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SUMMARY 

A relocating assembler and a linking  loader have been programmed  for the   TX-2.     To 

provide more convenient graphical facilities,   a new Extended Graphic Subsystem has been writ- 

ten.     Recent display hardware additions to TX-2 have included a color display,   storage tubes, 
and a commercial ARDS console. 

Application program work on semiconductor mask design has continued,   with current work 

at an 80 gate/chip level.    Initial exploratory work on a design data system has been performed. 

Application of the LX-1 microprocessor to vocoder and display control problems has been stud- 

ied.    Experimental systems for Interactive Computer-Mediated Animation and Real-Time Input 

saving have been completed.     Performance measurements on the APEX system are being con- 

ducted and the data analyzed.    A stand-alone circuit-testing terminal with a small computer is 

under development. 

Accepted for the Air Force 
Franklin C. Hudson 
Chief,   Lincoln Laboratory Office 
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GLOSSARY 

ALGOL A high-level algebraic problem-solving language 

AMBIT/G A graphical programming language for manipulation of directed 
graphs 

APEX TX-2 time-sharing executive 

ARDS Advanced Remote JDisplay System 

BCPL Basic Combined Programming Language — an intermediate 
level language for computer programming 

DAP Display Assembly Program 

EGS Extended Graphic Subsystem 

LEAP Language for Expressing Associative Procedures — an ALGOL- 
like TX-2 programming language 

LSI Large-Scale Integrated circuit technology 

LX-1 A prototype microprocessor being constructed at Lincoln 
Laboratory 

ML A microprogramming assembly language 

ROM Read-only memory 

TAP TX-2 Assembly Program 
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GRAPHICS 

I.      LANGUAGES AND SYSTEMS 

A. Assembler and Loader 

An integrated relocatable code system has finally been created for the TX-2 comprising the 

BCPL compiler,  a new relocatable assembler,  and a linking loader.    The output of the BCPL 

compiler is a text file of assembly code similar in form to any created by hand.     The assembly 

code then passes to the new TAP (TX-2. Assembly Program) assembler which produces a relative 

binary file containing binary code,   relocation bits,   and symbolic linkage information.     The link- 

ing loader combines relative binary files to produce executable TX-2 code. 

This new system has been used to create both the BCPL compiler (written itself in BCPL) 

and the EGS described below. In addition, the TAP assembler with modifications serves as an 

assembler on TX-2 for the 16-bit testing terminal computer. 

B. Extended Graphic Subsystem (EGS) 

1. Introduction 

During the past year at Lincoln Laboratory,  a number of interactive graphic programs have 

been written on TX-2.     These programs included the mask program,   a logic input program, 

AMBIT/G,   and an event simulator.    All had one significant feature in common— provision for 

the users to draw a picture into the computer using the Sylvania Data Tablet and the character 

recognizer.    A "windowing" capability is not available in the TX-2 hardware and is not provided 

by the display executive in APEX.    Each programmer was required to provide his own windowing 

facility to allow users to input pictures larger than 10 inches square.    While this task is not dif- 

ficult to accomplish with LEAP,   the duplication of effort is unnecessary.     The EGS is designed 

to provide this service to user programs under APEX. 

2. EGS 

EGS is a subsystem under APEX and runs in user mode.     The EGS contains five sections: 

a linkage and data structure package,   a Display Assembly Program (DAP) interpreter,  a clipper 

program,   a display data generator,   and a user-specified package of graphic entity definitions. 

a. Entity Definitions 

The definitions of graphic entities are procedures written in DAP by the user of EGS for 

his specific application.    A simple procedure would take one point parameter and produce dis- 

play data for that point.    A more complicated procedure may take two point parameters and gen- 

erate the data which describe an arrow,  or a ruler.     The user may even write a procedure which 

takes N  points and generates the data which describe all straight lines connecting any two points. 

b. DAP 

These procedures are coded by the application programmer in DAP.    The EGS system in- 

cludes an interpreter to translate DAP.    All data values in DAP are points (i.e.,   X,   Y coordinate 



pairs).    The simulated machine interpreting DAP contains 28 general registers for temporary 

storage (RO -» R27) and several special registers.     There is also a stack for passing parameters. 

The format of a standard DAP instruction is OPCODE REGISTER. 

Of the four DAP opcodes which generate display data,   two generate data for vectors and two 

for characters.     They are: 

DRAW  TO A  POINT DPT 

DRAW BY DELTAS DDL 

CHARACTERS CHAR 

CHARACTERS CLIPPED CHARC 

c. Automatic Windowing 

All position information from the DAP interpreter program passes through the clipper pro- 

gram.    The clipper provides the automatic windowing facility for EGS. 

All parameters passed to the DAP entity definition procedures are in terms of "floor" coor- 

dinates (raw position data).    These coordinates are integers with the range T377777 (Tl 30000..). 

The raw position data are translated and scaled by a user-specified offset and scale factor. 

These new position data are then clipped to lie within a user-specified window on the scope face. 

The windowing information which controls the actions of the clipper is contained in a 4-element 
array. 

d. Picture Generation 

Two types of calls can be made on EGS to generate a picture on the scope: 

GENERATE 

DISPLAY 

GENERATE:—   This call takes a list of parameters,   pushes them onto the pa- 

rameter stack,   and then activates the DAP procedure specified in the call.     The activation of any 

DAP procedure will,   in general,  process a number of parameters from the parameter stack and 

generate display data which will be added to the output buffer. 

DISPLAY:—   This call takes two Integer parameters:   an item number,  and a 

group number.    All display data currently in the output buffer are passed to the APEX display 

executive as the specified item in the specified group.     This call does not clear the output buffer 

and,   in fact,   may be followed by more GENERATE and DISPLAY calls.    Each GENERATE call 

will add more data to the buffer.    Each subsequent DISPLAY call will display the data accumu- 

lated in the output buffer. 

The DAP regeneration program is activated by a REGENERATE call to EGS.     This call takes 

a list of parameters containing the new values of the clipping array.     The execution of this call 

performs two functions:   first,   it replaces the old values of the clipping array with the new ones; 

second,   it regenerates the picture on the scope to reflect the changes in the clipping array.    A 

REGENERATE call may be made at any time. 

e. Other Calls on EGS 

There are three other calls on EGS currently available:   DELETE,   INIT,   and CLEAN. 

A DELETE call takes the same parameters as DISPLAY:   an item number,   and a group 

number.     The action of this call is to delete the specified item from the sequence 64 display 



structure and the DAP regeneration program.   An item number of zero will cause all items in the 

specified group to be deleted and will remove the group from the sequence 64 display structure. 

INIT initializes EGS and sets up an ephemeral file for EGS to use for impures.    CLEAN also 

initializes EGS,  but it differs from INIT in that it assumes the ephemeral file to be already set 

up. 

C.    Display Hardware 

1. Color Display 

Experiments with a two-layer red-green phosphor in a standard TX-2 display tube are under 

way.     The color is switched by changing the accelerating potential of the CRT;   circuitry for ac- 

complishing a rapid change of 5 kV has been built and operated.    The change in accelerating po- 

tential necessitates an accompanying change in the deflection sensitivity,  and circuits for this 

have been developed. 

The color tube has been tested on TX-2 with the mask layout program.    Changes to support 

this display were temporarily made in the executive program.    An important function in the mask 

program is the selection of a set of components as command operands.    At present,   selection of 

components is indicated by an X displayed on top of each designated part.     The color display 

was used to replace this indicator with a color shift.     The basic display is green,   and selected 

components change to red.     Initial results appear promising and further experiments will be 

conducted. 

2. ARDS Terminal 

Provision has been made for the connection of an ARDS terminal to TX-2.     The ARDS was 

established as another console and placed into regular service.     User acceptance has been en- 

couraging,   with the rapid display of text a motivating factor.    A public program accessible from 

LEAP has been written which allows pictures to be drawn by programs. 

3. Storage Tubes at TX-2 Consoles 

Storage-tube displays have been added to the TX-2 consoles and are used by various pro- 

grams.    Several noninteractive graphical output programs (e.g., .data plotting) have been mod- 

ified to utilize this hardware.     The storing of a reference picture on the storage scope by the 

mask program has also been found useful.    In addition,  a storage display has been placed in the 

Transistor lab in conjunction with the TIC (Testing Integrated Circuits) terminal.    Parameter 

plots can be viewed immediately after measurements are made on actual circuit components. 

4. Character Generator 

A new character generator is under development using the high-speed decoders produced 

for the conic generator.     This character generator is a direct replacement for the commercial 

one already installed,   and its improved features include flexible character specification in a 

read-only memory,   and variable speed generation required for efficient utilization with both 

refreshed and storage scopes. 



II.    GRAPHICS AND APPLICATIONS 

A.    Semiconductor Mask Design 

Mask design on the TX-2 continues at a steady pace.    Completed mask designs used to fab- 

ricate circuits include: 

(1) A new version of the read-only memory, 

(2) A simple 3-input AND gate design for the collector diffused isolation 
(CDI) technology, 

(3) Beam-lead and face-down bonding masks for use in the heat dissi- 
pation studies, 

(4) A fabrication process evaluation chip, 

(5) Masks used in the face-up bonding investigations, 

(6) A basic 80-gate array which will have custom metallization applied 
to it in order to implement a wide range of functions. 

Several custom metallizations are in the final design stages for the 80-gate array.     These 

include a circuit to provide data on gate fanout vs gate time delay and circuits for the micro- 

processor's adder,   register,  and multiplier function. 

Microphotographs of the actual timing gate chain chip,   previously designed on the TX-2, 

are found in Figs. 1 and 2. 

A portion of the support of the Semiconductor Mask design software has entered the "fine 

tuning" stage.     Recent software modifications have not changed the program's input/output char- 

acteristics but have improved the utilization of the TX-2's cpu,   memory,   and drum memory. 

For example,   the program was modified to use integer representations of the mask component 

coordinates as opposed to real number representations.     This change,   not affecting the pro- 

gram's capabilities,  accelerated the program by 30 percent,   primarily because the TX-2 has no 

floating-point hardware;   this change typifies a major portion'of the support.     The measurements 

for changes were done using the system measuring hardware on the TX-2. 

Other software support includes new methods of generating CalComp plots of the designed 

masks and a means of documenting what components are where on a mask set.     The mask design 

software  has been factored  into separate entities representing application-dependent and 

application-independent information.     The application-dependent information represents com- 

ponent definitions for a particular circuit fabrication method such as bipolar,   CDI,   or MOS;   the 

application-independent information represents the program's control and structural skeleton. 

These entities are kept as distinct text files and are merged to form the desired mask program. 

This setup allows the application-independent information to be kept in one place,   as opposed to 

being replicated in several different places,   and insures that any application program has the 

most current copy of the control section. 

This factoring has spawned other uses of the control and structural skeleton of the mask 

design software.    For example,   an application program for designing a Naval ship's compart- 

ments was constructed by defining the appropriate application-dependent information.     This pro- 

gram,   which required four man hours for construction,   was described and demonstrated for the 

Department of the Navy,  Naval Ship Systems Command. 

The "production" use of the mask design software has recently required 2 hours a day during 

which it is necessary to insure maximum response to a mask designer's requests.    As an ex- 

periment during these hours,   APEX has been conditioned to examine the status of console 1 (the 



mask user) in determining its scheduling strategy.    Status is determined by the position of a 

switch in the system configuration register.    If console i "is king," then it receives all the cpu 

and memory that it asks for and can use.    Console l's programs and data are brought into mem- 

ory from the drum and given free reign over the cpu.    As a direct result,   other programs and 

data are removed from main memory and put onto the drum. 

When console 1 has completed its computation,   the other consoles are scheduled in the nor- 

mal mode.     Typically,   these other consoles' programs and data are on the drum.    Console l's 

programs and data must be swapped out (they occupy at least 60 percent of memory) and other 

programs and data swapped in.     This is a very slow process.    Console 1 can wait up to 5 seconds 

before its programs and data are available in main memory.     This wait is a fatiguing one for the 

mask designer and is not tolerated.     Thus,   in this instance,  a critical TX-2 resource is its main 

memory rather than its cpu. 

B.    Design Data System 

A trial implementation of a design data system has been created on TX-2.     This work is 

patterned after the system developed at Stanford Research Institute but with a heavy bias toward 

the local style of graphical interaction.     The ultimate aim is to create a computer-based aid for 

recording and manipulating the complex data involved in a system design.    Work to date has pro- 

duced a program which can be used to explore the kind of interactive assistance needed.     The 

program is written in LEAP and is coupled to the input saving facility also described in this 

report. 

1.    Data Concepts 

Information about a design is contained in a collection of pictures,   each containing any num- 

ber of boxes and lines.     These components are normally used to construct some kind of a dia- 

gram (Fig. 3).    Arbitrary selections of text can be placed in a box or attached to a line.    Routines 

adjust display of text to the confines of a box.    Pictures can be viewed with normal zoom and off- 

set controls.    Each picture has a name and can have a descriptive title. 

Connection between related pictures is provided by several mechanisms.    A box may be an 

entry point to a subordinate picture and,   if so,  has a "P" at its upper left corner.    Making an 

appropriate drawn command on such a box causes the link to be traversed and the subordinate 

picture to be displayed.     Links by name to pictures are also possible.    Either the first word of 

text in a box or the word following "(SEE" in the text can be used as a picture name for cross 

referencing.    Appropriate commands drawn on top of boxes will invoke any of the three linking 

mechanisms.    A linking command to a nonexistent picture creates a new blank picture appropri- 

ately connected into the picture structure. 

The box linkages provide a hierarchy of pictures descending from an initial picture.    An 

arbitrary fanout is available at any level since any number of boxes can be included in that pic- 

ture and used as entries for subordinate pictures.    It is possible to restructure these links and 

make two separate boxes (perhaps in different pictures) have the same subordinate picture. 

Thus,   the tree hierarchy can in principle be turned into arbitrary connections.    However,   the 

box linkage mechanism is intended to provide hierarchical ordering to pictures.    In contrast, 

the name linkage mechanism provides arbitrary links across the picture structure at will. 



2.    Program Operation 

Commands to this program are mainly given by drawn marks on the Sylvania tablet and fall 

into several broad categories: 

(a) Picture Element Manipulation:   Commands to make,   move and delete 
boxes,  lines,  and text and to control picture viewing (zoom,   etc.) 

(b) Structure Linking:   Commands to move the display to selected pictures 
in the structure and to modify the structure 

(c) Storage Scope Control:   Commands to place various pictures or picture 
parts on the console storage scope for reference purposes 

(d) Administrative:   Commands to save or read in a structure from disk 
or to go to the symbol trainer,   etc. 

Trial use of this system has just begun to obtain experience with the various features. As 

with any program of this type, it is a difficult task to discover just what kinds of computer help 

are really useful and which initial "good ideas" never get used. 

A critical and as yet unsolved problem is that of indexing. When working with this system, 

an overview of the structure created is necessary. Schemes for obtaining a list of the existing 

pictures are available,  but more are needed. 

C.    Microprocessor Applications 

1.    A Microprogrammed Digital Vocoder 

a. Introduction 

The feasibility of using the microprocessor under development by Group 23 as a digital 

vocoder analyzer and/or synthesizer has been investigated.    An implementation of the micro- 

processor as an analyzer only (with no pitch detection) was microcoded and simulated.    Hard- 

ware modifications to the microprocessor to enable real-time operation are described below. 

b. Short Functional Description of the Microprocessor LX-1 

Two versions of the microprocessor are contemplated.     The first,   called the prototype, 

will have an 80-nsec control memory cycle time.     The second version,  using LSI technology, 

will have a control memory cycle time which is five times faster. 

The LX-1 microprocessor is described in a memo by G. D. Hornbuckle,* an excerpt of 

which follows: 

"The three major components of LX-1 are a 64 bit x 256 word 

control memory (sometimes referred to as the read-only memory 

or ROM),  a set of sixteen 16-bit registers,   and several function 

units which perform operations on the data in the registers.    Each 

of the registers is connected to three buses called A,   B,   and D 

(see Fig. 4).     The  A and  B buses are the data paths from the reg- 

isters to the function units,   and the  D bus is the data path from the 

function units to the registers.    Control signals come,   for the most 

part,  from the control memory." 

*G.D. Hornbuckle,   "LX-1 Reference Manual," private communication. 



There is also a writeable 16-bit x 128-word scratchpad memory,  accessible in one control 

memory cycle time (80nsec).     Thus,   some example operations on the LX-1 are 

A-BUS/3-B-BUS-D-BUS 

where A-BUS,   B-BUS,  and C-BUS are register numbers,  and /3 implies a 3-bit right shift 

\14-D-BUS 

i.e.,   read the value of scratchpad location 14 onto the  D bus. 

Branching in LX-1 is achieved by setting and testing six special bits,  denoted 

C carry bit 

Z zero bit (Z = 1 => word is zero) 

H high-order bit 

L low-order bit 

S bit 1 

F overflow 

Thus, 

A-BUS + BBUS-DBUS, Z, F 

will cause the  Z and  F  bits to be set according to the result of the addition; 

LOOP(l) A-BUS-D-BUS, C/LOOP(C) 
LOOP(O) 

will cause a branch to the label according to the value of C. 

c.    Short Functional Description of the Digital Vocoder 

The vocoder is described in papers by W. M. Anderson, Jr.,    and by T. Bially.'    A short 

outline of the analyzer is given here (quoted from T. Bially,   "Structure of a Digital Channel 

Vocoder"). 

"The spectrum analyzer portion of the vocoder consists of 

thirty-two filters of the form shown in Fig. 5.    Input speech is 

sampled at a ten kilohertz rate (once every lOOnsec) and is si- 

multaneously modulated by two reference sinusoids whose fre- 

quency is equal to the center frequency of the filter in question. 

Fifty successive samples at the output of each modulator are 

summed and added to the sum of the fifty output samples.     Thus 

at time 99T the signal at point x  in Fig. 5 has the value 

99 

YJ    S(kT) cos nwQkT 

k=0 

and that at point y  is 

* W. M. Anderson, Jr.,   "Specification of a Digital Vocoder System," presented at Acoustical 
Society of America,  Cleveland,   19-22 November 1968. 

IT. Bially,   "Structure of a Digital Channel Vocoder," to be presented at IEEE International 
Conference on Communications,   Boulder,  Colorado,   9-11 June 1969. 



99 

YJ    S(kT) sin nwQkT 

k=0 

The square root of the sum of the squares of these two values is 

computed at point z: 

Every five milliseconds then,   the signal at  z   is numerically 

equal to the magnitude of the nw„ component of the discrete 

Fourier transform of the preceding ten milliseconds of S(kT). 

. . . Four successive outputs are averaged to yield the final out- 

put once every 20 milliseconds.    The thirty-two analyzer chan- 

nels are spaced one hundred cycles wide.     The center frequencies 

are 100,   200,   . . . ,   3200 Hz." 

Thus,  every twenty milliseconds,  we have thirty-two values corresponding to the channel 

signals for the current interval. 

"These are encoded into a total of thirty two bits by a com- 

bination of logarithmic quantization,  averaging of adjacent chan- 

nel values at the high frequency end of the spectrum,  and a lin- 

ear (Hadamard) transformation which removes some of the inter- 

channel correlation.     The spectral parameters thus require 

32/20 x 10    or 1550 bits per second to transmit." 

d.    Description of the Microprogrammed Vocoder 

Structure:—   The vocoder was simulated using the LX-1 simulator on TX-2. 

The simulator takes input samples from an APEX file and returns the vocoded speech to that 

file.    A 20-cycle delay was assumed from the time a main memory read or write request is is- 

sued,   until the request is completed.    However,   since main memory operations are overlapped 

with computation,   the effective delay is probably three cycles. 

Except for input/output, and input buffer maintenance, the vocoder simulator microcode is 

identical to that of a real implementation. The I/O operations, however, do not add significant 

overhead to the computations;   thus,   the values obtained from simulation are reasonable. 

There are three main loops in the code: 

LOOP 1 This calculation is done every 100 ^sec (if real time) 
and involves taking the discrete Fourier transform 

* Semiannual Technical Summary to the Advanced Research Projects Agency on Graphics, 
Lincoln Laboratory,   M. I. T.   (30 November 1968),   DDC 679991. 



of the current sample at 32 frequencies (100 to 3200 cps) 

and taking the running sum over the last 50 samples. 

LOOP 2 Every 50 samples (every 5 msec),   the sum is dumped 

and,   for each channel,   it is added to the previous 5-msec 

sum.    We thus have,   every 5 msec,   the sum over the last 

100 samples.     The magnitude of the spectrum of each 

channel is calculated,   and the running sum over the last 

four spectra is calculated. 

LOOP 3 Every fourth spectral measurement (every 20msec),   the 

logarithm of the sum of the spectra is calculated,   and the 

32 channels are compressed to 16 by appropriate linear 

combinations of the logarithms.    Finally,   the sixteen re- 

sults are multiplied by a Hadamard matrix to decorrelate 

the channels,   and the channels are appropriately quantified 

to yield a total of 32 bits every 20 msec. 

Further details on each of the loops follows. 

LOOP 1:—   In the current implementation,   this loop is approximately 50 micro- 

instructions long,   plus 25 control memory words where the sine and cosine table is stored.    The 

calculation of the current sample is interleaved with reading in of the next sample from control 

memory,   thus the latter effectively takes no time.    Only one-quarter of both the sine and the 

cosine waves is stored.     The calculation to discover which table value to use and whether to 

complement is approximately 18 microinstructions long and takes from 9 to 18 cycles,  depending 

on the values used.     The average is 13 cycles.    At this point,   we have loaded the appropriate 

values for the sine and cosine in a register.     These must be separated,   multiplied by the sample 

value,   and the result added to the running sum.     This section is approximately 19 microinstruc- 

tions long and takes from 17 to 44 cycles,   depending on the values used.     The average is 30 cy- 

cles.     The calculation for LOOP 1 is thus 45 cycles/channel,   or 1440 cycles/sample,   i.e., 

115fj.sec,   assuming 80-nsec cycle time.    The worst case is around I60|j.sec;   the best case is 

around 80 usec. 

LOOP 2:—   This section is approximately 30 microinstructions long and involves 

summing the value of the previous 5-msec sum to the current one.     The previous values must 

be read in from external memory overlapped.     Finally,   the magnitude of the spectrum is taken. 

The magnitude taker is 7 microinstructions long and takes from 4 to 7 cycles.    Setup for 

taking the magnitude is 6 cycles.     Taking the running sum and testing for conditions is another 

6 cycles.     Thus,   approximately 18 cycles/channel are executed,   i.e.,   576 cycles every 5 msec, 

or 48p.sec.     This calculation thus adds approximately 1 M-sec/sample,   if the input samples are 

buffered. 

LOOP 3:— This section is approximately 120 microinstructions long. The log 

taker is 15 microinstructions long and takes 18 cycles. The channel compressor is 40 micro- 

instructions long and takes approximately 100 cycles. 

Calculating the Hadamard coefficients is 22 microinstructions long and takes approximately 

20 cycles/coefficient.    The matrix multiplication itself takes 6 cycles/element including setup 



256 coefficients x ~30 cycles => 7680 cycles/spectrum 

Quantization is 40 microinstructions long and takes ~100 cycles.    Thus,  the total is 18 X 32 

cycles for log,   100 cycles for compressor,   7680 cycles for Hadamard,  and 100 cycles for quan- 

tization,   i.e.,  8500 cycles or 680|j.sec every 20 msec.    If the input samples are buffered,  this 

averages out to approximately 4 (xsec/sample. 

Discussion:—   All times and cycle values are approximate and are on a per- 

sample basis,   i.e.,   the input is appropriately buffered: 

Cycles 

1500 

Prototype 
80 nsec/cycle 15 

LSI 
nsec/cycle 

LOOP 1 120 |j.sec 25 ^sec 

LOOP 2 15 1 p-sec 250nsec 

LOOP 3 50 4 |j.sec 750nsec 

Overall 1565 125 |jisec 26 fisec 

The above implementation shows that,   with the anticipated microprocessor prototype struc- 

ture,   the analysis of input speech can be done in under twice real time.    However,   two factors 

have not been taken into account:   the maintenance of the input buffer,  and the section of the an- 

alyzer dealing with pitch detection. 

It can also be seen that LOOPS 2 and 3, even though they are long, add at most a 10-percent 

overhead to the overall calculation if a 200-sample input buffer is assumed. In order to achieve 

a real-time implementation,   therefore,   LOOP 1 must be optimized. 

Optimization of LOOP 1:—   Two improvements can be made to LOOP 1 by adding 

extra hardware. 

(a) Instead of storing one-quarter of the sine wave only in the read-only 
memory,  a full cycle could be stored (100 registers),  thus making the 
decoding for the table lookup much faster.    The table would have to be 
12 bits x 100 words long and be accessible in one cycle time.    Lookup 
would then take 4 to 6 cycles,  instead of 9 to 18 cycles.    With these 
values,   LOOP 1 would take 55jxsec at best,  and 128(j.sec at worst. 
Thus,  this change alone is not sufficient. 

(b) A hardware multiplier could be added as a function box.    Assuming 
it could multiply in one cycle,   the two multiplies and adds by the sine 
and cosine would take 10 cycles.    With this change alone (i.e.,   with 
only a quarter sine cycle stored),   LOOP 1 would take 55 jisec at best, 
and 80|j.sec at worst.     Thus,   this change alone is sufficient to insure 
real time if the maintenance of the input and output buffers and pitch 
detectors could be separate hardware. 

If both these changes are made,   LOOP 1 would take around 40(±sec,   leaving ample time for 

LOOPS 2 and 3. 

Conclusion:—   For a real-time implementation,   the current microprocessor 

prototype is sufficient if 

(a) a 200-sample (slow) input buffer memory is added,   and 

(b) a fast multiplier is added. 

A 100-word read-only sine-cosine table would help but would be insufficient alone to insure real- 

time operation. 
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e. Other Possible Hardware Modifications 

Instead of the 128-word scratchpad memory, where all temporary results are stored, dy- 

namic shift registers could be used to store the accumulations of sines and cosines, as well as 

to store the 50-sample sum delays,  as suggested by T. Bially. 

f. Conclusions 

The LX-1 microprocessor prototype can be used as a vocoder analyzer,  with some modi- 

fications.    The LSI version,  which should be five times faster,  could certainly be used with no 

hardware modifications other than the input buffer,  and,   indeed,   might be fast enough to be used 

in half-duplex mode for both analysis and synthesis. 

2.    Microprocessor as a Display Processor 

Work is currently in progress on applications of the LX-1 microprocessor as a display con- 

troller.     The speed of LX-1 and its very flexible I/O characteristics make it very suitable for 

this application. 

Two system structures are currently being considered.    One is a remote terminal serving 

several scope consoles,   with a disk,  perhaps,  for bulk storage.    The other is a system using 

refreshed scopes running partly from the central computer's memory and making calls to dis- 

play subroutines stored in the LX-l's local memory.     The objective of this second system is to 

reduce the load on the central computer memory due to cycle stealing.    In both system organi- 

zations,   the microprocessor would perform automatic windowing. 

D.    Interactive Computer-Mediated Animation* 

A Ph.D.   thesis' has been submitted to the Electrical Engineering Department at M.I.T.; 

the abstract is quoted below: 

"The use of interactive computer graphics in the construction 

of animated visual displays is investigated. 

"The dissertation presents a process called interactive computer- 

mediated animation,   in which dynamic displays are constructed by 

utilizing direct console commands,   algorithms,   free-hand sketches, 

and real-time actions.     The resulting "movie" can then be immedi- 

ately viewed and altered. 

"The dissertation also describes a special kind of interactive 

computer-mediated animation that exploits the potentialities of direct 

graphical interaction.     The animator may sketch and refine (1) static 

images to be used as components of individual frames of the movie, 

and (2) static and dynamic images that represent dynamic behavior, 

that is,   movement and rhythm.    Because these latter pictures drive 

algorithms to generate dynamic displays,   the process is called 

picture-driven animation. 

* A portion of this work was supported by Project MAC at M.I.T. 

tR. M. Baecker,   "Interactive Computer-Mediated Animation,"  Ph.D.   Thesis,  Department of 
Electrical Engineering,   M.I.T.   (June 1969). 
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"Each representation of movement and rhythm determines critical 

parameters of a sequence of frames.     Thus,   with a single sketch or ac- 

tion that generates or modifies the representation,   the animator can ex- 

ercise dynamic control over an entire interval of the movie.    One natu- 

ral way to do this is by mimicking in real time a movement or a rhythm, 

using a stylus or a push-button. 

"These concepts are supported by experience with three special- 

purpose picture-driven animation systems which have been implemented 

and used on the M.I.T.   Lincoln Laboratory TX-2 computer. 

"The dissertation also presents an outline of the proposed design of 
a multi-purpose,   open-ended,  interactive Animation and Picture Proc- 

essing Language.    A PPL is a conversational language which accepts 

direct sketches,  direct console commands,   and algorithms that control 

interactive dynamic displays. 

"Solutions are presented for the following problems:   How can the 

system be structured so that the command set can easily be augmented 

by the animator?    How can movie time be represented in the language, 

and how does the choice of representation interact with the flow of pro- 

gram and system control?    What computational data structure can fa- 

cilitate the modeling of sequential and hierarchic structures of pictures 

and dynamic data?    How can we provide a rich picture description capa- 

bility in the language?    How can we facilitate the construction of pro- 

grams which describe the user's interaction with the system? 

"APPL programs are included to demonstrate that the language can 

be gracefully used to construct dynamic displays,   to build system tools 
that aid the construction process,   and to implement special-purpose 

interactive computer-mediated animation systems." 

Programs implementing selected portions of the concepts developed have been created on 

the TX-2.    The initial portion of an animated film explaining this approach to animation has been 

created.    Figures 6(a) and (b) show two different scenes from a short cartoon clip from this 

film,  and Figs. 7(a) and (b) show pictures which define and drive the animation actions of the 

cartoon. 

A more detailed summary may be found in a paper by R. M. Baecker.* 

E.    Storing of Graphical Inputs 

Exploratory work on the storing and later reuse of interactive graphical inputs has been re- 

ported in a thesis.t   An initial implementation of this capability has been programmed for the 

TX-2.    Application programs which use the input replay mechanism can now be written even 

though this first implementation is somewhat inefficient.    It is possible from an application 

* R. M. Baecker,   "Picture Driven Animation,"  Proc. 1969 Spring Joint Computer Conference, 
Boston,   Massachusetts. 

tE. L. Thomas,   "The Storing and Reuse of Real-Time Graphical Inputs," MS Thesis,  Department 
of Electrical Engineering,   M.I.T.   (June 1969). 
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program to cause the storing of sequences of on-line interactive inputs,   to observe and modify 

the stored input stream,   and to play back a stored stream to the program as though the inputs 

were coming directly from the console.     The implementation is particularly oriented toward the 

data tablet as the principal console input device. 

The contents of a stored input stream can be observed in several ways: 

(1) As a text representation showing condensed information about each 
component of input 

(2) As a graphical representation of the input shown in its proper place 
on the display screen 

(3) As a sequence of inputs viewed in a movie-like manner one after 
the other. 

The condensed text representation is used for deletions and insertions by positioning a cur- 

sor to the appropriate item.    New input can be added by drawing directly;  however,   the lack of 

a program display picture context makes this not a generally useful mode of input extension. 

Deletion of extra inputs is easily accomplished and often necessary to make a useful stored in- 

put set. 

On-line input commands can be inserted in the stream and,   when encountered by the play- 

back system,  will temporarily halt the playback until a live input is entered.     This input is used 

by the application program,   then the playback of recorded inputs continues. 

Figures 8 through 11 show pictures of the recording and playback system in action within 

the design data program. 

Initial usage of this kind of an input saving appears promising,   but further work and exper- 

imentation will be needed to determine the real potential of this facility. 

F.    System Performance Measurement 

A system performance measurement facility has been developed for the APEX time-sharing 

system. 

When activated,   this facility records the occurrences of specified events in the running of 

APEX.    Events are recorded by means of strategically placed subroutine calls to a program 

which buffers the information and writes it out on secondary storage for later analysis. 

In order to measure scheduling efficiency,   the following events have been specified:   a user 

moving from the inactive to the active queue (e.g.,   completion of typing a command),  a user being 

put on the air,   the breaking of a user before completion of a job and returning him to the active 

queue (e.g.,   in-out fault,   time slice expired),  and a user completing a job and returning to the 

inactive state.    With each event,   real-time clock value,   number of core pages used,   etc.,  are 

also recorded. 

The two plots shown in Figs. 12(a) and (b) were obtained by analyzing the scheduling events 

occurring during one hour of APEX activity and by plotting the data using the TX-2 Lincoln 

Reckoner facilities.     The plots represent waiting time (i.e.,   time from first entering the active 

queue to completion of the job),   in the horizontal axis,   vs the amount of time actually spent ex- 

ecuting the user's instructions,   in the vertical axis.    In the ideal case,   all points would lie on 

the diagonal,   indicating that all of a user's waiting time was spent executing his instructions. 

The units in the plots are numbers of microseconds;   to avoid bunching toward the low end,   log- 

log (base 10) plots were taken. 
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Figure 12(a) covers all the jobs.     The cluster of points at about 1 0 to 50 msec has been de- 

termined to be the heavy usage of the scope text editor;   each movement of the cursor and each 

insertion or deletion of a character is an individual job.     The proximity to the diagonal of this 

cluster indicates the comparative efficiency with which the scope text editor interactions are 

scheduled.    Elsewhere on the plot can be seen jobs running for other periods of time;   some of 

the jobs clearly required a proportionately large amount of waiting time in comparison with ex- 

ecution time.    Points at the lower left-hand corner of the plot are far from the diagonal due to 

the  relatively large  amount of overhead  in  scheduling a job  that  runs only hundreds  of 

microseconds. 

Figure 12(b) covers only the jobs which required running and waiting times in excess of 

1 00 msec. 

G.    Computer-Aided Testing 

An SEL810A computer with 8k of 16-bit core storage and a 225k word-swapping drum has 

been delivered for use as a controller for automated circuit testing.     Through a combination of 

hardware modifications and software routines,   a demand paging memory organization has been 

implemented and is working.     The user program runs as though it had available 128 pages of 

512 memory words each.    Of these 128 pages,   14 at most will physically be in core storage;   the 

others will be resident on the swapping drum.    If the program attempts to reference a page that 

is not in core,   the modified hardware will trap the reference,  an interrupt routine will load the 

desired page into core from the drum,  and the user program will be restarted.    When no free 

pages are left in core,   space is made available by unloading filled pages back onto the drum. 

The operation of this paging system is transparent to the user program. 

A fixed-priority multiprogrammed executive has been designed to run within this virtual 

memory system and is currently being implemented.     Up to twelve processes can be run beneath 

the executive on a fixed-priority basis.    The approach is different from that of a general-purpose 

time-sharing system in that all processes operate in the same 128-page address space rather 

than each having its own address space.     The processes will consist of a user program,   several 

I/O handlers,  and a normally dormant interrogation and debugging package.    In the event of sys- 

tem failure,   control will be passed to the interrogation package.    Normally,   control will be with 

the user program and its evoked I/O routines.    The process runner will attempt to give control 

to the highest priority process that is runnable.    In the event of a missing page,   lower priority 

processes will be freeloaded when possible until the page has been retrieved from the drum. 

Processes and interrupt routines are able to wake up other processes or to block themselves 

pending later wakeup.    An aggressive paging strategy attempts to remove from core pages be- 

longing to blocked processes. 

Except for the inner core of the executive,   consisting of the process runner,   the interrupt 

routines,  and the swapping routines,   all coding is being done in BCPL,   and is being compiled 

into SEL binary files on the TX-2.     The executive core,   the total length of which is less than one 

core page,   is written in assembly level language.     This executive,   along with the 128-word page 

table and a few hundred words of global variables,   is the only part of the system frozen in core. 
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Fig. 1.    Microphotograph of an entire chip 
containing a test circuit for timing. 

[ -2-Sllt 1 

Fig. 2.    Microphotograph of a single gate in 
timing chip. 

Fig. 3.    Sample diagram drawn with design 
data system. 

15 



3-23-8549(1) 

R2 
BINARY 

FUNCTIONS 
SCRATCH 
MEMORY 

A  BUS 

SHIFT COMPLEMENT 

B   BUS 

16 REGISTERS FUNCTION   UNITS 

Fig. 4.    LX-1 microprocessor bus organization. 

OUTPUT 

Fig. 5.    One of 32 analyzer channels. 
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(a) (b) 

Fig. 6(a-b).    Two scenes from a short cartoon clip. 
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(a) (b) 

Fig. 7(a-b).    Pictures of data defining animation of cartoon clip. 
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(0) 

(b) 

(c) 

Fig. 8.    (a) Typical stored input sequence; (b) display of each of inputs superimposed; and (c) effect of 
inputs in a particular program environment. 
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(a) (b) 

Fig. 9.    (a) Input sequence of Fig. 8(a) modified to include an on-line input, 
and (b) replayed until occurrence of on-line input. 
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(a) 

(b) 

(c) 

Fig. 10.    (a) Inking character E   used as an on-line input to select box into which text is to be inserted, 
(b-c) then rest of input sequence is replayed. 
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(a) (b) 

Fig. ll(a-b).    A different box is selected with on-line input. 
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(a) (b) 

Fig. 12(a-b).    Response performance of APEX system showing plots of job cpu time 
(vertical scale) vs total job time (horizontal scale). 
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