LABORATORY FOR
COMPUTER SCIENCE

SN MASSACHUSETTS
I INSTITUTE OF
TECHNOLOGY

-

MIT/LLCS/TM-51

AN INVESTIGATION OF
CURRENT LANGUAGE SUPPORT FOR
THE DATA REQUIREMENTS OF
STRUCTURED PROGRAMMING

Jack M. Aiello

September 1974

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

AM INVESTICATION OF CURPERT LAMGUAGFE SUPPOPT
FOR THE PATA REQUIRFMENTS nF STRUCTUREN PPOCRAMI| MR
by

Jack Michael Alella

Submitted to the Nepartment of Flectriral Farineering on May
10, 1974 1n partial fulfilliment of the requirements for the
Degrees of Master of Sclence and Flectrleal Fneincering,

ARSTRACT

Structured pProsramming Is A new mathod for constructing
reliable programs., Structured prograrmmine relies wupon a
Systematic technlque of top~down development which Tnvolves
the refinement of both control structures and data
structures., Witk possihly some limitatlions and extensions,
exlsting languares can support control structure refinement,
On the other band, 1t is the belief o many that the
representat!on of data structure re€finement cannot he

satifled by present-day languages. Pefore accepting this
view, 1t s wise to explore Its validity., Therefore this
thesis wil} investipate whather existine lanruares with

possihly slirht modifications are adeauate for supporting the
data requirements of structured programmine,

THFS S SUPFRVISORP: Rarkara H, Lislkay
TITLE: Assistant Professor of Flectrlecal Eneineerineg

MAC TECHNICAL MEMORANDUM 51

C5G MEMO 105

AN INVESTIGATION OF CURRENT LANGUACE SUPFORT
FOR THE DATA REQUIREMENTS OF STRUCTURED PROGRAMMING

Jack M, Alelloe

September 1974

This research was supported by the Nationmal
Science Foundation under research grant GJ-34671.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PROJECT MAC

CAMBRIDGE MASSACHUSETTS 02139

TARBLE NF COMTEMTS

Chapter 1: Intrﬂductlon........ m s e e Bhhaa e s 5
Structured Prosramming. W ke e e e e 's D
Problem Overview,,,..... R R R R R T ——

Chapter 2: History. . oo, T T 11
AN EXAMPIC . eyt iiuirre T A w . 12

General Nuestlons

Chapter 3: Propramming Lanruage

Criteria far Nata ﬂhstractlnﬁs.............21

Stack Abstraction,..... ittt et v esaead5
Linerar List ﬂhstr#ctTon.,;..........................,25
Chapter 4: o R T thasaraa..?9
Nata Structuring Faclllitins of PL/T, Fr s e P 1 1
Stack Abstractlon fn PL/T. ., e et e e e 32
Analysis of PL!T.,...............‘........... Lo bl

Overall Critlque of BPL/I.,,

iiltlili'illll‘l'l'liiq'.Sl

Chapter 5: Pescal ., .o........ T R . 59
Mata Structurinpg Facilities of Pasecal..... ..o,60
Stack Ahstraction In Paseal, .o vuuun ... P 1
Analysis of Pascal ... vivuvuon. .. e R A e e D
Overall Critlque of Paseal......... . R b

Chapter 6: ELl...............‘..... T P I |
Nata Structuring Facllities of ELY,....... L
Stack Ahstraction in FL1..,...... - e . v++ 89
Analysis of FLl......,........... e rE e I8
Overall Critliaue of 2 B G e e .t sk P

Chapter 7: S[PULﬁﬁ?.............,.....,.ﬁ.y..... 109
Nata Facilities of S!PUL!E?........ ke, cvea110
Stack Abstractlion In SIMULABT . . vevuu.. .. O I
Analysis of SIMULAGT, ., ..., R B X 1
Overall Critlaue of SIMULABT teeviieeennnnnnrennn 0127

Chapter 8: Conclusion.. il P i e s veaaal131
Summary,,, s nr T sessl 131
Concluding Remarks. .., Pt h et e e . N h 135

th?lngranhy..y.............,.......... P 5 |

ACKHOWLFRRFMENTS

My rreatful thanks go te my thesls supervisar, Professaor
Rarbara Liskov, for her guidance, construetlye criticism, and
patience throurhout the preparation of thls thesis,

I would also 1lke to thank my eaollearues Mark Laventha)

and Nave F1lis for rea“ling earller drafts and sugresting many
Improvements,

A speclal note of thanks pgoes tn Professor Thamas
Cheatham at Harvard Unlversity far his personakle manner and
wlllingness to answer any of my aumstlnns.

Most importantly, 1 wisk te thank my wife, Mell, for
giving me her love and understanding plus Aalne my share of
the dishes for the past twn months, and my parents, for
providing me with thelr confidepce.

INTRODUCT I OH

Considering the major strides that have been made in
twenty-five ycars in computer science and more speclifically
In software design, the techniques avallable for developing
large reliable systems or even producing correct medium-s|zed
programs are disappointing. Ve generally attack a problem by
choosing some programming language and then proceed to design
the program wusing an iterative process of coding and
debugging. Unfortunately after completing these steps of
program preparation, we still have no guarantee that our
product is error=-free, Instead a general me thod for
developing programs which are assured to be correct is

needed. This field of rescarch coimes under the heading of

Rellable programming can be defined into two general
categories. The first is the "analytical" approach
encouraged by Floyd(1l), King(2), London(3), and others who
attempt to prove a program correct after it has been written.
This is accomplished by deriving assertions about wvalues of
variables and control patterns within the pragram. From
these assertions, one then uses mathematical methods in

trying to deduce the desired end result of the program,

The second approach, called “constructive" and primarily

introduced by Dijkstra{4), is to develop a rethod for

-G-

constructing correct programs rather than proving the
reliability of previously written programs., The poal of the
constructive approach Is writing programs that are easler to
prove correct, This Is accomplished by adhering to
established programming restrictions whlle writing a program
which, in turn, causes the program to be constructed as a
hierarchy of layers. CGuaranteeing the rellability of the
program is then reduced to proving the correctness of each
layer. The hope is that larger propgrams can be handled ULy

the analytic approach.

The gpeneral constructive method that has been developed
is structurev programmning (other nares used are programming
by levels of abstraction and programmineg Ly stepwlse
refinement). Although UDijkstra pioneered most of the early
research in this area, several other papers have now followed
including thouse written by Wirth(5), Parnas(i), llenderson and
snowdon(7), Wouodger(8), Hour{(3), and Liskov(1l0). Thelr works
have all pointed out that what is really needed is a more
systematic way to go about programming--a systematic
programming nethod that leads to clear, readable, provable,

and thus reliable programs.
.'r,J 7 r 1

Structured propgramming Is o design tool for bLullding

programs in a Ytop down" fashlon by means of a process of

-

successive decomposition. When we say "top Jdown" we sean the
abillty to Introduce and wuse objects while designing a
program before the objects arc necessarily defined., 0On the
other hand, a "bottom up" approach=-requlred in most
present=day pru;raﬁming languages~--means that an object must
be defined in the language before it can be used. The first
step in structured programming is to write a program which
solves the given prolklem., However, In general this Initial
program 1Is not in a form understandable by the machine on
which we are programming but instead only on some abstract
machine. This abstract machine provides us with just those
data obijects and gperations which l.ave keen rencrated by our
pregram and are therefore suitable for solving the problem.
This program is referred to as our top level ahstraction. As
was earlier noted, the fact is that names of operations and
data structures may not be recognizable by the actual
machine; so we refine these names by using real machine
constructs as well as lower level abstractions which
themselves, In turn, must be subsequently developed until our
propram |is completely understandable by the machine on which

the program Is to be run.

Problen Overyview

Host higher level languages today plve the programmer

the ability to deslipgn abstract operations through the usage

-0-

of procedural wmechanisms, However, there seems to be no
analogous me thod for handling abstract data objects,
Ubviously, if we hope to desizn programs by means aof &
structured approach, this second requirement is as.necessary

as the first,

Currently at the Massachusetts Institute of Technelogy
research is belng directed towards the development of a new
programming language to be used specifically in conjunction
with the structured programming methodology(1l). While it is
being assumed that current langugaes do not have suitable
mechanisms for constructing data cbjects, it is not obvious
that this opinion is justified. In an attempt to remedy this
predicament, we will begin by analyzing the concept of data
abstractions and how one would prograrn ther In some present
day languages. Although our choice of languages becomes

relevant to our successes and failures, it is Important to

recognize that we have chosen languarpes which have been all

designed with different concepts In mind, The lanpguages
chosen are 1)PL/I1--described by IBM as an "zll=purpose
languagpe', Z)Pascal--a lanfuage with AUMe rous data
structuring facilities, 3)ELlI--an extensible lanpuare, and

LISTHULAET=-=-a sinulation lanpguayc.

We do pot intend to evaluate these languapges in terms of

the goals of thelr designers; instead these lanpuares will be

-4

-0-

judged by how well they meet our design criteria set forth by
structured programming . We will pay particular emphasis on
thelr abilities to represent data abstractions. As a result
aof the inslghts gained by this study, we will expect to
answer the question of whether or neot another programming
language must be developed for structured programming.
Furthermore, if there is a need for a new language of this

type, what we have learned from this analysis should prove

useful,

Before we explore these languages, we present a more
detailed history of the problems of structured programming so
that the reader will feel more competent when judging and
trying to resolve the pros and cons of each language.

Criteria wupon which these assesments will be made will also

be presented shortly.

IHISTORY

Propram reliability from the analytical point of view
has encourapred much research from the latter part of the
1960"'s up till the present. These vyears of effort have
produced much material on the subject ranging from improved
resolution schemes for logic(l2) to assertion-type
languages(13). liowever, one fact becomes fairly obvious: the
more unstructured=-in the sensc of wild control flow and
cnormous (Lut unecessary) size=--a progrum is, the wore
Jifficult the problew of deriving asscrtions in order to
praove the program correct., Furthermore, the increase in
difficulty seems to be more on the order of exponential (and
approaching impossible) than linear. Indeed, it seems that
i f only some stralghtforward deslgn methodology for
prograrming were adhered to during the development of the

program, that finding these assertions would be much easier,

This has been one or the goals of the constructive
approach and 1n particular structured programming. s we
noted earlier (but explain now in fuller detail), by bullding
& program in this fashion, we produce an arrangement of
layers, corresponding to levels of abstraction, each with
only one entry and one exit. The reliability of the program
is based upon the reliability of each succeeding layer, and a

change made to some higher level of abstraction (that is, an

earlier conceived level) has no effect on the reliability of

-12-

lower levels. Thus proving the cerrectness of the entire
progran is reduced to proving the correctness of each layer
in an orderly fashion., The correctness of cach layer is not
too difficult to prove as a result of making the following
restriction: control sequencing is limited to the
concatenation of assignment, |F-THEH=ELSE, DO WHILE, and
possibly CASEC statements; the correctness of each layer
relies wupon the fact that these statements correspond to
proofs using mathematical methous of cnumeration, case

analysis, and induction.

it this point an example is presented to help clarify
the method followed in structured programaineg and its
associated reliability characteristics, Written In a
PL/1=1ike language, the example will alse display LCnglish
phrases and undefined symbols at one level that must be
refined at lower levels. Suppose the problem is to write a

compliler: - for PL/1. Then the tup level would Lo
| Vrite o compller for PL/L proprams:

NHow §If we had a machine capable of understanding level
then we would have no need to proceed further; however, we
wlill assume this not to be the case.

Instead we will refine the above program thus obtalning:

-13-

Il program:

CECLANRE source_program CHARACTER VARYING;

source_program = |HPUT;

translate(source_program};
Level 11 «consists of naming the variable socurce_program,
which is to be type varying length character seguence, and
two actions, IHPUT and "translate". The assumption we will
make here is that the machine understands DECLARE, GIARACTER,
VARYING, ond [HPUT but not "translate". #fssuming that 1HPUT
sets the source_program to the program to be compiled and
"translate" does indeed produce the correct object code, it
is easy to sece that level |1 solves the problem. The
reliability of level Il nust be partially intuitive since the
specifications of the action "translate" are not defined.
This particular point concerning reliakility should be well
understood and Is therefore reiterated here: at level 11 it
is unnecessary to hnow how "translate" works but only what it
is supposed to Jdo; furthermore since we have no semantics to
cxpress what the function of "translate" is, our proof rellies
partly on enumeration (concatenation of statements) and

partly on intuition.

The next refinement is a result of our actual machine

not understanding the action translate.

-14-

Il translate(x):;

UDECLARE x CHARACTER VARYIHG;

DLCLARE phrase_structure tree;

phrase_structure = recognize(x);

senerate_code(phrase_structure);
Level 111 introduces the parameter o, variable
phrase_structure of type tree, and operations recognlze and
penerate, Uf these, only x s completely understood by the
machine on which we will eventually run and the problem of

what to refine next must be resolved. (The question of what

to refine next has no simple selution==-see discussion In

following section.)

At this point | will stop because | feel the reader
should have a reasonable understanding councerning the
development of the compiler program. He should also be able
to convince himself that it all the data types and operations
introduced so far were recognizable Ly our machine, not only
vould the program be complete but it would also be correct.
As was the case tor level |Il, the way by which one can show
the reliability for level 11l results from programming In a
structured manner. For instance, to prove the rellability of
level 111, one needs to show nothing of the details
concerning the vperations recognlze and pencrate and Lhe data
structure tree hut only what Lhe two actions are supposed Lo
do and that the representation of the data structure tree

wlll be refined at some lower level.

-15=

Leneral Cuestinps Concerpine Structured Prorrammine

The corpiler fxample Tllustrates the reneral form 4
structured proream takes, Two typos nf nrabhlers vhick are
cncountered in Fuilding nrarrams structurally may he
fdentified, Flrst it s evident that decisinns concerning

the next refirement must he Frsolved but it is unclerar as to
how that particular choice 1s marde, 1'alilne such decisimrns |e
not limited te structured Praograrmine, Sut Is an intecral
part of constructing progrems (althrmueh |t may he that
Structured pragramiing makes declsinns mere noticoakle hy
idpntTFy?nf them with refinements). The Leeonnd problem e
how to represent the structured proerpm ag |+ develans, This

involves representetion of kath structured esantral and

Structured data,

With rerard tn the secend of these tun Issues, we remarl

that structured control ecan Fa Broten down in two areas:

. contrnl seauencine and actian refinerent, The reaulrements

of control seauenc ng “n not senr te pPrrsent an
implementation nrokliem, They ean easlly ke handled hy a

number of present day proprarceine lenruarns, far cxamnle ML/
(see Mills(1L) apa Sullivan(1S)), with mast Tibely some

IMmitations apd possikly some cxtersions, r, -, Implermnnting

the CASE statement In PL/I.

-1G-

As was earlier recognized, refinement of action such as
“translate" in the compiler example can be expressed by the
combination of procedure-like structures and g cood llbrary
system which supports linking of actlon names with action
definitions. This would allow the programmer the advantage
of being able to build the program in a top-down fashlon.
Indeed, the developuent of a lanpuage which provides the
structured logic and lilrary system to back up the compiler
would provide a solid foundation for the development of a2

language specifically designed for structured programming,

On the other hand, the method Tn which data
specifications in structured prograiming should be handled Is
unclear. For Instance, in the compiler example how do we
represent the abstractlion "tree" and any associated operators
(eg. we may wish to Include the actions traverse, add_a_node,
and delete_a_node operating on trees)? This lssue Is closely
bound to the first problem of when and how one should define
and refine data structures., Certainly the representation of
the data structure will have a profound effect on the
efficlency of the program and the ease of writing the
functlons which will operate on the data. But how is the
programmer to decide upon the details of the structure while

still conforming to a top-down development of the program?

The more pencrally held belief s to defer those

-17-

declislons councerning the detalls of data representation as
long as possible which hopefully leads to reflnement of
program and data speclifications in parallel. The following
example wlll help the reader become more familiar with the

questions of data format that the programmer must face In

structured programming.

Wirth(5) develops a program to solve the 8-queens
problem by a "successive decomposition or refinement of
specificatlon...(until) all Instructions are expressed in
terms of an underlying computer or programming language.,"
The 8-queens problem is described as follows: glven an 8x8
chessboard and 8 yueens, find a position for each «queen so
that no queen can take another (i.e. such that every row,
column, and diagonal contains at most one queen). The flrst
data decislon that MWirth must make Is when to define the
board. he decides upon a time when it actually becomes

necessary to access and manipulate parts of the hoard,

Then the cecision of how to represent the board becomes
of primary Importance. An obvious solutlon consists of
Introducing a ULonlean matrix B(1:8,1:8) such that 8(i,J) =
true denotes that square (i,]) is occupied. But instead

Wirth chooses the representation:

2per (0<=j<=9)
integer arrav x(1:8) (0<=xi<{=8)

18-

such that j is the index of the currently inspected column
(allowing J to equal G will indicate that the solution is
found), (xj,j) 1is the coordinate of the last inspected
square, and the position of the queen in column k is glven by
the coordinate pair (xk,k) on the bhoard. In justifyving thils
decislion, Wirth says "it Is fairly evident even at this stage
that the...(second} choice is more suitable than a boolean

matrix in terms of simplicity of later instructions as well

as of storage economy."

So it seems that although structured programming Is a
top~duwn process, a bottom-up justification has Leen given to
support a choice of data representations. Unfortunately, if
it Is discovered that a wrong choice has been made, one will
be forced to back up. An analysis of the trade-off between a
strict top-down development and necessary backup might
iniprove any decision policy on what to refine next and what

format the refinement should take,

In principle there seem to be two ways of answering the
first gquestion of when to refine data., Vo can do it as soon
as we rcalize that a particular data structure is needed some
tlwe In the program or we can postpone the definition until
that data structurc nwust be deflned In order for us to be

able to continue along our path of refinement.

-19-

The second way does seem tea ke more In the spirlt of

structured procramming slnce |t does not reaquire lTooking
ahead to see how 3 data structure |s operated upon hefore
defining 1t, J1.e. Wirth uses the concept of "hgard" as long

as possihle, Alsg hy postpaning the declslion e eliminate
possible prohlems generated by awkward Aata format that has
already heen defined, 0On the other hand, walting to choose a
particular data representation can result In lack of
compatihility and thus Inefflclency ¢ ANy presupposed
operations on that format turn aut to he elumsy, It also
must be reallzed that we cannot rostpone declsions forever

and that the prehlem of backup will arise and have ta he

dealt with,

S0 now the problem hecomes nne of trylng to formulate
some rules or tactles cencerning the refinement of data.
ldeally, they would ensure the programmer nf heing ahle tg
tell not only when but exactly how to refine Adata, However,

even before we can approach thils prohlem, we must first he

able to handle data representation and refinement in the
language .
It Is thlsg latter prohlem to whleh this paper addressec

itself with the hellef that its solution will Present us wlth
both a flrm understanding of data representation and a hetter

comprehension of the concepts of structured programming, 'n

_2[]-.-

turn, we may then have hopes of helng sucecessful in solving

the flrst prohlem of when and haw to refline data, Before

Investigating dlfferent languages, let us explore preclisely

what criteria need be satlsfied by a2 language acceptahle for

expressing abstract data and what examples we may wlsh to use

in evaluating the dlfferent lanfuages,

PROGRAMMING LANGUAGE CPRITERIA FOR DATA ABSTRACT|OMS

We noted earller that as a result of using structured
programming technlques, bhoth ahstract data ohjects and
ahstract operators are penerated, These ohjects will
henceforth be referred to as data abstractlons and operator
ahstractlons respectively, We have also estabhllished the fact
that operator ahstractions can he falrly well represented hy
procedure=-11ke merchanlsms common tn most nresent-day
programming lanruages, S0 It Is at this pnlnt that we are
most Interested In establishing criterfa for representatlion

of & data akstraction the must he met by a programming

language.

some of the lesser data structuring requlrements wlll
become clear as we analyze the languages with the aim of
producing programs through the use of structured programming.
llowever, the major criterla should be made wvery npreclse at
this polnt In the paper so that we have hoth set goals around

whlch programs should he designed in our glven lanfuage and a

model for comparison of programs,

Nne ohvious and possibly the most Impartant requlrement
Is that of helng ahle to express data ahstractlons withln the
confines of the language. More explicltly, our view Is that
the data abstraction Introduces some ahstract data tvpe, and

varlables of this type may only assume values corresponding

-7 -

to this type (just as in ALGOLGO, say, varliables of type real
may only assume values that are real numhers), The ahstract
data type Is explliclitly defined hy some set of operatlions
which may operate on variahles declared of that type. The
Implementatlion of the abstraction may then he viewed 3as g
form consisting of two parts: l)the underlying
representation of the abstract data type and 2)the actlons

deflned to operate on variahles of that data type hy

manipulating fts underlying representation,

For example, 2 common akstractlon in mathematlics s the

concept of a set which we might deflne by the operators

unfon, memhership=testing, and Iintersectlion, To Implement
the set abstractlon, we choaose some lower level
representatlion for a set. Our cholce of representation

depends on the kind of operatlons which wil} predomlinate In
the application expected. Ve could represent a set as an
array or possibly as elements linked torether by polnters.
After choosing one of these underlylng representatlons, we
would program the operators glven above. This would camplete
our Implementation of the set abstractlon although It may he
the case that further refinement with respect to the
representation chosen and the operators deflned s necessary

so that our propram Is completely understandahle hy the

actual machlne,

-33=

It is also a faect that at a hirher level we need not nar
should we have access ta the Jlower level (underlying)
representation of seme data ahstractlnn, This restrictliaon
has been Implemented by most hipher level propramming
lanpuages for primitive types and there is no Feason that we
should Ignore it while programming by lpvels af abstraction,
For Instance, a real number In a nroprammlng lanpuare s
usually represented as a sequence of hits whiech glves the
mantissa and exponent parts of the numkar, Hoviever, there |s
certainly no reason for the programmer to know whleh hits
represent which part or even ta allew the programmer access
to any bit. Indeed, this lawer level rapresentation of real
numbers Is no concern to the nprogrammer using the higher
level tool of 3 programming language. Thls argument applies
In a similar fashlion to our example of the set ahstraction.
We are Interested In declarine variahles to represent sets
and In accessing Information about these vartahles through
the operators assoclated with the set ahstraction. Rut the

data structure that was chosen tn represent a set should he

of no concern to us,

In summary, a data ahstractlon defines an ahstract data
type as a set of Operators. Furtherrore, the user |Is not
permitted to know how this type Is represented In the

abstraction; Instead, only the specified operators can

manipulate varlahles of this tvpe, It I's these criterla

-9 -

around which the lanpuare for structured propramming,

mentioned earlier, Is belng developed at M.1.T

When judging the chosen programming languages, we must
do so In terms of these requlrements, Can we represent
abstract data concepts and at the same tIme adher to the
accessiblility restrictions? |If the answer |s yes, then with
what ease can this be accompllished? DNoes any syntactiecal
format or semantic concept of the Flven Tlanruase encourage
the ~use of structured programming as the desierner's too] ar,
on the other kand, cause anvy serious hpndiqnn while using thke

technique of structured programming?

n b

Before leaving the tople of criteria for data
abstractions, we should focus on ore more Issue upon which
discusslon ought te be hased during the examlinatlon of a
lanpuage, Suppose that we have conceptually formulated the
model for a gliven ahstract data type: that Is, we have
declded upon the representation of the type and the
operations which can manlpulate ohjects of that type. Our
next step Is to program this data abstraction In our chosen
programming lanpuage, We should be conecerned about the task
of conceptualization versus the task of programming the data
abstraction. Was the abstraction much more dIfficult to
program than its conceptuallzation leads us to helleve? |f

the lanpuage does not meet this criterlion of

=75~

"eonceptuallzation ecase Implyling programmlng simplicity" then
the language must he regarded as a disappolntment from this

viewpoint,

§L'EEE !},bﬁttﬂﬂ;lﬂn

Let us now examine 3 data ahstractlion example we have
chosen to program In our lanpuages, e w11 name It the

"stack ahstractlon",

The stack Is a 1lnear 11st 1In which insertion,
deletlons, and accesses tn values are made at one end of the
Tist, The usages of stacks are many Including the
implementatlion of a polish-nntation Interpreter, the
supporting of recursion, and the desiening of parsing
algorithms (er. for Operator precedence grammars we might

wish to wuse two stacks called the "operator" and "operand"

stacks),

When describling the concept of an abkstraction earller,
we noted that it ean bhe separated Into two parts: 1)a
representation of the data ohject (In this case the stack),
and 2)operatlons on the ohject, The underlying
representation we have chosen for a stark will be an array te
hold the stack elements and a polnter which points to the tap
fllled location of the stack, Operations on a stack that we

will conslder are the follewling: 1)"push"--adding an element

-7f=

to the top of the stack, 2)"pop"--deleting the top element
from the stack, 31"top_element"--accessing the top element
value from the stack, and h}"initlallzatTnn"--InTtlaszing
the bottom element of the stack. Thus the stack abstraction

Is conceptually defined.

Linear I Ist Ahstraction

A second example we will 1ok at will he referred as a
linear_17st abstractlon, Ve wish to mode] three distinctive
types of linear llists: a stack, a aueue, and a deaueue (see
Knuth(16)). At the top level of abstraction all linear lists
can be represented as arrays of locatinns, At a lower level
thls representation may he further specliflad depending on
what type of linear 1lsts we are using, A stact ahstraction
would add as part of jts underlyling representation a polnter
to the top of the stack and add aperatlons that we have
outlined earlier. A aueue ahstractior mipht add "front" and
"rear" polnters to Its representation and Implement nperatlon
of "enter"--which would Insert an element in the rear of the
queur, and "remove'--which would delete an element from the
front of the queue, A deraueue abstraction could add
"eftmost" and "rightmost" pointers ta Its representation and
operators--call them "Insert" and "delete"=-whlch make
addltions and suhtractions to both ends of the 1lst. Thus we

have introduced the notlon of hlerarchical data tvpes and It

=27=

is of Interest to wus to examline how our lanpguages can

represent thls concept.

We will analyze each chosen lanpuage with two goals In
mind: 1l)we wish to see what can he learned from programming
In each language while attempting to meet the speclifications
of structured propramming, and 2)we want to determine [If the

language can he used as a structured propramming lanFuare.

-8 =

PL/I

The block structured language, PL/1(17), was developed
by IBM during the mid 1960's well before the concepts of
structured programming as a deslgn mechanism for constructing
programs were explicltly Introduced by Dijkstra. PL{I was
designed to cover as wide a range of programming applicatlions
as possible. The designers consider one of its prime
features to be the case with which modular programs are
built, encouraged by the fact that a PL/1 program is composed

of blocks of statements called procedure and begin blocks.

It should also be mentioned that PL/I is an extremely
large lanpuage and It is inconcelvahle to this writer how
anyone could be knowledgeable of the complete language. The
designers of the language recognlzed thls as a3 possible
drawback that would discourage programmers from learning PL/I
(and companies from adepting the language) and have made
programmers aware of the fact that one needs to learn only a
small subset of PL/1 in order to write most medium=-dlfflcult
programs. (After all, this covers the bulk of written
prograns,) However, the language does contain such optlons
as multi-tasking so that one is able to solve more=difflicult
problems wuslng PL/Y. As | present some of the language
constructs and the examples, | may also be unaware of some
"simpler" technique (although it is my belief that due to the

enormous size of PL/I this is not my fault). lHHowever, | am

-10.

also quite sure that any "missed" feature could not change
the overall outcome of the language with regards to data

abstractions of structured programming.

One might argue that PL/I was not developed with
structured programming in mind and therefore it is unfajr to
evaluate PL/Il as a structured programming languagea. On the
other hand, structured programming is Intended to be a desirn
method based upon reFInfng levels of abstraction until they
are expressed in terms of whlchever language--may it be PL/I
or any other--that the programmer is using. Thus it seems to

be perfectly justificd to examline FL/I in these terms.

Jata Structurineg Facilities of FL/I

We hegin Uy describing some of the data structuring
facilities of PL/I; however, it will be assumed that the
reader s sumewhaé familiar with the language or at least
some block structured language (eg. ALGOLG6D). Therefore we
will describe wunly those data facilitlies that we might come
Into contact with when wusing the process of structured

programming to write programns In PL/I.

e beprln with variables and data attributes. Varlables
may be considered to Dbe single elements, arrays, ' or
structures. Assoclated with each variable is a symbollec name

and a value that may change during the executlon of the

-31-

program. The attributes of a variable consist of Its baslc
type and storage class, @asic types in PL/l are FIXED(=*),
FLOAT, CHARACTER, GIT, and POINTER; storage classes of a

variable are STATIC, AUTOMATIC, BASED, and COMTROLLED.

While basic types should Le clear, an explanation of
storage classes |s warranted. The storage class attributes
are used to specify the type of storage allocation to be used
for a data variable, The default class ls AUTOMATIC, which
means that storage is allocated upon entering the block and
Is released (freed) upon exit from the block. The STATIC
class, on the other hand, specifies that storage is to he
allocated at lcad time and not released untlil program
execution has Leen completed. EBASED and COHTRULLED Live the
programmer two different ways of expllieltly controlling the

allocation and freeing of storage by using the ALLOCATE and

FIIEE statements,

A number of other possibly useful data structuring
facillties with respect to structured programming exlst as
part of the PL/I language. These include block structuring
techniques (signified by BEGIN...END and PROCEDURE...END
blocks) which partially allow us to think in terms of

abstractions (associating an abstraction with a block)

(*)
Upper case letters will be used to signify keywords In PL/I.

-71-

especially with regard to operators. A second construct is
the data attribute LIKE. Its function is to copy the
structuring, names, and attributes of structures. For
instance, suppose we wanted to declare a varlable, s, to be a
set (see Chapter 3). Assuming "set" were declared as a
structure variable, we might write "DECLARE s LIKE set;".
The result would be that s has the same structure as the
variable set, A third facility of PL/I which we will
Investigate is EHTRY points into a procedure. This feature
not only allows one to enter a procedure at some deslipgnated
point (other than at the beginning) but also permits us to
specify parameters and return attributes, Thus we may be

able to set up numerous 'operator" EMTRY points within a

ziven procedure, which as a whole might represent a data

abstraction.
Sto [1 5 i i

Three stack abstraction examples In PL/I will be
presented., This number of examples is due to language
restrictions in conjuntion with program requlrements., A
detailed analysis of each example will follow the

presentation of all three examples.

In PL/1 the stack abstraction ocutlined In the previous
chapter might be programmed as shown in flg. L-1. For now,

It is important that we understand how the procedure

LR

Create_stack works. Hote that upan enterlneg create_stack,
not only is space allocated for the stack but also the bottom
element is initlallzed, e should also be aware that this
first example is capable of handling only one stack at a time
in existence, The operators seem fairly straightforward
although one should note that pop deletes the top element
merely by decrementing top and does not return that element,

while top_element performs the function of accessing the taop

element but not deleting it from the stack.

create_stack:

push:

pPOp:

top_element:

=3l -

PROCEDURE(n):
DECLARE n FIXED BIN(15); /* stack size =/
DECLARE stack(n) CHAR(1) COMNTROLLED;
DECLARE top FIXED BIN(15) STATIC;
/* topmost filled location =/

ALLOCATE stack:;
stack(l) = '"1'; /+ Initial both the bottom*/

top = 1; /* element and the polnterw/
RETURL; /* to the stack * [
CNTIYCa); /* Insert the value of a «/

NDECLANE a CHAR(L):
top = top+l:
stack(top) = a;
RETURN:

EHTRY: /* delete the top element w/
top = top=1:
RETURHN ;

EHTRY RETURNS(CHAR(1)); /* uet top elem wf
RETURN(stack(top));

END ereate_stack;

-35-

Before proceeding further, we should also note that
representing a stack as a controlled array is not the only
representation one might think of. Indeed, the argument to
represent a stack as a list of chalned elements is solld and,
in fact, this stack description will be programmed in a later

example (see fig, 4=2), Our declaration for a stack might

have been written as follows:

DECLARE 1 stack BASED(p), /* p is as polnter #/
2 next PTR,
2 value CHAR(1l):;

Pictorially our stack would have looked 1ike:

next o - — . — -
value

So instead of allucating the whole stack at once, wupon each

call of the operation push (pop), a single element Is

allocated (freed),

The Lig limitation of fig. 4=1 Is in trying to represent
several different stacks at the same time. This problem of
multiple stack wusage ecan be solved by rewriting the stack
example using the LIKE attribute. Eefore doing so, a further
characteristic of LIKE should be revealed: to write "DECLARE

a LIKE b;" requires that b be declared on the same or higher

_35-

block level (a global declaration) than a. nealizing this

restriction, the example Is profgrammed as shown in fig. 4-2,

DECLARE x FIXED BIN(15);

DECLARE 1 stack BASED(p),
2 m FIXED BINCLS),
2 body CHAR(m RLFER(x)),

2 top FIXED BIN(15);

stack_aps:

PROCEDUREL ;

-37-

/* plobal decl., for stack

/* Contained within are the followling oper-

/* atians
/* the oper of

inltialize.
/* stack_ref and elem refer to the stack In
/* concern and hold the value of the element
/* to which wec are referring respectively
RETURN; /* no reason to call stack_ops

push: EHNTRY(stack_ref, elem):
DECLARE stack_ref PFTR, elem CHAR(1):

DECLARE 1 name BASED(stack_ref) LIKE stack:
name.top = name.top + 1:

name.body(name. top)

RETURM;

pop: ENTRY(stack_ref);
DECLARE stack_ref PTR:
DECLARE 1 name BASED(stacl_ref) LIKE stack;
name.top = name.top - 1:

RETURN;

top_element:
ENTR?{stack_refJRETUHHS(CHAR{1}};
DECLARE stack_ref ©TH;
DECLARE 1 name BASEL(stack_ref) LIKE stack:

initiallize:

EETUHH{name.body{name.tcp]};

= glem;

EHTRY(stack_ref,elem);
DECLARE stack_ref PTR, elem CHAR(1);

DECLARE 1 name BASED(stack_ref) LIKL stack;
name .body{(l) = elem:;

name.tep = 1;
RETURN ;

EHD stack_ops;

flg.

push, pop, and top_element plus

The parameters

*/
*/
*/
*/
*/
*/
*f

-3 8-

In conjuction with fig, 4-2, at an outside block level
(corresponding to a higher level of abstraction--although no
higher than the one on which the stack is declared), we can

now write the following lines of code:

DECLARE 1 operator BASED(p) LIKE stack;

/* operator stack =/
DECLARE 1 operand CASED(p) LIKE stack:

/* operand stack w/

-

x = 100
ALLUCATE operator; /+ the slzes of the hodies =/
x = 10 /* are now estakblished for =/

ALLOCATE operand; /+* the operator and cperand «/
. /* stacks respectively ./

CALL initialize(p,"!");/«initialize each stackw/
CALL initialize(q,"s");

IF...THEN CALL push(p,'a');

)
/* push 's' onto the opertor w/
LLSE CALL poplgl:

/* or pop the operand stack w/

-

Yy = Lop_clement(q); /* ¥y pets sct to the #/
/* top element of the operand */

These statements in conjunction with the conments should be

easily understood as to thelr meanings and results.

Referring bLack to fig., 4=1, we recopnize the fact that

-39

this first program would work only for a single stack usage.
On the other hand, this last example allowed usage for a
multiple number of stacks; however because we have used LIKE,
we have had to separate the representation of a stack from
its operations. Suppose we dld not want to break up the
abstractlon and yet would llke to take care of the case when
we had the need to use more than one stack, The resulting

program might resemble that in flg, 4-3,

stack:

=L

PROCEDURE;
LECLARE 1 stack_element BASED(sep), /w struc, «/
2 last_stack_element PTR

2 valde CHAR(1):
DECLARE sep PTR;

DECLARE wp PTR;

DECLARE pet_stack_descriptor ENTRY(CHAR(32), PTR)
RETURHS(PTR);
RETURN;

L4

create_stack:

push:

EMTRY(stack_namel, init);
DECLARE stack_namel CHAR(32), init CHAR(1);
DECLARE 1 stack_descriptor ZASED(sp),
2 last_stack_descriptor PTR,
¢ name CIlIAR(32),
£ top_pointer PTR; /* descr. stack =/
DECLARL sp PTRH:
DECLARE stack_descriptor_top PTK STATIC
INITCHULL);
wp = jJet_stack_descriptor(stach_namel,
stack_descriptor_top);
IF wp 7= HULL THEN SIGNAL error: /% stack has
never heen previously created =/
ALLOCATE stack_descriptor:
Sp->last_5tack_descriptor=5tackud05criptnr_top;
stack_descriptur_top = sp; /* new top =/
sp=2nane = stack_namel; /* name of stackw/
ALLOCATE stack_element; /+* get first clement /
sep=>value = init; /* and set to inlt value w»/
sep=>last_stack_elenent = HNULL;
sp-2top_pointer = sep; /v point to top of stk =/
RETURH;

ENTRY(evalue, stackname2);

DECLARE evalue CHAR(1l), stackname2 CHAH(32):

wp = get_stack_descriptor(stackname?,
stack_descriptor_tap):;

IF wp = HULL THEN SIGHAL error; /* not found #/

ALLOCATLE stack_element;

sep=»value = cvalue:

sep=>last_stack_element = wp=>top_polnter;

wp=>top_pointer = sep;

RETURM

fig. b=3(page 1)

- 1=

pop: ENTRY(stack_name3);
DECLARE stack_name3 CHAR(32);
Wp = pet_stack_descriptor(stackname3,

stack_descriptor_top):
IF wp = NULL then SIGHAL error; /* not found =/
Sep = wp->top_polnter;

wp=2top_polnter = last_stack_element;
FREE stack_element;
RETURMN;

top_element:

EHTHsttack_nameh]RETURHS(CHﬁR(1}};

DECLARE stack_namel CHAR(32):

DECLARL top_value CHAR(1):

wp = get_stack_descriptnr(stack“uameh,
stack_descriptor_top);

IF wp = NULL THEN SIGHAL error; /+* not found w/

Wp = wup->tlop_pointer; {* indlrection =/

IF wip = HULL THEM SIGHAL error; /* no element =/
top_value = wp->valuc;
RETURH(top_value);

EHD stack;
get_stack_descriptor:
PRDCEDUHE{ename,uJHETURHSEPTR]:
DECLARE ename CHAR(32);
LECLARE (q,mp) PTR;
DECLARE not_found SIT IHIT('1'8);
mp = q; /* call by ref tricks avoided */
CO WHILE (not_found & mp "= HULLJ;
IF mp=>name = ename THEN not_found = 'o'eg;
ELSE mp = mp=>last_stack_descriptor;
END: '
RETURNCp) ;
EHD get_stack_descriptor;

fia. 4=-3(conclusion)

-4 9-

Ubviously, fig. 4=3 needs some explanation as to what is
going on. The overall intent of the program is to allow the

creation and manipulations of more than one stack. This

requirement is solved by construction a stack_descriptor list

whose function it Is Is to keep track of both the stacks

created and the elewents of each stack. Suppose, for

instance, that outer program began with:

CALL create_stack('operand', 's')
CALL create_stack('uperator', '!°

.
,
);

Then fig.b=4 depicts the results of these calls, If the

statenents:

CALL push('operand', 'a');

CALL push('operand', '"bL'):
follow, the resulting modifications are illustrated in fig.
b=5. It should be fairly obvious to the reader that push,

pop, and top_element correctly perform thelr intended

functions,.

stack_descriptor_taop
last_stack_descriptor
amao

top_pointer

last_stack_descriptar
nane

top_nointer

-—I+ 3-

e ——

R N L

'ﬂpﬂratur'

. T

[A——

HULL

—_ e = — =

''operand!

f— — m= = == =

B

stack_descriptor

stack_udescriptor_top
last_stacl__descriptor
name

top_pointer

last_staclk_descriptor
1

top_pointer

11]::- LL"

1]

B

'operator'

= = = = o=s =

e

last_stack_eclement [HUILL
value |'1!
k
last_stack_element |HULL

value

stack_element

HULL

'vperand!

— o e e o=

-~

[SENS—— N—

stack_descriptor

fig, L=

5

last_stacl_clement [HULL
value |'!'

last_stack_clemnent —
value |'b!

L-""'—.;

last_stack_clement ~
value |'a!

last_stack_clenent §IULL
value |'s!

stack_vlement

-l lj=

Wle should make a note at this time concerning our
awareness of the fact that instead of naming stacks one mlght
merely have pointers to stacks, The usage of polnters would
certainly decrease the . stack access time since we would
immediately have the location of the stack instead of having
to go through the extra procedure get_stack_descriptor in
order to find the stack. However, the stack would now be
completely aﬁailabtc to anyone programming at some level
hlgher than the stack abstraction. lie would not have te go
through the upecrators to access the stack but merely use the
pointer to the stack to change and information about the
stack., For reasons of preventing these accessibility

properties, the naming of stacks has been chosen as the

method for maintainence of a multiple number of stacks.

Analvsls of PL/I

We are now at the stage of analysis--that is, we are
ready to judpe the merits of PL/| with respect to the
facilities it provides us for deseribing data abstractlions.
We will take each of the three examples (figures b=1, 4=2,
4-3) and present first the good polnts and then the bad hased

upon the structured programming criterla that must be met.

Regarding the single stack example (fig. 4=1), probably
the most important point in PL/1's favor Is the fact that the

representation of the stack and the operators we introduced

-4 5~

are well-contalned within the procedure create_stack.
Furthermore the stack, Dbelng CONTROLLED by the programmer,
can be dynamically allocated and freed, thus allowlng the
designer a preater flexibillty in determining the stack slze.
In addlition, contrary to the usual hazards of flexibillty,
the requirement that the stack cannot be accessed from
outside create_stack is satisfied. Programmer convenience is
further increased by the wvariable attribute STATIC which
designates that the last valuc of top Is remembered upon
reentering the procedure througzh create_stack or any one of
several ENTRY points (corresponding to operators), And
fortunately one 1is not permitted to access the variable top
(thereby possihbly chengling its value) from outsi de

create_stackhk. Iverall then, an air of safety surrounds the

abstraction create_stack.

How we present the defects of PL/!I that this example
illustrates. First of all stack is nout really a data type as
we would prefer but instead a varlable. That is, we cannot
say that x is a stack since stack Is not a data attribute.
In our example stack is not only the abstraction we wish to
define but alsc the name of the wvarliable. Obviously to
extend this program to handle a nultiple number of stacks, we
nust use more declarations. For example, we viould be forced
to write something 1like "DECLARE (stackl(nl), stack2(n2J,

stack3(n3)) COMTROLLED CHARCL);" and similarly "DECLARLC

-4 b~

(topl, top2, top3) FIXED BIN(15) STATIC;" and finally rewrite
the operations to make sure they will know 5n which stack
they are operating. This really polnts out the fact that our
operators have not reen wrltten to operate on the
representation of some data type but instead on the variable
itself. Unfortunately bhecause there Is also no syntactle
connection between stackl and topl, the lousekeeping chores
involved in implementing the usage of more than one stack in
this manner become sizeable while the cuncept of a stack and
operators push, pop, and top_element are still simple. The
question to consider at this stage Is, "Uhy should the
implementaticn of multiple stacks be so nuch rore dlfficult
than implementation of a single stack when the concept of
more than onc stack and associated operators has not become

more compllcated?"

Also rerarding the ENTRY statement, we see that one can
simulate operation «descriptions within a data abstractlon.
Howvere, a cmﬁpIe of minor criticisms with regard te syntax
should Le brought to the attention of the reader. We must
include each operator section wlth a RETURH statement==which
has no syntactic connection with the operator--or clse
execution will continue with the next LCHTRY statement. It
might make more sensc to write "CHND <operation_name>;" (usling
LMF notation) to terminate each operation bHlock. GSecondly,

implementation restrictions require us to Jdeclare procedures

've

and entry points at the level from which they are called
(unless, of course, one wlshes to try hls lueck with default
condltions). This causes a syntactlc confusion since the
declaration takes the form NECLARE <named> FNTRY... . That
Is, there Is really a second usage of the keyword ENTRY--3

word which we depend on heavily,

In defense of PL/1, we must reallze though that these
last two polints are baslcally Implementation and language
deslgn considerations that had to be dealt with--althourh a
more satlisfactory way of handling these prohlers might have
been Invented. However, the flirst critieclsm invalving the
extension of example one tn handle more than one stack and,
In turn, reallzing that this extension prohlem |s ecaused by
the fact that stack is not an ahstract data type but the name

of a varlable seems to he a very serious defect of the

languare,

The necesslty of a3 multinle number of stacks bring us to
example two (flg, 4-2) which Introduced a usapge of the LIKF
attribute, Presented In this example |s the favorable
Impression that stack Is now a data type in the sense that we
can declare other variables to take the same structure as a
stack. As a result, there i< no need to even confront the
question of pProgramming one stack as oppnsed to many stacks

as had to consldered In the previous FL/1 example,

-l R

However, we must also examine why the usagpe of LIKE in
this manner s not as promlsing as it inTtially scems. The
declaration of stack nmust occur outside the stack_ops
procedure in order to be understood by declarations of the
form "DECLARC...LIKE stack;" (eg. DECLARE operand BASED(q)
LIKE stack:). A result of this non=structured requirement
is that access to such elements as operand.top Is possible at
Programming levels rlobal to the stack_ops procedure
(ccrresponding to higher levels of abstraction). In fact,
one can even allocate storage for "“stack" and manipulate its
Parts, say stack.top, although one would hope this not to be
the case; after all, stack is merely supposed to play the
role of a data type and not a variable which can take on
different values, A part of the stack structure we should
examine. is the varlable m, It |s required simple to allow
dynamic allocation of the body part of the stack, Even
though when considering the representation of a stack m owould
not come into focus, as It novi stands m I's as much a part of

the stack structure as are bedy and top.

Suppose we look a little more carefully at the stack_oups
procedure. One soon realizes that calls to the different
operators rely on the "overlay" implementation of pL/]|, For
Instance if we write "CALL push(qg, 'a');", push increments
name.top (which is really operand.top) and assigns "3" to the

top location of name (really operand.bodytoperand.tnp}].

-4N-

This type of programming is both unclear and
implementation-dependent. Note also that in order to group
the operator definitlons, we deslignate them as ENTRY points
within0 the procedure stack_ops; however, we certainly hope

that stack_ops, itself, will never be called.

The last unfavorable polnt to be made here is that, In
general, one must refer to stacks by pointers rather than
names (although the program could have been wrltten using
names==-see fig. U-3--but this 1Is more difflcult). A slde
Issue to bLe discussed here Is the usage of pointers,
Pointers are with respect to data as ggtys are to control
sequencing=--unstructured(18), Perusing a program full of
gotos generally means that at sone point one will come to a
line In the program and not be able to tell how one got there
because that spaghetti-1ike sequencing structure of go tos
that has led one to that 1ine has long since been tangled and
retangled in hls mind. The same holds true for any extenslve
use of polnters, Once a plece of data has been accesssed, it
Is often the case that one is really not sure which series of
pointers has been used to retrieve this piece of information.
These problems of multiple access=-paths means that attempts

to prove these programs correct will fail almoest from the

start.

It has already been noted that example three (fig. 4-3)

- 0f-

W

has potten around the extenslve usage of pointers by
accessing stacks by name in conjunction with the procedure
pet_stack_descriptor. Example three has certainly proven
that it is possible to describe in PL/I the stacl abstraction
(its representation and operations) within a single procedure
(called stack 1in this case). Also we may not access stacks
directly from outside the procedure but must ;o through the
stack operations in order to manipulate stacks. In general
the messiness within the stack procedure is hidden from the
higher level and thus this major requirement of structured

programming concerning data and operator abstractions is

satisfied.

llowever, the process of designing the stack procedure of
fig, 4-3, while conceptually clear, produces a relatively
unclear and unreadable program. Keeping track of both stack
descriptors and stack elements is indced messy and confusing.
Also due to our determination to wuse names Instead of
polnters we have incurred an additlenal lower level procedure
pet_stack_descriptor which was not part of our original stack
abstroction., The point to be made here is that overall the
complexity of this solution in PL/l In no way reflects the

simplicity of councepts invelved in solving the problem.

Suppose we now list the major favorable and wunfavorab le

points of PL/! we found when attempting to use the language

-51_
for structured progranming:

Bro

1) Single stack abstraction consisting of the stack
representation and deflned operations can Dbe falrly well
represented In PL/I (fig, 4=-1).

2) Use of the ENTRY statement allow us to defline operators as
part of the stack abstraction.

5) The LIKE attribute can Le used to simulate abstract data
types (fig, L4L=2),

4) The general stack abstraction can Le programned in [FL/|
{fif_;o "I'-}Ji

5) Except for use of the LIKE attribute, the underlying
representation of a stack can be nade inaccessible from
outside the stack abstraction.

Con
1) One is unable to define stack as an abstract data type.

2) Use of the LIKE attribute means that the programmer will
be able to directly access the underlying representation of
variables declared to have a structure LIKE stack (fig., 4-2).

3) Use of the LIKE dttribute means extensive use of pointers
(fig, 4-2),

L) In order to represent a general stack abstraction (ie. one
that is able to handle a multiple number of stacks) a fairly
complex propram nust be written. lhile the concepts of the
stack abstraction are simple, the PL/I program required to
simulate this abstraction Is both difficult to wrlte and
difficult to read, (Fig., 4=-3),

Overal]l Critigue of PL/T

We now pive a peneral critique resulting from our
danalysis of using PL/1 in conjunction with the design

philosophy of structured programming. A quick glance at the

-52.—

control features of PL/l shows that with a bit of flxing up
it is perfectly reasonable to assume that the control
requirements of structured prngrammiﬁg can be adhered to.
This fix=up would Involve adding the CASE statement(l) and
eliminating all other control constructs except for
concatenation (""", |F-THEM=-ELSE, and DO-WHILE.
Furthermore, its block structuring facllity is definitely an
Improvement f(over, say, FORTRAN) for describing control

abstractians,

Certainly the strict top-down approach with respect to
data of program development cannot be adhered to in PL/I and
in fact the bLottom-up approach is almost always taken. For
example, to design the stack program we would flirst bulld the
stack procedure and test 1its operators; then the program-
would be further ‘developed around the stack
procedure--creating stacks, pushing on or popplng off

elements when regqulired for the selution to the problem,

With the EWTRY statement we can syntactically 1ink
operators te a cdata structure, althouph certalnly the
desligners of PL/!1 dld not intend for the EHTRY statement to
be wused in this manner. |In the first place these operators
would have been programmed as separate procedures whilile the
ENTRY statement would be used to signify a secondary polint

within a procedure where the caller may wish to begin

_53-

execution.

The fallure of PL/I to provide the programmer with the
ability to create abstract data types and make use of these
in lower level declarations substantially Increases the
difficulty of wusing PL/I in conjunction with structured
programming. Certainly a baslc concept of structured
pregramnming Is the kepresentatian of programs In terms of
abstract data and operators, Abstract operators can be
simulated by procedural mechanisms but one is left without
any credible facility for representing abstract data types,
Al though one might arpue that the LIKE attribute is a
substitute for abstract type declarations, the fact is that
nothing could be more untrue. The LIKE attflbute deals with
the creation of a slpmilar structure to one already defined:;
an abstract type declaration corresponds to the creation of a
new data type (not necessarlly a part of the Jlanguage) and
then the declaration of a variable whose range of assumed
values and permissible operations are defined by that new
type. The LIKE attribute hardly encourages the thought

process of abstraction which is the basls of structured

programming.

For further analysis of PL/1 let us attempt to program
the linear 1ist problem outlined earlier in Chapter 3, Wi

want to write a program the defines a linear 1ist and, in

Py

-5l

particular, stacks, queues, and dequecues. Each of these
1lsts has a body associated with It and in fact the top level
abstraction would simply consist of linear lists and the
underlylng representation of the body. At a lower level
abstraction stacks, queues, and dequeues would be represented
as refined linear 1lists together with particular operators

associated with each type of list,

Without thinking too long, one might try to program this
in PL/1 as sketched in fig. U=-G, However, after a blt of
review one should realize that thls program Is nowhere near a
solution to our problem. For one thing, there Is only one
body and therefore only one list. (To extend this to more
than one body would be a somewhat complex problem that
conceptually deoes not appear toe he 50 difficult.)
Furthermore we can only access the stack, queue, or dequeue
procedure from within the linear_llst procedure. This
requirement 1is not necessarily a had restriction; it just is
not what we intended to design. !lowever, if we chose to get
around this problem Ly writing linear_1lst, stack, queue, and
dequeue as four separate procedures, we would be in
disaggreement with the results of aur abstractlon
process--that the latter three are lower level abstractions

of linear lists.

_5 G=

linear_list: PROCEDURE(mn, n);
DECLARE body(m:n) CHAR(1l) CONTROLLED;

stack: PROCEDURE;
DECLARE top FIXED:

push: ENTRY
pop: EHTRY
LND stack;

yucue: FPHOCEDURE;
CECLARE (front, rear) FIXED:

cnter: ENTRQ
rcmove: ENTRY
END queue;

dequeue: PROCEDURE:
DECLARE (leftmost, rightmost) FIXED:

insert: ENTRY
delete: ENTRY
cHl dequeue:

EHD linear_list;

flg. =6

...5.-;_

Une point that has not been previously mentioned is the
possibility of "conflicting names', |t scems perfectly
reasonable that we might have named tte operations of queue
in fig., U4-6 to be push and pop--although they would act
differently that the push and pop operatars of stack. (For
Instance the most recent element placed on a stack gets
popped off (LIFO) while the element in the queue for the
longest amount of time pets popped (FIFD).) So let us
suppose that both the stack and queue procedures had ENTRY
points named pop. Certainly at a higher level iT we wanted
to pop an eclement off a particular linear list, we would know
which pop to refer to if we knew which type of list (a stack
or a gueue) we had., However, there is no way to do thls in
PL/1 and In fact we would receive a namlng conflict error
message for hLaving two EMTRY polnts (whether in the same
procedure or not) deslgnated by the same name,. In all
honesty, therc are at least two reasons why we should not
expect PLS! to handle this in any different manner: 1l)a stack
or a queue is not rcally an abstract data type that can Lbe
desirnated as a variahle attribute, and 2)PL/1 does not have
the facility to allew the programmer to desipn o data
abstraction consistinn of & representation and assoclated
operation in a manner that means the language is now cxtended

to include this new abstract data object.

=57=

Uverall, it should be clear that using structured
programming as a design tool for writing programs in FL/1 is
nearly impossible. When one sees papers titled something
like "Structured VPraogramming in PL/1" one can be sure that
thls paper simply addresses itself to the issue of control
and, |In particular, leaving out the GOTO statement. This is
a start but also close to the end regarding the extent that
one can follow the structured programming approach to
designing programs in PL/1. (1 have never seen the usage of
the ENTRY statement included in papers of this sort.) Due to

the restrictions of the lanuuage, PL/I is far from being able

to meet the criteria set forth by structured programiing.

-hH-

PASUAL

Pascal(1l9) was developed in 198Y by Hiklaus Wirth. The
design philosophy of the programming lanpfuare was based on
two principal aims: first, to create "a languare sultable to
teach programming as a systematic discipline," and second, to

construct a languape implementable as part of a reliable and

efficient progranming system,

In reference tou the latter of these two polnts, by early
1873(20), Pascal hau been successfully implemented on the CUC
6000 and the ICL 1900, Furthermore, Implementations on the

IBM 360, Sigma 6, CIl 10070, and POP-10 are in progress at

various locaticns.,

In order to evaluate the success of the first aim, we

can refer to Uirth's recent bock Systuenatic Programming: An
rod ion(2l) which uses Fascal as its programming
language. In this book, Mirth is very much concerned with

the explanation uf systematic programming techniques, many of
which are similar tou concepts of structured programming.
Wirth shows how programs desipned in this fashlion can be

easily written in Pascal.

¥lhen analyzing this language with respect to structured
programming and, in particular, the representation of
abstract data objects, we should consider the following

point. Fascal is the only one of the four languages

- 60-

presented in this paper that was specifically desipned around

the concept of programming practices considered as a

discipline.

Lata Structurjne Facilities of Pascal

In Pascal data are described by degl lo and
definiti . tach variable must be introduced by a yariable
declaration which assocliates a type and identifier with that
variable, A daty tvpe defines the set uf values that the
associated variable may assume. A data type may be directly
described in the variable declaration or Uy means of an

explicit type definition,

It should Le noted that Pascal is pout a8 hlock-structured
lanzuage in the sense that its predecessor ALGOLGED was.
Variables are rdeclared either at the heginning of the
program==-in which casc they are local to the whole program,

or in a procedure--in which case they are local te that

procedure.,

While variable declarations In Pascal are similar to
those of PL/L, we should take a closer look at types and type
definitions, Types are broken down Into three catepories:

simple, structured, and pointer types.

The Jdefinition of a sinple type indicates an ordered set

of values., Sinple types are divided inte scglar and subranie

_El-

types. The standard scalar types in Pascal are Lpoleanp(=),

inteper, char, and real. Other possible examples of scalar

o

Lypoes are:

(rammal, reptile, bird, fish, amphibian)
(subcompact, compact, Intermediate, full)
(a, e, 1, o, u)

Consider the follewing variable declaration:
yar dJdeuwon:(subcompact, compact, Intermediate, full)

Thus "demon" can Le assigned preciscaly any of four possible
valuges--compact, subcompact, intermedlate, and full.

suppose, however, that we wish to construct several "car!

variables, We mlight then construct the following type

definition:

car = (subcompact, cumpact, Intermediate, full)

and then program the followiny: code:

yar demon:car

so that "dewon" is now of type "car"., The subranre aof a

scalar type crcates a new type defined by Indicating the
lower and wupper lbound values in the subrange. Two cxamples

of this are (1..13) and (c..u).

(=)
Keywords in Pascal will be upnderlined,

-67-

Structured types in Pascal are characterized [y

assoclating a type (or types) with components and Indicating

a structuring method, of which there are four. The first of
these is the grray type which s comparable to PL/I arrays
except that Pascal arrays are restricted from being

dynamically allocated. Examples of array types are:

array 1..1UD] of char
arrav [1..5,1..5] of intewcr
The second structurlne method to consider is called the
record type. FLach component of & record type s called a
field and is designated by an identifier and its tvype. For

example, letting "alfa" denote & character string type, we

might wrlte:

record name:alfa;
are:l,.39;
ssnum:jpteger
So far this facility Is similar to PL/! structures. Field
access Is accomplished by the dot (".") notation selection

mechanlisn, also common to PL/IL.

One added feature within the Pascal record types is that
a tap fheld denpoted by the keyword gase may be indicated as
part of o record, This powerful facillty allows one to
speclfy several optional variants. The actual variant teo be

used will be determined by the value of the tag fleld whieh

= 5=

is specified hy the programmer at or after the time the ty:c

is assigned.

For exanple, suppose that we have defined "1lst" to bLe a
scalar type such that "list = (stack, qucue, dequecue)". Then
the following record type could define a lincar list,

record body:array [-100..100] o ghar;
case s:list pf
stack:(top:inteprer):
yueue:(rear:intecer;

front:inteser);
dequeue:(leftmost:integor;

rishtmost:inteser)
Then assurme at scme later point in the program a wvariable x
is declared to have the above type. Then if "x.s'", say,
evaluates to the constant ''yueue'", associated with that
corresponding record type variable is a '"body", "rear", and
"front", (Since x represents a gqueue, expressions such as
“"x.top" and "x.leftwost" are ccnceptually inaccessible, The

precise details concerning storage allocation for the

variable and manipulation of "inaccessible" record flields are

left up to the inplementor.)

set types are a third method of structuring.
Lharacterized by the keywords set of, sect types define the
range of wvalues as the powerset of the specified base type,
{(In fact, in the first version of Pascal, the keyword was

powerset.) If we write "set of(red, yellow, bLluel", then the

-6l -

possible walues a variable of this type way | uve aro f},
{rud}, %yelluw}, 1blue}, {red, yeilow}, ired, hluei, {yelluw,
hiue}, and ired, yellow, b1uei. In addition, the operations

union, Intersection, set difference, and membership are

defined for all set types.

The file type, which s the fourth method of
structuring, specifies a sequence of components all of the
same type. TFor example, In order to construct the type

character string we could write "file of char".

Finally, v mention pojnter types of the Fascal

language. VFPointer types define an unbounded set of wvalues
(comparable to memory addresses) pointing tu elements of the
designated types. For instance, '"#integer" denotes that
variables dJdesignated to be of this type may polnt to
integers, Pointer types are comnonly used In conjunction
with the standard procedure peyw which generates a value of

the specified type and returns a pointer to it.

This completes our description of the data faclllities
available In [Pascal, Vie now give some instances of type

definitions just to make clear how one uses them,.

E.E

Vowel = (a, e, i, o, u)

List = (stack, queue, degueue)

Board = grray [1..8,1..8 of Boglean

Text = file of char

Linear_list=record budv:g[rag[-lﬂu..lﬂd]gi char:

gase s:Llist of
stack:(top:interer);
queuc:(rear, front:intepger);
dequeue:(leftmast,

rightmost:interer)

Before we proceed to understand the stack abstraction

example given in the next section, we should examine the
rules of parareter passing adopted by Pascal. Ildentifiers
introduced in the procedure heading are called

formal paraiieters, and the objects to be substituted for the
formal parameters are called actual parapeters. There exist

four types of formal parameters In Pascal: llvalue
parameters ("call by wvalue"), In which case the actual
parameter must evaluate to some expression and its value Is
substituted into the formal parameter (the default case for
Pascal), 2)variable parameters ("call ULy reference"), In
which case the actual parameter must be a variable and Is
substituted for the formal parameter, which must be preceeded
by the symbol yar, 3)procedure parameters, where the actual
parameter wust be a procedure identifier, and 4)function

parameters, where the actual parameter must be a function

identifier.

At this polnt in the chapter we are ready to read and

understand the Pascal solution to the stack abstraction.

-Gh~-

stacl Abstractien in Pascal

We would now like to construct a sclution to the stack
abstraction problem described in Chapter 3. Fig, 5-1 depicts
a proposed solution to the problem written in Pascal. First
oFIaII we note that stack is a record type consisting of two
flelds: l)a "body" which is an array of 100 characters, and
2)a "top" of type inteper. To declare wvariables of type

stack we would simply write at the beginnine of the program:
var s,t:stack

tach of the four routines 1Is simple, Three of
them=-=push, pop, and initialize--are wrlitten as procedures
while top_element is coded as a function., (Functions, as
distinct from procedures are claracterized by labeling the
type of wvarlable to be recturned--in this case ghar.) In all

four routines Lthe ghar and stack parameters (where

applicable) are passed by value ano variable respectively.

-f 7=

stack record body: array [1. .100] of char:

Lop: lDI!ELE

procedure pusn (y:ghar; var x:stack):

bergin
K.top = x.top + 1;
If x.top » 1Q0 then error;
®.body x.topﬁ
i;

=Y

procedure pop (yar x:stack):
bepin
Jf x.top < 1 thep error;
x.toup 1= x.top - 1

end;

function tup_element (yar x:stack):ichar:

bhegin
if x.top > 100 thep error;
1f x.tep < 1 then top_clement
glse top_element
end;

procedure initialize (y:ghar:
bepin

x.body[l] ¥
x.top 1= 1
end;
fig, 5-1

IEI.

x.bédy[x.

rstack);

top)

_E,a-

The structure seclection mechanism says that if x is of
type stack then "x.top" and "x.body" are its constituents.

0f course "body" is an array type and so in ceneral we would

write "x.hody[?]“ for some integer | such that 0<i<101.

It should be obvious that these routines in canjunction
with the stack type definition correctly solve the prablem of
programming the stack abstraction. \lie now proceed to analyze
this example and Fascal in general, paying partlicular

attention to its data mechanisms with respect to structured

programming.

We are now at the stage of analysis and are planning to
examine both the Pascal language and the stack abstraction
exanmple, This examination will be based on the criteria

established by the structured propgramming techniques.

Uescribineg first the faverable points of Pascal, we must
be impressed Ly the ease wlith which one can describe abstract
data types using the different Pascal data facllities. This
area of data types is such a central issue of the languape
that one is very nuch encouraged to think and program in

terrms of abstract data types.

Just as the data type 'stack" was casily cxpressod

within Pascal, so also were operatlions on a stack. Lach of

=B g-u-

the four routines |s short, correct, and easy to understand.
Thus as the operations woere conceptually simple to Jefine, so

also were they ecasy to code within the Pascal lanpaure.

Another favorable point aleny the lines of the stack
abstraction program 1Is that obviously there are no

difficulties incurred by attempting to use more than one

stack (remember that multiple stack usage in PL/! caused us
problems). A declaration such as "war ouperator,
operand:stack;" neans that we have Jdeclared two variabh les,
"operator" and "operand", both tu be of type stack.

Furthermore, stack functions are casily expressible, e

sl

poploperator)
pushly, opcrand)
Finally we must again emphasize the outstanding quallty
that Pascal poussesses: clarity and simplliclity., This feature
combined with the atility te cxpress abstract data types must

commit us to be favorably irpressed wlth Mascal.

Jlowever, Pascal deoes have some draubacks concerning
structured prorramming., Ve should be aware that a bottom=up
appreach is still required for vriting prosrams. That is, we
arec not able to code in terins of stacks and its assocliated
operations bhefore the stack type and operators are defined,
This point is wminor, however, since it could be corrected

with the implementation of a library system which keeps track

of undefined objects.

Fascal has a more seriocus fault that js well-illustrated
by the stack abstraction example. FPascal oprovides no
facility to syntactically link an abstract data type with its
associated operators. |n the example, the four routines are
not defined as part of an cncompassing stack type definitlon
but are merely snall routines vithin some larpger Brocram., It
is furthermore unclear what happens If in a call to push,
say, the second actual parameter is not of type stack--the
typo speclfied Ly the corresponding formal parameter.
Perhaps some form of automatic conversion takes place. What
ve really want is for this call to pive the procrammer an
error. In Uirth's Look(21), he says that the "type of the
actual parameter is determined by the type of the formal
parameter, as specified In thke procedure heading." This
statement seems to imply that the type of the actual
parameter neced not be specified at the time of proced ure

invocation which hardly makes sense and furthermore does not

dNsSWer our question,

A further criticism as a result aof our inabillty to
syntactically link a data type with its operators is that the
lower level representation of o variable declared to be of
that data tvype is accessible from anywhere in the program

rather than only through the data type operations, For

-:I'l-

instance in our stack cxample, if "operand" vere uoclared to

he of type stack then ve could change the value of

"operand. top" from any place in the progran. ilo longer can
we he sure that "top" will only be incremented and
decremented by routines "push" and '"pop" respectively, He
cannot even say that "top" is only set within the routlne
"initialize", Simitarly, the "body" of any stack wvariable

can be manipulated (rom any point within the program,

A~ related problem Is that of name duplication., We
cannot have different operators with the samne name assoclated
with dlifferent data types since there is no syntactic

assoclation of operations to types,

One final criticism of Pascal concerns the desipner's
decision to disallow dynamic array allocatlion., The lack of
this facility means that a rreat deal of flexibility Is taken
away from the nrogrammer, lor axampin, in our stack cxample
vie may wish to have different sizn stacks, whose sizes are to
be determined at run tine. tovover, this problem canm not be

solved within the Pascal languare.

For the sake of reference, we list those major pro and

con criticisms we have ade about |ascal,

-79-

Ero

1) The programmer has the ability to represent abstract data
types and code routines which operate on variables of
particular types,

2) Ho difficulties are incurred from rnultiple stack usage.
3} Pascal is concise, simple, clear, and understandable--and
yet a powerful langaupe,

Lon

1) Pascal provides no syntactic linkare mechanism to bLind
operators to their data type,

2) Lower level representation of abstract data types are
completely accesslible throughout a Pascal program.

3} Pascal does not provide dynamic array allucation.
Qverall Critigue of Pascal

The wmiost striking UbsgrvatTon one makes when learning
Pascal is the compactness of the language and vyet the
richness of the facilities for the constructlion of data
types. Thus it seems that a language need not be so
complicated in order to permit the process of abstraction in
writing programs. This process is certainly the foundatiaon
of structured progranming, and for that reason FPascal, looked
at In terms of a structured programming lanpguage, nust be

regarded as a step in the ripht direction,

The control structures of Pascal, which we have for the
most part igpnored, are perfectly adeguate for meeting

structured programming regulirements, However, it does seem

?3

odd that for all of Wirth's intentions of introducin:-

programming as an art, the jgoto statement is a part of the

languare.

suppose that we Jlook at how one would code the 1lnear
list abstraction that was prescnted in Chaptor 3, Fiz. 5=2
presents an outline of the program. ‘e notice flrst that the
£a3¢ construct is both u powerful and useful feature of the
Pascal language. It plays the najor role in discriminating
among the lower Jlevel representation and, in turn, the
appropriate operations. In terms of clarity and readability,
the linear 1ist Pascal prozram is certainly a SUCCESS
however, v must be aware that the sawe structured
prograrmming criterla regarding data type and vperator

association and access restrictions are violated.

“?. -

List = (stack, queue, dequeoue)
Linear_list = rocorg budy:ﬂrrgy[-lﬂﬂ..lﬂﬂ] of char:
case s:lList of
stack:(top:interer);

queue:(rear, Tront:inteper):
dequeuc:(leftmost, riphtmost: interer)

rocedure put_on (y:ghar; var x:Linear _list):
Lesin
case x.s opf

stackh: Wil 1pu5h}
x.top := p+1
|JUI|}" X . tGr)ﬁ
: uI
gquueuethopin 1enter}
o g
degueue s berin {insert{
cne;
ong put_on

funtion take_off (yar x:Linear_list):clar:
begin
case x.5 of

stack:Lerin {p091
Astoup 3= x.otop-1;
tako_off := hody[x tnp+1]
end;

fquoue rporin 1rcmanE
end;
dequeue:besin {delntni

|
s n KT

cnd take_off;

-75-

An Interesting paper we must cansider Is an artiele
written by Habermann(22) which criticlzes Pascal on soveral
grounds, Habermann polints out that one of Pascal's pitfalls
CONCerns Its fallure to Incorporate the ALGOLGD block
structuring technlque, reminding us that "a sound programming
princlple Is to declare a varlahle at the place where It Is
used." One must agree with him on this point especlially when
looked at from the structured proprammineg view. Block
structuring seems to be a valuable technianue when programming

by levels of ahstraction.

With respect to data representation, the maln eriticlsm
of Pascal that Hahermann makes Is Its fallure to distingulsh
between types and structures, He makes the following
definitions: 1)a type defines a domalin for the objects
declared of that type and determlines the nperations that can
be performed on those okjects, and 2)a structure defines a
rule for connecting ohjects into larpnr units, hut operatlons
are not on the structure but are expressed In terms of

Individual elements of the structure.

It is my bellef that Hahermann's complaint Is justified.

suppose that Pascal had actually provided a means for
constructing a stack ahstraction that satisfied our criteria,
Then from outside the akstractlion, stack would he coensidered

a type defined by certaln operations (e.r. push, papl:

-7E=

however, from within the definltlon of the stack ahstractlion,
stack would be a structure such that it |s comnoswd-af a body
and top, and the operatlions are coded in terms of these
Individual components, The fact 1Is that Pasecal fails to
provide the proprammer with the ahkility to construct the

stack abstraction as a syntactic unlt, thereby permitting

stack to he viewed as hath a type and a structure, In
general, the languare does not distinguish the use of a data
abstractlion from its implermentation, Without such a

distinction, the confuslon between tvpes and structures is

Inevitable.

Overall, Pascal falls short of helng a suitable tool for
structured programming, We must conecur though that I[f our
earlier criticlsms plus a top=down proprarmine mechanism were
Incorporated Inta the lanpuare then Pascal would he Ideally
suited for structured programming., 0Of course augmenting the
language In this fashion Is an ambitious step forward, and
the Pascal desipgners knew just how far tn proceed wilthout
Incurring the major probhlems of designing a structured
programming language, However, we must reiterate the point
that this lanruage was developed with the concept of
systematie proprammineg as Its foundation, and from the
results obtalned Tt should he ohvious that this speclfliecation

Is a heneficial deslpn criterion for anv sucecerssful lanpuage

development ,

EL1

The programming language EL1 is the work of Len licgbrelt
and was first described In his doctoral disscrtation Studies
in Extensible Lonpuores(23) In June 1970, AMthough the
philosephy of this languare remains unchanged, a more recent

description of CL1 can UbLe found in the ECL Prorrammer's

Mapual (24) written in September 14972,

One can divide any extensihle language into two parts:
1} the core language defined by some set of syntactic and
semantic rules, and 2) extension facilitles permitting the
programmer to design a more powerful language from the small
core lanpuane. The core lanfuage of CL1 voes not differ
significantly from ALGOLGO or, indeed, any other algorithmic
language. Following along the lines of any extenslible
language, LL1 provides the programmer with a number of
facilities for defining extensjons s0 that the programmer can
reshape the lanpuare to the problem at hand. These extenslon
facilities exist in the following four areas: syntax, data
types, operations, and control. Our investigation of EL1
will focus specifically in two of these arcas: 1) data type
extensions, which allew the propgrammer Lo dellne new data
types and new information structures needod to model a
particular praoblem, and 2) gperator extensions, which permit

the prograrmner to deflne new operations on new data types.

-78-

The following question must be answered. Using LL1, how
easy Is it to construct data abstractions, each of which
consists of a representation and operations defined on that
representation, and yet adhere to the establlished criteria of
structured programaing? Lefore attempting to resolve this

question, a description of the relevant data structuring

facilities of ELLl rmust be presented.,

bata Structuring Facilities of EL1

We now zlve o rather detailed yet informal explanation
of ELl's duta structuring facilities. This description will
Include treatment of varlables, modes, mode-producing
operators, doata generation, procedure and renerlc forms, and

user=-defined mode tunctions,

le begin as in FL/I with the description of wvariables,
Associated with ecach variable is its name, mode, scope, and
value. For example if we write "DECL one:INT BYVAL 1;"(=)
then we can make the following deductlons: 1) the variable
name is Mone", 2) the mode of one is INT, that is its value
may take on any integer number, 3) its scope, althouph really

relative to o propran, is that block to which the declaration

is internal, but excluding all contalned bloclks to which
another explicit dJeclaration of the sane identifier is
()

Upper case letters will be usecd to signify keywords In ELL.

-79=

internal, and &) its initial value is 1 by the actlon "OYVAL
1".

There are seven primitive modes in EL1 denoted by the
mode-valued constants IWNT, REAL, LABEL, BOOL, CHAR, HOWE, and
REF. While the meanings of the first flve are fairly
obvious, the semantics of the last two should be descrlbed.
NOHE means that no type is associated and |s the only means
provided by L[L1 far denoting that no wvarlable is to be
returned from A procedure. REF is equivalent te PTR in FL/T;
that Is & variable of 1ode REF is a pointer unrestricted as

to the mode of &n object to which |t may point,

Just as one can define varlables of mode 11T, thereby
restricting them tc having INT values, so also cah variables
be declared to liave nmode MODE, to which ounly NMODE values can

be assigned. For instance, SUPPROSe we wWrite:

DECL truthvalue:MOUL;

truthvalue <- S500L
Then "truthvalue" is of mode MODE and jts assoclated value is
BOOL. Thus the result of some conditional part “truthvalue =
LOOL" would evaluate to TRUE. Furthermore, we are now able

to wuse "truthvalue" as a data type in variable declarations,

for example:

DECL marital_status:truthvalue

-30-

Thus "marital_status'" is a variable which can accept values

TRUE or FALSE,

However, the use of I'OUE would be very uninteresting If
all we could do is use different variable names |n place of
our scven primitive modes. We would like to have the ability
to create new data types by operating in some fashion on
those primitive modes we already have. In arder to meet this
objective, CL1 pravides the programoier vith Five
mode=producing operators: SEQ, VECTOR, STRUCT, PTR, and
OHEOF., These are discussed bLelow. e will use m, ml,

m2,...,Mn to represent nodes.

1) SEQ(m): The type result of this application to m isg the
construction of) lenpth-unresolyed row aof
conpnnents, cach of mode m. For example, i we
write:

DECL string:MODE;

string <- SLO(CHAR)
then the mode "string" is defined as a row of any
number of characters. The Jlength of a wvariable
declared to be of rnode string rust ke resolved at

the time of declaration,

2) VECTOR(i,m): For some integcr i, the mew type defined s

a h=rposo row of i components each of mode

-31-

m. If we write:
DECL int_array:MODE;
int_array <= VECTOR(C10Q,!11T)
then the "int_array" is constructed to be type "row

of 100 integers'".

3) STRUCT(namel:ml,
name :m2,

namen:mn): Given that namel,...,namen are symbolic
names, the resultant mode Is the type structure
consisting of n fields {components) whose
respective nodes mi may differ from one another.
As an example, suppose we wish to Jdefine a type
named person as having a name, age and sex.
Assumling the cxlstence of ocur earlier definition of

string, the following statements would construct

the desired rwode:

DCCL person:HODE;
person <= STRUCT(name:string
ape: 1HT
sex:BOQL)
4) PTR(ml,...,mn): The result of this application is the
mode pointer restricted to point to variables of

mode ml or m2 or...or nn. For Instance, if the

type string were available to us, we could write:

-7 =

LECL string_ptr:!iODE;

string_ptr <- PTR(string)
Then any variable of type string_ptr may only point
to elements of type string. ilote the difference
between PTR and REF: PTR operates on a nmode to
produce a new data type and restricts the range of
that type; RFF is itself a data type that Joes not

make the above restriction.

5) OHEOF(ml,...,mn): The result is the mode union of
alternative nrodes Ml,...,mn where a varlable of
this type takes on a specific alternative based on
its initial value., That is if We write:

DECL teken:MODE:

token <- CLEOF(CHAR, INT)
then any variable of tvpe token can lhave types CHAR
or 1T associated with it., e should note that a4

primary wuse of OUEQF s to describe acceptable

types for formal paramcters of procedurocs,

Thus the wuse of these five operations permits the
programmer to construct modes suited for his purposes. In
contrast with FL/I, this added flexibility provided by EL1
will become a central issue during the analysis of this

lanpuaye,

..33-

Wie now come to the area of «creating objects of any
mode=-a process which comes under the heading of data
eeneration. [L1 provides the programmer with two forms for
renerating data. The first is CONST which creates a noew
instance of some data class; the second is ALLOC which does
the same thing as CONST but then returns g pointer to that

new Instance. For example, suppose we urlite:
DECL st:string BYVAL CONST (string SIZE 25)

mere st is declared to have type string (unresolved lenpth
mnode), The wobject naried by st has been erecated and rlven a
tength (as a result of "S|z¢ 25"). e could alse write:

DECL splistring_ptr;

spl <= ALLODC (string OF “"Mark")
In this case the right hand side of the sccond statement
creates a new object of mode "string", initializes that
chject to the literal string "Hark", and returns a pulinter to
the object; the assignment uperation copies this pointer into

spl. dlaturally the length has been dutamatically resolved to

h.

Frocedurcs in [L1 are identified by the koeyword EXER
(similar to PROCEDURE in PL/I). The procedure name is
considered to have mode ROUTIHE, Ve remark here that EL1 s

an "expre55ion-mriented” languare, i.c. the final wvalue

_Eh-.-

calculated within a bloeck s considered to be the value of

that block. The following procedure calculates the remalnder

when k is divided by j for integers j and k:

Rem<=LXPR{K: 1T BYVAL,j:IUT BYVAL: INTYCk=(lk/jIej);

Rem has parameters |k and j which are given specific values
whenever fem is called (e.z. r <= Rem(5,4)). Lriting LCYVAL
implies that the "call Ly value" implementation will be used,
The IHT following the ";" withln the parameter list

designates the type of value to be returned (namely the

result of k=(k/ji*j).

Proceeding we wmight use the f[en procedure in the

following (inefficient) routine uhich determines whether or

not a number is prime:

Valldprime <= CXPR (number:INT CYVAL; CoOoOL)

CEGIMN
NECL w:BOOL BYVAL TRUE;
LECL i:1HT;

FOR i FROM 2 TO {(number/2 + 1)
VMEILPLE & o= TRULE DO
[) Rem(number, 1)=0 ->
b<~FALSE(];
Iy
END;

flote that []...E] is eaquivalent to the PL/I CEGIMN...END
construct and p =» g Is equivalent to the PL/| staterment |F p

THEN ¢, The effect of . the routline Validprime can be

cxpressed as:

=05=

TRUE If p Is prime
Validprime(p) =

FALSE otherwise

where p is some inteper,

We might be concerned about what would happen if a REAL
number were used as an arpgument for Validprime, Instead of
trylng to determine the "standard" default mechanisms (which
might prove insufficient for our purpnscs anyway), suppose we
rewrite the routine, calling it Validprime2, in which FALSE
will be rcturned if number is REAL or If It is not prime.

This would be progrommed as:

Volidprime2<~CXPN(nurber:ONEUFCILT, REAL)BYVAL; BOOL)
GENERIC(pumber)
[rEAL] => FALSE;
[tuT] =
GEG I
DECL b:300UL BYVAL TRUE;
DECL 1:INT;
EOR i FROM 2 TO
{number/2 + 1)
WHILE b = TRULC DO
[Yrem(number, 1)=0
-> L<=FALSC(];

_ EHD;
cnn;
The GEMNERIC form of LL1 provides us an efficient iwecans for
choosing a particulaor execution pattern within the GEHERIC
Lody determined by the mode(s) of the argument(s) of GENERIC
(in Valldprime? we examlned the mnode of "number"). Also the

CL1 form "p => ¢" is read as "if p is THUL then exit the

=36~

block with a value g". For reasons of compilation
efficiency, cacl statement within the GENERIC body must be of

the form "“p => aq'l,

The last topie e will examine s the area of
user-defined functions; we may best approach its explanation
Ly example. Suppose e have defined the type complex" ip
the following Way:

DECL complex :HODF;
cornplex ¢« YECTOR(2Z, INT)
Furthermore suppese, after having defined some variable X to
be type complex, we wish to access the First integer in bt
which will Fepresent the real part of the cormplex variable «x.
We might write "XC1)"; on the other hand, for the sake of
readability, we might wish to write "x.re". |n order to use
the latter notation, we can define @ selection functien for
"complex" numbers which, in turn, will be called by the
constructions x(i) and x.s5 where | is some interer and s is a
syrmbol ., The "complex sclection (coms) function would then
be written as follows:
coms - EXPREa:cnmplex,m:GHEuF(IHT, SYMBOLY; 10T)
GEMERIC(m)
HIT] =) a(m);
SYMBOL] => [Im="re"

Ii.I=ll]‘Jnll

(];

H n
S
Lo
—
ol
Tt B

END;

-37-

However, upon closer Inspection one should recallze that coms

will not worl satisfacterily. e said earlier that whenever
we use the notation "x(i" coms will be called.
Unfortunately then, once coms is called, it will recurse

forever since we are returning one of values alm), a(l), or

a(2)=-all of which will force calls back to the selectlon

routine coms.

We now analyze how the designer of CL1I has solved this

problem of infinite recursion hy introducing the operator

"2, Instead of defining "complex" as we did, we should

have defined it as:

complex <= QL("complex",come,coma,coms, comp)
SAVECTORCZ, INT)

This says that tke riode complex has an underlying
representation (UR) consisting of a VFCTORCZ, IHT) and
associated with the name complex are the operations of
conversion (comc), oasslpnment (coma), selection (coms),

printing (comp), and peneration (comg). These ovperators are
identified by position within the (L (quoter list)--that is,
QL(1l) gives the name of the mode, NL(2) identifies the
conversion routine, and so on, These routines will be defined
by the user (as we attempted to do for coms) and are to be

invoked In place of any default mechanism when that

-FH-

particular type of operation needs to be performed, For
instance, the assignment routine would be invoked when a new
value is assigned to an object of the particular mode for
which the assignment routine wvas written., The assignnent
routine can be called oither explicitly by the " ¢= n
operator or implicitly by the OF ar BYVAL constructions
within ALLOC or COHIST. Similar rules exist for the other

four operations.

e now introduce LUIFT and LOWER as reneral prinitives
which permit the user to attribute different modes to the
sae object. Hith this ability, user-defined mode funtlons
are able to mnanipulate objects of a riven mode without

recursively calling thicrmiselves,

Lonsider the followinge example., Lot x be a particular
complex number, say x = Y+77, In tLl, assuming that Lie
assignment routine (coma) s previously defined, we can

describe this by:
DECL x:corplex CONST (complex OF y,713

Then we can talk about LOWER(x) which refers to the
VECTOR(Z, 1T); specifically, LovER(x)[1] = v and Lowercx)(2]
= 7. Thus use of the LOVER focility mlves us the ability to

present a corrected version of coms:

=8y =

coms <= EXPH(a:cump1ex,m:DHEDF{IHT,sYHBGL]; INT)
[iEI'JER[{.".imJ

IHT Ei LOWER(a)[m];

sYMBoL]) => [) m="re" => Loucn(a)[1];
m="Im" => LOUER(a)[2];
(];

EHD :

Wle thereby ret around the recursion problem and successful |y
define the selection rountine for complex numhers. ilote that
coms will bhe ecalled whenever vic write x(1), x(2), x.re, or
Xoim. However, 1t would also be called if we urote x(3) or
X.50 and so obviously "Erecakpoints" signifylng errors in
selection should be placed in appropriate sections of coms.,

As one would cxpect, the LIFT functien has cxactly the

opposite cffoct s the LAWER facllity.

Althourh this description of ELL has been rather
informal, it should rive the reader & fairly good idea of
the concepts around which the lanpuape was developed. In
addition, one should hagve rained a working knowledge of the
relevant parts of EL1 in arder to understand the examples to
be presented (next section) and to accurately examine the

languare's usefulness with respect to structured programming,

stacl Abstraction in CL1

We now present the stack abstraction written in ELL.
Obviously any example can be programmed in many different

ways and, in fact, an EL1 program could be wrlitten which s

-:_]1:}..
completely analogous to the Pascal solution tu the stack
abstraction we examined in the previous chapter. ilowever, in
analyzing this lanpuage or any other, we are attempting to

adhiere to structured programming requirements and usc the

lanfuage's fullest capabilities to Jo so. From ny readings
and discussions with people involved in the rdesign of ELL, it
is clear that the ability te prapsram by ahstraction was one
of the goals that this language desizn was intended to meet.
Thus this example will be written in a stylec such as the

developers of the language would have programmed jt.

We begin by constructing "stock'" as a user-defined mode

function:

stack <- "(L("stack", stc, sta, sts, ,str)

$eSTRUCT(kop:r ITHT, body:SEQICHAR))
Thus "stack" will have an underlying represcntation of a
structure consisting or flelds “top", which will represent
the toprnost filled location of the stack, and "body", which
wlll hold the elements of the stack. llote that the size of
the body is unresolved and must, therefore, be resolved at
the time of stack reneration. Associated with a stack are
operations of conversion {stec), assignment (sta), selection
{sts), and penecration (stg)., {1l have chosen to irnore the

construction of a printing routine as it is not pertinent to

this example.) These four operations will correspond to pop,

f]l-
push, top_element, and initiallze respectively.

The first of these routincs that we wil] examine is stc:

stc <=

LAPR(x:stack, Fm:MODE: CHAR)
LEGIH
DECL F:INT YVAL LOWER(x).top:
NECL temp:CHAR;
fu 7= CHAR =) TYPE_FAULT(stack, fm);
f=0 => BREAK("stack crpty');
temp <= LOWLR(x).body(f);
LOWER(x).top <~ f-1;
temp
CND;

The routine, stc, will be used as a popping routlpe.
Suppose j and s are variables of types CHAR and stack
respectively. Then 1f we write the conditional statement "s
=> J", the conversion routine, stc, will be invoked since s
Is not of type ©OOL. All conversion routines take two

arguments: the abject tn Le cenverted and the desired node

of the converted result. llere the desired mode is the formal

rode of the sccound barameter when it is equal to ClAR. (Ve
should note here that the internal representation of all

forms in EL1 s LISP(25) and so ste would be called by (= 5

wd

j) such that the "->" js responsible for calling ste with

parameters s and j,) low ste takes over by creating

temporaries f, assijpned the value "top of s", and temp, in

which the value of the block will be sturod and returned,

Initially, two checks are made to make sure that | s type

CHAR and s is not empty. |If either of the outcomes is FALSE

_JE-.-

then the corresponding system routine, cither TYPL_FAULT or

GREAK, will he invoked. |If beth cutcomes are TRUE, we set

tenp, decrement the top of s, and return temp which rets

stored into j. Thus we have popped of f the tep clement of

the stack s and placed it into the character variable . oo

sheuld make a note here that in the previous pop routine in

PFL/1, we simply decremented the tup-of-the-stack pointer but

did pgot return a value. The reascn for this difference s

only a matter of personel choice and independent of which

language we use,

We now present and discuss the assirmnment routine:

sta <-

CXPN{x:stack, v:CHA; CHAR)
BEGI!
LECL F:rIHT BYVAL LOWER(x).tnp:
fod= LOVER(x).top <= f+1;
f > LEMGTH(LOWER(x).hody)
=> BREAK("stack overflow");
LOWER(x) .body(f) <= v
CHU;

Let s and k be wvariables af modes stack and CHAR
respectively. Then the assipnment statement "s <= k" wl1)]
have the effect of pushing the value of k onte the stack s.
The internal representation (<= s k) will inltiate o call to
the routine sta wvhich, int turn, herins hiy declar ing the
interer variable T and inftializing Tts value to the top of
the stack s. Then after Incrementing top and f, a check Is

made to see whether or not the stack size of s, whiech can Le

-93a-

determined bLy use of the LENGTH function, las been cxceeded,

If not, then the value of k s pushed onto s,

Hext we examine the selection routine:

sts <=
EXPR{x:stack, fd:SYMBOL; CHAR)

GENERIC ()
fd = "top" => BEGIN
LOVER(x).top ™= =>
LOQUER(x) .body
(LUWER(x).top):
BREAK("stack empty'™)
EMD
TRIJE =3 SELECTIUH_FRULT (stack, fd)
EHD:

If s and y are variables of modes stack and CHAR
respectively, then the assignment "y <- s, tgp", having the
internal form (<= Yy (. s topl), causes the invecation of sts
in order to brocess (. s top). In sts we take advantare (of
compilation efficiency) of the GEMERIC form with no arguments
which in this case has the offect of the PL/I

IF=THEN=ELSE...IF=-TIEN format. Flirst, sts makes sure that we
are anly selecting the "top" element, If this is TRUE, then
Ypon confirming that the stack is not empty sts returns the
value in locatian top of stack 5, namely
"LﬂHEH{x},bUdy{LUHEH{x}.tGpJ”. I'f vie try to access any other
element of the stack besides the “top" clement, the system

routine SELECTION_FAULT wil be invoked. Thus the overall

effect of sts is the same as the top_eclement procedure in

PL/T.

-gL-

e now take a look at the final routine, the peneration

procedure:

EAPR(L:BOOL, s:SYMBOL, 1:FORN;
UNEOF(stack, PTR(stack)))

LEGIH
bo=> ALLOC(ANY BYVAL stg(FALSE, s, 1)):
s = “"S|ZE" =>
BEGIM
DECL n:INT SYVAL EVAL(1.CAR);
n LT 0 => YRCAK('"Cannot CONST
stack of nepative size');
DECL r:stack.UR CUNST(stack.Un
SIZE nJ;
r.body(l) <- '"s5";
r.top <= 1;
LIFT (r,stacl)
EMND
BREAK("CCHST FAULT--stack COiIST nnly
Ly SIZE™)
EHL;

This routine is explicitly called by the CONST and ALLOC
forms. Suppose we write: "DECL s:stack C0UST(stack SIZE
100)". Then the job of stg is to menerate a stack consisting
of the "top" tield and a "body" fleld of 100 CHAR locations

and perform certain initializations associated with any

stack. In greater detail, wupon reading CONST, stg gets
called, The parameter h, which the system provides,
specifies heap peneration If TRUL-=-in which case stz returns
a pointer to the stack abject--and stack reneration if

FALSE==in which case the actual stack object is returned.
Then stg makes sure that we have used the S1ZE generator (as

opposcd to the 0OF or BYVAL possibilities which we have

=45 a

decided not to permit), Hext, the temporary variable n s
created and sct to the value 100 (M.CAR")., Given that n is
not less than 0, e declare r and construct it as the UR
(undErlying Fepresentation) of a stack having a body of 100
CHAR locations and a tap. At this polnt tle rencration
hrocedure inftializes the bottom element of r and sets top
cqual to 1., Finally "LIFT (r,stack)" returns the value of r

by sharing with stack, thereby constructing s as we wanted,

The stack ckample s pow conplete with the possible
gxception of g printing routine which was felt irrelevant tn
this context. Thus we are at the point of analysis, taking
Loth the stack abstraction example and the language EL1 and

examining them as they relate to aur structured progranming

criteria,

Analysis of EL1

This section, which s concerned with the analysis of

CL1, will hepin by describing the Favorable features of tho
lansuage with respect to structured pragramming, {ln some
situations, it will pe casicst to refer bLacl to analopous

PL/1 discussions to make vxplanations more clear,)

For instance, when constructing the stack abstraction in
tLl therce was certainly ne need to consider the problem in

termis of one stach or g multiple number of stacks as was the

«QG=

case in PL/I., The ability to o from concept to prosram was
made easier to code in EL1 as a result of being able to
consider stack as a data type rather than a variable,

S0 one

of our basic criteria--that of being able to talk about

abstract data types--is satisfied within the CTL1 language.

Continuings along the lines of data abstraction, it
should be noted thet one of llegbreit's roals during the
design of EL1 was to pgive the programmer the ability to
construct new operations on new data types. TFurthermore with
the usage of the "::" form one can actually restrict access
of new operations to some particular data type. |In our
example, Tor instance, those four operations are restrilcted
to variables of type stack, The fact is that we were able to
syntactically represent our complete stack albstractlon

consisting of a stack representation==STRUCT(top: IHT,

body:SEQ(CHAR) J--and four uvperators--stec, sta, sts,
stp=--describing pop, push, top_element, and initialize
routlnes respectively. Thus this structured prozramming

criterion regarding the representation of a data abstraction

scems ta be rmiet by ELl==at least in this examploe.

Another important area that must be niven a favorable
nark is that of o2ccess restrictions, For instance, the
selectlon routine (sts, in our case) can restrict what parts

of a data type are accessible from outside the definition of

=07 =

the data type abstraction, Referring to our stack
abstraction as it now stands, piven that s Is g variable of
type stack at a higher leve] than the stack ahstraction, we
can talk about "s,tgp", liowever, if we try to access
"s.bady(i)" for some integer 1, the sts routine will pive us

a SELECTION_FAULT error., Thus we can control the access of

variables,

The last favorable point we shuuld review concerns the
introductlion and usage of the "::" aperator. While the
reader has alrealy seen its basic use, it should be noted
that the "::" con Le used far multiple level descriptions,
For instance, we minht write "list:istacks:, . " where the
underlying representation of g list is a stack and the
underlying representation of o stack is the structure we pave
previously, Thus the "string of pearls"(4) description of
structured prograimning commenly wused by Jijkstra can UbLe

Frosremmed in ULL using the "::" form.

Ve o now proceed to examine the difficulties of using LCL1
in conjunction with structured prorramming techniques., The
First issue tu iiscuss is that althourk wve can tall about
abstract data types, we rust still progran In g bottom=-up
fashion, That s, we must define "stack" as a mode-defined
function Lefore we can write "DECL s:stack...", liowever, the

desifners of LL1 view this prograimning restriction as an

=]

=40 -

implernientation decision rather than a result of the languape

description(26),.

A more important arpument against the use of EL1 comes
up during the examinatien of the stack abstraction we
proprammed earlier. One problem that always came up was the

necessity of having to use the LOWER operator to avoid the

problem of infinite recursion. In defense of this lanpuage
construct, onc might say that LOVULR (ar something Tike 1t) is
necessary to solve the recursion probleom; lLowever, this

problem is a result of the language design in that the only
way to operate on a stack is to use sone variable of type
stack as a parameter of the routines. The fact is that we

need not wuperate on this parameter but rather on the

representation nof the iven stack. Fhat we want is the
ability to construct coperations which operate on the
representation of the abstract data type instead of

constantly having tu use the LOVER (ur LIFT) facility.

A seccond issue to be taken up against CL1's method of
defining a stacl abstraction is one that is wvery ohvious,
What happens if there are more than five operatlions to he
defined on some abstroct data type? Cr just as critical is
the fact that there wight be some operation that cannot be
cxpressed in terms of having to bLe Invoked Dby selection,

assignment, conversion, jpencration, or printing mechanlsms,

-y =

Then all one can do is propgram Lhose "excess" operations or
that particular operation as standard routines not to he
assoclated with the particular data type for which it was
conceptually definecd., This programming restriction, however,
introduces many of the same violations of structured

programming criteria that occurred in MPascal,.

The above defect, in itself, violates the structured
prosramming criterion concerning the ability to associate any
cheration to a data type. fut let us ceonsider the five
routines that are part of the user-defined wode function, and
in particular suppose we cxamine the stack abstraction
example, The conversion routine, stc, was written as a
popping operataor, First of all, this routine saoems to
violate the reneral meaning of conversion which normally
means converting a value represented as one type ta the
corresponding vulue represented as another type., Although
the stec routine is initially involied by the regquirerment fur
type conversion, the functien of the routine is ruch more
than that. The fact is that the function of stc is nol even
related to type conversion., This type of propgramming can be
exceedingly confusing and obscure., Hext, we should note that
a program which makes use of the stack abstraction might wuse
"-3" to mean pep and "<-" g mean push or top_clement
depending on the types of variables on which the arrows (<=

or =2) wuperate. On the othor hand, the arrows may refer to

-100-

assignment and conditional expresions repectively. These

ambiguities male for code which can be dIfficult to

understand,

How suppose we reexamine the issue of accessibility. I t

was ecxplained carlier that from outside the stack ahstraction

for some stack variable s, s.body(i) was inaccessible. lle
noted however that s.top wits accessible from anvwhere in the
propram because the selection routine, sts--programmed as

part of the stachk chstraction--defines the veaning of s. top.
Then if we assume that ".'" Is an operator particular to stack
and invokes the coperation, named sts, when s.top s written,
then the program is expressed alonzg the 1ines of structured
programming requirenents. & conflict, however, is bound to
arise here sinco if we had not defined sts, then by system
default s.top would produce the value of the highest locatlon
filled in the stacl; wun the other hand, with the definlition
of sts, s.top produces the value in the stack nof that topmost
lncation. Thus vepending on whether oar not "M s
specifically user-deflined for a piven mode the affect of the
operatar can produce completely different results., Lut we
know that "." is a legal vperation on any structure mode and
therefore the programmer must be completely aware of which
modes have user=-defined selection routines and which respond
to the default routine--both invoked by the eperator ".".

The point to be made here is that if any aof the five special

-1l01-

functions is not user-defined, then the system nprovides g3
meaning for these undefined functions; the Rrogrammer must be
knowledgeable of which alternative Is taken in each of the

five cases for cach mode used in the program.

To add further complexity to the above situation, a
programmer might really decide that he wants to tallk about
"s.body(i)" from outside the stack abstraction. Consi der the

following style in which this program could be written:

DECL sl:stack.un CCNST(stack.UR SI17E 100);

sl.body(i) <= “sume character value';

sl.top <= "some integer value";
The mode of s1 |sg "stack.uhi" which is eqguivalent to
"STHUET{ton:IHT,hudy:SEQ(CHth}”, the underlying

representation (UR) of the user-defined niode "stack",

Thus althourh sl is not really a stack, one might be
perfectly thappy oith this tvpe of programming since by using
"UR", the program reads as if s1 is type stack but behaves
differently. For instance, one can now write "sl,hody(j)"
and access the value or assign a value to the ith locatlion in
the Lody of s1. noviever, if sl had instead Leen declared to
have riode "stacl" then the coding of "“s1,Lody(i)" would have
resulted in the invocation of the selection routine, sts, and

mean a SELECTIOH_FAULT error. S0 the programmer can

~1lyz2-
seemingly circumvent the access rules.

However, the wuse of UR is not the only way that access

restrictions can be avoided. Suppose that the wvariable s

were declared to lhiave node stack, and let ds examine ano ther

use of the LOWER facllity. ELL allows us to

program
expressions such as "LOUER(s).tep" and "LOVER(s) Jbody (i)" For
some integer variable i. fach of these cxpressions invoke

the system=defined routine for selection, signifled by the
dot ("."), instead of calling the user-defined routine, sts,
Thus use of the LUWER facility also permits the user to get

around access restrictions,

As a final criticism, let ne remark that the routine
definitions within an LL1l data abstraction can he confusing.
Far instance, suppose we look at stc in the stack
abstraction. This routine was written as a2 poppine procedure
for some stacl. s and some character variable j, The fact is
that if one were to write an instruction which pops the top
element off s and places it into j, It would seem ruch more
1i£ely to use an assinnment statement ") <- s" rather than o
conditlional statement "s => j"., The latter of these was uscd
thouph to accorplish popping because conversion was required.
It is not so simple as writing something like "pop(s,)" if
we want to keep our stack abstraction intact; thus we must

Le gcom : aware of our data routines in that it may

-103-

actually be a different (and possihly awkward) type of
statement that performs the intended functlon, If we are not
extremely careful in this manner, trouhle can result that was

not evident during our conceptual lzatlon of the problem,

Finally, we 1ist the major pro and con criticlisms made

of EL1 in this section of Analysis:

Fro

1) We can code ahstract data types by using the FL1
mode-producing operators,

2} It 1s nossihle tn associate operations with a particular
data type by using the ";:" operator,

3) Accessibility restrictions along the structured

programminpg critieria can he established within the
user-defined mode functions.

b) The "string of pearlg" programming style descrihed by
Dijkstra can be represented hy the "..M operator,

Con

1} Use of the LOWFR Facllity within the Arfinltion of a type
abstraction obscures the fact that operations are defined |n
terms of the underlylne representation of the data type,

2)(I) An operation associated with a data type must he
written in terms of one of flye rmutinns--nonvnrsTﬁn,
assignment, selectinn, printing, and reneration,

(ii) 1t is impossihle ta associate more than {jwe nnerators
with a data tvpe,

(1iT) The meanine of any of the five user-defiped routines
can he (and must be in certaln cases) completely ohscured,

(iv) Code which may invoke user-deflned or system-defined

routines cAn be seemlngly amhipuous and difflcult to
understand,

-104-

(w) Lxpressions which invoke wuser-defined routines

may
make code dJdifficult te read and understand,

3} Established access restrictions can be avoilded hy use of
both of the UR and LOUER facilities of CLL1.

In judging EL1 with respect to structured programming,
let wus first give quick reference tu its control structuring
mechanisms, Obviously with its loop and routine facilities,
L1 can adequately lead to well-structured programs when
considering only control., The LOTOD statement should be
ecliminated especially since the "=3" form takes the place of
any structured uscs of the CGOTO., Also the CELERIC form can

be wused to simulate the case statemont and thus its use s

approved by this writer,

Mow with respect to data structuring, the first and most
obvious point to be praised Is EL1's facility which permits
the creatlon of modes and definitions of operations on them.
After all, that (s o basie reguirement of structured
programming. llowever, for some reason, we are limlted to
five of these cperations when in pgeneral the programmer may
need more, Uf course ue could define another procedure to
operate on some mode but that routine will no more be
assoclated with & particular abstract node than, say,

addition is with integers, e.r. we can also add real numbers

and matrices.

-105-

Along these lines, the point was brought up earlier that
it might be difficult to write an operation of some abstract
mode in torims of one of the flve standard calling
routines--selection, assignment, conversion, printing, and
generation, It is also a fact that it is not always clear
when these routines are called, explicitly or implicitly as
is sometimes the case, One has to be conpletely aware of how
the Jlanguage implements the usage of these special routines
and, in fact, the internal representation of any language
form and the knowledge of LISP are required to be part of
this awareness. !ly point here is that it is often the case
that the programming of cne of these data type routines is

seemingly more difficult to accomplish than it ourht to he,

Furthermore, one of the basic criteria of structured
programming says that while the ablility to use a data
structure at scre proframming level higsher than its
definition s suaranteed, one should not be aware of the
lovier level details of the structure. An obvious corallary
to this recguirerment s that in no way et the higher level

should the prograrmer be able to access any of thesc uetalls

of description. Unfortunately the UR (underlying
representation) and LOWER facilities, while useful In
preventing the recursion problem moentioned earlier,
contradict the above criterion. Fer Instance, one can

discover the rcpresentation of stack by writing "stack, R",

Al

-100-

Ur if s were a variable of type stack, then cne could virite
"LOWER(s).top" and LOWER(s).body" to avoid the selection

routine, sts, and make assignments to the cemponents of =

o

Another issue that should be discussed is the view taken
that one is able to represent a "string of pearls" using the
"::" operator in EL1. Al though thls type of programning is
possible, the difficulty of simulating levels of abstraction
is yet another problem. Suppose we take the example of
linear_list (given earlier in Chapter 3) which could be
refined as elther stacks, queues, or cequeues=-~each of which
would have a set of associated operators. The problem Is how
to represent the type linear_list. Obviously we would
appreciate the <ciscriminated union facility (see roare(t));
then the linear_list abstraction might bLe written as
“Iinear_lfst::fﬁta;k;QULue;dequeuel" which implies that a
llnear_list is either o stack, queue, or degueue. From a
structured programming view, this type of facility Is one

that EL1 should incarporate into its languape.

Our overall feeling about ELLl is that it approaches
acceptability with respect to the techniques cncouraged by
structured programming but does not go far enough in
satisfying the necessary structuring requirements. The
Issues that have led us to this criticism of [L1 have already

been mentioned. towever, hbefore the dliscussion of [L1 is

-107-

ended, one morec gquestion rwust be posed. oW easy or
difficult is It to use the extension facllities provided bry
EL1? Because, if it becomes too awkward to use the extension
mechanisns, the programmer simply will not attempt to use
them. Instead he will do all his programming in the core
language and most likely be successful in producing a
finlshed product. llowever, the final product will not be one
resulting from the application of structured programming
tccﬁnfques; thus the issue of whether ér not to use an
extensible languare in canjunctian wWith structured
programming is dJdefeated hefore it can even be considered, My
experience was that the ecxtension facilities of EL1 were

somewhat difficult to learn, and | believe that the above

LN

problem would exist for prozrarmers wusing ZL1., However, the
language is fairly young and in a state of change, and so it

is still my hope that this probler will be remedied,

¥

Finally, it is y impression that the roal upon which
the lanjuare was developed=-that of helng able to construct a
data abstraction consisting of an abstract Jata type and
operations which operate on variables of that type==is
well=founded. The mistakes that the designers made were to
limit the programmer in the way tlhiese operations could be
constructed and permlt too much flexibility in programming
around a data abstraction and its imposed restrictions.

Thus, althouprh most of the structured programmine criterla

=108~

can be satisfied by the languare, thc above desipgn errors
mean that, in gencral, structured programming techniques need

not be used to construct EL1 programs,

SINULAET

Developed in 1967, SIMULAGT(27) was desipgned as g
general purpose simulation language by 0Ole=Johan Lahl, Gjorn
Myhrarrp, and Kristen hypnaard at the horwepgian Computing
Center, While SINULAGT includes most features of ALGOLLO as
8 subset, its aupmentations are directed toward the areca of
simulation. The hope of the desisners was that SIMULAG?
would be flexible and powerful enough to allew the programmer
to urient the lanyuage towards specicalized fields, To reach
this fpoal, the concept of agrgregates useful as building

blocks faor programming was introduced.

In dealing with large problems with many dotails,
decomposition is of prime importance. The fundamental
mechanism for decomposition in ALGOLEO is the block concept,
A block contains local variables and procedures; as far uas
these local quantities are concerned, 2 block |s completely
independent from the rest of the program. SI1MULAGT was able
to extend this notion by considerine that the execution of a

Block would result in o dynanic instance of Lhe block Leing

Lenerated. lLlock instances provide the capability for
swenerating soveral instances of a riven hlock Ltovether with
its local variables and procedures, If we consider that a

block could bLe used for defining a data abstraction, where
its lucal variables and procedures are to represent the laower

level description and operators respectively, then already we

-110-

arc awvare of why SINULALT might be successful as a structured

programming lanpuape.,

lle will examine how the above concepts of SINULAGY apply
not necessarily to simulations as was orpinally intended, hut
to structured prograrming and the ability to represent data

abstractions, Hlovever, we first describe some of the

important lanpuare constructs.

oto Facilities of SIMWLAGT

The new concept of SINMULAGY in whick we are intereste:d
is the instance of a blocli which is calles an ohject. LCach

object has its own lucal data and actions deflned by a class

decloration. UOur examination ef class reclarations will also

include a description of pbiect gencration.

The reneral format of a «c¢lass declaration is as

Follows(*):

class <main party (*=)

where the <rmain part? can be defined as:

(=)
KReywords in SIHULAG7 will be underlined.

(ww)
WM oand"»" are BIF rieta symbols,

-111-

<id> (<parameters vl,...,vn>):
{declarations for v1,...vn>;
perin
{declarations for variables Xl,evesxny;
<declarations for actions al,...,and;
<class body>;
cnd <idy;

Then <id> in the above definition is the name of the class,
The generation of any object belonging to class <id> will

have parameters v1,...,vn associated ith that rencratiaon,

The object's local attributes will consist of parameters
vl,...,vn, variables xl,...,%xn, and actions al,...,an. VWhen
the object is senecrated, the <class body> will Le performed.

To help clarify the preceeding <efinitlons and

explanations, consider the following example of a class

declaration:

-112-

class square_matrix(n); interser n:
berin integer array T[1l:n,1:n];
procedure transpose
begin integer i,j,temp;

and;
cnd square_matrix;

The above declaration lefines the class of
squarc_ratrix. The ussociated data of each object of this
class are the perameter n, which represents the size of 2
matrix object, oml the lecal wvarlable T, which holds the
elements of the natrix., Also described is the local action
transpose which operctes on T, Fallowing the action
transposec, we have uritten a section of code which sets the
array elements of T to 0. This section, which is the <class

body», 1s executed upon cach vbject generation,

Suppose that we want to fpenerate two square_matrlx
objects--one of size 10 and the other of sizen 25, Ve would
first eclare twn pointers to reference objects described by

the class square_natrix:

=113~
cpf(squure_nutrixja,b;

(Me remark here that the ceneral statement "ref (<class id>)
pointer variables)" really means that the {pointer
variables> arc bound to an object denoted by the <class id>
or any of |ts subclasses (subclasses will be explained

shartly).) Ceneration of the desired objects s completed as

follows:

8 - pnew square_ratrix(1lu)

H
T DCW square_matrix(25);

The built=in function peyy creates an cbject of the specified

class (in this case "square_ratrix") and returns a reference

to the object: the operatur ":=" (ppad. "Junotes") indicates

the assignment of @ reference to g reference type variable,

Data belonging to the chject may Le referenced through use of

the "dot notation' as the follewing expressions demonstrate:
a.n

L.T(1,2)
d.transpase

The notion of subclasses s the nexXt construct of

SINULAGT? we vill cxplore, First of g1 we oextend the

definition of a class to include an opticnal <prefix party,

The syntax now becomes:

prefix pared class <mailn parts;

=11k~

Semantically we mean that the class for which <prefix part>
is the <id> contains the <main part> as a subclass. Then the
attribute list of an object corresponding to the <main part>
includes those attributes described in the <main part> as
well as those described in the definition of the <prefix

part>. The two parts are "concatenated" to form one compound

object.

Take, for example, the following class hlerarchy

bl

consisting of slx classes A, &, C, D, &, and .

u/ \\E
7N ~
C [F
This model is described In SIMULABT by the following class

declarations:

dh5 F P
A 5;]{!5;& L. H
B glass Cuowws
L glass 1. ;
Aglass Cuoees
E ¢gclass F....

|f we say that the corresponding lower case letter represents
the attributes of the <main part> of an object belonging to
that eclass, then the complete attribute list for each class

is depicted in the following table:

-115-

wttribute list

class
A a
o] a, b
C a, h, ¢
(1 a, b, d
E a, ©
F a, o, f

It should Le noted here that if we write "ref(B)x"
followed by "x :- new(D)", the attribute 1list corresponding
to x (assuming that no attribute has been declared as
virtual--a concept to be explained later) will be a, b and

not a, L, dJd. This fact is a result of having bound x as a

reference to objects of class 5.

A more concrote exanple of subclasses might prove
useful, “uppose a program is required to handle real and
Gausslan numbers. (iaussian numbers are that subset of
complex numbers where the real and imarinary parts are
restricted to be integers.) Uhile each type of number may
have Its own attributes, there are certain characteristics
common to both types Ly virtue of Lthe fact that Lhey aro
nubhers, In outline form, we might corde this program as

follows:

=116~

closs number;
bepin inteser whole_part;

cnd number;

number class real_no;
begin dnterser dec_part;

-

cnd real_no;

number ¢lass raussian_no;
Lepin lnteser im_part;

vnd pausslan_nn;

Then, for example, the real_nc (.030 vould he Fepresented as

having a vhole_part cqual te 6 and the dec_part equal to 030;

the representation of the paussian_no 2+4i would consist of

the whole_part and the ir_part egual to 2 and 4 respectively.,

At this point it is wuseful to ralse the guestion
concerning the possibility of conflicting attribute names.
This problem would result from defining two operations with
the same name--one defined in a class and onc defined in a

-

subclass of that class. Then the attribute 1list of a
reference variable bound to the subclass would contain two

vperations with the same name.

For instance, using the previous example, suppase that

an action "add" werc coded as part of the class number ond

=117~

llkewise another action "add" were Programmed within the

subclass saussian_no, Then the question of two dlfferent
"add" actions associated wit!, a baussian_no object Lust be
resolved., The semantie rules of SIMULAGT stipulate that for

any given class |f this conflict arises, then only the most
locally defined action is associated with that c¢lass,
Referring to our cxample, the Mgddgh action deflned in
raussian_no is the only Mgy uperation in the attribute 1ist
of gaussian_no, Obviously this solution is what we viould

hope to bLe the resul t,

It should Le mentioned, hewever, that the direction of
this binding maQ he reversed by use of the yirtua]l facility
in SIMULAGT. Consider the following sltuation where A s
defined as 4 class and I g defined as 5 subclass of A,
Suppose also that both A and o contain definitions for an
uperation named "twiddle" and that we |ave declared a
variable x as "ECE(A)X", Then ¢ Me write "x o oie pow(p)"
Tollowed by g reference to ”x.twiddle“, we vwould be referring
Lo the definition of twiddle given in 4 (because x was bound
to the class #), However, if we define twiddle In A to be
virtual, the CXPression "x.twlddleh would access the
definition for twiddle siven by L, Thus, a top=-dawn
Prograrming approach can be partially used for writing a

Program In SINULAGT, lie say "partially" because only

Procedure labels and sWitches (seg ALGOLo0) may Le bound as

=114~
virtual quantitics.

Other featurcs of SIHMULAGET? include the ", roup access"

feature. Supposc that m references a squarc_riatrix object

and we are interested in examining the ottributes of m.

Usinp the Ipnspect facility, we can write:

;] todo pes

manipulations of n and T, use
of transpose, all these part
of the object referenced by m.

end
which eliminates the need to use the dot notation for cvery
attribute of a riven object. towever, it should Le clear

that the lInspec feature is mercly "“syntactic sugaring"” to

the languarge.

another facllity provided by SINULAGY s instantaneous
qualification., For Instance, suppose that ure have written:

ref(raussion_nolx
rof (number)y

Then "“x aqua numboer . whole_part" and y gua real_no.dec_part"

are lepal expressions for accessing the attributes whole_part
and dec_part respectively. Thus the gya facllity provides an

increased Flexibility For referencing attributes af

-119=-
concatenated class objects.

The ahility to examine subclasses is also provided by
SINULAG7. This feature and use of the when construct are

displayed in the next crample:

ref tnumber)yg:

inspect o wlen complex_no do pepin...end

when real_no do begin...end
E!; E: ¥ i FEL‘I P oE oW

fle have now been exposed to nost of the data facllity
features present in SIMULAGT. 50 we are ready to dlscuss a
SINULAG? solution to the stack ebstraction problem and
analyze the language +1th respect to the structured

programming view of Jdata orpanization,

2tack Abstraction in SINULAGT

A solution to the stack abstraction problem, rmiven in
Chapter 3, is coded and prescented in Fip, 7-1. This
representation of the class "stack" is fairly

straightforward. in object generated of this class consists

of the following attributes:

n==which represents the size of a stack;

body==an array of sjize n which helds the elements of the
stack:;

top==which holds the index of the topriost filled location in
the body and is initially set cqual to zero;

=12u-

push, pop, top_element, and inltlallze--operations which
perfory the desired functions on objects of class stack.

=121~

class stack(n); interer n:

hgg¢u_;h5£ Array houy[l]
interer top;

procedurc push(val); char val;
besin:
top = top + 1:
if top > n Lhen erro
clse hudyftop] = val;

end push;
roceLury pop;
berln:
if top < 1 th error
else top := top - 1;
ona pop;

AP procedure top_element;
beaip;
if top > 100 then error;
if top < 1 then top_element := 'g!

£lse top_element := hody[tmp];
cnd tep_elenent:

procedurc initialize(y); char vy;
besin:
top :=_1:
hody‘l] HEJIRTE
epd initialize;

tap 1= U;

egnd stack;

-122-

A propran making use of this class mizht begln as

follows:

refistack) vperator, operand:

operator := pew stack{(lu0};
operand - pew stack(75);

Attributes of each stack mirht then be manipulated in the

following style:
operator.inltialize('!');
GDE;UHG.DUSHK‘X'}J
1f ;perand.tun » 100,..
inspect operator do berin
éop

bodyl10]

!'I rJ

=123~

e will now cxamine SIMULASG 7 much more closely and focus
Our attention on some important issues that have been

renerated fram the solution tg the stack Pproblem,

Analvsis or SINULAGT

The most tavorable feature that SIMULAGY cffers us s
the ability to s¥yntactically construct a data abstraction as
a well-orranized cluster of informatian, This cluster
consists of 4 lower laeyel FeFresentation of 2 data type and
CPerations whjeh perform functions on objects of this type,
plus an initiu]izatiun abilicy Fepresented by the <class
body>, The ease vith which this orsanizational feature can
be coded in SIMULAGT |s demonstrated by the stack abstraction
exarple. |In our SINULABT PFrogram solution to this problem,
We were alle to describe 3 stack type in terms of the "top"
and "Lody" FePresentation and four operations wvhich oper ated

on this lower leve] representation,

The ability to Use paraneters 45 part of a class
dnffnition, such as was used in the stack type definition,

also proves useful, FEar Fn5tance, QuUr use of the parameter n

within the staclk c¢lass provided us with the ability to
allocate stack objects dynamlcu]ly. The <elass body> ecan
also malie use of class Parameters for initidlizatiun

purposcs,

-1lib-

Continuing our presentation of the favorable features of
SIFMULALT, we note that this language also provides the

programmer with the abllity to partially program in a

top=-down fashion. First, the construction of subclasscs
encourages us to propram in this style; sccond, the wyirtual
facility permits the programmer tn refine a procedure which,

in turn, can he inveoked by 2 line of code which Initially

invoked the wider, "ariginal" procedure.

One final point in favor of SIMULAGYT should by

mentioned. Obviously there is no ne2ed to he concerned about
multiple stack problems lncurred during our use of PL/I.
Thls programaing Tortune is a result of belngp able to
represent a "stack" as a data type (SIMULAGT? calls it a
class). Indee, the simpllicity with which the stack

abstraction is cxpressed in SIMULAG? leaves the programmer

with a favorable impression of the lanruape.

e now present some problems one finds when using
SIMULAGT as a structured propramming languapo. bne of the
most plaring faults vccurs in the arca of class definitlons,
Uslny our stack abstractlon example, we note that a stack can
be syntactically represented by a class definitlion; however,
saome mathematical properties of stacks ore vlolated., For

Instance, consider the relation between "top" and "body" such

that "top" always points to the flrst available locatlon of

-125-

the "body"., In our stack abstraction, "body" and “top" can
be accessed from outside the class definition, MNot only can
these variables he manipulated hy Invoking anvone of the four
defined operations but also by simply writing such
expressions as '"operator.top" and "operand.bodyli]" where
operator and operand are references to stack objects and | Is
some Integer., Ny allawing the latter of these two methods

for attribute access, we permit the akove mathematical

relation to be destroyed,

Another issue which we commented on earlier (see Chapter
b) is the danper that can result from the extensive use of
pointers, Unfortunately, STHULAET dors not pgive the
praogrammer the choice of wkether or not to use pointers, Al
objects must be pointed to by referrnece varlables, therehy

implying that 311 ohjeet attributes are manipulated through

the use of pointer variahles,

The usape of pointers seems to he the reason for the
implementation decision that a legal assisnment hetween
reference variahles be carried out by "sharing". For
example, consider variables x and y declared as references to
the same class and x referring to some class objrct genzrated
by the function pew. Then the assignment "y:-x" assigns to vy
a reference to the object which Is the value of x. Thus any

change made to an attrihute of y results In a "side-effect"

-126~-

on that attribute of x. Sharing can be useful; however, as

the default mechanism for reference asslenments, the user

must be on constant guard aralnst slide-effrets,

Finally the polnter Issue is further complicated hy the
fact that the statement "ref(m)n" says, in fact, that n may
reference any subclass of m, This unrestrictive feature In
conjunction with the gua faclility means that aﬁy attribute of
a class or Its suhclasses can he accessed, and furthermore
that accessihility must proceed throurh » reference variable,
Thus polnters are just too much an integral part of SIMULAGY
for us not to strongly ohject to this mechanism of the

languapre with respect to structured proprsmming.

We now l1ist the Impartant pro and con critleisms we have

made of SIMULAGT.

Pro

1) The programmer pnssesses the ahility to syntactically
organize a data ahstractien consisting of a lower level

representation and operatlions aperating on the
representation.

2)Y Class parameters achleve a flexibillity In generatine
objects.

3) Subclasses permit the organizatlon of prorrams into levels
of abstraction,

4) The virtual facility In enanjuction with the suhelass
feature provides a partlal top-down propramming abillty.

5) The programming of the stack abstraction In SIMULAGY

corresponded In ease to the conceptualization of the solutlion
to the problem.

=127~

Con

1) We can access attrihutes from outside thelr eclass
definitlions.

2) Class objects can he referrad to only hy polnters.

3) The ref and gqug facllities complicate the pointer issue,

Overall Critique of S|MULAGRT

It Is interesting to note that SIMULAGE? was developed
before most of the concents propounded by Dijkstra oan
Structured programming were well known: vet, this Tlanguage
captures one very Important program deslgn technique--that of
providing the programmer with a means for developing an
abstraction which consists of a data reprersentation and
actlons manipulating the representation, In particular,
within the syntax of the language, one develops a class

consisting of attributes-- data and aperaticns.

Unfortunately, SINULARY still falls short as a
structured programming lanruage in the following respect.
Data attributes, wkich make up the lover level representation
of an abstract data type, are accessihle from outside the
class definition. Thus the prorrammer can manlpulate these
attributes vhen in fact he should have no knowledpe
concerning the lower level representation of a data class.
The polnt should be mader, however, that due te the clean

syntactic representation of a class, It seems that the above

-128-

fault could he corrected by sipnallinm an error during
compilation If one tries to access a data attribute from

outside its respective class definition,

The unfortunate desipn decislen teo acecess ohjects
through polnters s not so easily corrected, As was noted
earller during the discussion of PL/! (Chapter L), a pointer
Is data's answer to the control's poto, Especially since ref
does not explicitly say to whkat okject 2 variable may point,
It hecomes difficult at times, for Instance during the usage

of qua, to tell where we care from In arcessing a reiven

ohject,

The virtual facility of SIMULART and the usage of
suhclasses prove useful In programming top=-down by levels of
abstraction. Concerning subclasses, fire, 7-2 demonstrates
the ease by which we ecan code the linear 1ist ahstraction In
SIMULAGBT., This pregram desearlhes stacks, queues, and
dequeues all as linear lists with badies but with different

1ist markers (e.r. top, frent) and different coperations.,

Indeed, It seems that reparding the representation and
organizatlon of data ahstractions, the designers of SIMULAGT
should hbe pralsed far their InsiFht. The lanpuare provides
us with a gonod foundatlon faor the development of A structured

programming lanfuane.

-124-

=y 8

class linear_llst(n,ml; dnleger n,ry
Lesin char array bedy[n:a];
o linear_list;

linear_list ;Iﬂﬁﬁ btack
J-\.-,]I EEE tO['-"
procodyre push

cno stach;

linear_1list ¢glaoss wurue;
Leooin interee front,rear;
prucedure enter

coedure FERIave

o queue;

linear_list glass weoguede;
osipn intennr leftonst,rishtmost;

srpondure insert

nrocodure delete

-130-

LcarcLusion

The purpose of this thesis has bLeen to study wvarious
prograning languapes for tuo reasons: 1)to see what can e
learned frosm analyzing the use of these lanpguages in
conjunctien with o structurcd prozramrilng methodology; 2)to
determine if It is necessary to develep a new lanpguage for
structured prograrmaing, The success of these languanes has
seen neasurcd in terms of thelr ability teo represent a data

anstraction,

ldeally, Wi ovanted a lanjpuare to support a type
abstraction nechanism that vould Tnclude: 1)tke ability to
describe an uvnderlying representaticn which vould be unknown
to a user of thet type; 2)a nethod by vhich noeratinons could
be defined within the abstraction. Ve also judred the
lanzuages on itow vell & prcoran represented the conceptual

solution to the problew at hand,

Ly
e Lenin this scction by susmiarizineg our (indings for
cach lanpaupe, 'L/ was the first lanpun;,e we analyzed,

FLAY, while described 25 an all=purpose lanrcuore, licited the
user's ability te construct data abstractions. The stach
abstracticn had to Le prosrammed as a procedurs consistineg of
declarations and entry points=--corresponding tec 2 lowver level

representation and operations, & ceneral solution te the

-132-

stack ahstractlion (1.e. one able to handle A multiple number

of stacks) hecame a complex prograrm that was diffleult hoth

to write and to understand,

For all of its power, then, PL/! cannot be used as a
structured programming langusge--Its most basic fault heling
that of restricting the programmer to certain data types. An
attempt to circumvent this limitation results in a program

that does not reflect the cenceptual simplicity of a probhlem

solution,

The language Pascal wes relatively simple to understand
and wuse; furthermore, it provided us with the abhllilty to
construct data types. However, this construction was
hasically syntactic and not semantic hecruse we could only

descrihe a data abstraction in terms of a representation,

The operatlons wern defined separately from the type

definlitlon.

Nup to thils restrictian, our stack oahstraction could
only bhe proprammed as a definition of the data type stack
followed by procedure definitions which operate on a stach.
Unfortunately the result could naot he considered a
well-defined stack abstractlion since the definition was not
closed, The representation of the stack was totally
accesslible from anywhere In the program and thus, operations

whieh manipulate the underlying representation of stacks

could Le added LY any user.

Fascal is an inprovement aver PL/1 in that it allows the
construction of Jdata types., I't is necessary to conclude,

however, that Fascal is inappropriate as g structured

Programming language.

ELL was a poverful and complex language that introduced
several usefuyl concepts, 't certainly permi tted us to
construct data types and analyze theso types with the uEHEHIC
facility, The ":n operator, when used In conjunction with a
data type definition, gllowed for the construction of a data
abstraction consisting aof that definition and cperations

which manipulzte the representztion of that definition.

Using these features, we were able te construct g
program solution to the stack abstractlon, The wunfortunate
problem was that the uperaticns which menipulated stacks had
to Le written in ternis of certain s¥stem routines (e.p,
conversion, selection). tach vperation would then be invoked
in place of the corresponding system=defined routine. This
Prograsming restriction made the prosram difficult Lath to
construct and to understand, e alse noteca that by using the
vysterlous LOVED feature, the lower level ropresentation of a

stack variahble Has accessible fraom outside the staclk

abstraction definitian,

~134-

The ability to construct data abstractions in ¢L1 is an
issue that was considered by the CL1 desipgners. This fact is
cvidenced by their introduction of the "::'" operator.

llowever, the restriction regarding operations imposed on the

user when constructing o data abstraction makes it Jifficult,

if not impossible (i.e. when wore than

five operations

exists), to design a gpiven abstraction. LI in Its present

stapge cannot be considered o lanpuage well-suited for
structured prograrnineg however, a serious study should be
made to investizate how certain changes to L1 could make it

appropriate for structured programning.

SIMULAGT provided wuws with class definitions whereby
objects of o given class could be created and referenced.
hssociated with cacl object were certain attributes defined
Ly the class to which the objecct belonzed, These attributes
could be vieund in terws of a lower level representation of
the ohject and operations which could rwnipulate the

representation.

A program solving the stack ahstraction prohlem was
constructed in @ straightforward way and reflected the
conceptual solution to the problem. “tack objects could then
he penerated and referenced. Unfortunately, we found that
the representation of stack objects was accesslble from

uutside the class uefinition.

=135~

The concept of class deflnltlions certainly seems
analorous to the definltion of data ahstractions., It fsg
Interesting tn note, thouerh, that the desleners of S|IMULART
must not have thoupht of 4 class deflnitieon In the same way
that we view a data abstraction. The hasic difference I's
that a e¢class s wviewed as helne deflined by Its attrihute
lst, This list Tneludes parameter names, simple wvarlahie

names, and procedure fdent!flars, A Aata abstraction, on the

other hand, Is thourht of as censlistineg of a lownr leve

representatinn and oneratinng whilch manipulate the

representatijon,

The SIFULART view of the class deflrition Is the cause
for our akjection to SIMULAGT as a4 structuresd proerammling
lanpuage., One is allewsd to refarpnee any ohjart attrihute:
50 not enly Is ane permitted to invale A class-deflned
operation, hut ane 1g also allownd tn aceess Ay part nf the
lower lTovel Anscription of the okjprt, Thp latter vinlates

one af aqur sfrurtured Procrammine rriteria,

Concluding Permarks

Suppose that e conslder the following auestlian: |f
only operatar Attributes were made avallable autside the
class definition, would SIMULART ke sultakle a5 3 structured
Programmine lanpuare? nur hollef Is that this restriction

would he a simple change to tre laneuaprr, and that If the

-13hR=-

answer were yes, then SIMULART would auallfy as & structurned

pragramming lanpuare,

Morris(28) nprovides us with scme Insiskt into answerine
this questinn, 0One aof the most sericus dlIfficultles which
arises Involves hinary operatlens, for instance "eaual',
Consider the proklem of determinine whether nor not two stacks
are eaual. Ve vould V1lke ta define "epaval'" as an operator
within the class definition for stack rliven in fim, 7-1,

Without paving attenticn to the atove acecerss restriction, the

prorram ocutlined Tn fir, 8=1 would solve the prehlem,

-137-

class stack(n); Integer n;
begin Inteper tan:

char array hady[1:n];
procedure push

gro;é#urg nop

char procedure tep_element

Boolean procedure ecual(x); ref(stack) X
hegln

1f top # x.tep thep eaual 1= false

else bepin

'onlegn en; Integer |:

fO 1= true:

1

2 -

= 1
vhile I<{top & eq [als}
hepln
A 4= {Hnﬂy[i] = x.hnﬂy[F]};
o= 141
[lakal
eaual := eq
end
end eaual;

-158~-

If s and t are drflined as stack ohirct references, then
the expression '"s.eaual(t)" Invekes "eaual"., The operator
Mequal™, In turn, returns the PRoolean wvalue ftrue [If the
stacks are eaqual and false otherwlse,. How conslider any
salutlon to the "eaual" operator which does not violate the

above access restrictlen, In eoantrast to the solutlon just

presented, we are not allewsd to use any expressions

Invalving "y, tan" and “n.hnﬂy[T] within the procedure

Mequal'. Instead of writing "x.tep", we cnuld construct an

operator named "size'" such that whken we write "x.slze", the
value of "x.tap" 1s returned, In order to replace
"x.hndy[l]", we mirkt hulld an aperatoar, calllne 1t "copy";
then the statement "y := x.eepy" would invake 'cony" which,
in turn, would copy thte "hady!" af x into the grray variahle

"yM Ye ecould then proceed to analyze My' It should ke

noted that the "ecopy" nperator would alsn take advantape of
the "slze" operator, This methnd of solutlon, however,
Involves makinr changes to our orleinal definition of the
stack ahstraction meraly to faclilitate the construction of
"equal'. The resulting prosram is alsn unsatisfactory

hecause It 1s hoth mare complicated and 1ess rfflirclant than

the original nrorram slven In fle, B-1,

Supnose that we relax our restrictlion hy sayling that
from within a particular class, onr can access all attrikutes

corresponding to any ohiject of that elass, Thkrn, nsing our

=130~

pPrevious example, while e would not permit the use of
"t.top" outslde the stack elass, |t would ke acceptable to
write "x.top" frop within, Nf rourse, thls frature would
Involve chanpging the implermentation ta handle thisg particular
case, Even sno, It seems that we ecauld Imaelne problems whare
the orlrinal data Abstraction would haye to be aurmented to

compensate for the partlal access restrictlion,

The point tn he emphasized Is thot with thr access
restriction, onerations within class Aefirlitlons can only ke
deflned a5 unary oaperators, Nperatlons whiceh are binary

(such as "equal™)y bherome difflecult, i+ net Impossible, to

brogram or reaulre that addltlaona) rules he added just to

handle them,

Another Droklem encountered in SIMLART ig the

following: We miekt Y S ret all aperatlions top he

pxternal, that |s Accessihle Fram tha outside af the class

deflnlitlion, ConsTdrr anep araln the staek ahstraction,

Within Its class definition, we mickt econsider Arfinlne an

"error" nracedura which could hn callad From push and pap I1f

we try to refer to a stack Fody Tocatlion which 15 aqut of

hounds, While there |q @ need ta refear te "error" fram

within the class definition aof stack, there |s certalnly na

reason to permlt "errar" fram helne arressed outside the

class, e should he akle tn Specify subhrautinesg a5 heing

-1h0-
pxternal or Internal to an akstraction,

Thus SIMULAG?, even with the added restriction of
1imiting outslde ascess to operators, is nnt flexthle enourh
to he completely sultahle as a structured programmine
languape. While SIMULAG? may bhe a start In the right

dlirectlion, a new language needs to ke developed feor

structured prograrmming,

However, this lanruare should incorpnrate what we have
lrarned from attermpting to use these current
lanpuapes--especially SIMULABT, Ntvlously, the ablillity to
descrihe a data ahstractlon must ke a central cnncern of the
lanpuage desipn, Furthermore, aprratlers declared within a
data abstractlon shkould he descrihed Aas reuttnes which
manlipulate the underlying representation of the Lype helnr
defined, (In contrast teo SIMUAET?, "eaual" would he
constructed usling two parameters corresponcine to the
underlying representatlions of stacks s and t.) Also within a
type ahstraction, one must hep ahle trn speclfy whether or not
a glven operaticn con e involbed from nutside the
ahstraction, A laneruare designed around such features Is

necessary for use In ennjunctinn with strucrtured prograrmine,

10.

11.

12,

UIBLIOURAPHY

Rl Floyd, "Assigning Meanings to Programs," Proceedings
of a 2YNPOS iU jn Applied Mathematics, Vol, LA,
; qnatic Aspects of Computer science, American
Mathematical Socliety, J.T.Schwartz(ed,), Providence,
Rol., 1967, 19-32,

J.C.King, A Prosran Verifiler, Ph.D. Thesls, Computer
Science Uepartment, Carnegie=Hellon University,
Pittsburgh, Pa., September 1369,

R.L.London, "Saftware Reliability Through Proving
Propgrarms Correct," Lomputer Sciences Uepartment,
University o Liisconsin, Madisan, "lisconsin, 1971,

0-J.Dah1, L.W.Dijkstra, C.A.®.Hoara, s L
Erograiming, Acedemic Press, liew York, n.y,, 197z,

Wirth, "Progsram Developrient by Stepuwise Refinement,"

n lcations A i, Vol. 14, ko, &, April 1971,
221-2127,
D.L.Parnas, "On the Criteria to be Used in Decomposing
Systems into Hodules," Technical kepurt, Department of
Computer science, Carneglie=ilellon University,

Plttsburgh, Pa., August 1971.

P.Henderson, E.NSnowdon, "An Experiment in Structured
Programaing," BIT, 12, 1972, 38-53,

Woodger, "On Seamantic Levels in Prugramming," Information
Processing 71, 1971, 402-407.

P.Maur, "Programning by Action Llusters," BIT, 4, 19649,
£50-258.,

C.tluLiskov, "a Design Nethodeology for leliable software
Systems," The [ITRE Corporation, Paper 124, Bedford,
Mass., 1472.

B.ti.Liskov, S.Zilles, "Programming \ith Abstract Data
Types," Cemputation Structures Group lemo 99, Project
MAC, Massachusetts Institute of Technology,

Cambridge, Mass., March 1974,

J.R.Slagle, "Automatic Theorem Froving With Renamahle

and Semantic resolution," Journal ACM, Vol. 14, MNo. &,
October 19G7.

15.

14,

15.

1G.

17.

18.

19.

20.

21,

22,

24,

5.

5.

-142-

Clark, Joduodorning, ‘The System Language faor Project

aut " i[ﬂ;nﬁdlanﬁ ACH Sigplan Symposium on Lansuages
for System Jluwplementations Sigplan Hotices, Vol. b,
Ho. 9, October 1971, 79-85.

Huills, "Top Down Programming in Large Systems,"
Courant Computer Science Symposium l--Uebugging

Techniques in Large Systems, June 29-July 1, 1870,
41-45. -

J.,E.Sullivan, "Cxtended PLS far Structured
Frogramming," The M1 TRE Corporetion, Ho. 2353,
Ledford, Mtass., Narch 1372,

O.E.¢knuth, The Art of Lemputer Pregracuing, Vol. 1,

Addison-t'esley Publishing Co., 1969, 234-239,

PL/L (F) Lonsuage Reference Lanwal, 1BM Corporation,

I

White Plains, .Y, 1972,

A.N.lioare, Personel discussions, July 23-August 3,
14973.
Mirth, "“The Frogramming Language PASCAL," Acta

informatica 1, 1§71, 35-63.

.Wirth, Fersonel communications, January 1373,

Mirth, Systematic Programming: An Introduction,

Prentaue-ha1l lnc, 1973,

llabermann, "Critical Comments of the Progranming

Language PASCAL," The University of llewcastle Upon
Tyne Computing Laboratory, Hewcastle, England,
February 1973.

Megbreit, Studies in Exstensible Lanruares, Ph.b.

Jissertation, npplied P'uthewmatles Department, llarvard
University, Cambridpe, tlass., June 1470,

tiebreit, G.brosgol, G.liolloway, L.Prenner, J.Spltzen,

ECL Progranmer's [lanual, Center for lHesearch in
Computing Tochnulopgy, Harvard University, Cambridre,
tiass., September 1972.

Meissman, LI1SP 1.5 E]gt Uickenson Publishing Co.,
Inc., Belmont, C., 9

-143-

26, T.Cheathnm, Persone] decussTﬂns, 1972-107y .

27. D-J.ﬂamf R.“yhrhaun, K.llyraard, Commaon Rase Lapguage,
Morwepian Cnmnut[nq Centear, Nsla, Morway, 19FR 8,

8. J.Morrls, "Typpe Are Mot Sets, I fonferen

e Record of Arp
Symposium on Princlples of Programming Languages, net.
1-3, 1973,

