oM
MICRO

OM MICROASSEMBLER
REFERENCE MANUAL

NANODATA CORPORATION

2457 Wehrie Drive Williamsville, New York 14221
{718] 631-5880
San Diego, Calif. 82120
[714] 464-3025

’

L

T

=
=
=

QQQ M M
a a MM MM
Q Q MMUMM
Q Q M M M
Q Q M M
Q Q M M
@ Qg q M M
Q Q M M
Qeq Q@ M M
M IIIII €cc RRRRR gao
MM 1 C C R R o
MM I C C R R @O
M I C R R 4]
M I C RRRRR 1]
M I C R R a
M I C C R R]
M ! C C R R g
M IIIII cccC R R Gaa

@M MICROASSEMBLER

REFERENCE M ANUAL

Version 1.3

First edition

Copyright (cl 1976
NANODATA CORPORATION
2457 Wehrle Drive
Williamsville, New York 14221
716-631-5880

GM MICROASSEMBLER REFERENCE MANUAL NANODATA CORPORATION Ed.1 Page 0002

M MICROASSEMBLER REFERENCE MANUAL NANODATA CORPORATION Ed.l1 Page 0003

TABLE OF CONTENTS

1 INTRODUCTION == e oo o o o e e o

1.1 OVERVIEW =—=—m——m——m e S e ———————
1.2 ASSEMBLER ORGANIZATION ——m<—mmmmmmm = mmmmbmm mmmmm e e e

103 UTILIZATION mmmmmmm o o e e e e e e e o
2 LANGUAGE STRUCTURE m=mmm oo s e e o ————————————
2.1 STATEMENT CLASSIFICATION mm—m—mm e o e o e e e e
2.1e1 COMMENTS —mm=e——eememm e oo e T e
2.1.2 CONTROL (PSEUDO OPERATIONS) =——=m——m——mm—m ———————————e
2.1.3 MACHINE INSTRUCTIONS (OPERATIONS} =—-—-m——momommmmmmomee
2.104 DATA (CONSTANTS] mommmmmm e e oo e e
2.2 LEXICAL ANALYSIS =m o e e o o e e e e e
20201 NAMES mmm e e e e e ———————————
2.2.2 OPERATORS ===m——-mmee e e e e S
2.2.3 NUMBERS —=o= oo o s o e i e e
2.3 EXPRESSION EVALUATION ~=m————emmommmm e oo R ————————— ,
2.3.1 EXPRESSION IN CONTEXT —emmme—me— e e ——
2.3.2 SUPPORTED OPERATIONS ——mmmm e e e e e e e
2.3.3 ARITHMETIC PRECISION —mmmmmm oo e e oo
2.3.4 SPECIAL CONSIDERATIONS —==mmmmmmm o e e
2.4 STATEMENT PROCESSING == mmmmorm e o e e ——— ————
2.46.1 LABELS —mmmm—m—e e e e e e
2.6.2 SYMBOLIC EQUATES —mmm e o o o e e e
2.4.3 PSEUDO OPERAIONS - m—————————— e ———
2.4.4 INSTRUCTION PROCESSING ==mmm=mmmmem e e e e
2.4.5 DATA (CONSTANT} PROCESSING ===mmmm=-m—m- ———————— e
3 PSEUDD OPERATIONS ————m- ———— ———— ——————— R ——————
3.1 PROGRAM DELINEATION mmmm e oo e e e e e e
3.1.1 oEND — END OF PROGRAM —mmmmo e e e e
3.1.2 .TITL - PROGRAM TITLE =---—=- ——————— e —————
3.1.3 JEOT - END OF TAPE (NULL) ~—=——————o-——amme ———————— _————
3.2 CONDITIONAL ASSEMBLY =mm e o o e e e e
3.2.1 .IFE — ASSEMBLE IF EXPRESSION IS EQUAL TO ZERQ =—-=—----=-
3.2.2 .IEN - ASSEMBLE IF EXPRESSION IS NON~ZERQ --—--—-—---——v
3.2.3 .ENDC — END CONDITIONAL ASSEMBLY =——=—=——-—mommmomem e
3.3 LISTING CONTROL —- e
3.3.1 EJECT - END OF PAGE (FORMS] —m—=-m=e———mmcmmmommommemomm -
3.3.2 LISTOFF = TURN LISTING OFF ———memeemeeoe oo e
3.3.3 LISTON - TURN LISTING ON -—---—-- G e
3.4 ASSEMBLY CONTROL —=====n e
3.4.1 .BLK - BLOCK DATA GENERATION ——-mmmmn e
3.6.2 .LOC - LOCATION COUNTER DEFINITION =—-——--———-—mmommemmee
3.4.3 o.RDX - NUMBER BASE DEFINITION =~—-=---=—=—=nn —————————
3.6.4 JTXTM — SET TEXT MODE ~—m—=-m———m—emeee e ———————
306.5 .TXT = GENERATE TEXT STRING DATA mmmmm—mmmmm———mmmm oo
3.4.6 .XPNG - DELETE PREDEFINED SYMBOLS ——-—-——-——-——————o—eee
4 INSTRUCTION SETS —mmmmm e ommm s oo o o e e e e
4.1 PREDEFINED "NOVA" INSTRUCTION SET ==-m—————-———oee —————————ee
4.1.1 MACHINE INSTRUCTIONS —mm——-==—=——————— ————— ————————
4.1.2 STATEMENT FORMATS ———mm————e——— e -— -

QM MICROASSEMBLER REFERENCE MANUAL NANODATA CORPORATION Ed.l1 Page 0004

4.2 EXTERNALLY DEFINED MICROINSTRUCTION SETS ————mmmmmmmmeeoccmmmme

4.2.1 MACHINE INSTRUCTIDNS ———-——m——mm- T p——

442.2 STATEMENT FORMATS ————m e e

423 DEFINITION FILES mo oo e e

5 PROGRAM STRUCTURE ——- e

5.1 ABSOLUTE PROGRAMS = ———mmmmmmeemmee —————

5.1.1 MICROPROGRAMMING CONSTRUCTS —mmmmmmm—ommmoo———_______

5.1.2 “NOVA" PROGRAMMING CONSTRUCTS ——-—-—c—m—eemo ————————— e

5.2 "TASK™ SYSTEM INTERFACE ————mm=—mmm oo

5.2.1 MEMORY ORGANIZATION ~—-mmm- = oo ——mmm e

5.2.2 “SYSTEM"™ INSTRUCTION CALLS ~——-———omommmmemo —————————

5.3 "NCS" SYSTEM INTERFACE ~——mmmm e oo

5.3.1 MEMORY ORGANIZATION —=—=—=c--memmeeo o e

5.3.2 SYSTEM CALLS AND LINKAGES —==—m—o—cmmmmmmome ————

6 FILE FORMATS mom oo e R

6.1 SOURCE INPUT (DISK} FILE FORMAT ==———m——mmmommmmmmm

6.2 BINARY OBJECT (DISK)} FILE FORMAT ==——-mmmmm oo

6.3 ARCHITECTURAL DEFINITION (DISK} FILE FORMAT —--—--mm e mmmmmeeee

6.4 SOURCE LISTING (PRINTER/CGNSOLE} FILE FORMAT ——-—————mmmemm e

7 OPERATING PROCEDURE mmmm oo o s

7.1 PREPARATION OF SOURCE INPUT FILES ====m==——mmmmommmm e

7.2 PREPARATION OF DEFINITION FILES ====mmm—eooommommmm

7.3 ASSEMBLER INVOCATION OPTIONS ——mm=m = e

7.3.1 A - SELECT ALTERNATE DEVICE (CONSOLE) ————mommmmmmmmeee

7.3.2 X - SUPPRESS SYMBOL TABLE LISTING ==-=—=-—mm—ommmmmemme

7.3.3 N - NO LISTING, DISPLAY ERROR LINES ONLY ————————mmeeee -

7.3.4 L - SUPPRESS ALL LISTABLE DUTPUT ==m-m—m—oommmmmomme

7.4 BINARY OBJECT FILES ——mommmm e e

7.4.1 MICROPROGRAM OBJECT FILES ==mmmmmme oo

7.4.1.1 "QMLD" MICROPROGRAM LOADER ==m=-eo—o e

7.4.1.2 "PREP" CARTRIDGE TAPE PREPARATION ———m———m——mmem

7.4.2 “NOVA"™ FORMAT OBJECT FILES —=m=m- oo
APPENDICES

A. CHARACTER SET mmm e e e e

B. MICROASSEMBLY ERROR MESSAGES =~=mm==om—momommmmemoo ————— e

C. PSEUDD OPERATIDN LIST momemmmoooeeeeeeeeeem

@M MICROASSEMBLER REFERENCE MANUAL. NANODATA CORPORATION Ed.l1 Page 0005

1 INTRODUCTION

The @M MICROASSEMBLER is a main store program written for the emulated
“NOVA'" computer to satisfy two assembly language processing needss

- assembly of QM/SYSTEM control store microprograms.
- assembly of "NOVA" format assembly language programse.

The QM MICROASSEMBLER will be referred to by the name "MICRO" throughout
this manual.

This manual provides source language specifications and operating instruct-
ions for programmers writing either class of program. NOVA format assembly
capability is provided for those maintaining or modifying the NANODATA
CONTROL SYSTEM (NCS), which is written utilizing NOVA type instructions.
Beyond that, MICRO is extensible and will be restructured, dynamically, to
conform to any of the microprogramming architectures defined for execution
on the GM/SYSTEMS.

1t is assumed that the reader is familiar with the terminology and operat-—
ion of the NANODATA CONTROL SYSTEM. Additional! information on NCS is pro-
vided in the GM - NCS OPERATIONS GUIDE.

1.1 OVERVIEW

MICRO is a conventional two pass assembler with special provision for the
definition of microinstruction operation codes, formats and constants when
used for the assembly of QM/SYSTEM microprograms.

Two NCS files are used as input. They are:

DEF - a binary ocutput fife from a GM/SYSTEM Nanoassembly, containing
the definition of microinstruction operation codes, formats and
constants. This file can be omitted when assembling NOVA programs.
Up to four DEF files can be assigned for each assembly.

INPT - a source fite containing the source program to be assembled.
This file is always required. An additiomnal three files may,
optionaltlys be assigned to INPT as symbolic definition files.
These files will not produce any generated object codes but will
provide common symbolic vafues for reference during the assembly.

One NCS file is produced as output. It iss

BIN - a loadable formaty binary output file of the assembled object
program. This file may be omitted if only an assembly checky oOF
fistingy is desired.

An optional printer listing is also produced as a result of an assembly.
This listing shows the object code addresses, the assembled object code,
and the source statements, along with an indication of any errors detected
during the assembly.

An alphabetized summary of all operation codes and all symbolic names may
be listed, optionally, at the end of the assembly.

QM MICRDASSEMBLER REFERENCE MANUAL NANODATA CORPORATION Ed.1 Page 0006

1.2 ASSEMBLER ORGANIZATION
MICRO consists of four basic phases. These arec:

1) DEFINITION phase - the DEF file (if any) is processed and a symbol
table is constructed for the microinstruction ocperation codes and
constants appropriate to the microprogram environment for which the
assembly is to be done. If no DEF file is specified, MICRO assumes
that the assembly is to be of a NOVA type program, and built—in

symbo!l tables and formats appropriate to the NOVA architecture are
used.

2) PASS 1 - The INPT files are processed and all labels are evaluated
’ and placed into the symbo! tables. Memory space is allocated
through use of a micro—location-countery which is incremented each
time & memory word is generated. The values assigned to Labels are
usually that which is found in the micro-location-counter as Labels
are encountered.

3) PASS 2 — the primary (first) INPT file is again processed and the
object code corresponding to each statement is generated. If
specifiedy the BIN file is produced during this phase. The output
listing is also produced if desired.

4) SUMMARY phase — the symbo! tables are scanned to produce an alpha-—
betized listing of the operation codes and symbolic names used in
the program.

1.3 UTILIZATION

MICRDO is designed to operate under the NANODATA CONTROL SYSTEM, utilizing
input / output and loader facilities provided therein. An assembly may be
initiated from the system console or from controf records previously placed
into the system "COMMANDS" file. All general assembly options and file
names are specified during initiation. :

The resulting binary, object program, file is produced in either QM/SYSTEM
microcode format, if any DEF files were specified, or NOVA code format, if
no DEF file was declared. ‘' NOVA object files are in a format equivalent to
that required for loading on standard NOVA systems. OQOM/SYSTEM object files
are provided in an internal format which is capable of being loaded into
either of the 18 bit QM/SYSTEM memories, control! store or main store. The
object file formats are fully described in section 6.2 of this manual .

Assembler operating procedures are described in detail in chapter 7.

QM MICROASSEMBLER REFERENCE MANUAL NANODATA CORPORATION Ed.I Page 0007

2 LANGUAGE STRUCTURE

This section discusses the rules for structuring source program statements.
Statements are classified into four types® comments control, instructiony
and data. Where applicable, statements are further subdivided into fields,
and these fields are themse!ves defined in terms of elements.

2.1 STATEMENT CLASSIFICATION

Statements are always contained within one source INPT file record. There
is no continuation of any statement on the succeeding record. Each new
statement is classified by either the first character or first type

of element recognized, when scanning the statement from left to right.

The following subsections discuss the meaning of each statement type.

2.1.1 COMMENTS

A comment statement ¥is used to annotate the program listing. Any statement
that has an asterisk (=) or semicolon (3) in its first character position
will be treated as a comment statement. It will be printed but will have
no other effect on the program translation.

A semicolon may appear in any position on any statement, causing all char-
acters to the right to be considered as comments for that statement.
Should the first non-blank character on a statement be a semicolon then
that statement is also considered a comment statement. The only except-—
ion to this rule is that semicolons may be used as character data where
text strings are allowed.

2.1.2 CONTROL (PSEUDD OPERATIONS!

MICRO maintains certain symbolic names in a special reserved name list,
known as PSEUDO OPERATIONS. When a statement begins with a PSEUDDO OPER-
ATI1ON name that statement is classified as a CONTROL statement. Each
CONTROL statement has an immediate effect on MICRO, to control the
current assembly.

PSEUDDO DOPERATIONS may be used to control the source statement listing,
conditionally determine whether object code should be generateds specify
the microprogram location counters or to generate text string data.
PSEUDO OPERATIONS are discussed in detail in chapter 3.

2.1.3 MACHINE INSTRUCTIONS (OPERATIONS)

MICRO contains a predefined list of symbolic names that correspond to most
of the machine operation codes of the "NOVA" computer architecture. This
list may be completely replaced by a dynamically generated list from one
or more micro-machine instruction set definition (DEF) files. Whenever

a statement begins with a symbolic name that exists in this machine oper-
ation code list that statement is classified as a MACHINE INSTRUCTION.

QM MICROASSEMBLER REFERENCE MANUAL NANODATA CORPORATION Ed.l Page 0008

Each operation code is provided with a set of format data which is used to
determine how the assembler should further handle the processing of the
statement. The final product of the processing of a MACHINE INSTRUCTION is
the generation of one or more object program words.

2.1.4 DATA (CONSTANTS)

WHhen a statement does not meet the haéic qualifications for any of the

classifications described above, it will be considered to be a DATA
declaration statement. A DATA statement may contain several different
DATA decliarations, separated by commas. FEach DATA declaration will produce

one word of object program data. The term "CONSTANTS" is included here
since it is frequently used in other literature to refer to data generating
statements.

2.2 LEXICAL ANALYSIS

Lexical analysis is the process by which an assembler locates symbolic
entities on the source statement record. Each of these entities wil! be
referred to below as an velement". 1In MICRO, the lexical analyser can
recognize three types of elements: NAMES, OPERATORS, and NUMBERS. The
standard ASCII character set is used by MICRO, though only a 64 character
subset (see APPENDIX A} is recognized during lexical analysis. The
following subsections define these elements.

2.2.1 NAMES

A NAME is defined as a letter or perfod (.) character alone, or followed
by any number of letters, digits, or periods. Although a NAME may be any
length, only the first 10 characters of each NAME are used to uniquely
identify that NAME. It is the programmer’s responsibility to avoid using
NAMES where only characters beyond the tenth position differ. FEach NAME
will take on further semantic meaning, depending on how it is used and
what it represents. This will be discussed under STATEMENT PROCESSING,
in section 2.3 below.

Examples: Legal NAMES:

A ABCDEOOOOO ANTIENERGISTIC e« AND.SO.FORTH. ..

Itlegal NAMES:
987 <actually a number)> FEX}] <contains illegal characters>

T77SEVEN <a name cannot begin with a digit)

QM MICROASSEMBLER REFERENCE MANUAL NANODATA CORPORATION Ed.1 Page 0009

" 2.2.2 OPERATORS

An OPERATOR is normally a single, special character {(not a lettery digit,
or period.) OPERATORS are used to delimit sets of elements (these sets
are known as fields)l,y, or to define relationships between elements (such as
arithmetic operations.) The following is a list of OPERATORS and thelir
meanings to MICRO. '

nown Any number of blank characters may delimit specific fields.

Exclamation point, represents the logical operation "OR".

!
€ Amper sand, represents the logical operation ®“AND".
+ Plusy used for arithmetic addition.
- Minusy used for arithmetic subtraction.
u Asterisky used for arithmetic multiplication.
/ Stashy used for arithmetic divisiane.
" Comma, used to delimit fields within certain statements.
H Semicolan,; used to delimit the comment field of a statement.
P At signy tecognized during "NOVA" type assemblies (indirectl).
Paund signs recognized during "NOVA" assembiies (suppress datal.
= Equals classifies symbolic EQUATE statements.
H Ceclon, identifies symhaolic LABEL names.
. Periody special use to identify decimal valued NUMBERS.
" Quotation mark, precedes character value constants.
< Less than charactery ande..e.
> Greater than charactery delimit subfields in text strings.
Any other special characters not listed above will be lexically marked as

OPERATORS, but will be indicated as erroneous elsewhere in MICRO.

2.2.3 NUMBERS

A NUMBER consists of a string of one or more digitsy 0O through 9. NUMBERS
may be subclassified as DECIMAL (base 10) NUMBERS whenever the digit string
is terminated by a period (.}. When delimited by any other character, the
numeric value representation of a NUMBER is determined by the currently
assigned radix (base} value. At the beginning of an assembly the initial
radix value is 8, permitting alt NUMBERS not followed by a period to be
interpretted as octal values. NUMBERS are syntactically defined to legally
consist of only those digits that are lower in value than the currentliy
defined radix value.

Exampless® Legal NUMBERS s
(Radix = 8) 32767. 32767 0010. 161010 2
(octal values) 077777 032767 0000t 2 161010 000002
(Radix = 2) 32767. 32767 po10. 101010 2

(octal values) 077777 (iltlegal] 000012 000052 (iftlegal)

QM MICROASSEMBLER REFERENCE MANUAL NANODATA CORPORATION Ed.1 Page 0010

A numeric value representation of individual ASCII characters may be obtain-
ed by preceding each character by a quotation mark (") character. Thus the
character pairs "A through "Z will produce the octal values 101 through 132,
respectively. Refer to APPENDIX A for a complete list of ASCI! character
values.

2.3 EXPRESSION EVALUATION

An EXPRESSION is defined to be a set of elements consistinag of NAMES and
NUMBERS separated by any of the recognizable arithmetic and logical :
OPERATORS. The purpose of an EXPRESSION is to provide a means of producing
a single numeric value through reference to, and arithmetic operations
upons other values.

When an EXPRESSION is processed, the elements are accessed in a left to
right order. There are no hierarchal attributes assigned to any OPERATORS.
NUMBERS are converted to binary values according to the rules covered in
section 2.2.3. NAMES are located in the symba! table and their values are
extracted. When a NAME is referenced it must be found in the symbo! table,
otherwise a diagnostic indication will be produced.

Most EXPRESSIONS are processed onty during assembly PASS 1. These EXPRES-—
SICNS may contain references to NAMES declared anywhere within the source
program. Certain PSEUDO OPERATION statements are capable of processing
EXPRESSIONS during PASS I. NAMES referenced by these statements must be
specified in the source program preceding the reference. Specification of
these NAMES may be accomplished through use of LABEL and EQUATE statements,
discussed in sections 2.4.1 and 2.4.2, respectively. The PSEUDO OPERATICNS
that process EXPRESSIONS in PASS 1 are: .BLK first operand only (section
3e.4.1)y IFE (section 3.2.1)}, .IFN (section 3.2.2), .LOC fsection 3.4.2),
«RDX (section 3.4.3).

2.3.1 EXPRESSION IN CONTEXT

There are two types of context to be considered. First is the assembly
phase. During PASS 1, EXPRESSIONS will be processed only if they appear on
certain CONTROL statements, in appropriate fields. All EXPRESSIONS are
evaluated during PASS 2, even those already processed in PASS 1. The
results of those evaluated in both passes must match or an error condition
may be indicated. The second context is the ftocation of the EXPRESSION,

in terms of the particular statement class and field position on that
statement.

An EXPRESSION field may contain any number of elements. It will be termin-
ated upon occurrance of the delimiter UPERATORS: comma (,), semicolon (),
and greater than (>}, and also by end of record. The use of particular
delimiters depends on the type of statement used. For example, the greater
than delimiter is used only within text strings, where an EXPRESSION can be
imbedded. Blanks may be used as NAME or NUMBER delimiters, but cannot
terminate an EXPRESSION.

QM MICROASSEMBLER REFERENCE MANUAL NANODATA CORPORATION Ed.l1 Page 0011

2.3.2 SUPPORTED OPERATIONS

A total of six arithmetic and fogical operations are supported by MICRO.
The four arithmetic operations are? addition, subtraction, multiplication,
and division. Two logical operations are provided: logical sum (OR} and
logical product (AND). All operations are performed in a strict left to
right order. The following list shows the OPERATORS used to represent
these operations. Each is followed by an example (octal radix is assumed.])

+ ADDITION
A + B + MORE + CONSTANTS + 1 + 2000.

- SUBTRACTION
0 -A B - 100. #+ X - Y

e

THE LEADING O MAY BE OMITTED.

* MULTIPLICATION
5 % DATA * OFFSET + 1

/ DIVISION.
WORDS / 2 + 1

! LOGICAL SUM (OR}

A B /C + 7 ¢t 400000 FORCE SIGN OF VALUE NEGATIVE.

»e

& LOGICAL PRODUCT (AND]
LOCATION.A - LOCATION.B & 4000003 EXTRACT ONLY THE RESULTING SIGN BIT.

2.3.3 ARITHMETIC PRECISION

MICRG maintains a full 18 bit value for each NAME and NUMBER processed.
NUMBERS that have values greater than that which can be represented by an
18 bit field wili be truncated, modulo 262,164. During EXPRESSION evalua-—
tion all overflow from muitiplicationy, addition, or subtraction operations
will be discarded. No indication of this form of truncation will be made.
Iilegal division operationsy such as dividing by zeros will usuatly produce
a minus 1 result and no error indication.

QM MICROASSEMBLER REFERENCE MANUAL NANGDATA CORPORATION Ed.l Page 0014

2.4.1 LABELS

LABEL statements consist of one or more LABEL NAMES. A LABEL NAME is any
fegal NAME followed by a colon (¢} character. Each of the LABELS appearing
on the same record will be assigned the current numeric value of the micro-
focation—counter. Any other statement class may follow a LABEL statement .
within the same record. LABEL NAMES, though, may not be preceded by any
other statement class on a recorde.

LABELS declared ahead of statements that generate more than one word of
object code will be assigned the location—-counter value of the first word
generated by that record. LABELS are used to provide symbolic reference to

instructions or data areas.
Exampless LABEL statements:
START= BEGIN: ENTRY: ;3 ALL THREE LABELS WILL BE ASSIGNED THE SAME VALUE

K1000+= 1000. DATA CONSTANT VALUE $000. IS NAMED KIOOO

EY)

K2000: 2000. $ LABEL K2000 HAS A VALUE ONE GREATER THAN K1000

2.4.2 SYMBOLIC EQUATES

A statement beginning with a NAME followed by an equal sign (=) is classi~—
fied as an EQUATE statement. These statements provide the capability to
assign values to LABELS other than the value of the current micro-location-
counter. A LABEL NAME may be assigned a value only once within the same
assembly. The value to be assigned is specified in the field following the
equal sign. This field contains one EXPRESSION. EXPRESSIONS are described
in section 2.3, above.

Exampless EQUATE statements:
ABC = 770. § LABEL "AB(C™ REPRESENTS 770 DECIMAL
cBSs = ABC + 990, / 2. s LABEL "CBS" REPRESENTS 880 DECIMAL
NBC = CBS -~ ABC * 6. + LABEL "NBC" REPRESENTS 660 DECIMAL

QM MICROASSEMBLER REFERENCE MANUAL NANODATA CORPORATION Ed.! Page 0015

2.4.3 PSEUDO OPERATIONS

When a statement begins with a NAME, and that NAME is in the PSEUDO OPER-
ATIONS list, MICRO will perform some. immediate, special, action. Most of

- these actions function to control MICRG!s operation. Following recognition
of the OPERATOR a CONTROL statement processor is entered to perform the
specified action. LABELS may precede all statements in this class. A&n
OPERATOR NAME must be followed by one or more blanksy a semicofon, or an
end of record.

Fields to the right of the PSEUDO OPERATOR NAME are handied differently by
each CONTROL statement processor. Some require full arithmetic EXPRESSIONS
to define the vafue to be used. GQOthers utilize the field as a character
strina, disabling the normal! ltexical meaning of most characters. Comments
may be included at the end of most CONTROL statement types, by preceeding
them with a semicolon (3}. CONTROL statements are terminated only by the
end of record being reached. :

Exampless CONTROL statements:
LOC « + 256. s ADVANCE PROGRAM LOCATION 256 WORDS

« TXT / CHARACTER STRING /5 GENERATE ASCII TEXT DATA

QM MICROASSEMBLER REFERENCE MANUAL NANODATA CORPORATION Ed.1 Page 0016

2.4e4 INSTRUCTION PROCESSING

When a statement begins with a NAME, and that NAME is in the OPERATION
CODES listy MICRO will begin to generate a MACHINE INSTRUCTION. The
action to be taken in the generation of each instruction depends on which
of the 16 microinstruction formats, or 8 NOVA instruction types, has been
declared. MICRO locates the instruction format associated with the
OPERATOR NAME, within the OPERATION CODES list. The actual instruction
format is passed to MICRO, from the DEF fifey, as a binary value. This
value may be declared symbolically during 2 Nanoassembly. The table below
indicates the binary format values, the symbolic NAMES available during
Nanoassemblies, and the actual format configuration.

The present capabilities for object code generation provide for either 18
or 36 bit instructions, with several different operand field selections.
Codes 40 through 47 generate 26 bit (2 word} instructionsy while fhe
remaining codes generate 18 bit (1 word] instructions. MICRD may be
extended to support an untimited number of instruction configurations, as
the need arises.

NANOASSEMBLY SOURCE

OCTAL DEFINITION STATEMENT

CODE NAME FORMAT

20 0P NULL opr7 t KEY Bit Positions

21 OP A.B OP7 A5A,B6A !

22 oP A.BR OP7 ASA,B6R ! OP7 XXX XXX X000 000 000 000

23 OP AR.B OP7 ASP,.B6A t AS 000 000 OXX XXX 000 000

24 P AR.BR OP7 A5P,B6R ! B6 000 000 000 000 XXX XXX

25 gP ABR OP7 AB1l1R ' AB1ll 000 000 OXX XXX XXX XXX

26 OP ABS OP7 ABLl1A ! C6 XXX XXX 000 000 00C 00C

27 OP & OP7 ASA t A6 000 000 XXX XXX 000 000

30 OP AR OP7 A5P 't Vi XXX XXX XXX XXX XXX XXX

31 gpP B OP7 BeA !

32 aP BR OP7 B6R t A = Absolute Arithmetic Value

33 ————— ! R = Relative to Location Counter
34 —— t P = Positive Location Counter Rel.
35 — - . —— e - B - . - - - A S — " — — W W — - - -
36 ————

37 ———

40 OP A.B.V 0P7 ASA,B6A,VI8A

41 gP ABR.V OP7 AB11R,V1S8A

42 OP ABS.V OP7 AB11A,V18A

43 0P AKBCDE OP7 ASA,B6A,C6A,A6A,B6A

44 0P ABC.DE OP7 AS5A+B6A,C6A,AB11R

45 e .

46 @ —-——e—

47 —mmee

LABELS may precede all MACHINE INSTRUCTION statements. The OPERATION COCE
NAME must be followed by one or more blanks, a semicolons or an end of
recordes

QM MICROASSEMBLER REFERENCE MANUAL NANOCDATA CORPORATION Ed.l Page 0017

2.4.5 DATA (CONSTANT) PROCESSING

Once & DATA statement is recognized each field on the statement will gener—
ate one word of data. Fields are separated by commas (,). EXPRESSION
evaluation is performed on each fieldy and the resulting value is output

in 18 bit format. LABELS may precede the fifrst data field on the record.
Comments may follow the last data fieldy when preceeded by a semicolon (5).

Examples: DATA statementss:

1420 SINGLE DATA WORD

L1

CONSTANTS: 1, 2y 34 & FOUR DATA WORDS, LABEL REFERS TO THE 1

-

VALUE.2% CONSTANTS + 1 CONTAINS LOCATION OF CONSTANT VALUE 2

L1]

GM MICROASSEMBLER REFERENCE MANUAL NANODATA CORPORATION Ed.l Page 0020

MICRO does not support nesting of conditional tests. Any .IFE or .IFN
statements encountered while in non-assembly state will be ignored. It is
permissible to place several tests preceding one .ENDC statement, any one
of which may enter non—assembly state.

3.2.1 JIFE — ASSEMBLE IF EXPRESSION IS EQUAL TO ZERG

-IFE <EXPRESSION> § (COMMENTS)
If the result of the EXPRESSION is zero all source statements following
this statement will continue to be assembled. [If the resulft is any non-
zero value then source statements will be skipped (and listed if listing
is enabled) until an end of conditional assembly statement is encountered.

An omitted OPERAND field will be recognized as an error.

Examplest

.IFE 1 s FORCED SKIP CONDITICN.
.IFE SECOND — FIRST — 2 ; ASSEMBLE IF SECGND = FIRST + 2.
.IFE EVALUED £ 400000 H

ASSEMBLE IF "“EVALUED"™ IS POSITIVE.

3.2.2 JIFN — ASSEMBLE IF EXPRESSION IS NON-ZERO
+IEN CEXPRESSION> (COMMENTS)

.IFN is the inverse function to .IFEs above. Source statements following
an .IFN statement will continue to be assemblied if the result of the
EXPRESSION is non-—zero. When the result is zero then source statements
will be skipped, and listed if listing is enabledy, until an end of condit-
ional assembly statement is encountered. An omitted OPERAND field will be
recognized as an error.

Exampless

FORCED SKIP CONDITION.

-y

<1EN 0

«IFN OPTIONS & 5 ASSEMBLE IF BITS 0 OR 2 ARE PRESENT.

~e

.IFN v EVALUED & 400000 3y ASSEMBLE IF "EVALUED™ IS NEGATIVE.

@M MICROASSEMBLER REFERENCE MANUAL NANODATA CORPORATION Ed.1 Page 0021

3.2.3 .ENDC - END CONDITIONAL ASSEMBLY
LENDC : (COMMENTS)

The .ENDC statement simply reinstates normal source statement assemblyy
whenever the non-azssembly state is in effect. Otherwise, it has no effecte.

Examples
.1FN A-8 & 400000 § IF "A" < "B", GENERATE AN ERRQOR
(ERROR "A* LESS THAN »B®) + MESSAGE FROM "MICRO'™ VIA UNKNOWN
+ENDC H

STATEMENT TYPE.

3.3 LISTING CONTROL

Three PSEUDO OPERATIONS are provided for control of the source program
listing: EJECT, LISTOFF, and LISTON. These statements will ignore their
OPERAND fiefds. Listing selection may be controlted conditionally, using
the CONDITIONAL PSEUDD OPERATIONS described in section 3.2. The EJECT
statement will be recognized unconditionaliyy in order to permit uniform
listing appearance while in non-assembly mode. When the full listing is
suppressed, and only lines in error are to be displayed, the function of
EJECT is also suppressed. Erroneous lines will be displayed no matter what
listing selections have been made. Oniy a SUPPRESS ALL LISTABLE QUTPUT
optiony specified during assembly invocation (see section 7.3}y will sup-
press lines in error.

3.3.1 EJECT - END OF PAGE (FORMS)
EJECT s+ (COMMENTS)

The EJECT statement will set an indicatory in MICRO, to list the next line
of listable output on a new page. This statement will have no effect when
the listing is being displayed on the alternate Iist device, normally the
system consoles as specified by a SELECT ALTERNATE DEVICE option during
assembly invocation. It will also be ignored when it follows a LISTOFF
statement, described in section 3.3.2 belowe.

Example:

EJECT ; E&D UF THIS PAGETG.......Q....‘.O.QO

QM MICROASSEMBLER REFERENCE MANUAL NANODATA CORPORATION Ed.l1 Page 0022

3.3.2 LISTOFF - TURN LISTING OFF
LISTOFF y C(COMMENTS)

The LISTOFF statement‘wilt suppress listing of all following statementsy
until & LISTON statement (section 3.3.3) is encountered., Any EJECT state-

ments located between a LISTOFF - LISTON statement set will be suppressed.
Examples
LISTOFF s NO LISTING FOR A WHILE.

.« e e & s s

3.3.3 LISTON - TURN LISTING ON
LISTON ‘ s (COMMENTS]
The LISTON statement restores listing of all following source statements,

and recognition of EJECT statements. LISTON will always be listed. It
will have no effect if encountered when listing is already enabled.

Examples
+1FE ‘ LIST-1 s ASSEMBLE NEXT STATEMENT IF LIST = 1.
LISTOFF s LISTING SUPPRESS OPTION IS SELECTED.
+ENDC H END CONDITIONAL SECTION.

/0..00...'...0\]

/eceeeencocenceae\N THESE STATEMENTS, AS WELL AS THE L(ENDC
\Q.nco&&vctoo«.o/ ABUVE, ARE CU&DITIUNALLY LISTED.

\0"..0......"/

LISTON ' + RESTORE LISTING AT THIS POINT.

3.4 ASSEMBLY CONTROL

The following six PSEUDO OPERATIONS provide general control over the opera-
tion of MICRO. The three statements:s .BLK, .TXTM,y and .TXT, provide for
the generation of multiple word data arrays. The remaining three state-
ments: .L0OC, .RDX, and .XPNGs provide control over scurce program interpre-
tation and symbol table content.

3.4.1 .BLK — BLOCK DATA GENERATION
«BLK CEXPRESSION>(<EXPRESSTION>)} § (COMMENTS])

The first OPERAND field of the .BLK statement is required, and specifies
the number of words to be occupied by this data array. If the, optional,

second field is specified then the resulting 18 bit value will be used to
fill all locations of the data array. Otherwise, no data will be generated
and only the micro-location-counter will be adjusted to reflect the space

required. The first OPERAND field is evaluated during PASS 1, and there-
fore may only reference LABELS defined ahead of the .BLK statement. The
second OPERAND field is evaluated during PASS 2, and may reference any
properly defined LABELS.

QM MICROASSEMBLER REFERENCE MANUAL ~ NANODATA CORPORATION Ed.l1 Page 0023

Exampless
CARDS: .BLK 80./2 s ALLOCATE 80 CHARACTER DATA BUFFER.

TABLE: .BLK TABSIZE,-1 GENERATE TABLE, INITIALIZED TO -1°'S.

“e

SYMBOL: .BLK 1000.=*8. DEFINE SYMBOL TABLE ARRAY, 1000 X 8.

“e

3.4.2 JLOC - LOCATION COUNTER DEFINITION
.LOC <EXPRESSION> i+ (COMMENTS)

Normally the micro-location-counter is updated following the processing of
each statement capable of generating object code or data. Standard MACHINE
INSTRUCTIONS will occupy one or two words of storage, and will increment
the micro—location-counter appropriately. Other PSEUDO OPERATIONS will
produce variable amounts of object data, also inecrementing the location-—
counter. When it is desired to place the location-counter at some address
that is not a representation of generated object storace the .LOC PSEUDO
OPERATIGN may be used. The result of the EXPRESSION evaluation will be
placed directly into the micro-location~counter. The EXPRESSION is pro-
cessed during assembly PASS 1, and may reference only those LABELS defined
precedinag the .LOC statement.

.LOC may be used at the beginning of the program to set the initial start

of program address. Later on it may be used to allocate space, similar to
the .BLK statement (section 3.4.1), through use of an EXPRESSION adding =
constant to the current micro—location-counter. The current micro—-location-
counter is accessible at any time by reference to the special LABEL ".v.

Exampless

.Lac 256. BEGIN PROGRAM AT LOCATION 256.

e

CARDS: .LOC 80./2 o+ DEFINE 80 CHARACTER DATA BUFFER.

-8

IDENTIFY "PRESENT®" LOCATION, THEN GO
BACK TO INSERT SOME DATA, AND FINALLY
COME BACK TO THE “PRESENT".

PRESENT :.LOC .-SOMETHING
BACK: SOME.DATA
.LOC PRESENT

we AR We

3+4.3 LRDX — NUMBER BASE DEFINITION
«RDX <DECIMAL EXPRESSION> § (COMMENTS)

NUMBERS are initially decoded as octal value representationss unless the
NUMBER is terminated by a period (.} which represents decimal value. The
numeric base, or radixy which MICRO uses to decode NUMBERS is itself varia-
ble, and may be changed at any time through the .RDX PSEUDO OPERATION. The
OPERAND field is represented by a DECIMAL EXPRESSION, which means that

within this field all NUMBERS will be decoded as having decimal values.
This EXPRESSION is processed during PASS 1, and should reference only pre-
defined LABELS. Any radix value between 0 and 10 will be considered legal

by MICRO.

GM MICROASSEMBLER REFERENCE MANUAL NANODATA CORPORATION Ed.l1 Page 0024

Examples:

«ROX 10 v ALL NUMBERS WILL BE DECIMAL.
+RDX 2 s ALLOW GENERATION OF BINARY BIT VALUES.
- RDX 8 H

RESTORE OCTAL NOTATION.

3.4.4 JTXTM — SET TEXT MODE
«TXTHM <EXPRESSION> 3 (COMMENTS!

Texty, or character string, data may be generated by any of the text PSEUDO
OPERATIONS discussed in section 3.4.5, below. AIll text generated by MICRO
is produced in 7-bit ASCII, as shown in APPENDIX A, CHARACTER SET. This
text data will be packed, two characters to a word, using the rightmost

16 bits as two 8 bit character fields. The default ordering of characters
within a word is right to left. The first character is placed into bit
positions 7 to 0, and the second is placed into positians 15 to 8. When it
is desired to generate characters within each word in a left to right order
«TXTM must be used. Any non-zero EXPRESSION result will indicate left to
right ordering, while zero will produce the default right to left order.

Exampless:

LTXTH 1 TEXT WILL BE LEFT TO RIGHT.

+IXTM O TEXT WILL BE RIGHT TO LEFT.

L 1]

3«6.5 JTXT — GENERATE TEXT STRING DATA

«TXT $<STRING:<EXPRESSION>>S$; (COMMENTS)--ZERO PARITY
«TXTO " " H " --0DD PARITY
LTXTE " " ; w --EVEN PARITY
«TXTF " " H v --0ONE PARITY

Character string, text, data may be generated through use of any of the
«TXT PSEUDO OPERATIONS shown above. Text is generated in 8 bit character
tfieldsy placed two to a word, within bit positions 15 through 0. MICRO
will produce characters in 7 bit ASCII format; see APPENDIX A, CHARACTER
SET. C(Character string object data will always be terminated by at least
one 8 bit zero character. If a string contains an odd number of characters
then the last character of the last word will be zero. If an even number
of characters are defined then MICRO will, automatically, generate an extra
word of zeroes after the string.

The first non-blank character following the PSEUDD OPERATION NAME will be
recognized as the string delimitery as represented by the dollar sign ($%)
above. The second encounter of this character will terminate the character -
string. The delimiters will not be included in the generated string data.
A comment field may follow this terminator. When it is desired to include
characters that are not in the ASCII character subset, or to include the
string delimiter character itself, a numeric EXPRESSION may be imbedded
within the string to accompl!ish this. FEach EXPRESSICON field is preceded by

QM MICROASSEMBLER REFERENCE MANUAL NANODATA CORPORATION "Ed.l1 Page 0025

a less-than character (<J, and is terminated by a greater—-than character
t>). The result of the EXPRESSION will be truncated to 8 bits, and will be
placed within one object character field. A character constant, a quota-
tion mark ("} preceding any character, may then be used to represent the
delimiter character. Symbolic representations may then be used for the
special codes needed, such as carriage returns or communications control
codes.

Since the ASCII character data is representable in only 7 bits, the eigth
bit is frequently used for parity error checking. The parity bit will be
maintained as zero when generating text with the basic .TXT statement. 1If
odd, even, or one parity bit encodings are desired then one of the alter-
nate text operations should be used as indicated above. :

Examples:

MESSAGE:.TXT /LAST LINE RECEIVED WAS IN ERROR:/

= GENERATE 80 CHARACTERS OF ASCENDING NUMERIC ORDER.
ALIGN: .TXT 10123456789 123456789 123456789 123456789! ; FIRST 40...
~«L0OC -1 + BACK UP OVER THE GENERATED ZERD WORD.

«TXT ! 123456789 123456789 123456789 123456789 ; SECOND 40...

CARRIAGE.RETURN = 15 RETURN TO BEGINNING OF LINE.
LINE.FEED = 12 SPACE ONE LINE VERTICAL.
+TXTHM 1 s LEFT TO RIGHT FOR CONSOLE MESSAGE.
HELP = «TXTO *<CARRIAGE.RETURN>KLINE.FEED>*#=% PLEASE CHANGE PAPER:
] .
- DEMAND: .TXT /<153><12>RESPOND AFTER THE "<“/>" CHARACTER <15><12><"/>/
* PRODUCES THE FOLLOWING OBJECT STRING (OCTAL}:

9’ 09 W

* 015 012, 122 105, 123 120, 117 116, 104 040, 101 106, 124 105,
x 122 040, 124 110, 105 040, 047 057, 047 040, 1C3 110, 101 122,
% 101 103, 124 105, 122 040, 015 012, G57 00C.

3e46.6 JXPNG ~ DELETE PREDEFINED SYMBOLS
<XPNG - s (COMMENTS)

Ouring assembly PASS 1, the J.XPNG statement will delete all LABEL NAMES and
MACHINE INSTRUCTION definitions from the assembler symbo! table. PSEUDD
OPERATION NAMES are not disturbed. J.XPNG is provided for compatibility
with NOVA type assemblers. Following its use there are no instruction
OPERATION CODE NAMES availabley and only DATA statements can be processed.

This statement is meant to be used only at the beginning of an assembly,
and would be foflowed by symbolic MACHINE INSTRUCTION operation code, and
format, definitions. Symbolic definition is not available in this version
of the MICRO Assembler.

GM MICROASSEMBLER REFERENCE MANUAL NANODATA CORPORATION Ed.1 Page 0026

4 INSTRUCTION SETS

Any number of instruction sets may be processed by MICRO. When invoked,
the assembler contains a predefined instruction set for the NOVA type
system architecture. This is provided in order. to support NCS, the system
which supports QM/SYSTEM assemblers and data file management. QOther micro-
instruction sets are defined through DEFINITION files, prepared during
Nanoassemblies. Actual, detailed, discussions of DEFINITION file and
microinstruction set development are available in the QM NANOASSEMBLER
REFERENCE MANUAL.

This chapter briefly discusses the rules for utitizing the various instruc-
tion sets. The access to DEFINITION files is also covered.

4.1 PREDEFINED "NOVA'" INSTRUCTION SET

In MICRO, the NOVA instruction set consists of 182 MACHINE INSTRUCTION def-
initions. Most of these are identical to the NOVA instruction set provided
by standard NOVA assemblers. Userts should be fully famitiar with the NOVA
architecture before using this instruction set.

Several special definitions are provided for the support of NCS, and for
ease of utilization of the arithmetic comparison instructions. Only these
special definitions are listed belowe.

4.1.1 MACHINE INSTRUCTIONS

NOVA operations are provided for the NOVA 1200, and NOVA 800 machine ser-
ies. The QM/SYSTEM NOVA emulation provides all capabilities, including
support for the Hardware Multiply/Divide option. Input/output devices are
driven according to actual hardware device specifications. See the NCS
OPERATICONS GUIDE for further details. The table below lists those prede-
fined OPERATION CODE NAMES which are provided for NCS support.

Conditional and unconditional skip/no-skip instructionss:

NOP NO-OPERATION (ACTUALLY A MOV# 0,0}
SEQ A,B SKIP NEXT INSTRUCTION IF A .EQ. B
.EQ. A’B [" (4] " "
SGE AyB SKIP NEXT INSTRUCTION IF A .GE. B
.GE. A'B (13 (1] " " "
SGT A.B SKIP NEXT INSTRUCTION IF A .GT. B
-GT. AgB (3 113 " " "
SLE A,B SKIP NEXT INSTRUCTION IF A .LE. B
.LE‘ A,B L] " " " L]

Q@M MICROASSEMBLER REFERENCE MANUAL NANODATA CORPORATION Ed.l Page 0027

SLT A,B SKIP NEXT INSTRUCTION IF A .LT. B
- LT . A 1 4 B " (1] [1] ” 13
SNE A,B SKIP NEXT INSTRUCTION IF A .NE. B
«NE. A ¥ B . " 1] " (4]

Abbreviations used in the above list are:
+EQ. EQUAL TO
«GE. GREATER THAN 0OR EQUAL TO
«GT e GREATER THAN
.LE. LESS THAN OR FQUAL TO
LT, LESS THAN
«NE. NOT EQUAL TO

4.1.2 STATEMENT FORMATS

All NOVA instructions are one word in length. There can be from zero to
three OPERAND fields per instruction. In several instruction formats, one
of morey fields may be optional. The default value for optional fields is
zero. Use of the special OPERATORS for indirect addressing (at-sign, al,
and suppress data transfer (pound-signs #) are restricted as follows.

The indirect address form of DATA statement requires that the at-sign be
placed at the beginning of the first element ocf the DATA DEFINITION field.
This will result in presetting an initial OPERAND value of 100000 (octal),
which represents setting the indirect address bit of the NOVA data word.
This methad of address generation restricts the remainder of the EXPRESSION
to consist only of addition and subtraction operations. none of which may
cause field overflow. If multiplication or division is required in an
indirect address definition the at-sign should not be useds and a constant
value of 100000 should be logically added at the end of the EXPRESSION-.

Examples®
2DATARRAY + 1 $ NORMAL APPEARANCE OF INDIRECT BADDRESS.
DATUM = 4 + BASE ! 100000 ; ALTERNATE INDIRECT ADDRESS FORMAT.
Indirect address reference from an instruction DOPERAND field also requires
that the at-siagn be placed just ahead of the first element of the address
field. Placement of the indirect OPERATOR at some other point will cause
the address EXPRESSION to evaluate incorrectly.

Examplest:

A

LDA 0,3aSTACK # LOAD DATA FROM ADDRESS AT “STACK".
STA 230443 + STORE DATA AT THE ADDRESS FOUND AT
+ THE LOCATION DEFINED BY THE CIONTENTS
H OF ACCUMULATOR(3) + 4.
JMP @dRETURN + TRANSFER TO THE ADDRESS IN MEMORY

s LOCATION "RETURN".

GM MICROASSEMBLER REFERENCE MANUAL NANODATA CORPORATION Ed.l1 Page 0028

The suppress data transfer OPERATOR may be appended to any of the logical
or arithmeticy register to register, instruction OPERATIGCN CODF NAMES.

The pound-sign character will indicate an error if used elsewhere on an
instruction statement.

Examples:

MOV#H 1,1,5ZR SKIP IF ACCUMULATGR I IS ZERO.

L 1)

SUBO# 1,2,5N2z SKIP IF AC 1 IS NOT EQUAL TO AC 2.

-e

4.2 EXTERNALLY DEFINED MICROINSTRUCTION SETS

A single instruction DEFINITION file (DEF) usually contains the complete
structural definition of a microinstruction set. When two, or more, micro-
instruction sets are to be used concurrently all must be declared as DEF
fitles during assembly invocation. Microinstructions are impfemented as
nanoprograms within the DEF file. Each nanoprogram will be loaded at an
absolute location in -Nanostore, and therefore has an absolute address value
which becomes the OPERATION CODE value. When multiple microinstruction
sets are used they must be allocated to unique addresses within Nanostore.
Specification of DEF files is covered in chapter 7, OPERATING PROCEDURE.

4.2.1 MACHINE INSTRUCTIONS

As an example, the "MULTI" Micromachine is used as a common microprogram-
ming base for many emulations, user processesy, and for the "TASK"™ micro-—
programmed OPERATING SYSTEM (see section 5.2}. *"MULTI" is fully described
in the "MULTI MICROMACHINE DESCRIPTION" Manual. 1t consists of 78 micro-
instructions, which are similar in appearance to conventional machine
instruction sets. Combining “MULTI" with a specialized microinstruction
set for a particular process will produce an efficiently operating program:
which may be quickly implemented.

4.2.2 STATEMENT FORMATS

The formats for microinstruction generation are discussed in section 2.4.4y
above. All OPERAND fields defined for a specific instruction must be spec-
ified on the MACHINE INSTRUCTION statement. Null fields are permitted, and
will produce zero results. There are two classes of fields processed by
MICRO: absolute value, and location-counter relfative. The contents of an
absolute value field may be positive or negative, as long as the two's
complement positive value will fit within the field width. Lacation-count-
er relative fields may be either one way, forward or reverse reference, oOr
two way, where positive means forward reference and negative means reverse.
Une way relative fields always contain absolute values, while the signed
refative fields may contain two's complement values. Values placed into
location-counter relative fields must reference program addresses where the
displacement value is small enough to fit within the field width provided.

QM MICROASSEMBLER REFERENCE MANUAL NANODATA CORPORATION Ed.1 Page 0029

Field width is defined by the specific field attribute identification,
which also specifies field location within the instruction word being
defined. 0Only those field structures are supported that correspond to the
QM/SYSTEM microprogramming architecture, as defined in the "HARDWARE LEVEL
USERFS MANUAL®. These field formats are also depicted in section 2.4.4,
above. In this version of MICRO the micro-location—-counter value always
points to the word being generated. Therefore, when the location-counter
is referenced within a 36 bit wide instruction (through LABEL NAME ".v), it
will point to the first word of the instruction only when used in fields
defining that word, and will contain the second word address when refer-—
enced in fields defining the second word.

4.3 DEFINITION FILES

Each DEFINITION file is made up of both the actual object Nanoprogram code
and symbolic information for use by the Microassembler. Special files can
be generated that contain only the symbolic information, which will reduce
the amount of time MICRO spends in scanning the file while constructing its
initial symbol tables. A symbolic definition is made up of ten 16 bit
wordss containing the symbol NAME (of up to 10 ASCII characters), the 18
bit object value, the microinstruction format characteristic, structural
identification, and error flag fields.

Disk space allocations for DEFINITION files can be approximated by multi-
plying the number of symbols by 10 words, and then dividing by 256 words
to determine the number of sectors needed. When the file also contains
object Nanocode its size will grow substantially, requiring four 16 bit
words per Nano-primitive field defined. There is no simple way of predic-
ting file size in this case. Section 6.3 further describes the physical
organization of the DEFINITION file.

QM MICROASSEMBLER REFERENCE MANUAL NANODATA CDRPDRATIGN Ed.l1 Page 0030

5 PROGRAM STRUCTURE

This chapter discusses the organization of programs, and the interfacing of
these programs to the various levels of Operating Systems provided with the
QM/SYSTEM.

5.1 ABSOLUTE PROGRAMS

MICRO produces object programs in absolute format. This means that the
data structures placed onto the BIN file will be loaded and executed in an
unaltecred fashion. Each source program must contain an initial location-
counter declaration (.LOCl, to define its operating storage load point.

If no initial location is defined the program will be assembled to load at
location 0.

5.1.1 MICROPROGRAMMING CBNSTRUCTS

There are two methods of executing micraprograms? as stand-alone, fully
self-contained, microprograms, or as tasks operating under controfl of the
"TASK"™ OPERATING SYSTEM. When run in stand-alone format, programs may be
loaded directly from their BIN object fites, through the "QMLD" micropro-
gram loader, or from the N2022 Cartridge Tape System, as prepared using
the "PREP" Cartridge Tape writing system (these are described in the *NCS
OPERATIONS GUIDE'.)

If the Nanoprogram System utilized by the microprogram being run permits
initial program entry via direct transfer to a Nanostore location, then no
special additional preparations are of concern to the microprogrammer. All
AM/SYSTEMS contain a Read-Only-Memory, used in starting machine operation.
This memory contains an instruction catifed MICROSTART, which may be called
on to preset all QM/SYSTEM Local Store, External Store, and F Store regis-
ters to values placed within a 64 (decimal)} word Control Store array. This
MICROSTART array is organized as followss

QM MICROASSEMBLER REFERENCE MANUAL NANODATA CORPORATION Ed.l1 Page 0021

I::::::::::::::::::::::::::::::1
Co I LOCAL STORE REGISTERS I
-- ININININININININININININININ N
35 I 0 THROUGH 35 (OCTAL} I
T U —— I
36 I EXTERNAL STORE REGISTERS I READ-ONLY-MEMORY 2
- INININININININININININININ NN
65 1 10 THROUGH 37 (GCTAL) I
e — I MICROSTART
66 I FMIX FMOD FACT I '
| Rtk e e T pp—— |
67 1 FSID FSOD FUSR I ARRAY
I---_g_---_q~~_-4--_-_w~-,_ewi~l
70 I FCIA FCID FCcap 1
71 I FAIL FAIR FAOD I
| L = e e e e 1
12 I FEID FEOD FEIA I
L e e e]
73 I FEOA FMPC FIDX I
14 1 GO 61 G2 I
I i i . o o W s S S s o . . S S S . s o e oo I
75 I G3 G4 G5 I
T o e e e I
76 I Gé G7 G8 1
I ————— S S o At —_— - ——— -~ — " . T~ " " " o 2 I
17 I G9 GIo G111 I
| ====zz=zzzzs===z=zs=cczzzzz=s===]

When starting any microprogram several of these registers must be defined.
ALl undefined registers should be set to zeroc. The following information
must be provided for a valid microprogram start:

FMPC Must indicate the Local Store register number to be used as the
initial Micro-Program-Countery 30, 31, 32, or 33 (octzal]).

FIDX Must contain the appropriate Nanostore page number, for proper
microinstruction ODPERATION CODE decoding (bits 2 — 0}. FIDX also
centains the ALU width, System Supervisor State, and Read-Only-
Nanostore access controls. Refer to the "HARDWARE LEVEL USERFS
MANUAL® for further details.

Fredese Any other F Registers, as required by the Nanosystem conventions
in use. (ie: FCOD and FAIR may need to be preset to 31.)

R(FMPC}! Local Store Register specified in FMPCy as the initial Micro-
Program—Counter. This register contains the address of the first
microinstruction to be executed.

A MICROSTART Array may be placed anywhere within the microprogram. It
should be placed on a 100 (octal) word boundarys to permit direct system
program entry via QM/CPU F-Switch selfection (see "NCS OPERATIONS GUIDE®™.)
A version of the MICROSTART Array is utilized when starting a primary task
under the "TASK"™ System.

OGM MICROASSEMBLER REFERENCE MANUAL NANODATA CORPORATION Ed.l1 Page 0032

5.1.2 "NOVA"™ PROGRAMMING CONSTRUCTS

NCS executes NOVA programs at the Main Store level of the QM/SYSTEM. The
object program loader "LD" may be invoked by entering the command:

ttDyfilename{~negdisplacement}.

Where “filename"” identifies the BIN file containing the object program.

The optional ®"-negdisplacement® parameter is provided for NCS System Trans-
ient program support. It subtracts the octat value *negdisplacement®” from
all object program load addresses, placing the program lower in storage
than the assembled load point.

NCS has no low storage requirements. Thereforey user prcgrams may utifize
locations 0 through the base of the NCS resident control program at 17077
(octall. The Resident occupies 17100 to 17777, making locations 20000
through the end of accessible storage avaifable to user programs. Section
5.3, below, lists the NCS facilities provided for utilization of supported
input/output drivers and program loaders.

S«.2 "TASK*" SYSTEM INTERFACE

For a microprogram to run under “TASK™ it must first be placed into the
active Task User Library. These libraries are usually resident in Main
Store, in an area only accessible to the system. When in operation,
microprograms may be broken up into SEGMENTS. These SEGMENTS may then be
run sequentially as overlays to each other, or concurrently at different
TASK Priority Levels. ®“TASK™ operation is described in the "TASK CONTROL
PROGRAM OVERVIEW™ manual.

All facilities provided by TASK are accessed through the "SYSTEM" microin-
structiony, of the "MULTI" Micromachine, described below.

5.2.1 MEMORY ORGANIZATION

Under basic versions of "TASK*" the Task Control Program, Control Store res-—
ident, occupies the highest region of available Control Store. All storage
below this reqgion is available to user programss system processors, of com-
binations of user and system programs. The predefined NAME "TASK.BASE"
passes the actual base address of the Resident to each microprogram assem-—
bly. This NAME is defined within the "MULTI" microinstruction set DEFINI-
TION file.

Frequently, the active microprogram will utilize the conscle display and
control functions of "PROD", the Programmable Run-time Operator Display
program. PROD occupies the Control Store region immediately below TASK.
When active, PROD executes as the highest priority Task. The primary pur-—
pose of PROD is control over the user microprogram, with a highly flexible
debug and analysis capability. PROD is described in the "“PROD USER'S
GUIDE+“.

QM MICROASSEMBLER REFERENCE MANUAL NANODATA CORPORATION Ed.1 Page 0033

Main Store contains the TASK System and User SEGMENT overlay tibraries.
These libraries occupy the lowest region of physical Main Store. Every
individual Task has access to its own region of storagey controlled by TASK
and the Base / Field Length hardware feature of the QM/SYSTEM Central Pro-
cessor. When necessary, user storage regions may overlap each othery or be
fully contained within another region. This permits environments, such as
an emulator, to have Tasks and Subtasks with hierarchal storage access
privileges as well as the usual CPU access priorities. For example, the
inner Task region may be the actual emulator, while the next outer Task may
be an I/0 device emulator which needs access to both its own working stor-
age and the emulated storage space.

5.2.2 "SYSTEM" INSTRUCTION CALLS

To the "MULTI™ microinstruction set the "SYSTEM" instruction is simply a
programmed interrupt,s received by the TASK Contro! Program. The OPERAND
field is passed to TASK, which will interpret the parameter value as a
specific function call. The following list describes several of the func-
tions supported by TASK. A more complete explanation will be found in the
"TASK CONTROL PROGRAM OVERVIEW"™ manual.

OCTAL
NAME CODE FUNCT ION

SYS.RCL+S 00 Terminates the current Task, passing the STOP CQODE
value "S" (0 to 15} to the Parent Task.

SYSs.Sio 20 Start I/0 operation. An I/0 Control Block must be
be identified through a Local Store register.

SYS.WAIT 40 Waity and remove fask from access to the Central
Processor, untilt the EVENT, identified by an Event
Control Worde has occurred.

SYS.WAITL 41 Wait, and remove Task from access to the Central
Processory until one of the EVENTS, identified by
a list of Event Control Word addresses pointed to
by a Local Store register, has occurred.

SYS.TIME 47 Read the DATE and TIME registers, to Local Store.

SYS.ITASK 50 Initialize a Subtask's registersy and prepare it
for execution.

SYS.STASK 51 Enable a Task for access to the Central Processors
as socon as it attains highest Task priority.

SYS.KTASK . 52 Disable a Task from any further execution.

SYS.SMSB 55 Offset Main Store base address within allocation.

SYS.LOAD 60 Load an overlay SEGMENT, into Control Store, as

identified by a tLoad €Control Block pointed to
through a Local Store register.

QM4 MICROASSEMBLER REFERENCE MANUAL NANODATA CORPORATION Ed.l Page 0034

5.3 "NCS"™ SYSTEM INTERFACE

NCS is a basic operating environment originally developed for smaller mem-
ory computer installations. Version 1 of NCS was developed for use with a
minimum NOVA architecture computer, using standard and specialized 1/0
peripheral equipment. The primary intent of NCS was to support data and
proaram files in a small disk storage environment, with absolute minimal
memory overhead. Version 1 requires a nominal 700 (octal} locations for
its basic resident control programs, and 2000 (oectal) locations in order to
fetch a user program and initiate its execution. This represents a program
initiation overhead of 12.5%, and a dynamic memory availability of better
than 94%.

NCS is a transient-disk—task oriented system. Fach system transient per-
forms a specific task for the console operatory, a user program, or for
other transients. Transients are fetched from disk by a resident function
called LDR., All transients are first loaded inte an absolute location,
known as the transient buffer, below the high core Resident Supervisor.
Control information, found at the head of each transient, tells the loader
whether the transient should be copied to another location in memory, and
where, and whether execution control should be turned over to the transient,
and again where. In the case of non-executable, multiple subroutine,
transienfts a third piece of information, transient lengath, is provided to
permit copying of only the active portion of the code within those relocat-
able transients. Transients may be no ltarger than one disk sector (400
octal locations). Transient format is shown in figure 5.3.A. Figure
5.3.AA represents the layout of an executable system task (Type 1 Trans-
ient). Figure 5.3.AB represents the structure of a multiple entry point
subroutine group (Type 2 Transient). '

The permanently resident segment of NCS occupies 700 (octal) locations of
NOVA memory. Figure 5.3.B shows the layout of NCS Resident, using an 8K

configuration for address examples. The left column of numbers indicates
the base of each coded section. The rightmost cofumn indicates the dis-

placement of each section from the assembly language symbol "TOP" (which

represents actual core sizel.

5.3.1 MEMORY ORGANIZATION

Lecations TOP-1 through TOP-3 are jump instructions into primary NCS func-
tions. Transfer is made to TOP-1 (E0OJ} whenever a user programy OF OPer-
ator console task, wishes to terminate operation. EOJ calls on the super-
visor control program, which places both CRT Console and TTY into command
state. This location is also set into the NOVA console switches when first
starting up the system (location 17777 in the 8K version}.

Initiation of most system tasks is accomplished through transfer to TOP-2
(LOR}, which unconditionally fetches a system transient sector. The call-
ing sequence for LDR action is described in section 1.3. TOP-3 (LDRX is
used onlty during internal calls made by transients. LLCRX calling segquence
differs from the LDR sequence, in that part of the preceeding LDR call
remains residually active during the LDRX activity. TOP-4 (RECUR) is norm-
ally used during an LDRX activity and provides the name of the originating
tasky, which is to be recalled at completion of the current task.

QM MICROASSEMBLER REFERENCE MANUAL NANODATA CORPORATION Ed.l Page 0035

During LDR operation accesses are made to disk directories, established in
cylinder C of each disk. To permit some internal system tasks to use the
existing LDR disk accessing routines for their own disk 1/0, & pointer to
the LDR disk command array is maintained at TQP-205. GCnly internal tasks
should modify this array. General control over LDR actions is supported
through a "MODE"™ control word, at location TOP-206. At normal Jjob start
"MODE"” is automatically set to 0. The setting of "MODE"™ to non-zero will
cause LDR to bypass any standard relocation of transients from the trans-
ient buffer area. It also suppresses execution of executable (Type 1]
transients. It is the responsibility of the program in operation to reset
“MODE" to 0. EOJ will also cliear “MODE".

Operator console communication ies maintained (optionally) through the "GET(C®
and "PUTC" routines within the resident. "PUTC"™ will transmit one ASCII
character te the currently active console. Transfer ta "PUTC" is throuah
location TOP-207. "GETC" reads one character from any active consocle. It
is entered by transfer to TOP-210.

Below NCS Resident at focation 17100 toctal) are the standard disk inter-
face routines. Entry is made at locations TOP-677 or TOP-700. Locations
TOP-740 through TOP-701 are used for general program/system communication,
and for inter-transient communication. The most frequent use for this area
is for File Contro! Block (FCB) tables. An FCB is set up for each open
disk filey, during program execution. Fach FCB identifies the current posi-
tion, extent, buffer location, buffer content and file type for the active
file.

o e e e > Cmmmmmmmme- e >
I 1 I I
I TYPEI((II TRANSTIENT I I TYPE (2 TR ANSTIENT 1
I ======zzz=zz=zzzzzzzzcsxsszszzcozaxzc I] z===zzz=zzr=zzzs==s=z=zz=ssssz=z=z= |
I I I I
EANINININININININININININ/NININ/N] I Executable code area, from i
1 ltocations M through 377. 1
LT/NINININININININININININININININT 1 ' 1
I I FZNININENIN/NININININININININ/N/N]T
I I :
I I FZNINININININININSINININININ/N/NINT
1 I I I
I I I ENTRY POINT, SUBROUTINE N+M I
I I J{ " “ " cee I
I Executable code area, from I I " " " N+1 I
I tocations 2 through 377. I I " " " N I
I I I ==szzzzzzzzzszsz=zsz=s=s====s====== |
I I I PACKET LENGTH FROM THIS LOC. 1
] ==z==zz=z=zza2c=s=zc=2ss===zczz==z===z== i] =========z=s=z=z=zsc=zc=zzczzz=zzzzcx==z== I
I LOAD POINT (ABS. ADDRESS) 1 I LOAD POINT (OPTIONALY I
I LS S S S S S St 22 3+ B 4B &5 5 X 8 0 5 % N3 I I - AR S S S SRR E2E T T T T T T Tt T I
I ENTRY PBINT (ABS. ADDRESS) I I 0000C00 {(NO ENTRY) 1
e e T T P D e T — >
FIGURE 5.3.AA FIGURE 5.3.AB

FIGURE 5.3.A

QM MICROASSEMBLER REFERENCE MANUAL NANODATA CORPORATION Ed.l1 Page 0036

EXAMPLE OF 8K MEMORY SYSTEM -(NCS RESIDENT STRUCTURE]

20000 <K====—mrmm e e e e > TOe
17777 1 (EQJ) END OF JOB ENTRY VECTOR I -1
17776 1 (LDR) TRANSIENT LOADER ENTRY VECTOR I =2
17775 I (LDRX) INTERNAL TRANSIENT TASK CALL VECTOR I -3
177764 1 (RECUR} INTERNAL CALL RECURSION REGISTER I =4
INININININININININININININENININININININININININININININSN
1 BOOT LODADER ROUTINE ENTRY, STANDARD MACHINE START-UP I
17770 I ENTRY POINT ¢optional) I =10

ININININSNIN/N/N

I N C S RESIDENT MONITOR CONTAINS: I
1 1. END OF JOB (Machine Startl! CONTROL I (2101
I 2. TRANSIENT LOADER. 1
1 3. CONSOLE COMMUNICATION INTEREACE I
/\I\/\
17573 I (INTERNAL) LOADER DISK COMMAND ARRAY ADDRESS I -205
17572 1 (MODE) LDR MODE CONTROL SWITCH (NON-ZERC = NO-EXEC. I =206
17571 I (PUTC] TRANSMIT CHARACTER TO CONSOLE ENTRY VECTOR I =207
17570 1 (GETC} READ CHARACTER FROM CONSOLE ENTRY VECTOR 1 =210
IN/NSN
I I
I DISK INTERFACE ROUTINES I (470}
17100 I I -700
IN/NIN
I =========z== END OF REGQUIRED RESIDENT SPACE ==s==s===z==z==== |
I 1
I FILE CONTROL BLOCK AND INTER-TRANSIENT I
17040 1 COMMUNICATION AREA I =740
IN/N
1
I ABSOLUTE TRANSIENT BUFFER (OPTIONAL DATA BUFFER 01} I
16440 1 1 -1340
ININTINI NN/
I ADDITIONAL DATA BUFFERS I
I AND SPECIAL PURPOSE TRANSIENT SPACE I
/\
e e e e e >

FIGURE &5.3.8B

QM MICROASSEMBLER REFERENCE MANUAL NANODATA CCRPORATION Ed.l Page 0037

S5e3.2 SYSTEM CALLS AND LINKAGES

This section describes the generat transient and subroutine finkages found
in NCS. Most linkages are shown below with minimal narrative. NOVA assem-
bly language statements are used throughout the examples.

1. Normal transient call is through LDR. Following transient fetch, exec-
ution will depend on the type of transient calliedy and whether "MODE"
is set to enable execution. Whenever execution is inhibited, transfer
returns to CALL + 3. Return to CALL + 2 occurs only when there has
been a physical disk error returned by the disk driver routines. The
ASCI1 code name for the transient to be executed is always passed as
location CALL + 1.

CatL: JSR 2LOR + CALL LOADER
FUNCT + TRANSIENT NAME
JMP ERR H DISK ACCESS ERROR RETURN
JMP NORMAL H NORMAL RETURN

LDR: ToP-2 v

LDR ENTRY POINT ADDRESS

2. Normal return may occur following compietion of the execution of a
type 1 transient. Each transient may return to alternate locations to
indicate the results of its activity:

JSR JLDR 7 CALL LOADER TO EXECUTE
we + OPEN FILE FUNCTION (%)
JMP ERROR H DISK ERROR OCCURRED ON EITHER
H TRANSIENT tOAD OR DIRECTORY SEARCH.
JMP NONE 3 RETURN HERE IF NOT ON FILE.
JMP FOUND H NDRMAL RETURN AFTER FILE OPEN.

3. Internal transient to transient callzs

LDA 0.FUNCT
JMP JLDRX

SET TRANSIENT NAME IN AC O.
CALL INTERNAL LOADER. (THERE 1S NO
RETURN FROM THIS CALLING SEQUENCE).
LDRX ENTRY POINT VECTOR ADDRESS.
TRANSIENT NAME (ASCII}.

LDRX ¢ TOP-3
FUNCT ¢ “Q

LASE LB T 2 1)

4. Transient exit to calling transient, using recursion register
re—entry (RECUR):

LDA C,aRECUR CRIGINAL FUNCTION CODE.
MOV # 0,0,SNR IF NONE THEN

JMP EXIT EXIT TO CALLER.

JMP aLDRX RE-ENTER LOADER

AC O CONTAINS FUNCTION NAME.
RECURSION REGISTER ADDRESS.
LDRX ENTRY ADDRESS.

RECUR: 17774
LDRX ¢ 1777%

MP Be W2 N NP W W)y

QM MICROASSEMBLER REFERENCE MANUAL NANODATA CORPORATION Ed.l Page 0038

5. Standard return to calling program. Uses an internal register hold
AC3, which is maintained at address TOP-201:

LDA 3,2AC3 + REGISTER 3 CONTALINS DISK ERROR
' + RETURN ADDRESS.
JMP 1,3 ' 60 ONE BETTER, NORMAL RETURN.
AC3: 17577 H ADDRESS OF REGISTER 2 SAVE.

6. Complete null executable (type 1} transient example:

.LOC TOP-1340 3 TRANSIENT BUFFER BASE ADDRESS.
START s+ ENTRY POINT ADDRESS.
0 H NO RELOCATION REQUIRED.
START ¢ JMP 1,3 H RETURN IMMEDIATELY (NORMAL EXIT1}).
<END H NOT MUCH IS IT?
7. End of job exit. Returns directly to system control through entry
at EOQJ:
JMP JECJ i CALL MONITOR AND EXIT.
EOJ: 17777 + SYSTEM EXIT (TOP-11).

8. Output to active console:

LDA 0,CHAR y GET CHARACTER FROM SOMEWHERE.
JSR dPUTC + HWRITE TO CONSOLE.
JMP NEXT H ONWARD!

PUTC: TaP-207 H WRITER ENTRY POINT ABDRESS.

9. Input from operator console:s

JSR BGETC + INPUT ONE CHARACTER.
STA 0,CHAR + SAVE IT SOMEPLACE.
JMP NEXT H ONWARD ¢
GETC: 17570 ¥ READER ENTRY POINT ADDRESS.

QM MICROASSEMBLER REFERENCE MANUAL NANODATA CORPORATION Ed.lI Page 0039

6 FILE FORMATS

MICRO utilizes three disk file types and one printer, or console, file.
Source files contain ASCII coded datay while binary files contain data in
16 bits per word format. Any disk based file may be mcved to or from any
other disk file using the NCS utility program "COPY". COPY will also move
source character record data files between disk and external media, such as
magnetic tape, cards, or tisting devices. Binary files cannot be moved to
card or listing devices, though the “SAVE" utility program can retain a
binary file on a 9 track magnetic tape.

The following sections discuss the structures and utilization of the four
NCS files used during Microassemblies.

6.1 SOURCE INPUT (DISK] FILE EORMAT

Source program files, to be read through MICRO file INPT, must be resident
on disk prior to initiating an assembly. The data characters on the input
file may be any valid ASCII codes, though MICRO will ignore any control
codes that it does not recognize. A source program may originate on any
form of medium. COPY must be used to move that data from card or magnetic
tape to disk. The data is organized in source record images. FEach record
logically begins with the first data character following an end of record
code or the beginning of information point. It ends following the end of
record code. A blank line may be represented by a single character, the
end of record code itself.

MICRO reads INPT file data one character at a time. Fach time an end of
record codey which is an ASCII (015, octal} Carriage Return control codey
is encountered the assembly process begins on that record. Once all
statements on the record are processed MICRD returns to the disk file to
retrieve the next record. When an «END statement has been recognized no
further access will be made to the current INPT file. If a file has been
created by COPY, that file will have been padded to its end-of-information
with binary zero ¢haracter codes. MICRO ignores these zero characters, and
will read the INPT fite to end-~of-information if the JEND statement is
missing. Records containing more than 80 characters will be processed as
80 character records, with all excess characters being discarded.

Lower case characters are mapped into their upper case equivalents. Any
ASCII control codes other than “Carriage Return® (015] will be ignored.
Refer to APPENDIX A, CHARACTER SET, for additional details.

6.2 BINARY OBJECT (DISK) FILE FORMAT

MICRO object program file format consists of binary blocks, made up of 16
bit words. The BIN file is optional, and when selected must be placed on
diske 1t may be moved to other disk files by the COPY utility program.
It may be transported, or backed Ups oOn magnetic tape using SAVE, or on
Cartridge tape using the DISCART utility. 1Its content may be read by the
NOVA program loader *LD"™y by the QM/SYSTEM microprogram loader facility
"QMLD", or by the cartridge tape program writer "PREPw.

QM MICROASSEMBLER REFERENCE MANUAL NANODATA CORPORATION Ed.1 Page 0040

Two types of binary blocks will be generated by MICRO: Data Blocks, and
start Blocks. Data blocks contain up to 16 NOVA data wordss or up to 8
microprogram {18 bit) data words. Start blocks are of a fixed tength, and
contain the optional program entry (start] address. A start block witll
cause termination of loadingy, or writing, when encountered by any of the
object file processors. Other forms of block structures found on a BIN
file will be skipped overy being terminated when a binary zero datum is
read. All Data and Start blocks contain checksum words. If a checksum is
found to be incorrect an error message will be written to the console.

pata blocks for NOVA type programs contain 16 bit, block load addresses.
When a data block contains microprogram (18 bit) words each 18 bit word is
written to the Data Block as two 16 bit wordss 10 bits in the first word
and 8 bits in the second. To allow for proper handling of this format the
block load address must be multiplied by 2, thus restricting absofute block
foad addresses to a maximum value of 32,767 (77777 octal}). This is a re-
striction on MICRO version 1.3 only. The following diagram shows the for-
mat of data and start blocks.

DATA BLOCK FORMAT START BLOCK FORMAT
1 I -WORD COUNT (WCY) I 11 000001 I
[+mmmmmmmmm e m e e] Jmmo -1
2 1 LOAD ADDRESS I 2 Ins" ADDRESS I
RIS [mmmmmmmmmmmmmm s I
31 CHBCKSUM WORD I ’ 31 CHECKSUM WORD I
[-——=- o s e e o I ¢ ST =TS TTSTTSSESSSSS
4 1 DATA WORD 1 I ¢ W
[-1 ¢ 0
51 DATA WORD 2 I : R C
R -1 : DO
INININININININININ u
e —————— Iz N
WC+3 1 DATA WORD WC I = T

"

The "S" flag in the Start Block (bit position 15] indicates whether the
"ADDRESS™ field contains an entry point (startl address, for use in NOVA
program loading. S = 0 will allow foader transfer directly to "ADDRESS".
S =1 will cause the loader to HALT after loading.

The word count of a Data Block is retained in word 1 of that blocky in
two's complement negative format. Word count (WC} may be from 1 to 16.

Following the Start Bfock, MICRO will pad the remainder of the BIN disk
file with binary zero fill words. 1If the size of the BIN file is too small
to contain the entire object programs, MICRO will display an error message
on the system conscle. The object file will be unuseable in this case,
though MICRO will complete the remainder of the assembly without writing
additional BIN output. The error message displayed is:?

%% BINARY QUTPUT FILE FULL =3%

QM MICROASSEMBLER REFERENCE MANUAL NANODATA CORPORATION Ed.1 Page 0041

6.3 ARCHITECTURAL DEFINITION (DISK)} FILE FORMAT

Each microinstruction set DEFINITION file contains a variable number of
nanoword and external constant definitions. These structures are repre-
sented by binary blocks, prefixed with a 10 word. (16 bit) header. Each
external constant is entirely defined within a type 1 header, and is
therefore always 10 words in length. Each nanoword begins with a type 2
header. A header identifies the symbolic NAME of the following word (or
word group) and the number of characters in the defining symbol. Control
flags and word type identification are also included. The actual assigned
nanostore address is represented as the seventh header word. The last word
of a header is the length of the remainder of the nanoword definition. All
defined nano-primitive fields are written as 4 word record efements, immed-
iately following the header.

An object nancword may be completely represented in NOVA memory as a 20
word pair array, called the Nane-Logical-Array. Each record element con-
tains the value assigned to the nano-primitive fieldy identified by the
Nano-logical-array word Shift, Mask, and Displacement field values. The
actual Nanoassembler Construction Array field number is included within
each record element. Record elements are not used by MICRO, but are des-
cribed in this section for completeness. '

The format of Binary Output Filesy produced by the version 1 Nanoassembler,
is as follows. Fach file begins with a type 2 header for the first real
(Nanostore loadable) nanoword in the nano-module. The type of nanoword is
described in the type field, shown below. End of file is identified by
encountering a type 0 header word where a new header should begin (immedi~-
ately following the last record element of a nanoword blockl. The follow—
ing diagrams show the structures of the header and record elements.

NANO BINARY BLOCK HEADER

I::::::::::::::::::::::::::::a::]

1 I Header Type ! Symbol length I (Characters)
f T o . o e e B e e st o . v e i S e e s }_

2 I Character 1 t Character 2 I
1-—*———-—%—--’--*——'—! L o W o S R . T i e .. b, S - o v I

INCINCINCINLI NN\ NN/

6 I Character 9 Character 10 1

F o e e e e]

7 1 Nanoword address or constant I {(Absolutel}

I-_,-___-_h-__--;--_-_-__~~----_I

8 L Control field ! Type of word | (Type = MICRO IDENTIFICATION]

[em e e e - e m e t=—=1
9 1 {Reserved! ! (Reserved}tX X
Gy, Ty

10 1 Length of remainder of block 1 (In 16 bit words)
[:::::::::::::::::::::::::::::::I

QM MICROASSEMBLER REFERENCE MANUAL NANODATA CORPORATION Ed.l Page 0042

HEADER TYPES:
0 = Last Header, end of DEFINITION file.

1 = External Constant description. Always has a Length of 10 words.
The actual value is in the Nanoword address field as a number
which is < ##18. The high order 2 bits of this value are in
the X X portion of word 9.

2 = Nanoword Record Header. The Symbol is the name of the Nanoword,
thas 0 symbol length when the word has no namel}l and the Charac-
ters are the first 10 ASCII symbols from the source Nanoprogram
Nanoword LABEL. The address is the actual QM/SYSTEM Nanostore
address. The Type field contains the microinstruction format
declaration.

Fige 6.3.8B
NANCWORD RECORD ELEMENT
I===:=======:==:::::::::::::::::1
I FTELD VALUE L
e e e § o o e e o . e 1
IAtE! Offset t 6 / 12 Word 1
Pyt shift ¢ Displacement [
[mmm o e e e |
I Field (6/12 bitl} Mask I
e
I Construction array I
I FTELD NUMBER I
I:::::::::::::::::::::::::::::::I

The FLELD VALUE is the binary value to be placed into the appropriate
Nano-Primitive field. The Offset Shift is the amount that the Field Value
should be Left Logically shifted into position for the 6/12 bit NDVA-
Logical-Array word. The Field Mask is a 16 bit mask to be ANDed t(after
the shift} with the field value. The 6/12 Wcrd Displacement is the indi-
cation of which word in the NOVA-Logical-Array this Field Value belongs.
The Construction Array field number refers to a description table in the
Nanoassembler itself.

Notesz

1. Fields "A" and "E* are internal assembler flags.

2. The real word values are set for the construection of each
nanoword as 20 sets of word pairs, for NOVA imp lementation.
Each pair represents an 18 bit QM-1 wordy with the left 6
bits right justified in the first NOVA word and the right
12 bits right Jjustified in the second NOVA word.

3. The Nanoassembler does no modular arithmetic. The Field Mask
is for that purposes it permits the nanoprogram loaders to simply
insert the Nano-primitive into the appropriate field.

QM MICROASSEMBLER REFERENCE MANUAL - NANODATA CORPORATION Ed.1 Page 0043

Fige 6.3C NOVA-LOGICAL~ARRAY DATA WORD PAIR
NOVA (16 bit} TWO WORD FORMAT MAPPING INTO QM/SYSTEM (18 bit) FORMAT
NOVA WORD 1 NOVA WORD 2
ENNMNNNAN\N Left] £\ Right]
[ANVAAN LY 6] ENNA\N 12)
[I { —
Erteesy trrererreree
trereee tEtsrEE LYY
trree trrerrrrrtny
|00 38 38 8 trgeeryrtreey
trree ttrrerrrr by
PEELEY tprtrEELRYIEGY

[=====2=2 =zzzzzsz=z=z==]

[}

[18 Bit QM Ward I

[1

I —— ——]
AR RN
\\\\\ Represents unused area.
AR AR RN

6.4 SOURCE LISTING (PRINTER/CONSOLE} FILE FORMAT
The full microassemb!y source program listing may be output to ejther the
- line printer or system console. Each source line is divided into six

fields, beginning at print character position 1. All numeric fields are
displayed in 6 actal digit notation. The line formats are as followss

Field: 1 2 3 & 5 6

000000 111111 222222 333333 444444 SOURCE STATEMENT IMAGE ----—mmwe-x >

MACHINE INSTRUCTION Statements:

023472 620001 023473 LABEL ¢ B e+l
Where field 1 is always the instruction address. Fields 2 and 3 will
display the one or two words that will become the actual object instruction.
Field 6 or & will contain the effective absolute storage address referenced

by any instructions containing instruction-counter relative OPERANDS.

QM MICROASSEMBLER REFERENCE MANUAL NANODATA CGRPORATION Ed.l1 Page 0044

PSEUDO OPERATION statement:

000077 MASK = 77
or
010333 (027102 046113 00600 (110] 24 «TXT /.BLK/
or »
010000 777777 777777 777717 777777 FIELDS: .BLK Ger—l
77T OTATNAT TATIT TN
T77777 o

Where field 1 shows the address of the first generated word of object data,
if any. Fields 2, 3y 4, and 5 will show all consecutively generated object
words. If more than & words are generated by a single statement then the
additional sets of & words will each be displayed on subsequent lines.

The resultant value of any non-data generating statements will be displayed
in field 3.

DATA statementsst

000100 000000 000001 000002 000003 CONSTANTS: Oy Iy 2y 3y 445 -1
000004 777777

Where the format is similar to data generated by .BLK statements, above.

Error conditions detected on a statement will be displayed on the following
line. Errors are flagged as single letter error codes, With the code letter
usually appearing under the leftmost position of the particular element in
erfor. When a field is incorrectly structured, or an entire statement ts
bad, the code letter may appear at the end of the erroneous field or state-
ment, respectively.

Examples of errars on a statements

002310 000100 002032 LABEL LD 10,32 $ COMMENT 2000
=2 ERRORS FOUND IN LAST SOURCE LINE U U F U

002312 321000 000000 NAME: STD 10,SAVE:F COMMENTS.
z¢% ERRORS FOUND IN LAST SOURCE LINE I a

Where the letter "U" indicates that the NAME is undefinedy, "F* is a format
errory, "I" is an iflegal field value, and 0" indicates missing operands.
Error messages are detailed in APPENDIX B, MICROASSEMBLER ERRDOR MESSAGES.

QM MICROASSEMBLER REFERENCE MANUAL NANODATA CORPORATION Ed.l Page 0045

7 OPERATING PROCEDURE

MICRO is initiated by operator command, directly from the system console or
system “COMMANDS" file. This chapter describes the preparation of data for
processing by MICRO, and its invocation. The general format of the MICRQO
invocation command isc: '

!MA—options,DEF=definitionfi!es,INPT=sourcefiies,BIN=obJectfile.

The "t» character is the NCS command state prompt symbol, and indicates
that a program name may be entered. MICRO is initiated by the program
file name "MA", The parameters are explained in detail befow.

7.1 PREPARATION OF SOURCE INPUT FILES

When a source program file is prepared in card format it may be copied to
disk using the NCS utitity program COPY. The source and object program
files must be defined, using the FILES utility program, before beginning
any other activity. A source program may be split into separate components
for use as OVERLAYS or SEGMENTS by the various systems available. When
there are common symbols or definitions to be referenced by the components
of a program, these may be separated from the actual program source files.
Unce all source files are ready, they may be specified to MICRO as foliows.

INPT#primaryfile+definition3+definttion2+definitionl.

Where “primaryfile" wil! be the actual source program from which the object
code will be produced. The *definition3" through "definitioni" files are
all optional common symbolic definition files. These definitions will be

read in numeric order, right to left. Therefore, if there are any interde~-
pendencies between these files the order of specification will be critical.
The definitions will be processed only during PASS 1, and may define stor-

age space allocations witheout generating any code. This may require place-
ment of .LOC PSEUDO OPERATIQON statements at the beginning of each INPT file.

Examples Source input file set-up.

Definition files

D +TITL DEFINITIONS AND COUMMON SUBROUTINES

D .LOC 1040

D T S p—— e \

D / Common Subroutine Code and symbolic constants \

D < defined here for reference by primary object >

D \ program utifization. /

D \— e e o o e ey e e ——————— ——————— /

D ORIGIN = . ' s DEFINE END OF SUBROUTINES SECTIGN.
D

«.END

GM MICROASSEMBLER REFERENCE MANUAL NANODATA CORPORATION Ed.l1 Page 0046

Primary fites

p LTITL ONE PROGRAM OVERLAY SEGMENT

p .LOC CRIGIN H BEGIN AFTER SUBROUTINES SECTION.
P [e e e e o e e o \

P / Main program SEGMENI, which wiltl call on \

14 < elements of the common Subroutines section. >
P \ Subroutines may be referenced directly by name./

P \ m e — ———————— ———————— e e f

P « END START

'COPY,*CDR,0D.
tCOPY, *CDRyP.
tMA,DEF=, INPT=P+D,BIN=.

7.2 PREPARATION OF DEFINITION FILES

DEFINITION files are produced as output from Nanoassemblies. They contain
instruction set definitions as well as symbolic constant NAMES. (One or
more of these files must be used when performing a microassembly. The
following is the format of the DEFINITION file parameter.

DEF=definitions+definition3+definitionz+definitionl,

Specifying no DEFINITION file is accomplished by following the DEF= with
any standard NCS delimiter character, such as space " ", comma "," ofr
period "."., The order of specification for multiple DEFINITION files is
unimportant unliess there may exist multiple definitions of the same symbol.
In that case the symbol encountered first, from the rightmost file name,
will be the symbolic value used.

Exampless: Lower case lettering represents operator keyed data.
Assembly with no definitions (NOVAl.

tcopys*tplQ)ysource. <CREATE SOURCE DISK FILE>
'ma,DEF=, INPT=source,BIN=0bj. C¢ASSEMBLE SOURCE 70O OBJ>

Assembly with multiple definitions.

tcopyy®*cdrysource. <CREATE SOURCE DISK FILE>
'mayDEF= sysdef+usernano,INPT =sgurce,BIN=0bj.
CASSEMBLE SOURCE TO OBJ>

7.3 ASSEMBLER INVOCATION OPTIONS

When MICRO is initiated, by entering the letters "MA", it will produce an
assembly with full source program listing on the system printer. Several
options are provided for reducing or altering that listing.

The standard full listing will display all input source lines, additional
fines showing error codes, and finally an operation code and symbol table
list following the assembly. Options are provided that will permit dele-
ting all tisting, unconditionally, or deleting only parts of the listinge.

QM MICROASSEMBLER REFERENCE MANUAL NANGDATA CORPORATION Ed.1 Page 0047

When only lines in error are desired, or the symbol table list is not
neededy, MICRO may be informed of these listing aoptions by following the
MICRO initiation name with a hyphen character. The hyphen is then followed
by one or more letter-option codes, as described in the following sections.

tMA-optionsSsee.

7+.3.1 A - SELECT ALTERNATE DEVICE (CONSOLE}

Option "A" causes all material that would normally be transmitted to the
system printer to be displayed on the system console. When a hard copy
console is in use this provides an alternate fisting device. 1In general,
this oprtion provides a quick method for displaying assembly errors, when
the additional option is selected to suppress all but erroneocus lines.
Selecting this option alsc deletes tisting of the operation code and symbol
tables.

7.3.2 X - SUPPRESS SYMBOL TABLE LIST

The alphabetically ordered operation codes listing, and general symbol

table listing, will be suppressed. Only source statement listings will be
produced, if selected. Selection of option "A" will also suppress these
tables.

7.3.3 N - NO LISTING, DISPLAY ERROR LINES ONLY ‘

When "N” is specified, socurce statement lines will not be displayed unless
that line contains one or more erraor conditions. Following each line in
error will be an error code fine, as shown in section 6.4, above. This
option has no effect on any other option. Only option "L", see belowy will
override this option.

7.3.6 L - SUPPRESS ALL LISTABLE QUTPUT

Option L™ will override any other option specifications. No tisting will
be produced on any device. Error lines will also be suppressed. The only
indication of error conditions cccurring will be a console message produced

at the end of the assembly:

ASSEM. ERRORS

7.4 BINARY OBJECT FILES

An object program file will be produced when specified as the BIN file
parameter. Only one object file may be produced per assembly. Object
file production may be suppressed by following the 8IN parameter with an
NCS delimiter character. There is no recorded identification within the
object file, to distinguish between NOVA type and microprogram type object
files. Care must be taken to identify these files externally, usually by
file name attributes. The remainder of this section briefly describes the
use of the various loaders to access object files.

QM MICROASSEMBLER REFERENCE MANUAL NANODATA CORPDRATION Ed.1 Page 0048
tma-n,DEF=sysdef, INPT=myprogtsou,BIN=myprogtobj.

7.4.1 MICROPROGRAM OBJECT FILES

Microprograms may usually be loaded in either of two available ways.
Directly from disk object file residence, with several constraints placed
on storage allocationsy and from Cartridge Tape, with no constraints. The

next two sections discuss the features and options available with these two
methods.

7.6.1.1 "QMLD* MICROPROGRAM LOADER

“QMLD" is an NCS utility progaram, which utilizes the QMLOR nanoprogram
loader system. One or more disk files may be merged together into a re-
served Main Store area, one for each of the QM/SYSTEM storage classes.
With QMLD, either object code or data may be loaded into Main Store loca-
tions O through 13777 (actall. Microcode and data may be loaded into Con-
trol Store locations 0 through 17777 (octat)l. And finally, Nanoprograms
may be loaded into Nanostore from nanoword location C to 674. QMLD is
fully described in the NCS OPERATIONS GUIDE.

Te4.1.2 "PREP"™ CARTRIDGE TAPE PREPARATION

The NCS utility program "PREP" provides the capability to record Cartridge
Tape object program files, which can be loaded into the AM/SYSTEM memories
using the standard Read-Only-Memory boot loader system. The combination of
the ROM boot loader and PREP program provide the user with the ability to
preset or clear areas in any of the storage regions, load program and data
modules into any of the regions, and finaltly to initiate microprogram exec-
ution via transfer to either a nanoprogram or microprogram entry point.

The Read-Only-Memory boot loader is a Nanocode - Microcode environment,
which may be interfaced through writeable Nanostore or Control Store to
enhance loading capabilities. Additional information on the use of PREP

and ROM is provided in the NCS OPERATIONS GUIDE.

7.4.2 "NOVA® FORMAT OBJECT FILES

A NOVA format file may be loaded directly into Main Store under NCS controlf
using the program loader “LD". LD will read the object file and place data
from the Data Blocks (see section 6.2, abovel into the specified storage
focations. If an entry address had been included on the .END statement of
the original assembly, then control will be transferred to that address at
the end of loader operation. LD may be used as follows: '

11Dy (x)filename(~displacement]}.

Where the optional asterisk (%} will indicate to LD to suppress execution
of the program even though an entry address has been provided. The nega-
tive displacement parameter is also optional, and forces all Data Blocks

to be loaded lower in storage by the octal value "displacement*. This
allows maintenance of special NCS component programs. Once a program is

QM MICROASSEMBLER REFERENCE MANUAL NANODATA CORPORATION Ed.1 Page 0049

loaded in NOVA format Main Store it may be recorded on disk as an absolute
system overlay program, using the following commands.

!$filename ENTER (Y} TQO WRITE

If filename"” was defined, by the FILES utility program, to be an absolute
NCS program file then the absolute program will be recorded on that fife.
This program may then be executed directly by NCS, by simply specifying: the
program file name as a command to NCS. .

tfilenamMeceenees.

QM MICROASSEMBLER REFERENCE MANUAL NANOGDATA CORPORATION Ed.l Page 0050

APPENDIX A. CHARACTER SET

Characters are stored internally as two 8 bit characters packed from left
to right in a 16 bit word. The internal character set of MICRO is 7 bit
ASCII right justified and zero padded within the 8 bit field.- The table
befow gives the octal encoding of the characters, their normal associated
graphic symbol and a statement of usage where appropriate.

040 space 060 0 100 ad 120 P
041 ! o6l 1 101 A 121 Q
042 " 062 2 102 B 122 R
043 # 063 3 103 C 123 S
044 $ 064 4 104 D 124 T
045 % 065 5 105 E 125 u
046 £ 066 6 106 F 126 2
047 ' 067 7 107 G 127 W
050 (070 8 110 H 130 X
051 ¥ 071 9 111 I 131 Y
052 ® 072 : 112 J 132 z
053 + 073 H 113 K 133

054 ’ 074 < 114 L 134

055 - 075 = 115 M 135

056 - 076 > 116 N 136

057 / 077 2 117 0 137 End of Record

Characters are extracted from the NCS file INPT cone at a time, using an NCS
disk utility program. MICRD assumes that the characters may have any 7 bit
value and performs the following transformationt

CR (015) transiated to EOR (137}
UA (136] transiated to EOR (1371}
140 - 177 transiated to 100 - 137
Other codes 000 - 037 ignored.

Using these transformations, an input tine is produced up to and including
an EGR (End Of Record}l resulting from either CR or UA.

QM MICROASSEMBLER REFERENCE MANUAL NANODATA CORPORATION Ed.1 Page 0051

APPENDIX B. MICROASSEMBLY ERROR MESSAGES

There are two classes of érror messages issued by MICRO. Console messages
report on global conditions, such as physical /0 errors, or assembler
table errors. Statement error messages are the second classy and indicate
syntactic errors encountered on the source program INPT file.

B.1 MICROASSEMBLY CONSOLE ERROR MESSAGES

1. ASSEM. ERRORS
Indicates that one or more statement or pProcessing errors has
occurred during the assembly. This message will be produced at
the end of the complete assembly process, whether or not an
assembly listing was produced,

2. BAD NAME

An illegal file name was entered during assembly invocation. The
file name must be re-entered.

3. BINARY FILE SIZE = <octal value)

Not an error message® an informative message issued only after the
BIN object program file has been successfully completed. It will
not be issued if a BIN file is not generated. The size is in octal
notation, and represents the number of disk sectors required for
the entire object Program.

4. *%% BINARY QUTPUT FILE FULL =%= ’
The BIN object file is too small to contain the entire object pro-
gram. The assembly will run to caoampletion, though the object file

will be unuseable. The assembly must be re-run on a targer file.

5. * DEFINITION FILE ERROR.
Either a physical disk error or a structural format error has been
found while reading a DEFINITION file. This message will be
followed by a "MALFUNCTION:" message, see (8] below.

6. DUPLICATE DEFINITION - <name>
A symbolic NAME has been encountered more than once, on the same
or separate DEF files. The NAME of the duplicate symbhol is shown
on the console. The value of the rightmost (first} gccurrance of
the NAME will be retained and used.

7. FILE NOT EQUND
During assembiler invocation, a file name either does not exist or
has been incorrectly entered at the console. The name must bhe
re~entered.

8. MALFUNCTION: 000000 111111 222222 333333
Any physical I1/0 device errory or internal assembler malfunction,
will cause this message to be issued. The internal NOVA registers
are displayed for diagnostic purposes. The octal value found in
digit string 111111 will usually be an NCS I1/0 error code.

OM MICROASSEMBLER REFERENCE MANUAL NANODATA CORPORATION Ed.1 Page 0052

9. SYMBOL TABLE OVERFLOW
Too0 many symbolic NAMES have been specified during the assemblye.
A farger version of MICRO will be necessary in order to continue.

B.2 MICRDASSEMBLER STATEMENT ERROR CODES

statement errors will be indicated on the line printed immediately below
the source statement line containing the actual errors. All statement
error codes are single letters, usually placed directly below the element
or field in error. When an entire field specification is incorrect the
errof code will be placed below the field terminator. The following are
descriptions of all error codes and their affects on the assembly.

A - Addressing error. The evaluated address was not within the
range 0 - 377 (octal} for absolute NOVA fieldsy or within +200
or -177 toctal] tocations from the current instruction address
for location-counter relative fields.

B - BLOCK (.BLK) statement block size OPERAND value is greater than
2%218 - 1 (262,143}, The block will be allocated anyways through
the micro-location-counter will usually wrap around into previously
allocated areas.

¢ - Comma missing between required ODPERANDS. Processing continues as
if the comma preceeded the point of error detection.

p - NOVA Device Identification field is in error (missing or value
greater than 63.} LZero is inserted in the device code field.

E - Address of object microcode exceeds 2%%15 - 1 ¢32,767}. The
address generated will be modulo 32,768. This error will not be
detected unless a binary file is being produced.

F - Illegal Format. Any special character code that is not recognized
as a supported OPERATOR. The character is ignored, except that it
will delimit. any NAME or NUMBER element to which it is appended.

I - Invalid accumulator. OPERAND EXPERSSION value was greater than 3
or less than 0. Zero is inserted in the accumulator field and
statement processing continues with the next field.

L - - PSEUDO OPERATCOR not currently supported (will be Later.)

M - Multiple definitions for the fltagged symbol. The first occurrance
of the symbo! will be used.

N - Null text string generated by a IXT class statement. One word of
zero Will be generatede.
g - One or more required OPERANDS are missing. Statement processing

will terminate.

P - Phase error. Symbol has different values for PASS 1 and PASS 2, oOT
cannot be located during PASS 2. Processing continues.

QM MICROASSEMBLER REFERENCE MANUAL NANGDATA CORPORATION Ed.1 Page 0053

e - Operator missing within an EXPRESSION. Addition is assumed.
EXPRESSION analysis continues.

R - Radix statement ¢ .RDX) error. OPERAND EXPRESSION value is not
within range, 0 to 10.

s - Invalid skip field code for NOVA type instruction. Zero is insert-
ed into the skip fiefd. '

T - Too many QOPERAND fields specified on a statement.

U - Undefined symbolic NAME, or this symbol was EQUATED to a symbol
which was undefined in PASS 1. A zero value is substituted.
Reference to a multiply defined NAME will alsa receive this error.

v - OPERAND Value overflows object field. A zero value is placed into

the field, and statement Processing continues.

X - Itlegal symbol usage. Symbol is already an OPERATION CODE or
PSEUDOD OPERATOR. A zero value is substitutedy and EXPRESSION
processing continues.

L - Numeric item contains digits not consistant with the current radix
tbase). The resulting numeric value will be the integer value of
all digits preceeding the illegal digit.

QM MICROASSEMBLER REFERENCE MANUAL NANODATA CORPORATION Ed.1 Page 0054

APPENDIX C. PSEUDO OPERATION LIST

The following tist contains a brief description of each PSEUDO OPERATION
supported under the MICROASSEMBLER.

.RDX <Expression> SET NEW RADIX FOR NUMBER CONVERSION

-e

.LOC <Expression> SET NEW VALUE OF LOCATION COUNTER

we

.BLK <Expression>
.BLK <Expression),(Expression)

RESERVE BLOCK OF MEMORY or
SET BLOCK OF MEMORY TO A CONSTANT VALUE

Y we

.IXTM <Expression> SET TEXT MODE

-e

JIXT s PROCESS TEXT STREAM WITH ZERO PARITY
LIXTO s+ PROCESS TEXT STREAM WITH gDD PARITY

LTXTE s PROCESS TEXT STREAM WITH EVEN PARITY
«TXTF : PROCESS TEXT STREAM WITH ONE PARITY

«XPNG ; DELETE PREDEFINED OP CODES

.TITL <Character String> SET UP TITLE FOR DISPLAY IN PAGE HEADLING

-e

.IEN <Expression>
JIFE <Expression>

CONDITIONAL ASSEMBLY IF NOT ZERO
CONDITIONAL ASSEMBLY IF ZERO

e we

+ENDC : END CONDITIONAL ASSEMBLY SKIP

EJECT ; FORCE NEXT LINE TO BE ON A NEW PAGE
LISTON s ENABLE LISTING MUDE

LISTOEF ; DISABLE LISTING MODE

LEQT s+ END OF INPUT SEGMENT

LEND END OF SOURCE or

- o8

.END <Expression> END OF SOURCE WITH STARTING ADDRESS

QM MICROASSEMBLER REFERENCE MANUAL NANODATA CORPORATION Ed.I Page 00%&s

Comments regarding errors, deficienciesy or omissions in this document will
be appreciated. Comments should be sent in writing to:

Technical Services Manager
NANODATA CORPORATIGON

2457 Wehrle Drive
Williamsville, New York 142213

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	14
	15
	16
	17
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56

