M68KVSREF/D1

(M) moToROLA

&
Y=
¢ 3
> o)
v =
o = <
NS
S 2¢
-k
S0
- -

PERFORMANCE

PEOPLE

QUALITY

M68KVSREF,/D1

FEBRUARY 1984

VME/10
MICROCOMPUTER SYSTEM

REFERENCE MANUAL

The information in this document has been carefully checked and is believed to
be entirely reliable. However, no responsibility is assumed for inaccuracies.
Furthermore, Motorola reserves the right to make changes to any products herein
to improve reliability, function, or design. Motorola does not assume any
liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights or
the rights of others.

RMS68K, TENbug, VERSAdos, and VME/10 are trademarks of Motorola Inc.

First Edition

Copyright 1984 by Motorola Inc.

PREFACE

An asterisk (*) following the signal name for signals which are level
significant denotes that the signal is true or valid when the signal
is low.

An asterisk (*) following the signal name for signals which are edge
significant denotes that the actions initiated by that signal occur
on a high to low transition.

"Set" terminology referenced throughout this manual denotes placing
(writing) a logical one (high state) into a device.

"Clear" terminology referenced throughout this manual denotes placing
(writing) a logical zero (low state) into a device.

All hexadecimal references throughout this manual are preceeded by a
dollar sign ($).

TABLE OF CONTENTS

CHAPTER 1 REFERENCE MANUAL PHILOSOPHY
1.1 INTRODUCTION «evvees cecescas ceescesens cecescess escscccsscnse
CHAPTER 2 SYSTEM INFORMATION
2.1 INTRODUCTION ¢eesecevosccocscsocsasscvsecsesasscsossseasrsssnssses
2.2 SYSTEM MEMORY MAPS .ccvevsccscacccassssssscassssaccssssases
2.3 CONTROL AND STATUS REGISTERS ¢ecscevcccsscsccsssscscscscocsns
2.3.1 Control Register 0 (Location Address SFL1IF05) ..ceeecasee
2.3.2 Control Register 1 (Location Address SF19F07) cceeececeses
2.3.3 Control Register 2 (Location Address SF19F09) ceecsa
2.3.4 Control Register 3 (Location Address SF19F0B) ...vevveses
2.3.5 Control Register 4 (Location Address SF19F0D) .eeeceecessee
2.3.6 Control Register 5 (Location Address SF19F0F) .cevecceess
2.3.7 Control Register 6 (Location Address SF19F1l) ..ceeeeceen
2.3.8 Status Register (Location Address SF1I9F85) .ecececccsscce
2.4 VMEDUS INTERRUPTS veeeceoceccosvosscssassnsscssscssansasaan cee
2.5 SCM MPU INTERRUPTS cccceccecsscsccacccsscsscsscosascssscsaasccss
CHAPTER 3 GRAPHICS GENERATION
3.1 INTRODUCTION cvvcececossccsccasosnoscosssccsssasnsscscnsscssse
3.2 HARDWARE DESCRIPTION ccccececscccccsccscscacscecoscsnsosnsass
3.2.1 Graphics MEmMOTY .eeveeesscecnscccns cecesseseccsssssssrnnns
3.2.2 Graphics Control RegisSterveececeececeseranaccncas oo
3.2.3 Graphics CUrsor RegiSter .veceececccceccseccscsescccsccnnas
3.2.4 CRT Controller (CRTC) ecececsscscssocsssscosassosnccnssssss
3.2.5 Control Register 0 (Location Address SFL9F05) c.eecececsss
3.2.6 Control Register 1 (Location Address S$F19F07) ..ceevceeess
3.2.7 Graphics Offset Register (Location Address $F19F13)
3.3 SOFTWARE APPLICATION eceeccescascosossoscscscssossoacacsanssces
CHAPTER 4 CHARACTER DISPLAY GENERATION
4.1 INTRODUCTION e eeeccscocceccsocsossoscssscscccsosssscccsansss
4.2 HARDWARE DESCRIPTION ceccesscsccsvescsnssscsccccasosnsanoscs
4.2.1 Display RAM ..ccvveccccess csesecccacccssases ceseerssssses
4.2.2 ContrOl RegiSteIS eceeecesesscscsssesssossscsssscsasscnses
4.2.3 Character Generator RAM ...ceeecececcccecooscsscecsoscssasns
4.2.4 CRT Controller (CRTC) .cececcscccscsscsssscccnssscsscnncns
4.3 SOFTWARE APPLICATION scceececosssccessscscssscssoccacsssases

= WOWWWO O

[
o

WWwWwwwwwwww

FIGURE 2-1.

TABLE

2-2.
2-3.
2-4.
3-1.
3-2.
3-3.

2-1.
3-1.
3-2.
3-3.
4-1.
4-2.

TABLE OF CONTENTS (cont'd)

LIST OF ILLUSTRATIONS

System Mamory Map, NO GraphiCS ..ccceeseccceccscsscccsscsocs
System Memory Map, Low Resolution GraphiCsS .eceececcesscsse
System Memory Map, High ResolutionGraphicCS...cceccecececcecss
SCM I/0 Memory Map (2 SheetS) ceceseecsceccssococcscscncsns
Pixel Access (Low and High Resolution)ceeeececccccscse
Low Resolution Graphics MemOry Map secesccccssccccccsscnssa
High Resolution Graphics MemOry Map ccecececescecccccsccans

LIST OF TABLES

INnterrupt SOUXCES cecreccscscacccccccsscscccscscsscsssscsssse
COLOr/INtENSIitY ceeeecsscccssssesssscsscesssscssssssceassocss
Required Settings for GraphiCS .ceeeesescscescsccccccscnnss
Resolution VAluesS ..eeesssccrcscsccccssascssconcscacsancncos
Color CONLrOLl suveveesonsecsassesescscsscssccscnccscsssssns
Character Display CONtrOl ..ceeccecccecceccccccccccossccccans

ii

Page

CHAPTER 1

REFERENCE MANUAL PHILOSOPHY

1.1 INTRODUCTION

This reference manual provides both hardware and software information for the
VME/10 Microcomputer System (hereafter referred to as VME/10). Information in
this manual will permit the wuser to implement software to reconfigure
(customize) the VME/10 operation to a specific application or to perform the
VME/10 graphic capabilities.

The VME/10 contains a System Control Module (SCM) which is installed in the
control unit chassis. The SCM provides the central intelligence for the VME/10.
To understand the VME/10 operating environment, material in this manual is
organized as follows:

a. System information

b. Graphics generation

b. Character display generation

1-1/1-2

CHAPTER 2

SYSTEM INFORMATION

2.1 INTRODUCTION
This chapter provides system information that permits the user to implement
software to reconfigure (customize) the VME/10 operation to a specific
application or to perform the VME/10 graphic capabilities. Information provided
in this chapter is as follows:

a. System memory maps

b. Control and status registers

c. VMEbus interrupts

d. SCM MPU interrupts.

2.2 SYSTEM MEMORY MAPS

The system memory maps (Figures 2-1 through 2-4) identify all areas of memory
that are reserved for system use, as well as areas of memory that are available
for use by the user.

| UPPER DATA BYTE D15-D08 [LOWER DATA BYTE D07-D00 |

$000000 SYSTEM RAM AFTER UNSWAP BIT IS SET £000001

SOOFFFE SYSTEM ROM AFTER POWER ON RESET SOOFFEFF

$010000 $010001

SYSTEM RAM

SOSFFFE SOS5FFFF

$060000 $060001
RESERVED FOR RAM EXPANSION

S17FFFE $17FFFF

$180000 $180001

VMEbus
SDFFFFE SDFFFFF
SE00000 SE00001
GRAPHICS - PIXEL ACCESS ADDRESSING BLOCK

SEFFFFE SEFFFFF

$£00000 SYSTEM ROM AFTER UNSWAP BIT IS SET $F00001

SFOFFFE SYSTEM RAM AFTER POWER ON RESET SFOFFFF

SF10000 SF10001
SCM 1/0 (SEE FIGURE 2-4)

SF1BFFE SF1BFFF
SF1C000 SF1C001
ILLEGAL I/0 CHANNEL
SF1DFFE SF1DFFF
SF1E000 SF1E001
VMEbus

(SHORT I/O ADDRESS SPACE)
SFFFFFE SFFFFFF

FIGURE 2-1. System Memory Map, No Graphics

2-2

' UPPER DATA BYTE D15-D08 | LOWER DATA BYTE D07-D00 |

$000000 SYSTEM RAM AFTER UNSWAP BIT IS SET $000001

SOOFFFE SYSTEM ROM AFTER POWER ON RESET SOOFFFF

$010000 $010001

SYSTEM RAM

S047FFE S04 7FFF

$048000 $048001
LOW RESOLUTION GRAPHICS RAM

SO5FFFE SOSFFFF

$060000 $060001
RESERVED FOR RAM EXPANSION .

S17FFFE S17FFFF
$180000 $180001
VMEbus
SDFFFFE SDFFFFF
SE00000 SE00001
GRAPHICS - PIXEL ACCESS ADDRESSING BLOCCK
SFFFFFE SEFFFFF
$F00000 SYSTEM ROM AFTER UNSWAP BIT IS SET $E00001
SFOFFFE SYSTEM RAM AFTER POWER ON RESET SFOFFFF
SF10000 $SF10001
SCM I/0 (SEE FIGURE 2-4)

SF1BFFE SF1BFFF
$F1C000 SF1C001
ILLEGAL I/0 CHANNEL
SF1DFFE SF1DFFF
SF1E000 SF1E001
VMEbus

(SHORT I/0 ADDRESS SPACE)
SFFFFFE " | SFFFFFF

FIGURE 2-2, System Memory Map, Low Resolution Graphics

UPPER DATA BYTE D15-D08 l LOWER DATA BYTE D07-D00 '

$000000 SYSTEM RAM AFTER UNSWAP BIT IS SET $000001
SOOFFFE SYSTEM ROM AFTER POWER ON RESET SOOFFFF
$010000 $010001
SYSTEM RAM
SO02FFFE S0 2FFFF
$030000 $030001
HIGH RESOLUTION GRAPHICS RAM
SOSFFFE SO5FFFF
$060000 $060001
RESERVED FOR RAM EXPANSION
$S17FFFE S17FFFF
$180000 $180001
VMEbus
SDFFFFE SDFFFFF
SE00000 SE00001
GRAPHICS - PIXEL ACCESS ADDRESSING BLOCK
SEFFFFE SEFFFFF
SF00000 SYSTEM ROM AFTER UNSWAP BIT IS SET $F00001
 SFOFFFE SYSTEM RAM AFTER POWER ON RESET SFOFFEFF
SF10000 SF10001
SCM I/0 (SEE FIGURE 2-4)

SF1BFFE SF1BFFF
SF1C000 SF1C001
ILLEGAL 1/0 CHANNEL
SF1DFFE SF1DFFF
SF1E000 SF1E001
VMEbus

(SHORT I/0 ADDRESS SPACE)
SFFFFFE SFFFFFF

FIGURE 2-3. System Memory Map, High Resolution Graphics

2-4

$F10000

SF13FFE
SF14000

SF14FFE
SFF1500

SF15FFE
$F16000

SF16FFE
$F17000

SF18FFE
SF19000

SF19EFE
SF19F00

$F19F02
SF19F04
SF19F06
SF19F08
$F19F0A
SF19F0C
SF19FOE
SF19F10

SF19F12
SF19F20

SF19F82
SF19F84
SF19F86

SF1A01lE

UPPER DATA BYTE D15-D08 | LOWER DATA BYTE DO7-D00

ILLEGAL
CHARACTER GENERATOR
ILLEGAL RAM
ATTRIBUTE GENERATOR
RAM
ILLEGAL
DISPLAY AND ATTRIBUTE RAM
ILLEGAL
VERTICAL GRAPHICS CURSOR REGISTER
HORIZONTAL GRAPHICS CURSOR REGISTER

ILLEGAL CONTROL REGISTER 0
ILLEGAL CONTROL REGISTER 1
ILLEGAL CONTROL REGISTER 2
ILLEGAL CONTROL REGISTER 3
ILLEGAL CONTROL REGISTER 4
ILLEGAL CONTROL REGISTER 5
ILLEGAL CONTROL REGISTER 6
ILLEGAL GRAPHICS OFFSET REGISTER

RESERVED
ILLEGAL STATUS REGISTER

RESERVED

FIGURE 2-4. SCM I/0 Memory Map (Sheet 1 of 2)

SF10001

SF13FFF
SF14001

SF14FFF
S$F15001

SF15FFF
SF16001

SF16FFF
S$F17001

SF18FFF
$F19001

SF19EFF
SF19F01

SF19F03
S$F19F05
SF19F07
SF19F09
SF19F0B
SF19F0D
SF19FOF
SF19F11

SF19F13
SF19F21

SF19F83
SF19F85
SF19K87

SF1A01F

S$F1A020
S$F1A022
SF1A024

SF1A02E
SF1A030
SF1A032
SF1A034
SF1A036
SF1A038

SF1AQ7E
SF1A080
SF1A082
SF1A084
SF1A086
$F1A088
SF1A08A
SF1A08C
SF1A08E
SF1A090
SF1A092
SF1A094
SF1A096
SF1A098
SF1A09A
$F1A09C

SF1AOFE
$SF1A100

SF1A7FE
$F1A800

SF1AFFE
SF1B000O

SF1BFFE

UPPER DATA BYTE D15-D08 | LOWER DATA BYTE D07-D00

ILLEGAL MC68A45 ADDRESS REGISTER

MC68A45 INTERNAL REGISTER FILE

ILLEGAL

MC2661 TX/RX DATA REGISTERS
MC2661 STATUS REGISTER
MC2661 MODE 1 AND MODE 2 REG.
MC2661 COMMAND REGISTER

ILLEGAL

ILLEGAL

MC146818 SECONDS REGISTER
MC146818 SECONDS ALARM REG.
MC146818 MINUTES REGISTER
MC146818 MINUTES ALARM REG.
MC146818 HOURS REGISTER

MC146818
MC146818
MC146818

HOURS ALARM REGISTER
DAY OF THE WEEK REG.
DAY OF THE MONTH REG.

MC146818 MONTH REGISTER
MC146818 YEAR REGISTER
MC146818 REGISTER A
MC146818 REGISTER B
MC146818 REGISTER C
MC146818 REGISTER D

BATTERY BACKED UP RAM
ILLEGAL
TIME-OF-DAY CLOCK (MC146818)

ILLEGAL

DMA/MMU

ILLEGAL

FIGURE 2-4. SCM I/0 Memory Map (Sheet 2 of 2)

2-6

$F1A021
SF1A023
SF1A025

$F1A02F
SF1A031
SF1A033
$F1A035
SF1A037
SF1A039

SF1A07F
SF1A081
SF1A083
SF1A085
SF1A087
SF1A089
SF1A08B
SF1A08D
SF1A08F
SF1A091
SF1A093
SF1A095
SF1A097
SF1A099
SF1A09B
SF1A09D

SF1AQFF
SF1A101

SF1A7FF
$F1A801

SF1AFFF
$F1B0O1

SF1BFFF

2.3 CONTROL AND STATUS REGISTERS

The SCM has seven control registers and one status register. Individual address
locations of these registers are listed in the memory maps. Control registers 0
and 2 through 6 are cleared by any of the reset conditions occurring. Control
register 1 is cleared only by the power-on-reset condition occurring. All
control registers are writable by the MPU in both supervisory and user states.

NOTE

In VME/10's manufactured prior to 2/15/84 - all control
registers are writable by the MPU in the supervisory
state; only control registers 0 and 1 are also writable
in the user state. Writing to control register 1 through 6
in the user state will cause the MPU readable image to
change, but not the actual control register.

All control registers are readable by the MPU in any state. However, the data
read is not reliable unless each control register has been written to by the MPU
at least once since the last reset condition occurred. Bit definitions of the
control registers are as follows:

2.3.1 Control Register 0 (Location Address $F19F05)

7

6 5 4 3 2 1 0

| CDIS3 | CDIS2 | CDIS1 | CURBK | DUTYCYCLE | IVs |TIMIMSK*|DMAIMSK*|

CDIS3-CDIS1

CURBK

DUTYCYCLE

IVS

TIMIMSK*

DMAIMSK*

Character Disable - Used to disable a color bank from being
displayed to the monitor (this affects character mode only). When
set, CDIS1 through CDIS3 disables colors one through three,
respectively. When cleared, CDIS1 through CDIS3 enables colors
one through three, respectively.

Cursor Blink - When set, causes character cursor to blink on ard
off. When cleared, CURBK has no effect on character cursor.

Duty Cycle - When set, corrects BX syndrome by not displaying
every other dot on each line. This prevents horizontal lines,
such as those in the uppercase letter B, from standing out more
than nonhorizontal 1lines such as those in the letter X. When
cleared, DUTYCYCLE has no effect on display.

Invert Video Screen - When set, video inversion is performed.
When IVS is cleared, all characters are normal.

Timer Interrupt Mask - When cleared, inhibits interrupts caused by
the real-time clock (MC146818) 1low IRQ* signal. When set,
TIMIMSK* performs no masking function.

Direct Memory Access Interrupt Mask - When cleared, inhibits

interrupts caused by the low DMAIRQ* signal. When set, DMAIMSK*
performs no masking function.

2-7

2.3.2 Control Register 1 (Location Address $F19F07)

6 5 4 3 2 1 0

Ss1 | SO IHIGH RES| GRE3]GREZ l GRE1 IUNSWAPI

s1,S0

HIGH RES

GRE3,GRE2,GRE1

UNSWAP

Reserved for future enhancements. Must be kept cleared at all
times.

Select - Selects one of four optional character cursors which
are user-definable.

High Resolution - Affects SCM system RAM mapping.

Graphic Enable - Enables and disables the display of individual
graphics memory banks. When set, enables a bank; when cleared,
disables a bank. GREl controls bank 1 (red/low intensity), GRE2
controls bank 2 (blue/medium intensity), and GRE3 controls bank
3 (green/high intensity). When all three bits are cleared, no
graphics are displayed; when all three bits are set, graphics of
all colors/intensities are displayed. It should be noted that
these bits do not affect the user's ability to read/write to the
graphic banks.

Unswap - When a power-on-reset (or chassis reset and abort
reset) cordition occurs, SCM memory map is swapped so that ROM
appears at locations $000000-S007FFF. The system RAM which
would normally appear at those 1locations ($000000-SO07FFF)
appears where ROM would normally appear (locations SF00000-
SFOFFFF) .

These sections of RAM and ROM may be restored to normal
positions by setting the UNSWAP bit. After this action, UNSWAP
bit has no affect on the memory map. Clearing the UNSWAP bit
again does not cause RAM and ROM to swap nommal positions in the
memory map. The only conditions that swap RAM and ROM out of
the normal positions are the reset conditions described above.

2-8

2.3.3 Control Register 2 (Location Address $F19F09)

7

6 5 4 3 2 1 0

| RXRDYMSK* | SYSFMSK* lWPTC’T* | KBDRST* |VMEAVMSK* | BCLRMSK* l TXRDYMSK* | MMUIMSK* |

RXRDYMSK*

SYSFMSK*

WPTCT*

KBDRST*

VMEAVMSK*

BCLRMSK*

TXRDYMSK*

MMUIMSK*

Receiver Ready Mask - When cleared, inhibits interrupts caused by
the EPCI low RXRDY* signal. When set, RXRDYMSK* performs no
masking function.

System Fail Mask - When cleared, inhibits interrupts caused by the
VMEbus low SYSFAIL signal. When set, SYSFMSK* performs no masking
function.

Write Protect - When cleared, disallows all write operations to
SCM RAM by other VMEbus devices. When set, WPTCT* allows these
write operations.

Keyboard Reset - When cleared, sends a reset signal from the
keyboard interface, and continually resets the MC2661. When set,
KBDRST* performs no function.

VMEbus Available Mask - When cleared, inhibits interrupts caused
by the VMEbus becoming available.

Bus Clear Mask - When cleared, inhibits interrupts caused by the
VMEbus low BCLR* signal when the SCM requester is holding the
VMEbus in the release never mode. When set, BCLRMSK* performs no
masking function.

Transmit Ready Mask - When cleared, inhibits interrupts caused by
the EPCI low TXRDY* signal. When set, TXRDYMSK* performs no
masking function.

Memory Management Unit Interrupt Mask - When cleared, inhibits
interrupts caused by the low MMUIRQ* signal. When set, MMUIMSK*
performs no masking function.

2.3.4 Control Register 3 (Location Address SF19F0B)

7

6 5 4 3 2

1

0

| IRQ7MSK* | IRQ6MSK* | IRQSMSK* | IRQ4MSK* | IRQ3MSK* | IRQ2MSK* | IRQLMSK* | VBIAMSK* |

IRQ7MSK*

IRQ6MSK*

IRQ5MSK*

IRQ4MSK*

IRQ3MSK*

IRQ2MSK*

IRQIMSK*

VBIAMSK*

Interrupt Request 7 Mask - When cleared,
interrupts caused by VMEbus low IRQ7* signal.
performs no masking function.

Interrupt Request 6 Mask - When cleared,
interrupts caused by VMEbus low IRQ6* signal.
performs no masking function.

Interrupt Request 5 Mask - When cleared,
interrupts caused by VMEbus low IRQ5* signal.
performs no masking function.

Interrupt Request 4 Mask - When cleared,
interrupts caused by VMEbus low IRQ4* signal.
performs no masking function.

Interrupt Request 3 Mask -~ When cleared,
interrupts caused by VMEbus low IRQ3* signal.
performs no masking function.

Interrupt Request 2 Mask - When cleared,
interrupts caused by VMEbus low IRQ2* signal.
performs no masking function.

Interrupt Request 1 Mask - When cleared,
interrupts caused by VMEbus low IRQl* signal.
performs no masking function.

inhibits
When set,

inhibits
When set,

inhibits
When set,

inhibits
When set,

inhibits
When set,

inhibits
When set,

inhibits
When set,

SCM MPU
IRQ7MSK*

SCM MPU
IRQOMSK*

SCM MPU
IRQSMSK*

SCM MPU
IRQ4MSK*

SCM MPU
IRQ3MSK*

SCM MPU
IRQ2MSK*

SCM MPU
IRQ1IMSK*

VMEbus Interrupt Acknowledge Mask - When cleared, inhibits SCM MPU

interrupts caused by an
occurred for the
interrupter.

interrupt request

2-10

interrupt acknowledge cycle having
initiated by the

SCM

2.3.5 Control Register 4 (Location Address $F19F0D)

7 6 5 4 3 2 1 0

| IDC7 | IDC6 | IDCS | IDC4 | IDC3 | IDC2 | IDCL | IDCO |

This register is the vector register. During a VMEbus interrupt acknowledge
cycle, if the SCM initiates the interrupt request that is acknowledged, contents
of this register (Identification Codes (IDC) bits 0 through 7) are placed on the
VMEbus data lines as follows:

IDC7 - DO7
IDC6 — DO6
IDC5 - D05
IDC4 - D04
IDC3 - DO3
IDC2 - DO2
IDC1 - DOl
IDCO - DOO

2-11

2.3.6 Control Register 5 (Location Address S$F19F(F)

6 5 4 3 2 1 0

| BROFAIL* | AMA | VMETOEN | LTOEN | BRCL | BRCO | BRL1* | BRLO* |

BRDFAIL*

VMETOEN

LTOEN

BRC1,BRCO

BRL1* ,BRLO*

Board Fail - When cleared, causes the VMEbus low SYSFAIL* signal,
which indicates a board failure. When set, BRDFAIL* does not
drive the SYSFAIL* signal line low.

Address Modifier A - Alters the way address modifier lines are
driven by the SCM during VMEbus access. The AMA effect on the
address lines is programmable in PROM.

VME Time-out Enable - When set, enables VMEbus time-out circuitry
to operate (causes low BERR* if DS0* or DS1* is low for 64
microseconds or longer). When cleared, VMETOEN disables VMEbus
time-out circuitry.

Local Time-out Enable -~ When set, enables local resource time-out
circuitry to operate. (If [UDS*] or [LDS*] 1is low for 64
microseconds or longer, LTOEN causes low MPU [BERR*] signal. When
cleared, LTOEN disables VMEbus time-out circuitry.

Bus Request Clear - Control the requester operating mode. Bit to
mode correspondence is as follows:

BRC1 BRCO MODE
0 0 Release on request
0 1 Release on bus clear
1 0 Release when done
1 1 Release never

Bus Request Level - Control the level at which the requester
operates. This level should be set one time only, immediately
after a reset condition.

2-12

2.3.7 Control Register 6 (Location Address $F19F11)

7

6 5 4 3 2 1 0

|IMASK*|INT4MSK*|INT3MSK*|INT2MSK*|INTlMSK*| IL2 | IL1 | ILO I

IMASK*

INT4MSK*

INT3MSK*

INT2MSK*

INTIMSK*

1L2,1L1,ILO0

Interrupt Mask - When cleared, inhibits all SCM MPU interrupts
under all conditions. When set, IMASK* masks no interrupts.

Interrupt 4 Mask - When cleared, inhibits SCM MPU interrupts
caused by the I/0 Channel low INT4* signal. When set, INT4MSK*
provides no masking function.

Interrupt 3 Mask - When cleared, inhibits SCM MPU interrupts
caused by the I1I/0 Channel low INT3* signal. When set, INT3MSK*
provides no masking function.

Interrupt 2 Mask - When cleared, inhibits SCM MPU interrupts
caused by the I/0 Channel low INT2* signal. When set, INT2MSK*
provides no masking function.

Interrupt 1 Mask - When cleared, inhibits SCM MPU interrupts
caused by the I/0 Channel low INT1* signal. When set, INTIMSK*
provides no masking function.

Interrupt Level - Generate VMEbus interrupts. For further
details, see the interrupter section.

2-13

2.3.8 Status Register (Location Address S$F19F85)

The status register monitors several signal lines on the SCM. Bit definitions
of the status register are as follows:

7

6 5 4. 3 2 1 0

|SWITCH2 |SWITCHL |SWITCHO |KYBDLOCK* |IOCHEN |SYSFAIL|VBIACK* |VMEAV|

SWITCH2

SWITCH1

SWITCHO

KYBDLOCK*

IOCHEN

SYSFAIL

VBIACK*

VMEAV

Switch 2 - Factory-configured to a set state.
Switch 1 - Factory-configured to a set state.
Switch 0 - Factory-configured to a set state.

Keyboard Lock - When cleared, KYBDLOCK* switch is in the lock
position. Software should respond accordingly to this condition.
When set, KYBDLOCK* switch is in the unlock position.

I/0 Channel Enable - Factory-configured to a set state.

System Fail - When set, VMEbus SYSFAIL* signal line is driven low.
When cleared, SYSFAIL* signal line is not driven low.

VMEbus Interrupt Acknowledge - When cleared, indicates that the
interrupt generated by the SCM interrupter has been acknowledged.
When set, indicates that either the SCM interrupter is not
generating a VMEbus interrupt or that the generated VMEbus
interrupt has not been acknowledged.

VMEbus Available - When cleared, indicates that the SCM does not

have VMEbus mastership; when set, indicates that SCM does have
VMEbus mastership.

2-14

2.4 VMEbus INTERRUPTS

The SCM has an interrupter circuit which is capable of generating VMEbus
interrupts. The interrupt VMEbus level and the status ID byte during the
interrupt acknowledge cycle are both software programmable. To use the
interrupter circuit to interrupt the VMEbus, the following sequence is required:

A

b.

d.

e,

Ensure that control register 6 interrupt bits (bits 0-2) are cleared.

Initialize status ID byte (control register 4) to the desired
value. The VMEbus interrupt handler normally shifts the status ID byte
left twice and uses the result as the address in its exception table for
handling the VMEbus interrupt.

Set interrupt bits (bits 0-2) to the desired interrupt level. This
causes the appropriate IRQ to be generated on the VMEbus. The bit level
to interrupt level correspondence is as follows:

BIT 2 BIT 1 BIT 0 IRQ
0 0 0 NONE
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

Wait for the VMEbus interrupt acknowledged bit (status register bit 1)
to be cleared, indicating that the interrupt has been acknowledged.

Clear control register 6 interrupt bits (bits 0-2).

NOTE
It is possible to set up the interrupt acknowledged condition
to cause a level 1 interrupt to the MPU. If this option is
used, it is important to account for the fact that the VMEAV*
interrupt has the same level and shares the same exception
table location as does [VBIACK*].

2-15

2.5 SCM MPU INTERRUPTS

There are 22 sources of interrupts on the SCM. Bach one is capable of
interrupting the MPU on one of seven levels (1-7). All of the interrupt
sources have an assigned distinct priority. For example, if three interrupt
sources occur on the same level at the same time, they are serviced in the order
of priority. The interrupt sources, levels, and priorities are as follows:

PRIORITY WITHIN LEVEL

LOWEST MEDIUM HIGHEST

IRQ7* (from VMEbus) ACFAIL* Software abort

System fail

IRQ5* (from VMEbus) I/0 Channel INT3* Time-of-day interrupt

IRQ4* (f£rom VMEbus) I/0 Channel INT2* MMU interrupt

|
|
IRQ6* (from VMEDbus) | I/0 Channel INT4*
|
!

IRQ3* (from VMEbus) | RXRDY* interrupt TXRDY* interrupt

IRQ2* (from VMEbus) I/0 Channel INT1* DMA interrupt

o e e e b

F— F— F— F— F— F—

+— +

[
=l NN w oINS O\\lg

IRQ1* (from VMEbus) Bus clear interrupt VMEbus available
(or VMEbus interrupt
acknowledged)

Each interrupt source (except for those from the VMEbus) is serviced through a
different vector in the MC68010 MPU exception table. The interrupt source to
exception table correspondence is shown in Table 2-1.

There are three methods by which interrupt sources may be masked. The first
method is via control register 6 bit 7 (IMASK*). When this bit is cleared, it
masks all interrupts; when set, it does not mask any interrupt. From a reset
condition, this bit comes up cleared, masking all interrupts. Another method of
masking interrupts is that of using the mask bit associated with each interrupt.
The interrupts and corresponding mask bits are also listed in Table 2-1. Each
of these bit masks its corresponding interrupt when it is cleared but does not
when it is set. All of these mask bits come up masking at reset time. The
third method of masking interrupts is that of using the MPU status register
internal mask bits (see MC68010 data sheet for details).

2-16

TABLE 2-1. Interrupt Sources

| CORRESPONDING MASK BIT |

81-¢/L1-T

INTERRUPT SOURCE | CONTROL REGISTER # | BIT NUMBER LﬁEXCEPTION TABLE ADDRESS

IRQL* | 3 | 1 | Vector passed by interrupting board .
shifted left twice

Bus clear interrupt | 2 | 2 | $100

VMEbus available | 2 | 3 | $120

Interrupt acknowledged | 3 | 0 | $120

IRQ2* | 3 | 2 | Same as IRQL*

I/0 Channel INT1* | 6 | 3 | $104

DMA interrupt | 0 | 0 | $124

IRQ3* | 3 | 3 | Same as IRQ1*

RXRDY* interrupt | 2 | 7 | $108

TXRDY* interrupt | 2 | 1 | $128

IRQ4* | 3 | 4 | Same as IRQ1*

I/0 Channel INT2* | 6 | 4 | $10C

MMU interrupt | 2 | 0 | $12C

IRQ5* | 3 | 5 | Same as IRQ1*

I1/0 Channel INT3* | 6 | 5 | $110

Time-of-day interrupt | 0 | 1 | $130

IRQ6* | 3 | 6] Same as IRQ1*

I1/0 Channel INT4* | 6 | 6 | $114

System fail | 2 | 6 | $134

IRQ7* | 3 | 7 | Same as IRQL*

ACFAIL* |No mask exists for this interrupt| $118

Software abort |No mask exists for this interrupt| $138

CHAPTER 3

GRAPHICS GENERATION

3.1 INTRODUCTION

This chapter describes the VME/10 graphic capabilities. SCM graphics hardware
description is first presented, followed by a software description required to
drive the graphics hardware. Software application programs are also provided.

3.2 HARDWARE DESCRIPTION

This section describes the applicable hardware circuits that control the
graphics generation capabilities of the VME/10. These circuits are as follows:

a. Graphics memory

b. Graphics control registers
c. Graphics cursor register
d. CRT Controller (CRTC)

e. Control register 0

f. Control register 1

g. Graphics offset register

3.2.1 Graphics Memory

The VME/10 implements bit-mapped raster graphics using three bit planes. This
means that the display monitor is organized as a matrix of dots called pixels.
The VME/10 supports a low-resolution mode (800 horizontal pixels x 300 vertical
pixels) and a high-resolution mode (800 horizontal pixels x 600 vertical
pixels). Graphical images that appear on the monitor are the result of directly
mapping bits in system RAM to pixels on the dislay. For this purpose, there are
three bit planes (banks) of memory, each of which contains one bit for each
pixel. Each pixel is the result of combining three bits -- one from each of the
three memory banks -- which allows for a total of eight values for each pixel on
the display.

In color systems, each bank represents one of the primary colors -- red, green,
or blue. Therefore, a pixel with corresponding bits set in the red and blue
banks appears as magenta, while a pixel with correspording bits set in all three
color banks appears as white.

In monochrome systems, each bank represents an intensity level, which provides
an 8-level gray scale fram black (no banks enabled) to brightest (all banks
enabled).

Table 3-1 lists the colors/intensities for each color/intensity bank and the
results of combining banks.

TABLE 3-1. Color/Intensity

COLOR MONITOR MONOCHROME MONITOR (SEE NOTE)

PRIMARY RESULTING GRAY SCALE RESULTING GRAY

BANK (S) COLOR(S) COLOR LEVEL (S) SCALE LEVEL
None None Black 0 0
1 Red Red 1 1
2 Blue Blue 2 2
1,2 Red, Blue Magenta 1,2 3
3 Green Green 4 4
1,3 Red, Green Yellow 1,4 5
2,3 Blue, Green Cyan 2,4 6
1,2,3 Red, Blue, Green White 1,2,4 7

NOTE: Gray scale levels are expressed as an integer from 0 (black) to
7 (brightest), inclusive.

Each color/intensity bank is arranged such that the first byte in a bank
corresponds to the left-most eight pixels on the top row of pixels on the
display, and the last byte in a bank corresponds to the right-most eight pixels
on the bottom row of pixels on the display. Within a byte, the high order bit
(bit 7) corresponds to the left-most pixel, and the low order bit (bit 0)
corresponds to the right-most pixel.

All bytes within a bank are used. Thus, in low-resolution mode, each bank
consists of 30,000 bytes ((800 x 300 pixels)/eight pixels per byte), and in
high-resolution mode, each bank consists of 60,000 bytes ((800 x 600
pixels) /eight pixels per byte).

The three graphics memory banks may be accessed in any of the ways in which
standard RAM may be accessed. (In fact, graphics memory is just standard RaM.)
This means that one may write to or read from 1, 8, 16, or 32 consecutive pixels
(in a given bit plane) at a time by using bit, byte, word, or long word
operations. This provides for a rapid way of setting a large number of
consecutive pixels (e.g., for drawing horizontal lines, for filling figures, or
for filling the entire screen with a given color).

3-2

The VME/10 has special hardware which allows the user to write to all three
color/intensity banks for a given pixel using a single instruction. This is
performed using the pixel access area of memory. This memory is arranged in
words, with one word per pixel. The first word in the pixel access area
corresponds to the pixel in the upper left-hard corner of the display, while the
last word correspords to the pixel in the lower right-hand corner of the
display. Within the area, the words are arranged in row-major order -- that is,
the second word corresponds to the second pixel on the top line of the screen,
the third word correspords to the third pixel on the top line, etc.

Each pixel access word contains three bits that map directly to the
corresponding bits in the three graphics memory banks -- bit 0 maps to bank 1,
bit 1 maps to bank 2, and bit 2 maps to bank 3. Thus, setting bits 0 and 2 in a
pixel access word results in setting the corresponding bits in graphics memory
banks 1 and 3. Also, each pixel access word contains three mask bits, again one
for each of the graphics banks -- bit 8 correspords to bank 1, bit 9 corresponds
to bank 2, amd bit 10 correspords to bank 3. These bits are used to enable and
disable the writing to particular banks. This is accomplished by setting or
clearing bit 0, 1, or 2 in a pixel access word, which causes the corresponding
bit in bank 1, 2, or 3 to be set or cleared only if the corresponding mask bit
in the pixel access word is set. Otherwise, the bank bit remains unchanged.
For example, if the value $0306 is written to a pixel access word, the
correspording bit in bank 1 is cleared, the correspording bit in bank 2 is set,
and the corresponding bit in bank 3 remains unchanged. See Figure 3-1.

The pixel access area does not consist of real memory, but is special hardware
that occupies a space in the memory map. Pixel access memory should be written
to and read from only a word at a time. Each time a pixel access word is
written, the mask must be included as well as the actual pixel data. Pixel
access words may be read, but only the low-order byte of each word will be
meaningful ard will contain the current values of the corresponding bits in the
three graphics memory banks.

The locations and lengths of the graphics memory banks and the pixel access area
in the VME/10 memory map differ, depending on the graphics resolution mode.
Figure 3-2 illustrates the graphics memory map when in low-resolution mode,
while Figure 3-3 illustrates high-resolution mode.

¢t

(DISPLAY
MONITOR
/ J
L 8 COLORS
) o
GRAY SCALE
z SHADES
GRAPHICS RAM ARRANGED
/ IN 3 BANKS FOR PRIMARY
\k COLORS (INTENSITIES
= IF MONOCHROME)
& 7N] 1
\// ~ Z\V —~J \f\‘ I 1
PIXEL ARRAY FIGH INTENSITY
800 HORIZONTAL x 300 VERTICAL (LOW RESOLUTION) H)

800 HORIZONTAL x 600 VERTICAL (HIGH RESOLUTION) BANK 2 - BLUE

> | (MEDIUM INTENSITY)
\\ BANK 1 - RED
‘.:D: (LOW INTENSITY)
\.llllllllllllll

l e d W

PIXEL ACCESS
WORD
(STARTING ADDRESS = $E00000)

NOTE: ASTERISK DENOTES GATES ENABLING THE SETTING (OR

CLEARING) OF A BIT IN A COLOR/INTENSITY BANK, IF
J CORRESPONDING MASK BIT ISSET. IF ABANKMASK BITIS
15 . 1w0l9ls 2 |1 0 CLEARED, THE BIT IN THE CORRESPONDING COLOR/
INTENSITY BANK WILL REMAIN UNCHANGED.
L 1 1 1 J
I 1 i |
NOT USED BANK NOT USED BANK
MASK PIXEL

FIGURE 3-1. Pixel Access (Low and High Resolution)

UPPER LOWER
DATA DATA
BYTE BYTE

$048000 $048001
BANK 3 - GREEN
(HIGH INTENSITY)

SO4F52E $S04F52F

$04F530 S04F531
UNUSED (1)

SOAFFFE $SOAFFFF

$050000 $050001

BANK 2 - BLUE
(MEDIUM INTENSITY)

$05752E $05752F

$057530 $057531
UNUSED (1)

S057FFE $O057FFF

$058000 $058001

BANK 1 - RED
(LOW INTENSITY)

SO5F52E SO5F52F
$S05F530 $05F531
UNUSED (1)

SO5FFFE SOSFFFF
)u’ AL
n ,1-/
SE00000 SE00001
PIXEL ACCESS AREA
SE752FE SE752FF
SE75300 $575301
UNUSED (2)

SEFFFFE SEFFFFF

NOTES:

(1) Areas of unused memory are regular RAM and are available for
use by the user.

(2) Area of unused memory is special RAM and is not available for
use by the user.

FIGURE 3-2. Low Resolution Graphics Memory Map

UPPER LOWER
DATA DATA
BYTE - BYTE

$030000 $030001
BANK 3 ~ GREEN
(HIGH INTENSITY)

SO3EASE $03EASF
S03EA60 S03EA61
UNUSED (1)

SO3FFFE SO3FFFF
$040000 $040001

BANK 2 - BLUE
(MEDIUM INTENSITY)

S04EASE S04EASF
S04EA60 SO5EA61
UNUSED (1)

SO4FFFE SO4FFFF
$050000 $050001
BANK 1 - RED
(LOW INTENSITY)

SO5EASE SOSEASF
S05EA60 SO5EA61
UNUSED (1)

SO5FFFE SO5FFFF
~ /L/

v T
SE00000 SE00001
PIXEL ACCESS AREA
SEEASFE SEEASFF
SEEA600 SEEA601

' UNUSED (2)
SEFFFFE SEFFFFF

NOTES:

(1) Areas of unused memory are regular RAM and are available for
use by the user.

(2) Area of unused memory is special RAM and is not available for
use by the user.

FIGURE 3-3. High Resolution Graphics Memory Map

3-6

3.2.2 Graphics Control Register

This section describes registers in the VME/10 that affect the operations of
VME/10 graphics. Several registers deal with switching between low-resolution
and high-resolution modes. The required register settings for each mode are
sumnarized in Table 3-2.

TABLE 3-2. Required Settings for Graphics

CRTC CONTROLLER CHIP (1) LOW HIGH
(MC6845) RESOLUTION RESOLUTION MONOCHROME COLOR
Register 0 $62 $62
Register 1 $50 $50
Register 2 $56 $56
Register 3 $11 s11
Register 4 819 $19
Register 5 $03 $02
Register 6 $19 $19
Register 7 $19 $19
Register 8 S00 $03
Register 9 SOB $le6
Control register 0
(SF19F05)
Bit 3 - Dutycycle 1 0
Control register 1
(SF19F07)
Bit 4 - High resolution (2) 0 1
Bits 3-1 -~ Graphics enable 7 7
Graphics offset register $00 $32
(SF19F13)
NOTES:

(1) Write register number into location $F1A021, then write corresponding
register value into location $F1A023.

(2) Changing the value of this bit totally remaps all of dynamic RAM in
the address space $000000 to SOSFFFF. Thus, any program or data in
this address space will probably be lost. It is recommended that the
VM command in TENbug be used to toggle between low resolution and high
resolution modes.

3-7

3.2.3 Graphics Cursor Registers

The VME/10 display supports a graphics cursor consisting of two cross hairs (a
vertical line and a horizontal line). The cross hairs appear inverse to the
color that is present on the display screen (e.g., no color - white cursor,
green screen - magenta cursor). Each cross hair is controlled separately by one
of the two graphics cursor registers, each of which is 12-bits in length.

The vertical graphics cursor (vertical cross hair) is controlled by the vertical
graphics cursor register at address $F19F00. By loading the vertical graphics
cursor register with any of the values $FCEQ-S$FFFF, the vertical graphics cursor
may be placed at any one of 800 positions on the display. The value SFCEQ puts
the vertical cursor at the far right-hand side of the display, while the value
SFEFFF puts the cursor at the far left-hand side of the display. The value $SFE70
puts the vertical cursor at the center of the display. Storing the value $0 in
the vertical graphics cursor register disables the display of the vertical
Cursor.

The horizontal graphics cursor (horizontal cross hair) is controlled by the
horizontal graphics cursor register at address SF19F02. This cursor may be
placed at any one of 300 positions on the display by loading the horizontal
graphics cursor register with any of the values $FED4-SFFFF. The value SFED4
puts the horizontal cursor at the far bottom of the display, while the value
SFFFF puts the cursor at the far top of the display. The value SFF6A puts the
horizontal cursor at the center of the display. Storing the value $0 in the
horizontal graphics cursor register disables the display of the horizontal
cursor.
NOTE

Both of the cursor registers are write-only. Reading
from either register will obtain meaningless values.

3.2.4 CRT Controller (CRTC)

To switch from low-resolution graphics display mode to high-resolution graphics
display mode (or vice-versa), the CRTC Controller (CRTC) chip MC6845 must be
reprogrammed. The CRTC has several byte-length internal registers, each of
which can be programmed separately. To change the value of an CRIC register,
first write the register number into location S$F1A021 and then write the new
register value into location $F1A023. Both of these writes must be byte
operations. These registers are write-only; their contents cannot be read.
Table 3-3 lists the required CRTC values for low- and high-resolution modes (the
low-resolution values are also used for standard text display):

TABLE 3-3. Resolution Values

LOW HIGH
REGISTER RESOLUTION RESOLUTION

0 $62 $62
1 $50 $50
2 $56 $56
3 $11 S11
4 $19 $19
5 $03 $02
6 $19 $19
7 $19 $19
8 $00 $03
9 $0B $16

3-8

3.2.5 Control Register 0 (Location Address SF19F05)

Bit 3 of control register 0 controls the display dutycycle. This bit should be
set when a monochrome monitor is being used. When a color monitor is being
used, this bit should be cleared for adequate display brightness.

3.2.6 Control Register 1 (Location Address SF19F07)

Bit 4 of control register 1 selects the proper memory mapping for low-resolution
and high-resolution modes. This bit must be cleared for low-resolution
graphics, and must be set for high-resolution graphics. Changing the value of
this bit totally remaps all of dynamic RAM in the address space $000000-SOSFFFF.
This would probably destroy any programs and/or data in this address space.
Therefore, it is recommerded that the VM command in TENbug be used to toggle
this bit. By default, this bit is set (high-resolution) whenever the VME/10 is
turned on.

NOTE
It is possible to switch between low- and high-resolution
under program controcl. To do so requires that bit 4 of
control register 1 already be set and remain set. To
select the resolution, set the graphics offset register to
the proper value (see section 3.2.7) and program the CRIC
accordingly (see table 3-2). When using this method, banks
3, 2, and 1 will always start at $30000, $40000, and $50000,
respectively. It is not possible to switch between low- and
high-resolution when bit 4 of control register 1 is clear;
only low-resolution is allowed.

Bits 1 through 3 of control register 1 are used to enable and disable the
display of individual graphics memory banks. A set bit enables a bank while a
clear bit disables a bank. Bit 1 controls bank 1 (red/low intensity), bit 2
controls bank 2 (blue/medium intensity), and bit 3 controls bank 3 (green/high
intensity). Thus, when all three bits are cleared, no graphics are displayed;
when all three bits are set, graphics of all colors/intensities are displayed.

NOTE

These bits do not affect the user's ability to write to
the individual graphics memory banks; they affect only
the displaying of those banks.

3.2.7 Graphics Offset Register (Location Address SF19F13)

The graphics offset register must also be altered when changing between
low-resolution and high-resolution modes. For low-resolution graphics, this
register must contain $00. For high-resolution graphics, this register must
contain $32.

NOTE

By default, this register contains $00 (when the VME/10
is powered up). Also, use of the TENBug VM command does
not change the value of this register.

3-9

3.3 SOFTWARE APPLICATION

This section presents several examples of programs that use the VME/10 graphics.
All of the programs presented assume the presence of VERSAdos.

One of the first problems encountered when attempting to use VME/10 graphics
under VERSAdos is having the application program loaded into graphics memory
($48000~S5FFFF in low-resolution; $30000-S$5FFFF in high-resolution). It 1is
almost impossible to use the same memory for graphics and for program execution
at the same time. One way to solve this problem is by always writing
position-independent application programs that relocate themselves if they get
loaded into graphics RaM. An easier method is to write 3just one
position-independent utility program that can relocate itself, if necessary, and
reserves graphics RAM for use by subsequent application progams. The graphics
RAM can be reserved by allocating a locally-shareable segment that encompasses
the graphics memory. Then the various application programs can simply attach to
that segment to gain access to graphics RAM. Also, there is no need for the
application programs to be position-independent and self-relocating because
there is no way they will be loaded into the already allocated graphics RAM.

Listing 1 is an example of such a utility program, called GRAF. When GRAF is
executed, it first relocates itself to ensure that it is not occupying any
graphics RAM. It then allocates the graphics memory in a locally-shareable
segment called GRAF. Furthermore, GRAF enables the display of graphics by
setting bits 1 through 3 in control register 1 (location address $SF19F07) and by
reprogramming the CRTC for the proper resolution.

When GRAF is finished, the program terminates. However, the locally-shareable
segment GRAF remains, as does the enabling of the graphics display. The segment
remains active until the session is temminated (i.e., the user logs off) or it
is deallocated by a call to RMS68K. The graphics display remains enabled until
bits 1 through 3 of control register 1 are cleared and the CRTC is reprogrammed.
Listing 2 is an example of a program that deallocates the graphics RAM segment
and disables the display of graphics. The program is called NOGRAF.

By using GRAF and NOGRAF, the user can develop application programs without
worrying about having to self-relocate, how to enable the graphics display, or
how to return the display to normal. All the user needs to do is run GRAF
before an application program and run NOGRAF afterwards. If there are several
application programs, invoke GRAF once at the beginning and NOGRAF once at the
erd.

Finally, listing 3 is an example of a simple application program called BARS.
BARS draws a color/intensity chart consisting of eight horizontal bars and eight
vertical bars. Each bar in a given axis is of a different color/intensity.
Where two bars intersect, the intersecting area is the exclusive-OR of the two
colors/intensities. Thus, where two bars of the same color/intensity intersect,
the result is black. The bars are displayed against backgrounds of each of the
eight possible colors/intensities. (The bars are also exclusive-OR'd with the
backgrourd.)

BARS creates its graphics both by writing directly to the three color/intensity
banks in graphics RAM and by writing to the pixel access area. The former is
used to draw the background, while the latter is used to draw the bars. To
access the graphics RAM, BARS attaches the shared segment created by GRAF. To
use the pixel access area, BARS has to allocate a segment at the proper spot in
the memory map. BARS determines if low-resolution or high-resolution graphics
are in use and adjusts to work equally well in both modes.

3-10

.
P e T D 00~ O L e G4 P e

[I OV T L B SR O |
~ O L el P

P

[g=]
]

30

3t

32

33

14

35

35

37

38

39

4

41

42 0 DOO0O0H00
43

44

45

44

47

48 o 00000000 41FADL34
49 § 40000004 7001
50 0 00000006 4E41
51 0 00000008 4704

TARY

e W e M W LX) ok Mk ds e e MR e ok e e e R e s o Nk a0 sk e MR e s s s Mt Mt o ik ok 3 ue R ok R ok SR dk N s We

a2 ¥
a3 ¥
i *
55 4
360 20000004 ERROR

57 0 0000000R TOOE
38 0 0000000C 4E4!

GRAF

7 December 1983

This program creates a locally shareable segment called GRAF.
It the VME/10 is in low-resalution graphics mode, this segment
begins at $48000 and extends thru $3FFFF. If the VME/10 is in
high-resolution graphics mode, this segment begins at $30000
and extends thru $SFFFF.

This program also "turns graphics on® by enabling the display
of graphics and reprograaeing the CRTC controller chip.

Tasks within the same session can attach to the segaent for the
purpose of accessing the graphics raa.

The segment can be de-allocated by either terminating the session,
or by invoking the program NDGRAF. Invoking the program NOGRAF
will also disable the graphics display and return the CRT dispiay
to normal.

The basic attack ic as follows:

This task has probably been loaded intp semory within the graphics
ram. The task will move itself out of there and de-allocate it's
original code segment, thus freeing up the graphics ras,

Then, it allocates the physical ram from $4B000 thru $SFFFF (for
low-resolution} aor from $30000 thru $3FFFF {for high-resolution)
and establishes that segment as locally shareable,

Then, it clears all graphics memory and enables the the display
of graphics,

Finally, it terminates, leaving the GRAF segment available for use,
as well as preventing further allecations in that area,

The beginning of the program is here:
Eau ¥
First, acquire a segaent to gain access to the hardware

registers so we can find out what reselution sode we are
in.

LEA.L PBI{PCY,AD Point to parameter block
HOVE.L #1,D0 HTSEE directive number
TRAP 3! Call RNSABK

BEB.S GOTREGS Successful call

What follows is the error handler, It sieply terminates
ourself.

Eou ¥
MOVE.L #14,D0 Terminate self directive nusber
TRAP # Call RMS&8K

3-11

59 ¥

60 # Bet starting address of graphics memory in A5,
L1 ¥
62 9 H000000E GOTREGS EBY ¥
A3 § O0G0O0GE 2A7CG0048000 MOVE.L #$48000,45 fissume low-res
A4 § 00000014 0B39000400F1 BTST.B #4,$F19F07 Really low-res?
9F7
65 0 D000G01IE 6704 BER.S BOTRES! Yes
64 O Q00000LE ZATCO0030000 MOVE.L #$30000,A5 No - set up for high-res
67 ¥
b8 £ fcguire a new segment to receive a copy of the code.
&9 #
IR 00000024 HOTRES! EGU ¥
71 0 00000024 41FADOED LEA PRE(PC),AD Point to the BTSEG paraseter block
72 0 00000028 Z14D0010 " MOVE.L AS,PRILOC-PRE(AD) Set up first address ...
73 0 D000002C 04ABOODHIN0Y SUB.L #$1000,FBILOC-PBLIAD) to try,
00140
74 0 00000034 7001 HOVE.L #1,D0 BYSEG directive nusber
73 0 00000036 4E41 TRAP # Call RMS48K
7o 0 0000038 A7DA BEG.S BOTCODE Branch it it worked
77 0 00000034 04ABNO0GO100 SUB.L 9%100,PBILOC-PBI{AG) Else try a little lower
2010
78 0 00000042 H0ED BRA.S BOTRES! Give it another shot
79 0 00000044 SOTCODE
80 ¥
Bl ¥ Move my code to the new segment
8z #
B3 0 00000044 2248 WOVE.L AD,AL Point to the beginning of the new ae
84 0 00000044 41FAFFEI LEA START{PL) (A0 Point to the beginning of the old me
85 O D0000D4K J03COLSE MOVE.® SEND-START,DO My approvimate length
84 0 2000004E 1208 HOVE HOVE.R {(AD)+, (AD)+ Hove a byte to the new place
87 0 00000050 SICBFFFC bBRA D0, MOVE Until I'm all there
88 0 00000054 227400C0 MOVE.L PBILOCPCY AL Point to the new START
B9 O 90000058 4EEFO0SC JHF HEN-START (A1) Juap to the new HEM
94
91 ¥ Here begins the code executed in the new code segment
92
93 9 D000005C NEW
94
95 ¥ De-allocate the old code segaent
9%
97 0 00000050 41FACOAB LEA PELIPL), A0 Point to the parameter block
98 0 00000060 217053454730 MOVE.L #'5EG0° ,PBINAME-PRI(AO) Old segaent name
H0OC
9% O H0000048 7002 MOVE.L #2,D0 DESEG directive nusber
100 0 00000046 4E41 TRAP # Call RMSA8K
101 0 0006004C 649C BAE ERROR Crash if it didn't work
102 *
103 ¥ Bequire the graphics rae
104
105 0 0000004E 41FAO0AE LEA PBZ{PL),AD Point to parameter block
104 0 00000072 21400010 MOVE.L AS,PB2LOC-PBZ(AD) Physical address desired
107 § 00000076 22700060000 MOVE.L ##60000,41 Calculate...
168 0 0000007 93CD SuB.L AS,AL segeent.,.
109 § H000O07E 21490014 MOVE.L Af,PB2LEN-PB2{AD) length.
110 ¢ 00000082 7001 MOVE.L #1,D0 6TSE6 directive nusber
111 © 90000084 4E41 TRAP # Call RMS48K
112 0 00000086 5482 BNE ERROR Crash if it didn't work

3-12

113

114

113

116 0 00000088 41FA0OT4

117 0 0000008C 317C90000008

118 9 00000092 31720000004

113 0 90000098 7007

120 0 00000094 4E41

124 0 0000009C ab600FFAC

122

123

124

125 & 00000080 224D

126 0 00000042 203C00060090

127 0 20000048 9089

128 0 900600AR £468

129 9 90O000AC 5340

130 ¢ 000000AE 4299

131 © 00000080 51C8FFFC

132 0 00000084 427900F19F00

133 0 0000008k 427900F19F02

134

135

136

137 9 00000000 D239007FOOFT
907

138 0 000000CE O03IF000E00F]
9F07

139 0 000000D0 423900F19F13

140 O 000000D4 43FAO0TS

141 O 000000DA 0839000400F1
ko7

142 & DOOOOOEZ 670C

143 0 000000E4 13FCO03200FL
9F13

144 0 0D0000EC 43FADNET

145 0 000000F0 43F900F1A021 GOTRES? LEA
CRTCLOOP MOVE.B

144 § 000000FS 1019

147 0 900000F8 aBO8

148 0 OO000DFA 1480

149 0 000000FC 15590002
130 0 00000100 80F4

131

152

153

154 0 00000102
135 0 90000102 TOOF

156 9 00000104 4E41

157

158

159

160

16t 9 00000106 000000000000
162 0 0000010E 01000000
163 0 00000112 434F4443
164 & 000001146 00000000
163 0 00000114 00000150
164

CLRLOOP

¥
¥
4

Make GRAF locally shareable

Point to parameter block

DELSHR directive number

LER PB2(PCI,AD

MOVE.N #$9000,PB20PT-PB2(A0) Options
MOVE.W #$2000,PB2ATTR-PB2(A0} Attributes
MOVE.L 47,00

TRAP # Call RMS&8K
BNE ERROR

Crash if it didn’t work

Clear out the graphics memory and disable the graphics cursor,

HOVE.L A5,Al
MOVE.L #$40000,D0
SUB.L A1,D0
LSR.L 42,00
SUB.N #1,D0
CLR.L (A4

DBRA DO,CLRLOOP
CLR.N $FI9F00
CLR.N $F19FD2

Al.L = address of graphics RAM

Ending address of graphics RAM

DO.L = # of bytes in graphics RAM

D0.W = ¥ of long words in graphics RAM
Adjust for lcop

£lear graphics RAM, a...

long word at a tiee.

Disahle vertical graphics cursar
Disable horizontal graphics cursor

Enable graphics and set up resolution mode

RND.B . 8$TF $F19F07
OR.B $$0E, $F19F07
CLR.B $FI9F13

LEA.L LOWRES{PC) Al
BTST.B #4,4F19F07
BER.S BOTRES?
MOVE.B ¥$32,$F19F13
LEA.L HIRES(PLH, Al

$F1021,A2

Disable fast access to systea RAM
Enable graphics display

fissume. ..

low-res.

Really low-res?

Yes
No - set up...

for hi-res.
Load address of CRIC controller regs

fAL)+,D00 Reprograa the...
BM1.5 CRTCDONE CRTC controller...
MOVE.B DO, (A2} for the proper...
MOVE.B 1AL+, 2(A2) resolution..,
BRA CRYCLOOP mode,
Bood. This massive task is now finished. 5o I will go away.

CRTCDONE EBU]

MOVE.L #15,D0
TRAP #1

TERM directive nusber
Call RMSaBK

Acquire new code segaent
Physical address

Naze

fAddress

*
¥ Paraseter block to get new code segment.
¥ Also used to delete old code segment.

¥

PBi bL.L 0,0

PRIOPT DC.W 10000000100000900,0

PRINANE DC.L 'CODE”

PBILEC DC.L 0

PBILEN DC.L END-START+{

4

3-13

Length

167 * Parameter block used to get segaent at graphics RAM.
168 ¥

169 0 000001LE DO0D00000000 PBZ BE.L 0,0 Taskname and session
170 0 00000126 0000 FB20PT DC.W 0 Options

171 4 20000128 0000 PR2RTIR DL.W 0 Segement attributes

172 0 00000128 47524144 PHINAME [C.L ‘BRAF Segaent naee

173 0 000D012E 00000000 PR2LOC DC.L 0 Segment address

174 ¢ 00000132 00000000 PBALEN DC.L 0 Segment length

175 ¥

178 ¥ Parameter block to get segeent at hardware registers.
177 *

178 0 00000136 000000000000 PR3 bL.L 0,90 Taskname and session
179 0 0060013E 0000 PESOFT DC.¥] Gptions

180 0 00000140 080D PBIATTR DC.H $800 Attributes imemory mapped [/0)
181 0 00000142 52454733 PHINAME DC.L "REBS” Segment name

182 0 00000146 DOF19FO0 pR3LOC DC.L $F19F00 Segment address

183 & 00000144 00000200 PBEILEN DC.L $FLALOG-$FLI9F00 Segment length

184 ¥

185 ¥ The following are CRTC controller register values for
184 # both low- and high- resolution mades.

187 ¥

188 0 0000014E 050308000908 LONRES [DC.B 5,$03,8,$00,9,508,-1
189 0 00000155 DS0208030914 HIRES DC.B 5,$02,8,$03,9,$16,-1

190 *

194 £ Uh-duh-dee, uh-duh-dee, uh-duh-dee, that's all folks!
192 $

193 0 DOOOOISE END EQU ¥

194 , END

seeeek TOTAL ERRORS f--
reeied TOTAL WARNINGS O--

3-14

NOGRAF

7 Deceaber 1983

This progran de-allocates segment GRAF.

It also disables graphics and returns the CRT to normal.

The beginning of the program is here:

—
R - IS N L I S P R U
W W sk R e R de N uk

it
12 9 D0060000 START EQU #
13 ¥
14 ¥ First, acquire a segaent to gain access to the hardware
13 * registers so we can find out what resolution sode we are
16 ¥ in.
17 *
18 0 00000000 41FAGYT6 LEA.L PB3(PC},AD Point to paraseter block
19 0 40000004 7001 MOVE.L #1,D0 GTSEG directive number
20 0 00000006 4E41 TRAP £)| Call RM548K
21 0 00000008 6704 BER.S GOTREGS Successful call
22 *
23 ¥ What follows is the error handler. It simply terminates
24 # ourselt.
25 ¥
26 9 00000004 ERROR EBU *
27 0 000D00DK TOOE MOVE.L #14,D0 Terminate self directive nusber
28 0 00000000 4E41 TRAP i Call RMGABK
29 ¥
30 # Get starting address of graphics memory in Al
3t ¥
20 D06000DE GOTREBS EQU ¥
33 0 0000000F 227C00048000 NOVE.L #$48000,A1 Assume low-res
38 0 00000014 0B39000400F 1 BIST.B ¥4, $F19F07 Really low-res?
9F07
33 0 0000001C 4704 BER.S GOTRESH Yes
34 O Q000Q01E 227E00030009 MOVE.L #$30000,A1 No - set up for high-res
37 ¥
38 * httach to the segment GRAF, so's it's mine to delete
39 ¥
409 00000024 BOTRES! EBU ¥
41 0 00000024 41FADOSA LEA PBLLPC) A0 Point to the parameter block
42 1 00000028 7004 MOVE.L #4,D0 ATTSEE directive number
43 O 00000028 4E41 Thae L N Call RMS68K
44 0 0000002C 66DC BNE ERROR Crash if didn't work
45
L1 ¥ Clear out the graphics memory and disable the graphics cursor.
47
48 1 0000002E ZO3CO0040000 MOVE.L #$40000,D0 Ending address of graphics RAN
49 0 00000034 9089 SuB.L ALDD D0.L = ¥ of bytes in graphics RAM
0 0 00000034 E488 LSR.L #2,D0 BO.W = # of long words in graphics RAM
51 0 00000038 5340 SuB.W #1,D0 Adjust for loop
32 9 D000003A 4299 CLRLOOP CLR.L {AD)+ Clear graphics RAM, a...
a3 0 0000003C SICAFFFC DBRA Bo,CLRLOOP long word at a tise.
34 0 00000040 427900FL19F00 CLR.W $FI9FO0 Disable vertical graphics cursor
33 0 00000046 427900F19F02 CLR.W $F19F02 Disable horizontal graphics curser
b ¥
a7 ¥ Disable graphics and return CRT to noraal.

3-15

i

9 0 00000040 023900F100F1

9F0?

60 © 00000054 0039008000F 1

9F07
61 0 0000005C 43FA0052

62 9 00000060 43F900F1AG2L

63 0 00000046 1019

&4 9 00000068 4BOE

65 0 D0ODOODSA 1480

64 O 000000AC 13590002
67 & DO0ODOTO HOF4

L

b9

70

I H0000072
12 0 00000072 41FA000C
73 0 60000076 7002

T4 0 Q0000078 4E41

T3 O 00000078 6ABE

74

n

7

79 4 0000007C TOOF

80 0 0000007E 4E41

Bt

82

a3

B4 0 00000080 000H0N000300

83 0 00000088 28042000
8a 0 HODDDOBE 47524144
87 0 00000090 H00006000
B8 0 00000094 HO00000D
89
L]
91

92 0 00000098 000000000000

93 0 00000040 0000

94 0 000000R2 0800

93 0 000000A4 52454753
96 0 000D00AB HOFLFFO0
97 0 000000RC 00000200
98

99

100

10t

¥

CRTCLOOP HOVE.B

¥
¥
¥

AND.B #$F1,$F19F07
O0R.B 4380, $F19F07
LEA.L LONRES(PC),At
LEA $FLA021,A2

(A1)+,00
BM1.S CRTCDONE
MOVE.B DO, (A2)
HOVE.B (AL)+,2(A2)
BRA CRTCLOOP

Mow de-allocate segment GRAF,

CRTCOONE EBH H

¥

*

¥

PBi
PRIGPT
PRINAME
PRILOC
PBILEN
*

¥

¥

PR3
PE3OPT
PRIATTR
PBINAME
PE3LOC
PESLEN
*

¥

3

¥

102 9 00000080 050308000708 LOWRES

103
104
103
106 9 00000400
#heked TOTRL ERRORS
sheers TOTAL HARNINGS

(-
-

¥
¥
*

LER PBI(PC) ,AD
MOVE.L 42,00

TRAP 4

ENE ERROR

a1l done, so off [go

HOVE.L 415,00
R #

Disable graphics display
Enable fast access to system RAM

Load address of new CRTC reg values
Load address of CHIC contraller regs
Reprograa the...

CRIC controller...

for the proper...

resclution...

aode,

Point to parameter block
DESEG directive number
Call RNSaBK

Lrash if didn't work

TERM directive number
Call RNSABK

Attach and de-allocate parameter block

L 0,0
DC.H

BL.L GRAF
DL $00000
L0

Farameter block to get segaent

BLL 0,0
H 0

BN $800

BC.L REGS'

DL $FI9F00

DC.L $FLALOO-$FLIFOO

ficguire new code seqment

10010100000000000,$2000 Resove peraanance when DESEGing

Segment name
Address {n/a)
Length {(n/a)

at hardware registers.

Taskname and cession

fiptions

Attributes {memorv mapped [/0}
Segment name

Segaent address

Segment length

The following are CRTC controller register values for
low-reselution mode {also used for standard test display).

bc.B
That ‘s all she wrate.

END START

3-16

5,$03,9,$00,9, 508 ,-1

{ *

2 # BARS

3 ¥

4 ¥ 7 December 1983

5 #

&]

7 * This program is an example of using the graphics

a $ hardware of the YME/LO directly. It draws

9 ¥ a color {grey scale) chart consisting of eight

10 * horizontal and eight vertical bars., Each bar in

11 # a given axis is of a different color {grey scalel.

12 ¥ Where a horizontal bar intersects a vertical bar,

13 ¥ the result is the Exclusive-OR of the two colors.

14 ¥

15 # The color igrey scale) chart is drawn against each

14 ¥ af the eight possible background colors, with a slight
17 * delay between each.

18 *

19 ¥ Betore running this program, one should first run the

20 ¥ program SRAF to reserve the graphics RAM and to

21 ¥ enable the graphics display. After running BRRS,

22 ¥ the program NOGRAF should be executed to return the

23 * display to normal.

24 ¥

23 ¥

24 ¥ The program starts here:

27 ¥

289 00000004 START 241} *

29 ¥

30 0 00000000 4FFAD3S LEA.L STACK(PC),A7 First give ourselves a stack
3

32 ¥ Attach the segment that contains the graphics RAM.

33 #

34 0 00000004 41FADI3E LER.L PBL{PC},AD Get address of paraeeter block
33 0 00000008 7004 MOVE.L #4.,D0 Attach segeent directive number
36 0 0000000R 4E4L TRAP 1 Call RMSABK

37 0 90000000 6704 BEB.5 GOTSEG & successful call

38 ¥

39 ¥ The following is our error handler.

40 * It simply causes the program to abort itself.

#

42 0 0000000E ERROR EQU *

43 0 DOODODOE TOOE MOVE.L #14,00 Abort self directive number
44 0 Q0000010 4E41 TRAP 3! Call RMSA8K -- never to return
45 ¥

440 00000012 GOTSEE EQU #

47 #

48 ¥ See if using low-res or high-res graphics.

49 $ fissuee low-res and set up as such.

a0 ¥

5t 0 00000012 4203 CLR.B D5 Indicate low-res

32 0 00000014 BIFCOO048000 tHP.L #$48000,A0 Really low-res?

I3 0 0000014 6702 BER.S BOTRESt Yes

34 9 0000001C 44035 NOT.B D5 Nope - indicate high-res
55 ¥

a6 0 0000001 GOTRESL EGU 3

77 ¥

58 4 freate a segaent to gain access to the pixel access area.

3-17

W

69 0 0000001E 41FAO13C
sl 0 00000022 7001

62 0 00000024 4E41

&3 ¢ 00000026 b4E4

b4

b3

hb

67 0 00000078 4207

68

&9

70

A 40000024
72

73 0 00000028 6170

L

73

74

77 9 00000020 4240

78 ¢ 00000028 4241

79 0 00000030 383CO0IE
80 ¢ 20090034 343C0O320
81§ 00000038 4204

82 ¢ 00000038 3C3C0025
83 0 00B00D3E 4A03

84 9 00000040 4704

85 0 H0000042 343C0030
86 9 00000040 3C3C004B

87
88 ¢ $0000044
89
%
9
920 00000044

33 4 Q0000044 A1000OC0
94 0 D000004E OCO40007
93 0 00000052 4704

%4 O 00000034 5204

37 0 40200036 D044

98 ¢ 00000058 HOF)

99

100 9 00000054
101

toz

103

104 0 00000054 4240

103 0 0000003C 4241

106 ¢ DODOOOSE 343C0120
107 & 90000062 34300050
108 0 000000466 4204

109 0 00000068 3C3C0O064
110 0 0000004C 405

LIt 0 0000006E 6704

112 0 00000070 34300258
113

114 0 00000074
113

114

LEA.L PB2IPC},A0 bet address of paraseter block

HOVE.L #1,D0 Get seqaent directive number
TRAP £)] Call RMS&BK
BNE ERROR Crash if didn't work

Initialize the background color.

fLR.B D7 First background coler is §

#
¥ Loop here for each new background color.
¥

BACKLOGF EBU ¥

#

BSR.§ FILLSER Fill screen with desired background color

#
¥ Draw the horizontal color {(grey scale) bars
¥
CLR.¥ DO Starting row = 0
iR M Starting col = 0
HOVE.W 430,02 # of filled rows per bar = 30 (low-res)
HOVE.W ¥800,03 # of filled cols per bar = 800
CLR.B D4 Starting color = 0
MOVE.W #37,D4 Total # of rows per bar = 37 (low-res)
T5T.8 09 Low-res assuaption safe?
BEB.S GOTRES2 Yes
MOVE.H 440,02 Nope - 60 filled rows per har in high-res
HOVE.W 473,04 Total of 75 rows per bar in high-res

¥

GOTRESZ EGY ¥

H

¥ Draw eight bars, one at a tiae,

H

HORZLOOP EBU *
BSR FILLRECT
CHP.B 47,04
BEB.§ HORZDOME
ADDB.B 81,D4
ADD.Y Da,D0
BRA.S HORZLDOP

Iraw a filled horizontal bar
Last bar?

Yep - on te vertical bars
Nope - change te next color
Change to start of next bar

Loop for next bar
¥

HORZBONE EBU ¥
¥

¥ Now draw the vertical bars
¥
ELR.0 B Starting row = 0
ik M Starting coluan = §
HOVE.W #300,D2 # of filled rows per bar = 300 {low-res)
MOVE.® 480,03 ¥ of tilled cols per bhar = 80
CLR.B D4 Starting color = 0
MOVE.W #100,D4 Total # of cols per bar = 100
TsT.B 09 Low-res assumption safe?
BER.5 GOTRES3 Yep
HOVE.W #500,D2 Nope - 400 filled rows per bar in high-res
¥
GOTREST EBY #
¥
¥ lraw eight vertical bars, one at a tiae,

3-18

17

118 0 00000974
119 0 00000074 61000094
120 0 40300078 OCO80007
121 0 0000007C 6704

122 0 0000007E 5204

123 0 00000080 D244

124 0 40009082 60F)

125

125 9 00000084
127

128

129

139

131 0 00000084 00070007
132 ¢ 00000088 670F

133 0 00000088 3207

134 ¢ 0000008C 207C000G03ESR
133 0 00000092 7015

138 0 0000094 4E41

137 0 00000096 6092

138

139 9 DO0N00YE
140

141

142

143 O 00000098 TOOF

144 ¢ Q0000094 4E4L

*

VERTLOOP EBU *

¥

BSH FILLRECT Draw a filled vertical bar
CNr.B #7,4 Last bar?

BEQ.S VERTDONE Yep - time to finish

ADDE.B #1,D4 Nope - change to next color
ADD.W D6,D1 Change to start of next bar
BRA.S VERTLOOP Loop for next bar

VERTDONE EQU 4

¥

L O

L T S I

LLDOKE

See if have used all background colors.
I not change to next color and do it again.

cwr.B 7,07 Last background color?
BER.S ALLDONE Yep - that's it
ADDE.B ¥1,07 Nope - change to next one
MOVE.L ¥1000,80 Delay...
HOVE.L #2L,D0 purselves for...
TRAP i one second...
BRA BACKLOOP Loop back
Equ *
Time to end to program - terainate ourself,
MOVE.L #15,00 Terminate self directive nusber
TRAP # Call FM568K - never to return

3-19

144 ¥

147 ¥ The routine FILLSCR fills the screen with a specified
148 # color by writing directly to the three individual color
149 ¥ banks.

150]

151 ¥ The registers must be passed to this routine as follows:
152 # D3.B - 0 =) low-resolution mode

153 # *0 => high-resolution pode

154 # 07.B - color with which to fill screen {0-7)
155 ¥

154 * This routine preserves all the registerc (data and address}.
157 #

158 0 0000009C FILLSCR EBY *

159 O 0000009C 48ETECTO MOVEM.L DO-D2/AL-A3,-{A7) Save registers

168 ¥

161 ¥ See if using low-res or high-res graphics.

162 ¥ fssume low-res and set up as such.

163 3

164 0 000000A0 227000038000 HOVE.L #$38000,41 Address of celor bark |
145 0 Q0000086 247C00050000 HOVE.L #$30000,42 Address of coler bank 2
160 O DDOGOOAL 247C0004B00) MOVE.L #$48000,43 Address of color bank 3
147 § 00600082 343C1D4B MOVE.W #7499,D2 # of long words per bank -
168 O 00000086 4403 T8T.B B3 Really low-res?

169 O 00000GBE 4714 BER.S GOTRES Yes

170 © GO00O0BA 227C00050000 HOVE.L #$30000,41 Address of color bank 1
171 0 000090CH 247000040000 MOVE.L #$40000,42 Address of color bank 2
172 0 000000CA Z67CODDI0N00 HOVELL #$30000,43 fAddress of color bank 3
173 0 00009000 34303A97 WOVE.W #1499%,02 % of long words per bank - |
174 ¥

175 4 0000000 ROTRESY EBY ¥

174 ¥

177 ¥ Take care of bank |

178 ¥

179 0 000000D0 4280 CLR.L DO fissume going to clear bank
189 § 90009002 3202 MOVE.W BZ,D! Get long word count

181 0 00000004 0BOTODOD BYST #0,07 Clear or zet bank?

182 9 40000008 6702 BEG.5 BILOGF Clear

183 0 G00DO0DA 4480 HOT.L DO et

184 9 Q000900C 2200 BILOOP MOVE.L DO, {AL)+ Change bank 3Z...

183 0 000000DE S1C9FFFC DBRA D1, BILOOP hits at 2 tiee,

184

187 ¥ Take care of bank 2

188 $

189 0 00GO00EZ 4280 CLR.L DO fissyme going to clear bank
190 O H00090E4 3202 HOVE.W D2,D1 Get long word count

191 0 D00000E6 0BOTOND! BTST #1,07 Clear or set bank?

192 0 Q00D0OER 4702 BEG.S B2LOOP Llear

193 0 GO0OO0EC 4480 MBT.L DO Set

194 § 900000EE 2400 B2LOOP WOVE.L DO, {A2)+ Change bank 32...

195 0 000000F0 SICYFFFC DBRA D1,BZLDOP bits at a time.

194

197 ¥ Take care of bank 3

194 #

199 0 000000F4 4280 CLR.L DO Assuse going to clear bank
200 0 000000F4 3202 MOVE.W D2,D! Get long word count

201 O 000D00F8 08070002 BTST 2,07 Clear or set bank?

202 0 Q0000OFC 4702 BER.S B3LOGP Clear

203 0 D0000OFE 4480 NOT.L DO Set

3-20

204 9 00000100 24CH

205 0 00000102 SICIFFFC
204

207

208

209 0 00000106 4CDFOEOT
P

211 0 00000108 4E7S

B3LOOP

MOVE.L DO, {A3}+ Change bank 32...
DBRA I, B3L00P bits at a tiae,

That's all there is -- restore the registers and return.
MOVEM.L (A7)+,D0-D2/A1-A3 Restore the saved registers

RTS All done

3-21

213
214
213
218
247
218
219
220
221
222

223

224

225

226

21

228

229

230

3

232

233

234

235 0 00000100
234

237 © 0099010C 4BETFFFE
238

39

249

241

242 0 00000110 41FOOENODD0
243 0 00000118 3R09

244 § ODO0O11E 5343

243 0 00000114 CBFCOG4D
286 0 000DOLE DICS

247 9 9000120 DOCY

248 & 00000122 DOCY

49

250

23t

252 0 90000124 5342

253 0 00000126 53343

254 0 00000128 4884

253

234

257

238 O 00000128 DIFCOND00640
259 0 00000130 2244

260 0 00000132 3403

2461 0 00000134 B959

262 0 00000136 SICDFFFC
263 0 00000134 SICAFFEE
264

265

288

267 O 0000013E 4CDFTFFF
268

269 0 00000142 4E7S

e e ot sk e W e ok ok e e Pk Me M e S e ak K We

The routine FILLRECT draws a filled rectangle using the pixel
access area. This “memory® allows the programmer to change
one pixel in all three banks in one shot.

The rectangle is filled using Exclusive-OR. That is, the
color in which the rectangle is being drawn will be
Exclusive-OR'ed {on a pivel basis) with any graphics
already on the display.

The registers must be passed to this routipe as follows:
B0.8 - Starting row of rectangle
DK Starting coluen of rectangle
D28 - # of rows in rectangle (height)
D3 W § of coluans in rectangle (width)
b4, B Color of rectangle {0-7)

1

The display is organized such that row-0, coluen-0 is at
the upper left-hand corner of the display.

All registers (data and address} are preserved by this rostine.

FILLRECT EBU ¥

#

b B

¥
£
¥

FRLODPL

FRLOOP2

MOVEM.L DO-D7/A0-R4,- (A7) Save the registers

Compute address of pixel access word for upper
left-hand corner of rectangle,

LEA.L $E0O0D0,AD Base address of pixel atcess area
HOVE.W DO,DS Calculate.,.

SuBg.W 81,05 and. ..

MULS #1400, b5 add...

RDD.L D5,A0 ron offset,

ADD.H B1,A0 Add coluen...

ADD.W D1,AD offset,

Set up for nested loops to draw rectangle.

SuBR.W 41,02 b2.8 = % of rows - §
Supg.W #1,03 D3.W =% of cols - 1
EXT.# b4 Make color into a word

braw rectangle using doubly nested loops.

ADD.L #1600,40 A0 = addresz of start of next row
MOVE.L A0,AL Need a copy that can be destroved
MOVE.W 03,05 05.4 = # of coluans - |

EOR.M D4, {AL+ Write a pixel

DERA D5, FRLOOPZ Loop for next coluen in a row
DBRA b2, FRLOOPY Loop for next row

A1l done - restore registers and return.
HOVEM.L (A7)+,D0-D7/A0-R4 Restore regs

RTS That's all folks

3-22

21 £
72 ¥
273 %
274 0 00000144 000000000000 PBY
273 0 0000014C 2000

274 0 D0000I4E 2000

277 0 00000150 47524144

278 0 00000154 000000000000

279 $
280 ¥
281 '

282 0 0000015C 000000000000 PE2
283 0 00000164 0000

284 0 00000166 0BO)

285 ¢ 00000168 50495840

286 0 0000016C 0OEDO000

287 ¢ 00000170 00100000

288 %
289 ¥
290 #
291 0 00000174 DOOOOLFA

292 9 000003468 STACK

293 0 00000348 00000002

294

295

294 ¥
270 00000000

#eeaed TOTAL ERRORS 0--
xeees TOTAL WARNINGS 0--

Parameter block to atach segeent at graphics RAM.

be.L
DC.W
DC.W
bC.L
0C.L

0,0
$2000
$2000
" GRAF "
0,0

Taskname and session {n/a)
Options (log addr = phys addr)
fttributes tlocally shareable)
Seqaent naae

Segment address and length (n/a)

Parameter block to get segment at pixel access area.

bC.L
DC.¥
DC. W
bC.L
bC.L
bc.L

0,0
0

$800
“PINL’
$E00000
$100000

Tasknase and session {n/a)
Qptions

Attributes (memory mapped 1/0)
Segaent name

Segaent address

Segaent length

The following defines our stack area.

05.8
Eau
05.B

300
%

2

There ain't no more.

END

START

3-23/3-24

300 bytes of stack

CHAPTER 4

CHARACTER DISPLAY GENERATION

4.1 INTRODUCTION

This chapter describes the VME/10 character display generation functions. This
information will permit the user to control the character display by the use of
the SCM control registers, and to reconfigure the character set to a specific
application.

Included in this chapter are initialization routines that are shipped with the
VME/10 software package, amd which configure the system in a specific way. This
configuration is referred to as the "shipped software package".

4.2 HARDWARE DESCRIPTION

This section describes the applicable SCM hardware circuits that control the
VME/10 character display. These circuits are as follows:

a. Display RAM

b. Control registers

c. Character generator RAM
d. CRT Controller (CRIC)

4.2.1 Display RAM

The display RAM is an array of characters and associated attributes which
contains information that is to be displayed on the CRT monitor. The base
address of the display RAM is $F17000; the top address is SF18FFE. The
as-shipped configuration of the VME/10 includes only half of possible display
RAM, ending at SF17FFE. The user has the option of installing the other half of
this memory in the proper socket if the display application requires it.

The display RAM contains up to 4000 words (as shipped 2000 words), each of which
contains the data required to display one character. The display logic in the
VME/10 dedicates an attribute to each character rather than to fields. The code
for the character to be displayed is defined in one-half of the word, while the
attributes for this character are defined in the other half. This
implementation does not require any CRT space to contain the attribute.

The display RAM character word is defined as follows:

bits 0-6 Code for one of 128 possible characters. The shipped software
package uses the 7-bit ASCII code to define the requested
character.

bit 7 A user optional display control bit. The shipped software

package uses this bit as a TAB flag.

bits 8-10 Control the color or the intensity of the character defined by
bits 0-6. When a monochrome monitor is used, a value of 0 in
these bits sets the display to the lowest intensity, while a 7
sets the display to the highest intensity. When a color
monitor is used, the value of these bits select the colors as
defined in Table 4-1.

4-1

bit 11

bit
bit
bit

bit

For example,

bit
bit
bit
bit
bit
bit
bit
bit
bit

bits 06-0

12
13
14

15

15
14
13
12
11
10
09
08
07

o O O O - O +~H K+ B+ O

TABLE 4-1. Color Control

COLOR Bit 10 Bit 9 Bit 8
Black 0 0 0
Red 0 0 1
Blue 0 1 0
Magenta 0 1 1
Green 1 0 0
Yellow 1 0 1
Cyan 1 1 0
White 1 1 1
When set, associated character video is inverted.
When set, associated character is underlined.
When set, associated character blinks.
When set, associated character is displayed on the CRT.

User optional display control bit. The shipped software package
assigns this bit to be a character protect flag when set.

to display the character A, to make it green with a black
background, to underline it, and to make it blink, set the character word to be:

= 1000001

No protect

Set to display

Set the blink function
Underline the character

Normal video

Green on

Blue off

Red off

No tab

ASCII code for the uppercase A

The equivalent hexadecimal value for the word is $7441l. Storing this word in
the display RAM results in the display of an A formatted as defined above,
assuming that the character generator RAM is initialized to the ASCII character

set.

4.2.2 Control Registers

The VME/10 provides user control over the general format of the CRT character

display through SCM control registers.

These control bits will set character

display attributes for the entire screen, rather than for individual characters.
Table 4-2 lists the various control bits and functions. Note that bit 0 is the
Least Significant Bit (LSB), and bit 7 is the Most Significant Bit (MSB).

TABLE 4-2. Character Display Control

CONTROL ‘ BIT NUMBER
REGISTER ADDRESS BIT NAME

FUNCTION

CRO SF19F05 bit 2
Vs

Setting this bit performs video
inversion

bit 3
DUTYCYCLE

When set, this bit corrects the BX
syndrome by not displaying every other
dot on each line. This prevents
horizontal lines (such as those in the
uppercase letter B) from standing out
more than the nonhorizontal lines (such
as those in the letter X). '

For brighter colors in the color
monitor, this bit function should be
turned off by clearing the bit.

bit 4
CURBK

Setting this bit causes the cursor to
blink.

bits 5-7
CDIS1-3

These three bits provide a mask control
over the three colors for character
display. When cleared, all three
colors are enabled to be displayed on
the monitor. When set, CDIS]1 masks the
red, CDIS2 masks the blue, and CDIS3
masks the green. To clarify this
function, consider a CRT that displays
one red character, one blue, and one
magenta. If CDIS1l is set masking the
red, the red character is invisible,
the blue remains blue, and the magenta
also becomes blue (magenta-red). These
bits have the same effect on a
monochrome display where a certain
intensity is masked.

CR1 SF19F07 bit 5, bit 6
S0,S1

The VME/10 provides three optional
cursors that may be selected by setting
these two bits.

Full block cursor - bit 6=0, bit 5=0
Underline cursor - bit 6=0, bit 5=1
Frame cursor - bit 6=1, bit 5=0

4-3

4.2.3 Character Generator RAM

The character font is stored in the character generator RAM which starts at
address SF14001 and ends at address SF14FFF and in which only the odd bytes of
each memory word are active.

Each character is assigned a block of 16 bytes which will be stored in the
character generator RAM in only the odd part of the word. Therefore, the offset
between character blocks in the character generator RAM is 32, or $20.

As shipped, each character is defined as an array of up to twelve bytes; most
characters use only nine bytes, leaving three bytes for descenders and
ascerders. To design a character, lay out the desired array of pixels (dots),
assign a logical 1 to each dot, a logical 0 to each blank, and then calculate
the value of each horizontal line. Add four bytes with the value 0 to complete
the character block (16 bytes).

Each character is assigned a code which is used as an offset into the character
generator RAM. The character generator uses this offset to obtain the pixel
matrix from the character generator RAM. When using the ASCII code, the base
address of a character in the character generator RAM is calculated by
multiplying the ASCII code of the character by the number of bytes assigned to
each character in the memory map -- 32 or $20 (allowing for the unused even
bytes in the memory map) -- and then adding the character generator RAM base
address, F14001.

To change the dollar sign (ASCII $24) to the English pound sign, for example,
proceed as follows:

a. Draw the character in an array of twelve rows, each containing eight

squares:

RO

Rl U kx|
R2 U x| | =
R3 S x|
R4 L x| |
RS U I x| x x| x |
R6 S x|
R7 Cix x| x| ||
R x| | x| | ||
R x| x| |x(x|x[x
R10 N I Y
R11 B R R I

4-4

b. Assign a binary value to each row:

RO = 00000000 = $00
Rl = 00000110 = $06
R2 = 00001001 = $09
R3 = 00001000 = $08
R4 = 00001000 = $S08
R5 = 00111110 = $3E
R6 = 00001000 = $08
R7 = 01101000 = $68
R8 = 10010000 = $90
R9 = 01101111 = $6F
R10 = 00000000 = $00
R11 = 00000000 = $00

c. Tag four more bytes to complete the character block.

R12 = 00000000 = $00
R13 = 00000000 = $00
R14 = 00000000 = $00
R15 = 00000000 = $00

c. Calculate the offset into the character generator RAM (in hexadecimal) :
$24 x $20 + SF14001 = SF14481

d. Store the 16 bytes in the odd locations of the character generator RAM
starting at address $F14481 and ending at address SF1449F.

4,2.4 CRT Controller (CRIC)

As shipped, the VME/10 has a display of 25 rows by 80 columns. It is possible
to configure the MC6845 CRTC to produce other displays. The CRTC is configured
by writing data into its control registers, residing at address SF1A023 of the

memory map. Writing the requested control register number into location SF1A021
will select it.

4.3 SOFTWARE APPLICATION
This section presents two initialization program examples:

a. Listing 1 initializes the character generator RAM to the ASCII character
set.

b. Listing 2 initializes the CRTC to control either a 25 x 80 or a 50 x 80
display.

4-5

O~ O B e G R e

29
38 BEF 14000
31
32 Begasaan
33 b dgdedoen senesend
34 b GB@deoes 4BETERCE

35 b enonedas4 227Ceeriddne

36

37

38

39

48 D B08DBRBA 32308083
41 B 0200ARGE 4280

42 B 0pB0RBID

43 b agadenin a1C980a!
44 B a00008!4 43E78009
43 B #0208818 SICOFFF
46

47 B 2e8BRBIC 41FADB28
48 B 0D000@28 323CR05D
49

o8

b}

52

33

54 B 08008024 34300882
35 B odapoaza

36 D 00822028 2818

37 b 00009828 @1CI0081
58 B B002RA2E A3E9RRE

ASCIT IDNT 1,08 ASCII character set 89729483

SRR £

) ¥
Routine name: ASCII ¥
4 COPYRIGHTED 1983 BY NOTORDLA INC. ¥
% Current revisioNeieseicinsnvensinsaessl, B8 4
¥ BatE Nrittenuu.uu.u..u..:.-..“12"'2'82 4
4 urittE" bYIIllllllllll‘lillllitlll!tnSlPri-Tal 1 4
Date changed...eocvassrarnracnscianes ¥
*changed bylll.ll.lIllltllllill.lll.l' ’
$ ¥
Description of change: ¥
¥
¥ ¥
FREEEEE AR R R IR R R R R R R R AR AR R AR R B R R R R R AR RS
Function: Define a character set ASCI] $20-$FE for the ¢+
¥ character generator, and move it into the RAM.
Input parameters: none 4
¥ Registers affected: none ¥
% External routines used: none ¥

L2223 22 22 2 g i it as e sz s iTlizeliilzs ittty

ADEF ASCIE
CRAM Eay sF14008 Base address of character generator RRM
SECTION 11

ASCIT DS.W 8
MOVEM.L DB-D2/AB-AL,-(A7) Save user's values
MOVE.L SCRAM,A1 Base of character generator RAN
¥
Clear the character generator RAN up to the 33 character block.
% The 32 character is ascii $2@ which is a space.

¥
NOVE. W #33%16/4-1,D1 Nusber of long words to move
CLR.L DB -
SPACES
MOVEP.L D@, 1{Al) All undefined characters will be
LEA 81at),4l initialized tp spaces
DBRA D4, SPACES
LEA ASCII21(PC},AD Base address of character table
MOVE.W ¥TABLEND-ASCII21/12-1,B1 Number of characters to move
£

¥ Write the character table for ascii #21 through ascii #7E.
% The 4 required @ bytes are tagged in the code, thus saving 4 bytes per
character in the table.

#
WOVE.W #2,D2
NOVE
NOVE.L (Ad)+,DD Get 4 bytes from the table
NOVEL MOVEP.L D8,1{al) Move only to odd addresses

LA BiAD),AL

4-6

39 B 0pA0eR32 SLCAFFFA DBRA B2, MOVE After 3 long words (12 bytes)

48 b @0088036 4288 CLR.L DB Tag 4 bytes of 8

4l B 20e2ea38 343C0083 HOVE.W #3,D2 Init the counter

62 B 8082083C SICIFFEC DBRA D1, MOVEL Repeat till all bytes are moved
63 b 08080848 4COFB3R7 HOVEM.L (A7)+,08-D2/A8-AL Restore use’s values

b4 B 0080BBAS 4ETS RTS Return to caller

43 #

bb ¥ Character table for the ascii character set

o7 ¥

60 B 28800045 PO1R1AI1B1AI ASCII2L DC.B $BB,$18,518,518,$18,510,$10,510,508,519,$0, 500 !
69 B 000BORS2 BA2424248080 ASCIIZ2 DC.B $88,324,524,524,500, 500,500, 500,500,500, 500,580 *
70 B BRABROSE BB242424FF24 ASCII23 DC.B $BB,$24,$28,524,$FF,$24 $FF $24,$24,$24 500,00 4
71 B 000RAQsA BRIGTFIRVATE ASCIIZA DC.B $80,$18,$7F,$98,$98,$7E,$19,$19,$FE, 51,500,400 $
72 B BOBBADT6 BR4IAASBCIA ASCIIZS DL.B $BB,$41,5A3,$44,$0C,$18,$38, 462,505,482, 500,508 %
73 B G00ARS2 BO7984844830 ASCIIZ6 [DC.B $20,$78,584 384,548,830, 549, 585,486,579, 500,580 &
74 § GPBRRROE PB1182008P8 ASCII27 DC.B $00,$18,$18,$28, 500,500, 500,500,500, 500,500, $00 '
75 B 80000894 BARA10287870 ASCIIZE DC.B $09,$08,510,520,528,520,520,520,$10, 509, $00, 500 (
76 B BRRBBOAG BBRBRAB2B2B2 ASCIIZY DC.B $D8,$08,$04,$02,562, 82,582,502, $04, 508,400, 500 |
77 B 0000082 BQ18925438FE ASCIIZA DC.B $86,$18,592,854,838, $FE,$38, 554,492,510, 500,500 +
78 B BOABROBE BERB1RIBIAFE ASCIIZE DL.B $08,$08,%19,$10,518,5FE,$10,510, 510,580,500, $00 +
79 B 08QBGACA DOROAURARORR ASCIIZC DC.B $36,580,500,500,500,500,500, 500, 560,540,520, 540
80 b BB2BAODs DRRBRABRREFF ASCIIZD DC.B $08,400,508,500, 500, $FF, 508,500, 408,500,500, 500 -
81 B Q0RARE2 AORAAGAARARA ASCIIZE DC.B $09,500,500,500, 509,500, 500,500,560, 550,508,500 .
82 § GBRAGREE PAREBIL204R8 ASCIIZF DL.B $80,508,$01,502,504,508,$19,520, $48 550,508, $0 /
83 B @900ABFA BATER3BSA999 ASCII3@ DC.B $04,$7E,$83,$85,589,$99,591 801,501, $7E 500,580 0
84 B BOUAR1B6 BERG1A20MGR8 ASCII3 DC.BD $08,$80,$18,528,500, 508,508,508, $08,$7F 508, 508 1
85 D Q0080112 BR7CA28208409 ASCIIZ2 DC.B $80,$7C,$82,$82, 504,588, $10,520, 548, $FE, 480,500 2
84 B BBARRIIE BATESIBIBISE ASCIIS3 DC.B $8@,$7E,$81,$81,401,53€,581, 81,581, 57E, 48, 500 3
87 B 00880120 BAB4BCIAZA44 ASCIISA DC.B $80,584,$8C, 514,524,544, SFF, 504, 504,504,500, 500 4
88 B BORBRI35 DRFFBASRFE@! ASCIISS DC.B $B8,$FF,$B8,$88,$FE, 501,501,501, $81,$7E,480,$00 5
89 B 00889142 BA7ERLBARAFE ASCIISS DC.B $88,$7E,$81,$80,580,$FE, $81 581, $81,$7E, 400,480 &
98 B DBEORIAE BAFFBIA20498 ASCIIS? DC.B $B8,$FF,$81,$02,$04,$08,518,510,518,$10,500, 408 7
91 B @8AA815A BATEBIBIBITE ASCIISA DC.B $8@,$7E,$81,$81,$81,$7E,$81,481 ,$81,$7E,500, 500 4
92 B 808BA166 BRTEBISIBITF ASCIIS9 DL.B $0B,$7E,$81,$81,$81,$7F $91 581,881, $7E, 500,508 9
93 B 80080172 BORERRLALE80 ASCIISA DC.B $06,580,$80,550,540, 500,580,500, 550, 560,580,500 :
94 B BRABRI7E BARDEGRLERR ASCIISB DC.B $0B,$00,508,568, 560,500,508, 500, 560,560,540, 500 ;
95 B 00082137 DAB4RG1A2048 ASCIISC DC.B 589,$04,$08,$18,520, 540,520,510, 509, 504,500,580 ¢
9 § @BBRR1%4 PAREBABAFFRR ASCIISD DC.B 380, 88,50, 508, $FF 508, $FF 500,508,400, 508,508 =
97 B QR8R1A2 002010888482 ASCIISE DC.B $80,520,$18,509, 504,502,584, 408,510,529, 00,400 >
98 B B00BRIAE BATEBIBIAZBA ASCIISF DL.B $88,$7E,$81,3B1,582, 504,408,508, 508,508,500, 508 7
99 B @28BQ1BA BATEBITIASAS ASCIIAQ DC.B $BA,$7E,$81,$99,5A5, $AS, $BE, 500, $80,$7E 500,500 &

109 B 8P8NRICH BBICA2BIBIFF ASCIIAL DC.B $88,53C, 842,581,581, $FF, $81,581,$81,581, 508,500 A

181 B 89080102 BAFE4141417E ASCIIA2 DC.B $0@,$FE,$41,541,541,87€, 541,841,541 $FE, 500,500 B

182 B B0R0@1DE BRSE41880680 ASCIIA3 DC.B $P8,$3E,$41,$80,500, 400,480,580, $41,$3E,500, 500 €

103 B QGRBIEA BOFCA2414141 ASCIIAE DC.B $00,$FC,$42,$41 541,541 541,541 542 $FC, 500,500 D

184 B BRABBIFs BAFFSRSEBAFE ASCIIAS DC.B $80,$FF,$80,$00,508,$F0, $09,580,$00, $FF , 508,400 £

185 B 804BAZ7 BAFFRA0ABAFE ASCIT4S DC.B $80,5FF,$80,$80,599,5F3, $80,$80, 580,580,500, 508 F

186 B BORBR2AE BRSEA1088080 ASCIIAT DC.B $90,$3E,$41,$50,500, 500, $8F,$81,$41,$3E,500, 400 &

187 B 88088214 BUBIBIBIBIFF ASCIT48 DC.B $88,581,381,$81,581,$FF, $81,$81, 81,481,500, 580 H

108 B 80088226 BRTCIRINIGIA ASCIIA9 DC.B $88,$7C,$10,$18,510,518,$18,$10,$10,57C, 500, 508 I

109 B 80080232 BOSEAOARGE8 ASCII4A DC.B $86,$3E,$88,$09,508, 588, 500,580, $80,570, 509,500]

118 B BRABBZSE BBGZBABHYOER ASCIIAB DC.B $08,$82,$B4,$88,590, 560,490,588, 484, $82, 500,500 K

{11 B @0QRO24A BOSESABAG6AR ASCIIAC DC.B $99,$80,$80,$80,580, 580,580,550, $80, $FF 500,480 L

112 B BARBA256 BBBICIASYIVY ASCIIAD DC.B $98,381,$C3,8A5,$99,499, 481,881,481, 581,500,508 N

113 B 80088262 BRBICIAI9189 ASCIIAE DC.B $88,$81,5C1,$A1, 591,489, 485,583, 481,481,508, 508 N

114 B BPBPA24E PAICA2B18181 ASCIIAF DC.B $88,$3C,$42,$81,$81,881,$81,981,542,43C,400,500 0

115 B 809BA27A BOFERIBIAIFE ASCIISE DC.B $8@,$FE,$81,381,581,$FE, $88,500, 580,550,500, 580 P

116 B BBARR285 BAICA2B1B1B1 ASCIIST DC.R $88,$3C,$42,$81,581,$81,$81,$85,$42,$30, 504,50 0

4-7

117 B 80888292 BBFEB1BIBIFE ASCIIS2
118 B G0QR429E 9Q7EBLBEBETE ASCIISY
117 B B080B2AA BOFE1R181818 ASCIISA
120 B o8esezbs d8A181818181 ASCIISS
121 B 20@B82C2 #BB1B1B181BL ASCIISE
122 B 9908¢2CE 889181818199 ASCIISY
123 B 8p8RB2DA 9BB181422418 ASCIISA
124 B 8808@2E4 MOE282824428 ASCIISY
125 B BBBBAZF2 BFFB2848818 ASCIISA
126 B 98Q8QZFE BAIE10181818 ASCIISE
127 B apaeeien bdESE4R20818 ASCIISC
128 b Qpepalis BE7989888888 ASCIISD
129 B 0B8BE3Z2 #R1824428188 ASCIISE
138 B 000BG32E R0DePEAGREAE ASCIISF
131 B 89828334 DRBOAOOA0MBE ASCIIAR
132 B 480B8345 208888843CA2 ASCIHisL
133 B 00008352 BB484B485C62 ASCIIA2
134 B GRORAISE 208A8ARA3C42 ASCIIG3
133 B B0@0B34R ABD202023A46 ASCIIGA
136 B 0B@8A37¢ 200882RA3C42 ASCLILS
137 B 0bBBBIA2 BBBLI21BIRTC ASCIIGA
138 B 0802Q3SE 2080020A3A45 ASCIIA?
139 B POBBBIIA DR4B4B4BSC2 ASCIIAE
140 B 8Ba2A3A6 908380001998 ASCIIAY
141 B ROQBRID2 DBBADBRBO4BA ASCIIGA
142 B 000B8IBE B0424@404448 ASCIIAD
143 B 80BBRICA RR100EABABEE ASCIIGE
144 B 0d8ealDs AQ00RABA7449 ASCITGD
145 B 2PBABIE2 PDDABRGASLS2 ASCIIAE
1446 B Q20RG3EE 2000MERA3C42 ASCIISF
147 B B0RBEIFA BBAAGABASCL2 ASCIITR
148 B Q0088485 BEAARABA3A4L ARSCIITY
149 B BeABR412 DEDBEABASCH2 ASCIIT2
150 b oBeea41E dodORARA3ICA2 ASCIITI
151 B BR@BR42A DBORIRIATLIB ASCIIVA
152 B 00008436 BOOARERA4242 ASCIITS
153 B BO8AE442 PROBBEOR4444 ASCIITA
154 B 00BAG44E BoR0RABA4141 ASCLIT?
153 § 00088454 BEAGMAGR4224 ASCIIVE
136 B eagde4ss 202200284242 ASCIITY
157 B Be8se472 dBBBAATERS ASCIITA
158 B 0P@BE47E 898E18101820 ASCIITE
159 B #2485 01810100888 ASCIITC
160 b 60aRe496 8a7aaaasesss ASCII7D
161 B 008BB4A2 PBOBIR490488 ASCIITE
162 B B28084RE TABLEND
163

sepide TOTAL ERRORS 8-
sreees TOTAL WARNINGS — @--

bC.B
bC.»
DC.B
c.p
bE.B
DC.B
DC.B
DC.B
bC.B
bE.B
DC.B
be.B
DC.8
DC.B
DC.B
bC.B
DC.B
bc.B
DL.B
DC.B
DC.B
bC.B
bC.B
bC.B
BC.B
bC.B
DC.8
0C.B
DC.B
bC.n
bC.B
DC.B
DC.B
bC.B
DC.B
0C.B
bC.B
DC.B
bC.B
bC.3
DC.B
DE.B
bC.B
De.B
bC.p
2]

END

588, $FE, $81,$81, $81,$FE, $88, $84,$82, 481, 598, 508 R
$80,$7€, 381,500,580, $7E, 581,501,581, $7 408,500 S
$B0, $FE, 518,510, $18,518,$10, 510,518,510, 508,508 T
$80,$81,$81,$81,$81,$81 581, $81,$81 ,$7E, $29, 580 U
$8D,$81,$81,$81,$81, 581,481 ,$42,$24,$18, 309, 508
$80, 481,581,581, $81,$99,899, $A5,$C3, 581,500,500
$80,$81,$81,$42,524,$18,$24, $42, 581,581, $98, 508
$80,$82,$82,$82, $44,$28,$18, 510,510,510, $09, 300
$B0,$FF, 582,504,588, 518,520, $48, 580, $FF, 500,500
$88,$1€, 510,510,510, 518,$10, 510,518, $1E, 508,509 |
500,09, 588,40, 328, 518,508, $04, $02, 581 , 520, 508 \
500,378,589, $080, $89, 589,589, $88, 509,478, 580,580 |
$08,$18,524,$42, $81 508,508, $08, 508,500, 508,508
580,500,580, 580, 500,520,500, $80, $20 , $FF , $00, 500 _
508,08, 500,584, $00, $08, 508, 500, 508, 500, 500, $08
$00, 500,580,500, $3C, 502, $3E, $42,$42, 43D, 420,508 2
588,548,548, $40, 550,562,542, $42,562,$5C, $09, 508 b
580,500,500, $80,33C, 542,540, $40, 542, 43C, 520,509
588,582,502, 582, 530, $46,$42, $42, 546,43, 508,380 d
500,500,508, $80, $3C, 542, $7E, 540, 548, $3E, 520,500 e
5B, $0C,$12,$10, 510,570,510, 518,518, $18, 500,508 ¢
$00, 500,500, 500,538,546, $42, 546,534,482, $42,83C ¢
$00, 540,548, $40, $5C, 562,442, $42,$42,$42, $08, 908 h
500,509,500, 580, 518,509,580, $80, 588, $1C, $89, 508 i
588,504,500, 500, $04, 504,504, $04, 504,504, $44,338 j
$00, 540,540,540, 544,548,470, 549, 544,542, 500, $00 &
500, $18,508,$08, 580,508, $80, 508, 508, $1C, $00, 500 1
580,500, 508,500, $76, 549,549, 549,549,549, 500,508 o
508,500,508, 508, $5C, 562,542, $42, $42,$42, 508,500 n
500,590,500, $00,$3C, 542,542, 542,542, 43C, 508,500 o
508,508, 500, 509, $5C, 562, $42, $42, 562, $5C, 548,548 p
$00, 500,500, 500, $30, 545,542, 342,544,438, 582,482 ¢
$00, 500, 508, $80, $5C, 562,540, $40, 548,540, 300,508 r
580,500,580, $00, $3C, 542,530, $8C, $42,$3C, 500,500 s
508,500,518, $18,$7C, 510,519, $10, 512, $0C, 500, 580 t
580,500,500, 500, 542,542,542, $42, 544 434,529,580 u
580,500,500, 500, 544 544, 44,544,528, 510,500,508 v
$0,500,500, 500, 541,541,849, $49, 549,435, 520,508 v
500,508, 508, $80, $42, 524,510, $18, 524,442, 598, 508
580,500, 500,500, 542,542,542, 545, $34, 582, $42,$3C y
508,500,588, 500, $7E, 504,508, $18, 528, $7E, $08, 508 7
580, $0E,$10,$10,$10,520,510, 518, 518, 50,508,588 (
$08, 510, $10,518, 508, 508,508,518, 518, $10, 509, 508 |
$80,570,509, 508, 584,584, $80, 509,589, $70, 500,500 }
$80,500,538, 549,406,508, 500, 508, $00, 500, 500, 598 *
3

0~ O L P

ta
it
12
13
14
13
14
17
18
19
28
21
22
23
24
25
24
27
28
2
38
3t
32
33

35

37 serthez!
38 BOF 14023

4 segdoens

41 B deasebee pedessod

42 B dpesdhas 48E7400@

43 B 00800024 223CHR0MBAGF
44 B apgdanan 4Ana

43 B DBBBAGAC 6705

45 B 0BEEQ0BE 41FABASE

47 B 20800812 5004

48 B coopaBid

49 b dpBesdi4 4iFA0R1B

56 b Qdeneais

51 b 200PBB1B 13DBBAF1AB21
52 B QBGREBIE 13DEMGFIARZ3
33 B 28808024 S1C9FFF2

54 B Q0028828 4CDFRLE2

53 B @e88aR2C AE7S

CRTCINIT IDNT 1,08 CRT Controller initialization routine

R R R R R R R R R R R R R R R R R R A R R R R R R R R R R R R 5
¥

% Routine nase: CRTCINIT

¥ COPYRIGHTED 1983 BY NOTORGLA INC.

% Current revisioNieiscsissncerecneanes .88

£ Written by..eevereieneienennsnnnonnan 8. Pri-Tal

Date written..oucerecnnnsnnniannessa 12-38-82

fbite Chaﬂged..........-........ ----- o”"l"SS

% Changed DY.vievevereenianasnisnsnanas

t

Description of change:

£

%

£

FEREER AR R R SRR R R R R R R R R R RN R F R R R A H R R R 53

Function: Initialize the CRTL to control a 250r a 58 ¢

line by 88 chcracter CRT. ¥
*

WM M e Mt e W e Mt we W W Wk e e

Input parameters:
if b8.B
if D8.B

25 by o8
S8 by 88

a
i

Registers affected: none

e A s it sk Ak sk MR

¥ External routines used: none

x

e M W R e e e R

¥ Additional ¥DEF’'s: none
EREEEEREEEEEE R R F R R RN R R R LR R R R R R R DR R R R A RS RRIEE

XDEF ERICINIT

CRTCADD EQH §Fi821
CRTCREG EQU $F1AB23

SECTION 11
CRICINIT D5.¥ 8
NOVEM.L ARB/DL,-(A7) Save caller’s values
MOVE.L #TABLEND-TABLE/2,DI Set D1 to number of words to move
1876 I8 14 = 8, init to 25 by 88
BER.S SMALL
LEA TABLE2{PC) ,AQ Get base address of 58 by 88 table
BRA.S LOOP
SHALL '
LEA TABLE(PC} ,AB Get base address of 23 by 88 table
Logp
NOVE.B (AB)+,CRTCADD Select the register
MOVE.B (A®)+,CRTCREG Initialize it
DBRA D1,LooP Repeat till all registers are inited.
MOVEM.L {R7)+,AB/D1 Restore caller‘s values
RTS '

57

58

Ly}

68 B 8800RB2E

61 b 20PBBBZE 0862
42 b 02000838 8156
63 B BBBORB32 8234
44 B 8800RR34 8311
65 B 88908836 8419
46 B oBodeass 8583
67 B gosesain 8619
48 B oda@ee3C 8719
69 B 2000203t abed
78 B dBg00R4 298D
71 B 28080242 BADR
72 B 00020044 BBEF
73 B 80888046 OCRB
74 B 62d0ea4a aned
75 B pBE02d4R OERE
76 B ododeasr droe
778 Baoasp4n
78

P4]

a0

81 B BBANABAE

82 B 8PA0RRAE BB42
83 B edaeenss al5e
84 B BRA0ABS2 256
85 D opopeass a311
86 B DBARRASS 0432
87 B daeseass ez
B8 B B22ARAGA 8431
89 b aBRAARSC @731
98 B BBO0BASE 8843
71 B 08082058 d98B
92 B #8200052 BARA
93 B 08080RL4 BBEF
94 B 88apanss BChe
93 b odasasse apee
94 B 00800BLA BERD
97 B 20000840 #red
98

s###3% TOTAL ERRORS
xeeee TOTAL WARNINGS

a--

¥

Initialization table for 25 lines by BB characters

*

TRABLE
DC.W
bC.u
DE.W
DC. W
DC.W
be.w
DC.W
be.4
DE.W
DC.W
DC.W
bC.W
DC.W
DC.W
DC.W
DC.W

TRBLEND EQU
¥

$8862
$815e
$8256
#8311
#8419
$8583
$0619
719
$dgen
$898n
$BADD
$0B8F
$0Cod
$8008
$0EDR
$0rpa
£

Total characters per line
Characters displayed
Blank characters to start
Characters per sync
Lines per screen

Fraction of above

Lines per screen

Rows per character-{
Cursor start register
Cursor end register

Cursor address H
Cursor address L

Initialization table for 58 lines by 88 characters

]

TRBLE2
DE.¥
be.4
DE.4
OC.W
DE. W
bC.4
DC.W
bE.W
DC.W
iC.
DC.W
OC.W
bC.W
DC.¥
DC.W
DC.¥W
END

$8062
sa1ce
$8256
$8311
$0432
#8582
#8631
$8731
$8883
#8988
$8A00
$aBeF
$8C00
$olod
$8E00
sorad

4-10

Total characters per line
Characters displayed
Blank characters to start
Characters per sync

Lines per screen

Fraction of above

Lines per screen - |

Rows per character-i
Cursor start register
Cursor end register

Cursor address H
Cursor address L

H o BB o8 oW W

3o U non

98 ($62)
a8 (s50
8

17 (i)
23 {$19)
#3

23 ($19)

11 (48R}

8 ($62)
89 (458)

17 ($11}
8 ($32)
82

49 {$31)

11 {sap)

SUGGESTION/PROBLEM micro
REPORT I

Motorola welcomes your comments on its products and publications. Please use this form.

To: Motorola Inc.
Microsystems
2900 S. Diablo Way
Tempe, Arizona 85282
Attention: Publications Manager
Maildrop DW164

Product: Manual:

COMMENTS:

Please Print

Name Title

Company Division

Street MailDrop____ Phone
City State Zip
For Additional Motorola Publications Microsystems Field Service Support
Literature Distribution Center (800) 528-1908

616 West 24th Street (602) 829-3100

Tempe, AZ 85282

(602) 994-6561

@ MOTOROLA

MOTOROLA Semiconductor Products Inc.
PO. BOX 20912 ® PHOENIX, ARIZONA 85036 ® A SUBSIDIARY OF MOTOROLA INC.

16302 PRINTED IN USA (3/84) MPS 4000

