the
ALPHA bridge was terminating it at 8 cycles. Changing the configuration of the ALPHA bridge to permit 16 dword long bursts
increased the PCI performance to the expected 56 Mbytes/second (where VMEbus becomes the throttle).

Implications of needing Burst Data

This example demonstrates the enormous impact that tuning the system can have, it also indicates the need for long
bursts. Burst transactions will be the only method to maintain performance when using PCl/PCI bridges. The convenience of the
bridge, in combination with the structural restrictions of the PCI (i.e. number of possible nodes and line lengths), makes them
appear a panacea. There is a substantial delay for transactions to transit the bridge (5 clocks on the Digital 21052). This delay
does not affect all transactions equally; posted writes may see very little delay while single cycle reads will suffer the full effect.
Again, the only general approach is to ensure that transfers are multi-word bursts. A direct consequence of requiring data to be
transferred as larger blocks, is that subsystems need to have internal buffer resources and probably local intelligence to ensure
full utilization of the buffer. This is in direct contrast to many previous protocols where the intention was to concentrate the
intelligence at a single host. Fortunately, the rapid proliferation of low cost, extremely powerful engines (e.g. i960, ARM, 68K
etc.) make distributing intelligence possible. The burden on software remains to be addressed.

1/0 Co-Processor

In our system, the i960 acts as an 1/0 Co-processor, allowing it to consolidate data transfers for the ALPHA host. In
this implementation, the serial lines (which reside on the i960 local bus) can be turned from very high overhead single byte
devices to a more efficient, line oriented protocol. While very advantageous to the ALPHA, the small grain transactions
performed by the i960 still adversely affect PCI bandwidth. To fully realize the potential of the i960, there needs to be a
decoupling bridge between the primary PCI and a secondary PCI on which devices reside. Announced products (e.g. Intel
i960RP) will deliver exactly this capability in a single package.

CONCLUSION

Designing around PCI greatly reduces the effort required to "glue" components together. Given the relatively recent
creation of the specification he number of already available parts and vendors is remarkable. Interest in PCI is increasing very
rapidly; there is a continuous litany of new announcements for new parts that attach to PCI, or bridges to directly connect
existing processors into a PCI system. Simplifying the implementation process does promote the potential to overlook system
performance issues. Without careful analysis of data flow, device PCI usage characteristics and queuing delays a very misleading
assumption of final performance will be made. When considering a device's PCI performance it is important to look at both the
direct transfer rate (number of cycles between each data transfer within a burst) and the delay incurred in starting a transaction.
The latter is most likely to be an issue on reads from a memory system (e.g. across host processor bridge).
As processing power is packaged for PCI, distribution of intelligence will become more prevalent. Using this in any kind of a
generic (i.e. standard) manner will pose a very interesting challenge. In the meantime specialized configurations will add to the
understanding and interest in the potential that PCI brings to system implementation.

BIOGRAPHY

Mark Bronson is the Director of Research and Development for Aeon Systems, Inc. (Aeon). As a wholly-owned
subsidiary of Aquila Technologies Group, Inc., Aeon is engaged in the design and manufacture of products for distributed, real­
time data acquisition/control and surveillance. Aeon is on the leading edge of real-time instrumentation and connectivity
technology. Of VME processor boards based on the DEC Alpha RISC processor, Aeon offers the fastest implementation.

Mark Bronson is responsible for the development of new projects and products from conception to production. His
experience includes a wide range of software systems (UNIX, MACH, OSF/l, VMS, and real time kernels) implemented on a
variety of processor architectures (VAX, Alpha AXP, MIPS, and 68K among others) and bus standards (VMEbus, MBII, PCI,
BI, etc.). Under his guidance, development efforts at Aeon have expanded from an exclusive VAX/VMS focus to an integration
of distributed (networked) open systems running on a variety of standard platforms.

398

LATENCY ISSUES IN POWERPC REFERENCE PLATFORM ARCHITECTURES

ABSTRACT

Don Dingee
Product Marketing Manager
Motorola Computer Group

2900 S. Diablo Way DW212
Tempe, AZ 85282 USA

(602) 438-3034
dad@phx.mcd.mot.com

http://www.mot.com/computer

Published results for MPC105 (also known informally as "Eagle") throughput performance are
available but cache line latency performance is less clearly deterministic and more problematical. This
paper defines important issues, illustrates a range of cases with specific numerical results, and discusses a
true worst case and its preclusion.

INTRODUCTION

An article by Wang et al appearing in the April 1995 issue of IEEE Micro describes the maximum
PCl-to-system memory throughput numbers for an MPC105 PCI bridge/memory controller
implementation.1 That article makes many simplifying assumptions about latency issues. For instance, it
states " ... A PCI master can read from system memory at a data transfer rate of 9-1-1-1" PCI clocks. Actual
performance may be affected by time to gain mastership of the system memory bus, time associated with
snooping memory to maintain cache coherency, and time to transfer the first beat of data. Further
investigation is needed to bound and characterize performance.

This paper discusses the specific PowerPC 603/603e/604 microprocessor and MPC 105 PCI
bridge/memory controller implementation found in Motorola PowerPC reference platform products such as
the MVME1603, MVME1604, MVME1300, Ultra, Atlas, and Chameleon. It backgrounds the basic issues
of latency and throughput. It clarifies the important parameters, and describes the best, typical, and worse or
worst cases involved in computing figures of merit. During this discussion, a worst case scenario is
described, and a range of potential remedies to preclude worst case are proposed. Finally, the results are
summarized and some general conclusions are drawn.

LATENCY AND THROUGHPUT BACKGROUND

The PCI bus master to system memory transfer latency and throughput are points of primary concern
in real-time embedded system design. Table 1 summarizes the related MPC105 PCI performance
parameters.

Table 1: MPClOS PCI Bus Performance

Transf!!.r type PCI clocks _il3 MHz bus]_
Si~le read (4 ~es) 9
Read line (32 ~es) 9-1-1-1-1-l-1-1
Read mul~eJ..successive 32 b_yte bursts) 9-1- l-1- l-1-1- l/4-1- l-1- l-1-1-1/4-1-1- l-1-1- l-1/ ...
Sil!.&!e write (4 b_ytes) 2
Write line i_32 b_ytes) 2-1-1-1-l-l-1-1
Write mult~e (successive 32 b_yte bursts) 2-1-1-1-l-1-1-1/2-l-1-l-1-1-1-1/2-l-1-l-1-1-l-1/ ...

1 Karl Wang et al, "Designing the MPCI05 PCI Bridge/Memory Controller," IEEE Micro, April 1995, pp. 44-49.

399

Another important MPC105 parameter is the PowerPC local bus performance. On a burst transfer to
local DRAM with 60 nsec access time, with a local bus speed of 66 MHz, the PowerPC 603/603e/604
transfers four 64-bit double words (total of 32 bytes) in 20 clocks (8-4-4-4) for a total transfer time of 0.300
µsec.

From this data, the limiting factor in PCI to system memory performance is the PCI read, which is
studied in more detail in the following discussion.

In a high performance system, PCI reads are 32 byte burst transfers (8 beats of 4 bytes each) by PCI
bus mastering devices. Latency and throughput for a given 32 byte burst can be defined by examining the
states of the transfer and stating assumptions about those states. A PCI read of DRAM proceeds as follows:

PC/ bus master presents addresses to MPC105
• Assume no other PCI traffic, and PCI bus master is highest priority PCI requester and is not held off.

MPCJ05 removes local bus grant to PowerPC processor
• Time to remove grant is insignificant

MPC105 gains local bus mastership
• PowerPC processor can complete up to 2 four beat (32 byte) external transactions to local DRAM after

its grant is removed.
MPCJ05 snoops transaction to ensure cache coherency

• Snoop collision may occur, caused by internal resource conflict in PowerPC processor and signaled by
ARTRY. Collision is retried every 4 local bus clocks until resolved. Most collisions resolve after one
retry.

MPC105 completes burst read of 32 bytes from DRAM and forwards transfer onto PC/ master
• MPC105 has 32 byte read buffer, which does not have to be filled prior to data being presented to PCI

bus. Once burst begins, it proceeds to completion. ·
• Assume no other PCI traffic, and PCI transaction finishes concurrently with DRAM read with no

additional overhead.

Given this transfer sequence, latency and throughput are defined as follows:

PCI read latency = tpRL = ti.BM + tsRc + tn2B

where:
tLBM = time for MPCl 05 to gain local bus mastership,
tsRc = time for MPC105 to snoop and resolve collision,
t1328 =time for MPC105 to transfer 32 bytes to PCI.

PCI read throughput for 32 bytes = 32 I tpRL

With these definitions, each parameter can be examined in more detail in best, typical, and worse or
worst cases, and figures of merit for latency and throughput derived.

WCAL BUS MASTERSHIP

In the best case, the MPC105 already has mastership of the PowerPC local bus, and no other
contention occurs, so tLBM = 0. This would be the case in the steady state portion (after the first cycle) of a
PCI DMA transfer.

In a typical case, assuming a 70% processor hit rate in cache, the MPC105 has a 30% chance of
waiting for the processor to complete a single external burst transaction. Previously, the time for a processor
burst transfer to local DRAM was shown as 0.300 µsec. This creates a typical tLBM over a relatively large
data transfer of 30% of 0.300 µsec, or 0.090 µsec.

400

In a worst case, the MPC 105 is held off while the processor completes two burst transactions, so tLBM
= 0.600 µsec. This is an upper bound on tLBM given the 60 nsec DRAM access time assumed earlier.

SNOOPING AND RESOLVING COUISIONS

The best case for a snoop is no collision, or tsRc = 0.

The PowerPC 604 microprocessor implements dual-ported cache address tags on its LI cache, and
allows snooping to occur concurrently with cache accesses. This improves performance and minimizes
collisions to situations where cache buffer cast-outs are required to maintain coherency. The current
PowerPC 604 microprocessor has only one cast-out buffer, so only one cast-out can be pending.

The PowerPC 603/603e microprocessor implements single-ported cache address tags on its LI cache,
and thus presents several snoop collision scenarios. These include snoop hits during a burst load operation,
snoop hits while a cast-out is pending (one cast-out buffer is present), and snoop attempts while the LI
cache is being accessed by a load or store operation.

The MPC105 retries a collided snoop every 4 local bus clock cycles, and most collisions resolve after
one retry. Collisions occur rather infrequently, so typically tsRc = 0 over a relatively long transfer.

A worse case for a normal snoop collision is when a cast-out is required, and the cast-out data phase
overlaps the previous burst. ARTRY is signaled after the first beat (8 clocks) of the cast-out burst. A worse
case for a snoop hit followed by a burst write is very similar in overall timing. The PowerPC split
transaction bus allows transaction overlap, but in general, the worse case snoop latency under normal
circumstances is 36 clocks (remaining 3 beats of transaction at 4 clocks each, plus another transaction at 8-
4-4-4, plus one more MPC105 retry). This puts a worse case tsRc = 0.540 µsec. This is normally also the
worst case.

A true worst case, with remedies to preclude it, is discussed later.

TRANSFERRING PC/ DATA

Once the MPC105 actually begins to transfer data, it completes and there is no other PCI overhead
involved.

Best case for the PCI read of 32 bytes is when the speculative read feature of the MPC105 is enabled,
and a multiple read with successive bursts is in progress. As described previously, this results in a transfer
time for 32 bytes of 11 clocks (4-1-1-1-1-1- l-1) so tT32B = 0.333 µsec on the 33 MHz PCI bus.

Typical and worst cases for the data transfer time are 16 clocks (9-1-1-1-1-l-1-1) so tT328 = 0.485
µsec.

FIGURES OF MERIT

Given this discussion of local bus mastership, snooping and collision resolution, and PCI read transfer
time, the latency and throughput formulas can be used to develop the figures of merit shown in Table 2.

401

Table 2: PCI Read Figures of Merit

Case tLBM lsRc tT32B LoJency Throughput

~cl. l!!!_ecl_ (JJSecl_ (µsec) (MB/sec)

Best 0 0 0.333 0.333 96.0
T_xp!cal 0.090 0 0.485 0.575 55.7
Worse I Worst 0.600 0.540 0.485 1.625 19.7
Worse/worst, with low priority PCI transfer in progress 3.250 9.85

before start of PCI read

Although the PCI read is a relatively low priority transaction on the processor local bus (page 8-8 of
the MPC105 User's Manual lists it as priority 11), most of the other higher priority local transactions have
been accounted for in the worse cases in the form of up to two PowerPC microprocessor external burst
transactions in our assumption. L2 cache would affect this model somewhat, but has not been considered in
this analysis.

If a lower priority PCI master were to have a transfer in progress, a high priority PCI read discussed
here would be held off by one PCI burst transaction. The worse/worst case discussed would double in
latency and halve in throughput, as shown in the last line of Table 2.

TRUE WORST CASE SNOOP COLUSIONS

A pathologically worst case problem has been identified as a remote possibility on the PowerPC
603/603e microprocessor due to its single-ported Ll cache address tags. On the PowerPC 603/603e, a
collision is signaled if a snoop is attempted while the L1 cache is being accessed by a load or store
operation. The MPC105 retries a collided snoop every 4 clocks until successful. If the MPC105 snoop retry
period of 4 clocks were aligned with a cached loop writing to the L1 cache address tags on the same 4 clock
timing, snoop collisions would potentially occur until the cached loop terminated.

Writing the cache address tags, not just reading them, creates the potential for this scenario. Cache
control instructions which write the tags are the user instruction DCBZ (data cache block zero) and the
supervisor instruction DCBI (data cache block invalidate).

An example would be executing a cached loop consisting of a DCBI followed by an ADD to a counter
and a BCND. This instruction sequence would write the cache address tags 1 out of every 4 clocks. An
instruction sequence such as this is not particularly useful and is not considered likely to occur, but
nonetheless is a possibility and must be considered.

Table 3 shows the effect on typical latency and throughput for this situation. The snoop collisions are
assumed to occur on every retry by the MPC105, adding 4 local bus clocks (60 nsec) to the latency for
every collision.

Table 3: Repeated Snoop Retries, Typical PCI Read Case

Sno'!l!_ Retries Laten~ecl Throu_g_h]!_ut (MB/sec)
0 0.575 55.7
4 0.815 39.3
16 1.535 20.8
64 4.415 7.3
128 8.255 3.9

As shown by Table 3, should a long loop of this true worst case occur, latency can be severely
impacted. What begins as good performance in the typical case degrades severely under these
circumstances.

402

There are many possible remedies to this behavior. Disabling the MPC105 snoop capability (by not
asserting the GBL signal) would prevent snoop collisions altogether, but would severely impact
performance by introducing software overhead to maintain cache coherency. Implementing the PCI lock
protocol and executing longer PCI transfers would reduce the impact of a single collision episode and
increase average throughput. However, these hardware approaches are not generic and have other
undesirable performance impacts.

Truly precluding this worst case behavior in a general way requires a software approach, and there are
two solutions which are plausible.

First, all data could be marked global, or if not global at least cache-inhibited and guarded (see the
WIMG bit definitions of the PowerPC 603 and PowerPC 604 User's Manuals). This forces the processor to
execute external cycles. During a snoop collision the MPC105 is local bus master, and the processor must
wait to execute the external cycle. Most snoop collisions are prevented, and any snoop collision that does
occur is resolved on the first retry. This impacts CPU performance by reducing the data cache hits, and is a
severe workaround.

The best solution is to ensure that use of the cache control address tag write instructions, DCBZ and
DCBI, do not occur in loops of 4 or 8 clocks. This can be done by avoidance of these instructions, or by
insertion of no-op instructions to change the loop timing. This results in snoop collision resolution on the
first retry.

SUMMARY

Motorola PowerPC microprocessor platforms using the MPC105 PCI Bridge/Memory controller can
achieve significant real-time throughput with low latency. A limiting case of a PCI read was studied and
found to have a typical latency of 0.575 µsec and a typical throughput of 55.7 MB/sec. Both best and worse
case scenarios were considered to place upper and lower bounds on performance. A truly worst case
scenario, while a very remote possibility, was considered for the PowerPC 603/603e microprocessor. A
precise workaround involving care with DCBZ and DCBI instructions to preclude the true worst case from
occurring was illustrated.

REFERENCES

Karl Wang et al, "Designing the MPC105 PCI Bridge/Memory Controller," IEEE Micro,
April 1995, pp. 44-49.

Motorola, MPClOS PCI Bridge/Memory Controller User's Manual, MPClOSUM/AD
Motorola, PowerPC 603 RISC Microprocessor User's Manual, MPC603UM/AD
Motorola, PowerPC 604 RISC Microprocessor User's Manual, MPC604UM/AD

PowerPC is a trademark of International Business Machines Corp.

403

Latency Issues In PowerPC
Reference Platform Architectures

Don Dingee
Product Manager
Motorola Computer Group
Embedded Technologies Marketing

Latency Issues in PowerPC
Reference Platform Architectures

PCI Latency and Throug

PCI Spring '96 llo---COlllplllets

~ Motorola PowerPC Board Products~
http://www.mot.com/computer

::J Embedded designs usually have
real-time response criteria
v Latency
v Throughput .. VMEboards:

MVME1600
MVME1300

u What can PowerPC
microprocessors and PCI bus do?
.,. What affects performance?
v What is best, worst case?

•
Motherboards:

Ultra
Atlas

Chameleon

o Given microprocessor and chipset
parameters, analysis can be done
and performance characterized
v Best, typical, worse cases
v True worst case scenario,

remedies
v Conclusions

Latency Issues in PowerPC
Reference Platform Architectures

404

PCI Spring '96
Moth-rds and Board Computen

MPC105 uEagle" Performance

Basic Performance Parameters (33 MHz PC/ bus)
A Single read (4 bytes): 9 PCI clocks
A Read line (32 bytes): 9-1-1-1-1-1-1-1-1
A Read multiple: 9-1-1-1-1-1-1-1-1/4-1·1·1-1-1-1·1/ ...

A Single write (up to 32-blt):
A Write multiple:

2 PCI clocks
2-1-1-1-1-1-1-1-1

DRAM Bandwidth (66 MHz PPCbus, 64-bit, 60 nsec DRAM)
A Burst access: 8-4-4-4

Limiting factor is PCI read -- case is studied in detail

® MOTOROl.A
Computer Group

l..lltel'lcy Issues in PoT.VerPC
Reference Platfonn Architectures

PCI Read Sequence

PCI Read Latency

PCI Spring '96
llothMbolud• and Bolll'd Compur.,.

PCI Read Throughput = 32 + tPRL

® MOTOROLA
Computer Group

Latency Issues in PowerPC
Reference Platfonn Architectures

405

PCI Spring '96
lloth9lfxnlrds 11nd Boanl Computet9

Local Bus Mastership

o Best case - MPC105 already has local bus mastership
... tLBM=O
..,, true In case of ongoing DMA transfer

u Typical case - 30% chance of 1 processor cycle
. v assumes 70% L 1 cache hit rate
v tLBM = 30% of 0.300µsec = 0.090 µsec

r:i Worst case - processor completes two burst cycles
..,, tLBM = 2 x 0.300µsec = 0.600 µsec

Latency Issues in PowerPC
Reference Platform Architectures

Snooping and Resolving
Cache Collisions

u Best case - no collision
"'tsRc=O

PCI Spring 'S6
M-lllldBoardCo,,,,..,,.,.

t..l Typical case - very low percentages of collisions
v most collisions resolve after one retry
v tsRc = O over long term

u Worse case -- cast-out overlap with another burst
t/ collision signaled after first beat of burst
v tsRc = (4+4+4 + 8+4+4+4 + 4) x 0.015 µsec = 0.540 µsec

\ ' MPC105 retry

® MOTOROLA
Computer Group

Burst transaction

------ Remaining cast-out cycles

Latency Issues in PowerPC
Reference Platform Architectures

406

PC/ Spring '96
llothetl>oardatmd Boan/Computers

Transferring PCI Data

Once PCI transfer begins, It completes - no other PCI overhead

u Best case -- MPC105 in progress with speculative read
v tn28 = (4-1-1-1-1-1-1-1) x 0.030 µsec = 0.333 µsec

o Typical and worst case
v tT328 = (9-1-1-1-1-1-1-1) x 0.030 µsec = 0.485 µsec

® MOTOROUI
CompulflrGroup

Latency Issues in PowerPC
Reference Platform Architectures

Figures of Merit

Typical 0.090 0 0.485

Worse/worst 0.600 0.540 0.485

Worse/worst, with low priority PCI transfer
in progress before start of PCI read

J Most other MPC105 transactions
accounted for in worst case

J Model does not account for possible
effect of L2 cache

®=
Latency Issues in PowerPC

Reference Platform Architectures

407

PC/ Spring '96
llothMl>oatds and So•td Co,,,,,.,,.,.

PC/ Spring '96
llolhorl>oatdsand Boatd Computers

®MOTOROLA
Computer Group

True Worst Case and Remedies

II

Best remedy
• DCBZ, DCBI instructions
write cache address tags and
create collision scenario
.a. Manage these instructions
so they don't occur •••
• ... or alter timing so they
don't beat in 4 cycle loop

Other remedy
... Mark data cache-inhibited
and guarded to force external
cycles
... Impacts performance, but
may be acceptable

I..atencylssues in PowerPC
Reference Platform Architectures

PC/ Spring '96
----Comput«S

Conclusions

u PowerPC microprocessor and MPC105 can
achieve significant throughput

:::i PCI read limiting case
w PCI read latency

v Best 0.333 µsec, Typical 0.575 µsec
:::i PCI read throughput

,; Best 96.0 MB/sec, Typical 55.7 MB/sec
:::i True worst case scenario on PowerPC

603/603e is explicitly avoidable
,; DCBZ, DBCI instructions can be

managed
:::J Framework developed here can be used to

analyze other PCI chipsets and perform
comparisons

Latency Issues in PowerPC
Reference Platform Architectures

408

PC/ Spring '96
llol_s_BoardComput«S

I --,
r 1

(I)
c: _co

+-'

a. CJ)
c:

~
CD

(..) (I) E c:
c.. 0

co ·- 0 ·-
C)

+-' - ro

cc
......, CD

0 ro
s....

> 0 -
- > CD c.. -

(I) 0 ro 0 s....

Cl.
0

> c: +-' (.)
Q)

(.)

·- ..c: ::J

CJ)
0

C)
-0

(..)
--, 0

CJ)
0 _J
s....

co (I) Cl.
I

0

I-
s....

a.. :-- a..
a..

•

> -
()
a..

L "--
l

~

__.

l

409

The Industrial World Needs a
Platform:

e Fast Enough to Support new CPU's &
Peripherals (>100 Mbytes/sec)

s 1111 e Supports 15-20+ Plug-in Cards

e Able to Support CPU's from all Major
Manufacturers (Intel, DEC, Motorola)

.... PCI Meets That Need.

PCI- Born in the Desktop
World

e Developed by Intel

e Embraced by Major Microprocessor
~ , 11, Manufacturers:

- INTEL (Pentium, PentiumPRO)

- MOTOROLA, IBM (PowerPC)

- DEC (Alpha)

.i;::..
>-'
N

PCI - Born in the Desktop
World

e Used in over 80% of Desktop PC's
(continually increasing)

e Desktop Market >$150 billion

e PCI Has Won the "Local Bus War"

PCI - Very High Performance

e 133 MBytes/sec. Transfer Rate (32 bits,
33 MHz Bus Clock)

~ 1111 e Up to 532 MBytes/sec. Transfer Rate
(64 bits, 66 MHz Bus Clock)

e Other Buses Much Slower:
- VME: ,__ 40 MBytes/sec.

- VME64: ,__ 80 Mbytes/sec.

- ISA: ,__ 2 MBytes/sec.

PCI - Very High Performance

e These High Speeds Needed For:

~ 1111 - Real-Time Video Processing

- Next Generation, High Speed Networking

Applications seem to grow to use all
available bandwidth

Desktop PCI Limitations

e Small Number of Expansion Slots (----4)
e Less-Than-Optimal Form Factor:

~ 1111 - Horizontal, Long, Skinny Cards

- Small Connector Edge

- Poor Cooling, Card Retention

- Hard to Mount in a Cabinet

e Active Motherboards Have High MTTR

..j:>.
~

°'

PCI is Great, but.

Desktop Form Factor Not Suitable
for Many Industrial &
Telecommunications

Applications ··

Industrial/Telecom Needs:

e A Bus Fast Enough to Support new
CPU's and Peripherals (>100 MB/sec.)

~ 1111 e A Bus Able to Support CPU's from all
Major Manufacturers (Intel, DEC,
Motorola, Sun, etc.)

Industrial/Telecom Needs:

e Rugged Packaging:
- Good Shock, Vibration, Temperature specs

~ 1111 - Better Cooling
- Bigger, More Reliable Power Supplies

e Modularity:
- 15-20 Slots a Typical Requirement

- Must be Simple to Add Functions

lndustrial/Telcom Needs:

e Better Serviceability - Low MTTR

e More Mounting Flexibility:
tJ 1111 -19" Rack

- NEMA Cabinets

e Configuration Control - Can't have the
BIOS or Video Chip changing every
week.

~
N
0

Industrial/Telecom Needs:

e Better Connectoring:
- Industrial User Wants 1/0 out front - often

needs screw terminals

- Telecom User Wants 1/0 out rear - clean
front panels and quick-to-replace modules

Everybody Hates Flat Cables

(.)
....-... ... a.. en • •
"E E en
ca ~ (.) 0 ro

+""" (.) "'C 0 -c:
CJ) Q) ro_..., -, Q) en Q)
c: I:::,
ca c: -ro c.. -
~ -co c:

(.) (.) ·-·-
E ca 0...

L..

cc
ts

.......,
0 en

Q) ca "'C :J (]) > c.. ·-
E

-c '- en a.. en
0

c ca
(.) 0 0... -
I 3= I I-

e

421

Passive Backplane PCI

e All Active Circuitry Moved To a Plug-in
Card - Has PCI and ISA Buses

s 1111 • Motherboard Replaced With a Passive
Backplane - Connectors Only

e PCI Industrial Computer Manufacturers
Group (PICMG) Standard Published
1994

~
N
\.N

Passive Backplane PCI

e Usually 4 PCI and 8-15 ISA Slots

e Changing or Upgrading a CPU takes
only Minutes

e Rugged Chassis Available:
- Bigger, Better Power supplies - often Dual

- Card Retention Mechanism

- Usually 19" Rack Mount

-()
a..
Cl)
c
co -c..
~
(..)
co
Ill
Cl)
> ·-en en
co a..

424

en ·-en en
co
..c
(.)
(])
c
co -a.
~
(.)
co
cc
(])
> ·-en en
co

Cl.

425

Passive Backplane PCI
STRENGTHS

e Low MTTR (----Minutes)

e Easy to Upgrade CPU

~ 1111 e Can Use Existing ISA 1/0 Cards

e Rackmount, Desktop, or Tower
Packaging

Passive Backplane PCI
WEAKNESSES

e Still Limited to 4 PCI Slots (although this
can be expanded with Bridge chips)

~ 1111 e Poor Cooling, Card Retention

e Limited External Connector Area

e Hard to Mount in NEMA-type Enclosure

CompactPCI

e New Standard (PICMG Approved
12/95)

~ 1111 e Simple Concept: Commercial PCI
Silicon in Eurocard Packaging

e Uses High Density Pin-and-Socket Bus
Connectors

e 3U (100mm x 160mm) and 6U (233 mm
x 160 mm) Sizes Defined

(.)
Cl.,
(.)
co c..
E
0

(.)

429

-(.)
Cl.
t5
co
c.
E
0
(.)

430

.j::>.
w
~

CompaciPCI - STRENGTHS

e Rugged Packaging

e Packaging Well Accepted - VME Uses

e Excellent Card Retention, Cooling

e Good Shock & Vibration Characteristics

e Can be Easily Rack or Panel Mounted

e 1/0 out Front or Rear -
e 8 Slots (More with Bridge Chips)

CompaciPCl-STRENGTHS

e Connector IEC Standard (IEC-917 &
IEC-1076)

ra 1111 e Connector Bellcore Qualified (Tr-NWT-
001217)

e Connector Widely Accepted in Europe

e CE Certification Straightforward

e Can Bridge to VME, ISA, STD Buses
(Hybrid Systems)

.j:>.
w w

CompactPCI - WEAKNESSES

e Brand New - Limited Number OF
Suppliers Today

e 8 Slot Maximum in Basic Configuration -
Needs Bridge Chips to Expand (One
Chip Every 8 Additional Slots)

~
~

Driven by Commercial Silicon
& Standards

e Commercial Standards have >100 times
the Sales of Industrial Standards

e People are Familiar with and Educated
About Commercial Standards

e Hottest New Hardware & Software
Developed for Desktop PCI First

e Best Software Development Tools

.j:>.
w
VI

"I Want PCI Performance -
Which Version Do I Choose?"
e Desktop PCI When:

- Initial Hardware Cost is Very Important
(i.e., You're Cheap)

- Your Application can Tolerate Lack of
Revision Control (unexpected BIOS
changes, etc.)

- Desktop Environment (Clean, Cool, etc.)

~
O'I

"I Want PCI Performance -
Which Version Do I Choose)

e Passive Backplane PCI When:
- Low MTTR Important

- Simple CPU Changes or Upgrades
Important

- "Light Industrial" Environment

""'" VJ
-....J

"I Want PCI Performance -
Which Version do I Choose?"

e CompactPCI When:
- Robust Packaging Required

- Front or Rear Panel 1/0 Required

- Environment Requires Good Shock,
Vubration, and Temperature Specs

- Bridge to Bus Other Than ISA Needed:
• VME

•STD

• etc.

~
00

Industrial/Telecom PCI -
Conclusions

e PCI Provides Highest Performance,
Speed Available Today

e Uses High Volume, Low Cost Silicon

e Leverages Commercial PCI Innovations

e Well Positioned for next 5 Years

e Choice of Form Factors (CompactPCI,
Passive Backplane)

• c:
::J 0 E E ·-+-'

0 0 0 m N
s.... 0 (.) (.) >- 0 v • •

Cl Cl c. ~
0 E 0 =tt -~ 0 (.) (.) .c: s.... ·-+-' c. c. c Cl 0 • •

0 0 roI ca I ..c 0 s....

I- a..

439

··········•.:,;::i'PCI Shi·

440

+Wi

ducts t

PC's i

441

rs

442

The A TX Form-Factor

Presentation Objectives
P.~.'1t~~n'I •Understand the Goal of Creating ATX

•Understand Industry Forces Driving A TX
+Perspective on Motherboard FF Evolution

•Understand ATX Specification Guidelines
+Features of ATX
+Rearl/O
+Mounting Hole Configuration
+Power supply
+Thermals

•Summary

443

2

ATX Goals and Guidelines

•Goals
+Enable new technologies that other FF's do not support
+Reduce cost

• Higher integration on motherboard
• One system fan

•ATX is an open guideline specification
+No licence fee
+Freely available via World Wide Web
+Mounting hole configurations
+Component placements
+Keep out zones

Market Forces Driving ATX

•The PC in the 80's
+Stand alone business tool
+High costs
+Low integration
+Word processing, databases

•The PC in 1996
+Consumer product
+Cost sensitive = High integration
+Net surfing, video editing, 3D gaming
+Connectivity/networking crucial
+New applications drive new I/O

444

3

4

PC Form-Factor EvolutionA~ :
J\ll7In-One :

~~ ~

Integration,
Lower Profile

1990 1991

Consumer
Appliance

1992 1993

Baby AT Design Issues

445

~ ~

1994 1996
s

6

LPX chassis design
P.~.11t~1,1!'l" BLPX is more integrated than BAT, but.. ..

+Expandability is still lower than desired
+Riser card adds cost
+No built in support for multimedia and communications

• No room for audio, midi/game, video in etc.
+ Second fan required
+Poor end-user access for upgrades
+No firm standard - riser dependant on chassis

The ATX Design

446

System Level Savings of ATX
Baby AT LPX ATX

2nd System fan i $3.00 · $3.00 Not Required

Parallel and Serial ·+ ·54:00" -1··--oii'"ii.oar(f ... On-Board

~~.~ .. ~- - ... -.............. _ _l ___ ,,,_ _ ~ _,_ ,, __ _,_,,
I Video Riser Card i $2.50 I On Board 1 On Board

f As.M 1;~0·1~nilt .. s-,1.' .. _oy·~o·-wisee ... rr.CR .. a1'serdr 'or ' $5.00 ~.11... ss:oo L. Oii .. ~bOard
k ---., __,_ __ On_B_o_ar_d_ .. $is:oo .. ··---L- .. On .. Board ...

~

~~!:;;:;~upply I Not Required I. Not .. Requf..Cll '------s1.50 ___ _

!fo1•1·srs•~.. . '_~f~J.~~~~~--~t "sz~~o·· ... :[' .·-·s:1_"so~-· .. i

Note: ATX can be used for
BOTH highly integrated boards
and very basic boards.

ATX Features

• Imp~oved functionality
•Full length slots
•Future 1/0 flexibility

•Improved ease of use
•Easy upgrade
• Serviceability

•Reduced system level cost
•Material cost reductions
•Improved manufacturability
•Cost efficient cooling

447

9

10

ATX Guideline Specification
Summary

•Rear 1/0 Panel

•Mounting Holes

•Power Supply

•Thermals

•How to get Information

Double Height Flexible 1/0
P.'.rJtl.11!1'1 •ATX 1/0 aperture provides more 1/0 area

6.25" (159mm)

= PaHllcl Midi/Gamtport

I• •• ar l•\·.·.·.·.·.·.·.·.·.·.·.·.·7•1 l•\·.·-·-·-·-·-·-·(•I
Im 111111 ml l•\·.·.·.·.·l•l•l·.·.·.·.·l•I e e CD

MS
KB

USB Serial 1 VGAJSerial 2

•New 1/0 needs include

Audio

+Universal Serial Bus, Video Input, Video Output, TV input, TV
output, ISDN, Cable

448

11

12

Mounting Holes For Backward
P.~mi~~rri Compatibility

• •

•
0

•

•
0

·.:
I
I
I
I
I
I
I
I
I
I
I
I
I
I

··:

I I
I I
I I
I I
I I

: a:

0

I I

: • • : Q:
I I :
•------------------------------4---------·····-·-·-··--···'

ATX Power Supply

•One power connector

~
ATX

Baby AT

Full AT

® Full AT hole

• Baby AT hole

0 ATXhole

Hole not used
byATX

Optional hole

Example specification
• 28 CFM Forced Cool

• 200 Watts
• 62% Efficiency

• PS/2 Size
• External 92mm Fan

13

replaces four
+±5V
+±12V
+3.3V
+Soft-power

• One 20 Pin Power Connector

•Improved
manufacturability

+installation time
+single keyed connector=

fewer defects

•Lower cost

•Easier for users and
service

14

449

ATX Thermal Test Results
(In-System Test)

P.'.l'!ti.llf(I VGA

Get the ATX specification on the
P.'ntlll"' WWW

•The A TX specification
+http://www.intel.com/pc-supp/motherbd/atx.html
+Available in Microsoft Word for Windows 6.0 and Adobe Acrobat

format

•Summary on the PC Platform and What's New
Pages

+http://www.intel.com/pc-supp/platform.html
+http://www.intel.com/pc-supp/whatsnew /index.html
+ http://www.teleport.com/-A TX

450

15

16

Summary
•The PC marketplace has changed

+Current fonn-factors not optimised for new needs

•ATX delivers
+Improved functionality

• Full length slots
• Future 110 flexibility

+Improved ease of use
• Easy upgrade
• Serviceability

+Reduced system level cost
• Material cost reductions
• Improved manufacturability
• Cost efficient cooling

• ATX transition is well underway

451

17

BIOS BOOT SELECTION
Frances Cohen

Phoenix Technologies Ltd.
2575 McCabe Way
Irvine, CA 92714

e-mail: frances_cohen@ptltd.com

BIOS Boot Selection is a feature which permits increased flexibility of a user's selection
of boot devices. It is based on the BIOS Boot Specification which describes a
methodology by which the BIOS will identify all IPL (Initial Program Load) devices in
the system, prioritize them in the order the user selects, and then sequentially go through
each device and attempt to boot. The BIOS must become more intelligent about booting
because the PC '95 Specification places additional requirements on the BIOS during the
boot process, and there are now more devices that are bootable such as CD-ROM,
network remote boot, PCMCIA, etc. It is important that this specification define a boot
scheme that is generic and flexible enough to allow booting from virtually any existing
IPL device, and for the definition of future IPL devices as well.

The BIOS Boot Specification defines a feature within the BIOS that creates and
maintains a list of all the IPL devices found in the system and stores this list in NV
memory. IPL devices come in three flavors: BAID (Bios Aware IPL Device), PnP Card,
and Legacy. Only BAIDs and PnP Cards are enumerated. Legacy devices are not
supported for several reasons. First, they tend to take control of the boot process
altogether making them rather unfriendly. Second, they provide no means for identifying
themselves as an IPL device. Finally, the BIOS cannot selectively boot from one of
several Legacy IPL devices in a system.

The BIOS Boot Specification provides one basic feature, the IPL Priority. The IPL
Priority is a user-specified priority of IPL devices that is arranged in Setup. This boot
order is similar to the common feature of boot A: then C: or vice versa, but supports
additional IPL devices. Also, the number of IPL devices in the system may vary from
one power-on to another. Each time the user turns on the system all IPL devices in the
system are enumerated.

Additionally, the BIOS Boot Specification defines the BCV (Boot Connection Vector)
Priority. The BCV Priority is a user-specified priority list of INT 13h Device Controllers
that is arranged in Setup. This list specifies the order that the controllers will be called to
install their INT 13h drive support during POST.

If an IPL device fails to load an O/S, the BIOS regains control and attempts to boot from
the next available IPL device. This procedure will continue until all possible IPL devices
have been exhausted. Only then will the BIOS display a message that an O/S cannot be
found, wait for a key stroke, and then invoke INT 19h again. This method ensures that
the BIOS has intelligently made every attempt to boot.

452

The BIOS Boot Specification encompasses the boot process of both PnP and non-PnP
systems. A standard AT compatible system (also called a Legacy system) is much
simpler than one with a PnP BIOS because it only supports BAIDs. A Legacy system
does not need to provide any dynamic IPL device enumeration or configuration, nor does
it support PnP Cards in their native mode. This is because the number of IPL devices in
such a system will never change.

* Excerpt from the BIOS Boot Specification Version 1.00, October 11, 1995

453

Notebook Docking:
Techniques and Considerations

Jim Kelsey, Technologist
SystemSoft Corporation

2 Vision Drive
Natick, MA 01760
(508) 651-0088

jkelsey@systemsoft.com

January 12, 1996
(excerpts from article published in Personal Engineering, January, 1996)

454

Introduction

The debut of Windows '95 and its Plug and Play capabilities has spurred a new interest in
dockable PC's, that is notebooks that connect to a convenience base to become a super­
notebook or desktop equivalent system. This article talks about the styles, benefits and
pitfalls of buying into "Desktop To Go".

While docking station technology is by no means new (in its simplest form, the docking
station is simply an extension of the portable's internal ISA bus), it's capabilities have been
redefined by Windows '95 to include hot docking, in which case the notebook and dock
station can connect while the operating system is active, without requiring the user to re­
boot or cycle power. During a hot dock, the Plug and Play operating system (Windows
'95 for now) and system firmware work together to detect, enable and configure the
newly arrived peripherals in the docking station.

As you might expect, docking station systems come in all sizes, shapes, capabilities and
price ranges. Some vendors even stretch the capabilities of Windows '95 by offering a
choice of docking stations that connect to single notebook. This allows users to plug in to
a multi-drive, high-resolution video, networked power-user station at the office, or a
scaled-back home dock that contains a sound blaster and external connectors for a favorite
external keyboard or mouse.

Styles of docking stations.

Docking stations come in one of three styles -- the mini-dock, the port replicator and the
convenience base.

The simplest of the three, the mini-dock, allows users to connect to a single, or small
handful of peripherals. For example, the DEC HiNote machine can be outfitted with
floppy drive/PCM CIA mini-dock or a more sophisticated multi-media mini-dock that
provides a CD-ROM drive as well as sound capabilities. Mini-docks allow users to tailor
their portable system to the chore at hand; a quick business trip across town might
involve simple data entry, in which case the larger multimedia mini-dock can stay back at
the office. A graphic business presentation, on the other hand, might require multi-media
capabilities, so at the expense of size and weight the user would pack both the notebook
unit and the multimedia mini-dock.

455

Docking Stations -- A Comparison

Dock Bus Type Slots Portability Peripherals
Su__QQ_ort

Mini-Dock Hot VL No Good CD-ROM, PCMCIA, floppy
Warm ISA
Cold PCM CIA

Proprietar
y_

Port Replicator Hot VL No Fair to Serial/Parallel, IR Port, External
Warm ISA Good Keyboard, External Mouse,
Cold PCI External Video, etc.

Convenience Hot VL Maybe Poor Additional Fixed Disks, Floppy
Base Warm ISA Disks, Battery Charger, CD-

Cold PCI ROM, Network, Plug-In Slots,
etc.

Next in terms of price/performance, port replicators generally serve two purposes. First,
they act as a semi-permanent base for the more cumbersome, desktop peripherals such as
full-size keyboards, external mice and monitors. Second, port-replicators often introduce
new functions, such as an infrared port or network connector to the basic notebook
system, enabling it to become more like a desktop, although without adding any mass
storage or plug-in adapter slots. As the name suggests, a port replicator simply replicates
the plug-in ports located at the rear of the machine by routing the internal VL/ISA or PCI
bus to duplicate connectors in the replicator unit. High-end port replicators might provide
additional serial or parallel ports not available on the notebook due to size constraints
caused by the connectors or the notebook chassis.

At the top of the docking station food chain sits the convenience base. This type of unit is
designed to fully transform the portable system into a true, desktop unit. Because of its
size, weight and reliance on wall-power, it rarely, if ever leaves the top of the desk.
Convenience bases generally come in one of two flavors -- those with slots and those
without. Units without slots are not necessarily less elegant. As I'll mention later,
designers of this type of unit often wish to forego the complexity introduced by opening
the system's architecture up to plug-in boards.

Docking Methods

Docking capable systems support up to three dock modes -- cold docking, warm docking,
and the newly possible Windows '95 style hot dock.

All docking-capable systems support cold-docking, in which case power is removed from
the system when the notebook is either inserted in, or removed from its counterpart mini-

456

I
~

i
I
I
~1

~ ,,
~

-,

dock, port replicator or convenience base hardware. The simplest docking systems
support cold docking only.

Units that support warm docking can be inserted into, or removed from their docking
station either when totally off, or when in low-power suspend mode. Since the docking
station is often powered by wall-current, many units disable power-savings modes and
automatically power on or resume when the system is fully docked. Since power-saving
are disabled in a docked system, the notebook unit cannot suspend and a warm-undock is
not possible. Additionally, if the user resumes a newly docked notebook, he or she is
effectively completing a hot dock. Because the circuitry required to transform warm-dock
systems to hot-dock systems is relatively simple, many IHV's absorb the additional cost
and complexity to achieve true hot docking. As a result, the number of true, warm-dock­
only systems is quite small.

Hot-docking capable systems allow the user to insert the notebook system into its docking
station when the unit is powered off, in low-power suspend mode, or fully powered and
executing within the operating system. Hot docking requires support from the Plug and
Play operating system (such as Windows '95). During its boot sequence, the Plug and
Play operating system broadcasts its presence to the system firmware. Since the system
firmware (Plug and Play BIOS) is aware of the Plug and Play operating system (or lack
thereof) many systems will intentionally reboot if the user attempts to hot-dock while
running a non Plug and Play OS.

Physical docking mechanisms:

In terms of the physical mechanism used to insert and/or eject a notebook from its dock,
there are the following three variations, listed in the order of their ability to prevent data
loss.

Surprise Style (Least Expensive, Least Effective at Preventing Data Loss) A user of this
type of system can insert the notebook in, or remove the notebook from its docking
station at any time.

Honor System (More Expensive, Medium Effectiveness at Preventing Data Loss) A user
of this type of system must activate a switch or OS applet to inform the operating system
that the notebook is about to be removed from its docking station during an undock.
Once the OS has determined that undocking is safe, a message appears on the screen
signaling to the user that the notebook can now be removed.

VCR-Style (Most Expensive, Highest Effectiveness at Preventing Data Loss) A user of
this system activates an OS applet or system switch to indicate that he/she wishes to
undock the notebook from its convenience base. Upon receipt of a special message from
the Plug and Play operating system signaling that it is safe to undock, the system firmware
ejects the notebook via a VCR-like mechanically locking servo motor apparatus.

457

The Dock/U ndock Sequences.

Users and designers alike must take care to handle the somewhat delicate process of
inserting or removing a unit from its docking station. In a cold-dock only system, both the
notebook and the docking station must be powered off before a dock or undock is allowed
to occur. As far as warm-docking is concerned, the number of true warm dock/undock
systems available is too small to be worth discussing. This leaves the hot-dock capable
system, whose capabilities present a plethora of challenges not only to the designers of the
system, but to the architects of Plug and Play operating systems who must deal with the
almost instantaneous addition or removal of peripherals and mass storage devices in the
system.

Consider that a fully docked notebook system might have files open in a number of places
-- on a docking station-based fixed disk, network connection or even a PC (PCMCIA)
SRAM card. Prior to any physical undock, the Plug and Play operating system must take
care to flush and close all open data files and remove the docking station-based mass
storage device (and other peripherals) from its registry, which maintains a catalog of all
currently attached peripherals.

The OS' task of managing an undocked notebook is equally daunting if you consider that
at any time, the user might dock to any of a number of dissimilar docking stations, each of
which contains new and additional devices, each of which requires initialization and
system resources, such as IRQ channels, DMA channels and 1/0 space.

The key to successful docking and undocking depends on close coordination between the
system's hardware, firmware and Plug and Play operating system. The following section
details the exact sequence that occurs between a Plug and Play BIOS-equipped <lockable
notebook and Windows '95. Remember that a dock or undock generates an SMI (System
Management Interrupt) that allows the system firmware to execute regardless of the
foreground mode of the OS and its applications.

The Docking Sequence

During a dock sequence, the system firmware and Plug and Play operating system are
responsible for locating, enabling and configuring (assigning resources to) any peripherals
in the docking station. The Plug and Play operating system and system firmware share the
responsibility of locating, configuring (assigning resources to) and enabling docking
station devices. The docking sequence proceeds like this:

Step #1: The user docks his or her portable system to its port replicator, mini-dock
or convenience base. This generates an SMI (System Management Interrupt) that
transfers control to the system's Plug and Play firmware. Interestingly, all dock events are
treated as if the system were a Surprise Style docking station, as described above. The
more elaborate Honor System and VCR-style hardware is used only during an undock to
prevent data loss.

458

Step #2: The portable system identifies the docking station, configures any slot­
based PCI devices (Plug and Play ISA devices are handled completely by the OS) and
prepares a DOCKING_STATION_INFO structure for the operating system.

Step #3: The system firmware activates any VCR-style or other locking hardware to
insert the notebook into its dock and broadcasts the message DOCK_ CHANGED to the
operating system by setting bit 0 in the Plug and Play BIOS event flag and supplying the
Plug and Play BIOS event handler with the DOCK_ CHANGED message.

Step #4: The Plug and Play operating system (which has polled bit 0 of the event
flag and found it set) invokes the Plug and Play BIOS GetEvent function to find that the
system has docked. The Plug and Play BIOS clears bit 0 of the event flag during the
GetEvent function.

Step #5: The Plug and Play operating system invokes the Plug and Play BIOS
GetDockingStationinfo function to find out the type of docking station to which the
notebook has been docked, re-enumerates the system, arbitrates the system's resource
(IRQ, DMA channel, I/O range and address range) usage, notifies its drivers of any
resource changes and resumes foreground execution.

Peripheral Support

Docking station peripherals belong to one of two classes -- internal and slot-based.
Internal peripherals are those managed by the system's Plug and Play BIOS. Slot-based
peripherals are those that can be identified by the Plug and Play operating system, but
might need system firmware support during the dock. The following list shows the rules
involved in docking:

No late-arriving ROMs. Neither the system firmware nor the Plug and Play operating
system will invoke an expansion ROM that belongs to a device in the docking station.
This is because the real-mode address space in which the expansion ROMs normally exist
has already been spoken for by virtual mode RAM UMBs (Upper Memory Blocks)
PCMCIA controller memory windows or other memory mapped devices. Although the
Plug and Play OS has a record of how expansion ROM space has been allocated, it is
unable to deal with the specifics of the system's PCI controller shadow RAM, ROM chip
select regions, etc. Such devices must be configured by OS level device drivers.

No OS Support For PCI Devices Behind A PCI Bridge. The Plug and Play operating
system can enable (via the PCI configuration space command register) but not configure
PCI devices that reside behind a PCI-PCI bridge. Therefore, if the system firmware does
not configure such PCI devices, they remain unusable after a dock has completed.

No hot docking support for late-arriving video controllers. Generally, the Plug and Play
operating system is unable to switch video adapters during a dock. For instance, the video

459

card in the docking station might not support the video mode in which the portable system
is currently executing prior to the dock.

No hot docking in a non-Plug and Play operating system. Unless the operating system can
handle the messaging that must occur between the OS, its drivers and file system and the
system firmware when a dock occurs, hot docking might result in data loss or system
crashes. Currently, Windows '95 is the only operating system that completely supports
hot docking. Support for hot docking is expected to arrive next year in other operating
systems, such as OS/2 and Windows/NT.

The Undocking Sequence

The undocking sequence is usually more critical because it implies "pulling the plug" on
devices that are currently playing. The following list details the communication that
occurs between the system firmware and Plug and Play operating system during an undock
operation. NOTE: This list applies only to Honor-System or VCR-style docking stations
as described previously. If a user removes a Surprise Style docking station, the OS' only
job is to try and recover from the undock with minimal data loss.

Step #1: The user signals an undock via an OS applet or physical switch on the
portable or docking station unit.

Step #2: Having detected that the user is about to remove the portable from its
docking station, the Plug and Play BIOS sets its event flag and posts the message
ABOUT_TO_CHANGE_CONFIG.

Step #3: The Plug and Play operating system, which constantly polls the Plug and
Play BIOS event flag, detects a Plug and Play BIOS event and invokes the BIOS
GetEvent function. It receives the message ABOUT_TO_CHANGE_CONFIG. During
the GetEvent call, the Plug and Play BIOS clears its event flag so the event will not
accidentally be detected twice.

Step #4: The Plug and Play operating system determines if it is safe for the user to
undock. If so, it closes any files residing on docking station-based file systems, such as
PC Cards, network adapters, etc and it invokes the Plug and Play BIOS SendMessage
function with the OK message. Otherwise, it invokes the SendMessage function with the
ABORT message. If the OS aborts the undock, the notebook system remains attached to
its docking station and the user is free to try undocking again at a later time.

Step #5: Upon receipt of the OK message, the Plug and Play BIOS ejects the
portable PC from its docking station if necessary. It then broadcasts the message
DOCK_ CHANGED to the operating system via its event flag/GetEvent messaging
mechanism.

460

Step #6: The operating system re-enumerates and reconfigures the portable system's
devices and continues execution in the foreground.

So far, it seems that docking is pretty straightforward, provided that the OS/system
coordination shown above occurs in the proper order and the engineers who have
implemented this support code stayed up late ensuring that everything works as
advertised.

Hot docking is hot for users that frequently switch between docked and undocked state.
Rather than having to repeatedly sit through system boot sequences, these users are
quickly back to work after the OS completes its re-enumeration and reconfiguration
process.

Hot docking is also hot for users that have ISA cards plugged into their docking station.
Despite its Plug and Play capabilites, Windows '95 relies heavily on its ability to snoop for
and detect the current configuration of legacy ISA plug-in adapters. Fortunately for the
user, Windows '95 built in legacy ISA adapter support is both robust and accurate.

Hot docking is not for the user of a non-Plug and Play operating system. If you hot dock
in normal, bare-bones DOS, don't expect peripherals in the docking station to magically
start working -- the support simply doesn't exist. For this type of user, however, the boot
process is probably much faster than Windows '95 so the process of cold booting should
be less painful.

Hot docking is also not for the user who's constantly swapping ISA or PCI cards in and
out of the docking station. Windows '95's detection algorithms are sophisticated, but if
you keep adding and removing hardware, they're not exactly fast and the benefits of the
speed of hot docking are sometimes nullified by the time Windows '95 needs to figure out
what you've added and removed from the system.

For more information on this topic, the Plug and Play BIOS Specification version l .OA is
available on the CompuServe Plug and Play forum by logging into CompuServe and
typing: GO PLUGPLA Y.

461

Multimedia Roundtable

Multimedia applications are the most demanding clients of the PCI bus. Video, 3D, and
audio data streams consume large portions of the PCI bandwidth while imposing strict
latency requirements. Interactive multimedia applications must attain a high frame rate
in order to be compelling. Once they have achieved a high frame rate, the focus changes
to increasing quality. Quality is improved by increasing the amount of detail and thus
the amount of data that needs to be transferred. Thus, the relentless press for the high­
est level of realism stresses PCI bridge chips to their limit. Devices optimized for CPU­
to-Memory accesses at the expense of CPU-to-PCI or PCI-to-Memory accesses will
suffer. The challenge for chipset designers is to balance the requirements of spread­
sheets with those of interactive multimedia. Future PCI bus utilization indicates a trend
towards bus mastering multimedia devices streaming ever increasing volumes of 3D
textures, audio, video, and communications data.

462

Bridging the PCI to a Secondary Multimedia Bus
Can We Plug and Play?

Larry Chisvin, S3 Incorporated

A trend that has already started and is expected to accelerate over the next several years
is the use of a secondary dedicated bus to handle multimedia devices such as MPEG
decoders, audio devices, and videoconferencing solutions. These devices are often
attached directly to the graphics device through a side port, and the data for the device
is routed to and from the PCI bus using the graphics chip as a bridge. One major prob­
lem faced by this type of configuration is how to handle the Plug and Play function
when both multiple devices and multiple bus operating nodes need to be supported.
This presentation discusses the problem briefly, explaining why it exists and what the
obstacles are, then suggests some general solutions.

463

CAD Tools

Jim Lipman, EON

The proliferation of the PCI standard has spawned a number of companies offering both
hardware and software products for the designer of systems using this interface.
Hardware products for ASIC-based systems include pre-designed and pre-verified syn­
thesizable cores that you can embed into your chips. Software tools encompass those
used to design PCI cores as well as those needed for designing the chips that use them.
The CAD category also includes software tools required to measure PCI-based system
performance.

In the CAD Tools session, you will hear papers from companies at the forefront of
available CAD tools for the development, verification, and optimization of PCI-based
designs.

464

David L. Evans
Vice President, Strategic Marketing

Technical Data Freeway 1996

• Technical Data Freeway
•Customer Profile

• Customer Issues

+ PCI Core

• Designing with the PCI Core

Technical Data Freeway 1996

465

01.E-1

DLE-2

1Tb~n~ Company

• Founded in 1992
• 500 Plus Years of Complex ASIC Design

Experience

+ Over 100 years of Sales, Marketing Experience

Technical Data Freeway 1996 DLE-3

Company

Mission Statement

Technical Data Freeway is in the business of
providing process independent products and
services to companies that develop complex,
integrated ASIC systems with compressed
development schedules.

Technical Data Freeway 1996
DLE-4

466

Customer Profile

Technical Data Freeway's objective is to be a
strategic Partnerto high-technology companies
with fast moving product development cycles
to:

•Reduce Risk
•Shorten Time to Market
• Preserve Alternatives
• Cost Effective

Technical Data Freeway 1996

1r~~ Customer Profile

Market Trends
• Increased Global Competition
•Shrinking Product Life Cycles

• Increasing Product Complexity

• Varied Technology Choices

• Faster Clock and Data Rates

• Limited, Changing and Uncertain Fab
Capacity

Technical Data Freeway 1996

467

DLE-6

1flr~~ Customer Issues

• Late To Market

+ Increase Design Productivity

• Increase Design Complexity

• Reduce Design Cycle Time

•Technology Independence

•Preserve CAE/CAD Investment

Technical Data Freeway 1996

1flr~~ Customer Issues

Late to Market Issues
+Miss Market Leader Margins

•Lengthen time to recover R&D

+Playing Catch-up

Product Life (months) 18
Total Expected Revenue $25 Mil.

1 Day $137,000
1 Week $953,000
1 Month $4 Mil.

18
$50 Mil.

$274,000
$2 Mil.
$8 Mil.

Technical Data Freeway 1996

468

DLE-7

18
$100Mil

$547,000
$3.8 Mil.
$16 Mil.

DLE·B

1f"b~n~ Customer Issues

What is good Design ·- 1
c.... 7

Productivity? t.: l'
• 1965 - One Transistor per Day ~ :~ 7

• 1985 - 1 0 Gates Per Day l ·: r:::l l
y • _._

• 1995 - 100 Gates Per Day
Time

• 2000 - 25,000 Gates Per Day

In two years we will be able to routinely fabricate IC's
with over 2 million gate but they will take longer than

10 man years to design.

In four years we can fabricate 25 million gate IC's
Technical Data Freeway 1996 oLe-9

1f~"~ Customer Issues

What is good Design
Productivity?

1995 AVERAGE ASIC DESIGN
+ 30,000 Gates

+ Design Cycle Time 45 Weeks

5 YEARS AVERAGE ASIC DESIGN

+ 300,000 Gates

• Design Cycle Time 25 Weeks

Technical Data Freeway 1996

469

DLE-10

1i~~ Customer Issues

How to Improve Productivity?

• Good People

•Good Tools

• Good Methods

• Reusable Logic

Relative Effect

Low

Medium

Medium

High

Technical Data Freeway 1996

Core Li ®

Deliverables

•RT Level Source Code

•Synthesis Script

+ Documentation

+Test Bench

+Training

Technical Data Freeway 1996

470

DLE-11

DLE-12

Core Lib®

TELECOM FAX/MODEM MULTIMEDIA MICROPROCESSORS

SONET-Generator 320C25 Equivalent VGA
CONTROLLERS

SAR622/15S AID DIA 6S02 66HC11

SONET Framer Fax/Modem Functions
MPEGl 6605 6086

10/l 00 Ethernet Function Software
MPEG2 8051 8088

VITERBI v.17, v29, v32, v.32bis
NTSC Encoder• Z80 80186

Reed-Soloman
AudioMPEGl 8031/32 80188

8031 Turbo R-3000

BUS LIBRARY FUNCTION LIBRARY DSP FUNCTION LIBRARY

PCI 32 INTERRUPT ALU, etc.. MATH FUNCTIONS
PCI 64* BASIC 1/0 RT CLOCK FIR FUNCTIONS
PCMCIA UART INPUT/OUTPUT IRR FUNCTIONS
11c• TIMER UART-16450 OTHER FILTERS
FIREWIRE* OMA UART -16550 VITERBI
CARD BUS*

• Under Development

Technical Data Freeway 1996
DLE-13

=;r=rrecnnical
111 Data Freewciy

Core Li

Quality Support
• Knowledge Transfer

• Direct Access to the Developers

• Architectural Options

• Implementation

• Custom Development

Technical Data Freeway 1996
DLE-14

471

1Tb~n~
Core Lib®

Product Development Organization
+TELECOM 25 Engineers

+MULTIMEDIA 25 Engineers

+ BUS LIBRARY 15 Engineers

+ MICROPROCESSORS 15 Engineers

+ DSP FUNCTION LIBRARY 15 Engineers

+FAX/MODEM 10 Engineers

+ BASIC FUNCTIONS LIBRARY 10 Engineers

+ R&D 10 Engineers

TOTAL 125 Engineers
Technical Data Freeway 1996 DLE·15

1fr];~n~ Core Lib®

Product Development
Program

+ Market Research

+ Product Specification

+ Create Test Bench

+ Create Synthesizable
code and Script

+ Floor planning & Place/
Route

+ Verify Against Specifications

• Evaluation Boards/Software
Drivers Development

+ Complete Documentation

Technical Data Freeway 1996
DLE·16

472

Core Lib®

BUILD vs
Late to Market
Have or Develop Expertise
Developmental Risk
Partial Completeness
Partial Documentation
Next Generation
Exceed Budget

BUY
Ready Now
Center of Excellence
Silicon Proven
Complete Coverage
Complete Documentation
Migration Path
Known Cost

Technical Data Freeway 1996 DLE-17

_... --Additional Cores

.....
~ Integration Logic

Test Philosophy _...

Core Methodology

Silicon Proven Core
Register Transfer

Level HDL Source
Code

I
Synthesis

' Targeted Netlist

t
Physical Layout

Your Requirements

New Design Logic

Your Technology
Choice

Technical Data Freeway 1996 DLE-18

473

TOUCAN
TECHNOLOGY

OVERVIEW
• Toucan Technology is an company specialising in the design of

• Electronic Systems

+ ASICs

• Synthesisable cores with custom features

• Satisfied customers to date include Hewlett-Packard, Apple, Digital UK
and other multinational clients.

• Proven systems expertise in Telecommunications, Data Networking and
Computer Bus Technology.

• Staff have worked on 30+ ASIC projects with 11 different ASIC vendors.

• Proven 1509001 based design process.

Technical Data freeway 1996 DLE·19

=;Fr Technical
111 Data Freeway r PCICOREPROJECT

OVERVIEW/ GOALS

• High performance (132 MB/Sec)/ Zero Wait State operation

• Provide a guaranteed data delivery service to application

• Core maintains transaction context (address and data)

• Application only has to re-initiate transaction

• Customisable Functionality

• Full compliance to Rev 2.1 PCI Specifications

• Simple generic application interface

• Request I Ready handshake protocol

• Separate Target and Initiator busses

• Single clock, synchronous design supporting a scan based test
methodology

• Technology independent

Technical Data Freeway 1996

474

DLE·20

1--rTedmical r PCI CORE DESIGN
I Data freeway METHODOLOGY VHDL

AND VERILOG
• PCI CORE (without FIFO block) consists of 4,200 lines of

synthesisable VHDUVerilog Code

• PCI CORE with guaranteed data delivery synthesises to:

• 6,500 gates in Tl TGC2000 (0.65um) Gate Array technology

• 7,000 gates in TSMC (0.65um) Std Cell technology

• 9,000 gates in NEC CMOS 8 (0.65um) Gate Array technology

• FIFO block (16 x 32) synthesises to 3,000 gates in NEC CMOS 8

• All code is IEEE 1076-1993Nerilog HDL compliant

• Coding style is based on internal Toucan procedure which provides
guidelines for hardware design using VHDUVerilog

• Extensive code commenting

• Consistent code structure

Technical Data Freeway 1996
DLE·21

llr~niral rCI CORE DESIGN DETAIL/
freeway DESIGN GOALS

• Provide simple backport design with high performance features.

• Data buffering used to balance the data flow between the

application and the PCI Bus.

• Design for a direct or FIFO based interface.

• Simple handshaking protocol (Bus-Req, Skt-Rdy, BP-Rdy,

Last-Data, D-Beat).

• Designed for zero wait state initiator and target performance.

• Separate initiator and target control and data paths.

• Provide full error condition handling while meeting the goal of

providing a guaranteed data delivery service.

Technical Data Freeway 1996

475

DLE·22

PCI
Bus

PC/ CORE DESIGN
BLOCK DIAGRAM

Technical Data Freeway 1996

PC/ CORE DESIGN
DETAIL/ BLOCK

DIAGRAM

PCI Back
Bua Port"

I"""'! l""'""1

t- 1--1 FIFO
Block

t- 1-- - (Fl) PCI
CORE

~ (PS)

........

Back Port": Aa datlned by this -mcatlon

Back
Port""

-: : -~ +-:

.......

-

~

-
Back Port-: As -n by _..cation• using the FIFO bl-k.

Technical Data Freeway 1996

476

DMA
Block
(DM)

Hoat
lnterteca
(HI)

Back Port
Interface

DL.E-23

DLE-24

White Box: LMC PCI Bua Tranaactoro
Black Box: TOUCAN Teal Bench llome
Grey Box: TOUCAN PCI SynthnlllBble Core

PC/ CORE TEST
VER/FICA T/ON /TEST BENCH

Technical Data freeway 1996 DLE-25

lllr~~ r System Test Bench

Resource
Arbiter

• = LMC PCI Transactor Component ____ _.,

a..t--.i Channal o Memory

----~Channel 1 Memory

Technical Data Freeway 1996
DLE-26

477

,--r"oernatanFi~
1 ·-··-, PC/ Core Summary
• PCI Core Architected for Maximum

Continuous Throughput

• Designed for Fast Synthesis

• Well Documented

• User Interface is Easy to Use, Efficient
and Flexible

• 2nd Customer from Purchase to Tapeout
in 6 Weeks with First Silicon Success

Technical Data Freeway 1996 DLE-27

478

THE PROBLEM OF MODEL AVAILABILITY FOR SIMULATION OF DEVICES
AND SYSTEMS

Dave Apte

Omniview, Inc.

100 HighTower Blvd., Suite 201

Pittsburgh, PA 15235

Phone: (412) 788 9492

Fax: (412) 788 0308

e-mail: apte@omnivw.com

ABSTRACT

The complexity and speed of devices and systems is ever increasing, and so is the pressure of
time-to-market. To design a system which works the.first time without costly redesign cycles, it is becom­
ing necessary to use simulation in the design flow. This becomes even more critical when designing with
devices that are not currently available for prototyping. However, not many people use simulation
because of the lack of good simulation models, especially of the latest devices. Expertise in HD Ls is also
scarce, which makes it difficult to create necessary models in-house. ALCHEMIST® is a tool that can
be used by both semiconductor vendors and system designers to solve this problem. ALCHEMIST cre­
ates VHDL and Verilog® source models of devices using graphical input. No expertise in an HDL is
needed. ALCHEMIST can be used by semiconductor vendors to distribute simulation models of their
latest (and even future) devices. System designers can use it to create the models as they need them. It
is easier to upgrade and change models as necessary, since the users have control over the model. The
models include accurate timing information, thus making it easy to detect problems with timing viola­
tions in the system before prototyping.

INTRODUCTION

The complexity of I Cs and systems is ever increasing. At the same time, time-to-market pres­
sures are reducing design time, and increasing pressure on designers to "get it right" the first time.
Designers no longer have the luxury of multiple design cycles, building prototypes and verifying the
design each time. They may not even have all the ICs in the system available to prototype. Under such
circumstances, simulation of the design becomes a very important part of the design flow. Full simula­
tion of the system is the only way to verify that all the devices in the system (whether ASICs or off-the­
shelf components) work as designed, and also work together as a system. Physical prototypes do pro­
vide full functional verification, but cannot provide min and max timing verification, which is critical
in high speed designs. Static timing verifiers and other such tools provide a degree of verification of the
design, but it is necessary to do a full simulation to explore all the different interactions between devices
of the system and verify them.

Simulation, however, brings its own set of problems. Simulation models for the latest devices
are not available or are expensive. Writing your own models requires VHDL/Verilog expertise. Even if

479

you are an expert in an HDL, you may need to distribute the model to other designers, which means that
the model must be effectively documented for proper use of the model. VHDL or Verilog source code
is not really good documentation, since the other designers will also need to be HDL experts. Separate
documentation (say, in the form of descriptions/diagrams, etc.) is difficult to maintain. Chip vendors
face the problem of distributing models of new devices in such a way that designers can use these
devices in systems before silicon is available, while at the same time protecting their intellectual prop­
erty. All these problems have limited the use of simulation as an alternative to prototyping.

ALCHEMIST is a tool that addresses these problems. ALCHEMIST converts a graphical
description of devices into VHDL or Verilog source code. These generated models are simulation mod­
els of the specified device, while the graphical description serves as the documentation of the model.
The models are not synthesizable, thus protecting proprietary designs and intellectual property.

ALCHEMIST: AN OVERVIEW

ALCHEMIST uses familiar representations of device behavior as input: state diagrams. timing
diagrams and truth tables. All input is graphical; there is no need to write VHDLNerilog directly. The
generated models are VHDL and Verilog source, and are directly simulatable with any simulator. The
graphical input specification can be used as documentation, since ALCHEMIST produces PostScript®
output. Flow-chart based test-benches can also be specified, easing the task of testing and verifying the
models.

ALCHEMIST models can be full-functional or bus-interface. Bus-interface models (BIMs) can
be defined as "bit-accurate and timing-accurate" models of a device's interface. Bus-interface models
will accurately model all of the external interface of the device, but may or may not model the internal
functionality. For example, for a microprocessor model, a bus-interface model will correctly model all
of the control signals and bus cycles (such as read and write cycles), but will not provide simulation of
actual instructions. Thus, the actual values on its data and address buses (which can only be provided
by the instruction being executed) will be arbitrary. The advantage of using BIMs is that they are con­
siderably smaller and faster than a full-functional model, thus using much less resources during simu­
lation. BIMs can be used to quickly verify that all devices work together in a system as specified. Even
though the values on the address/data buses of a microprocessor are arbitrary, you can still place specific
values on these buses, thus allowing you to test the system thoroughly.

Conceptually, ALCHEMIST divides a device into two parts, the bus-interface, and the internal
circuitry that provides the functionality of the device. Figure 1 depicts this division. The ALCHEMIST
BIM model simulates the bus-interface part of the device. This includes simulation ofall the signals of
the interface with correct timing checks and delays and simulation of all the transactions of the interface.

Ports
_..

..... ,... ..
~ ~· Internal_ Bus-Interface

,...
External

~ Circuitry/ .____. Model .. Test Bench
TestBench .____.

,..- ,...

Device

Figure 1 ALCHEMIST division of a device model

480

The device definition starts with defining the signals, which can be single or multi-bit. Timing
information is represented by timing symbols, which are used throughout the model to represent timing
constraints (setup and hold times, etc.) and output delays. Each device can have one or more part num­
bers, which are differentiated by different values for each timing parameters. Thus, part numbers are
used to represent different speed grades of a device. Internal variables can be used to represent registers
and memories in the device, which allows full functional modeling of a memory device.

The interface of a device is divided into one or more cycles. Each cycle represents a complete,
independent transaction on the bus. For example, a PCI memory read transaction can be modeled as a
cycle of the device. Cycles are associated with an initiation condition, which determines which cycle is
simulated. Cycles are executed sequentially, and at the end of the current cycle, all the initiation condi­
tions of the different cycles are tested to determine the next cycle.

Each cycle can have an optional state diagram, which indicates the states and transitions
between them. Figure 2. is an example of a state diagram depicting a PCI bus master transaction. This
shows the various states that the PCI master goes through while completing a transaction. The
ADDRESS state is not a simple state, but a hierarchical representation for a group of states that manage
the address phase of the PCI transaction. These include states that will terminate the transaction (for
example, for a master abort, target abort etc.). The arcs connecting the states have boolean transition
conditions associated with them.

Figure 2 State Diagram of PCI Bus Master Cycle

The state diagram indicates the states and their transitions, but contains no timing information.
The timing diagram for each cycle defines the timing and behavior of each signal. Figure 3 depicts the
timing diagram for the master cycle of the PCI device corresponding to the state diagram in Figure 2.

481

The states shown at the top correspond to the states defined in the state diagram.

PCIQ.K

FRAtlE_bar T JJ

IRDYJ>ar

ADC31:0J

C_BE_barC3:0J

Figure 3 Timing Diagram of PCI Bus Master Cycle

The timing diagram indicates the different waveforms of each signal, and the timing relation­
ships between the events on each signal. These timing links define setup and hold times, and output
delays. The timing links are defined in terms of the timing symbols of the device. Values of output sig­
nals can be defined on the timing diagram, or they can be defined in truth tables.

<LRDY> Defined Actions

CJ 0
IROY_bar/2 = "1":
IRDY_bar/3 = "1 ":
IRDY _bar/2 = "O";

Figure 4 Action Table to determine value of IRDY _bar signal

ALCHEMIST calls the truth tables action tables, because they define actions on output signals
based on some combination of conditions. Action tables can have zero or more columns, which test for
specific values on signals or a boolean condition. The different combinations of these column variables
define the different rows of an action table. Each row can define a value for one or more output signals.
Each timing diagram can have any number of action tables associated with it, to define various output
signal values. Figure 4 shows a small action table that defines the output value of the IRDY_bar signal,

482

determined from an internal condition depending upon the state of the device.

The above specifications can be used to define the bus interface of a device. However, these
specification methods are not really sufficient to fully model a complex device, such as a microproces­
sor. For example, the instruction execution of a processor cannot be easily modeled using simple truth
tables. But you can define a test-bench in ALCHEMIST to model such functionality. This test-bench
(more properly called a model driver) takes the place of the internal circuitry shown in Figure 1. This
test-bench is attached to the bus-interface model via control signals. The test-bench is used to sequence
the model through different cycles, and to specify values to be placed on the various signals, such as
address and data.

Figure 5 shows the flow-chart of a simple test-bench used to drive the PCI bus master device.
This test-bench exercises various transactions on the PCI bus, providing the address and data for each
transaction. The test-bench connects to the BIM through a simple interface. Each test-bench consists of
one or more parallel processes, as well as any number of procedures. Defining procedures allows con­
struction of a very modular test-bench, making it easier to construct complex test-benches.

Figure 5

Wait until after reset.
STROBE = value< "O" > •••
wait onO until(IN_R •••
wait onO until<PCIC •••

Do some writes.
1Jrite<"H12345600" , •• ,
1Jrite("H00345600" , ...

Do sol'l'le reads.
Read< "HB7654300" , 1. ..
Read("H00654300" • ll:

TestBench for PCI Bus Master Device

An external test-bench can also be defined for any device. This allows the user validate the
model, and to exercise the bus interface of a device, particularly a device that is a bus slave, such as a
memory or a PCI target. An external test-bench of such a device can be used to drive the various signals
of the device, and observe the response of the device model.

Based on these inputs, ALCHEMIST generates VHDLNerilog source code. The source code
is ready for simulation. The generated BIM will correctly simulate all state and cycle transitions, check
all input timing constraints (such as setup and hold times), and drive all output signals with the specified
value and delay. In addition, the graphical input can be output as Postscript documentation, for use in
documenting the device and model.

483

ALCHEMIST MODEL USES

ALCHEMIST models are not synthesizable. This means that IC vendors can distribute
ALCHEMIST models of their new devices without risking intellectual property. These models can be
created and distributed in advance of the actual silicon to provide designers with a way to create designs
early, speeding up time-to-market. ASIC vendors can use ALCHEMIST to provide simulation models
of their cell library, particularly for large cells such as embedded µC and DSP cores. The graphical
input, such as state and timing diagrams, can be exported to word processors and the like for use in data
sheets of the devices.

ASIC designers can create an ALCHEMIST model of their ASIC to be used as a reference doc­
ument. The model can be used for simulation, before the synthesis of the ASIC is complete. This allows
parallel development of the ASIC and the board. An ASIC test-bench can also be defined to exercise
the device.

System designers can use ALCHEMIST to quickly create device models that are otherwise
unavailable. These models will be created on an as-needed basis, reducing cost and delay. The models
can be partial or complete, as necessary. The user has complete control over what goes into the model,
thus making the models easy to change as necessary, as well as to debug.

ALCHEMIST models can also be used to design and verify bus protocols, for example the next
generation of PCI.

CONCLUSIONS

Simulation is an increasingly important part of the design flow, but lack of models is a major
hindrance to its widespread use. ALCHEMIST addresses this problem by providing a way of creating
simulation models without VHDLNerilog expertise. These models can be used in various ways to
improve the simulation of boards and systems, to reduce the overall design cycle and time-to-market.

484

VERIFYING PCI BUS SYSTEM AT MEGAHERTZ SPEED
Sanjay Sawant

Quickturn Design Systems
440 Clyde Ave.

Mountain View, CA 94043
(415) 694-6580/ (415) 967-3199 (FAX)

e-mail: ssawant@qcktrn.com

Abstract: The Peripheral Component Interface bus, perhaps the most defacto standard since IBM PC
and Sun Workstations, is going into chips, boards and boxes. It is well accepted in many applications
as makers of computer-related equipment hop on the bandwagon to share in PCI's well known
price/performance gains. Designers charged with developing PCI products must make the right design
choice and then right verification choice to get on to the bus. This presentation is focused on a
verification methodology for PCI designs and slow down issues associated with iL It gives an overview
of Logic Emulation and its application to PCI verification.

VERIFICATION CRISIS
Managing design complexity is becoming more challenging in the face of widely available submicron

manufacturing capabilities, top-down design and the demand for the fastest time-to-market. As a result, the
need for higher levels of design abstraction has become a key issue in submicron design. Eventhough,
Hardware Description Languages (HDLs) have managed to generate millions of gates using logic synthesis,
verifying gates using traditional software simulators has proven to be inefficient. Today's design
methodologies have shifted towards concurrent hardware/software development. Majority of design teams
are therefore staffed by hardware and software designers, both working in parallel on firmware design.

In addition to significant enhancement in the design complexity of PCI designs, designers are
challenged by verification crisis. It is extremely difficult to thoroughly specify all system requirements to
insure adequate test coverage as per PCI specifications. Traditional verification tools are too slow for
complex designs. Many aspects of today's PCI designs can not be verified using event based simulators.
This is because the performance of simulators change exponentially with the complexity of a design. For
example PCI protocols and PCI applications that require real time video can not be verified using any
software simulators. These applications require billions of clock cycles for system verification sign-off.

The verification problem is further compounded because designers not only have to verify their chips under
development but also their interfaces with rest of the system. Above changes in the design methodology
demands changes in the verification methodology.

INTRODUCTION TO EMULATION

To bridge this verification gap a new technology has emerged called an Emulation. An emulation is a
technology that enable designers to imitate logic of their design either in the form of a programmable
devices or processors. As indicated in the figure 1, an emulator can be a resource shared on the network by
multiple designers.

485

Mapping
11ottwaro

figure 1

Emulation enable designers to automatically generate hardware prototypes of their designs. It takes
away the burden of debugging the prototype so that designers can concentrate on debugging their design.
This is a only technology that provides full system-level verification, up to 4 MHz speed, full design
visibility and hardware/software co-verification capability. As indicated in the following speed chart,
emulation runs orders of magnitude faster than traditional verification techniques.

1 uconct

10 nconds ·······

2 nhlt•• 3-
1 ""'

12 •Y•

3 months

RTL EMULATION

Recently, a technology has emerged that couples fast RTL mapping with emulation. RTL emulation is
directed at simplifying the emulation use model and to reduce time-to-emulation to bring emulation
upstream where it can be used for performing architectural trade-offs. This enable PCI designers to validate
their RTL in context of an entire system and verify whether RTL is really golden. This technology allows
designers to visualize an effect of plugging their RTL into final target environment. Unlike gate-level
emulation, designers need not wait for gate-level netlist to be available, or be concern about specific ASIC
library, or Central Delay Calculators, or wire-load models. RTL emulation technology offers full visibility
over a design through net name preservation and hundred percent readback. This enable designers to design
and debug at RTL-level. Also quick design changes are made possible through incremental synthesis which
is tightly coupled with incremental compilation. Most of the logic emulation systems have builtin logic

486

analyzer that allows designers to trace primary I/Os as well as internal nodes. Given below is an example of
an emulation flow when RTL Emulation is used.

Behavioral RTL

Without RTL
Emulation

With RTL
Emulation

Synthesis

SLOW-DOWN ISSUES

• Physical design Fab i Redesign

first Silicon

Emulation

..
Time

The beauty of PCI is its practical price/performance ratio. A typical PCI application runs at 33 MHZ.
One of the caviar in using logic emulation for PCI verification is building a target system and then
slowing it down to few megahertz. The trick is to slow down the global PCI clock when it is used in a
system running at a slower speed (approx. 1 MHZ). Eventhough, the PCI Local Bus Specification does not
recommend this frequency, it has been tested on several projects. Whenever PCI bus is used to transfer data
from a master to an agent. the agent's clock is synchronized with the PCI bus clock. A typical case would
be data transfer to the frame buffer of a graphics card. Also, the timing out is based on the number of
clocks and not on the absolute time, which implies that, if you have an entire system running at low
speeds , then only slowing down the PCI clock should solve the problem. Video cards are relatively easy
to slow down. One can literally stop the bus without any ill effects. We have successfully slowed down a
720K floppy in a 1.44 Mbytes drive to approximately 500 KHZ. The slower read/write speeds keep the
floppy from overflowing. Similarly, MFM and IDE controllers can be easily slowed down to 500 KHZ
range. Finally, BIOS may need some modification as well. One may have to reprogram refresh timers in
BIOS to increase bandwidth. An extra 150 KHZ margin can be gained by increasing the FIFO depth for
floppy controller (to max 15).

Thus with an ability to verify PCI designs, in-circuit at megahertz speed, logic emulation has become
next frontier in the system verification.

487

MEASURING AND OPTIMIZING PERFORMANCE OF PCI BASED DESIGNS
Venkatesh Arunarthi

Sand Microelectronics, Inc.
1630 Oakland Road, A-103
San Jose, CA 95131 USA
(408) 441-713817538 (fax)

e-mail: venkat@sandmicro.com

ABSTRACT

There are design and verification tools available in the market which facilitate the development
of PCI based designs. They include PCI synthesizable cores which accelerate development of PCI based
ASICs and PCI bus simulation models which facilitate verification of PCI designs for compliance with the
specification. However, no tools are available which enable designers to measure and more importantly
optimize the performance of their PCI designs in simulation. In order to arrive at meaningful performance
data, designers currently need to visually analyze the thousands of cycles of simulation data and manually
calculate the performance numbers. This process can not only be very time consuming but also error
prone. Therefore, designers tend to randomly spot check the simulation data to get a general idea of the
performance. However, this method is highly inaccurate since the performance calculation is based on a
few cycles of simulation data and not on the entire simulation run. Furthermore, design changes which
impact performance could be overlooked, resulting in silicon being fabricated that may be functionally
correct but may not meet the performance requirements. This paper presents a method for analyzing and
optimizing performance of PCI designs in simulation prior to silicon fabrication.

TRADITIONAL DESIGN FLOW

In the 1980s, most ASIC-based systems designs used a low-level design methodology: ASIC
foundries provided customers with a set of primitive functions represented by gates. These gates became
the building blocks used to develop digital systems. By interconnecting these gates, designers were able to
develop application-specific functions. This approach is rapidly becoming obsolete as designs are
becoming more complex.

This low-level design methodology has two primary disadvantages:
1. The design is tied to a technology or foundry, since the designers are using foundry-specific building

blocks. Therefore, changing the technology or foundry becomes difficult and time consuming.
2. The more complex the design, the more difficult it is to understand. It is difficult for designers to

keep track of a complex design and it is even more difficult for someone other than original designer
to understand the design, since there may be a large number of gates interconnected with each other.

ASIC-based system design methodology has changed for the better, as we enter the next
millennium. Designers, today, are using a high-level design (HLD) methodology and hardware
description languages (HDLs) such as Verilog and VHDL to describe a design's functional behavior. The
design is simulated and checked for functionality using the simulators provided by HDL vendors.
Designers typically write numerous test cases for verification, and use the waveform display tools for
debugging. Next, the design is synthesized and mapped into one of the foundry specific libraries. Finally,
the gate level netlist is simulated to make sure that the design meets the timing requirements before
tapeout. This approach has several advantages:

488

1. Engineers can be more productive if they design at higher levels of abstraction. They can add value
or analyze tradeoffs quicker at behavioral level than at the gate level.

2. By using a high-level design approach, designers can express design functionality in a technology
independent language. And, instead of having the design based on a single foundry or technology,
designers can choose from multiple foundries and technologies.

3. Hardware description language (HDL) usage ensures an easier to understand and better documented
design.

THE NEED FOR AUTOMATIC PERFORMANCE ANALYSIS

Changes to system design methodologies have resulted in the introduction and continued
improvement of tools for designers. For example, HDL simulators, synthesis tools, and timing analysis
tools help analyze a design's functionality and timing, but they do not measure performance of the design
before silicon production.

Designers have been left to their own resources to analyze and predict performance. They
visually analyze simulation data and waveforms cycle by cycle, and manually calculate performance
numbers. Unfortunately, simulation data can represent anywhere from a few hundred cycles to a few
million cycles of simulation. Done manually, this is time-consuming and error-prone. Therefore,
designers randomly spot check the simulation data to get some idea of performance.

This approach is not accurate because performance calculations are based on only selected cycles
of simulation data, and designers could miss simulation cycles that significantly impact performance.
Also, during the design process, several design changes are typically made including ones that can impact
performance. Very rarely does a designer think to go back and re-calculate performance.

Once actual silicon is available, there are commercial tools that evaluate performance. The main
drawback to having performance data at this point is that the system's performance may not be what was
expected and it is too late to change the design. The designer options are accepting lower performance or
making changes to improve performance by going through another design iteration. This typically takes
months, can cost $25,000 or more for another round of silicon fabrication, and delays a product's
introduction.

PCI AND THE PCI MARKET

PCI is the solution for performance-hungry applications. PCI-based systems usually include
graphics, video, disk and network cards. PCI design starts are increasing dramatically. Published
Dataquest figures indicate that from less than a million units of PCI silicon in 1993, the market is
expected to expand to more than 49 million units in 1996.

Developing a PCI-based component is a complex exercise. The specifications are very strict.
Therefore, the growing PCI market is compelling EDA suppliers to provide system designers with easy-to­
use PCI bus models. These pre-built, pre-tested models have relieved designers from the "will it work?"
pressures. "Is this best possible design?" then becomes the next question.

THE PCI DESIGN PROBLEM

The PCI bandwidth of 132 Mbytes/sec. is sufficient for most applications, including real-time
video. However, designers must ask if enough bandwidth is available to manage multiple simultaneous

489

applications in a system-level configuration. For example, system latencies such as arbitration and wait
states due to variations in fifo-depths affect available bandwidth.

WHAT IS PCI PERFORMANCE ANALYZER?

The proposed Sand's patent pending PCI Performance Analyzer (PPA) allows the designer to
evaluate the performance impact of changes in the parameters of their design, such as the number of
masters, FIFO depths, arbitration schemes, latencies and wait states. The designer can evaluate the
impact on the PCI bandwidth of adding additional components.

PPA ARCHITECTURE

In a typical PCI design simulation environment the designer uses a PCI Bus Functional Model to
generate bus cycles against his/her Design Under Test. The PPA connects to the PCI bus as shown below.
It consists of three major blocks, a Monitor, a Parser and a Graphical User Interface.

Figure 1 Typical Simulation Environment

490

Monitor

The Monitor was implemented in Verilog and VHDL to support both the simulation
environments. Monitor connects to the PCI Bus and logs the states of all the PCI signals on every rising
edge of the clock into a file. This file is then analyzed by the Parser to calculate the performance data. In
addition to logging, the Monitor also checks for PCI Rev2. l Compliance and reports all the Protocol
Violations and Timing Violations into two different files, which will later be displayed through GUI.

Parser

The Parser was implemented in C. It parses the log file created by the Monitor, one
transaction(burst/non-burst) at a time, and stores the parsed data in a Linked List Data Structure. This
linked list is then analyzed to extract the relevant information needed for the subsequent calculations. As
each transaction is extracted, a set of global data structures are updated with the transaction data like
Command, Address, Wait States, Number of bytes, Transaction begin and end times etc. This procedure
is repeated, until the entire log file is parsed. Finally data is filtered according to the user configuration
provided through GUI, and stored in yet another set of data structures, ready to be display by GUI. User
configuration will be explained in the following section.

Graphical User Interface (GUI)

The GUI is an user friendly front-end tool, developed using Motif. The GUI supports both SUN
& HP platforms. Depending on the type of the data it provides, the GUI can be divided into three
different windows, namely Statistics, Performance, and Protocol & Timing windows. Each of these will
be explained below.

Figure 2 Statistics Window

491

Statistics Window: The Statistics Window provides the designer with an exhaustive statistical
analysis of all the possible cycles on the PCI bus for a particular simulation run. Generated data
includes information such as best and worst case wait states, number of read and write cycles,
and abnormal termination conditions. This window features a user configurable sub-window,
where designer has the options to display all the cycles that took place on the bus, or selectively
look at the data on a target by target basis/master by master basis. This enables the designer to
look at the data related only to his/her design in a system level simulation environment, where
multiple blocks from different designers are combined. Instead of watching data for entire
simulation, designer can choose to display information that belongs to a particular time-window
in simulation. The statistics window also provides event time stamps that provide links back to
the simulation environment to help debug the design.

Figure 3 Performance Window

Performance Window: This . window mainly focuses on the performance data related to
arbitration schemes and bus band width. It displays the data, such as how frequently PCI bus
masters are getting on and off the bus, and what data transfer rates they are achieving. It also
provides other information such as request to grant latency, individual bus utilization of all the
bus masters, and percentage of total simulation time masters are waiting in queue to get onto the
bus.

Protocol & Timing Window: If during simulation, the PPA detects a Master/Device violating the
PCI Protocol or PCI Timing, all such errors are flagged for review in these windows.

492

CONCLUSION

A method has been presented to measure and optimize the performance of PCI based designs in
simulation environment, prior to the fabrication. Though current implementation focuses only on the PCI
bus, this concept can be readily extended to other 1/0 buses, process buses, and memory buses.

BIOGRAPHY

Mr. Arunarthi is currently working as a design engineer at Sand Microelctronics, Inc. He holds
an MSEE from University of Southwestern Louisiana. He was responsible for the development of the PCI
Performance Analyzer at Sand Microelectronics. His other accomplishments include development of
simulation models and synthesizable core products for PCI Bus and Universal Serial Bus.

493

A VHDL Design Approach to a Master/Target PCI Interface

Leo K. Wong
Applications Engineer

Altera Corporation

Martin Won
Applications Supervisor

Altera Corporation

Subbu Ganesan
Associate Director of Hardware Engineering

ZeitNet, Inc.

ABSTRACT

This paper describes a design
approach to implementing a Peripheral
Component Interconnect (PC!) interface
that allows for the maximum amount of
design .flexibility while achieving an actual
working solution in a relatively short
amount of time. The approach involves two
key elements: VHDL and programmable
logic devices. The portability of VHDL and
the rapid prototyping time of programmable
logic, combined with the .flexibility afforded
by both creates a design approach that
provides the designer the opportunity to
make changes to the design while still
working towards a final hardware solution.
In the experience of the ZeitNet project (an
interface for an ATM adapter card), this
approach yielded a demonstratable product
in four months; in another three months,
burst mode was added to the design and
final testing was completed, resulting in a
finished product in only seven months from
product inception. Furthermore,
considerations for future development of
PC! interface are also included.

1. INTRODUCTION

494

Most engineers are faced with the
challenges of ever shorter production cycle,
higher performance requirements as well as
cost pressure in every project. A well
defined design methodology is critical in
meeting these goals. Our sample design is a
PCI bus A TM adapter card. Table I shows
the requirements of the project.

Table 1 Project objectives

High Full PCI and A TM
Performance compliance; Zero-wait-state

Burst transaction;
Sustaining full duplex line
speed

Interoperability Product should be accepted
by multiple platform for
maximum customer appeal.

Vendor Need flexibility to migrate
Independence to future silicon technology

if desired.
Meet product Three to four month design
rollout deadline cycle time limit from

concept to silicon.

The following sections will discuss
these objectives in details and explain how
these objectives are met by the proposed
methodology.

2. ARCHITECTURE CONSIDERATIONS
Figure I . Typical PCI Bus System with A TM
Adapter

1----i
Host/ I Local Bus PCI Memory Bus

CPU Cache/

L _____ J I B:ge !

t
I ' I I
i scs1 · I Ant
I Host i I,-· I llI!'. J::~

' {/j !j ~
i lfi .: I
I Ill z I
l :ii !1 i
l a
I

2.1 Performance

PCI Bus

t
l;l
i ISA I
i l~CA I
i Bridga I

~I J 1l
::I

"' 1r
::I

~

l t
Graphics I I Peripherals
Adapter I

I I
!

Bus bandwidth is important not
only to networking performance but also
system performance. The PCI Bus is
capable of high performance data transfer
through its high bus bandwidth capacity.
The maximum PCI Bus transfer rate is:

Clock Frequency
Bus Width
Max Transfer Rate

=33Mhz
= 4 Bytes = 32 bits
= 133MB/sec
= l.06Gbit/sec

The SONET 155 Mbps ATM
requires 134 MBps transfer rate,
significantly less than the maximum PCI
bus transfer rate.

Performance, however, does not
depend on bandwidth alone. In order to
realize the full potential of the PCI bus,
burst transaction is expected to be
implemented by the interface. PCI Bus
specification enables variable burst
transaction size. The interface component
should be able to handle variable burst size.

495

Moreover, a low bus latency is
necessary to provide a quick turnaround
time. The overall bus latency is comprised
of three parts:

• Arbitration latency - the time the
Master waits after asserting REQ#
until it receives GNT#

• Bus acquisition latency the
amount of time the device waits for
the bus to become free after GNT#
has been asserted.

• Target latency - the amount of time
that the target takes to assert
TRDY# for the first data transfer.

While the A TM adapter project is a
Master and Target combined PCI interface,
all three types of latency should be taken in
careful consideration. The PCI interface
component is challenged to implement the
design that meet the aforementioned
performance requirements.

2.2 Interoperability

To ensure the widest possible
market acceptance, products should be
accepted by as many platforms as possible.
As a bus architecture, PCI promises
processor independence. However, due to
the evolving nature of the PCI architecture,
there are systems that does not adhere
strictly to the latest standard. It is highly
desirable to have a versatile PCI interface
component to implement the required
modifications in accordance with the
operating platform.

2.3 Vendor Independence

Depending on the market demand
and thus production volume, engineers
should have the flexibility to switch from
one silicon technology to another. For
instance, at mid-to-lower volume
production, programmable logic device is
ideal for its flexibility, zero NRE cost and
low inventory risk. In high volume
production, it might be more cost effective

to migrate to a Masked Programmable
Logic Device (MPLD) or an ASIC solution.

An ideal engineering methodology
should provide a quick migration path to the
most cost effective silicon solution in
reaction to market demand. Proven
transition path from one silicon technology
to another should be provided.

2.4 Design cycle

The A TM adapter project was under
tremendous time pressure. The month was
March, and ZeitNet was scheduled to
demonstrate their A TM adapter card at the
Tokyo Interop show in July. There were
fourteen weeks available from product
definition to silicon realization.

3. System Methodology

To achieve the project's challenging
goals: fully PCI and A TM compliant, low
cost and flexibility within three-to-four
months, designers must weigh several inter­
depending aspects of their engineering
cycles. Critical to a project's success are
the design entry method, EDA tools and the
silicon choice.

3.1 Hardware Selection
At the time, to implement a PCI

interface for the A TM card, there are mainly
two selection: PCI chipsets or
programmable logic device.

Off-the-shelf PCI interface ASIC or
PCI chipsets decrease the resources required
for in-house development, but the ones
available on the market lacked the
flexibility for customization. Due to this
shortcoming, the chipsets were deemed
inappropriate for the project.

496

3.2 Design Entry

An industry standard high-level
hardware description language is desirable
to ensure smooth future migration in
technology. VHDL satisfied the need
because of its wide acceptance in the EDA
community.

While designers usually need to
instantiate device specific primitive for
optimal performance and area results,
careful modularization can lead to high
degree of design re-use in future silicon
technology.

By modularizing design, designers
separate the universal behavioral code from
the device specific primitives instantiation.
The behavioral core, written in VHDL, can
be re-used in other synthesis tools when
porting to other silicon technologies. While
the primitive instantiations maintain close
and effective control over the interface
component.

3.3 PLO Selection
The next decision was to choose a

programmable logic device that could
implement a combined master/target PCI
interface within a reasonable amount of
time. Among the range of PCI-compliant
devices offered by programmable logic
vendors, FLASHlogic devices and MAX
7000E devices from Altera, and XC7000
EPLDs from Xilinx were explored.

The first concern for a
programmable logic implementation was
fitting the entire combined master/target
interface into a single device. The
FlashLogic devices were examined and their
logic capacity is deemed insufficient to fit
all functionalities into the largest member of
that family, although it did offer several
features that were attractive for PCI
interface design, including very predictable
timing, on-board RAM, and open-drain
outputs. The same resource limitations
seemed to hold true for the XC7000 devices
from Xilinx, in addition to suspicions that

the critical timing required for the PCI
interface would be difficult to achieve in
those devices.

The final potential set of devices
proved to be the ideal choice: MAX 7000E.
By estimation, the largest devices from the
family would accommodate a combined
master/target design.

3.3 EDA tool selection

Traditionally, there has always been
tradeoff between design abstraction and
efficient silicon control. On one hand,
using a proprietary semiconductor vendor
tool provide efficient design and synthesis
support for the specific component, but it is
usually difficult to port the design to other
technologies. On the other hand, by
choosing a standard EDA design platform,
designers risk sacrificing the tight
integration, but gain the ease of migration to
various ASIC or gate array technologies.

The development tools chosen for
this A TM project is MAX +PLUS II, which
includes a VHDL compiler. The tool can
directly accept VHDL text entry, synthesize,
place & route, simulate and generating
programming file for MAX 7000E device
without the burden of third-party tool
translation. This design flow provides tight
integration, allowing quick design changes
and iterations. Moreover, MAX+PLUS II
offers proven migration path interfacing
with major third party EDA tools through
EDIF netlists and vendor libraries.

To simulate the design on a board
level, tools from Model Technology was
employed. The process of developing the
VHDL code required for the design took
about 2 weeks; simulation was completed
one month later.

4. IMPLEMENTATION

497

L PCI Interface ·-

~IJ II IHI II !ll!~lllJll[l~rn111rn~IHJ-~l:llJ-lllV~
Figure 2. Zietnet PCI Bus A TM

Adapter

4.1 Implementing Functionality

In order to shorten the design cycle,
VHDL design code was developed in
parallel with the device selection process;
the goal was to work towards creating a
functionally correct VHDL design using a
VHDL simulator, and by the time of its
completion, place the design into a device.

After a month of simulating the
VHDL design and fine-tuning its
functionality, ZeitNet was ready to fit the
design into their chosen device family. The
date was nearing the end of May, which left
the month of June and some of July to fit
the design, lay out the PCB, and test the
overall product. In order to reduce the
development time, it was decided to proceed
with the design without implementing the
burst mode, since it was not deemed
absolutely necessary to demonstrate the
basic functionality of the product in July.
After the show in July, ZeitNet's engineers
would revisit the design and add the burst
mode. There was, of course, an amount of
risk associated with this decision, but
ZeitNet's engineers remained confident that
they could add the burst functionality to the
MAX 7000E device without negatively
impacting the overall product.

Compiling their VHDL with
MAX +PLUS II revealed that the MAX
7000E device required would be the 256-
macrocell EPM7256E in the 208-pin QFP
package. Without the burst-mode

ility, the design occupied about 75%
.e device's logic resources and used

,t 100 pins.

Implementing Burst Mode

After exhibiting their product at the
Interop show in July, ZeitNet set about
adding burst mode to their PCI interface.
During the initial testing of their card, they
discovered that most existing systems used
host bridges that limited transfers to host
memory. Specifically, the limits were: 32
bytes for a burst read cycle and 16 bytes for
a burst write cycle. They designed their
burst mode for 32-byte capability

This segment of the design process
took a little over a month and a half, with
much of the time devoted to ensuring that
burst capability would function in all tested
platforms. These platforms include
different PCI machines such as Compaq,
Dell, DEC-PC, Gateway, Micron, NEC PC
and various other clones. With burst mode,
the entire combined Master/Target interface
design occupied 220 macrocells, or about
86% of the EPM7256E device. Even with
the increased utilization, the ZeitNet
designers were able to keep the same pinout
for the EPM7256E, and eventually brought
the completed ZATM PCI-bus ATM
adapter card to market at the end of
October.

5. PCI EXPERIENCE

The proposed platform: VHDL
design entry and programmable logic silicon
implementation successfully meet all goals
set forth at the beginning of the project.

On the side of PCI Bus, the A TM
adapter card was able implement variable
burst size transaction. In addition, zero wait
state read and write transaction was also
achieved, providing the lowest possible bus
latency. These abilities actualize the full
performance potential of the PCI bus. On

498

the backend A TM network, full duplex line
speed was sustained.

In terms of migration ease, with the
help of the tool, designers estimate that they
would able to re-use 80-90% of their VHDL
code to port their design to an ASIC in the
future. The versatility of the proposed
platform was proven as the same design was
re-target for another programmable logic
device, an EPF8820A, a member of the
FLEX 8000 PLD family, later in the
production cycle.1

More importantly, Zeitnet was able
to achieve all goals within the specified
time frame: the product meet the trade
show demonstration as well as the
production deadline.

6. FUTURE ROADMAP

Looking forward, there are several
paths of modifications, mostly related to the
evolving nature of the PCI standard and
systems offering PCI compatibility.

(1) As noted earlier, the host bridges in
most of the tested systems limited
transfers to the host memory. The
adapter card was designed accordingly,
but future host bridges is expected to
provide larger transfers in the future.

(2) None of the tested system had
implemented the latency timer.
Correspondingly, no latency timer was
implemented in the adapter card. This
functionality is expected to be added
when latency is supported by more
systems.

These are functionality concerns for
the future of PCI as an evolving
architecture. Meanwhile, the interface
component should be versatile enough to
handle these modifications.

1 While MAX 7000E is a AND-OR gates-based
CPLD built on E2PROM technology, FLEX 8000 is a
Look-Up Table based SRAM technology.

Conclusion
From this case study, one can

conclude that all engineering challenges
were met. While the final product not only
meet release schedule, it also attain high
performance and maintain a versatile future
growth path.

It is obvious that the benefits of the
proposed methodology can readily be
extended to other areas of electronic
engineering. Flexible engineering control
such as shortened time-to-market, versatile
volume adjustment, and vendor
independence; high performance silicon
technologies coupled with easy to use
software are universal advantages alt
designers should utilize.

Author biographies
Leo Wong is an applications

engineer with Altera Corporation (San Jose,
CA), where he is involved in PCI design
implementation, megafunction partners
liaison, and programmable logic
applications consultation. Leo holds degree
in Electrical Engineering and Computer
Science from University of California at
Berkeley.

Martin Won is the Applications
supervisor of Technical Communications
for Altera Corporation, where he has
worked for 5 years. His responsibilities
include writing and publishing articles,
creating and presenting Altera's technical
seminars, and producing Altera's quarterly
newsletter for its customers. Mr. Won holds
a B.S. in Electrical and Computer
Engineering from the University of
California at Santa Barbara.

499

APRIL 1996

...........
•••••••• l

A••• G 1·1 ;:;; .. a 1 eo
·=ea:;!! Technology

High Performance System Controllers and Data Communications Controllers

The GALNET Architecture:
A PCl-Based Solution For

High Performance
lnternetworking

Galileo Technology, Inc.
1735 N. First St. #308
San Jose, CA 95112
Tel. 408-451-1400
Fax 408-451-1404

Contents m .. Galileo
·;:,.i: Technology

• The GALNET Architecture

• The GT-48001 Switched Ethernet
Controller

• Architectural Overview

APRIL 1996 2

500

The GALNETTM Architecture

• An architecture that allows for easy
interconnection and expansion of
networking chips over the PCI bus

• A family of GALNET chips is being
developed by Galileo
• The first is the GT-48001 Switched

Ethernet Controller (SEC)
A 10/20Mbps, 8 ports

• The second will support 1 OOMbps
a. Introduction in 2096

• Several others will follow
A Various LAN and WAN technologies

• Simple protocol used in the SEC
• GALNET protocol
• 5 instructions

APRIL 1996

GT-48001 Key Benefits

• High· integration
• 300,000 gates, 1.5Million transistors
• A complete system on a chip
• 8 10/20Mbps ports in a 208PQFP

• Lowest cost in the industry
• Integrated serial transceiver logic requires

inexpensive external electronics per port
• Uses standard DRAM instead of SRAMs

orCAMs

• High performance
• Filtering and forwarding at full wire speed
• Minimizes dropped packets

• Intelligent switching and management
• Enhanced network management
• Differentiation via management hooks

• Easy expansion and connectivity
• Expand to 256 ports
• Interface to other LAN technologies via PCI

APRIL 1996

501

.::::::. .
::: .. Galileo
•;:::il Technology

GALNET Protocol

3

.::::::.
::: •• Galileo
·;;::ii Technology

4

GT-48001 Switched Ethernet Controller

PCIBus

PO<IO , PO<l7

APRIL 1996

Pin out
GT-48001 32

Rsr 0Data[31 :OJ

Clk DAddrj8:0)
DRAM

RAS[1:0)" Req•

Gnr CAS•

PErr• we·
SErr• ChipSel•

ldSel

DevSer•

PCI
Interface

Stop•

Frame•

Par

Trdy• TxEn[7:0)

IRdy• Tx0[7:0)

CBE[3:0j
Serial Tx0Del[7:0)

32 Interfaces
AD[31:0) ...,.... CrSJRxEn[7:0)

Int• Rx0[7:0)
RxLP/Co11[7:0)

LEDData Pol[7:1)

LEDStb LED Pol[O)/SynClk10

LEDClk
Interface

SClk/SynClk20

RstQueue•

En Dev" Miscellaneous
Scan• Interfaces
TriState•

APRIL 1996

502

.::::::,. .
::: .. Gahleo
·:u: Technology

Tran•mlt -°""""" Forwarding Unknown
HalllF~I Duplex

......

5

Hl .. Galileo
'H;:il Technology

6

Wide Product Spectrum Feasible
.::::::. .
::: .. Galileo
·::,;1: Technology

• The GT-48001 is a flexible building
block
• Departmental to enterprise

• Various system capabilities possible
• Low cost unmanaged switches

• Stackable switches

• Low cost managed switches

• High performance systems with
sophisticated management

• High product differentiation possible
• Many management hooks provided

• More engineering applied --> more
sophisticated product produced

APRIL 1996

Unmanaged Switches

• Simple implementation
• AddDRAM

• Add serial interfaces

• Add LEDs

• Add power supply and case
A. GO!

• Lowest cost in the industry

• Simple expansion via PCI bus

• Auto-learning mechanism

APRIL 1996

503

7

m .. Galileo
·;:,,;: Technology

I a-Port Unmanaged Switch I

8

Switch Expansion (< 48 Ports)
• Simple expansion by connecting

devices via the PCI bus
• Full wire speed, full duplex switching,

guaranteed for up to 6 GT-48001 's

• Add management via PCI
• CPU can access Address Table

APRIL 1996

Switch Expansion (> 48 Ports)
• Simple expansion by using PCl-to­

PCI bridges
• 1 Gbps bandwidth is preserved for

every 6 GT-48001 's

• Full wire speed, full duplex switching,
guaranteed for up to 32 GT-48001's

••••
48 Ports

APRIL 1996

504

.::::::. .
::: .. Galileo
·::;:;: Technology

......
::: .. Galileo

9

·::,,1: Technology

>48-Port Managed Switch
(Up to 256 Ports)

••••
48 Ports

10

Switch With RMON

• Control storage of connectivity matrix
• The GT-48001 controls an external

FIFO

• CPU implements AMON
• Based on Fl FO data it reads

.::::::. .
::: .. Galileo
•;::;!l Technology

l Managed Switch With AMON l

To System Controller Local Bus

APRIL 1996

Connectivi'ty to Fast Ethernet
• Connect with GALNET family member

SEC-100
• Sampling 2096

• Alternatively, use high speed CPU
local bus with standard 1 OOMbps chips
• System Controller's OMA facilitates the

SEC to 1 OOMbps interface
•Uplink
• Serverconnection

APRIL 1996

505

11

.::::::. .
::: .. Galileo
"H;:il Technology

12

.:::::.
Connectivity to Fast Ethernet (cont'd) ::: .. Galileo

·=:::il Technology

• Another alternative is to use a
1 OOMbps PCI subsystem I Managed Switch With Fast Ethernet I
• Connect via PCl-PCI bridge
• System Controller's OMA

facilitates the SEC to 1 OOMbps
interface

•Uplink
• Server connection

APRIL 1996

Connectivity to ATM

• Connect via PCI bus
• Interface/translate to GALNET protocol

• Alternatively, use high speed CPU
local bus with standard ATM chips
• Communicate via System Controller

APRIL 1996

506

13

.:::::.
m :: Galileo
•::::; Technology

14

Switch In A Card

• High integration of the SEC makes
this possible

• Client-servercomputing

• Limited port applications

• Small professional offices

APRIL 1996

Architectural· Overview

• Interfaces
• DRAM interface

• PCI interface

• Serial interfaces

• LED interface

• Switching & address recognition engines

• Packet forwarding buffers & queues

• Management support
• Intervention mode

• Statistics counters

•AMON

•Sniffer

• Spanning tree

• Watchdog timer

• Default configuration

APRIL1996

507

.::::::. .
::: .. Galileo
';:;;ii Technology

I
...,. "Switch-In-A-Card" t 1Gbpe

15

.::::::. .
::: .• Galileo
"li;:!i Technology

18

DRAM Controller
.::::::. .
::: .. Galtleo
·::,,;: Technology

• Direct 32-bit interface to 1 or 2MByte
DRAM

• Support for 60ns standard or EDO
• EDO shortens latency between

packets
• Auto-configuring interface timing

DData[31 :OJ • DRAM stores BK address table DAddr[S:O]

• DRAM used for storing packets RAS[1:0J*
CAS*

• Fixed receive buffer size of 1.5KBytes WE*

• Supports 1024 buffers (2MB) or 384 ChipSel*
buffers (1 MB)

• Buffers dynamically allocated to the
ports and the PCI bus

• ChipSel* signal used for interfacing to
an external FIFO
• Store destination, source & byte count

observed on DData[31 :OJ for RMON

APRIL 1996 17

.:.::::.
PC/ Interface m .. GaJileo

·1:;:i: Technology

• 1 Gbps bandwidth
• 133MBytes/sec Bandwidth @33Mhz

Ast* • Provides expansion and connectivity Clk
• GALNET protocol operates on the PCI Req*

• Up to 32 SEC Devices (256 Ports)
Gnt•
PErr*

• Up to 6 SEC Devices Without PCl-PCI SErr*
Bridges ldSel

• CPU Connection for Management DevSel*

• High Speed LAN (100Mbps, ATM,etc.)
Stop*
Frame•

• PCI Master and Slave Functionality Par

• Supports version 2.1 specification TRdy*
IRdy*

• Supports clock frequencies of 25-33MHz CBE[3:0]*

• External reset AD[31:0]
Int*

• Full parity support

APRIL 1996 18

508

Tx and Rx Serial Interfaces

• 8 Ethernet ports
• MAC, Manchester Encoder/Decoder,

Link integrity, Auto-Polarity, Dual 32-
Byte FIFOs, 7 LEDs

• Compliance with Ethernet and 802.3
• Production-proven MAC

• Full-duplex support (20Mbps)

• <$2.00/port in external drivers/filters
in 10baseT

• Supports different PHY options, each
can be set individually per port
• 10base-T

• 10base-F

• AUi

• NRZSynch.

• All digital logic, no analog elements

• 80MHz serial clock

APRIL 1996

Tx and Rx FIFOs

• Used to buffer incoming and outgoing
packets
• Fully bidirectional and independent

• 32-bytes for receive & 32-bytes for
transmit

• One pair per port

• Interfaces between the Frame
Controller/Switching Engine and the
MA Cs

APRIL 1996

509

Tx
FIFO

.::::::. .
::: .. Gahleo
·::,,1: Technology

TxEn[7:0]

Tx0[7:0]

Tx0Del[7:0]

CrS/RxEn[7:0)

Rx0[7:0]

RxLP/Co11[7:0]

Po1[7:1]

Pol[OVSynClk10

SClk/SynClk20

19

.::::::. .
::: .. Galileo
·;:::1: Technology

20

10-Base-T Implementation

• Low cost components required
externally

APRIL 1996

LED Interface
• Serial shift register output

contains 7 LED indicators
per port

• LED indicators
• 7 Data (one set per port)

k Receive, Transmit,
Collision, Forward
Unknown, Sniffer,
Half/Full Duplex, Link
Status

•Strobe
A Indicates start of valid

data

•Clock

APRIL 1996

A Used to clock the serial
data out

510

.::::::. .
::: .. Gahleo
'=:,,;: Technology

21

.::::::. ..
::: .. Gallleo
"H::ii Technology

Transmtt
--1'-+- Receive
--t-+- Collision
--f-+- Forwarding Unknown

Sniffer
Half/Full Duplex
Status

22

Switching Engine
• Store and Forward architecture

• Patent pending technology

• Provides the switching function between:
• 8 Ethernet ports and PCI bus

• Guarantees full wire speed for all ports
with NO latencies

• Supports the management features
• Spanning tree, station-to-station

connectivity matrix, etc

• Supports the powerful Intervention Mode

• Allocates the buffer sizes

APRIL 1996

Switching Engine Performance

• High aggregate
throughput
• > 650K Unicast

packets/sec (using 3
SECs)

• > 90K Multicast
packets/sec (using 3
SECs)

• Low last bit-to-first bit
delay
• Ports at the same SEC:

A Short packet 3us;
long packet: 3us

• Ports at different SECs:
&. 2SECs-

APRIL 1996

short packet: 4us; long
packet: 18us

&4SECs-
short packet Bus; long
packet: 30us

1. Last bil In 2. Firs! bil oul
(Store) (Forward)

511

.:::::.
m .. Galileo
•;::;i: Technology

23

.:::::.
!ii :: Galileo
•;:::; Technology

24

Address Recognition
• The Address Recognition

Engine looks for the
destination address in the
incoming packet
• A match will occur if the

same destination address
has been received before

• The associated data
containing the port address
directs the packet to the
specified port

• Unicast addresses
• Port # and Device # match

A Packet is discarded

• Port # is different, Device#
matches

A Packet is forwarded to the
proper Port # in the same
device

• Device # is different

APRIL 1996

A Packet is forwarded to
another SEC via PCI bus

Address Recognition
• Intelligent address recognition

Source Destlnallon
Port Port

• Supports up to BK MAC addresses

• Full speed frame forwarding

• Self learning mechanism
• CPU optional

• Address Table stored in DRAM
• Very cost effective

• Additional bits for:
• Device number (Dev#, 5-bits)

• Port number (Port#, 3-bits)

•Valid (V)

•Skip (Sk)

• Aging(A)

• Static address (St)

• Multiple (M)

• Intervention for DA (Id)

• Intervention for SA (Is)

• Broadcast storm rate filtering

APRIL 1996

63 62 61 60 59 58-56 55-51 50

Is Id M St R Port# Dev#

' SK

512

.::::::. .
::: .. Galileo
'H;:iE Technology

25

.:::::.
m .. Galileo
·;:::!l Technology

3 2 1 0

Address [47:0) A iSk V

26

Buffers and Queues
• 9 transmit queues

• B ports and PCI bus
• Both transmit queues and receive

buffers are held in DRAM

• Tx descriptors
• 9 descriptor rings, each containing

512 descriptors
A. Size is 32-bits, includes Block

Address/1536, Byte Count, Packet
Type (Multicast or Unicast)

• Read/Write Pointers
• 9 pairs of pointers to the transmit

descriptors

• Rx Buffer
• Common for all ports
• 384 blocks (1 M DRAM) or 1024 blocks

(2M DRAM) of 1536 bytes each

• Rx Empty List
• Each block (384 or 1024) contains

a bit which specifies Empty or
Occupied

APRIL 1996

GALNET Protocol

• 5 simple messages on the PCI

• Efficient mechanism
• Takes advantage of PCl's high

bandwidth with little overhead

• Enables communication
between SECs
• With or without CPU

• Enables communication with
other GALNET family members

.::::::. .
::: .. Gahleo
'::::1E Technology

Rx Empty Ust Tx Descriptors:
512x9

Rx Buffer
(for all ports and

PCI bus)

27

.::::::. .
::: .• Galileo
·;~::~i Technology

• 1 : new_address' message
• Message between GT -48001 s

or GT -48001 and the CPU
• Indicates a new address
• Also used by the CPU to update

the Address Table

Aclclreu

.,... Target device number
'new_address' message Identifier

Data 0 MAC address [19:47)
Aging
Skip
Valid

Data 1 Unknown/new address
Multiple
Static Address
Portt
Device.
MAC address [0:18)

Data 2 Intervention mode for DA
Intervention mode for SA

APRIL 1996 28

513

GALNET Protocol (cont'd)
.::::::. .
m :: Galileo
':m: Technology

• 2. 'buffer_request' message • 3. 'start_of_packet' message

• A message from the source device to
the target device to request a buffer

Addreu

Data
DataO

APRIL 1986

Target device number
·buffer _requesf message identifier
Source device number

Sniffer type
Unknown message
Source port #
Target port #
Multicast/Unicast
Byte count
Source buffer address

GALNET Protocol (cont'd)

• Message from the target device to
the source device which contains the
empty buffer

Addreu

Data
DataO

Data 1

Source device number
"start_of_packef message identifier

Sniffer type
Target port #
Multicast/Unicast
Byte count
Target buffer address

Source port #
Source buffer address
Target device number

···•···

29

:ir::· Galileo
·;~::ii Technology

• 4. 'packet_transfer' message • 5. 'end_of_packet' message
• Burst of 8 32-bit words from the

source device to the target device
which contains the packet

Address

DataO

Data7

APRIL1986

Target device number
"packet_transfer' message identifier
DRAM location

DataO

Data7

514

• Message from the source device to
the target device which indicates end
of packet

Addre88

DataO

Target device number
"end_of_packef message identifier

Unknown packet
Target port #
Multicast/Unicast
Byte count
Target buffer address

30

Management: Multicast Intervention Mode
• Intervention mode for Multicast

packets
• All multicast packets forwarded

to CPU memory

• CPU decides which ports to
send the packets to

•Sequence

APRIL 1996

A 1. Incoming packet is received &
stored in GT-48001 (A) DRAM

& 2. GT-48001 (A) transfers packet
to CPU main memory

A 3. CPU transfers packet to the
selected devices GT -48001
(A,B)

A 4. When finished sending
packets, CPU sends
'end_of_packet' message to tag
selected ports

A 5. Packet is transmitted on
selected ports

Management: Unicast Intervention Mode
• Intervention Mode for Unicast packets

• Optional per MAC source or
destination address or both

• Sequence

APRIL1996

A 1.Unicast packet is received & stored
in GT48001 (A) memory

A 2. If an intervention bit is set,
GT48001 (A) sends a 'buffer_requesf
to the CPU, including the source port
& the destination port/device

.a. CPU alternative· a'
+ 3. Discard the packet

.a. CPU alternative 'b'
+ 4. Signal to forward the packet to the

destination device.
+ 5. Buffer allocated at GT48001(B),

which sends a • start_of_packet' to
GT48001(A)

+ 6. GT48001(A) sends packet to
GT48001(B)

A CPU alternative • c'
+ 7.Take the packet and modify it.

GT48001(A) sends the packet to the
CPU main memory.

515

.::::::. .
::: .. Galileo
';:::ii Technology

--···--=-

31

.::::::. .
::: •• Galileo
·;:;:1: Technology

32

Management: Statistics Counters

• Repeater MIB & PCI counters
• MIB: 15, 32-bit wrap-around counters per port

.t. Bytes received
A Multicast bytes received
.t. Broadcast bytes received
A. Bytes sent
A Frames received
.t. Multicast frames received
A Broadcast frames received
A Frames sent
A Collision
A Late collision

A CRC +alignment
A.Jabber
A Frame too short
A Frame too long

A Bad (CRC error, frame too long) bytes received

• Global PCI traffic 32-bit counters for ALL ports
A PCI frames received
A PCI frames sent

APRIL1996

Management: RMON

• Station-to-station connectivity matrix
• Records destination address, source

address, and byte count for all
forwarded packets

• Used for AMON support
• Stored in an external FIFO

• ChipSel* signal used for interfacing to
an external FIFO
• Store destination, source & byte

count observed on 0Data[31 :O} for
AMON

APRIL 1996

516

.::::::. .
::: .. Galileo
·;:;;15 Technology

33

34

Management: Sniffer Mode
• Monitoring (Sniffer) mode

• Target can be the ports within the
same SEC or ports in another SEC

• One port is set to monitor

• All traffic from other ports and/or
SECs is received by the Sniffer port

• Target Sniffer is written to the CPU
and the Sniffer Numbers register

• LED active on Sniffer port

APRIL 1996

Management: Spanning Tree

• Spanning Tree support
• GT-48001 provides the hardware

assistance to implement the spanning
tree algorithm

• CPU executes the algorithm

APRIL 1996

517

.::::::. .
::: .. Gahleo
'H:;iE Technology

Source Target Target
Sniffer Sniffer Sniffer

35

.::::::. .
::: .. Galileo
·;:;:1: Technology

LAN1 LAN2

••••
SWITCH

LAN3

LAN4 LANS

36

Watchdog Timer

• Used for every transmit queue

• Used to empty packets from the
queue when the timer expires

• When timer expires:
• GT48001 clears the used blocks &

sends an interrupt (Int*) to the CPU

• Default value 60ms

• Range is 10 - 160ms

APRIL 1996

Configuration at Reset
• SEC acquires basic system

knowledge during initialization
• Certain pins must have pull­

up or pull-down resistors

• SEC samples them at reset

• Allows operation without CPU

• Basic parameters set
• Duplex mode per port

• Serial mode per port

• Device number per GALNET
protocol

•DRAM size

•DRAM type

APRIL 1996

OxO
OxO
oxo
OxO
OxO
OxO
OxO

Ox1

518

0000
0001
0010
0011
0100
0101
0110

0000

.::::::. ~
::: .. Gahleo
·::::1E Technology

Illegal
10ms
20
30
40
50
60 (DEFAULT Ox6)

160 (MAX Ox10)

37

······· m .. Galileo
"lh:~l Technology

DUPLEX MODE
O=Half-duplex
1 =Full-duplex

SERIAL MODE
00=1 Obase-T
01=10base-F
10=AUI
11=Sync

DEVICE NUMBER
Per GALNET Protocol

DRAM SIZE
0=2Mbyte
1= 1Mbyte

DRAM TYPE
O=Standard
1=EDO

38

Conclusion

• The GALNET architecture offers a
flexible high performance path to
design advanced intemetworking
equipment

• Use the PCI as a robust and
expandable backbone
• 32-bit, 33MHz

• 64-bit and 66-MHz in the future

• The GT-48001 SEC addresses with
excellent price/performance the large
1 OM bps switched market

• Low end to high end equipment may
be built
• Unmanaged low end (no CPU) to

heavily managed high end (advanced
RISC CPU)

APRIL 1996

519

.::::::. .
m :: Galileo
'=m= Technology

39

ABSTRACT

USING FPGAs FOR HIGH-PERFORMANCE PCI

James D. Joseph
Actel Corporation

955 East Arques Avenue
Sunnyvale, CA 94086-4533
e-mail: jjoseph@actel.com

Supporting PCI interfaces in programmable logic is now mandatory. Even systems not currently using PCI add a PCI
interface "just in case." However, merely supporting the PCI protocol is inadequate, in our opinion. Unleashing the full
potential of PCI system bandwidth requires support for zero-wait-state operation.

The Actel Act-3 FPGA family provides high density, high speed, and compact registered I/O cells. This combination allows
implementation of high-performance target, master, and bridge functions in FPGAs. Designers are able to use these
functions in conjunction with on-chip programmable logic to generate cost-effective PCI system solutions.

Actel's target, master, and PCI-PCI bridge are all oriented toward high-perfomance data transfer while still meeting the
stringent PCI 1/0 drive requirements. The result is an effective system-oriented solution for 5-volt, 33-Mhz PCI. The target
macro is compatible with a number of synthesis and simulation paths including Synplicity, Model Technologies, Exemplar,
and Synopys.

THE PROBLEMS

The PCI bus standard was created to improve data transfer rates among peripherals, main memory, and CPUs. The major
competition at the time the standard was created was the VESA local bus, and most VL controllers did not support bursting.
In addition, early PCI chipsets had mediocre transfer rates, so even a target or master that could support zero-wait-state
bursting or fast leadoff cycles was often strangled by an inefficient chipset.

All that has now changed. As familiarity with the PCI bus has grown, so have the systems ready to take advantage of its high
performance. Higher speeds in FPGAs make the job of designing a target, master, or bridge much easier. Zero-wait-state
bursting is available in chipsets supporting PCI interfaces. Better arbitration logic also allows faster PCI leadoff cycles. This
high performance also must be achieved with the convenience of a high-level model. The model must be available in a
VHDL and/or Verilog format compatible with today's synthesis tools from multiple vendors.

The third issue is flexibility. The designer wants to customize the models to meet application-specific requirements with a
minimum of fuss.

The final major issue is I/O compliance. The PCI 5v specification, defined in terms of a voltage-current map, demands both
high drive and high slew rate. One comment - the 33 MHz, 5v implementation of the PCI bus is by far the most common.
The discussion and timings presented here all assume use of that version.

The discussion which follows does not include configuration cycles. These, of course, are handled by the Actel PCI macros,
but the speed of configuration cycles is not an issue in high-performance systems. We begin with a discussion of
requirements for a PCI target macro in the Actel ACT3 FPGA family.

520

ACT3 FEATURES

The ACT3 family offers a collection of features well-suited to 33-Mhz PCI design. These include the following:

• Acceptable speed (tco = 7.5 ns)
• Fast, low-skew clock networks
• High number of user I/Os (up to 228)

In addition, the ACT3 family has been extended to provide l/O buffers which are fully PCI compliant.

PC/ TARGET REQUIREMENTS/GOALS

The example chosen is a peripheral controller having both I/O and memory requirements. The vast majority of target
designs support either memory cycles alone or both memory and l/O cycles. The I/O space is composed of 64 contiguous
bytes with a memory space of 16 megabytes.

The design goal was implementation in generic VHDL where possible. Key features include the following:

• Memory Read/Write Bursting Support
• : 1: 1: 1 Sustained Performance Possible
• Fast Back-to-Back Transaction Support

In addition, we wanted a modular structure that would accommodate a wide range of target designs. This required not only
easily-modified code segments but also a flexible back-end interface.

SUPPORTED COMMANDS

The supported command types for the target macro are briefly described below.

I/O Read and I/O Write

These commands read data from/write data to the target's 1/0 address space. The macro as defined has a 64 byte 110 address
space.

Memory Read and Memory Write

These commands read data from/write data to the target's memory-mapped address space. The memory as defined in the
macro is 16 megabytes which can be located anywhere in 32-bit address space.

Configuration Read and Write

These commands access the configuration space of the target. A PCI target, master, or bridge MUST implement these
commands. All required configuration registers are supported in the Actel target macro. In addition, the target supports
memory and I/O base address registers.

Memory Read Multiple

This command is similar to a memory read command, but it indicates that the master may intend to fetch more than one
cache line. The memory controller should continue to fetch data so long as FRAMEn is asserted.

521

THE BACK-END INTERFACE

A number of signals are provided for maximum flexibility in interfacing the target's PCI bus to th user's 32-bit external
logic. Naturally, address, data, and byte-enables are available to/provided from the user's logic. In addition, the target
provides signals which allow a variety of data flow control for the user application depending on required performance and
acceptable complexity. Both read and write functions can operate in the following transfer modes:

• Burst mode where a DWORD is transferred every cycle (some limitations exist for read commands)

• Fast mode where a DWORD can be transferred every other cycle (all configuration transactions are in the Fast
mode)

• Handshake mode for lower-performance peripherals (maximum of one DWORD every 3rd cycle)

In addition, the target can throttle the speed of the master in either burst or fast mode to allow occasional reductions in
transfer rates (e.g., memory refresh).

The key signals that support this flexible interface are:

TARGET_ACTIVEn - Active low signal indicating that the target has claimed the bus and is active. This signal will remain
active as long as the PCI DEVSELn signal is active.

LAST_ CYCLE - Active high signal indicating that the PCI bus transaction is in its last phase of transfer.

DATAPHASE - Active high signal indicating that a data phase (IRDYn and TRDYn both low) occurred on the previous
cycle. DAT APHASE is used as a handshake mechanism for both read and write cycles.

MEM_READ -Active high output indicating a read from the target's memory space has been detected.

IO_ READ - Active high output indicating a read from the target's 1/0 space has been detected.

READ_ OK - Active high input indicating that the user defined function is ready to transfer data to the PCI bus.

NEXT_READ_OK - Active high input indicating that a burst is possible because more than one DWORD is available to
transfer at the 33 Mhz rate.

MEM_ WRITE - Active high signal indicating a write to the target's memory space has been detected.

IO _READ - Active high signal indicating a read from the target's I/O space has been detected.

WRITE_ OK - Active high input indicating that the user function is ready to receive data from the PCI bus.

NEXT_ WRITE_ OK - Active high input indicating that a burst is possible because more than one DWORD is available to
transfer at the 33 Mhz rate.

BUSY - Active high input indicating the user-defined function cannot currently respond to a PCI request.

ERROR - Active high input indicating that an error has occurred and will initiate a Target Abort cycle.

FATAL_ ERROR - Active high input indicating that an error has occurred and will initiate a Target Abort cycle and assert
the SERRn signal on the PCI bus.

Figures I and 2 illustrates the timing in burst mode and fast mode, respectively, for the Actel PCI target macro.

EXTENDING MACRO PERFORMANCE

All of these goals were met in the behavioral version of the target macro. Nevertheless, we chose to improve performance
further by instantiating a high-speed Actel ACTgen counter macro. The result was a smaller AND faster design.

Table I summarizes the device usage in the Actel 1460A FPGA. Two different versions are illustrated. The first is a target
that responds to both memory and 1/0 accesses, while the second case is a memory-only target.

522

• Memory+ 1/0
Combinational Cells:
Sequential Cells:
Total Cells:

• Memory Only
Combinational Cells:
Sequential Cells:
Total Cells:

CONCLUSION

Table 1
FPGA Usage for Target Macros

277
163
440 of 848 (53%)

208
122
330 of 848 (39%)

Zero-wait-state performance for PCI target, master, and bridge macros can be achieved in FPGAs using high-level design
and synthesis techniques with a combination of high-performance parts, careful design, and Actel's ACTgen macros. The
designs presented here achieve full 5-volt PCI compliance at 33 MHz.

REFERENCES

PCI Special Interest Group, 1995. PCI Local Bus Specification, Revision 2.1, Hillsboro, OR (Apr.).

PCI Special Interest Group, 1993. PCI System Design Guide, Revision 1.0, Hillsboro, OR (Sept.).

Shanley, T. PC! System Architecture, Richardson, ·TX: Mindshare Press, 1994.

523

AUTHOR INDEX

Alba, Manuel 500 Kolment, Raymond 13
Anderson, Thomas L. 86 Kupnicki, Richard A. 366
Apte, Dave 479 Lee, Edwin 17, 178
Armstrong, Ross L. 93 Lipman, Jim 464
Arunarthi, Venkatesh 488 Mahmood, Aamer 233
Autor; Jeff 51 Mansharamani, Kamal 101
Becker; Mike 61 McCook, Donald F. 243
Blackledge, Larry 302 McGowen, Michael 234
Blau, Bob 161 Medeiros, Jim 312
Bronson, Mark 394 Mourn, Richard 262
Burk, Richard J. 22, 191 Nayak, Harish

Carter; Jack 160 Nygaard, Thomas 390
Chisvin, Larry 463 Ohr; Stephan 285
Cohen, Frances 452 Pavlat, Joe 409
Cooper; Steve 284 Rao, K. K. 255
Craven, Tim 443 Rathnam, Selliah 275
Cruz, Claude A. 44 Rhoden, Desi 268
Dahlgren, Kent 171 Richardson, Tracy 71
Dingee, Don 399 Ridgeway, David 199
Evans, Dave 465 Riley, Dwight D. 109
Fitzgerald, Jim 187 Ryan, Arthur 195
Forbes, Bert 186 Salameh, Mike 200
Ganesan, Subbu 494 Sawant, Sanjay 485
Garrett, Billy 225 Schapfel, Frank 274
Gildersleeve, Gary 8 Schiefer; Harold 381
Glaskowsky, Peter N. 201 Serra. Fernando 358
Goodrum, Alan 51 Sgro, Joseph A. 119
Goodwin, Bob 214 Sheberman, Tony 7
Greggain, Lance 381 Small, Brian 343
Hady, Frank 26 Stearns, Margit E. 211
Hanna, Steven 381 Thomas, Clyde 12
Hawes, Adge 328 Thorsteinson, Tom 353
Hoff, James F. 347 Trevett, Neil 215
Hosking, Rodger H. 154 Venkat, Giri 283
lsenstein, Barry 161 White, George P. 286
Jensen, Scott 261 Won, Martin 494
Joseph, James D. 520 Wong, Jacques 86
Kasliwal, Manish 160 Wong, Leo K. 334, 494
Kelsey, Jim 454 Yao, Yong 440
Knecht, Mark W 86 Yeung, Ernest 381

525

KEYWORD INDEX
30 graphics 215 Design kits 347,358
Accelerators 119, 215 Device controllers 452

AJpha 394 Digital signal processing 119. 154, 160
AS I Cs 187. 195, 234. 465, 488 Disk arrays 255
ATM 201, 494, 500 Disk controllers 255,261, 262

Backplanes 17,93,409 Distributed OMA 109
BIOS 51. 211, 452. 454 OMA 1. 86, 109, 187, 358

Board computers 394, 399 Docking I, 44, 454
Boot 255, 452 Efficiency 26

Bridges 26, 44, 51, 71, 86, Electrical compliance 343
93, 101, 285, 286, Embedded systems 161, 200, 312. 409
394, 399,462,463, 520 Emulation 485

Broadcasting 366 Ethernet 500
Bulfering 71 Fast Ethernet 500

Burst mode 26, 494 Fire wire 302
Bus analyzers 390 FPGAs 187, 191. 343, 347,

Bus arbitration 86, 211, 262 358, 520
Bus interface 8 Full-motion video 214

Bus interface chips 399 Frame grabbers 358
Bus interface models 479 GPIB 195

Bus mastering 109, 187, 191, 233, Graphics 214, 215, 225, 268, 283
347,462 HDL.s 334, 347, 358, 479, 488

Bus-to-bus connections 394 High-level design 520
C-bus 286 HIPPI 234

cache 286 Hot swapping 233
CAD 464,494 1960 200

cardBus 8, 44 IEEE 1394 302
Chipsets 26 1/0 boards 160, 394

CHRP 399 1/0 interfaces 262
Clusters 119 Image processing 22, 119, 275, 358, 381

Communications 13, 353 Industrial applications 12, 13
CompactPCI 17, 178, 284, 312, Industrial control 17, 93, 178, 243, 284,

390,409 409
Compatibility 101 Instrumentation 195
Compliance 520 Interface chips 187, 191, 200, 334,

Computer-aided design 465, 479, 485,488 343,347, 358
Computer-telephony Interoperability 494

integration 13 Interrupts I, 8. 51, 86, 93, 211
Configuration 51 ISA I. 22. 86, 101, 109,

Control systems 17 187. 312
Cores 465 Isochronous data 302

CPLDs 334. 358,494 JPEG 214.358. 366. 381
Data acquisition 22. 154, 187, 195 I.ANS 500

Data acquisition systems 191 Latency 233,302
DataHow 171 Legacy systems 109,312

Debugging 390 Machine vision 358
Delayed transactions 71 Maintenance 443

527

Marketing 440 RACE way 161
Mechanical design 443 RAID 255, 261

Medical applications 22 RAM 225, 268
Memory interface 191, 225, 268 Rambus 225

Mezzanine bus 154 Real-time systems 160
Minicard 7 RISC 274

Mobile applications 7, 454 RISC processors 234
Mobile computing 44, 243 Scaling 171, 381

Mobile systems SCSI 255, 262,328
Models 465, 479,488 Semicustom logic 334, 358

Motherboards 211, 268,399,440, 443 Serial interfaces 261, 328
MPEG 274, 275, 283, 353, Serial storage architecture 285

366, 463 Servers 51 , 1 01 ' 171, 201 ,
Multicomputers 161 261, 262, 286,328

Multifunction devices 211 Shared memory 171
Multimedia 44, 101, 214, 215, 225, Simulation 479, 488

274, 275, 283, 302, STD 32 312
358, 366, 462, 463 SSA 328

Multiprocessors 119, 286 Switching 161, 171
Network adapters 233 T-1 353

Networking 201, 233, 234, 328, Telecommunications 22,409
353, 494, 500

Test and measurement 195
Notebook computers 454

Test equipment 390
Packet switching 13

Testing 465, 485
Parallel processors 119

Timing requirements 334,343
PC cards 7, 8, 44

UMA 268
Performance analysis 26, 201, 488

Verification 485
Personal computers 440, 443

VHDL 494
PICMG 13, 17, 93, 178,

Video applications 353 284, 409

PLDs 343, 358
Video compression 358, 381

Plug and play 452, 454, 463
Video processing 171, 214, 274, 275,

358, 366, 381, 462
PMC 154, 161, 234, 390

Vision applications 358
Portable computers 7

VLIW 275
Portable systems 243

VME 154, 161, 178, 195, 394
PowerPC 61, 399

VXI 195
Power-up 452

WANs 353
Product development 465

Workstations 201, 215
Programmable logic 520

Zoomed Video (ZVt port 8

528

PARTICIPANTS LIST

Edward Agis, Texas Instruments Inc., Semiconductor Group, Hwy 75 South, MS 835,
Sherman, TX, 75091, USA, 903-868-7280

Barbara Aichinger, FuturePlus Systems Corp, 36 Olde English Rd., Bedford, NH, 03110,
USA, 603-471-2734

Manuel Alba, Galileo Technology, 1735 N. First St. #308, San Jose, CA, 95112, USA,
408-451-1400

Ray Alderman, VITA, 7825 E. Gelding Dr., Scottsdale, AZ, 85260-3415, USA, 602-951-8866

Tom Anderson, Virtual Chips Inc., 2107 N. First St., Suite 100, San Jose, CA, 95131, USA,
408-452-1600 x-219

David M. Anderson, Total Company Synergy, P.O. Box 1082, Lafayette, CA, 94549, USA,
510-253-0900

Charles Anderson, Cogent Data Technologies Inc, 175 West St, PO Box 926,
Friday Harbor, WA, 98250, USA, 360-378-2929

Warren Andrews, RTC Magazine, 261 Concord St., West Gloucester, MA, 01930, USA,
508-283-2102

Dave Apte, Omniview, Inc., 100 High Tower Blvd, Suite 201, Pittsburgh, PA, 15205, USA,
412-788-9492

Rod Archer, Award Software, 777 E. Middlefield Rd, Mountain View, CA, 94043-4023, USA,
415-968-4433 x266

Ross Armstrong, Digital Equipment, Mosshill Industrial Estate, Ayr, KA6 6BE, Scotland,
011441292 266955

Venkatesh Arunarthi, Sand Microelectronics, 1630 Oakland Road, A-103, San Jose, CA,
95131, USA,408-441-7138

Jeff Autor, Compaq Computer Corp., MS 090703, PO Box 692000, Houston, TX, 77269, USA,
713-518-8934

Pradeep Bardia, Texas Instruments, Semiconductor Group, MS 835, PO Box 84,
Highway 75 South, Sherman, TX, 75091, USA, 903-868-5110

Mike Becker, Motorola, MD OE512, 9737 Great Hills Trail, Austin, TX, 78759, USA,
512-795-7255

Jim Beedle, In-Stat, Inc., 7418 E. Helm Dr., Scottsdale, AZ, 85260, USA, 602-483-4463

Kanti Bhaduthmal, Sun Microsystems, SPARC Technology Business, 2550 Garcia Ave,
Mountain View, CA, 94043, USA, 408-774-8006

Roger Billings, WideBand Corp., 26900 East Pink Hill Road, Independence, MO, 64057,
USA, 816-220-3000

529

Larry Blackledge, Texas Instruments Inc., Data Transmission Products, 8505 Forest Lane,
MS 8710, Dallas, TX, 75243, USA, 214-997-3603

Keith Bladen, Intel Corp., PCI Components Division, 1900 Prairie City Rd., MS FM5-62,
Folsom, CA, 95630, USA, 916-356-8064

Robert Blau, Mercury Computer Systems, 199 Rivemeck Rd., Chelmsford, MA, 01824,
USA, 508-256-1300

Jag Bolaria, Intel Corp., PCI Components Division, 1900 Prairie City Rd, Folsom, CA,
95630, USA, 916-356-8064

Chris Borghi, FirePower Systems, 190 Independence Dr, Menlo Park, CA, 94025, USA,
415-462-6237

Mark Bronson, c/o Barbara Patterson, Patterson Assoc. (Aeon Systems),
4205 E. Desert Crest Dr., Paradise Valley, AZ, 85253, USA, 505-628-9120

Mark Brown, Intel Corp., Enterprise Computing I/0, 5000 W Chandler Blvd,
Chandler, AZ, 85226, USA, 602-554-3864

Marshall Brumer, Microsoft, One Microsoft Way, Redmond, WA, 98052, USA, 206-936-5840

Richard Burk, Data Translation, 100 Locke Dr, Marlboro, MA, 01752, USA, 508-481-3700

Shelagh Callahan, PC2 Consulting, 3280 SW 170th Ave, #1608, Beaverton, OR, 97006, USA,
503-264-8440

Jack Carter, Sonitech International, 14 Mica Lane, Wellesley, MA, 02181, USA, 617-235-6824

Steve Chen, Chen Systems, 1414 W. Hamilton Ave, Eau Claire, WI, 54701, USA,
715-833-7067

Larry Chisvin, S3, Inc., 2770 San Tomas Expy, Santa Clara, CA, 95051, USA,
408-980-5401 x-3062

Kevin Christiansen, Apple Computer Inc., MDS, 20525 Mariani Ave, MS 60-IO, Cupertino,
CA, 95014, USA, 408-97 4-0308

Frances Cohen, Phoenix Technologies Inc., 2575 McCabe Way, Irvine, CA, 92714, USA,
714-440-8323

Bernard Cole, EE Times, 2700 Woodlands Village Blvd, Suite 300-418, Flagstaff, AZ, 86001,
USA, 602-773-7873

Todd Comins, Digital Semiconductor, Digital Equipment Corp., 77 Reed Rd., Hudson, MA,
01749-2895, USA,508-568-5179

Steve Cooper, I-Bus, 9596 Chesapeake Dr., San Diego, CA, 92123, USA, 619-974-8424

Patrick Correia, Intel Corp., PCI Components Division, 1900 Prairie City Rd, Folsom, CA,
95630, USA, 916-356-8064

Tim Craven, Intel Corp., 5200 NE Elam Young Pkwy, Mail Stop HF3-89, Hillsboro, OR,
97124, USA, 503-696-5805

530

Ian Crayford, AMO, One AMO Place, PO Box 3453, Sunnyvale, CA, 94088, USA,
408-749-5449

Oaude Cruz, National Semiconductor Corp., 333 Western Ave., M/S 10-26, South Portland,
ME, 04106, USA, 207-775-8318

Robert Cutler, AMP Inc., 24736 W. Saddlepeak Rd, Malibu, CA, 90265, USA, 310-456-5325

Kent Dahlgren, I-Cube, 2328-C Walsh Ave, Santa Clara, CA, 95051, USA, 408-986-1077

Rob Davidson, Ziatech Corp., 1050 Southwood Dr., San Luis Obispo, CA, 93401, USA,
805-541-0488

Alan Deikman, Znyx Corp., 48501 Warm Springs Bl, Suite 107, Fremont, CA, 94539, USA,
510-249-0800

Jim Detar, Electronic News, West Coast Office, 1205 Landings Dr., Mountain View, CA,
94043, USA, 415-691-1656

David Dickens, PCibus Solutions, Texas Instruments, PO Box 84, Sherman, TX, 75090,
USA, 903-868-7594

Joseph DiMartino, IBM PC Company, 3039 Cornwallis Rd., MS 201-Kl03B-91B,
Research Triangle Park, NC, 37709, USA, 919-543-9795

Don Dingee, Motorola Computer Group, C/O JERRY GIPPER, 2900 S. Diablo Way,
Tempe, AZ, 85282, USA, 602-438-3025

Thomas Dippon, Hewlett'"Packard, Herrenberger Strabe 130, PO Box 14 30,
Boeblingen, 71034, Germany, (49) 7031-14-3973

Michael Eckley, Interphase, 13800 Senlac, Dallas, TX, 75234, USA, 214-654-5325

Tim Elsmore, Vigra, 10052 Mesa Ridge Ct., San Diego, CA, 92121, USA, 619-597-7080

Ross Ely, Apple Computer Inc., One Infinite Loop, MS:306-4PM, Cupertino, CA, 95014,
USA, 408-97 4-1846

Tim Erjavec, Chips and Technologies, Inc., 2950 Zanker Rd, San Jose, CA, 95134, USA,
408-434-0601 x-4354

Dave Evans, Technical Data Freeway, 9019 Twin Trails Ct, Suite 201, San Diego, CA, 92129,
USA, 619-538-0825

Wayne Fischer, Force Computers Inc, 2001 Logic Dr, San Jose, CA, 95124, USA,
408-369-6260

Jim Fitzgerald, Keithley MetraByte, 440 Myles Standish Blvd, Taunton, MA, 02780, USA,
508-821-1717

Bert Forbes, Ziatech Corp., 1050 Southwood Dr., San Luis Obispo, CA, 93401, USA,
805-541-0488

Billy Garrett, Rambus, Inc., 2465 Latham St., Mountain View, CA, 94040, USA,
415-903-3800

531

Gary Gildersleeve, Host Adapter Group, Cirrus Logic Inc., 3100 W. Warren Ave,
Fremont, CA, 94538, USA, 510-623-8300

Byron Gillespie, Intel Corp., Embedded Processor Division, CH6-319,
5000 W. Chandler Blvd, Chandler, AZ, 85226, USA, 602-554-2653

Peter Glaskowsky, Integrated Device Technology, 2972 Stender Way, Santa Clara, CA,
95054, USA, 408-988-5636

Ernest Godsy, Interphase, 13800 Senlac, Dallas, TX, 75234, USA, 214-654-5325

Mike Goodman, Phoenix Technologies Inc., 2575 McCabe Way, Irvine, CA, 92714, USA,
714-440-8379

Alan Goodrum, Compaq Computer, P.O. Box 692000, Houston, TX, 77269-2000, USA,
713-518-8934

Bob Goodwin, Parallax Graphics, 2500 Condensa St., Santa Clara, CA, 95051, USA,
408-727-2228

Lance Greggain, Genesis Microchip, 200 Town Centre Blvd, Suite 400, Markham, L3R SGS,
Canada, 905-470-2742

Huy Ha, Mercury Computer Corp., 199 Riverneck Rd., Chelmsford, MA, 01824, USA,
508-256-1300

Ken Haase, Farallon Computing, 2470 Mariner Square Loop, Alameda, CA, 94501, USA,
510-814-5217

Frank Hady, Intel Corp., MIS JF2-53, 2111NE25th Av, Hillsboro, OR, 97124, USA,
503-264-8384

Chuck Hafemann, Imaging Technology, 55 Middlesex Turnpike, Bedford, MA, 01730, USA,
617-275-2700

Krista Hardie, Electronic News, West Coast Office, 1205 Landings Dr., Mountain View, CA,
94043, USA, 415-691-1656

Michael Harris, Avance Logic, 46750 Fremont Blvd., Suite 105, Fremont, CA, 94538, USA,
510-226-9555

Adge Hawes, IBM, Dept. 26/19, PO Box 6, Havant, Hampshire, P091SA, England,
44-1705-486363 x-4765

Ray Heckman, AMD, , , , USA,

Jim Henderson, Innovative Integration, 31352 W. Via Colinas #101, Westlake Village, CA,
91362, USA, 818-865-6150

Mike Heylin, Creative Strategies Research, 360 Ritch St, Suite 205, San Francisco, CA,
94107, USA, 415-495-1811

Greg Hill, Firm Works, 480 San Antonio Rd., Mountain View, CA, 94040, USA, 415-917-6985

Jim Hoff, Lucent Technology, 555 Union Blvd., Allentown, PA, 18103, USA, 610-712-5315

532

Bill Holland, IBM Networking Group, Bldg. 002, Dept. C12A, 3039 Cornwallis Rd,
Research Triangle Park, NC, 27709, USA, 919-543-5444

James Hora, ZeitNet Inc., 5150 Great America Pkwy, Santa Clara, CA, 95054, USA,
408-562-1880 x-201

Rodger Hosking, c/ o Barbara Patterson, Patterson & Assoc. (Pentek Corp.),
4205 E. Desert Crest Dr., Paradise Valley, AZ, 85253, USA, 201-767-7100

Roger Hurlbert, Trenton Terminals, 2350 Centennial Dr, Gainesville, GA, 30504, USA,
404-287-3100

Satoshi Iida, Motorola, Inc., Semiconductor Products Sector, 6501 William Cannon Dr., MD
OE216, Austin, TX, 78735, USA, 512-891-2143

Barry lsenstein, Mercury Computer Systems, 199 Riverneck Dr., Chelmsford, MA, 01824,
USA, 508-256-1300

Scott Jensen, Adaptec, C/0 ADAM TRUNKEY AT ADAPTEC, 691 S. Milpitas Blvd,
Milpitas, CA, 95035, USA, 408-957-6639

Steve Johnson, Diamond Multimedia Systems, 2880 Junction Ave., San Jose, CA, 95134,
USA, 408-325-7000

Larry Jordan, Cypress Semiconductor, 3901 North First St., San Jose, CA, 95134, USA,
408-943-2600

James Joseph, Actel Corp., 5525 Evindale Dr, Suite 102, Colorado Springs, CO, 80918, USA,
719-548-4955

Art Kahlich, Solliday Engineering Corp., 1756 18th St, San Francisco, CA, 94107, USA,
512-933-6277

Manish Kasliwal, Sonitech Intl, 14 Mica Lane, Wellesley, MA, 02181, USA, 617-235-6824

Mary Kasse, Force Computer, 2001 Logic Dr, San Jose, CA, 95124, USA, 408-369-6260

Mike Kelley, Apple Computer, 1 Infinite Loop, MS 301-3K, Cupertino, CA, 95014, USA,
408-97 4-8535

Jim Kelsey, SystemSoft, 313 Speen St, Natick, MA, 01760, USA, 508-651-0088

Joe Killian, Killian Associates, 45 Via Del Sol, Nicasio, CA, 94946, USA, 415-662-2533

Maurice Klapfish, Venture Development Corp., One Apple Hill, Natick, MA, 01760-9904,
USA, 508-653-9000

Raymond Kolment, Teknor Industrial Computers Inc., 616 Boivin, Boisbriand, J7G2A7,
Canada, 514-437-5682

Ori Kopelman, Global Brain, Inc., 555 Bryant Street, #210, Palo Alto, CA, 94301, USA,
415-327-2012

Richard Kupnicki, Leitch Technology Centre, 21 Concourse Gate, Unit 16, Nepean, K2E
754, Canada, 416-445-9648

533

David Lawrence, SystemSoft, 200 South A St., Suite 208, Oxnard, CA, 93030, USA,
805-486-6686

Edwin Lee, Pro-Log Inc., 23 Riesling Way, Scotts Valley, CA, 95066, USA, 408-461-1707

Rick Lehtinen, In-Stat, 7418 E. Helm Dr., Scottsdale, AZ, 85260, USA, 602-483-4472

Steven Leibson, EDN Magazine, 275 Washington St., Newton, MA, 02158, USA,
617-558-4214

Markus Levy, EDN, 1936 Sheffield Dr, El Dorado Hills, CA, 95762, USA, 916-939-1642

Adam Ley, Texas Instruments, 6412 Hwy 75 S., MIS 838, Sherman, TX, 75090, USA,
903-868-5761

Jim Lipman, EDN Magazine, 1447 Lennox Lane, Livermore, CA, 94550, USA, 510-606-1370

Sean Long, National Semiconductor, Mail Stop A1545, 2900 Semiconductor Dr.,
PO Box 58090, Santa Clara, CA, 95052, USA, 408-721-3046

Bob Lorentzen, BottomLine Ventures, 2082 Fieldcrest Dr, Milpitas, CA, 95035, USA,
408-262-7780

Mike Maas, Cypress Semiconductor, 2401 East 86th St., Bloomington, MN, 55425, USA,
612-851-5060

Duncan Macvicar, MacVicar Associates, 1171 Buckingham Dr, Los Altos, CA, 94024, USA,
415-962-8053

Aamer Mahmood, Cisco Systems, Bldg B-2, 170 W. Tasman Dr., San Jose, CA, 95134-1706,
USA, 408-526-5278

Tels Maniwa, Integrated System Design Magazine, 5150 El Camino Real, Suite D31,
Los Altos, CA, 94022, USA, 415-903-0503

Kamal Mansharamani, DCM Datasystems, Vikrant Tower, 4 Rajendra Place,
New Delhi, 110 008, India, 91-11-5719967

Trevor Marshall, YARC Systems, C/0 CHIARA RIVERA AT YARC,
975 Business Center Circle, Newbury Park, CA, 91320, USA, 805-499-9444

Bert McComas, InQuest Market Research, 2162 E. Nantucket, Gilbert, AZ, 85234, USA,
602-813-7785

Don McCook, Dolch Computer Systems, 3178 Laurelview Ct, Fremont, CA, 94538, USA,
510-661-2220 x-204

Rick McFarland, SystemSoft, 2350 Mission College Blvd, Suite 450, Santa Clara, CA, 95054,
USA, 408-988-6756 x24

Michael McGowen, Essential Communications, 4374 Alexander Blvd. NE, Suite T,
Albuquerque, NM, 87107, USA, 505-344-0080

John McGrath, Intel Corp., Architecture Labs, 5200 NE Elam Young Pkwy, Hillsboro, OR,
97124, USA

534

Jonah McLeod, Integrated System Design, 5150 El Camino Real, Suite D31, Los Altos, CA,
94022, USA, 415-903-0145

Pierre McMaster, Teknor Industrial Computers Inc., 616 Cure Boivin, Boisbriand, J7G 2A7,
Canada, 514-437-5682

Jim Medeiros, Ziatech Corp., 1050 Southwood Dr., San Luis Obispo, CA, 93401, USA,
805-541-0488

Dave Mendenhall, Adaptec, 691 S. Milpitas Blvd, Milpitas, CA, 95035, USA, 408-957-6645

W. Mentzer, Intel Corp., PCI Components Division, 1900 Prairie City Rd., MS FMS-62,
Folsom, CA, 95630, USA, 916-356-4705

Scott Miller, Dataquest, 251 River Oaks Pkwy, San Jose, CA, 95134, USA, 408-468-8460

Frank Moldstad, PC Graphics & Video, 201 E. Sandpointe Av., Suite 600, Santa Ana, CA,
92707, USA, 714-513-8437

David Morgenstern, Mac Week, 301 Howard St, 15th Floor, San Francisco, CA, 94105, USA,
415-243-3524

Richard Mourn, Symbios Logic, 1635 Aeroplaza Dr, Colorado Springs, CO, 80916, USA,
719-596-5795

Harish Nayak, PicoPower Technology-Cirrus Logic, 3100 W. Warren Ave., Fremont, CA,
94538, USA, 510-252-6292

Jay Neer, Molex Inc., Data/Com Division, 399 W. Camino Gardens Blvd, Suite 103,
Boca Raton, FL, 33432, USA, 407-447-2907 x-3889

Peter Nelson, Toronto Microelectronics, Inc., 5149 Bradco Blvd, Mississauga, Ontario,
L4W2A6, CANADA, 905-625-3203

Paul Novell, Cypress Semiconductor, 3901 North First St, San Jose, CA, 95134, USA,
408-943-2600

Thomas Nygaard, VMETRO, Inc., 16010 Barker's Point Ln. #575, Houston, TX, 77079,
USA, 713-584-0728

Richard O'Connor, Tundra Semiconductor Corp., formerly NewBridge, 603 March Rd,
Kanata, K2K 2M5, Canada, 613-592-0714

Stephan Ohr, Computer Design Magazine, 316 N. Chestnut St., Westfield, NJ, 07090, USA,
908-232-1380

Daniel Palmans, Hewlett-Packard, 5301 Stevens Creek Blvd, Santa Clara, CA, 95051, USA,
408-343-5134

Jim Pappus, USB Implementers Form, 2111NE25th Ave, Hillsboro, OR, 97124, USA,

Phil Parker, Number Nine Visual Technology, 18 Hartwell Ave., Lexington, MA, 02173,
USA, 617-674-8513

Tere' Parnell, LAN Times, 441 E. Bay Blvd., Suite 100, Provo, UT, 84606, USA, 801-342-6801

535

Joe Pavlat, Pro-Log Corp., 12 Upper Ragsdale Drive, Monterey, CA, 93940, USA,
408-646-3511

Jon Peddie, PC Graphics Report, 4 St. Gabrielle Court, Tiburon, CA, 94920, USA,
415-435-1775

Dave Podsiadlo, AMCC, 6195 Lusk Blvd, San Diego, CA, 95121, USA, 619-535-4279

J. Gerry Purdy, Mobile Computing Insights, Inc., 20863 Stevens Creek Blvd, Suite 320,
Cupertino, CA, 95014, USA, 408-777-4852

Said Rahmani-Khezri, Pathlight Technology, 767 Warren Road, Ithaca, NY, 14850, USA,
607-266-4000

K.K. Rao, Mylex, 34551 Ardenwood Blvd, Fremont, CA, 94555, USA, 510-796-6050 x-215

Selliah Rathnam, Philips Semiconductors, Trimedia product group, 811 E Arques Ave,
Sunnyvale, CA, 94088, USA, 408-991-2868

Dave Reed, Nvidia Corp., 1228 Tiros Way, Sunnyvale, CA, 94086, USA, 408-720-6100

Martin Reynolds, Dataquest, 251 River Oaks Pkwy, San Jose, CA, 95134, USA, 408-468-8212

Desi Rhoden, VLSI Technology, 8375 South River Parkway, Tempe, AZ, 85284, USA,
602-752-3323

Tracy Richardson, Digital Semiconductor, Digital Equipment Corp., 77 Reed Rd.,
Hudson, MA, 01749, USA, 508-568-5103

Dave Ridgeway, Xilinx Inc., 2100 Logic Dr, San Jose, CA, 95124, USA, 408-559-7778

Dwight Riley, Compaq Computer Corp., MS 100505, PO Box 692000, Houston, TX, 77269,
USA, 713-518-4367

Jack Roberts, Dataquest Inc., 251 River Oaks Pkwy, San Jose, CA, 95134, USA, 408-468-8539

Kim Rubin, GreenSpring Computers, 1204 O'Brien Drive, Menlo Park, CA, 94025, USA,
415-327-1200

Scott Ruple, Emulex, 3535 Harbor Blvd, Costa Mesa, CA, 92626, USA, 800-EMULEX3

Arthur Ryan, National Instruments, 6504 Bridge Point Pkwy, Austin, TX, 78730, USA,
512-433-8845

Kelly Ryer, MacWeek, 301 Howard St., 15th Floor, San Francisco, CA, 94105, USA,
415-243-8524

Mike Salameh, PLX Technology, 625 Clyde Ave, Mountain View, CA, 94043, USA,
415-960-0448

Bill Samaras, Intel Corp., 1606 Knollwood Ave, San Jose, CA, 95125, USA, 408-765-0824

Ron Sartore, 11511 Eastridge Pl., San Diego, CA, 92131, USA, 619-549-1290

Sanjay Sawant, Quickturn Design Systems, 440 Clyde Ave, Mountain View, CA, 94043,
USA, 415-967-3300

536

Frank Schapfel, Digital Semiconductor, Digital Equipment Corp., 77 Reed Rd., HL02-
1/Hl2, Hudson, MA, 01749, USA, 508-568-4861

Harold Schiefer, Genesis Microchip Inc., 719-35 Ormskirk Ave, Toronto, 1A8M6S,
CANADA, 905-470-2742

Walter Scott, IBM Corp., 11400 Burnet Road, Austin, TX, 78758, USA, 512-838-7268

Fernando Serra, Imaging Technology, Inc., 55 Middlesex Turnpike, Bedford, MA, 01730,
USA, 617-275-2700 X330

Joseph Sgro, Alacron, 71 Spitbrook Rd, Suite 204, Nashua, NH, 03060, USA, 603-891-2750

Tony Shaberman, Intel Corp., Flashcard System Group, 1900 Prairie City Rd, FM3-77,
Folsom, CA, 95661, USA, 916-356-7399

Rob Shaddock, Loughborough Sound Images, Loughborough Park, Ashby Rd,
Loughborough, Leicestershire, LEll 3ne, England, 011-44-1509634365

Tom Shanley, MindShare, Inc., 2202 Buttercup Dr, Richardson, TX, 75082, USA,
214-231-2216

Gerritt Slavenberg, Philips Semiconductor, Trimedia, 811 E. Arques Ave, PO Box 3409,
Sunnyvale, CA, 94088, USA, 408-991-4974

Brian Small, QuickLogic, 2933 Bunker Hill Lane, Santa Clara, CA, 95054, USA,
408-987-2003

Chuck Small, Hewlett-Packard, 1900 Garden of the Gods Rd, Colorado Springs, CO, 80901,
USA, 719-590-2006

Niel Smith, Pacific Technology Group, 4701 Patrick Henry Dr., Suite 2101, Santa Clara, CA,
95054, USA, 408-764-0644

Dennis Snyder, Symbios Logic, 1630 Aeroplaza Dr, Colorado Springs, CO, 80916, USA,
719-573-3573

Cary Snyder, Virtual Chips, 2107 N. First St., Suite 100, San Jose, CA, 95131, USA,
408-452-1600x214

Jeff Solliday, Solliday Engineering Corp., 1756 18th St, San Francisco, CA, 94107, USA,
415-621-0616

Margit Stearns, Symbios Logic, 1635 Aeroplaza Dr, Colorado Springs, CO, 80916, USA,
719-573-3228

Roger Storer, Second Wave, Inc., 2525 Wallingwood Dr, Bldg. 13, Austin, TX, 78746, USA,
512-329-9283

Oyde Thomas, Allen-Bradley, Automation Group, 1 Allen-Bradley Drive,
Mayfield Heights, OH, 44124, USA, 216-646-4402

Tom Thorsteinson, Linear Systems, 959 Powell Ave, Winnipeg, R3H OH4, Canada,
204-632-4300

537

Michele Tidwell, IBM, Storage Systems Division, 5600 Cottle Rd, San Jose, CA, 95193,
USA, 408-256-3874

Roger Tipley, Compaq Computer Corp., PO Box 692000, Mail Stop 050708, Houston, TX,
77269, USA, 713-374-6691

Neil Trevett, 3Dlabs, Inc., 181 Metro Drive, Suite 520, San Jose, CA, 95110, USA,
408-436-3456

Dawn Tse, Mylex Corp., 34551 Ardenwood Blvd, Fremont, CA, 94555, USA, 510-796-6050

Mike Turay, Multimedia PC Product Group, Philips Semiconductors,
800 E. Middlefield Rd., Mountain View, CA, 94043, USA, 415-335-2546

Rajesh Vashist, Adaptec Inc., 691 S. Milpitas Bl, Milpitas, CA, 95035, USA, 408-957-4869

Giri Venkat, Yamaha Systems Division, 100 Century Center Court, San Jose, CA, 95112,
USA, 408-437-3133

Dick Vignoni, Digital Equipment Corp., 77 Reed Rd., Hudson, MA, 01749-2895, USA,
508-568-5179

Deborah Vogt, Digital Semiconductor, Digital Equipment Corp., 77 Reed Rd.,
Hudson, MA, 01749, USA, 508-568-6328

Eyal Waldman, Galilio Technology, 1735 N. First St. #308, San Jose, CA, 95112, USA,
408-451-1400

Hans Weersch, Philips Semiconductor, 811 E. Arques Ave., MS 52, PO Box 3409,
Sunnyvale, CA, 94088, USA, 408-991-4507

Ray Weiss, Computer Design, 22830 Ostronic Dr, Woodland Hills, CA, 91367, USA,
818-704-9454

George White, Corollary, Inc., 2802 Kelvin Avenue, Irvine, CA, 92714, USA, 714-250-4040

David Wilner, Wind River Systems, 5000 W Chandler Blvd, Chandler, AZ, 85226, USA,

Tom Wilson, Tundra Semiconductor Corp., formerly Newbridge Microsystems,
603 March Rd., Kanata, K2K2M5, CANADA, 613-592-0714

Ron Wilson, EE Times, 2800 Campus Dr, San Mateo, CA, 94403, USA, 415-525-4498

Diana Wilson, Intel Corp., Mail Stop FM4-18, 1900 Prairie City Rd., Folsom, CA, 95630,
USA

Lee Wilson, IBM, Power Personal Systems, 11400 Burnet Rd, Mail Stop 4357,
Austin, TX, 78758, USA, 512-838-6569

Mark Wodyka, AITech International, 47971 Fremont Blvd., Fremont, CA, 94538, USA,
510-226-8960, x113

Leo Wong, Altera Corp, 3 W. Plumeria, San Jose, CA, 95134, USA, 408-894-7893

Shawn Worsell, V3 Corp., 2348 Walsh Ave., Suite G, Santa Clara, CA, 95051, USA,
408-988-1050

538

Maury Wright, EDN, 12544 Robison, Poway, CA, 92064, USA, 619-748-6785

Yong Yao, Micro Design Resources, 480 San Antonio Rd, Suite 210, Mountain View, CA,
94040, USA, 415-917-3066

Cayton Yee, Philips Semiconductor, Interactive TV Group, 811 E. Arques Ave,
PO Box 3409, Sunnyvale, CA, 94088, USA, 408-991-2986

539

