
INTR0(3) INTR0(3)

NAME
intro - introduction to functions and libraries

' DESCRIPTION
This section describes functions found in various libraries, other than
those functions that directly invoke operating system primitives, which
are described in Section 2 of this volume. Certain major collections are
identified by a letter after the section number:

(3C) These functions, together with those of Section 2 and those marked
(3S), constitute the Standard C Library libc, which is automatically
loaded by the C compiler, cc{l). (For this reason the (3C) and (3S)
sections together comprise one section of this manual.) The link
editor Zd{l) searches this library under the -le option. A "shared
library" version of libc can be searched using the -k_s option,
resulting in smaller a.outs. Declarations for some of these functions
may be obtained from #include files indicated on the appropriate
pages.

(3S) These functions constitute the "standard I/O package" [see
stdio (35)]. These functions are in the library libc, already men­
tioned. Declarations for these functions may be obtained from the
#include file <stdio.It>.

(3M) These functions constitute the Math Library, libm. They are not
automatically loaded by the C compiler, cc(l); however, the link
editor searches this library under the -Im option. Declarations for
these functions may be obtained from the #include file <math.h>.
Several generally useful mathematical constants are also defined
there [see math(S)].

(3N) This contains sets of functions constituting the Network Services
library. These sets provide protocol independent interfaces to net­
working services based on the service definitions of the OSI (Open
Systems Interconnection) reference model. Application developers
access the function sets that provide services at a particular level.
The function sets contained in the library are:

MU43814PR/D2

TRANSPORT INTERFACE {Tl) - provide the services of the OSI
Transport Layer. These services provide reliable end-to-end
data transmission using the services of an underlying network.
Applications written using the TI functions are independent of
the underlying protocols. Declarations for these functions may
be obtained from the #include file <tiuser.h>. The link edi­
tor Zd(l) searches this library under the -lnsl_s option.

- 1 - 12/01/87

INTR0(3) INTR0(3)

(3X) Various specialized libraries. The files in which these libraries are
found are given on the appropriate pages.

(3F) These functions constitute the FORTRAN intrinsic function library,
libF77. These functions are automatically available to the FOR­
TRAN programmer and require no special invocation of the com­
piler.

SYSTEM V/68 Release 3 provides support for the MC68881 floating point
coprocessor chip. This support is in the form of optional MC68881 code
generation by the cc compiler and by linking in the new libraries libc881.a
and libm881.a. The user must explicitly link these libraries with the
object code when selecting 881 support. Refer to cc(l) for more informa­
tion about linking the libraries and setting the environment variable for
floating point. Note that if the variable is selected but linking is with the
default libc.a and libm.a, the floating point programs will not run
correctly.
The documentation provided for libc.a and libm.a in sections 3C and 3M
of the SYSTEM V/68 User's Manual describes the basic functionality of
libc881.a and libm881.a. Additional information is provided in the fol­
lowing paragraphs and on the manual pages for matherr(3M), math881(3M)
and access881(3C).

• The libm881 routines expect rounding mode RN (round nearest) to
be set on the MC68881 chip (this is the default chip setup). The
user should not tamper with this rounding mode if the libm881
routines are to be called. Otherwise, overflows may not return
positive infinity as expected.

• When using libc881, the user should not set the rounding mode or
rounding precision and should not capture 881 exceptions gen­
erated by C-compiler code. Doing so requires detailed knowledge
of the C compiler's assumptions in doing code generation, and may
lead to software that is not maintained easily.

• In general, C programmers writing 881-specific code (e.g., a signal
handler for the fpu) are reminded that £save and £restore are
privileged instructions and the user must use the sysm68k call to
retrieve the "exceptional operand" for an exception.

MU43814PR/D2 -2- 12/01/87

INTR0(3)

•

•

DEFINITIONS

INTR0(3)

Users writing their own signal handlers should note that multiple
exceptions may be present and that the 881 status registers should
be examined to detect this possible case.
Users can handle 881 exceptions themselves by arranging to cap­
ture signal SIGFPE with the signal(2) system call (refer to signal(2)
in the SYSTEM V/68 User's Manual). They can also look at the
offending "exceptional operand" (which is retrieved with the
privileged FSAVE instruction) by doing the sysm68k call with new
command argument 3, which has the following form:

typedef long fregl3J;
return_code = sysm68k(3,(freg)exc_op);

where

return_code = -1 = => no 881 present
= 0 = = > exceptional operand returned

A character is any bit pattern able to fit into a byte on the machine. The
null character is a character with value 0, represented in the C language as
'\O'. A character array is a sequence of characters. A null-terminated charac­
ter array is a sequence of characters, the last of which is the null character.
A string is a designation for a null-terminated character array. The null string
is a character array containing only the null character. A NULL pointer is

the value that is obtained by casting 0 into a pointer. The C language
guarantees that this value will not match that of any legitimate pointer, so
many functions that return pointers return it to indicate an error. NULL is
defined as 0 in <stdio.h>; the user can include an appropriate definition
if not using < stdio.h>.
Many groups of FORTRAN intrinsic functions have generic function names
that do not require explicit or implicit type declaration. The type of the
function will be determined by the type of its argument(s). For example,
the generic function max will return an integer value if given integer argu­
ments (maxO), a. real value if given real arguments (amaxl), or a double­
precision value if given double-precision arguments (dmaxl).

Netbuf In the Network Services library, netbuf is a structure used in vari­
ous Transport Interface (TI) functions to send and receive data and infor­
mation. It contains the following members:

MU43814PR/D2 - 3 - 12/01/87

INTR0(3) INTR0(3)

FILES

unsigned int maxlen;
unsigned int len;
char *buf;

Buf points to a user input and/or output buffer. Len generally specifies the
number of bytes contained in the buffer. If the structure is used for both
input and output, the function will replace the user value of Zen on return.
MaxZen generally has significance only when buf is used to receive output
from the TI function. In this case, it specifies the physical size of the
buffer, the maximum value of Zen that can be set by the function. If max­
Zen is not large enough to hold the returned information, an TBUFOVFLW
error will generally result. However, certain functions may return part of
the data and not generate an error.

LIBDIR usually /lib
LIBDIR/libc.a
LIBDIR/libc_s.a
LIBDIR/libm. a
LIBDIR/lib77.a
/shlib/libc_s
/shlib/libnsl_s (3N)
/usr/lib/libnsl_s.a (3N)

SEE ALSO
ar(l), cc(l), ld(l), lint(l), nm(l), intro(2), stdio(3S), math(S).

DIAGNOSTICS
Functions in the C and Math Libraries (3C and 3M) may return the con­
ventional values 0 or ±HUGE (the largest-magnitude single-precision
floating-point numbers; HUGE is defined in the <math.h> header file)
when the function is undefined for the given arguments or when the
value is not representable. In these cases, the external variable errno [see
intro(2)] is set to the value EDOM or ERANGE.

WARNING
Many of the functions in the libraries call and/or refer to other functions
and external variables described in this section and in Section 2 (System
Calls). If a program inadvertently defines a function or external variable
with the same name, the presumed library version of the function or
external variable may not be loaded. The lint(l) program checker reports 1

name conflicts of this kind as "multiple declarations" of the names in
question. Definitions for Sections 2, 3C, and 3S are checked automati­
cally. Other definitions can be included by using the -1 option. (For

MU43814PR/D2 - 4 - 12/01/87

INTR0(3) INTR0(3)

example, -Im includes definitions for Section 3M, the Math Library.) Use
of lint is highly recommended.

MU43814PR/D2 -5- 12/01/87

A64L(3C) (C Programming Language Utilities) A64L(3C)

NAME
a64l, l64a - convert between long integer and base-64 ASCII string

SYNOPSIS
long a641 (s)
char *Si

char * l64a (1)
long l;

DESCRIPTION
These functions are used to maintain numbers stored in base-64 ASCII
characters. This is a notation by which long integers can be represented
by up to six characters; each character represents a "digit'' in a radix-64
notation.

The characters used to represent "digits" are . for 0, I for l, 0 through 9
for 2-11, A through Z for 12-37, and a through z for 38-63.

a64l takes a pointer to a null-terminated base-64 representation and
returns a corresponding long value. If the string pointed to bys contains
more than six characters, a64l will use the first six.

a64l scans the character string from left to right, decoding each character
as a 6 bit Radix 64 number.

l64a takes a long argument and returns a pointer to the corresponding
base-64 representation. If the argument is 0, l64a returns a pointer to a
null string.

CAVEAT
The value returned by l64a is a pointer into a static buffer, the contents of
which are overwritten by each call.

MU43814PR/D2 - 1 - 12/01/87

ABORT(3C) (C Programming Language Utilities)

NAME
abort - generate an IOT fault

SYNOPSIS
int abort ()

DESCRIPTION

ABORT(3C)

abort does the work of exit(2), but instead of just exiting, abort causes
SIGABRT to be sent to the calling process. If SIGABRT is neither caught
nor ignored, all stdio(3S) streams are flushed prior to the signal being
sent, and a core dump results.

abort returns the value of the kill (2) system call.

SEE ALSO
sdb(l), exit(2), kill(2), signal(2).

DIAGNOSTICS
If SIGABRT is neither caught nor ignored, and the current directory is
writable, a core dump is produced and the message "abort - core
dumped" is written by the shell.

MU43814PR/D2 - 1 - 12/01/87

ABS(3C) (C Programming Language Utilities)

NAME
abs - return integer absolute value

SYNOPSIS
int abs (i)
int i;

DESCRIPTION
abs returns the absolute value of its integer operand.

SEE ALSO
floor(3M).

CAVEAT

ABS(3C)

In two's-complement representation, the absolute value of the negative
integer with largest magnitude is undefined. Some implementations trap
this error, but others simply ignore it.

MU43814PR/D2 - 1 - 12/01/87

ACCESS881(3C) (Motorola Inc. Only)

NAME
access881 - provide access to floating point chip

SYNOPSIS
long rd88Lstatus()
long rd88Liaddr()
long rd88Lcontrol()

void wr88Lcontrol(newvalue);

DESCRIPTION

ACCESS881 (3C)

The access881 routines provide access from C to the system registers for
the MC68881 floating point chip. The first three routines are used to read
the chip's %status, %iaddr, and %control registers. The last routine is
used to update the %control register with a new value.

SEE ALSO
intro(3).

MU43814PR/D2 - 1 - 12/01/87

BSEARCH(3C) (C Programming Language Utilities) BSEARCH(3C)

NAME
bsearch - binary search a sorted table

SYNOPSIS
#include <search.h>

char •bsearch ((char •) key, (char •) base, nel, sizeof (•key), compar)
unsigned nel;
int (•compar)();

DESCRIPTION
bsearch is a binary search routine generalized from Knuth (6.2.1) Algo­
rithm B. It returns a pointer into a table indicating where a datum may be
found. The table must be previously sorted in increasing order according
to a provided comparison function. Key points to a datum instance to be
sought in the table. Base points to the element at the base of the table.
Nel is the number of elements in the table. Compar is the name of the
comparison function, which is called with two arguments that point to the
elements being compared. The function must return an integer less than,
equal to, or greater than zero as accordingly the first argument is to be
considered less than, equal to, or greater than the second.

EXAMPLE
The example below searches a table containing pointers to nodes consist­
ing of a string and its length. The table is ordered alphabetically on the
string in the node pointed to by each entry.

This code fragment reads in strings and either finds the corresponding
node and prints out the string and its length, or prints an error message.

MU43814PR/D2

#include <stdio.h>
#include <search.h>

#defineTABSIZE 1000

struct node { /• these are stored in the table •/
char •string;
int length;

};
struct node table[T ABSIZE]; I• table to be searched •/

{

- 1- 12/01/87

BSEARCH(3C) (C Programming Language Utilities) BSEARCH(3C)

NOTES

}
I*

int

struct node *node_ptr, node;
int node_compare(); I* routine to compare 2 nodes *I
char str_space[20]; I* space to read string into *I

node.string = str_space;
while (scanf("%s", node.string) != EOF) {

}

node_ptr = (struct node *)bsearch((char *)(&node),
(char *)table, TABSIZE,
sizeof(struct node), node_compare);

if (node_ptr ! = NULL) {
(void)printf("string = %20s, length = %d\n",

node_ptr- >string, node_ptr- >length);
} else {

(void)printf("not found: %s\n", node.string);
}

This routine compares two nodes based on an
alphabetical ordering of the string field.

node_compare(nodel, node2)
char *nodel, *node2;
{

}

return (strcmp(
((struct node *)nodel)->string,
((struct node *)node2)->string));

The pointers to the key and the element at the base of the table should be
of type pointer-to-element, and cast to type pointer-to-character.
The comparison function need not compare every byte, so arbitrary data
may be contained in the elements in addition to the values being com­
pared.
Although bsearch is declared as type pointer-to-character, the value
returned should be cast into type pointer-to-element.

MU43814PR/D2 - 2 - 12/01/87

BSEARCH(3C) (C Programming Language Utilities) BSEARCH(3C)

SEE ALSO
hsearch(3C), lsearch(3C), qsort(3C), tsearch(3C).

DIAGNOSTICS
A NULL pointer is returned if the key cannot be found in the table.

MU43814PR/D2 - 3 - 12/01/87

CLOCK(3C) (C Programming Language Utilities) CLOCK(3C)

NAME
clock - report CPU time used

SYNOPSIS
long clock ()

DESCRIPTION
clock returns the amount of CPU time (in microseconds) used since the
first call to clock. The time reported is the sum of the user and system
times of the calling process and its terminated child processes for which it
has executed wait(2), pclose(3S), or system(3S).

Typically, the resolution of the clock is 16.667 milliseconds on VME-based
computers (actually 1/HZ. See <sys/param.h>).

SEE ALSO

BUGS

times(2), wait(2), popen(3S), system(3S).

The value returned by clock is defined in microseconds for compatibility
with systems that have CPU clocks with much higher resolution. Because
of this, the value returned will wrap around after accumulating only 2147
seconds of CPU time (about 36 minutes).

MU43814PR/D2 - 1 - 12/01/87

CONV(3C) (C Programming Language Utilities) CONV(3C)

NAME
conv: toupper, tolower, _toupper, _tolower, toascii - translate characters

SYNOPSIS
#include <ctype.h>

int toupper (c) ·

int c;

int tolower (c)
int c;

int _toupper (c)
int c;

int _tolower (c)
int c;

int toascii (c)
int c;

DESCRIPTION
Toupper and tolower have as domain the range of getc(3S): the integers
from -1 through 255. H the argument of toupper represents a lower-case
letter, the result is the corresponding upper-case letter. If the argument of
tolower represents an upper-case letter, the result is the corresponding
lower-case letter. All other arguments in the domain are returned
unchanged.

The macros _toupper and _tolower, are macros that accomplish the same
thing as toupper and tolower but have restricted domains and are faster.
_toupper requires a lower-case letter as its argument; its result is the
corresponding upper-case letter. The macro _tolower requires an upper­
case letter as its argument; its result is the corresponding lower-case
letter. Arguments outside the domain cause undefined results.

Toascii yields its argument with all bits turned off that are not part of a
standard ASCII character; it is intended for compatibility with other sys­
tems.

SEE ALSO
ctype(3C), getc(3S).

MU43814PR/D2 - 1 - 12/01/87

CRYPT(3C) (C Program.ming Language Utilities) CRYPT(3C)

NAME
crypt, setkey, encrypt - generate hashing encryption

SYNOPSIS
char •crypt (key, salt)
char •key, •salt;

void setkey (key)
char •key;

void encrypt (block, ignored)
char •block;
int ignored;

DESCRIPTION
crypt is the password encryption function. It is based on a one way hash­
ing encryption algorithm with variations intended (among other things) to
frustrate use of hardware implementations of a key search.

Key is a user's typed password. Salt is a two-character string chosen from
the set [a-zA-Z0-9./]; this string is used to perturb the hashing algorithm
in one of 4096 different ways, after which the password is used as the key
to encrypt repeatedly a constant string. The returned value points to the
encrypted password. The first two characters are the salt itself.

The setkey and encrypt entries provide (rather primitive) access to the
actual hashing algorithm. The argument of setkey is a character array of
length 64 containing only the characters with numerical value 0 and 1. If
this string is divided into groups of 8, the low-order bit in each group is
ignored; this gives a 56-bit key which is set into the machine. This is the
key that will be used with the hashing algorithm to encrypt the string
block with the function encrypt.

The argument to the encrypt entry is a character array of length 64 contain­
ing only the characters with numerical value 0 and 1. The argument array
is modified in place to a similar array representing the bits of the argu­
ment after having been subjected to the hashing algorithm using the key
set by setkey. Ignored is unused by encrypt but it must be present.

SEE ALSO
getpass(3C), passwd(4).
login(!), passwd(l) in the User's Reference Manual.

CAVEAT
The return value points to static data that are overwritten by each call.

MU43814PR/D2 - 1 - 12/01/87

CTERMID(3S) (C Programming Language Utilities) CTERMID(3S)

NAME
ctermid - generate file name for terminal

SYNOPSIS
#include <stdio.h>
char *clermid (s)
char *Si

DESCRIPTION

NOTES

ctermid generates the path name of the controlling terminal for the current
process, and stores it in a string.

If s is a NULL pointer, the string is stored in an internal static area, the
contents of which are overwritten at the next call to ctermid, and the
address of which is returned. Otherwise, s is assumed to point to a char­
acter array of at least L_ctermid elements; the path name is placed in this
array and the value of s is returned. The constant L_ctermid is defined in
the <stdio.h> header file.

The difference between ctermid and ttyname(3C) is that ttyname must be
handed a file descriptor and returns the actual name of the terminal asso­
ciated with that file descriptor, while ctermid returns a string (/dev/tty)
that will refer to the terminal if used as a file name. Thus ttyname is use­
ful only if the process already has at least one file open to a terminal.

SEE ALSO
ttyname(3C).

MU43814PR/D2 - 1 - 12/01/87

CTIME(3C) (C Programming Language Utilities) CTIME(3C)

NAME
ctime, localtime, gmtime, asctime, tzset- convert date and time to string

SYNOPSIS
#include <sys/types.h>
#include <time.h>

char •dime (clock)
time_t •clock;

struct tm •localtime (clock)
time_t •clock;

struct tm •gmtime (clock)
time_t •clock;

char •asctime (tm)
struct tm •tm;

extern long timezone;

extern int daylight;

extern char •tzname[2];

void tzset ()

DESCRIPTION
ctime converts a long integer, pointed to by clock, representing the time in
seconds since 00:00:00 GMT, January 1, 1970, and returns a pointer to a
26-character string in the following form. All the fields have constant
width.

Sun Sep 16 01:03:52 1985\n\O

Localtime and gmtime return pointers to "tm" structures, described below.
Localtime corrects for the time zone and possible Daylight Savings Time;
gmtime converts directly to Greenwich Mean Time {GMT), which is the
time the operating system uses.

Asctime converts a "tm" structure to a 26-character string, as shown in the
above example, and returns a pointer to the string.

Declarations of all the functions and externals, and the "tm" structure, are
in the <time.h> header file. The structure declaration is:

MU43814PR/D2

struct tm {
int tm_sec;
int tm_min;

I• seconds (0 - 59) •/
I• minutes (0 - 59) •/

-1- 12101/87

CTIME(3C)

};

(C Programming Language Utilities)

int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_ wday;
int tm_yday;
int tm_isdst;

I* hours (0 - 23) */
/* day of month (1 - 31) *'
I* month of year (0 - 11) *'
I* year - 1900 *'
I* day of week (Sunday = 0) *I
/* day of year (0 - 365) */

Tm_isdst is non-zero if Daylight Savings Time is in effect.

CTIME(3C)

The external long variable timezone contains the difference, in seconds,
between GMT and local standard time (in EST, timezone is 5*60*60); the
external variable daylight is non-zero if and only if the standard U.S.A.
Daylight Savings Time conversion should be applied. The program knows
about the peculiarities of this conversion in 1974 and 1975; if necessary, a
table for these years can be extended.

If an environment variable named TZ is present, asctime uses the contents
of the variable to override the default time zone. The value of TZ must be
a three-letter time zone name, followed by a number representing the
difference between local time and Greenwich Mean Time in hours, fol­
lowed by an optional three-letter name for a daylight time zone. For
example, the setting for New Jersey would be ESTSEDT. The effects of
setting TZ are thus to change the values of the external variables timezone
and daylight; in addition, the time zone names contained in the external
variable

char •tzname[2] = { "EST", "EDT"};

are set from the environment variable TZ. The function tzset sets these
external variables from TZ; tzset is called by asctime and may also be called
explicitly by the user.

Note that in most installations, TZ is set by default when the user logs on,
to a value in the local /etdprofile file [see profile(4)].

SEE ALSO
time(2), getenv(3C), profile(4), environ(5).

CAVEAT
The return values point to static data whose content is overwritten by
each call.

MU43814PR/D2 -2- 12/01/87

CTYPE(3C) (C Programming Language Utilities) CTYPE(3C)

NAME
ctype: isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace,
ispunct, isprint, isgraph, iscntrl, isascii - classify characters

SYNOPSIS
#include <ctype.h>

int isalpha (c)
int c;

DESCRIPTION
These macros classify character-coded integer values by table lookup.
Each is a predicate returning nonzero for true, zero for false. Isascii is
defined on all integer values; the rest are defined only where isascii is true
and on the single non-ASCII value EOF [-1; see stdio(3S)].

isalpha c is a letter.

isupper

is lower

isdigit

isxdigit

isalnum

isspace

ispunct

isprint

is graph

iscntrl

isascii

SEE ALSO

c is an upper-case letter.

c is a lower-case letter.

c is a digit [0-9].

c is a hexadecimal digit [0-9], [A-F] or [a-f].

c is an alphanumeric (letter or digit).

c is a space, tab, carriage return, newline, vertical tab, or
form-feed.

c is a punctuation character (neither control nor
alphanumeric).

c is a printing character, code 040 (space) through 0176
(tilde).

c is a printing character, like isprint except false for space.

c is a delete character (0177) or an ordinary control char­
acter (less than 040).

c is an ASCII character, code less than 0200.

stdio(3S), ascii(S).

MU43814PR/D2 - 1 - 12/01/87

CTYPE(3C) (C Programming Language Utilities) CTYPE(3C)

DIAGNOSTICS
If the argument to any of these macros is not in the domain of the func­
tion, the result is undefined.

MU43814PR/D2 -2- 12101/87

CUSERID(3S) (C Programming Language Utilities) CUSERID(3S)

NAME
cuserid - get character login name of the user

SYNOPSIS
#include <stdio.h>

char *Cuserid (s)
char *Si

DESCRIPTION
cuserid generates a character-string representation of the login name that
the owner of the current process is logged in under. If s is a NULL
pointer, this representation is generated in an internal static area, the
address of which is returned. Otherwise, s is assumed to point to an
array of at least L_cuserid characters; the representation is left in this
array. The constant L_cuserid is defined in the <stdio.h> header file.

DIAGNOSTICS
If the login name cannot be found, cuserid returns a NULL pointer; if s is
not a NULL pointer, a null character (\0) will be placed at s[O].

SEE ALSO
getlogin(3C), getpwent(3C).

MU43814PR/D2 - 1 - 12/01/87

DIAL(3C) (C Programming Language Utilities) DIAL(3C)

NAME
dial - establish an out-going terminal line connection

SYNOPSIS
#include <dial.h>

int dial (call)
CALL call;

void undial (fd)
int fd;

DESCRIPTION
dial returns a file-descriptor for a terminal line open for read/write. The
argument to dial is a CALL structure (defined in the <dial.h> header file).

When finished with the terminal line, the calling program must invoke
undial to release the semaphore that has been set during the allocation of
the terminal device.

The definition of CALL in the <dial.h> header file is:

typedef struct {
struct termio *attr;
int baud;
int speed;
char *line;
char *telno;
int modem;
char *device;

int dev _len;

} CALL;

I* pointer to termio attribute struct *I
I* transmission data rate *I
I* 212A modem: low=300, high=1200 *I
I* device name for out-going line */
I* pointer to tel-no digits string */
I* specify modem control for direct lines */
/*Will hold the name of the device used
to make a connection*/
/* The length of the device used to make
connection*/

The CALL element speed is intended only for use with an outgoing dialed
call, in which case its value should be either 300 or 1200 to identify the
113A modem, or the high- or low-speed setting on the 212A modem. Note
that the 113A modem or the low-speed setting of the 212A modem will
transmit at any rate between 0 and 300 bits per second. However, the
high-speed setting of the 212A modem transmits and receives at 1200 bits
per secound only. The CALL element baud is for the desired transmission
baud rate. For example, one might set baud to 110 and speed to 300 (or
1200). However, if speed set to 1200 baud must be set to high (1200).

MU43814PR/Al - 1 - 06/01/88

I

DIAL(3C) (C Programming Language Utilities) DIAL(3C)

11

FILES

I

If the desired terminal line is a direct line, a string pointer to its device­
name should be placed in the line element in the CALL structure. Legal
values for such terminal device names are kept in the Devices file. In this
case, the value of the baud element need not be specified as it will be
determined from the Devices file.

The telno element is for a pointer to a character string representing the
telephone number to be dialed. Such numbers may consist only of sym­
bols described on the acu(7). The termination symbol will be supplied by
the dial function, and should not be included in the telno string passed to
dial in the CALL structure.

The CALL element modem is used to specify modem control for direct
lines. This element should be non-zero if modem control is required. The
CALL element attr is a pointer to a termio structure, as defined in the
termio.h header file. A NULL value for this pointer element may be passed
to the dial function, but if such a structure is included, the elements speci­
fied in it will be set for the outgoing terminal line before the connection is
established. This is often important for certain attributes such as parity
and baud-rate.

The CALL element device is used to hold the device name (cul..) that estab­
lishes the connection.

The CALL element dev_len is the length of the device name that is copied
into the array device.

/usr/lib/uucp/Devices
/usr/spool/locks/LCK .. tty-device

SEE ALSO
alarm(2), read(2), write(2).
termio(7) in the System Administrator's Reference Manual.
uucp{lC) in the User's Reference Manual.

DIAGNOSTICS
On failure, a negative value indicating the reason for the failure will be
returned. Mnemonics for these negative indices as listed here are defined
in the <dial.h> header file.

INTRPT
D_HUNG
NO_ANS
ILL_BD

MU43814PR/Al

-1
-2
-3
-4

I* interrupt occurred *I
I* dialer hung (no return from write) *I
I* no answer within 10 seconds *I
I* illegal baud-rate */

- 2 - 06/01/88

DIAL(3C) (C Programming Language Utilities) DIAL(3C)

A_PROB -5
L_PROB -6
NO_Ldv -7
DV_NT_A -8
DV_NT_K -9
NO_BD_A -10
NO_BD_K -11

I* acu problem (open() failure) *I
I* line problem (open() failure) *I
I* can't open LDEVS file *I
I* requested device not available *I
I* requested device not known */
I* no device available at requested baud */
I* no device known at requested baud *I

WARNINGS

BUGS

The dial (3C) library function is not compatible with Basic Networking
Utilities on SYSTEM V/68 Release 3.

Including the <dial.h> header file automatically includes the
<termio.h> header file.

The above routine uses <stdio.h>, which causes it to increase the size of
programs, not otherwise using standard VO, more than might be
expected.

An alarm(2) system call for 3600 seconds is made (and caught) within the
dial module for the purpose of "touching" the LCK .. file and constitutes
the device allocation semaphore for the terminal device. Otherwise,
uucp(lC) may simply delete the LCK.. entry on its 90-minute clean-up
rounds. The alarm may go off while the user program is in a read(2) or
write(2) system call, causing an apparent error return. If the user program
expects to be around for an hour or more, error returns from reads should
be checked for (ermo==EINTR), and the read possibly reissued.

MU43814PR/D2 -3- 12/01/87

DRAND48(3C) (C Programming Language Utilities) DRAND48(3C)

NAME
drand48, erand48, lrand48, nrand48, mrand48, jrand48, srand48, seed48,
lcong48 - generate uniformly distributed pseudo-random numbers

SYNOPSIS
double drand48 ()

double erand48 (xsubi)
unsigned short xsubi[3];

long lrand48 ()

long nrand48 (xsubi)
unsigned short xsubil3];

long mrand48 ()

long jrand48 (xsubi)
unsigned short xsubiI3];

void srand48 (seedval)
long seedval;

unsigned short •seed48 (seed16v)
unsigned short seed16vl3];

void lcong48 (param)
unsigned short paraml7];

DESCRIPTION
This family of functions generates pseudo-random numbers using the
well-known linear congruential algorithm and 48-bit integer arithmetic.

Functions drand48 and erand48 return non-negative double-precision
floating-point values uniformly distributed over the interval [0.0, 1.0).

Functions lrand48 and nrand48 return non-negative long integers uni­
formly distributed over the interval [0, 2 31).

Functions mrand48 and jrand48 return signed long integers uniformly dis­
tributed over the interval [-231, 231).

Functions srand48, seed48 and lcong48 are initialization entry points, one of
which should be invoked before either drand48, lrand48 or mrand48 is
called. (Although it is not recommended practice, constant default initial-

MU43814PR/D2 - 1 - 12/01/87

DRAND48(3C) (C Programming Language Utilities) DRAND48(3C)

izer values will be supplied automatically if drand48, lrand48 or mrand48 is
called without a prior call to an initialization entry point.) Functions
erand48, nrand48 and jrand48 do not require an initialization entry point to
be called first.

All the routines work by generating a sequence of 48-bit integer values,
X., according to the linear congruential formula

I

Xn+l = (aXn+c>mod m n'2:0.

The parameter m = 248; hence 48-bit integer arithmetic is performed.
Unless lcong48 has been invoked, the multiplier value a and the addend
value c are given by

a= 5DEECE66D16 = 2736731631558
c = 816 = 1381"

The value returned by any of the functions drand48, erand48, lrand48,
nrand48, mrand48 or jrand48 is computed by first generating the next 48-bit
Xi in the sequence. Then the appropriate number of bits, according to the
type of data item to be returned, are copied from the high-order (leftmost)
bits of X. and transformed into the returned value.

I

The functions drand48, lrand48 and mrand48 store the last 48-bit X. gen­
erated in an internal buffer, and must be initialized prior to ~ing
invoked. The functions erand48, nrand48 and jrand48 require the calling
program to provide storage for the successive Xi values in the array speci­
fied as an argument when the functions are invoked. These routines do
not have to be initialized; the calling program must place the desired ini­
tial value of Xi into the array and pass it as an argument. By using dif­
ferent arguments, functions erand48, nrand48 and jrand48 allow separate
modules of a large program to generate several independent streams of
pseudo-random numbers, i.e., the sequence of numbers in each stream
will not depend upon how many times the routines have been called to
generate numbers for the other streams.

The initializer function srand48 sets the high-order 32 bits of X. to the 32
bits contained in its argument. The low-order 16 bits of X. are1 set to the
arbitrary value 330E16. 1

The initializer function seed48 sets the value of X. to the 48-bit value speci­
fied in the argument array. In addition, the pre~ous value of X. is copied
into a 48-bit internal buffer, used only by seed48, and a poinler to this
buffer is the value returned by seed48. This returned pointer, which can
just be ignored if not needed, is useful if a program is to be restarted from

MU43814PR/D2 -2- 12/01/87

DRAND48(3C) (C Programming Language Utilities) DRAND48(3C)

NOTES

a given point at some future time - use the pointer to get at and store the
last X. value, and then use this value to reinitialize via seed48 when the

l
program is restarted.

The initialization function lcong48 allows the user to specify the initial Xi ,
the multiplier value a, and the addend value c. Argument array elements
param{0-2] specify Xi , param[3-5] specify the multiplier a, and param[6]
specifies the 16-bit addend c. After lcong48 has been called, a subsequent
call to either srand48 or seed48 will restore the "standard" multiplier and
addend values, a and c, specified on the previous page.

The source code for the portable version can be used on computers which
do not have floating-point arithmetic. In such a situation, functions
drand48 and erand48 are replaced by the two new functions below.

long irand48 (m)
unsigned short m;

long krand48 (xsubi, m)
unsigned short xsubi[3], m;

Functions irand48 and krand48 return non-negative long integers uni­
formly distributed over the interval [O, m-1]. delim off

SEE ALSO
rand(3C).

MU43814PR/D2 -3- 12/01/87

DUP2(3C)

NAME
dup2 - duplicate an open file descriptor

SYNOPSIS
int dup2 (fildes, fildes2)
int fildes, fildes2;

DESCRIPTION

DUP2(3C)

Fildes is a file descriptor referring to an open file, and fildes2 is a non­
negative integer less than NOFILES. dup2 causes fildes2 to refer to the
same file as fildes. If fildes2 already referred to an open file, it is closed
first.

dup2 will fail if one or more of the following are true:

[EBADF] Fildes is not a valid open file descriptor.

[EMFILE] NOFILES file descriptors are currently open.

SEE ALSO
creat(2), close(2), exec(2), fcntl(2), open(2), pipe(2), lockf(3C).

DIAGNOSTICS
Upon successful completion a non-negative integer, namely the file
descriptor, is returned. Otherwise, a value of -1 is returned and errno is
set to indicate the error.

MU43814PR/D2 - 1 - 12/01/87

ECVT(3C) (C Program.ming Language Utilities) ECVT(3C)

NAME
ecvt, fcvt, gcvt - convert floating-point number to string

SYNOPSIS
char •ecvt (value, ndigit, decpt, sign)
double value;
int ndigit, •decpt, •sign;

char •fcvt (value, ndigit, decpt, sign)
double value;
int ndigit, •decpt, •sign;

char •gcvt (value, ndigit, buf)
double value;
int ndigit;
char •buf;

DESCRIPTION
ecvt converts value to a null-terminated string of ndigit digits and returns a
pointer thereto. The high-order digit is non-zero, unless the value is zero.
The low-order digit is rounded. The position of the decimal point relative
to the beginning of the string is stored indirectly through decpt (negative
means to the left of the returned digits). The decimal point is not included
in the returned string. If the sign of the result is negative, the word
pointed to by sign is non-zero, otherwise it is zero.

Fcvt is identical to ecvt, except that the correct digit has been rounded for
printf "%f" (FORTRAN F-format) output of the number of digits specified
by ndigit.

Gcvt converts the value to a null-terminated string in the array pointed to
by buf and returns buf. It attempts to produce ndigit significant digits in
FORTRAN F-format if possible, otherwise E-format, ready for printing. A
minus sign, if there is one, or a decimal point will be included as part of
the returned string. Trailing zeros are suppressed.

SEE ALSO
printf(3S).

BUGS
The values returned by ecvt and fcvt point to a single static data array
whose content is overwritten by each call.

MU43814PR/D2 - 1 - 12/01/87

END(3C) (C Programming Language Utilities) END(3C)

NAME
end, etext, edata - last locations in program

SYNOPSIS
extern end;
extern etext;
extern edata;

DESCRIPTION
These names refer neither to routines nor to locations with interesting
contents. The address of etext is the first address above the program text,
edata above the initialized data region, and end above the uninitialized
data region.

When execution begins, the program break (the first location beyond the
data) coincides with end, but the program break may be reset by the rou­
tines of brk(2), malloc(3C), standard input/output [stdio(3S)], the profile
(-p) option of cc{l), and so on. Thus, the current value of the program
break should be determined by sbrk (char •)(O) [see brk(2)].

SEE ALSO
cc{l), brk(2), malloc(3C), stdio(3S).

MU43814PRJD2 - 1 - 12/01/87

FCLOSE(3S) (C Programming Language Utilities) FCLOSE(3S)

NAME
£close, £flush - close or flush a stream

SYNOPSIS
#include <stdio.h>

int £close (stream)
FILE *Stream;

int £flush (stream)
FILE *Stream;

DESCRIPTION
fclose causes any buffered data for the named stream to be written out, and
the stream to be closed.

fclose is performed automatically for all open files upon calling exit(2).

Fflush causes any buffered data for the named stream to be written to that
file. The stream remains open.

SEE ALSO
close(2), exit(2), fopen(3S), setbuf(3S), stdio(3S).

DIAGNOSTICS
These functions return 0 for success, and EOF if any error (such as trying
to write to a file that has not been opened for writing) was detected.

MU43814PR/D2 - 1 - 12/01/87

FERROR(3S) (C Programming Language Utilities) FERROR(3S)

NAME
ferror, feof, clearerr, fileno - stream status inquiries

SYNOPSIS
#include <stdio.h>

int £error (stream)
FILE *Stream;

int feof (stream)
FILE *stream;

void clearerr (stream)
FILE *Stream;

int fileno (stream)
FILE *stream;

DESCRIPTION

NOTES

ferror returns non-zero when an I/O error has previously occurred reading
from or writing to the named stream, otherwise zero.

Feof returns non-zero when EOF has previously been detected reading the
named input stream, otherwise zero.

Clearerr resets the error indicator and EOF indicator to zero on the named
stream.

Fileno returns the integer file descriptor associated with the named stream;
see open (2).

All these functions are implemented as macros; they cannot be declared or
redeclared.

SEE ALSO
open(2), fopen(3S), stdio(3S).

MU43814PR/02 - 1 - 12/01/87

FOPEN(3S) (C Programming Language Utilities) FOPEN(3S)

NAME
fopen, freopen, fdopen - open a stream

SYNOPSIS
#include <stdio.h>

FILE *fopen (filename, type)
char *filename, *type;

FILE *£reopen (filename, type, stream)
char *filename, *type;
FILE *Stream;

FILE *fdopen (fildes, type)
int fildes;
char *type;

DESCRIPTION
fopen opens the file named by filename and associates a stream with it.
fopen returns a pointer to the FILE structure associated with the stream.

Filename points to a character string that contains the name of the file to
be opened.

Type is a character string having one of the following values:

"r" open for reading

"w" truncate or create for writing

"a" append; open for writing at end of file, or create for
writing

"r+" open for update (reading and writing)

"w+" truncate or create for update

"a+" append; open or create for update at end-of-file

Freopen substitutes the named file in place of the open stream. The origi­
nal stream is closed, regardless of whether the open ultimately succeeds.
Freopen returns a pointer to the FILE structure associated with stream.

Freopen is typically used to attach the preopened streams associated with
stdin, stdout and stderr to other files.

Fdopen associates a stream with a file descriptor. File descriptors are
obtained from open, dup, creat, or pipe(2), which open files but do not
return pointers to a FILE structure stream. Streams are necessary input for
many of the Section 3S library routines. The type of stream must agree

MU43814PR/02 - 1 - 12/01/87

FOPEN(3S) (C Programming Language Utilities) FOPEN(3S)

with the mode of the open file.

When a file is opened for update, both input and output may be done on
the resulting stream. However, output may not be directly followed by
input without an intervening fseek or rewind, and input may not be
directly followed by output without an intervening fseek, rewind, or an
input operation which encounters end-of-file.

When a file is opened for append (i.e., when type is "a" or "a+"), it is
impossible to overwrite information already in the file. Fseek may be used
to reposition the file pointer to any position in the file, but when output is
written to the file, the current file pointer is disregarded. All output is
written at the end of the file and causes the file pointer to be repositioned
at the end of the output. If two separate processes open the same file for
append, each process may write freely to the file without fear of destroy­
ing output being written by the other. The output from the two processes
will be intermixed in the file in the order in which it is written.

SEE ALSO
creat(2), dup(2), open(2), pipe(2), fclose(3S), fseek(3S), stdio(3S).

DIAGNOSTICS
fopen, fdopen, and freopen return a NULL pointer on failure.

MU43814PR/D2 - 2 - 12/01/87

FREAD(3S) (C Programming Language Utilities) FREAD(3S)

NAME
fread, fwrite - binary input/output

SYNOPSIS
#include <stdio.h>
#include <sys/types.h>

int fread (ptr, size, nitems, stream)
char *ptr;
int nitems;
size_t size;
FILE *Stream;

int £write (ptr, size, nitems, stream)
char *ptr;
int nitems;
size_t size;
FILE *Stream;

DESCRIPTION
fread copies, into an array pointed to by ptr, nitems items of data from the
named input stream, where an item of data is a sequence of bytes (not
necessarily terminated by a null byte) of length size. fread stops append­
ing bytes if an end-of-file or error condition is encountered while reading
stream, or if nitems items have been read. fread leaves the file pointer in
stream, if defined, pointing to the byte following the last byte read if there
is one. fread does not change the contents of stream.

fwrite appends at most nitems items of data from the array pointed to by
ptr to the named output stream. fwrite stops appending when it has
appended nitems items of data or if an error condition is encountered on
stream. fwrite does not change the contents of the array pointed to by ptr.

The argument size is typically sizeof(*ptr) where the pseudo-function sizeof
specifies the length of an item pointed to by ptr. If ptr points to a data
type other than char it should be cast into a pointer to char.

SEE ALSO
read(2), write(2), fopen(3S), getc(3S), gets(3S), printf(3S), putc(3S),
puts(3S), scanf(3S), stdio(3S).

DIAGNOSTICS
fread and fwrite return the number of items read or written. If nitems is
non-positive, no characters are read or written and 0 is returned by both
fread and fwrite.

MU43814PR/D2 - 1 - 12101/87

FREXP(3C) (C Programming Language Utilities) FREXP(3C)

NAME
frexp, ldexp, modf - manipulate parts of floating-point numbers

SYNOPSIS
double frexp (value, eptr)
double value;
int •eptr;

double ldexp (value, exp)
double value;
int exp;

double modf (value, iptr)
double value, •iptr;

DESCRIPTION
Every non-zero number can be written uniquely as x * 2n, where the
"mantissa" (fraction) x is in the range 0.5 ::$ Ix I < 1.0, and the
"exponent"'n is an integer. frexp returns the mantissa of a double value,
and stores the exponent indirectly in the location pointed to by eptr. If
value is zero, both results returned by frexp are zero.

Ldexp returns the quantity value * 2exp.

Modf returns the signed fractional part of value and stores the integral part
indirectly in the location pointed to by iptr.

DIAGNOSTICS
If ldexp would cause overflow, ±HUGE (defined in <math.h>) is
returned (according to the sign of value), and errno is set to ERANGE.
If ldexp would cause underflow, zero is returned and errno is set to
ERAN GE.

MU43814PR/D2 - 1 - 12/01/87

FSEEK(35) (C Programming Language Utilities) FSEEK(3S)

NAME
fseek, rewind, ftell - reposition a file pointer in a stream

SYNOPSIS
#include <stdio.h>

int fseek (stream, offset, ptrname)
FILE *Stream;
long offset;
int ptrname;

void rewind (stream)
FILE *stream;

long ftell (stream)
FILE *Stream;

DESCRIPTION
fseek sets the position of the next input or output operation on the stream.
The new position is at the signed distance offset bytes from the beginning,
from the current position, or from the end of the file, according as ptrname
has the value 0, 1, or 2.

Rewind(stream) is equivalent to fseek(stream, OL, 0), except that no value is
returned.

fseek and rewind undo any effects of ungetc(3S).

After fseek or rewind, the next operation on a file opened for update may
be either input or output.

Ftell returns the offset of the current byte relative to the beginning of the
file associated with the named stream.

SEE ALSO
lseek(2), fopen(3S), popen(3S), stdio(3S), ungetc(3S).

DIAGNOSTICS
fseek returns non-zero for improper seeks, otherwise zero. An improper
seek can be, for example, an fseek done on a file that has not been opened
via fopen; in particular, fseek may not be used on a terminal, or on a file
opened via popen(3S).

MU43814PR/02 - 1 - 12/01187

FSEEK(3S) (C Programming Language Utilities) FSEEK(3S)

WARNING
Although on the SYSTEM V/68 system an offset returned by ftell is meas­
ured in bytes, and it is permissible to seek to positions relative to that
offset, portability to non-SYSTEM-V/68 systems requires that an offset be
used by fseek directly. Arithmetic may not meaningfully be performed on
such an offset, which is not necessarily measured in bytes.

MU43814PR/D2 -2- 12/01/87

FTW(3C) (C Programming Language Utilities) FTW(3C)

NAME
ftw - walk a file tree

SYNOPSIS
#include <ftw.h>

int ftw (path, fn, depth)
char •path;
int (•fn) ();
int depth;

DESCRIPTION
ftw recursively descends the directory hierarchy rooted in path. For each
object in the hierarchy, ftw calls fn, passing it a pointer to a null­
terminated character string containing the name of the object, a pointer to
a stat structure [see stat(2)] containing information about the object, and
an integer. Possible values of the integer, defined in the <ftw.h> header
file, are FTW_F for a file, FTW_D for a directory, FTW_DNR for a directory
that cannot be read, and FTW _NS for an object for which stat could not
successfully be executed. If the integer is FTW _DNR, descendants of that
directory will not be processed. If the integer is FTW_NS, the stat struc­
ture will contain garbage. An example of an object that would cause
FTW _NS to be passed to fn would be a file in a directory with read but
without execute (search) permission.

ftw visits a directory before visiting any of its descendants.

The tree traversal continues until the tree is exhausted, an invocation of fn
returns a nonzero value, or some error is detected within ftw (such as an
I/O error). If the tree is exhausted, ftw returns zero. If fn returns a
nonzero value, ftw stops its tree traversal and returns whatever value was
returned by fn. If ftw detects an error, it returns -1, and sets the error
type in errno.

ftw uses one file descriptor for each level in the tree. The depth argument
limits the number of file descriptors so used. If depth is zero or negative,
the effect is the same as if it were 1. Depth must not be greater than the
number of file descriptors currently available for use. ftw will run more
quickly if depth is at least as large as the number of levels in the tree.

SEE ALSO
stat(2), malloc(3C).

MU43814PR/D2 - 1 - 12101/87

FTW(3C) (C Programming Language Utilities) FTW(3C)

BUGS
Because ftw is recursive, it is possible for it to terminate with a memory
fault when applied to very deep file structures.

CAVEAT
ftw uses malloc(3C) to allocate dynamic storage during its operation. If ftw
is forcibly terminated, such as by longjmp being executed by fn or an inter­
rupt routine, ftw will not have a chance to free that storage, so it will
remain permanently allocated. A safe way to handle interrupts is to store
the fact that an interrupt has occurred, and arrange to have fn return a
nonzero value at its next invocation.

MU43814PR/D2 - 2 - 12/01/87

GETC(3S) (C Programming Language Utilities) GETC(3S)

NAME
getc, getchar, fgetc, getw - get character or word from a stream

SYNOPSIS
#include <stdio.h>

int getc (stream)
FILE *Stream;

int getchar ()

int fgetc (stream)
FILE *stream;

int getw (stream)
FILE *Stream;

DESCRIPTION
getc returns the next character (i.e., byte) from the named input stream, as
an integer. It also moves the file pointer, if defined, ahead one character
in stream. getchar is defined as getc(stdin). getc and getchar are macros.

Fgetc behaves like getc, but is a function rather than a macro. Fgetc runs
more slowly than getc, but it takes less space per invocation and its name
can be passed as an argument to a function.

Getw returns the next word (i.e., integer) from the named input stream.
Getw increments the associated file pointer, if defined, to point to the next
word. The size of a word is the size of an integer and varies from
machine to machine. Getw assumes no special alignment in the file.

SEE ALSO
fclose(3S), ferror(3S), fopen(3S), fread(3S), gets(3S), putc(3S), scanf(3S),
stdio(3S).

DIAGNOSTICS
These functions return the constant EOF at end-of-file or upon an error.
Because EOF is a valid integer, ferror(3S) should be used to detect getw
errors.

WARNING
If the integer value returned by getc, getchar, or fgetc is stored into a char­
acter variable and then compared against the integer constant EOF, the
comparison may never succeed, because sign-extension of a character on
widening to integer is machine-dependent.

CAVEATS
Because it is implemented as a macro, getc evaluates a stream argument

MU43814PR/02 - 1 - 12/01/87

GETC(3S) (C Programming Language Utilities) GETC(3S)

more than once. In particular, getc(*f+ +) does not work sensibly. Fgetc
should be used instead.

Because of possible differences in word length and byte ordering, files
written using putw are machine-dependent, and may not be read using
getw on a different processor.

MU43814PR/D2 - 2 - 12/01/87

GETCWD(3C) (C Programming Language Utilities) GETCWD(3C)

NAME
getcwd - get path-name of current working directory

SYNOPSIS
char •getcwd (buf, size)
char •buf;
int size;

DESCRIPTION
getcwd returns a pointer to the current directory path name. The value of
size must be at least two greater than the length of the path-name to be
returned.

If buf is a NULL pointer, getcwd will obtain size bytes of space using
malloc(3C). In this case, the pointer returned by getcwd may be used as
the argument in a subsequent call to free.

The function is implemented by using popen(35) to pipe the output of the
pwd{l) command into the specified string space.

EXAMPLE

SEE ALSO

void exit{), perror();

if ((cwd = getcwd((char •)NULL, 64)) ==NULL) {
perror("pwd'1;
exit(2);

}
printf("%s\n", cwd);

malloc(3C), popen(35).
pwd{l) in the User's Reference Manual.

DIAGNOSTICS
Returns NULL with errno set if size is not large enough, or if an error
occurs in a lower-level function.

MU43814PR/D2 -1- 12101/87

GETENV(3C) (C Programming Language Utilities)

NAME
getenv - return value for environment name

SYNOPSIS
char •getenv (name)
char •name;

DESCRIPTION

GETENV(3C)

getenv searches the environment list [see environ(5)] for a string of the
form name=value, and returns a pointer to the value in the current
environment if such a string is present, otherwise a NULL pointer.

SEE ALSO
exec(2), putenv(3C), environ(5).

MU43814PR/D2 - 1 - 12/01/87

GETGRENT(3C) (C Programming Language Utilities) GETGRENT(3C)

NAME
getgrent, getgrgid, getgrnam, setgrent, endgrent, fgetgrent - get group
file entry

SYNOPSIS
#include <grp.h>

struct group •getgrent ()

struct group •getgrgid (gid)
int gid;

struct group •getgrnam (name)
char •name;

void setgrent ()

void endgrent ()

struct group •fgetgrent (£)

FILE •£;

DESCRIPTION
getgrent, getgrgid and getgrnam each return pointers to an object with the
following structure containing the broken-out fields of a line in the
/etc/group file. Each line contains a "group" structure, defined in the
<grp.h> header file.

struct group {
char *gr_name; /* the name of the group *I
char *gr_passwd; I* the encrypted group password *I
int gr_gid; /* the numerical group ID *'
char **gr_mem; I* vector of pointers to member names *I

};

getgrent when first called returns a pointer to the first group structure in
the file; thereafter, it returns a pointer to the next group structure in the
file; so, successive calls may be used to search the entire file. Getgrgid
searches from the beginning of the file until a numerical group id match­
ing gid is found and returns a pointer to the particular structure in which
it was found. Getgrnam searches from the beginning of the file until a
group name matching name is found and returns a pointer to the particu­
lar structure in which it was found. If an end-of-file or an error is encoun­
tered on reading, these functions return a NULL pointer.

A call to setgrent has the effect of rewinding the group file to allow
repeated searches. Endgrent may be called to close the group file when

MU43814PR/D2 - 1 - 12/01/87

GETGRENT(3C) (C Programming Language Utilities) GETGRENT(3C)

processing is complete.

Fgetgrent returns a pointer to the next group structure in the stream f,
which matches the format of /etc/group.

FILES
/etdgroup

SEE ALSO
getlogin(3C), getpwent(3C), group(4).

DIAGNOSTICS
A NULL pointer is returned on EOF or error.

WARNING
The above routines use <stdio.h>, which causes them to increase the
size of programs, not otherwise using standard 1/0, more than might be
expected.

CAVEAT
All information is contained in a static area, so it must be copied if it is to
be saved.

MU43814PR/D2 -2- 12/01/87

GETLOGIN(3C) (C Programming Language Utilities)

NAME
getlogin - get login name

SYNOPSIS
char •getlogin ();

DESCRIPTION

GETLOGIN(3C)

getlogin returns a pointer to the login name as found in /etc/utmp. It may
be used in conjunction with getpwnam to locate the correct password file
entry when the same user ID is shared by several login names.

If getlogin is called within a process that is not attached to a terminal, it
returns a NULL pointer. The correct procedure for determining the login
name is to call cuserid, or to call getlogin and if it fails to call getpwuid.

FILES
/etc/utmp

SEE ALSO
cuserid(3S), getgrent(3C), getpwent{3C), utmp(4).

DIAGNOSTICS
Returns the NULL pointer if name is not found.

CAVEAT
The return values point to static data whose content is overwritten by
each call.

MU43814PR/D2 - 1 - 12/01/87

GETOPT(3C) (C Programming Language Utilities) GETOPT(3C)

NAME
getopt - get option letter from argument vector

SYNOPSIS
int getopt (argc, argv, optstring)
int argc;
char **argv, *Opstring;

extern char *Optarg;
extern int optind, opterr;

DESCRIPTION
getopt returns the next option letter in argv that matches a letter in opt­
string. It supports all the rules of the command syntax standard (see
intro(l)). So all new commands will adhere to the command syntax stan­
dard, they should use getopts (1) or getopt (3C) to parse positional parame­
ters and check for options that are legal for that command.

optstring must contain the option letters the command using getopt will
recognize; if a letter is followed by a colon, the option is expected to have
an argument, or group of arguments, which must be separated from it by
white space.

optarg is set to point to the start of the option-argument on return from
getopt.

getopt places in optind the argv index of the next argument to be pro­
cessed. optind is external and is initialized to 1 before the first call to
getopt.

When all options have been processed (i.e., up to the first non-option
argument), getopt returns -1. The special option"-" may be used to del­
imit the end of the options; when it is encountered, -1 will be returned,
and"-" will be skipped.

DIAGNOSTICS
getopt prints an error message on standard error and returns a question
mark (?) when it encounters an option letter not included in optstring or
no option-argument after an option that expects one. This error message
may be disabled by setting opterr to 0.

MU43814PR/02 - 1 - 12/01/87

GETOPT(3C) (C Programming Language Utilities) GETOPT(3C)

EXAMPLE
The following code fragment shows how one might process the argu­
ments for a command that can take the mutually exclusive options a and
b, and the option o, which requires an option-argument:

main (argc, argv)
int argc;
char
{

MU43814PR/D2

**argv;

int c;
extern char *optarg;
extern int optind;

while ((c = getopt(argc, argv, "abo:")) != -1)
switch (c) {
case 'a':

if (bflg)
errflg++;

else
aflg++;

break;
case 'b':

if (aflg)
errflg++;

else
bproc () ;

break;
case 'o':

ofile = optarg;
break;

case '?':
errflg++;

}

if (err.flg) {

}

(void)fprintf (stderr, "usage:
exit (2);

.for (optind < argc; optind++) {
i.f (access(argv[optind], 4)) {

- 2 -

II) ;

12/01/87

GETOPT(3C) (C Programming Language Utilities)

}

This code will accept any of the following as equivalent:

SEE ALSO

cmd -a -b -o "xxx z yy" file
cmd -a -b -o "xxx z yy" -- file
cmd -ab -o xxx,z,yy file
cmd -ab -o "xxx z yy" file
cmd -o xxx,z,yy -b -a file

getopts(l), intro(l) in the User's Reference Manual.

GETOPT(3C)

Changing the value of the variable optind, or calling getopt with different
values of argv, may lead to unexpected results.

MU43814PR/D2 - 3 - 12/01/87

GETP ASS (3C) (C Programming Language Utilities) GETPASS(3C)

NAME
getpass - read a password

SYNOPSIS
char *getpass (prompt)
char *prompt;

DESCRIPTION

FILES

getpass reads up to a newline or EOF from the file /dev/tty, after prompt­
ing on the standard error output with the null-terminated string prompt
and disabling echoing. A pointer is returned to a null-terminated string of
at most 8 characters. If /dev/tty cannot be opened, a NULL pointer is
returned. An interrupt will terminate input and send an interrupt signal
to the calling program before returning.

/dev/tty

WARNING
The above routine uses <stdio.h>, which causes it to increase the size of
programs not otherwise using standard 1/0, more than might be expected.

CAVEAT
The return value points to static data whose content is overwritten by
each call.

MU43814PR/D2 - 1 - 12/01/87

GETPW(3C) (C Programming Language Utilities)

NAME
getpw - get name from UID

SYNOPSIS
int getpw (uid, buf)
int uid;
char *buf;

DESCRIPTION

GETPW(3C)

getpw searches the password file for a user id number that equals uid,
copies the line of the password file in which uid was found into the array
pointed to by bu/, and returns 0. getpw returns non-zero if uid cannot be
found.

This routine is included only for compatibility with prior systems and
should not be used; see getpwent(3C) for routines to use instead.

FILES
/etdpasswd

SEE ALSO
getpwent(3C), passwd(4).

DIAGNOSTICS
getpw returns non-zero on error.

WARNING
The above routine uses <stdio.h>, which causes it to increase, more than
might be expected, the size of programs not otherwise using standard I/O.

MU43814PR/D2 - 1 - 12/01/87

GETPWENT(3C) (C Programming Language Utilities) GETPWENT(3C)

NAME
getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwent - get
password file entry

SYNOPSIS
#include <pwd.h>

struct passwd *getpwent ()

struct passwd *getpwuid (uid)
int uid;

struct passwd *getpwnam (name)
char *name;

void setpwent ()

void endpwent ()

struct passwd *fgetpwent (f)
FILE *f;

DESCRIPTION
getpwent, getpwuid and getpwnam each returns a pointer to an object with
the following structure containing the broken-out fields of a line in the
/etc/passwd file. Each line in the file contains a "passwd" structure,
declared in the <pwd.h> header file:

struct passwd {
char
char
int
int
char
char
char
char
char

};

*pw_name;
*pw _passwd;
pw_uid;
pw_gid;
*pw_age;
*PW _comment;
*pw_gecos;
*pw_dir;
*pw_shell;

This structure is declared in <pwd.h> so it is not necessary to redeclare it.

The fields have meanings described in passwd(4).

getpwent when first called returns a pointer to the first passwd structure in
the file; thereafter, it returns a pointer to the next passwd structure in the
file; so successive calls can be used to search the entire file. Getpwuid
searches from the beginning of the file until a numerical user id matching

MU43814PR/D2 - 1 - 12/01/87

GETPWENT(3C) (C Programming Language Utilities) GETPWENT(3C)

FILES

uid is found and returns a pointer to the particular structure in which it
was found. Getpwnam searches from the beginning of the file until a login
name matching name is found, and returns a pointer to the particular
structure in which it was found. If an end-of-file or an error is encoun­
tered on reading, these functions return a NULL pointer.

A call to setpwent has the effect of rewinding the password file to allow
repeated searches. Endpwent may be called to close the password file
when processing is complete.

Fgetpwent returns a pointer to the next passwd structure in the stream f,
which matches the format of /etc/passwd.

/etdpasswd

SEE ALSO
getlogin(3C), getgrent(3C), passwd(4).

DIAGNOSTICS
A NULL pointer is returned on EOF or error.

WARNING
The above routines use <stdio.h>, which causes them to increase the
size of programs, not otherwise using standard I/O, more than might be
expected.

CAVEAT
All information is contained in a static area, so it must be copied if it is to
be saved.

MU43814PR/D2 -2- 12/01/87

GETS(3S) (C Programming Language Utilities) GETS(3S)

NAME
gets, fgets - get a string from a stream

SYNOPSIS
#include <stdio.h>

char •gets (s)
char •s;

char •fgets (s, n, stream)
char •s;
int n;
FILE •stream;

DESCRIPTION
gets reads characters from the standard input stream, stdin, into the array
pointed to by s, until a new-line character is read or an end-of-file condi­
tion is encountered. The new-line character is discarded and the string is
terminated with a null character.

Fgets reads characters from the stream into the array pointed to bys, until
n-1 characters are read, or a new-line character is read and transferred to
s, or an end-of-file condition is encountered. The string is then ter­
minated with a null character.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), getc(3S), scanf(3S), stdio(3S).

DIAGNOSTICS
If end-of-file is encountered and no characters have been read, no charac­
ters are transferred to s and a NULL pointer is returned. If a read error
occurs, such as trying to use these functions on a file that has not been
opened for reading, a NULL pointer is returned. Otherwise s is returned.

MU43814PR/D2 - 1 - 12101/87

GETUT(3C) (C Programming Language Utilities) GETUT(3C)

NAME
getut: getutent, getutid, getutline, pututline, setutent, endutent, utmp­
name - access utmp file entry

SYNOPSIS
#include <utmp.h>

struct utmp *getutent ()

struct utmp *getutid (id)
struct utmp *id;

struct utmp * getutline (line)
struct utmp *line;

void pututline (utmp)
struct utmp *Ulmp;

void setutent ()

void endutent ()

void utmpname (file)
char *file;

DESCRIPTION
getutent, getutid and getutline each return a pointer to a structure of the fol­
lowing type:

struct utmp {
char
char
char
short
short
struct

short
short

} ut_exit;

ut_user[8];
ut_id[4];
ut_line[12];
ut_pid;
ut_type;
exit_status {

I* User login name *'
I* /etc/inittab id (usually line #) *I
I* device name (console, lnxx) *I
I* process id *'
I* type of entry *'

e_termination; I* Process termination status */
e_exit; /* Process exit status *I

I* The exit status of a process

time_t ut_time;
* marked as DEAD_PROCESS. *I

I* time entry was made *I
};

getutent reads in the next entry from a utmp-Iike file. If the file is not
already open, it opens it. If it reaches the end of the file, it fails.

getutid searches forward from the current point in the utmp file until it
finds an entry with a ut_type matching id->ut_type if the type specified is

MU43814PR/02 - 1 - 12/01187

GETUT(3C) (C Programming Language Utilities) GETUT(3C)

FILES

RUN_LVL, BOOT_TIME, OLD_TIME or NEW_TIME. If the type specified in
id is INIT_pROCESS, LOGIN_PROCESS, USER_PROCESS or DEAD_pROCESS,
then getutid will return a pointer to the first entry whose type is one of
these four and whose ut_id field matches id->ut_id. If the end of file is
reached without a match, it fails.

getutline searches forward from the current point in the utmp file until it
finds an entry of the type LOGIN_pROCESS or USER_pROCESS which also
has a ut_line string matching the line->ut_line string. If the end of file is
reached without a match, it fails.

Pututline writes out the supplied utmp structure into the utmp file. It uses
getutid to search forward for the proper place if it finds that it is not
already at the proper place. It is expected that normally the user of putut­
line will have searched for the proper entry using one of the getut rou­
tines. If so, pututline will not search. If pututline does not find a match­
ing slot for the new entry, it will add a new entry to the end of the file.

Setutent resets the input stream to the beginning of the file. This should
be done before each search for a new entry if it is desired that the entire
file be examined.

Endutent closes the currently open file.

Utmpname allows the user to change the name of the file examined, from
/etc/utmp to any other file. It is most often expected that this other file
will be /etc/wtmp. If the file does not exist, this will not be apparent until
the first attempt to reference the file is made. Utmpname does not open
the file. It just closes the old file if it is currently open and saves the new
file name.

/etc/utmp
/etc/wtmp

SEE ALSO
ttyslot(3C), utmp(4).

DIAGNOSTICS

NOTES

A NULL pointer is returned upon failure to read, whether for permissions
or having reached the end of file, or upon failure to write.

The most current entry is saved in a static structure. Multiple accesses
require that it be copied before further accesses are made. Each call to
either getutid or getutline sees the routine examine the static structure

MU43814PR/D2 - 2 - 12/01/87

GETUT(3C) (C Programming Language Utilities) GETUT(3C)

before performing more VO. If the contents of the static structure match
what it is searching for, it looks no further. For this reason to use getut­
line to search for multiple occurrences, it would be necessary to zero out
the static after each success, or getutline would just return the same
pointer over and over again. There is one exception to the rule about
removing the structure before further reads are done. The implicit read
done by pututline (if it finds that it is not already at the correct place in the
file) will not hurt the contents of the static structure returned by the getu­
tent, getutid or getutline routines, if the user has just modified those con­
tents and passed the pointer back to pututline.

These routines use buffered standard VO for input, but pututline uses an
unbuffered non-standard write to avoid race conditions between processes
trying to modify the utmp and wtmp files.

MU43814PR/D2 - 3 - 12/01/87

HSEARCH(3C) (C Programming Language Utilities) HSEARCH(3C)

NAME
hsearch, hcreate, hdestroy - manage hash search tables

SYNOPSIS
#include <search.h>

ENTRY *hsearch (item, action)
ENTRY item;
ACTION action;

int hcreate (nel)
unsigned nel;

void hdestroy ()

DESCRIPTION

NOTES

hsearch is a hash-table search routine generalized from Knuth (6.4) Algo­
rithm D. It returns a pointer into a hash table indicating the location at
which an entry can be found. Item is a structure of type ENTRY (defined
in the <search.h> header file) containing two pointers: item.key points to
the comparison key, and item.data points to any other data to be associ­
ated with that key. (Pointers to types other than character should be cast
to pointer-to-character.) Action is a member of an enumeration type
ACTION indicating the disposition of the entry if it cannot be found in the
table. ENTER indicates that the item should be inserted in the table at an
appropriate point. FIND indicates that no entry should be made. Unsuc­
cessful resolution is indicated by the return of a NULL pointer.

Hcreate allocates sufficient space for the table, and must be called before
hsearch is used. Nel is an estimate of the maximum number of entries that
the table will contain. This number may be adjusted upward by the algo­
rithm in order to obtain certain mathematically favorable circumstances.

Hdestroy destroys the search table, and may be followed by another call to
hcreate.

hsearch uses open addressing with a multiplicative hash function. However,
its source code has many other options available which the user may
select by compiling the hsearch source with the following symbols defined
to the preprocessor:

MU43814PR/D2 - 1 - 12/01/87

HSEARCH(3C) (C Programming Language Utilities) HSEARCH(3C)

DIV Use the remainder modulo table size as the hash function
instead of the multiplicative algorithm.

USCR Use a User Supplied Comparison Routine for ascertain­
ing table membership. The routine should be named
hcompar and should behave in a mannner similar to
strcmp [see string(3C)].

CHAINED Use a linked list to resolve collisions. If this option is
selected, the following other options become available.

START Place new entries at the beginning of the
linked list (default is at the end).

SORTUP Keep the linked list sorted by key in
ascending order.

SORTDOWN Keep the linked list sorted by key in des-
cending order.

Additionally, there are preprocessor flags for obtaining debugging prin­
tout (-DDEBUG) and for including a test driver in the calling routine
(-DDRIVER). The source code should be consulted for further details.

EXAMPLE
The following example will read in strings followed by two numbers and
store them in a hash table, discarding duplicates. It will then read in
strings and find the matching entry in the hash table and print it out.

MU43814PR/D2

#include <stdio.h>
#include <search.h>

struct info { I* this is the info stored in the table *I
int age, room; I* other than the key. *I

};
#define NUM_EMPL 5000 I* # of elements in search table *I

main()
{

I* space to store strings */
char string_space[NUM_EMPL*20];
I* space to store employee info */
struct info info_space[NUM_EMPL];
I* next avail space in string_space *I
char *str_ptr = string_space;

- 2 - 12/01/87

HSEARCH(3C)

}

SEE ALSO

(C Programming Language Utilities)

f* next avail space in info_space *f
struct info *info_ptr = info_space;
ENTRY item, *found_item, *hsearch();
f* name to look for in table *f
char name_to_find[30];
int i = 0;

f * create table *f
(void) hcreate{NUM_EMPL);

HSEARCH(3C)

while (scanf("%s%d%d", str_ptr, &info_ptr->age,
&info_ptr->room) != EOF && i++ < NUM_EMPL) {
f* put info in structure, and structure in item *f
item.key = str_ptr;

}

item.data = (char *)info_ptr;
str_ptr + = strlen(str_ptr) + 1;
info_ptr+ +;
f* put item into table */
(void) hsearch(item, ENTER);

f* access table *f
item.key = name_to_find;
while (scanf("%s", item.key) != EOP) {

}

if ((found_item = hsearch(item, FIND)) != NULL) {
f * if item is in the table */
(void)printf("found %s, age = %d, room = %d\n",

found_item - >key,
((struct info *)found_item->data)->age,
((struct info *)found_item->data)->room);

} else {

}

(void)printf("no such employee %s\n",
name_to_find)

bsearch(3C), lsearch(3C), malloc(3C), malloc(3X), string(3C), tsearch(3C).

DIAGNOSTICS
hsearch returns a NULL pointer if either the action is FIND and the item
could not be found or the action is ENTER and the table is full.

MU43814PR/D2 - 3 - 12/01/87

HSEARCH(3C) (C Programming Language Utilities) HSEARCH(3C)

Hcreate returns zero if it cannot allocate sufficient space for the table.

WARNING
hsearch and hcreate use malloc(3C) to allocate space.

CAVEAT
Only one hash search table may be active at any given time.

MU43814PR/D2 -4- 12/01/87

L3TOL(3C) (C Programming Language Utilities) L3TOL(3C)

NAME
13tol, ltol3 - convert between 3-byte integers and long integers

SYNOPSIS
void 13tol Op, cp, n)
long *Ip;
char *cp;
int n;

void ltol3 (cp, Ip, n)
char *cp;
long *Ip;
int n;

DESCRIPTION
l3tol converts a list of n three-byte integers packed into a character string
pointed to by cp into a list of long integers pointed to by lp.

Ltol3 performs the reverse conversion from long integers {lp) to three-byte
integers (cp).

These functions are useful for file-system maintenance where the block
numbers are three bytes long.

SEE ALSO
fs(4).

CAVEAT
Because of possible differences in byte ordering, the numerical values of
the long integers are machine-dependent.

MU43814PR/02 - 1 - 12/01/87

LOCKF(3C) (C Programming Language Utilities) LOCKF(3C)

NAME
lockf - record locking on files

SYNOPSIS
#include <unistd.h>

int lockf (fildes, function, size)
long size;
int fildes, function;

DESCRIPTION
The lockf command will allow sections of a file to be locked; advisory or
mandatory write locks depending on the mode bits of the file [see
chmod(2)]. Locking calls from other processes which attempt to lock the
locked file section will either return an error value or be put to sleep until
the resource becomes unlocked. All the locks for a process are removed
when the process terminates. [See fcntl(2) for more information about
record locking.]

Fildes is an open file descriptor. The file descriptor must have O_WRONLY
or O_RDWR permission in order to establish lock with this function call.

Function is a control value which specifies the action to be taken. The per­
missible values for function are defined in <unistd.h> as follows:

#define
#define
#define
#define

F_ULOCK
F_LOCK
F_TLOCK
F_TEST

0 I* Unlock a previously locked section *I
1 /* Lock a section for exclusive use *I
2 I* Test and lock a section for exclusive use *I
3 /* Test section for other processes locks *I

All other values of function are reserved for future extensions and will
result in an error return if not implemented.

F _TEST is used to detect if a lock by another process is present on the
specified section. F _LOCK and F _TLOCK both lock a section of a file if the
section is available. F_ULOCK removes locks from a section of the file.

Size is the number of contiguous bytes to be locked or unlocked. The
resource to be locked starts at the current offset in the file and extends
forward for a positive size and backward for a negative size (the preceding
bytes up to but not including the current offset). If size is zero, the section
from the current offset through the largest file offset is locked (i.e., from
the current offset through the present or any future end-of-file). An area
need not be allocated to the file in order to be locked as such locks may

MU43814PR/D2 - 1 - 12/01/87

LOCKF(3C) (C Programming Language Utilities) LOCKF(3C)

exist past the end-of-file.

The sections locked with F_LOCK or F_TLOCK may, in whole or in part,
contain or be contained by a previously locked section for the same pro­
cess. When this occurs, or if adjacent sections occur, the sections are
combined into a single section. If the request requires that a new element
be added to the table of active locks and this table is already full, an error
is returned, and the new section is not locked.

F_LOCK and F_TLOCK requests differ only by the action taken if the
resource is not available. F_LOCK will cause the calling process to sleep
until the resource is available. F _TLOCK will cause the function to return
a -1 and set errno to [EACCES] error if the section is already locked by
another process.

F _ULOCK requests may, in whole or in part, release one or more locked
sections controlled by the process. When sections are not fully released,
the remaining sections are still locked by the process. Releasing the
center section of a locked section requires an additional element in the
table of active locks. If this table is full, an [EDEADLK] error is returned
and the requested section is not released.

A potential for deadlock occurs if a process controlling a locked resource
is put to sleep by accessing another process's locked resource. Thus calls
to lockf or fcntl scan for a deadlock prior to sleeping on a locked resource.
An error return is made if sleeping on the locked resource would cause a
deadlock.

Sleeping on a resource is interrupted with any signal. The alarm(2) com­
mand may be used to provide a timeout facility in applications which
require this facility.

The lockf utility will fail if one or more of the following are true:

[EBADF]
Fildes is not a valid open descriptor.

[EACCES]

MU43814PR/D2

Cmd is F_TLOCK or F_TEST and the section is already locked by
another process.

- 2 - 12/01/87

LOCKF(3C) (C Programming Language Utilities) LOCKF(3C)

[EDEADLK]
Cmd is F _LOCK and a deadlock would occur. Also the cmd is
either F_LOCK, F_TLOCK, or F_ULOCK and the number of entries
in the lock table would exceed the number allocated on the sys­
tem.

[ECO MM]

SEE ALSO

Fildes is on a remote machine and the link to that machine is no
longer active.

chmod(2), close(2), creat(2), fcntl(2), intro(2), open(2), read(2), write(2).

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and errno is set to indicate the error.

WARNINGS
Unexpected results may occur in processes that do buffering in the user
address space. The process may later read/write data which is/was
locked. The standard I/O package is the most common source of unex­
pected buffering.

Because in the future the variable errno will be set to EAGAIN rather than
EACCES when a section of a file is already locked by another process,
portable application programs should expect and test for either value.

MU43814PR/D2 - 3 - 12/01/87

LSEARCH(3C) (C Programming Language Utilities) LSEARCH(3C)

NAME
lsearch, lfind - linear search and update

SYNOPSIS
#include <stdio.h>
#include <search.h>

char •lsearch ((char •)key, (char •)base, nelp, sizeof(•key), compar)
unsigned •nelp;
int (•compar)();

char •lfind ((char •)key, (char •)base, nelp, sizeof(•key), compar)
unsigned •nelp;
int (•compar)();

DESCRIPTION

NOTES

lsearch is a linear search routine generalized from Knuth (6.1) Algorithm S.
It returns a pointer into a table indicating where a datum may be found.
If the datum does not occur, it is added at the end of the table. Key
points to the datum to be sought in the table. Base points to the first ele­
ment in the table. Nelp points to an integer containing the current
number of elements in the table. The integer is incremented if the datum
is added to the table. Compar is the name of the comparison function
which the user must supply (strcmp, for example). It is called with two
arguments that point to the elements being compared. The function must
return zero if the elements are equal and non-zero otherwise.

Lfind is the same as lsearch except that if the datum is not found, it is not
added to the table. Instead, a NULL pointer is returned.

The pointers to the key and the element at the base of the table should be
of type pointer-to-element, and cast to type pointer-to-character.
The comparison function need not compare every byte, so arbitrary data
may be contained in the elements in addition to the values being com­
pared.
Although declared as type pointer-to-character, the value returned should
be cast into type pointer-to-element. .

EXAMPLE
This fragment will read in less than TABSIZE strings of length less than
ELSIZE and store them in a table, eliminating duplicates.

#include <stdio.h>
#include <search.h>

MU43814PR/D2 -1- 12/01/87

LSEARCH(3C) (C Programming Language Utilities) LSEARCH(3C)

#define TABSIZE 50
#define ELSIZE 120

char line[ELSIZE], tab[TABSIZE][ELSIZE], *!search();
unsigned nel = O;
int strcmp();

while (fgets(line, ELSIZE, stdin) ! = NULL &&
nel < T ABSIZE)

(void) lsearch(line, (char *)tab, &nel,
ELSIZE, strcmp);

SEE ALSO
bsearch(3C), hsearch(3C), string(3C), tsearch(3C).

DIAGNOSTICS

BUGS

If the searched for datum is found, both lsearch and lfind return a pointer
to it. Otherwise, lfind returns NULL and lsearch returns a pointer to the
newly added element.

Undefined results can occur if there is not enough room in the table to
add a new item.

MU43814PR/D2 - 2 - 12/01/87

MALLOC(3C) (C Programming Language Utilities) MALLOC(3C)

NAME
malloc, free, realloc, calloc - main memory allocator

SYNOPSIS
char •malloc (size)
unsigned size;

void free (ptr)
char •ptr;

char •realloc (ptr, size)
char •ptr;
unsigned size;

char •calloc (nelem, elsize)
unsigned nelem, elsize;

DESCRIPTION
malloc and free provide a simple general-purpose memory allocation pack­
age. malloc returns a pointer to a block of at least size bytes suitably
aligned for any use.

The argument to free is a pointer to a block previously allocated by malloc;
after free is performed this space is made available for further allocation,
but its contents are left undisturbed.

Undefined results will occur if the space assigned by malloc is overrun or
if some random number is handed to free.

malloc allocates the first big enough contiguous reach of free space found
in a circular search from the last block allocated or freed, coalescing adja­
cent free blocks as it searches. It calls sbrk [see brk(2)] to get more
memory from the system when there is no suitable space already free.

Realloc changes the size of the block pointed to by ptr to size bytes and
returns a pointer to the (possibly moved) block. The contents will be
unchanged up to the lesser of the new and old sizes. If no free block of
size bytes is available in the storage arena, then realloc will ask malloc to
enlarge the arena by size bytes and will then move the data to the new
space.

Realloc also works if ptr points to a block freed since the last call of malloc,
realloc, or calloc; thus sequences of free, malloc and realloc can exploit the
search strategy of malloc to do storage compaction.

Calloc allocates space for an array of nelem elements of size elsize. The
space is initialized to zeros.

MU43814PR/D2 - 1 - 12/01/87

MALLOC(3C) (C Programming Language Utilities) MALLOC(3C)

Each of the allocation routines returns a pointer to space suitably aligned
(after possible pointer coercion) for storage of any type of object.

SEE ALSO
brk(2), malloc(3X).

DIAGNOSTICS

NOTES

malloc, realloc and calloc return a NULL pointer if there is no available
memory or if the arena has been detectably corrupted by storing outside
the bounds of a block. When this happens the block pointed to by ptr
may be destroyed.

Search time increases when many objects have been allocated; that is, if a
program allocates but never frees, then each successive allocation takes
longer. For an alternate, more flexible implementation, see malloc(3X).

MU43814PR/D2 - 2 - 12/01/87

MEMORY(3C) (C Programming Language Utilities) MEMORY(3C)

NAME
memory: memccpy, memchr, memcmp, memcpy, memset - memory
operations

SYNOPSIS
#include <memory.h>

char *memccpy (sl, s2, c, n)
char *Sl, *S2i
int c, ni

char *memchr (s, c, n)
char *Si
int c, ni

int memcmp (sl, s2, n)
char *Sl, *S2i
int ni

char *memcpy (sl, s2, n)
char *Sl, *S2i
int ni

char *memset (s, c, n)
char *Si
int c, n;

DESCRIPTION
These functions operate as efficiently as possible on memory areas (arrays
of characters bounded by a count, not terminated by a null character).
They do not check for the overflow of any receiving memory area.

Memccpy copies characters from memory area s2 into sl, stopping after
the first occurrence of character c has been copied, or after n characters
have been copied, whichever comes first. It returns a pointer to the char­
acter after the copy of c in sl, or a NULL pointer if c was not found in the
first n characters of s2.

Memchr returns a pointer to the first occurrence of character c in the first
n characters of memory area s, or a NULL pointer if c does not occur.

Memcmp compares its arguments, looking at the first n characters only,
and returns an integer less than, equal to, or greater than 0, according as
sl is lexicographically less than, equal to, or greater than s2.

Memcpy copies n characters from memory area s2 to sl. It returns sl.

MU43814PR/D2 - 1 - 12/01187

MEMORY(3C) (C Programming Language Utilities) MEMORY(3C)

Memset sets the first n characters in memory area s to the value of charac­
ter c. It returns s.

For user convenience, all these functions are declared in the optional
<memory.h> header file.

CAVEATS
Memcmp is implemented by using the most natural character comparison
on the machine. Thus the sign of the value returned when one of the
characters has its high order bit set is not the same in all implementations
and should not be relied upon.

Character movement is performed differently in different implementa­
tions. Thus overlapping moves may yield surprises.

MU43814PI-UD2 - 2 - 12101/87

MKTEMP(3C) (C Programming Language Utilities) MKTEMP(3C)

NAME
mktemp - make a unique file name

SYNOPSIS
char •mktemp (template)
char •template;

DESCRIPTION
mktemp replaces the contents of the string pointed to by template by a
unique file name, and returns the address of template. The string in tem­
plate should look like a file name with six trailing Xs; mktemp will replace
the Xs with a letter and the current process ID. The letter will be chosen
so that the resulting name does not duplicate an existing file.

SEE ALSO
getpid(2), tmpfile(3S), tmpnam(3S).

DIAGNOSTIC
mktemp will assign to template the NULL string if it cannot create a unique
name.

CAVEAT
If called more than 17,576 times in a single process, this function will start
recycling previously used names.

MU43814PR/D2 - 1 - 12/01/87

MONITOR(3C) (C Programming Language Utilities) MONITOR(3C)

NAME
monitor - prepare execution profile

SYNOPSIS
#include <mon.h>

void monitor (lowpc, highpc, buffer, bufsize, nfunc)
int (*lowpc)(), (*highpc)();
WORD *buffer;
int bufsize, nfunc;

DESCRIPTION
An executable program created by cc -p automatically includes calls for
monitor with default parameters; monitor need not be called explicitly
except to gain fine control over profiling.

monitor is an interface to profil(2). Lowpc and highpc are the addresses of
two functions; buffer is the address of a (user supplied) array of bu/size
WORDs (defined in the <mon.h> header file). monitor arranges to record
a histogram of periodically sampled values of the program counter, and of
counts of calls of certain functions, in the buffer. The lowest address
sampled is that of lowpc and the highest is just below highpc. Lowpc may
not equal 0 fQ.r this use of monitor. At most nfunc call counts can be kept;
only calls of functions compiled with the profiling option -p of cc(l) are
recorded.

For the results to be significant, especially where there are small, heavily
used routines, it is suggested that the buffer be no more than a few times
smaller than the range of locations sampled.

To profile the entire program, it is sufficient to use

extern etext;

monitor ((int (*)0)2, &etext, buf, bufsize, nfunc);

Etext lies just above all the program text; see end(3C).

To stop execution monitoring and write the results, use

monitor ((int (*)())O, 0, 0, 0, O);

Prof(l) can then be used to examine the results.

The name of the file written by monitor is controlled by the environment
variable PROFDIR. If PROFDIR does not exist, "man.out" is created in the
current directory. If PROFDIR exists but has no value, monitor does not do
any profiling and creates no output file. Otherwise, the value of PROFDIR

MU43814PR/D2 - 1 - 12/01/87

MONITOR(3C) (C Programming Language Utilities) MONITOR(3C)

FILES

is used as the name of the directory in which to create the output file. If
PROFDIR is dirname, then the file written is "dirnamelpid.mon.out'' where
pid is the program's process id. (When monitor is called automatically by
compiling via cc -p, the file created is "dirnamelpid.progname" where prog­
name is the name of the program.)

mon.out

SEE ALSO
cc(l), prof(l), profil(2), end(3C).

BUGS
The "dirnamelpid.mon.out" form does not work; the
"dirname/pid.progname" form (automatically called via cc -p) does work.

MU43814PR/D2 - 2 - 12/01/87

NLIST(3C) (C Programming Language Utilities) NLIST(3C)

NAME
nlist - get entries from name list

SYNOPSIS
#include <nlist.h>

int nlist (filename, nl)
char *filename;
struct nlist *nl;

DESCRIPTION

NOTES

nlist examines the name list in the executable file whose name is pointed
to by filename, and selectively extracts a list of values and puts them in the
array of nlist structures pointed to by nl. The name list nl consists of an
array of structures containing names of variables, types and values. The
list is terminated with a null name; that is, a null string is in the name
position of the structure. Each variable name is looked up in the name list
of the file. If the name is found, the type and value of the name are
inserted in the next two fields. The type field will be set to 0 unless the
file was compiled with the -g option. If the name is not found, both
entries are set to 0. See a.out(4) for a discussion of the symbol table struc­
ture.

This function is useful for examining the system name list kept in the file
/sysV68. In this way programs can obtain system addresses that are up to
date.

The <nlist.h> header file is automatically included by <a.out.h> for com­
patability. However, if the only information needed from <a.out.h> is for
use of nlist, then including <a.out.h> is discouraged. If <a.out.h> is
included, the line "#undef n_name" may need to follow it.

SEE ALSO
a.out(4).

DIAGNOSTICS
All value entries are set to 0 if the file cannot be read or if it does not con­
tain a valid name list.

nlist returns -1 upon error; otherwise it returns 0.

MU43814PR/D2 - 1 - 12/01/87

PERROR(3C) (C Programming Language Utilities) PERROR(3C)

NAME
perror, errno, sys_errlist, sys_nerr - system error messages

SYNOPSIS
void perror (s)
char *S;

extern int errno;

extern char *sys_errlist[];

extern int sys_nerr;

DESCRIPTION
perror produces a message on the standard error output, describing the
last error encountered during a call to a system or library function. The
argument string s is printed first, then a colon and a blank, then the mes­
sage and a new-line. (However, ifs="" the colon is not printed.) To be
of most use, the argument string should include the name of the program
that incurred the error. The error number is taken from the external vari­
able errno, which is set when errors occur but not cleared when non­
erroneous calls are made.

To simplify variant formatting of messages, the array of message strings
sys_errlist is provided; errno can be used as an index into this table to get
the message string without the new-line. Sys_nerr is the number of mes­
sages in the table; it should be checked because new error codes may be
added to the system before they are added to the table.

SEE ALSO
intro(2).

MU43814PR/D2 - 1 - 12101187

POPEN(3S) (C Programming Language Utilities) POPEN(3S)

NAME
popen, pclose - initiate pipe to/from a process

SYNOPSIS
#include <stdio.h>

FILE *popen (command, type)
char *Command, *type;

int pdose (stream)
FILE *Stream;

DESCRIPTION
papen creates a pipe between the calling program and the command to be
executed. The arguments to papen are pointers to null-terminated strings.
Command consists of a shell command line. Type is an I/O mode, either r
for reading or w for writing. The value returned is a stream pointer such
that one can write to the standard input of the command, if the I/O mode
is w, by writing to the file stream; and one can read from the standard out­
put of the command_, if the I/O mode is r, by reading from the file stream.

A stream opened by papen should be closed by pclose, which waits for the
associated process to terminate and returns the exit status of the com­
mand.

Because open files are shared, a type r command may be used as an input
filter and a type w as an output filter.

EXAMPLE
A typical call may be:

char *cmd = "ls *.c";
FILE *ptr;
if ((ptr = popen(cmd, "r")) ! = NULL)

while (fgets(buf, n, ptr) ! = NULL)
(void) printf("%s ",buf);

This will print in stdout [see stdio (35)] all the file names in the current
directory that have a ".c" suffix.

SEE ALSO
pipe(2), wait(2), fclose(3S), fopen(3S), stdio(3S), system(3S).

DIAGNOSTICS
papen returns a NULL pointer if files or processes cannot be created.

Pclose returns -1 if stream is not associated with a "popened" command.

MU43814PR/D2 - 1 - 12/01/87

POPEN(3S) (C Programming Language Utilities) POPEN(3S)

WARNING
If the original and "papen ed" processes concurrently read or write a com­
mon file, neither should use buffered 1/0, because the buffering gets all
mixed up. Problems with an output filter may be forestalled by careful
buffer flushing, e.g. with !flush [see fclose(3S)].

MU43814PR/D2 - 2 - 12/01/87

PRINTF(3S) (C Programming Language Utilities) PRINTF(3S)

NAME
print£, fprintf, sprint£ - print formatted output

SYNOPSIS
#include <stdio.h>

int printf (format , arg . . .)
char •format;

int fprintf (stream, format , arg ...
FILE •stream;
char •format;

int sprintf (s, format [, arg] . . .)
char •s, •format;

DESCRIPTION
print/ places output on the standard output stream stdout. Fprintf places
output on the named output stream. Sprint/ places "output," followed by
the null character (\0), in consecutive bytes starting at *S; it is the user's
responsibility to ensure that enough storage is available. Each function
returns the number of characters transmitted (not including the \0 in the
case of sprint/), or a negative value if an output error was encountered.

Each of these functions converts, formats, and prints its args under con­
trol of the format. The format is a character string that contains two types
of objects: plain characters, which are simply copied to the output
stream, and conversion specifications, each of which results in fetching of
zero or more args. The results are undefined if there are insufficient args
for the format. If the format is exhausted while args remain, the excess
args are simply ignored.

Each conversion specification is introduced by the character % . After the
%, the following appear in sequence:

MU43814PR/D2

Zero or more flags, which modify the meaning of the conversion
specification.

An optional decimal digit string specifying a minimum field width.
If the converted value has fewer characters than the field width, it
will be padded on the left (or right, if the left-adjustment flag '-.!,
described below, has been given) to the field width. The padding
is with blanks unless the field width digit string starts with a zero,
in which case the padding is with zeros.

- 1 - 12/01/87

PRINTF(3S) (C Program.ming Language Utilities) PRINTF(3S)

A precision that gives the minimum number of digits to appear for
the d, i, o, u, x, or X conversions, the number of digits to appear
after the decimal point for the e, E, and f conversions, the max­
imum number of significant digits for the g and G conversion, or
the maximum number of characters to be printed from a string in
s conversion. The precision takes the form of a period (.) fol­
lowed by a decimal digit string; a null digit string is treated as
zero. Padding specified by the precision overrides the padding
specified by the field width.

An optional I (ell) specifying that a following d, i, o, u, x, or X
conversion character applies to a long integer arg. An I before any
other conversion character is ignored.

A character that indicates the type of conversion to be applied.

A field width or precision or both may be indicated by an asterisk (*)
instead of a digit string. In this case, an integer arg supplies the field
width or precision. The arg that is actually converted is not fetched until
the conversion letter is seen, so the args specifying field width or preci­
sion must appear before the arg (if any) to be converted. A negative field
width argument is taken as a '-' flag followed by a positive field width. If
the precision argument is negative, it will be changed to zero.

The flag characters and their meanings are:

+

blank

MU43814PR/D2

The result of the conversion will be left-justified within the
field.
The result of a signed conversion will always begin with a sign
(+or-).
If the first character of a signed conversion is not a sign, a
blank will be prefixed to the result. This implies that if the
blank and + flags both appear, the blank flag will be ignored.
This flag specifies that the value is to be converted to an "alter­
nate form." For c, d, i, s, and u conversions, the flag has no
effect. For o conversion, it increases the precision to force the
first digit of the result to be a zero. For x or X conversion, a
non-zero result will have Ox or OX prefixed to it. For e, E, £, g,
and G conversions, the result will always contain a decimal
point, even if no digits follow the point (normally, a decimal
point appears in the result of these conversions only if a digit
follows it). For g and G conversions, trailing zeroes will not be
removed from the result (which they normally are).

- 2 - 12/01/87

PRINTF(3S) (C Programming Language Utilities) PRINTF(3S)

The conversion characters and their meanings are:

d,i,o, u,x,X
The integer arg is converted to signed decimal (d or i),
unsigned octal, (o), decimal (u), or hexadecimal notation (x or
X), respectively; the letters abcdef are used for x conversion
and the letters ABCDEF for X conversion. The precision speci­
fies the minimum number of digits to appear; if the value being
converted can be represented in fewer digits, it will be
expanded with leading zeroes. The default precision is 1. The
result of converting a zero value with a precision of zero is a
null string.

f The float or double arg is converted to decimal notation in the
style "[-]ddd.ddd," where the number of digits after the
decimal point is equal to the precision specification. If the pre­
cision is missing, six digits are output; if the precision is expli­
citly 0, no decimal point appears.

e,E The float or double arg is converted in the style
"[-]d.ddde±dd," where there is one digit before the decimal
point and the number of digits after it is equal to the precision;
when the precision is missing, six digits are produced; if the
precision is zero, no decimal point appears. The E format code
will produce a number with E instead of e introducing the
exponent. The exponent always contains at least two digits.

g,G The float or double arg is printed in style f or e (or in style E in
the case of a G format code), with the precision specifying the
number of significant digits. The style used depends on the
value converted: style e will be used only if the exponent
resulting from the conversion is less than -4 or greater than the
prec1s10n. Trailing zeroes are removed from the result; a
decimal point appears only if it is followed by a digit.

c The character arg is printed.

MU43814PR/D2 -3- 12/01/87

PRINTF(3S)

s

(C Programming Language Utilities) PRINTF(3S)

The arg is taken to be a string (character pointer) and charac­
ters from the string are printed until a null character (\0) is
encountered or the number of characters indicated by the preci­
sion specification is reached. If the precision is missing, it is
taken to be infinite, so all characters up to the first null charac­
ter are printed. A NULL value for arg will yield undefined
results.

% Print a%; no argument is converted.

In printing floating point types (float and double), if the exponent is Ox7FF
and the mantissa is not equal to zero, then the output is

[-]NaNOxdddddddd

where Oxdddddddd is the hexadecimal representation of the leftmost 32·
bits of the mantissa. If the mantissa is zero, the output is

[±]inf.

In no case does a non-existent or small field width cause truncation of a
field; if the result of a conversion is wider than the field width, the field is
simply expanded to contain the conversion result. Characters generated
by printf and fprintf are printed as if putc(35) had been called.

EXAMPLES
To print a date and time in the form "Sunday, July 3, 10:02," where week­
day and month are pointers to null-terminated strings:

printf("%s, %s %i, %d:%.2d", weekday, month, day, hour, min);

To print 'IT to 5 decimal places:

printf("pi = %.Sf", 4 * atan(l.O));

SEE ALSO
ecvt(3C), putc(35), scanf(3S), stdio(35).

MU43814PR/D2 -4- 12/01/87

PUTC(3S) (C Programming Language Utilities) PUTC(3S)

NAME
putc, putchar, fputc, putw - put character or word on a stream

SYNOPSIS
#include <stdio.h>

int putc (c, stream)
int c;
FILE *Stream;

int putchar (c)
int c;

int fputc (c, stream)
int c;
FILE *Stream;

int putw (w, stream)
int w;
FILE *Stream;

DESCRIPTION
putc writes the character c onto the output stream (at the position where
the file pointer, if defined, is pointing). putchar(c) is defined as putc(c,
stdout). putc and putchar are macros.

Fputc behaves like putc, but is a function rather than a macro. Fputc runs
more slowly than pule, but it takes less space per invocation and its name
can be passed as an argument to a function.

Putw writes the word (i.e. integer) w to the output stream (at the position
at which the file pointer, if defined, is pointing). The size of a word is the
size of an integer and varies from machine to machine. Putw neither
assumes nor causes special alignment in the file.

SEE ALSO
fclose(3S), ferror(3S), fopen(3S), fread(3S), printf(3S), puts(3S), setbuf(3S),
stdio(3S).

DIAGNOSTICS
On success, these functions (with the exception of putw) each return the
value they have written. [Putw returns ferror (stream)]. On failure, they
return the constant EOF. This will occur if the file stream is not open for
writing or if the output file cannot grow. Because EOF is a valid integer,
ferror(3S) should be used to detect putw errors.

MU43814PR/D2 - 1 - 12/01/87

PUTC(3S) (C Programming Language Utilities) PUTC(3S)

CAVEATS
Because it is implemented as a macro, putc evaluates a stream argument
more than once. In particular, putc(c, *f+ +); doesn't work sensibly.
Fputc should be used instead.
Because of possible differences in word length and byte ordering, files
written using putw are machine-dependent, and may not be read using
getw on a different processor.

MU43814PR/02 - 2 - 12101/87

PUTENV(3C) (C Programming Language Utilities) PUTENV(3C)

NAME
putenv - change or add value to environment

SYNOPSIS
int putenv (string)
char *String;

DESCRIPTION
String points to a string of the form "name =value." putenv makes the
value of the environment variable name equal to value by altering an exist­
ing variable or creating a new one. In either case, the string pointed to by
string becomes part of the environment, so altering the string will change
the environment. The space used by string is no longer used once a new
string-defining name is passed to putenv.

SEE ALSO
exec(2), getenv(3C), malloc(3C), environ(S).

DIAGNOSTICS
putenv returns non-zero if it was unable to obtain enough space via malloc
for an expanded environment, otherwise zero.

WARNINGS
putenv manipulates the environment pointed to by environ, and can be
used in conjunction with getenv. However, envp (the third argument to
main) is not changed.
This routine uses malloc(3C) to enlarge the environment.
After putenv is called, environmental variables are not in alphabetical
order.
A potential error is to call putenv with an automatic variable as the argu­
ment, then exit the calling function while string is still part of the environ­
ment.

MU43814PR/02 - 1 - 12/01/87

PUTPWENT(3C) (C Programming Language Utilities)

NAME
putpwent - write password file entry

SYNOPSIS
#include <pwd.h>

int putpwent (p, f)

struct passwd *Pi
FILE *f;

DESCRIPTION

PUTPWENT(3C)

putpwent is the inverse of getpwent (3C). Given a pointer to a passwd
structure created by getpwent (or getpwuid or getpwnam), putpwent writes a
line on the stream f, which matches the format of /etc/passwd.

SEE ALSO
getpwent(3C).

DIAGNOSTICS
putpwent returns non-zero if an error was detected during its operation,
otherwise zero.

WARNING
The above routine uses <stdio.h>, which causes it to increase the size of
programs, not otherwise using standard I/O, more than might be
expected.

MU43814PR/D2 - 1 - 12/01/87

PUTS(3S) (C Programming Language Utilities)

NAME
puts, fputs - put a string on a stream

SYNOPSIS
#include <stdio.h>

int puts (s)
char *Si

int fputs (s, stream)
char *Si
FILE *Stream;

DESCRIPTION

PUTS(3S)

puts writes the null-terminated string pointed to by s ,followed by a new­
line character, to the standard output stream stdout.

Fputs writes the null-terminated string pointed to by s to the named out­
put stream.

Neither function writes the terminating null character.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), printf(3S), putc(3S), stdio(3S).

DIAGNOSTICS
Both routines return EOF on error. This will happen if the routines try to
write on a file that has not been opened for writing.

NOTES
puts appends a new-line character while fputs does not.

MU43814PR/D2 - 1 - 12/01/87

QSORT(3C) (C Programming Language Utilities) QSORT(3C)

NAME
qsort - quicker sort

SYNOPSIS
void qsort ((char •) base, nel, sizeof (•base), compar)
unsigned nel;
int (•compar)();

DESCRIPTION

NOTES

qsort is an implementation of the quicker-sort algorithm. It sorts a table of
data in place.

Base points to the element at the base of the table. Nel is the number of
elements in the table. Compar is the name of the comparison function,
which is called with two arguments that point to the elements being com­
pared. As the function must return an integer less than, equal to, or
greater than zero, so must the first argument to be considered be less
than, equal to, or greater than the second.

The pointer to the base of the table should be of type pointer-to-element,
and cast to type pointer-to-character.
The comparison function need not compare every byte, so arbitrary data
may be contained in the elements in addition to the values being com­
pared.
The order in the output of two items which compare as equal is unpredict­
able.

SEE ALSO
bsearch(3C), lsearch(3C), string{3C).
sort(l) in the User's Reference Manual.

MU43814PR/D2 - 1 - 12/01/87

RAND(3C) (C Programming Language Utilities) RAND(3C)

NAME
rand, srand - simple random-number generator

SYNOPSIS
int rand ()

void srand (seed)
unsigned seed;

DESCRIPTION

NOTES

rand uses a multiplicative congruential random-number generator with
period 232 that returns successive pseudo-random numbers in the range
from 0 to 215 -1.

Srand can be called at any time to reset the random-number generator to a
random starting point. The generator is initially seeded with a value of 1.

The spectral properties of rand are limited. Drand48(3C) provides a much
better, though more elaborate, random-number generator.

SEE ALSO
drand48(3C).

MU43814PR/D2 - 1 - 12/01/87

SCANF(3S) (C Programming Language Utilities) SCANF(3S)

NAME
scanf, fscanf, sscanf - convert formatted input

SYNOPSIS
#include <stdio.h>

int scanf (format [, pointer] . . .)
char *format;

int £scan£ (stream, format [, pointer] . . .)
FILE *Stream;
char *format;

int sscanf (s, format [, pointer] . . .)
char *S, *format;

DESCRIPTION
scan/ reads from the standard input stream std in. Fscanf reads from the
named input stream. Sscanf reads from the character string s. Each func­
tion reads characters, interprets them according to a format, and stores
the results in its arguments. Each expects, as arguments, a control string
format described below, and a set of pointer arguments indicating where
the converted input should be stored. The results are undefined in there
are insufficient args for the format. If the format is exhausted while args
remain, the excess args are simply ignored.

The control string usually contains conversion specifications, which are
used to direct interpretation of input sequences. The control string may
contain:

1. White-space characters (blanks, tabs, new-lines, or form-feeds) which,
except in two cases described below, cause input to be read up to the
next non-white-space character.

2. An ordinary character (not %), which must match the next character of
the input stream.

3. Conversion specifications, consisting of the character %, an optional
assignment suppressing character *, an optional numerical maximum
field width, an optional I (ell) or h indicating the size of the receiving
variable, and a conversion code.

A conversion specification directs the conversion of the next input field;
the result is placed in the variable pointed to by the corresponding argu­
ment, unless assignment suppression was indicated by *· The suppres­
sion of assignment provides a way of describing an input field which is to
be skipped. An input field is defined as a string of non-space characters;

MU43814PR/D2 - 1 - 12/01/87

SCANF(3S) (C Programming Language Utilities) SCANF(3S)

it extends to the next inappropriate character or until the field width, if
specified, is exhausted. For all descriptors except "[" and "c", white
space leading an input field is ignored.

The conversion code indicates the interpretation of the input field; the
corresponding pointer argument must usually be of a restricted type. For
a suppressed field, no pointer argument is given. The following conver­
sion codes are legal:

% a single % is expected in the input at this point; no assignment is
done.

d a decimal integer is expected; the corresponding argument should
be an integer pointer.

u an unsigned decimal integer is expected; the corresponding argu­
ment should be an unsigned integer pointer.

o an octal integer is expected; the corresponding argument should
be an integer pointer.

x a hexadecimal integer is expected; the corresponding argument
should be an integer pointer.

i an integer is expected; the corresponding argument should be an
integer pointer. It will store the value of the next input item inter­
preted according to C conventions: a leading "O" implies octal; a
leading "Ox" implies hexadecimal; otherwise, decimal.

n stores in an integer argument the total number of characters
(including white space) that have been scanned so far since the
function call. No input is consumed.

e,f,g a floating point number is expected; the next field is converted
accordingly and stored through the corresponding argument,
which should be a pointer to a float. The input format for floating
point numbers is an optionally signed string of digits, possibly
containing a decimal point, followed by an optional exponent field
consisting of an E or an e, followed by an optional +, -, or space,
followed by an integer.

MU43814PR/D2 - 2 - 12/01/87

SCANF(3S) (C Programming Language Utilities) SCANF(3S)

s a character string is expected; the corresponding argument should
be a character pointer pointing to an array of characters large
enough to accept the string and a terminating \0, which will be
added automatically. The input field is terminated by a white­
space character.

c a character is expected; the corresponding argument should be a
character pointer. The normal skip over white space is
suppressed in this case; to read the next non-space character, use
%ls. If a field width is given, the corresponding argument should
refer to a character array; the indicated number of characters is
read.

[indicates string data and the normal skip over leading white space
is suppressed. The left bracket is followed by a set of characters,
which we will call the scanset, and a right bracket; the input field
is the maximal sequence of input characters consisting entirely of
characters in the scanset. The circumflex C), when it appears as
the first character in the scanset, serves as a complement operator
and redefines the scanset as the set of all characters not contained
in the remainder of the scanset string. There are some conven­
tions used in the construction of the scanset. A range of charac­
ters may be represented by the construct first-last, thus
[0123456789] may be expressed [0-9]. Using this convention, first
must be lexically less than or equal to last, or else the dash will
stand for itself. The dash will also stand for itself whenever it is
the first or the last character in the scanset. To include the right
square bracket as an element of the scanset, it must appear as the
first character (possibly preceded by a circumflex) of the scanset,
and in this case it will not be syntactically interpreted as the clos­
ing bracket. The corresponding argument must point to a charac­
ter array large enough to hold the data field and the terminating
\0, which will be added automatically. At least one character
must match for this conversion to be considered successful.

The conversion characters d, u, o, x and i may be preceded by 1 or h to
indicate that a pointer to long or to short rather than to int is in the argu­
ment list. Similarly, the conversion characters e, f, and g may be pre­
ceded by 1 to indicate that a pointer to double rather than to float is in the
argument list. The I or h modifier is ignored for other conversion charac­
ters.

MU43814PR/D2 -3- 12/01/87

SCANF(3S) ·cc Programming Language Utilities) SCANF(3S)

scan/ conversion terminates at EOF, at the end of the control string, or
when an input character conflicts with the control string. In the latter
case, the offending character is left unread in the input stream.

scan/ returns the number of successfully matched and assigned input
items; this number can be zero in the event of an early conflict between
an input character and the control string. If the input ends before the first
conflict or conversion, EOF is returned.

EXAMPLES
The call:

int n ; float x; char name[SO];
n = scanf ("%d%f%s", &i, &x, name);

with the input line:

25 54.32E-1 thompson

will assign to n the value 3, to i the value 25, to x the value 5.432, and
name will contain thompson\0 . Or:

int i, j; float x; char name[SO];
(void) scanf ("%i%2d%f%*d % [0-9] ", &j, &i, &x, name);

with input:

011 56789 0123 56a72

will assign 9 to j, 56 to i, 789.0 to x, skip 0123, and place the string 56\0 in
name. The next call to getchar [see getc(3S)] will return a. Or:

int i, j, s, e; char name[SO];
(void) scanf ("%i %i %n%s%n", &i, &j, &s, name, &e);

with input:

Oxl 1 Oxy johnson

will assign 17 to i, 0 to j, 6 to s, will place the string xy\O in name, and
will assign 8 to e. Thus, the length of name is e - s = 2 . The next call to
getchar [see getc(3S)] will return a blank.

SEE ALSO
getc(3S), printf(3S), stdio(3S), strtod(3C), strtol(3C).

DIAGNOSTICS
These functions return EOF on end of input and a short count for missing
or illegal data items.

MU43814PR/D2 -4- 12/01187

SCANF(3S) (C Programming Language Utilities) SCANF(3S)

CAVEATS
Trailing white space (including a new-line) is left unread unless matched
in the control string.

MU43814PR/D2 -5- 12/01/87

SETBUF(3S) (C Programming Language Utilities) SETBUF(3S)

NAME
setbuf, setvbuf - assign buffering to a stream

SYNOPSIS
#include <stdio.h>

void setbuf (stream, buf)
FILE •stream;
char •buf;

int setvbuf (stream, buf, type, size)
FILE •stream;
char •buf;
int type, size;

DESCRIPTION
setbuf may be used after a stream has been opened but before it is read or
written. It causes the array pointed to by buf to be used instead of an
automatically allocated buffer. If buf is the NULL pointer input/output will
be completely unbuffered.

A constant BUFSIZ, defined in the <stdio.h> header file, tells how big an
array is needed:

char buf[BUFSIZ];

Setvbuf may be used after a stream has been opened but before it is read
or written. Type determines how stream will be buffered. Legal values for
type (defined in stdio.h) are:

_IOFBF causes input/output to be fully buffered.

_IOLBF causes output to be line buffered; the buffer will be flushed
when a newline is written, the buffer is full, or input is
requested.

_IONBF causes input/output to be completely unbuffered.

If buf is not the NULL pointer, the array it points to will be used for buffer­
ing, instead of an automatically allocated buffer. Size specifies the size of
the buffer to be used. The constant BUFSIZ in <stdio.h> is suggested as
a good buffer size. If input/output is unbuffered, buf and size are ignored.

By default, output to a terminal is line buffered and all other input/output
is fully buffered.

SEE ALSO
fopen(3S), getc(3S), malloc(3C), putc(3S), stdio(3S).

MU43814PR/D2 - 1 - 12101187

SETBUF(3S) (C Programming Language Utilities) SETBUF(3S)

DIAGNOSTICS

NOTES

If an illegal value for type or size is provided, setvbuf returns a non-zero
value. Otherwise, the value returned will be zero.

A common source of error is allocating buffer space as an "automatic"
variable in a code block, and then failing to close the stream in the same
block.

MU43814PR/D2 -2- 12/01/87

SETJMP(3C) (C Programming Language Utilities) SETJMP(3C)

NAME
setjmp, longjmp- non-local goto

SYNOPSIS
#include <setjmp.h>

int setjmp (env)
jmp_buf env;

void longjmp (env, val)
jmp_buf env;
int val;

DESCRIPTION
These functions are useful for dealing with errors and interrupts encoun­
tered in a low-level subroutine of a program.

setjmp saves its stack environment in env (whose type, jmp_buf, is defined
in the <setjmp.h> header file) for later use by longjmp. It returns the
value 0.

Longjmp restores the environment saved by the last call of setjmp with the
corresponding env argument. After longjmp is completed, program execu­
tion continues as if the corresponding call of setjmp (which must not itself
have returned in the interim) had just returned the value val. Longjmp
cannot cause setjmp to return the value 0. If longjmp is invoked with a
second argument of 0, setjmp will return 1. At the time of the second
return from setjmp, all accessible data have values as of the time longjmp is
called. However, global variables will have the expected values, i.e. those
as of the time of the longjmp (see example).

EXAMPLE
#include <setjmp.h>

jmp_buf env;
inti = 0;
main()
{

void exit();

if(setjmp(env) != 0) {
(void) printf("value of i on 2nd return from setjmp: %d\n", i);
exit(O);

}
(void) printf("value of i on 1st return from setjmp: %d\n", i);

MU43814PR/D2 - 1 - 12/01/87

SETJMP(3C) (C Programming Language Utilities) SETJMP(3C)

}

g()
{

}

i = 1;
g();
/*NOTREACHED*/

longjmp(env, 1);
/*NOTREACHED*/

If the a.out resulting from this C language code is run, the
output will be:

value of ion 1st return from setjmp:O

value of i on 2nd return from setjmp: 1

SEE ALSO
signal(2).

WARNING

BUGS

If longjmp is called even though env was never primed by a call to setjmp,
or when the last such call was in a function which has since returned,
absolute chaos is guaranteed.

The values of the registers on the second return from setjmp are the regis­
ter values at the time of the first call to setjmp, not those at the time of the
longjmp. This means that variables in a given function may behave dif­
ferently in the presence of setjmp, depending on whether they are register
or stack variables.

MU43814PR/D2 - 2 - 12/01/87

SLEEP(3C) (C Programming Language Utilities) SLEEP(3C)

NAME
sleep - suspend execution for interval

SYNOPSIS
unsigned sleep (seconds)
unsigned seconds;

DESCRIPTION
The current process is suspended from execution for the number of
seconds specified by the argument. The actual suspension time may be
less than that requested for two reasons: (1) Because scheduled wakeups
occur at fixed 1-second intervals, (on the second, according to an internal
clock) and (2) because any caught signal will terminate the sleep following
execution of that signal's catching routine. Also, the suspension time may
be longer than requested by an arbitrary amount due to the scheduling of
other activity in the system. The value returned by sleep will be the
"unslept" amount (the requested time minus the time actually slept) in
case the caller had an alarm set to go off earlier than the end of the
requested sleep time, or premature arousal due to another caught signal.

The routine is implemented by setting an alarm signal and pausing until it
(or some other signal) occurs. The previous state of the alarm signal is
saved and restored. The calling program may have set up an alarm signal
l-iefore calling sleep. If the sleep time exceeds the time till such alarm sig­
nal, the process sleeps only until the alarm signal would have occurred.
The caller's alarm catch routine is executed just before the sleep routine
returns. But if the sleep time is less than the time till such alarm, the prior
alarm time is reset to go off at the same time it would have without the
intervening sleep.

SEE ALSO
alarm(2), pause(2), signal(2).

MU43814PR/D2 - 1 - 12/01/87

SSIGNAL(3C) (C Programming Language Utilities) SSIGNAL(3C)

NAME
ssignal, gsignal - software signals

SYNOPSIS
#include <signal.h>

int (*ssignal (sig, action))()
int sig, (*action)();

int gsignal (sig)
int sig;

DESCRIPTION
ssignal and gsignal implement a software facility similar to signal(2). This
facility is used by the Standard C Library to enable users to indicate the
disposition of error conditions, and is also made available to users for
their own purposes.

Software signals made available to users are associated with integers in
the inclusive range 1 through 16. A call to ssignal associates a procedure,
action, with the software signal sig; the software signal, sig, is raised by a
call to gsignal. Raising a software signal causes the action established for
that signal to be taken.

The first argument to ssignal is a number identifying the type of signal for
which an action is to be established. The second argument defines the
action; it is either the name of a (user-defined) action function or one of the
manifest constants SIG_DFL (default) or SIG_IGN (ignore). ssignal returns
the action previously established for that signal type; if no action has been
established or the signal number is illegal, ssignal returns SIG_DFL.

Gsignal raises the signal identified by its argument, sig:

SEE ALSO

If an action function has been established for sig, then that action is
reset to SIG_DFL and the action function is entered with argument
sig. Gsignal returns the value returned to it by the action function.

If the action for sig is SIG_IGN, gsignal returns the value 1 and takes
no other action.

If the action for sig is SIG_DFL, gsignal returns the value 0 and takes
no other action.

If sig has an illegal value or no action was ever specified for sig, gsig­
nal returns the value 0 and takes no other action.

signal(2), sigset(2).

MU43814PR/D2 - 1- 12/01/87

SSIGNAL(3C) (C Programming Language Utilities) SSIGNAL(3C)

NOTES
There are some additional signals with numbers outside the range 1
through 16 which are used by the Standard C Library to indicate error
conditions. Thus, some signal numbers outside the range 1 through 16
are legal, although their use may interfere with the operation of the Stan­
dard C Library.

MU43814PR/D2 - 2 - 12/01/87

STDI0(3S) (C Programming Language Utilities) STDI0(3S)

NAME
stdio - standard buffered input/output package

SYNOPSIS
#include <stdio.h>

FILE •stdin, •stdout, •stderr;

DESCRIPTION
The functions described in the entries of sub-class 35 of this manual con­
stitute an efficient, user-level UO buffering scheme. The in-line macros
getc(35) and putc(35) handle characters quickly. The macros getchar and
putchar, and the higher-level routines fgetc, fgets, fprintf, fputc, fputs, fread,
fscanf, fwrite, gets, getw, printf, puts, putw, and scanf all use or act as if
they use getc and putc; they can be freely intermixed.

A file with associated buffering is called a stream and is declared to be a
pointer to a defined type FILE. Fopen(3S) creates certain descriptive data
for a stream and returns a pointer to designate the stream in all further
transactions. Normally, there are three open streams with constant
pointers declared in the <stdio.h> header file and associated with the
standard open files:

stdin standard input file
stdout standard output file
stderr standard error file

A constant NULL (0) designates a nonexistent pointer.

An integer-constant EOF (-1) is returned upon end-of-file or error by most
integer functions that deal with streams (see the individual descriptions
for details).

An integer constant BUFSIZ specifies the size of the buffers used by the
particular implementation. ·

Any program that uses this package must include the header file of per­
tinent macro definitions, as follows:

#include <stdio.h>

The functions and constants mentioned in the entries of sub-class 35 of
this manual are declared in that header file and need no further declara­
tion. The constants and the following "functions" are irilplemented as
macros (redeclaration of these names is perilous): getc, getchar, putc,
putchar, [error, feof, clearerr, and fileno.

MU43814PR/D2 - 1 - 12/01/87

STDl0(3S) (C Programming Language Utilities) STDI0(3S)

Output streams, with the exception of the standard error stream stderr,
are by default buffered if the output refers to a file and line-buffered if the
output refers to a terminal. The standard error output stream stderr is by
default unbuffered, but use of [reopen [see fopen(35)] will cause it to
become buffered or line-buffered. When an output stream is unbuffered,
information is queued for writing on the destination file or terminal as
soon as written; when it is buffered, many characters are saved up and
written as a block. When it is
line-buffered, each line of output is queued for writing on the destination
terminal as soon as the line is completed (that is, as soqn as a new-line
character is written or terminal input is requested). Setbu/(35) or setvbuf()
in setbu/(35) may be used to change the stream's bufferinglstrategy.

SEE ALSO
open{2), close(2), lseek(2), pipe(2), read(2), write(2), ctermid(35),
cuserid(35), fclose(35), ferror(35), fopen(35), fread(35), fseek(35), getc(3S),
gets(35), popen(35), printf(35), putc(35), puts(35), scanf~35), setbuf(35),
system(35), tmpfile(3S), tmpnam(3S), ungetc(35).

DIAGNOSTICS
Invalid stream pointers will usually cause grave disorder, possibly includ­
ing program termination. Individual function descriptions describe the
possible error conditions.

MU43814PR/D2 - 2 - 12101187

STDIPC(3C) (C Programming Language Utilities) STDIPC(3C)

NAME
stdipc: ftok - standard interprocess communication package

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>

key _t ftok(path, id)
char *path;
char id;

DESCRIPTION
All interprocess communication facilities require the user to supply a key
to be used by the msgget(2), semget(2), and shmget(2) system calls to obtain
interprocess communication identifiers. One suggested method for form­
ing a key is to use the ftok subroutine described below. Another way to
compose keys is to include the project ID in the most significant byte and
to use the remaining portion as a sequence number. There are many
other ways to form keys, but it is necessary for each system to define
standards for forming them. If some standard is not adhered to, it will be
possible for unrelated processes to unintentionally interfere with each
other's operation. Therefore, it is strongly suggested that the most signifi­
cant byte of a key in some sense refer to a project so that keys do not con-
flict across a given system. ·

Ftok returns a key based on path and id that is usable in subsequent
msgget, semget, and shmget system calls. Path must be the path name of an
existing file that is accessible to the process. Id is a character which
uniquely identifies a project. Note that ftok will return the same key for
linked files when called with the same id and that it will return different
keys when called with the same file name but different ids.

SEE ALSO
intro{2), msgget(2), semget(2), shmget(2).

DIAGNOSTICS
Ftok returns (key _t) -1 if path does not exist or if it is not accessible to the
process.

WARNING
If the file whose path is passed to ftok is removed when keys still refer to
the file, future calls to ftok with the same path and id will return an error.
If the same file is recreated, then ftok is likely to return a different key
than it did the original time it was called.

MU43814PR/D2 - 1 - 12/01/87

STRING(3C) (C Programming Language Utilities) STRING(3C)

NAME
string: strcat, strdup, strncat, strcmp, strncmp, strcpy, strncpy, strlen,
strchr, strrchr, strpbrk, strspn, strcspn, strtok - string operations

SYNOPSIS
#include <string.h>
#include <sys/types.h>

char *Streat (sl, s2)
char *Sl, *s2;

char *Strdup (sl)
char *sl;

char *strncat (sl, s2, n)
char *Sl, *s2;
size_t ni

int strcmp (sl, s2)
char *Sl, *s2;

int strncmp (sl, s2, n)
char *Sl, *S2i
size_t ni

char *Strcpy (sl, s2)
char *Sl, *S2i

char *Strncpy (sl, s2, n)
char *Sl, *S2i
size_t Ui

int strlen (s)
char *Si

char *Strchr (s, c)
char *Si
int c;

char *Strrchr (s, c)
char *s;
int Ci

char *Strpbrk (sl, s2)
char *Sl, *S2i

int strspn (sl, s2)
char *Sl, *S2i

MU43814PR/D2 - 1 - 12/01/87

STRING(3C) (C Programming Language Utilities)

int strcspn (sl, s2)
char *Sl, *s2;

char *strtok (sl, s2)
char *Sl, *s2;

DESCRIPTION

STRING(3C)

The arguments sl, s2 and s point to strings (arrays of characters ter­
minated by a null character). The functions strcat, strncat, strcpy, and
strncpy all alter sl. These functions do not check for overflow of the array
pointed to by sl.

Streat appends a copy of string s2 to the end of string st.

Strdup returns a pointer to a new string which is a duplicate of the string
pointed to by sl. The space for the new string is obtained using
malloc(3C). If the new string can not be created, null is returned.

Strncat appends at most n characters. Each returns a pointer to the null­
terminated result.

Strcmp compares its arguments and returns an integer less than, equal to,
or greater than 0, according as sl is lexicographically less than, equal to,
or greater than s2. Strncmp makes the same comparison but looks at at
most n characters.

Strcpy copies string s2 to sl, stopping after the null character has been
copied. Strncpy copies exactly n characters, truncating s2 or adding null
characters to sl if necessary. The result will not be null-terminated if the
length of s2 is nor more. Each function returns sl.

Strlen returns the number of characters in s, not including the terminating
null character.

Strchr (strrchr) returns a pointer to the first (last) occurrence of character c
in string s, or a NULL pointer if c does not occur in the string. The null
character terminating a string is considered to be part of the string.

Strpbrk returns a pointer to the first occurrence in string sl of any charac­
ter from string s2, or a NULL pointer if no character from s2 exists in sl.

Strspn (strcspn) returns the length of the initial segment of string sl which
consists entirely of characters from (not from) string s2.

Strtok considers the string sl to consist of a sequence of zero or more text
tokens separated by spans of one or more characters from the separator
string s2. The first call (with pointer sl specified) returns a pointer to the
first character of the first token, and will have written a null character into

MU43814PR/02 - 2 - 12/01/87

STRING(3C) (C Programming Language Utilities) STRING(3C)

sl immediately following the returned token. The function keeps track of
its position in the string between separate calls, so that subsequent calls
(which must be made with the first argument a NULL pointer) will work
through the string sl immediately following that token. In this way sub­
sequent calls will work through the string sl until no tokens remain. The
separator string s2 may be different from call to call. When no token
remains in sl, a NULL pointer is returned.

For user convenience, all these functions are declared in the optional
<string.h> header file.

SEE ALSO
malloc(3C), malloc(3X).

CAVEATS
Strcmp and strncmp are implemented by using the most natural character
comparison on the machine. Thus the sign of the value returned when
one of the characters has its high-order bit set not the same in all imple­
mentations and should not be relied upon.

Character movement is performed differently in different implementa­
tions. Thus overlapping moves may yield surprises.

MU43814PR/D2 - 3 - 12/01/87

STRTOD(3C) (C Programming Language Utilities) STRTOD(3C)

NAME
strtod, atof - convert string to double-precision number

SYNOPSIS
double strtod (str, ptr)
char •str, ••ptr;

double atof (str)
char •str;

DESCRIPTION
strtod returns as a double-precision floating-point number the value
represented by the character string pointed to by str. The string is
scanned up to the first unrecognized character.

strtod recognizes an optional string of "white-space" characters [as
defined by isspace in ctype(3C)], then an optional sign, then a string of
digits optionally containing a decimal point, then an optional e or E fol­
lowed by an optional sign or space, followed by an integer.

If the value of ptr is not (char **)NULL, a pointer to the character ter­
minating the scan is returned in the location pointed to by ptr. If no
number can be formed, *ptr is set to str, and zero is returned.

Atoj(str) is equivalent to strtod(str, (char **)NULL).

SEE ALSO
ctype(3C), scanf(3S), strtol(3C).

DIAGNOSTICS
If the correct value would cause overflow, ±HUGE (as defined in
<math.h>) is returned (according to the sign of the value), and errno is
set to ERANGE.

If the correct value would cause underflow, zero is returned and errno is
set to ERANGE.

MU43814PR/D2 - 1 - 12/01/87

STRTOL(3C) (C Programming Language Utilities) STRTOL(3C)

NAME
strtol, atol, atoi - convert string to integer

SYNOPSIS
long strtol (str, ptr, base)
char *str, **ptr;
int base;

long atol (str)
char *str;

int atoi (str)
char *str;

DESCRIPTION
strtol returns as a long integer the value represented by the character
string pointed to by str. The string is scanned up to the first character
inconsistent with the base. Leading "white-space" characters [as defined
by isspace in ctype(3C)] are ignored.

If the value of ptr is not (char **)NULL, a pointer to the character ter­
minating the scan is returned in the location pointed to by ptr. If no
integer can be formed, that location is set to str, and zero is returned.

If base is positive (and not greater than 36), it is used as the base for
conversion. After an optional leading sign, leading zeros are ignored, and
"Ox" or "OX" is ignored if base is 16.

If base is zero, the string itself determines the base thusly: After an
optional leading sign a leading zero indicates octal conversion, and a lead­
ing "Ox" or "OX" hexadecimal conversion. Otherwise, decimal conversion
is used.

Truncation from long to int can, of course, take place upon assignment or
by an explicit cast.

Atol(str) is equivalent to strtol(str, (char **)NULL, 10).

Atoi(str) is equivalent to (int) strtol(str, (char **)NULL, 10).

SEE ALSO
ctype(3C), scanf(3S), strtod(3C).

CAVEAT
Overflow conditions are ignored.

MU43814PR/D2 - 1 - 12/01/87

SWAB(3C) (C Programming Language Utilities)

NAME
swab - swap bytes

SYNOPSIS
void swab (from, to, nbytes)
char •from, •to;
int nbytes;

DESCRIPTION

SWAB(3C)

swab copies nbytes bytes pointed to by from to the array pointed to by to,
exchanging adjacent even and odd bytes. Nbytes should be even and
non-negative. If nbytes is odd and positive swab uses nbytes-1 instead. If
nbytes is negative, swab does nothing.

MU43814PR/D2 - 1 - 12/01/87

SYSTEM(3S) (C Programming Language Utilities)

NAME
system - issue a shell command

SYNOPSIS
#include <stdio.h>

int system (string)
char *string;

DESCRIPTION

SYSTEM(3S)

system causes the string to be given to sh(l) as input, as if the string had
been typed as a command at a terminal. The current process waits until
the shell has completed, then returns the exit status of the shell.

FILES
/bin/sh

SEE ALSO
exec(2).
sh(l) in the User's Reference Manual.

DIAGNOSTICS
system forks to create a child process that in turn exec's /bin/sh in order to
execute string. If the fork or exec fails, system returns a negative value
and sets errno.

MU43814PR/D2 - 1 - 12/01187

TMPFILE(3S) (C Programming Language Utilities) TMPFILE(3S)

NAME
tmpfile - create a temporary file

SYNOPSIS
#include < stdio.h>

FILE •tmpfile ()

DESCRIPTION
tmpfile creates a temporary file using a name generated by tmpnam(3S),
and returns a corresponding FILE pointer. If the file cannot be opened, an
error message is printed using perror(3C), and a NULL pointer is returned.
The file will automatically be deleted when the process using it ter­
minates. The file is opened for update ("w+ '1-

SEE ALSO
creat(2), unlink(2), fopen(3S), mktemp(3C), perror(3C), stdio(3S),
tmpnam(35).

MU43814PR/D2 - 1 - 12/01/87

TMPNAM(3S) (C Programming Language Utilities) TMPNAM(3S)

NAME
tmpnam, tempnam - create a name for a temporary file

SYNOPSIS
#include <stdio.h>

char *fmpnam (s)
char *Si

char *fempnam (dir, pfx)
char *dir, *pfx;

DESCRIPTION
These functions generate file names that can safely be used for a tem­
porary file.

tmpnam always generates a file name using the path-prefix defined as
P _tmpdir in the <stdio.h> header file. If s is NULL, tmpnam leaves its
result in an internal static area and returns a pointer to that area. The
next call to tmpnam will destroy the contents of the area. If s is not NULL,
it is assumed to be the address of an array of at least L_tmpnam bytes,
where L_tmpnam is a constant defined in <stdio.h>; tmpnam places its
result in that array and returns s.

Tempnam allows the user to control the choice of a directory. The argu­
ment dir points to the name of the directory in which the file is to be
created. If dir is NULL or points to a string that is not a name for an
appropriate directory, the path-prefix defined as P _tmpdir in the
<stdio.h> header file is used. If that directory is not accessible, /tmp will
be used as a last resort. This entire sequence can be up-staged by provid­
ing an environment variable TMPDIR in the user's environment, whose
value is the name of the desired temporary-file directory.

Many applications prefer their temporary files to have certain favorite ini­
tial letter sequences in their names. Use the pfx argument for this. This
argument may be NULL or point to a string of up to five characters to be
used as the first few characters of the temporary-file name.

Tempnam uses malloc(3C) to get space for the constructed file name, and
returns a pointer to this area. Thus, any pointer value returned from
tempnam may serve as an argument to free [see malloc(3C)]. If tempnam
cannot return the expected result for any reason, i.e. malloc(3C) failed, or
none of the above mentioned attempts to find an appropriate directory
was successful, a NULL pointer will be returned.

MU43814PR/D2 - 1 - 12/01/87

TMPNAM(3S) (C Programming Language Utilities) TMPNAM(3S)

NOTES
These functions generate a different file name each time they are called.

Files created using these functions and either fopen(3S) or creat(2) are tem­
porary only in the sense that they reside in a directory intended for tem­
porary use, and their names are unique. It is the user's responsibility to
use unlink (2) to remove the file when its use is ended.

SEE ALSO
creat(2), unlink(2), fopen(3S), malloc(3C), mktemp(3C), tmpfile(3S).

CAVEATS
If called more than 17,576 times in a single process, these functions will
start recycling previously used names.

Between the time a file name is created and the file is opened, it is possi­
ble for some other process to create a file with the same name. This can
never happen if that other process is using these functions or mktemp, and
the file names are chosen to render duplication by other means unlikely.

MU43814PR/D2 -2- 12/01/87

TSEARCH(3C) (C Programming Language Utilities) TSEARCH(3C)

NAME
tsearch, tfind, tdelete, twalk - manage binary search trees

SYNOPSIS
#include <search.h>

char *tsearch ((char *) key, (char **) rootp, compar)
int (*compar)();

char *tfind ((char *) key, (char **) rootp, compar)
int (*compar)();

char *tdelete ((char *) key, (char **) rootp, compar)
int (*compar)();

void twalk ((char *) root, action)
void (*action)();

DESCRIPTION
tsearch, tfind, tdelete, and twalk are routines for manipulating binary search
trees. They are generalized from Knuth (6.2.2) Algorithms T and 0. All
comparisons are done with a user-supplied routine. This routine is called
with two arguments, the pointers to the elements being compared. It
returns an integer less than, equal to, or greater than 0, according to
whether the first argument is to be considered less than, equal to or
greater than the second argument. The comparison function need not
compare every byte, so arbitrary data may be contained in the elements in
addition to the values being compared.

tsearch is used to build and access the tree. Key is a pointer to a datum to
be accessed or stored. If there is a datum in the tree equal to *key (the
value pointed to by key), a pointer to this found datum is returned. Oth­
erwise, *key is inserted, and a pointer to it returned. Only pointers are
copied, so the calling routine must store the data. Rootp points to a vari­
able that points to the root of the tree. A NULL value for the variable
pointed to by rootp denotes an empty tree; in this case, the variable will
be set to point to the datum which will be at the root of the new tree.

Like tsearch, tfind will search for a datum in the tree, returning a pointer
to it if found. However, if it is not found, tfind will return a NULL
pointer. The arguments for tfind are the same as for tsearch.

Tdelete. deletes a node from a binary search tree. The arguments are the
same as for tsearch. The variable pointed to by rootp will be changed if
the deleted node was the root of the tree. Tdelete returns a pointer to the
parent of the deleted node, or a NULL pointer if the node is not found.

MU43814PR/D2 - 1 - 12/01187

TSEARCH(3C) (C Programming Language Utilities) TSEARCH(3C)

Twalk traverses a binary search tree. Root is the root of the tree to be
traversed. (Any node in a tree may be used as the root for a walk below
that node.) Action is the name of a routine to be invoked at each node.
This routine is, in turn, called with three arguments. The first argument
is the address of the node being visited. The second argument is a value
from an enumeration data type typedef enum { preorder, postorder, endorder,
leaf} VISIT; (defined in the <search.h> header file), depending on whether
this is the first, second or third time that the node has been visited (dur­
ing a depth-first, left-to-right traversal of the tree), or whether the node is
a leaf. The third argument is the level of the node in the tree, with the
root being level zero.

The pointers to the key and the root of the tree should be of type pointer­
to-element, and cast to type pointer-to-character. Similarly, although
declared as type pointer-to-character, the value returned should be cast
into type pointer-to-element.

EXAMPLE
The following code reads in strings and stores structures containing a
pointer to each string and a count of its length. It then walks the tree,
printing out the stored strings and their lengths in alphabetical order.

MU43814PR/D2

#include <search.h>
#include <stdio.h>

struct node { I* pointers to these are stored in the tree *I
char *String;
int length;

};
char string_space[lOOOO];
struct node nodes[SOO];
struct node *root = NULL;

I* space to store strings */
I* nodes to store *I
I* this points to the root *I

main()
{

char *Strptr = string_space;
struct node *nodeptr = nodes;
void print_node(), twalk();
int i = 0, node_compare();

while (gets(strptr) ! = NULL && i + + < 500) {
I* set node *I

- 2 - 12/01/87

TSEARCH(3C)

SEE ALSO

int

(C Programming Language Utilities)

nodeptr->string = strptr;
nodeptr- >length = strlen(strptr);
I* put node into the tree *I

TSEARCH(3C)

(void) tsearch((char *)nodeptr, (char **) &root,

}

node_compare);
/* adjust pointers, so we don't overwrite tree *I
strptr + = nodeptr- >length + 1;
nodeptr+ +;

twalk((char *)root, print_node);

This routine compares two nodes, based on an
alphabetical ordering of the string field.

node_compare(nodel, node2)
char *nodel, *node2;
{

*I
void

return strcmp(((struct node *)nodel)->string,
((struct node *) node2)->string);

This routine prints out a node, the first time
twalk encounters it.

print_node(node, order, level)
char **node;
VISIT order;
int level;
{

}

if (order = = preorder 11 order = = leaf) {
(void)printf("string = %20s, length = %d\n",

(*((struct node **)node))->string,
(*((struct node **)node))->length);

}

bsearch(3C), hsearch(3C), lsearch(3C).

MU43814PR/D2 - 3 - 12/01/87

TSEARCH(3C) (C Programming Language Utilities) TSEARCH(3C)

DIAGNOSTICS
A NULL pointer is returned by tsearch if there is not enough space avail­
able to create a new node.
A NULL pointer is returned by tfind and tdelete if rootp is NULL on entry.
If the datum is found, both tsearch and tfind return a pointer to it. If not,
tfind returns NULL, and tsearch returns a pointer to the inserted item.

WARNINGS
The root argument to twalk is one level of indirection less than the rootp
arguments to tsearch and tdelete.
There are two nomenclatures used to refer to the order in which tree
nodes are visited. tsearch uses preorder, postorder and endorder to
respectively refer to visting a node before any of its children, after its left
child and before its right, and after both its children. The alternate
nomenclature uses preorder, inorder and postorder to refer to the same
visits, which could result in some confusion over the meaning of pos­
torder.

CAVEAT
If the calling function alters the pointer to the root, results are unpredict­
able.

MU43814PR/D2 -4- 12/01/87

TTYNAME(3C) (C Programming Language Utilities)

NAME
ttyname, isatty- find name of a terminal

SYNOPSIS
char *ftyname (fildes)
int fildes;

int isatty (fildes)
int fildes;

DESCRIPTION

TTYNAME(3C)

ttyname returns a pointer to a string containing the null-terminated path
name of the terminal device associated with file descriptor fildes.

Isatty returns 1 if fildes is associated with a terminal device, 0 otherwise.

FILES
/dev/*

DIAGNOSTICS
ttyname returns a NULL pointer if fildes does not describe a terminal device
in directory /dev.

CAVEAT
The return value points to static data whose content is overwritten by
each call.

MU43814PR/D2 - 1 - 12/01/87

TTYSLOT(3C) (C Programming Language Utilities) TTYSLOT(3C)

NAME
ttyslot - find the slot in the utmp file of the current user

SYNOPSIS
int ttyslot ()

DESCRIPTION

FILES

ttyslot returns the index of the current user's entry in the /etc/utmp file.
This is accomplished by actually scanning the file /etc/inittab for the name
of the terminal associated with the standard input, the standard output, or
the error output (0, 1 or 2).

/etc/inittab
/etc/utmp

SEE ALSO
getut(3C), ttyname(3C).

DIAGNOSTICS
A value of 0 is returned if an error was encountered while searching for
the terminal name or if none of the above file descriptors is associated
with a terminal device.

MU43814PR/D2 - 1 - 12/01/87

-UNGETC(3S) (C Programming Language Utilities) UNGETC(3S)

NAME
ungetc - push character back into input stream

SYNOPSIS
#include <stdio.h>

int ungetc (c, stream)
int c;
FILE •stream;

DESCRIPTION
ungetc inserts the character c into the buffer associated with an input
stream. That character, c, will be returned by the next getc(3S) call on that
stream. ungetc returns c, and leaves the file stream unchanged.

One character of pushback is guaranteed, provided something has already
been read from the stream and the stream is actually buffered.

If c equals EOF, ungetc does nothing to the buffer and returns EOF.

Fseek(3S) erases all memory of inserted characters.

SEE ALSO
fseek(3S), getc(3S), setbuf(3S), stdio(3S).

DIAGNOSTICS
ungetc returns EOF if it cannot insert the character.

BUGS
When stream is stdin, one character may be pushed back onto the buffer
without a previous read statement.

MU43814PR/D2 - 1 - 12/01/87

VPRINTF(3S) (C Programming Language Utilities) VPRINTF(3S)

NAME
vprintf, vfprintf, vsprintf - print formatted output of a varargs argument
list

SYNOPSIS
#include <stdio.h>
#include <varargs.h>

int vprintf (format, ap)
char •format;
va_list ap;

int vfprintf (stream, format, ap)
FILE •stream;
char •format;
va_list ap;

int vsprintf (s, format, ap)
char •s, •format;
va_list ap;

DESCRIPTION
vprintf, vfprintf, and vsprintf are the same as print/, fprintf, and sprint/
respectively, except that instead of being called with a variable number of
arguments, they are called with an argument list as defined by varargs(S).

EXAMPLE
The following demonstrates the use of vfprintf to write an error routine.

#include <stdio.h>
#include <varargs.h>

'* * error should be called like
* error(function_name, format, argl, arg2 ...); •/

I• V ARARGS•/
void
error(va_alist)
I• Note that the function_name and format arguments cannot be
* separately declared because of the definition of varargs. *I

va_dcl
{

va_list args;

MU43814PR/D2 - 1 - 12/01/87

VPRINTF(3S)

}

SEE ALSO

(C Programming Language Utilities) VPRINTF(3S)

char *fmt;

va_start(args);
I* print out name of function causing error */
(void)fprintf(stderr, "ERROR in %s: ", va_arg(args, char *));
fmt = va_arg(args, char *);
I* print out remainder of message */
(void)vfprintf(stderr, fmt, args);
va_end(args);
(void)abort();

printf(3S), varargs(S).

MU43814PR/D2 - 2 - 12101187

BESSEL(3M) (Math Libraries) BESSEL(3M)

NAME
bessel: jO, jl, jn, yO, yl, yn - Bessel functions

SYNOPSIS
#include <math.h>

double jO (x)
double x;

double jl (x)
double x;

double jn (n, x)
int n;
double x;

double yo (x)
double x;

double yl (x)
double x;

double yn (n, x)
int n;
double x;

DESCRIPTION
JO and j1 return Bessel functions of x of the first kind of orders 0 and 1
respectively. Jn returns the Bessel function of x of the first kind of order
n.

YO and y1 return Bessel functions of x of the second kind of orders 0 and
1 respectively. Yn returns the Bessel function of x of the second kind of
order n. The value of x must be positive.

SEE ALSO
matherr(3M).

DIAGNOSTICS
Non-positive arguments cause yO, y1 and yn to return the value -HUGE
and to set errno to EDOM. In addition, a message indicating DOMAIN
error is printed on the standard error output.

Arguments too large in magnitude cause jO, j1, yO and y1 to return zero
and to set errno to ERANGE. In addition, a message indicating TLOSS
error is printed on the standard error output.

MU43814PR/D2 - 1 - 12/01/87

II

Ill

BESSEL(3M) (Math Libraries) BESSEL(3M)

These error-handling procedures may be changed with the function
matherr(3M).

MU43814PR/D2 -2- 12/01/87

ERF(3M) (Math Libraries)

NAME
erf, erfc - error function and complementary error function

SYNOPSIS
#include <math.h>

double erf (x)
double x;

double erfc (x)
double x;

DESCRIPTION

ERF(3M)

erf returns the error function of x, defined as {2 over sqrt pi} int from 0 to
x e sup {- t sup 2} dt .

erfc, which returns 1.0 - erf(x), is provided because of the extreme loss of
relative accuracy if erf(x) is called for large x and the result subtracted from
1.0 (e.g., for x = 5, 12 places are lost).

SEE ALSO
exp(3M).

MU43814PR/D2 - 1 - 12/01/87

II

II

EXP(3M) (Math Libraries) EXP(3M)

NAME
exp, log, loglO, pow, sqrt - exponential, logarithm, power, square root
functions

SYNOPSIS
#include <math.h>

double exp (x)
double x;

double log (x)
double x;

double loglO (x)
double x;

double pow (x, y)
double x, y;

double sqrt (x)
double x;

DESCRIPTION
exp returns ex.

Log returns the natural logarithm of x. The value of x must be positive.

Log10 returns the logarithm base ten of x. The value of x must be posi­
tive.

Pow returns xY. If x is zero, y must be positive. If x is negative, y must
be an integer.

Sqrt returns the non-negative square root of x. The value of x may not be
negative.

SEE ALSO
hypot(3M), matherr(3M), sinh(3M).

DIAGNOSTICS
exp returns HUGE when the correct value would overflow, or 0 when the
correct value would underflow, and sets errno to ERANGE.

Log and log10 return -HUGE and set errno to EDOM when x is non­
positive. A message indicating DOMAIN error (or SING error when x is 0)
is printed on the standard error output.

Pow returns 0 and sets errno to EDOM when x is 0 and y is non-positive,
or when x is negative and y is not an integer. In these cases a message

MU43814PR/02 - 1 - 12/01/87

EXP(3M) (Math Libraries) EXP(3M)

indicating DOMAIN error is printed on the standard error output. When
the correct value for pow would overflow or underflow, pow returns
±HUGE or 0 respectively, and sets errno to ERANGE.

Sqrt returns 0 and sets errno to EDOM when x is negative. A message
indicating DOMAIN error is printed on the standard error output.

These error-handling procedures may be changed with the function
matherr(3M).

MU43814PR/D2 - 2 - 12/01/87

II

FLOOR(3M) (Math Libraries) FLOOR(3M)

NAME
floor, ceil, fmod, fabs - floor, ceiling, remainder, absolute value functions

SYNOPSIS
#include <math.h>

double floor (x)
double x;

double ceil (x)
double x;

double fmod (x, y)

double x, y;

double fabs (x)
double x;

DESCRIPTION
floor returns the largest integer (as a double-precision number) not greater
than x.

Ceil returns the smallest integer not less than x.

Fmod returns the floating-point remainder of the division of x by y: zero
if y is zero or if xly would overflow; otherwise the number f with the
same sign as x, such that x = iy + f for some integer i, and lfl < ly I.

Fabs returns the absolute value of x, Ix I.

SEE ALSO
abs(3C).

MU43814PR/D2 - 1 - 12/01/87

II

Ill

GAMMA(3M) (Math Libraries) GAMMA(3M)

NAME
gamma - log gamma function

SYNOPSIS
#include <math.h>

double gamma (x)
double x;

extern int signgam;

DESCRIPTION
delim $$ gamma returns $ln (I GAMMA (A x) I)$, where $GAMMA (A x
)$ is defined as $int from 0 to inf e sup { - t } t sup { x - 1 } dt$. The sign
of GAMMA (A x) is returned in the external integer signgam. The argu­
ment x may not be a non-positive integer.

The following C program fragment might be used to calculate r:
if ((y = gamma(x)) > LN_MAXDOUBLE)

error();
y = signgam * exp(y);

where LN_MAXDOUBLE is the least value that causes exp(3M) to return a
range error, and is defined in the <values.h> header file.

SEE ALSO
exp(3M), matherr(3M), values(S).

DIAGNOSTICS
For non-negative integer arguments HUGE is returned, and errno is set to
EDOM. A message indicating SING error is printed on the standard error
output.

If the correct value would overflow, gamma returns HUGE and sets errno to
ERAN GE.

These error-handling procedures may be changed with the function
matherr(3M).

MU43814PR/D2 - 1 - 12/01/87

II

Ill

HYPOT(3M) (Math Libraries)

NAME
hypot - Euclidean distance function

SYNOPSIS
#include <math.h>

double hypot (x, y)
double x, y; '

DESCRIPTION
hypot returns

sqrt(x * x + y * y),

taking precautions against unwarranted overflows.

SEE ALSO
matherr(3M).

DIAGNOSTICS

HYPOT(3M)

When the correct value would overflow, hypot returns HUGE and sets
errno to ERANGE.

These error-handling procedures may be changed with the function
matherr(3M).

MU43814PR/D2 - 1 - 12/01/87

II

II

MATH881(3M) (Motorola Inc. Only) MATH881(3M)

NAME
asin881, acos881, atan881, etox881, log881, logn881, mul881, sin881,
cos881, sinh881, cosh881, sqrt881, tan881, tanh881 - floating point math
functions

SYNOPSIS
unsigned int
routine (x,y)
double x;
double »y;

DESCRIPTION
The calling sequence for these functions is provided so that the routines
may be accessed directly, rather than through use of the floating point
math library. In the sequence, which is the same for all the routines, xis
the input operand and y is the address to write the output operand to. If
the operation requires two input operands, y also points to the second
input operand. The routines return 881 status register results.

The following routine is used to see if either of a pair of input arguments
is a NaN. It returns a non-zero value if one of the arguments is a NaN.

SEE ALSO

int nan881(a,b)
double a,b;

matherr(3M), intro(3).

MU43814PR/D2 - 1 - 12/01/87

Ill

II

MATHERR(3M) (Math Libraries) MATHERR(3M)

NAME
matherr - error-handling function

SYNOPSIS
#include <math.h>

int matherr (x)
struct exception *Xi

DESCRIPTION
matherr is invoked by functions in the Math Library when errors are
detected. Users may define their own procedures for handling errors, by
including a function named matherr in their programs. matherr must be of
the form described above. When an error occurs, a pointer to the excep­
tion structure x will be passed to the user-supplied matherr function. This
structure, which is defined in the <math.h> header file, is as follows:

struct exception {
int type;
char *name;
double argl, arg2, retval;

};

The element type is an integer describing the type of error that has
occurred, from the following list of constants (defined in the header file):

DOMAIN argument domain error
SING argument singularity
OVERFLOW overflow range error
UNDERFLOW underflow range error
TLOSS total loss of significance
PLOSS partial loss of significance

The element name points to a string containing the name of the function
that incurred the error. The variables arg1 and arg2 are the arguments
with which the function was invoked. Retval is set to the default value
that will be returned by the function unless the user's matherr sets it to a
different value.

If the user's matherr function returns non-zero, no error message will be
printed, and errno will not be set.

If matherr is not supplied by the user, the default error-handling pro­
cedures, described with the math functions involved, will be invoked
upon error. These procedures are also summarized in the table below. In
every case, errno is set to EDOM or ERANGE and the program continues.

MU43814PR/02 - 1 - 12/01/87

MATHERR(3M) (Math Libraries) MATHERR(3M)

EXAMPLE
#include <math.h>

int
matherr(x)
register struct exception *X;
{

}

MU43814PR/D2

switch (x->type) {
case DOMAIN:

I* change sqrt to return sqrt(-argl), not 0 *I
if (!strcmp(x->name, "sqrt'')) {

x->retval = sqrt(-x->argl);
return (O); I* print message and set errno *I

}
case SING:

I* all other domain or sing errors, print message and abort *'
fprintf(stderr, "domain error in %s\n", x->name);
abort();

case PLOSS:

}

I* print detailed error message *I
fprintf(stderr, "loss of significance in %s(%g) = %g\n",

x->name, x->argl, x->retval);
return {l); I* take no other action *I

return (O); I* all other errors, execute default procedure *I

- 2 - 12/01/87

II

II

MATHERR(3M) (Math Libraries) MATHERR(3M)

DEFAULT ERROR HANDLING PROCEDURES

Types of Errors

type DOMAIN SING OVERFLOW UNDERFLOW TLOSS PLOSS

err no EDOM EDOM ERAN GE ERAN GE ERAN GE ERAN GE

BESSEL: - - - - M,O .
yo, yt, yn M,-H - - - - -

(arg s)

EXP: - - H 0 - -

POW:

neg ••(non-inl) - - ±H 0 - -
0 •• (non-pos) M,O - - - - -

LOG, LOGlO:

(arg < 0) M,-11 - - - - -
(arg = 0) - M,-11 - - - -

SQRT: M,O - - - - -

GAMMA: - M,H H - - -

HY POT: - - H - - -

SINH: - - ±H - - -

COSH: - - H - - -

SIN, COS, TAN: - - - - M,O .
ASIN,ACOS,

ATAN: M,O - - - - -

ABBREVIATIONS
* As much as possible of the value is returned.
M Message is printed (EDOM error).
H HUGE is returned.

-H -HUGE is returned.
± H HUGE or -HUGE is returned.
0 0 is returned.

NOTE: In addition to the errors listed in the table above, all libm881 rou­
tines will return a DOMAIN error when an input to the routine is a NaN.

MU43814PR/02 - 3 - 12/01/87

MATHERR(3M) (Math Libraries) MATHERR(3M)

If input is positive infinity, the functions log and log10 will return a
"quiet" overflow condition.

MU43814PR/D2 - 4 - 12/01/87

II

Ill

SINH(3M) (Math Libraries)

NAME
sinh, cosh, tanh - hyperbolic functions

SYNOPSIS
#include <math.h>

double sinh (x)
double x;

double cosh (x)
double x;

double tanh (x)
double x;

DESCRIPTION

SINH(3M)

sinh, cosh, and tanh return, respectively, the hyberbolic sine, cosine and
tangent of their argument.

SEE ALSO
matherr(3M).

DIAGNOSTICS
sinh and cosh return HUGE (and sinh may return -HUGE for negative x)
when the correct value would overflow and set errno to ERANGE.

These error-handling procedures may be changed with the function
matherr(3M).

MU43814PR/D2 - 1 - 12/01/87

Ill

TRIG(3M) (Math Libraries) TRIG(3M)

NAME
trig: sin, cos, tan, asin, acos, atan, atan2 - trigonometric functions

SYNOPSIS
#include <math.h>

double sin (x)
double x;

double cos (x)
double x;

double tan (x)
double x;

double asin (x)
double x;

double acos (x)
double x;

double atan (x)
double x;

double atan2 (y, x)
double y, x;

DESCRIPTION
Sin, cos and tan return respectively the sine, cosine and tangent of their
argument, x, measured in radians.

Asin returns the arcsine of x, in the range [-1T/2,1T/2].

Acos returns the arccosine of x, in the range [0,1T].

Atan returns the arctangent of x, in the range [-1T/2,1T/2].

Atan2 returns the arctangent of ylx, in the range (-1T,1T], using the signs of
both arguments to determine the quadrant of the return value.

SEE ALSO
matherr(3M).

DIAGNOSTICS
Sin, cos, and tan lose accuracy when their argument is far from zero. For
arguments sufficiently large, these functions return zero when there
would otherwise be a complete loss of significance. In this case a mes­
sage indicating TLOSS error is printed on the standard error output. For
less extreme arguments causing partial loss of significance, a PLOSS error

MU43814PR/D2 - 1 - 12/01/87

Ill

TRIG(3M) (Math Libraries) TRIG(3M)

is generated but no message is printed. In both cases, errno is set to
ERAN GE.

If the magnitude of the argument of asin or acos is greater than one, or if
both arguments of atan2 are zero, zero is returned and errno is set to
EDOM. In addition, a message indicating DOMAIN error is printed on the
standard error output.

These error-handling procedures may be changed with the function
matherr(3M).

MU43814PR/D2 - 2 - 12/01/87

T_ACCEPT(JN) (Networking Support Utilities) T_ACCEPT(JN)

NAME
t_accept - accept a connect request

SYNOPSIS
#include <tiuser.h>

int t_accept(fd, resfd, call)
int fd;
int resfd;
struct t_call *call;

DESCRIPTION
This function is issued by a transport user to accept a connect request. Fd
identifies the local transport endpoint where the connect indication
arrived, resfd specifies the local transport endpoint where the connection
is to be established, and call contains information required by the tran­
sport provider to complete the connection. Call points to a t_call structure
which contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

Netbuf is described in intro(3). In call, addr is the address of the caller, opt
indicates any protocol-specific parameters associated with the connection,
udata points to any user data to be returned to the caller, and sequence is
the value returned by t_listen that uniquely associates the response with a
previously received connect indication.

A transport user may accept a connection on either the same, or on a dif­
ferent, local transport endpoint than the one on which the connect indica­
tion arrived. If the same endpoint is specified (i.e., resfd=fd), the connec­
tion can be accepted unless the following condition is true: The user has
received other indications on that endpoint but has not responded to them
(with t_accept or t_snddis). For this condition, t_accept will fail and set
t_errno to TBADF.

If a different transport endpoint is specified (resfd!=fd), the endpoint must
be bound to a protocol address and must be in the T_IDLE state [see
t_getstate(3N)] before the t_accept is issued.

For both types of endpoints, t_accept will fail and set t_errno to TLOOK if
there are indications (e.g., a connect or disconnect) waiting to be received
on that endpoint.

MU43814PR/D2 - 1 - 12/01/87

II

Ill

T_ACCEPT(3N) (Networking Support Utilities) T_ACCEPT(3N)

The values of parameters specified by opt and the syntax of those values
are protocol specific. The udata argument enables the called transport
user to send user data to the caller and the amount of user data must not
exceed the limits supported by the transport provider as returned by
t_open or t_getinfo. If the len [see netbuf in intro(3)] field of udata is zero, no
data will be sent to the caller.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a tran­
sport endpoint, or the user is illegally accepting a
connection on the same transport endpoint on which
the connect indication arrived.

[TOUTST ATE]

[TACCES]

[TBADOPT]

[TBADDATA]

[TBADSEQ]

[TLOOK]

[TNOTSUPPORT]

[TSYSERR]

SEE ALSO

The function was issued in the wrong sequence on
the transport endpoint referenced by fd, or the tran­
sport endpoint referred to by resfd is not in the
T_IDLE state.

The user does not have permission to accept a con­
nection on the responding transport endpoint or use
the specified options.

The specified options were in an incorrect format or
contained illegal information.

The amount of user data specified was not within the
bounds allowed by the transport provider.

An invalid sequence number was specified.

An asynchronous event has occurred on the transport
endpoint referenced by fd and requires immediate
attention.

This function is not supported by the underlying
transport provider.

A system error has occurred during execution of this
function.

intro(3), t_connect(3N), t_getstate(3N), t_listen(3N), t_open(3N),
t_rcvconnect(3N).
SYSTEM V/68 Programmer's Guide

MU43814PR/D2 - 2 - 12/01187

T_ACCEPT(3N) (Networking Support Utilities) T_ACCEPT(3N)

DIAGNOSTICS
Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned and t_errno is set to indicate the error.

MU43814PR/D2 -3- 12101/87

II

Ill

T_ALLOC(JN) (Networking Support Utilities) T_ALLOC(JN)

NAME
t_alloc - allocate a library structure

SYNOPSIS
#include <tiuser.h>

char •t_alloc(fd, struct_type, fields)
int fd;
int struct_type;
int fields;

DESCRIPTION
The t_alloc function dynamically allocates memory for the various tran­
sport function argument structures as specified below. This function will
allocate memory for the specified structure, and will also allocate memory
for buffers referenced by the structure.

The structure to allocate is specified by struct_type, and can be one of the
following:

T_BIND struct t_bind

T_CALL struct t_call

T_OPTMGMT struct t_optmgmt

T_DIS struct t_discon

T_UNITDATA struct t_unitdata

T_UDERROR struct t_uderr

T_INFO struct t_info

where each of these structures may subsequently be used as an argument
to one or more transport functions.

Each of the above structures, except T_INFO, contains at least one field of
type struct netbuf. Netbuf is described in intro(3). For each field of this
type, the user may specify that the buffer for that field should be allocated
as well. The fields argument specifies this option, where the argument is
the bitwise-OR of any of the following:

T_ADDR The addr field of the t_bind, t_call, t_unitdata, or t_uderr struc­
tures.

MU43814PR/D2 - 1 - 12/01/87

T_ALLOC(3N)

T_OPT

(Networking Support Utilities) T_ALLOC(3N)

The opt field of the t_optmgmt, t_call, t_unitdata, or t_uderr
structures.

T_UDATA The udata field of the t_call, t_discon, or t_unitdata structures.

T_ALL All relevant fields of the given structure.

For each field specified in fields, 't_alloc will allocate memory for the buffer
associated with the field, and initialize the buf pointer and maxlen [see net­
buf in intro(3) for description of buf and maxlen] field accordingly. The
length of the buffer allocated will be based on the same size information
that is returned to the user on t_open and t_getinfo. Thus, fd must refer to
the transport endpoint through which the newly allocated structure will
be passed, so that the appropriate size information can be accessed. If the
size value associated with any specified field is -1 or -2 (see t_open or
t_getinfo), t_alloc will be unable to determine the size of the buffer to allo­
cate and will fail, setting t_errno to TSYSERR and errno to EINV AL. For any
field not specified in fields, buf will be set to NULL and maxlen will be set
to zero.

Use of t_alloc to allocate structures will help ensure the compatibility of
user programs with future releases of the transport interface.

On failure, t_errno may be set to one of the following:

[TBADF]

[TSYSERR]

SEE ALSO

The specified file descriptor does not refer to a transport
endpoint.

A system error has occurred during execution of this
function.

intro(3), t_free(3N), t_getinfo(3N), t_open(3N).
SYSTEM V/68 Programmer's Guide

DIAGNOSTICS
On successful completion, t_alloc returns a pointer to the newly allocated
structure. On failure, NULL is returned.

MU43814PR/D2 - 2 - 12/01/87

T_BIND(3N) (Networking Support Utilities) T_BIND(3N)

NAME
t_bind - bind an address to a transport endpoint

SYNOPSIS
#include <tiuser.h>

int t_bind(fd, req, rel)
int fd;
struct t_bind *req;
struct t_bind *ret;

DESCRIPTION
This function associates a protocol address with the transport endpoint
specified by fd and activates that transport endpoint. In connection mode,
the transport provider may begin accepting or requesting connections on
the transport endpoint. In connectionless mode, the transport user may
send or receive data units through the transport endpoint.

The req and ret arguments point to a t_bind structure containing the follow­
ing members:

struct netbuf addr;
unsigned qlen;

Netbuf is described in intro(3). The addr field of the t_bind structure speci­
fies a protocol address and the qlen field is used to indicate the maximum
number of outstanding connect indications.

Req is used to request that an address, represented by the netbuf structure,
be bound to the given transport endpoint. Len [see netbuf in intro(3); also
for buf and maxlen] specifies the number of bytes in the address and buf
points to the address buffer. Maxlen has no meaning for the req argument.
On return, ret contains the address that the transport provider actually
bound to the transport endpoint; this may be different from the address
specified by the user in req. In ret, the user specifies maxlen which is the
maximum size of the address buffer and buf which points to the buffer
where the address is to be placed. On return, Zen specifies the number of
bytes in the bound address and buf points to the bound address. If maxZen
is not large enough to hold the returned address, an error will result.

If the requested address is not available, or if no address is specified in req
(the Zen field of addr in req is zero) the transport provider will assign an
appropriate address to be bound, and will return that address in the addr
field of ret. The user can compare the addresses in req and ret to deter­
mine whether the transport provider bound the transport endpoint to a

MU43814PR/02 - 1 - 12101/87

T_BIND(3N) (Networking Support Utilities) T_BIND(3N)

different address than that requested.

Req may be NULL if the user does not wish to specify an address to be
bound. Here, the value of qlen is assumed to be zero, and the transport
provider must assign an address to the transport endpoint. Similarly, ret
may be NULL if the user does not care what address was bound by the
provider and is not interested in the negotiated value of qlen. It is valid to
set req and ret to NULL for the same call, in which case the provider
chooses the address to bind to the transport endpoint and does not return
that information to the user.

The qlen field has meaning only when initializing a connection-mode ser­
vice. It specifies the number of outstanding connect indications the tran­
sport provider should support for the given transport endpoint. An out­
standing connect indication is one that has been passed to the transport
user by the transport provider. A value of qlen greater than zero is only
meaningful when issued by a passive transport user that expects other
users to call it. The value of qlen will be negotiated by the transport pro­
vider and may be changed if the transport provider cannot support the
specified number of outstanding connect indications. On return, the qlen
field in ret will contain the negotiated value.

This function allows more than one transport endpoint to be bound to the
same protocol address (however, the transport provider must support this
capability also), but it is not allowable to bind more than one protocol
address to the same transport endpoint. If a user binds more than one
transport endpoint to the same protocol address, only one endpoint can
be used to listen for connect indications associated with that protocol
address. In other words, only one t_bind for a given protocol address may
specify a value of qlen greater than zero. In this way, the transport pro­
vider can identify which transport endpoint should be notified of an
incoming connect indication. If a user attempts to bind a protocol address
to a second transport endpoint with a value of qlen greater than zero, the
transport provider will assign another address to be bound to that end­
point. If a user accepts a connection on the transport endpoint that is
being used as the listening endpoint, the bound protocol address will be
found to be busy for the duration of that connection. No other transport
endpoints may be bound for listening while that initial listening endpoint
is in the data transfer phase. This will prevent more than one transport
endpoint bound to the same protocol address from accepting connect indi­
cations.

MU43814PR/02 - 2 - 12/01/87

II

T_BIND(3N) (Networking Support Utilities) T_BIND(3N)

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a tran­
sport endpoint.

[TOUTSTATE]

[TBADADDR]

[TNOADDR]

[TACCES]

[TBUFOVFL W]

[TSYSERR]

SEE ALSO

The function was issued in the wrong sequence.

The specified protocol address was in an incorrect
format or contained illegal information.

The transport provider could not allocate an address.

The user does not have permission to use the speci­
fied address.

The number of bytes allowed for an incoming argu­
ment is not sufficient to store the value of that argu­
ment. The provider's state will change to T_IDLE and
the information to be returned in ret will be dis­
carded.

A system error has occurred during execution of this
function.

intro(3), t_open(3N), t_optmgmt(3N), t_unbind(3N).
SYSTEM V/68 Programmer's Guide

DIAGNOSTICS
t_bind returns 0 on success and -1 on failure and t_errno is set to indicate
the error.

MU43814PR/D2 -3- 12/01/87

T_CLOSE(3N) (Networking Support Utilities) T_CLOSE(3N)

NAME
t_close - close a transport endpoint

SYNOPSIS
#include <tiuser.h>

int t_close(fd)
int fd;

DESCRIPTION
The t_close function informs the transport provider that the user is finished
with the transport endpoint specified by fd, and frees any local library
resources associated with the endpoint. In addition, t_close closes the file
associated with the transport endpoint.

t_close should be called from the T_UNBND state [see t_getstate (3N)].
However, this function does not check state information, so it may be
called from any state to close a transport endpoint. If this occurs, the
local library resources associated with the endpoint will be freed automati­
cally. In addition, close(2) will be issued for that file descriptor; the close
will be abortive if no other process has that file open, and will break any
transport connection that may be associated with that endpoint.

On failure, t_errno may be set to the following:

[TBADF] The specified file descriptor does not refer to a transport
endpoint.

SEE ALSO
t_getstate(3N), t_open(3N), t_unbind(3N).
SYSTEM V/68 Programmer's Guide.

DIAGNOSTICS
t_close returns 0 on success and -1 on failure and t_errno is set to indicate
the error.

MU43814PR/D2 - 1 - 12/01/87

II

II

T_CONNECT(3N) (Networking Support Utilities) T_CONNECT(3N)

NAME
t_connect - establish a connection with another transport user

SYNOPSIS
#include <tiuser.h>

int t_connect(fd, sndcall, rcvcall)
int fd;
struct t_call *sndcall;
struct t_call *rcvcall;

DESCRIPTION
This function enables a transport user to request a connection to the speci­
fied destination transport user. Fd identifies the local transport endpoint
where communication will be established, while sndcall and rcvcall point to
a t_call structure which contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

Sndcall specifies information needed by the transport provider to establish
a connection and rcvcall specifies information that is associated with the
newly established connection.

Netbuf is described in intro(3). In sndcall, addr specifies the protocol
address of the destination transport user, opt presents any protocol­
specific information that might be needed by the transport provider, udata
points to optional user data that may be passed to the destination tran­
sport user during connection establishment, and sequence has no meaning
for this function.

On return in rcvcall, addr returns the protocol address associated with the
responding transport endpoint, opt presents any protocol-specific informa­
tion associated with the connection, udata points to optional user data that
may be returned by the destination transport user during connection
establishment, and sequence has no meaning for this function.

The opt argument implies no structure on the options that may be passed
to the transport provider. The transport provider is free to specify the
structure of any options passed to it. These options are specific to the
underlying protocol of the transport provider. The user may choose not
to negotiate protocol options by setting the Zen field of opt to zero. In this

MU43814PR/D2 - 1 - 12/01/87

T_CONNECT(3N) (Networking Support Utilities) T_CONNECT(3N)

case, the provider may use default options.

The udata argument enables the caller to pass user data to the destination
transport user and receive user data from the destination user during con­
nection establishment. However, the amount of user data must not
exceed the limits supported by the transport provider as returned by
t_open (3N) or t_getinfo (3N). If the len [see netbuf in intro(3)] field of udata
is zero in sndeall, no data will be sent to the destination transport user.

On return, the addr, opt, and udata fields of reveal! will be updated to
reflect values associated with the connection. Thus, the maxlen [see netbuf
in intro(3)] field of each argument must be set before issuing this function
to indicate the maximum size of the buffer for each. However, reveal! may
be NULL, in which case no information is given to the user on return from
t_eonneet.

By default, t_eonneet executes in synchronous mode, and will wait for the
destination user's response before returning control to the local user. A
successful return (i.e. return value of zero) indicates that the requested
connection has been established. However, if O_NDELAY is set (via t_open
or fentl), t_eonnect executes in asynchronous mode. In this case, the call
will not wait for the remote user's response, but will return control
immediately to the local user and return -1 with t_errno set to TNODATA
to indicate that the connection has not yet been established. In this way,
the function simply initiates the connection establishment procedure by
sending a connect request to the destination transport user.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a tran­
sport endpoint.

[TOUTSTATE]

[TNODATA]

[TBADADDR]

MU43814PR/D2

The function was issued in the wrong sequence.

O_NDELA Y was set, so the function successfully ini­
tiated the connection establishment procedure, but
did not wait for a response from the remote user.

The specified protocol address was in an incorrect
format or contained illegal information.

-2- 12/01/87

II

Ill

T_CONNECT(3N)

[TBADOPT]

[TBADDATA]

[TACCES]

[TBUFOVFLW]

[TLOOK]

[TNOTSUPPORT]

[TSYSERR]

SEE ALSO

(Networking Support Utilities) T_CONNECT(3N)

The specified protocol options were in an incorrect
format or contained illegal information.

The amount of user data specified was not within the
bounds allowed by the transport provider.

The user does not have permission to use the speci­
fied address or options.

The number of bytes allocated for an incoming argu­
ment is not sufficient to store the value of that argu­
ment. If executed in synchronous mode, the
provider's state, as seen by the user, changes to
T_DATAXFER, and the connect indication information
to be returned in rcvcall is discarded.

An asynchronous event has occurred on this tran­
sport endpoint and requires immediate attention.

This function is not supported by the underlying
transport provider.

A system error has occurred during execution of this
function.

intro(3), t_accept(3N), t_getinfo(3N), t_listen(3N), t_open(3N),
t_optmgmt(3N), t_rcvconnect(3N).
SYSTEM V/68 Programmer's Guide

DIAGNOSTICS
t_connect returns 0 on success and -1 on failure and t_errno is set to indi­
cate the error.

MU43814PR/02 - 3 - 12/01187

T_ERROR(3N) (Networking Support Utilities) T_ERROR(3N)

NAME
t_error - produce error message

SYNOPSIS
#include <tiuser.h>

void t_error(errmsg)
char *errmsg;
extern int t_errno;
extern char *t_errlist[];
extern int t_nerr;

DESCRIPTION
The t_error function produces a message on the standard error output
which describes the last error encountered during a call to a transport
function. The argument string errmsg is a user-supplied error message
that gives context to the error. t_error prints the user-supplied error mes­
sage followed by a colon and a standard error message for the current
error defined in t_errno. To simplify variant formatting of messages, the
array of message strings t_errlist is provided; t_errno can be used as an
index in this table to get the message string without the newline. T_nerr
is the largest message number provided for in the t_errlist table.

T _errno is only set when an error occurs and is not cleared on successful
calls.

EXAMPLE
If a t_connect function fails on transport endpoint fd2 because a bad
address was given, the following call might follow the failure:

t_error("t_connect failed on fd2'');

The diagnostic message to be printed would look like:

t_connect failed on fd2: Incorrect transport address format

where "Incorrect transport address format" identifies the specific error that
occurred, and "t_connect failed on fd2" tells the user which function failed
on which transport endpoint.

SEE ALSO
SYSTEM V/68 Programmer's Guide

MU43814PR/D2 - 1 - 12101/87

T_FREE(3N) (Networking Support Utilities) T_FREE(3N)

NAME
t_free - free a library structure

SYNOPSIS
#include <tiuser.h>

int t_free(ptr, struct_type)
char *ptr;
int struct_type;

DESCRIPTION
The t_free function frees memory previously allocated by t_alloc. This
function will free memory for the specified structure, and will also free
memory for buffers referenced by the structure.

Ptr points to one of the six structure types described for t_alloc, and
struct_type identifies the type of that structure which can be one of the fol­
lowing:

T _BIND struct t_bind

T_CALL struct t_call

T_OPTMGMT struct t_optmgmt

T_DIS struct t_discon

T_UNITDATA struct t_unitdata

T_UDERROR struct t_uderr

T_INFO struct t_info

where each of these structures is used as an argument to one or more
transport functions.

t_free will check the addr, opt, and udata fields of the given structure (as
appropriate), and free the buffers pointed to by the buf field of the netbuf
[see intro(3)] structure. If buf is NULL, t_free will not attempt to free
memory. After all buffers are freed, t_free will free the memory associated
with the structure pointed to by ptr.

Undefined results will occur if ptr or any of the buf pointers points to a
block of memory that was not previously allocated by t_alloc.

MU43814PR/D2 - 1 - 12/01/87

T_FREE(3N) (Networking Support Utilities) T_FREE(3N)

On failure, t_errno may be set to the following:

[TSYSERR] A system error has occurred during execution of this
function.

SEE ALSO
intro(3), t_alloc(3N).
SYSTEM V/68 Programmer's Guide

DIAGNOSTICS
t_free returns 0 on success and -1 on failure and t_errno is set to indicate
the error.

MU43814PR/D2 -2- 12/01/87

II

Ill

T_GETINF0(3N) (Networking Support Utilities) T_GETINF0(3N)

NAME
t_getinfo - get protocol-specific service information

SYNOPSIS
#include <tiuser.h>

int t_getinfo(fd, info)
int fd;
struct t_info *info;

DESCRIPTION
This function returns the current characteristics of the underlying tran­
sport protocol associated with file descriptor fd. The info structure is used
to return the same information returned by t_open. This function enables
a transport user to access this information during any phase of communi­
cation.

This argument points to a t_info structure which contains the following
members:

long addr;
long options;
long tsdu;
long etsdu;
long connect;

/* max size of the transport protocol address */
/*max number of bytes of protocol-specific options*/
/*max size of a transport service data unit (TSDU) */
/* max size of an expedited transport service data unit (ETSDU) *
/* max amount of data allowed on connection establishment

functions *I
long discon; /* max amount of data allowed on t_snddis and t_rcvdis functions
long servtype; /*service type supported by the transport provider*/

The values of the fields have the following meanings:

addr A value greater than or equal to zero indicates the max­
imum size of a transport protocol address; a value of -1
specifies that there is no limit on the address size; and a
value of -2 specifies that the transport provider does not
provide user access to transport protocol addresses.

options

MU43814PR/D2

A value greater than or equal to zero indicates the max­
imum number of bytes of protocol-specific options sup­
ported by the provider; a value of -1 specifies that there is
no limit on the option size; and a value of -2 specifies that
the transport provider does not support user-settable
options.

- 1 - 12/01/87

T_GETINF0(3N)

tsdu

etsdu

connect

discon

servtype

(Networking Support Utilities) T_GETINF0(3N)

A value greater than zero specifies the maximum size of a
transport service data unit (TSDU); a value of zero specifies
that the transport provider does not support the concept of
TSDU, although it does support the sending of a data
stream with no logical boundaries preserved across a con­
nection; a value of -1 specifies that there is no limit on the
size of a TSDU; and a value of -2 specifies that the transfer
of normal data is not supported by the transport provider.

A value greater than zero specifies the maximum size of an
expedited transport service data unit (ETSDU); a value of
zero specifies that the transport provider does not support
the concept of ETSDU, although it does support the send­
ing of an expedited data stream with no logical boundaries
preserved across a connection; a value of -1 specifies that
there is no limit on the size of an ETSDU; and a value of -2
specifies that the transfer of expedited data is not sup­
ported by the transport provider.

A value greater than or equal to zero specifies the max­
imum amount of data that may be associated with connec­
tion establishment functions; a value of -1 specifies that
there is no limit on the amount of data sent during connec­
tion establishment; and a value of -2 specifies that the
transport provider does not allow data to be sent with con­
nection establishment functions.

A value greater than or equal to zero specifies the max­
imum amount of data that may be associated with the
t_snddis and t_rcvdis functions; a value of -1 specifies that
there is no limit on the amount of data sent with these
abortive release functions; and a value of -2 specifies that
the transport provider does not allow data to be sent with
the abortive release functions.

This field specifies the service type supported by the tran­
sport provider, as described below.

If a transport user is concerned with protocol independence, the above
sizes may be accessed to determine how large the buffers must be to hold
each piece of information. Alternatively, the t_alloc function may be used
to allocate these buffers. An error will result if a transport user exceeds
the allowed data size on any function. The value of each field may

MU43814PR/D2 - 2 - 12/01/87

II

T_GETINF0(3N) (Networking Support Utilities) T_GETINF0(3N)

change as a result of option negotiation, and t_getinfo enables a user to
retrieve the current characteristics.

The servtype field of info may specify one of the following values on
return:

T_COTS The transport provider supports a connection-mode ser­
vice but does not support the optional orderly release
facility.

T_COTS_ORD The transport provider supports a connection-mode ser­
vice with the optional orderly release facility.

T_CLTS The transport provider supports a connectionless-mode
service. For this service type, t_open will return -2 for
etsdu, connect, and discon.

On failure, t_errno may be set to one of the following:

[TBADF]

[TSYSERR]

SEE ALSO
t_open(3N).

The specified file descriptor does not refer to a transport
endpoint.

A system error has occurred during execution of this
function.

SYSTEM V/68 Programmer's Guide

DIAGNOSTICS
t_getinfo returns 0 on success and -1 on failure and t_errno is set to indicate
the error.

MU43814PR/D2 - 3 - 12/01/87

T_GETSTATE(3N) (Networking Support Utilities) T_GETSTATE(3N)

NAME
t_getstate - get the current state

SYNOPSIS
#include <tiuser.h>

int t_getstate(fd)
int fd;

DESCRIPTION
The t_getstate function returns the current state of the provider associated
with the transport endpoint specified by fd.

On failure, t_errno may be set to one of the following:

[TBADF]

[TSTATECHNG]

[TSYSERR]

SEE ALSO
t_open(3N).

The specified file descriptor does not refer to a tran­
sport endpoint.

The transport provider is undergoing a state change.

A system error has occurred during execution of this
function.

SYSTEM V/68 Programmer's Guide

DIAGNOSTICS
t_getstate returns the current state on successful completion and -1 on
failure and t_errno is set to indicate the error. The current state may be
one of the following:

T_UNBND unbound

T_IDLE idle

T_OUTCON

T_INCON

T_DATAXFER

T_OUTREL

MU43814PR/D2

outgoing connection pending

incoming connection pending

data transfer

outgoing orderly release (waiting for an orderly release
indication)

- 1 - 12/01/87

II

II

T_GETSTATE(3N)

T_INREL

(Networking Support Utilities) T_GETSTATE(3N)

incoming orderly release (waiting for an orderly release
request)

If the provider is undergoing a state transition when t_getstate is called,
the function will fail.

MU43814PR/D2 -2- 12/01/87

T_LISTEN(3N) (Networking Support Utilities) T_LISTEN(3N)

NAME
t_listen - listen for a connect request

SYNOPSIS
#include <tiuser.h>

int t_listen(fd, call)
int fd;
struct t_call •call;

DESCRIPTION
This function listens for a connect request from a calling transport user.
Fd identifies the local transport endpoint where connect indications arrive,
and on return, call contains information describing the connect indication.
Call points to a t_call structure which contains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

Netbuf is described in intro(3). In call, addr returns the protocol address of
the calling transport user, opt returns protocol-specific parameters associ­
ated with the connect request, udata returns any user data sent by the
caller on the connect request, and sequence is a number that uniquely iden­
tifies the returned connect indication. The value of sequence enables the
user to listen for multiple connect indications before responding to any of
them.

Since this function returns values for the addr, opt, and udata fields of call,
the maxlen [see netbuf in intro(3)] field of each must be set before issuing
the t_listen to indicate the maximum size of the buffer for each.

By default, t_listen executes in synchronous mode and waits for a connect Ill
indication to arrive before returning to the user. However, if O_NDELAY
is set (via t_open or fcntl), t_listen executes asynchronously, reducing to a
poll for existing connect indications. If none are available, it returns -1
and sets t_errno to TNODATA.

MU43814PR/D2 - 1 - 12/01/87

•

T_LISTEN(3N) (Networking Support Utilities) T_LISTEN(3N)

On failure, t_errno may be set to one of the following:

(TBADF] The specified file descriptor does not refer to a tran­
sport endpoint.

[TBUFOVFLW]

[TNODATA]

[TLOOK]

[TNOTSUPPORT]

[TSYSERR]

CAVEATS

The number of bytes allocated for an incoming argu­
ment is not sufficient to store the value of that argu­
ment. The provider's state, as seen by the user,
changes to T_INCON, and the connect indication
information to be returned in call is discarded.

O_NDELAY was set, but no connect indications had
been queued.

An asynchronous event has occurred on this tran­
s port endpoint and requires immediate attention.

This function is not supported by the underlying
transport provider.

A system error has occurred during execution of this
function.

If a user issues t_listen in synchronous mode on a transport endpoint that
was not bound for listening (i.e. qlen was zero on t_bind), the call will wait
forever because no connect indications will arrive on that endpoint.

SEE ALSO
intro(3), t_accept(3N), t_bind(3N), t_connect(3N), t_open(3N),
t_rcvconnect(3N).
SYSTEM V/68 Programmer's Guide

DIAGNOSTICS
t_listen returns 0 on success and -1 on failure and t_errno is set to indicate
the error .

MU43814PR/02 - 2 - 12/01/87

T_LOOK(3N) (Networking Support Utilities) T_LOOK(3N)

NAME
t_look - look at the current event on a transport endpoint

SYNOPSIS
#include <tiuser.h>

int t_look(fd)
int fd;

DESCRIPTION
This function returns the current event on the transport endpoint specified
by fd. This function enables a transport provider to notify a transport user
of an asynchronous event when the user is issuing functions in synchro­
nous mode. Certain events require immediate notification of the user and
are indicated by a specific error, TLOOK, on the current or next function to
be executed.

This function also enables a transport user to poll a transport endpoint
periodically for asynchronous events.

On failure, t_errno may be set to one of the following:

[TBADF]

[TSYSERR]

SEE ALSO
t_open(3N).

The specified file descriptor does not refer to a transport
endpoint.

A system error has occurred during execution of this
function.

SYSTEM V/68 Programmer's Guide

DIAGNOSTICS
Upon success, t_look returns a value that indicates which of the allowable
events has occurred, or returns zero if no event exists. One of the follow­
ing events is returned:

T_LISTEN

T_CONNECT

T_DATA

MU43814PR/02

connection indication received

connect confirmation received

normal data received

- 1 - 12/01/87

Ill

T_LOOK(3N)

T_EXDATA

T_DISCONNECT

T_ERROR

T_UDERR

T_ORDREL

(Networking Support Utilities)

expedited data received

disconnect received

fatal error indication

datagram error indication

orderly release indication

T_LOOK(3N)

On failure, -1 is returned and t_errno is set to indicate the error.

MU43814PR/02 -2- 12/01/87

T_OPEN(3N) (Networking Support Utilities) T_OPEN(3N)

NAME
t_open - establish a transport endpoint

SYNOPSIS
#include <tiuser.h>

int t_open(path, oflag, info)
char •path;
int oflag;
struct t_info •info;

DESCRIPTION
t_open must be called as the first step in the initialization of a transport
endpoint. This function establishes a transport endpoint by opening an
operating system file that identifies a particular transport provider (i.e.
transport protocol) and returning a file descriptor that identifies that end­
point. For example, opening the file /dev/iso_cots identifies an OSI
connection-oriented transport layer protocol as the transport provider.

Path points to the path name of the file to open, and oftag identifies any
open flags [as in open(2)]. t_open returns a file descriptor that will be used
by all subsequent functions to identify the particular local transport end­
point.

This function also returns various default characteristics of the underlying
transport protocol by setting fields in the t_info structure. This argument
points to a t_info which contains the following members:

long addr;
long options;
long tsdu;
long etsdu;
long connect;
long cliscon;
long scrvtype;

/" max size of the transport protocol address •t
!" max number of bytes of protocol-specific options •t
/" max size of a transport service data unit (TSOU) •t
!" max size of an expedited transport service data unit (ETSDU) •/
I" max amount of data allowed on connection establishment functions •t
!" max amount of data allowed on t_snddis and t_rcvdis functions •t
!" service type supported by the transport provider •/

The values of the fields have the following meanings:

addr A value greater than or equal to zero indicates the max­
imum size of a transport protocol address; a value of -1
specifies that there is no limit on the address size; and a
value of -2 specifies that the transport provider does not
provide user access to transport protocol addresses.

MU43814PR/D2 - 1 - 12/01/87

II

T_OPEN(3N)

options

tsdu

etsdu

connect

discon

MU43814PR/D2

(Networking Support Utilities) T_OPEN(3N)

A value greater than or equal to zero indicates the max­
imum number of bytes of protocol-specific options sup­
ported by the provider; a value of -1 specifies that there is
no limit on the option size; and a value of -2 specifies that
the transport provider does not support user-settable
options.

A value greater than zero specifies the maximum size of a
transport service data unit (TSDU); a value of zero specifies
that the transport provider does not support the concept of
TSDU, although it does support the sending of a data
stream with no logical boundaries preserved across a con­
nection; a value of -1 specifies that there is no limit on the
size of a TSDU; and a value of -2 specifies that the transfer
of normal data is not supported by the transport provider.

A value greater than zero specifies the maximum size of an
expedited transport service data unit (ETSDU); a value of
zero specifies that the transport provider does not support
the concept of ETSDU, although it does support the send­
ing of an expedited data stream with no logical boundaries
preserved across a connection; a value of -1 specifies that
there is no limit on the size of an ETSDU; and a value of -2
specifies that the transfer of expedited data is not sup­
ported by the transport provider.

A value greater than or equal to zero specifies the max­
imum amount of data that may be associated with connec­
tion establishment functions; a value of -1 specifies that
there is no limit on the amount of data sent during connec­
tion establishment; and a value of -2 specifies that the
transport provider does not allow data to be sent with con­
nection establishment functions.

A value greater than or equal to zero specifies the max­
imum amount of data that may be associated with the
t_snddis and t_rcvdis functions; a value of -1 specifies that
there is no limit on the amount of data sent with these
abortive release functions; and a value of -2 specifies that
the transport provider does not allow data to be sent with
the abortive release functions.

- 2 - 12/01/87

"\
/

T_OPEN(3N)

servtype

(Networking Support Utilities) T_OPEN(3N)

This field specifies the service type supported by the tran­
sport provider, as described below.

If a transport user is concerned with protocol independence, the above
sizes may be accessed to determine how large the buffers must be to hold
each piece of information. Alternatively, the t_alloc function may be used
to allocate these buffers. An error will result if a transport user exceeds
the allowed data size on any function.

The servtype field of info may specify one of the following values on
return:

T_COTS The transport provider supports a connection-mode service
but does not support the optional orderly release facility.

T_COTS_ORD The transport provider supports a connection-mode service
with the optional orderly release facility.

T_CLTS The transport provider supports a connectionless-mode
service. For this service type, t_open will return -2 for
etsdu, connect, and discon.

A single transport endpoint may support only one of the above services at
one time.

If info is set to NULL by the transport user, no protocol information is
returned by t_open.

On failure, t_errno may be set to the following:

[TSYSERR] A system error has occurred during execution of this
function.

SEE ALSO
open(2).
SYSTEM V/68 Programmer's Guide

DIAGNOSTICS
t_open returns a valid file descriptor on success and -1 on failure and
t_errno is set to indicate the error.

MU43814PR/D2 -3- 12/01/87

Ill

T_OPTMGMT(3N) (Networking Support Utilities) T_OPTMGMT(3N)

NAME
t_optmgmt - manage options for a transport endpoint

SYNOPSIS
#include <tiuser.h>

int t_optmgmt(fd, req, ret)
int fd;
struct t_optmgmt ,.req;
struct t_optmgmt ,.ret;

DESCRIPTION
The t_optmgmt function enables a transport user to retrieve, verify, or
negotiate protocol options with the transport provider. Fd identifies a
bound transport endpoint.

The req and ret arguments point to a t_optmgmt structure containing the
following members:

struct netbuf opt;
long flags;

The opt field identifies protocol options and the flags field is used to
specify the action to take with those options.

The options are represented by a netbuf [see intro(3); also for Zen, buf and
maxZen] structure in a manner similar to the address in t_bind. Req is used
to request a specific action of the provider and to send options to the pro­
vider. Len specifies the number of bytes in the options, buf points to the
options buffer, and maxZen has no meaning for the req argument. The
transport provider may return options and flag values to the user through
ret. For ret, max Zen specifies the maximum size of the options buffer and
buf points to the buffer where the options are to be placed. On return, Zen
specifies the number of bytes of options returned. MaxZen has no meaning
for the req argument, but must be set in the ret argument to specify the
maximum number of bytes the options buffer can hold. The actual struc­
ture and content of the options is imposed by the transport provider.

MU43814PR/D2 - 1 - 12/01/87

T_OPTMGMT(3N) (Networking Support Utilities) T_OPTMGMT(3N)

The flags field of req can specify one of the following actions:

T_NEGOTIATE This action enables the user to negotiate the values of the
options specified in req with the transport provider. The
provider will evaluate the requested options and nego­
tiate the values, returning the negotiated values through
ret.

T_CHECK

T_DEFAULT

This action enables the user to verify whether the options
specified in req are supported by the transport provider.
On return, the flags field of ret will have either T_SUCCESS
or T_FAILURE set to indicate to the user whether the
options are supported. These flags are only meaningful
for the T_CHECK request.

This action enables a user to retrieve the default options
supported by the transport provider into the opt field of
ret. In req, the len field of opt must be zero and the buf
field may be NULL.

If issued as part of the connectionless-mode service, t_optmgmt may block
due to flow control constraints. The function will not complete until the
transport provider has processed all previously sent data units.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a tran­
sport endpoint.

[TOUTSTATE]

[TACCES]

[TBADOPT]

[TBADFLAG]

[TBUFOVFLW]

MU43814PR/D2

The function was issued in the wrong sequence.

The user does not have permission to negotiate the
specified options.

The speciHed protocol options were in an incorrect
format or contained illegal information.

An invalid flag was specified.

The number of bytes allowed for an incoming argu­
ment is not sufficient to store the value of that argu­
ment. The information to be returned in ret will be
discarded.

-2- 12/01/87

II

T_OPTMGMT(3N)

[TSYSERR]

SEE ALSO

(Networking Support Utilities) T_OPTMGMT(3N)

A system error has occurred during execution of this
function.

intro(3), t_getinfo(3N), t_open(3N).
SYSTEM V/68 Programmer's Guide

DIAGNOSTICS
t_optmgmt returns 0 on success and -1 on failure and t_errno is set to indi­
cate the error.

MU43814PR/02 -3- 12/01/87

T_RCV(3N) (Networking Support Utilities) T_RCV(3N)

NAME
t_rcv- receive data or expedited data sent over a connection

SYNOPSIS
int t_rcv(fd, buf, nbytes, flags)
int fd;
char *buf;
unsigned nbytes;
int *flags;

DESCRIPTION
This function receives either normal or expedited data. Fd identifies the
local transport endpoint through which data will arrive, buf points to a
receive buffer where user data will be placed, and nbytes specifies the size
of the receive buffer. Flags may be set on return from t_rcv and specifies
optional flags as described below.

By default, t_rcv operates in synchronous mode and will wait for data to
arrive if none is currently available. However, if O_NDELAY is set (via
t_open or fcntl), t_rcv will execute in asynchronous mode and will fail if no
data is available. (See TNOOATA below.)

On return from the call, if T_MORE is set in flags this indicates that there is
more data and the current transport service data unit (TSOU) or expedited
transport service data unit (ETSOU) must be received in multiple t_rcv
calls. Each t_rcv with the T_MORE flag set indicates that another t_rcv
must follow immediately to get more data for the current TSOU. The end
of the TSOU is identified by the return of a t_rcv call with the T_MORE flag
not set. If the transport provider does not support the concept of a TSOU
as indicated in the info argument on return from t_open or t_getinfo, the
T_MORE flag is not meaningful and should be ignored.

On return, the data returned is expedited data if T_EXPEDITEO is set in
flags. If the number of bytes of expedited data exceeds nbytes, t_rcv will
set T_EXPEDITED and T_MORE on return from the initial call. Subsequent
calls to retrieve the remaining ETSDU will not have T_EXPEDITED set on
return. The end of the ETSDU is identified by the return of a t_rcv call
with the T_MORE flag not set.

If expedited data arrives after part of a TSOU has been retrieved, receipt of
the remainder of the TSOU will be suspended until the ETSOU has been
processed. Only after the full ETSOU has been retrieved (T_MORE not set)
will the remainder of the TSOU be available to the user.

MU43814PR/D2 - 1 - 12/01/87

II

II

T_RCV(3N) (Networking Support Utilities) T_RCV(3N)

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a tran­
sport endpoint.

[TNODATA]

[TLOOK]

[TNOTSUPPORT]

[TSYSERR]

SEE ALSO

O_NDELAY was set, but no data is currently available
from the transport provider.

An asynchronous event has occurred on this tran­
sport endpoint and requires immediate attention.

This function is not supported by the underlying
transport provider.

A system error has occurred during execution of this
function.

t_open(3N), t_snd(3N).
SYSTEM V/68 Programmer's Guide

DIAGNOSTICS
On successful completion, t_rcv returns the number of bytes received, and
it returns -1 on failure and t_errno is set to indicate the error.

MU43814PR/D2 - 2 - 12/01/87

T_RCVCONNECT(3N) (Networking Support Utilities) T_RCVCONNECT(3N)

NAME
t_rcvconnect - receive the confirmation from a connect request

SYNOPSIS
#include <tiuser.h>

int t_rcvconnect(fd, call)
int fd;
struct t_call •call;

DESCRIPTION
This function enables a calling transport user to determine the status of a
previously sent connect request and is used in conjunction with t_connect
to establish a connection in asynchronous mode. The connection will be
established on successful completion of this function.

Fd identifies the local transport endpoint where communication will be
established, and call contains information associated with the newly esta­
blished connection. Call points to a t_call structure which contains the fol­
lowing members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

Netbuf is described in intro(3). In call, addr returns the protocol address
associated with the responding transport endpoint, opt presents any
protocol-specific information associated with the connection, udata points
to optional user data that may be returned by the destination transport
user during connection establishment, and sequence has no meaning for
this function.

The maxlen [see netbuf in intro(3)] field of each argument must be set
before issuing this function to indicate the maximum size of the buffer for II
each. However, call may be NULL, in which case no information is given
to the user on return from t_rcvconnect. By default, t_rcvconnect executes
in synchronous mode and waits for the connection to be established
before returning. On return, the addr, opt, and udata fields reflect values
associated with the connection.

If O_NDELAY is set (via t_open or fcntl), t_rcvconnect executes in asynchro­
nous mode, and reduces to a poll for existing connect confirmations. If
none are available, t_rcvconnect fails and returns immediately without
waiting for the connection to be established. (See TNODATA below.)

MU43814PR/02 - 1 - 12/01/87

Ill

T_RCVCONNECT(3N) (Networking Support Utilities) T_RCVCONNECT(3N)

t_rcvconnect must be re-issued at a later time to complete the connection
establishment phase and retrieve the information returned in call.

On failure, t_errno may be set to one of the following:

[TBADF]

[TBUFOVFLW]

[TNODATA]

[TLOOK]

[TNOTSUPPORT]

[TSYSERR]

SEE ALSO

The specified file descriptor does not refer to a tran­
sport endpoint.

The number of bytes allocated for an incoming argu­
ment is not sufficient to store the value of that argu­
ment and the connect information to be returned in
call will be discarded. The provider's state, as seen
by the user, will be changed to DATAXFER.

O_NDELAY was set, but a connect confirmation has
not yet arrived.

An asynchronous event has occurred on this tran­
sport connection and requires immediate attention.

This function is not supported by the underlying
transport provider.

A system error has occurred during execution of this
function.

intro(3), t_accept(3N), t_bind(3N), t_connect(3N), t_listen(3N),
t_open(3N).
SYSTEM V/68 Programmer's Guide

DIAGNOSTICS
t_rcvconnect returns 0 on success and -1 on failure and t_errno is set to indi­
cate the error.

MU43814PR/D2 -2- 12/01/87

T_RCVDIS(3N) (Networking Support Utilities) T_RCVDIS(3N)

NAME
t_rcvdis - retrieve information from disconnect

SYNOPSIS
#include <tiuser.h>

t_rcvdis(f d, disc on)
int fd;
struct t_discon •discon;

DESCRIPTION
This function is used to identify the cause of a disconnect, and to retrieve
any user data sent with the disconnect. Fd identifies the local transport
endpoint where the connection existed, and discon points to a t_discon
structure containing the following members:

struct netbuf udata;
int reason;
int sequence;

Netbuf is described in intro(3). Reason specifies the reason for the discon­
nect through a protocol-dependent reason code, udata identifies any user
data that was sent with the disconnect, and sequence may identify an out­
standing connect indication with which the disconnect is associated.
Sequence is only meaningful when t_rcvdis is issued by a passive transport
user who has executed one or more t_listen functions and is processing
the resulting connect indications. If a disconnect indication occurs,
sequence can be used to identify which of the outstanding connect indica­
tions is associated with the disconnect.

If a user does not care if there is incoming data and does not need to
know the value of reason or sequence, discon may be NULL and any user
data associated with the disconnect will be discarded. However, if a user
has retrieved more than one outstanding connect indication (via t_listen)
and discon is NULL, the user will be unable to identify with which connect
indication the disconnect is associated.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a tran­
sport endpoint.

MU43814PR/D2 - 1 - 12101/87

II

Ill

T_RCVDIS(3N)

[TNODIS]

[TBUFOVFLW]

[TNOTSUPPORT]

[TSYSERR]

SEE ALSO

(Networking Support Utilities) T_RCVDIS(3N)

No disconnect indication currently exists on the
specified transport endpoint.

The number of bytes allocated for incoming data is
not sufficient to store the data. The provider's
state, as seen by the user, will change to T_IDLE,
and the disconnect indication information to be
returned in discon will be discarded.

This function is not supported by the underlying
transport provider.

A system error has occurred during execution of this
function.

intro(3), t_connect(3N), t_listen(3N), t_open(3N), t_snddis(3N).
SYSTEM V/68 Programmer's Guide

DIAGNOSTICS
t_rcvdis returns 0 on success and -1 on failure and t_errno is set to indicate
the error.

MU43814PR/D2 - 2 - 12/01/87

T_RCVREL(3N) (Networking Support Utilities) T_RCVREL(3N)

NAME
t_rcvrel - acknowledge receipt of an orderly release indication

SYNOPSIS
#include <tiuser.h>

t_rcvrel(fd)
int fd;

DESCRIPTION
This function is used to acknowledge receipt of an orderly release indica­
tion. Fd identifies the local transport endpoint where the connection
exists. After receipt of this indication, the user may not attempt to receive
more data because such an attempt will block forever. However, the user
may continue to send data over the connection if t_sndrel has not been
issued by the user.

This function is an optional service of the transport provider, and is only
supported if the transport provider returned service type T_COTS_ORD on
t_open or t_getinfo.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a tran­
sport endpoint.

[TNOREL]

[TLOOK]

[TNOTSUPPORT]

[TSYSERR]

SEE ALSO

No orderly release indication currently exists on the
specified transport endpoint.

An asynchronous event has occurred on this tran­
sport endpoint and requires immediate attention.

This function is not supported by the underlying
transport provider.

A system error has occurred during execution of this
function.

t_open(3N), t_sndrel(3N).
SYSTEM V/68 Programmer's Guide

DIAGNOSTICS
t_rcvrel returns 0 on success and -1 on failure t_errno is set to indicate the
error.

MU43814PR/D2 - 1 - 12/01/87

II

II

T_RCVUDATA(3N) (Networking Support Utilities) T_RCVUDATA(3N)

NAME
t_rcvudata - receive a data unit

SYNOPSIS
#include <tiuser.h>

int t_rcvudata(fd, unitdata, flags)
int fd;
struct t_unitdata "'unitdata;
int "'flags;

DESCRIPTION
This function is used in connectionless mode to receive a data unit from
another transport user. Fd identifies the local transport endpoint through
which data will be received, unitdata holds information associated with
the received data unit, and flags is set on return to indicate that the com­
plete data unit was not received. Unitdata points to a t_unitdata structure
containing the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;

The maxlen [see netbufm intro(3)] field of addr, opt, and udata must be set
before issuing this function to indicate the maximum size of the buffer for
each.

On return from this call, addr specifies the protocol address of the sending
user, opt identifies protocol-specific options that were associated with this
data unit, and udata specifies the user data that was received.

By default, t_rcvudata operates in synchronous mode and will wait for a
data unit to arrive if none is currently available. However, if O_NDELAY
is set (via t_open or fcntl), t_rcvudata will execute in asynchronous mode
and will fail if no data units are available.

If the buffer defined in the udata field of unitdata is not large enough to
hold the current data unit, the buffer will be filled and T_MORE will be set
in flags on return to indicate that another t_rcvudata should be issued to
retrieve the rest of the data unit. Subsequent t_rcvudata call(s) will return
zero for the length of the address and options until the full data unit has
been received.

MU43814PR/D2 - 1 - 12/01/87

T_RCVUDATA(3N) (Networking Support Utilities) T_RCVUDATA(3N)

On failure, t_errno may be set to one of the following:

[TBADF]

[TNODATA]

[TBUFOVFLW]

[TLOOK]

[TNOTSUPPORT]

[TSYSERR]

SEE ALSO

The specified file descriptor does not refer to a tran­
sport endpoint.

O_NDELAY was set, but no data units are currently
available from the transport provider.

The number of bytes allocated for the incoming pro­
tocol address or options is not sufficient to store the
information. The unit data information to be
returned in unitdata will be discarded.

An asynchronous event has occurred on this tran­
sport endpoint and requires immediate attention.

This function is not supported by the underlying
transport provider.

A system error has occurred during execution of this
function.

intro(3), t_rcvuderr(3N), t_sndudata(3N).
SYSTEM V/68 Programmer's Guide

DIAGNOSTICS
t_rcvudata returns 0 on successful completion and -1 on failure and t_errno
is set to indicate the error.

MU43814PR/D2 - 2 - 12101/87

II

II

T_RCVUDERR(3N) (Networking Support Utilities) T_RCVUDERR(3N)

NAME
t_rcvuderr - receive a unit data error indication

SYNOPSIS
#include <tiuser.h>

int t_rcvuderr(fd, uderr)
int fd;
struct t_uderr •uderr;

DESCRIPTION
\

This function is used in connectionless mode to receive information con-
cerning an error on a previously sent data unit, and should only be issued
following a unit data error indication. It informs the transport user that a
data unit with a specific destination address and protocol options pro­
duced an error. Fd identifies the local transport endpoint through which
the error report will be received, and uderr points to a t_uderr structure
containing the following members: struct netbuf addr;

struct netbuf opt; long error;

Netbuf is described in intro(3). The maxlen [see netbuf in intro(3)] field of
addr and opt must be set before issuing this function to indicate the max­
imum size of the buffer for each.

On return from this call, the addr structure specifies the destination proto­
col address of the erroneous data unit, the opt structure identifies
protocol-specific options that were associated with the data unit, and error
specifies a protocol-dependent error code.

If the user does not care to identify the data unit that produced an error,
uderr may be set to NULL and t_rcvuderr will simply clear the error indica­
tion without reporting any information to the user.

On failure, t_errno may be set to one of the following:

[TBADF]

[TNOUDERR]

[TBUFOVFLW]

MU43814PR/D2

The specified file descriptor does not refer to a tran­
sport endpoint.

No unit data error indication currently exists on the
specified transport endpoint.

The number of bytes allocated for the incoming proto­
col address or options is not sufficient to store the
information. The unit data error information to be
returned in uderr will be discarded.

-1- 12/01/87

T_RCVUDERR(3N) (Networking Support Utilities) T_RCVUDERR(3N)

[TNOTSUPPORT] This function is not supported by the underlying tran­
sport provider.

[TSYSERR] A system error has occurred during execution of this
function.

SEE ALSO
intro(3), t_rcvudata(3N), t_sndudata(3N).
SYSTEM V/68 Programmer's Guide

DIAGNOSTICS
t_rcvuderr returns 0 on successful completion and -1 on failure and t_errno
is set to indicate the error.

MU43814PR/D2 - 2 - 12/01/87

II

Ill

T_SND(3N) (Networking Support Utilities) T_SND(3N)

NAME
t_snd - send data or expedited data over a connection

SYNOPSIS
#include <tiuser.h>

int t_snd(fd, buf, nbytes, flags)
int fd;
char •buf;
unsigned nbytes;
int flags;

DESCRIPTION
This function is used to send either normal or expedited data. Fd identi­
fies the local transport endpoint over which data should be sent, buf
points to the user data, nbytes specifies the number of bytes of user data to
be sent, and flags specifies any optional flags described below.

By default, t_snd operates in synchronous mode and may wait if flow con­
trol restrictions prevent the data from being accepted by the local tran­
sport provider at the time the call is made. However, if O__NOELAY is set
(via t_open or fcntl), t_snd will execute in asynchronous mode, and will fail
immediately if there are flow control restrictions.

On successful completion, t_snd returns the number of bytes accepted by
the transport provider. Normally this will equal the number of bytes
specified in nbytes. However, if O_NOELAY is set, it is possible that only
part of the data will be accepted by the transport provider. In this case,
t_snd will set T_MORE for the data that was sent (see below) and will
return a value less than nbytes. If nbytes is zero, no data will be passed to
the provider and t_snd will return zero.

If T_EXPEOITEO is set in flags, the data will be sent as expedited data, and
will be subject to the interpretations of the transport provider.

If T_MORE is set in flags, or set as described above, an indication is sent to
the transport provider that the transport service data unit {TSOU) (or
expedited transport service data unit - ETSOU) is being sent through mul­
tiple t_snd calls. Each t_snd with the T_MORE flag set indicates that
another t_snd will follow with more data for the current TSOU. The end of
the TSOU (or ETSOU) is identified by a t_snd call with the T_MORE flag not
set. Use of T_MORE enables a user to break up large logical data units
without losing the boundaries of those units at the other end of the con­
nection. The flag implies nothing about how the data is packaged for
transfer below the transport interface. If the transport provider does not

MU43814PR/D2 - 1 - 12/01/87

T_SND(3N) (Networking Support Utilities) T_SND(3N)

support the concept of a TSDU as indicated in the info argument on return
from t_open or t_getinfo, the T_MORE flag is not meaningful and should be
ignored.

The size of each TSDU or ETSDU must not exceed the limits of the tran­
sport provider as returned by t_open or t_getinfo. Failure to comply will
result in protocol error EPROTO. (See TSYSERR below.)

If t_snd is issued from the T_IDLE state, the provider may silently discard
the data. If t_snd is issued from any state other than T_DATAXFER or
T_IDLE, the provider will generate an EPROTO error.

On failure, t_errno may be set to one of the following:

[TBADF]

[TFLOW]

[TNOTSUPPORT]

[TSYSERR]

SEE ALSO

The specified file descriptor does not refer to a tran­
sport endpoint.

O_NDELAY was set, but the flow control mechanism
prevented the transport provider from accepting
data at this time.

This function is not supported by the underlying
transport provider.

A system error has occurred during execution of this
function.

t_open(3N), t_rcv(3N).
SYSTEM V/68 Programmer's Guide

DIAGNOSTICS
On successful completion, t_snd returns the number of bytes accepted by
the transport provider, and it returns -1 on failure and t_errno is set to
indicate the error.

MU43814PR/D2 - 2 - 12/01187

II

Ill

T_SNDDIS(3N) (Networking Support Utilities) T_SNDDIS(3N)

NAME
t_snddis - send user-initiated disconnect request

SYNOPSIS
#include < tiuser.h>

int t_snddis(fd, call)
int f d;
struct t_call •call;

DESCRIPTION
This function is used to initiate an abortive release on an already esta­
blished connection or to reject a connect request. Fd identifies the local
transport endpoint of the connection, and call specifies information associ­
ated with the abortive release. Call points to a t_call structure which con­
tains the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;
int sequence;

Netbuf is described in intro(3). The values in call have different semantics,
depending on the context of the call to t_snddis. When rejecting a connect
request, call must be non-NULL and contain a valid value of sequence to
uniquely identify the rejected connect indication to the transport provider.
The addr and opt fields of call are ignored. In all other cases, call need
only be used when data is being sent with the disconnect request. The
addr, opt, and sequence fields of the t_call structure are ignored. If the user
does not wish to send data to the remote user, the value of call may be
NULL.

Udata specifies the user data to be sent to the remote user. The amount of
user data must not exceed the limits supported by the transport provider
as returned by t_open or t_getinfo. If the len field of udata is zero, no data
will be sent to the remote user.

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a tran­
sport endpoint.

MU43814PR/D2 - 1 - 12101/87

T_SNDDIS(3N)

[TOUTSTATE]

[TBADDATA]

[TBADSEQ]

[TLOOK]

[TNOTSUPPORT]

[TSYSERR]

SEE ALSO

(Networking Support Utilities) T_SNDDIS(3N)

The function was issued in the wrong sequence. The
transport provider's outgoing queue may be flushed,
so data may be lost.

The amount of user data specified was not within the
bounds allowed by the transport provider. The tran­
sport provider's outgoing queue will be flushed, so
data may be lost.

An invalid sequence number was specified, or a
NULL call structure was specified when rejecting a
connect request. The transport provider's outgoing
queue will be flushed, so data may be lost.

An asynchronous event has occurred on this tran­
sport endpoint and requires immediate attention.

This function is not supported by the underlying
transport provider.

A system error has occurred during execution of this
function.

intro{3), t_connect{3N), t_getinfo{3N), t_listen{3N), t_open(3N).
SYSTEM V/68 Programmer's Guide

DIAGNOSTICS
t_snddis returns 0 on success and -1 on failure and t_errno is set to indicate
the error.

MU43814PR/D2 -2- 12/01/87

II

T_SNDREL(3N) (Networking Support Utilities) T_SNDREL(3N)

NAME
t_sndrel - initiate an orderly release

SYNOPSIS
#include <tiuser.h>

int t_sndrel(f d)
int fd;

DESCRIPTION
This function is used to initiate an orderly release of a transport connec­
tion and indicates to the transport provider that the transport user has no
more data to send. Fd identifies the local transport endpoint where the
connection exists. After issuing t_sndrel, the user may not send any more
data over the connection. However, a user may continue to receive data
if an orderly release indication has been received.

This function is an optional service of the transport provider, and is only
supported if the transport provider returned service type T_COTS_ORD on
t_open or t_getinfo.

On failure, t_errno may be set to one of the following:

(TBADF] The specified file descriptor does not refer to a tran­
sport endpoint.

[TFLOW]

[TNOTSUPPORT]

[TSYSERR]

SEE ALSO

O_NDELAY was set, but the flow control mechanism
prevented the transport provider from accepting the
function at this time.

This function is not supported by the underlying
transport provider.

A system error has occurred during execution of this
function.

t_open(3N), t_rcvrel{3N).
SYSTEM V/68 Programmer's Guide

DIAGNOSTICS
t_sndrel returns 0 on success and -1 on failure and t_errno is set to indicate
the error.

MU43814PR/D2 -1- 12/01/87

T_SNDUDATA(3N) (Networking Support Utilities) T_SNDUDATA(3N)

NAME
t_sndudata - send a data unit

SYNOPSIS
#include <tiuser.h>

int t_sndudata(fd, unitdata)
int fd;
struct t_unitdata •unitdata;

DESCRIPTION
This function is used in connectionless mode to send a data unit to
another transport user. Fd identifies the local transport endpoint through
which data will be sent, and unitdata points to a t_unitdata structure con­
taining the following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;

Netbuf is described in intro(3). In unit data, addr specifies the protocol
address of the destination user, opt identifies protocol-specific options that
the user wants associated with this request, and udata specifies the user
data to be sent. The user may choose not to specify what protocol options
are associated with the transfer by setting the Zen field of opt to zero. In
this case, the provider may use default options.

If the Zen field of udata is zero, no data unit will be passed to the transport
provider; t_sndudata will not send zero-length data units.

By default, t_sndudata operates in synchronous mode and may wait if flow
control restrictions prevent the data from being accepted by the local tran­
sport provider at the time the call is made. However, if O_NDELAY is set
(via t_open or fcntZ), t_sndudata will execute in asynchronous mode and
will fail under such conditions.

If t_sndudata is issued from an invalid state, or if the amount of data speci­
fied in udata exceeds the TSDU size as returned by t_open or t_getinfo, the
provider will generate an EPROTO protocol error. (See TSYSERR below.)

MU43814PR/D2 - 1 - 12/01/87

Ill

T_SNDUDATA(3N) (Networking Support Utilities) T_SNDUDATA(3N)

On failure, t_errno may be set to one of the following:

[TBADF] The specified file descriptor does not refer to a tran­
sport endpoint.

[TFLOW] O_NDELAY was set, but the flow control mechanism
prevented the transport provider from accepting data
at this time.

[TNOTSUPPORT] This function is not supported by the underlying tran­
sport provider.

[TSYSERR] A system error has occurred during execution of this
function.

SEE ALSO
intro(3), t_rcvudata(3N), t_rcvuderr(3N).
SYSTEM V/68 Programmer's Guide.

DIAGNOSTICS
t_sndudata returns 0 on successful completion and -1 on failure t_errno is
set to indicate the error.

MU43814PR/D2 - 2 - 12/01/87

T_SYNC(3N) (Networking Support Utilities) T_SYNC(3N)

NAME
t_sync - synchronize transport library

SYNOPSIS
#include <tiuser.h>

int t_sync(fd)
int fd;

DESCRIPTION
For the transport endpoint specified by fd, t_sync synchronizes the data
structures managed by the transport library with information from the
underlying transport provider. In doing so, it can convert a raw file
descriptor [obtained via open(2), dup(2), or as a result of a fork(2) and
exec(2)] to an initialized transport endpoint, assuming that file descriptor
referenced a transport provider. This function also allows two cooperat­
ing processes to synchronize their interaction with a transport provider.

For example, if a process forks a new process and issues an exec, the new
process must issue a t_sync to build the private library data structure asso­
ciated with a transport endpoint and to synchronize the data structure
with the relevant provider information.

It is important to remember that the transport provider treats all users of a
transport endpoint as a single user. If multiple processes are using the
same endpoint, they should coordinate their activities so as not to violate
the state of the provider. t_sync returns the current state of the provider
to the user, thereby enabling the user to verify the state before taking
further action. This coordination is only valid among cooperating
processes; it is possible that a process or an incoming event could change
the provider's state after a t_sync is issued.

If the provider is undergoing a state transition when t_sync is called, the
function will fail.

On failure, t_errno may be set to one of the following:

[TBADF]

[TSTATECHNG]

MU43814PR/D2

The specified file descriptor is a valid open file
descriptor but does not refer to a transport endpoint.

The transport provider is undergoing a state change.

- 1 - 12101/87

II

II

T_SYNC(3N) (Networking Support Utilities) T_SYNC(3N)

[TSYSERR] A system error has occurred during execution of this
function.

SEE ALSO
dup(2), exec(2), fork(2), open(2).
SYSTEM V/68 Programmer's Guide

DIAGNOSTICS
tJYnC returns the state of the transport provider on successful completion
and -1 on failure and t_errno is set to indicate the error. The state
returned may be one of the following:

T_UNBND unbound

T_IDLE idle

T_OUTCON outgoing connection pending

T_INCON incoming connection pending

T_DATAXFER data transfer

T_OUTREL outgoing orderly release (waiting for an orderly
release indication)

T_INREL incoming orderly release (waiting for an orderly
release request)

MU43814PR/D2 - 2 - 12/01/87

T_UNBIND(3N) (Networking Support Utilities) T_UNBIND(3N)

NAME
t_unbind - disable a transport endpoint

SYNOPSIS
#include <tiuser.h>

int t_unbind(fd)
int fd;

DESCRIPTION
The t_unbind function disables the transport endpoint specified by fd
which was previously bound by t_bind (3N). On completion of this call,
no further data or events destined for this transport endpoint will be
accepted by the transport provider.

On failure, t_errno may be set to one of the following:

(TBADF] The specified file descriptor does not refer to a transport
endpoint.

(TOUTSTATE] The function was issued in the wrong sequence.

[TLOOK] An asynchronous event has occurred on this transport
endpoint.

[TSYSERR] A system error has occurred during execution of this
function.

SEE ALSO
t_bind(3N).
SYSTEM V/68 Programmer's Guide

DIAGNOSTICS
t_unbind returns 0 on success and -1 on failure and t_errno is set to indi­
cate the error.

MU43814PR/D2 - 1 - 12/01/87

II

Ill

I
I

ASSERT(3X) (Speeialized Libraries) ASSERT(3X)

NAME
assert - verify program assertion

SYNOPSIS
#include <assert.h>

assert (expression)
int expression;

DESCRIPTION
This macro is useful for putting diagnostics into programs. When it is
executed, if expression is false (zero), assert prints

"Assertion failed: expression, file xyz, line nnn"

on the standard error output and aborts. In the error message, xyz is the
name of the source file and nnn the source line number of the assert state­
ment.

Compiling with the preprocessor option -DNDEBUG [see cpp(l)], or with
the preprocessor control statement "#define NDEBUG" ahead of the
"#include <assert.h>" statement, will stop assertions from being com­
piled into the program.

SEE ALSO
cpp{l), abort(3C).

CAVEAT
Since assert is implemented as a macro, the expression may not contain any
string literals.

MU43814PR/D2 -1- 12/01/87

II

II

CRYPT(3X) (C Programming Language Utilities) CRYPT(3X)

NAME
crypt - password and file encryption functions

SYNOPSIS

NOTE

cc [flag ...] file . . . -lcrypt

char •crypt (key, salt)
char •key, •salt;

void setkey (key)
char •key; ·

void encrypt (block, flag)
char •block;
int flag;

char •des_crypt (key, salt)
char •key, •salt;

void des_setkey (key)
char •key;

void des_encrypt (block, flag)
char •block;
int flag;

int run_setkey (p, key)
int p[2];
char •key;

int run_crypt (offset, buffer, count, p)
long offset;
char *buffer;
unsigned int count;
int p[2];

int crypt_close(p)
int p[2];

Decryption is not provided in the international version of crypt(3X). The
international version is part of the C Programming Language Utilities, and
the domestic version is part of the Security Administration Utilities. If
decryption is attempted with the international version of des_encrypt, an
error message is printed.

DESCRIPTION
des_crypt is the password encryption function. It is based on a one way

MU43814PR/D2 - 1 - 12/01/87

II

II

CRYPT(3X) (C Programming Language Utilities) CRYPT(3X)

hashing encryption algorithm with variations intended (among other
things) to frustrate use of hardware implementations of a key search.

Key is a user's typed password. Salt is a two-character string chosen from
the set [a-zA-Z0-9./]; this string is used to perturb the hashing algorithm
in one of 4096 different ways, after which the password is used as the key
to encrypt repeatedly a constant string. The returned value points to the
encrypted password. The first two characters are the salt itself.

The des_setkey and des_encrypt entries provide (rather primitive) access to
the actual hashing algorithm. The argument of des_setkey is a character
array of length 64 containing only the characters with numerical value 0
and 1. If this string is divided into groups of 8, the low-order bit in each
group is ignored; this gives a 56-bit key which is set into the machine.
This is the key that will be used with the hashing algorithm to encrypt the
string block with the function des_encrypt.

The argument to the des_encrypt entry is a character array of length 64 con­
taining only the characters with numerical value 0 and 1. The argument
array is modified in place to a similar array representing the bits of the
argument after having been subjected to the hashing algorithm using the
key set by des_setkey. If edflag is zero, the argument is encrypted; if non­
zero, it is decrypted.

Crypt, setkey, and encrypt are front-end routines that invoke des_crypt,
des_setkey, and des_encrypt respectively.

The routines run_setkey and run_crypt are designed for use by applications
that need cryptographic capabilities [such as ed(l) and vi(l)] that must be
compatible with the crypt(l) user-level utility. Run_setkey establishes a
two-way pipe connection with crypt(l), using key as the password argu­
ment. Run_crypt takes a block of characters and transforms the cleartext
or ciphertext into their ciphertext or cleartext using crypt(l). Offset is the
relative byte position from the beginning of the file that the block of text
provided in block is coming from. Count is the number of characters in
block, and connection is an array containing indices to a table of input and
output file streams. When encryption is finished, crypt_close is used to ter­
minate the connection with crypt(l).

Run_setkey returns -1 if a connection with crypt(l) cannot be established.
This will occur on international versions of UNIX where crypt(l) is not
available. If a null key is passed to run_setkey, 0 is returned. Otherwise, 1
is returned. Run_crypt returns -1 if it cannot write output or read input
from the pipe attached to crypt. Otherwise it returns 0.

MU43814PR/D2 - 2 - 12101/87

CRYPT(3X) (C Programming Language Utilities) CRYPT(3X)

DIAGNOSTICS
In the international version of crypt(3X), a flag argument of 1 to des_encrypt
is not accepted, and an error message is printed.

SEE ALSO
getpass(3C), passwd(4).
crypt(l), login(l), passwd(l) in the User's Reference Manual.

CAVEAT
The return value in crypt points to static data that are overwritten by each
call.

MU43814PR/D2 - 3 - 12/01/87

II

Ill

CURSES(3X) (Terminal Information Utilities)

NAME
curses - terminal screen handling and optimization package

SYNOPSIS
The curses manual page is organized as follows:

In SYNOPSIS
- compiling information
- summary of parameters used by curses routines

CURSES(3X)

- alphabetical list of curses routines, showing their parameters

In DESCRIPTION:
- An overview of how curses routines should be used

In ROUTINES, descriptions of each curses routines, are grouped under the
appropriate topics:
- Overall Screen Manipulation
- Window and Pad Manipulation
- Output
- Input
- Output Options Setting
- Input Options Setting
- Environment Queries
- Soft Labels
- Low-level Curses Access
- Terminfo-Level Manipulations
- Termcap Emulation
- Miscellaneous
- Use of curscr

Then come sections on:
- ATTRIBUTES
- FUNCTION CALLS
- LINE GRAPHICS

cc [flag ...] file . . . -lcurses [library ...]

MU43814PR/D2 - 1 - 12101/87

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

#include <curses.h> (automatically includes <stdio.h>,
<termio.h>, and <unctrl.h>).

The parameters in the following list are not global variables, but
rather this is a summary of the parameters used by the curses library
routines. All routines return the int values ERR or OK unless other­
wise noted. Routines that return pointers always return NULL on
error. (ERR, OK, and NULL are all defined in <curses.h>.) Routines
that return integers are not listed in the parameter list below.

bool bf

char **area,*boolnames[], *boolcodes[], *boolfnames[], *bp
char *Cap, *capname, codename[2], erasechar, *filename, *fmt
char *keyname, killchar, *label, *longname
char *name, *numnames[], *numcodes[], *numfnames[]
char *Slk_label, *Str, *Strnames[], *Strcodes[], *Strfnames[]
char *term, *tgetstr, *tigetstr, *tgoto, *tparm, *type
chtype attrs, ch, horch, vertch

FILE *infd, *OUtfd
int begin_x, begin_y, begline, bot, c, col, count
int dmaxcol, dmaxrow, dmincol, dminrow, *errret, fildes
int (*init()), labfmt, labnum, line
int ms, ncols, new, newcol, newrow, nlines, numlines
int oldcol, oldrow, overlay
int pl, p2, p9, pmincol, pminrow, (*putc()), row
int smaxcol, smaxrow, smincol, sminrow, start
int tenths, top, visibility, x, y

SCREEN *new, *newterm, *set_term
TERMINAL *CUr_term, *nterm, *Oterm

va_list varglist

WINDOW *Curscr, *dstwin, *initscr, *newpad, *newwin, *Orig
WINDOW *pad, *Srcwin, *Stdscr, *SUbpad, *SUbwin, *Win

addch(ch)
addstr(str)
attroff(attrs)
attron(attrs)
attrset(attrs)

MU43814PR/D2 - 2 - 12101187

II

Ill

CURSES(3X)

baudrate()
beep()

(Terminal Information Utilities)

box(win, vertch, horch)
cbreak()
clear()
clearok(win, bf)
clrtobot()
clrtoeol()

CURSES(3X)

copywin(srcwin, dstwin, sminrow, smincol, dminrow, dmincol,
dmaxrow, dmaxcol, overlay)"

curs_set(visibility)
def_prog_mode()
def_shell_mode()
del_curterm(oterm)
delay _output(ms)
delch()
deleteln()
delwin(win)
doupdate()
draino(ms)
echo()
echochar(ch)
endwin()
erase()
erasechar()
filter()
flash()
flushinp{)
garbagedlines(win, begline, numlines)
getbegyx(win, y, x)
getch()
getmaxyx(win, y, x)
getstr(str)
getsyx(y, x)
getyx(win, y, x)
half delay(tenths)
has_ic()
has_il()
idlok(win, bf)
inch()

MU43814PR/02 -3- 12/01187

CURSES(3X) (Terminal Information Utilities)

initscr{)
insch{ch)
insertln{)
intrflush{win, bf)
isendwin{)
keyname{c)
keypad{win, bf)
killchar{)
leaveok{win, bf)
longname{)
meta{win, bf)
move{y, x)
mvaddch{y, x, ch)
mvaddstr{y, x, str)
mvcur{oldrow, oldcol, newrow, newcol)
mvdelch{y, x)
mvgetch{y, x)
mvgetstr{y, x, str)
mvinch{y, x)
mvinsch{y, x, ch)
mvprintw{y, x, fmt [, arg ...])
mvscanw{y, x, fmt [, arg ...])
mvwaddch{win, y, x, ch)
mvwaddstr{win, y, x, str)
mvwdelch{win, y, x)
mvwgetch{win, y, x)
mvwgetstr{win, y, x, str)
mvwin{win, y, x)
mvwinch{win, y, x)
mvwinsch{win, y, x, ch)
mvwprintw{win, y, x, fmt [, arg ...])
mvwscanw{win, y, x, fmt [, arg ...])
napms{ms)
newpad{nlines, ncols)
newterm{type, outfd, infd)
newwin{nlines, ncols, begin_y, begin__x)
nl{)
nocbreak{)
nodelay{win, bf)
noecho{)

MU43814PR/D2 -4-

CURSES(3X)

12/01/87

/
/

II

II

CURSES(3X) (Terminal Information Utilities)

nonl()
noraw()
notimeout(win, bf)
overlay(srcwin, dstwin)
overwrite(srcwin, dstwin)
pechochar(pad, ch)

CURSES(3X)

pnoutrefresh(pad, pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol)
prefresh(pad, pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol)
printw(fmt [, arg ...])
putp(str)
raw()
refresh()
reset_prog_mode()
reset_shell_mode()
resetty()
restartterm(term, fildes, errret)
ripoffline(line, init)
savetty()
scanw(fmt [, arg ...])
scr_dump{filename)
scr_init(filename)
scr_restore(filename)
scroll(win)
scrollok(win, bf)
set_curterm(nterm)
set_term(new)
setscrreg(top, bot)
setsyx(y, x)
setupterm(term, fildes, errret)
slk_clear()
slk_init(fmt)
slk_label(labnum)
slk_noutrefresh()
slk_refresh()
slk_restore()
slk_set(labnum, label, fmt)
slk_touch()
standend()
standout()
subpad(orig, nlines, ncols, begin_y, begin_x)

MU43814PR/D2 -5- 12/01/87

CURSES(3X) (Terminal Information Utilities)

subwin(orig, nlines, ncols, begin_y, begin_x)
tgetent(bp, name)
tgetflag(codename)
tgetnum(codename)
tgetstr(codename, area)
tgoto(cap, col, row)
tigetflag(capname)
tigetnum(capname)
tigetstr(capname)
touchline(win, start, count)
touch win(win)
tparm(str, pl, p2, ... , p9)
tputs(str, count, putc)
traceoff()
traceon()
typeahead(fildes)
unctrl(c)
ungetch(c)
vidattr(attrs)
vidputs(attrs, putc)
vwprintw(win, fmt, varglist)
vwscanw(win, fmt, varglist)
waddch(win, ch)
waddstr(win, str)
wattroff(win, attrs)
wattron(win, attrs)
wattrset(win, attrs)
wclear(win)
wclrtobot(win)
wclrtoeol(win)
wdelch(win)
wdeleteln(win)
wechochar(win, ch)
werase(win)
wgetch(win)
wgetstr(win, str)
winch(win)
winsch(win, ch)
winsertln(win)
wmove(win, y, x)

MU43814PR/D2 -6-

CURSES(3X)

II

12101/87

II

CURSES(3X) (Terminal Information Utilities)

wnoutrefresh(win)
wprintw(win, fmt [, arg ...])
wrefresh(win)
wscanw(win, fmt [, arg ...])
wsetscrreg(win, top, bot)
wstandend(win)
wstandout(win)

DESCRIPTION

CURSES(3X)

The curses routines give the user a terminal-independent method of updat­
ing screens with reasonable optimization.

In order to initialize the routines, the routine initscr() or newterm() must
be called before any of the other routines that deal with windows and
screens are used. (Three exceptions are noted where they apply.) The
routine endwin() must be called before exiting. To get character-at-a-time
input without echoing, (most interactive, screen oriented programs want
this) after calling initscr() you should call "cbreak(); noecho();" Most pro­
grams would additionally call "nonl(); intrflush (stdscr, FALSE);
keypad(stdscr, TRUE);".

Before a curses program is run, a terminal's tab stops should be set and its
initialization strings, if defined, must be output. This can be done by exe­
cuting the tput init command after the shell environment variable TERM
has been exported. For further details, see profile(4), tput(l), and the 'Tabs
and Initialization" subsection of terminfo(4).

The curses library contains routines that manipulate data structures called
windows that can be thought of as two-dimensional arrays of characters
representing all or part of a terminal screen. A default window called
stdscr is supplied, which is the size of the terminal screen. Others may
be created with newwin(). Windows are referred to by variables declared
as WINDOW •; the type WINDOW is defined in <curses.h> to be a C
structure. These data structures are manipulated with routines described
below, among which the most basic are move() and addch(). (More gen­
eral versions of these routines are included with names beginning with w,
allowing you to specify a window. The routines not beginning with w
usually affect stdscr.) Then refresh() is called, telling the routines to
make the user's terminal screen look like stdscr. The characters in a win­
dow are actually of type chtype, so that other information about the char­
acter may also be stored with each character.

MU43814PR/D2 -7- 12/01/87

CURSES(JX) (Terminal Information Utilities) CURSES(JX)

Special windows called pads may also be manipulated. These are win­
dows which are not constrained to the size of the screen and whose con­
tents need not be displayed completely. See the description of newpad()
under 'Window and Pad Manipulation" for more information.

In addition to drawing characters on the screen, video attributes may be
included which cause the characters to show up in modes such as under­
lined or in reverse video on terminals that support such display enhance­
ments. Line drawing characters may be specified to be output. On input,
curses is also able to translate arrow and function keys that transmit
escape sequences into single values. The video attributes, line drawing
characters, and input values use names, defined in <curses.h>, such as
A_REVERSE, ACS_HLINE, and KEY_LEFT.

curses also defines the WINDOW * variable, curscr, which is used only for
certain low-level operations like clearing and redrawing a garbaged
screen. curscr can be used in only a few routines. If the window argu­
ment to clearok() is curscr, the next call to wrefresh() with any window
will cause the screen to be cleared and repainted from scratch. If the win­
dow argument to wrefresh() is curscr, the screen in immediately cleared
and repainted from scratch. This is how most programs would implement
a "repaint-screen" function. More information on using curscr is pro­
vided where its use is appropriate.

The environment variables LINES and COLUMNS may be set to override
terminfo's idea of how large a screen is. These may be used in an AT&T
Teletype 5620 layer, for example, where the size of a screen is changeable.

If the environment variable TERMINFO is defined, any program using
curses will check for a local terminal definition before checking in the stan­
dard place. For example, if the environment variable TERM is set to
att442S, then the compiled terminal definition is found in
/usrllib/terminfo/alatt4425. (The a is copied from the first letter of att442S to
avoid creation of huge directories.) However, if TERMINFO is set to
$HOME/myterms, curses will first check $HOME/mytermsla/att4425, and, if
that fails, will then check lusrlliblterminfolalatt4425. This is useful for
developing experimental definitions or when write permission on
lusr/liblterminfo is not available.

The integer variables LINES and COLS are defined in <curses.h>, and
will be filled in by initscr() with the size of the screen. (For more infor­
mation, see the subsection 'Terminfo-Level Manipulations".) The con­
stants TRUE and FALSE have the values 1 and 0, respectively. The

MU43814PR/D2 - 8 - 12/01/87

II

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

constants ERR and OK are returned by routines to indicate whether the
routine successfully completed. These constants are also defined in
<curses.h>.

ROUTINES
Many of the following routines have two or more versions. The routines
prefixed with w require a window argument. The routines prefixed with p
require a pad argument. Those without a prefix generally use stdscr.

The routines prefixed with mv require y and x coordinates to move to
before performing the appropriate action. The mv() routines imply a call
to move{) before the call to the other routine. The window argument is
always specified before the coordinates. y always refers to the row (of the
window), and x always refers to the column. The upper left comer is
always (0,0), not (1,1). The routines prefixed with mvw take both a win­
dow argument and y and x coordinates.

In each case, win is the window affected and pad is the pad affected. (win
and pad are always of type WINDOW•.) Option-setting routines require
a boolean flag bf with the value TRUE or FALSE. (bf is always of type
bool.) The types WINDOW, bool, and chtype are defined in <curses.h>.
See the SYNOPSIS for a summary of what types all variables are.

All routines return either the integer ERR or the integer OK, unless other­
wise noted. Routines that return pointers always return NULL on error.

Overall Screen Manipulation
WINDOW •initscr{) The first routine called should almost always be

initscr(). (The exceptions are slk_init(), filter(),
and ripofffine().) This will determine the terminal
type and initialize all curses data structures.
initscr() also arranges that the first call to refresh()
will clear the screen. If errors occur, initscr() will
write an appropriate error message to standard error
and exit; otherwise, a pointer to stdscr is returned.
If the program wants an indication of error condi­
tions, newterm() should be used instead of
initscr(). initscr() should only be called once per
application.

MU43814PR/02 -9- 12101/87

CURSES(3X)

endwin()

(Terminal Information Utilities) CURSES(3X)

A program should always call end win() before exit­
ing or escaping from curses mode temporarily, to do
a shell escape or system(3S) call, for example. This
routine will restore tty(7) modes, move the cursor to
the lower left comer of the screen and reset the ter­
minal into the proper non-visual mode. To resume
after a temporary escape, call wrefresh() or doup­
date().

is end win() Returns TRUE if endwin() has been called without
any subsequent calls to wrefresh().

SCREEN •newterm(type, outfd, infd)
A program that outputs to more than one terminal
must use newterm() for each terminal instead of
initscr(). A program that wants an indication of
error conditions, so that it may continue to run in a
line-oriented mode if the terminal cannot support a
screen-oriented program, must also use this routine.
newterm() should be called once for each terminal.
It returns a variable of type SCREEN• that should be
saved as a reference to that terminal. The argu­
ments are the type of the terminal to be used in
place of the environment variable TERM; outfd, a
stdio(3S) file pointer for output to the terminal; and
infd, another file pointer for input from the termi­
nal. When it is done running, the program must
also call endwin() for each terminal being used. If
newterm() is called more than once for the same
terminal, the first terminal referred to must be the
last one for which endwin() is called.

SCREEN •set_term(new)

MU43814PR/D2

This routine is used to switch between different ter­
minals. The screen reference new becomes the new
current terminal. A pointer to the screen of the pre­
vious terminal is returned by the routine. This is
the only routine which manipulates SCREEN
pointers; all other routines affect only the current
terminal.

- 10 - 12101187

Ill

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

Window and Pad Manipulation
refresh()
wrefresh (win) These routines (or prefresh(}, pnoutrefresh(),

wnoutrefresh(}, or doupdate()) must be called to
write output to the terminal, as most other routines
merely manipulate data structures. wrefresh()
copies the named window to the physical terminal
screen, taking into account what is already there in
order to minimize the amount of information that's
sent to the terminal (called optimization). refresh()
does the same thing, except it uses stdscr as a
default window. Unless leaveok() has been
enabled, the physical cursor of the terminal is left at
the location of the window's cursor. The number of
characters output to the terminal is returned.

wnoutrefresh(win)
doupdate()

MU43814PR/D2

Note that refresh() is a macro.

These two routines allow multiple updates to the
physical terminal screen with more efficiency than
wrefresh() alone. How this is accomplished is
described in the next paragraph.

curses keeps two data structures representing the
terminal screen: a physical terminal screen, describ­
ing what is actually on the screen, and a virtual ter­
minal screen, describing what the programmer
wants to have on the screen. wrefresh() works by
first calling wnoutrefresh(), which copys the named
window to the virtual screen, and then by calling
doupdate(}, which compares the virtual screen to
the physical screen and does the actual update. If
the programmer wishes to output several windows
at once, a series of calls to wrefresh() will result in
alternating calls to wnoutrefresh() and doupdate(},
causing several bursts of output to the screen. By
first calling wnoutrefresh() for each window, it is
then possible to call doupdate() once, resulting in
only one burst of output, with probably fewer total
characters transmitted and certainly less processor
time used.

- 11 - 12/01/87

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

WINDOW *newwin(nlines, ncols, begin_y, begin_x)
Create and return a pointer to a new window with
the given number of lines (or rows), nlines, and
columns, ncols. The upper left corner of the win­
dow is at line begin_y, column begin_x. If either
nlines or ncols is 0, they will be set to the value of
Iines-begin_y and cols-begin_x. A new full-screen
window is created by calling newwin(0,0,0,0).

mvwin(win, y, x) Move the window so that the upper left corner will
be at position (y, x). If the move would cause the
window to be off the screen, it is an error and the
window is not moved.

WINDOW *subwin(orig, nlines, ncols, begin_y, begin_x)

delwin(win)

Create and return a pointer to a new window with
the given number of lines (or rows), nlines, and
columns, ncols. The window is at position (begin_y,
begin_x) on the screen. (This position is relative to
the screen, and not to the window orig.) The win­
dow is made in the middle of the window orig, so
that changes made to one window will affect both
windows. When using this routine, often it will be
necessary to call touch win() or touchline() on orig
before calling wrefresh().

Delete the named window, freeing up all memory
associated with it. In the case of overlapping win­
dows, subwindows should be deleted before the
main window.

WINDOW •newpad(nlines, ncols)

MU43814PR/D2

Create and return a pointer to a new pad data struc­
ture with the given number of lines (or rows),
nlines, and columns, ncols. A pad is a window that
is not restricted by the screen size and is not neces­
sarily associated with a particular part of the screen.
Pads can be used when a large window is needed,
and only a part of the window will be on the screen
at one time. Automatic refreshes of pads (e.g. from
scrolling or echoing of input) do not occur. It is not
legal to call wrefresh() with a pad as an argument;
the routines prefresh() or pnoutrefresh() should be

- 12 - 12/01/87

II

•

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

called instead. Note that these routines require
additional parameters to specify the part of the pad
to be displayed and the location on the screen to be
used for display.

WINDOW •subpad(orig, nlines, ncols, begin_y, begin_x)
Create and return a pointer to a subwindow within
a pad with the given number of lines (or rows),
nlines, and columns, ncols. Unlike subwin(), which
uses screen coordinates, the window is at position
(begin_y, begin_x) on the pad. The window is made
in the middle of the window orig, so that changes
made to one window will affect both windows.
When using this routine, often it will be necessary
to call touch win() or touchline() on orig before cal­
ling prefresh().

prefresh(pad, pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol)
pnoutrefresh(pad, pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol)

These routines are analogous to wrefresh() and
wnoutrefresh() except that pads, instead of win­
dows, are involved. The additional parameters are
needed to indicate what part of the pad and screen
are involved. pminrow and pmincol specify the upper
left comer, in the pad, of the rectangle to be
displayed. sminrow, smincol, smaxrow, and smaxcol
specify the edges, on the screen, of the rectangle to
be displayed in. The lower right comer in the pad
of the rectangle to be displayed is calculated from
the screen coordinates, since the rectangles must be
the same size. Both rectangles must be entirely con­
tained within their respective structures. Negative
values of pminrow, pmincol, sminrow, or smincol are
treated as if they were zero .

MU43814PR/D2 -13 - 12/01/87

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

Output
These routines are used to "draw" text on windows.

addch(ch)
waddch(win, ch)
mvaddch(y, x, ch)
mvwaddch(win, y, x, ch)

MU43814PR/D2

The character ch is put into the window at the
current cursor position of the window and the posi­
tion of the window cursor is advanced. Its function
is similar to that of putchar (see putc(3S)). At the
right margin, an automatic newline is performed.
At the bottom of the scrolling region, if scrollok() is
enabled, the scrolling region will be scrolled up one
line.

If ch is a tab, newline, or backspace, the cursor will
be moved appropriately within the window. A
newline also does a clrtoeol() before moving. Tabs
are considered to be at every eighth column. If ch is
another control character, it will be drawn in the AX
notation. (Calling winch() after adding a control
character will not return the control character, but
instead will return the representation of the control
character.)

Video attributes can be combined with a character
by or-ing them into the parameter. This will result
in these attributes also being set. (The intent here is
that text, including attributes, can be copied from
one place to another using inch() and addch().) See
standout(), below.

Note that ch is actually of type chtype, not a charac­
ter.

Note that addch(), mvaddch(), and mvwaddch(),
are macros.

-14 - 12/01/87

Ill

II

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

echochar(ch)
wechochar(win, ch)
pechochar(pad, ch)

addstr(str)

These routines are functionally equivalent to a call
to addch(ch) followed by a call to refresh(), a call to
waddch(win, ch) followed by a call to
wrefresh(win), or a call to waddch(pad, ch) fol­
lowed by a call to prefresh(pad). The knowledge
that only a single character is being output is taken
into consideration and, for non-control characters, a
considerable performance gain can be seen by using
these routines instead of their equivalents. In the
case of pechochar(), the last location of the pad on
the screen is reused for the arguments to prefresh().

Note that ch is actually of type chtype, not a charac­
ter.

Note that echochar() is a macro.

waddstr(win, str)
mvwaddstr(win, y, x, str)
mvaddstr(y, x, str) These routines write all the characters of the null­

terminated character string str on the given win­
dow. This is equivalent to calling waddch() once
for each character in the string.

attroff(attrs)
wattroff(win, attrs)
attron(attrs)
wattron(win, attrs)
attrset(attrs)
wattrset(win, attrs)
standend()
wstandend(win)

MU43814PR/D2

Note that addstr(), mvaddstr(), and mvwaddstr()
are macros.

- 15 - 12/01/87

CURSES(3X)

standout()
wstandout(win)

beep()
flash()

MU43814PR/02

(Terminal Information Utilities) CURSES(3X)

These routines manipulate the current attributes of
the named window. These attributes can be any
combination of A_STANDOUT, A_REVERSE,
A_BOLD, A_DIM, A_BLINK, A_UNDERLINE, and
A_ALTCHARSET. These constants are defined in
<curses.h> and can be combined with the C logical
OR (I) operator.

The current attributes of a window are applied to all
characters that are written into the window with
waddch(). Attributes are a property of the charac­
ter, and move with the character through any scrol­
ling and insert/delete line/character operations. To
the extent possible on the particular terminal, they
will be displayed as the graphic rendition of the
characters put on the screen.

attrset(attrs) sets the current attributes of the given
window to attrs. attroff(attrs) turns off the named
attributes without turning on or off any other attri­
butes. attron(attrs) turns on the named attributes
without affecting any others. standout() is the
same as attron(A_STANDOUT). standend() is the
same as attrset (O), that is, it turns off all attributes.

Note that attrs is actually of type chtype, not a char­
acter.

Note that attroff(), attron(), attrset(), standend(),
and standout() are macros.

These routines are used to signal the terminal user.
beep() will sound the audible alarm on the termi­
nal, if possible, and if not, will flash the screen
(visible bell), if that is possible. flash() will flash
the screen, and if that is not possible, will sound
the audible signal. If neither signal is possible,
nothing will happen. Nearly all terminals have an
audible signal (bell or beep) but only some can flash
the screen.

- 16 - 12101187

Ill

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

box(win, vertch, horch)

erase()
werase(win)

clear()
wclear(win)

clrtobot()
wclrtobot(win)

clrtoeol()
wclrtoeol(win)

delay _output(ms)

MU43814PR/D2

A box is drawn around the edge of the window,
win. vertch and horch are the characters the box is to
be drawn with. If vertch and horch are 0, then
appropriate default characters, ACS_ VLINE and
ACS_HLINE, will be used.

Note that vertch and horch are actually of type
chtype, not characters.

These routines copy blanks to every position in the
window.

Note that erase() is a macro.

These routines are like erase() and werase(), but
they also call clearok(), arranging that the screen
will be cleared completely on the next call to
wrefresh{) for that window, and repainted from
scratch.

Note that clear() is a macro.

All lines below the cursor in this window are
erased. Also, the current line to the right of the cur­
sor, inclusive, is erased.

Note that clrtobot() is a macro.

The current line to the right of the cursor, inclusive,
is erased.

Note that clrtoeol() is a macro.

Insert a ms millisecond pause in the output. It is
not recommended that this routine be used exten­
sively, because padding characters are used rather
than a processor pause.

- 17 - 12/01/87

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

delch()
wdelch(win)
mvdelch(y, x)
mvwdelch(win, y, x) The character under the cursor in the window is

deleted. All characters to the right on the same line
are moved to the left one position and the last char­
acter on the line is filled with a blank. The cursor
position does not change (after moving to (y, x), if
specified). (This does not imply use of the
hardware "delete-character'' feature.)

deleteln()
wdeleteln(win)

getyx(win, y, x)

getbegyx(win, y, x)
getmaxyx(win, y, x)

insch(ch)

Note that delch(), mvdelch(), and mvwdelch() are
macros.

The line under the cursor in the window is deleted.
All lines below the current line are moved up one
line. The bottom line of the window is cleared.
The cursor position does not change. (This does not
imply use of the hardware "delete-line" feature.)

Note that deleteln() is a macro.

The cursor position of the window is placed in the
two integer variables y and x. This is implemented
as a macro, so no"&" is necessary before the vari­
ables.

Like getyx(), these routines store the current begin­
ning coordinates and size of the specified window.

Note that getbegyx() and getmaxyx() are macros.

winsch(win, ch)
mvwinsch(win, y, x, ch)
mvinsch(y, x, ch) The character ch is inserted before the character

under the cursor. All characters to the right are
moved one space to the right, possibly losing the
rightmost character of the line. The cursor position
does not change (after moving to (y, x), if specified).
(This does not imply use of the hardware "insert­
character'' feature.)

MU43814PR/D2 -18 - 12/01/87

II

Ill

CURSES(3X)

insertln()
winsertln(win)

move(y, x)
wmove(win, y, x)

(Terminal Information Utilities) CURSES(3X)

Note that ch is actually of type chtype, not a charac­
ter.

Note that ins ch(), mvinsch(), and mvwinsch() are
macros.

A blank line is inserted above the current line and
the bottom line is lost. (This does not imply use of
the hardware "insert-line" feature.)

Note that insertln() is a macro.

The cursor associated with the window is moved to
line (row) y, column x. This does not move the
physical cursor of the terminal until refresh() is
called. The position specified is relative to the
upper left comer of the window, which is (0, 0).

Note that move() is a macro.

overlay(srcwin, dstwin)
overwrite(srcwin, dstwin)

These routines overlay srcwin on top of dstwin; that
is, all text in srcwin is copied into dstwin. scrwin and
dstwin need not be the same size; only text where
the two windows overlap is copied. The difference
is that overlay() is non-destructive (blanks are not
copied), while overwrite() is destructive.

copywin(srcwin, dstwin, sminrow, smincol, dminrow, dmincol, dmaxrow,
dmaxcol, overlay) This routine provides a finer grain of control over

the overlay() and overwrite() routines. Like in the
prefresh() routine, a rectangle is specified in the
destination window, (dminrow, dmincol) and (dmax­
row, dmaxcol), and the upper-left-comer coordinates
of the source window, (sminrow, smincol). If the
argument overlay is true, then copying is non­
destructive, as in overlay().

MU43814PR/D2 - 19 - 12/01/87

CURSES(3X) (Terminallnformation Utilities) CURSES(3X)

printw(fmt [, arg ...])
wprintw(win, fmt [, arg ...])
mvprintw(y, x, fmt [, arg ...])
mvwprintw(win, y, x, fmt [, arg ...])

These routines are analogous to printf(3). The
string which would be output by printf(3) is instead
output using waddstr() on the given window.

vwprintw(win, fmt, varglist)

scroll(win)

This routine corresponds to vfprintf(3S). It performs
a wprintw() using a variable argument list. The
third argument is a va_list, a pointer to a list of
arguments, as defined in <varargs.h>. See the
vprintf(3S) and varargs(5) manual pages for a
detailed description on how to use variable argu­
ment lists.

The window is scrolled up one line. This involves
moving the lines in the window data structure. As
an optimization, if the window is stdscr and the
scrolling region is the entire window, the physical
screen will be scrolled at the same time.

touchwin(win)
touchline(win, start, count)

MU43814PR/D2

Throw away all optimization information about
which parts of the window have been touched, by
pretending that the entire window has been drawn
on. This is sometimes necessary when using over­
lapping windows, since a change to one window
will affect the other window, but the records of
which lines have been changed in the other window
will not reflect the change. touchline() only pre­
tends that count lines have been changed, beginning
with line start .

- 20 - 12/01/87

Ill

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

Input
getch()
wgetch(win)
mvgetch(y, x)
mvwgetch(win, y, x)

MU43814PR/D2

\
A character is read from the terminal associated
with the window. In NODELAY mode, if there is no
input waiting, the value ERR is returned. In DELAY
mode, the program will hang until the system
passes text through to the program. Depending on
the setting of cbreak(), this will be after one charac­
ter (CBREAK mode), or after the first newline {NOC­
BREAK mode). In HALF-DELAY mode, the program
will hang until a character is typed or the specified
timeout has been reached. Unless noecho() has
been set, the character will also be echoed into the
designated window. No refresh() will occur
between the move() and the getch() done within
the routines mvgetch() and mvwgetch().

When using getch(), wgetch(), mvgetch(), or
mvwgetch(), do not set both NOCBREAK mode (noc­
break()) and ECHO mode (echo()) at the same time.
Depending on the state of the tty(7) driver when
each character is typed, the program may produce
undesirable results.

If keypad(win, TRUE) has been called, and a func­
tion key is pressed, the token for that function key
will be returned instead of the raw characters. (See
keypad() under "Input Options Setting.") Possible
function keys are defined in <curses.h> with
integers beginning with 0401, whose names begin

·with KEY_. If a character is received that could be
the beginning of a function key (such as escape),
curses will set a timer. If the remainder of the
sequence is not received within the designated time,
the character will be passed through, otherwise the
function key value will be returned. For this rea­
son, on many terminals, there will be a delay after a
user presses the escape key before the escape is
returned to the program. (Use by a programmer of

- 21 - 12/01/87

CURSES(3X)

getstr(str)

(Terminal Information Utilities) CURSES(3X)

the escape key for a single character routine is
discouraged. Also see notimeout() below.)

Note that getch(), mvgetch(), and mvwgetch() are
macros.

wgetstr(win, str)
mvgetstr(y, x, str)
mvwgetstr(win, y, x, str)

flushinp()

ungetch(c)

inch()
winch(win)
mvinch(y, x)

A series of calls to getch() is made, until a newline,
carriage return, or enter key is received. The result­
ing value is placed in the area pointed at by the
character pointer str. The user's erase and kill char­
acters are interpreted. As in mvgetch(), no
refresh() is done between the move() and gets tr()
within the routines mvgetstr() and mvwgetstr().

Note that getstr(), mvgetstr(), and mvwgetstr() are
macros.

Throws away any typeahead that has been typed by
the user and has not yet been read by the program.

Place c back onto the input queue to be returned by
the next call to wgetch().

mvwinch(win, y, x) The character, of type chtype, at the current posi­
tion in the named window is returned. If any attri­
butes are set for that position, their values will be
OR' ed into the value returned. The predefined con­
stants A_CHARTEXT and A_ATTRIBUTES, defined in
<curses.h>, can be used with the C logical AND
(&) operator to extract the character or attributes
alone.

MU43814PR/D2

Note that inch(), winch(), mvinch(), and
mvwinch() are macros.

- 22 - 12/01/87

II

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

scanw(fmt [, arg ...])
wscanw(win, fmt [, arg ...])
mvscanw(y, x, fmt [, arg ...])
mvwscanw(win, y, x, fmt [, arg ...])

These routines correspond to scanf(3S), as do their
arguments and return values. wgetstr() is called on
the window, and the resulting line is used as input
for the scan.

vwscanw(win, fmt, ap)

Output Options Setting

This routine is similar to vwprintw() above in that
performs a wscanw() using a variable argument list.
The third argument is a va_list, a pointer to a list of
arguments, as defined in <varargs.h>. See the
vprintf(3S) and varargs(S) manual pages for a
detailed description on how to use variable argu­
ment lists.

These routines set options within curses that deal with output. All options
are initially FALSE, unless otherwise stated. It is not necessary to turn
these options off before calling endwin().

clearok(win, bf) If enabled (bf is TRUE), the next call to wrefresh()
with this window will clear the screen completely
and redraw the entire screen from scratch. This is
useful when the contents of the screen are uncer­
tain, or in some cases for a more pleasing visual
effect.

idlok(win, bf)

MU43814PR/D2

If enabled (bf is TRUE), curses will consider using the
hardware "insert/delete-line" feature of terminals so
equipped. If disabled (bf is FALSE), curses will very
seldom use this feature. (The "insert/delete­
character'' feature is always considered.) This
option should be enabled only if your application
needs "insert/delete-line", for example, for a screen
editor. It is disabled by default because
"insert/delete-line" tends to be visually annoying
when used in applications where it isn't really
needed. If "insert/delete-line" cannot be used,
curses will redraw the changed portions of all lines.

- 23 - 12/01/87

CURSES(3X)

leaveok(win, bf)

(Terminal Information Utilities) CURSES(3X)

Normally, the hardware cursor is left at the location
of the window cursor being refreshed. This option
allows the cursor to be left wherever the update
happens to leave it. It is useful for applications
where the cursor is not used, since it reduces the
need for cursor motions. If possible, the cursor is
made invisible when this option is enabled.

setscrreg(top, bot)
wsetscrreg(win, top, bot)

scrollok(win, bf)

MU43814PR/D2

These routines allow the user to set a software
scrolling region in a window. top and bot are the
line numbers of the top and bottom margin of the
scrolling region. (Line 0 is the top line of the win­
dow.) If this option and scrollok() are enabled, an
attempt to move off the bottom margin line will
cause all lines in the scrolling region to scroll up one
line. (Note that this has nothing to do with use of a
physical scrolling region capability in the terminal,
like that in the DEC VTlOO. Only the text of the
window is scrolled; if idlok() is enabled and the ter­
minal has either a scrolling region or "insert/delete­
line" capability, they will probably be used by the
output routines.)

Note that setscrreg() and wsetscrreg() are macros.

This option controls what happens when the cursor
of a window is moved off the edge of the window
or scrolling region, either from a newline on the bot­
tom line, or typing the last character of the last line.
If disabled (bf is FALSE), the cursor is left on the bot­
tom line at the location where the offending charac­
ter was entered. If enabled (bf is TRUE), wrefresh()
is called on the window, and then the physical ter­
minal and window are scrolled up one line. (Note
that in order to get the physical scrolling effect on -
the terminal, it is also necessary to call idlok().) -

- 24 - 12/01/87

II

CURSES(JX) (Terminal Information Utilities) CURSES(JX)

nl()
nonl()

Input Options Setting

These routines control whether newline is translated
into carriage return and linefeed on output, and
whether return is translated into newline on input.
Initially, the translations do occur. By disabling
these translations using nonl(), curses is able to
make better use of the linefeed capability, resulting
in faster cursor motion.

These routines set options within curses that deal with input. The options
involve using ioctl(2) and therefore interact with curses routines. It is not
necessary to turn these options off before calling endwin().

For more information on these options, see Chapter 10 of the Programmer's
Guide.

cbreak()
nocbreak()

echo()
noecho()

MU43814PR/D2

These two routines put the terminal into and out of
CBREAK mode, respectively. In CBREAK mode,
characters typed by the user are immediately avail­
able to the program and erase/kill character process­
ing is not performed. When in NOCBREAK mode,
the tty driver will buffer characters typed until a
newline or carriage return is typed. Interrupt and
flow-control characters are unaffected by this mode
(see termio(7)). Initially the terminal may or may not
be in CBREAK mode, as it is inherited, therefore, a
program should call cbreak() or nocbreak() expli­
citly. Most interactive programs using curses will set
CBREAK mode.

Note that cbreak() overrides raw(). See getch()
under "Input" for a discussion of how these routines
interact with echo() and noecho().

These routines control whether characters typed by
the user are echoed by getch() as they are typed.
Echoing by the tty driver is always disabled, but ini­
tially getch() is in ECHO mode, so characters typed
are echoed. Authors of most interactive programs
prefer to do their own echoing in a controlled area

- 25 - 12/01/87

CURSES(3X)

half delay(tenths)

intrflush(win, bf)

keypad(win, bf)

meta(win, bf)

MU43814PR/D2

(Terminal Information Utilities) CURSES(3X)

of the screen, or not to echo at all, so they disable
echoing by calling noecho(). See getch() under
"Input" for a discussion of how these routines
interact with cbreak() and nocbreak().

Half-delay mode is similar to CBREAK mode in that
characters typed by the user are immediately avail­
able to the program. However, after blocking for
tenths tenths of seconds, ERR will be returned if
nothing has been typed. tenths must be a number
between 1 and 255. Use nocbreak() to leave half­
delay mode.

If this option is enabled, when an interrupt key is
pressed on the keyboard (interrupt, break, quit) all
output in the tty driver queue will be flushed, giv­
ing the effect of faster response to the interrupt, but
causing curses to have the wrong idea of what is on
the screen. Disabling the option prevents the flush.
The default for the option is inherited from the tty
driver settings. The window argument is ignored.

This option enables the keypad of the user's termi­
nal. If enabled, the user can press a function key
(such as an arrow key) and wgetch() will return a
single value representing the function key, as in
KEY_LEFT. If disabled, curses will not treat function
keys specially and the program would have to inter­
pret the escape sequences itself. If the keypad in
the terminal can be turned on (made to transmit)
and off (made to work locally), turning on this
option will cause the terminal keypad to be turned
on when wgetch() is called.

If enabled, characters returned by wgetch() are
transmitted with all 8 bits, instead of with the
highest bit stripped. In order for meta() to work
correctly, the km (has_meta_key) ·capability has to
be specified in the terminal's terminfo(4) entry.

- 26 - 12/01/87

Ill

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

nodelay(win, bf) This option causes wgetch() to be a non-blocking
call. If no input is ready, wgetch() will return ERR.
If disabled, wgetch() will hang until a key is
pressed.

notimeout(win, bf) While interpreting an input escape sequence,
wgetch() will set a timer while waiting for the next
character. If notimeout(win, TRUE) is called, then
wgetch() will not set a timer. The purpose of the
timeout is to differentiate between sequences
received from a function key and those typed by a
user.

raw()
noraw()

typeahead(fildes)

MU43814PR/D2

The terminal is placed into or out of raw mode.
RAW mode is similar to CBREAK mode, in that char­
acters typed are immediately passed through to the
user program. The differences are that in RAW
mode, the interrupt, quit, suspend, and flow control
characters are passed through uninterpreted,
instead of generating a signal. RAW mode also
causes 8-bit input and output. The behavior of the
BREAK key depends on other bits in the tty(7) driver
that are not set by curses.

curses does "line-breakout optimization" by looking
for typeahead periodically while updating the
screen. If input is found, and it is coming from a
tty, the current update will be postponed until
refresh() or doupdate() is called again. This allows
faster response to commands typed in advance.
Normally, the file descriptor for the input FILE
pointer passed to newterm(), or stdin in the case
that initscr() was used, will be used to do this
typeahead checking. The typeahead() routine speci­
fies that the file descriptor fildes is to be used to
check for typeahead instead. If fildes is -1, then no
typeahead checking will be done.

Note that fildes is a file descriptor, not a <stdio.h>
FILE pointer.

- 27 - 12/01/87

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

Environment Queries
baudrate()

char erasechar()

has_ic()

has_il()

char killchar()

char * longname()

Soft Labels

Returns the output speed of the terminal. The
number returned is in bits per second, for example,
9600, and is an integer.

The user's current erase character is returned.

True if the terminal has insert- and delete-character
capabilities.

True if the terminal has insert- and delete-line capa­
bilities, or can simulate them using scrolling
regions. This might be used to check to see if it
would be appropriate to turn on physical scrolling
using scrollok().

The user's current line-kill character is returned.

This routine returns a pointer to a static area con­
taining a verbose description of the current termi­
nal. The maximum length of a verbose description
is 128 characters. It is defined only after the call to
initscr() or newterm(). The area is overwritten by
each call to newterm() and is not restored by
set_term(), so the value should be saved between
calls to newterm() if longname() is going to be used
with multiple terminals.

If desired, curses will manipulate the set of soft function-key labels that
exist on many terminals. For those terminals that do not have soft labels,
if you want to simulate them, curses will take over the bottom line of
stdscr, reducing the size of stdscr and the variable LINES. curses standard­
izes on 8 labels of 8 characters each.

slk_init(labfmt)

MU43814PR/D2

In order to use soft labels, this routine must be
called before initscr() or newterm() is called. If
initscr() winds up using a line from stdscr to emu­
late the soft labels, then labfmt determines how the
labels are arranged on the screen. Setting labfmt to
0 indicates that the labels are to be arranged in a 3-
2-3 arrangement; 1 asks for a 4-4 arrangement.

- 28 - 12/01/87

II

Ill

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

slk_set(Iabnum, label, labfmt)

slk_refresh()

labnum is the label number, from 1 to 8. label is the
string to be put on the label, up to 8 characters in
length. A NULL string or a NULL pointer will put
up a blank label. labfmt is one of 0, 1 or 2, to indi­
cate whether the label is to be left-justified, cen­
tered, or right-justified within the label.

slk_noutrefresh() These routines correspond to the routines
wrefresh() and wnoutrefresh(). Most applications
would use slk_noutrefresh() because a wrefresh()
will most likely soon follow.

char *Slk_label(labnum)

slk_clear()

slk_restore()

slk_touch()

Low-Level curses Access

The current label for label number labnum, with
leading and trailing blanks stripped, is returned.

The soft labels are cleared from the screen.

The soft labels are restored to the screen after a
slk_clear().

All of the soft labels are forced to be output the next
time a slk_noutrefresh() is performed.

The following routines give low-level access to various curses functionality.
These routines typically would be used inside of library routines.

def_prog_mode()
def_shell_mode() Save the current terminal modes as the "program"

(in curses) or "shell" (not in curses) state for use by
the reset_prog_mode() and reset_shell_mode() rou­
tines. This is done automatically by initscr().

reset_prog_mode()
reset_shell_mode()

MU43814PR/D2

Restore the terminal to "program" (in curses) or
"shell" (out of curses) state. These are done
automatically by end win() and doupdate() after an
end win(), so they normally would not be called.

- 29 - 12/01/87

CURSES(3X)

resetty()
savetty()

getsyx{y, x)

setsyx(y, x)

(Terminal Information Utilities) CURSES(3X)

These routines save and restore the state of the ter­
minal modes. savetty() saves the current state of
the terminal in a buffer and resetty() restores the
state to what it was at the last call to savetty().

The current coordinates of the virtual screen cursor
are returned in y and x. Like getyx(), the variables
y and x do not take an "&" before them. If
leaveok() is currently TRUE, then -1,-1 will be
returned. If lines may have been removed from the
top of the screen using ripoffline() and the values
are to be used beyond just passing them on to set­
syx(), the value y + stdscr-> _yoffset should be used
for those other uses.

Note that getsyx() is a macro.

The virtual screen cursor is set to y, x. If y and x
are both -1, then leaveok() will be set. The two
routines getsyx() and setsyx() are designed to be
used by a library routine which manipulates curses
windows but does not want to mess up the current
position of the program's cursor. The library rou­
tine would call getsyx() at the beginning, do its
manipulation of its own windows, do a
wnoutrefresh() on its windows, call setsyx(), and
then call doupdate().

ripoffline(line, init) This routine provides access to the same facility that
slk_init() uses to reduce the size of the screen. rip­
offline() must be called before initscr() or
newterm() is called. If line is positive, a line will be
removed from the top of stdscr; if negative, a line
will be removed from the bottom. When this is
done inside initscr(), the routine init() is called with
two arguments: a window pointer to the 1-line win­
dow that has been allocated and an integer with the
number of columns in the window. Inside this ini­
tialization routine, the integer variables LINES and

MU43814PR/02 - 30 - 12/01/87

II

Ill

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

COLS (defined in <curses.h>) are not guaranteed
to be accurate and wrefresh() or doupdate() must
not be called. It is allowable to call wnoutrefresh()
during the initialization routine.

ripoffline() can be called up to five times before cal­
ling initscr() or newterm().

scr_dump(filename) The current contents of the virtual screen are writ­
ten to the file filename.

scr_restore(filename) The virtual screen is set to the contents of filename,
which must have been written using scr_dump().
The next call to doupdate() will restore the screen to
what it looked like in the dump file.

scr_init(filename) The contents of filename are read in and used to ini­
tialize the curses data structures about what the ter­
minal currently has on its screen. If the data is
determined to be valid, curses will base its next
update of the screen on this information rather than
clearing the screen and starting from scratch.
scr_init() would be used after initscr() or a
system(3S) call to share the screen with another pro­
cess which has done a scr_dump() after its
end win() call. The data will be declared invalid if
the time-stamp of the tty is old or the terminfo(4)
capability nrrmc is true.

curs_set(visibility) The cursor is set to invisible, normal, or very visible
for visibility equal to 0, 1 or 2.

draino(ms) Wait until the output has drained enough that it will
only take ms more milliseconds to drain completely.

garbagedlines(win, begline, numlines)

MU43814PR/D2

This routine indicates to curses that a screen line is
garbaged and should be thrown away before having
anything written over the top of it. It could be used
for programs such as editors which want a com­
mand to redraw just a single line. Such a command
could be used in cases where there is a noisy com­
munications line and redrawing the entire screen
would be subject to even more communication
noise. Just redrawing the single line gives some

- 31 - 12/01/87

CURSES(3X)

napms(ms)

(Terminal Information Utilities) CURSES(3X)

semblance of hope that it would show up unblem­
ished. The current location of the window is used
to determine which lines are to be redrawn.

Sleep for ms milliseconds.

Terminfo-Level Manipulations
These low-level routines must be called by programs that need to deal
directly with the terminfo(4) database to handle certain terminal capabili­
ties, such as programming function keys. For all other functionality,
curses routines are more suitable and their use is recommended.

Initially, setupterm() should be called. (Note that setupterm() is automat­
ically called by initscr() and newterm().) This will define the set of
terminal-dependent variables defined in the terminfo(4) database. The ter­
minfo(4) variables lines and columns (see terminfo(4)) are initialized by
setupterm() as follows: if the environment variables LINES and
COLUMNS exist, their values are used. If the above environment vari­
ables do not exist and the program is running in a layer (see layers(l)), the
size of the current layer is used. Otherwise, the values for lines and
columns specified in the terminfo(4) database are used.

The header files <curses.h> and <term.h> should be included, in this
order, to get the definitions for these strings, numbers, and flags.
Parameterized strings should be passed through tparm() to instantiate
them. All terminfo(4) strings (including the output of tparm()) should be
printed with tputs() or putp(). Before exiting, reset_shell_mode() should
be called to restore the tty modes. Programs which use cursor addressing
should output enter_ca_mode upon startup and should output
exit_ca_mode before exiting (see terminfo(4)). (Programs desiring shell
escapes should call reset_shell_mode() and output exit_ca_mode before
the shell is called and should output enter_ca_mode and call
reset_prog_mode() after returning from the shell. Note that this is dif­
ferent from the curses routines (see end win()).

setupterm(term, fildes, errret)

MU43814PR/D2

Reads in the terminfo(4) database, initializing the ter­
minfo(4) structures, but does not set up the output
virtualization structures used by curses. The termi­
nal type is in the character string term; if term is
NULL, the environment variable TERM will be used.
All output is to the file descriptor fildes. If errret is
not NULL, then setupterm() will return OK or ERR

- 32 - 12/01/87

II

Ill

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

and store a status value in the integer pointed to by
errret. A status of 1 in errret is normal, 0 means that
the terminal could not be found, and -1 means that
the terminfo(4) database could not be found. If errret
is NULL, setupterm() will print an error message
upon finding an error and exit. Thus, the simplest
call is setupterm ((char *)O, 1, (int *)O), which uses
all the defaults.

The terminfo(4) boolean, numeric and string vari­
ables are stored in a structure of type TERMINAL.
After setupterm() returns successfully, the variable
cur_term (of type TERMINAL *) is initialized with
all of the information that the terminfo(4) boolean,
numeric and string variables refer to. The pointer
may be saved before calling setupterm() again.
Further calls to setupterm() will allocate new space
rather than reuse the space pointed to by cur_term.

set_curterm(nterm) nterm is of type TERMINAL *· set_curterm() sets
the variable cur_term to nterm, and makes all of the
terminfo(4) boolean, numeric and string variables use
the values from nterm.

del_curterm(oterm) oterm is of type TERMINAL *· del_curterm() frees
the space pointed to by oterm and makes it available
for further use. If oterm is the same as cur_term,
then references to any of the terminfo(4) boolean,
numeric and string variables thereafter may refer to
invalid memory locations until another setupterm()
has been called.

restartterm(term, fildes, errret)
Like setupterm() after a memory restore.

char *tparm(str, pl' p2, ... , p9)
instantiate the string str with parms p.. A pointer is
returned to the result of str with the parameters
applied.

MU43814PR/02 - 33 - 12/01/87

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

tputs(str, count, putc)
Apply padding to the string str and output it. str
must be a terminfo(4) string variable or the return
value from tparm(), tgetstr(), tigetstr() or tgoto().
count is the number of lines affected, or 1 if not
applicable. putc() is a putchar(3S)-like routine to
which the characters are passed, one at a time.

putp(str) A routine that calls tputs (str, 1, putchar()).

vidputs(attrs, putc) Output a string that puts the terminal in the video
attribute mode attrs, which is any combination of
the attributes listed below. The characters are
passed to the putchar(3S)-like routine putc().

vidattr(attrs) Like vidputs(), except that it outputs through
putchar(3S).

mvcur(oldrow, oldcol, newrow, newcol)
Low-level cursor motion.

The following routines return the value of the capability corresponding to
the terminfo(4) capname passed to them, such as xenl.

tigetflag(capname) The value -1 is returned if capname is not a boolean
capability.

tigetnum(capname) The value -2 is returned if capname is not a numeric
capability.

tigetstr(capname) The value (char*) -1 is returned if capname is not a
string capability.

char •boolnames[], •boolcodes[], •boolfnames[]
char •numnames[], •numcodes[], •numfnames[]
char •strnames[], •strcodes[], •strfnames[)

Termcap Emulation

These null-terminated arrays contain the capnames,
the termcap codes, and the full C names, for each of
the terminfo(4) variables.

These routines are included as a conversion aid for programs that use the
termcap library. Their parameters are the same and the routines are emu­
lated using the terminfo(4) database.

MU43814PR/D2 - 34 - 12/01/87

Ill

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

tgetent(bp, name) Look up termcap entry for name. The emulation
ignores the buffer pointer bp.

tgetflag(codename) Get the boolean entry for codename.

tgetnum(codes) Get numeric entry for codename.

char *lgetstr(codename, area)
Return the string entry for codename. If area is not
NULL, then also store it in the buffer pointed to by
area and advance area. tputs() should be used to
output the returned string.

char *lgoto(cap, col, row)

tputs(str, affcnt, putc)

Miscellaneous
traceoff()
traceon()

unctrl(c)

char *keyname(c)

filter()

MU43814PR/D2

Instantiate the parameters into the given capability.
The output from this routine is to be passed to
tputs().

See tputs() above, under 'Terminfo-Level Manipula­
tions".

Tum off and on debugging trace output when using
the debug version of the curses library,
/usr/lib/libdcurses.a. This facility is available only to
customers with a source license.

This macro expands to a character string which is a
printable representation of the character c. Control
characters are displayed in the AX notation. Printing
characters are displayed as is.

unctrl() is a macro, defined in <unctrl.h>, which is
automatically included by <curses.h>.

A character string corresponding to the key c is
returned.

This routine is one of the few that is to be called
before initscr() or newterm() is called. It arranges
things so that curses thinks that there is a 1-line
screen. curses will not use any terminal capabilities
that assume that they know what line on the screen
the cursor is on.

- 35 - 12/01/87

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

Use of curscr
The special window curscr can be used in only a few routines. If the win­
dow argument to clearok() is curscr, the next call to wrefresh() with any
window will cause the screen to be cleared and repainted from scratch. If
the window argument to wrefresh() is curscr, the screen is immediately
cleared and repainted from scratch. (This is how most programs would
implement a "repaint-screen" routine.) The source window argument to
overlay(), overwrite(), and copywin() may be curscr, in which case the
current contents of the virtual terminal screen will be accessed.

Obsolete Calls
Various routines are provided to maintain compatibility in programs writ­
ten for older versions of the curses library. These routines are all emu­
lated as indicated below.

crmode()

fixterm()

gettmode()

nocrmode()

resetterm()

saveterm()

setterm()

ATTRIBUTES

Replaced by cbreak().

Replaced by reset_prog_mode().

Ano-op.

Replaced by nocbreak().

Replaced by reset_shell_mode().

Replaced by def_prog_mode().

Replaced by setupterm().

The following video attributes, defined in <curses.h>, can be passed to
the routines attron(), attroff(), and attrset(), or OR' ed with the characters
passed to addch().

A_STANDOUT
A_ UNDERLINE
A_REVERSE
A_BLINK
A_DIM
A_BOLD
A_ALTCHARSET

A_CHARTEXT
A_ATTRIBUTES
A_NORMAL

MU43814PR/D2

Terminal's best highlighting mode
Underlining
Reverse video
Blinking
Half bright
Extra bright or bold
Alternate character set

Bit-mask to extract character (described under winch())
Bit-mask to extract attributes (described under winch())
Bit mask to reset all attributes off
(for example: attrset (A_NORMAL)

- 36 - 12101/87

II

Ill

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

FUNCTION-KEYS
The following function keys, defined in <curses.h>, might be returned
by getch() if keypad() has been enabled. Note that not all of these may
be supported on a particular terminal if the terminal does not transmit a
unique code when the key is pressed or the definition for the key is not
present in the terminfo(4) database.

Name

KEY_BREAK
KEY_DOWN
KEY_UP
KEY_LEFT
KEY_RIGHT
KEY_HOME
KEY_BACKSP ACE
KEY_FO
KEY_F(n)
KEY_DL
KEY_IL
KEY_DC
KEY_IC
KEY_EIC
KEY_CLEAR
KEY_EOS
KEY_EOL
KEY_SF
KEY_SR
KEY_NPAGE
KEY_PPAGE
KEY_STAB
KEY_CTAB
KEY_CATAB
KEY_ENTER
KEY_SRESET
KEY_RESET
KEY_PRINT

MU43814PR/D2

Value

0401
0402
0403
0404
0405
0406
0407
0410
(KEY_FO+(n))
0510
0511
0512
0513
0514
0515
0516
0517
0520
0521
0522
0523
0524
0525
0526
0527
0530
0531
0532

Key name

break key (unreliable)
The four arrow keys ...

Home key (upward+ left arrow)
backspace (unreliable)
Function keys. Space for 64 keys is reserved.
Formula for f .
Delete line n
Insert line
Delete character
Insert char or enter insert mode
Exit insert char mode
Clear screen
Clear to end of screen
Clear to end of line
Scroll 1 line forward
Scroll 1 line backwards (reverse)
Next page
Previous page
Set tab
Clear tab
Clear all tabs
Enter or send
soft (partial) reset
reset or hard reset
print or copy

- 37 - 12/01/87

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

KEY_LL 0533 home down or bottom (lower left)
keypad is arranged like this:

Al up A3
left B2 right
Cl down C3

KEY_Al 0534 Upper left of keypad
KEY_A3 0535 Upper right of keypad
KEY_B2 0536 Center of keypad
KEY_Cl 0537 Lower left of keypad
KEY_C3 0540 Lower right of keypad
KEY_BTAB 0541 Back tab key
KEY_BEG 0542 beg(inning) key
KEY_CANCEL 0543 cancel key
KEY_CLOSE 0544 close key
KEY_COMMAND 0545 cmd (command) key
KEY_COPY 0546 copy key
KEY_CREATE 0547 create key
KEY_END 0550 end key
KEY_EXIT 0551 exit key
KEY_FIND 0552 find key
KEY_HELP 0553 help key
KEY_MARK 0554 mark key
KEY_MESSAGE 0555 message key
KEY_MOVE 0556 move key
KEY_NEXT 0557 next object key
KEY_OPEN 0560 open key
KEY_OPTIONS 0561 options key
KEY_pREVIOUS 0562 previous object key
KEY_REDO 0563 redo key
KEY_REFERENCE 0564 ref(erenc:e) key
KEY_REFRESH 0565 refresh key
KEY_REPLACE 0566 replace key
KEY_RESTART 0567 restart key
KEY_RESUME 0570 resume key
KEY_SAVE 0571 save key
KEY_SBEG 0572 shifted beginning key
KEY_SCANCEL 0573 shifted cancel key
KEY_SCOMMAND 0574 shifted command key
KEY_SCOPY 0575 shifted copy key
KEY_SCREATE 0576 shifted create key

MU43814PR/D2 - 38 - 12/01/87

Ill

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

KEY_SDC 0577 shifted delete char key
KEY_SDL 0600 shifted delete line key
KEY_SELECT 0601 select key
KEY_SEND 0602 shifted end key
KEY_SEOL 0603 shifted clear line key
KEY_SEXIT 0604 shifted exit key
KEY_SFIND 0605 shifted find key
KEY_SHELP 0606 shifted help key
KEY_SHOME 0607 shifted home key
KEY_SIC 0610 shifted input key
KEY_SLEFT 0611 shifted left arrow key
KEY_SMESSAGE 0612 shifted message key
KEY_SMOVE 0613 shifted move key
KEY_SNEXT 0614 shifted next key
KEY_SOPTIONS 0615 shifted options key
KEY_SPREVIOUS 0616 shifted prev key
KEY_SPRINT 0617 shifted print key
KEY_SREDO 0620 shifted redo key
KEY_SREPLACE 0621 shifted replace key
KEY_SRIGHT 0622 shifted right arrow
KEY_SRSUME 0623 shifted resume key
KEY_SSAVE 0624 shifted save key
KEY_SSUSPEND 0625 shifted suspend key
KEY_SUNDO 0626 shifted undo key
KEY_SUSPEND 0627 suspend key
KEY_UNDO 0630 undo key

LINE GRAPHICS
The following variables may be used to add line-drawing characters to the
screen with waddch(). When defined for the terminal, the variable will
have the A_ALTCHARSET bit turned on. Otherwise, the default charcter
listed below will be stored in the variable. The names were chosen to be
consistent with the DEC VTlOO nomenclature.

Name Default Glyph Description

ACS_ULCORNER + upper left corner
ACS_LLCORNER + lower left corner
ACS_URCORNER + upper right corner
ACS_LRCORNER + lower right corner
ACS_RTEE + right tee (-l)
ACS_LTEE + left tee (~)

MU43814PR/D2 - 39 - 12/01/87

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

ACS_BTEE + bottom tee (1)
ACS_TTEE + top tee {T)
ACS_HLINE horizontal line
ACS_VLINE vertical line
ACS_PLUS + plus
ACS_Sl scan line 1
ACS_S9 scan line 9
ACS_DIAMOND + diamond
ACS_CKBOARD checker board (stipple)
ACS_DEGREE degree symbol
ACS_PLMINUS # plus/minus
ACS_BULLET 0 bullet
ACS_LARROW < arrow pointing left
ACS_RARROW > arrow pointing right
ACS_DARROW v arrow pointing down
ACS_UARROW arrow pointing up
ACS_BOARD # board of squares
ACS_LANTERN # lantern symbol
ACS_BLOCK # solid square block

RETURN VALUES

BUGS

All routines return the integer OK upon successful completion and the
integer ERR upon failure, unless otherwise noted in the preceding routine
descriptions.

All macros return the value of their w version, except setscrreg(),
wsetscrreg(), getsyx(), getyx(), getbegy(), getmaxyx(). For these macros,
no useful value is returned.

Routines that return pointers always return (type•) NULL on error.

Currently typeahead checking is done using a nodelay read followed by
an ungetch() of any character that may have been read. Typeahead
checking is done only if wgetch() has been called at least once. This will
be changed when proper kernel support is available. Programs which use
a mixture of their own input routines with curses input routines may wish
to call typeahead(-1) to turn off typeahead checking.

The argument to napms() is currently rounded up to the nearest second.

draino (ms) only works for ms equal to 0.

WARNINGS
To use the new curses features, use the Release 3 version of curses on

MU43814PR/D2 - 40 - 12/01/87

Ill

CURSES(3X) (Terminal Information Utilities) CURSES(3X)

Release 3 of the operating system. All programs that ran with Release 2
curses will run with Release 3. You may link applications with object files
based on the Release 2 curseslterminfo with the Release 3.0 libcurses.a
library. You may link applications with object files based on the Release
3.0 curseslterminfo with the Release 2 libcurses.a library, so long as the
application does not use the new features in the Release 3.0
curses/ terminfo.

The plotting library plot(3X) and the curses library curses(3X) both use the
names erase() and move(). The curses versions are macros. If you need
both libraries, put the plot(3X) code in a different source file than the
curses(3X) code, and/or #undef move() and erase() in the plot(3X) code.

Between the time a call to initscr() and end win() has been issued, use
only the routines in the curses library to generate output. Using system
calls or the "standard UO package" (see stdio(3S)) for output during that
time can cause unpredictable results.

SEE ALSO
cc(l), ld(l), ioctl(2), plot(3X), putc(3S), scanf(3S), stdio(3S), system(3S),
vprintf(3S), profile(4), term(4), terminfo(4), varargs(S).
termio(7), tty(7) in the System Administrator's Reference Manual.
Chapter 10 of the Programmer's Guide.

MU43814PR/D2 - 41 - 12/01/87

DIRECTORY (3X) DIRECTORY(3X)

NAME
directory: opendir, readdir, telldir, seekdir, rewinddir, closedir - directory
operations

SYNOPSIS
#include <sys/types.h>
#inciude <dirent.h>

DIR *opendir (filename)
char *filename;

struct dirent *readdir (dirp)
DIR *dirp;

long telldir (dirp)
DIR *dirp;

void seekdir (dirp, loc)
DIR *dirp;
long loc;

void rewinddir (dirp)
DIR •dirp;

void closedir(dirp)
DIR •dirp;

DESCRIPTION
Opendir opens the directory named by filename and associates a directory
stream with it. Opendir returns a pointer to be used to identify the direc­
tory stream in subsequent operations. The pointer NULL is returned if
filename cannot be accessed or is not a directory, or if it cannot malloc(3X)
enough memory to hold a DIR structure or a buffer for the directory
entries.

Readdir returns a pointer to the next active directory entry. No inactive
entries are returned. It returns NULL upon reaching the end of the direc­
tory or upon detecting an invalid location in the directory.

Telldir returns the current location associated with the named directory
stream.

Seekdir sets the position of the next readdir operation on the directory
stream. The new position reverts to the one associated with the directory

MU43814PR/D2 - 1 - 12/01/87

II

DIRECTORY(3X) DIRECTORY(3X)

stream when the telldir operation from which Zoe was obtained was per­
formed. Values returned by telldir are good only if the directory has not
changed due to compaction or expansion. This is not a problem with Sys­
tem V, but it may be with some file system types.

Rewinddir resets the position of the named directory stream to the begin­
ning of the directory.

Closedir closes the named directory stream and frees the DIR structure.

The following errors can occur as a result of these operations.

opendir:

[ENOTDIR]

[EACCES]

[EMFILE]

[EFAULT]

readdir:

[ENO ENT]

[El3ADF]

A component of filename is not a directory.

A component of filename denies search permission.

The maximum number of file descriptors are currently
open.

Filename points outside the allocated address space.

The current file pointer for the directory is not located at
a valid entry.

The file descriptor determined by the DIR stream is no
longer valid. This results if the DIR stream has been
closed.

telldir, seekdir, and closedir:

[EBADF] The file descriptor determined by the DIR stream is no
longer valid. This results if the DIR stream has been
closed.

EXAMPLE
Sample code which searches a directory for entry name:

MU43814PR/D2

dirp = opendir(".") ;
while ((dp = readdir(dirp)) != NULL)

if (strcmp(dp->d_name, name) = = 0)
{
closedir(dirp) ;
return FOUND;

- 2 - 12/01/87

DIRECTORY(3X)

SEE ALSO

}
closedir(dirp);
return NOT_FOUND;

getdents(2), dirent(4).

WARNINGS

DIRECTORY(3X)

Rewinddir is implemented as a macro, so its function address cannot be
taken.

MU43814PR/D2 - 3 - 12/01/87

Ill

GETNUM(3X) GETNUM(3X)

NAME
getnum - calculate an integer value from a string of characters.

SYNOPSIS
int getnum (string)
char •string;

DESCRIPTION
getnum returns the integer value of a character string. getnum uses the fol­
lowing rules when calculating a number from a character string:

• Skip over any white space.

• Change a series of the numerical characters (0 - 9) into a number
assuming base 10 representation.

• A series of numerical characters may end with k, b, or w to specify
multiplication by 1024, 512, or 2 respectively;

• A pair of numbers may be separated by x or * to indicate a product of
those two numbers.

• Use the null and colon as the termination characters.

• If an illegal character is encountered before a termination character, an
error conditions exists and -1 is returned.

The program must be loaded with the disk access library /usr/lib/access.a.

MU43814PR/D2 - 1 - 12/01/87

II

Ill

GETPERMS(3X)

NAME
getperms - read the permissions file

SYNOPSIS
int getperms (disk)
struct usrdev *disk;

DESCRIPTION

GETPERMS(3X)

When getperms is invoked, the member look_Jor is used to find a match in
the permissions file /etc/perms. When a match of either the real_device
entry or the alias entry is found, getperms returns the structure filled with
the contents of the matching line.

The program must be loaded with the disk access library
/usr/lib/libaccess.a

struct usrdev
{

};

FILES

char real_dev[] ;
char look_for[] ;
char mntpt[] ;
char fsize[] ;
char mkfs_dev[] ;
char modes[] ;
char pgm[];
char fmt_dev[] ;

/usr/include/access.h

SEE ALSO
perms(4).

MU43814PR/D2 - 1 -

/* block device to access */
/* an alternative name for the device */
/* the default mount point */
/*maximum file system size on the device*/
/*device to use for making file systems */
/*access permissions*/
/* format utitily to envoke */
/*redundant; will go away in future versions*/

12/01/87

LDAHREAD(3X) (Specialized Libraries) LDAHREAD(3X)

NAME
ldahread - read the archive header of a member of an archive file

SYNOPSIS
#include <stdio.h>
#include <ar.h>
#include <filehdr.h>
#include <ldfcn.h>

int ldahread (ldptr, arhead)
LDFILE * ldptr;
ARCHDR *arhead;

DESCRIPTION
If TYPE(ldptr) is the archive file magic number, ldahread reads the archive
header of the common object file currently associated with ldptr into the
area of memory beginning at arhead.

ldahread returns SUCCESS or FAILURE. ldahread will fail if TYPE(ldptr) does
not represent an archive file, or if it cannot read the archive header.

The program must be loaded with the object file access routine library
libld.a.

SEE ALSO
ldclose(3X), ldopen(3X), ldfcn(4), ar(4).

MU43814PR/D2 - 1 - 12/01/87

Ill

LDCLOSE(3X) (Specialized Libraries) LDCLOSE(3X)

NAME
ldclose, Idaclose - close a common object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

int ldclose (ldptr)
LDFILE * ldptr;

int ldaclose (ldptr)
LDFILE * ldptr;

DESCRIPTION
Ldopen(3X) and ldclose are designed to provide uniform access to both sim­
ple object files and object files that are members of archive files. Thus an
archive of common object files can be processed as if it were a series of
simple common object files.

If TYPE(ldptr) does not represent an archive file, ldclose will close the file
and free the memory allocated to the LDFILE structure associated with
ldptr. If TYPE(ldptr) is the magic number of an archive file, and if there
are any more files in the archive, ldclose will reinitialize OFFSET(ldptr) to
the file address of the next archive member and return FAILURE. The
LDFILE structure is prepared for a subsequent ldopen(3X). In all other
cases, ldclose returns SUCCESS.

Ldaclose closes the file and frees the memory allocated to the LDFILE struc­
ture associated with ldptr regardless of the value of TYPE(ldptr). Ldaclose
always returns SUCCESS. The function is often used in conjunction with
ldaopen.

The program must be loaded with the object file access routine library
lib Id.a.

SEE ALSO
fclose(3S), ldopen(3X), ldfcn(4).

MU43814PR/D2 - 1 - 12/01/87

LDFHREAD(3X) (Specialized Libraries) LDFHREAD(3X)

NAME
ldfhread - read the file header of a common object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

int ldfhread (ldptr, filehead)
LDFILE *ldptr;
FILHDR *filehead;

DESCRIPTION
ldfhread reads the file header of the common object file currently associ­
ated with ldptr into the area of memory beginning at filehead.

ldfhread returns SUCCESS or FAILURE. ldfhread will fail if it cannot read
the file header.

In most cases the use of ldfhread can be avoided by using the macro
HEADER(ldptr) defined in ldfcn.h fsee ldfcn (4)]. The information in any
field, fieldname, of the file header may be accessed using
HEADER(ldptr). fieldname.

The program must be loaded with the object file access routine library
libld.a.

SEE ALSO
ldclose(3X), ldopen(3X), ldfcn(4).

MU43814PR/D2 - 1 - 12/01/87

II

Ill

LDGETNAME(3X) (Specialized Libraries) LDGETNAME (3X)

NAME
ldgetname - retrieve symbol name for common object file symbol table
entry

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <syms.h>
#include <ldfcn.h>

char •ldgetname (ldptr, symbol)
LDFILE •ldptr;
SYMENT •symbol;

DESCRIPTION
ldgetname returns a pointer to the name associated with symbol as a
string. The string is contained in a static buffer local to ldgetname that is
overwritten by each call to ldgetname, and therefore must be copied by the
caller if the name is to be saved.

ldgetname can be used to retrieve names from object files without any
backward compatibility problems. ldgetname will return NULL (defined in
stdio.h) for an object file if the name cannot be retrieved. This situation
can occur:

if the "string table" cannot be found,

if not enough memory can be allocated for the string table,

if the string table appears not to be a string table (for example, if
an auxiliary entry is handed to ldgetname that looks like a refer­
ence to a name in a nonexistent string table), or

if the name's offset into the string table is past the end of the
string table.

Typically, ldgetname will be called immediately after a successful call to
ldtbread to retrieve the name associated with the symbol table entry filled
by ldtbread.

The program must be loaded with the object file access routine library
libld.a.

SEE ALSO
ldclose(3X), ldopen(3X), ldtbread(3X), ldtbseek(3X), ldfcn(4).

MU43814PR/02 - 1 - 12/01/87

LDLREAD(3X) (Specialized Libraries) LDLREAD(3X)

NAME
ldlread, ldlinit, ldlitem - manipulate line number entries of a common
object file function

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <linenum.h>
#include <ldfcn.h>

int ldlread(ldptr, fcnindx, linenum, linent)
LDFILE •ldptr;
long fcnindx;
unsigned short linenum;
LINENO •linent;

int ldlinit(ldptr, fcnindx)
LDFILE •ldptr;
long fcnindx;

int ldlitem(ldptr, linenum, linent)
LDFILE •ldptr;
unsigned short linenum;
LINENO •linent;

DESCRIPTION
ldlread searches the line number entries of the common object file
currently associated with ldptr. ldlread begins its search with the line
number entry for the beginning of a function and confines its search to the
line numbers associated with a single function. The function is identified
by fcnindx, the index of its entry in the object file symbol table. ldlread
reads the entry with the smallest line number equal to or greater than line­
num into the memory beginning at linent.

Ldlinit and ldlitem together perform exactly the same function as ldlread.
After an initial call to ldlread or ldlinit, ldlitem may be used to retrieve a
series of line number entries associated with a single function. Ldlinit
simply locates the line number entries for the function identified by
fcnindx. Ldlitem finds and reads the entry with the smallest line number
equal to or greater than linenum into the memory beginning at linent.

ldlread, ldlinit, and ldlitem each return either SUCCESS or FAILURE. ldlread
will fail if there are no line number entries in the object file, if fcnindx does
not index a function entry in the symbol table, or if it finds no line

MU43814PR/D2 - 1 - 12/01/87

II

LDLREAD(3X) (Specialized Libraries) LDLREAD(3X)

number equal to or greater than linenum. Ldlinit will fail if there are no
line number entries in the object file or if fcnindx does not index a function
entry in the symbol table. Ldlitem will fail if it finds no line number equal
to or greater than linenum.

The programs must be loaded with the object file access routine library
lib Id.a.

SEE ALSO
ldclose(3X), ldopen(3X), ldtbindex(3X), ldfcn(4).

MU43814PR/D2 - 2 - 12/01/87

LDLSEEK(3X) (Specialized Libraries) LDLSEEK(3X)

NAME
ldlseek, ldnlseek - seek to line number entries of a section of a common
object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

int ldlseek (ldptr, sectindx)
LDFILE *ldptr;
unsigned short sectindx;

int ldnlseek (ldptr, sectname)
LDFILE *ldptr;
char *sectname;

DESCRIPTION
ldlseek seeks to the line number entries of the section specified by sectindx
of the common object file currently associated with ldptr.

Ldnlseek seeks to the line number entries of the section specified by
sectname.

ldlseek and ldnlseek return SUCCESS or FAILURE. ldlseek will fail if sectindx
is greater than the number of sections in the object file; ldnlseek will fail if
there is no section name corresponding with *Sectname. Either function
will fail if the specified section has no line number entries or if it cannot
seek to the specified line number entries.

Note that the first section has an index of one.

The program must be loaded with the object file access routine library
libld.a.

SEE ALSO
ldclose(3X), ldopen(3X), ldshread(3X), ldfcn(4).

MU43814PR/02 - 1 - 12/01/87

II

Ill

LDOHSEEK(3X) (Specialized Libraries) LDOHSEEK(3X)

NAME
ldohseek - seek to the optional file header of a common object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

int ldohseek (ldptr)
LDFILE •ldptr;

DESCRIPTION
ldohseek seeks to the optional file header of the common object file
currently associated with ldptr.

ldohseek returns SUCCESS or FAILURE. ldohseek will fail if the object file
has no optional header or if it cannot seek to the optional header.

The program must be loaded with the object file access routine library
libld.a.

SEE ALSO
ldclose(3X), ldopen(3X), ldfhread(3X), ldfcn(4).

MU43814PR/D2 -1- 12/01/87

LDOPEN(3X) (Specialized Libraries) LDOPEN(3X)

NAME
ldopen, ldaopen - open a common object file for reading

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

LDFILE *ldopen (filename, ldptr)
char *filename;
LDFILE *ldptr;

LDFILE *ldaopen (filename, oldptr)
char *filename;
LDFILE *Oldptr;

DESCRIPTION
ldopen and ldclose(3X) are designed to provide uniform access to both sim­
ple object files and object files that are members of archive files. Thus an
archive of common object files can be processed as if it were a series of
simple common object files.

If ldptr has the value NULL, then ldopen will open filename and allocate and
initialize the LDFILE structure, and return a pointer to the structure to the
calling program.

If ldptr is valid and if TYPE(ldptr) is the archive magic number, ldopen will
reinitialize the LDFILE structure for the next archive member of filename.

ldopen and ldclose(3X) are designed to work in concert. Ldclose will return
FAILURE only when TYPE(ldptr) is the archive magic number and there is
another file in the archive to be processed. Only then should ldopen be
called with the current value of ldptr. In all other cases, in particular
whenever a new filename is opened, ldopen should be called with a NULL
ldptr argument.

The following is a prototype for the use of ldopen and ldclose(3X).

MU43814PR/D2 - 1 - 12/01/87

II

Ill

LDOPEN(3X) (Specialized Libraries)

I* for each filename to be processed *I

ldptr = NULL;
do
{

LDOPEN(3X)

if ((ldptr = ldopen(filename, ldptr)) != NULL)
{

}

I* check magic number *'
I* process the file *'

} while (lddose(ldptr) = = FAILURE);

If the value of oldptr is not NULL, ldaopen will open filename anew and allo­
cate and initialize a new LDFILE structure, copying the TYPE, OFFSET, and
HEADER fields from oldptr. Ldaopen returns a pointer to the new LDFILE
structure. This new pointer is independent of the old pointer, oldptr. The
two pointers may be used concurrently to read separate parts of the object
file. For example, one pointer may be used to step sequentially through
the relocation information, while the other is used to read indexed symbol
table entries.

Both ldopen and ldaopen open filename for reading. Both functions return
NULL if filename cannot be opened, or if memory for the LDFILE structure
cannot be allocated. A successful open does not insure that the given file
is a common object file or an archived object file.

The program must be loaded with the object file access routine library
libld.a.

SEE ALSO
fopen(3S), ldclose(3X), ldfcn(4).

MU43814PR/D2 - 2 - 12/01/87

LDRSEEK(3X) (Specialized Libraries) LDRSEEK(3X)

NAME
ldrseek, ldnrseek - seek to relocation entries of a section of a common
object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

int ldrseek (ldptr, sectindx)
LDFILE *ldptr;
unsigned short sectindx;

int ldnrseek (ldptr, sectname)
LDFILE *ldptr;
char *Sectname;

DESCRIPTION
ldrseek seeks to the relocation entries of the section specified by sectindx of
the common object file currently associated with ldptr.

Ldnrseek seeks to the relocation entries of the section specified by sectname.

ldrseek and ldnrseek return SUCCESS or FAILURE. ldrseek will fail if sectindx
is greater than the number of sections in the object file; ldnrseek will fail if
there is no section name corresponding with sectname. Either function will
fail if the specified section has no relocation entries or if it cannot seek to
the specified relocation entries.

Note that the first section has an index of one.

The program must be loaded with the object file access routine library
lib Id.a.

SEE ALSO
ldclose(3X), ldopen(3X), ldshread(3X), ldfcn(4).

MU43814PR/D2 - 1 - 12/01/87

II

Ill

LDSHREAD(3X) (Specialized Libraries) LDSHREAD(3X)

NAME
ldshread, ldnshread - read an indexed/named section header of a common
object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <scnhdr.h>
#include <ldfcn.h>

int ldshread (ldptr, sectindx, secthead)
LDFILE *ldptr;
unsigned short sectindx;
SCNHDR *Secthead;

int ldnshread (ldptr, sectname, secthead)
LDFILE *ldptr;
char *Sectname;
SCNHDR *Secthead;

DESCRIPTION
ldshread reads the section header specified by sectindx of the common
object file currently associated with ldptr into the area of memory begin­
ning at secthead.

Ldnshread reads the section header specified by sectname into the area of
memory beginning at secthead.

ldshread and ldnshread return SUCCESS or FAILURE. ldshread will fail if sec­
tindx is greater than the number of sections in the object file; ldnshread will
fail if there is no section name corresponding with sectname. Either func­
tion will fail if it cannot read the specified section header.

Note that the first section header has an index of one.

The program must be loaded with the object file access routine library
lib Id.a.

SEE ALSO
ldclose(3X), ldopen(3X), ldfcn(4).

MU43814PR/D2 - 1 - 12/01/87

LDSSEEK(3X) (Specialized Libraries) LDSSEEK(3X)

NAME
ldsseek, ldnsseek - seek to an indexed/named section of a common object
file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

int ldsseek (ldptr, sectindx)
LDFILE •ldptr;
unsigned short sectindx;

int ldnsseek (ldptr, sectname)
LDFILE •ldptr;
char •sectname;

DESCRIPTION
ldsseek seeks to the section specified by sectindx of the common object file
currently associated with ldptr.

Ldnsseek seeks to the section specified by sectname.

ldsseek and ldnsseek return SUCCESS or FAILURE. ldsseek will fail if sectindx
is greater than the number of sections in the object file; ldnsseek will fail if
there is no section name corresponding with sectname. Either function will
fail if there is no section data for the specified section or if it cannot seek
to the specified section.

Note that the first section has an index of one.

The program must be loaded with the object file access routine library
lib Id.a.

SEE ALSO
ldclose(3X), ldopen(3X), ldshread(3X), ldfcn(4).

MU43814PR/D2 - 1 - 12/01/87

II

•

LDTBINDEX(3X) (Specialized Libraries) LDTBINDEX(3X)

NAME
ldtbindex - compute the index of a symbol table entry of a common object
file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <syms.h>
#include <ldfcn.h>

long ldtbindex (ldptr)
LDFILE •ldptr;

DESCRIPTION
ldtbindex returns the (long) index of the symbol table entry at the current
position of the common object file associated with ldptr.

The index returned by ldtbindex may be used in subsequent calls to
ldtbread(3X). However, since ldtbindex returns the index of the symbol
table entry that begins at the current position of the object file, if ldtbindex
is called immediately after a particular symbol table entry has been read,
it will return the index of the next entry.

ldtbindex will fail if there are no symbols in the object file, or if the object
file is not positioned at the beginning of a symbol table entry.

Note that the first symbol in the symbol table has an index of zero.

The program must be loaded with the object file access routine library
!ibid.a.

SEE ALSO
ldclose(3X), ldopen(3X), ldtbread(3X), ldtbseek(3X), ldfcn(4) .

MU43814PR/D2 - 1 - 12/01/87

LDTBREAD(3X) (Specialized Libraries) LDTBREAD(3X)

NAME
ldtbread - read an indexed symbol table entry of a common object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <syms.h>
#include <ldfcn.h>

int ldtbread (ldptr, symindex, symbol)
LDFILE •ldptr;
long symindex;
SYMENT •symbol;

DESCRIPTION
ldtbread reads the symbol table entry specified by symindex of the common
object file currently associated with ldptr into the area of memory begin­
ning at symbol.

ldtbread returns SUCCESS or FAILURE. ldtbread will fail if symindex is
greater than or equal to the number of symbols in the object file, or if it
cannot read the specified symbol table entry.

Note that the first symbol in the symbol table has an index of zero.

The program must be loaded with the object file access routine library
libld.a.

SEE ALSO
ldclose(3X), ldopen(3X), ldtbseek(3X), ldgetname(3X), ldfcn(4).

MU43814PR/D2 - 1 - 12/01/87

II

•

LDTBSEEK(3X) (Specialized Libraries) LDTBSEEK(3X)

NAME
ldtbseek - seek to the symbol table of a common object file

SYNOPSIS
#include <stdio.h>
#include <filehdr.h>
#include <ldfcn.h>

int ldtbseek (ldptr)
LDFILE •ldptr;

DESCRIPTION
ldtbseek seeks to the symbol table of the common object file currently asso­
ciated with ldptr.

ldtbseek returns SUCCESS or FAILURE. ldtbseek will fail if the symbol table
has been stripped from the object file, or if it cannot seek to the symbol
table.

The program must be loaded with the object file access routine library
libld.a.

SEE ALSO
ldclose(3X), ldopen(3X), ldtbread(3X), ldfcn(4) .

MU43814PR/D2 - 1 - 12/01/87

LOGNAME(3X) (Specialized Libraries)

NAME
logname - return login name of user

SYNOPSIS
char •logname()

DESCRIPTION

LOGNAME(3X)

logname returns a pointer to the null-terminated login name; it extracts the
LOGNAME environment variable from the user's environment.

This routine is kept in /lib/libPW.a.

FILES
/etdprofile

SEE ALSO
getenv(3C), profile(4), environ(S).
env(l), login(l) in the User's Reference Manual.

CAVEATS
The return values point to static data whose content is overwritten by
each call.

This method of determining a login name is subject to forgery.

MU43814PR/D2 - 1 - 12/01/87

Ill

MALLOC(3X) (Specialized Libraries) MALLOC(3X)

NAME
malloc, free, realloc, calloc, mallopt, mallinfo - fast main memory alloca­
tor

SYNOPSIS
#include <malloc.h>

char *malloc (size)
unsigned size;

void free (ptr)
char *ptr;

char *realloc (ptr, size)
char *ptr;
unsigned size;

char •calloc (nelem, elsize)
unsigned nelem, elsize;

int mallopt (cmd, value)
int cmd, value;

struct mallinfo mallinfo()

DESCRIPTION
malloc and free provide a simple general-purpose memory allocation pack­
age, which runs considerably faster than the malloc(3C) package. It is
found in the library "malloc", and is loaded if the option "-lmalloc" is
used with cc(l) or ld(l).

malloc returns a pointer to a block of at least size bytes suitably aligned for
any use.

The argument to free is a pointer to a block previously allocated by malloc;
after free is performed this space is made available for further allocation,
and its contents have been destroyed (but see mallopt below for a way to
change this behavior).

Undefined results will occur if the space assigned by malloc is overrun or
if some random number is handed to free.

Realloc changes the size of the block pointed to by ptr to size bytes and
returns a pointer to the (possibly moved) block. The contents will be
unchanged up to the lesser of the new and old sizes.

Calloc allocates space for an array of nelem elements of size elsize. The
space is initialized to zeros.

MU43814PR/02 - 1 - 12/01/87

II

Ill

MALLOC(3X) (Specialized Libraries) MALLOC(3X)

Mallopt provides for control over the allocation algorithm. The available
values for cmd are:

M_MXFAST Set maxfast to value. The algorithm allocates all blocks
below the size of maxfast in large groups and then doles
them out very quickly. The default value for maxfast is 24.

M_NLBLKS Set numlblks to value. The above mentioned "large groups"
each contain numlblks blocks. Numlblks must be greater than
O. The default value for numlblks is 100.

M_GRAIN Set grain to value. The sizes of all blocks smaller than max­
fast are considered to be rounded up to the nearest multiple
of grain. Grain must be greater than 0. The default value of
grain is the smallest number of bytes which will allow align­
ment of any data type. Value will be rounded up to a mul­
tiple of the default when grain is set.

M_KEEP Preserve data in a freed block until the next malloc, realloc,
or calloc. This option is provided only for compatibility with
the old version of malloc and is not recommended.

These values are defined in the <malloc.h> header file.

Mallopt may be called repeatedly, but may not be called after the first
small block is allocated.

Mallinfo provides instrumentation describing space usage. It returns the
structure:

struct mallinfo {

}

int arena;
int ordblks;
int smblks;
int hblkhd;
int hblks;
int usmblks;
int fsmblks;
int uordblks;
int fordblks;
int keepcost;

I* total space in arena *'
I* number of ordinary blocks *I
I* number of small blocks *'
I* space in holding block headers *'
I* number of holding blocks *I
I* space in small blocks in use */
I* space in free small blocks *I
I* space in ordinary blocks in use *I
I* space in free ordinary blocks *I
I* space penalty if keep option */
I* is used *I

This structure is defined in the <malloc.h> header file.

MU43814PR/D2 - 2 - 12/01/87

MALLOC(3X) (Spedalized Libraries) MALLOC(3X)

Each of the allocation routines returns a pointer to space suitably aligned
(after possible pointer coercion) for storage of any type of object.

SEE ALSO
brk(2), malloc(3C).

DIAGNOSTICS
malloc, realloc and calloc return a NULL pointer if there is not enough avail­
able memory. When realloc returns NULL, the block pointed to by ptr is
left intact. If mallopt is called after any allocation or if cmd or value are
invalid, non-zero is returned. Otherwise, it returns zero.

WARNINGS
This package usually uses more data space than malloc(3C).
The code size is also bigger than malloc(3C).
Note that unlike malloc(3C), this package does not preserve the contents
of a block when it is freed, unless the M_KEEP option of mallopt is used.
Undocumented features of malloc(3C) have not been duplicated.

MU43814PR/D2 -3- 12/01/87

II

Ill

REGCMP(3X) (Specialized Libraries) REGCMP(3X)

NAME
regcmp, regex - compile and execute regular expression

SYNOPSIS
char •regcmp (stringt [, string2, ...], (char •)0)
char •stringt, •string2, ... ;

char •regex (re, subject[, retO, ...])
char •re, •subject, •reto, .•. ,

extern char * __ loct;

DESCRIPTION
regcmp compiles a regular expression (consisting of the concatenated argu­
ments) and returns a pointer to the compiled form. Malloc(3q is used to
create space for the compiled form. It is the user's responsibility to free
unneeded space so allocated. A NULL return from regcmp indicates an
incorrect argument. regcmp(l) has been written to generally preclude the
need for this routine at execution time.

Regex executes a compiled pattern against the subject string. Additional
arguments are passed to receive values back. Regex returns NULL on
failure or a pointer to the next unmatched character on success. A global
character pointer _loc1 points to where the match began. regcmp and
regex were mostly borrowed from the editor, ed(l); however, the syntax
and semantics have been changed slightly. The following are the valid
symbols and their associated meanings.

Il • .· These symbols retain their meaning in ed(l).

$ Matches the end of the string; \n matches a new-line.

Within brackets the minus means through. For example, Ia-z] is
equivalent to [abed ... xyz]. The - can appear as itself only if
used as the first or last character. For example, the character
class expression Il-l matches the characters] and -.

+ A regular expression followed by + means one or more times. For
example, [0-9]+ is equivalent to [0-9] [0-9]•.

{m} {m,} {m,u}

MU43814PR/D2

Integer values enclosed in {} indicate the number of times the
preceding regular expression is to be applied. The value mis the
minimum number and u is a number, less than 256, which is the
maximum. If only m is present (e.g., {m}), it indicates the exact
number of times the regular expression is to be applied. The

- 1 - 12/01/87

II

REGCMP(3X) (Specialized Libraries) REGCMP(3X)

value {m,} is analogous to {m,infinity}. The plus (+) and star (*)
operations are equivalent to {l,} and {O,} respectively.

(••.)$n The value of the enclosed regular expression is to be returned.
The value will be stored in the (n+1)th argument following the
subject argument. At most ten enclosed regular expressions are
allowed. Regex makes its assignments unconditionally.

(...) Parentheses are used for grouping. An operator, e.g., *, +, {},
can work on a single character or a regular expression enclosed
in parentheses. For example, (a*(cb+)*)$0.

By necessity, all the above defined symbols are special. They must, there­
fore, be escaped with a\ (backslash) to be used as themselves.

EXAMPLES
Example 1:

char *Cursor, *newcursor, *ptr;

newcursor = regex((ptr = regcmp('"\n", (char *)O)), cursor);
free(ptr);

This example will match a leading new-line in the subject string pointed
at by cursor.

Example 2:
char ret0[9];
char *newcursor, *name;

name = regcmp("([A-Za-z][A-za-z0-9]{0,7})$0", (char *)0);
newcursor = regex(name, "012Testing345", retO);

This example will match through the string "Testing3" and will return the
address of the character after the last matched character (the "4"). The
string "Testing3" will be copied to the character array retO.

Example 3:
#include "file.i"
char *String, *newcursor;

newcursor = regex(name, string);

This example applies a precompiled regular expression in file.i [see
regcmp(l)] against string.

MU43814PR/D2 - 2 - 12/01/87

REGCMP(3X) (Specialized Libraries) REGCMP(JX)

These routines are kept in /lib/lib PW .a.

SEE ALSO
regcmp(l), malloc(3C).
ed(l) in the User's Reference Manual.

BUGS
The user program may run out of memory if regcmp is called iteratively
without freeing the vectors no longer required.

MU43814PR/D2 - 3 - 12/01/87

Ill

SPUTL(3X) (Specialized Libraries) SPUTL(3X)

NAME
sputl, sgetl - access long integer data in a machine-independent fashion.

SYNOPSIS
void sputl (value, buffer)
long value;
char •buffer;

long sgetl (buffer)
char •buffer;

DESCRIPTION
sputl takes the four bytes of the long integer value and places them in
memory starting at the address pointed to by buffer. The ordering of the
bytes is the same across all machines.

Sgetl retrieves the four bytes in memory starting at the address pointed to
by buffer and returns the long integer value in the byte ordering of the
host machine.

The combination of sputl and sgetl provides a machine-independent way
of storing long numeric data in a file in binary form without conversion to
characters.

A program which uses these functions must be loaded with the object-file
access routine library !ibid.a.

MU43814PR/D2 - 1 - 12/01/87

Ill

Ill

