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ABSTRACT

Chapter I is a survey of finite automata as acceptors of finite
labeled trees. Chapter II is a survey of finite automata as acceptors
of infinite strings on a finite alphabet. Among the automata models
considered in Chapter II are those used by McNaughton, Buchi, and
Landweber. In Chapter II we also consider several new automata models
based on a notion of a run of a finite automaten on an infinite string
suggested by Professor A.R. Meyer in private communication. We show
that these new models are all equivalent to various previously formulated
models.

M.O. Rabin has published two solutions of the emptiness problem for
finite automata operating on infinite labeled trees. Appendices I and
IT contain a new solution of this emptiness problem. This new solution
was obtained jointly by the author and Charles Rackoff.
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Introduction

In 1969 M.0. Rabin [8] used finite automata on infinite trees to
give a decision procedure for the monadic second-order theory of two
successor functions. This is a powerful result and has as corollaries
decision procedures for several other interesting theories whose decision
problems were previously open. It, also, solved several other open problems.
Rabin's work has attracted considerable attention from mathematicians who
are otherwise not very interested in the motion of a finite automaton.

We believe that the proper way to begin one's study of finite automata
on infinite trees and of Rabin's work is by studying finite automata om
finite trees and finite automata on infinite sequences. It is hoped that
this thesis will aid the reader in these preliminary studies.

The most interesting mew result contained in this thesis was obtained
jointly by the author and Charles Rackoff and is presented in Appendices I
and IT. We reduce the emptiness problem for finite automata on infinite
trees (either as defined by Rabin in [8] using the designated subset
acceptance condition, or as defined by Rabin in [7] using the £ acceptance
condition) to the emptiness problem for finite automata on finite trees.

Every proof in this paper is effective in the sense that:

1) When the existence of a finite automaton with certain properties is
asserted given the existence of another (other) finite automaton (s),
then the proof consists in determining the finite automaton with the

asserted properties from the given finite automaton (s).



2) When the existence of a characterization of a set is asserted given
another characterization of it, the proof comsists in determining the
new characterization from the old characterizatiom.

The principal results in Chapter I are summarized by the following:

A 1-f,a.f.t. is a leaf-up nondeterministic finite automaton on finite
T-trees.

A 2-f.a.f.t. is a leaf-up deterministic finite automaton for finite
Y~trees.

A 3-f.,a.f.t. is a root-down nondeterministic finite automaton on
finite 2~trees.

A 4-f,a.f.t. is a root-down deterministic finite automaton on

finite Y-trees.

1-f,a.f.t. = 2-f,a.f.t. = 3-f.a.f.t. D 4-f.a.f.t.

3-f.a.f.t, 4-f,a.f.t.
union closed no
intersection closed closed
complementation closed no
projection closed no
cylindrification closed closed
TABLE 1

The principal results of Chapter II are summarized by the following.
Those unfamiliar with the usual definition of a finite automaton rumn on
an infinite sequence should refer to Chapter II. We abbreviate mon-
deterministic finite automata as n.f.a., and deterministic finite automaton

as d.f.a.



For i € {1, 1', 2, 2', 3, 4}, a run r on an infinite sequence of

an i-n.f.a. (i-d.f.a.) M with state set S is an accepting run if r is

i-accepting, where

r

is

is

is

is

is

is

l-accepting with respect to F € § if
(Et) r(t) €F,

1'~accepting with respect to F £ § if
(V&) r(t) € F,

2-accepting with respect to F & § if
In(r) N F # ¢,

2'-accepting with respect to & < P(S) if
(F € &) 1In(r) € F,

3-accepting with respect to F € P(S) if
In(r) € %,

4-accepting with respect to L)1 = ((Ri, Gi))

In(r) N Ri = ¢ and In(r) N Gi # .

i<n’

if for some i < m,



2-n.f.a.

1-f.a.

union

intersection

complementation

projection

cylindrification

l-n.f.a.

1'-n,.f.a.

2'-n. f,a.

il

= 1l-d.f.a.

1'-d.f.a.

2'-d.f.a.

3-n.f.a. = 3-d.f.a, = 4-n.f.a. = 4-d.f.a.

1'ef,a, 2-d.f.a. 2'-f.a. 3-f.a.
incomp. 1 c 2-4. lc2 13
1'-f.a, 1'c 2-4. 1'c 2! 1'c 3

2-d.f.a, incomp. 2d.c 3

2'-f.a. 2'c 3

1-f.a, 1'-f,a. 2-d.f.a. 2'-f,a, 3-f.a.
yes yes yes yes yes
yes yes yes yes yes
no no ') no ves
yes yes no yes yes
yes yes yes yes yes

TABLE 2




CHAPTER I

Finite Automata on Finite Trees

SECTION I INTRODUCTION

In 1965 finite automata on finite trees were first used by J.E.
Doner [2] who first applied them to obtain a decision procedure for
the weak monadic second~order theory of two successor functions. Thatcher
and Wright [11, 12] independently developed finite automata on finite
trees and noticed the same applicationm.

Finite automata on finite trees are no harder to visualize and
understand than finite automata on finite sequences, and, in fact, the
various finite automata models on finite trees have just those properties
which ome familiar with finite automata on finite sequences would

expect them to have.

SECTION IT DEFINITIONS

We will use the usual set theoretic notation throughout this paper.
A function f: A »+ B is a subset £f S A X B such that 1) for all a € A
there is (a,b) € f, for some b € B, 2) for all a € A, b, ¢c € B, (a,b) € f
and (a,c) € f implies b = ¢. Sometimes we will describe a mapping by
the notation x f’ f(x), x € A, which indicates that x € A, x is mapped
into £(x). If f: A + B then A and £(A) = (f(a) | a € A} are called,
respectively, the domain and the range of £f. If f: A+ B and C € A,

then f‘C will denote the restriction £ MN(C X B) of £ to C.
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The cardinality of a set A will be denoted by c(A). The set of
all subsets of a set A will be denoted by P(A). For o an ordinal we
let the set [o] = (B | B < o} of all smaller ordinals. We will use V4
to denote [w] = {0,1,2, ...}.
For the set A and n an integer, A" is the set of all n-termed sequences
of elements of A. That is, A" = {¢ | ¢: {1,2,..., n} » A}. Let A

be a set, n an integer, and 1 < i < n. The projection onto the ith

coordinate is the mapping Py’ A" 3 A such that pi((xl, vees xn)) = x,.
Strictly speaking, projections such as (x,¥y) }+ y and (x,v,2) F* y are
different mappings, but we will demote both by Pye

*
The infinite binary tree is the set T = {0,1} of all finite strings

of zeros and ones. The elements x € T are the nodes of T. For x € T,

the nodes x0, x1 are called the immediate successors of x. The empty

word is called the root of T. Our language suggests the following picture.
The highest mode of T is the root /N . The root branches down to the

right into the node 0 and to the left into the mode 1. The mnode 0
branches into 00 and 01l; the node 1 branches into 10 and 11; and so on

ad infinitum.

00 01 10 11



]l

Definition: On T we define a partial ordering by x < y iff there exists

a z such that y = xz. If x <y and x # y then we shall write x <.

Definition: For x € T, the subtree Tx with root x is defimned by

Tx = {y l y €T, x <y}. Note that TA = T.

Definition: A path m of a tree Tx is a set m C Tx satisfying 1) x € m,
2) for y € m, either y0 € 1 or y1 € m, but nmot both, 3) 7 is a minimal

subset of Tx satisfying 1) and 2).

Definition: A subset F CZTx is called a frontier of Tx if for every

path m C Tx we have c(m N F) = 1.

It is easily seen that if F C Tx is a frontier, then F is finite.

Definition: A finite frontiered tree with root z is a set Ez = {x | z < x
& x <y, for some y € F} where F is a fixed frontier of Tz. F is called
the frontier of Ez and is denoted Ft(Ez). By "finite tree" we will mean
a finite frontiered tree. When the root is A we will often write E

rather than Ep -

Definition: A finite X)(labeled)-tree is a pair (v,Ez) where Ez CiTz

is a finite frontiered tree with root z and v: Ez-Ft(Ez) > X,
Definition: The set of all finite X-trees with root £\ will be denoted YE'

Definition: The projection p,(A) of a set A € V. , is p,(A) =
— 1 Eleé 1

((pvs B) | (v,E) € 4} < Yzl.

. - -
is the largest set A € Y21X22 such that pl(A) B.

The Zﬁ-qylindrification of a set B < Yy,
= 1
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The complement Ac of a set A C YZ) is Ac = YE - A,

If (v,Ex) is a finite XZ-tree and y € E_» then the induced

subtree (v | B N To» By n Ty) will be demoted (v, E N Ty).

Definition: An n-J(joining)-table on finite 2Z~trees is a system

O1' =<s, Z, M, 50 > where S is the finite state set, X is the finite

label set, M: S X S X X # P(S) is the state transition function, and

o € S is the initial state.

A d-J-table is an n-J-table with M: S x § x £ = {{s) l s € S}.

An

¢

~run on X-tree e = (v,Ex) is any mapping r: Ex -+ S such that

1) r(Ft(Ex)) = {so}, and 2) for all y € Ex - Ft(Ex), r(y) € M(x(y0),

r(yl), v(y)).

Definition: An n-S(splitting)-table on finite X~trees is a system

01'=<S,E,M,S

0 > where S is the finite state set, X is the finite

label set, M: S x T P(S x S) is the state transitiom function, and

50 € S8 is the initial state.

A d-S-table is an n-S-table with M: S x X = {{(sl, sz)} ' (Sl’ sz) €

S X s}.
An QU -run on I-tree e = (v,E,) is amy mapping r: E_ - S such that

D r) = 50> and 2) for all y € Ex - Ft(Ex), (r(y0), r(y1)) € M(zx(y), v(y)).
We also talk about an Ol-run of an f.a.f.t. Olon a finite labeled

tree meaning an O7U'-run of the associated J(S)-table O7'. The set

of all O{-runs on e is denoted Rn(O0T,e).
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Definition: Leaf-up mondeterministic finite automaton on finite Z-trees:

A l-f.a.f.t. on finite I-trees is a system Ol = <S, T, M, s,, F >,

where < S, T, M, s, > is an n-J-table,.and F € S is the set of designated

0
states.
1-f.a.f.t. O] accepts finite I-tree e = (v,Ex) if there exists an

OTU-run r on e such that r(x) € F.
Definition: Leaf-up deterministic finite automaton on finite Z-trees:

A 2-f.a.f.t. on finite Z-trees is a system Ol=<s, Z, M, 8o F >,

where < S, T, M, s, > is a d-J-table, and F < Ssistthacset of «degignated

0

states,
2-f.a.f.t. O accepts finite X~tree e = (v,E ) if there exists

an O{-run r on e such that r(x) € F.

Definition: Root-down nmondeterministic finite automaton on finite X~
trees:
A 3-f.a.f.t. on finite Y-trees is a system Ol=< s, %, M, Sg° F >,

where < S, I, M, s, > is an n-S-table, and F € S is the set of designated

0

states.
3-f.a.f.t. O7 accepts finite Y-tree e = (v,E ) if there exists

an O{-run r on e such that r(Ft(Ex)) c F.
Definition: Root-down deterministic finite automaton on finite X-trees:

A 4-f.a.f.t. on finite Y-trees is a system O[(=<8S, Z, M, s,, F >,.

0’

where < S, T, M, s, > is a d-S-table, and F S S is the set of designated

0

states.
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4-f.,a.f.t. O accepts finite J-tree e = (v,Ex) if there exists

an (Ol-run r on e such that r(Ft(Ex)) cF.

Definition: The set T(0]) of finite Z~trees defined by Olis

T(OU) = {(v,E) l (v,E) is accepted by 07}.

Definition: A set A € YE is i-f.a.f.t. defipable if there is an

i-f.a.f.t. O such that T(Op) = A.

Note that the above definitions are mot as general as you would
expect. Though the motion of finite tree was defined so that a finite
tree may have any reot x € T, the above definitioms of T(QOy) and YZ
are in terms of finite trees with root £)\. We are forced to comsider
finite trees mot rooted at £ by later proofs in which we find it com-
venient to look at finite subtrees of a finite tree. However, we follow
Rabin [9, 10] and Thatcher and Wright [12] (who define finite trees so
that all of their finite trees have root £\) by restricting our def-
initions of T(Q]) and YZJ' This eliminates several awkward notational

problems.

Definition: We say i-f.a.f.t. 0'(1 is equivalent to j-f.a.f.t. 0'(2
Definition: We will say i-f.a.f.t. are closed under union (intersection,

complementation, projection, cylindrification) if for all i-f.a.f.t. on
J~trees 071, 072, there exists an i-f.a.f.t. 0'[3 such that T(O'(3 ) =
T(OTy) U T(OL)
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(intersection: T( 013) = T(O‘ll) n T(DZZ),

complementation: T( 0'(3) = YZ - T( 071)’

projection: T( 073) = pl(T( 0{1)), where T = El X EZ’

cylindrification: T( 013) = Zé-cylindrification of T((?{l),
where T = 21,

respectively).

Definition: We will say i-f.a.f.t. are equivalent (in defining power)

n

to j~f.a.f.t. (demoted i-f.a.f.t. j-f.a.f.t.) if the family of i-f.a.f.t.
definable sets is the family of j-f.a.f.t. definable sets.

We will say i-f.a.f.t. are weaker or equivalent to j-f.a.f.t.

(demoted i-f.a.f.t. & j-f.a.f.t.) if the family of i-f.a.f.t. definable
sets is a subset of the family of j-f.a.f.t. definable sets.

We will say i-f.a.f.t. are strictly weaker than j-f.a.f.t. (denoted

i-f.a.f.t. © j-f.a.f.t.) if the family of i-f.a.f.t. definable sets is
a proper subset of the family of j-f.a.f.t. definable sets.

We will say i-f.a.f.t. and j-f.a.f.t. are incomparable if the family

of i-f.a.f.t. definable sets is not a subset of the family of j-f.a.f.t.

definable sets, and vice versa.

SECTION IITI FINITE AUTOMATA ON FINITE TREES

In [12] Thatcher and Wright use both l-f.a.f.t. and 2-f.a.f.t. .
In [10] Rabin uses a finite automata on finite trees model which is
equivalent to 3-f.,a.f.t. (In fact, Rabin uses 3-f.a.f.t. restricted as

indicated in Theorem 3 of this section.) 1In [9] Rabin defines 2-f.a.f.t.
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The following theorems establish the closure properties of all our

models and their relative powers. We do mnot state the immediate corollaries

of each theorem. Instead we summarize in Figure 1 all of our theorems

and their immediate corollaries.

Theorem 1: 1-f.a.f.t. = 3-f.a.f.t.
0’ F >. Define 3-f.a.f.t.
O"(l =<sU {fl}, z, M, 845 [fl] >, where for all s

Proof: Given 3-f.a.f.t. O1=<S, X, M, s

s s3€S,

1’ 2’

and all c € %, (s € Ml(sl, o) if (s2, s3) € M(sl, o),

27 53)
(fl, s3) € Ml(sl, o) if M(sl, o) N (F x {33}) # ¢,
(55, £;) € M (sy, 0) if M(sy, ©) N ({s,} x F) # 0,
(£, £5) € M (sy, 0) if M(s;, O) N (F X F) # ¢,

and for all o € T, M (£, 0) = ¢. Clearly, T( 07,) 2 T(Q1). For all

finite Y-trees e = (v,E) and all accepting 0'(1-runs r. on e, we have

1

for all x € E-Ft(E), rl(x) € S and r(Ft(E)) = (f Hence, by the

1

definition of M there exists an O(-run r on e such that for all

1’
X € E-Ft(E), r(x) = rl(x), and r(Ft(E)) € F. Therefore, T(O'{l) S T(O1),
and hence, T(O'(l) = T(O0]).

Define l-f.a.f.t. 072 =<sU (£}, %, M,

S5 €sU {fl}, and all o € %, S4 € M2(sl’ s

fl’ {so} >, where for

all 1> Sy> 9 o) if (Sl’ sz)
€ Ml(s3, c). Clearly, T(O‘{z) = T(O'(l), because for every finite XI-tree
e, every ml-run on e is an U(z—run on e and vice versa, and a run is an
accepting 0?1-run iff it is an accepting OIz-run.

Hence, 3-f.a.f.t. € 1-f.a.f.t.
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35 S3q F3 >. Define 1-f.a.f.t.

0’ {fa} >, where for all 15 Sys Sg € SB’

Given 1-f.a.f.t. 073 =< S3, 2, M

01, =<8, U (£), T, M, s,

and all o € Z, sS4 € M4(sl, Sos o) if S5 € M3(s1, S5 o),
f4 € Ma(sl, 32 1’ 8,5
and for all sy € S3, and all o € Z, M4(f4, Sy o) = M4(s

> G) if M3(S O') n F3 # ¢,

1’ fa’ c‘) =¢‘

Clearly, T(O'(4) 2 T( O'(3). For all finite Z-trees e = (v,E) and all

accepting 0'{4-runs r, one, we have r4(A) = f, and r4(E- (Y)Y €5

4 3

Hence, from the definition of ML;’ if there is an acecepting 0'(4-run on

e, then there exists an 0(3-run r, one such that rB(A) € F,. That is,
an accepting 07_3-run on e. Hence, T( 0(3) 2 T(O'(4), and therefore,
T(O(,) = T(OT,).
. _ - >
Define 3-f.a.f.t. 0{5 < 33 U (f4}, z, MS’ f4, {330} , where for

all s Sy € S3 u {fA}’ and all o € %, (s2, s3) € MS(Sl’ o) if

s 0). Clearly, T(O"la) = T(O'IS), because for every finite

1’ 52’
sy € M4(s2, s3
2-tree e, every m4-run on e is an O(S-run on e and vice versa, and

a2 run is an accepting 074-run iff it is an accepting a'ls-run.'

Hence, 3-f.a.f.t. 2 l-f.a.f.t. -

The constructions of 071 and 074 in the preceding proof immediatly

give the following theorems which we gtate without further proof.

Theorem 2: Given any l-f.a.f.t. Olon finite T~trees, we can determine

an equivalent 1-f.a.f.t. 0'(1 =< Sl’ z, M

(81-(£1)) X (8;=(£]1) X D B(S)).

$10° {fl) >, where M

1’ 1
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Theorem 3: Given any 3-f.a.f.t. O{on finite Z-trees, we can determine
an equivalent 3-f.a.f.t. 071 = <5, T, M, Sq9 {fl} >, where M, :

- -
(S1 {fl}) X % P(s1 X Sl)‘

It is easily shown that Theorem 2 does not hold for 2-f.a.f.t.'s,
and Theorem 3 does not hold for 4-f.a.f.t.'s by showing that
By = ((v,E) € Y 1 | v(E-Ft(E)) = 1 or v(E-Ft(E)) = 0} is both 2-f.a.f.t.
and 4-f.a.f.t. definable, but that mo 2-f.a.f.t. nor 4-f.a.f.t. with only
one designated state defines Bl'
Theorem 4: 1-f.a.f.t. = 2-f.a.f.t.

Proof: Every 2-f.a.f.t. is a 1-f.a.f.t. . Hence, we have immediately

2-f.a.f.t. € 1l-f,a.f.t.

Given 1-f.a.f.t. Ol=<5§, I, M, s., F >. Define 2-f.a.f.t.

O’

ml = < P(S), %, Ml’ {so}, F. >, where for all A«l, 42 €S, and all

1
0 EZL, M, &y 9) = ((s, s 5, €4 )E s, €4 ,)(sy € M(s,,
8,5 O))}}, and F, = (A €S |4 nrF#¢).

We prove by induction that for every finite 2-tree e = (v,E), the

ml-run r,one is such that

(D FxeD r,e = U (x()
r€Rn(0T , €)

Basis of the induction: For all r € Rn(07,e), and all x € Ft(E), we

have r(x) = s

0 We also have for all x € Ft(E), rl(x) = {so}.
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Induction hypothesis: For some x € E-Ft(E), rl(x0) = U {r(x0)} and
r€Rn( Q7 ,e)
rl(xl) = U {r1))
réRn( 07 ,e)

Induction step: By the definition of Q7-run for all r € Rn( 07 ,e), we

have r(x) € M(r(x0), r(xl), v(x)). By the definition of M1 we then have

) () = M (r)(x0), r (x1), v(x)) = (s [(Fr € Rn( Q07 , €)) (s € M(x(x0),

r(xl), v(x))} = U {r(x)}. This completes the induction.
réRn( 07 ,e)

Suppose e € T(O{l). Then the Ull-run ryone is accepting, i.e.,
rl(A) € Fl' By the definition of F1 and by (I) there is an O{-run r on
e such that r(/) € F. That is, r is an accepting Ol-run, and e € T(OT).

Suppose e € T(Q7). Then there is an accepting O{-runr on e, i.e.,

r(d>) € F. By (I) r()) € rl(A), where r is the ozl-run on e. Hence,

by the definitiomn of F_, rl(A) € F., and hence, r_, is an accepting

1 1’
O'(l-run on e. Therefore, e € T(O‘(l), O

1

Theorem 5: 3-f.a.f.t. are closed under union and projection.

Proof: The comstructions will be indicated. The reader may easily

complete the proofs.

F >and0'(2=<s

. - H =
Given 3-f.,a.f.t.'s 0"(1 < Sl’ Z, Ml’ S10° T1 2°

, >,
T, My» 8500 Fy

Define 3-f.a.f.t. O = < S, Us, U({sy}, I, M, F, UF, >, where

0’ "1
for all s> S, € S1 U Sz, and all o € X, (Sl’ s2) € M(so, o) if

(sl, sz) € Ml(slo, o) or (Sl’ sz) € MZ(SZO’ o), for all 815 Sg5 S5 € Sl’
and all o € %, (Sl’ 52) € M(s3, o) if (sl, s2) € Ml(s3, o), and for all
§15 S5 S5 € Sz, and all o € %, (sl, sz) € M(s3, o) if (sl, s2) € M2(s3, o).
T(O1) = T(0(1> U T(a1,).




i - = >, -f.a.f.t.
Given 3-f.a.f.t. Cﬂg < S3, Z?, M3, 8302 F3 Define 3-f.a.f.t

O"(4 = < 8,, s M, 8500 F3 > where for all s € S3» and all ¢ € T,

M4(S, o) = U MB(S’ (01, o). T(OT4) = P2T(0'(3)-
GIGE

l-f.a.f.t. may be shown to be closed under union and projection
by the obvious constructions corresponding to those in the preceding
proof. Since we have 1-f.a.f.t. closed under union and projection as
an immediate corollary of Theorems 1 and 5, it is unmecessary that we

do these constructions.
Theorem 6: 3-f.a.f.t. and 4-f.a.f.t. are closed under intersection.

Proof: The comstruction will be indicated. The reader may easily

complete the: proof.

Given 3-f.a.f,t.'s (4~f.a.f.t.'s) Cﬂi =< Sl’ M > and

1’ 810, 1
<” = < z; M F
2 Sp» 25 Mys 8545 Fy >

Define 3-f.a.f.t. (4-f.a.f.t., respectively) 075 =<8 x8,, %

1 2’

5 € Sl’ all s

M s 8

X F_ >, where for all 81 8 4’

50 (8100 Sp0)2 Ty X Ty 3 ® 2
Se € SZ’ and all o € 3, ((s3, SA)’ (85’ s6)) € Ms((sl, s2), o) if
(s3, ss) € MI(Sl’ ¢) and

(54, s6) € MZ(SZ’ o).

¢ 0T5) = T(OT,) N T OT,).
O
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1 55 (slo, 820)’ F6 >, where

are all as in the preceding proof, and

Note that 3-f.a.f.t. 016 =<8, X8, Z, M

S SZ’ Z, M , and 5,

5° %10 0
= (F1 X Sz) U (S1 X F2), is mot necessarily a union machine for 071

1°
Fe
and 072. In general, T( 0"(6) > T(O'(l) U T( 0’(2), where A D B indicates
A2 B and A # B.

Note, also, that the cross product construction does yield a union

machine for the leaf-up models. That is, given 1l-f.a. f.t.,'s (2-f.a.f.t.'s)

= < = . .
OU, =<5, 5, My, 55, F; > and Oy = 585, T, Mg, g0, Fg >

Define 1l-f.a.f.t. (2-f.a.f.t., respectively) 0'(9 =< S7 X Sg; Z, M,

>, where for all s € S7, all s

(s70> 8gg)> Ty 1’ %3 %5 22 8 % € S
and all c € T, (sl, s2) € M9((s3, 54), (ss, s6), o) if Sl € M7(s3, ssg ag)
and 5, € MS(S4’ 86, ), and F9 = (S7 X F8) U (F7 X 88). T( 0'(9) =
T(O1,) U(T(OFy) -

The reader is urged to thoroughly consider the differences between

root-down and leaf-up automata which the two preceding observations

indicate.
Theorem 7: 3-f.a.f.t. and 4-f.a.f.t. are closed under cylindrification.

Proof: Given 3-f.a.f.t. (4-f.a.f.t.)0l=<S8,Z,, M, s., F>. Define

0’
<s,z:1x2,M1, so,F>,

3-f.a.f.t. (4-f.a.f.t., respectively) 0'(1

where for all (01, 02) € Z‘l X 22, and all s € S, Ml(s, (0‘1, 02)) =

M(s, cl). T(OII) = the Zz-cylindrification of T(DT)-
(]
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Claim 1: T(O'(l) = YE - (O -
Proof: TFor each s € S, define 3-f.a.f.t. azs =<8, %, M 8, F>

Consider a finite X-tree e = (v,E).

First we state and prove Lemma 1, then we use Lemma 1 to show that
if e ¢ T(O]) then e € T(O;). Then we state Lemma 2 (which is the
contrapositive of Lenma 1) and Lemma 3 (which is immediate from Lemma 2),
and we use Lemma 3 to show that if e € T(O[) then e ¢ T(Cﬂi)o

Note that the following definition and Lemmas 1, 2, and 3 are all
stated with respect to the finite X-tree e.

For s € S and y € E, we will say that Condition 1 holds for s at y

if [Vr € Rn‘(o'(s, (v, EN Ty))][r(Ft(En Ty)) ¢ F]. ForASSandy € E
¢ we will say that Condition 1 holds for QA at y iff for all s €4,

Condition 1 holds for s at y.

Lemma l: For all s € S and all y € E - Ft(E), if Condition 1 holds for
s at y, then for all (sl, SZ) € M(s, v(¥)), either 1) Condition 1 holds

for 51 at y0, or 2) Condition 1 holds for 8, at yl, or both 1) and 2).

Proof of Lemma 1: Suppose Lemma 1 is false. Then for some s € S and

some y € E - Ft(E), Condition 1 holds for s at y, and there exists

(sl, sz) € M(s, v(y)) such that Condition 1 does not hold for s, at y0

1
and Condition 1 does mot hold for s, at yl. Hence, [dr € Rn(OT _
1

(v, EN Tyo))](r(Ft(Eﬂ Tyo)) S F), and [Hr € Rn(0’(s , (v, EN Tyl))]

2
(r(Ft(EN Tyl)) € F). But then clearly, [Hr € Rn(a'(s, (v, EN Ty))]

(x{Ft(EN Ty)) € F); amd this contradicts the assumption that Condition 1

holds for s at y. Therefore, Lemma 1 is true.
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We proceed with the proof of Claim 1.
Suppose e ¢ T(0{). We use Lemma 1 to comstruct an accepting Cﬂ&-run

r, on e inductibely as follows.

1

Induction hypothesis:

1) For all y € E-Ft(E) such that rl(y) has been defined, we have
Condition 1 holds for rl(y) at y.

2) For all y € E-Ft(E), a) rl(yO) has been defined iff rl(yl)
has been defined, and B) if rl(yO) has been defined, then
(r;(50), £ (y1)) € M, (r,(¥), v(¥)).

3) For all y € Ft(E), if rl(y) has been defined, then rl(y) € Fl'

Clearly, clauses 2) and 3) of the induction hypothesis will insure

that r, is an accepting 071-run on e.

Basis: rl(l\) = {so}.

Since e € T(0]), the induction hypothesis holds after the basis step.

Induction step: We assume T is defined at y € E-Ft(E) and extend r,

to yO and yl by defining rl(yO) and rl(yl) to be the sets containing only

those states explicitly put into them by the following.
Case 1: y0 € Ft(E) and yl ¢ Ft(E).
For all (sl, sz) € M(rl(y), v(y)), if Condition 1 holds for sy at

y0, then put s, into rl(yO), else put s, into rl(yl).

1 2
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Clearly from the definition of Ml’ we have (rl(yO), rl(yl)) €
Ml(rl(y), v(y)). Clearly from the comstruction of rl(yo), Condition 1
holds for rl(yO) at y0; and by clause 1) in the induction hypothesis and

Lemma 1, Condition 1 holds for rl(yl) at yl.

Case 2: y0 € Ft(E) and yl € Ft(E).

For all (Sl’ sz) € M(rl(y), v(y)), if 8y ¢ F, then put S into
rl(y0), else put s, into rl(yl).

Clearly from the definition of Ml’ we have (rl(yO), rl(yl)) €
Ml(rl(y), v(y)). TFrom the construction of rl(yO), we have rl(yo) NF=¢,

and hence, from the definition of F, we have rl(yO) € Fl' For all

1
s € F, Condition 1 does not hold for s at y0. Hence, by clause 1) in
the induction hypothesis and Lemma 1, we have Condition 1 holds for

rl(yl) at yl.

Case 3: %0 ¢ Ft(E) and yl € Ft(E).

Symmetric to Case 2.

Case 4: y0 € Ft(E) and yl € Ft(E).

For all (sl, SZ) € M(rl(y), v(y)), if 54 ¢ F, then put 5, into
rl(yO), else put 8, into rl(yl).

Clearly from the definition of Ml’ we have (rl(yo), rl(yl) €
M, (r,(y), v(y)). Suppose that for some (81, 8,) € M(r;(¥), v(¥)), we

have 8; € F and s, € F. But then we have immediately that Condition 1

does not hold for some s € rl(y) at y, and this contradicts the induction

—-
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hypothesis. Hemce, if 84 € F, then s, ¢ F, and by construction

2
rl(yO) NF=¢ and rl(yl) N F=¢. Hence, by the definition of Fl’ we

have rl(yO) € F1 and rl(yl) € Fl.

This completes the induction.

By clauses 2) and 3) of the induction hypothesis r, is an accepting

1

ml-run on e. Therefore, if e ¢ T(O[), then e € T( 0‘(1)-

Lemma 2: For all s € S and all y € E-Ft(E), if Condition 1 does not
hold for s at y, then for some (sl, s2) € M(s, v(y)), Condition 1 does
at yl.

not hold for s, at y0, and Condition 1 does not hold for s

1 2

Proof of lLemma 2: Lemma 2 is the contrpositive of Lemma 1.

Lemma 3: For all r, € Rn(O‘Zl, e), and all y € E-Ft(E), if Conditiomn
1 does mnot hold for rl(y) at y, then either 1) Condition 1 does mot hold
for rl(yO) at y0, or 2) Condition 1 does mot hold for rl(yl) at yl,

or both 1) and 2).

Proof of Lemma 3: Immediate from Lemma 2 and the definition of Ml'

We proceed with the proof of Claim 1.

Suppose e € T(0(). Then Condition 1 does mot hold for sq 2t O,
Hence, by induction using Lemma 3, we have for all r, € Rn(0] 1’ (v,E))
there exists a y € Ft(E) such that Condition 1 does mot hold for rl(y)
at y. That is, r,(y) N F # @, and hence, r, (¥ ¢ F,» and r, is not

an accepting 071-run.
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Therefore, if e € T(Q(), then e ¢ T(Oql). This completes the

proof of Claim 1.

O

Theorem 9: 4-f.a.f.t. are not closed under union, projection, or

complementation.

Proof: First we show that 4-f.a.f.t. are mot closed under union.

Let B2 = [el, ez}, where e, = (vl, E), e, = (V2, E); E = {/N, 0, 1,

1

00, 01, 10, 11}, and vy and v, are given by the following pictures:

I 0N
SN /\ /\ /\

Suppose 4-f.a.f.t. 0= < S, (0,1}, M, 89> F > defines BZ' Let

r, and r, be the unique 07 -runs on e, and ey respectively. Comsider

1 2 1

ey = (v3, E) where Vg is given by the following picture:

Clearly, the unique O7-run on e, is given by the following picture:

3

rl(A) = 1,() = s,

/\

r2(0) r2(1)

N

rz(OO) r2(01) r1(10) rl(ll)




-28-

Since r, and r, are both accepting O]-runs, we have {r2(00), r2(01),

r1(~10), rl(ll)] € F, and e, € T(0]. But e, ¢ B, and contrary to

2
assumption T(0]) # B,. Hemce B, is mot 4-f.a.f.t. definable.

Let B3 = fel}. B3 is defined by 4-f.a.f.t. 0'(1 =< {so, 810 8y

f, R}, {0,13}, Ml’ 8y {£f} >, where M, is given by the table:

1
M 0 1
5, (815 8,) (R, R)
5 (R, R) (f, £)
5, (£, £) (R, R)
£ (R, R) (R, R)
R (R, R) (R, R)

Let ]34 = [ez}. 34 is defined by a 4-f.a.f.t. symmetric 011-

B, = B3 UB, is mot 4~f.a.f.t. definable. Thefefore, 4~f.a.f.t. are

2 4

not closed under union.

Let B5 = {e4, es}, where e, = (v,, E), e_ = (vs, E), E is as

5

before, and vy, and Ve are given by the pictures:

10/00\00 00/
NN N

4

N

e

01\ .
/
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B5 is defined by 4-f.a.f.t. 0'[2 = < {so, 12 8,5 f, R}, {0,1}, M2,

Sg? {f} >, where M, is given by the table:

2

M, 00 01 10 11
5 (515 8p)  (sy, ) (R, R) (R, R)
5 (R, R) (R, R) (£, £) (R, R)
s, (£, £) (R, R) (R, R) (R, R)
£ (R, R) (R, R) (R, ) (R, R)
R (R, R) (R, R) (R, R) (R, R)

B2 = p1B5 is mot 4~f.a.f.t. definable. Therefore, 4-f.a.f.t. are mnot
closed under projection.

Let By = {(vg, Eg) € Y01 | (vx € E~Ft(E,)) (v (x) = 0)}. Then
Y0, 26 (0,1 | (@x € E~Ft(E))(v(x) = 1)}. B, is defined
by 4-f.a.f.t. 0'(3 =< {so, R}, {0,1}, Mys 845 {so} >, where M, is given

= {(v,E) €Y

by the table:

M3 0 1
SO (SO’ so) (Rs R)
R (R, R) (R, R) .

-f.a.f.t. i -B,. c - d
Suppose 4-f.a.f.t 0'(4 defines Y{O,l} B6 {el, e2} Y[O,l} B6 an
hence there exist accepting O] 4~Tuns om e, and e,. By the same argument
used for 0-( , there must then be an accepting 0(4-run on e,, and e, €
T( 0'(4). But e, € Bgs and hence, contrary to our assumption T(O'(a) #

Y{O 1 -B6. Therefore, 4-f.a.f.t. are not closed under complementation.
2

O
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Theorem 10: 3-f.a.f.t. D 4~-f.a.f.t.

Proof: Every 4~f.a.f.t. is a 3-f.a.f.t.. Hence, we have immediately

3-f.a.f.t. =2 4-f,a.f.t.

Let the set 32 be as defined in the previous proof. B2 is defined

by 3-f.a.f.t. O] =< (89> S15 8o £, R}, (0,1}, M, s, {f} >, where M

is given by the table:

M 0 1
h (sl’ sz) (R, R)
(s, 8y)
84 (R, R) (£, O
5, (f, ) (R, R)
£ (R, R) (K5 R)
R (R, R) (R, R) .

By the proof of Theorem 9, B, 1s mot 4-f,a.f.t. defineble.

O

Theorem 11: There exists a procedure which given any 3-f.a.f.t.
with n states decides whether or not T(0]) = ¢ in ns or fewer

computational steps.

Proof: Given 3-f.a.f.t. on XZ-trees O0[ =<5, I, M, 850 F >, we first

form the 3-f.a.f.t. on {0}-trees 011 =<Ss, {0}, Ml’ 8g* F >, where
for all s € S, Ml(s, 0) = U M(s, ). Clearly, T(Q() = ¢ iff
ocy

T( 071) = ¢o
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For each s € S, define 3-f.a.f.t. (715 =<8, {0}, M, s, F >,

1’

where S, M., and F are as above. Let R demote the set of s € S such

1’
that there exists a finite tree E # {/\] and an ms-run r: E -+ S such

that r(Ft(E)) S F. (Remember that for every OYS-run r, we have r() =

s.) We compute R recursively as follows:

H H =9,

2) for i<w, H,, =H U(s | (@s)) (Es,) [(s;, 8,) € M, (s, 0,

i+1
(s, 8,) SH, UFI.

- . . _ -
Hi Hi+1’ for all i < w, and if Hi Hi+1’ then Hi Hi+k

k < w., Since H, £ S, we are assurred that H =H =R. Givem H,,
i n ol i

=R,

the calculation of H requires at most n2 steps since C(Hi) < n. That
is, for each pair (31, 82) such that {sl, s2} c Hi U F we look at a
previously constructed table to find all s € S such that (Sl’ sz) €
Ml(s, 0). Hence, the calculation of R takes at most n3 steps.

¥(OD # ¢ iff sy € R. O

The above procedure is an appropriate simplification of a procedure
presented by Rabin in {10]. The informal motion of computational step
used above is the one used by Rabin in [10].

In summary, the root-down nondeterministic finite tree automaton
model is trivially equivalent to the leaf-up nondeterministic finite tree
automaton model. The leaf-up nondeterministic finite tree automaton model
is equivalent (by the subset machine comstruction) to the leaf-up deter-

ministic finite tree automaton model. These automata models are all

- e —— T T T

e e T
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closed under union, intersection, complementation, projection and
cylindrification. The root-down deterministic finite tree automaton
model is strictly weaker than the above, and is closed only under

intersection and cylindrification.

l-f.a.f.t. = 2-f,a.f.t. = 3-f.a.f.t. D 4-f.a.f.¢t.

3-f.a.f.t. 4-f.a.f.t.
union closed no
intersection closed closed
complementation closed no
projection closed no
cylindrification closed closed

FIGURE 1
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CHAPTER II

Finite Automata on Infinite Sequences

SECTION I INTRODUCTION

In 1960 Buchi [1] was the first to use finite automata on infinite
sequences to obtain a decision procedure for a theory. This theory
was the monddic second-order theory of one successor function. In
1966 McNaughton [5] proved his important fundamental result, the
equivalence of the deterministic and nondeterministic variatioms of a
finite automaton model on infinite input sequences.

As in Chapter I we do not state the immediate corollaries of each
theorem. Instead, we summarize our theorems and their immediate

corollaries in Figure 2 of section 7.

SECTION IT DEFINITIONS

*

Definition: T1 =1,
The mapping ¥: T, * N such that 1™ b n is a one-to-ome corres-
pondence between T1 and A . Hence, we sometimes use /& for T1 and

[t] for {4, 1, 11, ..., 1"}, 7 < w.
*
Definition: A ¥ -sequence on a finite alphabet T is a mapping
w: (A , 1, 11, ..., 1T] 4+ Z, T <w (or equivalently, w: [T+1l] = X).

%* %* *
Z 1is the set of all T -sequences. > -{N}.
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W
Definition: A X -sequence on a finite alphabet X is a mapping

v: T, T (or equivalently, v: J§ = X).

We formally defined both finite and infinite sequences as mappings.
However, because it is very convenient to use concatenation, we will
refer to finite and infinite strings of symbols on X as E*-sequences
and Zw-sequences, respectively, and we will refer to Z}*-sequences and
Dw-sequences as strings of symbols on X. For example, x = 001 is the

*
{0,1} -sequences x: [3] = {0,1}, where x(0) = 0, x(1) = 0, and x(2) = 1,

*
Definition: A regular event is any set A © X which is finite automata

definable.

We will denote a Z}*-sequence by x, or y, or w, or X, - Hence, if
A is a set of finite strings on I, we use A* to denote the set of all
finite strings obtained by concatenating finitely many members of A.
If x, v € Z}*, xy is the concatenation of x and y. We will denote a
regular event by o, B, or y. We will denote a symbol in the alphabet

2 by o, or ;- We will denote a Ew—sequence by v or v,

. +
Definition: If E €% then we denote by Eﬁ the set of all Ew—sequences
obtained by concatenating members of E infinitely many times. That

is, B = {x)X, «.. x_ ... | for all 1 € py , x, € E}.

* + W
Definition: If ES Y and F € ¥, then the set E*F = (x°v | x € E

and v € F 3.
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Definition: A set R €% {is an w-regular event if there exist regular

¥ +
events El’ ceny En’ Fl’ ooy Fn, such that 1) Ei c X, and Fi cx,

for all i, 1<i<mn, and 2) R = U Ei-Fiw.
i=1

Definition: For a mapping ¥: A » B, In({) = {b I b € B, c(t];-l(b)) > w}.

Definition: A mapping r: # - s is l-accepting with respect to F € § if

(dt) r(t) € F.

A mapping r: # + S is 1'-accepting with respect to F & S if
(Vt) r(t) € F.

A mapping r: S/ S is 2-accepting with F € § if
In(r) N F # ¢.

A mapping r: /# 5 S is 2'-accepting with respect to ¥ S P(S) if
(dF € ¥) In(r) € F.

A mapping r: A + S is 3-accepting with respect to ¥ S P(S) if
In(r) € %,

A mapping r: /- S is 4-accepting with respect to L = ((Ri’ Gi))i<n’

where for all i < n, Ri c s, Gi €S, if for some i < n,

In(r) N Ri = ¢ and In(r) N Gy # ¢.
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In speaking it is often convenient to indicate that a run is 2-
accepting by saying that it "accepts infinitely often'", to indicate
that a run is 2'-accepting by saying that it "eventually always accepts',
and to indicate that a run is 3-accepting by saying that 'the set of

states entered infinitely often is a designated subset".

Definition: An n-table on X is a systemM' = < §, Z, M, 8o >, where S

is the finite state set, I is the finite alphabet set, M: S x X - P(S)-

{@) is the state transition function, and s, € S is the initial state.

Definition: A d-table on X is an n-table such that M: S x X =+ {{s} I

s € 8}.

*
Definition: An M'-run on input w € Z , w: [T] * X, T <w, is any

mapping r: [T+l] + S such that 1) r(0) =s., and 2) for all t < T,

0
r(t+l) € M(r(t), w(t)).

Definition: For anmy T < w, any Zw-sequence v, and any table ' =

<S8, Z, M, 59 >, a mapping r: [T] + S is called compatible with I' and

v if 1) r(0) =s,, and 2) for all t < T, r(t+l) € M(r(t), v(t)).

0’

Definition: An IV'-run on input v € >’ is any mapping r: /¥ -+ S which

is compatible with table M' and v.

We, also, talk about an Trun of an automaton T on a sequence v(w)
meaning an ' -run of the associated n(d)-table M'. The set of all

T-runs on v(w) is denoted Rn(M,v) (Rn(M,w)).
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Nondeterministic (deterministic) finite automaton on finite sequences

is abbreviated n.f.a.f. (d.f.a.f.).

*
Definition: An n.f.a.f. (d.f.a.f.) onY 1is a systemM =<8, %, M,

F >, where < S, X, M, s, > is an n-table (d-table), and F € S is

50> 0

the set of accepting states.

f.a.f. M accepts w: [7] + X, T < w, if there exists an T-run r on
w such that r(T) € F.

The n.f.a.f. and d.f.a.f. are the familiar finite automaton models
of conventional finite automata theory.

Nondeterministic (deterministic) finite automaton (on infinite

sequences) is abbreviated n.f.a. (d.f.a.).

Definition: A l-n.f.a. (1-d.f.a.) on > is a systemM =<8, 7, M,

F >, where < S, 2, M, s, > is an n-table (d-table), and F € S is

80>

the set of designated states.

0

1-f.a. M accepts v if there exists an TM-run on v which is l-accepting

with respect to F.

Definition: A 1'm.f.a. (1'-d.f.a.) on 5 is a systemM =< S, T, M,

80> F >, where < S8, 2, M, 5, > is an n-table (d-table), and F € S is

the set of designated states.

1'-f.a. M accepts v if there exists an M-run on v which is 1'-accepting

with respect to F.
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Definition: A 2-n.f.a. (2-d.f.a.) on.Z? is a system M=< 8, X, M,

F >, where < S, ¥, M, s, > is an n-table (d-table), and F S S is

SO,

the set of designated states.

0

2-f.a. M accepts v if there exists an PVrun on v which is 2-

accepting with respect to F.

Definition: A 2'-n.f.a. (2'-d.f.a.) on ﬁ) is a systemM =<8, T, M,

% >, where < S, &, M, s. > is an n-table (d-table), and % S P(S)

S0’ 0

is the set of designated subsets.

2'-f.a. M accepts v if there exists an M-run on v which is 2'-

accepting with respect to %.

Definition: A 3-n.f.a., (3-d.f.a.) on Em is a systemM =< S, T, M,

F >, where < S, X, M, s, > is an n-table (d-table), and ¥ < P(S)

502 0

is the set of designated subsets.

3-f.a. M accepts v if there exists an Trun on v which is 3-

accepting with respect to %.

Definition: A 4-n.f.a. (4-d.f.a.) on on is a system M =<8, Z, M,

802 Q >, where < 8§, 3), M, s, > is an n-table (d-table), and Q =

0

((Ri’ Gi)) for all i < m, Ri c s, Gi € S, are the subset pairs.

i<n’
4-f.a. M accepts v if there exists an M-run on v which is 4-

accepting with respect to 0
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Definition: An t-th partial run of n-table (d-table) M' =< S, X, M,
50 > on v is any mapping r.: [t+1] # S such that 1) rt(t) = 84> and
2) for all i € [t], r (1) € M(r (i), v(i)).

Note that for any table M' and any Zm-sequence v, the 0-th partial

run is the mapping rO(O) = 84> where 5o is M' 's initial state.

Definition: A mapping p: [T] *+ S, T < w, is C-compatible with table
W
' and ¥ -sequence v if for all t € [T], there exists r., a t-th partial

M'-run on v, such that rt(O) = p(t).

Definition: A I'-C(compound)-run on v is any mapping r: /¥ -+ S which is

C-compatible with ' and v.

We will, also, speak of an i-th partial M-run and an M-C-run of a
finite automaton M meaning an i~th partial M'-run and an M'-C-run,
respectively, of the associated n(d)-table M'. The set of all i-th
parital runs of Mon v is denoted P-Rn(M, v ] [1]). The set of all

M-C-runs on v is denoted C-Rn(M, v).

Definition: A 1C-n.f.a. (lC-d.f.a.) on Ew is a systemM =<8, T, M,

F >, where < S8, ¥, M, s, > is an n~-table (d-table), and F & S is

S0’ 0

the set of designated states.

1C-f.a. M accepts v is there exists an M-C-run on v which is

l-accepting with respect to F.

Definition: A 1'C-n.f.a. (1'C-d.f.a.) on Ew is a systemM =< S, Z, M,

Sg? F >, where < S, X2, M, $o > is an n-table (d-table), and F € S is

the set of designated states.
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1'C-f.a. M accepts v if there exists an TM-C-run on v which is

1'-accepting with respect to F.

Definition: A 2C-n.f.a. (2C-d.f.a.) on iﬁ is a system M =< 8§, 3, M,

s,, F >, where < S, ¥, M, s, > is an n-table (d-table), and F S S is
0 2

0

the set of designated states.

2C-f.a. M accepts v if there exists an M-C-run on v which is

2-accepting with respect to F.

Definition: A 2'C-n.f.a. (2'C-d.f.a.) on 2 is a systemM =< S, I, M,

F >, where <8, ¥, M, s, > is an n-table (d-table), ¥ S P(S) is

S0’ 0

the set of designated subsets.

2'c-f.a,. It accepts v if there exists an M-C-run on v which is

2'-accepting with respect to %.

w
Definition: A 3C-n.f.a. (3C-d.f.a.) on ¥ is a systemM=<S§, %, M,

84> F >, where < S, 2, M, 5 > is an n~table (d-table), and F S P(S)

is the set of designated subsets.

3C-f.a. M accepts v if there exists an M-C-run on v which is

3-accepting with respect to %.

Definition: A 4C-n.f.a. (4C-d.f.a.) on.Zf)is a systemM=<8S, T, M,

8¢ >, where < S, X, M, s

((R;s 6,0)

0 > is an n-table (d-table), amd ( =

for all i < n, Ri c s, Gi € S8, are the subsets pairs.

i<n’
4C-f.a. M accepts v if there exists an M-C-run on v which is

4-accepting with respect to o).
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Definition: For mappings M,: A - B1 and M2: A

1° %1 2
o -+ 1 =
M1 X M2. A1 X A2 31 X B2 is defined M1 X Mz((al, a2)) (Ml(al)’ M2(az)),

A .
for all (al, a2) € A1 X 9

-+ B2, the mapping

Definitions of pl(A) where A © (Zﬁ X Z&)w, Zé-cylindrification of
B ¢ Elw, Ty i-f.a. definable, i-f.a. M equivalent to j-f.a. EUtl,

i-f.a. closed under union, intersection, complementation, and projection,
i-f.a. equivalent j-f.a., etc. are obtained by suitably modifying the
corresponding definitions of Chapter I (i.e. by replacing (v,E) by v,

and Yg. by ).

As in the preceding definitions, we will write i-f.a. only where
both i-n.f.a. and i-d.f.a. could be writtem. That is, where every
occurrence of i-f.a. may be<weplteed by i-n.f.a., or every occurrence
of i-f.a. may be replaced by i-d.f.a.

In [3] Hartmanis and Stearmssstudy 1'd.f.a. In 4] Landweber
investigates 1-d.f.a., 1'-d.f.a., 2-d.f.,a., 2'-d.f.a., and 3-d.f.a.

In [5] McNaughton uses 3-d.f.a. and 3-n.f.a., and the important comsturction
he uses to prove 3-d.f.a. = 3-n.f.a. suggests the notion of a 4-accepting
run. In [8] Rabin uses the notion of 4-accepting in his notiom of dual
acceptance, and in [7] Rabin uses the motion of 4-accepting run. 1Inm

[1] Buchi uses 2-n.f.a.
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SECTION II.I CONSEQUENCES OF M: S X L - P(S) -(¢}

The preceding definitions specify that a mondeterministic automaton
has a state transition function M: S X X - P(S) -~ {¢#}. The usual
definition of a nondeterministic automaton allows all state transition
functions M: S X ¥ -+ P(S). That is, the usual definition allows for
there to exist state, input symbol pairs for which there are mo tran-
sitions. Hence, there can be nondeterministic automata which have no
runs on certain strings on their input alphabets. These strings are
rejected because mo accepting run on them exists. For finite automata
on finite strings this causes mno problems. In fact, by adding a non-
accepting ''trap" state ome can easily obtain an equivalent finite
automaton on finite strings with state transition function M: S x T -

P(S) - {¢}.

However, on infinite input sequences if all state transition
functions M: S X X & P(S) are allowed, then we get as a theorem l-n.f.a. =
2'en.f.a. In fact, we have the following comstruction.

Given 2'-n.f.a. M=< 8, T, M, 8y> F >. Defime l-n.f.a. Eml =<s U Fis

z, My, 849 F, >, where F, = F X {a}, for all s € S, and all o € %,

1
M, (s, 0) = M(s, 0) U {(£,a) | £ € M(s, 0) N F}, and for all (f,a) € Fls
and all o € %, Ml((f,a), g) = {(f',a) ] f' € M(£, 0) N F}. We have

TAH = T(‘Jﬁl).
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Note that the above comstruction uses state symbol pairs with mo
transitions in such a way that the essentially finite acceptance
condition (of hitting an accepting state once) combined with the infinite
condition of the existence of an infinite run in which this finite event
occurs imply that there exists an accepting run of the l-n.f.a. on v
iff there exists a run of the 2%n.f.a. on v which satisfys the infinite
2'~acceptance condition.

Our feeling that the above is an undesirable quirk is further re-
inforced when we see that the 1-d.f.a., and the 1'-, 2-, 2'-, and 3-n.f.a.
models are not affected by allowing M: S X T - P(S). That the 1l-d.f.a.
remains closed under projection even when 1-d.f.a. and 1l-n.f.a., are mnot
equivalent easily follows from the conventional subset comstruction for
obtaining a 'deterministic automaton from a mondeterministic automatomn.

Therefore, we defined an n-table as we did, and we have Lemma 2
below which we would not have if we had allowed M: S X X » P(S). We

state Lemmas 1 and 2 without proofs, because the proofs are trivial.

Lemma 1: For any mapping p: [T] + S, T £ W, compatible with d-table

m =<8, T, M, 8o > and thsequence v, there exists a unique r € Rn(M', v)

such that r l [T] = p. Hence, for M', and all v € ZP, we have c(Rn(lW ,v)) = 1.
For any mapping p: [T] # S, T < w, C-compatible with ' and v €

Z@, there exists a unique r € C-Rn(', v) such that r ] [T] = p. Hemnce,

for M' and all v € Z?, we have c(C-Rn(M, v)) = 1.




Y

Lemma 2: For any mapping p: [T] # S, T < w, compatible with n-talbe
™m =<5, Z, M, S0 >and v € 2 there exists an r € Rn(@', v) such
that r | [T] = p. Hence, for all v € Z?, we have Rn(MV', v) # ¢.
W
For any mapping p: [T] # S, T < w, C-compatible with T' and v € T

there exists an r € C-Rn(M', v) such that r ’ [T] = p. Hence, for all

v € ZP, we have C-Rn(M', v) # ¢.

SECTION III USEFUL, INITIAL OBSERVATIONS

We can immediately make the following observations which we will
use again and again in the following proofs.

Every d-table is an n-table so that we have for all i € {1, 1', 2,
2', 3, 4, 1¢, 1'c, 2¢, 2'c, 3C, 4C}, i-d.f.a. < i-n.f.a. We won't
restate this in the following proofs, since we trust that the reader
will detect when it is :smed without prompting.

Given 2'-f.a. (3-f.a., 2'C-f.a., 3C-f.a.) M=<S, T, M, 80>
{Fl, iy Fk} > For 1<i <k, define 2'-f.a. (3-f.a., 2'C-f.a.,
3C-f.a., respectively) iIRi =<8, %, M, 89> {Fi} >, Clearly, T(H =
Tcmi) U TCW&) u...U Tcmk). In Theorems 12 and 13 we show by comstruction
directly from the definitions of 2-f.a., 2'-f.a., 3-f.a., 2'C-f.a., and
3C-f.a. that they are all closed under union. On the basis of these
observations several of the following proofs are stated for 2'-f.;.
(3-f.a., 2'C-f.a., 3C-f.a.) with a single designated subset. We trust

that the reader will realize that the generalization indicated above is

implied in such cases.
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Lemma 3: Given any l-f.a. on Zw M we can determine an equivalent
1-f.a. ‘.ml =<5 z, Ml’ S10? {f) > such that 510 # f, and for all

c € 2: Ml(f’ o) = {f}'

Given any 1C~f.a. on Zp) mz we can determine an equivalent 1C-f.a.

= < .
93'3 Sqs s Mas $30° F, > such that $30 ¢ Fy

Proof: Immediate from Lemmas 1 and 2 and the definition of 1l-f.a. and
ic-f.a. Note that if M (imz) is deterministic, then we can make ‘_Utl

(ﬁ)ta , respectively) deterministic. C

Lemma 4: Given any l'-f.a. on Zw T, we can determine an equivalent
. = , and f
1'-f.a. zml < F1 Uf{s}, Z, Mps 80 Fl > such that S10 € Fl a or

all c € %, Ml(s, o) = {s}.

Given any 1'C-f.a. on Zw ﬂz, we can determine an equivalent 1'C-f.a.

‘,m3 =< S3, D M3, S30° F3 > such that 840 € F3.

Proof: Immediate from Lemmas 1 and 2 and the definitions of 1'-f.a.
and 1'C-f.a. Note that if M ('mz) is deterministic, then we can make

§m1 cm3, respectively) deterministic. O
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SECTION IV EQUIVALENCE OF MODELS

Our primary intention is to present a clear exposition which,
hopefully, will speed the begimmer's acquisition of a facile, intuitive
grasp of various motions of a finite automaton rumming on an infinite
sequence. Hence, our presentation involves some redundancy. ©Note in
particular that many closure properties are provea for both i-n.f.a.
and i-d.f.a., after we have proven that i-n.f.a. = i-d.f.a. We do this
because the constructions used work equally well for n.f.a. ard d.f.a.,
and we see mo reason to hide this sometimes useful fact. However, in
order to avoid uninformative redundampy, we begin by showing that many
models are equivalent. Then given a property which we wish to show
our models have (or fail to have), we can give the proof for the model
which has the simplest, most informative proof and we get as corollaries
that all equivalent models have the property (fail to have the property).
In fact, in some cases (for example, closure of 1'c-f.a., 2'C-f,a.,
3C-f.a. under projection) we do mot know how to prove more directly

what follows easily from the equivalence of models.

Theorem 1: 1l-n.f.a. = 1-d.f.a.

Proof: Given l-n.f.a. M=<S, I, M, 8o F >. Define l-d.f.a. ﬂﬁ =
< P(S), 2, M, [so}, F, >, where for all A € P(S), and all o € I,

M (4, o) = (U MG, o)}, and Fy = (A € P(S) lanrF#oey.
s€E L




A

Suppose v € T(M). Then there exist r € Rn(M, v) and t € /# such

1 is the unique Eml-run

on v, then r(t) € fl(t). Hence, rl(t) € Fl’ and v € T(‘ml).

that r(t) € F. By the comnstruction of '.ml, ifr

Suppose v € T(‘.)J?l)- Then there exists r, € Rn(ly, v) and t € N such
that rl(t) € Fl. By the construction of ﬂ)tl, there exists a mapping
p: [t+l] + S compatible with M and v and such that p(t) € F. Hence,
by Lemma 2, there exists r € Rn(M, v) such that r l [t+1] = p. Hence,
r(t) € F and v € T(N).

Therefore, T(M) = T(‘Jﬁl), and l-n.f.a. € 1-d.f.a.

0

Theorem 2: 1'-n.f.a. = 1'~d, f:a.

Proof: By Lemma 4, given any 1'=n.f.a. I we can determine an equivalent

1. =<
1'-n.f.a. fﬁtl F1 U s}, Z, M, 810° F, >, where 810 € Fl» and for

1
all o € %, Ml(s, o) = {s}.

1. =
Define 1'-d.f.a. ﬂz <P(F1), z, M,, {slo], F, >, wherF for all

A€ P(Fl), for all ¢ € Z, MZ(A- , o) ={ U Ml(s, o)}, and F2 =
» sCA.

Clearly, because the construction of sml eliminated all transitions

from s into Fys the unique Sle-run r, on v is such that for all t € #,

2

rz(t) € F2 iff there is an ﬂl-run r. on v such that rl([t]) ESF Hence,

1 1°

c i i < .
r, (/N) < F2 iff there exists r, € Rn(‘ml, v) such that rl(//V) F1
Therefore, T(M) = T(‘.Utl) and 1'-n.f,a. < 1'-d.f.a.
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Theorem 3; 2'-n,f.a., = 2'~d.f.a.

Proof: (This comstruction was suggested to me by A.R. Meyer in private

communication.)
Given 2'-n.f.a. M= < S8, %, M, Sg» {(F} >. Define 2'-d.f.a. ﬁ]tl =

< Sl’ =, Ml’ 810° ?1 >, where S1 = P(S) x P(F),

10 ([so}, {so}), if N €F,

({s)s 9, else,

for all (D, A) € Sl’ and all o € T,

Ml((D’ A), o) = (D', A'), where D' = M(D, o) and

() if A = ¢ then A’

D' N F,

(1I) if A4 ¢ then A' = M(4, o) N F; and F; = {{(D, A) | A+ ¢33,

Suppose v € T(‘.ml). Then for the unique Mll-run r, on v we have

In(rl) SF Hence, (AT)(VE)(T < t = rl(t) € Fl); and by (II) in the

1
definition of M, there exists r € RnM, v) such that for all t,
T<tr(t) €EF. Hence, In(r) S F and v € T).

Suppose v € T(M). Then there exists r € Rn(M, v) such that In(r) <

F. Hence,
(I11) (IT)(VE)(T < t » r(t) € F).
Suppose there exists t; € /# such that

(IV) (T<t, & rl(tl) ¢ Fl)’ where r, is the unique M?l-run on v.

1 1
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That is, such that rl(t = (D, ), some D € S. Let rl(t1+1) = (D', A').

1
By our comstruction of ﬂ& we have r(t1+1) € D'. Hence, by (III) we

have D' N F # . Hence, by (I) in the definition of M., A' = D' N F # ¢.

1’

Then by (II) in the definition of Ml’ and (III) above, we have for all
o

t, ty + 1<t rl(t) € Fl' Hence, In(rl) F1, and v € Tcmi).

Therefore, T(M) = TCMi) and 2'-n.f.a. € 2'-d.£f.a. 0

The above proof shows that there can be at most onme time t, defined
as above. The following is a 2-n,f.a. M, and the 2'-d.f.a. m& obtained
from I by the construction in the proof above.

2'-n.f.a. M= < {1, 2, 3}, {0,1), M, 1, {{2, 3}} >, where M is given

by the diagram:

Looking at the diagram for M we can comstruct the state transition

table for M1 (For conmvenience we use parenthesés instead of set brackets.):

0 1
55 = (1, & 56 s
8§, < (2, 3), (2, 3)) s, 8,
5, = ((1, 2), (2)) 5, 5
55 = ((1, 3), (3)) 5 5
s, = (1, 2, 3), (@) s, 5
Sg = (2, 3, (3 S5 83
8¢ = (1, 2, 3), (2, 3)) 5y 8g
s, = ((1, 2), 0) 5, 5
sg = (1, 2, 3), (3)) s, o
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2'-d.f.a. m& = < {so, cees 88}, {o,1y, Ml’ 84 {{sl, Sy S35 S5

S,y S >, where M, is given by the table above. The state transition
6 '8

1

diagram for M, with the members of the desigmnated subset of MH marked

1

as double circles is:

w o, , w _ w
r = 1313 is an accepting T~run on 101 . r1 = 803132845658 is the

w
accepting ‘_ml-run on 101, ©Note that (Vt)(3 < t 9 r(t) € F), where F
is the designated subset of M. But r1(4) =5, is not in:thesdgsignpated

subset of m&. Hence, a time t. as defined in the proof of Theorem 3

1

does exist (i.e. = 4) for the Mﬁ-run on 101w.

Y1
Theorem 4: 2-n.f.a. = 3~-n.f.a.

Proof: Given 2-n.f.a. M=< S, Z, M, 5,2 F >. Define 3-n.f.a. m& =
<S5, % M, 84 ?1 >, where Fl = [fl S S l F, NF #¢@}. Clearly,
TAY) = TA.
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Given 3-n.f.a. % = <8,, Z Mz, 890° {Fz} >. Define 2-n.f.a.
®, = < 845 z, My, 8,05 Fy >, where 5, =8, U (F, X P(F,)) U {sp}, for
all s € Sz, and all o € Z, Mé(s, o) = Mz(s‘, &); for all s € SZ’ and
all c € I, if £ € MZ(S’ c) N Fos then (£, ¢) € M3(s, o); for all

f € F2, allc €%, all D € F_, and all fl € Mz(f, o) N F2, 8¢ € M3((f, D), o),

2,

i§-0° #1F, then'(f;, D U (f}) € My((£, D), 0), if D = F, then (£4(f}) €

2

M, (£, D), o); for all ¢ € T, sp € My(s,, 0); and/F, = F, X (F

2 2} -
Suppose v € T(‘JJ!Z). Then there exists T, € Rn(ﬂﬁz, v) such that

In(rz) = F2. Therefore, there exist to < ty < t2 ..., such that (Vt)

(to < t - rz(t) € Fz), and for all i € /” s rz({t l ti <t< ti+1}) <

F,, and 1, ({t | t, <tst, ;) =F, From the definition of M,, there

exists rs € Rn(‘.m3, v) such that r3({t | t < to]) = Sz, T + 1) =

3(&
(ry(ty + 1), ¢), and for all 1 >0, r(t, + 1) = (r,(t, + D, F,)

m
rj

F3 is futate, hence, In(r3) N F3 ¢ and v € T(‘m3).

Suppose v € T(‘JJL_;). Then there exists T, € Rn(‘,m3, v) such that
In(r3) n F3 # ¢. From the definition of M3, PqT5 € Rn(‘.Ulz, v). We
easily see the p1r3 is an accepting ‘Jﬁz-run on v as follows, There exists

some (£, F2) € F3, and to < t1 < t2 ..+, such that for all i € /¥,

r3(ti) = (£, FZ)' From the definition of M3 for all i € W, p1r3([t |
ti <t< ti+1]) = FZ' Hence, In(plr3) = Fz, PiTs is an accepting ‘.U?z-run

on v, andvET(UJ?z). D
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Theorem 5: 3-n.f.a. = 3-d.f.a.

Proof: This is McNaughton's important fundamental result in [5].

McNaughton proved the following theorem.

Theorem: A set A S Zw is an w-regular event iff A is 3-d.f.a. definable.
(We will denote the content of this theorem by 3-d.f.a. = w-regular.)
Actually McNaughton also shows that every 3-n.f.a. definable set is

an w-regular event. This coupled with the fact that every 3-d.f.a.

is also a 3-n.f.a. means that his construction of a 3-d.f.a. to accept

3-d.f.a.

an arbitrary w-regular event suffices to show 3-n.f.a.

Altermative proof: By McNaughton [5] 3-d.f.a. = w~regular. By Theorem

23 2-n.f.a. = w-regular. By Theorem 4 3-n.f.a. = 2-n.f.a. Therefore,

3-n.f.a. = 3-d.f.a.

.

Theorem 6: 4-n.f.a. 3-n.f.a.f¢ndfévd.£.a:_5 3-d.f.a.

Proof: Given 4-f.a. M=<35, T, M, 82 ((Ri’ Gi))iSn >, For each i,

0 <1i<mn, define 4~f.a. m& =<8, ¥, M, Sg> ((Ri’ Gi)) >, Clearly,

T = Tcmi) Uu...U TCW;). By Theorem 12 both 3-f.a. and 4-~f.a.
are closed under union, hence the following suffices.
Given 4-f.a. M= < §, I, Y ((R, G)) >. Define 3-f.a. Wﬁ =

<S§, %, M, 8., F >, where ¥

0’ "1 1
Clearly, T(M = TCﬂﬁ). Hence, 4-f.a. € 3-f.a.

=(FSS|FNR=0&FN G #¢).
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Given 3-f.a. Emz =< Sz, Z, M2, 550 [Fz} >, Define 4-f.a. 93?3 =

<8, X P(Fz), =, M3, (820’ ®), 03 ?3 where for all s € Sz, all f ¢

2
F2, and all c € &, if f # F, then M3((s, i,o) ={(s', f) | F

(fU{s})N F,, and s' € M,(s, 0)}, if f = F, then M3((s, H, o

i
N

et
-

((s', #) | 8" €My(s, 0)), and O = (({(s, ) €5, X P(F,) | s ¢
((s, Fp) | s €5,1).
Note that if m& is deterministic thenfm3 is deterministic.
Clearly the above comstruction is very similar to the construction

used in the proof of Theorem 4. Having seen this proof we trust the

reader can easily complete the proof that Tcmz) = TCHS). Hence, 3-f.a.

C 4-f.a.
.
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SECTION IV.I THE C-RUN MODELS

Professor A.R. Meyer suggested the definition of C-run to me in
private communication. The notion behind C-run is clearly that of
successively starting the finite automaton further and further down the
infinite sequence, running it back to the beginning of the sequemnce,
and noting its final state. Then basing acceptance on the sequence of
final states obtained in this manmer. A little thought, perhaps, is
necessary to convince oneself that the process described above is not
equivalent to moting the sequence of final states obtained by successively
running the finite automaton from the beginning of the sequence to the
end of longer and longer initial segments of the infinite sequence.
This latter process is clearly just the notion of run used by 1-, 1t-,

e.., 4=-f.,a. . Thus, perhaps, the following results are slightly surprising.

Theorem 7: 1C-n.f.a. = 1C-d.f.a., 1'C-n.f.a. = 1'C-d.f.a.,
2C-n.f.a. = 2C-d.f.a., 2'C-n.f.a. = 2'C-d.f.a.,
3C~n.f.a. = 3C-d.f.a., 4C-n.f.a. = 4C-d.f.a.

Proof: The following proof may be summed up by saying that the subset
construction works for this model because the possible M-C-runs on v
are determined by the possible final states, ri(O), for T, € P-Rn(M, v |

[i]), i € /A
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Given an m-table M' =< §, T, M, 89 > Define a d-table sml' =

< P(8), %, Ml’ {so} >, where for all 4 € P(S), amd all o € %,
Ml(d,c) ={ U M(s,0)}. (Note that ™ is comstructed from '

s€ 1
by the standard subset construction of conventional finite automata

theory.)

Clearly, for the unique r., € P-Rn(fml' s, V ’ [t]), we have

1t
(Vr, € PRa(®', v | [£]))(r (0) € 7, (0)), and (Vs € r, (0))

(Hrt € P-Rn(MV', v | [t]))(rt(o) s). Hence for the unique r, € C-Rn(fm1 LV,

we have for all t € [,
(1) ry(t) = (z(t) | r € C-Rn(W', v)} # ¢, and
(II) C-Rn@', v) = (r:/§ =S | for all t €N, r(t) € rl(t)} 4 9.

Given 1C-n.f.a. M= < S, ¥, M, s F >, where < §, T, M, SO > = m'.

o’
Define 1C-d.f.a. ”‘1 = < P(S), T, M, {so}, F

{sq) >=T', and F; = {4 €5 lANF #¢).

1 >, where < P(S), I, Ml’

Suppose v € T(M . Then there exists r € C-Rn(M, v) and t € / such
that r(t) € F. By (I) and the definition of Fl’ r(t) € rl(t) € Fl’
where ry is the unique iml-C—run on v. Hence, v g T(‘JJ?I).

Suppose v € T(‘.D'tl). Then for the unique r € C-Rn(ﬂﬁﬂl, v) there
exists a t € /Jf/ such that rl(t) € Fl' By the definition of Fl’ rl(t) n
F # ¢, hence by (II), there exists r € C-Rn(I, v) such that r(t) € F.
Hence, v € TCM).

Therefore, T(M = T(Eml), and 1C-d.f.a. = 1C-n.f.a.
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Given 1'C-n.f.a. M=< 8, &, M, 802 F >, where < S, %, M, N > =",
Define 1'C-d.f.a. Eﬁ?l =< P(9), %, Ml’ {so], F1 >, where < P(S), %,
My, (s} >=M', and F; = (4§ AN T #¢).

Suppose v € T(M. Then there exists r € C~-Rn(M, v) such that
r(/#) € F. By (I), for all t €N, T(t) € rl(t) and hence, rl(t) nNrF-=ao,
where ry is the unique Tml-run on v. By the definition of F
rl(/f() c Fl' Hence, v € T(le).

1’

Suppose v € T(‘.Ull). Then for the unique r, € C-Rn(ﬁﬂl, v) we have
rl(m) < F,. Hence, for all t €N, r, (t) NF+#¢. Hence by (II), there
exists r € C-Rn(®, v) such that R(JN) S F. Hence, v € T(I).

Therefore, T(MH

T(‘J)'Ll) and 1'C-n.f.a. = 1'C-d.f.a.

Given 2C-n.f.a. M=<S, T, M, s., F >, where <S, &, M, 50 > =M,

0’
< P(S), %, Ml’ {so}, F1 >, where < P(S), £, M

{sg) >=M', and F, = (Acs |ANT#¢).

Define 2C-d.f.a. Wll

Suppose v € T(M). Then there exists r € C~-Rn(M, v) such that

In(r) N F # ¢. That is, there exist t0 < t1 < ..., such that for all

i €M, r(ti) € F, hence by (I) and the definition of Fl’ rl(ti) € Fl’

where r, is the unique !ml-C-run on v. Hence, In(rl) N F1 # ¢ and
v € T(‘.ml)-

Suppose v € T(?J'ﬁl). Then for the unique r, € C-Rn(iml, v) we have
In(rl) n F1 # ¢. That is, there exist t0 < t1 < ..., such that for
all i €4, rl(ti) € Fl’ and hence by the definition of Fl’ rl(ti) N
F # ¢, and by (II), there exists r € C-Rn(@, v) such that for all

i €W, r(ti) € F. Hence, v € T(M.
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Therefore, T(M = T(‘_Wl), and 2C-n.f.a. = 2C-d.f.a.

Given 2'C-n.f.a. M=< S, &, M, So° {F} >, where < §, ¥, M, 50 >=T.
Define 2'C-d.f.a. zml = < P(S), I, M, {SO], [Fl} >, where < P(S), %,
M, {sg) >=T', and F, = (A €S AN F # 0.

Suppose v € T(M. Then there exists r € C-Rn(M, v) such that
In(r) € F. Again by (I) and the definition of Fl’ In(rl) c Fl’ where

r. is the unique Dﬁﬁl-C-run on v. Hence, v € T(‘.Ull).

1
Suppose v € T(‘J'Y?l). Then for the unique r, € C-Rn(fml, v) we have

In(rl) = Again by (ITI) and the definition of Fl’ we have the

"
existence of an r € C-Rn(M, v) such that In(r) € F. Hemce, v € T(MW).
Therefore, T = T(EULL), and 2'C-n.f.a, = 2'C-d.f.a.

Given 3C-n.f.a. M= <S5, I, M, 54> {F} >, where <5, &, M, s, > = ™,

and F = {s ., 8 Define 3C-d.f.a. ‘Jﬁl < P(9), X, M, (s

1’ Sz’ k}' 0}’

> = !
311 , Where < P(S), %, Ml’ [so} > sml , and ?1

(VAEF) (AN F#8) & (s € F)(EAE F)(s €0)).

(F, < 2(s) |

Suppose v € T(M). Then there exists r € C-Rn(M, v) such that
In(r) = F. Hence by (I), for all 4 € In(rl),A. NF+¢, and for all
s € F there exists ) € In(rl) such that s €4), where r, is the unqiue

ETJPI-C-run on v. By the definition of "w’l, In(rl) € Zzl, and hence,

v € T(‘.ml).

Suppose v € T(ﬁ'ﬁl). Then for the unique r, € C-Rn(‘IRl, v) we have

In(rl) € 3‘1. Hence, by the definition of "fl, there exist ty <ty < ...,

such that for all t > £y’ rl(t) NF#¢, and for all 1 < j < k, and all

i €W, 5 € rl(t ). Hence, by (II) there exists r € C-Rn(M, v)

ki
such that In(r) = F, and v € T(W).
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Therefore, T = TCﬂﬁ), and 3C-n.f.a. = 3C-d.f.a.

Given 4C-n.f.a. M=< 8§, ¥, M, s ((R, G)) >, where < S5, &, M,

0,
— | 2 - =
5o > =M'. Define 4C-d.f.a. 3311 < P(S), I, Ml’ {so], ((Rl’ Gl)) >,

where < P(S), %, M, {5} >=M', R, = (A ES |4 <R}, and G, =
(45 14N (G-R) #¢).

Suppose v € T . Then there exists r € C-RnM, v) such that
In(r) N R =¢ and In(r) N G # ¢. Hence by (I) and the definitions.eéf

is the unique

R, and Gl’ In(rl) n R1 = ¢ and In(rl) n G1 # ¢, where r

1 1

wﬁ-c-run on v. Hence, v € TCU&)-
Suppose v € Tcmi). Then for the unique r, € C-RnCmi, v) we have
In(rl) N R, = ¢ and In(rl) n G1 # ¢. Hence there exist ty <t < -ens

such that for all t > tys r, (t) N (S=R) # ¢, and for all i €,
rl(ti) N (G-R) # . Hence by (II), there exists r € C~-Rn(M, v) such
that Iﬁ(r)‘ﬂ R =_¢ and In(r) N G # ¢. Hence, v € T(M.

Therefore, T(M = Tcmi), and 4C-n.f.a. = 4C-d.f.a,

Lemma 5: l1-d.f.a. & 1C-n.f.a., 1'-d.f.a. & 1'C-n.f.a.,
2-d.f.a. € 2C-n.f.a., 2'-d.f.a. € 2'C-n.f.a.,
3-d.f.a. S 3C-n.f.a., 4-d.f,a. < 4C-n.f.a.

Proof: Given d-table ' =< S5, ¥, M, oh >. Define n-table MH' =

> =

< Sl’ 2, Ml’ 810 where S1 (S x8)y U [le, sT}, for all c € L,

Ml(slo’ g) = {(sl, s2) € (S x8) l s, € M(sl’ o)} U {sT], for all

(sy» 85) € (S x8), and all 0 € T, M;((8;, 8,), 0) = (5,', 8,) € (S X 5) l

84 € M(s,', o)} U (s}, and for all o € %, Ml(sT, o) = {sT].

)
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Clearly, for all t > 0 there exists r. € P-Rn(‘ml, v | [t]) such
that rt(O) = (so, s) iff for the unique r € Rn(™, v) we have r(t) = s.

Thus,

(1) for all t > 0 there exists Ty € C—Rn(!ml, v) such
that rl(t) =(s0, s) iff for the umique r € Rn(l, v)
we have r(t) = s; and there exists r, € C-Rn(‘ml, V)

such that for all t > 0,
(1D) rl(t) = (so, r(t)), where r is the unique Trun on v.

F >, wvhere < S, &, M, s, > =M.

Given 1-d.f.a. M= < S, &, M, 0

SO,

By Lemma 3 we assume without loss of generality that 5o ¢ F. Define

= = 1
IC-n.f.a. sml =< Sl’ Y, M, $10° F1 >, where < Sl’ =, Ml’ 10 > 33?1 ,

1
and F1 = {(so, s) € S1 | s € F}.

Clearly from (I), T = T(Eml). Thus 1-d.f.a. € 1C-n.f.a.

F >, where < S, &, M, s, > =T,

Given 1'-d.f.a. M=< 8, Z, M, s 0

o’
By Lemma 4 we assume without loss of generality that g € F. Define

F, >, where < S., £, M., s

1° %100 "1 1’ 1’ 10
and F1 = {(so, s) € (8 x9) ] s €EF} U {slo}. Clearly, from (I)

c- = = 1
1'C-n.f.a. 9’%1 < Sl’ z, M > E[T?l s

TEM 2 TOR), and from (IT) T@M < T(W). Thus, 1'-d.f.a. S 1'C-n.f.a.

F >, where < S, ¥, M, s > =M.

Given 2-d.f.a. M=<5, Z, M, s 0

0’
Define 2C-n.f.a. ETT?l =< Sl’ ¥, Ml’ 510° F1 >, where < Sl’ z, Ml’ 510 > =
M, and F = {(sy, 8) € (S X S) | s € F). Clearly from (I), T@M 2

T(‘.T.T?l), and from (II), TQOW < T(‘-ml). Thus 2-d.f.a. = 2C-un.f.a.
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Given 2'-d.f.a. (3-d.f.a.) M=<5S, &, M, s,, F >, where < §, %,

0’
M, 50 >=T". Define 2'C-n.f.a. (3C-n.f.a., respectively) ma =< Sl’
> — _ c

pl(F) = {so], and pz(F) € ¥}. Clearly from (I), TEH =2 TCﬂi), and
from (II), T(M®) < TCﬂH). Thus, 2'-d.f.a. € 2'C-n.f.a. and 3-d.f.a. <

3C-n.f.a.

Given 4-d.f.a. M =< 8§, ¥, M, Q >, where < S, ¥, M, s, > =T,

So° 0
Define 4C-n.f.a. M& =< Sl’ 2 Ml’ $10° Ql >,

and Q = ((Ri’ Gi))i<n'

= ' =
where < S., I, Ml’ 8,, > = MH , and Ql ((Rli’ Gli))’ where for all

1’ 10

i <n, R1i = {(sl, SZ) € (S x 8) I g # s_or S2 € Ri}, and G,, =

0 14
{(s,, 8) € (S x8) | s € G,). Clearly from (I), T(M 2 T(W), and from

(IT), TOW) < Tcmi). Thus 4-d.f.a. € 4C-n.f.a. [:J

Lemma 6: 1C-n.f.a, € 1-d.f.a., 1'C-n.f.a. € 1'-d.f.a.
2C-n.f.a. € 2-d.f.a., 2'C-n.f.a. € 2'-d.f.a.,
3C-n.f.a. <€ 3~d.f.a., 4C-n.f.a. < 4-d.f.a.

Proof: Given n-table M' =< S, T, M, S0 >. Define d-table MH' =<8

r, M >, where S, = P(S X S) U {s for all o € %, Ml(slo, o) =

1° %10 1 100
(((sy> 8,) € (85X 8) l s, € M(sy, 0)}), and for all Y € P(S x S), and all

o €T, M(4, 0) = {{(s], 8) € (5x8) | sy, 5, €4)(s) € M(s;', 0)}).

By the definition of m&' there exists a unique r, € RnCﬂH‘, v) such
that for all t > 0, there exists r. € P-Rn(M', v l [t])) such that rt(O) =
s iff (so, s) € rl(t). By Lemmas 1 and 2 for all t € #/, P-Rn(M', v l

[t]) # ¢. Hence, for all t €N, rl(t) # ¢. Hence,



-61-

(D C-Rn(@', v) = {r:IN -+ S l r(0) = 8g> and for all t > 0,

(so, r(t)) € rl(t)} , where r is the unique -run on V.

Sg> F >, where < S, &, M, Sy > =T,

By Lemma 3 we assume without loss of generality that 5o ¢ F. Define

Given 1C-n.f.a. M= <8, &, M,

= - 1
1-d.f.a. sml < Sl, 7, F, >, where < Sl’ z, Ml’ 510 > ‘.Ull s

Mps 8990 By
and F; = (4 € P(S X 5) lan ({sy}) X F) #¢}. Clearly from (1),

T =2 T(‘Iﬂl), and from (I) and S0 g¢F, TOMH < T(‘ml). Thus, 1C~-n.f.a. &
1-d.f.a.

0’ F >, where < S, &, M, Sy > =M.

By Lemma 4 we assume without loss of gemerality that 5o € F. Define

Given 1'C-n.f.a. M=< 8, &, M, s

1'd-f.a. ‘.D'tl =< Sl’ Z, Ml’ ] F., >, where < Sl’ z, Ml’ 510 > = ‘.Wl' ,

10° “1
and F; = {4 € P(S X ) l.a N ({sg) X F) # 8} U (sqy). Clearly from (I)

and 89 €F, TOM = T(‘Iﬂl), and from (I), T(M) < T(‘.Ull). Thus, 1'C-n.f.a. €

1t-d.f.a.
Given 2C-n.f.a. M =< S, T, M, Sy F >, where < S, %, M, 5o > =M.
Define 2-d.f.a. ERl =< Sl’ T Ml’ $10° F1 >, where < Sl’ =, Ml’ 510 > =

‘.Dll' , and Fl = {4 € P(S X 9S) lA_ﬂ ({so} X F) # ¢}. Clearly from (I),
T = T(‘IRl). Thus, 2C-n.f.a. € 2-d.f.a.

Given Z'Q-n.f.a. (3¢-n.f.a.) M=< 58, &, M, So* F >, where < S, I,
M, 59 > =", Define 2-d.f.a. (3-d.f.a., respectively) ml =< Sl’ %,
My, 89, F; >, where < S, T, M), 8,0 > =M, and F = (F) € P(S X ) |
(ZF € %) (VA€ Fl) «-n ({SO} X F) #¢) & (Vs € F)(FAE F)((s45 s) €4} -
Clearly from (I), T(M = T(ml). Thus, 2'C-n.f.a. € 2'-d.f.a. and

3C-n.f.a. € 3-d.f.a.




-62~

Given 4C-n.f.a. M =< S, &, M, S0° Q >, where < S, %, M, S0 > =T,

ard Q = ((Ri’ Gi))i<n' Define 4-d.f.a. !ml = < Sl’ z, Ml’ 510’ Ql >,
—_ ! s d Q = =
where < Sl’ P Ml’ $10 > 5I?1 an 1 ((Rli’ Gli))i<n’ where Rli

(A€ PGS x8) JAN ({5} x (S-Ry) =9}, and G, = (A€ P(S X s) |
A N ({sg) X (6 = R) #¢).

Suppose v € T(M. Then there exists r € C-Rn(R, v) such that for
some i < n, In(r) N R; = ¢ and In(xr) N Gy # ¢. Hence, there exist
ty < t1 < ty oo such that for all t > to, r(t) ¢ Ri and for all j € /N,
r(tj) € G, - Thus by (I) for all t > t,, rl(t) ¢ Ry s and for all
j EN, rl(tj) € Gli’ where r, is the unique Eml-run on v. Hence,
In(rl) n R1i = ¢ and In(rl) N G1i # ¢. Hence, v € T(‘ml).

Suppose v € T(‘.Utl). Then for the unique r, € Rn(mll, v) we have for
some i < n, In(rl) N R1i = ¢ and In(rl) n Gli # QS.‘ Hence there exist
to < t1 < By wees such that for all t > tO’ rl(t) ¢ Rli’ and for all
i EN, rl(tj) € Gli' Thus by (I), there exists r € C-Rn(T, v) such
that for all t > t, r(t) ¢ R.» and for all j €WV, r(tj) € G, - Hence,
In(r) N Ri = ¢ and In(xr) N Gi # ¢. Hemnce, v € T(M).

Therefore, T = TOW,), and 4C-n.f.a. < 4-d.f.a.
1

O

Theorem 8: 1c-f.a. = 1-f.a., 1'c-f.a. = 1'f.a.,
2c-f.a. = 2-d.f.a., 2'Cc-f.a. = 2'-f.a.,
3c-f.a. = 3-f.a., 4c-f.a. = 4-f.a.
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Proof: Immediate from Lemmas 5 and 6, l-n.f.a. = 1-d.f.a. (Theorem 1),
1'-n.f.a. = 1'd-f.a. (Theorem 2), 2'-n.f.a, = 2'-d.f.a. (Theorem 3),
3-n.f.a. = 3-d.f.a. (Theorem 5), 4-f.a. = 3-f.a. (Theorem 6), and

Theorem 7. [J

SECTION V CLOSURE PROPERTIES

We now show that for certain i € {1, 1', 2, ..., 4C} there exist
procedures which given an i-f.a. M (4-f.a.'s m& and ME) yield an
-i-f.a. m% which defines the complement (projection, union, etc.) of
the set(s) defined by thBﬁ and NE). For example, the reader will
have attained a good understanding of the proof that l-n.f.a. are closed
under projection when he thinks something to the effect, "Of course,
this is exactly how you should change machine M in order to obtain machine
‘_ml such that T(ﬂl) = pz(T(‘m))."

We trust that the reader can immediately see how to tramsform any

i-f.a. (1 € (1, 1', 2, ..., 4C}) on I, M into an i-f.a. (3, X 22)“’
m& such that TCW&) = Ez-cylindrification of T(M). Hence, we claim
without further proof that all of our models are closed under cylin-

drification.
Theorem 9: 1-, 1'-, 2-, 3-n.f.a. are closed under projection.
Proof: Given n-table M = < §, 21 X 22, M, 8. >. Define mn-table MY =

0

s_ >, where for all s € S, and all o, € 22, Ml(s, cz) =

<S5, I, Mps 8,

U M(s, (055 9,))-
01621
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Let v € ("Zl X Zz)w. For each r € Rn(M', v) there exists

(1) r, € Rn(ml' , p2v) such that for all t €/¥, r(t) = rl(t).

(I1) Let v, € Z‘;. For each r, € Rn(ﬁﬁl' , vz) there exists v €
(21 X Zz)w, PV = Vys and r € Rn(', v) such that for all

t €N, r(t) = r, (£).

Given l-n.f.,a. (1'-n.f.a., 2-n.f.a.) M= <8, Z‘l X 22, M, s., F >,

0’

and 2'-n.f.a. (3-n.f.a.) ME =<8, 21 X 22; M, s., ¥ >, where < S,

0’
21 X 22, M, S0 >=". Define l-n.f.a. (1'-n.f.a., 2-n.f.a., respectively)

EWI =<8, 22, Ml’ so, F>, and 2'-n.f.a. (3-n.f.a., respectively) ‘.IR3 =

>=MM"'.
<8, 22, M1 0’ 1’ 5o ‘.Wl From (I) we have

P, (TA) < TAR) and p2(T(UJl2)) S T(M,). From (II) we have p,(T(M) 2
T ) and P,(TEM,)) 2 T(W,). ]

s S,.5 #* >, where < §, 22, M

It is interesting to note that the above construction does mnot
work for 1C-, ..., 4C-n.f.a. TFor example, given 2'C~d.f.a. M= < {so,

815 Sy R}, {0, 1}2, M, 5o {{sl, s2}} >, where M is given by the diagram:

(0,0).

(0,0)
(0,1)
(1,0)
(1,1)

(1,0)
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TE = (v | (p,(Tn(v)) = {0} & p, (V(W)) = (1)) or (p,(In(v)) = {1} &
pl(V(ﬂv)) = {01)}.
The comstruction in the preceeding proof yields 2'C-n.f.a. m& with

state transition diagram:

0 1
Py(TAM) = (v | In() = (0} or In(v) = (1}}. TAW) = (0, 1" # p,(TEW).

Theorem 10: 1-f.a. are closed under union and intersection.

. 7 - t = =
Proof: Given 1-f.a.'s W& < Sl’ by F, > and ME <S8,, 2,

> My 8100 Fy 22

M s, ., F, >.

2% 720 2
Define 1l-f.a. mg

>
< S1 X SZ’ 2 M1 X M2, (310’ 820)’ F3 , where

F3 = (F1 X Sl) U (S1 X F2). Clearly, TCH%) = Tcmi) U Tcmz).

By Lemma 3 for i = 1, 2 we can determine 1l-f.a.'s M' =< S}', I,
i i

] 1
Mi s S50 0

that m& and mg' are equivalent.

{fi} >, where for all o € %, M{ (fi’ o) = [fi}, and such

£ - = 1 ' ] t 1 '
Define 1-f.a. mz <s' x8), %, M'OX M), (s10 >S90 ) {(fl,

fz)} >, Clearly, TCHZ) = TCﬂH) n TCﬁE). [:]
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Theorem 11: 1'-f,a. are closed under union and intersection.

Proof: Given 1'-f.a.'s ml =< Sl’ Y, M F. >, and Emz =<8

1’ %10 "1 2’

Zo Mys 8y Fy >

Define 1'-f.a. ms =< S1 X 82, 2 (Slo’ szo), F3 >, where

F3 = F1 X F2. Clearly, T(ﬁJLj) = T(‘ml) n T(fmz).

Zs M1 XM

By Lemma 4 for i = 1, 2 we can determine 1'~f.a.'s EIRi' =< Si' » L
] 1 ] 1 = 1] 1 1
Mi > 850 o Fi >, where Si Fi U {sTi}, S:0 € Fi , and for all
' =
cEXL, M (STi’ o) {sTi}.
. " .a. =< 1 1 Z 1 1 1 1 >
Define 1'-f.a mz s1 X8y, L, M' XM, (519 » S9g > F, >

where F4 = (S1

we have (Vv € Zw) (Rn(imi, v) # ¢). Hence, if there is an accepting Mll-

' X Fy) UEF X S, ). By Lemmas 1 and 2, for i = 1, 2

run on v, Oor an accepting SUtz-run on v, or both, then there is an

accepting 5))?4-run on v. Therefore, T(ﬂa) 2 T(‘ml) U T(‘.mz). By the

w
construction of smi' for all v € ¥, (Vr € Rn(E)’J?i, v))(Tt)(x(t) € Fi'
implies r([t]) & Fi' ). Hence, there is an accepting Yma-run on v only
if there is an accepting sml' -Tun on v, or an accepting ‘.T.Rz' -run on v, Or

both. Therefore, T(sm4) = T(fml) U T(fmz). D

Theorem 12: 2-f.a. are closed under union and intersection.

Proof: Given 2-f.a.'s Eml =< Sl’ Z, M F, > and 2m2 =<8

1’ %10’ "1 s

2’

M F, >.

27 S20° 2
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First we show closure under union. Define 2-f.a. mg =< S1 X Sz,

Z, My X My, (845 8y4)5 Fy 3

Lemmas 1 and 2, for i = 1, 2, and all v € Zw, Rn(T, , v) # ¢. Hence,

>, where F_ = (S1 X FZ) U (F1 X SZ)' By
if there is an accepting mﬁ-run on v, or an accepting ME-run on v, then
there is an accepting M%-run on v. Hence, TCD%) 2 Tcmi) U TCﬁ&).
W
For all v € ¥, and all r, € RnCm3, v), PiT, € Rncmi, v) and P,T, €

Rncmé, v). Hence from the definition of F_,, if r_ is an accepting

3 3
m%-run on v then either P T4 is an accepting mﬁ-run on v, or p2r3 is
an accepting m&-run on v, or both. Hence TCﬁS) c TCﬂ&) U TCﬂE).

We now show closure under intersection. Define 2-f.a. mz = < SA’

¥, M, (310’ 5507 1), F4 >, where S4 = Sl X 32 X {1, 2}, for all (Sl’
Sys i) € 54, and all o € T, MA((SI’ S, i), o) = {(Sf > S£ » J) € S, l
sf € Ml(sl’ o) & s£ € Mz(sz, o) & (i = j iff s; ¢ Fi)’ and F4 = S1 X
F, X (2).

Note that if Mﬁ and m& are deterministic then.mz is determimnistic.

Suppose v € TCH&)IW TCﬂE). Hence, there exist r, € RnCﬂ&, v) and
r, € RnCﬂ&, v) such that In(rl) n F1 # ¢ and In(rz) n F2 # ¢. From
the definition of Mﬁ’
and PoT, = T, (in fact, r

there exists T, € Rncma, v) such that plr4 = r1

4 is unique). Suppose there exists a T € JN

such that for all t = T, r4(t) ¢ FA' But there exist tl, tys t£ such

< < < t! .
that 71 < t t t!, rl(tl) €F,, rz(tz) € Fz, and r2(t2,) € F2

2 1 1

Clearly from the definition of M,, for some t, t2 <t < t£ , r4(t) €

F Hence, mo such T exists, and In(ra) n F4 # ¢. Hence, T, is an

4
accepting Nz-run onv and v € TCHZ).
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Suppose v € TCﬂZ). Then there exists T, € Rncnz, v) such that

In(ra) n F4 # ¢. Hence, there exist to < t1 < ..., such that for

all i €p, r4(ti) € F4. By the definition of Ml;’ plr4 € Rn(‘.ml, v)

and PyTy, € RnCHE, v). We have immediately from the definition of F4,

that for all i €N, p2r4(t.) € F . Hence, In(p2r4) n F, # ¢, and

v € T(‘JJE). By the definition of M4

1 1] s
that tg <ty <t <t1 ..., and for all i € /¥, PiT,

In(pirA) n Fy # ¢, and v € TCHH). Hence, v € TCDH) n TCﬂE).
Therefore, TCBZ) = TCM&) n Tcmé). [:]

Theorem 13: 2'-f.a., 3-f.a., 4-f.a., 2'C-f.a., 3C-f.a., and 4C-f.a. are

, there exist td < tf < ..., such

(t ) € F,. Hemce,

all closed under intersection and union.

Proof: Given 2'-f.a.'s (3-f.a.'s, 2'C-f.a.'s, 3C-f.a.'s) m& = Sl’ z,
Ml’ 10° ‘f > andim 2, Z, MZ’ 320, ?2 >,

Define 2'~f.a. (3-f.a., 2'C-f.a., 3C-f.a., respectively) ms =< S1 X

%1 & p2F € 32}. Clearly, TCHS) = Tcmi)IW Tcmi).

Define 2'~f.a. (3-f.a., 2'C-f.a., 3C-f.a., respectively) m2 =< S1 X

1 10° 320), ?4 >, where 54 = {F & (S1 X Sz) I plF € 31

or p2F € ?2}. As in Theorems 10, 11, and 12 after an appeal to Lemmas 1

), F4 >, where ¥, = (F < (S, X 5,) | p,F €

SZ;?Z’ M, X M2, (s
and 2, it is clear that T(WZ) = Tcmi) U Tcmz).
Given 4~f.a.'s (4C-f.a.'s) M% =< SS’ PR MS’ 8502 ((RSi’ G

6> %60° (Rgy> C63)) jam >

Si))ish >

and M

L = <S¢ T, M
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First we show 4~-f.a. and 4C-f.a. are closed under union. Define

4-f,a, (4C-f.a., respectively) mg =< 8_X S6’ PN M5 X M6’ (SSO’ 860)’

5
Q7 >, where Q7 = ((R7k, G7k))ks 1° and for a2ll 0 < k < n, R7k =
R5k X 36 and G7k = GSk X S6’ and for all ml < k"< mwhmtl, R7k = 85 X
R . =
6 (ken-1) 2™ Gy = S5 X Coeno1y

Suppose v € Tcm7). Then there exists r, € RnCHs, v) such that

1) for some i < n, In(plr YN R_, = ¢ and In(plr yn G # ¢, or

51
2) for some j < m, In(p2r7) N R = ¢ and In(p2r7) n G ., # ¢, or both.
Since Py¥5 € Rncms, v) and Pyt € Rncmé, v), in case 1) v € Tdm5) and
in case 2) v € Tcmg). Hence, v € TCWS) ] Tcm%).

Suppose v € Tcms). Then there exists T, € Rncms, v) such that
for some i < m, In(r )yn Rey = ¢ and In(r y N G # ¢. By Lemmas 1
and 2,,Rncm6, v) # ¢, and hence, there exists r, € RnCﬂs, v) such that
Pty = To Clearly, In(r7) N (R5i X S6) = ¢ and In(r7) n (GSi X S6) # b,
Hence, r, is an accepting m%-run onv, and v € TCﬁS). Similarly, if
v € TCﬂ%), then v € TCW7).

Therefore, TCH%) = Tcms) U TCW%).

Finally, we show 4-f.a. and 4C-f.a. are closed under intersection.
Our construction of m% such that TCﬁ%) = Tcms) N TCW%) is somewhat
complicated. However, it is merely an obvious extension of the con-
struction used in Theorem 12 to show that 2-f.a. are closed under
intersection, and we trust the reader will easily grasp the simple
motivating motions behind our regrettably complex machinery. The state
set of m% will be S, = S, X S_ X B, where B = {B I B is an (ntl) by

8 5 6

1 (3 = - - -
(m+1) matrix, B (bij)iSn, j<m ? each of whose entries is either 5

or 6, b, € (5, 6}}.
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Q

Define 4-f.a. (4C-f.a., respectively) m% =< 58’ z, Mg, Sgys (g >,

where SS is as above, for all (SS’ Sg> B) € SS’ and all o € %,
M8((s5, Sg> B), o) = [(ss' , 8', B") E SS l ss' € MS(SS’ o) & s6' €
M6(s6, o) & (bij' = bij iff Sy ¢ Gsy and sy ¢ G6J.)}, Sgo = (SSO’
ij ij
Se0? BO), where for all i <n, j < m, b(i)j = 5; and 98 = ((RSij’ GSij))iSn, j<m’
where RSij = RSi X S6 x BU 85 X R6j X B, and GSij = 55 X G6§ X

(B€ B | by = 6}

Note that if EUPS and iIR6 are deterministic then 97{8 is deterministic.

Suppose v € T(‘JJ?S). Then there exists re € Rn(‘.ms, v) such that
0.

for some i < n, and some j < m, In(r8) nRrR = ¢ and In(r8) ne

81 81j
Clearly from the definitions of M8 and (28, we have plr8 € Rn(‘JJ?S, v),

In(plrs) n RSi = ¢, P,org € Rn(‘.m6, v), and In(p2r8) N R6j = ¢. There

. < , . .

exist £, < t; <¢t, ..., such that for all i €Jy, r8(ti) € G8ij From

the definition of Qg, for all i e, P,rg(t,) € Ggy- From the definition
t i o<t ' ' < '

of M8’ here exist to t1 < t2 , such that t0 t0 < t1 < t1 s

and for all i €y, p1r8(ti') € GSi' Hemce, In(plrs) n GSi # ¢ and
In(p2r8) n Gﬁj # ¢. Hence, P1?8 is an accepting‘m%-run on v and P,Tg
is an accepting 3516-run on v. Therefore; v-€ T(ﬁﬁs) n T(!D%)-
Suppose v € T(‘mS) n T(YH?G). Then there exist Ty € Rn(‘ms, v) and
T, € Rn(Em6, v) such that for some i < n, and some j < m, In(rs) n R5:,L = ¢,

In(rs) n GSi £ 0, In(r6) NR,, =¢, and In(r6) n G6j # ¢. Clearly,

6]
there exists a (unique, in fact) re € Rn(‘.ms, v) such that PiTg = Tg

and Pyfg = T Clearly, In(rs) n RSi' = @.

6° j
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Suppose there exists a T € /N such that for all t > T, rg(t) ¢ Ggys-

i ! < < t'! d

There exist tos t6, ty such that T < te < tg <t/ , an r5(t5) Q“GSi’
1] . . .

6’ and r6(t6 ) € G6j' But then from the definition of M8’

there must exist t such that t, < t < t, and r_(t) € G_.,; and this
6 6 8 8ij

contradicts our assumption about T. Thus no such T exists &nd In(rl) n

r6(t6) € G

8 is an accepting m%-run on V.

Therefore, TCD%) = TCms) N Tcﬁ%)- [:]

G8ij # ¢. Hence, r

For mondeterministic finite automata there is an obvious altermnative

construction of a "union machine'" as follows.

> and EIRZ' =< S2, Z’ Mz’ ] >,

. ] .
Given tables m& =< Sl’ P3N Ml’ s 20

10

Define n-table M' = < S3, Y, M >, where S

3 3 S39 3 30> M3 |
(S1 U SZ) = M1 U M2, and for all ¢ € T, M3(s30, o) = Ml(slo’ o) U

= S1 U 82 {s

MZ(SZO’ o).

Clearly, for all v € Zw, Rncm5 , V) = (r3:ﬂ4 - S3 I r3(0) = 84, &
(there exists r, € Rncmf » v) such that for all t > 0, r3(t) = rl(t),
or there exists r, € Rncmg s v) such that for all t > 0, r3(t) = rz(t))}.
Using this observation the correctness of each of the following con-
structions is jmmediate.

Given l-f.a.'s (1'-f.a.'s, 2-f.a.'s, 1C-f.a.'s, 1'C-f.a., 2C-f.a.'s)
2 SZO’ F2 >, where
> = m%’. Define 1-n.f.a.

M =<S;, L, M

< Sl’ 2, Ml’ s

1’ S10° F1 > and m& =< SZ’ ¥, M
> = WHY and < §,, %,

10 20 &0 Mys 85,

(1'-n.f.a., 2-n.f.a., 1C-n.f.a., 1'C-n.f.a., 2C-n.f.a., respectively)

ﬂs =< S3, 2y M3, S30 F3 >, where for m% a l-n.f.a. or a 1C-n.f.a,
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F, = F. UF ifsofF

3 1 Y Fpo 1 and s, € F

1 0 2

{830], else,

for ms a 1'-n.f.a. or a 1'C-n.f.a.

F, = F1 U F2 U {530}, if 510 € F1 and S50 € F2

) . else,

and for mg a 2-n.f.a. or a 2C~-n.f.a. F3 =Fy U F2- TCWS) = TCﬁH) U
Tcmz).

Given 2'-f.a.'s (3-f.a.'s, 2'C-f.a.'s, 3C-f.a.'s) m& =< Sl’ z,

-— <
Ml, Slo, ?1 > and Emz =< 32, P MZ, 820, 32 >, where SZ, I Mz,
> =M < =M. i '-n.f.a. ~-N.r.a.
SZO 9}?2 and Sl, P Ml, S]_0 > .‘”?1 Define 2'-n.f.a. (3-n.f.a.,

2'C-nifsa., 3C-n.f.a., respectively) Ng =< 83, z, M3, Sa0° ?3 >, where
F, = %, UF, TAL) = TW) UIAM).

Given 4-f.a.'s (4C-f.a.'s) ﬁﬁ = < Sl’ z, Ml’ $10° ((Rli’ Gli))isn >,
and Wy = < Sy, T, Mys 550, ((Rygs §pp)) 5 > vhere < §p, %, My, 8y > =

MH' and < 52’ P MZ’ s, >= wg . Define 4-n.f.a. (4C-n.f.a., respectively)

20
= < =
m% S3, 7, M3, s30, 1 >, where (O ((Riﬂ’ GlO)’ eees (Rlnf G1 ),

n
(Rygs Cpp)s +vs Ryrs Gp3). TEL) = TEY) U TEL).

Theorem 14: 3-d.f.a. are closed under complementation.

Proof: Given 3-d.f.a. M =<8, ¥, M, 84, % >. Define 3-d.f.a. ﬂ& =
<Ss, %, M, Sg» P(S)-F >.
Because T and mﬁ are deterministic and have exactly the same run

o
on each v € ¥ , clearly we have (dr € Rn(I, v)) (In(r) € F) iff mot

(Hr1 € Rncmi, v))(In(rl) € P(S)-F). Therefore, TCﬁH) = Zw—TCHD. {:]
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SECTION VI COMPARISONS OF MODELS

In a nmatural intuitive sense j-f.a. are more powerful than i-f.a.
(i~-f.a. are incomparable in power to j-f.a.) when j-f.a. D i-f.a.

(when (i-f.a. # j-f.a. & i-f.a. ¢ j-f.a.), respectively). In this
intuitive semse, this section deals with the comparison of models.

Many of the results of the form i-f.a., < j-f.a. are immediate
corollaries of the failure of i-f.a., the weaker model, to be closed
under complementation (projection), the closure of j-f.a., the stromger
model, under complementation (projection), and a simple construction
for obtaining an equivalent j-f.a. given an i-f.a. 1In fact, this is
how we proceed in most of the following. However, we do mot always
proceed in the above manner. For example, we show 2-d.f.a. © 2-n.f.a.
by showing 2-n.f.a. = 3-n.f,a. and 2-d.f.a. C 3-n.f.a. (2-d.f.a. C
2-n.f.a., also, follows from 2-d.f.a. are not closed under projection,
and 2-n.f.a. are closed under projection).

As is usual with negative results, the negative results in this
section (for exsmple, 2-d.f.a. are not closed complementation) are
harder to prove than the positive results of the last section (for
example, 2-~d.f.a. are closed under union). Perhaps this is because
rather than explaining, for example, how to put two 2-d.f.a.'s together
into a mew "union" machine, we must first find a task which no 2-d.f.a.
can do, and then we must explain why mno trick (no matter how brilliant)

can devise a 2~d.f.a, which does the task. Hence, these negative results
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Lemma 9: 2-n.f.a. € 3-d.f.a., 2'-n.f.a. < 3-d.f.a.

Proof: Given 2-n.f.a. M=<8§, ¥, M, s,, F>, Define 3-n.f.a. EUtl =

0,

<S, T, M, s, % > where ¥ = (F, <5 l F) N F#¢}. Clearly,

T(‘.Ull) =T . Hence, 2-n.f.a. € 3-n.f.a., and by Theorem 5, 2-n.f.a.
< 3-d.f.a.

Given 2'-d.f.a. 535 =< 82, z, M,, 850° 9"2 >. Define 3-d.f.a. ETS =

22 8909 9‘3 >, where ?3 = {F3 c S2

Clearly, T(‘.'ﬂs) = T(Emz). Hence, 2'-d.f,a. < 3-d.f.a. and by Theorem 3,

<8, Z, M for someF€3"2, F3§F}.

2'-n.f.a, € 3-4.f.a. D

Theorem 15: A €% is 1-d.f.a. definable iff AS = ¥° - A is 1'~d.f.a.

definable.

Proof: Given 1l-d.f.a. M=<8§, ¥, M, s,, F>. Define 1'~-d.f.a. UJLI =

0’
<S8, L, M, 8o S-F >, Given 1'-d.f.a, ﬂz =< 82, z, M2, 850° F2 >.
S.-F_ >.

Define 1-d.f.a. fma =< Sz, z, M2’ 850° S2°F,

w
For all v € ¥, I and zml have precisely the same unique run on v.

n

Hence, (dr € RnM, v)) (x(N/) N'F # ¢) 1iff not (Hr E*KﬁCﬂ&, vY) (r ()
S-F). Thérefd»re,'“T.(Wl) =2 - T

For all ¥ € &, T, and M, have precisely the same unique run on
v. Hence, (&r € Rn(M,, V))(r(/N) S F,) iff not (&r € Rnly, v))

&r(//v) n SZ-F2 # ¢). Therefore, T(‘.US) = Z&) - T(mz). D

Lemma 10: A, = 0° is mot 1l-n.f.a. definable.
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Proof: Suppose A, = 0% is defined by l-n.f.a. M=< 8, {0, 1}, M,

1
So F >. Then there exists r € Rn({}, Ow) and T €/N such that r(T) € F.
Consider OTolw.,rl [T+1] is compatible with T and OTolw. Hence,
by Lemma 1, there exists r' € Rn(Mh, OT-lw) such that r' | [T+1] =

r | [v+1]. But r'(T) = r(1) € F, and hence, 0'+1" € T(M. Contrary

W w
to assumption T does not define 0 . Therefore, 0 1is mot l-n.f.a.

O

Lema 11: A5 = (v € (0, 3 | 1 € v(W)) = 01+ {0, 13° is not 1'-nm.f.a.

definable.

definable.

Proof: Suppose Ai is defiped by 1'-n.f.a. M =<5, {0, 1}, N,

S F >, where c(8) = n.

0™1” ¢ A;. Hence, there exists r € Rn(Tl, 0n°1w) such that r(/#) <
F. c¢({0, ..., m}) > n, hence for some t1 < t2 < n, r(tl) = r(t2). Hence,
there exists r' € Rn(M, Ow) such that r' = r(0)*r(l) ...... r(tl-l)-
(r(tl) ces r(tz-l))w. Clearly r'(f§) < F, and hence, o € T . Therefore,

contrary to assumption A; is not 1'-mf.a. definable. E]

Theorem 16: 1-f.a. and 1'-f.a. are not closed under complementation,
1-f.a. amd 1'-f.a. are incomparable, l-n.f.a. C 2-d.f.a., l-n.f.a. C
2'-d.f.a., l-n.f.a. © 3-d.f.a., 1'-n.f.a. C 2-d.f.a., 1l'-n.f.a. C 2'-d.f.a.,

1'-n.f.a. € 3-d.f.a.

Proof: A = (v € {0, 13" | 1€ v(/A)) is defined by 1-d.f.a. M= < (s,

sl], {0, 13, M, 89> {sl] >, where M is given by:




77

Hence by Lemma 10, l-f.a. are mnot closed under complementation.

A1 = 0” is defined by 1'-d.f.a. mﬁ =< {so, sl], {0, 13, M, 8o
{so} >, where M is as in the diagram above. Hence, by Lemma 11,
1'-f.a. are not closed under complementation.

The remaining parts of the theorem are immediate from the above,

and Lemmas 7, 8, 10, and 11. '

%
It is interesting to note that A2 =1 Ow is neither 1-n.f.a.
definable mor 1'-n.f.a. definable; but A2 is both 2-d.f.a. definable

and 2'-d.f.a. definable.
Theorem 17: A € ﬁﬁ is 2-d.f.a. definable iff Zm-A ig 2'-d.f.a. definable.

Proof: Given 2-d.f.a. M= <S5, I, M, 84, F >. Define 2'-d.f.a. NH =
<S8, X, M, 5o {S=F} >. For all v € ZP, M and m& have precisely the
same unique run on v. Hence, (dr € Rn(@, v))(In(r) NF +#¢) iff not
(¥r € Rn(mﬁ, v)) (In(r) & (S-E)). Therefore, Tcml) = (T(mb)c.
Given 2'-d.f.a. on ZF ﬂ&, possibly with many designated subsets,
we can find (by Theorem 21) a 2'-d.f.a. mg equivalent to ﬁ& and such
that ms = < S3, 7, M3, 830 {F3} > (note that m% has only one designated
subset). Define 2-d.f.a. mk =< S3, 3 s30,

W
>, m% and ﬂk have precisely the same unique run on v. Hence, (r €

Y, M S3-F3 >, TFor all v €

N

Rncﬁg, v)) (In(r)

Therefore, T(MZ)

F3)iff not (Ir € Rn(W,, v)) (In(r) N (53-F3) # ¢).

(T@N€
™ O
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The reader may be tempted to say that closure of the family of 2-d.f.a.
definable sets under projection is a corollary of Theorem 17, reasoning
as follows.

If set A is 2-d.f.a. definable, them set A* is 2'-d.f.a. definable.
Hence, pl(Ac) is 2'-d.f.a. definable (by Theorems 3 and 8). Hence,
(pl(Ac))c is 2-d.f.a. definable. But, in gemeral, (pl(Ac))c # pl((Ac)c) =
plA, because complementation and projection on regular events and on
w-regular events, in general, and .on 2-d.f.a. definable sets, in par+<
ticular, do not commute.

We will see that the family of 2-d.f.a. definable sets is, in fact,

not closed under projection (Theorem 19).

Lemma 12: A3 = {v € {0, 1}w ‘ 1¢ In(v)} = {0, 1}*°0w is not 2-d.f.a.

definable.

Proof: Suppose A3 is defined by 2-d.f.a. M= < S, {0, 1, M, So° F >,

where c(F) k.

Let v0

unique r € Rn(1h, vo), we have In(ro) NF+¢. Let To be the least

W
0 . Since A € Ag, A € TC(M. Therefore, for the

t € [N such that ro(t) € F.

C e w . . . . t
For i , define Vi1’ T Ti+1 inductively as follows Le

w .
v = vi(O)'vi(l) cee vi(Ti-l)'l 0. Let T be the unique M-run

i+l

on v, Since vi+1z€ AB; In(ri+1) N F +¢. Therefore, we can

+1°
be t >
let Tip1 D€ he least t Ty such that ri+1(t) €F.
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Using Lemma 1 we can show by induction that for all i < k+1, we have
T, +l] = . i 2-n.f.a.'s.
Tl l [ i ] r, | [Ti+1] (Note that Lemma 1 is mot true for 2-n.f.a.'s
This is an essential use of M's determinism.)
Hence, for all i < k+l, we have rk+1(Ti) = ri(Ti) € F. Since

c(F) = k, there exist h, j such that h < j < k+1 and rk+1(Th) = rk+1(Tj)'

We have the picture:

time: 0 1..... Tl-l Tl
Vit 0 ‘ 0..... 0 1 ....
reart fk*1QQ5/rk+i(l)T.u.f. :k+1(T1-1) rk+1(71) €F ...
time: T,~1

1 Ty Tkt

W
RE 0 1 0.... 1 0
e’ T (TiTH Mg () €F () €F
w

let v = vk+1(0) vee k+1(Th-1)(vk+1('rh) s Vk+1(Tj-1)) . Letr =

w
rk+1(0) ces rk+1(Th-l)((rk+1(Th) ces rk+1(Tj-1)) . Clearly, r € Ran(M, v)

rk+1(Th) € F. Hence, In(r) N F # ¢, and r is an accepting

and r(Th)

M-run on v. But v(Th) = vk+1(7h) = 1, hence, 1 € In(v), and v ¢ A3-
Therefore, contrary to our assumption, A3 is not 2-d.f.a. defina:éf.
As we noted the preceding proof makes essentail use of the deter-

minism of machine M. In fact, Lemma 12 is not true for 2-n.f.a.'s. A3

is defined by the 2-n.f.a. M= < {so, 15 sz}, {0, 1), M, Y {sl] >,

where M is given by: 0 1 0
0
1
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*
Lemma 13: AS = (v € (0, 1}” | 1€ In(w)} = (0 «1)” is not 2'-n.f.a.
definable.

(o4

Proof: Suppose A3

is defined by 2'-n.f.a. M=< S, {0, 1}, M, Sg° F >,
where c(S) = n.

v = (On-l)w € A3, and hence, v € T(M . Therefore, there exists
r € Rn@, v) such that for some F € %, In(r) & F. Then there exists
T € N such that for all t = T, we have r(t) € F. Choose any k > T
such that v(k) = 1. Then v(k+D)ev(k+2) ... v(k+ntl) = On, and for all

t, k <t < k+nt2, we have r(t) € F. Now F € S, and hence, c¢(F) < n

t, such that k < t, < t_ < k+nt+2, and

and there must exist tl’ 9 1 2

r(tl) = r(tz).

We have the picture:

time: k-1 k k+l .... kintl k+mt2
v 0 1 0 . 0 1
r: - r(k) r (k+1) cees ¥ fk+m2)

NG J
“*Y’”*

< [ J
k<t1 tzsk+n+2

Let v; = v(0) ... v(t;-1)*(v(t))... v(tz-l))“. Let r, = r(0) ...

1 1

r(t -1 (x(t) ... r(tz-l))“. Clearly, r; € Ra(W, v;) and In(r,) € In(r) < F.

. , c
Hence, ry is an accepting Trun on v But vy € A,, and hence, contrary

1°

: c . .
to our assumption, A3 is not 2'-n.f.a. definable,.

.
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Theorem 18: 2-d.f.a. and 2'-f.a. are mot closed under complementationm,
2-d.f.a. and 2'-f.a. are incomparable, 2-d.f.a. C 3-d.f.a., 2-d.f.a. C

2-n.f.a., 2'-n.f.a. C 3-d.f.a., and 2'-n.f.a. C 2-n.f.a.

c * w ,
Proof: A3 = (0 *1) is defined by 2-d.f.a. M= < {so, sl}, {o, 13, M,
84? {sl] >, where M is given by:
0
o) 1

Hence by Lemma 12, 2-d.f.a. are not closed under complementatiom.

Ay = (0, 170" is defined by 2'-d.f.a. ® = < (s, 57}, (0, 1],
M, Sg° {[so}} >, where M is given by the state tramsition diagram above.
Hence, by Lemma 13, 2'-f.a. are mot closed under complementation.

The remaining parts of the theorem are immediate from the above,

Lemmas 9, 12, and 13, and Theorems 4 and 5. 0O

Theorem 19: 2-d.f.a. are not closed under projection.

Proof: Let A, = {(0, 1), (1, 0), (1, 1)17% (0, 0)“. A, is defined by

2-d.f.a. M= < {so, Sq> sz}, {o, 1}2, M, 80° {sl} >, where M is given by:

%
p,(8,) = (0, 1) " = A,. By Lemma 12, A, is mot 2-d.f.a. defimable,

and hence, 2-d.f.a. are mot closed under projection. [:]

Coincidentally, pl(A4) = p2(A4). This is mot essential.
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Remark 1: Let Ay = (v € (0, J* | v(0) = 14 1 ¢ In(v) and v(0) = 0 =
1€t} =1+ (0, 70" U 00" 1. A, is neither 2-d.f.a.

definable mor 2'-n.f.a. definable; but A5 is 3-d.f.a. definable.

Proof of Remark 1: Suppose A5 is defined by 2-d.f.a. M=<5S, {0, 1},

M, s,, F > Define 2-d.f.a. ﬂ& =< Sl’ {o, 13, Ml’ 810° F1 >, where

0,
s, =S U (s},

Ml(slo’ 0) = (slo}, Ml(slo’ 1) = M(so, 1), and F1 =F U {slo].

for all s € §, and all o € {0, 1}, Ml(s, o) = M(s, 0),

Let vy be any {0, l}w-sequence.

Case 1: 1¢ Vl(ﬂV)-

Let T be the least t such that Vl(t) =1, let v = Vl(T)'Vl(T+1)-
vl(T+2) ce vl(T+n) ... « Let r be the unique Trun on v.

Clearly, for the unique m&—run r, onv, we have for all t < T,

rl(t) = 849° and for all k > 0, r {™k) = r(k). Hence, vy € T(MH) iff

I'é
1\
vEeETE iff 1 ¢ In(v) iff 1 & In(vl).

Case 2: 1 ¢ vl(ﬂV).
Th = 0" and the uni € R 0%y 1 =s’, Weh
en v, = an e unique r, ncmi, ) is r; = S4p° e have
S10 € F1 and hence, vy € TCHH). Clearly, 1 § In(vl). This completes
Case 2.
Therefore, TER) = (v € {0, 1Y 1¢ ) = A, But by Lemma 12,
A, is mot 2-d.f.a. definable and we have a contradiction. Hence, contrary

3

to our assumption, A5 is not 2-d.f.a. definable.
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Suppose A_ is defined by 2'-n.f.a. ME =< 52, {0, 1, M2’ 50° ?2 >,

5
i ' =< > =

Define 2'-n.f.a. m% S3, (o, 13, Mys S30° %3 , where S3 S, U {330},

for all s € SZ’ and all o € {0, 1}, M3(s, o) = Mz(s, o), M3(s30, 1) =

{830}, M3(s30, 0) = MZ(SZO’ 0), and ?3 = ?2 U {{330}}.

Let Vg be any {0, l}w-sequence.

Case 1: 0 € V3(ﬂV).

Let T be the least t such that v3(t) = 0. Let v, = V3(T)'V3(T+1)'
V3(T+2) v v3(T+n) .e. . Clearly, for each T, € RnCﬁ%, v3) there exists
an r, € Rncmé, v2) such that for all k > 0, r3(T+k) = rz(k); and for
each r, € Rncmé, v2) there exists an r3 € Rncmé, v3) such that for all
k > 0, rz(k) = r3(T+k). Hence, there exists r, € Rncm3, v3§ such that
In(r3) CFEF

3

iff there exists r, € RnCm?, v2) such that Ih(rz) €FC7F
Hence, v, € TCW3) iff v, € TCEE) iff 176 In(v2) iff 1€ In(v3) R

Case 2: 0 ¢ V3(AW3-

W . . oW .
Then vy = 17, amd the unique m% run on vy is 1, = 85, . Since

{s30} € ?3, Vg € TCHS). This completes Case 2.
Therefore, TCH%) = {v € {0, 1}w [ 1€ In(v)} = A§° But by Lemma 13

c . . s s
A3 is not 2'-n.f.a. definable, and we have a contradiction. Hence,

contrary to our assumption, A5 is not 2'~-mn.f.a. defimable.

A5 is defined by 3-d.f.a. MZ =< {.o, $1- 85 S5 34], {0, 1, Mﬁ,

Sg> [{sl}, {53, 84}’ {SB}} >, where MZ is given by:
0
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0% 1e00, 1Y = (veo, Y11 vy

1?\‘ . o(})

(0, 170" =(vero, 3| 1¢ ()

0 DY =(veqo, 1Y 1€ )

100, 11 0" U 0.0 -1)"

FIGURE 3

= (v € (0, 1°! (v(0)

J

& (v(0) =0 1

—

~

=1-+1¢ Inv))

In(v))}
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SECTION VIII RESTRICTING THE w-AUTOMATA MODELS

Sometimes the most natural, general definition of an automaton model
may be restricted so as to yield a model which is easier to handle for
some proofs, and which is still as powerful as the unrestricted, original
model (i.e., the same sets of Zw-sequences are definable using either
model). We have already seen two examples of this in Lemmas 3 and 4,
which show that certain convenient restrictions may be placed on the
initial state and the state transition functions of 1-f.a.'s and 1'-f.a.'s.

In fact, Lemma 3 yields the following.

Theorem 20: Given a 1-n.f.a. (1-d.f.a.) we can determine an equivalent

l-n.f.a. (l-d.f.a., respectively) with a single designated state.
Proof: Immediate from Lemma 3. 0

If we didn't restrict state transition functioms to be mappings
M: S X ¥ -+ P(S) - {¢}, then Theorem 20 would hold for 1-d.f.a.'s, but
not for l-n.f.a.'s.
Theorem 20 does mot hold for 1'-f.a, 'S ot it is trivial to .shew
that A8 = (Ol)w is 1'-d.f,a. definable, but that A8 is not definable
by any 1'-n.f.a. with only one designatad state.
It is, also, quite easy to show that A8 is both 2'=d.f.a. and 3-d.f.a.
definable, but that A8 is not definable by any 2'-n.f.a. or 3-n.f.a. all

of whose designated subsets are singleton sets.
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It is easy to show that A7 = Ow U 1w is both 2-d.f.a. and 3-d.f.a.

definable, but that A_ is not definable by any 2-n.f.a. (3-n.f.a.) with

7
only one designated state (subset, respectively).
Theorem 21: Given a 2'-n.f.a. (2'-d.f.a.) we can determine an equivalent

2'en.f.a. (2'-d.f.a., respectively) which has only one designated subset.

Proof: Given 2'-f.a, M=< 8§, T, M, 8o {Fl, coes Fk} >, TFor each

1<i<k, define 2'-f.a. m& =<8, &, M, 89>

TCDH) u...U TCﬂk). Hence, the following suffices.

{Fi] >. Clearly, T(I) =

s [ ' - =<
Given 2'-f.a.'s M& < Sl’ =, Ml’ 810’ (Fl} > and m5 Sz, z, M2,
' i
5o {F2 }. >. Define 2'-n.f.a. ms < S1 U 82 U {830}, x, M3, S30°
{Fl U Fz} >, where for all o € T, M3(s30, ? ¥ Ml(slo’ o) U M2(s20, o),
and M3 l S1 U 82 = Ml U M2. Note that this is the same comstruction
presented immediately after the proof of Theorem 13,
w

Clearly, for all v € ¥, RnCBS, v) = {r3: /N *'83 l r3(0) = 54 &
(there exists r, € RnCHE, v) such that for all t > 0, r3(t) = rz(t),
or there exists r € Rncml, v) such that for all t > O, rl(t) = r3(t))}.
Hence, there exists r, € Rn(‘m3, v) such that In(rl) c I{FI LFFZQJ E.ff i
€

there exists r, € Rn(‘ml, v) such that In(rl) € F,, or there exists r

1 2

Rn(,, v) such that In(rz) cF Therefore, TCHS) = Tcmi) U TCﬂ&)-

2°
M% has only one designated subset. Hence, this completes the proof
for 2'-n.f.a.'s.
Using the construction in the proof of Theorem 3, from 2'-n.f.a. ﬂ%
we can construct an equivalent 2'-d.f.a. ﬂz which has only one designated
subset. []
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The direct construction of a 2'-d.f.a. with only one designated sub-
set from a 2'-d.f.a, with two designated subsets is complicated. In
the preceding proof we avoided this complicated comstruction by the
judicious use of previous, simpler comstructionms.

The more complicated the model is the more ways there are to restrict
it. Indeed, the 4-f.a. model may be restricted in several useful ways.
For example, the following three remarks are immediate from the definition

of 4-accepting.

. 4= - = >
Remark 2: 4-f,a. (4C-f.a.) M=<S, &, M, Sg* ((Ri’ Gi))iSn is

equivalent to 4-f.a. (4C-f.a., respectively) ﬂ& =<8, ¥, M, 8o°

((Rys (G;-RD)),_ >

Remark 3: Given 4-f.a. (4C-f.a.) M=<S8, T, M, 8o ((Ri’ Gi))iSn >,

For each i < n, defimne 4~f.a. (4C-f.a., respectively) m& =<8, %, M,

8o° ((Ri’ Gi)) >, Clearly, TN = TCHh) U...U Tcmn).

Remark 4: Given 4-f.a. (4C-f.a.) M=<S§, T, M, s ((R, G)) >, where

0’

G = {sl, ceey 8 Define 4-f.a. (4C-f.a., respectively) m& =<8, I,

k}'
M, 80> ((R, {si}))1sisk >. Clearly, T(I) = TCﬂH).
Theorem 22: Given any 4-n.f.a. we can determine an equivalent 4-n.f.a.

with subset pairs Q = ((¢, G)).

Proof: Given a 4-n.f.a. M on Zw by Theorem 6 (4-f.a. = 3-f.a.), and
Theorem 4 (2-n.f.a. = 3-n.f.a.), we can determine an equivalent 2-n.f.a.
= 3 M ’ . “T.IL.4a. =<
mﬁ < S1 7, 1’ S10 F1 > | Then 4-n.f.a ﬂ& 51, I, M
Y > ia agui e Con o
(¢, Fl)) is equivalent to wﬁ and hence to M. 0

1° %10°
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Given a 4-n.f.a. we can not in general find an equivalent 4-n.f.a.
with subset pairs Q = ((¢, {£f})). For example, it is easily shown
that the set A7 = o” U 1 is not defined by any 4-n.f.a. with subset
pairs Q = ((¢, (£})).

Given a 4-d.f.a. we can not in general find an equivalent 4~-d.f.a.
with subset pairs Q = ((¢, G)). In fact, the set A3 = {v € {0, l}wl

1 ¢ In(v)} is 4-d.f.a. definable, but A, is not defined by any 4-d.f.a.

3
with subset pairs Q = (($, G)), for if it were, then we would

immediately have a 2-d.f.a. defining A3, and this would contradict

Lemma 12. Similarly, we see that Theorem 22 does not hold for 4C-n.f.a.'s,
for if A, were defined by some 4C-n.f.a. with pairs Q = ((¢, G)),

then we would immediately have a 2C-n.f.a. defining A3, but A3 is not

2C-n.f.a. definable (by Lemma 12 and Theorem 7).

SECTION IX COMMENTS ON THE C-RUN MODELS
All of the following are quite easily shown directly by comstruction:

1) 1¢c-, 1'c-, 2'C-, and 3C-f.a. are closed under union and intersection,
2) 2C-f.,a. are closed under union,

3) 1C-n.f.a. are closed under projection,

4) 3C-d.f.a. are closed under complementation,

5) 1lc-f.a. € 2¢c-f.a., 1c-f,a. € 2'Ce«f.a., 1C-f.a. € 3C-f.a.,

6) 1'c-f.a. ¢ 2¢c-f.a., 1'C-f.a. < 2'C~f.a., 1'C-f.a. < 3C-f.a., and
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7) 2c-f.a. € 3C-f.a., 2'C-f.a. € 3C-f.a.

All of the following, which we deduce from the results in sections

4, 4.1, and 5, seem quite hard to show directly:

1) 2C-f.a. are closed under intersectionm,

2) 1'c-, 2'C-, 3C-n.f.a. are closed under'projection,

3) 2C-n.f.a. are not closed under projectiom,

4) 1c-, 1'C-, 2C-, 2'C-d.f.a. are not closed under complementation
(and hence, 1C-n.f.a. < 2C-d.f.a., 1C-n.f.a. © 2'C~d.f.a., ...
eees, 2'C-n.f.a. © 3C-d.f.,a.), and

5) 4C-f.a. = 3C-f.a.

There 1s a well known construction in conventiomal finite automata
theory which, given any nondeterministic automaton on finite strings
(n.f.a.f.), determines an equivalent n.f.a.f. with precisely one accepting
state. From this same construction it easily follows that corresponding
to any 1C-n.f.a. (2C-n.f.a.) there exists an equivalent 1C-n.f.a.
(2C-n.f.a., respectively) with precisely one designated state; that
corresponding to any 1'C-n.f.a. there exists an equivalent 1'C-n.f.a.
with precisely two designated states ome of which is the initial state;
and that corresponding to any 2'C-mn.f.a. there exists an equivalent
2'C-n.f.a. each of whose designated subsets is a singleton set.

I suspect but have mot proven:
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1) there is a set which is 1C-d.f.a., 1'C-d.f.a., and 2C-d.f.a. definable
which is not defined by any 1C-d.f.a., 1'C-d.f.a., or 2C-d.f.a. with
only one designated state,

2) there is a set which is both 2'C-d.f.a. and 3C-d.f,a. definable
which is not defined by amy 2'-d.f.a. or 3-d.f.a. all of whose
designated subsets are singleton sets,

3) there is a set which is both 2'-d.f.a. and 3-d.f.a. definable, which
is not defined by any 2'-n.f.a. or 3-n.f.a. with only one designated

subset.

SECTION X w~REGULARITY
The following remark is rather obvious and we state it without proof.

Remark 5: A < Zw is 1-f.a. definable iff for some regular event o &
2*, A= a-Zw.
We have characterized 1'-f.,a., 2-d.f.a., and 2'~f.a. definable sets
in similar ways. Because these characterizations are much more complicated
and seem to be of no real value, we won't present them hizres
The set of 2-n.f.a. (3-n.f.a., 3-d.f.a., etc.) definable sets is

elegantly characterized as the set of w-regular events as we mow show.
o
Lemma 16: If AS Y is an w-regular event, them A is 2-n.f.a. definable.

Proof: By Theorem 12 the family of 2-n,f.a. definable sets is closed
w
under union. Hence, it suffices to show that the w-regular event aB

is 2-n.f.a. definable.
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%*
By the definition of w-regular, ¢ £ ¥ and B £ Z+ are regular
events. Hence, there exist n.f.a.f.'s m% =< Sa, z, Md, $,0° (fo) >

and m% = < 8 T, Mg, S0 {fB} > such that T(R) = o and Tcmb) = B.

w
Using MB and M we construct a 2-n.f.a. defining op as follows.

B
Define 2-n.f.a. M= <8, ¥, M, S40° {sp} >, where S = Sa U SB U {sp},

for all s € Sa - [fd}, and all o € &, M(s, 0) = Ma(s, o), M(fa’ o) =

Ma(fa’ o) U MB(SBO’ o), for all s € SB, and all ¢ € ¥, M(s, O) 2 MB(S, o)
and if fB € HB(S, o) then sp € M(s, 0); and for all o € %, M(sp, g) =
M(SBO’ ag).

For example, a partial state transition diagram of an M obtained

by the above construction is shown in Figure 4,

m

Transitions added to M% and M, in constructing M appear as dashed

B

lines.

FIGURE &
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W
Suppose v € of . Then there exist to < t:1 < t2 ..., such that w =

(v(0) ... v(t5-1)) € o, and for all i €M, y, = (v(t,) v(t+1) ...

v( -1) € B. Hence, there exists r € Rn(EU?a, w) such that r(to) = fa,

ti+1
and for each i € J§, there exists r, € RnCmb, yi) such that ri(ti+1-ti) =
fB. Hence, from the definition of M, there exists r € Rn(M, v) such
that r(to) = fd, and for all i > 0, r(ti) = sp. Therefore, sp € In(r)
and r is an accepting Trun on v. Hence, v € T(IH.

Suppose v € T(M). Then there exists r € Rn(M, v) such that sp €
In(r). Hence, there exist ty < t2 < t3 < ..., such that for all i > 0,

we have r(ti) = sp. From the definition of M there must be a tO < t1

such that r(to) = fa. Hence, we have:

(v(0) ... v(to-l)) € o, and for all 1 € /A,

(V(ti) P v(ti+1-1)) € B. Therefore, v € dﬁ”.

O

The above proof with trivial modifications suffices to show that
3-n.f.a. 2 w-regular. In fact, a 3-n.f.a. defining dBw (as above)

isM=<8, I, M, s F >, where S, M, s , are as above and % =

a0’ o0

FES|s €F).
( | s, €W
W
lemma 17: If A <% is 2-n.f.a. definable, then A is an W-regular event.

Proof: Given 2-n.f.a. M=<35, T, M, 8q° {sl, cees sk} >, For each
1 <i <k, define 2-n.f.a, m& =<8, ¥, M, 84> [si} >, Clearly, T(M) =

Tcmi) u... U TCH&). Since w-regular events are closed under union,

the following suffices,
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Given 2-n.f.a. M=< 8, T, M, 8g> {sl} >, Define n.f.a.f.'s

fma =<8, &, M, 84 [sl} >, and iUtB =<8, I, M, 8,5 {sl] >, Let T(‘.ma) =

o and T(!mB) - {A} = B. Clearly, it will suffice to show that T(M) =
w
op .

Suppose v € TM). Then there exists r € Rn(M, v) such that 8y €

In(r). Hemce, there exist £ <t < t2 < ..., such that for all i €4,

r(ti) =g . Letw=v(0) v(l) ... v(to-l), and for all i Eyy, let

1
v(ti)'v(ti+1) ... v(t

Y.

i 1). Hemce, v =w'y0'y1 yn ees o Let

i+1”

r(0)r(l) ... r(to), and for all i €z, let ri = r(ti) r(ti+1)

r
o

r(ti+1)' We have the picture:

w: v(0) v(l) ... v(to-l)
r,  t(0) = s r(l) «.o..... r(t)=s;
Yo v(t) .. v(t;-1)
gt T(E) =8y eiiiinns r(t,)
vy v(ti) ..... v(ti+1-1)
T r(ti) = Sjerecniiiacns r(ti+1) =5
Yi+1 ' ' v(t

i+l

Ti+1 ool =8y
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Clearly, r, is an accepting W%rrun onw, and for all i €/, r,
is an accepting ﬂ%-run ony,. Hence, w € &, and for all i €y, Y € B.
Therefore, v € aﬁn.

Suppose v € an. Then there exist t0 < t1 < t2 < ..., such that
v(0)=v(1l) ... v(to-l) € o, and for all i € W, v(ti)'v(ti+1) v v(ti+1-1)
€B. Letw=v(O) ... v(to-l), and for all i €, v = v(ti) ces v(ti+1-1).
There exists r an accepting N%;run on w, and for all i € /f, there exist
r; an accepting m%-run ony,. From the definitions of m& and T, we

B
= = = -t -
have rd(O) 89> rd(to) 51> and for all i €4, ri(O) 84 and ri(ti+1 i)

5y We have the picture:
w: v(0) v(l) ... v(to-l)
T ra(O) = 8 ra(l) ra(to) =5,
yo: v(to) cee v(to-l)
Ty’ rO(O) = 8) eececaenn ro(tl-to) =5
Yi-1° v(ti-l)
T gt e ri-l(ti-ti-l) =8
Vi v(ty) vt
r.: ri(O) = s1 ........... r, (t +1-ti) s1
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Hence, there exists r ¢ Rn(M, v) such that r = r(y'ro-r1 . rn ..

Hence, s. € In(r), r is an

Clearly, for all i € [, r(ti) = s 1

E
accepting M-run on v, and v £ T(@M).

W
Therefore, T(M = op . E]

W
Theorem 23: A €73 is 2-n.f.a. definable iff A is an w-regular event.

Proof: TImmediate from Lemmas 16 and 17.

O



-97-

BIBLIOGRAPHY

1. Buchi, J.R. "On a decision method in restricted second order
arithmetic'", Proc. Internat'l. Cong. logic, Method. and
Philos. Sci. 1960, Stanford Umiv. Press, Stanford, Calif.,
1962, 1-11.

2. Doner, J.E. 'Decidability of the weak second-order theory of two
successors', Abstract 65T-468, Notices Amer. Math. Soc. XII,
1965, 819.

3. Hartmanis, J. and Stearns, R.E. '"Sets of numbers defined by finite
automata", Amer. Math. Monthly, Vol. 74, 1967, 539-542.

4. Landweber, L.H. 'Decision problems for w-automata", Mathematical
Systems Theory III, No. 4, 1969, 376-384.

5. McNaughton, R. 'Testing and generating infinite sequences by a
finite automaton", Info. and Control IX, 1966, 521-530.

6. Muller, D.E. "Infinite sequences and finite machines", Swit.
Circuit Theo. and Logical Design: Proc. Fourth Ann. Symp.,
New York, Imst. of Electircal and Electronic Engineers, 1963,
3-16.

7. Rabin, Michael 0. '"Automata on infinite trees and the synthesis
problem", Technical Report No. 37, Jerusalem, Israel, Hebrew
Univ., Dept. of Math., Jan, 1970.

8, memmeeme- . '"Decidability of second-order theories and automata
on infinite trees'", Trans. Amer. Math. Soc., Vol. 141, July,
1969, 1-35.

9., rmemeee- . 'Mathematical theory of automata", Proc. of Symp. in
Applied Math., Vol. 19, Providence, R.I., Amer. Math. Soc.,
1967, 153-175.

10, =ee---em- . '"Weakly definable relations and special automata',
Math. Logic and Foundations of Set Theory, Y. Bar-Hillel,
edit. Amsterdam, North-Holland, 1970, 1-23,

11. Thatcher, J.W. and Wright, J.B. '"Generalized finite automata',
Abstract 65T-469, Notices Amer. Math. Soc. XITI, 1965, 820.

12, cmccemceea- . "Generalized finite automata theory with an application
to a decision problem of second-order logic'", IBM Research
Report, RC 1713, 1966.




-98-

Appendix I

The Emptiness Problem for Finite Automata on Infinite Trees

I appreciate Charles Rackoff's extemsive help and advice in achieving

these results and in writing this presentation of them.

Definition: An f.a.t. (finite automaton on infinite trees) with subset

0’ Q >, where < S, Z, M, 89 > is an

n-S-table (as defined in Chapter I), amd Q = ((R;, 6:)) ;g BTE the

pairs is a system 0l =<8, %, M s

subset pairs.
An 0l-run on I-tree t = (V,Tx) is any mapping r: Tx -+ S such
that: 1) r(x) = SO’ 2) for all y € Tx’ (r(y0), r(yl)) € M(r(y), v(¥)).
The set of all 0l-runs on t will be denoted by Rn(OT, t).
An accepting fl-run on t = (v, Tx) is any r € Rn(07,t) such that for
all paths 1 C T s (r l m) is 4-accepting with respect to Q.
01 accepts t if there exists an accepting O{-run on t.
T(O1) = {t = (v, Tx) l 07 accepts t}.

An ({-run on finite ¥-tree e = (¥, Ex) is any OU'-run on e

(as defined in Chapter I), where Q' = <S8, &, M, 5o >, We denote
the set of all 0] -rumns on e by Rn(O7, e).

Given f.a.t. with subset pairs O{=<S, I, M, S, Q >, we wish
to determine whether or not T({{) = ¢. Consider the f.a.t. with

pairs 6.'( =<8, {0],@:‘4%, Q>,where for all s € S,‘ﬁ(‘s, 0) =

U M(s, o). Clearly, T(O1) = ¢ iff T(31) = &.
o€
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Thus the emptiness problem is reduced to the case of automata
with input alphabet {0}, and henceforth, we restrict our attention
to this case. Since for every infinite tree Tx and every finite tree
E_ there exists just ome {0}-tree (v, TX) and just ome finite {0} -tree
(;, Ex)’ we will omit mention of the valuation v and talk abour ([-runs

onT and E .
X X

Definition: If for some path 7 we have x € m and y € 7, then we denote

by [x,y] the set {w I X <w <y}. Note that when y < x, we have [x,y] = @.

Definition: Let o be a string. Let m and m be positive integers such
that n < m. Then: o{n) denotes the nth element (from the left) of o,

and o([n,m]) = {e(i) | n < i < m}.

Definition: Let E be a tree (finite or infinite) with root A, For x € E,
x = (cl Ty woe Gk) € {o, 1]*, and r: E + S, we denote the S*-sequence

r(/\.)°r(cl)°r(c'1 oy) .. r(x) by o

—_—

*
Definition: Let Ol=<S, {0}, M, s ((Ri’ Gi))isn‘>’ and let o € S

0’
have length p. We say that o is good with respect to 07 if there
exist integers h.and j such that 1) h < j <p, 2) ofj) = a(p),

3) o([h,j]) = o([j,p]), and &) there exists i < m such that

a(li,p) N R, = ¢ and o(p) € G,
Theorem 1: For any f.a.t. with subset pairs O7 =< S, {0}, M, 89
((Ry> 60D, > T(OD) # ¢ © for some finite tree E there exists a

mapping r: E + S such that
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1) r € Rn(01, E),
2)  there exist mappings J: Ft(E) - E-Ft(E) and H: Ft(E) -
E-Ft(E), such that for all x € Ft(E),
a) H(x) < J(x) < x,
b) r(I(x)) = r(x),
¢) r([H(x), J(x)]) = r([J(x), x]), and

d) for some i < mn, r([J(x), x]) N Ri = ¢ and r(x) € Gi'

Proof: Suppose T(O1) # . Then there exists r, an accepting O0l-run

on T. Clearly, for every path m C T there exists x € m, such that

- is good with respect to 01, because for every path T C T we have
b

. _ R . - ) cc =
r | 7 is 4-accepting with respect to Q ((Ri, Gi))iSn Let C {x l

a}’x is good with respect to O and for all y < x, g’y is not good
with respect to Ol}. C is a finite frontier. If we let E be the
finite tree with frontier C, then clearly from the definition of good
string, there exist mappings J and H, which together with r | E satisfy
conditions 1 and 2 in the statement of Theorem 1. This completes the
proof of = in Theorem 1.

<:?_;uppose there exist E, r, J and H satisfying conditions 1 and 2

in the statement of Theorem 1. Then we show that there exists an

accepting O(-run on T (and hence, T(OT) # @) as follows.
Let n: T + E be defined inductively as follows:

1) n@) =A.
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2) if n(x) has been defined, then for @ € {0, 1},
a) if n(x) € E-Ft(E), then n(x o) = n(x)+o,

b) 1if n(x) € Ft(E), then n(x o) = J(N(x))+0c.

Let r: T + S be defined as follows. For all x €T, E(x) = r(n(x)).

Clearly, r € Rn(f{, T) so that it only remains to show that for all

paths TC T, r | m is 4-accepting with respect to (. That is, r
is an accepting Ol-run on T.
Let m C T be any specific path. Let Yo = A, and for all i < w,

let y be the least (under <) x € 7 such that x > s and n(x) €

i+l

Ft(E). Clearly, Y15y - is the infinite sequence of all nodes

I AR
in ™ mapped into Ft(E) by m listed in the order omne would encounter
them going from the root down along 7. Let v i /N 5 Ft(E) X Ft(E) be
defined as follows. For all i € ﬁ*ﬁ Vﬁ(l) = (n(yi), n(yi+1)).

For all i € /¥ we have by the construction of 7:

(1) J(M(y;)) <n(y;,q), and
(11) T([y;s YipqD) = 213D, Ny, D). Henmee,
(I11) Intr | m) = U r([3(z)), z,D).

*
Clearly, there exists a finite sequence X XqXy o0 X € (Ft(E))

such that Xy = X and In(vn) = {(xo, xl), (xl, xz), cees (Xm-l’ xm)}.

Henceforth, let Xg¥q¥y oo X be a specific such sequence. Let Ji

denote J(xi) and Hi denote H(xi). By (I), (II), and (III) we have:
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m-1

(1V) In(r [m = U r(3, x,,1), and
i=0

(V) for all 0 £ i < m, Ji < X1

We now prove three lemmas about finite trees. Then we use the

last lemma to complete the proof of Theorem 1.

Lemma 1: There exists M, 0 < M < m, such that for all i, 0 < i < m,

we have HM < Hi' That is, HM = min{HO, cees HhJ'

Induction hypothesis: (0 < k < m): There exists an integer M',

0 <M' < k, such that for all i, 0 < i < k, HM' < Hi'

Basis: Ho < Ho.

Induction step:

HM' < Hk’ by the induction hypothesis.

H =< J , by clause 2a in the statement of Theorem 1.

k k’

e < Fr Y O
Heney, By, < 1.

By clause 2a in the statement of Theorem 1, we also have Hk+1 <
Xy Hence, HM' and Hk+1 are comparable (under <). Clearly,
min{HM,, Hk+1} < Hi’ for all i, 0 < {1 < k+1. -

If M # m, then we can rename the nodes as indicated in the
following diagram for the case M = 3 and m = 6. The nodes are rep-

resented as circles (:Z
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6 Xq
X
6
0ld naming new naming

Clearly, in general after a renaming as above, (IV), (V), and the
conditions in the statement of Theorem 1 still hold. Hence, we may

assume Hm = min{HO, ey th, without loss of gemnerality.

Lemma 2: If Hm = min{H,, ..., Hm}, then for all i, 0 < i < (m-1),
r([Hms xi+1]) = r([Hm’ xi])-

: , . ; . <H <7J, <
Proof: Let i be any integer such that 0 < i <m Hm i i < e

and Ji < X5 hence we have the picture:

H
m
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Hence, r([Hm, xi+1]) =2 r([Hm, Hi]) U r([Hi, Ji])' By 2) ¢) of Theorem
1, e([H;, 3,1 = £([3;, x]). Hence, r([H_, x, ;1) 2 (13, x, 1),

and therefore, r([l-lm, xi+1]) 2 r([Hm, xi]). D

Lemma 3: 1If Hm = min[H@, ceas Hm}, then for all i, 0 < i < (m-1),

([, x 1) 2 w3, x D).

Proof: Let i be any integer such that 0 < i < (m-1).
By Lemma 2 r([H_, x 1) 2 r([H_, x_ D), r([H, x_;1) 2 z([8,
=2
Xomp1)s eees TOH , x, 1) 2 0([H , x, ,1). Hence, r([H , x I

r([Hm, X We have Hm < Hi =J, <x That is the picture:

14110 1S *Fi41

H
m

Xi+1 .

Hexce, [Hm, xi+1] =2 [Ji’ X Hence r([Hm, xm]) = r([Ji, x

i+1]' i+1])' D

Completion of the Proof of Theorem 1l: Without loss of generality we

assume Hm = min[Ho, cees Hm] . By Lemma 3,

m=-1
U r([‘]i’ X
=0

r(H, x ) 2 D

i+l
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By part 2) d) of Theorem 1 we have for some i, 0 < i < n, r([Jm, xm]) n
L, =¢ and r(x ) € U .. By part 2) c) of Theorem 1, r([E, x 1) =

r([Jm, xm]). Hence,

m=-1
iE-JQ r([Ji, xi+1]) ] ki = ¢,
and
m-1
A RO
Therefore, by (II) (f‘ l m € [Q]. D

Theorem 2: The emptiness problem for f.a.t.'s with subset paifs

is decidable.

Proof: Let O =<S, (0}, M, 84> >, be an f.a.t. with subset paits.
Let B ={(, B) € Y{O} l there exists an Of-run l:‘wﬁ\r(v;‘;E}Speiscﬁ'?hhafvfor
all x € Ft(E), ar,x is good with respect to Q1}.

Clearly, we can dehstmict a deterministic finite automaton on
finite strings which defines the set of all good strings with respect

to Ul. Hence, we can determine a 3~-f.a.f.t. 0'(1 such that T([,) =

B. By Theorem 11 of Chapter I, T(U(l) ¢ is decidable. By Theorem 1

in this appendix, T(O1) = ¢ iff T(O‘(l) @.

O
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Appendix II

Definition: An f.a.t. with designated subsets is a system 0= < §,

Y, M, 5¢° F >, where < S, T, M, 8 > is an m-S~table, and ¥ S P(S)

is the set of designated subsets.

An O(-run on I-tree t, Rn(0], t), and Ol-run on finite T-tree e,

and Rn(0{, e) are all as in Appendix I for the f.a.t. with subset pairs.

An accepting Ql-run on ¥-tree t = (v, T ) is any r € Rn(0T, t)
such that for all paths m C Tx’ In(r l m € %,
07 accepts t if there is an accepting Ol-run on t.

T = {t = (v, T) | there exists an accepting Ol -run on t}.

Theorem 3: For any f.a.t. with designated subsets 0] = < S, {0}, M,
8y F >, T(O]) # ¢ * for some finite tree E there exists a mapping

r: E »+ S such that

1) r € Rn(0], E),
2)  there exist mappings J: Ft(E) - E-Ft(E) and H: Ft(E) -+ E-Ft(E)
such that for all x € Ft(E)
a) H(x) < J(x) < x,
b) r(J(x)) = r(x), and

c) r([H(x), J(x)])

L]

r([J(x), x]) € F.

Proof: The proof of the implication to the right (2) is essentially
the same as in Theorem 1 of Appendix I.
The proof of the implication to the left &) follows from a

simple extension of the proof of Theorem 1 using the following lemma.
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The following lemma is independent of Lemmas 1, 2, and 3 of
Appendix I. In extending the proof of Theorem 1 to a proof of Theorem
2, Lemma 4 could be reasonably placed just before Lemma 1 or just after
Lemma 3. Lemma 4 should be evaluated as if it appeared in the just

mentioned context. 1In the following, let x,, ..., X be as in Lemmas

0’
1, 2, and 3 in Appendix I.

m-1
Lemma 4: For all k, 0 < k < m, ;io [Ji, xi+1] 2 [Jk, xk].

(Note that Lemma 4 is another lemma about finite trees, as were
Lemmas 1, 2, and 3. Note, also, that unlike Lemmas 2 and 3, Lemma &
does not imvolve the Ol-run r. Lemma &4 is simply about sets of nodes

of T.)

Proof: The facts about the sequence of nodes XXy oo X which the

following proof uses are:

(1) X, =%, and for all 14, 0 s i <m, J, <x, &J, <x
m i i i

0 i+1’

Definition: For 0 < i, j < m, let the branchhigepoint B(i, j)be the

g.1.b. (under <) in T of {xi, Xj}. That is, B(i, j) is the unique

y € T such that 1) y < X, &y < xj, and 2) (WwWE€T)(w< X, &w< xj -

wsy).
<
Observe that for a2ll 0 < 1 < m, Ji x, & Ji < X1 and hence,
Ji < B(i, i+l).
As moted in Appendix I, we can rename the modes, x,, Xl’ ceey xm,

0

so that node X becomes node x, and (I) holds for the mew sequence

0

XyXq oo X o Hence, we prove Lemma 4 by proving:
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m-1

an U w12 g %)
i=

We prove (II) by proving by induction on h, 0 < h < (m-1),

h
(111) .U (355 %41 2 [3y> B(O, htl];
i=0
m=1
= - i i = =
for when h = m-1 this gives us ;:L [Ji’ xi+1] [Jo, xo] (since X

X, and hence, B(0, m) = xo).

Therefore, the following induction completes the proof of Lemma 4.

h
Induction hypothesis: (0 < h < m=1)): U [Ji’ xi+1] 2 [JO, B(0, h+1)]. -
i=0

Basis: [JO, xo] =2 [JO, B(0, 1)].

Induction step: B(0, h+2) < x

0 & B(0, htl) < xalhence, B(0, h+l) and

B(0, h+2) are comparable, so that either case 1 or case 2 holds.

Case 1: B(0, h+2) < B(0, h+l).

We have the picture: B(0, h+2)
B(O, h+1)\ 2
L *htl

0

From the picture it is clear that [Jo, B(0, h+l)] = [JO, B(0, h+2)];

and hence by the induction hypothesis,
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Clearly, we have [Jh+1’ xh+2] =2 [B(0, h+1l), B(0, h+2)]. Simnce
[34> B(O, h#2)] & [J,, B(O, h+1)] U [B(O, h+1), B(O, h+2)], we have
by the induatismohypethesis,
h+1

;;% [Ji, xi+1] 2 [Jo, B(0, h+2)].

This completes the induction and the proof of Lemma 2. []

The extenmsion of the proof of Theorem 1 needed to prove Theorem
3 is as. follows.
Wmeﬂam&iﬂ%=MMw."Jw,mm
m~1

U ety xyy D = (1, ).

Then by clause 2¢ in the statement of Theorem 3,

m-1
Ini(r | m) = ;ﬁo r([Ji, xi+1]) = r([Jm, xm]) € %, This completes
the proof of Theorem 3. O

Theorem 4: The emptiness problem for f.a.t.'s with designated subsets
is decidable.

The proof of Theorem 4 using an appropriate definition of good
string and Theorem 3 is essentially the same as the proof of Theorem 2

in Appendix I.
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Remark: Let f.a.t. O] (with subset pairs or with designated subsets
have q states. For either definition of good string (i.e., the
definition appropriate for the proof of Theorem 2 or the definition
appropriate to Theorem 4) we can Gohstxtuct a nondeterministic finite
automaton on finite strings, T, which defineé the set of good strings
and which has at most 22q(q+1) states. By the subset construction we

can design a deterministic finite automaton m& equivalent to M and

2q
such that M, has at most 22 (4tD)

states. Using m& we can easily
construct a 3-f.a.f.t. 071 such that T(011) = ¢ iff T(Q7) = ¢, and such

that the state set of Cﬂl is the cross product of the state sets of

01 and fml Hence, 0‘(1 has at most Q states where Q = q 2 q .
By Theorem 11 of Chapter I, we can determine whether T(071) = ¢ in

Q3 computational steps.
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