
IR-69-141

ESD ACCESSIION LIST
ESTI Call No. 65530

opy No. of / cys.

ESD RECORD COPY
RET

SCIENTIFIC & JION DIVISION
(ESTI), BUILDING I

Semiannual Technical Summary

Graphics 31 May 1969

Pi

'•>)-5167 by

Lincoln Laboratory
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Lexington, Massachu.s>

^oO/^

The work reported in this document was performed at Lincoln Laboratory,
a center for research operated by Massachusetts Institute of Technology;
this work was supported by the U.S. Advanced Research Projects Agency of
the Department of Defense under Air Force Contract AF 19(628)-5167 (ARPA
Order 691).

This report may be reproduced to satisfy needs of U.S. Government agencies.

This document has been approved for public release and sale;
its distribution is unlimited.

Non-Lincoln Recipients

PLEASE DO NOT RETURN

Permission is given to destroy this document
when it is no longer needed.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY

GRAPHICS

SEMIANNUAL TECHNICAL SUMMARY REPORT

TO THE

ADVANCED RESEARCH PROJECTS AGENCY

1 DECEMBER 1968 - 31 MAY 1969

ISSUED 24 JUNE 1969

This document has been approved for public release and sale;
its distribution is unlimited.

LEXINGTON MASSACHUSETTS

SUMMARY

A relocating assembler and a linking loader have been programmed for the TX-2. To

provide more convenient graphical facilities, a new Extended Graphic Subsystem has been writ-

ten. Recent display hardware additions to TX-2 have included a color display, storage tubes,
and a commercial ARDS console.

Application program work on semiconductor mask design has continued, with current work

at an 80 gate/chip level. Initial exploratory work on a design data system has been performed.

Application of the LX-1 microprocessor to vocoder and display control problems has been stud-

ied. Experimental systems for Interactive Computer-Mediated Animation and Real-Time Input

saving have been completed. Performance measurements on the APEX system are being con-

ducted and the data analyzed. A stand-alone circuit-testing terminal with a small computer is

under development.

Accepted for the Air Force
Franklin C. Hudson
Chief, Lincoln Laboratory Office

111

CONTENTS

Summary iii
Glossary vi

I. Languages and Systems 1

A. Assembler and Loader 1

B. Extended Graphic Subsystem (EGS) 1

C. Display Hardware 3

II. Graphics and Applications 4

A. Semiconductor Mask Design 4

B. Design Data System 5

C. Microprocessor Applications 6

D. Interactive Computer-Mediated Animation 11

E. Storing of Graphical Inputs 12

F. System Performance Measurement 13

G. Computer-Aided Testing 14

GLOSSARY

ALGOL A high-level algebraic problem-solving language

AMBIT/G A graphical programming language for manipulation of directed
graphs

APEX TX-2 time-sharing executive

ARDS Advanced Remote JDisplay System

BCPL Basic Combined Programming Language — an intermediate
level language for computer programming

DAP Display Assembly Program

EGS Extended Graphic Subsystem

LEAP Language for Expressing Associative Procedures — an ALGOL-
like TX-2 programming language

LSI Large-Scale Integrated circuit technology

LX-1 A prototype microprocessor being constructed at Lincoln
Laboratory

ML A microprogramming assembly language

ROM Read-only memory

TAP TX-2 Assembly Program

VI

GRAPHICS

I. LANGUAGES AND SYSTEMS

A. Assembler and Loader

An integrated relocatable code system has finally been created for the TX-2 comprising the

BCPL compiler, a new relocatable assembler, and a linking loader. The output of the BCPL

compiler is a text file of assembly code similar in form to any created by hand. The assembly

code then passes to the new TAP (TX-2. Assembly Program) assembler which produces a relative

binary file containing binary code, relocation bits, and symbolic linkage information. The link-

ing loader combines relative binary files to produce executable TX-2 code.

This new system has been used to create both the BCPL compiler (written itself in BCPL)

and the EGS described below. In addition, the TAP assembler with modifications serves as an

assembler on TX-2 for the 16-bit testing terminal computer.

B. Extended Graphic Subsystem (EGS)

1. Introduction

During the past year at Lincoln Laboratory, a number of interactive graphic programs have

been written on TX-2. These programs included the mask program, a logic input program,

AMBIT/G, and an event simulator. All had one significant feature in common— provision for

the users to draw a picture into the computer using the Sylvania Data Tablet and the character

recognizer. A "windowing" capability is not available in the TX-2 hardware and is not provided

by the display executive in APEX. Each programmer was required to provide his own windowing

facility to allow users to input pictures larger than 10 inches square. While this task is not dif-

ficult to accomplish with LEAP, the duplication of effort is unnecessary. The EGS is designed

to provide this service to user programs under APEX.

2. EGS

EGS is a subsystem under APEX and runs in user mode. The EGS contains five sections:

a linkage and data structure package, a Display Assembly Program (DAP) interpreter, a clipper

program, a display data generator, and a user-specified package of graphic entity definitions.

a. Entity Definitions

The definitions of graphic entities are procedures written in DAP by the user of EGS for

his specific application. A simple procedure would take one point parameter and produce dis-

play data for that point. A more complicated procedure may take two point parameters and gen-

erate the data which describe an arrow, or a ruler. The user may even write a procedure which

takes N points and generates the data which describe all straight lines connecting any two points.

b. DAP

These procedures are coded by the application programmer in DAP. The EGS system in-

cludes an interpreter to translate DAP. All data values in DAP are points (i.e., X, Y coordinate

pairs). The simulated machine interpreting DAP contains 28 general registers for temporary

storage (RO -» R27) and several special registers. There is also a stack for passing parameters.

The format of a standard DAP instruction is OPCODE REGISTER.

Of the four DAP opcodes which generate display data, two generate data for vectors and two

for characters. They are:

DRAW TO A POINT DPT

DRAW BY DELTAS DDL

CHARACTERS CHAR

CHARACTERS CLIPPED CHARC

c. Automatic Windowing

All position information from the DAP interpreter program passes through the clipper pro-

gram. The clipper provides the automatic windowing facility for EGS.

All parameters passed to the DAP entity definition procedures are in terms of "floor" coor-

dinates (raw position data). These coordinates are integers with the range T377777 (Tl 30000..).

The raw position data are translated and scaled by a user-specified offset and scale factor.

These new position data are then clipped to lie within a user-specified window on the scope face.

The windowing information which controls the actions of the clipper is contained in a 4-element
array.

d. Picture Generation

Two types of calls can be made on EGS to generate a picture on the scope:

GENERATE

DISPLAY

GENERATE:— This call takes a list of parameters, pushes them onto the pa-

rameter stack, and then activates the DAP procedure specified in the call. The activation of any

DAP procedure will, in general, process a number of parameters from the parameter stack and

generate display data which will be added to the output buffer.

DISPLAY:— This call takes two Integer parameters: an item number, and a

group number. All display data currently in the output buffer are passed to the APEX display

executive as the specified item in the specified group. This call does not clear the output buffer

and, in fact, may be followed by more GENERATE and DISPLAY calls. Each GENERATE call

will add more data to the buffer. Each subsequent DISPLAY call will display the data accumu-

lated in the output buffer.

The DAP regeneration program is activated by a REGENERATE call to EGS. This call takes

a list of parameters containing the new values of the clipping array. The execution of this call

performs two functions: first, it replaces the old values of the clipping array with the new ones;

second, it regenerates the picture on the scope to reflect the changes in the clipping array. A

REGENERATE call may be made at any time.

e. Other Calls on EGS

There are three other calls on EGS currently available: DELETE, INIT, and CLEAN.

A DELETE call takes the same parameters as DISPLAY: an item number, and a group

number. The action of this call is to delete the specified item from the sequence 64 display

structure and the DAP regeneration program. An item number of zero will cause all items in the

specified group to be deleted and will remove the group from the sequence 64 display structure.

INIT initializes EGS and sets up an ephemeral file for EGS to use for impures. CLEAN also

initializes EGS, but it differs from INIT in that it assumes the ephemeral file to be already set

up.

C. Display Hardware

1. Color Display

Experiments with a two-layer red-green phosphor in a standard TX-2 display tube are under

way. The color is switched by changing the accelerating potential of the CRT; circuitry for ac-

complishing a rapid change of 5 kV has been built and operated. The change in accelerating po-

tential necessitates an accompanying change in the deflection sensitivity, and circuits for this

have been developed.

The color tube has been tested on TX-2 with the mask layout program. Changes to support

this display were temporarily made in the executive program. An important function in the mask

program is the selection of a set of components as command operands. At present, selection of

components is indicated by an X displayed on top of each designated part. The color display

was used to replace this indicator with a color shift. The basic display is green, and selected

components change to red. Initial results appear promising and further experiments will be

conducted.

2. ARDS Terminal

Provision has been made for the connection of an ARDS terminal to TX-2. The ARDS was

established as another console and placed into regular service. User acceptance has been en-

couraging, with the rapid display of text a motivating factor. A public program accessible from

LEAP has been written which allows pictures to be drawn by programs.

3. Storage Tubes at TX-2 Consoles

Storage-tube displays have been added to the TX-2 consoles and are used by various pro-

grams. Several noninteractive graphical output programs (e.g., .data plotting) have been mod-

ified to utilize this hardware. The storing of a reference picture on the storage scope by the

mask program has also been found useful. In addition, a storage display has been placed in the

Transistor lab in conjunction with the TIC (Testing Integrated Circuits) terminal. Parameter

plots can be viewed immediately after measurements are made on actual circuit components.

4. Character Generator

A new character generator is under development using the high-speed decoders produced

for the conic generator. This character generator is a direct replacement for the commercial

one already installed, and its improved features include flexible character specification in a

read-only memory, and variable speed generation required for efficient utilization with both

refreshed and storage scopes.

II. GRAPHICS AND APPLICATIONS

A. Semiconductor Mask Design

Mask design on the TX-2 continues at a steady pace. Completed mask designs used to fab-

ricate circuits include:

(1) A new version of the read-only memory,

(2) A simple 3-input AND gate design for the collector diffused isolation
(CDI) technology,

(3) Beam-lead and face-down bonding masks for use in the heat dissi-
pation studies,

(4) A fabrication process evaluation chip,

(5) Masks used in the face-up bonding investigations,

(6) A basic 80-gate array which will have custom metallization applied
to it in order to implement a wide range of functions.

Several custom metallizations are in the final design stages for the 80-gate array. These

include a circuit to provide data on gate fanout vs gate time delay and circuits for the micro-

processor's adder, register, and multiplier function.

Microphotographs of the actual timing gate chain chip, previously designed on the TX-2,

are found in Figs. 1 and 2.

A portion of the support of the Semiconductor Mask design software has entered the "fine

tuning" stage. Recent software modifications have not changed the program's input/output char-

acteristics but have improved the utilization of the TX-2's cpu, memory, and drum memory.

For example, the program was modified to use integer representations of the mask component

coordinates as opposed to real number representations. This change, not affecting the pro-

gram's capabilities, accelerated the program by 30 percent, primarily because the TX-2 has no

floating-point hardware; this change typifies a major portion'of the support. The measurements

for changes were done using the system measuring hardware on the TX-2.

Other software support includes new methods of generating CalComp plots of the designed

masks and a means of documenting what components are where on a mask set. The mask design

software has been factored into separate entities representing application-dependent and

application-independent information. The application-dependent information represents com-

ponent definitions for a particular circuit fabrication method such as bipolar, CDI, or MOS; the

application-independent information represents the program's control and structural skeleton.

These entities are kept as distinct text files and are merged to form the desired mask program.

This setup allows the application-independent information to be kept in one place, as opposed to

being replicated in several different places, and insures that any application program has the

most current copy of the control section.

This factoring has spawned other uses of the control and structural skeleton of the mask

design software. For example, an application program for designing a Naval ship's compart-

ments was constructed by defining the appropriate application-dependent information. This pro-

gram, which required four man hours for construction, was described and demonstrated for the

Department of the Navy, Naval Ship Systems Command.

The "production" use of the mask design software has recently required 2 hours a day during

which it is necessary to insure maximum response to a mask designer's requests. As an ex-

periment during these hours, APEX has been conditioned to examine the status of console 1 (the

mask user) in determining its scheduling strategy. Status is determined by the position of a

switch in the system configuration register. If console i "is king," then it receives all the cpu

and memory that it asks for and can use. Console l's programs and data are brought into mem-

ory from the drum and given free reign over the cpu. As a direct result, other programs and

data are removed from main memory and put onto the drum.

When console 1 has completed its computation, the other consoles are scheduled in the nor-

mal mode. Typically, these other consoles' programs and data are on the drum. Console l's

programs and data must be swapped out (they occupy at least 60 percent of memory) and other

programs and data swapped in. This is a very slow process. Console 1 can wait up to 5 seconds

before its programs and data are available in main memory. This wait is a fatiguing one for the

mask designer and is not tolerated. Thus, in this instance, a critical TX-2 resource is its main

memory rather than its cpu.

B. Design Data System

A trial implementation of a design data system has been created on TX-2. This work is

patterned after the system developed at Stanford Research Institute but with a heavy bias toward

the local style of graphical interaction. The ultimate aim is to create a computer-based aid for

recording and manipulating the complex data involved in a system design. Work to date has pro-

duced a program which can be used to explore the kind of interactive assistance needed. The

program is written in LEAP and is coupled to the input saving facility also described in this

report.

1. Data Concepts

Information about a design is contained in a collection of pictures, each containing any num-

ber of boxes and lines. These components are normally used to construct some kind of a dia-

gram (Fig. 3). Arbitrary selections of text can be placed in a box or attached to a line. Routines

adjust display of text to the confines of a box. Pictures can be viewed with normal zoom and off-

set controls. Each picture has a name and can have a descriptive title.

Connection between related pictures is provided by several mechanisms. A box may be an

entry point to a subordinate picture and, if so, has a "P" at its upper left corner. Making an

appropriate drawn command on such a box causes the link to be traversed and the subordinate

picture to be displayed. Links by name to pictures are also possible. Either the first word of

text in a box or the word following "(SEE" in the text can be used as a picture name for cross

referencing. Appropriate commands drawn on top of boxes will invoke any of the three linking

mechanisms. A linking command to a nonexistent picture creates a new blank picture appropri-

ately connected into the picture structure.

The box linkages provide a hierarchy of pictures descending from an initial picture. An

arbitrary fanout is available at any level since any number of boxes can be included in that pic-

ture and used as entries for subordinate pictures. It is possible to restructure these links and

make two separate boxes (perhaps in different pictures) have the same subordinate picture.

Thus, the tree hierarchy can in principle be turned into arbitrary connections. However, the

box linkage mechanism is intended to provide hierarchical ordering to pictures. In contrast,

the name linkage mechanism provides arbitrary links across the picture structure at will.

2. Program Operation

Commands to this program are mainly given by drawn marks on the Sylvania tablet and fall

into several broad categories:

(a) Picture Element Manipulation: Commands to make, move and delete
boxes, lines, and text and to control picture viewing (zoom, etc.)

(b) Structure Linking: Commands to move the display to selected pictures
in the structure and to modify the structure

(c) Storage Scope Control: Commands to place various pictures or picture
parts on the console storage scope for reference purposes

(d) Administrative: Commands to save or read in a structure from disk
or to go to the symbol trainer, etc.

Trial use of this system has just begun to obtain experience with the various features. As

with any program of this type, it is a difficult task to discover just what kinds of computer help

are really useful and which initial "good ideas" never get used.

A critical and as yet unsolved problem is that of indexing. When working with this system,

an overview of the structure created is necessary. Schemes for obtaining a list of the existing

pictures are available, but more are needed.

C. Microprocessor Applications

1. A Microprogrammed Digital Vocoder

a. Introduction

The feasibility of using the microprocessor under development by Group 23 as a digital

vocoder analyzer and/or synthesizer has been investigated. An implementation of the micro-

processor as an analyzer only (with no pitch detection) was microcoded and simulated. Hard-

ware modifications to the microprocessor to enable real-time operation are described below.

b. Short Functional Description of the Microprocessor LX-1

Two versions of the microprocessor are contemplated. The first, called the prototype,

will have an 80-nsec control memory cycle time. The second version, using LSI technology,

will have a control memory cycle time which is five times faster.

The LX-1 microprocessor is described in a memo by G. D. Hornbuckle,* an excerpt of

which follows:

"The three major components of LX-1 are a 64 bit x 256 word

control memory (sometimes referred to as the read-only memory

or ROM), a set of sixteen 16-bit registers, and several function

units which perform operations on the data in the registers. Each

of the registers is connected to three buses called A, B, and D

(see Fig. 4). The A and B buses are the data paths from the reg-

isters to the function units, and the D bus is the data path from the

function units to the registers. Control signals come, for the most

part, from the control memory."

*G.D. Hornbuckle, "LX-1 Reference Manual," private communication.

There is also a writeable 16-bit x 128-word scratchpad memory, accessible in one control

memory cycle time (80nsec). Thus, some example operations on the LX-1 are

A-BUS/3-B-BUS-D-BUS

where A-BUS, B-BUS, and C-BUS are register numbers, and /3 implies a 3-bit right shift

\14-D-BUS

i.e., read the value of scratchpad location 14 onto the D bus.

Branching in LX-1 is achieved by setting and testing six special bits, denoted

C carry bit

Z zero bit (Z = 1 => word is zero)

H high-order bit

L low-order bit

S bit 1

F overflow

Thus,

A-BUS + BBUS-DBUS, Z, F

will cause the Z and F bits to be set according to the result of the addition;

LOOP(l) A-BUS-D-BUS, C/LOOP(C)
LOOP(O)

will cause a branch to the label according to the value of C.

c. Short Functional Description of the Digital Vocoder

The vocoder is described in papers by W. M. Anderson, Jr., and by T. Bially.' A short

outline of the analyzer is given here (quoted from T. Bially, "Structure of a Digital Channel

Vocoder").

"The spectrum analyzer portion of the vocoder consists of

thirty-two filters of the form shown in Fig. 5. Input speech is

sampled at a ten kilohertz rate (once every lOOnsec) and is si-

multaneously modulated by two reference sinusoids whose fre-

quency is equal to the center frequency of the filter in question.

Fifty successive samples at the output of each modulator are

summed and added to the sum of the fifty output samples. Thus

at time 99T the signal at point x in Fig. 5 has the value

99

YJ S(kT) cos nwQkT

k=0

and that at point y is

* W. M. Anderson, Jr., "Specification of a Digital Vocoder System," presented at Acoustical
Society of America, Cleveland, 19-22 November 1968.

IT. Bially, "Structure of a Digital Channel Vocoder," to be presented at IEEE International
Conference on Communications, Boulder, Colorado, 9-11 June 1969.

99

YJ S(kT) sin nwQkT

k=0

The square root of the sum of the squares of these two values is

computed at point z:

Every five milliseconds then, the signal at z is numerically

equal to the magnitude of the nw„ component of the discrete

Fourier transform of the preceding ten milliseconds of S(kT).

. . . Four successive outputs are averaged to yield the final out-

put once every 20 milliseconds. The thirty-two analyzer chan-

nels are spaced one hundred cycles wide. The center frequencies

are 100, 200, . . . , 3200 Hz."

Thus, every twenty milliseconds, we have thirty-two values corresponding to the channel

signals for the current interval.

"These are encoded into a total of thirty two bits by a com-

bination of logarithmic quantization, averaging of adjacent chan-

nel values at the high frequency end of the spectrum, and a lin-

ear (Hadamard) transformation which removes some of the inter-

channel correlation. The spectral parameters thus require

32/20 x 10 or 1550 bits per second to transmit."

d. Description of the Microprogrammed Vocoder

Structure:— The vocoder was simulated using the LX-1 simulator on TX-2.

The simulator takes input samples from an APEX file and returns the vocoded speech to that

file. A 20-cycle delay was assumed from the time a main memory read or write request is is-

sued, until the request is completed. However, since main memory operations are overlapped

with computation, the effective delay is probably three cycles.

Except for input/output, and input buffer maintenance, the vocoder simulator microcode is

identical to that of a real implementation. The I/O operations, however, do not add significant

overhead to the computations; thus, the values obtained from simulation are reasonable.

There are three main loops in the code:

LOOP 1 This calculation is done every 100 ^sec (if real time)
and involves taking the discrete Fourier transform

* Semiannual Technical Summary to the Advanced Research Projects Agency on Graphics,
Lincoln Laboratory, M. I. T. (30 November 1968), DDC 679991.

of the current sample at 32 frequencies (100 to 3200 cps)

and taking the running sum over the last 50 samples.

LOOP 2 Every 50 samples (every 5 msec), the sum is dumped

and, for each channel, it is added to the previous 5-msec

sum. We thus have, every 5 msec, the sum over the last

100 samples. The magnitude of the spectrum of each

channel is calculated, and the running sum over the last

four spectra is calculated.

LOOP 3 Every fourth spectral measurement (every 20msec), the

logarithm of the sum of the spectra is calculated, and the

32 channels are compressed to 16 by appropriate linear

combinations of the logarithms. Finally, the sixteen re-

sults are multiplied by a Hadamard matrix to decorrelate

the channels, and the channels are appropriately quantified

to yield a total of 32 bits every 20 msec.

Further details on each of the loops follows.

LOOP 1:— In the current implementation, this loop is approximately 50 micro-

instructions long, plus 25 control memory words where the sine and cosine table is stored. The

calculation of the current sample is interleaved with reading in of the next sample from control

memory, thus the latter effectively takes no time. Only one-quarter of both the sine and the

cosine waves is stored. The calculation to discover which table value to use and whether to

complement is approximately 18 microinstructions long and takes from 9 to 18 cycles, depending

on the values used. The average is 13 cycles. At this point, we have loaded the appropriate

values for the sine and cosine in a register. These must be separated, multiplied by the sample

value, and the result added to the running sum. This section is approximately 19 microinstruc-

tions long and takes from 17 to 44 cycles, depending on the values used. The average is 30 cy-

cles. The calculation for LOOP 1 is thus 45 cycles/channel, or 1440 cycles/sample, i.e.,

115fj.sec, assuming 80-nsec cycle time. The worst case is around I60|j.sec; the best case is

around 80 usec.

LOOP 2:— This section is approximately 30 microinstructions long and involves

summing the value of the previous 5-msec sum to the current one. The previous values must

be read in from external memory overlapped. Finally, the magnitude of the spectrum is taken.

The magnitude taker is 7 microinstructions long and takes from 4 to 7 cycles. Setup for

taking the magnitude is 6 cycles. Taking the running sum and testing for conditions is another

6 cycles. Thus, approximately 18 cycles/channel are executed, i.e., 576 cycles every 5 msec,

or 48p.sec. This calculation thus adds approximately 1 M-sec/sample, if the input samples are

buffered.

LOOP 3:— This section is approximately 120 microinstructions long. The log

taker is 15 microinstructions long and takes 18 cycles. The channel compressor is 40 micro-

instructions long and takes approximately 100 cycles.

Calculating the Hadamard coefficients is 22 microinstructions long and takes approximately

20 cycles/coefficient. The matrix multiplication itself takes 6 cycles/element including setup

256 coefficients x ~30 cycles => 7680 cycles/spectrum

Quantization is 40 microinstructions long and takes ~100 cycles. Thus, the total is 18 X 32

cycles for log, 100 cycles for compressor, 7680 cycles for Hadamard, and 100 cycles for quan-

tization, i.e., 8500 cycles or 680|j.sec every 20 msec. If the input samples are buffered, this

averages out to approximately 4 (xsec/sample.

Discussion:— All times and cycle values are approximate and are on a per-

sample basis, i.e., the input is appropriately buffered:

Cycles

1500

Prototype
80 nsec/cycle 15

LSI
nsec/cycle

LOOP 1 120 |j.sec 25 ^sec

LOOP 2 15 1 p-sec 250nsec

LOOP 3 50 4 |j.sec 750nsec

Overall 1565 125 |jisec 26 fisec

The above implementation shows that, with the anticipated microprocessor prototype struc-

ture, the analysis of input speech can be done in under twice real time. However, two factors

have not been taken into account: the maintenance of the input buffer, and the section of the an-

alyzer dealing with pitch detection.

It can also be seen that LOOPS 2 and 3, even though they are long, add at most a 10-percent

overhead to the overall calculation if a 200-sample input buffer is assumed. In order to achieve

a real-time implementation, therefore, LOOP 1 must be optimized.

Optimization of LOOP 1:— Two improvements can be made to LOOP 1 by adding

extra hardware.

(a) Instead of storing one-quarter of the sine wave only in the read-only
memory, a full cycle could be stored (100 registers), thus making the
decoding for the table lookup much faster. The table would have to be
12 bits x 100 words long and be accessible in one cycle time. Lookup
would then take 4 to 6 cycles, instead of 9 to 18 cycles. With these
values, LOOP 1 would take 55jxsec at best, and 128(j.sec at worst.
Thus, this change alone is not sufficient.

(b) A hardware multiplier could be added as a function box. Assuming
it could multiply in one cycle, the two multiplies and adds by the sine
and cosine would take 10 cycles. With this change alone (i.e., with
only a quarter sine cycle stored), LOOP 1 would take 55 jisec at best,
and 80|j.sec at worst. Thus, this change alone is sufficient to insure
real time if the maintenance of the input and output buffers and pitch
detectors could be separate hardware.

If both these changes are made, LOOP 1 would take around 40(±sec, leaving ample time for

LOOPS 2 and 3.

Conclusion:— For a real-time implementation, the current microprocessor

prototype is sufficient if

(a) a 200-sample (slow) input buffer memory is added, and

(b) a fast multiplier is added.

A 100-word read-only sine-cosine table would help but would be insufficient alone to insure real-

time operation.

10

e. Other Possible Hardware Modifications

Instead of the 128-word scratchpad memory, where all temporary results are stored, dy-

namic shift registers could be used to store the accumulations of sines and cosines, as well as

to store the 50-sample sum delays, as suggested by T. Bially.

f. Conclusions

The LX-1 microprocessor prototype can be used as a vocoder analyzer, with some modi-

fications. The LSI version, which should be five times faster, could certainly be used with no

hardware modifications other than the input buffer, and, indeed, might be fast enough to be used

in half-duplex mode for both analysis and synthesis.

2. Microprocessor as a Display Processor

Work is currently in progress on applications of the LX-1 microprocessor as a display con-

troller. The speed of LX-1 and its very flexible I/O characteristics make it very suitable for

this application.

Two system structures are currently being considered. One is a remote terminal serving

several scope consoles, with a disk, perhaps, for bulk storage. The other is a system using

refreshed scopes running partly from the central computer's memory and making calls to dis-

play subroutines stored in the LX-l's local memory. The objective of this second system is to

reduce the load on the central computer memory due to cycle stealing. In both system organi-

zations, the microprocessor would perform automatic windowing.

D. Interactive Computer-Mediated Animation*

A Ph.D. thesis' has been submitted to the Electrical Engineering Department at M.I.T.;

the abstract is quoted below:

"The use of interactive computer graphics in the construction

of animated visual displays is investigated.

"The dissertation presents a process called interactive computer-

mediated animation, in which dynamic displays are constructed by

utilizing direct console commands, algorithms, free-hand sketches,

and real-time actions. The resulting "movie" can then be immedi-

ately viewed and altered.

"The dissertation also describes a special kind of interactive

computer-mediated animation that exploits the potentialities of direct

graphical interaction. The animator may sketch and refine (1) static

images to be used as components of individual frames of the movie,

and (2) static and dynamic images that represent dynamic behavior,

that is, movement and rhythm. Because these latter pictures drive

algorithms to generate dynamic displays, the process is called

picture-driven animation.

* A portion of this work was supported by Project MAC at M.I.T.

tR. M. Baecker, "Interactive Computer-Mediated Animation," Ph.D. Thesis, Department of
Electrical Engineering, M.I.T. (June 1969).

11

"Each representation of movement and rhythm determines critical

parameters of a sequence of frames. Thus, with a single sketch or ac-

tion that generates or modifies the representation, the animator can ex-

ercise dynamic control over an entire interval of the movie. One natu-

ral way to do this is by mimicking in real time a movement or a rhythm,

using a stylus or a push-button.

"These concepts are supported by experience with three special-

purpose picture-driven animation systems which have been implemented

and used on the M.I.T. Lincoln Laboratory TX-2 computer.

"The dissertation also presents an outline of the proposed design of
a multi-purpose, open-ended, interactive Animation and Picture Proc-

essing Language. A PPL is a conversational language which accepts

direct sketches, direct console commands, and algorithms that control

interactive dynamic displays.

"Solutions are presented for the following problems: How can the

system be structured so that the command set can easily be augmented

by the animator? How can movie time be represented in the language,

and how does the choice of representation interact with the flow of pro-

gram and system control? What computational data structure can fa-

cilitate the modeling of sequential and hierarchic structures of pictures

and dynamic data? How can we provide a rich picture description capa-

bility in the language? How can we facilitate the construction of pro-

grams which describe the user's interaction with the system?

"APPL programs are included to demonstrate that the language can

be gracefully used to construct dynamic displays, to build system tools
that aid the construction process, and to implement special-purpose

interactive computer-mediated animation systems."

Programs implementing selected portions of the concepts developed have been created on

the TX-2. The initial portion of an animated film explaining this approach to animation has been

created. Figures 6(a) and (b) show two different scenes from a short cartoon clip from this

film, and Figs. 7(a) and (b) show pictures which define and drive the animation actions of the

cartoon.

A more detailed summary may be found in a paper by R. M. Baecker.*

E. Storing of Graphical Inputs

Exploratory work on the storing and later reuse of interactive graphical inputs has been re-

ported in a thesis.t An initial implementation of this capability has been programmed for the

TX-2. Application programs which use the input replay mechanism can now be written even

though this first implementation is somewhat inefficient. It is possible from an application

* R. M. Baecker, "Picture Driven Animation," Proc. 1969 Spring Joint Computer Conference,
Boston, Massachusetts.

tE. L. Thomas, "The Storing and Reuse of Real-Time Graphical Inputs," MS Thesis, Department
of Electrical Engineering, M.I.T. (June 1969).

12

program to cause the storing of sequences of on-line interactive inputs, to observe and modify

the stored input stream, and to play back a stored stream to the program as though the inputs

were coming directly from the console. The implementation is particularly oriented toward the

data tablet as the principal console input device.

The contents of a stored input stream can be observed in several ways:

(1) As a text representation showing condensed information about each
component of input

(2) As a graphical representation of the input shown in its proper place
on the display screen

(3) As a sequence of inputs viewed in a movie-like manner one after
the other.

The condensed text representation is used for deletions and insertions by positioning a cur-

sor to the appropriate item. New input can be added by drawing directly; however, the lack of

a program display picture context makes this not a generally useful mode of input extension.

Deletion of extra inputs is easily accomplished and often necessary to make a useful stored in-

put set.

On-line input commands can be inserted in the stream and, when encountered by the play-

back system, will temporarily halt the playback until a live input is entered. This input is used

by the application program, then the playback of recorded inputs continues.

Figures 8 through 11 show pictures of the recording and playback system in action within

the design data program.

Initial usage of this kind of an input saving appears promising, but further work and exper-

imentation will be needed to determine the real potential of this facility.

F. System Performance Measurement

A system performance measurement facility has been developed for the APEX time-sharing

system.

When activated, this facility records the occurrences of specified events in the running of

APEX. Events are recorded by means of strategically placed subroutine calls to a program

which buffers the information and writes it out on secondary storage for later analysis.

In order to measure scheduling efficiency, the following events have been specified: a user

moving from the inactive to the active queue (e.g., completion of typing a command), a user being

put on the air, the breaking of a user before completion of a job and returning him to the active

queue (e.g., in-out fault, time slice expired), and a user completing a job and returning to the

inactive state. With each event, real-time clock value, number of core pages used, etc., are

also recorded.

The two plots shown in Figs. 12(a) and (b) were obtained by analyzing the scheduling events

occurring during one hour of APEX activity and by plotting the data using the TX-2 Lincoln

Reckoner facilities. The plots represent waiting time (i.e., time from first entering the active

queue to completion of the job), in the horizontal axis, vs the amount of time actually spent ex-

ecuting the user's instructions, in the vertical axis. In the ideal case, all points would lie on

the diagonal, indicating that all of a user's waiting time was spent executing his instructions.

The units in the plots are numbers of microseconds; to avoid bunching toward the low end, log-

log (base 10) plots were taken.

13

Figure 12(a) covers all the jobs. The cluster of points at about 1 0 to 50 msec has been de-

termined to be the heavy usage of the scope text editor; each movement of the cursor and each

insertion or deletion of a character is an individual job. The proximity to the diagonal of this

cluster indicates the comparative efficiency with which the scope text editor interactions are

scheduled. Elsewhere on the plot can be seen jobs running for other periods of time; some of

the jobs clearly required a proportionately large amount of waiting time in comparison with ex-

ecution time. Points at the lower left-hand corner of the plot are far from the diagonal due to

the relatively large amount of overhead in scheduling a job that runs only hundreds of

microseconds.

Figure 12(b) covers only the jobs which required running and waiting times in excess of

1 00 msec.

G. Computer-Aided Testing

An SEL810A computer with 8k of 16-bit core storage and a 225k word-swapping drum has

been delivered for use as a controller for automated circuit testing. Through a combination of

hardware modifications and software routines, a demand paging memory organization has been

implemented and is working. The user program runs as though it had available 128 pages of

512 memory words each. Of these 128 pages, 14 at most will physically be in core storage; the

others will be resident on the swapping drum. If the program attempts to reference a page that

is not in core, the modified hardware will trap the reference, an interrupt routine will load the

desired page into core from the drum, and the user program will be restarted. When no free

pages are left in core, space is made available by unloading filled pages back onto the drum.

The operation of this paging system is transparent to the user program.

A fixed-priority multiprogrammed executive has been designed to run within this virtual

memory system and is currently being implemented. Up to twelve processes can be run beneath

the executive on a fixed-priority basis. The approach is different from that of a general-purpose

time-sharing system in that all processes operate in the same 128-page address space rather

than each having its own address space. The processes will consist of a user program, several

I/O handlers, and a normally dormant interrogation and debugging package. In the event of sys-

tem failure, control will be passed to the interrogation package. Normally, control will be with

the user program and its evoked I/O routines. The process runner will attempt to give control

to the highest priority process that is runnable. In the event of a missing page, lower priority

processes will be freeloaded when possible until the page has been retrieved from the drum.

Processes and interrupt routines are able to wake up other processes or to block themselves

pending later wakeup. An aggressive paging strategy attempts to remove from core pages be-

longing to blocked processes.

Except for the inner core of the executive, consisting of the process runner, the interrupt

routines, and the swapping routines, all coding is being done in BCPL, and is being compiled

into SEL binary files on the TX-2. The executive core, the total length of which is less than one

core page, is written in assembly level language. This executive, along with the 128-word page

table and a few hundred words of global variables, is the only part of the system frozen in core.

14

Fig. 1. Microphotograph of an entire chip
containing a test circuit for timing.

[-2-Sllt 1

Fig. 2. Microphotograph of a single gate in
timing chip.

Fig. 3. Sample diagram drawn with design
data system.

15

3-23-8549(1)

R2
BINARY

FUNCTIONS
SCRATCH
MEMORY

A BUS

SHIFT COMPLEMENT

B BUS

16 REGISTERS FUNCTION UNITS

Fig. 4. LX-1 microprocessor bus organization.

OUTPUT

Fig. 5. One of 32 analyzer channels.

16

-2-I719 |

(a) (b)

Fig. 6(a-b). Two scenes from a short cartoon clip.

2-8791

(a) (b)

Fig. 7(a-b). Pictures of data defining animation of cartoon clip.

17

-2-8792

(0)

(b)

(c)

Fig. 8. (a) Typical stored input sequence; (b) display of each of inputs superimposed; and (c) effect of
inputs in a particular program environment.

18

-2-1793

(a) (b)

Fig. 9. (a) Input sequence of Fig. 8(a) modified to include an on-line input,
and (b) replayed until occurrence of on-line input.

19

-2-8794

(a)

(b)

(c)

Fig. 10. (a) Inking character E used as an on-line input to select box into which text is to be inserted,
(b-c) then rest of input sequence is replayed.

20

I — g - 8 7 9 5]

(a) (b)

Fig. ll(a-b). A different box is selected with on-line input.

|-?-8796~

(a) (b)

Fig. 12(a-b). Response performance of APEX system showing plots of job cpu time
(vertical scale) vs total job time (horizontal scale).

21

UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA - R&D
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

I. ORIGINATING ACTIVITY (Corporate author)

Lincoln Laboratory, M.I.T.

2a. REPORT SECURITY CLASSIFICATION

Unclassified
2b. GROUP

None

3. REPORT TITLE

Semiannual Technical Summary Report to the Advanced Research Projects Agency on Graphics

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Semiannual Technical Summary Report (1 December 1968 through 31 May 1969)
5. AUTHOR(S) (Last name, first name, initial)

Raffel, Jack I.

6. REPORT DATE

31 May 1969

7a. TOTAL NO. OF PAGES

28

7b. NO. OF REFS

7

8a. CONTRACT OR GRANT NO.

AF 19 (628)-5167
b. PROJECT NO.

ARPA Order 691

9a. ORIGINATOR'S REPORT NUMBER(S)

Semiannual Technical Summary
for 31 May 1969

9b. OTHER REPORT NOtSI (Any other numbers that may be
assigned this report)

ESD-TR-69-141

10. AVAILABILITY/ LIMITATION NOTICES

This document has been approved for public release and sale; its distribution is unlimited.

II. SUPPLEMENTARY NOTES

None

12. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency,
Department of Defense

13. ABSTRACT

A relocating assembler and a linking loader have been programmed for the TX-2.
To provide more convenient graphical facilities, a new Extended Graphic Subsystem
has been written. Recent display hardware additions to TX-2 have included a color dis-
play, storage tubes, and a commercial ARDS console.

Application program work on semiconductor mask design has continued, with
current work at an 80 gate/chip level. Initial exploratory work on a design data sys-
tem has been studied. Application of the LX-1 microprocessor to vocoder and dis-
play control problems has been studied. Experimental systems for Interactive
Computer-Mediated Animation and Real-Time Input saving have been completed. Per-
formance measurements on the APEX system are being conducted and the data analyzed.
A stand-alone circuit-testing terminal with a small computer is under development.

14. KEY WORDS

graphical communication
TX-2

time-sharing
man-machine

display systems
programming languages

22 UNCLASSIFIED

Security Classification

