
0

0 9

0 1 W� 41

0 0

.L

I i, 4 �� , ,z , :� !�'-- -- - - - - �9--L iiwi I - ii I MI'li -I- ---l"ll--- ---- - I ; �, , lz;� , 1,

I

Technical Report 1000

IWIT Artificial Intelligence Laboratory

-.11,
011-

._;, -1 -I I I q-, - - I �, fil, � I; H ",

I .j

0 "IrN-"vTI 1% " " -9 za Tza n *,%
JL-)Vlllllc/ uall

-- ---

Number 20.

This report, presents an approach to natural lnguage translation tuat refies o principle-

1),-ri-sed descriptimis of granini(ar rallier han rule-orieiited lescriptions. 'I'lie model Oat ias
been constructed is base o abstract. rinciples s develoj)ed by Chomsky (t98 I mi(I sev-

eral other researchers working N�ritliiti te "Gm-emmeO, nml Mmhiig" CII) frammork. ''lie

approach taketi iQ "interlitigual", .c., tli(-- mmlel is ased mi ititiversal prillelph's thal hold
across all languages; te istinctions aniong laiiumiges itre flicii mndled y settings of pa-

P.ameters associated with te niversal principles. Te esign of he UNITRAN (UNIversal

TR ANslator) system is such that a language ay e escribed by he same set. of parameters

that specify the language 'in linguistic theory. Because of he odular nature of the odel,

the interaction effects of universal principles are easily andled y the system- Oms, the pro-

grammer does not need to specifically sell ot te etails of rule aplications. Becaus- oly

a sall set of principles covers all languages, the unmanageable grammar size of alternative

approaches is no longer a problem.

I

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

AJ. T.R. No. 1000 December, 1987

UNITRAN A PRINCIPLE-BASED APPROACH
TO MACHINE TRANSLATION

Bonnie J. Dorr

This report is a revised version of a thesis submitted to the department of Electrical Engineering
and Computer Science on May 7 1987, in partial flfillment of the requirements for the degree of
Master of Science. The research described by this report was done at the Artificial Itelligence
Laboratory of the Massachusetts Institute of Technology. Support for the Laboratory's artificial
intelligence research has been provided in part by the Advanced Research Projects Agency of
the Department of Defense under Office of Naval Research contracts N00014-80-C-0505 and
N00014-85-K-0124, and also in part by NSF Grant DCR-85552543 under a Presidential Young
Investigator's Award to Professor Robert C. Berwick. Useful guidance and commentary were
provided by Peter Andreae, Ed Baxton, Bob Berwick, Dave Braunegg, Michael Brent, Noam
Chomsky, Bruce Dawson, Sandiway Fong, Eric Grimson, Ken Hale, Mike Kashket, Boris Katz,
and Patrick Winston.

I-�c)Massachusetts Institute of Technology 1987

Abstract

Machine translation has been a particularly difficult problem in the area of Natural Lan-
guage Processing for over two decades. Early approaches to translation failed since interaction
effects of complex phenomena in part ade translation appear to be unmanageable. Later
approaches to the problem have succeeded (although only bilingually), but are based on. any

language-specific rules of a context-free nature. This report presents an alternative approach to
natural language translation that relies on principle-based descriptions of grammar rather than
rule-oriented descriptions. The model that has been constructed is based on abstract principles
as developed by Chomsky 1981 ad several other researchers working within the "Govern-
ment and Binding" (CB) framework. Thus, the grammar is viewed as a modular system of
principles rather than a large set of ad hoc language-specific rles.

Typically machine translation systems have used parsing strategies that are based on
context-free grarDmars. To try to capture all of the phenomena aowed in natural languages,
context-free rle based systems require an overwhelming nuniber of rules; thus a translation
systeni either has limited linguistic coverage, or poor performance due to formidable granuiiar
size). Te s sten I ave constructed andles nany complex phenomena ithout rlying on a

large set of language specific rules.
The approach taken is "interlingual", i.e., te odel is based on universal principles that

hold across all languages; the distinctions aong languages are then handled by settings of
parameters associated with the universal principles. For example, there is a universal principle
that requires a particular ordering of constituents with respect to a phrase. The parameter
that corresponds to this principle is called 'constituent order," which is set to head-initial for a
language like English, but head-final for a language lilke Japanese. The design of the system is
such that a language may be described by the same set of parameters that specify the language
in linguistic theory. Because of the modular nature of te odel, the interaction effects of
universal principles are easily handled by the system; thus, the progranu-ner does not, need to
specifically spell out the details of rule applications. Because only a sall set of principles
covers a languages, the unmanageable granular size of alternative approaches is no longer a
problem.

Thesis Supervisor: Dr. Robert C. Berwick
Title: Associate Professor of Computer Science and Engineering

2

-i - .0-- �

7

2 Computational Framework of the Translation Model
2.1 Direct and Transfer Approaches: Rule-based Systems
2.2 Interlingual Approaches: Principle-based Systems

16
. 16

19

3 Linguistic Framework of the Translation Model
3.1 Y-Theory

3.1.1 Constituent Order Parameter
3.1.2 Infl and Conip .

3.2 0- Theory
3.2.1 -Criterion and Projection Principle
3.2.2 Canonical Structural Realization and Visibility Condition
3.2.3 Clitic Doubling and 0-role Transmission

3.3 Government Theory .
3.4 Case Theory

3.4.1 Case ssignment and Case Filter
3.4.2 Clitic Doubling and Choice of Government

3.5 Trace Theory
3.5.1 Null Subject Parameter and ECP
3.5.2 V-Preposing and ECP

3.6 Binding Theory .
3.6.1 Binding Conditions for Overt Noun Phrases
3.6.2 Binding Conditions for Empty Noun Phrases

3.7 Bounding Theory
3.7.1 V-preposing and Choice of Bounding Nodes

3.8 Principles and Parameters .

4 Overall Design of UNITRAN

5 Pretranslation Routines
5.1 Preprocessing Routines
5.2 Morphological Analysis .

5.2.1 Morphological Rule Formalism

22
23
24
27
30
30
31
32
33

35
35
36
37
39
41
43
43
44
46
46
47

48

58
58
59
59

3

'on en s

1 Introduction

-1 i mill I Wx*-

5.2.2 The Lexicon .
5.3 Precompilation .

65
7 2

6 Parsing Component
6.1 Structure-Building Compone,
6.2 Linguistic Constraints of Par

80
int: Augmented Earley Aloorithm 80
,ser 85

87
98

102
lot

109
109

X Module
0 Module
Government Module
Case Module
Trace Module
Binding Module
Bounding Module

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.2.7

7 Final Translation Routines
7.1 Replacement Routines .

7.1.1 Structural Replacement .
7.1.2 Thematic Substitution
7.1.3 Linguistic Constraints on Replacement Routines

7.2 Generation Routines .
7.2.1 Structural Movement (Move-a)
7.2.2 Morphological Synthesis .
7.2.3 Linguistic Constraints of Generation Routines

120
121
121
123
125
128
129
132
134

8 Example Of Translation
8.1 Parsing
8.2 Replacement
8.3 Generation
8.4 Processing Time

. .

136
136
160
163
169

170
170
174
179

181
182
184

186
186
189

. .

9 Limitations, Future Work, and Conclusions
9.1 Limitations
9.2 Drections for Future Work

9.3 Conclusions

A Principles and Parameters
A.1 Principles and Parameters of GB Modules
A.2 Parameter Values for Spanish and English

B Representation of Kimmo Automata
B.1 English Automata
B-2 Spanish Automata

4

m.WM.V-- --�

C Representation of Lexicons
CA English Lexicon
C.2 Spanish Lexicon .

D Translation System Parameters

E Lisp Representation of GB Parameters
E.1 X-Theory
E.2 O-Theory
E.3 Government Theory
E.4 Case Theory .
E.5 Trace Theory
E.6 Bounding Theory

193
193
203

218

223
223
225
225
225
226
226

F Lisp Representation of GB Principles
F.1 X-Theory

F.1.1 Precompilation Routines
F.I.2 Complement Prediction Routines
F.1.3 Routines for Associating Complements with Heads
F.I.4 Routines for Determining Feature Information and Ai
F.I.5 Feature Percolation Routines
F.I.6 Structure-Modification Routines

F.2 0- Theory.
F.2.1 CSR Mapping.
F.2.2 O-Role Assignment Routines
F.2.3 O-Role Transmission Routines
F.2.4 O-Criterion Routines
F.2.5 O-Role Matching Routines

F.3 Government Theory
F.3.1 Routines for Setting up Government Relations
F.3.2 Routines for Testing Government Relations

FA Case Theory .
F-5 Trace Theory
F.6 Binding Theory
F.7 Bounding Theory

F.7.1 Routines for Trace Linking at PUSH Time
F.7.2 Routines for Trace Linkino, at POP Time
F.7-3 Routines for Checking Language-Specific Effects
F.7.4 Routines for Perfornling Move-a at Generation Time

227
. 227
. 227

229
. 233

Structure 234
. 236

239
240
240
240

* 242
* 244

. 245

. 246

. 246

. 250

. 251

. 253
* 254

256
. 256

259
. 260
. 260

G Earley Parser Routines
G.1 Main Earley Parser Loop .
G.2 Predict Action .
G-3 Scan Action .
GA Complete Action .

262
262
265
267
269

5

H Interface Between Structure-Building and GB
H.1 Interface During PUSH Stage
H.2 Interface During SCAN Stage,
H.3 Interface During POP Stage
H.4 Interface During Replacement Stage .
H.5 nterface During Generation Stage

I Global Variables for UNITRAN

J Translation Routines of UNITRAN

271
272
21 6
279
281
284

286

291

K Examples
K.1 Free Inversion
K.2 Verb-Preposing
K.3 Subject-Aux Inversion (SAI)
K.4 Thematic Divergence
K.5 Raising - - - - - - - - - - - -
K.6 Clitic. Doubling -
K.7 Null Subject . . - - - - - -

296
296
298
300
302
303
305
306

6

II "II I I pw-qww�

Chapter

O
n ro UC ion

How can computerized natural language translation be performed without relying on a large set

of language-specific rules? A large majority of approaches to translation use parsing strategies

that are based on context-free grammars. To try to capture a of the phenomena observed in

natural languages, context-free rule-based systems require an overwhelming number of rules;

thus, a translation system either has lmited the lnguistic coverage, or poor performance due

to formidable grammar size.1

This report concerns an alternative approach to natural language translation. In particular,

the computational system described herein, UNITRAN, relies on principle-based descriptions

of grammar rather than rule-oriented descriptions. 2 The model that has been constructed is

based on abstract principles as developed by Chomsky (1981a, 1981b) and several other re-

searchers working within the "Government and Binding" (GB) framework. Thus, the grammar

is viewed as a modular system of principles riather than a large set of ad hoe language-specific

rules.

What is natural language translation, and what makes it a difficult problem? Natural

'As noted in Barton, 1984, in a typical parsing system the description of a language is lengthy, thus increasing
the running time of many parsing algorithms. (The Earley algorithm 1970) for context-free language parsing can
quadruple its running time when the grammar size is doubled.) The same is true of typical translation systems.
For example, Slocum's METAL system (1984a) developed at the Linguistics Research Center at the University
of Texas relies on over 1000 language-specific context-free rules per language solely for syntactic processing. In
order to ensure omputational feasibility, the system requires that linguistic coverage be lmited.

2The name UNITR AN stands for UNIversal TRANslator, that is, the system serves as the basis for translation
across a variety of languages, not just two languages or a amily of languages.

7

CHAPTER . INTRODUCTION 8

language translation is the task of mapping a soiirce (natural) language input into a target

(natural) language output. In order to etermine this apping we niust understand the

common representation that uderlies the source language input ad target language output.

The "underlying form" that this translation approach ses will be discussed i more detail in

section 71.1.

The reason that translation is difficult is that it seems to require a assive aount of

"knowledge" in order to handle all possible phenomena and their interaction effects) that

might occur in a language. Consider (1):

(1) Z Que vo?

'What did fheshel see?"

Although (1) appears to be simple, it is not simple from the point of view of machine translation

since the sentence exhibits interaction aong three complex phenomena. The first phenomenon

is the absence of a subject in the source language. In any languages (e.g., Spanish, Italian,

Greek, and Hebrew), the pronominal subject of a tensed sentence may remain unexpressed; the

verbal orphology is rich enough to make the subject pronouns recoverable. Thus, (1) would

literally translate as:

(2) * What saw?'

In order to rule out 2) a translation system must have the nowledge" that a null subject is

allowed in Spanish, but not 'in English.

The second phenomenon concerns ovement of a sentence constituent. In (1), the verb i4o

saw) takes an object, but the object does no" t appear where it is normally foi-ind (i.e., after

the verb); instead, the object que precedes the verb. The positioning of qu' at the beginning of

the sentence is conceived of as a type of movement: the object has oved froni verb-phrase final

to sentence-initial position. This phenomenon, which ay occur in either Spanish or English,

must be accounted for during the translation process.

3The '.. - notation will be used to denote optionality Tus, in (1) te subject of the sentence may
either be he or he.

4An asterisk in front of a sentence is used to indicate that it is syntactically ill-forined iii some way.

CHAPTER L INTRODUCTION 9

The third phenomenon is called inversion. In Spanish (and other Romance languages), the

verb is aowe(I to invert with its subject. Thus, if the sbject of (1) were overt, it would be

inverted, as in 3):

(3) ZQue' vio Juan?

'What did John see?'

Although the subject is phonetically null in (1), it is assumed to have inverted with the verb,

just as in 3), where the subject is present.

Early aproaches to translation failed since interaction effects of complex phenomena such

as those found in (1) ade translation appear to be unmanageable. Later approaches to the

problem have succeeded in handling niany different linguistic phenomena, but these translation

systems do not operate cross-linguistically and are generally ased on language-specific rules

of a context-free nature. 5 The approach I take handles many complex phenomena without

sacrificing cross-linguistic application, and without relying on a large set of language-specific

rules. It is an "interlingual" approach, that is, it is based on universal principles that hold across

all languages; the distinctions among languages are then handled by settings of paramctc�rs to

the universal principles. For example, there is a principle that requires a particular ordering of

constituents with respect to a phrase. The parameter setting tat corresponds to this principle

is called "constituent order," which is set to head-initial for English, but head-final for a

language like Japanese. The head-initial parameter setting forces the object to follow the verb

in English (e.g., "hit the ball"); by contrast, the head-final parameter setting forces the object

to precede the verb in Japanese (e.g., "the ball hit").

The contribution put forth by this investigation is two-fold: (a) from a linguistic point of

view, the investigation allows the principles of GB to be realized and verified; and (b) from

a computational perspective, descriptions of natural granunars are simplified, thus easing the

programmer's and grammar writer's task. The model not only permits a language to be de-

5Slocuni's system (1984a) relies on a separate set of context-free language-specific rles for each source and

target language. The system is entirely rule-based, and is not easily extendible to other languages. By contrast,

Sharp's translation system 1985) approaches a design with applies cross-linguistically I.e., it does not rely on

a large atabase of language-specific context-free rules and includes sonie universal principles), but essentially

operates only between Spanish and English. No provision is made for the user to freely enter new parameter

values for additional languages snce most of the principles are implicitly represented (hardwired) in the code.

"Imp- .- - I

CHAPTER 1. INTROD[TCTIOIN' 10

scribed by the same set of parameters that specify the language in linguistic theory, but it

also eases the burden of the programmer by handling iteraction effects of universal principles

without requiring that the effects be specifically spelled ot. For example, trace-antecedent

specifications are generally incorporated directly into structure-building rules in a rule-based

approach. That is, rules that build sentences require a provision for linking a moved element"

(e.g., que in (1)) with the position from which it is issing (e.g., object position in (1)).6

By contrast, the principle-based approach abstracts te task of trace-antecedent linking into

a odule that is allowed to apply across a types of structures regardless of how the struc-

tures are bilt. Thus, there is a single structure-building mechanism that assembles phrasal

constituents into phrases, and there is an independent trace-antecedent linking routine that

applies uniformly across all types of phrases. Ultimately, the goal is for a small set of princi-

ples (grouped into odules to cover phenomena found in a languages so that unmanageable

grammar size is no longer a problem.

Corresponding to the two-fold contribution of the investigation is the two-fold advantage

of this principle-based approach: (a) from a scientific point of view the interlingual approach

is beneficial because it aows linguistic generalization to be captured modularized principles

eliminate the need for specifying common properties across languages directly in rules), and the

approach lends itself to a more plausible theory of learnability (the basic syntactic description

for a language is condensed to a set of parameter values, not a large database of rules); and

(b) from an engineering point of view the interlingual approach is advantageous because the

grammar size is reduced (the ultiplicative effects of constraint modules are not spelled out in

the form of grammar rules) and. the system is easily extendible (a separate description is not

required for each language).

The overall design of the system is illustrated in figure 11 (using (1) as the translation exam-

ple). The structural and lexical processing includes three stages: parsing, thematic substitution,

and generation, each of which will be discussed shortly. During a three stages a structure-

generating odule operates in a co-routine fashion Nith a linguistic constraint odule. The

linguistic constraint module consists of niversal principles with user-niodifiable parameter set-

6For example, the GPSG approach (Gazdar et al. 1985)) uses a "slashed-category" echanism to incorporate
the trace-antecedent relation directly into the context-free granin-lar rules.

1, � R -

CHAPTER . INTRODUCTION 11

zQue vo?

Parameter
V ValuesI --C I 1\

I

Structural

and

Lexical

Processing

01 ESource
Language

I

Parameter
Values

of L

I
Universal i

i
Principles

and

Parameters
I i

"I - 1//
Target.

Language

What did fhe, shel see?

Figure .1: Interaction of Translator with Universal Principles

tings. For example, in the case of the above-mentioned "constituent order" parameter, the user

is allowed to specify either head-initial or head-final, depending on the language being trans-

lated. Thus, all universal principles have user-modifiable parameters associated with them.

Before the source language processing (parsing) takes place, the parameters are set according

to the source language values, but are then reset according to the target language values before

target language processing (generation) occurs.

The three stages, parsing, thematic substitution, and generation, with the corresponding

input-output for each stage (using (1) as the translation example) are illustrated in figure 12.

The parser takes a morphologically analyzed input and returns a tree structure that encodes

structural relations among elements of the source language sentence. Just prior to tematic

substitution, a structural replacement routine ioves constituents back into their place of origin,

thus deriving a representation that nderlies the source language. During thematic substitution

the parameter settings for the target language are installed, and the target lexical entries that

thematically correspond to the source language constituents are substituted. Thus, in the

example vio is thematically apped to saw when it is discovered that the thematic roles of

CHAPTER 1. INTRODUCTION 12

jQ116 v?

V I I I I

Parser

I

[= que.,- = vert [- pro [� vt e1]]]el I I 2

[= = pro = ver que]]]c I v
I

Thematic

Substitution

i I

[= fhe, shel = see whaQ]I v

I

't,

Generator

I I

= What = did [y he, shel I= see e 1]]]IC I I v I

I

What did he, she I see?

Figure 12: Three stages of Translation

the vio and saw match. At te generation stage, movement and orphological synthesis take

place, thus deriving the target language sentence What did he, her ee?

Although all three stages of translation have been implemented and are discussed in this

report, the ephasis of the project is on the parsing component. The generation routines are

not as elaborate as the arsing routines, and they do not handle all of the cases that the parser

can handle due to problems concerning structural realization (i.e., choosing the syntactically

correct form to generate froni the underlying form") and lexical selection (i.e., choosing the
,semantically correct forin to generate from the "underl ing form").7

b y -

7See Dorr 1988) for a lexicon-driven generation approach that addresses the issues of lexical selection and
structural realization.

Surface Sentence

Underspecified G B

Phrase Structure Constraint

Constructor Modules

L

Parsed Sentence

Figure 13: Co-Routine Design of Parsing Stage of Translation

Figure 13 shows the co-routine design of the parsing stage. Dring the parse of a sentence,

there is a back-andJorth flow between the Phrase Structure Constructor and the GB Constraint

Modules. The Phrase Structure component builds underspecified phrase structures (i.e., struc-

tures that do not include information about agreement, abstract case, semantic roles, argument

structure, ctc.) based on X-Theory, while the GB component enforces well.-formedness condi-

tions agreement filters, case filters, etc.) on the structures passed to it, and ads ti-iissing

information (argument structure, semantic roles, etc.) not available to the structure building

component. Note that the model assumes that a syntactic structure will initially be assigned

to a sentence, and that this structure may be eliminated or odified according to principles

of GB. This design is consistent with several studies that indicate that the human language

processor initially assigns a (possibly abiguous or underspecified) structural analysis to a

sentence, leaving lexical and semantic decisions for subsequent processing. 8

The computational system is uilt 'in Lisp and runs on a Symbolics 3600. It is currently

bidirectional between Spanish and English, although other languages ay easily be added

since a niversal approach is taken.' The primary focus of te investigation faUs within the

8Frazier 1986 provides recent psycholinguistic evidence that parsing proceeds in this fashion.
"The approach is "universal" only to the extent that the linguistic teory is "universal." There are some

residual phenomena not covered by the theory that are consequently not handled by the system i a principle-
based manner. For examples the language-specific English rules of It-linsert'lon and do-insertion cannot be

I- -- 11 --- -

CHAPTER . INTRODUCTION 13

CHAPTER . ATRODUCTION 14

reahn of syntax. Thus, there is no global contextual "understanding" (the system translates

one sentence at a time). Semantics is incorporated only to the extent of locating possible

antecedents of pro-nouns (e.g., linking himself with h in the sentence He dssed himself),

and assigning semantic roles' (e.g., designating he as "agent-of-action" in He ate dinner). to

certain elements of he sentence, i particular, arguments of verbs (e.g., in the English sentence

"I read the book", the external argument (agent) of read is 1, and the internal argument (goal)

is book).

This is not to say that semantic issues should be ignored in achine translation; on the

contrary, semantics may be te next step in the evolution of the translation system presented

here. However, the theory of thematic roles, which falls within the domain of syntax, is a major

part of what akes translation work: in order to understand the central action of a sentence,

the participants of the action ust be identified. In the field of Artificial Intelligence, one of the

niost iportant methodological considerations is the selection of a representation that allows

natural constraints to be exploited; thus, before delving 'Into semantics to identify the mean-

ing, one must take advantage of syntax, which exposes many of the structural constraints (e.g.,

relations between nodes in parse trees) required to understand the central action of a sentence.

Furthermore, exploiting natural constraints provided by syntax avoids such requirements as

small subject dornain, narrow linguistic coverage, and enormous lexical entries (as found in

exclusively semantic-based systems). Thus, while UNITRAN does not eploy semantic pro-

cessing per se, it is the "core" of any modular translation system to which global contextual

understanding ay subsequently be added, perhaps in the interpretation of the thematic roles

identified by the syntactic component of the system.

The organization of this report is as follows: Chapter 2 presents the computational frame-

work for the translation model, including a comparison of this approach with other translation

approaches. Chapter 3 provides the linguistic framework for the translation model, including

a smmary of the principles and parameters that are used in the model. Chapter 4 covers the

accounted for by parameterized principles, but ust be individually stipulated as idiosyncratic rules of English.
Happily, tere appear to be oly a few such rules per language since the principle-based approach factors out most
of the commonalities across languages. By contrast, in a system like Slocum's, thousands of language-specific
rules are eployed for each source and target language.

'OSeniantic roles will henceforth be called thematic or theta-roles (0-roles) in accordance with GB Theory.

CHAPTER . INTRODLTCTION 15

overall design of the system. Chapter contains a description of the pretranslation routines,

including preprocessing, preconipilation and morphological aalysis. hapter 6 presents the

design of the parsing omponent. Chapter 7 describes the final translation stages (including

thematic substitution and generation). Chapter gives an example of execution of the system.

Chapter 9 discusses the limitations of te odel, directions for future work, and conclusions.

Chapter 2

1�'orn u a iona arnevvor 0 e

ans a ion 0 e

The aim of this chapter is to present the computational framework for UNITRAN, and to put

into perspective how the design of the system differs and compares to other approaches. The

distinction between rule-based (non-interlingual) and principle-based (interlingual) systems

will be presented, and the advantages of the principle-based design over other designs will be

discussed.

2.1 Direct and Transfer Approaches-, Rule-based Systems

An early approach to translation taken by GAT (the Georgetown Automatic Translation system

(1964), as described by Slocum (1984b)) was a direct word-for-word for word scheme 'in which

there was a parser and generator for each source-target language pair (see figure 21). The

primary characteristic of such an approach is that it was designed to translate out of one

specific language into another.

Later approaches to translation (e.g., the METAL system by Slocum (1984a)) have taken

a transfer approach, in which there is only one parser and one generator for each source

and target language. In this approach, there are a set of tansfer components, one for each

source-target language pair (see figure 22). The transfer phase is actually a third translation

16

Russian English
Parser Generator

--.i

Russian English
Parser Generator

I

C 11APTER 2 C011PUTATIONAL FRA-HEIVORK OF THE TRANSLATION MODEL 17

Russian
Sentence

I

Russian
Sentence I

English
Sentence

I

English
I Sentence

Figure 21: Direct Translation Approach e.g., GAT 1964)

German
Sentence

i

English English English I
�k Chinese

Sentence- Parser Transfer
I t

Chinese
Sentence

Figure 22: Transfer Translation Approach e.g., METAL 1984)

stage in which one language-specific representation is mapped into another. In contrast to

the direct approach to translation, the transfer approach has been somewhat more successful,

accommodating a variety of linguistic strategies across different languages. The METAL system

currently translates from German into Chinese and Spanish, as well as from English into

German.

The malady of the transfer approach is that each parsing component is based on language-

specific context-free rules.1 Because the system has no access to universal principles, there

is no consistency across the components; thus, each parser has an independent theoretical and

engineering basis. Rather than abstracting principles that are common to all languages into

'In Slocum's system, the type of grammar formalism is allowed to vary from language to language. For ex-
ample, the German parser is based on phrase-structure grammar, augmented by procedures for transformations;
by contrast, the English parser employs a modified GPSG approach with no transformations. Regardless of the
type of grammar formalism, each parser is nevertheless based on thousands of rules of a context-free nature.

CHAPTER 2 COMPUTATIONAL FRAMEWORK OF ME TRANSLATIONINIODEL 18

NN NST N-FLEX

0 1 2

LVL 0 REQ WI REQ WF

TEST (INT 1 CL 2 CO

CONSTR (CPX 2 ALO CO

(CPY 2 NU CA)

(CP I WI)

Figure 23: Context-free Phrase-Structure Rule 'in ETAL

NN

�k

NST N-FLEX

Figure 24: Tree generated via Context-Free Phrase-Structure Rule in METAL

separate modules that can be activated upon translation of any language, each parser ust

independently include all of the information required to translate that language, whether or

not the information is universal. For example, agreement information ust be encoded into

each rule in the METAL system; there is no separate agreement module that can apply to

other rules. Furthermore, there is no "rule-sharing" - all rules are language-dependent and

cannot apply across several languages.

Figure 23 gives a exarnple of a context-free rule in the METAL system. In this example,

the "father" node (NN) and "sons" (NST ad N-FLEX) are built into a Sntax tree as shown

in figure 24. This tree corresponds to a noun stei -n (NST) and its nominal ending (N-FLEX).

2This example is taken from Slocum (1984a), p. 18.

CHAPTER 2 CMPUTT,4TIONAL FRAMEWORK OF THE TRANSLATION MODEL 19

Russian I
Sentence

English
Sentence

Spanish
Sentence

> French
Sentence

Figure 25: Interlingual Translation Design as in CETA 1961) and Sharp 1985)

The syntax tree is bilt by the CONSTRuctor part of the rle only after the constituent tests

(the second and hird lines) and the TEST portion of the rule are satisfied. Essentiauy, what

this rule does is associate a noun with the two constituents NST and N-FLEX (using the

colunni tests which require the first element to be word-initial (WI) and the second element to

be word-final WF)), and then test for agreement between the two constituents (the fourth line).

Note that the application of such a rule must be restricted by tests on syntax (positioning and

agreement in this example) which are encoded directly in the rule, rather than in independent

modules which can account for these constraints globally. Frthermore, in order to account

for a wide range of phenomena, thousands of such rules are required for each language, thus

increasing grammar search time. 3

2.2 Interlingual Approaches: Principle-based Systems

The translation odel described in tis report moves away fro-ni the language-specific context-

free rule approach. It is an intcrlingv-al approach, (i.e., the source language is mapped into a

forni that is independent of any language); thus, there are no transfer modules or language-

specific context-free rules. The interlingual approach to translation has been taken by CETA

'The LRC MT system has approxii-riately 1,000 phrase-structure rules for each source language. Since the
GPS fmalism is eployed, these 1,000 rules multiply out to an unmanageable grammar size after meta-rules

have applied. For more on the complexity of GPSG, see Ristad 1986).

CHAPTER 2 COMPUTATIONAL FAMEW'ORK OF TE TRANSLATIONATODEL 20

Source
Sentence

Target
Sentence

Figure 26: The Modified Interlingual Design: Dorr 198 7

(Centre d'Etudes pour la Traduction Automatique 1961), as described by Slocum (1984b)) and

Sharp 1985). However, the CETA system 'is not entirely interlingual. since there is a transfer

component (at the lexical, level) that -maps from one language-specific exical representation

to another. Sharp's system, although not rule-based, is also not entirely interlingual. since it

includes some hard-wired principles that are not user-programmable (i.e., not parameterized).

The result is that the class of languages that can be translated is limited. The interlingual

approach as ebodied by CETA and Sharp is iustrated in figure 25. Note that there are

no transfer components, but that there is a separate parser and generator for each source and

target language. The interlingual form is assumed to be a form common to all languages.

One problem with this incarnation of the interlingual approach is that the user ii-iust supply

a parser for each source language and a generator for each target language. The approach

taken for UNITRAN is still interlingual by definition (i.e., the source language is mapped 'into

a form that is independent 'of any language), but the design is slightly different from that of

CETA and Sharp: the same parser and generator are used for ll languages., This more closely

approximates a true universal approach since the principles that apply across all languages are

entirely separate from he language-specific characteristics expressed by parameter settings.

Figure 26 illustrates the design of the odel. The parser and generator are user-progranu-nable:

all of the principles associated with the system are associated with parameters that are set by

the user. Thus, the user does not need to supply a source language parser or a target language

generator since these are already part of the translation system. The only requirement is that

CHAPTER, 2 COMPUTATIOIYAL FRAMEIVORK OF THE TRANSLATION MODEL 21

the built-in parser and generator be programawd (via parameter settings) to process the source

and target languages. For example, the user list specify that he English language requires a

sentence to contain a subject, but that Spanish does not have a subject requirement. This is

done by setting the null subject" parameter to TUTE; y contrast, this pararneter list be set

to FALSE for English. A dictionary for each language mst also e supplied (the dictionary,

or lexicon is described briefly in section 32.2, and in ore detail in section 52.2) for each

language to be translated.

in UIS ic 'ran-ievvor 0 e

ans a ion 0 e

Having just seen the computational framework for the translation model, this capter will now

turn to the linguistic basis of the system. The iguistic theory that the system odels is the

theory of Government and Binding" (GB). The central idea of the theory is that there is a

universal grammar (UG) that represents the linguistic knowledge common to all languages. TJG

consists of subsystems of principles that are parameterized. The parameter settings interact

with the principles, yielding language-specific effects, thus accounting for a the phenomena

that are handled by detailed language-specific rules in older translation approaches.

Within the CB framework there are four derent levels of grammatical description: D-

structure, a base form in which semantic participants (or thematic roles) like agent or affected

object are identified; S-8tructure a surface form in which syntactic movement has taken place;

Logical Form, a form in which meaning" (quantification and scope) is specified; and Phono-

logical Form, a form in which sound is represented. The relationship between the levels of

description is shown in figure 31. At the level of S-structure, the D-structure form John ate

what? would be represented as What did John eat?, the corresponding Logical Form would be

For which thing x, John ate x, and the corresponding Phonological Form would be the literal

sound sequences that comprise the surface utterance. Several modules containing subsystems

of B principles are accessible at each of these granunatical levels. The modules are: X, 0,

22

Chapter 3

I

CHAPTER 3 LINGUISTIC FRAMEWORK OF THE TRANSLATION MODEL 23

D-structure

S-structure

Phonological Form Logical Forni

Figure 31: Relationship Between Four Levels of Grammatical Description

Government, Case, Trace, Binding, and Bounding. Each of these modules will be discussed in

turn in the next seven sections.

3.1 X-Theory

There have been any proposals for the phrase-structure representation of sentences. The

one adopted here is a modification of X-Theory presented by Chomsky (1981b). The central

idea is that the dictionary (henceforth lexicon) specifies subcategorization frames for lexical

items (e.g., the frame for the verb put 'Includes two arguments, one that is a noun phrase, and

another that is a prepositional phrase, as in put the car in the qaraqe), and phrase-structures

are projections of a lexical head X (N, V, P or A)' such that the following scheme is obeyed:

(4) X Specifier X

X X Complement

X is more familiarly known as XP (_ NP, VP, PP or AP). An example of a specifier of a

constituent is a determiner of a noun (e.g., a, the). In general, specifiers may be optional.' A

complement consists of one or more arguments as specified 'in the subcategorization fraiiie of

the lexical entry of the head.

'I make the assumption that basic categories are specified as values to a parameter of 5�-Theory since it is not
clear that the ones used in English and Spanish (i.e., N, V, P and A, and also Comp and Ifl (to be discussed
shortly)) are universal across all languages. Siniflarly, pre-tern-dnals such as determiner and adverb are specified
via an X parameter setting.

2Choice of specifiers (and their optionality) is specified as a setting of a parameter to

CHAPTER 3 LINGUISTIC FRAMEIVORK OF THE TRANSLATION MODEL 24

N

Det N

the N P

car with four wheel drive

Figure 32: Example of Adjunction to a Noun Prase

The four basic categories of X are characterized in terins of the features [±N] (substantive)

and [±V] (predicative):

(5) [+N1 VI - Al Nl VI - N, [-N, +VI V, and [-N, _]

This notation allows generalizations to be made crosscategorially. For example, the two cat-

egories that assign objective case (V and P) can be referred, to with the single designation

[-N].

In addition to Specifiers and Complements, other modifying phrases occur in phrasal pro-

jections; these are called adjuncts:

(6) X Adjunct X

Y X Adjunct

An example of an adjunct is with foui-- wheel drive in the noun phrase the car with four wheel

drive. Adjuncts are those phrasal elements that are not subcategorized by the head of a phrase.

Since the head car does not subcategorize for anything, 'it is assumed that the prepositional

phrase ith four wheel dive has right-ad oined to the noun phrase so that the structure in

figure 32 is derived. Usually adjuncts are aximal projections (i.e., on the X level). 3

3In certain cases, adjuncts are X nodes. For examples V-preposing left-adjoins a verb (not a verb phrase)
to S. Auxiliary verbs and citics are also allowed to left-adjoin (in tis case to V). In general, as pointed out
to e by Craig Thiersch (personal comniunication), minimal (XO) elements are aowed to left-adjoin but not
right-adjoin. By contrast, maximal (X"') elements are aowed to left-adjoin and right-adjoin. (For example,
Nmax right-adjoins to V"' for the free-subject iversion phenomenon in Spanish.)

I I

'CHAPTER 3 LINGUISTIC FRAMEWORK OF THE TRAiNTSLATION MODE L 25

3.1.1 Constituent Order Parameter

Note that if we were to ignore adjuncts for the time being, 4 could be characterized by a

single ternary branching scheme:

(7) X Specifier X Complenient

This is sinidlar to the scheme I will adopt since it lends itself more readily to incorporation of

the "constituent order" parameter, which aows the order of specifier, head and complement

to be permuted across languages. For example, the parameter ust be set to specifier-head-

complement in Eglish, complenient-specifier-head in Navajo, 4 and head-specifier-complenient

in Kkuyu' (a Bantu language of East Africa). Once the constituent order is set for a particular

language, a of the X phrase-structure skeletons can be derived before parsing begins. In order

to include adjuncts, 0-must be modified and combined wth 6) to derive (8):

(8) X Specifier X Complement

x Adjunct X

X Adjunct

X X

Note that adjuncts are only allowed to occur after Specifiers or before Complements. How-

ever, there is evidence that adjuncts can occur before the specifier and after the omplement

in other languages:

(9) M ZQue' vio el hombre?

'What did the man see?'

(ii) ... entrada del hornbre alas ocho ...

4entrance of the man at eight'

In (9)(i) the verb vio ('saw') is adjoined to the clause in a position preceding the specifier

el hombre (_ 'the man'). In (9)(ii) the prepositional phrase a las ocho 'at eight') is adjoined

to the noun phrase in a position following the complement del hombre 'of the man'). Thus,

4Hale 1973).

5Lightfoot (1982).

--- ----

.- CHAPTER 3 LINGUISTIC FRA.XlEVV0RK OF TE TRANSLATION .11,10DEL 26

Adjunct Adjunct

X-specifier X X-complenient

Adjunct _,K Adjunct

X

Figure 33: Phrase-Structure Skeleton for Specifier-Head-Complenient Order

it would seem that the allowable phrase-structure for a specifier-head-complenient language

should be as in figure 33. Here, adjuncts can occur before or after the specifier, and before

or after the complement, that, is, they can occur "freely" (subject to constraints ipose by

other odules of the theory). Thus, the constituent,-"order pararneter setting is all tat is

required in order to determine all of the context-free rles required for the derivation of the

phrase-structure skeleton for any given language.

The context-free rules corresponding to the phrase-structure skeleton in figure 33 are:

(10) X Specifier X Complement

X Adjunct X

Y X Adjunct

X Specifier X Complement

X Adjunct X

X Adjunct

X X

However, the context-free rule system I will adopt is a simplified version of (10). According

to Chonisky (1986a), adjunction to X is not possible; rather, adjunction is ade only at, the

maximal X,,a,) or zero X0) level. This would seem to indicate that the presence of the X

level is ineffectual since the X level in (W) is required only for the introduction of adjuncts.

ma,Thus, we can now speak of just two levels, inimal (X' _- X) and aximal (X - X). This

CHAPTER 3 LINGITISTIC-FRA..11EIVORK OF THE TRAIN 27
X rn a x

Adjunct X"x Adjunct

X-specifier X X-complenient

Adjunct X Adjunct

Figure 34: Modified Phrase-Structure Skeleton for Specifier-Head-Complement Order

new formulation reduces the 7 rles of W) to 5 rles: 6

(11) "' Specifier X Complenient

X max Adjunct X"x

X"' X"-� Adjunct

X"x Adjunct X

X max X Adjunct

The phrase structure skeleton corresponding o (11) is i figure 34.

Note that the context-free rules in (11) are no longer needed once the phrase-structure

skeleton 34 has been constructed. Each tinie a word is encountered in a surface sentence,

a phrase-structure projection (where X corresponds to the lexical category of the word) is

established. The specifier ad adjuncts are optional, and the complement consists of arguments

projected by the subcategorization of the head.

So far, the scheme! presented here includes specifier-head-cornplement languages only. Hw-

ever, the order of these three constituents may be peri-nuted for other languages. There are a

total of 6 3!) permutations of specifier, ead and complement; the phrase-structure skele-

tons pictured in figure 35 correspond to tese 6 perni-titations 35 (a) is the same as 34). The

7abbreviations Spec and Comp refer to Specifier and (oniplenient respectively.

6 1, general (for ease of otation), X or XP will be substituted for Xand X will be substituted for X'
7The abbreviation Conip for Complement is not to be confused with the abbreviation Comp for Comple-

mentizer I general, Complement will be abbreviated as Conip ad Cornplenientizer will be abbreviated as
C.

II

I I i I I i

I - \ - / . ---L - L - - -- --- --

-CHAPTER 3 LINGUISTIC FRAMEWORK OF THE TRANSLATION 1110DEL 28

xrn. a x

Adjunct Xa' Adjunct

X X-Spec X-Conip

Adjunct X Adjunct

(e) Head-Spec-Conip

XMax

Adjunct X Adjunct

X-Comp X X-Spec

Adjunct X Adjunct

(b) Conip-Head-Spec

Xmax

Adjunct X' Adjunct

X-Comp X-Spec

N

Adjunct X Adjunct

(d) Comp-Spec-Head

X'max

Adjunct X"' Adjunct

X X-Collip X-Spec

Adjunct X Adjunct

- _(f) Head-Comp-Spec

Figure 35: Six Permutations of the Constituent Order" Parameter

3.1.2 Infl and Comp

In addition to the lexical heads N, V, P and A, Chomsky (1981b) includes two other categories:

Ini (1), an inflection node containing tease and agreement information; and Comp (C),

a complementizer (or head) of a clause.8 The following rules are given for introducing these

two categories:

8Throughout this report, ") and will be used interchangeably, as will I (- I-) and S. That is,
C is the head of �, and I is the head of S.

x Max

Adjunct X" Adjunct

X-Spec X X-Conip

� Adjunct X Adjunct

(a) Spec-Head-Comp

Xmax

Adjunct Xa' Adjunct

X-Spec X-Conip X

Adjunct X Adjunct

___) Spec-Comp-Head

C.HAPTER 3 LINGTTISTIC FRAMElt-ORK OF THE TRAN.5LATION MODEL 29

(12) I

IV

C Wh-phvase C

C I

Adapting 12) to the ternary branching scheme, we have:

(13) I'' #> I-Specifier I I-Complenient

cmax =::� C-Specifier C C-Complement

Here I-Specifier and C-Specifier are allowed to vary from language to language. In the case

of English, I-Specifier is Nax and C-Specifier is (optionally) Wh.-phrase. The choice of Coin-

plement for I and C is dictated bythe lexical entry corresponding to the head. For example,

the English modal would (of category 1) selects Vmax as a coniplement, and the English com-

plementizer that (of category C) selects 1' as a complement. In the case where the head is

not overt (e.g., neither C nor I 'is overt in I ate pie.), complement selection can be deterniined

via a parameter setting (e.g., in English I always selects V-'x and C always selects I') So

(13) follows the ore general scheme (7), in which the Specifier of the head is detern-tined by

a parameter setting (and may be optional), and the Complement of a head is determined by

the subcategorization information associated with the head (or a parameter setting when the

head is not overt). Consequently, the only achinery needed to ebody X-Theory for English

is the phrase-structure skeleton 33, with X A, P, V, N, C or L' Superimposed onto this

machinery are parameter values and subcategorization information, that determine the exact

fit of the X phrase-structure skeleton to each phrase of a sentence.

The lexicon ad X-Theory come together at the level of D-structure before any transforma-

tions apply, thus generating basic phrase-structures upon which other niodules operate. The

theory of X is crucial in the translation ii-todel since it provides the foundation on which the

parsing echanism is built: it allows te caracterization of structural variation across lan-

guages, and it provides the basis for application of constraints and well-forniedness conditions

9 More generally, the phrase-structure skeletons of figure 35 comprise the complete]� niachinery required to
handle all languages.

NA CHAPTER 3 LANGUISTIC FRAMEWORK OF THE TRANSLATION MODEL 30

imposed by principles of other GB odules.

3.2 0-Theory

In contrast to X-Theory, 0-Theory holds at the level of D-structure, S-structure and Logical

Form. The central notion associated with 0-Theory is argument of." The fundamental task

of 0-Theory is to account for the relation etween verbs and their arguments. stands for

thcniatic; 0roles are assigned to different arguments of a verb according to the semantic de-

scription of the verb. For example, the verb lom in John loveq Alary assigns the role of agent

to John (the external argument of the verb) and the role of patient to Allary (the internal

argument of the verb). Both internal and external arguments are specified in the subcatego-

rization frame of the verb in the lexicon, and the assignment of 0-roles is determined from this

information.

3.2.1 O-Criterion and Projection Principle

Noun phrases ust be atched up one to one with arguments of a verb. The -Criterion (as

stated by Chomsky, 1981b) ensures that this bijection holds:

(14) 0- Criterion:

Each argument bears one and only one 0-role, and each 0-role is assigned to one and only

one argument.

The Projection Principle then ensures that this Criterion holds at D-structure, S-structure,

and Logical Form:

(15) Projection Principle:

The -Criterion holds at D-structure, S-Structure, and Logical Form.

Taken together, the Projection Principle, -Criterion, lexicon, and X templates comprise all

that is required to generate phrase structure without the need for specific context-free rules. The

phrase structure skeletons provide underspecified phrase structure, and lexical items determine

(through subcategorization information consisting of internal and external arguments along

with their corresponding 0-markings) the elements required to fill out missing constituents of

the phrase.

.
M i ! "W"N" No ImIm I - , , , - - I

CHAPTER 3 LINGUISTIC FRAMEWORK OF THE TRANSLATION A10DEL 31

3.2.2 Canonical Structural Realization ad sibility Condition

Within 0-theory the apping between 0-roles, and their structural realization must be pa-

ranieterized. According to Chomsky (1986b), the lexicon presents, for each lexical item, the

selectional properties" of heads of constructions (N, V., A, P). The two types of selectional

properties are s-selection (sernantic selection," i.e., the roles, sch as agent and goal, that

are assigned to internal and external arguments) and csclcctio�ri (categorial selection," i.e.,

the categories, such as N and C, of the internal and external arguments). Since c-selection is

redundant (e.g., s-selection of a patient automatically iplies c-selection of an NP, etc.), the

lexicon may be restricted to s-selection. However, in order to etermine the apping between

a semantic category and a syntactic category C, it is necessary to provide a function, can it

�4 canonical structural realization" (CSR) (in accordance with Chornsky (1986b)), that charac-

terizes the mapping. This function 'is parameterized so that the CSR of a particular semantic

category is allowed to vary across languages. For example, CSR(patient) NP in English,

but CSR(patient) t,PP in Spanish:

(16) (i) see: external agent, internal patient

ver: external agent, internal patient

(ii) John saw[,, Mary]

Juan vio [, a Maria]

Although the lexical entries for "see" and ver" are identical, the complements are not

structurally identical; however, this structural distinction need not be specified in the lexicon.

Thus, not only is c-selection (i,,.e., context-free rules) eliminated from syntactic phrase structure,

but it is eliminated from the lexicon as well. The lexicon need only specify the s-selection, and

the parameterized CSR ay then apply to determine the structural realization. Note that

in 16) the 0-role patient is assigned to NPMaria], not [pp a Maria]; in general, the structural

entity that is c-selected is either the NP to which 0-role is assigned, or the phrase containing

the NP to which 0-role is assigned. The only requirement is that the NP be case-marked before

0-role be assigned. This condition is called the Visibility Condition:

Ao"N
A' A

I I -1 - 1 -----, r, 010411, I "I !M I IN, -I I I M 1�, I MOM I -- -. I I I

(JI-APTER3. -LI.LIVG[TTSTICFRAI�IEWORKOFTHETRANSLATIONMODEL 32

(17) Visibility Condition:

An NP is visible for 0-iuarkina only if it i's assigned case.

As we will see in section 34.1, objective case is assigned to an ob'ect of a preposition. Since

Alart'a is the object of the preposition a, ob'ective case is assigned, at which point O-role

assignment triggers and Aari'a receives patient O-role.

3.2.3 Clitic Doubling and O-role Transmission

In addition to parameterization of the CSR function, another parametric variation of 0-theory

is within the rinciple of O-role transmission I Spanish, the phenomenon of clitic doubling is

relevant to this parametric variation. A clitic is a pronominal constituent that is associated with

a verbal object. In contrast to ovement theoriesio and clitic placement/deletion theories,11

Jaeggli 1981) proposes that clitic pronouns are characterized as verbal objects and are base

generated i clitic position" by te rule:

(18) clitic+V N

For example, the clitic le in the following sentence is base-generated to the left of the verb

,regal':

(19) Le regale' un libro.

'I gave fhiniherl a book.'

The phenomenon of clitic doubling is defined 'in terms of the pair < clitic, lexical NP> where

the clitic must agree in number, person, and gender with the lexical NP. Examples of ctic

doubling are the following:

(20) (i) Le entregue' la carta a el. pronominal indirect object doubling <le, C'I>)

'I delivered the letter to him.'

(ii) Lo vimos a el. pronominal direct object doubling <o, e>)

'We saw him.'

'OSee Kayne 1975) and Quicoli 1976).

"See Rivas 1977) and Strozer 1976).

2Clitic adjunction is assumed to be part of the odule. However, the presence or absence of citics for a
particular language is detern-lined by a parameter setting associated with 0-theory.

R ----- ------- ---- --- -- - -

CHAPTER 3. LIIVGUTISTIC FRAAMIVORK OF THE TRAIN"SLATION 110DEL 33

(iii) Lo vimos a Guille. (nonpronominal direct object doubling <lo, Guille>) 13

'We saw hini.'

In 20), the clitic actually stands for an NP that does not yet have a -role. Thus, 'in order

to satisfy the -Criterion a parameter of variation is required for 0-role transmission. Jaeggli

proposes that citics always bear a particular 0-role and that there is a 0-role transii-iission rule

that will supply 0-roles to object NPs that are doubled:

(21) [CL +case +0-] ... [NP +case,] :::� [C/L +case +0 ... [NP case- 0-]

J I J I J

Note tat in order for this transmission rule to trigger, the ctic and NP must have the

same case. (A description of ase Theory is given below.) 21) allows a doubled NP object to

receive 0-role. If a clitic is not present, a 0-role 'is assigned in the usual fashion, (i.e., from the

verb that subcategorizes for the NP). Thus, for languages that allow citics, clitic doubling must

be available as a parameter of variation to the 0-role transmission principle of 0-Theory. This

is-important in a model of translation since languages that aow ctics could not be analyzed

without such a parameter of variation.

3.3 Government Theory

Government is a central notion to several of the modules including 0, Case, Trace and Binding;

thus, in terms of figure 31, government applies at all levels. Within the context of translation,

government is important because it is a key determinant of sentence structure possibilities: as a

parameterized principle, government accounts for the possibility of null subjects, of citics, and

of V-preposing 'these phenomena will be discussed shortly). A fmiliar example of government

in English is that a verb governs its object. Government is defined as follows (adapted from

van Rienisdijk ad Williams 1986)):

(22 a - V, N, A, P or AGR)14 15 governs if.-

"Doubling a nonpronon-Linal direct object is acceptable only in certain dialects, for examples in the River

Plate Spanish dialect of Argentina, Paraguay, -ruguay and Chile.
4AGR is the part of the Infl node tat contauis agreement features. It is necessarily accompanied by the

+ tnq feature.

'5 In the model presented here, the choice of governors is determined from a parameter setting associated with

Governnient Theory since the categories in 22) (V, N, A, P and AGR) may not be universal across all languages.

q-

CHAPTER I LING UISTIC FRAMETT"ORK OF TE TRAIVSLATIONMODEL/0""N 34

V N P

Put the book N

in the box

Figure 3 Example of Government elation

M a c-commands 13, and

(H) -a is the sniallest maximal projection containing), and

(iii) is contained in a

The notion of c-conuiiand (Chomsky 1981b) is defined as follows:

(23) a c-cornmands if:

M a does not contain , and

(H) all aximal projections that contain a also contain

Figure 36 shows an exam le of the government relation: the verb put governs the book, but

not the box since the node P (not V) is the smallest maximal rojection containing the box.

Several Spanish-English differences reveal "type of government" as a possible parameter of

variation. These differences show up in Case Theory with respect to case assignment require-

ments, ad i Trace Theory with respect to the Epty Category Principle (ECP). The next

two sections explore these differences, the parameters of variation that are required, and the

relevance of the parameters to the translation odel.

--- I -1 I- 11- I I I -'- wWomp" --- "

-TIC FRANTEWORK OF THE TRA."YSLATION MODELCHAPT.ER'3. LINGUIS 35
3.4 Case Theory

Abstract case (e.g., nominative, objective, etc.) is assigned to a noun phrase at S-structure

according the structural positioning of the noun phrase with respect to other elements. The

notion of government is relevant to case assignment since an element assigns case only if it

is a governing case-assigner. For example, in English, a preposition assigns objective case to

the object it governs, as in with hr as opposed to with she (here case shows up overtly). A

well-defined theory of Case is necessary for translation because it provides an explanation for

many of the distinctions between languages, including the existence of citics in some languages,

but not in others.

3.4.1 Case Assignment and Case Filter

Case is assigned as follows:

(24) (A) Objective case 'is assigned to the object governed y transitive P.

(B) Objective case is assigned to the object governed by transitive V.

(C) Nominative case 'is assigned to the subject governed by + tns] 16

The Case Filter is a principle that requires a lexical NPs to have case:

(25) Cas Fter:

* NP, where NP has no case

For example, since V and I (with + tns features) are case assigners, the following sentence does

not violate the Case Filter (because a of the NPs have been assigned case):

(26) [s I [I PRS IS]] = believe him] (believe him')V

Here, believe assigns objective case to him and tns (realized as the PRS feature) assigns

nominative case to the pronoun 1 so the Case Filter is satisfied. On the other hand, the Case

Filter is volated in:

(2`0 [s I [I PRS S] = believe = im = to gofl]] ('I believe him to go')V I V

'6 Since AGR is necessarily accompanied by the +tns feature, +tnq] is used interchangeably with AGR.

CHAPTER 3 LINGUTISTIC FRAMEWORK OF THE TRANSLATION MODEL 36

In 27) nominative case is assigned to I as in 26), but him cannot receive ob'ective case

from beliei7e because I blocks behem from governing him. Furthermore, to go is not tensed,

so him cannot receive nominative case. The ase Filter provides a principled account of the

ill-formedness of sentences like 27) and also of several other types of sentences including those

containing certain forms of clitic doubling (as we will see in te next section).

3.4.2 Clitic Doubling and Choice of Government

Clitic doubling figures in case assignment parametric variation. Since case assignment is depen-

dent on the notion of government, one might ask (given rule (18)) whether a clitic is governed.

If the clitic is not governed, it cannot be assigned case; consequently sentences 19) and 20) will

be ruled out by the Case Filter (25). In order to avoid this wrong prediction, Jaeggli proposes

that case assignment be parameterized so that it is dependent on s-goi7ernment rather than on

the less refined notion of goi7ernment (henceforth referred to as c-government) as defined in

(22).

In contrast to c-gmiernment, which is defined in terms of c-command and maximal projec-

tions, s-government is defined with respect to a strict subcategorization feature. S-government

is a unique pairing of c-governed elements of a verb to the subcategorization features of that

verb. In Spanish, objective case is assigned to an NP that is s-governed by the verb, whereas

in English, objective case is assigned to an NP that is c-governed by the verb. The following

example illustrates the necessity of this parameterization:

(28 *Lo vimos Cuille.

In 28), the accusative clitic lo absorbs s-government and Gitille remains ungoverned. Thus,

Guille does not receive case and the sentence is ruled out by the Case Filter. On the other hand,

(20)(iii) (the correct version of (28)(i)) is acceptable. This is because the quasi-preposition a

assigns objective case (with a +ACC feature arking) to Gitille and the sentence is not ruled

out. Jaeggli proposes tat the a is introduced imediately after the base by the following rule:

(29) 0 =:� a _[NP, +accusative] 17

7This is similar to the of -insertion rule proposed by Chomsky (1981b) which aows for the correspondence
between destroy the city and destruction of the city. In the former, case is assigned to the city by the verb
destroy, whereas in the latter, case is assigned to the city by the preposition of.

Language Government for (A) Government for (B) Government for (C)

Spanish C-governi-nent. S-government C-government

I English I C-governnient I C-government I C-government I

A ODEL 37CHAPTER 3�'LLYGUISTIC FRAMEWORK OF THE TRANSLATION I
Note, however, that in sentence (20)(i), there is no particle a before the accusative object

la carta, but case is still assigned successfully. The reason is that the dative clitic le receives

the DAT feature from the verb atrix, while the direct object la carta receives the ACC

feature from the verb atrix. Since there is no duplication of feature assignment, both NPs

are s-governed y the verb, and thus, both are assigned objective case.

It is necessary to parameterize case assignment in 24) so that there is an explanation

for the existence or non-existence of citics across languages. In languages like Spanish, s-

government determines objective case assignment by a verb, whereas in English c-government

is the determinant of objective case assignment by a verb. The parameter of variation, then, is a

setting that determines whether case assignment is dependent on s-government or c-government.

Thus, the Spanish and English parameter values for 24) (A), (B) and (C) are set as follows:

(30)

The parameterization of the Case odule is necessary in the translation model for characteriza-

tion of the distinction between citic and non-clitic languages. Because of this parameterization,

language-specific rules are not required for this characterization.

3.5 Trace Theory

A trace is an empty sentence position that is either base-generated or left behind when a

constituent has moved. Principles within this theory apply at the level of S-structure (i.e., after

movement has taken place and traces are left behind)." The principle of em�ty categories

(ECP)19 requires that traces be properly governed, where proper government is defined as

follows (taken from van Riemsdijk and Williams, 1986)):

(31) Proper government:

a P,opCrl gverns if and only if

1 3There is evidence that principles of Trace Teory, namely ECP, apply at the level of Logical Form. (See van
Riemsdijk and Williams 1986) for a discussion of this possibility.) However, the application of ECP at Logical
Form is not relevant to the discussion presented here since the translation model includes only those principles
that apply at D-structure and S-structure within the realm of syntax, not semantics).

19See Kayne 1981) and Jaeggli 1980).

NP-trace [-p ron, + ana]

Wh-trace (or variable) [-pron,-ana]

pro 20 [+pron,-anal

PRO [+Pron,+anal
- I - I

Igloo I I I 1 -.1, - I --------- - -- -

CHAPTER-3-l""LINGUTISTIC FRAINIERrORK OF THE TRANSLATION MODEL 38

(i) a, is a gomrning node, ad

(ii) a governs (in the sense of 22))

A goi�erning node or governor is a inimal lexical category (i.e., VI N, Al P) or NPi, where

) NPi. However, we shall see shortly that the choice of goi7erning node is indirectly subject

to parametric variation due to a property that distinguishes null-subject languages frol-n non-

null-subject languages. A well-defined theory of traces is 'important for translation because it

provides an explanation for the distinctions between languages that allow null subjects and

V-preposing (like Spanish) and other languages.

In general, there are four types of epty categories, each of which can be characterized in

terms of the features ±pron (pronominal) and ±ana (anaphoric or referential):

(32)

An extended version of the above-mentioned ECP includes all of these empty categories (not

just NP-trace and Wh-trace). The extended version is as follows:

(33) Extended ECP:"

An empty category is trace if and only if it is properly governed and PRO if and only if

it is ungoverned.

22Thus, a epty categories except PRO ust be properly governed. This formulation is

not restricted to the epty NPs in 32); it may apply to other empty categories as well. For

example, in Spanish there are several types of verbal traces. The choice of traces for a language

is specified by a parameter value to the Trace module.) As it stands, 33) requires that verbal

traces be properly governed. However, as noted in van Riemsd-k and Williams 1986), this

2OThe epty category pro corresponds to a a lexical pronoun (i.e., oul he, she, it, or they). Unlike its
empty anaphoric counterpart (PRO), it must be properly governed.

2'Taken from Chonisky 1981).

22 This conflicts with Sharp's claim that pro is not subject to the ECP, ut rather depends on Condition (B)
of the Binding Theory (see section 36.2). The Null Subject Parameter analysis by van Riemsdijk and Williams
(1986) shows that pro is indeed properly governed. Section 35.1 gives the details of this analysis.

CHAPTER 3 LING ISTIC FRAMEWORK OF THE TRAN,5LAT1ON,,,A110DEL 39

generalization ay not be warranted (in fact, verbal traces provide a counterexample to 33)).

1 will assume then that 33) holds only for empty categories with the [-VI feature (see (5)).

For example, PP-traces (in languages which allow them) must also be properly governed. The

term ECP will henceforth refer to the Extended version of the E(,P.

3.5.1 Null Subject Parameter and ECP

According to the analysis of the null subject parameter introduced by van ienisdijk and

Williams 1986), proper government must be parameterized so that the choice of proper gover-

nors is allowed to vary from language to language. We shall look at the analysis given by van

Riemsd"k and Williams and discuss their conclusions.

In Spanish, as in Italian, Greek, and Hebrew, morphology 'is rich enough to make the subject

pronouns redundant and recoverable. Thus, we can have the sentence:

(34) Hable' con ella.

'(1) spoke with her.'

Since the inflection on the verb is first person singular, the subject pronoun yo (-I) is optional.

The formulation of the null subject or pro-drop parameter by van Riemsdijk and Williams

is otivated by te observation that subjects are issing in a variety of constructions, not just

23in cases like 34). These constructions do not appear in many other languages (e.g., English,

etc.); thus, there must be a parameter which will account for the distinction between pro-drop

and non-pro-drop languages. The assumption is that some factor other than a oindexed Wh-

phrase or its trace ust properly govern the null entity in each of these constructions. The

pro-drop parameter, then, is a minimal binary difference that does or does not allow this factor

to properly govern subject position.

The proposed factor for proper government of a subject is the [, [tns] AGR] node. The

idea is that the features of AGR must agree with the sub'ect NP and are realized on the verb.

The agreement relation is expressed by coindexing AGR and the subject:

(35) 1/0MP NPi [I tns] AGR,]

23 The constructions that allow missing subjects include free inversion, V-preposing, embedded clauses, and
Wh-islands.

I-- -I"- - - - -- I i- - I

CHAPTER, 3 LINGUISTIC FRANIE-WORK OF THE TRA-LY,5LATION MODEL 40

The assumption is that AR.- c-comniands NP- and hence can govern it. However, in non-

pro-drop languages, such as English, AGR counts as governor for case marking and binding,

but does not count as proper governor for ECP. The reason AR, is allowed to be a proper

governor in pro-drop languages is that it has features for gender, number and person (i.e., AGR

is said to be rich in pro-drop languages). The obvious conclusion is that AGR.,- is allowed to

be a proper governor when it has nominal features (i.e., N,--V]).

Thus, the pro-drop parameter is relevant to the classification of governors. The following

two definitions from van Rieinsdijk and Willianis 1986) make this classification ore clear:

(36) Governors:

G) V, A, N or P

(ii) [, [tns] AGRJ

(iii) N1, or NPi, where the governed element is NPi

(37) Poper goz7ernors for ECP: (36)(i) and (36)(iii)

The parameter of variation that distinguishes Spanish from English, then, is the ability of AGR

to take on a noun-like status and thus become a proper governor by (36)(iii).

The underlying structure of 34) is the following:

(38) [s NPi I [+past] [AGR 1S11 I[= hablar con ellafl 14
V

The status of the epty subject, then, ust be [, e]i. 25 (Note that it cannot be PRO

since it is governed.) This empty category (sometimes called "little pro" or po) may either

be base generated or positioned by movement. Since NPi (pro) is properly governed by

AGRi, ECP is satisfied. In English, AGR could not be coindexed with an NP; thus, pro-drop

is not possible. This distinction between Spanish and English is relevant in the context of the

translation model in that there inust be a parameter that is set according to whether or not

24 The feature is stands for first person singular.
25 Binding conditions rule out te possibility that the empty subject is a trace. In particular, the subject

is neither A-bound ruling out the NP-trace possibility) nor X-bound (ruling out the WhArace possibility)-
Section 36.1 describes A-binding and section 36.2 describes X-binding.

I I - --,I" � �� -�- I'm 0 wll" �m I I I .

7

CHAPTER 3 LINGUISTIC FRA.YiIEWORK OF THE TRANSLATION MODEL 41

AGR, is rich in the languages ndergoing translation. Otherwise tere would be no way to

account for the phenornenon of pro-drop.

Note that no additional principles have been stipulated: both proper government and the

choice of governing nodes are still the same across a languages; all that is required is the value

of a single parameter (pro-drop) in order to account for distinctions 'in government properties

that allow or disallow null sbjects. The parameter setting approach is more desirable than

a rule-based approach since it accounts for several types of null subject constructions without

requiring several independently otivated rules.

3.5.2 V-Preposing and ECP

Proper government can be frther parameterized as evidenced by an analysis of V-preposing

by Torrego 1984). In Spanish, V-preposing is an obligatory rule that occurs only in clauses

in which 11-movenient takes place. The assumption 'is that V-preposing nioves the verbal

element to the left of the subject, adjoining it to leaving behind a trace of the verb t 21

(39) (i) ZCon quie'n vendra' uan hoy?

'With whom will John come today?'

00 * Son quie'n Juan vendra' hoy?

The structure of (39)(i) is as follows:

(40) [T = (,'on quien]i [, [FUT 3S] venir [, Juan [�F t, ei hoy]]]]P

Here the trace of the prepositional argument of the embedded verb is not properly governed

since t, is not a governing node; however, Torrego introduce's a variation in the definition of

proper government" so that a trace is allowed to be properly governed when it is part of a

chain, all of whose elements are governed.'7 The revised version of proper government, then,

is the following:28

2"As described by Torrego 1984), V-preposing oves a V projection out of V, adjoining it to the right of
COMP under a new node.

27A chain is a record of movement. For example, in the sentence What did John gee the chain (What e
characterizes the ovement of Whati froni the position occupied by the trace ei.

28 This version is a odification of the revision presented by Torrego 1984). Part (ii) in Torrego's version is
hard-wired, 1'.e., it is not parameterized to aow for variation between pro-drop and non-pro-drop languages. In

-- - - - ollm"plom .,

CHAPTER 3. LINGUISTIC FRAI�IETVORK OF THE TRANSLATION MODEL 42

(41) Proper gomrnment:

a poperty governs if and oly if

0) a is a governing node and a governs (in the sense of 22)) or

(ii) satisfies chain conditions, if applicable.

The chain conditions are defined as follows:

(42) Chain Conditions for :

0 must be in a chain (a, ... a,) such that n > I and for each i, ai is governed.

With this new definition of proper government, 39) (i) no longer violates ECP. In Spanish,

chain conditions are applicable (as determined by a parameter setting), so 42) applies. The

trace ei is governed by t, and is part of a chain containing the moved element = con quien1i
P

which is also governed. Thus, according to the new formulation of proper government, the

trace is properly governed, and ECP is not violated.

In English 42) does not apply. Thus, ECP is satisfied only if (41)(i) is satisfied. (This

is equivalent to the effect of applying the original definition 31).) In fact chain conditions

are not required for English since V-preposing is not available in on-R.oiliance languages. In

English, Subject-Aux Inversion (SAT), not V-preposing, is triggered by Th-niovement. (The

assumption is that there is a ovement parameter that dictates that Wh-movenient triggers

V-preposing in Spanish, and SAT in English.) SAT generates an auxiliary to the left of the

subject without leaving a trace behind. Thus, the English equivalent to 40) is:

(43) [T = With whomli [, [FUT 3S] will [, John [�F come ei todayfl]]
P

Because the main verb does not ove and may still properly govern the epty category to its

right, the chain analysis i's not required in order to account for proper government of the object

trace. In the context of the translation model, this finding is iportant because it iplies

that, in order to account for this distinction between V-preposing and SAT, there must be a

parameter setting that dictates whether or not proper government is defined in terms of chains.

the version proposed by Torrego, the chain conditions are tested regardless of whether the language is a pro-drop
language (even though non-pro-drop languages do not require the chain conditions). The effect of both versions
is the same, but the version presented here allows a more efficient implementation since the chain conditions are
only tested for a handful of languages namely, the pro-drop languages), not for all languages.

'11,00,1111*141,
F,

CHAPTER I LINGUISTIC FRAMEIVORK OF THE TRANSLATION MODEL 43

As in the null subject analysis, no language-specific stipulations have been made to account

for proper government variations associated with V-preposing; rather, the distinction in gov-

ernment properties across languages is determined by a single ECP parameter setting (chain

conditions), thus distinguishing etween languages that use V-preposing, SAI, or some other

type of verbal movement out of a clause.

3.6 Binding Theory

Binding Theory is concerned with the coreference relations among noun phrases. According

to van Rienisdi'k and Williams 1986), Binding Theory applies at the level of Logical Form.

However, there is evidence that Binding Theory may also apply at the level of S-structure;

thus, I will adopt the position that Binding principles are available both at S-structure and at

Logical Form.

3.6.1 Binding Conditions for Overt Noun Phrases

There are three types of noun phrases: anaphors (e.g., himself, each other etc.), pronominals

(e.g., he, them, her etc.) and R-expressions (referential expressions, including Aary, table,

etc.). The three Binding conditions from Chomsky (1981b)) corresponding to these noun

phrases are:

(44) Binding !onditions:

(A) An anaphor must be bound in its governing category.

(B A pronoun in-List be free in its governing category.

(C) A lexical NP must be fe.

The definitions of bind and verning category (not to be confused with governing node of Case

and Trace Theory) are as follows:

(45) -x binds if:

a and have the same index and a c-commands .

(If there is no such a for a given), then is said to be free.)

CHAPTER LINGUISTIC FRAMEWORK OF THETRANSLATION MODEL 44

(46) Governing category:

7 is the governing category for if and only if is the inimal category containing a

governor of , and a sbject accessible to .

Formally a ubject of a clause is AGR- if there is one, otherwise the NPi immediately dominated

29by or NP.

Some examples will clarify the above definitions:

(4 7) (i) Is, Johni felt that Is, his friends] liked hiii-ti/jfl

(ii) * [i Johni felt that Is, his friends]i liked him]]

(iii) * [,, John felt that IS, his friends] liked himselfi/

(iv) s John felt that Is, I= his friends]i liked themselves-]]
N

John felt that Is, I= his friendsli liked theme]]

In each of these sentences, the governing category of the inner clausal object is S2 since the

accessible subject is his fiends. In (47)(i) both the him- and himj interpretations are allowed

since the pronoun is free inside S2- On the other hand, (47)(ii) violates Binding Condition

(C) since I= his friends] and I= John] are not free. (47)(iii) violates Bnding Condition (A)N 71 N

in both the himselfi and himselfj interpretations since the anaphor is not bound within S2-

By contrast, (47)(iv) is well-formed since the anaphor themselvesi is bound within S2. Finally,

(47)(v) contains a violation of Binding Condition (C) since themi is bound within S2-

3.6.2 Binding Conditions for Empty Noun Phrases

Recall that empty categories are characterized in terms of the features ±pron and ±ana (see

(32)). From this classification it can be determined that NP-trace is subject to condition

(44)(A) (since 'it is anaphoric), Wh-trace is subject to condition (44)(C) (since it is neither

pronominal nor anaphoric) po is subject to condition (44)(B) (since it is pronominal) and

29 Actually, according to Wexler and Manzini 1986) the definition of governling category is parameterized In

languages other than Eglish, the existence of a subject may not be sufficient for identification of a governing

category. The proposed modification of the definition of governing category of an element is: the minimal
category which contains the element and (a) has a ubject, or (b) has an Infl, or (c) has a tns, or (d) has an

indicative Ws, or (e) has a root tns. The parameterization of governing category is beyond the scope of this

report. (See Wexler and Manzini (.1986) for more details.) In the model presented here, the governing category

is assumed to fall within classification (a) (i.e., it has a subject as defined in 46)).

I - - - -pl

CHAPTER 3 LINGUISTIC FRAMEWORK'OF THY-TRANSLATION IVIODEL 45

PRO is not subject to any of the binding conditions (since it is both pronolydnal and anaphoric,

and therefore ust not have a governing category). 30 Thus, the NP-trace left by movement

of an NP to an argument position henceforth referred to as A-position) ust be bound within

its governing category; the h-trace left by ovement to a non-argunient position (henceforth

referred to as A-position) must be free; pro inust e free in its governing category; and PRO

must be ungoverned.

As it stands, Binding Condition 44)(C) does not allow for reference of a If/'h-trace (hence-

forth referred to as a variable) with a oved ff"h-phrase (henceforth referred to as an operator).

For example, in the sentence Wat- did John cat e ?, the binding of Ci to What- is ruled out.

In order to admit the operator-trace relationship, we ust distinguish between two kinds of

binding: A-binding, which refers to referential-dependence (i.e., binding from an A-position);

and A-binding, which refers to the operator-var'able relationship (i.e., bnding from an A-

position). What is eant by Binding Condition C then is that an R-expression ust not be

bound by an element in an A-position. Chomsky (1986b) proposes the following modification

to (44)(C):

(48) An r-expression must be A-free (in the domain of its operator). 31

With this modification, the binding conditions cover all the cases of A-binding. All tat is

left is a principle that enforces the requirement that a variable be bound to an operator in

A-position:

(49) A variable must be A-bound.

Binding Theory 'is relevant to the translation odel in to ways: (a) at the level of Logical

Form, the referential-dependencies must be determined in order to derive the ful "meaning of

a sentence; and (b) at the level of S-structure, antecedent-trace relations must be determined

(and checked against A-binding and A-binding constraints) in order to derive the D-structure

form of a sentence. This report focuses on the syntactic level. (S-structure and D-struct.ure),

not the semantic level (Logical Form); thus, the primary ephasis with respect to Binding

Theory will be on antecedent-trace relationships.

30Frorn this is derived the PRO-theorem which states that PRO must be ungoverned. This condition is
included in the Extended ECP 33).

3'The domain of an operator is the inimal phrase containing it.

CHAPTER 3 LINGUISTIC FRAMEIVORK OF THE TRANSLATION MODEL 46

3.7 Bounding Theory

The single rule Move-a, a being an arbitrary category, relates D-structure to S-structure. The

restriction placed on this rule is the condition of Sitbjacericy 32 which prohibits ovement

beyond ore than one bounding node. The choice of ounding node is allowed to vary across

languages. For example, NP and are bounding nodes for English. Thus, we are unable to

say:

(50) * Who did you wonder whether went to school?33

The reason 50-) is ruled out is that the operator who has moved (from the subject position

preceding the verb went) beyond two S, nodes (into the Conip position of the matrix clause).

3.7.1 V-preposing and Choice of Bounding Nodes

Torrego suggests that V-preposing proves relevant to determining the choice of bounding node

for movement in Spanish. Tn contrast to English, NP ad are bunding nodes in Spanish.

Torrego's analysis of inversion rules out the possibility that S. is a bounding node in Spanish

(as it is in English)." Consider (51):

(51) Zu' libro dice Allaria que Ana le ha regalado?

'What book does Mary say that Ann has ought her?'

Because no inversion has taken place in the innermost embedded clause, it must be the case

that the operator Que' libro has skipped a cycle during Th-movement (recall that inversion

is obligatory in clauses in which Wh-movement takes place); that is the operator has moved

over two nodes. However, it turns out that Spanish allows no more than one cycle to be

skipped. Thus, Torrego, backed by Rizzi 19718), suggests that �, but not S, 'is a bounding node

in Spanish.

32 Chomsky (197T).
33 If who is spoken ephatically, this sentence can almost be understood as an echo question corresponding to

the statement I wondered hether John vent to school.

3'According to Rizzi 1978) is not a bounding node in Italian. However, in order to show this, Rizzi akes
an appeal to the fact that Italian allows 1Vh-Movement out of a clause introduced by a Wh-phrase. The reason
this result cannot be achieved via an appeal to V-Preposing is that V-Preposing occurs only in atrix clauses
in Italian.

CHAPTER 3. LINGUISTIC FRAMEWORK OF THE TRANSLATION,110DEL 41

Returning now to (50), if the above argument is true, then the Spanish sentence corre-

sponding to the English version should be well-fornied. It turns ot that this is the case; that

is, the Spanish sentence corresponding to (50) is well-fornied:

(52) ZA quien contempla. usted que fue a la escuela?

Bounding Theory is relevant to the translation niodel in that it, hinits, the possible otcomes

of conversion from D-structure to S-structure according to the requirements of the language

undergoing translation. The strategy of constraining the application of a single general move-

nient rule is an iprovement over a context-free rule-based approach ecause language-specific

grammars are not required, and the constraints restrict overgeneration that ight otherwise

occur during context-free parsing.

3.8 Principles and Parameters

Appendix A.1 contains a table sunu-narizing the subsystems of principles and parameters

(grouped according to subtheory) and the corresponding level of application. The principles

that apply at S-structure (SS) and D-structure (DS) are within te reahii of syntax; the prin-

ciples that apply at Logical Form (LF) are within the reah-n of semantics. Thus, oly those

that apply at S-structure and D-structure are included in the translation odels Appendix A.2

shows an exaniple (for Spanish and English) of parameter settings for the principles of GB.

Translation Stage Structure-Building Tasks Linguistic Constraint Tasks

Parser Phrase Structure Construction: Phrase Structure Constraints:
Predict, Scan, Complete Argument Structure, Binding,

Case, and Semantic Roles
Substitution Lexical Replacement Lexical Constraints:

Argument Structure and
Thematic Divergence Tests

Generator Structural Movement and Structural and Morphological
Morphological Synthesis Constraints

-1--l- -- ---------- I,- - -m

Table 41: Translation Tasks of Structure-Building and Linguistic Constraint Modules

48

Chapter 4

vera es n o

As entioned in chapter 1, UNITRAN has three basic stages of translation: parsing, thematic

substitution, and generation. AU three translation stages operate in a co-routine fashion 'in

which the flow of control is passed back and forth between a structure-building module and

a linguistic constraint odule. At each of the three stages of translation, processing tasks

are divided between the two modules as shown in table 41. This chapter provides a brief

description of the three stages, and presents an example of how the co-routine design works

during the parsing stage. The chapters that follow give a more detailed description of the

translation system components.

First, during the parsing stage a preprocessed and morphologically analyzed input sentence

is mapped into a tree structure that conforms to the requirements of X-theory. The structure-

CHAPTER 4. ''OVERALL DESIGN OF UNITRAN 49

building component, an iplementation of the Earley algorithm 19 7), applies predicting,

scanning, and completing actions,1 while the linguistic constraint component enforces well-

formedness conditions (based on GB principles) on the structures passed to it. The phrase-

structures that are built by the structure-building component are underspecified, (i.e., they do

not include information about agreement, abstract case, semantic roles, argument structure,

and so forth). The structures are based on a set of templates derived during a precompilation

phase according to certain source language parameters (discussed in section 53).

All phrase structures built during parsing are held in a push-down stack; the top of the

stack is the subtree currently being processed. AR possible parses are held in parallel push-

down stacks. The linguistic constraint component eliminates or modifies the underspecified

phrase-structures according to principles of CYB (e.g., agreement filters, case filters, argument

requirements, semantic role conditions, etc.). This design is consistent with several studies

that indicate that the human language processor initially assigns a (possibly abiguous or

underspecified) structural analysis to a sentence, leaving lexical and semantic decisions for

subsequent processing.' Because the linguistic constraints are available during parsing, the

structures built by the structure-building module need not be elaborate; consequently the

grammar size need not, and should not, be as large as is found in many other parsing systeinS.3

Thus, the sstem avoids some computational costs due to grammar search time.

Just prior to the second stage, thematic substitution, the source language sentence is in

an underlying form, i.e., a form that can be translated into any target language according

to conditions relevant to that target language. (The underlying form is derived by structural

replacement routines to be discussed in section 71.1). This means that a "participants"

of the main action (e.g., agent, patient, etc.) of the sentence are identified and placed in a

canonical position relative to the ain verb. At the level of thematic substitution, the structure-

'The predict action starts the construction of a possible phrase; the scan action advances over a terminal
word; and the complete action finishes the construction of a phrases in the input.

'See chapter (. 8).

3 In fact, the number of phrase structure templates that are generated per language generally does not exceed
150 since there are a limited number of configurations per language that are aowed by the principles of
Theory. Thus, the running time of the parser is not subject to the same slow-downs that are found in other
systems. For example, the GPSG formalism aows the description of a language to be expanded into a large
database of context-free rules, forcing the running time of a typical GPSG parser to be exponential i the number
of rules.

CHAPTER'. OVERALL DESIGN OF U1Y,1TRA-,7\7 50

building odule simply replaces target language words with their equivalent target language

translations, subject to argument structure requirements and tests of thematic divergence. An

example of thematic divergence is the translation of the English word like to the Spanish

word gustar. Although these two verbs are semantically equivalent, the argument structures

of these two verbs are not identical: the subject of like is the agent, whereas the subject of

gustar is the patient. Because of such cases of thematic ivergence, the argument structure

of a source language verb must be matched with the argument structure of the corresponding

target language verb before substitution takes place.

In the third stage, generation, the sentence is transformed into a grammatically acceptable

form with respect to the target language (e.g., in English the nderlying form wa,9 called John

would be transformed into the surface form John ulas called).

Figure 41 gives the overall design of the system, including access to GB components.

Figure 42 shows the input/output of the UNITRAN components using the sample sentence Vi

al hombre. We will briefly examine how one of the translation components, the parser, operates �k

4in tandem with the GB modules. Consider the problem of parsing 53).

(53) Comi una nianzana.

'I ate an apple.'

Table 42 contains a procedural description of the GB tasks associated with parsing a phrase.

We will follow snapshots of the parser in action during the processing of 53).

The Earley parser predicts that the sentence (II-MAX) has a specifier (I-SPEC), a head (I),

and a complement (I-COMPLEMENT), the order of whichis determined by the "constituent order"

parameter at precompilation time. It uses this information to predict that a noun phrase is in

specifier position. Figure 43 displays the resulting stack configuration.' Since the next input

word (come) is not a noun, the (N-MAX) niust be expanded in some other way. There are two

possibilities: first, the pro-drop parameter allows the N-MAX to be pro; second, the N-MAX might

4The assumption is tat preprocessing and orphological analysis have already taken place.
"The direction of stack growth is upwards (ie., new stack items are added to the top of the stack). Although

the stack iteins. are actually tree structures, throughout this report they will be represented in a bracketed form
that is closer to the internal Lisp representation used by the system. For example, the form [I-MAX [I-SPEC]
[I] (I-COMPLEMENT]] corresponds to a tree with I-MAX as its root and I-SPEC, I, and I-COMPLEMENT as its three
daughters.

/00"*%,, . -- - CHAPTER 4 OVERALL DESIGN OF UINITRAN 51

Figure 41: UNITRAN Design: Interacting GB and Structure-Building Modules with Associ-

ated Input /Output

Triputloutput Example

Source Sentence Vi al hombre.

Preprocessed Sentence Vi a el hombre..

Morphologically Aalyzed Sentence ((ver v past pl sg) (a)
(el det sg masc) (hombre n sS masc))

I -MAX

N-MAX V-MAX

Parsed Sentence
rpro p I sg] P-MAX

L v
agent
110111

ver a el hombre
[pi g] goal

obj
I-MAX

N-MAX V-MAX

D-structure (Source)

e [pro p 1 sg] v N-MAXagent
nom

ver el hornbre
[pi sg] goal

obj

I-MAX

N-MAX V-MAX

D-structure (Target)

v N-MAXagent
110111

saw the man
[pi g] goal

obj

Target Sentence I saw the man.

� -CHAPTER 4 OVERALL DESIGIN OF UI.VITRANj, I
k

52

Figure 42: Input/Output of the VNTTRAN Components

[I-SPEC [N-MAX]]

[I-MAX [I-SPEC] [1] [I-COMPLEMENT]]--,

Figure 43.- Earley Prediction of N-MAX in Specifier Position of I-MAXI

be a trace. (These possibilities are established at precompilation tme.) The GB component

rejects the trace possibility because of step I from table 42 (i.e,, there is no possible antecedent

for the trace). By contrast, the po possibility is accepted (see figure 44).

Now the top of stack element (N-MAX) is complete and ready to be dropped under I-SPEC

in the second stack element. The completed N-MAX is in turn dropped under I-MAX in the third

stack element. The resulting configuration is in figure 45.

The Earley parser determines that I is an epty feature holder, and that I-COMPLEMENT

7 -CHAP NITRAN -TER'A. � OVERALL DESIGN OF Ul
?0"1111N

53

1. If there are unlinked traces, link theni to antecedents.
(a) If there 'is no antecedent, or the atecedent is too far away, reject the parse.
(b) If trace-antecedent linking is sccessful, continue.

2. If there are newly 'Introduced features of eads, percolate features up to maximal
projections.
(a) If specifier-i-tiax agreement fails, reject the parse.
(b) If specifier-max agreement is successful, continue.

3. If a verb phrase is cornplete, percolate tense ad agreement features up to I(nfi).
4. If the phrase contains an uexpanded complement, then:

(a) Predict complements, pushing theiii onto the stack.
(b) Associate heads with complements by storing the subcategorization

information in the head of the phrase.

5. If the head of the phrase has been parsed, then:
(a) Instantiate features including person, gender, number, tense, etc.
(b) Set up 0-roles that the head assigns to external and internal arguments.

6. If the phrase is complete, then:
(a) Set up A and A positions.
(b) Link traces to antecedents.
(c) Set up Government relations.
(d) Check that all traces are properly governed.
(e) Assign Case.
(f) Assign O-roles.
(g) Reject parse if there is an ECP Bnding, or -Criterion volation.

Table 42: Procedural Description of the Parser

[N-MAX e [profl

J-SPEC [N-MAX]l
[I-MAX J-SPECJ [11 [I-COMPLEMENTI I

Figure 44: Earley Expansion of N-MAX into po

[I-MAX -SPEC [N-MAX e [profl] [1] I-COMPLEMENT]]

Figure 45: Earley Completion of N-MAX containing pro

expands to the default complement value of I, wich 'is V-MAX. The V-MAX is then expanded so

that it contains a head and a complement (since the specifier of XAX is optional in Spanish).

Figure 46 gives the result.

Now the Earley parser scans the word co-mer (the root form of comi) and attaches it under

the V node. Figure 47 shows the result. Rtecause the Earley module cannot proceed any

further, the GB module takes over again. The first 4 steps from table 42 do not apply, so step

5 is executed: since a head has just been parsed, the features of the head [past sg pi] are

instantiated, and the O-roles assigned y the head are associated with the head node. Next, step

2 applies since new features have been introduced: the features [past sg pi] are percolated up

to V-MAX. Finally, there is an unexpanded complement (V-COMPLEMENT), so step 4 is applicable:

the subcategorization information associated with the head comer aows VCOMPLEMENT to be

expanded as N-MAX; then this complernent is associated with the V node (see figure 48).'

The Earley parser takes over again, parsing the N-MAX una manzana, and attaching 'it under

the VCOMPLEMENT node (see figure 49). This completes VCOMPLEMENT, which in turn completes

-N-MAX. The completion of VMAX allows steps 3 and 6 to e executed: first,- features [past sg

pi] are percolated up to I(nfl); next, objective (OBJ) case is assigned to una ran--ana; finally,

O-role goal is assigned internally from the verb. (See figure 410.) Because O-role has been

discharged successfully to N-MAX, the parse continues.

6Actually, since comer may be either itransitive or transitive, te parser predicts both the elimination and
the expansion of VCOMPLEMENT. However, the elimination of VCOMPLEMENT leads to a dead end imediately
because the parse is completed before all the input words have been read. Thus, this possibility is not shown
here.

- 'CHAPTER 4.. OVERALL DESIGN OF UFNITRAN
e��,

- 5 4

CHAPTER4. OVERALLDESIGNOFITINITRAN 55

LV-MAX [V] [V-COXIPLEMENTjj
[I-COMPLEMENT [V-MAX]]

[I-MAX [I-SPEC [N-MAX e [pro]]] 14 E] [I-COTNIPLEMENT1 I- L i

Figure 46: Earley Expansion of I-COMPLEMENT into V-MAX

[V-MAX [V comer] [V-COMPLEMENT]]
[I-COMPLEMENT [-MAX]l

[I-MAX [I-SPEC [N-MAX e fpro-Ill I El [I-COMPLEMENT]!L -- --J- -j i

Figure 4.1: Earley Scanning of the Iput Word canier

The Earley parser attaches I-COMPLEMENT under I-MAX, thus completing the phrase and

invoking a final call to the GB component. First, step 2 is executed since ew tense and

agreement features appear in I-MAX position: the i-naximal features [past sg p are tested

against the features of po; however, the features of pro have not yet been determined so

feature matching automatically succeeds and the agreement features Esg pi] are associated

with pro. Figure 411 shows the parse at this point. Second, step 6 is executed since I-MAX

is now complete. Because 1(nfl) has tense features (past), it assigns nominative case to the

specifier N-MAX of the phrase; thus, the specifier is visible for 0-marking and it receives a 0-role

of agent externally from the verb. Finally, the 0Criterion is checked: all arguments have een

given 0-roles, so the phrase is successfully parsed. Figure 412 shows the completed phrase.

The following three chapters describe the pretranslation routines (i.e., te preprocessing,

morphological analysis, and precompilation cotuponents); the parsing component (i.e., -phrase-

structure construction routines); and the final translation routines (i.e., thematic substitution

and generation routines). The top-level translation routines are TRANSLATE, READ-INPUT-

SENTENCE, RUN-THROUGH-TRANSLATION-LOOP and PREPR-OCIESS-MORPH-

PARSE-TRANSLATE (see appendix J).

- - I -- - . 1- - I - -A - - - - -, - -. -, ----- "--- , -,

[MPLEMENT [N-NIAX [N-SPEC [DET -unall [N iiianzanall]I j
[V-MAX [past sg pl] [V comer [int:goal ext:agent past sg pill

[V-COMPLEMENTI]
� [-c"OMPLEMENT [V-MAX]]

� [I-MAX [I-SPEC [N-MAX e [profl] [I E] [I-COMPLEMENT]l

CHAPTER 4 OVERALL DESIGN OF U�WTRAN

[V-COMPLEMENT [N-MAX]j
[V-MAX [past sg pi] [V conier [nt:goal ext:agent past Sg pill

[V-COMPLEMENTI]
[I-COMPLEMENT [V-MAXI]
J-MAX I-SPEC [N-MAX e [profl] [I E] JCOMPLEMETTI]

Figure 48: GB Feature Instantiation and Prediction of Verbal Complement N-MAX

56

Figure 49: Earley Completion of Verbal Complement una manzana

[I-COMPLEMENT
[V-MAX past sg pi]

[V comer [int:goal ext:agent past sg p],
[V-COMPLEMENT

[N-MAX [goal obj] [N-SPEC [DET inal [N nianzana]'fl]
[I-MAX -SPEC [N-MAX e [prolfl

[I [past sg p] E] [I-CONIPLETMENT]]

[I-MAX
J-SPEC [N-MAX e [pro sg pll]]
[I [past sg p1l E]
J-COMPLI�MENT

[V-MAX [past sg pl]
[V comer [int:goal ext:agent past sg pl]
[V-COMPLEMENT

[N-MAX [goal obj] [N-SPEC [DET una]] [N iiianzana]]]]]]

- ------

- � - - " 'rCHAPTER 4 OVERALL DESIGN OF Ul'VI T R A N,' 57

Figure 410: GB Feature Percolation, and Internal Case ad -Role Assignment

Figure 411: Earley Completion of I-COMPLEMENT and. GB Feature Matching

[I-MAX
J-SPEC [N-MAX e [pro sg pl agent nonill]
[I [past sg pi] E]
[I-COMPLEMENT

[V-MAX [p�ast sg pi]
[V comer [int:goal ext:agent past sg p11

[V-COMPLEMENT

[N-MAX [goal obj] [N-SPEC [DET unal] 'N rnanzanaflflfl

Figure 412: GB Case Marking and External O-Role Assignment

0

-Ire rans a 'ion ou ines

This chapter gives a detailed description of the components that operate on the input be-

fore parsing, thematic substitution, and generation take place. These components include the

preprocessor, the morphological analyzer, and the precompiler.

5.1 Preprocessing Routines

The preprocessor is the first odule accessed when an input sentence has been entered for

translation. Prior to preprocessing, all lexicons and parameter settings have been loaded.

Two standard operations are performed: the first is division (splitting) of contractions into

constituents (e.g., al +- a el in Spanish, and don't <-4 do not in English); and the second is

combining (merging) of closely related words into single units (e.g., as soon as +--� as-soon-as

in English and en cuanto +-+ en cuanto in Spanish).1 Appendix D shows SPLITS-AND-

2MERGES parameter values for Spanish and English. In order for a language to be translated

by the system, the user must specify values for this parameter. At parse time, the merged

words are accessed as a single unit from the lexicon; thus, they must be stored as a single unit.

Similarly, the split constituents are accessed individually from the lexicon; thus, they must be

'The splitting and erging operations are similar to the collocation and contraction operations in Sharp's
translator 1985), and are standard in many natural language systems, including ATN's. However, in this
implementation, splits and merges are specified as a parameter setting.

2This parameter is external to GB theory; it is one of three user-modifiable parameters specific to the
translation iplementation. The other two parameters will be described in later sections.

58

Chapter

.CHAPTER 5. PRETRANSLATION ROUTINES 59

tries 0 . try+s V SG 3

i

Figure 5.1: Organization of Kimmo

stored individually.

5.2 Morphological Analysis

The morphological analysis is performed by Kinu-no Koskenniemi's two-level analyzer-

synthesizer as implemented by Barton 1985). The organization of the Kinlmo system is in

figure 5.1 (taken from arttunen and Wittenburg 1983)). Note that the model is reversible:

the same grammar description and lexicon are used both for recognition and for generation.

The grammar, or morphological rules, are represented as finite-state transducers. In the lexi-

con, every entry consists of a string of features expressing the syntactic or semantic properties

of the morpheme and a symbol for 'its continuation class.' The morphological rule formalism

and lexicon will be discussed in turn in the following sections.

5.2.1 Morphological Rule Formalism

The morphological rules for each language are represented in the processor as automata that ex-

press a one-to-one correspondence between lexical and surface forms (e.g., TRY+S <-4 TRIES).

Appendix BA lists the English automata and appendix B.2 lists the Spanish automata. 4

3A continuation class is used to determine what suffixes are applicable to a root form.
'The English automata are taken directly from Kart-tunen and Wittenburg 1983), and the Spanish automata

were written by the author. The inspiration for the design of the Spanish automata came from Nassi, et. al.

CHAPTER 5. -- PRETRAN.,5LATION RO 60

The automata are encoded in atrix form. Rows correspond to states and colul-Ims sow

the transitions for particular input pairs. A colon (:) arks a. state as final, and a period

(. arks a state as nonfinal. In order for languages to e translated by the system, the user

must supply automata for each source aTId target language. Each of te Eglish and Spanish

automata will be discussed in turn.

Before describing te orphological rles, we must introduce some notation. The lexical

characters are those that occur in the lexicon (to be iscussed shortly) and the srface caracters

are those in the surface form of the word to e synthesized or analyzed. A plus marker)

indicates a suffix appended to a orpheme. The context of the rle application specifies the

character occurrences to the left and right of the lexical/surface characters in the rule. (An

underscore -) specifies the position of the lexical/surface caracters.) The set notation

indicates that oe of the characters in the set ust occur. If zero (0) is included in this set,

then no characters need to appear in the specified position. A capital letter or characters inside

angle brackets <..>) indicates that any of a set of characters is possible in a specified position.

(The sets represented by capital letters will be introduced as they come tip in the examples

below.)

Five of the English automata encode orphological rules.-5 The first English morphological

rule changes s to es before aking certain roots plural or third person singular: 6

EPENTHESIS

lexical surface context

+s es ch, sh, , XI 1_

EXAMPLES

lexical 8 Urfa C e

fox+s foxes

church+s churches

ski+s skis

boy+s boys

(1965), and Stockwell, et. al. 1965).
'The first of the six English automata maps every character to itself (this automaton is required for technical

reasons internal to the Kinu-no implernentation), nd the remaining five ecode orphological rules.
6Since the Kinuno system is set up for both analysis and synthesis, the orphological rules can be applied

in either direction. However, the above textual description of the rules puts the i the context of synthesis in
order to simplify the explanation.

PRETRANSLATION ROUTINES 61

The second rule doubles the final consonant of a root before addinor certain suflixes (ing,

ed, tc.):

GEMINATION
lexical s i t rfa c e co-tdclet

+ < C > C V C I > V

where: C -_ set of all consonants, set of all vowels,

and Cl> fbj dj f, gj 1 iii, n, p r s j

EXAMPLES
lexical sitrfa c e

big+er bigger

stop+ina stopping

cool+er cooler

travel-'ring traveling

The third rule changes ie to y before ading suffixes beginning with i:

Y-SPELLING

lexical .. surface contcxt

ie+ Y -i

EXAMPLES

lexical s ur-fa, c e

die+ing dying

die+ed died

The fourth rule changes y to i before adding suffixes beginning with e or :

Y-REPLACEMENT

lexical surface context

Y+ i C-le, 11

EXAMPLES

lexical s wrfa c e

spy+ed spied

happy+ly happily

spy+ing spying

day+s days

The fifth and final English rule deletes an e in the following contexts: after any non-vowel

except or and before a suffix beginning with a vowel; after a vowel and before a suffix

beginning with e; and after or g and before a suffix beginning with e or i. Thus, we have:

CHAPTER 5. 'PRETRANSLATION ROUTTEWS 62

ELISION
lexical s7trfacc context

e+ 0 < C2 _V; V e; or f c, gl-f e, il
where: <C2> = all consonants except or g

EXAMPLES
lexical -trfa cc

die+ed died
niove+able movable

agree+ed agreed
i-nove+s moves
race+able raceable

The first of the ten Spanish automata aps every character to itself (as in the English

automata), and the remaining nine encode orphological rules. The first rule is infinitival

removal. AU Spanish infinitive verbs end in er, ar, or ir (thus partitioning all verbs into 3

classes). In order to extract the root form of a verb (and add sffixes), the infinitive ending

must be removed:

INFINITIVE-REMOVAL
lexical star cc contcxt

f a, e ir+ 0 f C, VJ_

EXAMPLES
lexical s u rfa. e
haber+ hab
ver+ v
ir+ ir+

The second rule handles (er and ir) verbs that are irregular in te present subjunctive and

also in the present first person singular.' For these verbs a g ust be inserted after en, or a

g must be softened (changed to j) after anything else:

PRESENT-SUBJtTNCTIVE (ER/IR GSOFTEN, ADD G
lexical s urfa e context
r o go en�e,
r+a ga enf e, il_f 0, n, mos, sl
r+o jo g�e, il-
r+a ja g�e, i1_10, n, mos, sl

"In general, morphological rules for the present first person singular form coincide with rules for the present
subjunctive form for all types of verbs.

to"'IN I I ICHAPTER 5. PRETRANSLATION ROUTIN'ES

EXAMPLES
Icxical s a rfa, cc

venir+o vengo

venir+anios vengamos

coger + o Cojo

conler+0 COMO

63

The third rule handles additional (er) verbs that are irregular in te present subjunctive

(and present first person singular). The rule changes to cz after a vowel and to z after

or r:

PRESENT-SUBJUNCTIVE (ER) C-Zc C--,Z
lexical urface conte,�Xfl
+0 zco V-
+a zca V-f 0 n mos Si

+0 zo f ii, rl-
+a za �n, rl-f 0, n, mos Si

EXAMPLES
lexical surface

conocer+o conozco
vencer+aiiios venzanios

The fourth rule handles (ir) verbs that are irregular both in the present and in the present

subjunctive. The rule changes gu to g after a vowel and ui to uy after a consonant other than

g (except for the first person plural, i.e., the mos form):

PRESENT AND SUBJUNCTIVE (ER) GU--,G, Ul<-�Uy
lexical s itrfa. c e context

guir+o go V

guir+ a ga V-101 T11 1110s Si

u-ir+o uy <Cl>

uir+ f aeJ UY <Cl> - to, n SI
where: C1 a consonants except

EXAMPLES
lelvical Surface

distinguir+o distingo
distinguir + ati-ios distinganios
distinguir+iiiios distinguinios
concluir+e concluye
huir+imos h-tii - nio s

CHAPTER 5. ROUTEVES., 64

The fifth rule adds an accent represented as the symbol -) to u or i syllable for (ar) verbs

that are irregular both in the present and in the present sbjunctive (except for te first person

plural, i.e., the mos forun

PRESENT AND SUBJUNCTIVE (AR.) U"-T-, T�I-
lexical 8 urfa C e context

ar+o 0 ul
ar+f a, el -a ful ij-�O, n SI

EXAMPLES

lexical surface
enviar+o envi -a
enviar+amos enviamos
continuar+a continu-a
continuar+e continu-e

The sixth rule operates on preterit (ar) verbs. It changes c to qu, g to gu, and z to c in

the first person singular form:

PRETERIT (AR) C-4QU G"GU Z<--C
lexical surface context

car+e que
gar+e gue
zar+e ce

where: end of morpheme marker

EXAMPLES
lexical s u rfa ce

atacar+e- ataque-
llegar+e- flegue-
cruzar+e- cruce-

The seventh rule changes plural ending s to es for a nouns ending in a consonant other

than z. The consonant z gets changed to c before adding the plural ending, and all other nouns

are pluralized without any changes:

PLURALIZE
lexical surface context
(I -I,- + -'('2 > e S

z + c e
where: <',2-1> -- all consonants except z

'An accent occurs after the syllable that is stressed.

CHAPTER 5' PRETRANSLATION R [TTINES 65

EXAMPLES
lexical i t rfa, cc

citidad+s ciudades
lapiz+s la-pices

carro s carros

The eighth rule removes an accent, rnark from a syllable if adding a suffix changes the stress

properties of a syllable. The general rule for stress in Spanish is the following: the second to

last syllable of a word ust e stressed if te word ends in a vowel, n, or s; any exception to

this stress rle forces an accent ark to occur on the stressed syllable. Thus, reunion (ending

in n) carries an accent on the last syllable since the stress is not on the second to last syllable;

similarly, joJi7enes (ending in s) carries an accent on the first syllable since the stress is not on

the second to last syllable. The reason the accent needs to be removed in certain cases is that

adding a suffix adds a neui syllable to the word, thus changing stress properties so that the

stress rule is no longer violated (and consequently, the accent ark is no longer required). For

example, reuniones plural for runion) does not require an accent ark since adding the s

suffix changes the stress so that it is on the second to last syllable. The accent removal rule is

the following:

REMOVE ACCENT
lexical sit-r-face context
-C+ C V-Vf 0, n, s

EXAMPLES
lexical surface

reunio-n+s reuniones

The ninth rules adds an accent mark to a vowel if adding a suffix changes the stress prop-

erties. Again, the stress rule applies. If adding a suffix forces stress to be "'moved iup" to a

syllable that is before the second to last syllable, an accent iark must be placed on the stressed

syllable:

ADD ACCENT
leXical s irrfa, c c context
('.V(I+ _CVC V-V f 0, n, s

EXAMPLES
lexical s wrfa c e

lapiz+s la-pices
examen + s exa-menes

CHAPTER 5'. -PRETRANSLATION ROUTINES 66

One thing to note about the eighth and ninth morphological rules is that they do not

Airectly correspond to the automata. The right context , n, sl is not part of the automata

since the V ust crucially to be followed by a terminal n, s, or .

5.2.2 The Lexicon

In order for languages to be translated by the system, the user ust supply a lexicon for

each source and target language. The lexicon ust be in the formal required by the'Kimmo

morphological system. Only the Kinuno recognizer accesses the lexicon.

The lexicon consists of several saller lexicons, each of which contains either root forms

or continuations (suffixes). There 'is a single root lexicon, which is the first lexicon searched

when a word is being recognized. After the root form is identified, the system determines the

continuation lexicons to be searched. This information is determined from the lexical entry

of the root form, which includes a list of continuation lexicons that contain applicable suffixes

for the root. For example, the Spanish word libro is listed as libr IN in the root lexicon (IN

is a continuation class for nouns); the ending i's then found in the continuation lexicon N

(pointed to by IN in the ALTERNATIONS list). Thus, the lexical form libr+o corresponds

to the surface form libro. If no continuation ley-icon is listed in the lexical entry (i.e., no

suffixes are applicable), the marker 'is used. For example, the Spanish determiner el has no

continuation lexicon listed. The English lexicon 'is in appendix C.1 and the Spanish lexicon is

in appendix C.2.'

Each lexical entry is associated with a set of features. Tables 5.1 and 52 show the features

associated wth the suffix lexicon entries for Spanish and English respectively.10 In order

for any feature to be legally listed in a lexical entry, the feature must be included in the

FEATURES parameter setting supplied by the user. (This parameter is also used by the X

module for feature instantiation during parsing, as will be discussed further in section 62.1.)

As shown in appendix E, each preterminal and basic category (from the PRE-TERMINALS

and BASIC-CATEGORIES values) must have features associated with it. The assumption is

9Parts of the English lexicon were taken from Karttunen and Wittenburg 1983). The Spanish lexicon was
written by the author.

"Not all of the Spanish features are included in the table since they are too numerous to list here. Refer to
appendix C.2 for more details.

Lexicon suffix Feature ',Specifications

0 n p3 sg obj nom
N +s n. p3 pl obj nom

+y a
PROP 0 n prop p3 sg

+S n prop p3 pl
MN 0 iii ass n
C1 '70 S poss
C 2 poss
P3S + s v Pres p3 sg
P3P 0 v pres p3 pl
P12 0 v pres pI p2 sg pl
IP3S 0 V Pres 3 sg
PS +ed v past pl p2 p3 sg pl
IPS 0 v past pl p2 p3 sg PI

PPD +ed v perf
PPN +en v perf

IPP 0 v perf
PR +ing v prog

I 0 V inf
AG +er a ent neut

PA 0 a neut sg pI
CA comparative a neut sg PI
Cs +est superlative a neut sg pI
LY +Iy adv
AB +able a condition v-able neut sg pI
DET 0 det neut
WH-PHRASE-A 0 n wh-phrase-a neut p3 pl sg wh
MODAL-PAST 0 i past modal pt p2 p3 sg pl
MODAL-PRES 0 i pres modal pl p2 p3 sg pl

PREP 0 p
C-FIN 0 C
C-INF 0 c

CHAPTER PRETRANSLATION ROUTINES
F 67

Table 5.1: Features associated with English Suffix Lexicons

that the features can be categorized into "universal" classifications (GENDER PERS, NM-

BER., CASE, and TENSE) and language-specific classifications (those that are in a one-to-

one correspondence with the categories of BASIC-CATEGORIES and PRE-TERMINALS). A

"universal" feature classification can be included as an element of a language-specific classi-

fication (this is shorthand for directly enumerating the features that occur in the universal

feature classification as elements of the language-specific classification). During the parsing of

Lexicon Suffix Feature Specifications

0 n p3 sg
+S n p3 pI
+a n feni p3 sg
+0 n masc p3 sg
+as n feni p3 pl
+Os n mass p3 pl
+e n neut p3 sg

PROP 0 n proper 3
LY +ainente adv

0 a sg
+S a pl
+a a fe ni s g

A _+0 a mas sg
+as a fem pl
+Os a mas pl
+e a neut sg
0 det sg
+S, +es det pl
+a. det fe iii s g

DET +0 det neut sg
+Os det masc pl
+as det fe in pl
+ e det niase sg
0 n etit p3 wh wh-phrase-a

_+S, +es n p3 pl wh wh-phrase-a
+a n feni p3 sg wh wh-phrase-a

WH-PHRASE-A +o n neut p3 sg wh wh-phrase-a
+Os n mass p3 pl wh wh-phrase-a
+as n fem p3 pl wh wh-phrase-a
+C u mass p3 sg wh wh-phrase-a

AR-MODAL 0 i modal
PREP 0 p
INF +ar, er, ir inf
C-FIN 0
C-INF 0

_+0 pres P sg
+as pres p2 sg

AR-PRES +a pres p sg
+amos pres P PI
+an pres p3 pl
+ e past pl sg
+aste past p2 sg

AR-PRET + 0 past p3 pl
_+amos past P1 PI

+aron past p3 pl
AR-PROG +ando prog
PERF +ado, ido perf

CHAPTER 5-. PRETRANSLATION RO�TTJIYES 68

Table 52: Features associated with Spanish Suffix Lexicons

CHAPTER PRETRANSLATION ROUTINES 69

a source language sentence, the value of FEATURES corresponding to the language is stored

in *(,URRENT-FEATURES. Appendix D shows the English and Spanish instantiations of the

FEATURES parameter. Table 53 and table 54 contain descriptions of the features for Spanish

and English respectively.

In addition to feature information, lexical etries contain subcategorization and external

argument information. That is, lexical elements that n-iight be parsed as heads of phrases ust

have argument information stored 'in their lexical entries. For example, the English verb expect

has the following information in its lexical entry:

(subcat (proposition))
(subcat (goal) (proposition))
(external (agent animate))

Thus, expect can take a proposition, or a goal and a proposition as its internal arguments, and

it ust have an external agent. Note that feature information (e.g., ± animate) can be included

in argument frames. Also, the arguments are in fact unordered, although they appear to be

ordered in the argument frames. For example, the frame (subcat (goal) (proposition))

requires there to be a goal and a proposition bt it does not require that the surface order

be the order specified in the frame. The ordering of arguments is not the task of the lexical

processing routines, but of other components (e.g., the Case odule). This 1-neans that as far

as the lexicon is concerned, te verb expect can take a goal and a proposition as arguments in

any order (either expect [the man] [to go], or expect [to go] [the man]), and it is up

to the later stages of translation to determine which of these orders is (are) correct.

Each root form iust include equizialent translation forms from all source languages (that

the user desires to translate into) in its lexical entry. This introduces much abiguity into the

system. For example, the English word know translates to either conocer or saber in Spanish.

Both of these translations ust be included in the lexical entry:

KNOW /V2 (spanish ((saber) (conocer)))

It is the duty of the thematic substitution routine to determine the correct translation (via

subcategorization information or feature atching). For example, if the argument structure of

the word know includes a proposition, the thematic substitution routine will determine that the

translation is saber (since conocer can only take a goal with animate features). On the other

Feature Dcscription Exaniple

PI first person go

p2 second person go
p3 third person goes
sg singular number man
PI plural number men
111asc masculine gender him

fem feminine gender her

neut neuter gender it
obj ob'ective case me
nom nominative case
poss possessive case my
pronoun pronominal noun he

anaphor anaphoric noun himself

pleonastic-- pleonastic element it
proper proper noun John
�inf infinitive tense 90

perf perfect tense gone

prog progressive tense going

past past tense went

pres present tense go

fut future tense will (go)
cond conditional tense would (go)
comparative comparative adjective bigger

superlative superlative adjective biggest
location locative notin or prepositional phrase at home

duration quantified temporal noun two months

quantity noun specifying quantity dollars
access noun specifying route door
niethod noun speciffina ethod car

exchange type of exchange payment
time temporal noun month

fact clausal fact that he eats well

aniniate animate noun woman
v-able able o v parsable

descript descriptive adjective ugly
condition condition adjective sick
sdel s-bar deletion verb seem

intrans intransitive verb run
wh wh-word where
wh-phrase argument wh-word what

I 11- --- 't - ,

�e 0, CHAPTER 5. PRETRANSLATIOIN RO UYINES
P'llo

I

Table 53: Description of Features for English

Feahure Description E;ran�ple

PI first person voy
p2 second person vas

p3 third person va.
sg singular numb er hOTiibre
PI plural nmber hombres

niasc masculine gender el
fem feminine gender la

neut neuter gender lo
obj objective case Mi I
nom nominative case Yo

poss possessive case Ilu
pronoun pronorninal noun le
anaphor anaphoric noun se
proper proper noun Juan
inf infinitive tense ir
perf perfect tense ido

prog progressive tense yen-do
past past tense fue
pres present tense voy
pres-subj present subjunctive tense vaya

past-subj past subjunctive tense- fuera
fut future tense ire'

cond conditional tense irfa
location locative noun or prepositional phrase en casa
duration quantified temporal noun dos meses

quantity noun specifying quantity dolares
access noun specifying route puerta
niethod noun specifying ethod carro

exchange type of exchange pagwiiiento
time temporal noun mes

fact clausal fact que come bien
animate animate noun hombre

descript descriptive adjective feo
condition condition adjective enfernio

sdel s-bar deletion verb parecer
intrans intransitive verb correr
wh wh-word d6nde
wh-phrase argument wh-word qu'e

- -1 - -- -la, l- � --,-- I . I "PRO."", "Ind. .." - a . a I

,Iran' .. CHAPTER 5. PRETRANSLATION RO UTINES 71

Table 54: Description of Features for Spanish

CHAPTER 5. PRETRANSLATIO! 72

hand, if the argument structure of the wor kow includes only goal with anirnate features,

the thematic sbstitution routine will determine that the translation is conocer.

If a root form could be part of an idiomatic expression, the translation of that idiom ust

be included in the lexical entry. For example, the expression kick the bucket can be translated

either to orir (die) or an equivalent idiomatic expression estirar la pata. Both of these

translations of the idioniatic expression are included in the lexical entry of the verb kick (as

well as the ormal" translation, patear):

KICK /V
(spanish ((patear)))
(expression ((the bucket) (spanish ((morir) (estirar la pata)))))

A lexical entry may also contain additional information: noun-forms, for verbs or adjectives

that can be nominalized (e.g., know <-4 knowledge); INTRANS, for optional intransitivity, 11

and a root form (for irregular verbs), which is shorthand for listing the information that appears

.-..-in te lexical- entry, of -the root form -Note that irregular forms (like knew) need to be stored

in the lexicon since they do not conform to the morphological rules encoded by the automafA

(e.g., know+ed " *knowed).

5.3 Precompflation

The purpose of the precompilation stage s to construct skeletal phrase structures (based on

X-theory) that will be used to guide the Earley algorithm parser. The structure that is built

is underspecified; that is, subcategorization information, antecedent-trace relations, case, and

0 marking are not multiplied into the skeletal phrase structures. Rather, this information is

determined on-line only as needed) through access to the principles of GB.

The function that performs precompilation, SET-UP-XBAR (see appendix F.1.1), performs

two top-level actions: (1) it generates all the context-free rules (into the variable FULL-

BLOWN-RITLES) required to satisfy X constraints for a given language (e.g., (C-MAX

C-SPEC C CCOMPLEMENT) , (C-SPEC -> N-MAX), etc.); and 2) it generates (via DEFGRAM-

MAR.) the corresponding X structures required by the Earley parser (e.g., EC-SPEC [-MAX I I

"If a lexical entry does not include any subcategorization information and does not include the INTRANS
feature, it is assumed to be obligatorily intransitive.

lo�l
T

*CURRENT-CONSTITUENT-ORDER. constituent order for te urrent language

*CURRENT-BASIC-CATEGORIES basic categories for the crrent language
*CURRENT-ADJUNCTION adjunction configurations for the current

language
*CURRENT-TRACES trace possibilities for the current language
*CURRENT-EMPTY-FEATURE-HOLDERS non-lexical heads and their default

complements for the current language
*CURRENT-PRO-DROP pro-drop setting for the current language
*(,'URRENT-OPTIONAL-SPECIFIERS optional specifiers for the current language

CHAPTER'5- PRETRANSLATION-ROCTTINES 73

Table 5.5: Global Variables Set up Prior to Precoinpilation

EC-MAX EC-SPEC] EC] [C-COMPLEMENT11, etc.). Thus, there are two results of the preconi-

pilation stage: the first is simply a set of context-free rules (solely for recognition, not for

-strncture-building), and the second is a set of phrase-structure templates (for building struc-

ture during the parsing process). The parameter values that are accessed at precompilation.

time are in appendix E.I.

The rules and templates generated by SET-UP-XBAR are both unconstrained and un-

derspecifted. They are unconstrained in that tey have no information about other possible

linguistic violations. For example, the templates ay contain traces of oved elements in po-

sitions that are not legal according to Trace theory. Consequently, te structures overgenerate

wildly during parsing. The templates are underspecified in that they do not contain information

about subcategorization of basic categories (except those specified in the EMPTY-FEATURE-

HOLDERS parameter). Thus, omplements are left empty until parsing begins, at which time

lexical category information will be accessed on-line to fill in complement information as heads

of phrases are encountered.

Just prior to execution of the SET-UP-XBAR function, certain global variables are set

according to the parameter settings of the language. (Appendix I lists all global variables for

the translation system.) 2The global variables that are set p before SET--LTP-XBAR is called

are in table 5.5.

These variables are used by SET-T-TP-XBAR to create the rules required to parse the lan-

12 If the parameter settings have not changed since the last execution of SET-UP-XBAR, then te function
is not called (since the rules and templates rmain te same).

Variable(s) (and Associaled Fivnction) Use of Variable

*CURRENT-CONSTITUENT-ORDER Generate X-MAX =�, ... X ... for each basic
*CUR.RENT-BASIC-CATEGORIES category X (with specifier and complement
(CREATE-BASE-RULES) positioned according to constituent order)

*CURRENT-ADJUNCTION Generate rules of form:
(CREATE-ADJUNCTS) (1) X-MAX ADJUNCT X-MAX,

(2) X-MAX X-MAX ADJUNCT,
(3) X ADJUNCT X,
(4) X X ADJU NCT
instantiating X with specified HEAD(s),
and instantiating ADJUNCT with the
corresponding NODE(s) all periuutations)

*(,'URRENT-EMPTY-FEATT-TRE- Generate Z =:� E and
HOLDERS Z-COMPLEMENT =�> X-MAX,... X-MAX,
(MAKE-EMPTY-RULES) for each head Z and each list of X-'s

corresponding to head Z

*CURRENT-TRACES Generate Y =:�> Y-TRACE for each
(ADD-TRACE-RULES) Y-TRACE specified

*CURRENT-PRO-DROP Generate N-MAX :=� PRO automatically)
(ADD-EMPTY-NPS) and N-MAX =�> pro (if AGR-RICH is T)

*CURRENT-CHOI(!E-OF-SPEC,'IFIERS Generate M-SPEC =:� X-MAX, ... X-MAX,
(MAKE-SPEC-RULES) for each head M, and each list of X -'s

corresponding to head M
*CURRENT-OPTIONAL-SPECIFIERS Generate X-MAX =: a for each rule
(DROP-OPTIONAL-SPECIFIERS) X-MAX : a X-SPEC where X-SPEC

is optional

%awwww"Now I--

C,'HAPTER"'5.-'- PRETRANSLATIOINT RO brTINES 74

Table 56: How Global Variables Are Used by SET-UP-XBAR

guage. Table 56 shows how SET-UP-XBAR uses these variables.

Note that two variables (*CURRENT-TRACES and *CURR-ENT-PRO-DROP) associated

with the trace module are included in the precompilation of X templates. These variables

are accessed only to establish trace (and other empty category) possibilities for a particular

language, not to check epty category conditions that are in the domain of the trace module.

For example, the templates include N-MAX-TRACE wherever an N-MAX category is aowed, but

they do not include coindexing or proper government information. In an earlier version of the

system, the trace possibilities were not ultiplied into the rules, but were added on-line as

needed. This turned out to slow down the system at execution time since the parser had to
F

CHAPTER 75

make frequent cecks to see if a trace (or other epty category) could be dropped at, any point

during the parse; it then had to check whether the trace satisfied epty category conditions.

The current version aows traces to be inserted automatically at precompilation time (thus

eliminating time-consunung searches through trace possibilities t execution time); it then

checks the validity of the trace at execution time (in the same way as in the original version).

In contrast to the processing of trace possibilities, the processing of subcategorization in-

formation is not multiplied into the rles at precompilation time. This is because the space

of possibilities for complements of a given category could be as large as the number of lexical

entries for that category in a given language. For example, if every verb in the language had a

unique subcategorization framer then there would be n possibilities, where n is the number of

verbs in the language. Perfornung this processing at execution time means that subcategoriza-

tion information need only be checked a sall number of times during execution, in particular,

as many times as there are words in the sentence. Mltiplying out all the subcategorization

possibilities for a given language ahead of time would lose by a wide argin because all the

subcategorization rules generated would have to be searched at execution time at each step of

the parse.

Tables 57 and 5.8 show the FULL-BLOWN-RULES generated by SET-UP-XBAR for en-

glish and Spanish respectively.

In the last stage of precornpilation, SET-UP-XBAR applies DEFGRAMMAR to the rules

generated by the earlier stages. This function compiles all the rules into a grammar for a given

language, and sets up X templates corresponding to these rules. These templates are generated

from the rules, starting with the distinguished start symbol (C-MAX in both Spanish and English)

and building a tree structure using the symbol as the root. As each maximal projection under

the root is encountered, a new tree is spawned using the maximal projection as the root (unless

the maximal projection has already been expanded). The process is repeated until no more

trees can be constructed. Fnally a untouched rules are expanded. (This 'includes specifiers,

adjunction constructions, non-lexical terminals and aximal projections not yet expanded).

Because the number of maximal projections and preterininals is finite, this process is finite

(i.e., there is not an infinite number of trees). In fact, the templates are in a one-to-one

Rules Added By C`rcatc-Basc-Rules

(START C-MAX PUNC,)
(C,-MAX C-SPECC C-COMPLEMENT) (I-MAX I-SPEC I -COMPLEMENT)
(V-MAX V-SPEC V VCOMPLEMENT) (N-MAX N-SPEC N NCOMPLEMENT)
(P-MAX # P-SPEC P P-COMPLEMENT) (A-MAX A.-SPEC A A-COMPLEMENT)

Rules Added By Create-Adjuncts

(N =:�> A-MAX N) (N-MAX =�> N-MAX P-MAX) (V-MAX =� V-MAX PMAX)
(V-MAX V-MAX ADV) (N-MAX =�> N-MAX C-MAX) (V =:� BE-AUX V)
(I-MAX DO-AUX I-MAX (I-MAX =� BE-AUX I-MAX)
(I-MAIV HAVE-AUX I-MAX)

Rules Added By Add- Troce-Rules

(P-MAX P-MAX-TRACE) (N-MAX =�> N-A/1AX-TR,,_CE)
Rules Added By Allakc-Fmpty-Rules

(C-COMPLEMENT I-MAX) (C E)
(I-COMPLEMENT V-MAX) (I E)

Rules Added By Add-Empty-NP-s

(N-MAX PRO)
Rules Added By Make-Spec-Rules

(P-SPEC ADV) (A-SPEC --> ADV) (I-SPEC N-MAX)
(N-SPEC N-MAX) (V-SPEC =:�, DO-AUX) (V-SPEC =:> HAVE-AUX)
(C-SPEC ADV) (C-SPEC =�> P-MAX) (C-SPEC =�> N-MAX)

Rules Added By Drop-Optional-Specifiers

(N-MAX N NCOMPLEMENT) (P-MAX P PCOMPLEMENT)
(c-MAX C CCOMPLEMENT) (A-MAX A A-COMPLEMENT)
(V-MAX # V VCOMPLEMENT)

Table 57: English Rules Generated by SET-UP-XBAR

correspondence with the FULL-BLOWN-RULES. The X templates for English and Spanish

are in tables 59 and 5.10 respectively. Although these templates are actually tree structures,

they are represented internally as list forms similar to the bracketed notation used here. Once

these templates are built, the parse is driven top-down (with some bottom-up processing due

to access of subcategorization information) by these structures.

A question under current investigation 'is what is the "optimal" balance of linguistic prin-

ciple clustering between the precompilation and later processing phases. On the one hand,

incorporating a large aount of linguistic information (e.g., subcategorization information,

agreement information etc.) into the precompilation phase causes te grammar size to become

explosive, thus slowing down granunar search time during the structure-building phase of the

"" I C-APTER":5"' -PRETRA.,VSLATION ROUTINES PT6

I

Rules Added By mate-Base-Rales
(START C-MAX PUNC)

.(C-MAX C-SPEC C GCOMPLEMENT) (I-MAX I-SPEC I I-COMPLEMENT)
(V-MAX V-SPECV V-COMPLEMENT) (N-MAX N-SPEC N NCOMPLEMENT)
(P-MAX:=�> P-SPECP P-COMPLEMENT) (A-MAX A-SPEC A A-COMPLEMENT)

Rules dded By Ceate-Adjuncts

(N A-MAX N) (N -� N A-MAX)

(N-MAX N-MAX P-MAX) (V-MAX V-MAX P-MAX)
(V-MAX V-MAX ADV) (N-MAX =�> N-MAX C-MAX)
(V :�,> CL-DAT CL-ACC V) (V --> CL-DAT V) (V =�> CL-ACC V)
(V # CL-REF V) (V =:� CL-REF CL-ACC V)
(V # BE-AUX V) (I-MAX =: I HAVE-AUX BE-AUX V T-MAX)
(I-MAX * V T-MAX) (V-MAX:::#> V-MAX N-MAX)

Rule,,; dded By Add- Trace-Rules

(P-MAX # P-MAX-TR.ACE) (V =:�- V-TRACE) (I =�> I-TRACE)
(HAVE-AUX =�> HAVE-AUX-TRACE) (BE-AT-TX =�, BE-AUX-TRACE)
(N-MAX # N-MAX-TRACE)

Rules Added By Make-Empty-Rules
(C-COMPLEMENT I-MAX) (C E)
(I-COMPLEMENT V-MAX) (I E)

Rules Added By Add-Empty-NPs
(N-MAX =�> pro)
(N-MAX PO)

Rettles Added By i1fake-Spec-Rules

_SPEC=�> ADV) (A-SPEC#> ADV) (N-SPEC =�> N-MAX) (I-SPEC N-MAX)
(N-SPEC DET) (V-SPEC HAVE-AUX) (C-SPEC =�> ADV) (C-SPEC =�> P-MAX)
(C-SPEC N-MAX)

Rules Added By Drop-Optional-Specifiers
(P-MAX P PCOMPLEMENT) (N-MAX N NCOMPLEMENT)
(C-MAX C GCOMPLEMENT) (A-MAX A A-COMPLEMENT)
(V-MAX V VCOMPLEMENT)

Table 5.8: Spanish Rules Generated by SET-UPABAR

parse; on the other hand, eiminating too much linguistic information from precompilation (e.g.,

trace possibilities, specifier possibilities, etc.) forces a high cost during the linguistic constraint

verification phase of the parse. I the present incarnation of the system, only those principles

relating to X (plus trace possibilities, ut not trace principles) are accessed at precompilation

-CHAPTER PRETRANSLATIO-,7\T R [T TI.L\TE S 7 7

tinie, leaving many of the principles to apply at execution time.

Base Tcmplatc,,;

[START [C-MAX] [PUNC]]
[C-MAX [C-SPEC] [C] CCOMPLEMENT]]
[I-MAX J-SPEC] [1] [I-COMPLEMENT]]
[V-MAX [V-SPECJ [V] [V-(',OMPLEMENT]l
[N-MAX [N-SPEC] [N] [N-COMPLEMENT]l
[P-MAX [P-SPEC] [P] [P-COMPLEMENTI]
[A-MAX [A-SPEC] [A] [A-COMPLEMENT]]

Adjunct Templates

[N [A-MAX] [N]] [N-MAX [N-MAXI [P-MAX]] [V-MAX [V-MAX] [P-MAX]]
[V-MAX [V-MAX] [ADV]] [N-MAX [N-MAXI [C-MAX]l [V [BE-AUX] [V]]
J-MAX [DO-AU`X] I-MAX]] J-iMAX BE-AUX] [I-MAX]]
J-MAX [HAVE-AUX] [I-MAX]]

Trace Templates

[P-MAX [P-MAX-TRACEII [N-MAX [N-MAX-TRACE]l
Non-Lexical Head Templates

[C-COMPLEMENT [I-MAX]] [C [El]
[I-COMPLEMENT [V-MAX]] [I [E]l

Empty.,VP Templates

[N-MAX [PRO]]
Specifier Templates

[P-SPEC [ADV]l [A-SPEC [ADVI] [I-SPEC [N-MAX]l
[N-SPEC [N-MAXII [V-SPEC [DO-AUX]] [V-SPE(" HAVE-AUX]]
[C-SPEC [ADV]l [C-SPEC,[P-MAXI] [C-SPEC [N-NIAX]]

Optional pecifier Templates

[N-MAX [N] [N-COMPLEMENT]] [P-MAX [P] [P-COMPLEMENT]]
[C-MAX [C] [C-COMPLEMENTI] [A-MAX [A] [A-COMPLEMENT]]
[V-MAX [V] [V-COMPLEMENT]]

-`-CHAPTER 5. PRETRAINSLATION ROUTTINES '78

Table 59: English Templates Generated by SET-tTP-XBAR

Base Templates
[START [C-MAXI [PUNC]]
[C-MAX [C-SPEC C [C-COMPLEMENT]]
[I-MAX [I-SPEQ [11 [I-COMPLEMENT]]
[V-MAX [V-SPE(,] [V] [V-C01\,IPLEMENTfl
[N-MAX [N-SPEC] [NJ [N-COMPLEMENT]]
[P-MAX [P-SPECI [P] [P-COMPLEMENT]l
[A-MAX [A-SPEC] [Al [A-COMPLEMENT]]

Adjunct Rmplates

[N [A-MAX] [N]] [N [N] [A-MAX]]
[N-MAX [N-MAX] [P-MAX]l [V-MAX [V-MAX] [P-MAX]]
[V-MAX [V-MAXI [ADVII [N-MAX [N-MAXI [(,-MAX]]
[V [CL-DAT] [CL-ACCI V]] [V [CL-DAT] [V]] [V [CL-ACCj [V]J
[V [CL-REF] [V1j [V [CL-REF] [CL-ACC] [V1]
[V [BE-AUX] [V]] -MAX [1] [HAVE-AUX] [BE-AUX] rV] I-MAX]]
[I-MAX [V] [I-MAX]] [V-MAX [V-A,,,IAXI [N-MAXII

Tra ce Te rnp la t es

[P-MAX [P-MAX-TRACEI] [V [V-TRACE]] [I j-TRA(%E]]
[HAVE-AUX [HAVE-AUX-TRACEII [BE-AUX [BE-AUX-TRACEJ]
[N-MAX [N-MAX-TRACE]]

No-ri-Lexical Head Templates
[C-COMPLEMENT [I-MAX]] [(, E]J
[I-COMPLEMENT [V-MAX]] [I [E]I

Empty JVP Templates
[N-MAX [pro]]
[N-MAX [PRO]]

Specifier Templates
[P-SPEC [ADV]] [A-SPEC [ADVI] [N-SPEC [N-NIAXII [I-SPEC [N-MAX]]
[N-SPEC [DET]] [V-SPEC [HAVE-AT-TXI] [C-SPEC [ADV]] [C-SPEC [P-MAXI]
[C-SPEC [N-MAX]j

Optional Secifie Tmplates
[P-MAX [PI [P-COMPLEMENTI] [N-MAX [N] [N-COMPLEMENT]]
[C-MAX [C] [C-COMPLEMENT]] [A-MAX [A] FA-COMPLEMENT11

L

[V-MAX V VCOMPLEMENT]]

CHAPTER 5. 'PRETRANSLATIOAT RO tTTIjIVES 79

Table 5.10: Spanish Templates Generated by SET-UPABAR,

larsin oni onen

The parser consists of two types of procedures (corresponding to the two boxes in figure 13

-of chapter 1): -(1) those that build structure (pushing, scanning, popping), relying primarily

on phrase-structure templates generated at precompilation time; and 2) those that verify GB

constraints 0Criterion, Empty Category Principle, etc.), acting as well-formedness tests on

phrase-structures built by structure-building procedures.

When the parser is activated, the structure-building module (actually an augmented im-

plementation of the Earley lgorithm) draws upon the X templates, processing each word of

input until no more structure-building actions apply. The GB constraint verification module

takes over after each step (PUSH, SCAN and POP) of the structure-building module, mod-

ifying or eliminating structures derived thus far. The final resulting trees are stored 'in the

*PARSE-TREES variable. Table 61 shows the actions the Earley and GB components must

perform 'in tandem. The next two sections will describe the structure-building component and

the linguistic constraint components in more detail.

6.1 Structure-Building Component: Augmented Earley Al-

gorithm

The structure-building odule uses the precompiled X context-free rules to recognize (accept)

the input while simultaneously accessing the precompiled X templates to parse (assign structure

80

Chapter 6

Action Earley Parscr Task,,; GB Aodiilc Tasks

PUSH Expand nonterniLinal Link traces to antecedents (and check Bounding)
Predict complements
Associate omplements with heads

Perform feature percolation
SCAN Traverse terminal Perform feature instantiation

Deteri-nine argument structure
Perform feature percolation

POP Complete nonterminal Link traces to antecedents (and check Bounding)
Set up A and A positions
Check Binding conditions
Perform feature percolation
Set up Government relations
Check EC)P
Assign case
Assign O-roles
Perform O-role transmission
Check O-criterion

P- � CHA-PTER 6. PARSING COMPONENT 81

Table 61: Tasks of Earley and GB during Parsing

to) the input. In order to process the X rules and build X structure simultaneously, a stack

must be used. Expanding a nontern-iinal symbol of an X rule corresponds to pushing the

equivalent X template onto the stack; traversing a terminal symbol of an X rule corresponds

to attaching the word to the open terrninal symbol at the top of the stack; and completing a

nonterminal symbol of an X rule corresponds to dropping the top of stack element under an

open nonterminal in the stack element below it. For example, suppose we had the sequence of

PUSH-SCAN-POP actions shownin table 62.1

The corresponding snapshots of the structure built in the stack 'is 'in figure 61. Snapshot

(a) shows the state of the stack after the first three X templates (corresponding to the first

three X rules) are pushed. Snapshot (b) shows the result of attaching the word he under N

(i.e., scanning the symbol N in the fourth X rule). Snapshot (c) shows the result of dropping

'The reader is assumed to be familiar with the Earley algorithm. In sort, if the dot (represented as an
asterisk (*)) precedes a nonterminal, that nontern-linal is about to be pushed; if the dot precedes a terminal,
that terminal is about to be scanned; and if the dot is not before any symbol, the nonterminal on the left-hand
side of the rules is about to be popped. Each time a word is about to be scanned, a new state set is entered.
Thus, a successful parse involves + state sets, where n is the number of words in the input.

PUSH I-MAX =:�, I-SPEC I -COMPLE.MENT
I-SPEC =:� * N-MAX
N-MAX =� * N N-COMPLEMENT

SCAN N-MAX =� N * NCOMPLEMENT current word -- he)
POP I-SPEC, N-MAX *

I-MAX * I-SPEC I I-COMPLEMENT

Table 62: Sequence of PUSH-SCAN-POP Actions During Earley Parsing

I (a) Push I-MAX (b) Scan N

I [N-MAX [N] [N-COMPLEMENT]] [N-MAX [N he] [N-COMPLEMENTI]
I [I-SPEC [N-MAX]] [I-SPE(l [N-�vIAX]]
I [I-MAX [I-SPEC] [11 [I-COMPLEMENT]] [I-MAX 1-SPECI [1] [I-COMPLEMENT]] �

I (c) Pop N-MAX (d) Pop I-SPEC

JI-SPEC [N-MAX [N hefl] - [I-MAX [I-SPEC [N-i%,IAX [N hefl]I r[I-MAX I-SPEC] [11 [I-C"OMPLEMENT] I j; I-COMPLEMENT]]i

Figure 61: Snapshots of Structure Built During PSH, SCAN and POP

N-MAX under I-SPEC (i.e., ompleting the N-MAX synibol in te fifth rule). Snapshot (d) shows

the result of dropping I-SPEC under I-MAX (i.e., completing the, I-SPEC symbol in the sixth X

rule).

Appendix G gives the bare Earley parser functions (no structure-building). PARSE-

SENTENCE contains the main parsing loop that calls PREDICT, SCAN and COMPLETE.

The function that calls PARSE-SENTENCE is EARLEY, which is aong the top-level trans-

lation routines in appendix J. Appendix H (sections 13) shows the functions required for

on-line structure-building. PUSH-STRUCT (called by PREDICT) builds structure at PUSH

time, SCAN-STRUCT (called by SCAN) builds structure at SAN tinie, and POP-STRUCT

(called by COMPLETE) builds structure at POP time.

Because there are several choice-points in the derivation of a tree structure (e.g., N-SPEC

could expand to DET or N-MAX in English), ultiple stacks niust be aintained at all thiaes.

Thus, several structures rnay be considered at any point during parsing. One way that ultiple

structures are pruned without the use of GB constraints is by using a one-word lookahead facil-

lellllllsl - CHAPTER 6. PARSENG C-11POINENTIf- 82

CHAPTER 6. PARSING CI�WPONENT 83

ity at PUSH time. PUSH-STRUCT calls the CHECK-TERMINALS function (appendix H.1)

that weeds out those templates that will not derive any of the categories of the current word.

Left-recursion presents a problem for building structure on-line. The danger of left-recursion

is that it can force an infinite cycle of PUSH actions. For example, in English the possessive

construction is a left-recursive structure:

[N-MAX [N-SPEC [N-MAX [N-SPEC [DET te]] [N nian'sfll [N dog]]

In the stack scheme described above, it appears that PUSH-STRUCT will push for an

N-MAX, and then an N-SPEC, and then an N-MAX again, and so on, without ever seeing the word

the.

The way the bare Earley algorithm without structure-building) handles this problems

is that it never adds the same rule twice to the same state set. However, the analogous

trick for structure-building (i.e., refraining fom pushing a structure onto the stack) will not

necessarily work since the structure ight need to arbitrarily branch left before reaching a

terminal symbol. In c�rder to handle this problem, the following trick has been devised: (1)

during the PUSH stage, a given emplate is pushed onto the stack only once; 2 during the

POP stage (presumably in a later state set) an enipty left-recursive template is pushed onto

the stack before the completed structure is dropped. This method is guaranteed to work

because pushing recursive structure onto the stack before dominated structure is complete

is ultimately equivalent to pushing recursive structure onto the stack aer the dominated

structure is complete. This "deferral" of the PUSH stage does not alter the outcome of the

structure that 'is built. Furthermore, this method is guaranteed to terminate (i.e., it does not

cause an infinite loop).This isbecause a left-recursive structure may only be pushed once in

a given state set, and the number of state sets is finite assuming the sentence length is finite).

An example will ake the above process clearer. Suppose we want to parse the N-MAX the

man�5 dog as the subject of a sentence. Just efore scanning the the stack and state set look

like this:

Stack State St

[N-MAX [N-SPEC [DET11 [NJ] I-MAX I-SPEC I I-COMPLEMENT
[I-SPEC [N-MAX]] I-SPEC N-MAX

[I-MAX[I-SPEC] [11 [I-COMPLEMENT]] N-TMAX N-SPEC N
N-SPEC DET

CHAPTER 6 PARSING COMPONENT 84

Note that we do not push for the N-MAX template again nder N-SPEC). Now a new state

set is entered and the word the is scanned and attached:

Stack State Set

[N-MAX [N-SPEC [DET the]] [NJ] N-SPE(,' DET
[I-SPEC [N-ATAX]] N-MAX N-SPEC * N

[I-MAX [I-SPEC] [1] [I-COMPLEMENT]]

Now the word man's can be scanned:

Stack State Set
[N-MAX [N-SPEC DET the]] [N man's]] N-MAX =�> N-SPEC N *
[I-SPEC [N-MAX]]
[I-MAX [I-SPEC] [1] 'I-C',OiMPLEMENT]]I I

This completes the N-MAX; thus, it is time to POP. But before doing so, the parser notices

that the popped symbol is part of a left-recursive cycle (this information is determined at

precompilation time and saved in a variable called *LEFT-DERIVES-CYCLES). Now the stack

is split into two possibilities; the first allows for the case where no left-recursion is required (e.g.,

if the sentence were the man this parse would pan out); and the second aows for left-recursl'on':

Nonrecursive Stack Recursive Stack State Set

[I-MAX [N-MAX I-SPEC =�- N-MAX
J-SPEC [N-SPEC [DET the]] [N man's]]

[N-MAX [N-SPEC [N-MAX]l
[N-SPEC [N-MAX

[DET thefl [N-SPECI [N] [N-COMPLEMENT]]_
[N man's]]] J-SPEC [N-MAX]l

[1] [I-COMPLEMENT]] J-MAX
[I-SPEC] [1] [I-COMPLEMENT]]

In the first case the N-MAX is dropped normally." However, this parse is ruled out as

soon as it is determined that the next word is not of category 1(nfl). (In fct, the aforemen-

tioned one-word lookahead facility rules out such parses well ahead of tirne.) In the second

case, the EN-SPEC [N-MAXII and [N-MAX EN-SPEC] EN] [N-COMPLEMENTI] templates have

been dropped between the first and second stack elements. Now the top of stack element

is attached under the N-SPEC of the epty template, and then the completed N-SPEC node is

attached under N-MAX:

Stack Stat SO

[N-MAX N-SPE(.� N-MAX
[N-SPEC N-MAX:#�, N-SPE(,* N NCOMPLEMENT

[N-MAX [N-SPEC, [DET thefl
[N man's1l]

[N] [N-COMPLEMENT]l
[I-MAX [I-SPEC] [11 [I-COMPLEMENT]]_i

CHAPTER 6 - PARSING. CONTPONE.NrT 85

The DROP-INTO-NEXT-LOWER, and DROP-RECUR-SE-NEXT-LOWER functions per-

form the ormal" and recursive popping actions respectively. (These are given in appendix H.)

If this provision for left-recursion were not part of the implementation, there would be no

way to build structure on-line. An alternative approach to recovering the parse would be to

build the structure after the input has been recognized.' Unfortunately, this approach does

not allow on-line structure to be built, thus disallowing the GB component to work in tandem

with the Earley parser. Instead, GB principles would need to be applied as well-formedness

conditions on the final output of the parser.' However, the otivation for building structure

on-line in the first place is to allow ungran-iniatical. parses to be weeded out long before the end

of input is reached. The structure-building routines act as an interface between the bare Earley

parser and the GI3 component. The next section describes how the GB component performs

the task of updating and eliminating structure during parsing.

6.2 Linguistic Constraints of Parser

The task of the GB constraint odule is three-fold: first, it weeds out bad parses (e.g., a

parse in which a trace has no antecedent, or in which an antecedent is too far away); second, it

tries possibilities unavailable to the structure-building module (e.g., it expands complements by

projecting aximal projections from the subcategorization frames of lexical heads); and third,

it extends the parse to the point where all CB constraints are satisfied, and the structure-

building module can take over again (e.g., it ensures that arguments are O-marked and it

assigns indices to trace-antecedent airs).

2This can be done by tracing back trough pointers associated with state set rules, thus computing the parse
tree(s) in time proportional to the length of the sentence.

3Sharp 1985) takes this approach (i.e., his system uses GB principles as well-forniedness conditions on final
output).

Slot Possible Talues
CAT fX, X-SPEC, XCOMPLEMENT

X E *CtTRRENT-BASIC-CATEGORIES
U *CURRENT-PRE-TERMINALSJ

WORD morphologically analyzable word
GENDER language-particular gender (e.g., niasc, feni, neut)
PERS language-particular person (e.g., pl p2 p3)
NUMBER language-particular number (e.g., PI, sg, ass)
TENSE language-particular tense (e.g., pres, past)
CASE language-particular case assigned to node

(e.g., obj, nom)
ROLE language-particular role assigned to node

(e.g., agent, goal)
LANGUAGE-PARTICULAR-FEATURES fF I F E *CURRENT-FEATURES and F PERS U

GENDER U NMBER U TENSE U CASE U ROLEJ
TRANSLATION target language translation of word
SUBCATEGORIZATION (X-MAX, .. X -MAX,)

X C*CURRENT-BASIC-CATEGORIESI
EXTERNAL-CATS (X-MAX1 ... X - MAXn) 1

X E *CURRENT-BASIC-CATEGORIESI
THETA-ROLES lists of roles from

*CURRENT-CANONICAL-SEMANTIC-MAPPINGS
(e.g., goal, patient)

EXTERNAL-ROLES lists of roles from
*CURRENT-CANONICAL-SEMANTIC-MAPPINGS
(e.g., agent)

C-GOVERNED? list of nodes (c-governing the node)
S-GOVERNED? list of nodes (s-governing the node)
PROPER-GOVERNED? list of nodes (proper-governing the node)
C-GOVERNS? list of nodes (c-governed by the, node)
S-GOVERNS? list of nodes (s-governed by the node)
PROPER-GOVERNS? list "of nodes (proper-governed by the node)
A-POSITION? t or nil
A-BAR-POSITION? t or nil
TRACE a node (antecedent that binds a node)
ANTECEDENT a node (trace bound to node)
COMPLEMENTS-FILLED t or nil

- ollp M " I p 1POI --- R-11- - -- - --- ,

tr*�, - CHAPTER 6. PARSING COMPONENT 86

Table 63: Description of a Tree Node

---- -- ---- - - '' -----

00""ll-t
A

CHAPTER 6 PAR-STING'COMPO.'VENT 87

Before describing the tasks associated with te GB component we first examine the type of

information included in the nodes of te tree structures built by the structure-building odule.

Each node has several slots associated with values. For example, the slot CAT specifies the

category of the node in the tree. CAT is the only slot which must ave a value other than NIL

at all times; the other slots ay or rnay ot be filled during te parse of a sentence. Table 63

shows the slots and possible values.

The tasks associated with each module of the GB component are described below. (Appen-

dices E and F contain the Lisp representation of the parameters and principles that comprise

the GB component.) The reader ay refer to table 61 for an overview of the order in which

the routines of the GB odules are accessed.

6.2.1 X Module

During parsing, the X module is responsible for four tasks: predictingcoinplements; associating

complements with heads; determining feature iformation and argument structure of lexical

heads; and feature percolation. Tese four tasks are discussed in the following sections. The

X routines accessed at parsing time are in appendices F.I.2-F.I.6.

6.2.1.1 Predicting Complements

Recall that the constituent order parameter aows complement to occur in one of three po-

sitions: before the specifier and head, between the specifier and head, or after the specifier

and head. From the point of view of parsing, it would seem tat the easiest configurations to

handle are those in which the head precedes the complement.' In such configurations the head

can be used to predict' complements before the compleinents are actually seen. By contrast, if

the complement precedes the head, it is difficult to predict the head that is to flow a given

1 5complement during parsing.

'These configurations are called head-11ndial configurations; however, this term is ii-Lisleading since the
specifier-head-coniplenient ordering is included aniong the head-inlitial configurations, even though the head
is not really initial. Throughout tis report I will refer to any language that requires the ead to precede the
complement configuration as head-initial (regardless of were the specifier is positioned); shifflarly, any language
that requires the complement o precede e head is referred to as head-filial.

5To date, there is no translation system that includes a niform method of handling the head-initial/head-
final distinction. Sharp does not address this issue (possibly because both languages translated by the systeiii
are head-initial), and other translation systems (e.g., METAL (1984a)) se language-specific rules to handle

'Il" I 1-10 11' MWOMINN.. I -L I - - - ,- I --

6. PARSING COMPONE N T 88

If it could be shown that hunian processing of head-final languages is "harder" (e.g., takes

longer) than rocessing of head-inifial languages, this rnight justify the use of two different

methods of parsing complements. However, since this does not appear to be the case, a ui-

form method of parsing complements has been constructed. The task of complement prediction

is performed at PUSH th-ne. If an unexpanded complement symbol is encountered, it ust be

expanded according to the subcategorization frame of the closest head of the appropriate cate-

6gory, regardless of whether the head has already been parsed. Furthermore, the complements

that are predicted must be associated with the corresponding head. If the head already has

been parsed, the argument structure information is already stored in the head (in the SB-

CATEGORIZATION slot) and ust, be atched one-to-one with the predicted complements.

On the other hand, if the head has not been parsed, the argument structure of the predicted

complement is inserted directly in the head (in the SUBCATEGORIZATION slot) and ust

be atched one-to-one with the subcategorization fraine of the head once it is parsed. (The

details of associating complements with heads will be discussed in the next section.)

else The function LOCATEXOMPLEMENTS (in appendix F.1.2) determines the complements

of a head by looking in the input to the left of the current word in a head-initial language,

or by looking in the input to the right of the current word in a head-final language. For

example, suppose a verbal omplement needs to be expanded during the parse of a sentence.

Figure 62 shows the state of the stack just before processing the phrase the boy for the English

sentence 54) and the Navajo translation sentence (55).'

(54) the boy saw the girl

(55) ashkii at'e'e'd yiyiilts'

In figure 62 (a) the head (_ see) of VCOMPLEMENT has already been processed since the

language is head-initial. By contrast, in figure 62 (b) the head of VCOMPLEMENT has not yet

complement prediction for all languages. By contrast, Abney's GB parser (198T) does handle the complement-
prediction problem since a phrases of a sentence ust be licensed regardless of ordering requirements) before
the sentence is accepted. The notion of 11censling will not be discussed here, but for our purposes it is sufficient
to equate licensing with 0-niarking.

6 The prediction of complements using the closest-head algorithm does not always work. This issue wil be
addressed in chapter 9.

7 The Navajo sentence literally translates to the boy the girl saw since Navajo is a head-final language.

(a) English (b) Navajo

[V-MAX [V see [pl past]] [V-MAX [V-COMPLEMENT] [V]]
[V-COMPLENIENTI]

J-COMPLEMENT [V-NIAXII [I-COMPLEMENT [V-MAX]]
[I-MAX [I-MAX [I-COMPLEXIENT] J-SPEC] [1]]

J-SPEC [N-MAX the girl]]
[I E] I-COMPLEMENT]]

[C-MAX [C E] [C-MAX [C-COMPLEMENT I-MAX]] [C]l
[C-COMPLEMENT [I-MAX]]]

(a) English (b) Navajo
[N-MAX [N-SPEC] [NJ [N-MAX [N-COMPLEMENT] [N-SPECI [N]]

[N-COMPLEMENT]l
[V-COMPLEMENT [N-MAXI] [V-COMPLEMENT [N-MAX]]
[V-MAX [V see [past p3 sgjJ [V-MAX rV_COMPLEMENT] [V]]

[V-COMPLEMENT]]
[I-COMPLEMENT [V-MAX]] [I-COMPLEMENT [V-MAX]l

[I-MAX [I-SPEC [N-MAX the gir1l] [I-MAX [I-COMPLEMENT PECI [11]
[I E] [I-COMPLEMENT]]

[C-MAX [C E [C-MAX [C-COMPLEMENT [I-MAX]] [Q]
[C-COMPLEMENT [I-MAX]]]

� CAPTER-6-� PARSINGCOATPONENT 89

Figure 62: State of Parse Prior to Expansion of a Verbal Complement

Figure 63: State of Parse After Expansion of a Verbal Complement

been seen. In both cases, the LOCATE-COMPLEMENTS routine determines that see is the

head corresponding to VCOMPLEMENT. It does this by looking to the left of the current word

the in the head-initial case, and to the right of the current word the in the head-final case;

when it finds a word of category V, the subcategorization frame of the word is turned into a

tree structure and pushed onto the stack. Since ee takes an N-MAX complement, the -MAX

template is pushed (see figure 63).' Also, an additional omplement template (not shown

above) could be pushed onto the stack (thus splitting the stack into two stacks kept in parallel)

since see takes a p-goal (i.e., a yreposition-goal or a goal instantiated as P-MAX). However, this

'Actually, see takes a goal, which is trned into N-MAX via the CSR apping used by the GET-CATEGORY-
SUB CAT function.

(a) Eglish (b) Navajo

[N-MAX. [N-SPECI [NJ [N-COMPLEMENT'] [N-NIAX [N-SPECI [N]l
rV

[V-COMPLEMENT [N-MAX -COMPLEMENTr-N-MAX]]L

[VMAX [V see [past p3 sg]] [V-NIAX V-COMPLEMENT] IV]]L

[V-COMPLEMENT]]
[I-COMPLEMENT [V-MAXI] [I-COMPLEMENT rV-I\IAX]]
[I-MAX [I-SPEC [N-MAX the girl]] J-MAX FI-COMPLENIENT] JSpEc] 1]]

L L

[I E] [I-COMPLEMENT]]
[C-MAX [C E] [C-MAX [C-COMPLETkIENT [-MA-X] C]

[C-COMPLEMENT [I-MAX]]]

ooo"�, " CINIPON EN, T
CHAPTER 6P.ARSTIVC,

90

Figure 64: State of Parse After Noun Complen-ient Has Been liminated

possibility 'is ruled out imediately because of the one-word lookahead facility escribed in

section 61.

Notice that in figure 63 (a) N-SPEC is 'in the correct position to have the determiner the

attached under it during the next SC'AN step. On te other hand, in figure 63 (b) -SPEC

is not available yet since NCOMPLEMENT is the next open symbol. Again, the closest head (of

category N this time) iust be located in order to determine the expansion of -COMPLEMENT.

Since the noun ashkii (-- boy) is oligatorily intransitive (the LCATE-COMPLEMENTS

function takes care of the intransitive as well as the transitive case), the NCOMPLEMENT symbol

is eliminated and the N-SPEC is now the next open symbol. Figure 64 shows the state of the

parse after 11-COMPLEMENT has been eliminated.

The interface between the Earley parser and the LOCATE-COMPLEMENTS routine is the

GET-LEFT-MOST-DERIVES function in appendix H.I.

During the prediction of complements, citics must be taken into account (if the language

allows citics). This is because in certain languages citics can serve as internal arguments of

a head. For example, in the sentence lo i7i (_ I saw im) te clitic to is actually taking the

place of an internal argument that would normally occur to te right of the verb i1i.

The fnction TAKE-CLITICS-INTO-A(T'OUNT (see appendix F.I.12) has the task of gen-

erating additional complement structures if ctics are allowed to be associated with the head.

These complement structures are ubsets of the original subcategorization frame found by

(a) C as a Non-Lexical Category (B) C as a Lexical Category

[c-MAX [C E] [C-COMPLEMENT]] [C-MAX [C] [C-COMPLEMENTfl-

Figure 65: Structure Built by a Potentially Non-Lexical (category

LOCATE-COMPLEMENTS. For example, the verb pone (put) takes an N-MAX and a

P-MAX; thus, LOCATE-COMPLEMENTS predicts the complement structures U(N-MAX)

(P-MAX)) ((P-MAX) (N-MAWI and TAKE-CLITICS-INTO-ACCOUNT generates the addi-

tional complement structures [INTRANS, ((N-MAX) (P-MAX))]. INTRANS takes care of the case

where citics replace both arguments; (N-MAX) takes care of the case where a ctic replaces

(P-MAX); and (P-MAX) takes care of the case where a clitic replaces (N-MAX). Thus, the full

complement structure to be pushed for the verb poner is: N-MAX) (P-MAW., UP-MAX)

(N-MAX)) , INTRANS , (N-MAX) (P-MAX) . This aows chtics to replace two, one, or none of

the arguments; in addition, if clitic doubling is allowed, the full complement structure and

critics may be used. (The clitic-doubling case 'is checked later by the 0-niodule.)

Recall that the complement structures for certain heads are expanded at precompilation

time; these are the structures associated with heads that are nonlexical (e.g., C and I in both

Spanish and English). When such a complement 'is encountered, it is not always necessary

to predict the complement structure in the same way that the complements for lexical heads

are predicted. On the other hand, a potentially nonlexical head might correspond to a lexical

element (e.g., C could be empty, or it could contain the complementizer that). During the looka-

head stage mentioned in section 6, this possibility is accounted for. CHECK-TERMINALS

(see appendix H.1) adds templates in which the head is allowed to contain a lexical element,

and the default complement is not used. For example, if the template of figure 6.5(a is

passed to CHECK-TER.MINALS, the template of figure 65(b) is generated via UPDATE-

NON-LEXICALXATS. Then at, PUSH te, the LOCATE-COMPLEMENTS function looks

in the input for a word of category C (like that) and pushes for a complement structure cor-

responding to the subcategorization frame of the word, just as if C were an ordinary lexical

category.

1 . CHAPTER 6 RUSENG COMPONENTa"",'-" I - -- 91

CHAPTER 6. 92

6.2.1.2 Associating Complements With Heads

Once a complement structure has been pushed onto a stack, the complements must be as-

sociated with the appropriate head. This te task of PERFORiNI-StTBCATECORIZATION-

CHECK (see appendix F.1.4), which is called at PUSH thne by PUSH-TEMPLATES-ONTO-

STACK (see appendix H.1). This fnction atches complements to their transitive heads, and

establishes the intransitivity of heads without complements.

In a head-initial language, the head will already have been parsed before this subcategoriza-

tion check takes place; thus, the complements inust atch the subcategorization frame stored

in the SUBCATEGORIZATION slot of the head before the complement can be associated with

the head. By contrast, in a head-final language, the complement is associated wth the head

without the atching check.

For example, in parsing the V-MAX of sentences 54) and (55) (our English and Navajo exam-

ples. of the last section), PERFORM-SUBCATEGORIZATION-CHECK occurs (after the verb

is scanned in 54), a-Rd before the verb is scanned in (55). In the first case, the subcategorization

possibilities for see are already in the node:

CAT: v
WORD: see
TENSE: past
THETA-ROLES: [intrans. (goal) (p-goal)]
SUBCATEGORIZATION: [intrans (n) (p)]

Thus, after the -MAX complement is predicted by LOCATE-COMPLEMENTS, PERFORM-

SUBCATEGORIZATION-CHECK ust atch this to one of the elements in the SUBCATE-

GORIZATION slot. -In this case, the (n) entry atches; thus, the SUBCATEGORIZATION

slot is modified to contain W. In the second case, the subcategorization possibilities are

not yet available; thus, when PERFORM-SUBC,'ATECORIZATION-CHECK is executed, the

SUBCATEGORIZATION slot is atomatically updated to contain (n):

CAT: v
WORD: yiyiilt
TENSE: past
THETA-ROLES: nil
SUBCATEGORIZATION: [(n)]

WROM"W"mm---- 11---. I --- -I -I I

'CHAPTER 6. PARSING COATPO..NTENT 93

Once the SUBCATEGORIZATION lot has been filled, the CIL\IPLEMENTS-FILLED slot is

set to T (if it has not already been set).

The function that updates the StTBCATEGORIZATION and COMPLEMENTS-FILLED

slots is ADD-SUBCAT-INFO (see appendix FAA). If a head is determined to be intransi-

tive (i.e., no complements can e pshed), the function MAKE-INTRANTSITIVE (also in ap-

pendix F.1.4) sets the SUBCATEGORIZATION slot to e INTRANS and the COMPLEMENTS-

FILLED slot to be T.

The interface between the Earley parser and PERFORM-SU,,BCATECORIZATION-CHECK

is PUSH-TEMPLATES-ONTO-STACK (in appendix H).

6.2.1.3 Determining Feature Information and Argument Structure of Lexical Heads

At SCAN time, the fnction INSTANTIATE-FEATURES is called to set up the node slots

corresponding to the word that has been scanned. (See appendix F.1.5.) The translation of

the word (in the current source language) is stored i the translation slot, the word is stored

in the word slot, and the features of the word are stored in the PERS, GENDER, NUMBER,

TENSE and the LANGtTAGE-PARTICULAR-FEATtTRES slots of the node. All legal features

of a word ust be included in the FEATURES parameter setting supplied by the user. This

parameter is one of three parameters tat is not part of GB theory, but is specific to the

UNITRAN system. 9

Finally, the function SET-INTERNAL-AND-EXTERNAL-AR.GUMENTS is called to es-

tablish the structure and roles of internal and external arguments. For example, the verb 17io

has the node instantiation 'in figure 66.

The internal and external 0-roles assigned by a lexical element ae retrieved by GET-

SUBCATEGORIZATION and GET-EXTERNAL, respectively. The internal and external

structural realizations are retrieved by GET-CATEGORY-SUBCAT and GET-CATEGORY-

EXTERNAL, respectively. (The structural realizations are determined by the CSR mapping

in appendix F.2.1.) SET-INTERNAL-AND-EXTER-NAL-ARGT-TMENTS uses the values re-

turned by these functions to set up the O-ROLES, EXTERNAL-ROLES, SUBCATEGORIZA-

9The SPLITS-AND-MERGES parameter discussed in section 5.1 as well as the MATCH-LISTS to be dis-
cussed in the next section are also translation parameters that are specific to UNITRAN.

CAT: v
WORD: ver
GENDER: 11il
PERS: p3
NUMBER: sg
TENSE: Past
LANGUAC-,E-PARTICULAR-FEATURES: nil
TRANSLATION: [(see)]
SUBCATEGORIZATION: [intrans (n) (p)]
EXTERNAL-CATS: [(n)]
THETA-ROLES: [intrans (goal inanimate) (p-goal aniniate)]
EXTERNAL-ROLES: [(agent animate)]
COMPLEMENTS-FILLED: t

CHAPTER 6. PARStNG CJAIPOINENT 94

Figure 66: Node Instantiation of Word vio

TION and EXTERNAL-CATS slots of a node.10

Note that the SUBCATEGORIZATION and COMPLEMENTS-FILLED slots are set dur-

ing feature instantiation. This..."is similar to the outcome of the ADD-SUBCAT-INFO and

MAKE-INTRANSITIVE functions discussed in the last section, except that these two slots

are filled at SCAN time instead of PUSH time, and they are filled only if neither ADD-

SUBCAT-INFO nor MAKE-INTR.ANSTTIVE has already filled them (i.e., if the language is a

head-initial language). This is tested by first checking to see if the COMPLEMENTS-FILLED

slot has been set. If it has not been set, the SUBCATEGORIZATION slot is filled and the

COMPLEMENTS-FILLED slot is set; thus, when the complements are later predicted and

associated with the head, the subcategorization frame is updated to reflect the structure of the

predicted complements (as described in the last section). Otherwise, the SUBCATEGORIZA-

TION and COMPLEMENTS-FILLED slots are left unchanged since they already contain the

complement information. (This will be the case in a head-final language.)

The interface between the Earley parser and INSTANTIATE-FEATURES is the

SUBSTITUTE-SCANNED-NODE routine in appendix H.2.

"The LOCATE-COMPLEMENTS function described in section 62.1.1 also uses the GET-CATEGORY-
SUBCAT function to predict complement structures. Thus, the subcategorization information may already
be present in the node (set by ADD-ST-TBCAT-INFO or MAKE-INTRANSITIVE) when INSTANTIATE-
FEATURES is executed. This point wiH be addressed presently.

CHAPTER 6. PARSENG CI�IPOIVEIIVT 9 5

6.2.1.4 Feature Percolation

The PERCOLATE-FEATURES function is called at POP, SCAN and PUSH time. (See

appendixF.I.6.) The purpose of this fnction is to propagate features of elements up to supe-

rior nodes and to test for agreement, between specifier and ead nodes.11 For example, in

the Spanish phrase el libro, the determiner el must match in number and gender with its head

libro. ince both are singular and asculine, feature atching succeeds. Thus, when a word is

scanned, its features are percolated up to its superior node: if the word is in specifier position,

the features are percolated up to the specifier node; if the word is in complement position,

the features are percolated up to the corriplement node; and if the word is in head position,

the features are percolated up to the maxiinal. projection. Propagation to superior nodes is

performed by PROPAGATE-FEATURES (also in appendix F.1.6).

When both- the specifier and head have been completed, the features of the specifier are

tested for agreement against the features.in the niaximal projection. For example, suppose

we are parsing the phrase have eaten. First the word have 'is parsed and attached in specifier

position of NAX at SCIAN time. Then its features are percolated up to the V-SPEC node:

[V-MAX [V-SPEC [pres p sg' 'HAVE-AUX have [pres pi sg]]]
[VI [V-C'OMPLENTENT]]

When aten is scanned, its features are percolated up to the aximal projection:

[V-MAX [perf] [V-SPEC [pres pl sg] [HAVE-AUX have [pres p sg]]]
[V eat [perfl] [V-COMPLEMENT]]

Now that the phrase is completed, feature matching takes place. At this time a translation

parameter, MATCH-LISTS, is accessed to perform agreement testing between the specifier

and maximal projection. Appendix D contains the MATCH-LISTS parameter settings for

Spanish and English. The value of the MATCH-LISTS for the source language is stored in the

*CURRENT-MATCH-LISTS variable. Each match ist follows a keyword corresponding to the

feature being tested. For example, the tense feat-tire has the following match-list in Spanish:

(((PRES PAST FUT) (PERF)))

The format for a niatch-list is:

"The inspiration for this type of feature matching canie from Berwick 1985), p. 75.

CHAPTER, 6. P.-IRSING COMPONEWT 96

Mall a12 alk) 011012 ... 011))

((a2l a22 a2') G321,322 /327-n

((Ctnl a-n2 ... Oni) (13til /n2 8np)))

where each a corresponds to a feature that a specifier ight have, and each,3 corresponds to a

feature a head might have. A valid spec/i-nax match occurs when a specifier has a feature f

and its maximal projection has a feature dg.

Returning to our example, we will follow the steps of the V-SPEC/V-MAX matching. First

the gender of the specifier is Watched against the gender of the V-MAX. Since both are NIL, the

test succeeds. Now the number of the specifier is inatched against the number of the rnaximal.

projection. The specifier feature sg automatically matches the number of the V-MAX (which

is NIL).12

Whenever a match succeeds, the maximal projection is updated to contain a combination

of the atching fatures;` thus, the NUMBER slot of the V-MAX node is updated to contain

the sg feature. The person test proceeds in a similar fashion, that 'is, the specifier feature pl

automatically matches the person feature of the aximal projection; thus, pl is inserted in the

PERS slot of the maximal projection.

Finally, tense matching takes place. According to the match-list associated with the

JENSE keyword, the perf feature of the aximal projection ust atch either a pres,

past, or fut feature in specifier position. Since V-SPEC has the pres feature in its TENSE

slot, the test succeeds, and the pres and perf features are inserted into the TENSE slot of the

maximal projection. The result is the following:

[V-MAX [pres perf p sg]
[V-,SPEC [pres p sgl [HAVE-AUX have [pres pi sg1fl
IV eat [perf]] [V-COMPLEMENT]]

The function that performs spec/max agreement 'is CHECK-SPEC-NIAX-AGREEMENT;

this function calls CHE('K-AGREEMENT, which performs feature matching. Feature combin-

12 The auxiliary have could be analyzed as any of pi sgl p p Ep2 sgl, [p2 p, or [p3 pi]. However,

only the [pi sgl analysis is being shown here.

13 Also, if the specifier has no agreement features, the agreement features of the max are copied to the specifier

node. For example, the parse [I-MAX [e [pro] I [ver pi sg past] I (corresponding to the sentence vi = I saw)

contains a pro in specifier position with no features. However, the head I has tense and agreement features;

thus, when sec/max agreement is tested, the p sgl features are copied to the pro node. This forces pro to

be translated as I in English. We have already seen an example of this agreement feature copying in the parsing

example of chapter 4.

--- p - - - ,-

CHAPTER, 6 PARSING C11PONEINT 91'

ing is performed by CHECK-MATCH-LIST, and spec /niax updating is performed by UPDATE-

MAX-AND-SPEC. Appendix F. 6 contains all of tese agreement-checking fnctions.

Feature percolation occurs at te completion of a phrase (POP) ad after analyzing a word

(SCAN). Thus, two functions serve as an iterface between the Earley parser and PERCOLATE-

FEATURES: DROP-INTO-NEXT-LOWER (in appendix H.3) and SUBSTITUTE-SCANNED-

NODE (in appendix 11.2). In addition, PERCOLATE-FEATURES is called at PSH time

(indirectly) when a trace is predicted. The fnction CHECK-TRACE-LINKS, which is part

of the Bounding module, requires feature percolation to take place because the trace that is

predicted night be the head of a phrase. In sch a case, the features of the trace are perco-

lated up to the maximal projection just as if the trace were a lexical head. For example, the

phenomenon of V-preposing leaves a trace behind in te head position of a V-MAX:

J-MAX
[V a tns agr]]

-MAX ... [V-MAX [V e]- [V-COMPLEMENTI]]]
J 11

ContinuiAg with our example, first the features [tns agrl of the preposed verb V a]

are associated with the trace V el and then during feature percolation these features are

percolated up to the V-MAX:

J-MAX
[V a tns agr]]i
[I-MAX... [V-MAX [tns agr] [V e [tns agrJJ- [V-C'OMPLEMENT]]]]

The final feature percolation routine that is used is PERCOLATE-TENSE-AND-AGR (see

appendix F.1.6). This function is called at POP time (by DROP-INTO-NEXT-LOWER.) If

the completed item is V-MAX, its features are propagated up to the dominating nfl) node.

for example, if the phrase have aten (from our last example) were part of the larger phrase I

have eaten, the stack would appear as follows upon completion of have eaten:

[V-MAX [pres perf pl sg]
[V-SPEC [HAVE-AUX have]] [V eat] [V-COMPLEMENTI]

[I-MAX [I-SPEC [N-MAX rpl sg] [N 11]]
E] [COMPLENIENT [V-MAX]J]

The tense [pres perf I and agreement ([pi sg) information associated with V-MAX is

propagated to the I(nfl) node in the second stack element:

CI-TAPTER'6 98

[V-MAX [pres perf pl sg]
[V-SPEC [HAVE-AUX have'] [V eat] [V-C0'TVfPLEMENTJ]

J-MAX [I-SPEC [N-MAX p sgJ[N 111]11
[pres perf p sg]l `T-CWXIPLEAJENT [V-MAX]fl

After the stack is popped (on the next call to DROP-INTO-NEXT-LOWER), feature per-

colation takes place:

[1-TVIAX [pres perf p sg]
[I-SPEC [N-AIAX p so,] [N II]]

E [pres perf pi sg]]
[I-COMPLEMENT

[V-MAX [pres perf p sgJ
[V-SPEC [HAVE-AUX have]]
[V eat] [V-C0MPLEMENT]JJJ

The spec/max. matching succeeds since the agreement features of N-MAX [pi sgl niatch

the agreement features of I-MAX. Note tat the tense features automatically inatch (since

N�-MAX has no tense features), and the gender features also automatically atch (since neither

the specifier nor the maximal projection have gender features).

6.2.2 Module

The module is accessed at POP thne by DROP-INTO-NEXT-LOWER. (in appendix H.3).

The reason POP time is convenient for 0-role assignment is that all, arguments of the phrase are

complete; thus, they are ready to receive internal and external 0-roles. The tasks this odule

is responsible for are 0-role assignment (subject to feature requirements and the Visibility

Condition), 0-role transmission (for antecedents and ctics), and -Criterion checking. The

following sections discuss these three tasks.

6.2.2.1 -Role Assignment

At the completion of a phrase, it is necessary for 0-role assignment to take place. 0-roles are

assigned both internally and externally to arguments. For example, the phrase ga h a book

is parsed as:

[V-MAX [past]
[V give]
[V-COMPLEMENT

[N-MAX [N him]]

104011%, [N-MAX [N-SPEC [DET a [N ook]]]]

CHAPTER 6. RRSING C A T 99

The verb gave assigns an internal 0role of paticrit to him, and goal to a book. If this phrase

were part of a larger phrase I gave him a book, the structure would e:

[I-MAX [past pl sgj
[I-SPEC [N-MAX p sg] [N Ifl]

[I E [past pi sgil
[I-COMPLEMENT

[V-MAX [past]
[V give]
[V-COMPLEXIENT

[N-T\,TAX [N him]]
[N-MAX [N-SPEC [DET a [N book]flfl]

Here give assigns an external 0-role of agent to I.

The internal and external 0-roles assigned by give are stored in the THETA-ROLES and

EXTERNAL-ROLES slots, respectively. Recall that INSTANTIATE-FEATURES fills this

slot when an assigner is scanned.) When the V-MkX node is complete, internal 0-roles are

assi ned to hi�m and a bok- and when the I-MkX node is complete, external 0-role is assigned

to I.

The function that performs 0-role assignment is PERFORTN1-THETA-ASSIGNMENT (see

appendix F.2.2). This function takes a phrase (the completed top-of stack element) and deter-

mines the 0-roles to be assigned externally to its specifier, and internally to its complement.

Thus, two 0-role assignments take place: the first is by an assigner in a lower phrase to elements

in specifier position; and the second is by the head of the phrase to elements in complement

position.

The function ASSIGN-TO-AR.G takes an assigner ode and performs both types of -

role asignment: first it determines the assignees that are to receive 0-roles; then it calls

ASSIGN-THETA to discharge 0-roles from the assigner node to the assignee nodes. ASSIGN-

THETA first checks if the features associated with the roles to be assigned atch the features

of the assignee node; then it checks the Visibility Condition (i.e., it ensures that arguments

are assigned case); finally it discharges 0-roles to arguments. Both ASSIGN-TO-ARG and

ASSIGN-THETA are in appendix F.2.2.

As an example, suppose the completed prase I am, is being popped. The structure of te

completed phrase is:

CHAPTER 6. PARSEIVG C0111PONENT 100

J-MAX [past p sg]
[I-SPEC [N-MAX [pi sg] [N
[I E [past pi sgj]
[I-COMPLEMENT [V-MAX [past] [V see]]]]

The head of the I-MAX phrase, I, has no 0-roles. to discharge (since it does not contain a

lexical element)-, thus, I-COMPLEMENT does not receive a 0-role. However, I-SPEC contains a

noun phrase; thus, it niust, receive. 0-role externally. PERFORM-THETA-ASSIGNMENT calls

FIND-SPEC-ASSIGNER-NODE to search for the head of the phrase in complement position;

this node is then used as the assigner for specifier position. In our example, the V node

corresponding to the verb see is established as an external role assigner since it contains Eagent

animate] in its EXTERNAL-ROLES slot. ASSIGN-TO-ARG passes the assignee [N-MAX EN

I]] and assigner [V see] down to ASSIGN-THETA, which then checks that the animate

feature associated with the agent 0-role matches the features associated with the assignee

node. Since EN-MAX EN I]] has an animate feature arking, feature-niatching succeeds.

Now the Visibility Condition is checked (see CHECK-VISIBILITY-CONDITION in ap-

pendix F.2.2). Since nominative case as been assigned to [N-MAX N I]], the Visibility

Condition is satisfied and 0-role assignment takes place. The final instantiation of the N-MAX

node containing EN I] is:

CAT: n
NUMBER: sg
LANGUAGE-PARTICULAR-FEATT-TRES: animate
CASE: nom
ROLE: agent

The interface between the Earley parser and the 0-role assignment routines is DROP-INTO-

NEXT-LOWER (in appendix H.3).

6.2.2.2 -Role Tran'mission

Once a 0-role has been assigned to an argument, 0-role transmission ust take place (to ensure

that antecedents of the assigned argunient also receive 0-role). For example, in the sentence

hei seems e- to eat a lot, the trace e receives external 0-role from the assigner eat, and the an-

tecedent receives 0-role via 0-role transmission. Note that in order to receive 0-role from eat, ej

CHAPTER 6. PARSING COAIPOINENT 101

must already he assigned case so that Visibility ('ondition is satisfied. This requirement is sat-

isfied since hei transmits case to e-." Te function TRANSMIT-ROLE-TO-ANTECEDENT

performs 0-role transmission for trace-antecedent pairs.

In addition to 0-role transmission from trace to atecedent, there is clitic/N-MAX 0-role

transmission. If the *CLITIC-THETA-TRANSMIT variable is T tis variable corresponds

to the CLITIC-DOUBLING parameter of 0-theory), then 0-transmission applies. The func-

tion THETA-TRANSMIT (in appendix F.2.3) tests that the *CLITIC-THETA-TRANSMIT

variable is T and that the N-MAX ode to which, is to be transmitted has case; it then calls

TRANSMIT-THETA-FROM-CLITIC (also in appendix F.2.3) which performs the 0-role trans-

mission. This function locates candidate citics for 0-role transmission; when it finds a clitic

that has been assigned case and 0-role (FIND-CLITICS-WITH-CASE-AND-ROLE), then the

role of the clitic is assigned to the N-MAX node. Note that the clitic must first receive 0-role (by

virtue of its position) from an internal 0-role assigner. For example, suppose the sentence lo i�i

a e'I I saw him) is being parsed. The structure of this is:

J-MAX [past p sgJ
[I-SPEC [N-MAX e [pro p sgJ]J
J E [past p sg]]

[I-COMPLEMENT
[V-MAX [past pi sg]

[V [CL lo [p3 sg animate masc obj]] [V ver]]
[V-COMPLEMENT

[P-MAX [P a]
[P-COMPLEMENT

[N-MAX [p3 sg animate masc obj] e'llflfl]]

Prior to assignment of 0-roles, the clitic lo is assigned objective case b the verb veri and

the K-MAX 'l is assigned ojective case by the preposition a. When ASSIGN-TO-ARG is called,

all internal arguments of the verb ver are located via LOCATE-SPEC-OR-COMP. If the clitic

to were not present, the only arguinent that would be found is l and 0-role assignment would

fol.low directly. However, both arguments lo and l are found, and ASSIGN-THETA has the

task of assigning 0-role to these arguments. Recall that the internal argument structure of ver

4Case transmission will be discussed in section 69.4.

"Note that 0-role transn-lission always goes from trace to antecedent (not vice-versa) because the trace is in a
D-structure position to which 0-role is assigned automatically. By contrast, case transmission may occur either
front trace to antecedent or from antecedent to trace.

CI APTER 6. 102

is: ((p-goal- animate))J16 i.e., there, is only one 0-role that can be assigned. This 0-role is

assigned to lo which is- given first priority since it asorbs s-government. (See section 34.2 for

a description of s-government.) Thus, lo gets assigned a 0-role of goal, leaving el unassigned
1-

for the tirne being.

When the -Criterion is checked, TRANSMTT-THETA is applied to the unassigned N-MAX

el. Since the CLITIC-DOUBLIN(- parameter 'is set to T for Spanish and the -MAX has

been assigned case, the TRANSMIT-THETA-FIR.OM-CLITIC procedure is called so that the

0-transmission rule:

[CL casei Oj] ... [NP +case-] t [CL case- 0-] ... [NP casei +0jJ

7 1 3

can fire. The only clitic that has features compatible with el is to. Thus, the role of 10 'is copied

to the ROLE slot of the N-MAX containing l. The final result is:

[I-MAX [past p sg]
J-SPEC [N-MAX e [pro p sgl]]
J E [past p sg]]

[I-COMPLEMENT
[V-MAX [past pi sg]

[V [CL lo [p3 sg aniniate masc obj goal]] [V verfl
[V-COMPLEMENT

[P-MAX [P a]
[P-COMPLEMENT

[N-MAX [p3 sg animate masc obj goal] e`l]]JflJ]

6.2.2.3 -Criterion Checking

The function CHECK-THETA-CRITERION is called if the phrase contains no 0-role assigners

or if it contains no 0-role assignees. In the first case, the phrase must be checked for argumentsI

that are not 0-marked, and the parse is rejected if any are found; and in the second case,

the phrase ust be checked for assigners that have not discharged their 0-roles, and the -arse

is rejected if any are found. Thus, CHECK-THETA-CRITERION iterates through possible

assignees, checking that they are assigned 0-role, or that they can be assigned a 0-role via 0-role

transmission. (THETA-VIOLATTON passes control to the 0-transinission routines described

6p-goal is a goal that is realized as PMAX instead of N-MAX.
"'The p-goal 0-role gets turned into the goal 0-role by a procedure that is not described here. In a nutshell,

this procedure removes the p- prefix, and ten allows goal to be assigned to a noun phrase dmdnated by a P
node during 0-role assignment.

?along", (WAPTE 6 103

in the last section.) 'Then CHECK-THETA-CRITERION chect-s that the assigner has no

undischarged 0-roles. If there are any nassigned arguments or undischarged 0-roles, CHECK-

THETA-CRITERION is called. All of the O-Criterion functions are in appendix F.2.4.

6.2.3 Government Module

There are two tasks associated with the Government module: the first is to set up government

relations between phrases in a stack; and the second is to test for government of a node. The

first of these two tasks is performed at. POP time (invoked by DROP-INTO-NEXT-LOWER in

appendix H.3) and also during 0-role transmission (invoked by TRANSI,\41T-THETA-FROM-

CLITIC in appendix F.2.3); the second task is performed upon request by the , Case, and

Trace modules. Each of these two tasks will be described in more detailin the following sections.

6.2.3.1 Setting up Government Relations

All phrases of a stack must encode c-government, s-government, and proper-government rela-

tions I will now cover how each of these relations is established in turn. (The functions that

establish these relations are in appendix F.3-1.)

SET-UP-GOVERNMENT calls FIND-GOVERNORS to examine each stack item, and set

up government relations as follows:

Step 1 aows complements, specifiers, and adjuncts to be governed by the head of a phrase.

Step 2 recursively sets up government relations on each phrase within the phrase.

I -� .Tor example, during the parse of the phrase yo le di libros (- I gam him books), the

following structure is set up:

CHAPTER'6. PARSING COAIPONENT 104

[I-MAX [past p sgJ
[I-SPEC [N-MAX p sgJ [N yofl]

E [past pi sg1J
[I-COMPLEMENT

[V-MAX [past pi sgJ
[Vi [CL le [p3 sg obj animate]] [V2 darfl
[V-COMPLEMENT [N-MAX2 [pl mascl [N librosflJfl]

When the phrase is popped, the government relations are set up as follows:

1. I-MAX has ahead I that governs the specifier EN-MAX, EN yol , and
the complement EV-MAX [V ECL le] EV darl [N-MAX2 librosIll.

2. N-MAX, has a head EN yol that does not have a specifier or a
complement; thus, Eli yol does not govern anything.

3. V-MAX has a head EV, [CL le] V2 darl I that governs its
complement [N-MAX2 libros].

4. V, has a head V2 darl that governs an adjoined clitic, ECL le].
5. N-MAX2 has a head- N libros] that does not havea specifier

or a complement; thus, [N libros] does not govern anything.
I

The government relations set up by the procedure outlined above are strictly c-government

relations. That is, these relations are set up by calling the dispatching function SET-

GOVERNORS, which then cafls SET-C-GOVERNORS. The c-government relation is estab-

lished between a head and its specifiers, complements, and minimally adjoined elements. Note

that the node must be a governor before it can be allowed to c-govern something. The function

GOVERNOR? tests that this condition is satisfied. The *CURRENT-GOVERNORS variable

contains the list of governors set by the GOVERNORS parameter. In order to be a governor,

the node ust fulfill one of two requirements: either the category of the node ust occur in

the *CURRENT-GOVERNORS variable (i.e., the category is lexical); or AGR must occur in

the *CURRENT-GOVERNORS variable and the node must be an I(nfl) node with agreement

features.

SET-S-GOVERNORS establishes the s-governnient relation between a head and those c-

governed nodes that can be uniquely paired with the 0-roles assigned by the head. For example,

in the il-l-formed sentence *lo i7in�os Giulle (_ we (him) saw Guille), lo gets paired up with

the goal 0-role and thus is s-governed by i7imos. This leaves Guffle without case since it is not

s-governed; thus, the sentence is ruled out by the -Criterion (since 0-role cannot be assigned

to an element that is not case-niarked). On the other hand, lo vimos a Gitille (_ we (hira) saw

CHAPTER 6 PARSING CA11POINENT 105

(to) Guille) is well-formed because lo receives case from vimos, Guille receives case from a, and

0-role is transmitted from lo to Guille (thus satisfying the -Criterion). UNIQUE-PAIRING

deterinines the nodes that are s-governed by a head. Note that citics absorb sgovernment; that

is, they are given first priority during the matching between 0-roles and c-governed elements.

PUT-CLITICS-FIRST prioritizes noun phrases so that citics are first in line during the unique

pairing process.

During the 0-role/NP pairing, features of the 0-role are tested for agreement against the

features of the NP. For example, in the sentence le di el libro (_ I gave him the book), the verb

di s-governs both the clitic le and the complement el lib-ro; the clitic le is matched to the role

Patient animate since the le has the animate feature, and the no-un phrase el libm is atched to

the role goal. However, this atching of 0-roles to noun phrases could not be reversed because

el libro does not have animate features.

The third type of government configuration that is established is proper-government. SET-

PROPER-GOVERNORS first checks to see f ahead node can be aproper governor by calling

PROPER-GOVERNOR? In order to be a proper governor, the category of the node must be in

the *CURRENT-GOVERNORS variable, or if the node is I with agreement features, *AGR-

RICH ust be T. (*AGR-RICH is the variable associated with the PRO-DROP parameter.)

For example, the parse structure for the sentence vio (he, ,;her saw) is as follows:

[I-MAX [past p3 sg]
[I-SPEC [N-MAX e [profl]
[I E [past p3 sg]]
[I-COMPLEMENT [V-MAX [past p3 sg] [V ver1fl]

In this structure there is a proper-government relation between nfl) and po (i.e., [I [past

p3 sg I properly governs Pro) since Spanish is a pro-drop language.

In addition to proper government by the head of a phrase, an element can be properly

governed by an antecedent. However, this type of proper-government is not set up at POP

time; rather, antecedent-government is included in the proper-government test (to be discussed

in the next section) so that it is checked only upon request by the trace module.

CHAPTER 6. PARSENG CATP01YENT 106

6.2.3-.2 Tests for Government Relations

All tests for government of a node are in appendix F.3.2. The predicates CGOVERNED?

and SGOVERNED? are used by the and Case odules. Both these predicates return the

nodes that govern the node in question. CGOVERNED? is sed (by TRANSMIT-THETA-

FROM-CLITIC in appendix F.2.3) to test tat a clitic. and N-MAX are not governed by the

same head (since this would ean objective case is being assigned twice an ipossibility due

to absorption of s-government by the clitic). Both SGOVERNED? and CGOVERNED? are

used (by ASSIGN-CASE in appendix FA) to assign case.

The PROPER- GOVERNED? predicate 'is used by the trace module (ECP in appendix F.5)

and is slightly more complicated than the first two government predicates. Proper government

of a node holds if any of the following conditions are satisfied:

1. The node is not a trace.
2. The node has a proper governor determine by

SET-PROPER-GOVERNORS as described i the last section).
3. The node is anteci�dent-governed by a c-conmianding NP.
4. Chain conditions are satisfied.

Suppose we have the sentence who do yoit think ate dinner?. This parses into the following

structure:

[C-MAX
[C-SPEC [N-MAX who]i] C E]
[I-MAX [DO-AUX do]

[I-MAX [N-MAX you]
[V-MAX [V think]

[C-MAX
[C-SPEC [N-MAX
[I-NIAX [N-MAX

[V-MAX [V ate] [N-MAX [N dinnerfl]fl]flfl

Table 64 shows how the elements of the chain (Who, C', C are properly governed.

The fourth condition is checked by the function CHAIN-CONDTTTONS-SATISFIED? which

determines whether all elements of a chain containing a node are c-governed. This test can

only be made if the *CHAIN-CONDITIONS variable is set to T. (This variable corresponds

to the setting of the UP parameter). The conditions are satisfied for a trace node if: the

node is c-governed a antecedents of the node are c-governed; and all traces of the node are

-CHAPTER 6. PARSING COAIPONE� 107

Function Call Condition atisfied

PROPER-GOVER-NED?([N-TMAX Who]j Condition 1: ot a trace
PROPER.-GOVERNEWQN-XIAX e- Condition 2 lexically governed by think

PROPER-GOVERNEWQN-MAX "ji) Condition 3 antecedent-governed by
[N-MAX ell-

Table 64: Proper Government of Elements in Chain (Who, e', e)

c-governed. For example, the structure of the Spanish sentence que vzo what did fhe, shel

see) is the following:

C- MAX
[C-SPEC[N-MAX queli] [C E]
[I-MAX [V verjj

J-MAX [N-MAX e pro]]
[I E pres p3 sg]]
LV-MAX [V el [N-MAX e]il]]]

The, call PROPER-GOVERNED?([N-MAX el) returns T snce EN-MAX el is c-governed by V

e] and [N-NIAX quel is governed by C tus satisfying the fourth condition.

6.2.4 Case Module

All case assignment functions are in apendix FA. Case assignment is performed at POP

time. Because a phrase has just been completed, this is the ost convenient time to perform

case assignment: the completed head is now free to assign case to its completed specifier

and omplement. The fnction PERFORM-CASE-ASSIGNMENT locates assignee/assigner

pairs in the top-of-stack element. Each assignee/assigner pair is passed to the ASSIGN-CASE

function, which accesses the CASE-ASSIGNMENT parameter to determine the conditions

..- under which case-,is..assigned. (The setting of this parameter is stored in the CURRENT-

CASE-ASSIGNMENT variable.)

First ASSIGN-CASE determines the assignment-rule corresponding to the assigner node;

once this has been detern-tined, te condition associated with the rule ust be satisfied. For

example, if the assignment rule is S-GOVERNS, then the assigner must s-govern the assignee

in order for case to be assigned. Since the.assignee node might have inherent case features

(e.g., I has an inherent nominative case feature), the case to be assigned ust be matched for

--- . I I I

""CHAPTER'6. RRSING C01WPO..,VENT 108

agreement with he case-of the assignee node. If this test fails, the CIASE-MISMATCH function

signals a case mismatch error. Otherwise, case is assigned according to the case required by

the assignment rule.

Once case has been assigned, TRANSMIT-CASE-TO-TRAC'E-OR-ANTECEDENT per-

fornis case transirAssion to traces and antecedents of the assignee node. For example, the

structure of the sentence what did he see is:

[C-MAX

[C-SPEC [N-TN,1AX what]d [C E]
J-MAX [DO-AUX (lo [p3 sg past]]

[T-MAX [N-1%,1AX he] [V-T\,1AX [V see] FN-MAX e]-flfl
L 2-

The trace EN-MAX el is assigned objective case y the verb V see]; this case is then trans-

mitted to the antecedent EN-MAX what],-,.

Case transirLission occurs for oved oun phrases as well as moved Wh-phrases. For exam-

ple, the structure of te sentence he sems to be happy is:

[C-MAX

[C SPEC',
[I-MAX [N-MAX he]

J E [pres. p3 sgJ]
[V-MAX [V seenis]

X1A X
[I-NIAX [N-MAX e]

to] [V-MAX be happy]flflfl

Here, I E [pres. p3 sg I assigns nominative case to he; the case is then transmitted to the

trace [N-MAX el i.

Note the contrast between case transmission, which operates from antecedent to trace or

from trace to antecedent, and 0-role transinission, which operates only from trace to antecedent.

Intuitively, this asymmetry -is understandable since arguments in D-structure position always

bear 0-roles, but do not always have case; thus, when an argument is oved, it receives 0-role,

but not necessarily case, from the trace it leaves behind.

During case transmission, an error may occur most likely de to an incorrect linking of a

trace to an antecedent). For examples suppose the sentence que iiio is parsed as:

CHAPTER 6. PARSING CO,WPONENT 109

[C-MAX
[C-SPEC [N-11VIAX que]l El
[I-MAX [V ver]

[I-MAX [N-MAX e [profl
[pres p3 sg]] [V-MAX [V e]j [N-MAX e-flfl

During case assignment, EN-MAX el receives ob ective case (from EV el). However, transmis-

sion of this case to the alleged antecedent [N-MAX e [pro] will result in an error since [N-MAX

e [pro] has already been assigned nominative case by [I E pres p3 sgl I. If case trans-

mission fails, the TRANSMISSION-ERROR function signals a case transirtission error and the

parse is rejected.

DROP-INTO-NEXT-LOWER, in appendix H.3, interfaces between the Earley parser and

the Case module.

6.2.5 Trace Module

The trace module consists of the single function ECP (see appendix F.5) accessed at POP time

by DROP-INTO-NEXT-LOWER (in appendix H3). ECP is called after government relations

(in particular, proper-governinent relations) have been established. ecall that all empty cat-

egories except PRO must be properly governed. In particular, PRO 1-nust be ngoverned, and

traces and po nust be properly governed. Thus, ECP operates as follows:

1. If the node is PRO, then 'if it is c-governed, reject the parse.

2. If the node is trace, then if it 'is not properly governed, reject the parse.
3. If the node is pro, then if it is not governed by AR, reject the parse.

4. Otherwise, accept. the parse.

Table 65 shows the result of applying ECP to several types of phrases.

6.2.6 Binding Module

The Binding module is accessed at POP time, first to determine A and A positions, and then

to check binding conditions. The interface between the Earley parser and the Binding odule

is te DROP-INTO-NEXT-LOWER fnction in appendix H.3.

Phra.se 0,0come of Applying ECT
I believe hi PO to be happy none
I believe hi PO is happy PRO is c-governed (by [I tns])

Who do you think c'i e caine none
Whoi do you think '- that e- came e"i is not properly governed

ZQuiei-4 piensas t e',- que ci vino? none
ZQue.,, vio- pro v ei? none

zQue,,, Vo c - V - pro? pro is not governed by AGR

110� -., CHAPTER 6 PARSING COMPONENT

Table 65: Effect of ECP Application

6.2.6.1 Determining A and A Positions

The function SET-A-AND-A-BAR-POSITIONS (in appendix F.6) is called on each phrase of

a stack at POP firne. This function operates as follows:

�k

1. Locate all nodes in A-positions (by calling FND-A-POSITIONS)
and set the A-POSITION? slot of each of these to T.

2. Locate all nodes in A-positims (by -calling FIND-A-POSITIONS I
and set the A-POSITION? slot of each of these to T.

3. Examine each elenient in the phrase:
(a) If the element is in specifier or complement position,

SET-A-AND-A-BAR-POSITIONS is called on the element.
(b) If the element is minimally or maximally adjoined,

SET-A-AND-A-BAR-POSITIONS is called on the element.

Sorne examples of A-positions are I-SPEC and VCOMPLEMENT. Some examples of A-positions

are C-SPEC, I-COMPLEMENT, and all adjunct positions. The way A and A positions are dis-

tinguished is as follows: A-positions are those positions where 0-role could be assigned at

D-structure regardless of the choice of lexical element in head position. All I-SPEC and

V-COMPLEMENT positions are A-positions since verbs assign internal and external 0-roles by

contrast, (nfl) does not assign internal and external 0-roles, so C-SPEC and I-COMPLEMENT are

A-positions.

6.2.6.2 Checking Bnding Conditions

The function CHECK-BINDING-CONDITIONS (in appendix F.6) applies binding conditions,

only as they apply at surface structure. That is, binding conditions are applied in the context

A-C'hain (hc,-, i)
<NODE NP#1,>

CAT: n

WORD: he
GENDER,: masc
PERS: p3
NUMBER: sg
CASE: nom
ROLE: agent
TRACE: nil

ANTECEDENT I <np#2>
<NODE NP#2->

CAT: n

WORD: n-max-trace
GENDER,: 111asc

PERS: p3
NUMBER: sg
CASE: nom
ROLE: agent
TRACE:
ANTECEDENT: nil

A-C'hain (ulhak, ei)
<NODE NP#3>

CAT: n
WORD: what
GENDER,: neut
PERS: p3
NUMBER,: sg
CASE: obj
ROLE: goal
TRACE.- nil
ANTECEDENT I <np#4>

<NODE NP-#4>
CAT: n
WORD: n-max-trace
GENDER: neut
PER.S: p3
NUMBER.: sg
CASE: obj
ROLE: goal
TRACE: <np#3>

ANTECEDENT:- I nil

I I

CHAPTER 6. � PARSING CINTPO.VENT ill

Table 6: Nodes Corresponding to A an A Chains

of antecedent-trace relations (c.g., what-le. in wha4- did he see e), not in the context of

referential dependencies (e.g., he-/himselfi in hei saw himselfi). Thus, CHECK-BINDING-

CONDITIONS first checks that each anaphoric trace 'is A-bound in its governing category, and

that each referential trace is A-bound. These two cases cover sentences like 56) and 57),

respectively.

(56) He,- seems e- to be happy.

(5 71) What was he doing eq-?.

In 56), e- is A-bound in the domain of its sub'ect (he-). In 57), e. is A-bound (by whati).

The nodes in the chains corresponding to 56) and 57) are in table 66.

The functions ANAPHORIC? and REFERENTIAL? determine whether an NP is anaphoric

or referential by testing whether the Wh feature is associated with the node. (Anaphoric traces

CHAPTER 6.- PARSIJ 112

do not have the wh feature, and referential traces do have the ulh feature.) Note that traces

must already be linked to antecedents before binding conditions can be checked.

6.2.7 Bounding Module

The Bounding odule is accessed both at PUSH ad at POP time. The interface between the

Earley parser and this module is PSH-TEMPLATES-ONTO-STACK (see appendix H.1) and

DROP-INTO-NEXT-LOWER (see appendix H.3). When a trace is pushed onto the stack, it

must be linked to an antecedent that is not too far auay. In the case of rightward movement, the

trace ay remain unlinked until its dominating aximal rojection has been completed. Thus,

at POP time, the Bounding module is accessed again to link unlinked traces to antecedents.

The Bounding module is also accessed at POP time to ensure that certain language-specific

movement requirements are fulfilled. The next two sections describe the PSH and POP

trace inking operations, and the third section describes the language-specific ovement effect

routines.

6.2.7.1 Trace Linking at PUSH Time

The function CHECK-TRACE-LINKS is 'Invoked at PITSH time. Recall that trace possibilities

are included in the phrase structure templates generated at precompilation time. Thus, when

the structure-building component pushes a template onto the stack, the template ay contain

a trace which needs to be linked with 'Its antecedent. The function CHECK-TRACE-LINKS

performs the trace-antecedent linking when this is the case. The template that is being added

to the stack is searched (by SEA., RCH-TRACE); if there is a trace (there will be at most

one unlinked trace at PSH time), the possible antecedents are located (by FIND-TRACE-

ANTECEDENTS) and the features of -the stack element containing the trace are percolated

(by PERCOLATE-FEATURES)."

The FIND-TRACE-ANTECEDENTS routine returns all possibilities for antecedents of a

trace. For example, the structure corresponding to the sentence qua vo is:

'8 An example of how the trace linking and feature percolation actions interact was given in section 62.1.4.

(a) Trace Linked with qu' (b) Trace Linked with o

[C-MAX [C-MAX
[C-SPEC [N-MAX que'li] [C E] [C-SPEC [N-MAX que'l] [C E]
[I-MAX [V ver] [I-MAX [V ver]j

[I-MAX [N-MAX e [profl J-MAX [N-MAX e [profli
[I E [past p3 sg]] [I E [past p3 sgj]
[V-MAX [V e]j [V-MAX [V e]
[N-MAX e] [N-MAX e]-flfl

'CHAPTER 6. "PARSING C01111PONENT 113

[C-MAX
[C-SPEC [N-MAX. quefl [C El
J-MAX [V ver]j

J-MAX [N-MAX. e [profl [I E [past p3 sg]] [V-MAX [V e] [N-MAX e]]]]]

If we are parsing the final trace in this structure, FIND-TR.ACE-ANTECEDENTS returns two

antecedent possibilities: EN-MAX quell and [N-MAX e [pro] Thus, CHECK-TRACE-LINKS

returns the two structures shown in figure 67.

Figure 67: Two Trace Linking Possibilities �1,

Part of the trace-linking procedure 'includes transmission of node-slot values from antecedent

to trace. Thus, case and O-role values of the antecedent are copied to the trace. In the case of

figure 67(a), the antecedent has no case or O-role. Thus, the trace is left open for case and O-role

assignment later on. (The verbal element EV el , which receives its case and O-role assigning

properties from its antecedent vioj, will assign case and O-role to tis position.) In the case

of figure 6.7(b), the trace receives agent O-role and nominative case from its antecedent; this

parse will be ruled out later by the case module, which will attempt to assign objective case

(from the assigner [V el to an N-MAX that already has nominative case.

If FIND-TRACE-ANTECEDENTS returns FAILURE, then one of two possibilities are

available: either the antecedent has -not yet been seen (e.g., in rightward movement); or there is

no antecedent possibility. The function ANTEC,'EDENT-NOT-BEYOND-BOUNDING-NODE

checks to see which one of these cases applies. For example, in the case of free inversion, a

trace is predicted before its antecedent has been seen:

J-MAX I-SPEC, [N-MAX efl [I El '1-COMPLE1\1ENT [V-MAXIE
[C-MAX I-MAX]]

Figure 68: Prediction of Trace of Free Inversion

A-MAX -SPEC [N-MAX efl [11 [I-COMPLEMENT]]
[V-MAX [V wonder] [C-MAX [C-SPEC whether] [I-MAX]]]
J-MAX did [I-MAX -SPEC [N-MAX John]] I El COMPLEMENT [V-MAXfl]j

[C-MAX [C-SPEC who] [I-MAX!]

Figure 69: Stack with Trace Whose Antecedent is "Too Far Away"

[C-MAX
J-MAX [N-MAX e]i

[I e [past p3 sg]]
[I-COMPLEMENT

[V-MAX. [V-MAX'V verl] [N-MAX Juan].flfl

Here, the trace -MAX el has been left behind by rightward movement of the EN-MAX Juan] j;

thus, when [N-MAX el is predicted, it ust e determined that a position containing the an-

tecedent is still a possibility. Figure 68 shows the state of the stack after e has been pre-

dicted. ANTECEDENT-NOT-BEYOND-BOUNDING-NODE iterates through stack elements

counting bounding nodes to determine if there is an unexpanded symbol less than two bound-

ing nodes away frorn the trace. (The bounding nodes for the current language are stored in

*(ItTRRENT-BOTTNDING-NODES.) Since VMAX has not been expanded in figure 68, there

is stil a possibility that an antecedent will be found; thus, ANTECEDENT-NOT-BEYOND-

BOUNDING-NODE returns T, and the trace is left unlinked.

By contrast, the sentence who- did john wonder whether ei went ho-me is ruled out by

CHECK-TRACE-LINKS because the antecedent who- is "too far away" (i.e., beyond 2 bound-

ing odes) from the trace ei. Figure 69 shows the state of the stack after the trace has been

predicted for this sentence. The English bounding nodes are -MAX and CMAX (as specified

-by the BUNDING-NODES parameter settin). Since there are two C-MAX nodes intervening

between the EN-MAX el in the top-of-stack elements and the [C-SPEC who] in the fourth stack

element, who cannot be the antecedent for the trace. Thus, FIND-TRACE-ANTECEDENTS

-- CHAPTER 6" PARSING COMPONENT 114

-

CHAPTER 6_PARS1!VG C,MPONE.17VT 115

returns AILURE, and when ANTECIEDENT-NOT-BEYOND-BOT-TNDINC-NODE is called,

there are no uexpanded symbols less than two bounding nodes away from [N-MAX e]. Conse-

quently, ANTECEDENT-NOT-BEYOND-BOUNDING-NODE returns NIL, and the parse is

rejected. 19

The following section describes trace-antecedent linking in the case where an antecedent is

encountered after the trace has been parsed.

6.2.7.2 Trace Linking at POP Time

When a trace has been left unlinked at PUSH time, it ust be linked to its antecedent later.

The FIND-AND-LINK-TRACES routine (in appendix F.7.2) performs trace-antecedent linking

at POP time. This routine is similar to the CHECK-TRACE-LINKS function except that there

may be more than one unlinked trace to be processed. This is because repeated calls to PUSH

may have left ore than one unlinked trace (from potential rightward movement) in the stack.

Each trace ust be linked up to all of its possible antecedents, and all possible trace-linkings

are returned. In the free-inversion case (mentioned in the last section), the unlinked trace

predicted at PUSH time ust be linked up at POP time. Figure 610 shows snapshots of the

parser in action after a trace has been predicted.

In 6.10(a), the trace EN-MAX el, does not yet have an antecedent, but CHECK-TRACE-

LINKS does not reject te parse since V-MAX is not yet expanded. In 6.10(b), [V ver [past

P3 siz I is dropped under V-MAX. Note that the left-recursive adjunction structure [V-MAX

EV-MAXI EN-MAX] I has been inserted in the second stack element in preparation for dropping

the completed top-of-stack element. (The details of how DROP-RECURSE-NEXT-LOWER

inserts a left-recursive stack element are in section 61.) In 610(c), the completed VMAX

is dropped under the [V-MAXl adjunction structure that contains the unexpanded [N-MAXI,

and FIND-AND-LINK-TRACES is executed. The trace [N-MAX el still does not have an

antecedent, but the parse is not rejected since there is an unexpanded [N-MAXI in the top-of-

stack element. Finally, N-MAX is expanded to contain Juan as shown in figure 6.10(d), and 'it is

then dropped under V-MAX as shown in figure 6.10(e). Again the FIND-AND-LINK-TRACES

19 Actually, [N-MAX John] could be taken s an antecedent of'[N-MAX e], but then the operator [C-SPEC who]
would ot bind a variable; this case is ruled ot by the Binding odules

(a) Prediction of Trace
[I-MAX

J-SPEC [N-MAX el]
[I el
[1-COMPLEMENT [V-MAX]II

� [C-MAX [I-MAX]]

(b) Expansion of V-MAX
[V-MAX [V ver [past p3 sg]]]

L'I-NIAX

[I-SPEC [N-MAX e]]
[I e [past p3 sgjj

[I-COMPLEMENT
[V-MAX [V-MAX] [N-MAX]]]]

[C-MAX I-MAX]]

(c) Completion of V-MAX (d) Expansion of N-MAX
[N-MAX [N Juan]]
[I-MAX

[I-SPEC [N-MAX ell
[I e [past p3 sg]]
[I-COMPLEMENT

[V-MAX
[V-MAX [V ver [past p3 sg]]]
[N-MAXI]]]

[C-MAX J-AMAX]]

I I
[I-MAX

[I-SPEC [N-MAX. e]]
[I e [past p3 sg]]
[I-COMPLEMENT

[V-MAX
[V-MAX

[V ver [past p3 sg]]]

[N-MAX1111
[C-MAX [I-MAX]]

.11

(e) Completion of N-MAX
[I-MAX

[I-SPEC [N-MAX e-]
[I e [past p3 sgll
[I-COMPLEMENT

[V-MAX
[V-MAX [V ver [past p3 sg]]]
[N-MAX [N Juanflifl]

[C-MAX [I-MAX]]

(f) Completed Parse
[C-NIAX

[I-MAX
J-SPEC [N-MAX e]-]
[I e [past p3 sgl]
[I-COMPLEMENT

[V-MAX
'V-MAX [V ver [past p3 sg]]]
I -
'N-MAX [N Jan]li]llL I

CHAPTER-6. PARSING COMPONENTI A 116

�igure 610: Snapshots of Free Inversion Parsing

function is executed; this time an antecedent of [N-MAX e] is found, and the trace/antecedent

linking is set up. Now the I-MAX is complete. The final parse is shown in figure 6.10(f).

In general FIND-AND-LINK-TRACES is needed for linking traces in rightward movement

structures because an unresolved trace is predicted only if te antecedent has not yet been

seen in the input. This occurs infrequently in head-initial languages; however, it occurs ore

frequently in head-final languages (e.g., Japanese). The reason for this difference in direc-

tion of rnovemen"t is that the structure in a head-initial language is primarily right-branching

(a) Typical Right-branching (b) Typical Left-branching
Head-Initial Language Head-Final Language

C -MAX C-MAX

N-F

I

KAX

v N-MAX N-MAX v

(c) Leftward Movement in (d) Rightward Moven-ient in
. � � � Head-Initial Language Head-Final Language

C-MAX C-MAX

a,

PI 1
6

1

-I I

v N-MAX -MAX v

el el

11
I I I

loom,%, "' '',--,CHAPTER6. PARSING1� 1 1 7

Figure 611: Contrasting Head-Initial and Head-Final Structures

CHAPTER'6 P-ARSING CINIPOINTENT 118

(see figure 6.11(a)); thus, c-comnianding landing sites are generally to the left. By contrast,

the structure in a head-final language is primarily left-branching (see figure 611(b)); thus,

c-conunanding landing sites are generally to the right. The stick mechanisni used in this im-

plementation readily acconunodates both types of ovement the Bounding odule simply

iterates over stack elements, counting bounding nodes along the way, ignoring the direction of

branching posed by the language. Tus, just as complement-prediction 'is handled uniformly

for head-initial and head-final languages, antecedent-linking is also handled uniformly for both

types of languages.

6.2.7.3 Checking Language-Specific Effects

Another condition checked by the Bounding odule at POP time is a (non-standard) prin-

ciple that requires certain language-specific ovement effects to take place. As entioned

in chapter (fn 9, the system resented here operates uiversally only to the extent that

GB theory is universally applicable. There are some phenomena not covered by the the-

ory that consequently are not handled by the system using standard B principles. Thus,

there is a parameter associated with the Bounding odule called LANGUAGE-SPECIFIC-

EFFECTS, which requires certain actions to occur only in the context of other actions. (The

value of the LANGUAGE-SPECIFIC-EFFECTS parameter for the current language is stored

in *CtTRRENT-LANGUAGE-SPE(',IFIC-EFFEC,'TS.) The user is allowed to add as many

language-specific effects as he/she feels is necessary for any source or target language. The

intent of this parameter is that it serve as an "escape hatch" for only a sall number of

phenomena that are not handled by the (standard) GB principles.20

21The LANGUAGE-SPECIFIC parameter setting consists of lists of iplications. If t he

left-hand side of the iplication holds, then the right-hand side of the implication inust also

hold. The left-hand and right-hand sides contain boolean operators (i.e., OR, and AND),

2OThis feature obviously affords considerable computational power; however, the hope is that the user will
not use this feature to encode large portions of the system. Using the LANGUAGE-SPECIFIC-EFFECTS
parameter in this way would be redundant because the other modules of the system should handle most, or a,
of the movement effects for the language. In fact, the author found only one language-specific effect for Spanish,
and one language-specific effect for English. The choice of this setting was determined after testing several
data and discovering that only one effect was not handled by te (standard) CB principles in each of the two
languages. It ay be that these effects are derivable from principles that are not yet known or well-understood.

2 If a two-way implication is required, a double-arrow is used.

12 The construction of this iplication was ispired by the following comment in Torrego 1984):

- Note that Wh-phrases that require inversion are the tematic arguments of the verb and subject
of .. I will indicate that a Wh,-word is of the kind that akes inversion obligatory by labeling it
a Wh-wordA- We may then sate he following: in Spanish, a Wh,-wordA in te Comp position of

- a tensed clause triggers obligatory inversion in both main and embedded clauses.

- .7.9 ---W ---- -- I 1-1- - - I I

1000%.l. , "�r
CHAPTER 6. PARSING COMPONENT 119

and lists of movenient- labels (e.g., WH-NION'EMENT) with associated features (e.g., WH-

PHRASE-A). Thus the language-specific-effect (((PREPOSE) #� (WH-MOVEMENT WH-

PHRASE-A))) requires that preposing occur if and only if 111-1novenient of a phrase (with the

22WH-PHRASE-A feature) has taken place. Thus, the structure of the Spanish sentence que

vio = what did he, shel see) could not be the following:

[C-MAX
[C-SPEC [N-MAX queli] [C E]
[I-MAX [N-MAX e [profl

[I e [pres p3 sg]] [V-MAX [V ver] [N-MAX e]-flj

Because Wh-movement has taken place, V-preposing ust occur. However, this is not the case

in the above structure (the verb ver appears in D-structure position).

Similarly, in English SAI must occur if Wh-movement has taken place. Thus, the English

sentence *what you have said is not possible since the auxiliary have is in D-structure position:

[C-MAX
[C-SPEC [N-MAX what]-] [CE]
[1-kMAX [N-NIAX you]

[I e [pres p2 sg]]

[V-MAX [HAVE-AUX have] [V said]j [N-MAX e]i]]]

The function CHECK-LANGUAGE-SPECIFIC-EFFECTS, which is called at POP time, per-

forms this check on completed parses. (See appendix F."T.3.)

Chapter 7

ina ans a ison ou ines

The final two stages of translation are replacement and generation. The replacement routines

consist of structural movement of elements back into their positions of origin (i.e., the posi-

tions of their linked traces), and thematic substitution of equivalent target language words.

The generation -routines consist of moves (i.e., movement to both A and A positions) and

morphological synthesis. The replacement ad generation routines will be discussed in ore

detail in the following sections.

7.1 Replacement Routines

The STRUCTURAL-REPLACEMENT and THEMATIC-SUBSTITUTION routines are in ap-

pendix J. The functions called by each of these routines are in appendix .4; they will be

described in the following two sections. The third section describes the linguistic constraints

imposed on the replacement routines. Table 71 gives a procedural description of the replace-

ment module.

7.1.1 Structural Replacement

In order to ove elements into underlying positions, the structural replacement routines need

only know about antecedent-trace relations in the structure returned by the parsing component.

The reader may refer to the first- part of table 7.1 for an overview of the order in which the

120

1. Perform structural replacement by:
(a) Transferring slot values of each oved element to its base

position
(b) Evacuating positions of moved eements

(c) Removing evacuated positions
(d) Eliminating useless structure

2. Perform thematic substitution by:
(a) Extracting the head iiode of a prase
(b) Retrieving target language translations of the head
(c) Setting the word slot of the head to be the target language

translation
(d) Determining the argument structure of the new head
(e) Positioning arguments of the head according to internal and

external argument requirements
(f) Establishing structural realizations of arguments
(g) Performing themati sbstitution recursively) on arguments of

the head

--- -1109111WINIP, I I

A*"%'
�9' CHAPTER T. FIIIVA L "TR A IV, SLA TION R 0 ITTINES 121

Jable 71: Procedural Description of the Replacement Module

structural replacement actions are applied.

The function MOVE-ELEMENTS-BACK takes a parse tree and rops antecedents into the

positions occupied by their traces. For example, the parse structure of the sentence a quien 11io

juan is in figure 7.1(a) and the output of MOVE-ELEMENTS-BACK is in figure 7.1(b).

Notice that the positions vacated by the MOVE-ELEMENTS-BACK routine contain NIL.

The function DROP-INTO-BASE-POSITION performs the evacuation of moved elements (by

the function EVACUATE) leaving NIL behind in the evacuated position. If a moved element

is part of a chain with more than one intermediate landing site, each one of the landing sites

along the way to the base position is evacuated; hence, the DROP-INTO-BASE-POSITION

function is called recursively, until a final destination is reached. For example, in sentence (58),

the positions occupied by whati and e' are evacuated, thus leaving NIL in both positions a"

shown in sentence (59).

(58) what- did you think e� he ate e"z 21 'I

ew**\

(59) NIL did you think NIL he ate what

i
i

i

(a) Parsed Structure

[C-MAX
[GSPEC [P-MAX. a quie'n].
[I-MAX

[V verij
J-MAX

[I-SPEC [N-MAX Juanfl
[I e [past p3 sg]]
[I-COMPLEMENT

[V-MAX
[V e]
[P-MAX e],-.]]]]]

(b) Structure with Replaced Elements
[C-MAX

[C-SPEC NIL]
[I-MAX
[V NIL]
[I-MAX

[I-SPEC [N-MAX Juanfl
[I E [past p3 sg]]
[I-COMPLEMENT

[V-MAX
[V ver]

[P-MAX a queen]]]]]]

Figure 71: Replacement of Moved Elements

Once the final destination is reached, DROP-INTO-BASE-POSITION transfers slot val-

ues of the moved element to the node in base position (by the function TRANSFER-SLOT-

VALUES). The only values that are not transferred are those containing antecedent-trace links

(since these are no longer required in the base form).

After antecedents have been moved into trace position, a collapsing routine eminates

44 useless" structure. The function COLLAPSE-STRUCTURE eliminates null elements (by the

function REMOVE-NIL) and erges equivalent structure into a sngle unit (by the function

MERGE-EQUIVALENT-STRUCTURE). For example, when the null elements are removed

from the structure of figure 7.1(b), the result is the structure in figure 7.2(a); then the [I-MAX

[I-MAX ... II is collapsed into [I-MAX as shown in figure 7.2(b).

The result obtained by structural replacement 'is an underlying form that s the basis of

the interlingual approach to translation. Essentially this form requires arguments of verbs to

appear in their canonical (or "base") positions. That is, the underlying form is the D-structure

of the target language. According to Chomsky, D-structures are "an abstract representation of

semantically relevant grammatical relations such as subject-verb, verb-object, and so on, one

crucial element that enters into semantic interpretation of sentenc(

In reality, D-structure is only an approximation to the true

s ... III

nderlying form that is the

L---- -- -------

CHAPTER 7. FINAL RANSLATION ROUTINES 122

'Chonisky (1986b), p. 67.

(a) Structure Without Evacuated Elements (b) Collapsed Structure

[C-MAX T-MAX
[I-MAX T MA X

[I-MAX J-SPEC [N-NIAX Juan]]
[I-SPEC [N-MAX Juan]] [I E [past p3 sgl]
[I E [past p3 sg]] [I-COMPLElUENT
[I-COMPLEMENT "'V-Tvl.AX

[V-MAX [V verl
[V ver] [P-TMAX a quienj]]]]
[P-MAX a quie'n]]jflj

action: ver
agent: Juan masc sg animate noni

.I patient: quien wh p3 sg animate obj
time: past

. CHAPTER'-7,.-"FIIVAL'TR-AIVSLATIONROUTLNES 123
F

Figure 72: Elimination of "Useless" Structure

Figure 73 A Possible Interlingual Form

interlingua of a translation system. If a full interpretive system were implemented here, the

interlingual form of figure 7.2(b) would be somewhat different, perhaps resembling the structure

in figure 73. This interlingual form would be thematically mapped to a target language form

from which structure would be generated according to structural requirements of the target

language.

In contrast to the underlying form of figure 7.2(b), the structure in figure 73 leaves out

language-specific requirements (e.g., constituent order and orphological requirements). How-

ever, the underlying form of 7.2(b) is the one adopted as the interlingua for the implementation

presented here for three reasons: (1) it 'is compatible with the structure required by the gener-

ation stage; 2) it is sufficient for the two languages handled by the system; and 3) it does not

require a particularly robust generator, the construction of which 'is outside of the scope of this

report.' The underlying form of the source language is stored in *SOURCE-BASE-TREES.

'In a later version of the translation system, such a generator may indeed by constructed. However, the
details of this tentative plan for future work are not discussed here. In the version presented here, a simple
routine is used to reorder constituents prior to generation of the target language sentence.

CHAPTER 7 ''FINAL TRANSLATION'ROUTINES 124

7.1.2 Thematic Substitution

Just prior to thernatic sbstitution, the target language parameter values replace the source

language parameter values. The fnction REPLACE-SOURCE-WITH-TARGET determines

the correct translation of heads ad their arguments according to 0-role atching routines.

As each aximal projection is aalyzed, the ranslation of the head is chosen, and then each

argument of the head is translated, positioned, and structurally realized according to the re-

quirements of the target language word. Te reader ay refer to the second part of table 71

for an overview of the order in which the thematic substitution actions are applied. (The 0-role

matching, argument positioning, and structural realization routines are described in the next

section.)

The target lexicon is accessed during thematic substitution in order to determine the fea-

tures ad argument structure of the translated head. Only one translation is chosen for each

source language head, and all source language arguments are uniquely paired up with the target

language arguments.

For example, suppose we are translating the sentence I knew a man. The source language

D-structure is the following:

[C-MAX
[C E]
[I-MAX

[I-SPEC [N-MAX Il
[I E [pres I sg]]
[I-COMPLEMENT [V-MAX [V know] [N-MAX a manflfl]

REPLACE-SOURCE-WITH-TARGET first processes C-MAX, determining that the head C

has no lexical constituent to translate. It then analyzes I-MAX, the head of which also has no

lexical constituent to translate. Finally, V-MAX is analyzed. The head V (know) is extracted,

the external argument EX-MAX I] is located (by GET-EXTER.NAL-ARGS), and the internal

argument [H-MAX a man] is located (by GET-INTERNAL-ARGS). The translation of know is

determined by looking at the lexical entry of the two target language possibilities, conocer and

saber. The word saber requires either a fact or a proposition as its internal argument, whereas

conocer requires an aimate p-goal or an inanimate goal. Because [a man] is an animate

TRA IVSL A T1ONR 0 tTTJ.Y,CHAPTER 7. FINAL ES 125

argument that is assigned a O-role of goal, the translation that is chosen is conocer. 3

Finally, each of the maximal projections in the internal and external arguments are analyzed

by REPLACE-SOURCE-WITH-TARGET, and the translations for I and anmn are chosen to

be yo and u hombre respectively. (The structural realization of te arguments is determined

by the 0-niodule as discussed in the next section.) The output of theniatic-substitution is stored

in *TARGET-BASE-TREES.

7.1.3 Linguistic Constraints on Replacement Routines

During structural replacement, virtually no access to the GB cornponent is required since all

actions are determined by antecedent-trace relations established during parsing. The only

principle that is being acted upon is the Projection Principle of 0-theory which requires that

O-roles be preserved during the transition from S-structure to D-structure. This requirement is

implicitly obeyed as a result of the replacement process, which transfers all O-roles of antecedents

to their traces.

By contrast, thematic substitution requires explicit access to the GB component (in partic-

ular, to the module) as well as access to the target language lexicon. The module functions

accessed during thematic substitution are in appendix F.2.5.

The function MATCH-TRANSLATION-AND-ARGUMENTS determines the correct trans-

lation for a word on the basis of O-role atching of arguments: first, GET-ARGUMENTS ac-

cesses the target language lexicon in order to determine the argument structure of a potential

translation; next ARGUMENT-FEATURES-MATCH tests that there is a one-to-one corre-

spondence between O-roles assigned by the source language word and O-roles assigned by the

4target language word, and then'returns the O-roles.

The function SET-UP-ARGUMENT-POSITIONING then places arguments in external

and internal positions according to the requirements of the target language word; then the

function SET-UP-STRIUCTURAL-REALIZATION applies the CSR mapping to external and

internal arguments to ensure that the correct structure is obtained. The interface to the

3The role p-goal (or prepositional goal) matches the role goal for two reasons: (1) both have the animate
feature; and 2) both are actually the same role (goal) with different structural realizations.

4This argument-structure atching routine handles thematic divergence such as is found in the gustar-like
example mentioned in chapter 4 An example will be given shortly.

CHAPTER 7 FINALTRANSLATION ROUTINES 126

theniatic substitution-routines is the REPLACE-SOUR-C'E-WITH-TARGET fnction described

in section 71.2.

An example will clarify the procedure outlined above. If we are translating the phrase me

gusta el libro a ml' the source language underlying form is:

[c-MAX
[I-MAX

J-SPEC [N-MAX el libro]]
[I E [pres p3 sg]]
[T-COMPLEMENT

[V-MAX
[V [CL-DAT me] [V gusta] [P-MAX a miflflfl

MATCH-TRANSLATTON-AND-ARGUMENTS attempts to translate the head gusta to

the target language equivalent like. The GET-ARGUMENTS routine accesses the target lan-

guage lexicon to determine that the argument structure of the target language verb like is:

[(external (agent animate)) (subcat (goal))]. The source language external argument

is [N-MAX el librol, which is assigned agent O-role, and the source language internal argu-

ment is [P-MAX a mil, which is assigned patient O-role with animate features.

The ARGUMENT-FEATT-TRES-MATCH function calls PICK-ARG, which chooses target

language candidates for each source language argument (on the basis of feature matching). The

function LOCATE-UNTQUE-ARG-STRUCTURE then narrows down the candidates so that

there is a one-to-one apping from source to target language arguments. Thus,

the call: (PICK-ARG [P-MAX a Mi'] PATIENT ANIMATE)
returns: (EXTERNAL [P-MAX a m AGENT ANIMATE),

and the call: (PICK-ARG [N-MAX el libro] AGENT NIL)
returns: (INTERNAL [N-MAX el libro] GOAL).

Finally, the call:
(LOCATE-UNIQUE-ARG-STRUCTURE

((EXTERNAL [P-MAX a nif AGENT ANIMATE)
(INTERNAL [N-MAX el fibro] GAL))

((EXTERNAL (AGENT ANIMATE)) (SUBCAT (GOAL))))
returns:

((EXTERNAL [P-MAX a mf] AGENT ANIMATE)
(INTERNAL [N-MAX el libro] GOAL))

CHAPTER 7 PiivA'LTRANSLATION R[TTIINES 12 7

Note that in this case there is already a one-to-one apping since PICK-ARG returned only

language candidate for each source language argument. In the general case, there

will be ore than one candidate, and LOCATE-UNIQUE-ARG-STRUCTURE will choose a

single unique apping between arguments.

Now the fnction SET-UP-ARGMNIENT-POSITIONING i called, and the internal and

external arguments are replaced so that te base structure is odified to be:

[C-MAX

LIII-MAX

[I-SPEC [P-MAX a nifl]
[I E [pres p3 sg]j
[I-COMPLEMENT

[V-MAX [V [CL-DAT e] [V like] [N-MAX el libroflIfl]

Finally, the SET-UP-STRUCTURAL-REALIZATION function performs a CSR (canonical

structural realization) inapping of the argument 0-roles to their canonical structural realization

in the target language. Thus, the external argument structure is changed to N-MAX (since

the call (CSR AGENT) returns N-MAX in English), and the inteihal argument structure is left

as N-MAX (since the call (CSR GAL) returns N-MAX in English). The functions UPDATE-

INTERNAL-STRUCTURE and PDATE-EXTERNAL-STRUCTURE perform each of these

modifications respectively. In the conversion of P-MAX to N-MAX, the preposition a is dropped,

and the N-MAX l'becomes the head of the phrase. Note that such deletion cannot be arbitrary:

only those elements that do not have semantic content can undergo deletion.'

The structure obtained after execution of SET-UP-STRUCTT-TRAL-REALIZATION is:

[C-MAX
J-MAX

[I-SPEC [N-MAX nAl
[I E [pres p3 sgj]

[1-COMPLEMENT
[V-MAX [V [CL-DAT me] [V like] [N-MAX el libroflfl]]

The arguments themselves ust now be translated. This is accomplished by performing a

recursive call to REPLACE-SOURCE-WITH-TARC.'ET on each of the arguments. The result

is:

51n this implementation, semantically null elements are those constituents that have 2 properties: (1) they
do not serve as arguments of a O-role assigner; and 2 they are not O-role assigners. See Chomsky (1986b), pp.

-No., 70-71, for details concerning deletion of semantically null elements.

CHAPTER 7"'''FINALTRAI'VSLAT10iVROUTI.VES 128

[C-MAX
J-NIIAX

[I-SPEC [N-MAX niefl
1pres p3 sgl]

L i

[1-COMPLEMENT
[N'-MAX [V [CL-DAT me] [V like] [N-NIAX the book]]flfl

Notice that the mapping into te target language is not complete: first, the clitic m must be

removed since there are no citics in English; and second, the subject me must be transformed

into its nominative form I. The first of these two tasks is performed by the structural ovement

component as described in section 1.2.1; the second task is performed by the lnguistic constraint

component as described in section 72.3.

7.2 Generation Routines

Mininial effort has been spent in the area of generation snce it is not the focus of the re-

search presented in this report. The STRUCTURAL-NIOVENIENT and MORPHOLOGICAL-

SYNTHESIS routines are in appendix J. The functions called by each of these routines are in

appendix H.5. They will be described in the following two sections. The third section describes

the linguistic constraints iposed on the generation routines. A procedural description of the

generation routines is given in table 72.

7.2.1 Structural Movement (Move-a)

Just as the module is the ain driver of the Earley parser, the Bounding module is the main

driver for the generator (in particular, the structural-movement component of the generator).

The function MOVE-ALPHA is' called on each of the target base trees, and one or more surface

trees are generated and returned. The first part of MOVE-ALPHA consists of applying move-

ment functions, while the second part. (to be described in section 7.2.3)-applies, GB constraints

on the output of the movement functions. Before elements are oved out of base positions, two

functions from the X odule are executed: GENERATE-CORRECT-ADJUNCTIONS-AND-

SPECIFIERS, and GENER.ATE-CORRECT-CONSTITUENT-ORDER. (See appendix ??.)

The reader may refer to the frst part of table 72 for an overview of the order in which struc-

tural movement actions are applied.

- t

�fle� TINAL TRANSLATIONIZOUTINESCHAPTER 7. 129

1. Perform structural ovement by:
(a) Changing adjunctions and specifiers to be consistent with the

target language requirements
(b) Modifying the structure to be consistent with the constituent

order of the target language
(c) Performing movement via adjunction and substitution subject

to Bounding constraints and language-specific constraints.
(d) Setting up A and A positions
(e) Checking Binding conditions
(f) Setting up Government relations
(g) Checking ECP
(h) Checking Case assignment

(i) Checking O-role assignment

2. Perform morphological synthesis by:
(a) Lexicalizing epty elements
(b) Mapping features of root forms into affixes
(c) Applying Kimmo generation to derive the surface sentence

Table 72: Procedural Description of the Generation Module

The first function ensures that certain incompatibilities (e.g., citics in a non-clitic language

or pro in a non-pro-drop language) are eliminated. The *CT-TRRENT-BASE-SPECIFIERS-

AND-ADJUNCTION bounding parameter is used to determine positions where specifier ele-

ments (e.g., N-MAX in I-SPEC) and adjoined elements (e.g., clitic to V) are base-generated

in the target language. If an element is allowed to occur 'in a position, two results are re-

turned: one in which 'it does occur (ALLOW-OCCURRENCE), and one in which it does not

occur. If an element exists in a position where it is not aowed to occur, it is either eliminated

(REMOVE-UNAVAILABLE), or placed in a position where it is aowed to occur MODIFY-

POSITION). Some examples of the operation of this function are 'in table 73. The second X

-function arranges the order of constituents so that they are compatible with the onstituent

order of the target language.

Once the structure has been changed to accommodate the target language, all candidates

for movement are paired up with positions to which they might move. The function GET-

SUBSTITUTION-CANDIDATES returns possible positions to which a element can move via

substitution (e.g., Wh-movement), and the function GET-ADJ TNCTION-CANDIDATES re-

Source 5entence Target Base Structure Action Output

Yo leo libros I [read+tns] [books good] Re-Position I [read+tns] [good books]
buenos Adjunct

Parece que Juan [pro] seem John [go+tns] Remove po [N-NIAX] seem John
vaya [go+tns]

Juan parece ir Iseeni+tns] John [go+inf] Allow Sub'ect [N-NIAXI Iseem+tns]
John [go+inf]

Iseeni+tns] John [go+inf]
Yo le veo, a 'el I [e-see+tns] him Remove Clitic I [see+tns] him
I hit him yo [pegar+tns a el Allow clific Yo [cl-pegar+tns] a el

yo [pegar+tns a l
What did you eat [do+tns] tu comer que Remove do tu [omer+tns] que
Que' comiste t' you [eat+tnsl what Allow do [do-aux] you [eat+tns]

what
you eat+tns] what

CHAPTER, 7'FINAL TRANSLATIONROUTINES 130

Table 73: Operation of GENERATE-CORRECT-ADJUN(,'TIONS-AND-SPE(,'IFTERS

turns all positions to which an element can move via adjunction (e.g., V-preposing). it is

assumed that substitution is always made 'in specifier position; thus GET-SUBSTITUTION-

CANDIDATES accesses the *CURRENT-CHOICE-OF-SPEC parameter in order to deter-

mine the possible substitution site. The GET-ADJUNCTION-CANDIDATES function ac-

cesses the *CURRENT-ADJUNCTION parameter 'in order to determine the possible ad'unc-

tion sites. Both of these functions access the *CURRENT-DERIVED-SPECIFIERS-AND-

ADJUNCTION to search for possible movement sites, ad also the *CURRENT-BOUNDING-

NODES parameter so that the search for movement sites does not go beyond 2 bounding

nodes.

The PERFORM-MOVEMENT function applies the PERFORM-SUBSTITUTION routine

to move elements into specifier positions, and the PERFORM-ADJUNCTION routine to move

elements into adjunction positions. he *CURRENT-LANGUAGE-SPECIFIC-EFFECTS pa-

rameter is accessed at this time so that obligatory movement will not be overlooked. For

example, suppose the target base structure is:

�qm�l .

CHAP TER- FINAL TRANSLATION ROUTE 131

[GMAX
[('101VIP-COMPLEMENT

J-MAX
[I-SPEC [N-MAX you]]
[I E [pres p2 sgjj
[I-COMPLENTIENT [V-MAX [V see] [N-MAX whatfl]fl]

The PERFORNI-SUBSTITUTION routine oves [N-MAX what] into COMP-SPEC position,

thus deriving the following structure:6

[C-MAX
[COMP-SPEC [N-NIAX what]-]
[COMP-COMPLEMENT

J-MAX
[I-SPEC [N-MAX you]]
[I E [pres p2 sgj]
[I-COMPLEMENT [V-MAX [V see] [N-MAX e]-flfl]

CHECK-LANGT-TACE-SPECIFIC-EFFECTS deterirdnes that this structure is not com-

plete because of the following the parameter setting for English:

(((OR (DO-SAI) (BE-SAI) (HAVE-SAI) (I-SAI)) �� (WH-MOVEMENT)))

This parameter setting forces SAI to take place. Thus, the result is not added to the SURFACE-

TREES array, but is temporarily saved (in RESULTS) so that other ovement actions can

apply.

On the other hand, the target base structure is:7

[C-MAX
[COMP-COMPLEMENT

[I-MAX [DO-AUX]
J-MAX

[I-SPEC [N-MAX you]]
[I E [pres p2 sgj]
[I-COMPLEMENT [V-MAX [V see] [N-MAX whatflflfl]

The PERFORM-SUBSTITUTION rutine moves what into COMP-SPEC position, and

the CHECK-LANGUAGE-SPECIFIC-EFFECTS test is satisfied (since both SAI and Wh-

movement have taken place):

'3During substitution and adjunction, links between traces and antecedents are maintained.
7The DO-AUX constituent is inserted by the GENERATE-C"ORRECT-ADJUNCTIONS-AND-SPECIFIERS

routine described in section 71.1.

CHAPTER 7. EVAL TRANSLATION ?,0'ETTj1\1ES 132

[C-MAX
[c/-SPEC [N-NIAX what]i
[COMP-COMPLEMENT

[I-MAX [DO-AUX]
[I-MAX

[I-SPEC [N-MAX you]]
[I E [pres p2 sg]]
[I-COMPLEMENT [V-MAX [V see] [N-NIAX el-flflfl]

Once the target language surface structure is generated, te linguistic constraints routines

apply. Notice that MOVE-ALPHA overgenerates. For example, it might ove elements to

positions where they cannot receive case or 0-role, or it may leave a trace in a position that

is not properly governed. It is the duty of the GB constraints to weed out illegal structures

generated by MOVE-ALPHA. This co-routine design is parallel to te design of the parser,

which also generates unconstrained structure, and relies on the GB component to rule out

ill-formed parses. For example, the source language entence J7tan parece i John seems to

go) is transformed into the following two structures:

N
[C-MAX

[COMP-COMPLEMENT
[I-MAX i

J-SPEC [N-MAX John]i]
[I E [pres p3 sgll
[I-COMPLEMENT

[V-MAX
[V seem]
[I-MAX [N-MAX e]i to goflflfl

[C-MAX
[COMP-COMPLEMENT

[T-NIAX
J-SPEC [N-MAX]]
[E [pres p3 sg]]
[T-COMPLEMENT

[V-AIAX
[V seem]
[T-MAX [N-MAX John] to goflfl]]

I

It is then up to the GB component to dtermine that the second parse is bad (because John does

not receive case). Section 72.3 discusses the linguistic constraints imposed on MOVE-ALPHA.

The output of MOVE-ALPHA 'is stored in *SURFACE-TREES.

7.2.2 Morphological Synthesis

The morphological synthesis component consists of a apping from root forms (e.g., write)

and affixes (e.g., +en) into surface forms (e.g., written). The Kiiiuiio system provides this

-facility since it is a two-way system; thus, the orphological rules discussed in section 52.1

are applied in reverse to derive surface forms. The GENERATE function first interfaces with

the Kimmo generator (by the MORPHER function) and then reads off leaf nodes linearly to

Type of Lexicali"2-ation Inp it, t Fo im Output Form

Subject Lexicalization [[N-MAX pl sg noin animate] eat dinner] [I eat dinner]
Pleonastic Lexicalization. [[N-MAX p3 so pleon] [seem pres] [it [seem pres]
(it-insertion) to be [rain prog]] to be [rain prog]]

Clitic Lexicalization [[CLITIC, acc] [ver pres]] [lo [ver pres]]
Auxiliary Lexicalization what [DO-AUX past] he eat what [do past] he
(do-insertion) eat

English Spanish

Features Affix(cs) Example Affix(es) Example

pres pl sg 0 walk +0 camino
pres p2 sg 0 walk +as caminas
pres p3 sg +s walks +a camina
pres p I pl. 0 walk +an can-iinan.
pres p3 pl. 0 walk +amos cantinamos

past p I sg +ed walked + e camine'
past p2 sg +ed walked +aste caminaste
past p3 sg +ed walked + O" cainino'

past pl pI +ed walked +amos cam-inamos
past p3 PI +ed walked +aron caminaron
perf +en walked +ado canunado

• sg masc 0 good +0 bueno
• s g fem 0 good + a buena

pl. masc 0 ood. +Os buenos
• pl. fem 0 goo d +as buenas

TINAL TRAA�5LATI RTTTINESCITA P Tkk 7. ` ON 133

Table 74: Operation of Lexicalization Routine

�k

Table 75: Mapping of Features to Affixes

derive the surface sentence (by the SURFACE-FORM function). The final result is stored in

the -*TARGET-RESTJLT array. The reader may refer to the second part of table 72 for an

overview of the order in which orphological synthesis actions axe applie-d.

In preparation for te Kinu-no processing, two routines are required: one is the LEXICAL-

IZATION routine, hich maps uH elements into their lexicalized counterparts, and the other is

CHANGE-FEATS-TO-AFFIX, which maps features 'Into appropriate affixes. Table 74 shows

.- -,some example of lexicalization provided by -the system. Table 75 shows the mapping from

CHAPTER 7 FINAL TRANSLATION ROUTINES 134

features to affixes in Spanish and English.

7.2.3 Linguistic Constraints of Generation Routines

The linguistic constraints f the generation stage are accessed only during structural movement

since orphological synthesis operates at the word level, not at the phrase level (as required by

the GB constraints). The constraints accessed at structural movement time are parallel to those

accessed at parsing time. The second half of MOVE-ALPHA applies the same principles that

are applied by DROP-INTO-NEXT-LOWER at POP time. However, there are two differences

between the DROP-INTO-NEXT-LOWER routine and the second half of MOVE-ALPHA: (1)

access to the module is used to test 0-role assiannient rather than perform 0-role assignment;

and 2) case assignment ay modify the constituent to which case is being assigned.

The reason 0-roles are checked, but not assigned, is that 0-roles must already be assigned

when the structure is in D-structure form before MOVE-ALPHA applies. A oved element

retains the 0-role it-is initially assigned, and any positions left, behind are left 0-inarked. Thus,

PERFORM-THETA-ASSIGNMENT is called by MOVE-ALPHA, only to check that the de-

rived structure satisfies the -Criterion.

By contrast, case assignment may result in a modification of the structure derived by

MOVE-ALPHA. Recall that in the gustar-like example of section 71.3, the final structure

returned by REPLACE-SOURCE-WITH-TARGET-LANGUAGE is the following:

[C-MAX
[I-MAX

J-SPEC [N-MAX mefl
[I E [p, res p3 sgJ]
[I-COMPLEMENT

[V-MAX [V [CL-DAT me] [V like] [N-MAX the bookflfl]]

We noted that the target language form is not complete because the clitic me needs

to be removed (this performed by the, GENERATE-CORRECT-ADJUNCTIONS-AND---

SPECIFIERS routine as shown in table 73), and the objective subject me must be transformed

into its nominative equivalent . It is the job of the PERFORM-CASE-ASSIGNMENT routine

(Called by MOVE-ALPHA) to perform this second task. Note that this task would not be

necessary if the interlingual form of figure 73 were used, since morphological considerations

- --- .-- .- - - I

CHAPTER 7 �FTINAL TRANSLATION'ROUTIINES 135

are not included in such a forni.- However, ecatise a more syntactic underlying form is used

here, case apping routines are required.

In the above example, the I(nfl) node assigns non-iinative case to [N-MAX me], thus changing

it to EN-MAX i.8 Ater case and 0-role assignment have taken place, te result is:

C- MA X
J-XIAX

[I-SPEC [N-MAX I nom agent]]]
[I E [pres p3 sgl]
[I-COMPLEMENT

[V-MAX [V [V like] [N-MAX the book [obi goaflflfl]]

The rest of the iguistic constraints are applied exactly as tey are applied during parsing

except for those belonging to the Bounding i-nodule (these were already taken care of during

the first half of the MOVE-ALPHA routine).

... The surface forrn of the above structure-is simply a linear reading of the leaf nodes without

brackets and feature annotations: I like the book.

8A similar process occurs for the object [N-MAX the book], which was originally assigned nominative case,

but is now assigned objective case. However, this case alternation is not morphologically realizable for non-

pronoirdnal noun phrases.04""N'
F

Chapter

xarn e ans a ion

This chapter presents an example of translation of a sentence from Spanish to English. Addi-

tional examples of phenomena handled by the system are in appendix K.

Consider the following sentence:

(60) A quie'n le visitaste? (-- who did you visit)

We will examine the processing of this sentence during each of the three translation stages.

8.1 Parsing

Once preprocessing and morphological analysis have taken place, the input to the parser is the

following two forms:

((a P (SUBCAT (N)))
(quie-n N ANIMATE NEUT P3 WH WH-PHRASE-A)
(le CL-DAT NEUT PRONOUN P3 SG OBJ ANIMATE)
(visitar V SG P2 PAST

(EXTERNAL (AGENT ANIMATE))
(SUBCAT (P-GOAL ANIMATE)) (SUBCAT (COAL INANIMATE))))

((a INF I SUBCAT (V)))
(quie-n N ANIMATE NEUT P3 WH WH-PHRASE-A)
(le CL-DAT NEUT PRONOUN P3 SG Bj ANIMATE)
(visitar V SG P2 PAST

(EXTERNAL (AGENT ANIMATE))
(SUBCAT (P-GOAL ANIMATE)) (SUBCAT GOAL INANIMATE))))

136

CHAPTER-, 8- EXAMPLE OF TRANSLATION 137

Note that a has been analyzed as both a preposition and an infinitive marker thus accounting

for the two input forms).1

The precompilation. routine generates the rules and templates shown in tables 5.8 and 5.10'.

Before scanning the first input word a, the parser expands C-MAX (the start symbol) as follows:

Input 11;ord: IVIL; JcXt Word a

I
Stack #1 Stack 2

[I-SPEC [N-MAX efl [c-SPEC [N-MAX ell
[I-MAX [I-SPEC] [11 [I-COMPLEMENT]] - [C-MAX [C-SPEC]
[C-COMPLEMENT [I-MAX]] [C] [C-COMPLEMENT]]

. r - - - __ r - -i r 7. - - - ___ __ ____ I I

I -MAX [C E] [C-COMPLEMENT]]

F Stack 4 1
Stack 3 [P-MAX [P] [P-COMPLEMENTI]-

[C-SPEC [P-MAX e]] [C-SPEC [P-MAXII
[C-MAX [C-SPECI [C] [C-COMPLEMENTI] [C-MAX [C-SPEC]

I I - I - - - -- - - - - --
I [C] [C-COMPLEMENT]l

I

Stack #1 corresponds to the case where there is no specifier under C-MAX. The stack has been

expanded until subject position has been reached. The subject 'is predicte d to be empty (either

PRO, pro, or trace) since the next word a is not derivable from N-MAX. There is o antecedent

if this element is a trace, but the parse 'is not yet ruled out in case an antecedent has not

yet been seen. Stacks 2, 3, and 4 contain a specifier under C-MAX; this specifier expands

either to N-MAX (stack 2) or to P-MAX (stacks 3 and 4). In stack 2, N-MAX must be epty

(i.e., PRO, pro, or trace) for the same reason that C-SPEC must be empty in stack 1. In the

case of P-MAX, the element ay either be empty (stack 3) or it may contain a lexical element

(stack 4) since the next word in the input is of category p.2

The top-of-stack element is complete in the first three stacks, so the completed element

is dropped, and the parse continues. In stacks 2 and 3, CCOMPLEMENT is expanded to be

I--MAX, and this in turn is expanded into N-MAX (which again ust be empty). The result is:

'The second form will quickly be ruled out, but we will include it in our analysis until it- -is eliminated.
2For brevity, certain steps will not be shown in this example. For instance, the P-MAX in stack 4 may or

may not have a specifier since P-SPEC is optional; however, only the case where P-MAX does not have a specifier
is shown here. (The case in which PMAX does have a specifier is ruled out immediately since P-SPEC does not
derive the next input word.) In general, specifiers will not be shown if they do not derive the next input word
since the one-word lookahead facility rules them out as soon as they are predicted.

- - 0
. . -- I "I,-,! � , - I -, -", , I - I I - --I I ---- A- -- w - --i -I ---f,� *- * I -I I

Stack 2
[I-MAX -SPEC [N-MAX el]

[11 [I-COMPLEMENTI' I
[C-COMPLENTENT [I-MAX]]
[c-MAX c-SPEC [N-NIJAX efl

[C-E-] [C-COMPLEXIENT11

Stack 4
[P-MAX [PI [P-COMPLENLIENT]l
[C-SPEC [P-MAX]l

. - I - - - - - I - -

Stack #I
[I-MAX J-SPEC' [N-MAX e]]

[1] [I-COMPLEMENT]]
[C-COMPLEMENT I-MAX]]
[C-MAX [C E] [C-COMPLEMENT]]_

Stack 3
[I-MAX [-SPEC[N-MAX e]

[1] [I-COMPLEMENT]]
[C-COMPLEMENT [I-MAX]]
[C-MAX [C-SPEC [P-MAX el]

[C E [C-COMPLEMENTI]

[C-MAX FC-SPEC C [C-COMPLENTENT]L I

elements (in particular, 1(nfl) nodes) that could potentially be proper governors. Notice that

the top-of-stack in the first three stacks is te same. (nfl) is traversed, and I-COMPLEMENT

- is expanded as V-MAX in these three stacks. The fourth stack re�iiains as is since there is a

t errninal symbol (P) waiting to be scanned:

Input Word: IL; JVext Word a

Stack 1
[V-MAX [V] [V-COMPLEMENT]]
[I-COMPLEMENT [V-MAX]]
[I-MAX I-SPEC [N-MAX e]]

[I E] [I-COMPLEMENT]]
[C-COMPLEMENT [I-MAX]]
[C-MAX [C El [C-COMPLEMENT]]

I

Stack 2
[V-MAX [Vj [V-CON,1PLEMENT]]

rV[I-COMPLEXIENT -MA
XI]

[I-MAX [I-SPEC [N-MAX ell
[I El [I-COMPLENIEN Tfl

[C-COMPLEMENT I-MAX]]
[C-MAX [C-SPEC [N-MAX e]

Stack 4
[P-MAX [PI PCOMPLEMENT]l

- JL[C'-SPEC [P-NTAXI]
i - I[C"-NIAX C-SPEC] FC] [C-COMPLENTENT]--- L -- L _L �

Stack 3
[V-MAX [VI [V-COMPLEMENT]]
"I-COMPLEMENT [V-MAX]]
[I-MAX [-SPECIN-MAX el]

[1] [I-COMPLEMENT]]
[c-COMPLEMENT [I-MAX]]
[C-MAXT-SPEC [P-MAX e]]

I I
TCEl [C-COMPL-EMENT1]L i

I---- -- -- -

L

.- -CHAPTER 8. EXA:lIPLE'OF_ TRANSLATION

. Input Word NL; Nxt TVord a

138

All traces remain unlinked, but ECP is not violated since tere are still sonie unexpanded

[C El [C-COIVIPLEMENT]l

Now tat -there is a terminal symbol (either V or P) at the top of all the stacks, the first word

a. is scanned.---Note that the second input form (in which a. is analyzed as an infinitive niarker)

-:�Y, � , , I
" I I , Z; 1�

[P-MAX [P a] [P-COMPLEMENTI
[C-SPEC [P-MAX]]

- -- I
[C-MAX [C-SPEC] [C] [C-COMPLENIENT]lL - I I

Now that a word has been scanned, its features are instantiated. Thus, the P a] node is set

up as follows:

CAT: P
WORD: a

TRANSLATION: Rto) (at)]
SUBCATEGORIZATION: [(n)]
THETA-ROLES: nil

This information is percolated up to P-MAX. Since there is no specifier, spec/niax agreement

automatically succeeds.

Now an unexpanded complement is at the top of the stack. Recall that at PUSH time the

subcategorization frame of the closest head (of the relevant category) detern-dnes complement

expansion. The direction of the search for the closest head is to the left since Spanish is a head-

initial language. The closest head of category P at this point is the word a; thus, PCOMPLEMENT

is expanded as N-MAX in accordance with te subcategorization information associated with the

word a. The new stack configuration is the following:

Input Word: a JVext Word: quie-n

Stack 1
[N-MAX e]
[P-COMPLEMENT [N-MAX]]
P-MAX [P a] [P-COMPLEMENTI] 4

[C-SPEC'[P-MAXI]- I
[C-MAX [C-SPEC] - i

I [(,] [C-COMPLEMENT]]

i

i
I

I

I Stack #2
1 [N-MAX [N] [N-COMPLEMENT]]
I [P-COMPLEMENT [N-MAX]l

[PMAX [P a] T-COMPLEXTENT]]
I [C-SPEC [P-MAXII

IC-XIAX [C-SPEC]
[C] [C-COMPLEMENTI]

I
I I

Note that N-MAX has been expanded to be either empty (i.e., PRO, pro, or trace) or lexical.

Since this completes the N-MAX,-stack --f I is popped and stack 2 remains as is:

._ I p _ INI'll I 1.1 --- - I �

CHAPTER S. EXAMPLE OF TRANSLATION 139

is now elinunated since it is not of category V or P:

Input Word: i. Nxt 11-7ord: quic-n

.1.1 .. HAPTER-S." EXAMPLE OF TRANSLATION 140

input lVord: a; Aext Word: quic- �n

Stack 1
[P-MAX [P a] [P-COMPLEMENT [N-NIIAX e] i
[C-SPEC [P-MAX]l
[C-MAX [C-SPEC]

[(',] [C-COMPLEMENT11 I

Stack 2
[N-MAX [N'[N-COXIPLEMENT]l
[P-COMPLEMENT [N-MAX]l

I'P-NIAX [P a] 'P-COMPLEMENT]]

L
11

iT-SPEC FP--,\4AXII
L L-- r -- - - -1

I I[C-MAX [-SPECI I
I [C] [C-COMPLEMENT]l I

Now that the parser is in the POP stage, several conditions apply. First the GB component

attempts to link EN-MAX el up to an antecedent. Finding no antecedent, it tries to interpret

[N-MAX el as PRO or po. However, both of these cause an ECP violation: PRO cannot be

governed (but EP a] governs El-MAX el); and pro must be governed by AGR (but there is

no AGR available for government of EN-MAX el). Thus, the only possibility for EN-MAX el is

trace ssuming rightward movement has prevented the antecedent from being seen yet). This

possibility is held in reserve (for the time being). Case and 0-role assignment take place at this

-point, thus marking the N-MAX with objective case (but no 0-role since P is not an assigner).

Note that even though [N-MAX el does not have a 0-role, the parse is not yet rejected since

0-role inight be transmitted to the trace via some other mechanism later in the parse. Now

that P-MAX is complete, stack #1 is popped. C is traversed, and CCOMPLEMENT is expanded

until the subject position is reached:

Input Word: a; Next 11"ord: quie-n

Stack 1
[I-SPEC [N-MAXI]
[I-MAX [I-SPEC] [] [I-COMPLEMENT]]-
[C-COMPLEMENT [I-MAX]]
[C-MAX

[C-SPEC
[P-MAX [P a]

r - - - - --- __

I Stack 2
[N-MAX [N] [N-COMPLEMENT]]

I [P-COMPLEMENT [N-MAX]]
I PMAX [P a] [P-COMPLEMENT]]
I [C-SPEC [P-MAX]]

[C-MAX [C-SPEC]
[C] [C-COMPLENIENT]]

[P-COMPLEMENT
[N-MAX e [obj]]]]]

[C El [C-COMPLEMENT]]

Again, NMAX may be expanded to be either empty (i.e., PRO, pro, or trace) or lexical;

both these possibilities are tried, and in the case where N-MAX is empty, the stack is popped:

poll , I I I ----- I I

C,'HAFTEH 8 Ev,.AAIPLE F TRANSLATION 141

Input IVard: a; Nxt Word: qulc-n

Stack 1
[I-MAX [I-SPEC' [N-MAX ell

[1] [coMPLENIENT]]
[C-CIOMPLENTENT [I-MAX]I
[C-MAX

[C-SPEC',
[P-MAX [P a]

[P-COMPLEMENT
[N-MAX e [obj]]]]]

[C E] [C-COMPLEMENTI'-1

I

Stack 2
[N-MAX [N] [N-COMPLEMENT]]
[P-COMPLEMENT [N-MAXII
[P-MAX [P a] COMPLENTENTI]
[C-SPEC [P-MAX]lI

IC-MAX [C':-SPEC,,]
[C] [C-CONIPLE-INTENT]]

I

I

I

Stack 3
[N-MAX [N] [N-COMPLEMENT]]
[I-SPEC [N-MAX]]

[I-MAX [I-SPEC] [11 [-COMPLETMENT]]
[C-COMPLEMENT 1-MAXII

- L i

[C-NIAX [C-SPEC [P-MAX [P a] [P-C'07i\IPLEI\,IENT [N-MAX e [obj]]]]]
[CE] [C-CONIPLE-NIENT]l

In stacks 1 and 3, (nfl) is traversed, and I-COMPLEMENT is expanded as V-MAX. Now all

three stacks contain a tern-dnat symbol (either V or N) in the top-of-stack element:

Iripu t 4-70,rd: a; Nvcrt flood: quie-n

Stack 1
[V-MAX V] [V-COMPLEMENTI]
[I-COMPLEMENT [V-MAX]l
[I-MAX [I-SPEC [N-MAX el]

II E] [COMPLEMENT]]
IC-COMPLEMENT [I-MAX]]
[C-MAX,

[C-SPEC
[P-MAX [P a]

[P-COMPLEMENT
[N-MAX e [objll]]]

IC El [C-COMPLEMENT]I I

Stack 2
[N-MAX [N] rN-COMPLEMENT]]- L
[P-COMPLEIVIENT [N-MAX]]

L'P-MAX [P a] [P-COMPLEMENTI]
[C-SPEC [P-MAX]]
FC_ MAX C-SPECII I

[C] [C-COMPLEMENTI]

I I

0-�- PM- I I mv-60P % �i- W----- ----"

-.- '' 1--l T A 71 rrlTIn n TI Xr A 'A rT-I'r m /-i. i-i rri - i %r r Y & i - /-% % r

Stack 3

[N-MAX [N] [N-COMPLENTENT']
J-SPEC [N-MAX]]
[I-MAX [I-SPEC] [[I-comPLETVIENTI]
[C-COMPLEMENT J-XIAX]j
[C-MAX C-SPEC [P-1\4AX IP a] [P-COMPLEMENT [N-MAX e [objl]]]]

[CE] [C-COMPLEXTENTI]

Stack 1 is ruled out inunediately because V does not derive the next input word quie'n.

(This is determined by the one-word lookahead facility.) Thus, stacks 2 and 3 are the only

applicable stacks for sanning te word qiti'n:

Inpitt Word: quic-n; Next Word le

Stack 1
[N-IVIAX [N quie-n] [N-COMPLEMENTI]
[I-SPEC [N-MAX]]

� .. [I-MAX I-SPEC] [1] [T-COMPLEMENT]]
[C-C',OMPLEMENT I-MAX]]
[C-MAX

[C-SPECI - I

Stack #2
[N-MAX [N quie-nj [N-COMPLEMENT11-
[P-COMPLENIENT [N-MAX]l
[P-MAX [P a] [P-COMPLEMENTI]
I

I

I

I I I I
[C-SPEC [P-MAL XI]

[C-MAX [C-SPEC]
I [C] [C-COMPLEMENT]]

[P-MAX [P a]
[P-COMPLEMENT

[N-MAX e [obj]]]]]
[C El [C-COMPLEMENT]]

Because quic'n does not subcategorize for anything, the X module eliminates NCOMPLEMENT in

both stacks. This completes the top-of-stack, and it can now be popped:

Input Word: quie-n; Next Word le

Stack 1 Stack 2
[C-MAX [C-MAX

[C-SPEC [C,-SPEC
[P-MAX [P a] [P-MAX [P a]

[P-COMPLEMENT [N-MAX e [objj]]]] [P-COMPLEMENT
[C E] [N-MAX [N quie-nflIll
[C-("OMPLEMENT 'C-COMPLEMENT]l

[I-MAX
[I-SPEC,' [N-NIAX FN quie-nfl]
[1] [I-COMPLEMENT]]]]

Now f(nfl) is traversed in stack- 1 and C is traversed in stack 2. This allows stack 1 to

�m .glomm"W"N"llow - 4 .. N. 1. I -

, CHAPTER 8. EXAAlPTE'OF TRANSLATION 142

expand I-COMPLEMENT and stack 2 to expand CCOMPLEMENT:

i I I 11 �
-

CHAPTER 8. EXA.1,11PLE OF TRA.YSLATION 143

input Tord: uic- n; Xcxt Word le

Stack 1
[V-MAX [V]]
[1-cOMPLEMENT [V-MAXII
[C-MAX

[C-SPEC
[P-MAX [P a]

[P-C'�OMPLEMENT
[N-MAX e [obj]]]]]

[C El I
[C-COMPLEMENT

[I-MAX
J-SPEC [N-MAX [N quie-n]]]
[I E] [I-COMPLEMENT]']]I

Stack 2

LTSPEC [N-iNlAXj
'l-m 'AX pfc] [11 [1-cOll-UPLEMENTI]
-C-COMPLENNIENT 'I-MAX']
�(,'-MAX

[(; SPEC
[P-NIAX [P a]

[P-COINIPLEMENT
[N-MAX [N quie-n]]]j]

[c El IC-COMPLEMENT]]
I

Stack 3

[I-MAX [V] [I-MAX]]
[C-COMPLEMENT [I-MAX]]

[C-MAX
[C-SPEC 11

[P-MAX [P a] [P-COMPLENTENT [N-MAX [N quie-n]]]]l
[C E] [C-COMPLEMENT]]

In stacks 2 and 3, V can either be left as is, or it can be expanded into the adjunct

possibility EV ECL-DATI EVII. In stack 2, [N-MAX my be empty since the next word le is

not derivable from [N-MAXI. The resulting stacks are:

Stack 1
[V-MAX [VI]
[I-COMPLEMENT [V-MAX]]
[c-MAX

[C-SPEC
[P-MAX [P a]

[P-COMPLEMENT
[N-MAX. e [objl]]]]

[C E]
[C-COMPLEMENT

[I-MAX.
[I-SPEC [N-MAX [N quie-n]]]
[I El
[I-COMPLEMENT]]]]

Stack 2
IV (L-DAT] [V]]
L L

i'V-MAX V]]

L[T-COMPLEMENT [Xr-MAXI]
lr('-MAX

[c SPEC,'
[P-MAX IP a]

[P-COMPLEMENT
[N-MAX e [obj]]]]]

[C E]
[C-CO]NIPLEMENT

[I-MAX
J-SPEC [N-MAX [N quie-nl]l
[I E]
J-COMPLEMENT]fl]

Stack 4
[V [CL-DAT] [VI]
J-MAX [V] -MAX]]
[C-COMPLEMENT [I-MAX]]
[C-MAX

[C SPEC
[P-MAX [P a]

[P-COMPLEMENT
[N-MAX [N quie-n]]]]]

[C E] [C-(-"OMPLEMENT]]

Stack 3
[I-MAX [VI [I-MAX]]
[C-COMPLEMENT [I-NIAX]I
[C-MAX

[C-SPEC
[P-MAX [P a]

[P-COMPLEMENT
[N-MAX [N quie-n]]]]]

[C E] [C-COMPLEMENT]]

Stack 5 -
J-SPEC [N-MAX el] -MAX [I-SPEC] [11 [I-COMPLEMENT]]
[C-COMPLEMENT [I-MAX]]
[C-MAX

[C SPEC
[P-MAX [P a] [P-COMPLEMENT [N-MAX [N quie-nl]]]]

[C E] [C-COMPLEMENT]l I

- PIRIII-I P", I I - -- -

CHAPTER 8. EXAMPLE OF TRANSLATION

Input lVord: uic-n; Nxt lVord: Ic

144

Stacks 1 and 3 are imediately ruled out since the next word le is not of category V.

Stacks 2 and 4 are not tossed out since a clific category is at the top of the stack. In

stack #5, N-MAX is complete, so the stack 'is popped. This mean that traces need to be linked

up, and ECP must be checked. Since N-MAX is empty, the trace possibility is tried. The only

. .1possible antecedent so far is the word quie'n; thus, the trace is linked with queen when the stack

-- ------- --

CHAPTER 8. EXAMPLE OF TRAIVSLATION 145

is popped. The bounding odule determines tat this trace-antecedent linking is valid since

. no bounding nodes are crossed. The other possibilities for N-MAX (PRO, po, or nlinked trace)

are also tried. The result is:

Input Word: qztie-n; Nert Vm- le

i
I
i

k

Stack 1
[V [CL-DAT] [V]j
[V-MAX [V]]
[I-COMPLEMENT 'V-MAX]j
[C-MAX

[C-SPEC
[P-MAX [P a]

[P-COMPLEMENT
[N-MAX e [objj]]]]

[C E]
[C-COMPLEMENT

[I-MAX
[I-SPEC [N-MAX [N quie-n]]]
[I El [I-COMPLEMENTfl]]

I I

Stack 2
[V [CL-DAT] [V]l
[I-NIAX [V] [I-MAX111
[c-CONIPLETANIENT 1-N/IA

L XI]

I'C-TMAX
[C-SPEC

[P-MAX [P a]
[P-CONIPLEMENT

[N-NIAX [N qie-n]]]]]
[C E] [C-CON11PLEMENTI]

I
I I
I

k I

Stack 3
[I-MAX [I-SPEC [N-MAX el -I

II] [I-COMPLENIENT]l
[C-COMPLEMENT [-MAK]]
[C-MAX

LC-SPEC

[P-MAX [P a]
[P-COMPLEMENT

[N-MAX [N quie-nl]i]]]
[C E [C-COMP.LEMENT]]

Stack 4

Irl_MAX [I-SPEC [N-MAX e]]

[11 [I-C',OMPLEMENT]l
[C-COMPLEMENT J-MAX]]
[GMAX

[C-SPEC
[P-MAX [P a-

[P-COMPLEMENT
[N-MAX [N quie-n]]]]]

[C E] [C-COMPLEMENT] I
I

; Note that the analysis in stack 3 is that of movement from subject position. This analysis

will be ruled out later when nominative case is assigned to [N-MAX e - because objective case

is assigned to [N-MAX [N quienfli, and this will force a case clash. Thus, we will no longer

1. I consider this parse. On the other hand, in stack 4 1(nfl) is traversed and I-COMPLEMENT is

expanded. Stacks 1 and 2 remain as is:

itack 2
rl W11
I I
[I-MAX]I

EMENT I-MAX]]

a]
OMPLEMENT

[N quie-n] [objl]ll]
COMPLEMENT]]

Stack 3
[V-MAX [VI [V-COMPLEMENT]]
[I-COMPLEMENT [V-AIAX]l
[I-MAX [I-SPEC [N-MAX e]] [I E] [I-COMPLEMENT]]

[C-COMPLEMENT [I-MAX']

[C-MAX
[C-SPEC

[P-MAX [P a] [P-COMPLEMENT 'N-MAX N quie-n [obj]]]]]
[C E] [C-COMPLEMENT]l

CHAPTERS. EXAMPLE OF TRANSLAT102Y 146

. -,n; JVcxt lVord: cinput lVard: quic �

Stack I
[V [CL-DAT] [VI]
[V-MAX [V]j
[I-COMPLEMENT [V-MAX]l
[C-MAX

[C-SPEC
[P-MAX IP a]

[P-COMPLEMENT
[N-MAX e [objll]]]

[C E]
[C-COMPLEMENT

[I-MAX
[I-SPEC [N-NIAX [N quie-n]]]
[I E] [I-COMPLEMENT]]j]

L

s

I'V [CL-DAI
ITMAX [VI
L i

IC-COMPLI
r(iL 3-MAX

[CI-SPEC
I[P-MA.i

[P-Cl

[N--MAX
[C E] [C-(

Now V in stack 3 can be expanded to the clific -tdjunction structure as in stack 1 a(I 2:

Stack 1
[V [CL-DAT] [V]]

Stack 2
[V [CL-DAT] [V]]
[I-NMAX [VI [I-NIAXI]
[C-CO-NIPLEMENT F-XIA

L XI]
[C-AIAX

[c-SPEC
[P-MAX [P a]

[P-COMPLEMENT
[N-N,IAX [N quie-nj [objlll]]

[CEJ [C-COMPLEMENT]l

[V-MAX [V]]
J-COMPLEMENT [V-MAX]]

I I I I'll

Stack 3
- . I- - - -

Stack 4
[V [CL-DATj [NT]l
[V-Mlkx, rv] [V-(',OMPLEMENT]]

r
[I-COMPLEMENT [V-MAX]]
[I-MAX [I-SPEC[N-MAX ell

rl E [I-COMPLEMENT]]
[C-COMPLEMENT [I-MAX]]
[C-MAX

[c-SPEC
[P-MAX [P a]

[P-COMPLEMENT
[N-MAX [N quie-n] [obill]]]

[(',El [,'-COMPLEMENT]]
i

---- -I--- --- I m-111-1-- --- , -- iqA"ml--.--

CHAPTER 8. E-XA,,�IPLE OF TRANSLATION
IInput 11"o-rd: quic--n; Xcxt Vord: Ic

147

I ICNIAX
[C-SPEC

[P-MAX [P a]
[P-COMPLEMENT

[N-MAX e [ol)j]]]I]
[C El

[C-COMPLEMENT
[I-MAX

J-SPEC [N-MAX [N quie-n]]]
[I E] [I-COMPLEMENT]]]]

[V-MAX [V] [V-COMPLEMENT11
[I-COMPLEMENT [V-MAX]]
J-MAX J-SPEC[N-MAX efl

[I El [I-COMPLEMENT]]
[(',-COMPLEMENT [I-MAX]]
[c'-MAX

[C-SPEC
[P-MAX [P a]

[P-COTNIPLENTENT
[N-MAX [N quie-nj[obj]jj]]

[C E] [C-COMPLEMENT]]

Note that only stack 2 is correct so far. Stack I has incorrectly predicted that quie'n is in

subject position and that the verb is not preposed. Stacks 3 and 4 also do not contain a

preposed verb. However, when the citic le is scanned, stacks -ff 1, 2, and 4 still remain:

Input Vord: Ic; Next flood: visitar

I

Stack I
[V [CL-DAT le] [VI]
[V-MAX [VI]
[I-COMPLEMENT [V-MAX]j
[C-MAX

[C-SPEC
[P-MAX [P a]

[P-COMPLEMENT
[N-MAX e [objl]]]]

[C E]
[C-COMPLEMENT

[I-MAX
[I-SPEC [N-MAX [N quie-n]]]
[I E] [I-COMPLEMENT11]]

L

Stack 2
[V [L-DAT le] [VI]
[1-NMAX [V] [I-AIAX]l
[CII-CIOMPLEMENT I-MAX]]
[C'-NIAX

[C-SPEC
[P-NIAX [P a]

L[P-COMPLEMENT

[i-NIAX [N quie-n]lll]
[C E] [C-COMPLEMENT]]

I

I

I
Stack 3

[V [CL-DAT le] [VI]

[V-MAX [V] [V-('OMPLE..%IENT]]
[I-COMPLEMENT [V-MAX]]

J-MAX [I-SPEC [N-NIAX e]] [I E] [COMPLEMENT]]
[C-COMPLEMENT [I-MAX]]
[C-MAX

[C-SPEC

[P-MAX [P a] [P-COMPLEMENT [N-MAX N quie-nj [obj]]]]]
L

[(,'E] [C-COMPLEMENT]]

11

I
I

Since the nonterminal V is at the top of A three stacks, te verb iiisitar can iimiediately

--- I I- " -FmwAw--- -

CHAPTERS. EXAMPLE OF TRANSLATION 148

be scanned:

Stack 1
[V [CL-DAT le] [V visitar]]
[V-MAX [V]]
[I-COMPLEMENT [V-MAXlj
[C-MAX

[C SPEC
[P-MAX [P a]

[P-COMPLEMENT
[N-MAX e [obj]]']]

[c El
[C-COMPLEMENT

[I-MAX
[I-SPEC [N-MAX [N quie-n]]]
[I E] [I-COMPLEMENT]]]]

Stack 2
'V [CL-DAT le] [V visitarl]
J-XIAX [V' [I-NIAX]l
[C-compLENTENT [I-MAX]
[c-AlAX

r

T-SPEC
[P-MAX [P a]

[P-COMPLEMENT
[N-MAX [N quie-nj [objl]]]]

[C El [C-COMPLEMENT]]

Stack 3
[V [CL-DAT le] [V visitarl]
[V-MAX [VI [V-COMPLEMENTI]-
[I-COMPLEMENT [V-MAX]]

[I-MAX. [I-SPEC [N-MAX. e]] [I El J-COMPLEMENT]]
[C-COMPLEMENT I-MAX]]
[C-MAX

[C'-SPEC
[P-MAX [P a] [P-COMPLEMENT [N-MAX [N quie-n] [objl]]]]

[C E]'C-COMPLEMENTI]

CHAPTER S. EXAATPLE OF TRAIVSLATION

Input 117ord: visitar; -,'V-cxt ilord: NIL

149

The features of visitor are instantiated since a head has just been scanned. The V visitor]

node is set up as follows:

CAT:
WORD:

iGENDtR: �

PERS:
NUMBER:
TENSE:
TRANSLATION:
SUBCATEGORIZATION:
EXTERNAL-CATS:
THETA-ROLES:
EXTERNAL-ROLES:

v

visitar
nil
p2
sg
past
[(visit)]
[(p) (n)]
[(n)]
[(p-goal aniniate) (goal inanimate)]
[(agent ank-nate)]

These features are then percolated up to the superior node (the dominating V). Then the clitic-

V adjunction structure is popped, and, in stacks 2 and ff-3, the features are percolated up

Stack I
[V-MAX [past p2 sgj

[V [CL-DAT le] [V visitarfl
[V-COMPLEMENTI]

[I-COMPLEMENT [V-MAX]]
[c;-MAX

[C-SPEC
[P-MAX [P a]

[P-COMPLEMENT
[N-MAX e [objflfl]

[C E]
[C-COMPLEMENT

J-MAX
[I-SPEC [N-MAX [N quie-nfl]
[I E] [I-COMPLEMENT11]]

Stack 2

'I-MAX
[V VL-DAT le] [V visitor]]

[cf-COTNIPLEMENT JMAX]l
C'-��',J A X

[C'-SPEC',
[P-NIAX [P a]

[P-COMPLEMENT
[N-MAX [N quie-n] [obj]]]]]

[C El [C-COMPLEMENT]]

Stack 3
[V-MAX [past p2 sg] [V [CL-DAT le' [V visitarl1] rV_C,OAIPLEMENTI]

[I-COMPLEMENT [V-MAX]]

[I-MAX [I-SPEC [N-MAX e]] [I E] [I-CIOMPLEMENTI]
[C-COMPLEMENT [I-MAX]]

[C-MAX
[C-SPEC

[P-MAX [P a] [P-COMPLEMENT [N-MAX N quie-n] [obj]]]]]
[C E] [C-COMPLEMENT]]

CHAPTER 8. EXAMPLE OF TRANSLATIO.N1 150

to the maximal level V-MAX. Since V-MAX has no specifier, spec/max agreement automatically

- . succeeds. The three stacks now appear as follows:

Input 1170,rd: visitar; he Ir t Wo rd: NIL

In stacks 1 and 3, VCOMPLEMENT is expanded according to the subcategorization frame
ii

of the closest head of category V (i.e., the word visitar). Thus, VCOMPLEMENT is expanded to

be P-MAX or N-MAX. The result is the following:

Stack 1
[V-COMPLEMENT Irp-MAXII

[V-MAX [past p2 sgj

LFV '(,L-DAT le] [V visitor]]
[V-CIOMPLEMENTIi

J_('�OMPLEMENT V-MAX']
[(i-MAX

[C-SPE(',
IP-MAX [P a]

[P-COMPLEMENT
[N-MAX e [objjjjfl

[C E]
[C-COMPLEMENT

[I-MAX
J-SPEC) [N-MAX [N quie-nfl]
[I E] I-COMPLEMENT]]]]

Stack 2 -
[V-COMPLEMENT N-MAX]l
[V-MAX [past p2 sg]

[V [CL-DAT le] [V visitarl]

[V-CONIPLEMENTI]

[I-COMPLEMENT N-XIAXII

[C SPEC

[P-MAX [P a]

[P-COMPLEMENT

[N-MAX e [obj]]I]]

[C El

[C-COMPLEMENT

[I-NIAX

'I-SPEC [N-MAX [N quie-n111

[I El [-COMPLEMENT]]]]

Stack 3

J-MAX II
[V [CL-DAT le] [V visitar]]
[I-MAX]]

[C,-COT\4PLEMENT [I-MAX]]

[C-MAX
I[C SPEC.

[P-MAX [P a]
[P-COMPLEMENT [N-MAX [N quie-n] [objjflfl

[C E] [C-COMPLEMENTfl

Stack 5
[V-COMPLEMENT [N-MAX]]
[V-MAX [past p2 sg]

[V [CL-DAT le] [V visitar]]
[V-COMPLEMENT]]

[I-COMPLEMENT [V-MAX]]
[I-MAX [I-SPEC [N-MAX el]

[I E [I-COMPLEMENT]]

[C-COMPLEMENT I-MAX]]
[C-MAX

[C-SPEC
[P-MAX [P a]

[P-COMPLEMENT
[N-MAX [N quie-n] [objflfll

[C E [C-COMPLEMENT]l

Stack 4
[V-COMPLEMENT [P-MAXI]
[V-MAX [past p2 sg]

[V [CL-DAT le] [V visitar]]
N-COMPLEMENTE

J-COMPLEMENT [V-MAXI]
[I-MAX J-SPEC [N-MAX el]

[I E] 1COMPLEMENT]]
[C-COMPLEMENT [I-MAX]]
[C-MAX

[C-SPEC
[P-MAX [P a]

[P-COMPLEMENT
[N-MAX [N quie-n] [obj]ljj]

[C El [C-COMPLEMENT]]

CHAPTER 8. EXA111PLE OF TRANSLATION

Input 11"o-rd: visitar; Next Wrd: ML

151

Stack 1
[V-COMPLEMENT [P-MAX el]
[V-MAX [past p2 sg]

[V [CL-DAT le] [V visitar]]
[V-CONIPLEXTENTI]

[I-COMPLEMENT [V-MAXI]
[C-MAX

[C-SPEC
[P-MAX [P a]

[P-COMPLEMENT
[N-MAX. e [objl]]]]

[C E]
[C-COMPLEMENT

J-MAX
[I-SPEC [N-MAX. [N quie-n]lj
[I E] J-COMPLEMENT]fl]

Stack 2
[V-COMPLEMENT 'N-.%1AX
[V-MAX [past p2 sgl

[V CL-DAT le] 'V visitarl]
[V-COX1PLEXIENTjj

[I-COMPLEXIENT [V-MAX11j
[C-NIAX

[C-SPEC
[P-MAX [P a]

T-COMPLEMENT
[N-:N,,IAX e [obj'fll]

[CEl
C[C NTIPLEMENT

[I-N,,1AX

LTSPEC [N-MAX [N quie-nill
Iff E] JCOMPLETNIENT]fl]
L I

Stack 3

[I-MAX [I-SPEC [N-AIAX el] 'I] lCOTNIPLENTENT11

[I-MAX
[V [CL-DAT le] [V visitarl]
[I-MAX]]

[C-COMPLEMENT [I-MAX]]

[C-MAX
[C SPEC

[P-MAX [P a]
[P-COMPLEMENT [N-MAX'N quie-nj [obj]jjfl

[C E] [C-COMPLEMENTfl

CHAPTER S. EXAMPLE OF TRANSLATI0.,7V 152

Since there are no-more input words to scan, expansions of the top-of-stack in stack's # t-#5

... I Must contain empty elements. Thus PMAX in #1. and 4 ust e a trace; N-MAX in 2 and #5

must be either PRO, po, or trace; an sbject position in stack #3 must be PRO, po or

trace. Thus, we have:

lnpitt Word: isitar; Next Wo-rd: JVIL

Stack 5
[V-COMPLEMENT [N-MAX e]]
[V-MAX past p2 sgj

[V [CL-DAT le] [V visitar]]
[V-COMPLEMENT]]

[I-COMPLEMENT [V-MAX]l
[I-A-TAX TSPEC [N-MAX efl

[I E] [I-COMPLEMENT]]
[C-COMPLEMENT [I-MAX]]
[C'-MAX

[C-SPEC
[P-MAX [P a]

[P-COMPLEMENT
[N-MAX [N quie-nj [objjflfl

[C E] [C-COMPLEMENTI]

Stack 4
[V-COMPLEMENT [P-MAX e]
[V-MAX [past p2 sgj

[V [CL-DAT le] [V visitarfl
[V-COMPLEMENT]l

J-COMPLEMENT [V-N/IAXI]
J-MAX [-SPEC [N-MAX efl

[I E] [I-COMPLEMENT]]
jc-COMPLEMENT [I-MAX]]

[C-MAX
[C SPEC

[P-MAX [P a]
[P-COMPLEMENT

[N-MAX [N quie-n] [objflfl]
[C E] [C-COMPLEMENT11

Stack 1
[C-MAX.

[C-SPEC
[P-MAX [P a]

[P-COMPLEMENT
[N-MAX e [obj]]]I]

[C EJ
[C-COMPLEMENT

[I-MAX
[I-SPEC [N-MAX [N quie-n]]]
[I EJ

[I-COMPLEMENT
[V-MAX [past p2 sgJ

[V [CL-DAT le]
[V visitar]]
[V-COMPLEMENT

[P-MAX. e]]]]]]]

Stack 2
[C-MAX

[GSPEC
[P-MAX [P a]

[P-COMPLEMENT
[N-MAX e [objflfl]

[C EJ
[C-COMPLEMENT

[I-MAX
[I-SPEC [N-MAX [N quie-nfl]
[I E]
[I-COMPLEMENT

[V-MAX [past p2 sgj
[V [CL-DAT le]
[V visitar]]
[V-COMPLEMENT

[N-MAX e]j]j]fl

CHAPTER 8. EXAMPLE OF TRANSLATION 153

Stacks , 2, 4 and 5 are now complete and are popped:

Input Word: risitar;jVc x t Word: JVIL

Stack 3

[I-MAX -SPEC [N-IVIAX efl J] [I-CONIPLENTENTI]
[I-NIAX

[V [CL-DAT le] [V visitarl]

L11-MAX]]

[C-C)OMPLEMENT [I-MAX'!
[C-MAX

'C-SPEC
[P-MAX. [P a]

[P-COMPLEMENT [N-MAX [N quie-n] [obj]]III
[C El [C-COMPLEMENT]l

Stack 5
[C-MAX

[C-SPEC
[P-MAX [P a]

[P-COMPLEMENT
[N-MAX [N quie n] [obj]j]]]

rt (1i E
[(',-('ON,1PLE'%1ENT

[I-MAX

[I-SPEC [N-MAX efl j E]
[I-COMPLEMENT

[V-MAX [past p2 sg]
[V [CL-DAT le]

[V visitar]]
[V-COMPLEXIENT

[N-MAX e]]]flfl

Stack 4
[C-MAX

[C-SPEC
[P-MAX [P a]

[P-COMPLEMENT
[N-MAX [N quie n] [objll]]]

[C E]
[c-COMPLEMENT

[I-MAX
J-SPEC [N-MAX el] [I E]

[I-COMPLEMENT
[V-MAX [past p2 sg]

[V [CL-DAT le]
[V visitarfl

[V-COMPLEMENT
[P-MAX el]]]]]] I

04"I"N
F i� CHAPTER 8. EYA..,A,.IPLE OF TRAINSLATION 154

During popping, several GB constraints are checked. First, stacks 1 and 2 are ruled out

because [N-MAX el under P-MAX in C-SPEC is forced to be linked with [N-MAX EN qui6n I in

subject position (since it is the only possible antecedent); this causes a case clash: [N-MAX EN

quAnll is assigned non-linative case by I(nfl) with tns features, and [N-MAX el is assigned

objective case by EP a].

In stacks 4 and #5,-.[N-MAX el in subject position must be po: it cannot be PRO since

it is governed by I(nfl) with tns features; and it cannot be trace since it has nominative

case and EN-MAX EN qui,6n]] (its only possible antecedent) has objective case. At this point,

stacks 4 and #5 are ruled out, not because of a GB constraint violation (in fact, ECP,

Case, and conditions are satisfied), but because of a language-specific movement violation.

The parameter setting (((PREPOSE) �� (WH-MOVEMENT WH-PHRASE-A))) requires that

[V-MAX [VI [V-COMPLENTIENT11
[I-COMPLEMENT [V-MAX]l
[I-MAX [I-SPEC [N-7NIAX e]],'l El COA,IPLEMENTI-I
[I-MAX [V'CL-DAT le] [N 'r visitor]] [I-MAX]]

[c-COMPLEMENT 'I-MAX]]
[C-MAX

[C-SPEC
[P-MAX [P a]

[P-COMPLEMENT IN-MAX [N quie-n] [obj]'fl]
IC El [C-COMPLEMENT]]

[V-MAX [V e] [V-(',ONIPLEMENT]]
[I-COMPLENIENT [V---,kTAXI]

[I-MAX [I-SPEC [N-MAX el] [I El COMPLEXIENT]]
[I-MAX [V [CL-DAT le] [V visitarl' [I-NIAX]l
[C-(IOMPLEMENT [I-MAX]]

[C-MAX
[C-SPEC

[P-MAX [P a]
[P-COMPLEMENT [N-MAX [N quie-n] [obj]]]]]

[C E] [C-COMPLENIENT]]

to",*,\ CHAPTER 8. EXAMPLE OF TRANSLATION 155

preposing occur if 1-movement (i.c., movernent of P-MAX or N-MAX into C-SPEC position) has

- �. ... : � -taken place. Since V-preposing has not taken place, stacks 4 and #5 are eliminated.

We are left with stack 3. (nfl) is traversed, and I-COMPLEMENT is expanded ntil V is at

the top of the stack:

Inpid IVord: i7isitar; Next lVord: JVIL

Since there are no more input words, the oly possibility for V is trace:

Input Wovd: vi-5itar Nxt R-ord: NIL
AOOMN*k\

The only antecedent for EV el is [V visitarl. Thus, trace linking takes place, and the

features of EV visitor] are transferred to [V el. These features are hen percolated up

. to V-MAX. Now VCOMPLEMENT needs to be expanded. The closest head procedure expands the

complement to P-MAX and N-MAX (as dictated by the subcategorization reqifirements of visita-r):

Stack 2
[V-COMPLEMENT [P-MAX]]
FV-MA f I
L Lpast p2 sgl

[V e]j [V-COMPLEMENTI]
[I-COMPLEMENT [V-MAX]]
J-MAX [I-SPEC [N-MAX e]]

[I E] [I-COMPLEMENT]]
J-MAX

[V [CL-DAT le] [V vislitarfl
[I-MAX]]

[C-COMPLENTENT I-MAX]]
[C-MAX

[C-SPEC
[P-IMAX [P a]

[P-COMPLEMENT
[N-MAX, FN quie n] [obj]]jfl

[C El C-COMPLEMENT]]

Stack 1
[V-COMPLEMENT [N-TIAX]]
[V-MAX [past p2 g]

[V e], [V-C'0N1PLE1V1ENT]]
[I-COMPLEMENT [V-MAX]l

[I-MAX [I-SPEC, [N-MAX ell
[I E] [1-(',OMPLEMENT]]

J-MAX
[V [CL-DAT lel [V visitarl]
[I-MAX]]

[C-C10MPLEMENT I-MAX]]
[c'-MAX

[C-SPEC
[P-MAX [P a]

[P-C,'OMPLEMENT
[N-MAX [N quie-n] [obj]lljj

[C El [GMNIPLEMENTI]

CHAPTER 8. EXAMPLE OF TRAINSLATION

Input V rd: visitar; NeXt Vard: -,,N'IL

156lo��
F

F 7

In either case, an -empty element is dropped and the stacks are then popped. During

popping, several actions take place. When VCOMPLEMENT is popped, trace linking takes place.

In the case of stack 1, there are two possibilities of antecedent for the verbal cornplenient:

[N-MAX el in subject position and [N-MAX [N qui,6n I in C-SPEC position. In the case of

stack 2, the only possible antecedent is P-MAX a qui,6n]. Trace linking takes place, and the

Bounding module determines that this linking is valid snce no bounding nodes are crossed.

The result is:

Stack 1
[V-MAX [past p2 sg] [V e]

[V-COMPLEMENT [N-MAX
[I-COMPLENIENT [V-MAX]]
[I-MAX -SPEC, [N-MAX e]]

[I E] [I-COMPLEMENT]]
J-MAX

[V [CL-DAT le] [V visitar] -
J-NIAX]]

[C-COMPLEMENT [I-MAX]]
[C-MAX

[C-SPEC
[P-MAX [P a]

[P-COMPLEMENT
[N-MAX [N quie-n] [obj]]djj

-[C El [C-C',OMPLEMENTI]

Stack 2
[V-MAX [past p2 sg] [V e]j

[V-COMPLEMENT [N-MAX el-fl
[I-COMPLEMENT [V-MAX]]
[I-MAX -SPEC [N-TMAX ei]

[I El [I-CONIPLEMENT]]
J-MAX

[V [CL-DAT le] [V visitar]]j
[I-MAX]]

LT-COMPLEMENT [I-MAX]]
irC_MAX
L

[C',-SPEC
[P-MAX [P a]

[P-COMPLEMENT
[N-MAX [N uie-n] [obj]]]]]

[C E] [C,-COMPLEMENT]]

Stack #3
[V-MAX [past, p2 sg] [V e] [V-COMPLEMENT [P-MAX ei]]
[I-COMPLEMENT [V-MAX]]
[I-MAX [I-SPEC [N-MAX efl [I El [I-COMPLEMENT]]
J-MAX [V [CL-DAT le] [V visitarlb J-MAX]j
[C-CIOMPLEMENT [I-MAX]!
[G-MAX

[C-SPEC
[P-MAX [P a]

[P-COMPLEMENT [N-MAX [N quie-n] [objJ111i]
[C E] [C-COMPLEMENT]]

CHAPTERS. EXA.MPLE OF TRANSLATION

.., Input Word: visitar;,A'cxt lVord: NIL

157

Next, when V-MAX is popped, inflection information is percolated up to the I-MAX level, at

which point [N-MAX el in sub'ect position 'is assigned nominative case and forced to be ro (it

cannot be PRO since it is governed by (nfl) with tns features, and it cannot be trace since

its only possible atecedent ([K-MAX [N qui6n]) is assigned objective case). Once this is

determined, pro is given Ep2 sgl features due to merging of the (nfl) constituent with subject

position. Finally, objective case is assigned to [N-MAX el under VCOMPLEMENT position in

stacks 1 and 2. Because there is a case clash in stack 2 ([N-MAX eli, which has objective

case, is linked with pro, which has nominative case), this stack is elin-dnated. We are left with

two stacks:

Stack #1
[I-MAX

J-SPEC
[N-MAX e

[pro nom p2 sg aniniatefl]
[I E]
[I-COMPLEMENT

[V-MAX [past p2 sg]
[V e]j
[V-COMPLEMENT

[N-MAX e [obj]],]]]]
J-MAX

[V [CL-DAT le] [V vsitarflj
[I-MAX]]

[C-COMPLEMENT [I-MAX]]
[C-MAX

[C SPEC
[P-MAX [P a]

[P-COMPLEMENT
[N-MAX [N quie-n] [obj]]-]]]

[C El [C-COMPLEMENTI]

Stack 2
[I-MAX

[I-SPEC
[N-MAX, e

[pro nom 2 so, animateill
[I E]
[I-COMPLEMENT

[V-MAX [past p2 sg]
[V e]j

[V-COMPLEMENT
[P-MAX,

[I-MAX
[V [CL-DAT le] [V visitar]]
[I-MAX]]

[c-COMPLEMENT [I-MAX]]
[C-MAX

[C-SPEC
[P-MAX. [P a]

[P-COMPLEMENT
[N-MAX [N quie-nj [objflflj]

[CEJ [C-COMPLEMENTfl

CHAPTER 8. EXA.VTPLE OF TRANSLATION

� Ipul Word: visita r; Arext 11,70-rd: NIL

158

Now that I-MAX is complete, it too is popped:

Input lVord: visitar Nxt Wrd: -,'VIL

I

i
i
i

Al

Stack
J-MAX

[V [CL-DAT le] [V visitarflj
J-MAX
J SPEC

[N-NIAX e [pro nom p2 sg aniniatefl]
[I E]
[I-COMPLEMENT

[V-MAX [past p2 sgj
[V e]j
[V-COMPLEMENT

[N-MAX e [obj]]-]j]j
[C-COMPLEMENT [I-MAX]]
[C-MAX

[C- SPEC
[P-MAX. [P a]

[P-COMPLEMENT
[N-MAX [N quie n] [obifl-fl]

[C El [C-COMPLEMENT]]

I

I

I
i
I

Stack 2
[I-MAX

[V [CL-DAT le] [V visitarflj
[I-MAX]]

J-SPEC
[N-MAX e [pro nom p2 sg aniniatell]

[I E]
[I-COMPLEMENT

[V-MAX [past p2 sg]
[V e]j
[V-COMPLEMENT

[P-MAX e-]]]]
[C-COMPLEMENT I-MAX]]
[C-MAX

[Cy' SPEC,
[P-MAX [P a]

[P-COMPLEMENT
'N-MAX [N quie-n] objflfl.]

IC El [C-COMPLEMENT]]

At this point O-role assignment takes place. External O-role is assigned to pro since visitor

requires an external agent with animate features. Internal O-role assignment is more complex.

Recall tat citics asorb s-government. This eans that case assignment to a verbal clitic takes

priority over case assignment to a verbal complement. Consequently, CL-DAT le] receives

objective case. Then, since no other argument is visible (i.e., assigned case) for O-assignment,

the clitic. is assigned a O-role of goal.

Now O-role transmission takes place. In stack #1, neither [N-MAX EN qui6n]] under

C-SPEd nor EN-MAX el in verbal complement position have a 0-role; however, since [-MAX

EN qui6n]] has the same case as the clitic (both have ob'ective case), O-role transmission is
-MAX N qui'n] . This leaves -MAX el without

triggered, and the goal O-role is copied to N 0

a O-role. Recall that O-role transferral occurs only from trace to antecedent, not vice-versa.)

The result is that stack I is rled ot by the -Criterion. By contrast, in stack 3 ECL-DAT

le] transients O-role to [N-MAX N qui,6n]], and the O-Criterion is satisfied since the verbal

complement [P-MAX el does not require O-role.

Since C-MAX is complete, it is popped, and the final parse is:

CHAPTER S. EXA.NIPLE OF TRANSLATION 159

------ --- --
Moll ---- i

CH.APTER 8. EXAiAIPLE OF TRAlYSLATTOIY 160

[c-MAX
[C-SPEC

[P-MAX [P a]
[P-COMPLEMENT

[N-MAX [N quie-n] [obj goalflfli]
[C EJ
[C-COMPLEMENT

[I-MAX [V [CL-DAT le [obj goalfl [V visitar'l
[I-MAX

[I-SPEC [N-MAX e [pro noni p2 sg animate agent]]]
[I E]
[I-COMPLEMENT

[V-MAX [past p2 sgJ
[V e]j
[V-COMPLEMENT [P-MAX e]jjflfl]J

This structure is passed to the replacement odule and processed as described in the

following section.

8.2 Replacement

During replacement two actions take place: first nioved elements are dropped into D-structure

positions; and second, source language heads and arguments are thernatically substituted by

their target language counterparts. Replacement of oved elements in the parsed structure

derived in section 8.1 results in the following form:

[C-MAX
[C-SPEC NIL]
[C EJ

[C-COMPLEMENT
[I-MAX

[V NIL]
[I-MAX

[I-SPEC [N-MAX e [pro noni p2 sg animate agentfl]
[I EJ

[I-COMPLEMENT
[V-XIAX [past p2 sg]

[V [CL-DAT le [obj goalfl 'V visitar.]l
[V-COMPLEMENT

[P-MAX [P a]
[P-COMPLEMENT

[N-MAX [N quie-n] [obj goal1jJfl]Jflfl

CHAPTER 8. KXA.�,WPLE OF TRANSLATION 161

Here the verb [V visitor] has moved into its D-structure position, leaving NIL behind in the

preposed verbal position. Also, the alh-phrase P-MAX EP a] [N-MAX EN qui6111 has been

moved into VCOMPLEMENT position, leaving NL behind in C-SPEC position. Before theniatic

substitution can take place, the evacuated elements (i.e., positions that contain NIL) must be

removed, and seless structure (e.g., [I-MAX rI-MAX . . II) ust be eliminated:

I

[C-MAX.
[C E]
[C-COMPLEMENT

J-MAX
J-MAX

J-SPEC [N-MAX e [pro nom p2 sg animate agentfl]
j E]
J-COMPLEMENT

[V-MAX [past p2 sgj
[V [CL-DAT le [obj goal]] [V visitar]]
[V-COMPLEMENT

[P-MAX [P a]
[P-COMPLEMENT

[N-MAX'N queen] [obj goal]fl]flflfl]

Useless Structu.,re Eliminated

[GMAX
[C El
[C-COMPLEMENT

[I-MAX
[I-SPEC [N-MAX e [pro nom p2 sg animate agentfl]
[I E]
[I-COMPLEMENT

[V-MAX [past p2 sg]
[V [CL-DAT le [obj goalfl [V visitar]]
[V-COMPLEMENT

[P-MAX [P a]
[P-COMPLEMENT

[N-MAX. [N quie-n] [obj goalflflflflfl

A-00"I's,

Evacuated Eements RemoVed

Now thematic substitution takes place. This is done recursively: first a head 'is translated;

then the arguments of the ead are translated; finally, if the arguments contain heads, these

heads are also translated, and so on. The first lexical head to be translated is visitar. The

translation is direct in this case (since there is no thematic diverge-nee between the source and

target language equivalent); the source language word is i7isit. The result is:

-. i li��; "I -1;4,� %�� "'WiiiI-- -- -- -- --------" -, - 4 , i

CHAPTER 8. E.XrAAIPLE OF TRANSLAT101V 162

[C-MAX
[C'E]
[C-COMPLEMENT

[I-MAX
[I-SPEC [N-MAX e [pro nom p2 sg aniniate agent]]]
[I El
[I-COMPLEMENT

[V-MAX [past p2 sgj
[V [CL-DAT le [obj goal]] I�V visit]]
[V-COMPLEMENT

[P-,%IAX a]
[P-COTMPLEMENT

'N-MAX N quie-n] [obi oal]]']]]]]]]
L n I

The internal argument of i4sd, EP-MAX [P a] [N-MAX EN qui,&n111, is also translated

directly. The source language equivalent is [P-MAX [P to] [N-MAX [K who] I]. Although the

clitic is eliminated later (during eneration, it is translated for now to the source language

word him. Thus, the following tructure is derived:

[C-MAX

[,C E]

[C-COMPLEMENT

[I-MAX

J-SPEC [N-MAX e [pro noni p2 sg animate agent]]]

[I El

[I-COMPLEMENT

[V-MAX [past p2 sgl,

[V [CL-DAT him [obj goalfl [V visit]]

[V-COMPLEMENT

[P-MAX [P tol

[P-COMPLEMENT

[N-MAX [N who] [obj goalflflflflfl

This form is almost ready to be fed to the generation routines; however, the argument

structure must be modified since the structural realizations of the source and target internal

arguments diverge. The internal argument of visitor is a p0001, which is structurally realized

as P-MAX. By contrast, the internal argument of iisit is a goal, which is structurally realized as

N-MAX. Thus, the structural realization routines return the following form:

CHAPTER S. EXA.WPLE OF TRAAISLATIO.\T 163

[C-MAX
[(El
[C-COMPLEMENTIT

rIMAX

[I-SPEC,' [N-MAX e [pro nm 2 sg animate acent111
E]

[I-COATPLEMENT
[V-MAX [past p2 sg]

[V rC'L-DAT hini obj goalfl [V visit]]
L ' I

IV-C'OA1PLMJENT [N-MAX [N who] [obj goalfl]]flfl

Note that there is no thematic divergence between the source language structure and the target

language structure. Thus, the internal and external argument positioning does not change (even

though their structural realizations are not the same).

Now that a lexical constituents ave been translated, this forin is processed by the gener-

ation routines as described in the next section.

8.3 Generation

During generation, two types of procedures process the target language D-structure in turn:

the first type concerns ovement of elements into S-structure positions, and the second type

consists of morphological synthesis into surface forms. Before elements are moved out of base

position, the X module is accessed to ensure that certain incompatibilities are elin-Linated. For

example, in the source language D-structure derived by the replacement routines in section 82,

a pro subject and a clitic-adjunction structure are present. Since these are both disallowed in the

target language (as etermined by the BASE-SPECTFIERS-AND-ADJUNCTION parameter

setting), they are eliii-iinated.' Also, since a DO-AUX adjunct is allowed to occur inEnglish,

this structure is generated. The case where DO-AUX adjunction does not occur is also included;

thus, two structures are gnerated:

3Elianination of pro ainounts to removal of the pro feature.

F'

Stack At: DO-AUX Adjunction
[C-MAX

[C E]
[C-COMPLEMENT

[I-MAX
[DO-AUX]

[I-MAX
[I-SPEC [N-MAX e [nom p2 sg animate aent]]]
[I E]
[I-COMPLEMENT

LIV-MAX [past p2 sg]
[V visit]

[V-COMPLEMENT [N-MAX [N who] robi oal]]]]]]]]]
Stack 2: No DO-AtTX Adjunction

[C-MAX
[C E]
[C-COMPLEMENT

J-MAX

[I-_SPEC/ [N-NIIAX e [nom p2 sg animate agentfl]
rI E]

[I-COMPLEMENT

[V-MAX. [past p2 sg]

Iv visit]

[V-COMPLEMENT [N-MAX [N who] [obj goal]flfl]fl

CHAPTER 8. 'EXANTPLE OF TRANSLATIOIN 164

At this point, the X module also checks that the constituent order of this structure is

compatible with the constituent order of the target language. Because both Spanish and

English are head-initial languages, no modifications are necessary. Now ovement routines are

activated, and all possible substitution and adjunction possibilities are tried (according to the

DERIVED-SPECIFIERS-AND-ADJUNCTION paranieter setting). The only movement that

is applicable is Wh-movement (i.e., substitution of [N-MAX [N who] I I into C-SPEC position).

Now the two stacks are ultiplied into four (two with 111-movenient, and two without WV

movenient):

Stack
[C-MAX

[c-SPEC
[N-MAX [N who] obj goal] 1

[C E]
[C-COMPLEMENT

[I-MAX
[DO-AUX]

[I-MAX
J-SPEC

[N-MAX e
Inom p2 sg animate agent]]]

[I E]
[I-COMPLEMENT

[V-MAX [past p2 sg]
[V visit]

[V-COMPLEMENT
[N-MAX e

[obj goal]]jflflfl

Stack 2
[C-MAX

[C-SPEC
[N-MAX [N who] [obi goal]]d

IC El
[C-COMPLEMENT

[I-MAX
[I-SPEC

[N-TMAX e [nom p2 sg animate agentfl]
[I El
[I-COMPLEMENT

[V-MAX [past p2 sgj
[V visit]
[V-COMPLEMENT

[N-MAX e
[obj goalfliflfl]]

Stack 4
[C-MAX

[C E]
[C-COMPLEMENT

[I-MAX
J-SPEC

[N-MAX e
Inom p2 sg animate agentfl]

[I E]
[I-COMPLEMENT

[V-MAX [past p2 sg]
[V visit]
[V-COMPLEMENT

[N-MAX [N who]
[obj goalflflflfl

Stack 3
[C-MAX

[C E]
[C-COMPLEMENT

[I-MAX
[DO-AUX]

[I-MAX
[I-SPEC

[N-MAX e
Inom p2 sg animate agentfl]

[I E]
[I-COMPLEMENT

[V-MAX [past p2 sgl
[V visit]

[V-COMPLEMENT
[N-MAX [N who]

[obj goal]flflfl]]

.11, --- � --11-1 ---

CHAPTERS. EXA-MPLE OF TRANSLATION 165

The Bounding module determines that this movement is legal since the trace-antecedent

linking crosses only one bounding node (I-MAX). However, the language-specific-effects. con-

straint rules out stacks 2 and 3 because SAI (adjunction of DO-AUX to I-MAX) and Wh-

Stack I
[C-MAX

[C-SPEC[N-MAX[Nwho][objgoalfl-j [CE'
[C-COMPLEMENT

[I-MAX
[DO-AUX]

[I-MAX.

J-SPEC [N-MAX you [pronoun nom p2 sg animate agentfl]
[I El
[I-COMPLEMENT

[V-MAX [past p2 sg]
[V visit]
[V-COMPLEMENT [N-NIAX e [obj goalfl-flfl]fl

Stack 2
[C,'-MAX

[CE]
[C-COMPLEMENT

[I-MAX
[I-SPEC [N-MAX you [pronoun nom p2 sg animate agentfl]
[I E]
[I-COMPLEMENT

[V-MAX, [past p2 sgj
[V visit]
[V-COMPLEMENT [N-MAX [N who] 'obj goal]fl]flfl

CHAPTER 8. EXAMPLE OF TRAINSLATION 166

movement (substitution of [N-MAXI in C-SPEC) do not co-occur. Thus, only stacks 1 and #4-

rernain. Now linguistic constraints are applied. In particular, UP is cecke ad assignment

of case and 0-role takes place. Since no ovement as taken place in stack 4, o traces need to

be checked by ECP. By contrast, in stack #1, the trace EN-MAX el in VCOMPLEMENT position

is checked by ECP: no violation is found since [N-MAX el i is roperly governed by [V visit].

Case assignment is straightforward: assignment of non-iinative case to subject position and ob-

jective case to object position does not result in a odification of lexical constituents since the

cases that were already assigned are compatible. 0-role transii-lission is equally straightforward

since there is no thematic divergence; thus, the -Criterion is satisfied,

Stacks 1 and 4 are now ready for orphological synthesis. In preparation for this

process, lexicalization and feature-affix apping ust first take place. First the subject is

lexicalized:

Next the auxiliary is lexicalized:

Stack 1
[C-MAX

[C-SPEC,'[N-MAX [N who] 'obj goal" 'C'E]
[C',-COMPLEMENT

[I-MAX
[DO-AUX do [past p2 sofl

J-MAX
[I-SPEC' [N-MAX you pronoun noni p2 sg animate agentfl]
[I El
[I-COMPLEMENT

[V-MAX [past p2 sgl
[V visit]

[V-COMPLEMENT [N---,%IAX e [obj goal]'-fl]flfl
Stack 2

[C-MAX
[C E]
[C-COMPLEMENT

[I-MAX

[N-MAX you pronoun nom p2 sg animate agentfl]
[I E]
[1-(10MPLEMENT

[V-MAX [past p2 sg]
[V visit]
[V-COMPLEMENT [N-MAX [N who] [obj goalflfl]fl]

CHAPTER 8. EXAMPLE OF TRANSLATION001MON p� 16 7

Now features are mapped to the source language affixes:

1EJ'_.'YxANTPLE OF TRANSLATIOIN

Stack 1
[C-MAX

[GSPEC [N-MAX. [N who+011i]
IC E]

[c-C0MPLEl\.lE,NT
J-MAX

[DO-AUX. did+01
[I-MAX

[I-SPEC [N-NTIAX you+O]]
[I E]
[I-COMPLEMENT

IV-MAX
[v visit+o]
[V-COMPLE-MENT [N-MAX e [obj goal]]-]]]]]]]

Stack 2
[c-MAX.

IC E]

[C-COMPLEMENT
[I-MAX

J-SPEC [N-MAX. you+Olj
[I El
[I-COMPLEMENT

[V-MAX
[V visit+ed]
[V-COMPLEMENT [N-MAX. N who+O]]]]]]]]

CHAPTER . 168

Morphological synthesis by the Kimmo generator takes place at this point:Z7)

EXXAMPLE OF TRAIVSLATION

Stack #1

[C-MAX
[C'-SPEC [N-MAX [N who]ji] [C E]
[C-COMPLEMENT

[I-MAX
[DO-ATTX did]

J-MAX
[I-SPEC [N-MAX you]]
[I E]
J-COMPLEMENT

[V-MAX
[V visit]
[V-COMPLEMENT [N-11AX e [obj oal]]i]llllll

Stack 2

[C-MAX
[C El
[C-COMPLEMENT

[I-MAX
J-SPEC [N-MAX you]]
[I El
[I-COMPLEMENT

[V-MAX
[V visited]
[V-COMPLEMENT [N-MAX [N who]fl]flfl
I I I

CHAPTER8. 169

Finally, the surface forms are generated: Who did yozt visit? and Yoit visited who?

8.4 Processing Time

Each of the three stages vary in the amount of time taken to process a given sentence. The

replacement and generation stages take less time (generally around 20 seconds total) than the

parsing stages because ost of the structure that is manipulated has already been generated

by.the parser. By contrast, the parser generally takes a few minutes (with tracing turned on)

since it generates the structure from scratch. Most of the slowdown is due to the fact that

top-down prediction is used. The Earley parser generates a great deal of unnecessary structure

before the linguistic constraints are applied. If the parser were driven by the input and the

lexicon instead of by X templates, most of the unnecessary structure could be eliminated, and

the system would be faster. An alternative parsing method based on a bottom-up projection

of structure is discussed in section 92.

q� *aPp I 1 I I II

0 0 0

inii a ions, ure lor an

0
/onc usions

This chapter discusses some of the limitations of the translation approach presented here, as

well as directions for future work and conclusions. The system Aoes not handle several types

of syntactic phenomena. Furthermore, it requires certain coniputationally and linguistically

relevant modifications. These problems are addressed in the following two sections; the third

section contains the conclusions.

9.1 Limitations

Spanish passivization has been implemented to the extent that the construction coincides with

its English counterpart:

(61) Los documentos fueron perdidos por el hombre.

'The documents were lost by the man.'

However, the more common passive construction in Spanish includes the reflexive pronoun se

which has no equivalent English form:

(62) Se perdieron los documentos por el hombre.

'The documents were lost by the man.'

170

Chapter 9

CHAPTER 9 ' LIMITATIONS, FUT[TRE WORK, AIVD CATCL ETSIOA S 1171

Although the reflexive use of se has been implemented (along -with other citics), the passive

ii��-age is not included.'

Coordination has also not been included in this iplementation. ecall that X structures

allow adjuncts at the minimal and aximal level; however, they do not permit two aximal

structures to be conjoined, so that both structures have equal status. Thus, the following

structure is disallowed: [X-MAX [X-MAX ...] [a] [X-MAX where a is a conjunction. See

Fong 1986) for ore details on a linguistically based approach to parsing conjoined phrases.

Certain adjuncts are not thoroughly handled by the system. For example, the adjunctio of

BE-AUX to a verb (as in ws eating) is only parsed at a surface level since feature atching of

adjuncts with heads has not been implemented. Similarly, adjectival adjunction is not properly

handled for this reason. Thus, the incorrect form *hombre buena (_ manlmajc] good[fern]) would

be considered as acceptable as the correct form hombre bueno (__ man[masel good[masel). Feature

agreement has also not been iplemented for complements of �copula verbs since specifier-

-complement feature-matching is not included. Thus, e'l es bitena. (-- he[,a,,] is good[f,,]) il would

be considered as acceptable as e e bueno (_ hetmase] is good[masc])

Although thematic divergence has been handled to a certain extent (e.g., the gustar-like

example of section 71.3), cases of thematic divergence in which one or more lexical items are

structurally modified have not yet been iplemented. For example, the translation of Tengo

calor to I am hot is not handled since the literal translation is I have heat. Not only is there

different choice of verbs in each language, but there is also a categorial divergence between the

predicate complements. The inclusion of 0-roles aids the translation of thematically divergent

predicates, but the module and lexical processing routines needs to be extended in, order

to handle conversion of lexical items into structurally distinct but semantically equivalent

constituents.2

An additional shortcoming of the system is that it requires the specification of language-

specific effects. Unfortunately, the specification of these effects is 'in direct opposition to the

'Borer 1984) presents an analysis of e within the GB framework.
2Because Sharp's translation systein does not include 0-role assignment, it cannot handle even simple the-

matic divergence (such as translation of the word gustar). Thus, the model presented here at least approaches
the type of processing required for handling more complex cases of thematic divergence. It appears that the
0-grids of lexical items may ultimately be derivable from a suitable representation of their meanings; see Guers-
sel et al. 1985), Levin and Rappaport 1985), and Rappaport and Levin 1986) for discussion.

CHAPTER 9 LIMITATIONS, FUTURE WORK, AND CONCLUSIONS 172

primary objective of the principle-based approach (i.e., to avoid spelling out language-particular

details). Tappily, there are only a few language-specific effects for Spanish and English (in fact,

one for each language); it is likely that this will be the case in most languages. A later version

of the systein ight incorporate these effects 'in a principle-based way, depending on how the

linguistic teory evolves. 3

Currently, the system does not attempt to incorporate the language-specific requirements

in a principle-based way. Rather, they are considered a part of what Chornsky (1986b) calls

periphery: 4

Suppose we distinguish core langitage from priphery, where a core language is
of TC,

system determined by fixing values for the parameters , and the periphery
is whatever is added on in the systein actually represented in the lilind/brain of a
speaker-hearer . .. What we learn are the values of the parameters and the elements
of the periphery (along with the lexicon, to which sin-iflar considerations apply).
The language that we then know is a system of principles with parameters fixed,
along with a periphery of marked exceptions.

Although a better ethod of specifying peripheral phenomena might be constructed, the one

used in thi's model is sufficient for the processing of the two languages under consideration.

Disambiguation requiring semantic processing has not been attempted. Any semantically

n-way ambiguous sentence is assigned n interpretations. This is because no contextual or world

knowledge has been included in the systems Thus, in the referentially ambiguous sentence who

bought pictures of his friends, the pronoun his ight be coindexed with who or it might be

dependent on an entity in the external context. (Both interpretations are assigned by the sys-

tem.) Similarly, for structurally abiguous sentences like I ate the banana on the table (where

on the table is either associated with I or with banana), a possible choices of prepositional

attachment are included in the final analysis.

� On the other hand, lexical abiguity is usually resolved. For example, 'in the sentence I can

the beats, the word can is either a verb or a noun; the correct category (verb) is established

3A similar change occurred with the development of 3� Theory. Before 3� Theory, there was o principle-
based way of characterizing constituent orderings across languages. Thus, in early systems, each language was
described by its own set of ad hoe rules. Now that 5� theory has been developed, current systems can uniformly
describe constituent orderings of languages without recourse to ad hoc rules.

4See pp. 147-151.

CHAPTER 9 LI.A111TATIONS, FUT[T 'RE WORK, ANTD CONCLUSIONS 173

(a) Unexpanded VCOMPLEMENT (b) Expanded VCOMPLEMENT
[V-MAX [V think] [V--COMPLEMENT]] [V-COMPLEMENT [(,-MAX]]
[I-COMPLEMENT [V-MAXI] MAX V think] [V-0OMPLEMENTfl

J-MAX [I-COMPLEMENT [V-MAX]]
J-SPEC [N-MAX]] J-MAX
[I E] [I-COMPLEMENT]] J-SPEC [N-MAX]]

[C-MAX [C E] [I E] 11-COMPLEMENT]]
[C-COMPLEMENT [I-MAX]]] [C-MAX [C El

[C-CO-11NIPLEMENT I-MAX]]]

I I',.,----.- - --- .- 1 1

Figure 91: Expansion of a Verbal Complement in a Head-Initial Language

immediately upon encountering the word the. 5 In addition, word choice abiguity is generally

resolved. Recall that the choice of conocer or saber as the translation of know can be resolved

simply by examining the 0-assignmg properties of both possibilities (see section,7.1.2).

I Turning to other weaknesses, the prediction of complements is based on the expansion of

subcategorized elements corresponding to the closest he-ad of the appropriate category (see

section 62.1.1). In general, this procedure works correctly for head-initial languages, but does

not always provide an accurate analysis for head-final languages. For example, suppose the

parser is processing the following sentence:

(63) think he eats chicken

The verb think takes a C-MAX complement. Thus, at the point when VCOMPLEMENT is to be

expanded (see figure 9.1(a)), the closest head to the left in the input 'is think and the correct

prediction is made (see figure 9.1(b)).

On the other hand, if English happened to be a head-final language, the equivalent sentence

for 63) would be:

(64) I he chicken eats think

When VCOMPLEMENT is first encountered during parsing, it must be associated with the verb

think. However, neither eats nor think have been scanned; thus, eats is chosen as the closest

5Lexical ambiguity is not resolved when there is no disambiguating lexical item in the input. Thus, the
sentence time flies like an arro�w would be assigned more than one parse structure.

CHAPTER 9. LIMITATIONS, FUTURE IVORK AND CO IN CL [TSIO IXS 1 74

head to the right ad the wrong prediction (N-MAX instead of C-MAX) is made since cat takes

X-MAX as its complement:

A

I

[V-COMPLEMENT [N-MAX]l

[V-NIAX [V-COMPLEMENT] �V]]
[I-COMPLEMENT [V-MAX]]
[I-MAX J-SPEC, [N-MAX 11] [I-COMPLENIENT] [1]]
[C',-MAX ['� E] T-CIOMPLENIENT [I-MAX]]]

The result is that he is erroneously taken as the complement of cats. However, as soon as

the noun chicken is scanned, the parse fails because it is expecting a verb. The parser cannot

recover from this error for two reasons: (1) it has no way of knowing what went wrong; and'

(2) it cannot back up and try to find a different head corresponding to VCOMPLEMENT once the

complement structure has already been processed. In order to make the complement-prediction

routine work correctly, the entire input needs to be searched until all possible heads are found;

then several parses would be held in 'parallel until the bad ones are ruled out. However, this

method of coii-ipleinent-prediction is ndesirable. Not only does it require wasteful searching

of the input, but it also performs extra computation in order to process structure that will

eventually be eliminated.

Among the issues presented in the next section is a proposal for an alternative parsing

method that resolves the complement prediction problem. Although the implementation does

not use this approach, the present incarnation of the parser successfully predicts complements

for the languages handled by the system. The uniform treatment of complements is at least a

step in the right direction for aowing both head-initial and head-final structure to be parsed

systematically.6

9.2 Directions for Future 'Work

The system presented here does not include interpretation of iformed parses. Thus', the

sentence who did you wonder whether aent is rejected during parsing even though many people

understand this as eaning for which x you wondered whether x went. 7 The reason this

interpretation is disallowed is that at the level of S-structure a linguistic constraint (Subjacency)

6The issue of head-coniplenient order is not addressed in Sharp's translation system 1985), which only
translates head-initial languages.

7In fact, the equivalent sentence in Spanish is well-formed, and is assigned tis iterpretation.

-I-.- ---- -- 1111..Q;--�.� 4 - -, , I

CHAPTER 9. LIMITATIONS, FUTURE 111-0,RK AND"CONCLUSIOINS 175

is'applied, and the structure is elin-iinated. Note that if the Subjacency requirement were

teinporarily ignored, the sentence would be successfully parsed, and it could then be assigned

an interpretation at te level of logical form. However, the system cannot choose to suppress a

given linguistic constraint since it does not know the reason tat a sentence might be iformed,

nor does it know the degree to which the sentence is ill-fornied.

An interesting question to be investigated is that of how a parser ii-light diagnose problems

underlying ill-formed sentences and detern-6ne the severity of the ill-fori-nedness. For example,

rather than failing on a parse because an antecedent of a trace is not found, a parser might be

designed so that it knows there is an antecedent, but that the antecedent might be too far away

for possible interpretation of the sentence. If the system includes LF processing, syntactically

ill-formed structures could then be reanalyzed in an attempt to assign semantic interpretations.

Another possible extension of the system is the addition of a facility that allows the "current

GB theory" to be tested for validity. The parameters associated with the principles are -not

hard-wired, but the principles themselves are A user of the system has a small degree of leeway

with respect to the constructs utilized by the linguistic component: the X templates may be

changed to include bar-levels or n-ary branching; the basic categories are modifiable; and the

choice of traces and empty categories may be specified. However, the definitions associated

with the principles (e.g., government, c-command, tc.) cannot be altered.

An approach that would serve as a testing ground for current linguistic theory has been

addressed by Thiersch and Kolb 1986):

We have undertaken to build a first experimental foundation for a parser which
adheres as close as possible to these basic premises [strict modularity, projection-
from the lexicon, principle-based rather than rule-based, and parameterizability],"
while allowing enough flexibility so that it is not bound, for example, to a partic-
ular instantiation of GB theory, but can be used as a testing ground for various
theoretical hypotheses- in this general framework across a variety of languages.

Further discussion of this proposal is not included in the literature pertaining to the parser

built by Thiersch and Kolb. However, one might imagine a method of allowing the GB def-

initions to be modified: a nieta-language" might be constructed so that definitions can be

written from scratch by a user of the system. For example, c-coni�mand might be defined using

CHAPTER 9 LIMITATIONS, FUTURE WORK, AND CONCLUSIONS 176
8the meta-language as follows:

(DEFINITION GCOMMAND (X Y)
(AND (NOT (CONTAIN X Y))

(FORALL Z (IMPLIES (CONTAIN Z X) (CONTAIN Z Y)))))

The predicate CONTAIN is a primitive of the meta-language. Once the c-conu-nand definition is

constructed, it could then be used to uild other definitions associated with the theory. If the

notion of c-comniand changes, the above definition can be odified, and the new definition can

be tested.

One problem with the construction of such a meta-language is that the choice of primitives

might not be a trivial task. For examples should CONTAIN also be odifiable by a user of the

system? Most likely, definitions at the level of ominance and precedence relations would be

chosen as primitives, and all definitions would be built on top of these primitives.

Another drawback in the present incarnation of the system is that the parser is� based on

the Earley algorithm; thus, context-free rules are still part of the system. Although subcate-

gorization information is not multiplied out, the number of rules required to parse azsentence

of a language ight still be quite large. Furthermore, because the Earley algorithm is "eager,"

much unnecessary structure is built; thus, the system is subject to slowdowns due to processing

of structure that might never be needed.

An alternative method of parsing is to use the lexicon as the driver for predicting structure

rather than X templates. This approach has been taken by Kashket's Walpiri parser 1987),

which uses "L-structures" (syntactic manifestations of lexical 'Items) that are projected as X

structure during parsing. Abney's parser 198 also focuses o lexical items for the prediction

of X structure; for example, a lexical head licenses the construction of its complements. (See,,

Abney 1987) for a discussion of the notion of licensing.)

If the system were modified to parse in a more-"bottoin-up" manner, lexical items could be

used for the prediction of X structure. This approach is currently being investigated. The ten-

tative plan is the following: (1) the templates generated at precompilation time are "matched"

against input items that constitute lexical heads; 2) maximal projections are linked with the

lexical heads that subcategorize for them; 3) preterminal symbols (i.e., non-basic categories)

8 See section 33 for the definition of c-cornmand.

CHAPTER 9 LEUITATIONS- FUTURE WORK, AA"D CONCL USIOINS -7

are placed in adjunct or specifier positions according to those allowed by the templates; 4)

�empty elements and traces are put ito ufilled internal and external argument positions; and

(5) optional specifiers and unfilled complements of intransitive heads are eliminated. At the

completion of each phrase, GB constraints (e.g., Binding, Trace, Case, 0, and Bounding) are

applied. Thus, structure-building operates in coordination with linguistic constraints, a design

that is similar to the current version of the system except that there is no explicit notion of

pushing, scanning, or popping. Instead, items are analyzed in a bottom-up fashion, and com-

plements are linked to heads according to subcategorization information and phrase structure

requirements of the language. Since this parsing approach is not top-down, the prediction of

unnecessary structure is uch ore limited. Structure is built only if an element in the input

,requires the structure to be built, not just if the templates allow, the structure to be built.

Note that this lexically driven method of parsing avoids the problem of complement-

prediction found in top-down parsing. The routine that operates on the basis of information

found in the closest head is eliminated, and erroneous complement-prediction is avoided. Fur-

therniore, there would be ore of a definite separation between the X and trace modules since

empty elements (e.g., PRO, pro, etc.) and traces are inserted into positions as required by

lexical 0-assigners.

This ethod of parsing changes the clustering of principles: the X module is no longer used

solely at precompilation time, and the trace module is not accessed at all during precompilation.

All odules are used to check well-formedness conditions dring processing of the input, ad

the lexicon is now the driver of the parser. Figure 92 shows the new design.

This approach moves toward the approaches taken by Abney 1987) and Kashket 1987 in

that the GB modules are more distinct, and the X module is not the main driver of the parser. 9

Because the translation system does not include a semantic anal sis, the apping between

the source and target language is primitive. First, there 'is the problem of the underlying form

mentioned in section 71.1. This form (whichis actually D-structure) is not etirely interlingual:

it includes some language-specific information (e.g., constituent order); and it does not contain

9To a certain extent, both of these systems incorporate 5� into the parsing mechanism; however, the

machinery is not the primary controller of the parsing actions.

1 1"8CHAPTER . LIMITATIONS, TUTTTRE IVORK. ANT CNCL USIONS i

Input

Output

Figure 92: Lexically-Driven Parsing

.",;"""""""Iliiitilill'I'll'.11,11,� � .�- --- -- - 1- � � i��-,;� i �II M O i i -

CHAPTER 9 LEAUITATIONS, FUT[TRE WORK, AIVD CONCLUSIONS 179

a language-independent specification of how th e syntactic constituents are interpreted. Second,

there is the problem of generation, which is only handled at a surface level here. No information

about context. is utilized during the apping of D-structure to S-structure.

The principles odeled here are relevant to syntax. Tus, the oission of sei-nantic process-

ing is not accidental. However, the inclusion of 0-theory 'in the odel is the first step toward

incorporation of a semantic component into the system. The 0-roles assigned to participants

of an action might e used as an interface to the semantic component, which could assign an

interpretation to the roles.

The system is intended to be the core of a ore complex translation systeni that includes

semantic interpretation and global contextual understanding. Investigation is currently un-

derway to construct an interlingual form that does not include the language-specific details

required by the D-structure forni. Once this form is constructed, ore sophisticated genera-

tion routines can be added to the system. These routines would access the interlingual form

as well as contextual knowledge 'in order to generate the target language form.

9.3 Conclusions

This report has presented an implementation for interfingual translation based on GB theory.

The approach taken uses a strategy that is principle-based, in contrast to recent strategies that

are based on context-free language-specific rules. Translation is primarily syntactic. Seman-

tic processing has not been attempted, although 'Investigation of semantic issues is currently

underway.

Few other GB parsers are currently 'in operation (see Wehrli 1984), Abney 198 70, Thier-

sch and Kolb 1986), and Kashket 1987)), and only one work on GB translation has been

published (see Sharp, (1985)). The system presented here differs from Sharp's system in that

language-specific inforniation.(in particular, constituent order) is not stipulated. Furthermore,

parsing is not based on hardwired rules, but on X templates that are instantiated according

to the requirements of the language. Also, the system is designed to operate in a co-routine

fashion between the structure-building module (which accesses the X templates) and the lin-

guistic constraint module (which applies GB principles); this differs from Sharp's system, which

. -

CHAPTER 9 LIMITATIONS, FtTTURE WORK, Ai S 180

interleaves the structure-building actions with the GB, constraint application. Finally, several

syntactic phenomena not handled by Sharp's system are handled by UNITRAN, including

critics, free iversion ad thematic divergence.

The linguistic principles are represented as routines that access user-niodifial)le parameters.

Translation consists of a apping te source language S-structure to a D-structure represen-

tation that is then apped to the target language S-structure. The interlingual form (i.e.,

the D-structure representation) is not entirely language-independent; however, investigation of

semantic-based interlingua is currently underway.

One of the primary goals of the principle-based approach is to allow translation to be per-

formed without recourse to language-specific rules. A surprisingly sall set of parameterized

principles have been shown to handle ost phenomena; only a handful of peripheral language

peculiarities need to be specified. Thus, te high cost induced by grammar searching in al-

ternative approaches has been eliminated. Perhaps most iportantly, progress has been ade

toward the characterization of a universal granunar.

.&ppendix X

0 0
-Irinci es an -laran-ie ers

This appendix si-nmarizes the principles and parameters discussed in chapter 3 Section A.

I .-contains a table of the GB- principles and their corresponding parameters, and section A.2

- displays the parameter settings for Spanish and English.

181

X Principles X Para-meters Level of

Application

A phrasal projection (X) has a head (X) a Constituent Order, Basic DS
specifier and a complement Categories, Pre-terminals,

and Specifiers
Left and right adjunction are optional and Choice of Adjuncts DS
occur on the Xma, or X level and their positions

Complements of nonlexical heads (e.g., C default value for DS
and 1) are determined from default values nonlexical heads

Specifiers ay be optional optional specifiers DS

Complements of lexical heads are projected Subcategorization DS
from argument structure information Information (Lexicon)

Government Principles Government Parameters Level of

Application
a governs if a is a governor and a minimally Choice of governors SS, DS, LF
c-commands

0 Principles 0 Parameters Level f

Application
[CL casei 0-] ... [NP casei] Clitics, Clitic Doubling SS, DS, LIT
[CL casei +0j] ... [NP case- 0-]
if language allows clitic doubling

O-Criterion no parameter SS, DS, LF
Visibility Condition no parameter SS, DS, LF
CSR(semantic role) - syntactic category CSR Mapping SS, DS, LF

Case Principles Case Parameters Level of

Application
(A) Objective Case 'is assigned to object Choice of Government SS

governed by transitive P

(B) Objective Case is assigned to object Choice of Government SS
-governed by transitive V

(C) Nominative Case is assigned to subject Choice of Government SS
governed by [Infl tns]

Case Filter (obviated by Visibility Condition) no parameter SS

7 .4, --0 �.� -�- . - i
-1--

-APPENDIX A. PRINCIPLES AND PARAMETERS
, , ,

- A.1 Principles and Parameters of GB Modules
182

Trace Principles Trace Parameters Leziel of

Application
V, A, N, P, Ni and NPi are proper governors Pro-drop Ss
for ECP (where EC [e]
An epty category [e] with [-V] feature Choice of Traces and Ss (and

must be properly governed (PROP is ungoverned) ECP hain Conditions possibly LF)

Binding Principles Binding Parameters Level of
Application

(A) An anaphor must be bound in its governing Choice of Governing LF (if lexical)
governing category Category S S (if trace)

(B A pronoun must be free in its Choice of Governing LF
governing category Category

(C A r-expression must be A-free (in the no parameter LF (if lexical)
domain of its operator) SS (if trace)

VI Nj P and [nfl tns] are governors no parameter SS, LF
for Binding

variable ust be X-bound parameter Ss

Bounding Principles Bounding Parameters Lei7e of

Application
Move-a may cross at most one bounding node Choice of Bounding Nodes IDS Ss

I .

r*111-1�� APPENDLY A. PRE IPLES AND PARAIIIETERS 183

'Since AGR takes on nominal features when the pro-drop parameter is set, it too can serve as a proper
governor in null subject languages.

X Para-meters X arameter Values
Spanish English

Constituent Order spec-head-comp spec-head-comp
Basic Categories C, 1 VI N, PI A C', 1 VI N, PI A
Pre-terminals det, adv, wh-phrase, have-aux det, adv, wh-phrase, have-aux

be-aux cl-acc, cl-dat, cl-ref be-aux, do-aux

Specifiers V: have-aux; N: det; A: adv; V: have-aux, do-aux; N: det N

P: adv; : N; C: N A: adv; P: adv; 1: N; C: N

Adjuncts 2 A to N 34 A to N 3

P to N or V: 2 4 P to N or V 2 4
adv to V: 1 2 adv to V 2

C to N 2 4 C to N 2 4
be-aux to V: 3 be-aux to V 3
1, have-aux, be-aux, 1, have-aux, be-aux,

or V to 1: 1 or do-aux to 1: 1
clitic to V 3 4

N to V 2

Default Value for 1: V complement 1: V complement

Non-lexical Heads C I complement C I complement
Optional Specifiers V� Al C PI N VI A C, PI N
Subcategorization Spanish lexicon English lexicon
Infori-nation 3

Government Parameters Government Parameter Values
Spaxu'sh English

'DChoice of Governors VI Al N, P, AGR VI Al N P, AGiv

0 Parameters 0 Parameter Values
Spanish English

critics dative, accusative, reflexive none

Clitic Doubling yes no
CSR mapping GOAL - N,_PATTENT --+ P, GOAL -� N, PATIENT N,

PROPOSITION - C, etc. PROPOSITION --+ C or N, etc.

2The numbers 1 2 3 and 4 correspond to the positioning of an adjunct: I adjoin left to X"' 2 -- adjoin

right to X"' 3 = adjoin left to X; and 4 -- adjoin right to X0.
3The Spanish and English lexicons are i appendix C.

/04"N' 11.1-I.-APPEINDIX-A. PRINCIPLESAINIDPARAIVIETERS

'A.2 Parameter Values for Spanish and English
184

Case Parameters Casc Paranicter Valucs
Spanish English

Choice of Government (A) c-governi-nent (A) c-government
(B) s-governiiient (B) c-governn-ent
(C) c-governiiient (C) c-governiiient

Trace Parameters Trace Parameter 1,1'a lu es
Spanish English

Pro-drop yes no

Choice of Traces N� , be-aux, have-aux, 1, V N P

ECP Chain Conditions yes no

Binding Parameters Binding Parameter Values
Spanish English

Governing Category has a subject has a subject

Bounding Parameters Boundi-ng Parameter Values
Spanish English

Bounding Nodes N and c S) N and T (S)

, ,�APPENDIX A. PRINCIPLES AND PARAMETERS 185

,kppendix B

4ce resen a i*on o i* rn in o

i Lu oDaa a

This appendix contains the representation of the Kiiiu-no atitoniata for English and Spanish

(described in section 52.1).

B.1 English Automata

ALPHABET

a b c, d e f g h i j k 1 m n o p q r s t u v w x y z + %

NULL

ANY =

SUBSET V a e i o u

SUBSET Vi a e i o u y

SUBSET C b d f g h j k 1 m n p q r s t v w x z

SUBSET S s x z

END

"Surface Characters" 31

a b c. d e f g h i j k 1 m n o p q r s t u v w x y z %

a b c. d e f g h i j k 1 m n o p q r s t u v w x y z %

"Epenthesis 6

c h s S + +

c h s S i e 0

1 2 4 3 3 0 i I

186

I I -4- - - # I.-

-� i

APPENDIA7B. REPRESENTATION'OF KIAT-110 A TOMATA 18 7

2 2 3 3

3 2 3

4 2 3 3

5 . 0 0 1

6 1 1 0

3 3 0 1 1

3 3 6

3 3 6

0 0 0 0 0

1 1 1 1 1

"Gemination"

Vi b d f g h 1 m

Vl b d f g h 1 m

1: 4 1 1 1 1 1 1 1

2. 1 0 0 0 0 0 0 0

3: 0 0 0 0 0 0 0 0

4: 16 5 6 7 8 16 9 10

5: 16 16 16 16 i6 i 16 16

6: 16 i6 16 16 16 1 16 16

7: 16 16 16 16 16 1 16 i6

8: 16 16 16 16 16 1 16 16

9: 16 16 16 16 16 1 16 16

10:16 16 16 16 16 1 16 16

11:16 16 16 16 16 1 16 16

12:16 16 16 16 16 1 16 16

13:16 16 i6 16 16 1 16 16

14:16 16 16 16 16 1 16 16

16:16 16 16 16 16 i6 16 16

16:16 16 16 16 16 16 16 i6

n pr st

n pr st

I 11 11

0 00 00

0 00 10

li 12 13 14 16

16 16 16 i6 16

16 16 16 i6 i6

16 i6 i6 i6 i6

16 i6 16 16 16

16 16 16 16 16

16 16 16 16 16

16 16 i6 16 i6

16 i6 i6 16 16

16 16 16 16 16

16 16 16 16 16

16 16 16 16 16

16 i6 16 16 16

b d f g 1 m n p r s t 0

0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 i 16

2 0 0 0 0 0 0 0 0 0 0 3 1

0 2 0 0 0 0 0 0 0 0 0 3 1

0 0 2 0 0 0 0 0 0 0 0 3 1

0 0 0 2 0 0 0 0 0 0 0 3 1

0 0 0 0 2 0 0 0 0 0 0 3 1

0 0 0 0 0 2 0 0 0 0 0 3 1

0 0 0 0 0 0 2 0 0 0 0 3 1

0 0 0 0 0 0 0 2 0 0 0 3 1

0 0 0 0 0 0 0 0 2 0 0 3 1

0 0 0 0 0 0 0 0 0 2 0 3 1

0 0 0 0 0 0 0 0 0 0 2 3 1

0 0 0 0 0 0 0 0 0 0 0 1 1I/00,11-11,
"Y-spelling 6 7

C y y + i a =

C y i = i a =

1: 2 1 0 1 1 1 1

2: 2 5 3 1 i 1 1

3. 0 0 0 4 0 0 0

4. 1 1 0 1 0 0 i

6: i 1 0 6 1 1 1

6. 0 0 0 0 1 1 0

"Elision" i7 9

v i

v i

1 : 2 2

2 1 1

3 1 1

4 0 0

5 : 1 1

6 0 0

7 1 1

8 1 1

9 . 0 0

10.0 0

11:1 1

e e + g c n
e 0 0 g c n

3 4

5 6

6 6

0 0 8 0 0 00

1 4 7i 11 111

0 01 00 0 00

0 0 0 1 1 11

1 0 0 0 0 00

1 600 1 1 11

1 0 0 0 0 00

14 121 1 1 11
/""*NI

APPENDIXB. REPRESENTATION OF ELAIAT A TO.AI-IT.A

12 0 0 0 0 13 0 0 0 0

13.0 1 1 0 0 0 0 0 0

14: 1 1 1 0 16 11 1 111

16: 1 0 0 0 1 11 1111

16.0 0 0 0 0 0 0 0 17

17:0 0 0 0 0 0 0 0 0

"I-Spelling" 7 6

i e + i e

y 0 0 i e

1 :2 1 1 5 1 1

2 0 3 0 0 0 0

3 0 0 4 0 0 0

4 0 0 0 1 0 0

6 1 1 1 1 6 1

6 0 1 7 0 0 1

7 0 0 0 0 0 1

END

END

188

...... .

APPENDIX B. REPRESENTATION OF KLAIA1O A TTOINIAT-A

B.2 Spanish Automata

ALPHABET

a b d e f g h i j k 1 m n o p q r s t u v w x y z

NULL 0

ANY =

SUBSET V a e i o u

SUBSET C b d f g h j k 1 m n p q r s t v w x y z

SUBSET C2 b d f g h j k 1 m n p q r s t v w x y

END

189

"Surf ace Characters" 31

a b c d e f g h i j k 1 m n o p q r

a b c d e f g h i j k 1 m n o p q r

s t u v w x z / ? =
s t u w x z / ? =

1 1 1 1 1 1 i 1 i 1 1 1 1 i 1 1 1 i I i 1 1 1 1 1 1 1 1 i 1 1

"Infinitive Removal" 1 16

aa ee
a e

22 22

69 69

00 00

00 00

100100

60 60

20 20

110110

00 00

100100

110110

a e r + r + s

0 0 0 0 0 r s

2 2 0 0 0 0 0 2 2 0 2

6 9 3 3 3 0 2 2 2 2 2

0 0 0 0 0 4 0 0 0 0 0

0 0 0 0 0 0 6 0 0 6 0

io 0 0 0 0 0 0 10 10 0 11

6 0 3 3 3 0 2 2 7 2 2

2 0 0 0 0 0 8 2 2 8 2

11 0 0 0 0 0 0 11 1 1 0 10

0 0 0 0 0 2 0 0 0 0 0

10 0 0 0 0 0 io 10 10 10 10

11 0 0 0 0 0 11 1 1 ii 11 11

I

2

3

4

6 .

6

7

8

9

10:

11

"Present Subjunctive er-ir G-sof ten Add-g" i4

e n r g e o a s m + + + a

e, n 0 0 o a s m g 0 0

1 2 1 1 3 1 1 1 1 i 0 i I I i

2 1 4 0 3 1 1 i 1 1 0 1 1 i i

3 0 0 0 0 5 0 0 0 0 0 0 0 0 0

4 2 1 0 0 6 1 1 1 1 0 1 1 1 1

6 0 0 7 0 0 0 0 0 0 0 0 0 0 0

6 0 0 8 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 9 0 0 0

8 0 0 0 0 0 0 0 0 0 9 0 0 0 0

9 - 0 0 0 0 0 10 11 0 0 0 0 0 0 0

10: 12 12 0 0 0 12 12 12 12 0 0 0 12 0

11: 12 10 0 0 0 12 12 10 13 0 0 0 12 0

12. 12 12 0 0 0 12 12 12 12 0 0 0 12 0

13. 0 0 0 0 0 14 0 0 0 0 0 0 0 0

16

i i

i 0

2 -1

1 1

0 6

2 6

0 0

0 0

0 0

0 0

0 0

12 0

12 0

12 0

0 0

APPENDLY B REPRESENTATION OF KBE110 A TOAIATA

14 - 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0

190

"Present Subjunctive er c/zc, c/z" 19 8

Sm ++ + v

S m 0 c V

1 1 0 2

1 1 0 2

1 1 0 2

00 00 00 0

00 00 00 0

00 00 00 0

00 00 00 0

00 01000 0

00 10000 0

00 00 00 0

is is000is is

11 1300015 15

00 00 00 0

11000 00 0

is is000Is is

11 10 11 2

00 00 00 0

00 19000 0

is is000is is

c ri

0z ri

10 32

14 32

15 32

00 00

00 00

00 00

00 00

00 00

00 00

00 00

00 is is

00 Is is

00 00

00 00

00 Is is

i0 32

00 00

00 00

00 IsI

ce

ce

12

162

162

00

00

00

00

00

00

00

is is

Is is

00

00

is is

12

00

00

is1

n r e
n 0 0

3 1 i

3 1 1

3 1 1

0 0 6

0 0 7

0 8 0

0 9 0

0 0 0

0 0 0

0 0 0

is 0 0

11 0 0

0 0 0

0 0 0

Is 0 0

3 0 17

0 180

0 0 0

Is 0 0

oa
oa

22

22

22

00

00

00

00

00

00

11 12

is is

is is

140

00

is is

22

00

00

Is is

1

2

3

4

6 .

6

7

8

9 .

10.

11:

12:

13.

14.

Is.

16.

17.

i 8.

19.

"Present and Subjunctive ir gu/g,

C = U + i u

C 0 U y 0

1 3 1 2 1 0 0

2 3 1 2 i 0 0

3 3 1 6 1 0 23

3 3 1 2 1 0 6

2 3 1 2 1 7 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

19 19019 0 0 0

19 19019 0 0 0

19 19019 0 0 0

19 19019 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

19 i90i9 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

22 22022 0 0 0

ui/uy" 23 19

g r i + o a n s m

g 0 0 0 o a n s m

3 1 1 1 2 2 3 3 3

4 1 1 1 2 2 3 3 3

3 1 1 1 2 2 3 3 3

3 1 1 1 2 2 3 3 3

3 1 20 1 2 2 3 3 3

0 0 8 0 0 0 0 0 0

0 9 0 0 0 0 0 0 0

0 10 0 0 0 0 0 0 0

0 0 0 11 0 0 0 0 0

0 0 0 12 0 0 0 0 0

0 0 0 0 15 160 0 0

0 0 0 0 15 160 0 0

19 0 0 0 19 19 i4 19 19

19 0 0 0 19 19 19 19 19

19 0 0 0 19 19 is 19 19

19 0 0 0 19 19 19 16 17

0 0 0 18 0 0 0 0 0

0 0 0 0 0 0 0 is 0

19 0 0 0 19 19 19 19 19

0 21 0 0 0 0 0 0 0

0 0 0 22 0 0 0 0 0

22 0 0 0 22 22 22 22 22

e V

e V

12 2

12 2

12 2

12 2

12 2

00 0

00 0

00 0

00 0

00 0

0130

00 0

19 19 ig

19 19 19

19 19 19

19 19 19

00 0

00 0

19 19 19

00 0

00 0

22 22 22

I

2

3

4

6 .

6 .

7

8

9 .

10.

11.

12.

13:

14:

IS:

16:

17.

18.

19.

20.

21.

22.

I - -

�A [7-APPENDIYB. REPRESENT..-tTIO,'VOFI�IAI-,A,10 711ATA 191

0 0 0 0 0

c

0 c

i I

1 1

0 0

0 0

0 0

0 0

0 8

0 8

0 0

0 1

23. 0 0 0 0 0 0 0 0 0 0 0 0 20

"Present and Subjunctive ar u-u- i-i-" 1 16

+ i u a r + o a e n s +

0 i u 0 0 - o a e n s

1: 1 1 2 2 1 1 1 0 1 1 1 1 1 1

2: 1 1 1 1 1 3 0 0 1 1 1 1 1 1

3. 0 0 0 0 0 0 4 0 0 0 0 0 0 0

4. 0 9 0 0 0 0 0 5 0 0 0 0 0 0

S. 0 0 0 0 0 0 0 0 6 6 6 0 0 0

6: 0 0 0 0 0 0 0 0 0 0 0 7 7 0

7: 8 0 8 8 8 0 0 0 8 8 8 8 8 0

8. 8 0 8 8 8 0 0 0 8 8 8 8 8 0

9. 0 0 0 0 0 0 0 0 10 to 10 0 0 0

10. 0 0 0 0 1 0 0 0 0 0 0 0 0 0

"Preterit ar -qu g-gu z-c" 21

+ + c g z a a r +

0 0 q g c a 0 0 u

1: 1 1 2 19 3 1 1 1 1 0

2. 0 0 0 0 0 0 0 0 6 0 0

3. 1 0 0 0 0 0 0 0 7 0 0

4: 1 1 i 0 1 0 1 1 6 i 0

S. 0 0 0 0 0 0 0 0 0 8 0

6. 0 0 0 0 0 0 0 0 0 9 0

7. 0 0 0 0 0 0 0 0 0 10 0

8. 11 11 0 0 0 0 0 0 0 0 0

9. 0 0 0 0 0 0 0 0 0 0 12

10. 0 12 0 0 0 0 0 0 0 0 0

ii. 0 0 0 0 16 0 16 16 0 0 0

12. 0 0 0 0 0 0 0 0 0 0 0

13. 0 0 0 0 0 0 0 0 0 0 0

14: 0 0 0 0 15 0 15 15 0 0 0

is. 0 0 0 0 is 0 Is is 0 0 0

16: 0 0 0 0 16 0 16 16 0 0 0

17: 1 1 1 0 1 0 1 0 0 0 0

i8. 1 1 1 0 I. 0 1 0 0 1 0

e z c

e z c

1 1 4 4

0 0 0 0

0 0 0 0

1 1 1 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

17 0 16 16

13 0 0 0

0 140 0

is is Is is

16 is is is

16 16 16 16

1 181 1

1 1 1 1

ig: 0

20. 0

2i 0

0 0

0 0

0 0

0 0 0

0 0 0

0 0 0

0 0 20 0 0 0 0 0

0 0 0 21 0 0 0 0

0 0 0 0 12 0 0 0

"Pluralize" 9

C2 z + s

C2 c e s

1: 1 2 6 0 2

2: 1 1 6 3 1

3. 0 0 0 0 4

4: 4 4 0 0 4

S. 0 0 0 3 0

6. 1 2 0 0 7

+ + z

0 0 z

1 1 1 8

1 1 6 1

0 0 0 0

4 4 4 4

0 0 0 0

0 0 0 8

APPENDIXB. REPRESENTATION OF KTATATO A UTOAIAT-A 192

7 i 2 0 3 2 1 1 1 8

8 : 1 2 0 6 2 1 1 6 8

"Remove kcent" 87

V C - - - +

V C 0 - 0

1: 2 i 0 1 1 1 1

2: 2 1 5 3 1 1 1

3: 2 3 0 0 1 4 1

4. 2 4 0 0 1 0 0

S. 0 6 0 0 0 0 0

6. 0 6 0 0 0 7 0

7: 8 7 0 0 0 0 0

8. 8 8 0 8 8 8 8

"kdd kccent" 8 6

V C + 0
V c - 0

1: 1 2 1 1 6 i

2: 1 2 3 1 0 1

3. 4 3 3 3 0 3

4: 1 2 3 4 0 1

5: 6 6 0 0 0 0

6. 0 6 7 0 0 0

7: 8 7 0 0 0 8

8. 8 8 0 0 0 0

END

END

ALTERNATIONS

Root = Root

IN =

/PROP = PROP

IIN = Ci

/MN = MN

/A = PA CA CS LY

/V = P12 P3S P3P PS PPD, PPN PR I AG AB

/IVI = PR I AG AB I*

/IV2 = P12 P3S P3P PR I AG AB

/IV3 = P12 P3S P3P PS PR I AG AB

/IP3S = P3S)

/IP123 = 3P Pi2

/Ip = Ips

/IP = ipp

IPP = PPN

/MODAL-PAST = MODAL-PAST

/MODAL-PRES = MODAL-PRES

pres, perf, past irregular /

perf, past irregular /

Perf irregular /

193

-ALppendix C

Ice resen a i*on o exicons

This appendix contains the representation of the Kinuno lexicons for English and Spanish

(described in section 52.2).

C.1 English Lem 0c6n.

LEXICON: English

- APPENDI C REPRESENTATION OF LEXICONS --

(/WH-PHRASE- = VH-PHRASE-)

(/C-FIN = C-FIN)

(/C-INF = C-INF)

(/PREP = PREP

(/DET = DET)

(c = c)

(C = C2)

END

194

0 C n sg"; s C n 3 pl"; + /A ItAlt

0 C n proper p3 sg"; s C2 n proper p3 pl"
0 C2 "mass nit

0 lift; %S # "Poss"

0 # ilt; % # Itposs"

LEXICON

LEXICON

LEXICON

LEXICON

LEXICON

N

PROP

MN

cl

C2

/* regular pres

LEXICON P3S

LEXICON P3P

LEXICON P12

1st, 2nd, 3rd person singular and plural /

+s # "v pres p3 sg"

0 # 11v pres p3 pl"

0 # tv pres pl p2 sg pl"

/* irregular 3rd person singular /

.LEXICON IP3S 0 # 11v pres p3 sg"

/* regular and

LEXICON PS

LEXICON IPS

irregular past tense

+ed # "v past pi p2 p3 sg pl"

0 # 1v past pi p2 p3 sg pl,"

/* regular perfective ED, EN /

LEXICON PPD +ed # "v perf "

LEXICON PPN +en # "v perf "

/* irregular perfective 0 */

LEXICON IPP 0 Irv perf

/* progressive

LEXICON PR +ing # "v prog"
I

/* infinitive

LEXICON I 0 # v inf "

/* agent (v+er), adjective (0), comparative (a+er), */

/* superlative (a+est), able (v+able)

LEXICON AG +er IN "agent neutit

LEXICON PA 0 # Ita neut sg pl"

LEXICON CA +er "comparative a neut sg pl"

LEXICON CS +est "superlative a neut. sg pl"

LEXICON LY +1y /A "adv"

LEXICON AB +able "a condition v-able neut sg pl"

APPENDIX C. REPRESENTATION OF LEXICONS

LEXICON DET

0 # "det neut"

LEXICON MODAL-PAST

0 # "i past modal (snbcat (v)) pi p2 p3 sg pl"

LEXICON MODAL-PRES

0 # "i pres modal (subcat (v) p p2 p3 sg p"

LEXICON PREP
0 # 11p (subcat (n))"

LEXICON WH-PHRASE-A.

0 fin wh-phrase-a neut p p sg wh"

LEXICON C-FIN

0 tic (subcat (i))"

LEXICON C-INF

0 tic (subcat (i inf))"

LEXICON Root

/* DETERMINERS

the /DET "(spanish ((el))) sg";

that /DET (spanish ((ese))) sg";

those /DET "(spanish ((esos)) p";

this /DET "(spanish ((este))) sg";

these /DET "(spanish ((estos)) p;

/* QUANTIFYING (DETERMINERS)

many /DET "(spanish ((mucho)) p";

no /DET "(spanish ((ningu-n))) sg";

another /DET "(spanish ((otro))) sg";

other /DET "(spanish ((otro)) p";

what /DET "(spanish ((que-))) sg p wh";

a /DET "(spanish ((un))) sg";

an /DET "(spanish ((un))) sg";

several /DET 11(spanish ((varios))) pi";

some /DET "(spanish ((aigu-n))) sg pi";

each /DET "(spanish ((cada))) sg";

all /DET "(spanish ((todo)) p";

which /DET "(spanish ((cua-l))) sg p wh";

how-milch /DET "(spanish ((cua-nto))) sg wh";

how-many /DET "(spanish ((cua-nto)) p wh";

/* POSSESSIVE (DETERMINERS)

my /DET "(spanish ((mi))) poss pronoun p sg p";

your /DET "(spanish ((tu) (su))) poss pronoun p2 sg p";

his "(spanish ((su))) poss masc pronoun p3 sg p det";

her # "(spanish ((su.))) poss fem pronoun p3 sg p det";

195

APPENDLY C. REPRESENTATION OF LEXICOINS
I N�

its /DET "(spanish Usu))) poss pronoun p3 sg pl";

our /DET "(spanish Unuestro))) poss pronoun pl sg pl";

their /DET "(spanish Usu))) poss pronoun p3 sg pl";

/* OMPS */

that /C-FIN "(spanish Uque)))";

so-that /C-FIN "(spanish Upara que) (a fin de que) (de manera que)

(de modo que)))";

unless /C-FIN "(spanish ((a, menos que)))";

before /C-FIN "(spanish ((antes de que) (antes que)))";

provided-that /C-FIN "(spanish ((con tal que) (en caso de que)))";

without /C-FIN "(spanish ((sin que)))";

although /C-FIN "(spanish Uaunque)))";

when /C-FIN "(spanish ((cuando)))";

after /C-FIN "(spanish ((despue-s que) (despue-s de que)))";

as-soon-as /C-FIN "(spanish Muego que) (tan pronto como) (asi- que)

(en cuanto)))";

until /C-FIN "(spanish ((hasta que)))";

while /C-FIN "(Spanish Umientras)))";

that /C-FIN "(spanish Uque)))";

for /C-INF "(spanish Upara)))";

I* INFINITIVE MARKER /

to "(spianish ((a))) inf i (subcat (v))";

to # "(spanish 0 if i (subcat W)";

/* VERBS

have /IVi "(spanish Uhaber))) have-aux (root have)";

have /IV1 "(spanish ((tener))) (external (agent animate))

(external (agent)) (subcat (n)) (root have)";

has /IP3S "(root have)";

have /IP123 "(root have)";

had /IPS "(root have)";

had /IPP "(root have)";

be /IV1 "(spanish ((ser) (estar))) be-aux (root be)";

be /IV1 '!(spanish User) (estar))) (root be) intrans (external (agent))

(subcat (ent ity)) (subcat (p)) (subcat) (subcat (placation))";

be /PPN "(root be)";

am "v pres sg pl (root be)";.

are 11v pres sg pl p2 (root be)";

is /IP3S "(root be)" ;

are "v pres pl, pl p3 (root be)";

was # 'tv past pl p3 sg (root be)";

were "v past pl p3 pl (root be)";

were # "v past p2 sg pl (root be)";

believe /V "(spanish Ucreer))) (subcat (goal)) (external (agent animate))

(subcat (p-goal)) (subcat (goal) (proposition)) intrans sdel (root believe)

_Jvwft� (noun-form (belief IN) (subcat (p-goal)) (subcat proposition)))";

196

19 . APPENDIX C. .- REPRESENTATION OF LEXJCONS
z;

buy /V (spanish ((comprarM (subcat (goal)) (root buy)

(external (agent animate)) (noun-form (purchase IN) (subcat (p-goalM`

bought /IPP "(root buy)";

come /IV2 "(spanish ((venir))) (root come) intrans

(subcat (placation)) (external (agent))";

came /IPP "(root come)";

came /IPS "(root come)";

conquer /V "(spanish ((vencerM (root conquer) intrans (subcat (goal))

(external (agent animate))";

continue /V "(spanish ((continuer))) (root continue) intrans (subcat (goal))

(external (agent))";

contribute /V "(spanish ((contribuirM (root contribute) (subcat (goal))

(external (agent animate)) (subcat (goal) (p-patient))";

cost /IV2 "(spanish ((costar))) (root cost) intrans (subcat (quantity))

,(external (agent)) (noun-form (cost IN) (subcat (p-quantity)))";

cost /IPP "(root cost)";

cost /IPS "(root cost)";

do M "(Spanish Uhacer))) (root do) (subcat (goal)) (external (agent))";

do /IPi23 "(root do)";

does /IP3S "(root do)";

did /IPS "(root do)";

done /IPP "(root do)"

die /V "(spanish Umorir))) (root die) (subcat (cause)) intrans

(noun-form (death N) (subcat (p-goal animateM (external (agent animate))

(adi-form (dead /A) (subcat (cause)))";

eat /IV2 "(spanish ((comer))) intrans (subcat (goal))";

ate /IPS "(root eat)";

eaten /IPP "(root eat)";

expect /V (spanish Usuponer))) (root expect) (subcat (proposition))

(external (agent animate)) (subcat (goal) (proposition))";

flee /V "(spanish Muir))) (root flee) intrans (subcat (placation))

(subcat (location)) (external (agent animate))

(noun-form (flight IN) (subcat (placation)))";

fled /IPS "(root flee)"; fled /IPP "(root flee)";

give /V "(spanish Udar))) (root give) (subcat (patient) (goal))

(external (agent animate)) (subcat (goal) (p-patient)) (subcat (goal))";

gave /IPS "(root give)";

go /IV1 11(spanish ((ir))) intrans (subcat (proposition)) (subcat (placation))

..... --

APPE.,7VD1X C. 'REPRESENTATIO.Y OF LEXICONS

(root go) (external (agent))";

go /IP123 "(root go)";

goes /IP3S "(root go)";

gone /IPP "(root go)";

went /IPS "(root go)";

hate /IV3 "(spanish ((odiar))) (subcat (goal)) (external (agent animate))";

hated /IPP "(root hate)";

kick /V "(spanish Upatear))) (subcat (goal)) (external (agent animate))

(expression ((the bucket) (spanish Umorir) (estirar la pata)M)";

know /IV2 "(spanish ((saber) (conocerM intrans (root know)

(subcat (goal)) (subcat (fact inanimate)) (subcat (proposition))

(subcat (goal) (proposition))

(external (agent animate)) sdel (noun-form (knowledge IMN)

(subcat (p-fact)) (subcat (p-proposition)))";

knew /IPP "(root. know)"; known /IPS "(root know)";

leave /IV2 "(spanish Usalir))) (rootleave)-intrans (subcat. (placation))

(external (agent))";

left /IPP "(root leave)";

left /IPS "(root leave)";

look /V "(spanish ((buscar))) (root look) (subcat (p-goal))

(external (agent animate))";

like /V "(spanish Ugustar))) (root like) (subcat (goal))

(external (agent animate))";

make /IV2 "(spanish ((hacer))) (subcat. (goal)) (root make)

(external (agent animate))";

made /IPP "(root. make)";

made /IPS "(root make)";

put /IV2 "(spanish ((poner))) (subcat (goal) (placation)) (root put)

(external (agent animate))";

put /iPP "(root put)";

put /IPS "(root put)";

read /IV2 "(spanish ((leer))) (external (agent animate))
.. (subcat (goal inanimate))"

read /IPP "(root read)";

read /IPS "(root read)";

say /IV2 "(spanish Udecir))) (subcat (proposition)) (root say)

(external (agent animate))";

said /IPP "(root say)";

said /IPS "(root say)";

198

APPENDL C REPRESENTATION OF LEXICONS

tell /IV2 "(spanish ((decirM -(subcat- (goal animate) (proposition))

(external (agent animate)) (subcat (goal animate) (fact))

(subcat (goal animate)) (root say)";

told /IPP "(root tell)";

told /IPS "(root tell)";

see /IV3 "(spanish ((ver))) intrans (subcat (goal)) (root see)

(external (agent animate))";

saw /IPS "(root see)II;

seen /IPP "(root see)";

seem /V "(spanish ((parecerM (subcat (proposition)) (root seem)";

sell /IV2 "(spanish vender))) (subcat (goal)) (root sell)

(external (agent animate)) intrans (noun-form (sale IN)

(subcat (p-goal)))";

sold /IPP "(root sell)";

sold /IPS "(root sell)";

sleep /IV2 "(spanish ((dormir))) intrans (root sleep)

(external (agent aimate))";

slept /IPP "(root sleep)";

slept /IPS "(root sleep)";

speak /IV2 "(spanish Mablar))) (subcat (p-goal)) (subcat (p-patient))

(external (agent animate)) intrans (root speak)";

spoke /IPS "(root speak)";

spoken /IPP "(root speak)";

stretch /V "(spanish Uestirar))) (subcat (n)) intrans (root stretch)

(external (agent))";

think /IV3 "(spanish Upensar))) (subcat (proposition)) (subcat (p-goal))

(external (agent animate)) intrans (root think)"

thought /IPS "(root think)";

thought /IPP "(root think)";

Visit /IV3 "(spanish Uvisitar))) (external (agent aimate))

(subcat (p-goal animate)) (subcat (goal inanimate))";

visited /IPP "(root visit)";

/V "(spanish Uquerer))) (subcat (goal) (proposition)) (subcat (goal))

(external (agent aimate)) sdel (root want)";

write /IV2 "(spanish Uescribir))) (subcat (goal)) intrans (root write)

(external (agent animate))";

written /IPP "(root write)";

wrote /IPS "(root write)";

/* PRONOMINALS */

199

_-APPENDL C REPRESENTATIOATOF LEXICOIN'S

he "(spanish ((e-W) pronoun p3 sg masc nom animate";

him "(spanish ((e-1))) n pronoun p3 sg masc obj animate";

she "(spanish ((ella))) n pronoun p3 sg fem nom animate";

her "(spanish ((eiia))) n pronoun p3 sg fem obj animate";

they "(spanish (Wl))) n pronoun p3 pl neut nom animate";

them (spanish (Wl))) n pronoun p3 pl neut obj animate";

we "(spanish ((nosotros))) n pronoun pi pl neut nom animate";

us # "(spanish ((nosotros))) n pronoun pi pl neut obj animate";

you "(spanish ((tu-) (usted))) n pronoun p2 sg neut nom obj animate";

"(spanish ((yo))) n pronoun pi sg neut nom animate";

me "(spanish ((mi-))) n pronoun pi sg neut obj animate";

it # "(spanish 0 n pronoun p3 sg nom neut obj pleonastic";

this "(spanish (Wste))) n pronoun p3 sg neut nom obj animate";

these "(spanish (Wste))) n pronoun p3 pl neut nom obj animate";

that "(spanish (Wse))) n pronoun p3 sg neut. nom obj animate";

those "(spanish (Wse))) n pronoun p3 pl neut nom obj animate";

/* REFLEXIVE /

myself # "(Spanish ((se))) n anaphor pi sg neut obj animate";

yourself "(spanish ((se))) n anaphor p2 sg neut obj animate";

himself "(spanish ((se))) n anaphor p3 sg masc obj animate";

herself "(spanish ((se))) n anaphor p3 sg fem obj animate";

themselves "(spanish ((se))) n anaphor p3 pl neut obj animate";

yourselves "(Spanish ((se))) n anaphor p2 pl neut obj animate";

/* WH-PHRASES */

what /WH-PHRASE-A "(spanish ((que-)))";

who /WH-PHRASE-A "(spanish ((quie'n))) animate";

whom /WH-PHRASE-A "(spanish ((quie-n))) animate";

which /WH-PHRASE-A "(spanish ((cua-1)))";

when # "(spanish ((cua-ndo))) n wh adv";

where # "(spanish ((do-nde))) n wh adv";

how # "(spanish ((co-mo))) n wh adv";

how-much # (spanish ((cua-nto))) n wh adv";

how-many # "(spanish ((cua-nto))) n wh adv";

/* MODALS */

can /MODAL-PRES "(spanish ((poder))) (root can)";

could /MODAL-PAST "(root. can)";

should /MODAL-PRES "(spanish ((deber))) (root should)" ;

should /MODAL-PkST "(spanish ((deber))) (root should)" ;

will "(spanish ()) i modal fut (subcat (v)) (root will) p p2 p3 sg pl";

would "(spanish 0 i modal cond (subcat (0) (root would) p p2 p3 sg pl't;

/* DO-AUX /

do /IV1 "(spanish 0 (root do) do-aux";

/* PREPOSITIONS

about /PREP "(spanish ((acerca de)))";

200

'APPENDEXC. REPRESENTATION OF LEXICOINS

above /PREP "(spanish ((encima de) (sobre)))";

after /PREP "(spanish ((despues de)))";

against /PREP "(spanish ((contra,M";

among /PREP "(spanish ((entre)))";

around /PREP "(spanish ((alrededor de)))";

at /PREP "(spanish ((a)))";

before /PREP "(spanish ((antes de)))";

behind /PREP "(spanish ((detras de)))";

below PREP "(spanish ((debajo de)))";

beneath /PREP "(spanish ((bajo) (debajo de)))";

beside /PREP "(spanish ((al lado de)))";

between /PREP "(spanish ((entre)))";

by /PREP "(spanish ((por)))";

during /PREP "(spanish ((durante) (por)))";

for /PREP "(spanish ((por) (paraM";

from /PREP "(spanish ((de) (of)))";

in /PREP "(spanish ((en)))";

inside /PREP "(spanish ((dentro de)))";

into /PREP "(spanish ((dentro)))";

near /PREP "(spanish ((cerca de)))";

of /PREP "(spanish ((de)))";

on /PREP "(spanish ((en) (sobre)))";

outside /PREP."(spanish ((fuera de)))";

over /PREP "(spanish ((sobre)))";

per /PREP "(spanish ((Por)))";

through /PREP "(spanish ((por)))";

to /PREP "(spanish ((a)))";

toward /PREP "(spanish ((hacia)))";

towards /PREP "(spanish ((hacia)))";

under /PREP "(spanish ((debajo de)))";

with /PREP "(spanish ((con)))";

without /PREP "(spanish ((sin)))";

I* NOUNS

bed N "(spanish ((cam))) neut";

book IN "(spanish ((librM neut";

boy IN "(spanish ((muchach))) masc animate";

brother IN "(spanish ((herman))) masc animate";

bucket IN "(spanish ((cubet))) neut";

father IN "(spanish ((padre))) masc animate";

film IN "(spanish ((peii-cul))) neut";

cat IN "(spanish ((gat))) neut";

firm IN "(spanish ((empres))) neut";

floor IN "(spanish ((pis))) neut";

friend IN "(spanish ((amig))) neut animate";

girl IN "(spanish ((muchach))) fem animate";

house IN "(spanish ((casaM neut";

man # "(spanish ((hombre))) masc sg n animate";

meeting IN "(spanish ((reunio-n))) neut";

men # "(spanish ((hombrM pi masc n animate";

201

APPEIVDIX C. REPRESENTATION OF LEXICO.,N'S 202

mother IN "(spanish ((madre))) fem animate";

movie IN "(spanish ((peli-cul))) neut";

pencil IN "(spanish ((lapiz))) neut";

paw IN "(spanish ((pat))) neut";

side IN "(spanish ad))) neut";

sister IN "(spanish ((herman))) f animate";

table IN "(spanish ((mes))) neut";

thing IN "(spanish ((cos))) neut";

time IN "(Spanish ((tiempo))) neut";

truth IN "(spanish ((verdad))) neut";

water IMN "(spanish ((aqua))) neut";

woman # "(spanish ((mujer))) fem sg n animate";

women "(spanish ((mujer))) pi fem n animate";

/* PROPER NOUNS /

spain /PROP "(spanish ((espan-a))) sg neut";

john /PROP "(spanish ((juan))) sg masc animate";

mary /PROP (spanish ((mari-a))) sg fem. animate";

/* ADJECTIVES /

certain /A (spanish ((ciert))) sdel (subcat (proposition))";

likely /A "(spanish ((probabl))) sdel (subcat (proposition))";

possible /A. (spanish ((posiblM sdel (subcat (proposition))";

probable /A "(spanish UprobablM sdel (subcat (proposition))";

Foods

tired /A (spanish ((cansad)))";

proud /A "(spanish ((orgullos))) (subcat. (p-goal)) (noun-form (pride IN)

(subcat (p-goaW)";

eager /A "(spanish ((ansios))) (subcat (c))";

satisfied /A "(spanish ((satisfech))) (subcat (p-goal))";

/. # "(spanish W.M punc";

I? # "(spanish ((/?))) puncif

END

APPENDIX C REPRESENT.ATIO.,,,V OF LEXICONS
0C.2 Spanish Lexicon

LEXICON: Spanish

ALTERNATIONS

(Root Root)

UAR-V INF AR-PRES AR-SUBJ-PRES AR-SUBJ-PAST

AR-FUT-COND AR-PRET AR-IMP AR-PROG PERF)

UER-V = INF ER-IR-PRES ER-IR-SUBJ-PRES ER-IR-SUBJ-PAST

ER-FUT-COND ER-IR-PRET ER-IR-IMP ER-IR-PROG PERF)

UIR-V = INF ER-IR-PRES ER-IR-SUBJ-PRES ER-IR-SUBJ-PAST

IR-FUT-COND ER-IR-PRET ER-IR-IMP ER-IR-PROG PERF)

(IC-INF = C-INF)

UC-FIN = C-FIN)

UPREP = PREP

UAR-PRES = AR-PRES)

UER-IR-PRES = ER-IR-PRES)

UAR-PRET = AR-PRET)

UER-IR-PRET = ER-IR-PRET)

UDET = DET)

(/WH-PHRASE-A = WH-PHRASE-A)

UPRES-IRREG = PRES-IRREG)

UAR-PROG = AR-PROG)

UER-IR-PROG = ER-IR-PROG)

UAR-MODAL = AR-MODW

UER-MODAL = ER-MODAL)

UIR-MODAL = IR-MODAL)

UPRET-IRREG-1 = PRET-IRREG-1)

UPRET-IRREG-2 = PRET-IRREG-2)

UPRET-IRREG-PROG = PRET-IRREG-1 PROG-IRREG-1)

UPRET-IRREG-SUBJ-1 = PRET-IRREG-1 ER-IR-SUBJ-PAST)

UPRET-IRREG-SUBJ-2 = PRET-IRREG-1 SUBJ-IRREG-2)

(/PRET-IRREG-PROG-SUBJ-i = PRET-IRREG-1 ER-IR-SUBJ-PAST PROG-IRREG-1)

(/PRET-IRREG-PROG-SUBJ-2 = PRET-IRREG-2 PROG-IRREG-2 SUBJ-IRREG-1)

(/PRET-IRREG-PROG-SUBJ-3 = PRET-IRREG-3 PROG-IRREG-2 SUBJ-IRREG-1)

(IN =) -

UPROP PROP)

UPRO PRO)

UA A LY)

(INF INF)

UER-IR-IMP = ER-IR-IMP)

UAR-FUT-COND = AR-FUT-COND)

UER-FUT-COND = ER-FUT-COND)

UIR-FUT-COND = IR-FUT-COND)

UIRREG-FUT-COND = IRREG-FUT-COND)

203

APPEATL C REPRESENTATION OF LEXICO.-VS

(/ER-IR-SUBJ-PAST = ER-IR-SUBJ-PAST)

(/ER-IR-SUBJ-PRES = ER-IR-SUBJ-PRES)

(IRREG-FUT IRREG-FUT)

(IRREG-COND IRREG-COND)

(AR-FUT = AR-FUT)

(ER-FUT = ER-FUT)

(IR-FUT = IR-FUT)

(AR-COND = AR-COND)

(ER-COND = ER-COND)

(IR-COND = IR-COND)

END

LEXICON INF

+ar # "inf

+er # "inf

+ir # "inf

LEXICON C-FIN

0 # c (subcat W)"

LEXICON C-INF
it0 # (subcat (i inf))"

LEXICON PREP
0 # f1p (subcat (n))"

LEXICON PERF

+ado # "perf

+ido # "perf

LEXICON AR-PROG

+ando # "progit

LEXICON ER-IR-PROG

+iendo # "ogit

LEXICON PRES-IRREG
+s lips p2 sg";

0 ftpres, p3 sg" ;

+MOS # pres, p p;

+n $1pres. p3 pl"

LEXICON AR-PRES
+0 # Stpres pl sg";

+as # "pres p2 sg";

+a # pres p3 sg";

+amos "pres p p";

+an # 1pres p3 pl"

204

205APPENDIX C. EPRESENTATION OF LEXICONS

LEXICON ER-IR-PRES

+o # "pres p sg";

+es # pres p2 sg";

+e # tpres p3 sg";

+emos # pes pi p";

+en # "pres p3 p1l'

LEXICON ER-IR-SUBJ-PRES

+as "pres-subj p2 sg";

+a "pres-subj p p3 sg";

+amos # "pres-subj p pl";

+an # "pres-subj p3 pl"

LEXICON AR-SUBJ-PRES

+es "pres-subj p2 sg";

+e "pres-subj p p3 sg";

+emos # pres-subj pi pl";

+en # "pres-subj p3 pl"

LEXICON AR-IMP

+abas "past p2 sg";

+aba "past p p,3 sg";

+a-bamos # "past p pl";

+aban "past p3 pl"

LEXICON ER-IR-IMP

+i'as "past p2 sg";

+i-a "past p p3 sg";

+i-amos # "past p pl";

+i-an "past p3 pl"

LEXICON AR-PRET

+e- # "past p sg";

+aste "past p2 sg";
+0- # 11past p3 pl";

+amos "past pi pl";

+aron "past p3 pl"

LEXICON ER-IR-PRET
+i # 1past p sg";

+iSte "past p2 sg";

+io- "past p3 pl";

+imos "past p pl";

+ieron "past p3 pl"

LEXICON AR-SUBJ-PAST

+ara. # "past-subj pi p3 sg";

+aras # "past-subj p2 sglf ;

+a-ramos # "ast-subj p,2 pl";

+aran # "past-subj p3 p,111
400",*N,
P i

'APPENDIX C. REPRESENTATIO,.\F OF LEXICOINTS 11 206

LEXICON ER-IR-SUBJ-PAST

+iera "past-subj pi p3 sg";

+ieras "past-subj p2 sg";

+ie-ramos # "ast-subj p2 pl";

+ieran # "past-subj p3 pl"

LEXICON PRET-IRREG-1
+e # Itpast p sg";

+iSte # "past p2 sg";

+o "past p3 sg";

+imos # "past pi pl";

+ieron # "past p3 p1l'

LEXICON PRET-IRREG-2
+i # ipast pi sg";

+i-ste "past p,2 sg";

+yo- # "past p3 sg";

+i-mos "past p pl";

+yeron "past p3 pl"

LEXICON PRET-IRREG-3

.+i- # "past p sg";

+iSte # "past p2 9

+yo- # "past p3 sg";

+imos # "past p pl";

+yeron # "past p3 pl"

LEXICON PROG-IRREG-1

+iendo # "progir

LEXICON PROG-IRREG-2

+yendo # "prog"

LEXICON SUBJ-IRREG-1

+yera # "past-subj p p3 sg";

+yeras # "past-subj p2 sg";

+ye-ramos # "past-subj p2 pl";

+yeran # "past-subj p3 pl"

LEXICON SUBJ-IRREG-2

+era "past-subj pi p3 sg";

+eras "past-subj p2 sg";

+e-ramos # "past-subj p2 pl";

+eran # "past-subj p3 pl"

LEXICON AR-FUT-COND
0 AR-FUT lilt;

0 AR-COND lilt

NDIX C REPRESENTATION OF LEXICONSAPPEI 207

1EXICON ER-FUT-COND
0 ER-FUT lift;

0 ER-COND fill

LEXICON IRREG-FUT-COND
0 IRREG-FUT Olit;

0 IRREG-COND lift

LEXICON IR-FUT-COND
0 IR-FUT fill;

0 IR-COND fill

LEXICON AR-COND

+ari-as "cond p2 sg";

+ari-a "cond p p3 sg";

+ari-amos # "cond p p1l';

+ari-an # "cond p3 pl"

LEXICON IR-COND

+iri-as "cond p2 sg't;

+iri-a "cond p p3 sg";

+iri-amos # "cond pi pl";

+iri-an # "ond p3 pl"

LEXICON ER-COND

+eri-as "cond p2 sg";

+eri-a "cond p p3 sg";

+eri-amos # "cond pi pl";

+eri-an # "cond p3 pl"

LEXICON IRREG-COND

+i-as "cond p2 sg";

+i-a "cond pi p3 sg";

+i-amos # "ond p p1l';

+i-an # "ond p3 pl"

LEXICON AR-FUT

+are- # fut p sg";

+ara-s # fut p2 sg";

+ara- # "fut p3 sg";

+aremos # "fut pi pl";

+ara-n # "fut p3 p1l'

LEXICON ER-FUT

+ere # fut pi sg";

+era-s # "fut p2 sg";

+era- # "fut p3 sg";

+eremos # "fut p pl";

+era-n # "fut p3 pl"

APPENDIX C REPRESENTATION OF LEXICONS

LEXICON IR-FUT

+ere- # "fut pl sg";

+era-s # "fut p2 sg";

+era- # "fut p3 sg";

+eremos # "fut pl pl";

+era-n # "fut p3 pl"

LEXICON IRREG-FUT

+e # fut pi sg";

+a-s # "fut p2 sg";

+a- # "fut p,3 sg";

+emos # "fut pl pl";

+a'n # "fut p3 pl"

LEXICON AR-MODAL

0 /R-V "i modal (subcat (v))

LEXICON ER-MODAL

0 /ER-V "i modal (subcat (v))

LEXICON IR-MODAL

0 /IR-V "i modal (subcat (0)"

LEXICON DET

0 "det S9,

+S "det pl";

+a "det fem sg";

+o "det neut sg";

+os # "det masc plo';

+as # "det fem pl't;

+es # "det l";

+e I'det masc sg"

LEXICON WH-PHRASE-A

0 #in neut p3 wh wh-phrase-a";

+s "n p3 pl wh wh-phrase-a";

+a 'In f em sg p3 wh wh-phrase-a";

+o "n neut sg 3 wh wh-phrase-a";

+os # "n masc pl p3 wh wh-phrase-a";

+as # "n f em pl p3 wh wh-phrase-a";

+es # n pl p,3 wh wh-phrase-a";

+e "n masc sg 3 wh wh-phrase-a"

LEXICON LY

+amente # "adv"

LEXICON PRO

0 Stpronoun p3 sg masc n animate";

+a "pronoun p3 sg f em n animate";

+0 11pronoun p3 sg masc n animate";

208

APPENDLY C. REPRESENTATION OF LEXICONS

+as "pronoun p3 pl fem n animate";

+Os "pronoun p3 pl masc n animate";

+e pronoun p3 sg masc n animate"

LEXICON A
0 Ila sgIl

+s Ila plif

+a "a f em sg";

+o "a masc sg";

+as "a f em l";

+os "a masc 111;

+e "a neut sg"

LEXICON PROP

0 # In proper p3l'

LEXICON N

0 lin sg p3";

+s 'In pl p3";

+a 'In f em 3 sg";

+o 'In masc p3 sg";

+as 'In f em p3 pl";

+os "n masc p3 pl";

+e 'In neut 3 sg"

LEXICON Root

/* DETERMINERS

el "(english ((the))) det masc sg";

los "(english ((the))) det masc pl";

la /DET "(english ((the))) fem";

es /DET "(english ((that)))";

est /DET "(english ((this)))";

/* QUANTIFYING (DETERMINERS)

much /DET "(english ((many)))";

ningun /DET "(english ((no)))";

vari /DET "(english ((several)))";

otr /DET "(english ((another)))";

que- # "(english ((what))) det neut wh";

un. /DET "(english ((a)))";

un. # "(english ((a))) det masc sg";

..algun /DET "(english ((some)))";

algu-n # "(english ((some))) det masc sg";

cada # "(english ((each))) det neut. sg";

tod /DET "(english ((all) (every)))";

cua-1 /DET "(english ((which))) neut wh";

cua-nt /DET "(english ((how much))) wh";

/* POSSESSIVE (DETERMINERS)

mi /DET "(english ((my))) neut poss pronoun pl sg";

209

... . APPENDIX C. REPRESENTATION OF LEXICONS
I01,11,14"s,

210

tu /DET 11(english ((your))) neut poss pronoun p2 sg";

nuestr /DET "(english ((our))) poss pronoun pi pi";

su /DET "(english ((his) (her) (its) (their) (your))) neut poss pronoun p3 sg pl";

/* CLITICS (DATIVE)

me # "(english ((me))) cl-dat. neut pronoun p sg obj animate";

te # "(english ((you))) cl-dat neut pronoun p2 sg obj animate";

se # "(english ((him) (her) (themM cl-dat neut obj pronoun p3 sg p animate";

nos # "(english ((us))) cl-dat neut, pronoun p p obj animate";

le # "(english ((him) (her) (youM cl-dat neut, pronoun p3 sg obj animate";

les # "(english ((them))) cl-dat neut, pronoun p p obj animate";

/* CLITICS (ACCUSATIVE)

me # "(english ((me))) cl-acc neut pronoun p sg obj animate";

te # "(english ((you))) cl-acc neut pronoun p2 sg obj animate";

nos # "(english ((us))) cl-acc neut pronoun p p obj animate";

lo # "(english ((it) (him) (youM cl-acc masc pronoun p3 sg obj

inanimate animate";

los "(english ((them))) cl-acc masc pronoun p p obj inanimate animate";

la "(english ((it) (her) (youM cl-acc fem sg pronoun p3 sg obj

inanimate animate";

las #-'.',(english ((them))) cl-acc fem pronoun p3 pl obj inanimate animate";

/* REFLEXIVE CLITIC

se # "(english ((himself) (herself) (themselves)))

anaphor cl-ref obj neut, p3 sg p animate";

se # "(english ((yourselves))) anaphor cl-ref obj neut p2 pl animate";

me # "(english ((myself))) anaphor cl-ref obj neut pi sg animate";

nos # "(english ((ourselves))) anaphor cl-ref obj neut p pl animate";

te # "(english ((yourselfM anaphor cl-ref obj neut p2 sg animate";

/* PRONOMINALS (OBJ) */

ti- # "(english ((you))) n pronoun p2 sg neut obj animate";

mi- # "(english ((i))) n pronoun pi sg neut obj animate";

/* PRONOMINALS (NOM/OBJ) */

e-1 /PRO "(english ((he) (it))) nom obj animate";

ell /PRO "(english ((she) (it) (theyM nom obj animate";

nosotros # "(english ((we))) n pronoun p p neut nom obj animate";

nosotras # "(english ((we)))--n pronoun pl p fem nom obj animate";

tu- "(english ((you))) n pronoun p2 sg neut, nom animate";

yo "(english ((i))) n pronoun pi sg neut nom animate";

usted # "(english ((you))) n pronoun p3 sg neut nom obj animate";

ustedes # "(english ((you))) n pronoun p p neut nom obj animate";

e-s /PRO "(english ((that))) nom obj inanimate";

e-st /PRO "(english ((this))) nom obj inanimate";

/* WH-PHRASES */

que- /WH-PHRASE-A "(english ((what))) sg pi inanimate";

-APPENDLY C. REPRESENTATION OF LEXICONS 211

quie n /WH-PHRASE-A "(english ((who))) animate";

cua-1 /WH-PHRASE-A "(english ((which))) inanimate animate";

cua-ndo "(english ((when))) n wh adv inanimate";

do nde "(english ((where))) n wh adv inanimate";

co-mo "(english ((how))) n wh adv inanimate";

cua'nto # "(english ((how much))) n wh adv inanimate animate";

/* FINITE CLAUSE COMPS */

que /C-FIN "(english ((that)))";

para-que /C-FIN "(english ((so that) (for)))";

a-fin-de-que /C-FIN "(english ((so that)))";

a-menos-que /C-FIN "(english ((unless)))";

antes-de-que /C-FIN "(english ((before)))";

antes-que /C-FIN "(english ((before)))";

con-tal-que /C-FIN "(english ((provided that)))";

en-caso-de-que /C-FIN "(english provided. that)))";

sin-que /C-FIN "(english without)))";

aunque /C-FIN "(english ((although)))";

cuando /C-FIN "(english ((when)))";

de-manera-que /C-FIN "(english ((so that)))";

de-modo-que /C-FIN "(english ((so that)))";

despue s-de-que /C-FIN "(english ((after)))";

despue-s-que /C-FIN "(english ((after)))";

en-cuanto /C-FIN "(english ((as soon as)))";

luego-que /C-FIN "(english ((as soon as)))";

tan-pronto-como /C-FIN "(english ((as soon as)))";

asi'-que /C.-FIN "(english ((as soon as)))";

hasta-que /C-FIN "(english ((until)))";

mientras /C-FIN "(english ((while)))";

/* INFINITE CLAUSE COMPS */

que /C-INF "(english 0";

Para /C-INF "(english ((so that) (for)))";

a-fin-de /C-INF "(english ((so that)))";

a-menos /C-INF "(english unless)))";

antes-de /C-INF "(english Mefore)))";

con-tal-de /C-INF "(english ((Provided that)))";

en-caso-de /C-INF "(english ((Provided that)))";

sin /C-INF "(english ((without)))";

cuando IC-INF "(english ((when)))";

despue-s-de /C-INF "(english ((after)))";

hasta /C-INF "(english ((until)))";

mientras /C-INF "(english ((while)))";

/* INFINITIVE MARKER /

a "(english ((to))) inf i (subcat (v))"

/* VERBS

haber /ER-V "(english ((have))) have-aux (root haber)";

he # "pres pi sg (root haber)";

" APPEND N OF LEXICONSIX C REPRESENTATIO., 212

ha /PRES-IRREG "(root haber)".

hemos # "pres pi pl (root haber)";

hub /PRET-IRREG-SUBJ-1 "(root haber)";

habr /IRREG-FUT-COND "(root. haber)";

estar /AR-V "(english ((be))) v be-aux

(external (agent)) (subcat (a)) (subcat (placation)) (root estar)";

estuv /PRET-IRREG-SUBJ-1 "(root estar)";

estoy # "pres pi sg (root estar)";

esta- /PRES-IRREG "(root estar)";

Poder /ER-MODAL "(english can))) (root poder) (external (agent))";

Pued. /ER-MODAL "(root poder)";

pud /PRET-IRREG-PROG-SUBJ-1 "(root poder)";

podr /IRREG-FUT-COND "(root poder)";

deber /ER-MODAL "(english should))) (root deber) (external (agent))";

saber /ER-V "(english ((know))) (root saber) v intrans (subcat (fact inanimate))

(subcat (proposition)) (noun-form (sabimient IN) (subcat (p-proposition))

(subcat (p-fact))) (external (agent))";

sabr /IRREG-FUT-COND "(root. saber)";

se # pres pi sg (root saber)";

sup /PRET-IRREG-SUBJ-1 "(root saber)";

buscar /-V "(english ook))) (root buscar) v

(subcat. (goal)) (external (agent animate))";

comer /ER-V "(english ((eat))) intrans (subcat (goal))";

comprar /AR-V "(english buy))) (root comprar) v (subcat (goal inanimate))

(noun-form (compr IN) (subcat (-goal inanimateM external (agent animate))";

conocer /ER-V "(english know))) (root conocer) v (subcat (p-goal animate))

(subcat (goal inanimate)) (external (agent animate))";

continuer /AR-V "(english continue))) intrans v (subcat (goal inanimate))

(root continuer) (external (agent))";

�contribuir /IR-V "(english ((contribute))) (root contribuir) v

.(subcat (goal inanimate)) (subcat (goal inanimate) (patient))

(external (agent animate))";

contribu /PRET-IRREG-PROG-SUBJ-2 "(root contribuir)"

costar /R-V "(english ((cost))) (root costar) v intrans (subcat (quantity))

(noun-form (cuest IN) (subcat (p-quantity))) (external (agent))";

cuest /AR-V "(root costar)";

creer /ER-V "(english ((believe))) (root creer) v (subcat (p-goal inanimate))

(subcat (goal inanimate) (proposition)) (subcat (proposition))

A PPENDE C REPRESENTATION OF LEXICONS

(external (agent animate)) (noun-form (creenci IN)

(subcat (p-goal inanimate)) (subcat (propositionM";

cre /PRET-IRREG-PROG-SUBJ-2 "(root creer)";

dar /AR-V "(english ((give))) v (root dar) (subcat (goal inanimate))

(subcat (goal inanimate) (patient animate)) (external (agent animate))";

doy # "pres p sg (root dar)";

di # Itpast pl sg (root dar)";

dio # "past p3 sg (root dar)";

decir /IR-V "(english ((say) (tell))) (root decir) v (subcat (proposition))

(subcat (patient animate) (proposition)) (subcat (patient animate))

(external (agent animate))";

dic /ER-IR-PRES "(root decir)";

dic /ER-IR-PROG "(root, decir)";

digo # "pres pi sg (root decir)";

dij /PRET-IRREG-SUBJ-2 "(root decir)";

dicho # "erf (root decir)";

dir /IRREG-FUT-COND "(root decir)";

dormir /IR-V "(english sleep))) (root dormir) v intrans

(external (agent animate))";

duerm /ER-IR-PRES "(root dormir)";

durm. /ER-IR-PROG "(root dormir)";

durm /ER-IR-PRET "(root dormir)";

durm /ER-IR-SUBJ-PAST "(root. dormir)11

leer /ER-V "(english read))) (external (agent animate))

(subcat (goal inanimate))"

le /PRET-IRREG-PROG-SUBJ-2 "(root leer)";

ser /ER-V "(english be))) v be-aux (root ser)";

ser /ER-V "(english be))) v (subcat) (subcat (entity))

(subcat (p)) (root ser) (external (agent))";

soy "pres pi sg (root ser)";

eres "pres p2 sg (root ser)";

es # "pres p3 sg (root ser)";

somos # pres p pl (root ser)";

son # "pres p3 pl (root ser)";

fui # "past pi sg (root ser)";

fueron # "past p3 pl (root ser)";

fu /PRET-IRREG-SUBJ-2 "(root ser)";

fue # "Past 3 sg (root ser)";

era # "past p p3 sg (root ser)";

e-ramos # "past pi pl (root ser)";

eran # "past p3 pl (root ser)";

eras # "past p2 sg (root ser)";

escribir /IR-V "(english ((write))) (root escribir) v intrans

(subcat (goal inanimate)) (subcat (patient animate))

213

-APPENDLY C. -REPRESENTATION OF LEXICONS

(external (agent animate))";

escrito # perf (root escribir)";

estirar /R-V v (expression (a pata) (english ((die) (kick the bucketM)

english ((stretch))) (root estirar) (subcat (goal inanimate))

(subcat (p-goal animate))";

qustar /V "(english ((like))) (root gustar) (subcat (patient animate))C.?
(external (agent))";

hablar /R-V 'v (english ((speak))) (root hablar) intrans.

(subcat (p-goal inanimate)) (subcat (patient animate))

(external (agent animate))";

hacer /AR-V "(english ((do) (makeM (root hacer) v (subcat (a))

(subcat (goal inanimate)) (external (agent))";

hago "pres pi sg (root hacer)";

hecho "Perf (root hacer)";

hic /PRET-IRREG-SUBJ-1 "(root hacer)";

hizo # "past p sg (root hacer)";

har /IRREG-FUT-COND "(root hacer)";

huir /IR-V "(english flee))) (root huir) v intrans (subcat (placation))

(noun-form (huid IN) (subcat (placation))) eternal (agent animate))";

hu /PRET-IRREG-PROG-SUBJ-3 "(root huir)";

ir # "v inf (english ((go))) (root ir) intrans (subcat (proposition))

(subcat (placation)) (external (agent))";

voy # "pres p sg (root ir)

va /PRES-IRREG "(root ir)";

fui # "past pi sg (root ir)";

fueron "past p3 pl (root ir)";

fu /PRET-IRREG-SUBJ-2 "(root ir)";

fue # "past p3 sg (root ir)";

iba # "past pl p3 sg (root ir)";

i-bamos "past p pl (root ir)";

iban # "past p3 pl (root ir)";

ibas # "past p2 sg (root ir)";

yendo # "prog (root ir)";

ido # "erf (root ir)";

morir /IR-V "(english die))) (root morir) v intrans (subcat (cause))

(external (agent animate)) (noun-form (muerte IN fem)

(subcat (patient animateM (adj-form (muert /A) (subcat (cause)))";

muer /ER-IR-PRES "(root morir)";

mur /ER-IR-PROG "(root morir)";

mur /ER-IR-PRET "(root morir)";

mur /ER-IR-SUBJ-PAST "(root morir)";

muerto # "erf (root morir)";

214

.... I--," I

2 I 5-APPEIIVDIX- C., REPRESENTATION OF LEXICONS

odiar /R-V "(english hate))) (subcat (goal)) (external agent animate))";

parecer /ER-V "(english ((seem))) (root parecer) v intrans

(subcat (proposition))";

patear /R-V "(english ((kick))) (root patear) v (subcat (goal inanimate))

(external (agent animate)) (subcat (patient))";

pensar /R-V "(english ((think))) (root pensar) v intrans (subcat (proposition))

(subcat (p-goal inanimate)) (external (agent animate))";

piens /R-PRES "(root pensar)";

poner /ER-V "(english put))) (root poner) v (external (agent animate))

(subcat (goal inanimate) (placation))";

puesto # "perf (root poner)";

pus /PRET-IRREG-SUBJ-l "(root poner)";

pondx /IRREG-FUT-COND "(root poner)";

querer /ER-V "(english ((want))) (root querer) v (subcat (patient animate))

(subcat (p-goal animate)) (subcat (goallinanimate)) (subcat (proposition))

(external (agent animate))";

quier /ER-IR-PRES "(root. querer)";

quis-/PRET-IRREG-SUBJ-1 "(root querer)";

querr /IRREG-FUT-COND "(root querer)";

salir /IR-V "(english ((leave))) (root salir) v intrans (subcat (-location))

(external (agent))";

salgo # "pres pi sg (root salir)";

saldr /IRREG-FUT-COND "(root salir)";

suponer /ER-V "(english ((expect))) (root suponer) v (subcat (proposition))

(external (agent))";

supuesto # "perf (root suponer)";

supus /PRET-IRREG-SUBJ-1 "(root suponer)";

supondr /IRREG-FUT-COND "(root suponer)";

tener /ER-V (english ((have))) (root tener) Y (subcat (goal inanimate))

(external (agent animate))";

tien /ER-IR-PRES "(root tener)";

tendr /IRREG-FUT-COND " (root tener)";

tuv /PRET-IRREG-SUBJ-1 "(root tener)";

ver /ER-V "(english ((see))) (root ver) v intrans (subcat (p-goal animate))

(subcat (goal inanimate)) (external (agent animate))";

veo # "pres pi sg (root ver)";

ve /ER-IR-IMP "(root ver)";

ve /ER-IR-SUBJ-PRES "(root ver)";

vi "past pi sg (root ver) ";

vio "past p3 sg (root ver)";

visto # "Perf (root ver)";

APPENDIX'C. REPRESENTATION OF EX-TCONS

vencer /ER-V "(english ((conquer))) (root vencer) v intrans

(subcat (goal inanimate)) (external (agent animate))";

vender /ER-V "(english ((sell))) (root vender) v (external (agent animate))

intrans, (subcat (goal inanimate))

(noun-form (vent IN) (subcat (p-goal inanimateM";

vendr /IRREG-FUT-COND "(root vender)";

venir /IR-V "(english ((come))) (root venir) v intrans (subcat (placation))

(external (agent))";

vin /PRET-IRREG-PROG-SUBJ-i "(root venir)";

vien /ER-IR-PRES "(root venir)";

visitar /AR-V "(english visit))) (external (agent animate))

(subcat (p-goal animate)) (subcat (goal inanimate))";

216

/* PREPOSITIONS

a /PREP "(english to) (at)))";

al-lado-de /PREP "(english beside)))";

acerca-de /PREP "(english about)))";

antes-de /PREP "(english before)))";

alrededor-de /PREP "(english around)))";

bajo # "(english beneath)))";

cerca-de /PREP "(english near)))";

con /PREP "(english with)))";

contra /PREP "(english against)))";

de /PREP "(english from) (of)))";

debajo-de /PREP "(english ((below) (beneath) (under)))";

dentro-de /PREP "(english ((inside)))";

despue-s-de /PREP "(english ((after)))";

detra-s-de /PREP "(english behind)))";

durante /PREP "(english during)))";

en /PREP "(english on)))";

encima-de /PREP "(english above)))";

entre /PREP "(english ((among) (between)))";

fuera-de /PREP "(english outside)))";, t

hacia /PREP "(english toward)))";

para /PREP "(english ((for)))";

Por /PREP "(english for) (by) (through) (per)))";

sin /PREP "(english without)))";

sobre /PREP "(english ((over) (on) (above)))";

/* NOUNS

agua # "(english ((water))) n masc. sg inanimate";
amig IN "(english ((friend))) animate";
cam IN "(english ((bed))) inanimate";
cart IN "(english etterM inanimate";
cas, IN "(english ((house))) inanimate";
cine IN "(english ((movie))) masc. inanimate";

APPENDIX C. REPRESENTATION OF LEXICONS

cos IN "(english ((thing))) inanimate";

cubet IN "(english ((bucket))) inanimate";

empres IN "(english ((firm))) inanimate";

gat IN "(english ((cat)))";

muchach IN "(english ((boy) (girlM animate";

hombre IN "(english ((man))) masc animate";

herman IN "(english ((brother) (sisterM animate";

lad IN "(english ((side))) inanimate";

libr IN "(english ((book))) inanimate";

madre IN "(english ((motherM fem animate";

mes IN "(english ((table))) inanimate";

muier IN "(english ((woman))) fem animate";

padre /M "(english ((father))) masc animate";

Pat IN "(english ((paw))) inanimate";

peli-cul IN "(english ((movie))) inanimate";

pis N "(english ((floor))) inanimate";

reunio-n IN "(english ((meeting))) fem inanimate";

verdad IN "(english ((truth))) fem inanimate";

tiempo IN "(english ((time))) masc inanimate";

lapiz IN "(english ((pencil))) masc inanimate";

I* PROPER NOUNS

espan'a, /PROP "(english ((spain)-)) sg neut";

Juan /PROP "(english ((john))) g masc animate";

mari-a /PROP "(english ((maria))) sg fem animate";

I* ADJECTIVES /

ciert /A "(english ((certain))) intrans (subcat (proposition))";

posibl /A "(english possibleM intrans (subcat (proposition))";

probabl, /A "(english ((Probable) (likelyM intrans

(subcat (proposition))";

cansad /A "(english ((tired)))";

orgullos /A "(english ((proud))) intrans (subcat (p-goal inanimate))

(noun-form (orgull IN) (subcat (p-goal inanimateM";

ansios /A "(english ((eager)))";

satisfech /A "(english ((satisfied)))";

I. # "(english W.M punc";

/? # "(english ((/?))) punch

21 7

END

ALppendix I)

ans a ion s ern -ara-rne ers

This appendix contains some of the parameter settings that are specific to the UNITRAN

system (i.e., they are not included in the parameters of CB Theory).

Features are used for instantiating the slots of a node at scan time. The

are also used as a check on lexical entries (each feature in a lexical

entry must be specified in the FEATURES parameter).

(DEF-PARAM FEATURES

:SPANISH

(:GENDER (FEM MASC NEUT)

:PERS (Pi P2 P3)

:NUMBER (PL SG)

:CASE (OBJ NOM POSS)

:TENSE (INF PERF PROG PAST PRES PRES-SUBJ PAST-SUBJ FUT COND)

:N-FEATURES (:CASE :GENDER :NUMBER PROPER ANAPHOR PRONOUN

LOCATION DURATION QUANTITY ACCESS METHOD

EXCHANGE TIME ANIMATE INANIMATE WH WH-PHRASE-A)

:A-FEATURES (:PERS :NUMBER :GENDER DESCRIPT CONDITION)

:P-FEATURES (P-DESCRIPT PCONDITION PLOCATION P-FACT PGOAL P-QUANTITY)

:V-FEATURES (:PERS :NUMBER :TENSE SDEL IXF INTRANS)

:I-FEATURES (MODAL :PERS :NUMBER :TENSE INF)

:C-FEATURES (WH WH-PHRASE FACT)

:DET-FEATURES (:GENDER :NUMBER :PERS :CASE PRONOUN WH)

:CL-ACC-FEATURES (:GENDER :NUMBER :PERS :CASE PRONOUN INANIMATE ANIMATE)

:CL-DAT-FEATURES (:GENDER :NUMBER :PERS :CASE PRONOUN ANIMATE)

:CL-REF-FEATURES (:GENDER :NUMBER :PERS :CASE PRONOUN ANIMATE))

218

1. APPENDIX D. TRANSLATION Syr S TEM PA R AME TER S 219

:ENGLISH

(:GENDER (FEM MASC NEUT)

:PERS (Pi P2 P3)

:NUMBER (PL SG MASS)

:CASE (OBJ NOM POSS)

:TENSE (INF PERF PROG PAST PRES FUT COND)

:N-FEATURES (:GENDER :NUMBER :CASE PROPER NkPHOR PRONOUN PLEONASTIC

LOCATION DURATION QUANTITY ACCESS METHOD

EXCHANGE TIME ANIMATE WH WH-PHRASE-A)

:A-FEATURES (DESCRIPT VABLE CONDITION COMPARATIVE SUPERLATIVE)

:P-FEATURES (P-DESCRIPT PCONDITION PLOCATION P-FACT PGOAL P-QUANTITY)

:V-FEATURES (:PERS :NUMBER :TENSE SDEL INTRANS)

:I-FEATURES (:PERS :TENSE MODAL)

:C-FEATURES (WH WH-PHRASE FACT)

:DET-FEATURES (:GENDER :NUMBER :PERS :CASE PRONOUN WHM

Match-lists are employed by the feature-matching rontine to ensure that

Heads and Specs are compatible.

(DEF-PARAM MATCH-LISTS

:SPANISH

(:PERSON MPO (PW ((P2) (P2)) PROPER P3) (P3)))

:NUMBER MPL) (PL)) ((MASS PROPER SG) (SG)))

:GENDER MFEM NEUT) (FEM NEUT)) ((MASC NEUT) (MASC NEUT)))

:TENSE (((PRES FUT PAST) (PERF))))

:ENGLISH

(:PERSON (((Pl) (Pl)) ((P2) (P2)) ((PROPER P3) (P3)))

:NUMBER MPL) (PL)) ((MASS PROPER SG) (SG)))

:GENDER (((FEM NEUT) (FEM NEUT)) ((MASC NEUT) (MASC NEUT)))

:TENSE (((PRES PAST FUT) (PERFM))

APPENDIX D. TRANSLATION SYSTEM PARA.METERS 220

Splits-and-merges are accessed by the preprocessor to split contracted

forms, and join words that function as a single unit

(DEF-PARAM SPLITS-AND-MERGES

:SPANISH

(:SPLITS

MAL) (A EL))

((DEL) (DE EL))

((*RME) (*R ME))

((*RME) (*R ME))

((*RTE) (*R TE))

((*RSE) (*R SE))

((*RLA*) (*R LA*))

((*RLO*) (*R LO*))

((*RLE*) (*R LE*))

((*OME) * ME))

((*OTE) * TE))

((*OSE) * SE))

((*OLA*) LA*))

((*OLO*) LO*))

((*OLE*) LE*))

('(*A-RSELO*) (*AR SE LO*))

((*A-RSELA*) (*AR SE LA*))

((*A-RMELO*) (*AR ME LO*))

((*A-RMELA*) (*AR ME LA*))

((*A-RTELO*) (*AR TE LO*))

((*A-RTELA*) (*AR TE LA*))

((*A-RNOSLO*) (*AR NOS LO*))

((*A-RNOSLA*) (*AR NOS LA*))

((*A-NDOSELO*) (*ANDO SE LO*))

((*A-NDOSELA*) (*ANDO SE LA*))

((*A-ND0MELO*) (*ANDO ME LO*))

((*A-NDOMELA*) (*ANDO ME LA*))

((*A-NDOTELO*) (*ANDO TE LO*))

((*A-NDOTELA*) (*ANDO TE LA*))

((*A-NDONOSLO*) (*ANDO NOS LO*))

((*A-NDONOSLA*) (*A-NDO NOS LA*))

((*I-RSELO*) (*IR SE LO*))

((*I-RSELA*) (*IR SE LA*))

((*I-RMELO*) (*IR ME LO*))

((*I-RMELA*) (*IR ME LA*))

((*I-RTELO*) (*IR TE LO*))

((*I-RTELA*) (*IR TE LA*))

((*I-RNOSLO*) (*IR NOS LO*))

((*I-RNOSLA*) (*IR NOS LA*))

((*IE-NDOSELO*) (*IENDO SE LO*))

((*IE-NDOSELA*) (*IEUDO SE LA*))

((*IE-NDOMELO*) (*IENDO ME LO*))

((*IE-NDOMELA*) (*IENDO ME LA*))

((*IE-NDOTELO*) (*IENDO TE LO*))

D. 7RANSLATION SISTEAT PARAIWETERS

((*IE-NDOTELA*) (*IENDO TE LA*))

((*IE-NDONOSLO*) (*IENDO NOS LO*))

((*IE-NDONOSLA*) (*IENDO NOS LA*))

((*E-RSELO*) (*ER SE LO*))

((*E-RSELA*) (*ER SE LA*))

((*E-RMELO*) (*ER ME LO*))

((*E-RMELk*) (*ER ME LA*))

((*E-RTELO*) (*ER TE LO*))

((*E-RTELA*) (*ER TE LA*))

((*E-RNOSLO*) (*ER NOS LO*))

((*E-RNOSLk*) (*ER NOS Lk*))

((*YE-NDOSELO*) (*YENDO SE LO*))

((*YE-ND0SELA*) (*YENDO SE LA*))

((*YE-NDOMELO*) (*YENDO ME LO*))

((*YE-NDOMELA*) (*YENDO ME LA*))

((*YE-NDOTELO*) (*YENDO TE LO*))

((*YE-NDOTELA*) (*YENDO TE LA*))

((*YE-NDONOSLO*) (*YENDO NOS LO*))

((*YE-NDONOSLA*) (*YENDO NOS LA*)))

221

.Appendix E

is e resen a ion

-lararne ers

This appendix contains' the Lisp representation used for the setting of parameters to the prin-

ciples. Parameters are grouped according to subtheories of GB (as shown in appendix A.2).

E. i X- Theory

Constituent-order is used to determine the positioning of heads, specifiers

and complements in order to set up the XBAR templates, and to perform

generation.

(DEF-PARAM CONSTITUENT-ORDER :SPANISH (SPEC HEAD COMP) :ENGLISH (SPEC HEAD COMP))

Basic-categories are inserted into the XBAR templates at precompilation

time. The distinguished start symbol (root node) must be the the first

category specified (e.g., C in Spanish and English).

(DEF-PARAM BASIC-CATEGORIES :SPANISH (C I V N P A) :ENGLISH (C I V N P W

Pre-terminal symbols are inserted into specif ier and adjunct positions of

XBAR templates as dictated by the CHOICE-OF-SPEC and ADJUNCTION parameters

(see below).

(DEF-PARAM PRE-TERMINALS

:SPANISH (DET ADV PUNC HAVE-AUX BE-AUX CL-ACC CL-DAT CL-REF)

:ENGLISH (DET ADV DO-AUX HAVE-AUX BE-AUX PUNC))

223

--- I -- NO -1-6 , � 4 .1, ". o . .

APPENDIX E. LISP REPRESENTATION OF GB PARAINIETERS 224

Choice-of-spec elements are inserted into specifier positions in XBAR

templates.

(DEF-PARAM CHOICE-OF-SPEC

:SPANISH ((:NAME WH-MOVEMENT (C ((N-MAX) (P-MAX) (ADV))))

(:NAME PERFECT (V ((HAVE-AUX))))

(:NAME DETERMINER (I ((DET))))

(:NAME POSSESSIVE (N ((N-MAX))))

(:NAME SUBJECT (I ((N-MAX))))

(:NAME ADVERBIAL (A UAW) P ((ADV)))))

:ENGLISH ((:NAME WH-MOVEMENT (C ((N-MAX) (P-MAX) (ADV))))

(:NAME PERFECT (V AVE-AUX)M

(:NAME DO-SUPPORT (V ((DO-AUX))))

(:NAME DETERMINER (I METM)

(:NAME POSSESSIVE (N ((N-MAX))))

(:NAME SUBJECT (I ((N-MAX))))

(:NAME ADVERBIAL (A ((ADV)) P ((ADV))))))

)n possibilities include:

oin lef t at maximal level, 2 = adjoin right

oin left at minimal level, 4 = adjoin right

QUNCTION

;;; Adjunctio

I = adj

3 = adi

(DEF-PARAM AD

:ENGLISH

:SPANISH

at maximal level

at minimal level

(:NAME ATO-N :ODE (A-MAX) :TYPE 3 :HEAD)

(:NAME P-TO-N-V :NODE (P-MAX) :TYPE 2 4 :HEAD (N V))

(:NAME ADV-TO-V :NODE (ADV) :TYPE 2 :HEAD)

(:NAME C-TO-N :ODE (C-MAX) :TYPE 2 4 :HEAD)

(:NAME PASS-PROG :NODE (BE-AUX) :TYPE 3 :HEAD)

(:NAME DO-SAI :ODE (DO-AUX) :TYPE :HEAD (I))

(:NkME BE-SAI :NODE (BE-AUX) :TYPE (1) :HEAD (I))

(:NAME HAVE-SAI :ODE (HAVE-AUX) :TYPE (1) :HEAD)

(:NAME I-SAI :NODE (I) :TYPE (1) :HEAD ()

(:NAME A-TO-N :ODE (A-MAX) :TYPE 3 4 :HEAD)

(:NAME P-TO-N-V :ODE (P-MAX) :TYPE 2 4 :HEAD (N V))

(:NAME ADV-TO-V :ODE (ADV) :TYPE (2 :HEAD)

(:NAME C-TO-N :NODE (C-MAX) :TYPE 2 4 :HEAD)

(:NAME PASS-PROG :NODE (BE-AUX) :TYPE 3 :HEAD)

(:NAME OBJ-CLITIC-TO-V :NODE (CL-DAT CL-ACC) :TYPE 3 4 :HEAD

(:NAME REF-CLITIC-TO-V :ODE (CL-REF) :TYPE 3 4 :HEAD)

(:NAME REF-OBJ-CLITIC-TO-V

:NODE (CL-REF CL-ACC) :TYPE 3 4 :HEAD)

(:NAME PREPOSE :NODE (I HAVE-AUX BE-AUX V) :TYPE (1) :HEAD)

(:NAME FREE-INVERSION :NODE (N-MAX) :TYPE 2 :HEAD MM

;;; Default complements for heads that are empty.

(DEF-PARAM EMPTY-FEATURE-HOLDERS

:SPANISH (I ((V)) C ((I))) :ENGLISH O ((V)) C ((I))))

APPENDIX E. LISP REPRESENTATION OF GB PARAMETERS 225

;;; Optional specifiers may be dropped in XBAR templates.

(DEF-PARAM OPTIONAL-SPECIFIERS

:SPANISH (V-SPEC A-SPEC C-SPEC P-SPEC N-SPEC)

:ENGLISH (V-SPEC A-SPEC C-SPEC P-SPEC N-SPEC))

E.2 0-Theory

;;; Values of clitics (if there are any).

(DEF-PARAM CLITICS :SPANISH (CL-DAT CL-ACC CL-REF) :ENGLISH NIL)

Clitic-doubling forces the rule:

E CL CkWil + THEWj I ... ENP CASEfi I

[CL CkSEf il + THEW j I ENP CSEf il THETAf j I to f ire if clitics

are allowed.

(DEF-PARAM CLITIC-DOUBLING

:SPANISH (SETQ *CLITIC-THETA-TRANSMIT T)

...- ,.:ENGLISH (SETQ *CLITIC-THETA-TRANSMIT NW)

Canonical-semantic-mappings map between semantic roles and canonical

structural representations.

(DEF-PARAM CANONICAL-SEMANTIC-MAPPINGS

:SPANISH (:AGENT N :PATIENT P :PROPOSITION C :P-PROPOSITION P :LOCATION

:P-LOCkTION P FCT :P-FACT P :QUANTITY N :P-QUANTITY :GOAL

:P-GOk P :ENTITY :CAUSE P)

:ENGLISH (:AGENT N :PATIENT N :P-PATIENT P :PROPOSITION C :P-PROPOSITION P

:LOCATION N :P-LOCATION P :FkCT N :P-FkCT P :ANTITY N :P-QUANTITY

:GOAL N :P-GOAL P :ENTITY N CUSE P))

E.3 Government Theory

;;; Governing categories (used for the Case and Binding modules).

(DEF-PARAM GOVERNORS :SPANISH (N V A P AGR) :ENGLISH (N V A P AGR))

EA Case Theory

Case assignment parameter specifies the type of government and the case

assigned.

(DEF-PARAM CASE-ASSIGNMENT

:SPANISH (V (S-GOVERNS? OBJ) P (C-GOVERNS? OBJ) AGR (C-GOVERNS? NOM))

:ENGLISH (V (C-GOVERNS? OBJ) P (C-GOVERNS? OBJ) AGR (C-GOVERNS? NOM)))

- -4 .. I-- -I - I I --- -----

APPENDIX E. LISP REPRESENTATIOIN OF GB PARAMETERS

E.5 Trace Theory

Pro-drop is used by the trace module to determine two things: whether a

subject can be null, and whether AGR is allowed to be a proper governor.

(DEF-PARAM PRO-DROP :SPANISH (SETQ *GR-RICH T) :ENGLISH (SETQ *AGR-RICH NIL))

Traces are inserted into nodes of XBAR templates at precompilation time, but

they are checked by ECP at POP time and generation time.

(DEF-PARAM TRACES

:SPANISH (N-MAX-TRACE P-MAX-TRACE BE-AUX-TRACE HAVE-AUX-TRACE I-TRACE V-TRACE)

:ENGLISH (N-MAX-TRACE P-MAX-TRACE))

ECP is used by GB to determine whether chain conditions are required for

checking proper government of an empty category.

(DEF-PARAM ECP :SPANISH (SETQ *CHAIN-CONDITIONS T)

:ENGLISH (SETQ *CHAIN-CONDITIONS NIL))

E.6- Bounding Theory

;;;.Acqording to the principle of Subjacency, an antecedent may not be beyond

more than one bounding node. (Bounding-nodes are used to limit the search

for an antecedent of a trace.)

(DEF-PARAM BOUNDING-NODES :SPANISH (C-MAX N-MAX) :ENGLISH (I-MAX N-MAW

Language-specific effects is used in the Bounding module to determine when

certain actions are obligatory during parsing and generation.

(DEF-PARAM LANGUAGE-SPECIFIC-EFFECTS

:SPANISH MPREPOSE) <==> (WH-MOVEMENT WH-PHRASE-W)

:ENGLISH OR (DO-SAI) (BE-SAI) (HAVE-SAI) (I-SAI)) <==> (WH-MOVEMENT))))

Derived-specifiers-and-adjunction are used during move-alpha in order to

determine the positions to which elements may move.

(DEF-PARAM DERIVED-SPECIFIERS-AND-ADJUNCTION

:SPANISH (WH-MOVEMENT PREPOSE FREE-INVERSION)

:ENGLISH (WH-MOVEMENT DO-SAI BE-SAI HAVE-SAI I-SAI))

Base-specifiers-and-adjunction-are used during move-alpha in order to

determine the base-generated specifiers and adjunction.

(DEF-PARAM BASE-SPECIFIERS-AND-ADJUNCTION

:SPANISH (WH-MOVEMENT PREPOSE FREE-INVERSION)

:ENGLISH (WH-MOVEMENT DO-SAI BE-SAI HAVE-SAI I-SAI))

226

is e resen a ion

-Iri'nci es

This appendix contains the Lisp representation of the principles and their incorporation of

parameter values. Principles are grouped according to subtheories of GB (as shown in ap-

pendix A).

F.1 XTheory

F.1.1 Precornpilation Routines

The X module is accessed during precompilation, parsing (PUSH, SCAN and POP), and gen-

eration. During precompilation, X templates are generated for the Earley parser. During

parsing, the X module performs several tasks: at PUSH time, complement templates are pre-

dicted, complements axe associated with heads, and features (of pushed traces) are percolated;

SCAN time, features are instantiated, argument structure is determined, and feature perco-

lation takes place; and at POP time, feature percolation takes place again. At generation time,

the X module is accessed in order to determine positions where specifiers and adjoined elements

are base-generated in the target language, and to modify the structure accordingly. Also, the

generator accesses the X component to order constituents according to the constituent order

of the target language.

227

.Appendix F

APPENDIX F. LISP REPRESENTATION OF GB PRINCIPLES 228

Set-up-xbar is invoked at precompilation time. It sets up the x-bar

templates required by the source and target languages, according to the

parameter values of constituent order, possible-empty-feature-holders,

traces, empty, choice-of-spec and optional-specifiers.

(DEFUN SET-UP-XBAR (LANGUAGE)

The full blown rules include unconditionally added rules as well as rules

derived from the base constituent order

(LET ((OBLIGATORY-RULES) (OPTIONAL-RULES) (FULL-BLOWN-RULES NIL))

(SETQ

OBLIGATORY-RULES

(APPEND

; ; Create the base x-bar rules.

(CREATE-BASE-RULES *CURRENT-CONSTITUENT-ORDER *CURRENT-BASIC-CATEGORIES)

; ; Create adjunction rules.

(CREATE-ADJUNCTS *CURRENT-ADJUNCTION)

;; Add trace rules (Y ==> Y-TRACE)

(ADD-TRACE-RULES *CURRENT-TRACES)

Add empty rules (Z ==> E) and (Z-COMPLEMENT ==> <cat>) for all

<cat>'s specified in the EMPTY-FEATURE-HOLDERS parameter.

(MAKE-EMPTY-RULES *CURRENT-EMPTY-FEATURE-HOLDERS)

Add rules corresponding to the empty (NP) elements (big pro and also

little pro if AGR is ric�).

(ADD-EMPTY-NPS *CURRENT-PRO-DROP)

;; Add rules corresponding to possible choices of spec.

(MAKE-SPEC-RULES *CURRENT-CHOICE-OF-SPEC))

Allow optional specifiers to be dropped.

OPTIONAL-RULES

(DROP-OPTIONAL-SPECIFIERS *CURRENT-OPTIONAL-SPECIFIERS OBLIGATORY-RULES)

; ; Combine obligatory and optional rules.

FULL-BLOWN-RULES (APPEND OBLIGATORY-RULES OPTIONAL-RULES))

Define the grammar for the language.

(EVAL (CONS DEFGRAMMAR (CONS LANGUAGE FULL-BLOWN-RULES)M)

APPENDIX F. LISP REPRESENTATION OF GB PREY CIPLES 229

F.1.2 Complement Prediction Routines

Locate-complements is invoked at PUSH time when a complement needs to be

expanded. The complement t emplates are generated by locating the closest

head to the left or right (depending on whether the language is

head-initial or head-final). The corresponding rules are added later (so

that the state-set will be consistent with the structure that is being

built).

(DEFUN LOCATE-COMPLEMENTS (HEAD-CAT COMPLEMENT-SYMBOL HEAD-FIRST?)

(LET ((INTRANS NIL) (SUBCAT-LIST) (MAX-CATS) (CURRENT-RESULT))

Determine the subcategorization frames for the closest head to the left

or to the right.

(SETQ SUBCAT-LIST (LOCATE-SUBCAT-LIST HEAD-CAT HEAD-FIRST?))

;; Take care of intransitive possibility.

(WHEN (OR (NULL SBCAT-LIST) (EQ (CAR SUBCAT-LIST) INTRANS))

(SETQ INTRANS (INTRANS) SUBCAT-LIST (CDR SUBCAT-LIST)))

Iterate through subcategorization frames pushing the left-most

subcategorized maximal projection onto the stack base.

(LOOP FOR SUBCAT IN SUBCAT-LIST DO

Determine maximal-projections of subcategorized elements.

(SETQ MAX-CATS

(TURN-INTO-MAX (MAPCAR 'CAR (GET-CATEGORY-SUBCAT SUBCAT))))

Turn the subcategorization frame into a stack element.

(PUSH (MAPCAR 'LIST MAX-CATS) CURRENT-RESULT))

Finally return the result.

(CONS COMPLEMENT-SYMBOL (APPEND INTRANS CURRENT-RESULTM)

... Locate-subcat-list finds all possible subcategorization frames for the

closest head (of category HEAD-CAT) to the left or to the right.

(DEFUN LOCATE-SUBCAT-LIST (HEAD-CAT HEAD-FIRST?)

(IF HEAD-FIRST?

;; Head initial

(CLOSEST-HEAD? 'LEFT HEAD-CAT)

;; Head final: check for movement first.

(IF (MEMBER (ADD-ENDING HEAD-CAT '-TRACE) *CURRENT-TRACES :TEST EQ)

Possibility of leftward movement as well as head appearing to

right.

(UNION (CLOSEST-HEAD? 'RIGHT HEAD-CAT)

'LEFT HEAD-CAT) :TEST #'EQUAL)

No possibility of leftward movement.

(CLOSEST-HEAD? 'RIGHT HEAD-CATM)

I 1- --- 1- -l ,

APPENDIX F. LISP REPRESENTATION OF GB PI.,VCIPLES 230

Closest-head? locates the closest morphologically analyzed word (in a

particular direction) corresponding to a head category. (The assumption is

that the head has not moved "too f ar away, if indeed it has moved at all.

It then returns the subcategorization frame of the word. Note: clitics need

to be accounted for here so that the subcategorization frame is adjusted

accordingly.

(DEFUN CLOSEST-HEkD? (DIRECTION HEAD-CAT)

(LET ((SUBCATEGORIZATION IL))

(LOOP FOR WORD IN (LOCATE-SECTION-OF-SENTENCE DIRECTION) DO

(WHEN (MEMBER HEAD-CAT (GET-CAT WORD) :TEST EQ)

(SETQ SUBCATEGORIZATION

(TAKE-CLITICS-INTO-ACCOUNT

HEkD-CAT (GET-SUBCATEGORIZATION (SECOND WORD))))

(RETURN (OR SUBCATEGORIZATION UNTRANSMM)

Take-clitics-into-account creates additional subcategorization frames for a

head-cat if clitics are allowed. This is because certain complements can

be encoded as clitics rather than internal arguments. So the job of this

function is to add to the subcategorization possibilities by eliminating

one or more elements of SUBCAT.

(DEFUN TAKE-CLITICS-INTO-ACCOUNT (HEAD-CAT SUBCAT)

(LET ((INTRANS? NIL) (NEW-SUBCAT) (NEW-RESULTS NIL))

;; First check if the language allows clitics.

(IF (NOT *CURRENT-CLITICS) clitics not allowed.

SUBCAT clitics allowed.

;; If the head is intransitive, set the INTRANS? flag.

(WHEN (EQ (CAR SUBCAT) INTRANS)

(SETQ INTRANS? T NEW-SUBCAT (CDR SUBCATM

If the head is transitive, process its complements. First check if

clitic adjunction. to the head-cat is allowed.

(WHEN (AND NEW-SUBCAT (CLITIC-ADJOINED-TO-HEAD? HEAD-CAT))

Set INTRANS? flag since one possibility is for all internal

arguments to be eliminated.

(SETQ INTRANS? T)

Run through each of the subcategorization frames removing

elements, unless there is only one element in the subcat frame.

(LOOP FOR SUB IN NEW-SUBCAT DO

(SETQ NEW-RESULTS

(APPEND NEW-RESULTS

(WHEN > (LENGTH SUB)

(REMOVE-SUBCATEGORIZED-COMPLEMENTS SUBMM

Return a UNION of the old subcategorization frames and the new ones

(with subcategorized elements missing).

(IF INTRANS?

(CONS INTRANS (UNION NEW-RESULTS NEW-SUBCAT :TEST #'EQUAL))

(UNION NEW-RESULTS NEW-SUBCAT :TEST #'EQUAL)))))

m - - .- -

.-. APPEiVDI-X,- F. LISP REPRESENTATION OF GB PRINCIPLES 231

Clitic-adjoined-to-head? checks to see if clitic adjunction to the head-cat

is allowed.

CLITIC-ADJOINED-TO-HEAD? (HEAD)

(LOOP FOR ADJUNCTION IN *CURRENT-ADJUNCTION DO

(WHEN (AND (MEMBER HEAD (GET-VALUE ADJUNCTION :HEAD) :TEST EQ)

(INTERSECTION

(GET-VALUE ADJUNCTION :ODE) *CURRENT-CLITICS :TEST #EQ))

(RETURN TM)

Locate-section-of -sentence returns the portion the sentence preceding

(LEFT) or following (RIGHT) the *CURRENT-MORPH-WORD depending on the

DIRECTION that is passed to it.

(DEFUN LOCATE-SECTION-OF-SENTENCE (DIRECTION)

(IF (EQ DIRECTION 'RIGHT)

(MEMBER *CURRENT-MORPH-WORD

(REVERSE *CURRENT-MORPH-SENTENCE) :TEST #'EQUAL)

(MEMBER *CURRENT-MORPH-WORD *CURRENT-MORPH-SENTENCE :TEST #'EQUAL)))

Get-category-subcat turns a subcategorization frame into its corresponding

structural frame (via CSR). If INTRANS is in the subcategorization frame,

it will be consed onto the front of the result.

(DEFUN GET-CATEGORY-SUBCAT (SUBCAT)

(COND ((EQ SUBCAT INTRANS) INTRANS)

MEMBER INTRANS SUBCAT :TEST EQ)

(CONS INTRANS (TURN-INTO-CAT (REMOVE INTRANS SUBCATM)

(T (TURN-INTO-CAT SUBCATM)

Turn-into-cat turns a subcategorization (role) frame into its corresponding

structural representation (via CSR).

(DEFUN TURN-INTO-CAT (SUBCATS)

(LOOP FOR SUBCAT IN SUBCATS

COLLECT (MAPCAR '(LAMBDA (LIST (CSR W) (HEADERS-OF SUBCATM)

Get-subcategorization retrieves the theta-roles of internal arguments from

the features associated with a word. All permutations of the

subcategorization frames with multiple arguments will be included in the

result.

(DEFUN GET-SUBCATEGORIZATION (FEATURES)

(LET USUBCATEGORIZATION

(LOOP FOR ELT IN FEATURES

When a subcategorization frame is encountered, collect it.

WHEN (AND (LISTP ELT) (EQUAL (CAR ELT) SUBCAT)) COLLECT ELTM

If INTRANS is in the set of features, include it in the

subcategorization frame. Otherwise, just include the subcategorization

frame (with permuted arguments, of course).

(IF (MEMBER INTRANS FEATURES)

(CONS I INTRANS

(WHEN SUBCATEGORIZATION

(LOOP FOR SUBCAT IN SUBCATEGORIZATION

APPENDIX F LISP REPRESENTATION OF GB PRIN CIPLES 232

- APPEND (PERMUTE-SUBCAT (CDR SUBCAT)))))

(WHEN SUBCATEGORIZATION

(LOOP FOR SUBCAT IN SUBCATEGORIZATION -

APPEND (PERMUTE-SUBCAT (CDR SUBCkT)))))))

APPENDLY F. LISP REPRESENTATION OF GB PRINCIPLES 23:3

F.1.3 -Routines for Associating Complements with Heads

Perform-subcategorization-cheek links complements up to heads at PUSH time.

All the complements and their corresponding heads and subcat frames are

collected, and then the subcategorization information is stored in the head

nodes. Also, intransitive heads are taken care of hre.

(DEFUN PERFORM-SUBCATEGORIZATION-CHECK (STACKS)

(LET ((TEMP-HEAD) (COMPLEMENTS NIL) (HEADS NIL) (INTRANSITIVE-HEADS IL))

(LOOP FOR STACK IN STACKS DO

; ; Collect complement symbols, transitive heads and intransitive heads

(LOOP FOR ELT IN STACK DO

(COND

;; Collect complement.symbols.

((COMPLEMENT? (CAR ELT)) (PUSH (CDR ELT) COMPLEMENTS))

; ; Collect transitive heads (i e ones with complements)

((SETQ TEMP-HEAD (COMPLEMENT-PRESENT? LT)) (PUSH TEMP-HEAD HEADS))

Collect intransitive heads (i.e., ones with no complements).

((SETQ TEMP-HEAD (COMPLEMENT-NOT-PRESENT? ELT))

(PUSH TEMP-HEAD INTRANSITIVE-HEADS))))

-Iterate over transitive heads -dropping -subcategorization inf ormation

into each one (unless the information is already there).

(LOOP FOR HEAD IN HEADS FOR COMPLEMENT IN COMPLEMENTS DO

(ADD-SUBCAT-INFO HEAD COMPLEMENT))

Iterate over intransitive heads ensuring that INTRANS is dropped into

the subcat slot.

(LOOP FOR INTRANS-HEAD IN INTRANSITIVE-HEADS DO

(MAKE-INTRANSITIVE INTRANS-HEAD)))

STACKS))

Add-subcat-info locates the head (symbol) in the stack and drops the

subcategorization information into place.

(DEFUN ADD-SUBCAT-INFO (HEAD COMPLEMENTS)

(LET ((ARGUMENT-STRUCTURE

(APPLY

(LAMBDA (LIST)

(LIST (REMOVE-ENDING (CAR LIST) '-MAX))) COMPLEMENTS)))

Fill the SUBCATEGORIZATION and COMPLEMENTS-FILLED slot of the head.

(UNLESS (NODE-COMPLEMENTS-FILLED HEAD)

(SETF (NODE-COMPLEMENTS-FILLED HEAD) T)

('SETF (NODE-SUBCATEGORIZATION HEAD) ARGUMENT-STRUCTUREM)

Make-intransitive helps perform-subcategorization-check (at PUSH time).

When a head has has no complements being pushed, it is made intransitive.

(DEFUN MAKE-INTRANSITIVE (HEAD)

; ; Fill the SUBCATEGORIZATION and COMPLEMENTS-FILLED slot of the head.

(UNLESS (NODE-COMPLEMENTS-FILLED HEAD)

(SETF (NODE-COMPLEMENTS-FILLED HEAD) T)

(SETF (NODE-SUBCATEGORIZATION HEAD) INTRANSM

APPENDIX F. LISP REPRESENTATION OF GB PRINCIPLES 234

F.1.4 Routines for Determining Feature Information and Argument Struc-

ture

Instantiate-features is called when at SCAN time. The node corresponding to

the category of the scanned word is filled up with the features specified in

the word's lexical entry. (The translation and word slots of the node are

also filled.) Furthermore, the argument structure for the word is

established: internal and external arguments are associated with the head

node.

(DEFUN INSTANTIATE-FEATURES (SOURCE-LANGUAGE TARGET-LANGUAGE FEATURES NODE WORD)

(LET ((NODE-SUBCAT (GET-SUBCATEGORIZATION FEATURES)) internal theta roles

(NODE-EXTERNAL (GET-EXTERNAL FEATURESM ; external theta roles

Set the translation slot of the node with target-language translation of

the word.

(SETF (NODE-TRANSLATION NODE)

(COPY-TREE

(GET-TRANSLATION SOURCE-LANGUAGE TARGET-LANGUAGE WORD FEATURESM

Since we are at a terminal node, set the word of the terminal node to be

the scanned word.

(SETF (NODE-WORD NODE) WORD)

Set appropriate slot according to the FEATURES parameter setting of the

source language.

(SET-FEATURES NODE FEATURES *CURRENT-FEATURES)

;; Set up internal and external arguments.

(SET-INTERNAL-AND-EXTERNAL-ARGUMENTS NODE NODE-EXTERNAL NODE-SUBCAT)) NODE)

Get-external retrieves the theta-roles of external arguments from the

features associated with a word. All permutations of the external argument

frames will be included in the result.

(DEFUN GET-EXTERNAL (FEATURES)

(LET ((EXTERNAL

(LOOP FOR ELT IN FEATURES

When an external argument frame is encountered, collect it.

WHEN (AND (LISTP ELT) (EQUAL (CAR ELT) 'EXTERNAL))

COLLECT ELTM

Permute the external arguments.

(WHEN EXTERNAL

(LOOP FOR EXT IN EXTERNAL APPEND (PERMUTE-SUBCAT (CDR EXTMM

APPENDIX F. LISP REPRESENTATION OF GB PRINCIPLES 235

Get-translation retrieves the translation of a word in the target language.

If the target language is the same as the source language, the original

word is returned (in a double list).

(DEFUN GET-TRANSLATION (SOURCE-LANGUAGE TARGET-LkNGUAGE WORD FEATURES)

(LET ((TRANSLATION NIL))

(IF (EQUAL SOURCE-LANGUAGE TARGET-LANGUAGE)

(LIST (LIST WORD)) ; source language = target language

(LOOP FOR ELT IN FEATURES DO ; else, get the translation

(WHEN (LISTP ELT)

(SETQ TRANSLATION (GET-VALUE ELT TARGET-LANGUkGE))

(UNLESS (NULL TRANSLATION) (RETURN TRANSLATIONM))))

Set-internal-and-external-arguments sets up external arguments and

subcategorization slot of a node corresponding to a scanned word. Note: the

INTRANS feature will be included in the subcategorization frame if it is in

the features.

(DEFUN SET-INTERNAL-AND-EXTERNkL-ARGUMENTS (NODE NODE-EXTERNAL NODE-SUBCAT)

(LET ((CATEGORY-EXTERNAL) (CATEGORY-SUBCAT) (THETA-EXTERNAL) (THETA-SUBCAT))

;; First set up the external roles and cats.

(WHEN NODE-EXTERNAL

.. (MULTIPLE-VALUE-SETQ (CkTEGORY-EXTERNAL THETA-EXTERNAL)

(GET-CATEGORY-EXTERNAL ODE-EXTERNAL))

(SETF (NODE-EXTERNAL-ROLES NODE) (COPY-TREE THETk-EXTERNAL))

(SETF (NODE-EXTERNAL-CkTS NODE) (COPY-TREE CATEGORY-EXTERNALM

Then set up the internal cats (setting to INTRANS if there aren't any).

(Only fill the complement information in if COMPLEMENTS-FILLED slot is

NIL.)

(IF NODE-SUBCAT

(UNLESS (NODE-COMPLEMENTS-FILLED NODE)

(MULTIPLE-VALUE-SETQ

(CATEGORY-SUBCAT THETA-SUBCAT) (GET-CATEGORY-SUBCkT NODE-SUBCAT))

(SETF (NODE-SUBCATEGORIZATION NODE) (COPY-TREE CATEGORY-SUBCATM

(SETF (NODE-SUBCATEGORIZATION NODE) INTRkNS))

Finally, fill the theta roles (unless intransitive).

(IF (OR (NULL NODE-SUBCAT) (EQ (CAR NODE-SUBCAT) INTRANS))

(SETF (NODE-THETA-ROLES NODE) (COPY-TREE (CDR THETA-SUBCATM

(SETF (NODE-THETA-ROLES NODE) (COPY-TREE THETA-SUBCATM

(SETF (NODE-COMPLEMENTS-FILLED NODE) TM

Get-category-external turns an external argument frame into its

corresponding structural frame (via CSR). The second value returned is the

corresponding theta-roles: if NODE-EXTERNAL is a set of categories, this

value will be NIL; otherwise it will be the same value as SUBCAT.

(DEFUN GET-CATEGORY-EXTERNAL (NODE-EXTERNAL)

(LET ((CATEGORY-EXTERNAL (WHEN NODE-EXTERNAL (TURN-INTO-CAT NODE-EXTERNALM)

(VALUES

CATEGORY-EXTERNAL

(WHEN CATEGORY-EXTERNAL

(IF EQUAL NODE-EXTERNAL CATEGORY-EXTERNAL) NIL ODE-EXTERNAL)))))

APPENDIX F. LISP-REPRESENTATION OF GB PRINCIPLES

F.1.5 Feature Percolation Routines

Percolate-features is invoked at POP time to ensure that all constituents

of a completed phrase agree. Features of Heads are "percolated" to their

maximal projections and then features of Specifiers are checked for

compatibility with maximal projections. Percolate-features is also called

at SCAN time (by the function Substitute-scanned-node, to percolate

features of a scanned element up to its superior node) and at PUSH time (by

the function Check-trace-links, to percolate features of head traces up to

their maximal projections).

(DEFUN PERCOLATE-FEATURES (LIST-OF-NODES)

(LET ((HEAD-CATEGORY) (HEAD-NODE) (HEAD-NODE-INCOMPLETE NIL)

(SPEC-NODE) (SPEC-NODE-INCOMPLETE NIL)

(SUPERIOR-NODE (CAR LIST-OF-NODESM

Propagate Head features up to the maximal projection (if there is a

head), and check Spec-Max compatibility. If either the Spec or the Head

has not been completed, then the compatibility check is not done.

(WHEN (SETQ HEAD-CATEGORY

(CAR (MEMBER (NODE-CAT SUPERIOR-NODE)

*CURRENT-BASIC-CkTEGORIES TEST EQM

Find the Read and determine whether or not it hasbeen completed.

(MULTIPLE-VALUE-SETQ (HEAD-NODE HEAD-NODE-INCOMPLETE)

(FIND-HEAD LIST-OF-NODES HEAD-CATEGORY))

Find the Spec and determine whether or not it has been completed.

(MULTIPLE-VALUE-SETQ (SPEC-NODE SPEC-NODE-INCOMPLETE)

(FIND-SPEC LIST-OF-NODES HEAD-CATEGORY))

(WHEN HEAD-NODE

If there is a Head node, check that both the Spec and Head are

complete. If complete, propagate Head features to maximal

projection. Then check Spec features for compatibility with maximal

projection (if there is a Spec). Toss the list of nodes if the

spec-max check fails.

(UNLESS (OR HEAD-NODE-INCOMPLETE SPEC-NODE-INCOMPLETE)

;; Propagate head up to max.

(PROPAGATE-FEATURES HEAD-NODE SUPERIOR-NODE)

Now check spec-max agreement (propagating updated information to

spec).

(WHEN SPEC-NODE

(UNLESS

(CHECK-SPEC-MAX-AGREEMENT SUPERIOR-NODE'SPEC-NODE)

(SETQ LIST-OF-NODES)FAILUREMM

Return the list of nodes after percolation is complete.

LIST-OF-NODES))

236

APPENDIX F LISP REPRESENTATION OF GB PRIN CIPLES 237'

Propagate-features percolates the features of an inferior node up to a

superior node.-These features include gender, person, number, tense, case,

role, language-particular features and complement information.

(DEFUN PROPkGATE-FEATURES (INFERIOR-NODE SUPERIOR-NODE)

(SETF (NODE-GENDER SPERIOR-NODE) (COPY-LIST (NODE-GENDER INFERIOR-NODE)))

(SETF (NODE-PERS SUPERIOR-NODE) (COPY-LIST (NODE-PERS IFERIOR-NODE)))

(SETF (NODE-NUMBER SUPERIOR-NODE) (COPY-LIST (NODE-NUMBER INFERIOR-NODEM

(SETF (NODE-TENSE SUPERIOR-NODE) (COPY-LIST (NODE-TENSE INFERIOR-NODEM

(SETF (NODE-LkNGUAGE-PARTICULAR-FEATURES SUPERIOR-NODE)

(COPY-LIST (ODE-LANGUAGE-PARTICULAR-FEATURES INFERIOR-NODE)))

(SETF (NODE-CASE SUPERIOR-NODE)

(UNION (NODE-CASE SUPERIOR-NODE) (NODE-CASE INFERIOR-NODEM

(UNLESS (NODE-COMPLEMENTS-FILLED SUPERIOR-NODE)

(SETF (NODE-COMPLEMENTS-FILLED SUPERIOR-NODE)

(NODE-COMPLEMENTS-FILLED INFERIOR-NODEM

(SETF (NODE-ROLE SUPERIOR-NODE) (COPY-TREE (NODE-ROLE INFERIOR-NODEM)

Check-spec-max-agreement checks that the gender, number, person, tense, of a

specifier agree with those of the maximal projection. Note: if pro is

found, agreement features are percolated.

(DEFUN CHECK-SPEC-MAX-AGREEMENT (MAX SPEC)

(AND (CHECK-AGREEMENT 'GENDER (NODE-GENDER MAX).(NODE-GENDER SPEC) MAX SPEC)

(CHECK-AGREEMENT 'NUMBER (NODE-NUMBER MAX) (NODE-NUMBER SPEC) MAX SPEC)

(CHECK-AGREEMENT 'PERSON (NODE-PERS MAX) (NODE-PERS SPEC) MAX SPEC)

(CHECK-AGREEMENT)TENSE (NODE-TENSE MAX) (NODE-TENSE SPEC) MAX SPECM

Check-agreement checks that a particular kind of feature (number, gender,

person, or tense) agrees wr.t. spec and maximal projections (this takes

place after the head features have been percolated up). Also, the combined

features are stored in MAX-NODE, and if no agreement features are associated

with SPEC-NODE, they are also stored in SPEC-NODE.

(DEFUN CHECK-AGREEMENT (TYPE MAX SPEC MAX-NODE SPEC-NODE)

(LET ((CURRENT-MATCH-LIST

(GET-VALUE *CURRENT-MATCH-LISTS

(INTERN (FORMAT NIL Iflos" TYPE) :KEYWORD)))

(NEW-FEATURE-LIST NIL))

(IF (SETQ NEW-FEATURE-LIST (CHECK-MATCH-LIST CURRENT-MATCH-LIST MAX SPEW

(UPDATE-MAX-AND-SPEC MAX-NODE SPEC-NODE NEW-FEATURE-LIST TYPE)

(FORMAT T "'&Warning: 'a does not agree." TYPE) NILM

-m .-M

APPENDIX F. LISP REPRESENTATION OF GB PRENTCIPLES 238

Update-max-and-spec ensures that a specifier receives agreement features

(if it does not have them already), and that a maximal projection receives

combined spec-head features.

(DEFUN UPDATE-MAX-AND-SPEC (MAX-NODE SPEC-NODE FEATURES TYPE)

(ZL::SELECTQ TYPE

(GENDER

(UNLESS (NODE-GENDER SPEC-NODE) (SETF (NODE-GENDER SPEC-NODE) FEATURES))

(SETF (NODE-GENDER MAX-NODE) FEATURES))

(NUMBER

(UNLESS (NODE-NUMBER SPEC-NODE) (SETF (NODE-NUMBER SPEC-NODE) FEATURES))

(SETF (NODE-NUMBER MAX-NODE) FEATURES))

(PERS

(UNLESS (NODE-PERS SPEC-NODE) (SETF (NODE-PERS SPEC-NODE) FEATURES))

(SETF (NODE-PERS MAX-NODE) FEATURES))

(TENSE (SETF (NODE-TENSE MAX-NODE) FEATURESM)

Loop through the match-lists checking whether the first features (spec)

match the second features (max). A combination of the max and Spec

features is returned.

(DEFUN CHECK-MATCH-LIST (CURRENT-MATCH-LIST MAX-FULL SPEC-FULL)

(COND ((NULL MAX-FULL) (IF (NULL SPEC-FULL) 'EMPTY SPEC-FULL))

((OR (NULL SPEC-FULL) (SET-EQUAL-P MAX-FULL SPEC-FULL)) MAX-FULL)

(T (LOOP FOR MATCH IN CURRENT-MATCH-LIST DO

(WHEN (AND (INTERSECTION SPEC-FULL (CAR MATCH))

(INTERSECTION MAX-FULL (SECOND MATCHM

(RETURN (OR (INTERSECTION SPEC-FULL MAX-FULL)

(UNION SPEC-FULL MAX-FULOM)M

Percolate-tense-and-agr is called at POP time. If the item being popped is

V-MAX, then its features need to be percolated up to INFL so that HEAD-SPEC

matching will operate correctly.

(DEFUN PERCOLATE-TENSE-AND-AGR (TOS REST-OF-STACK)

(LET ((INFL-NODES NIL))

(WHEN (EQ (MAXIMAL-PROJECTION? (NODE-CAT (CAR TOSM IV)

;; Locate infl and all its projections.

(LOOP FOR ELT IN REST-OF-STACK DO

(WHEN (EQ (NODE-CAT (CAR ELT)) II-MAX)

(RETURN (SETQ INFL-NODES (LOCATE-CAT ELT II)))))

Propagate to infl and all its projections.

(LOOP FOR INFL-NODE IN INFL-NODES DO -

(PROPAGATE-FEATURES (CAR TOS) INFL-NODE)) T)))

-� . - -, - � -- � , , - I I , 1 � 3F:- - I �

APPENDIX F. LISP REPRESENTATION OF GB PRIN CIPLES 239

F.1.6 Structure-Modification Routines

Generate-correct-adjunctions-and-specif iers is called during the generation

stage, just prior to executing move-alpha. The structure is modified to

accommodate the source language by: removing structure unavailable to the

source language (Remove-unavailable); modifying positions of adjuncts

(Modify-position); and allowing the occurrence of elements that are

available in the source language (llow-occurrence).

(DEFUN GENERATE-CORRECT-ADJUNCTIONS-AND-SPECIFIERS (TREE BASE-SPECS-AND-ADJUNCTS)

(LET ((NEW-TREE TREE) (RESULTS NIL))

(LOOP FOR BASE IN BASE-SPECS-AND-ADJUNCTS DO

(SETQ NEW-TREE (REMOVE-UNAVAILABLE (MODIFY-POSITION NEW-TREEM

FINALLY (PUSH NEW-TREE RESULTS))

(LOOP FOR BASE IN BASE-SPECS-AND-ADJUNCTS DO

(SETQ RESULTS (APPEND RESULTS (ALLOW-OCCURRENCE BASE RESULTSMM

Generate-correct-constituent-order is called at generation time in order to

update the structure to be consistent with the constituent order of the

target language. (Note: no modification is necessary if the source and

target languages have the same constituent order.)

(DEFUN GENERATE-CORRECT-CONSTITUENT-ORDER (TREES ORDER)

(UNLESS

; ; ,Only change the order if it is dif f erent from the source language.

(EQUAL ORDER (GET *CONSTITUENT-ORDER *SOURCE-LANGUAGE))

;; Modify each tree.

(LOOP FOR TREE IN TREES COLLECT (MODIFY-ORDER ORDER TREEM)

Modify-order updates the structure of a single tree to be consistent with the

constituent order of the target language.

(DEFUN MODIFY-ORDER (ORDER TREE)

(COND ((ATOM TREE) TREE)

((AND (MAXIMAL-PROJECTION? (NODE-CAT (CAR TREEM

(NOT (ADJUNCTION-STRUCTURE? TREEM

Change head-spec-comp ordering.

(APPEND (LIST (CAR TREE))

(MODIFY-ORDER ORDER (GET-CONSTITUENT (FIRST ORDER) TREE))

(MODIFY-ORDER ORDER (GET-CONSTITUENT (SECOND ORDER) TREE))

(MODIFY-ORDER ORDER (GET-CONSTITUENT (THIRD ORDER) TREEM)

Go down next level to modify order recursively.

(T (CONS (MODIFY-ORDER ORDER-(CAR TREW (MODIFY-ORDER ORDER (CDR TREEMM

Get-constituent retrieves a particular constituent of a phrase (specifier,

head or complement).

(DEFUN GET-CONSTITUENT (TYPE PHRASE)

(LOOP FOR ELT IN (CDR PHRASE) DO

(WHEN (APPLY TYPE (CAR ELT)) (RETURN ELTM)

APPENDIXVF. LISP REPRESENTATION OF GB PRINCIPLES

F.2 0-Theory
240

The odule has the job of assigning a structural realization to 0-roles (CSR) during both

parsing and generation. At POP tinie and generation time, 0-role assignment, 0-role trans-

i-nission, and -Criterion checking are performed. Finally, during thematic substitution, 0-role

matching is performed.

F.2.1 CSR Mapping

;;; CSR turns a role into its canonical structural representation.

(DEFUN CSR (ROLE)

(LET ((STRUCTURAL-SYMBOL

(GET-VALUE *CURRENT-CANONICAL-SEMANTIC-MAPPINGS (MAKE-KEYWORD ROLE))))

(IF (NULL STRUCTURAL-SYMBOL) ROLE STRUCTURAL-SYMBOL)))

F.2.2 -Role Assignment Routines

Perf orm-theta-assignment assigns theta roles to both external and i`hternal

arguments of a node at POP time and generation time. Note: the

theta-criterion is checked so that each element that requires a theta-role

is assigned such a role.

(DEFUN PERFORM-THETA-ASSIGNMENT (TOS NODE-TREE)

(LET* ((HEAD (FIND-HEAD TOS (NODE-CAT (CAR TOS))))

;; Find the element that will assign theta to specifier of the head.

(SPEC-ASSIGNER-NODE (FIND-SPEC-ASSIGNER-NODE TOS HEAD))

Find the element that c4ill assign theta to the complement of the

head.

(COMP-ASSIGNER-NODE (FIND-COMP-ASSIGNER-NODE TOS HEAD)))

First assign theta roles to spec if there is one.

(ASSIGN-TO-ARG 'SPEC SPEC-ASSIGNER-NODE TOS NODE-TREE)

Next assign theta roles to Comp if there is one.

(ASSIGN-TO-ARG COMP COMP-ASSIGNER-NODE TOS NODE-TREEM

Assign-to-arg assigns theta-roles to either a comp or a spec�of a maximal

projection, according to those required by an assigner node.

(DEFUN ASSIGN-TO-ARG (TYPE ASSIGNER TOS NODE-TREE)

(LET ((ASSIGNEES))

(IF (SETQ ASSIGNEES (LOCATE-SPEC-OR-COMP TOS TYPE))

;; If there is an argument, make sure it has a theta-role.

(IF ASSIGNER

If there is an assigner, discharge its theta role to the

argument.

(ASSIGN-THETA ASSIGNEES ASSIGNER TYPE)

;; Otherwise, make sure there are no NP's without theta-roles.

-� --�"Wvlmm I IRM-111114 - - -- � �- IM"

APPENDIX F. LISP REPRESENTATION OF GB PRLYCIPLES

(CHECK-THETA-CRITERION NODE-TREE ASSIGNEES NIL TYPE))

Argument not found: Make sure there are no unassigned theta-roles

(i.e., there could be an assigner node which did not discharge its

theta-roles to a sped or a comp).

(CHECK-THETA-CRITERION NODE-TREE NIL ASSIGNER TYPE))))

Assign-theta checks that features of an element match the features

corresponding to a theta role before the theta role is assigned. By the

visibility condition, the theta-role cannot be assigned unless the element

has been assigned case.

(DEFUN ASSIGN-THETA (ASSIGNEES ASSIGNER TYPE)

(LET ((THETAS

(IF (EQ TYPE 'EXTERNAL)

(NODE-EXTERNAL-ROLES ASSIGNER)

(NODE-THETA-ROLES ASSIGNERM)

(LOOP FOR ASSIGNEE IN ASSIGNEES FOR THETA IN THETAS DO

(IF (SET-DIFFERENCE

(CDR THETA) (NODE-LANGUAGE-PARTICULAR-FEkTURES ASSIGNEE))

Feature mismatch: return failure.

(RETURN 'FAILURE)

Successful feature match: assign the theta role unless the

assignee is not case-marked.

(IF (CHECK-VISIBILITY-CONDITION ASSIGNEE)

Assignee is not case-marked: visibility condition failure.

(RETURN 'FAILURE)

Assignee is case-marked: Assign a role to the node. If there

is a role transmission error (to the trace or antecedent),

return FAILURE.

(SETF (NODE-ROLE ASSIGNEE) (COPY-TREE THETW

(WHEN (TRANSMIT-ROLE-TO-ANTECEDENT ASSIGNEE)

(RETURN 'FAILUREM))))

Check-visibility-condition is called just prior to assigning a theta-role.

The node must first satisfy the visibility condition: it must have case.

(This obviates the need for the case filter.)

(DEFUN CHECK-VISIBILITY-CONDITION (NODE)

(UNLESS (NODE-CASE NODE) (V-C-VIOLATION) T))

V-C-Violation prints out a visibility condition violation message.

(DEFUN V-C-VIOLATION NIL (FORMAT T &VIOLATION OF VISIBILITY CONDITION.") T)

241

APPENDIX F. LISP REPRESENTATION OF GB PRINCIPLES
0 0

F.2.3 O-Role Transmission Routines

Transmit-role-to-antecedent propagates the role of a trace up to its

antecedent (and onward until all antecedents receive the theta-role).

(DEFUN TRANSMIT-ROLE-TO-ANTECEDENT (NODE)

(LET ((CLASH NIL) (ANTECEDENT-NODE))

; ; Iterate until no more antecedents or there is a role clash.

(LOOP

UNTIL

(OR CLASH (NOT (SETQ ANTECEDENT-NODE (NODE-TRACE ANTECEDENT-NODE))))

DO

(IF (AND (NODE-ROLE ANTECEDENT-NODE)

(NOT (EQUAL (NODE-ROLE NODE) (NODE-ROLE ANTECEDENT-NODEM)

Role clash.

(SETQ CLASH T)

;; Assign role if case is assigned.

(WHEN (NODE-CASE ANTECEDENT-NODE)

(SETF (NODE-ROLE ANTECEDENT-NODE) (COPY-LIST (NODE-ROLE NODEM))

FINALLY (RETURN CLASH))))

;;;-Theta-transmit-attempts--to transmit the theta-role of a litic to and

MP-node (for languages that require this rule). According to the

theta-transmission rule, the cases of the clitic and NP-,node must first be

matched before transmission can occur.

(DEFUN THETA-TRANSMIT (NP-NODE STACK)

First test to see if language requires clitic-NP theta-transmission, and

then make sure the NP-node has case assigned to it (visibility condition).

(WHEN (AND *CLITIC-THETA-TRANSMIT (NODE-CASE NP-NODE))

(TRANSMIT-THETA-FROM-CLITIC NP-NODE (NODE-CASE NP-NODE) STACKM

Transmit-theta-from-clitic determines all possible clitic candidates and

then chooses the right one by checking feature agreement.

(DEFUN TRANSMIT-THETA-FROM-CLITIC (NP-NODE CASE STACK)

(LET ((CLITIC-CANDIDATES (FIND-CLITICS-WITH-CASE-AND-ROLE CASE STACK)))

Set up government so that s-government tests work.

(SET-UP-GOVERNMENT STACK)

Examine each clitic candidate to see if it matches th4 NP-node features.

(LOOP FOR CLITIC IN CLITIC-CANDIDATES DO

Before transmitting theta-role, check that the clitic and NP-node are

not c-governed by the same node (since this would mean the verb is

assigning objective case twice, an impossibility due to absorption of

s-government).

(UNLESS

(INTERSECTION (NODE-C-GOVERNED? NP-NODE) (NODE-C-GOVERNED? CLITIC))

(WHEN (CHECK-CLITIC-NP-AGREEMENT CLITIC NP-NODE)

;; Successful match.

(SETF (NODE-ROLE NP-NODE) (COPY-TREE (NODE-ROLE CLITIC)))

(RETURN TMM

242

APPENDIX F. LISP REPRESENTATION OF GB PRINCIPLES 243

Find-clitics-with-case-and-role locates all clitic. candidates that have the

right case and are theta-marked

(DEFUN FIND-CLITICS-WITH-CASE-AND-ROLE (CASE STACK)

(COND ((NULL STACK) NIL)

((ATOM STACK)

(WHEN (AND (MEMBER (NODE-CAT STACK) *CURRENT-CLITICS :TEST EQ)

(NODE-CASE STACK) (NODE-ROLE STACK)) (LIST STACK)))

(T (APPEND (FIND-CLITICS-WITH-CASE-AND-ROLE CASE (CAR STACK))

(FIND-CLITICS-WITH-CkSE-AND-ROLE CASE (CDR STACK))))))

Check-elitic-np-agreement ensures that cases match and that all other

features are compatible.

(DEFUN CHECK-CLITIC-NP-AGREEMENT (CLITIC NP-NODE)

(AND

(INTERSECTION (NODE-CASE CLITIC) (NODE-CASE NP-NODE))

(COMPATIBLE-FEATURES (NODE-GENDER CLITIC) (NODE-GENDER NP-NODE))

(COMPATIBLE-FEATURES (NODE-PERS, CLITIC) (NODE-PERS, NP-NODE))

(COMPATIBLE-FEATURES (NODE-NUMBER CLITIC) (NODE-NUMBER NP-NODE))

(COMPATIBLE-FEATURES

(NODE-LANGUAGE-PARTICULAR-FEATURES CLITIC)

(NODE-LANGUAGE-PARTICULAR-FEATURES NP-NODEM)

Compatible-features tests for matching features (via intersection).

(DEFUN COMPATIBLE-FEATURES (CLITIC-FEATURES NP-FEATURES)

(COND ULL CLITIC-FEATURES) NP-FEATURES)

((NULL NP-FEATURES) CLITIC-FEATURES)

(T (INTERSECTION CLITIC-FEATURES NP-FEATURES :TEST #'EQUAL))))

APPENDLY F. LISP REPRESENTATION OF GB PRINCIPLES

F.2-4 O-Criterion Routines

Check-theta-criterion is called if there is an assigner but not assignee,

or an assignee but no assigner. It returns FAILtJRE if an assigner has

theta-roles that are not discharged, or if an assignee does not receive

theta-roles.

(DEFUM CHECK-THETA-CRITERION (NODE-TREE ASSIGNEES ASSIGNER TYPE)

(IF ASSIGNEES

;; If there are arguments with no theta-roles, then fail.

(LOOP FOR ASSIGNEE IN ASSIGNEES DO

(WHEN (THETA-VIOLATION ASSIGNEE NODE-TREE)

(T-C-VIOLATION) (RETURN 'FAILUREM

If there is an assigner that has not discharged its internal or

external role, then fail.

(IF (EQ TYPE 'EXTERNAL)

(WHEN (NODE-EXTERNAL-ROLES ASSIGNER) (T-C-VIOLATION) 'FAILURE)

(WHEN (NODE-THETA-ROLES ASSIGNER) (T-C-VIOLATION) 'FAILUREM)

Theta-violation checks NP and critics in a TOS to see that they are all

theta-marked.- It returns T if there is an unmarked NP or clitic.

.(DEFUN THETA-VIOLATION (NODE STACK)

(AND (NOT (NODE-ROLE ODE))

(OR

;; Check for un-marked MP.

(AND (EQ (NODE-CAT NODE) ff-MAX)

First check if a theta role can't somehow be transmitted

(possibly via a clitic transmission rule).

(NOT (THETA-TRANSMIT NODE STACK)))

Check for un-marked Clitic.

(MEMBER (NODE-CAT NODE) *CURRENT-CLITICS :TEST EQ))))

T-C-Violation prints out -a theta-criterion violation message.

(DEFUN T-C-VIOLATION NIL (FORMAT T VIOLATION OF THETA CRITERION."))

244

APPENDIX F. LISP REPRESENTATION OF GB PRINCIPLES

F.2.5 O-Role Matching Routines

Match-translation-and-arguments retrieves the target language translation of

the head and determines the correct argument structure for the target head.

(DEFUN MATCH-TRANSLATION-AND-ARGUMENTS (EXT INT HEAD)

(LET ((EXTERNAL) (INTERNAL))

(LOOP FOR TRANS IN (NODE-TRANSLATION HEAD) DO

(WHEN

(MULTIPLE-VALUE-SETQ

(EXTERNAL INTERNAL)

Test that features of source language arguments match features

of target language arguments.

(ARGUMENT-FEATURES-MATCH EXT INT (GET-ARGUMENTS TRANS)))

(RETURN (VALUES TRANS EXTERNAL INTERNAL))))))

Get-arguments determines the internal and external arguments of a target

language word by looking at its lexical entry.

(DEFUN GET-ARGUMENTS (TRANSLATION)

(APPEND (GET-EXTERNAL-ARGS TRANSLATION) (GET-INTERNAL-ARGS TRANSLATIONM

Argument-features-match-finds a unique one-one matching between

source-language arguments and target language arguments by checking the

features of each one. For example, the source language argument structure:

externals agent animate] internal:[the book goal]> matches the target

... language argument structure: <internal:[goal animate] external:[agentl>

since there is a one-one mapping between the features of both.

(DEFUN ARGUMENT-FEATURES-MATCH

(SOURCE-INTERNAL SOURCE-EXTERNAL POSSIBLE-TARGET-ARGUMENTS)

(LET OLE) (FEATURES) (TARGET-CANDIDATE) (TARGET-CANDIDATES NIL))

(LOOP FOR SOURCE-ARG IN (APPEND SOURCE-INTERNAL SOURCE-EXTERNAL) DO

Extract role and features of source argument. Then pick a matching

candidate from the argument frame of the target language head.

(SETQ ROLE (NODE-ROLE SOURCE-ARG)

FEATURES (NODE-LANGUAGE-PARTICULAR-FEATURES SOURCE-ARG)

TARGET-CANDIDATE

(PICK-ARG SOURCE-ARG ROLE FEATURES POSSIBLE-TARGET-ARGUMENTS))

(PUSH TARGET-CANDIDATE TARGET-CANDIDATES))

Determine unique pairing of source language arguments to target language

arguments.

(LOCATE-UNIQUE-ARG-STRUCTURE

TARGET-CANDIDATES POSSIBLE-TARGET-ARGUMENTSM

245

--f - --, ,- I . --L . I - I I I I I II II I II .- I - -f - , 1, ,

APPENDIX F LISP REPRESENTATTOIV OF CB PRINCIPLES 246

Set-up-argument-positioning determines the positioning of internal and

external arguments according to the requirements of the target language

head.

(DEFUN SET-UP-ARGUMENT-POSITIONING (MAX TARGET-EXTERNAL TARGET-INTERNAL)

; ; Place external arguments.

(LOOP FOR TARGET-ARG IN TARGET-EXTERNAL DO

(PLACE-ARGUMENT-EXTERNAL TARGET-kRG MAW

Place internal arguments.

(LOOP FOR TARGET-ARG IN TARGET-INTERNAL DO

(PLACE-ARGUMENT-INTERNAL TARGET-ARG MAW)

Set-up-structural-realization determines the structure of internal and

external arguments according to the requirements of the target language

head,

(DEFUN SET-UP-STRUCTURAL-REALIZATION (MAX TARGET-EXTERNAL TARGET-INTERNAL)

(LET ((EXTERNAL-STRUCTURE (MAPCAR CSR TARGET-EXTERNAL))

(INTERNAL-STRUCTURE (MAPCAR CSR TARGET-INTERNAL)))

Modify the structure of external arguments.

(UPDATE-EXTERNAL-STRUCTURE MAX EXTERNAL-STRUCTURE)

Modify the structure of internal arguments.

(UPDATE-INTERNAL-STRUCTURE MAX INTERNAL-STRUCTUREM

F.3 Government Theory

The Government module is accessed at POP time and during generation to set up government

relations and test for certain types of government relations.

F.3.1 Routines for Setting up Government Relations

Set-up-government is invoked at POP time and generation time just prior to

ECP checking and CASE marking (and also during theta-role transmission (for

clitics)).

(DEFUN SET-UP-GOVERNMENT (NODE-STACK)

(FIND-GOVERNORS NODE-STACK IC) ; c-government

(FIND-GOVERNORS NODE-STACK IS) ; s-government

(FIND-GOVERNORS NODE-STkCK 'PROPER)) ; proper government

O.W I

APPENDIX F. - LISP REPRESENTATION OF GB PLYCIPLES 24 7

Find-governors locates governors of all types (C, S, and Proper). It then

sets up all the nodes that are governed by the governors that it has found.

(DEFUN FIND-GOVERNORS (NODE-STACK TYPE)

(LET ((HEAD-NODE) (MAX-CAT))

;; Iterate over each stack item setting up government relations.

(LOOP FOR STACK-ITEM IN NODE-STACK DO

;; Governor is a head.

(WHEN (SETQ HEAD-NODE (FIND-HEAD STACK-ITEM MAX-CAT))

(SET-GOVERNORS HEAD-NODE STACK-ITEM TYPE))

Go through other elements too (specs, adjunctions, complements).

(LOOP FOR NEW-NODE-STACK IN (CDR STACK-ITEM) DO

(FIND-GOVERNORS NEW-NODE-STACK TYPE)))))

Set-governors sets up all nodes that are c-governed, s-governed and

properly governed by a head.

(DEFUN SET-GOVERNORS (HEAD-NODE NODE-STACK TYPE)

(COND ((EQ TYPE IC) (SET-C-GOVERNORS HEAD-NODE NODE-STACK))

((EQ TYPE IS) (SET-S-GOVERNORS HEAD-NODE))

(T (SET-PROPER-GOVERNORS HEAD-NODEM)

;;;-_--Set-c,-governors sets up all nodes c-commanded by a governing head node.

(This includes specifiers, complements and elements adjoined to lexical

categories (e.g., clitics)).

(DEFUN SET-C-GOVERNORS (HEAD-NODE NODE-STACK)

(WHEN (GOVERNOR? HEAD-NODE)

;; Only set up c-government if the head-node is a governor.

(LOOP FOR POTENTIAL-GOVERNEE IN (CDR NODE-STACK) DO

(IF (OR (SPECIFIER? (NODE-CAT (CAR POTENTIAL-GOVERNEEM

(COMPLEMENT? (NODE-CAT (CAR POTENTIAL-GOVERNEEM)

Case 1: Set slots corresponding to specifiers and complements of

the head node.

(LOOP FOR MAX IN (CDR POTENTIAL-GOVERNEE DO

(SETF (NODE-C-GOVERNED? (CAR MAX)) set up the c-governed node

(CONS HEAD-NODE (NODE-C-GOVERNED? (CAR MAXM)

(SETF (NODE-C-GOVERNS? HEAD-NODE) ; set up the c-governor

(CONS (CAR MAX) (NODE-C-GOVERNS? HEAD-NODEM)

Case 2 Set slots corresponding to adjuncts of the head node.

(SETF (NODE-C-GOVERNED?

(CAR POTENTIAL-GOVERNEE)) set up -governed node

(CONS HEAD-NODE (NODE-C--GOVERNED? (CAR POTENTIAL-GOVERNEEM)

(SETF (NODE-C-GOVERNS? HEAD-NODE) set up -governor

(CONS (CAR POTENTIAL-GOVERNEE)

(NODE-C-GOVERNS? HEAD-NODEMM)

APPENDIX F. LISP REPRESENTATION OF GB PRINCIPLES 248

Set-s-governors sets up all nodes s-governed by a c-commanding node (i.e.,

it checks if there is a unique subcategorization pairing for c-commanded

nodes in the subcategorizatio'n frame of the c-commanding node.)

(DEFUN SET-S-GOVERNORS (HEAD-NODE)

(LET ((ROLES (NODE-THETA-ROLES HEAD-NODE)) (S-GOVERNED))

Make sure there is an exact match between -commandees and subcategorized

elements. The nodes that match are s-governed.

(LOOP FOR ROLE-SET IN ROLES DO

(WHEN (SET SGOVERNED (UNIQUE-PAIRING ROLE-SET (NODE-C-GOVERNS? HEAD-NODEM

(SETF (NODE-S-GOVERNS? HEAD-NODE) SGOVERNED)

(LOOP FOR GOVERNED-NODE IN SGOVERNED DO

(SETF (NODE-S-GOVERNED? GOVERNED-NODE)

(CONS HEAD-NODE (NODE-S-GOVERNED? GOVERNED-NODEM)))))

Unique-pairing determines whether there is a unique subcategorization

pairing corresponding to the c-governed-nodes.

(DEFUN UNIQUE-PAIRING (ROLE-SET CGOVERNED-NODES)

(LET ((MATCH NIL) (NEW-C-GOVERNED))

(OR

First check whether the categories match before checking the clitic

case.

(SET-EQUAL-P

(MAPCAR '(LAMBDA (CSR (CAR XM ROLE-SET)

(MAPCAR '(LAMBDA (MAXIMAL-PROJECTION? (NODE-CAT X))) CGOVERNED-NODES)

:TEST #EQ)

If the above fails, check that there is a one-one match between roles

and c-governed elements (including clitics) and that all f eatures

match.

(WHEN *CURRENT-CLITICS

(LOOP FOR ROLE IN ROLE-SET DO

Since clitics absorb s-government, order them so that they are

first in the list of c-governed elements.

(SETQ NEW-C-GOVERNED

(PUT-CLITICS-FIRST

(SET-DIFFERENCE CGOVERNED-NODES MATCH :TEST #EQ)))

(UNLESS

(LOOP FOR CGOVERNED IN CGOVERNED-NODES DO

;; Check feature matching.

(IF (SET-EQUAL-P

(NODE-LANGUAGE-PARTICULAR-FEATURES CGOVERNED)

(CDR ROLE))

Node matches.

(PUSH CGOVERNED MATCH)

;; Node mismatch.

(RETURN NIL)))

(RETURN NIL))

FINALLY (RETURN MATCHMM

APPENDIX F. LISP REPRESENTATION OF GB PRINCIPLES 249

Put-clitics-first prioritizes the nodes so that clitics come first. (This

is because citics absorb s-government.)

(DEFUN PUT-CLITICS-FIRST (NODES)

(LET ((CLITICS NIL) (NON-CLITICS NIL))

;; Collect clitics and non-clitics.

(LOOP FOR NODE IN NODES DO

(IF (MEMBER (NODE-CAT NODE) *CURRENT-CLITICS :TEST #EQ)

(PUSH NODE CLITICS)

(PUSH NODE NON-CLITICS))

Put clitics ahead of non-clitics in the final result.

FINALLY (APPEND CLITICS NON-CLITICSM)

Set-proper-governors sets up all nodes properly governed by a proper

governor.

(DEFUN SET-PROPER-GOVERNORS (HEAD-NODE)

(WHEN (PROPER-GOVERNOR? HEAD-NODE)

(LOOP FOR CGOVERNED-NODE IN (NODE-C-GOVERNS? HEAD-NODE) DO

(SETF (NODE-PROPER-GOVERNED? CGOVERNED-NODE)

(CONS HEAD-NODE (NODE-PROPER-GOVERNED? CGOVERNED-NODEM

(SETF (NODE-PROPER-GOVERNS? HEAD-NODE)

(CONS-C-GOVERNED-NODE (NODE-PROPER-GOVERNS? HEAD-NODEM)))

Governor? determines whether a node is a governor.

(DEFUN GOVERNOR? (NODE)

(LET ((NODE-CAT (NODE-CAT ODEM

(OR

;; Lexical governor.

(MEMBER NODE-CAT

(SET-DIFFERENCE *CURRENT-GOVERNORS (AGR) :TEST #EQ) :TEST #EQ)

AGR (Infl with agreement features).

(AND (EQ NODE-CAT 'I)

(OR (NODE-PERS NODE) (NODE-NUMBER NODE) (NODE-TENSE ODE))

(MEMBER AGR *CURRENT-GOVERNORS :TEST #EQ)))))

Proper-governor? determines whether a node is a proper governor. That is,

it must be a lexical category (not including AGR, unless AGR is rich, i.e.,

unless AGR is NPfil).

(DEFUN PROPER-GOVERNOR? (NODE)

(LET ODE-CAT (NODE-CAT NODE)))

;; A proper governor cannot be a trace.

(AND (NOT (NODE-TRACE NODE))

(OR

;; Lexical governor.

(MEMBER NODE-CAT *CURRENT-GOVERNORS :TEST EQ)

;; AGR (Infl with agreement features).

(AND *GR-RICH

(EQ (NODE-CAT NODE))I)

(OR (NODE-PERS NODE) (NODE-TENSE NODE) (NODE-NUMBER NODE))

(MEMBER AGR *CURRENT-GOVERNORS :TEST #EQ))))))

APPEIVDIX F. LISP REPRESENTATION OF GB PRINCIPLES

F.3.2 Routines for Testing Government Relations

A node is c-governed if it is c-commanded by a governor.

(DEFUN CGOVERNED? (NODE) (NODE-C-GOVERNED? NODW

A node is s-governed if it is c-governed and there is a unique

subcategorization pairing for the node in the subcategorization frame of

the c-governing node.

(DEFUN SGOVERNED? (NODE) (NODE-S-GOVERNED? NODW

Proper-governed? determines whether a node is properly-governed either by a

proper-governor, or by chain conditions (if the language has them).

(DEFUN PROPER-GOVERNED? (NODE)

(OR

;; Non-trace automatically properly governed.

(NOT (NODE-TRACE NODW

;; Properly governed by c-commanding governor.

(NODE-PROPER-GOVERNED? NODE)

;; Properly governed by c-commanding NPfil.

(AND (NODE-TRACE NODE)

(MEMBER (NODE-TRACE NODE) (NODE-C-GOVERNED? NODE) :TEST #Eq))

Chain conditions must be satisfied (if applicable).

(CHAIN-CONDITIONS-SATISFIED? NODEM

Chain-conditions-satisfied? determines whether all elements of the chain

which the trace node is a part of are -governed.

(DEFUN CHAIN-CONDITIONS-SATISFIED? (TRACE-NODE)

(AND *CHAIN-CONDITIONS

(NODE-C-GOVERNED? TRACE-NODE)

(ANTECEDENTS-C-GOVERNED? (NODE-TRACE TRACE-NODE))

(TRACES-C-GOVERNED? (NODE-ANTECEDENT TRACE-NODEM)

250

-APPENDLY F. LISP REPRESENTATION OF GB PRINCIPLES 251

FA Case Theory

..Case assignment is perfori-ned at POP time after government relations have been deterrrAned,

and at generation tinie after move-a has executed. Note that the Case Filter need not be

included in the Case i-nodule since the Visibility Condition of the odule ensures that all

noun phrases are assigned case.

Perform-case-assignment assigns case at POP time and generation time. Each

TOS node and all its c-governees are passed to Assign-case in an attempt to

assign case.

(DEFUN PERFORM-CASE-ASSIGNMENT (TOS NODE-TREE)

(LET ((NEW-TOS (FLATTEN TOW (CASE-ASSIGNED-RESULT))

;; Retrieve all assignee-nodes.

(LOOP FOR NODE1 IN NEW-TOS DO

;; Retrieve all assigner-nodes.

(LOOP FOR NODE2 IN (NODE-C-GOVERNED? NODE1 DO

Discharge case from assigner to assignee unless there is a case

mismatch.

(SETQ CASE-ASSIGNED-RESULT

(ASSIGN-CASE NODE2 NODE1 NODE-TREE))

(WHEN (EQ CASE-ASSIGNED-RESULT)FAILURE) (RETURN 'FAILURE)))

(WHEN (EQ CASE-ASSIGNED-RESULT 'FAILURE) (RETURN 'FAILURE)))))

Assign-case assigns allows the assignee-node to be assigned by the

assigner-node unless there is a case mismatch.

(DEFUN ASSIGN-CASE (ASSIGNER-NODE ASSIGNEE-NODE NODE-TREE)

(LET* ((CAT (NODE-CAT ASSIGNER-NODE))

(ASSIGNMENT-RULE (GET-VALUE *CURRENT-CASE-ASSIGNMENT CAT))

(ASSIGNEE-CASE (NODE-CASE ASSIGNEE-NODE)))

Don't do anything unless there is an assignment rule and the condition

of the rule is satisfied.

(WHEN (AND ASSIGNMENT-RULE

(APPLY (CAR ASSIGNMENT-RULE) (LIST ASSIGNER-NODE ASSIGNEE-NODE)))

Assign case to the node unless there is a case mismatch. Then transmit

case to the trace or antecedent.

(IF (OR (NULL ASSIGNEE-CASE)

(INTERSECTION ASSIGNEE-CASE (CDR ASSIGNMENT-RULE)))

Assign case to the node. If there is a case transmission error

(to the trace or antecedent), return FAILURE.

(PROGN

(SETF (NODE-CASE ASSIGNEE-NODE) (COPY-LIST (CDR ASSIGNMENT-RULEM

(WHEN (TRANSMIT-CASE-TO-TRACE-OR-ANTECEDENT ASSIGNEE-NODE)

(TRANSMISSION-ERROR ASSIGNEE-NODE NODE-TREE)

'FAILURE))

Case mismatch: return FAILURE.

(CASE-MISMATCH ASSIGNEE-NODE NODE-TREE)

'FAILURE))))

- I wompomm , I � - I

I APPENDIX F. LISP REPRESENTATION OF GB PRINCIPLES 252

Transmit-case-to-trace-or-antecedent propagates the case of a node to all

of its antecedents and traces unless there is a case clash.

(DEFUN TRANSMIT-CASE-TO-TRACE-OR-ANTECEDENT (ASSIGNEE)

(LET AST-ASSIGNEE ASSIGNEE) (NEXT-ASSIGNEE) (CLASH NIL))

;; Propagate to antecedents (in a-bar position: What did he see t?).

(LOOP UNTIL

(OR CLASH

(NOT (SETQ NEXT-ASSIGNEE (NODE-TRACE LAST-ASSIGNEEM) DO

(IF (AND (NODE-CASE NEXT-ASSIGNEE)

(NOT (EQUAL (NODE-CASE NEXT-ASSIGNEE)

(NODE-CASE LAST-ASSIGNEEM)

Case clash.

(SETQ CLASH T)

;; No case clash.

(SETF (NODE-CASE NEXT-ASSIGNEE) (NODE-CASE LAST-ASSIGNEE))

(SETQ LAST-ASSIGNEE NEXT-ASSIGNEEM

Propagate to traces (in a position: "He seemed t to be eating.").

(SETQ LAST-ASSIGNEE ASSIGNEE)

-(LOOP UNTIL

(OR CLASH

(NOT (SETQ NEXT-ASSIGNEE (NODE-ANTECEDENT LAST-ASSIGNEE)M DO

(IF (AND (NODE-CASE NEXT-ASSIGNEE)

(NOT (EQUAL (NODE-CASE NEXT-ASSIGNEE)

(NODE-CASE LAST-ASSIGNEE))))

Case clash.

(SETQ CLASH T)

;; No case clash.

(SETF (NODE-CASE NEXT-ASSIGNEE) (NODE-CASE LAST-ASSIGNEE))

(SETQ LAST-ASSIGNEE NEXT-ASSIGNEEM

CLASW

-APPENDIX F. LISP REPRESENTATION OF GB PRINCIPLES 253

F.5 Trace Theory

The Trace module checks ECP at POP tinie after government relations have been determined,

and at eneration time after move-a has executed.

ECP checks conditions of empty categories at POP time and generation time:

1. PRO cannot be -governed 2 A trace must be properly governed; and

3. pro must be -governed (hence properly governed) by AGR.

(DEFUN ECP (TOS)

(LOOP FOR TOS-ELEMENT IN TOS DO

(WHEN (EQ (NODE-CAT TOS-ELEMENT) NMAX)

(COND

;; Trace

((EQ (NODE-WORD TOS-ELEMENT) 'PRO)

(WHEN (C-GOVERNED? TOS-ELEMENT)

(FORMAT T `&ECP VIOLATION: PRO is governed.")

(RETURN 'FAILUREM

PRO

((MEMBER (NODE-WORD TOS-ELEMENT) *CURRENT-TRACES :TEST #EQ)

(UNLESS (PROPER-GOVERNED? TOS-ELEMENT)

(FORMAT T `&ECP VIOLATION: Trace not properly governed.")

(RETURN 'FAILUREM

pro
((EQ (NODE-WORD TOS-ELEMENT) 'SMALL-PRO)

(UNLESS

(MEMBER 'I (CONVERT-TO-CATS (NODE-C-GOVERNED? TOS-ELEMENTM

(FORMAT

T "&ECP VIOLATION: pro is not governed by AGR.")

(RETURN 'FAILUREM

(T NILM))

"DIX F. LISP REPRESENTATION OF GB PENCIPLESAPPEIN 254

F.6 Binding Theory

The Binding module is accessed at, POP time and at generation time first to establish A-

positions and A-positions, and then to check Binding conditions.

Set-a-and-a-bar-positions sets up A and A-BAR positions at all levels of a

phrase at POP and generation time.

(DEFUN SET-A-AND-A-BAR-POSITIONS (PHRASE)

;; Set up all a-positions of the phrase.

(LOOP FOR NODE IN (FIND-A-POSITIONS PHRASE) DO

(SETF (NODE-A-POSITION? NODE) T))

Set up all a-bar-positions of the phrase.

(LOOP FOR NODE IN (FIND-A-BAR-POSITIONS PHRASE) DO

(SETF (NODE-A-BAR-POSITION? NODE) T))

Set up all a-positions and a-bar-positions of the phrases in complement,

specifier, and adjunction positions.

(LOOP FOR ELT IN (CDR PHRASE) DO

;; Set up the complements of the phrase.

(WHEN (AND (LISTP ELT) (COMPLEMENT? (NODE-CAT (FIRST ELTM)

.(LOOP FOR NEW-PHRASE IN (CDR ELT DO

(SET-A-AND-A-BAR-POSITIONS NEW-PHRASEM

Set up the specifiers of the phrase.

(WHEN (AND (LISTP ELT) (SPEC? (NODE-CAT (FIRST ELTM)

(LOOP FOR NW-PHRASE IN (CDR ELT DO

(SET-A-AND-A-BAR-POSITIONS NEW-PHRASEM

Set up the adjoined elements (maximal or minimal) of the phrase

including the element (maximal or minimal) to which adjunction is taking

place.

(WHEN (OR

; ; Maximal adjunction.

(MAXIMAL-PROJECTION? (NODE-CAT (FIRST ELT)))

;; Minimal adjunction.

(NOT (OR (SPEC? (NODE-CAT (FIRST ELTM

(COMPLEMENT? (NODE-CAT (FIRST ELT))))))

(SET-A-AND-A-BAR-POSITIONS ELTM)

APPENDIX F. LISP REPRESENTATION OF GB PRINCIPLES 255

Check-binding-conditions ensures that anaphoric traces are bound in their

governing category by an element in a-position, and that referential traces

are bound by an element in a-bar position.

(DEFUN CHECK-BINDING-CONDITIONS (TOS)

(LET ((ANTECEDENT))

(LOOP FOR ELT IN (FLATTEN TOS DO

(WHEN (AND (EQ (NODE-CAT ELT) IN-MAX) (SETQ ANTECEDENT (NODE-TRACE ELTM

(COND

;; Check NP-traces.

((ANAPHORIC? ELT)

(UNLESS (AND (NODE-A-POSITION ANTECEDENT)

(MEMBER ANTECEDENT (C-GOVERNED? ELT) :TEST #EQ))

(RETURN 'FAILUREM

Check WH-traces.

((REFERENTIAL? ELT)

(UNLESS (NODE-A-BAR-POSITION ANTECEDENT) (RETURN 'FAILUREM

(T NILMM

- ".."W I - - - -q I - I I -

APPENDIX F. LISP REPRESENTATION OF GB PIANCIPLES 256

F.7 Bounding Theory

The Bounding odule is accessed dring parsing at oth PUSH time and POP time. When a

trace is pushed onto the stack, it ust be linked to an antecedent tat is not too far away. In

the case of rightward ovement, the trace may remain unlinked until its dominating inaxinial

projection has been completed. Thus, at POP time, the Bounding odule ust be accessed

again to link unlinked traces to antecedents. The Bounding odule is also accessed to allow

language-specific ovement requirements to be checked (both at POP time and at generation

time). Finally, the Bounding odule 'is accessed during generation to ensure that an element

does not move "too far" when oves is executed.

F.7.1 Routines for Trace Linking at PUSH Time

-Check-trace-links is invoked at at PUSH time. Since a trace may have been

added to a stack it must be linked up to its antecedent. There are two

cases: either a trace is *not* :found, or it *is* found. If it is *not*

found, the added portion will be pushed following feature percolation). if

it *is* found, the features are percolated, trace-antecedent linking takes

place, and the added portion will be pushed.

(DEFUN CHECK-TRACE-LINKS (ADD-ON STACK)

(LET* ((TRACE-NODE NIL) (ANTECEDENT-NODES NIL) (RESULTS NIL)

(CONVERTED-ADD-ON (CONVERT-TO-NODES ADD-ON)) (FINAL-RESULTS NIL))

Locate a trace (there should be at most one unlinked trace).

(IF (NOT (SETQ TRACE-NODE (FIRST (SEARCH-TRACE (TOS CONVERTED-ADD-ON)))))

If there is no trace or antecedents weren't found, just push the

unmodified template onto the stack.

(SETQ FINAL-RESULTS (LIST (COPY-NODES (APPEND CONVERTED-ADD-ON STACK))))

;; Otherwise, find possible antecedents of the trace.

(SETQ

ANTECEDENT-NODES

(FIND-TRACE-ANTECEDENTS

(NODE-CAT TRACE-NODE) (APPEND-CONVERTED-ADD-ON STACK) TRACE-NODE))

Only PUSH the templates and link antecedents if feature-percolation

hasn't eliminated the add-on.

(WHEN CONVERTED-ADD-ON

;; Push the templates.

(SETQ STACK (APPEND CONVERTED-ADD-OX STACK))

If an antecedent was not found, check to see if there is a

possibility of the antecedent not yet being seen (for head-final

or rightward movement case).

(IF (EQ ANTECEDENT-NODES 'FAILURE)

; ; Head-f inal or rightward movement

(WHEN (ANTECEDENT-NOT-BEYOND-BOUNDING-NODE STACK)

.- . - - -" I 0 �4 --.-- -,7 �I I I - i I-I - �5 --------- �, -IIII I - - -l- --

APPENDIX F. LISP REPRESENTATION OF GB PRINCIPLES 257

(PUSH STACK FINAL-RESULTS))

Antecedents found.

(SETQ RESULTS

(LINK-TRACES-AND-ANTECEDENTS

ANTECEDENT-NODES TRACE-NODE STACK))

Only accept the result if feature percolation has not

eliminated the ADD-ON.

(LOOP FOR RESULT IN RESULTS DO

(WHEN (PERCOLATE-FEATURES (TOS RESULT))

(PUSH RESULT FINAL-RESULTSMM

Return the final results unless trace-linking or feature percolation has been

unsuccessful.

(OR FINAL-RESULTS 'FAILUREM

Find-trace-antecedents is used for finding the antecedent of a trace. It

locates all possible antecedents of a trace, without going beyond two

bounding nodes. When a node already has its antecedent slot filled, then

it is not considered a possible antecedent.

(DEFUN FIND-TRACE-ANTECEDENTS (TRACE-CkT STACK NODE-TO-LINK)

(LET ((NODES NIL) (COUNT 0) (FINAL-RESULT NIL))

;; Find all traces and their possible antecedents.

(LOOP FOR STACK-ITEM IN STACK DO

If the antecedent is found, return'the corresponding node unless its

antecedent slot is filled with something.

(WHEN (SETQ NODES

(FIND-TRACE-AT-SOME-LEVEL TRACE-CAT STACK-ITEM NODE-TO-LINK))

(LOOP FOR NODE IN NODES DO

(UNLESS (NODE-ANTECEDENT NODE) (PUSH NODE FINAL-RESULT))))

If the search goes beyond more than one bounding node, return FAILURE.

(WHEN (AND (MEMBER (NODE-CAT (CAR STkCK-ITEM)) *CURRENT-BOUNDING-NODES)

(EQUAL (SETQ COUNT COUNT)) 2)

(RETURN (OR FINAL-RESULT 'FAILUREM

FINALLY (RETURN (OR FINAL-RESULT 'FAILUREM))

I � -1 I I- PIN M -111 IN 1111 101111 M I -- I - -1 -, -- --

APPENDLY F. LISP REPRESENTATION OF GB PRINCIPLES 258

Antecedent-not-beyond-bounding-node searches through a stack for an

incomplete item without going beyond two bounding nodes. If such an item

is found, then the search ends and the result is T. Otherwise, the result

is NIL. (Note: the trace is assumed to be in the top of stack item.)

(DEFUN ANTECEDENT-NOT-BEYOND-BOUNDING-NODE (STACK)

(LET ((COUNT 0) (LAST-PUSHED-SYMBOL NIL))

(LOOP FOR STACK-ITEM IN STACK DO

;; If an unexpanded item is found, stop searching, and return NIL.-

(WHEN (NEXT-EMPTY-SYMBOL STACK-ITEM LAST-PUSHED-SYMBOL) (RETURN)

;; If the search goes beyond more than one bounding node, return T.

(WHEN (AND (MEMBER (NODE-CAT (CAR STACK-ITEM))

*CURRENT-BOUNDING-NODES :TEST #EQ)

(EQUAL (SETQ COUNT COUNT)) 2 (RETURN IL))

Update the last expanded symbol.

(SETQ LAST-PUSHED-SYMBOL (NODE-CAT (CAR STACK-ITEMM

FINALLY (RETURN T)

Search-trace locates all unlinked trace nodes (i.e., traces with no

antecedents) dominated by a node.

(DEFUN SEARCH-TRACE (NODES)

(COND ULL NODES) NIL)

-((ATOM NODES) (WHEN (EQ (NODE-TRACE NODES) T) (LIST NODESM

(T (APPEND (SEARCH-TRACE (CAR `kODES)) (SEARCH-TRACE (CDR NODESMM

- opum'! 4 Im I

APPENDIX F. LISP REPRESENTATION OF GB PRINCIPLES

F.T.2 Routines for Trace Linking at POP Tme

Find-and-link-traces is invoked at POP time: it links traces to

antecedents, unless the corresponding antecedent is already linked. First

all traces are found, and then antecedent possibilities are found. These

are then matched up by Link-traces-and-antecedents. The assumption is that

a constituent has moved and now must be linked up with the trace it left

behind. However, if this requirement is not met, the parse is either

rejected (if the antecedent is too far away), or allowed to hang around (if

the antecedent has not been encountered during the parse yt).

(DEFUN FIND-AND-LINK-TRACES (STACK)

(LET ((TRACE-NODES NIL) (ANTECEDENT-NODES NIL) (RESULTS NIL))

;; Locate unlinked trace-nodes.

(IF (SETQ TRACE-NODES (SEARCH-TRACE (TOS STACK)))

;; If there are trace nodes, locate the possible antecedents.

(LOOP FOR TRACE-NODE IN TRACE-NODES DO

(SETQ ANTECEDENT-NODES

(FIND-TRACE-ANTECEDENTS

(NODE-CAT TRACE-NODE) STACK TRACE-NODE))

If an antecedent' was not found, check to see if there is a

;-;.possibility of the-antecedent not yet being seen (for head-final

;; or rightward movement case).

(IF (EQ 'FAILURE ANTECEDENT-NODES)

;; Head-Final or Rightward Movement

(WHEN (ANTECEDENT-NOT-BEYOND-BOUNDING-NODE STACK)

(PUSH STACK RESULTS))

Antecedents found.

(SETQ RESULTS

(APPEND RESULTS

(LINK-TRACES-AND-ANTECEDENTS

ANTECEDENT-NODES TRACE-NODE STACK) RESULTSM

FINALLY (RETURN (OR RESULTS 'FAILUREM

No trace nodes.

(LIST STACK))))

259

APPENDIX F. LISP REPRESENTATION OF GB PRINCIPLES 260

F.7.3 - Routines for Checking Language-Specific Effects

Check-language-specif ic-ef f ects is called at POP time and at generation

time. It tests that the left-hand side of a language-specif ic implication

holds if the right-hand side holds.

(DEFUN CHECK-LANGUAGE-SPECIFIC-EFFECTS (FINAL-RESULT)

(IF (AND *CURRENT-LANGUAGE-SPECIFIC-EFFECTS (PARSE-COMPLETE FINAL-RESULT))

If there are language-specific effects, make sure they hold before

returning the result

(LOOP FOR EFFECT IN *CURRENT-LANGUAGE-SPECIFIC-EFFECTS DO

(UNLESS

(MOVEMENT-EFFECT?

FINAL-RESULT (LHS EFFECT) (RHS EFFECT) (IMPLICATION EFFECT))

(RETURN 'FAILURE))

FINALLY (RETURN FINAL-RESULT))

Otherwise, just return the final-result.

FINAL-RESULT))

F.7.4 Routines for Performing Move-a at Generation Time

Perf orm-movement is called by move-alpha at generation time It takes all

substitution and adjunction possibilities and performs all permutations of

these movements.

(DEFUN PERFORM-MOVEMENT (SUBSTITUTION ADJUNCTION TREE)

; ; Case 1. No movement.

(VECTOR-PUSH-EXTEND TREE *SURFACE-TREES)

; ; Case 2 djunction possibilities tried before substitution possibilities.

(PERFORM-ADJUNCTION ADJUNCTION (PERFORM-SUBSTITUTION (LIST TREE) SUBSTITUTION))

; ; Case 3 Substitution possibilities tried before adjunction possibilities.

(PERFORM-SUBSTITUTION SUBSTITUTION (PERFORM-ADJUNCTION (LIST TREE) ADJUNCTIONM

Perform-substitution moves elements into specifier positions included in the

SUBSTITUTION list. It includes all n! combinations of substitutions, where

n is the number of possible substitutions.

(DEFUN PERFORM-SUBSTITUTION' SUBSTITUTION TREES)

(LET ((NEW-TREE) (RESULTS IL))

(LOOP FOR TREE IN TREES DO

(LOOP FOR SUBST IN SUBSTITUTION DO

(SETQ NEW-TREE (SUBSTITUTE-NODE-FOR-ELT SUBST TREE))

(UNLESS (EQ (CHECK-LANGUAGE-SPECIFIC-EFFECTS NEW-TREE) 'FAILURE)

(VECTOR-PUSH-EXTEND NEW-TREE *SURFACE-TREES))

(PUSH NEW-TREE RESULTS)))))

I 1-1- I -- ---- - lowlpqlw� all!RN I M � � M. � RF -; I I -4- 4 1 � � I I

APPENDIX F. LISP REPRESEIN'TATION OF GB PRENCIPLES 261

Perform-adjunction moves elements into specifier positions included in the

ADJUNCTION list. It includes all n! combinations of adjunctions, where

n is the number of possible adjunctions.

(DEFUN PERFORM-ADJUNCTION (ADJUNCTION TREES)

(LET EW-TREE) (RESULTS IL))

(LOOP FOR TREE IN TREES DO

(LOOP FOR ADJ IN ADJUNCTION DO

(SETQ NEW-TREE (ADJOIN-NODE-TO-ELT ADJ TREE))

(UNLESS (EQ (CHECK-LANGUAGE-SPECIFIC-EFFECTS NEW-TREE) 'FAILURE)

(VECTOR-PUSH-EXTEND NEW-TREE *SURFACE-TREES))

(PUSH NEW-TREE RESULTS)))))

M.�.

.A p p e n di x Gx

ar e -arser 4cou i'nes

This appendix shows all of the functions required for parsing a sentence using the PREDICT,

SCAN and COMPLETE actions of the Earley parser. PARSE-SENTENCE contains the Earley

parser ain loop. Note that the bare Earley parser without structure-building) may be used

if the *RECOGNIZE-ONLY variable is set to T. Furthermore, if tructure is being built, it

may either be built wth access to the GB component (PUSH-STRUCT, SCAN-STRUCT,

and POP-STRUCT) or without access to the CB-COMPONENT (PUSH-STRUCT-1, SCAN-

STRUCT-1, and POP-STRUCT-1).

G.1 Main Earley Parser Loop

Parse-sentence loops over an input sentence creating a state-set for each

word in the sentence. Each state-set is scanned, pushed, popped and then

pushed again. The parse(s) are held in the *SET-OF-STACKS' ariablp. The

user has the option of only recognizing (i.e., not returning building any

structure) by�setting the global variable *RECOGNIZE-ONLY to T.

Furthermore, the GB-component is consulted only if parse-sentence is called

with the optional parameter GB-COMPONENT? set to T.

(DEFUN PARSE-SENTENCE (SENTENCE &OPTIONAL (GB-COMPONENT? NIL))

; ; Initialize parse structures

(LET* ((PUNC (CAR (LAST SENTENCEM

(FIRST-STATE-SET-RULE

(CONS (CAR *INITIAL-RULE)

(CONS (CADR *INITIAL-RULE)

(CONS * (CDDR *INITIAL-RULE)))))

(NEXT-WORDS SENTENCE) ; list of next words for lookahead

262

...6. 1,111INNIM looll"Is" .

APPENDIX G. EARLEY PARSER ROUTINES 263

(LAST-STATE NIL) ;--previous state-set name

(CURRENT-STATE NIL)) ;-current state-set name

Nilify all elements of *SET-OF-STACKS and *PARSE-TREES

(SET-ARRAY-NIL *SET-OF-STACKS)

Put initial template into *SET-OF-STACKS unless *RECOGNIZE-ONLY is set

to T.

(UNLESS *RECOGNIZE-ONLY

(VECTOR-PUSH-DEFNODES

(LIST (CONS (CAR *INITIAL-RULE) (MAPCAR LIST (CDDR *INITIAL-RULEM)

*SET-OF-STACKS))

Initialize state-sets. Define SO to contain a single rule.

(SETQ *STATE-SET-NUMBER 0

*STATE-SET

(DEFINE-STATE ISO :NUMBER

:LIST-OF-RULES (LIST FIRST-STATE-SET-RULE)))

Push state-set SO

(PREDICT ISO (CAR NEXT-WORDS) GB-COMPONENT?)

Do a pop/push closure (Note: this loop is necessary only because of

lambda rules since there is no input word yet).

(POP-PUSH-CLOSURE ISO (CAR NEXT-WORDS) GB-COMPONENT?)

Prepare to process the rest of the state-sets, starting with Si.

(SETQ *STATE-SET-NUMBER 1

NEXT-WORDS (CDR NEXT-WORDS)

LAST-STATE ISO CURRENT-STATE IS1)

Loop over each word in the sentence creating a state-set corresponding

to each word. Each state-set will be scanned (SCAN), pushed (PREDICT),

popped (COMPLETE) and then pushed again. Then, because could be lambda

rules, a pop/push closure is invoked. This ensures that any rules not

requiring input have a chance to fire. If a state-set becomes empty,

reject the sentence. Otherwise continue until *STATE-SET-NUMBER is

equal to the number of words in the sentence. Check this state-set for

the initial state set rule with RETURN = . If this state is present,

accept. Otherwise, reject.

(LOOP FOR WORD IN SENTENCE DO

(SETQ *STATE-SET

(DEFINE-STATE

CURRENT-STATE :UMBER *STATE-SET-NUMBER

:WORD-CAT (GET-CAT WORD) :WORD WORD))

(SCAN LAST-STATE CURRENT-STATE PUNC NIL GB-COMPONENT?) scan

(PREDICT CURRENT-STATE (CAR NEXT-WORDS) GB-COMPONENT?) push

(COMPLETE CURRENT-STATE (CAR NEXT-WORDS) GB-COMPONENT?) POP

(PREDICT CURRENT-STATE (CAR NEXT-WORDS) GB-COMPONENT?) push

;; Do a pop/push closure (to take care of lambda rules).

(POP-PUSH-CLOSURE CURRENT-STATE (CAR NEXT-WORDS) GB-COMPONENT?)

(COND

; ; If state set is empty, reject.

((NULL (STATE-SET-LIST-OF-RULES (EVAL CURRENT-STATEM (RETURN 'REJECTED))

If the state-set number equals the number of words in sentence, then

if the state-set includes the state initial state-set rule with

RETURN = 0, accept. Else, reject. Final parse(s) are in the

-... I -1- -- - I M-- 11 � I I I I

APPENDIX G. EARLEY PARSER ROUTINES 264

;; *SET-OF-STACKS variable.

((EQUAL *STATE-SET-NUMBER *NUMBER-OF-WORDS)

(IF (RULE-IN-STATE-SET?

(REVERSE (CONS (REVERSE *INITIAL-RULE))) 0 (EVAL CURRENT-STATE))

Accept.

(RETURN 'ACCEPTED)

;; Reject.

(RETURN 'REJECTEDM)

Update *STATE-SET-NUMBER and LAST-STATE. Move to next state and input

word.

(SETQ *STATE-SET-NUMBER (i+ *STATE-SET-NUMBER)

LAST-STATE CURRENT-STATE

CURRENT-STATE

(INTERN (STRING-UPCASE (FORMAT NIL "s'A" *STATE-SET-NUMBER)))

NEXT-WORDS (CDR NEXT-WORDSM))

APPENDIX G. EARLEY PARSER ROUTINES 265

G.2 Predict Action

Predict adds a dotted rule to a state-set whenever the parser predicts a

nonterminal in the parse (i.e., when the dot appears to the left of a

nonterminal symbol in the current state-set). Each predicted nonterminal.

appears on the left-hand side of one or more dotted rules in the state-set.

When a nonterminal is predicted in a state-set, the return address of all

corresponding rules is the current state-set number.

(DEFUN PREDICT (STATE-SET WORD GB-COMPONENT?)

(LET USET (EVAL STATE-SET)) figure out which state-set to push

(RULES-ADDED NIL) rules added to state set

(OLD-RULE NIL) rule that will not be explicitly added

(NOT-TO-BE-EXPLICITLY-ADDED NIL) rules that have already been added

(RHS) right-hand side of unpushed rule

(SYMBOL-TO-CHECK)) symbol to right of dot

Loop until no more unpushed rules.

(LOOP FOR RULE IN (STATE-SET-LIST-OF-RULES SET) DO

(SETQ RHS (STATE-SET-RULE-RHS RULE) extract right-hand side of unpushed rule

SYMBOL-TO-CHECK ; extract symbol to right of dot

(WHEN (CDR (MEMBER * RHS :TEST #EQ))

(CADR (MEMBER * RHS :TEST EQ))))

If symbol to the right of the dot is a non-terminal, loop over grammar

rules looking for candidates for pushing.

(WHEN (AND SYMBOL-TO-CHECK (MEMBER SYMBOL-TO-CHECK *NON-TERMINALS :TEST #EQ))

(LOOP FOR GRAMMAR-RULE IN *CURRENT-GRAMMAR DO

(IF

(SETQ OLD-RULE

(RULE-IN-STATE-SET?

(APPEND (LIST SYMBOL-TO-CHECK (CDDR GRAMMAR-RULE))

*STATE-SET-NUMBER SET))

If the rule is already in the state set, don't explicitly

(re-)add it, but put it in a list to be passed to PUSH-STRUCT.

(PUSH OLD-RULE NOT-TO-BE-EXPLICITLY-ADDED)

;; Otherwise, add the new scanned rule to the state-set.

(SETQ RULES-ADDED

(APPEND RULES-ADDED

(LAST (ADD-RULE

(APPEND (LIST SYMBOL-TO-CHECK

(CDDR GRAMMAR-RULE))

*STATE-SET-NUMBER SETMM))

If parsing, as opposed to recognition only, call the structure-building

component which will push nonterminal template structures onto the

stack. Be sure to pass rules that were not explicitly added to the

state-set down to the structure-building component.

(UNLESS *RECOGNIZE-ONLY

(SETQ RULES-ADDED (APPEND RULES-ADDED NOT-TO-BE-EXPLICITLY-ADDED))

(IF GB-COMPONENT?

GB component is accessed.

(PUSH-STRUCT (LIST-OUT-ADDED-RULES RULES-ADDED) (GET-CAT WORD))

.......

APPENDIX G. EARLEY PARSER ROUTEVES 266

GB component is not accessea�""..

(PUSH-STRUCT-1 (LIST-OUT-kDDED-RULES RULES-MED) (GET-CAT WORD))))))

'A

APPENDIX G. EARLEY PARSER Rt.TTEVES 26 7

G.3 Scan Action

Scan adds a dotted rule to a state-set whenever the parser encounters a

terminal which can be scanned during the parse (i.e., when the dot appears

to the left of a terminal symbol in the previous state-set). Each scanned

terminal appears to the left of the dot on the right-hand side of one or

more dotted rules in the state-set., When a rule corresponding to a scanned

symbol is added to a state-set, the return address is retrieved from the

corresponding unscanned rule in the previous state-set. Note: the GB

component will be consulted if GB? is T and there is a block in the parse

somewhere.

(DEFUN SCAN (LAST-STATE CURRENT-STATE PUNC GB-COMPONENT?)

(LET AST-SET (EVAL LAST-STATE)) state-set to scan from

(CURRENT-SET (EVAL CURRENT-STATE)) state-set to scan into

(RULES-ADDED NIL) rules added to state set

(RHS) RHS of unscanned-rule

(REP) entire unscanned rule

(RET) return address of unscanned rule

(SYMBOL-TO-CHECK)) symbol to right of dot

Loop over unscanned rules in state-set.

(LOOP FOR RULE IN (STATE-SET-LIST-OF-RULES LAST-SET) DO

(SETQ RHS (STATE-SET-RULE-RHS RULE) extract RHS of unscanned rule

REP (STATE-SET-RULE-RtTLE RULE) extract entire unscanned rule

RET (STATE-SET-RULE-RETURN RULE); extract ret addr of unscanned rule

SYMBOL-TO-CHECK extract symbol to right of dot

(WHEN ignore lambda rules

(AND (NOT (EQUAL RHS '(*))) (CDR (MEMBER * RHS :TEST EQ)))

(CADR (MEMBER * RHS :TEST EO))))

If symbol to right of dot is a terminal symbol which matches the

current word category, and if the scanned rule is not already in the

current state-set, scan the rule and add it to the current state-set

(WHEN (AND

(MEMBER SYMBOL-TO-CHECK *TERMINALS :TEST EQ)

(MEMBER SYMBOL-TO-CHECK matches current word category?

(STATE-SET-WORD-CAT CURRENT-SET) :TEST #EQ)

(NOT not already in state-set?

(RULE-IN-STATE-SET?

(MOVE-DOT-OVER-SYMBOL REP RHS SYMBOL-TO-CHECK)

RET CURRENT-SETM

If yes to the-above, add the new (scanned) dotted rule to the

state-set.

(SETQ RULES-ADDED

(APPEND RULES-ADDED

(LAST

(ADD-RULE

(MOVE-DOT-OVER-SYMBOL REP RHS SYMB-OL-To-CHECK)

RET CURRENT-SETM

*LAST-SCANNED (i+ *LAST-SCANNED))))

If parsing, as opposed to recognition only, call the structure-building

APPENDIX G. EARLEY PARSER ROUTTINES 268

component which will attach terminals to nonterminals in lower positions

on the stack.

(UNLESS *RECOGNIZE-ONLY

(IF GB-COMPONENT?

;; GB component is accessed.

(SCAN-STRUCT

(STATE-SET-WORD CURRENT-SET) (LIST-OUT-ADDED-RULES RULES-ADDED))

GB component is not accessed.

(SCAN-STRUCT-1

(STATE-SET-WORD CURRENT-SET) (LIST-OUT-ADDED-RULES RULES-ADDEDMM

APPENDIX G. EARLEY PARSER RtTTI-NES
0GA Complete Action

269

Complete adds a dotted rule to a state-set whenever the parser encounters a

nonterminal. which can be popped during the parse (i.e., when the dot

appears at the end of the right-hand side of a rule in the current

state-set). Each popped nonterminal appears to the left of the dot on the

right-hand side of one or more dotted rules in the state-set. When a rule

corresponding to a popped symbol is added to a state-set, the return

address is retrieved from the corresponding unpopped rule in the state-set

pointed to by the return address.

(DEFUN COMPLETE (STATE-SET GB-COMPONENT?)

(LET ((SET (EVAL STATE-SET)) pop current state set

(RULES-ADDED NIL) rules added to state set

(NEW-RULE NIL) rule that may potentially be added

(NOT-TO-BE-EXPLICITLY-ADDED NIL) rules that have already been added

(LHS) LHS of unpopped rule

(RHS) RHS of unpopped rule

(REP) rule rep of unpopped rule

(RHS-PRIOR) RHS of prior rule

(REP-PRIOR) entire prior rule

(SYMBOL-TO-CHECK)) symbol to right of dot in prior rule

.,(LOOP FOR RULE IN (STATE-SET-LIST-OF-RULES SET) DO

(SETQ LHS (STAIE-SET-RULE-LHS RULE) ; extract LHS of unpopped rule

RHS (STATE-SET-RULE-RHS RULE) ; extract RHS of unpopped rule

REP (STATE-SET-RULE-RULE RULE)) ; extract rep of unpopped rule

If symbol to the right of the dot is non-nil, loop over rules in

state-set corresponding to return address looking for candidates for

popping.

(UNLESS (CDR (MEMBER * RHS :TEST #EQ))

(LOOP FOR

PRIOR-RULE

IN

(STATE-SET-LIST-OF-RULES

(EVAL

(INTERN

(STRING-UPCASE
t

(FORMAT NIL "s-A" (STATE-SET-RULE-RETURN RULEM DO

(SETQ

Extract RHS of prior rule.

RHS-PRIOR (STATE-SET-RULE-RHS PRIOR-RULE)

Extract entire prior rule.

REP-PRIOR (STATE-SET-RULE-RULE PRIOR-RULE)

;; Extract symbol to right of dot in prior rule.

SYMBOL-TO-CHECK

(WHEN (CDR (MEMBER * RHS-PRIOR :TEST EQ))

(CADR (MEMBER * RHS-PRIOR :TEST EQ))))

If symbol to right of dot in the prior rule matches the

left-hand side of'the rule in the current state-set, and if the

popped rule is not already in the current state set, pop the

APPENDIX G. EARLEY PARSER ROUTT.YES

rule and add it to the current state-set

(WHEN (EQ SYMBOL-TO-CHECK LHS) ; matches LHS of current rule?

(SETQ NEW-RULE

(MOVE-DOT-OVER-SYMBOL REP-PRIOR RHS-PRIOR SYMBOL-TO-CHECK))

(IF (RULE-IN-STATE-SET?

NEV-RULE (STATE-SET-RULE-RETURN PRIOR-RULE) SET)

If the rule is already in the state-set, it will not be

explicitly added, but it will be passed on to the

structure building stage for reference.

(SETQ NOT-TO-BE-EXPLICITLY-ADDED

(CONS NEW-RULE NOT-TO-BE-EXPLICITLY-ADDED))

Otherwise, add the new (popped) rule to the state set.

(SETQ RULES-ADDED

(APPEND

RULES-ADDED

(LAST

(ADD-RULE

NEW-RULE

(STATE-SET-RULE-RETURN PRIOR-RULE) SET)))))))))

If par'sing, as opposed to recognition only, drop completed terminals

into lower positions on stack and pop the stack.

(UNLESS *RECOGNIZE-ONLY

(IF GB-COMPONENT?

Gb component is accessed.

(POP-STRUCT

(LIST-OUT-ADDED-RULES

(APPEND NOT-TO-BE-EXPLICITLY-ADDED RULES-ADDED)))

GB component is not accessed.

(POP-STRUCT-1

(LIST-OUT-ADDED-RULES

(APPEND NOT-TO-BE-EXPLICITLY-ADDED RULES-ADDEDMM)

270

n er ace e vveen

*
ruc ure- U1 in an

This appendix contains the interface between the structure-building routines and the GB com-

ponent. The three main structure-building routines of the parser are: PUSH-STRUCT (called

by PREDICT), SCAN-STRUCT (called by SCAN), and POP-STRUCT (called by COM-

PLETE). Each of these routines builds structure according to the rules processed by Earley;

this structure is then examined by various modules of the GB component. The GB compo-

nent may do one of three things: reject the structure (if there 'is a violation of a constraint),

accept the structure (if all constraints are satisfied), or update the structure (if there is a

possibility unavailable to the Earley algorithm). The three ain structure-building routines

of the replacement module axe: MOVE-ELEMENTS-BACK, COLLAPSE-STRUCTURE, and

REPLACE-SOURCE-WITH-TARGET. These functions are used to deri'e the target base form

by dropping moved elements into base positions, collapsing redundant structure and replacing

source language words with target. language equivalents. The structure-building routine of the

generation module is MOVE-ALPHA. This function restructures trees according to require-

ments of the target language and moves elements out of base positions into possible landing

sites.

2 7

.Appendix

APPENDIX H. INTERFACE BETWEEN STRUCTURE-BUILDING AD GB 272

H.1 Interface During PUSH Stage

PUSH-STRUCT examines the rules added to the current state via the PREDICT

function. It pushes XBAR templates onto the stack wherever they are

predicted unless the lookahead dictates otherwise. Ambiguity is

accommodated by keeping multiple stacks in the *SET-OF-STACKS variable.

Also installed into the parser is a one-word lookahead facility so that a

template is only pushed if the next word can be scanned using the template.

Furthermore, trace linking and feature percolation are performed here.

(DEFUN PUSH-STRUCT (LIST-OF-RULES WORD-CATS)

(LET* ((INCOMPLETE NIL)

(STACK NIL)

(LIST-OF-SYMBOLS (HEADERS-OF LIST-OF-RULES))

(PUSHED

(CHECK-TERMINALS

(GET-LEFT-MOST-DERIVES LIST-OF-SYMBOLS)

LIST-OF-SYMBOLS WORD-CATS)))

Iterate over each stack in *SET-OF-STACKS, pushing results onto

*TEMP-STACKS.

(LOOP WHILE (NOT (ZEROP (FILL-POINTER *SET-OF-STACKS)) DO

(SETQ STACK (VECTOR-POP *SET-OF-STACKS)

-INCOMPLETE (ITEM-INCOMPLETE-NODES (TOS STACKM

If the top of the stack is a lambda rule, a non-expandable terminal,

or there is no expansion of the node (probably a terminal which has

already been taken care of in the last push), just add the stack

unconditionally; otherwise, push the appropriate lists onto the stack.

(IF (OR (NULL (CDR (TOS STACKM

(MEMBER INCOMPLETE *TERMINALS :TEST EQ)

(NULL (GET-VALUE PUSHED INCOMPLETE)))

(VECTOR-PUSH-EXTEND STACK *TEMP-STACKS 0)

(PUSH-TEMPLATES-ONTO-STACK STACK (GET-VALUE PUSHED ICOMPLETEM

Push *TEMP-STACKS elements back onto *SET-OF-STACKS.

(UNLESS (EMPTY-ARRAY? *TEMP-STACKS)

(LOOP WHILE (NOT (ZEROP (FILL-POINTER *TEMP-STACKS)) DO

(VECTOR-PUSH-EXTEND

(VECTOR-POP *TEMP-STACKS) *SET-OF-STACKS SOMM

�- I ---

APPENDIX H. INTERFACE BETVITEN STRUCTURE-BUILDING AND GB 273

Push-templates-onto-stack pushes XBAR templates onto a stack. Because

complements may be expanded here, a subcategorization check is used to link

complements up with heads. Also, since the list-of-templates may contain

traces, the traces must be linked up before they are pushed onto STACK (via

Check-trace-links).

(DEFUN PUSH-TEMPLATES-ONTO-STACK (STACK LIST-OF-TEMPLATES)

(LET* ((MODIFIED-NODE-STACKS NIL) (CAT NIL) (NODE NIL) (TEMP-STACKS NIL))

;; Find the incomplete node in the top of stack.

(MULTIPLE-VALUE-SETQ (CAT NODE) (ITEM-INCOMPLETE-NODES (TOS STACK)))

;; Iterate over all possible ADD-ON.

(LOOP FOR ADD-ON IN LIST-OF-TEMPLkTES DO

(IF (EQ ADD-ON INTRANS)

If intransitive complement is being pushed, remove the complement

symbol from the stack and check that subcategorization information

matches up.

(WHEN (SETQ MODIFIED-NODE-STACKS

(PERFORM-SUBCATtGORIZATION-CHECK

(LIST (CONS (REMOVE NODE (TOS STACK)) (CDR STACK)))))

(UNLESS (EQ MODIFIED-NODE-STACKS 'FAILURE)

(LOOP FOR MODIFIED-STACK IN MODIFIED-NODE-STkCKS DO

(PUSH MODIFIED-STACK TEMP-STACKSM)

Otherwise, process normally: Check that traces are linked and that

subcategorization information matches up. Note: during trace

linking, features will be percolated for each ADD-ON element.

(WHEN (SETQ MODIFIED-NODE-STACKS

(PERFORM-SUBCATEGORIZATION-CHECK

(CHECK-TRACE-LINKS ADD-ON STACKM

(UNLESS (EQ MODIFIED-NODE-STACKS)FAILURE)

(LOOP FOR MODIFIED-STACK IN MODIFIED-NODE-STACKS DO

(PUSH MODIFIED-STACK TEMP-STACKSMM

Add the stacks that are considered legitimate.

(LOOP FOR NEW-STACK IN TEMP-STACKS DO

(VECTOR-PUSH-EXTEND NEW-STACK *TEMP-STACKS))))

.- -------- m ----

- APPENDIX H. INTERFACE BETWEEN STRUCTUTRE-BUILDING AND GB 2 74

Get-left-most-derives extracts all possible templates to push for the given

list of symbols. If a symbol corresponding to a complement arises, the

phrase-structure expansions of the complement are determined (according to

the closest head to the left of the given category in a head-first

language, or the closest head to the right in a head-final language).

Otherwise, the templates are found in *LEFT-DERIVES-RULES.

Add-complement-templates-and-rules ensures that the complement templates

are appended to stacks containing the complement symbol. It also takes

care of intransitive heads (by eliminating the complement symbol from TOS

elements). It then adds appropriate complement and non-complement rules to

the state set.

(DEFUN GET-LEFT-MOST-DERIVES (LIST-OF-SYMBOLS)

(LET ((FINAL-RESULT NIL) (HEAD-CAT NIL)

(COMPLEMENT-TEMPLATES) (TEMP-COMPLEMENT-TEMPLATES))

(LOOP FOR SYMBOL IN LIST-OF-SYMBOLS DO

(IF

If a complement is to be expanded in a head-first or head-final

construction, generate the complement templates (locate the closest

head to the left or right) and add the corresponding rules.

(AND (SETQ HEAD-CAT (COMPLEMENT? SYMBOL))

Generate template for each subcategorization frame of the head

(SETQ TEMP--COMPLEMENT-TEMPLATES

(APPEND TEMP-COMPLEMENT-TEMPLATES

(LOCATE-COMPLEMENTS

HEAD-CAT SYMBOL *CURRENT-HEAD-FIRST?))))

Otherwise, find the templates the "normal" way.

(SETQ FINAL-RESULT

(APPEND FINAL-RESULT

(CONS SYMBOL

(LIST

(GET-VALUE *LEFT-DERIVES-RULES SYMBOL))))))

FINALLY

(RETURN (ADD-COMPLEMENT-TEMPLATES-AND-RULES

COMPLEMENT-TEMPLATES FINAL-RESULTM))

APPENDIX H. INTERFACE BETWEEN STRUCTURE-BUILDING ALV GB 275

Check-terminals weeds out those templates that do not derive any of the

word categories as the left-most terminal symbol. This enables the facility

of one-word look-ahead.

(DEFUN CHECK-TERMINALS (TEMPLATES SYMBOLS WORD-CATS)

(LET ((CURRENT-PUSHED) (CURRENT-RESULT) (NEW-TEMPLATES))

Loop through all the symbols checking whether the templates

corresponding to the symbol will derive the word-cats.

(LOOP FOR SYMBOL IN SYMBOLS DO

Fix up the templates so that non-lexical heads are allowed to *not* be

empty, and default complements are removed.

(SETQ CURRENT-PUSHED

(UPDATE-NON-LEXICAL-CATS (GET-VALUE TEMPLATES SYMBOLM

Loop through each pushed-rule checking that it derives the word-cats.

(LOOP FOR PUSHED IN CURRENT-PUSHED DO

;; If the pushed template derives the next word, add it to the list.

(IF (TEST-DERIVES-NEXT-CATS (TOS PUSHED) WORD-CATS PUSHED)

(PUSH PUSHED CURRENT-RESULT) ; add the rule

(WHEN (NULL PUSHED) (PUSH NIL CURRENT-RESULT))))

If some (or all) of the pushed-rules have been added, update the final

answer (new-templates).

(WHEN CURRENT-RESULT

(SETQ NEW-TEMPLATES

(APPEND (CONS SYMBOL (LIST CURRENT-RESULT)) NE4-TEMPLATES))

(SETQ CURRENT-RESULT NIL))

FINALLY (RETURN NEW-TEMPLATESM)

--- -1 - ------

APPENDIX H. INTERFACE BETWEEN STRUrCT[TRE-BV7LD ffG AND GB 2 76

H.2 Interface During SCAN Stage

Scan-struct examines the rules added to the current state set via the SCAN

function. It inserts the input word into the appropriate slot in top of

stack item. When an input word is dropped into the appropriate slot, the

resulting stack is pushed onto *TEMP-STACKS. Those stacks which are not

modified are marked (by a) and pushed onto NEW-MARKED-STACKS. At the end

of SCAN-STRUCT, *SET-OF-STkCKS is replaced by *TEMP-STkCKS (i.e., the

successfully scanned parses). During the check for whether the current

rule corresponds to the top-of -stack conf iguration

(Check-for-correct-position), the GB component is consulted

(Check-for-correct-position) because argument structure needs to be

established and f eatures need to be instantiated if a head is scanned.

(DEFUN SCAN-STRUCT (PUNC WORD LIST-OF-SCANNED-RULES)

(WHEN LIST-OF-SCANNED-RULES

(LET ((NEW-MARKED-STACKS NIL) ; unmodif ied (marked) stacks

(OLD-MARKED-STACKS ; previously unmodified (marked)

(MARK-kLL-STACKS *SET-OF-STACKS)); stacks

(SCANNED-SYMBOL) scanned terminal symbol

(EXAMINE-STkCK NIL) old-marked-stack to examine

(TOS)) top-of -stack to examine

Loop through, each rule in the list of scanned rules (produced by

SCAN), checking each stack against the scanne& symbol.

(LOOP FOR RULE IN LIST-OF-SCkKNED-RULES DO

(SETQ SCANNED-SYMBOL (COMPLETED-OR-SCkNNED-SYMBOL RULE))

Loop through stacks that are marked (i.e., those preceded by a

Drop the scanned element into place if the current rule corresponds

to the top-of-stack configuration.

(LOOP FOR STACK IN OLD-MARKED-STACKS DO

(SETQ EXAMINE-STACK (CDR STACK) TOS (TOS EXkMINE-STACK))

Check that the current rule corresponds to the top-of-stack

configuration, and drop scanned word into place. This is where

the GB component is consulted. Since a head may have been

scanned, argument structure needs to be established, and feature

instantiation is required.

(SETQ EXAMINE-STACK

(CHECK-FOR-CORRECT-POSITION

(GET-CAT WORD) PUNC RULE WORD

SCANNED-SYMBOL TOS-(CDR EXAMINE-STkCK)))

If the stack has not been modified (i.e. the current rule does

not correspond-to-the top-of-stack item on the stack), then add

the marked ($) version to NEW-MARKED-STkCKS. Otherwise, add the

modified version to *TEMP-STACKS.

(IF (EQ (CAR EXkMINE-STACK) $)

;; unmodified

(PUSH EXAMINE-STACK NEW-MARKED-STkCKS)

;; modified (or null)

(WHEN EXAMINE-STACK

(VECTOR-PUSH-EXTEND EXAMINE-STACK *TEMP-STACKS 0M)

APPENDIX H. INTERFACE BETWEEN STR[TCTUrRE-BtT1LDLVG AIV GB

Reset the marked stacks for next iteration through loop

..- (SETQ OLD-MARKED-STACKS NEW-MARKED-STACKS NEW-MARKED-STACKS NIL))

Set *SET-OF-STACKS to the successfully modified stacks and print out

all intermediate parses if *STRUCTURE-TRACE is T.

(LOOP WHILE (NOT (ZEROP (FILL-POINTER *TEMP-STACKS)) DO

(VECTOR-PUSH-EXTEND (VECTOR-POP *TEMP-STACKS) *SET-OF-STACKS)))))

Check-for-correct-position helps SCAN-STRUCT determine whether it is okay

to drop a scanned-vord into the corresponding scanned-slot at the top of

the stack. This decision is dependent on the configuration of the

top-of-stack item, as well as the rule that has been scanned.

Substitute-scanned-node ensures argument structure is established and that

feature percolation from Head to Maximal projection is performed.

(DEFUN CHECK-FOR-CORRECT-POSITION

(CATS PUNC SCANNED-RULE SCANNED-WORD SCANNED-SYMBOL TOS REST)

(LET* ((RHS (CDDR SCANNED-RULF.)) RHS of rule

(NUMBER-TO-SCAN-RHS number of scanned-symbols to

(COUNT-TO-SCAN-RHS SCANNED-SYMBOL right of dot in rhs. of rule

(CDR (MEMBER RHS))))

(NUMBER-TO-SCAN-TOS ; number of empty scanned-symbols

(COUNT-TO-SCAN-TOS ; in top-of-stack item

SCANNED-SYMBOL

-(CDR (MEMBER (LIST SCANNED-SYMBOL)

(CONVERT-TO-TREE (CDR TOS)) :TEST #)EQUALM)

(NUMBER-OF-SCANNED number of scanned-symbols to

(COUNT-SCANNED SCANNED-SYMBOL left of dot in rhs of rule

(REVERSE (CDR (MEMBER (REVERSE RHS))))))

(NUMBER-OF-FILLED-CATS number of filled scanned-symbols

(COUNT-FILLED-CATS SCANNED-SYMBOL in top-of-stack item

(CONVERT-TO-TREE (CDR TOSM)

(RESULT NIL))

If the number of scanned-symbols to the right of the dot in the rhs, of

the rule match the number of empty scanned-symbols in the top-of-stack

item and if the number of scanned-symbols to the left of the dot in the

rhs of the rule is one more than the number of filled scanned-symbols in

top-of-stack item, drop the scanned-wQrd into the appropriate slot in

the top-of-stack item. Otherwise, mark the st ack (with a U.

(IF

(AND (EQUAL-NUMBER-TO-SCAN-RHS NUMBER-TO-SCAN-TOS)

(EQUAL NUMBER-OF-FILLED-CATS (1- UMBER-OF-SCANNED))

(EQUAL (ITEM-INCOMPLETE-NODES TOS) SCANNED-SYMBOL))

Rule and stack-item match: drop the scanned element into place (set up

argument structure and perform feature instantiation/percolation).

(SETQ

TOS

(SUBSTITUTE-SCANNED-NODE

CATS

(SECOND SCANNED-WORD)

(LIST SCANNED-SYMBOL (INTERN (STRING-UPCASE (CAR SCANNED-WOROM

--- � ��l -w-- m- - "-Wn ��. �- � o ---

7APPENDIX H. INTERFACE BETVVEE1V STRUCTURE-BITILDI G AND

(LIST SCANNED-SYMBOL)

TOS)

RESULT (CONS TOS REST))

rule and stack-item do not match

(CONS (CONS TOS REST)))))

Substitute-scanned-node substitutes NEW (a list) for first occurrence of

OLD (a list) in the NODE-STkCK-ITEM. Before a result is returned, the

scanned word has its argument structure set up, and its features

instantiated (from the features in the lexical entry). Also, the features

of the word are percolated up to the maximal projection via

Percolate-f eatures.

(DEFUN SUBSTITUTE-SCANNED-NODE (CATS FEATURES NEW OLD NODE-STACK-ITEM)

Run over each element in the node-stack until the first unscanned one is

found. Make a node out of the word and instantiate the features of the

word in the node corresponding to the lexical category. Finally,

percolate the features of the word up to the maximal projection and drop

the word-node into the position where the unscanned node was found.

(LOOP FOR ELT IN NODE-STACK-ITEM DO

(WHEN (AND (LISTP ELT) (EQUAL (LENGTH ELT) 1)

(EQUAL (CAR OLD) (NODE-CAT (CAR ELT))))

Instantiate features of the word in the unscanned node (which

corresponds to the- lexical category of the word)

(INSTANTIATE-FEATURES

*SOURCE-LANGUAGE *TARGET-LANGUAGE FEATURES (CAR ELT) (SECOND NEW))

Percolate features up to the maximal projection and complete the

substitution.

(RETURN

(PERCOLATE-FEATURES

(SUBSTITUTE (LIST (CAR ELT) (MAKE-NODE :WORD (SECOND NEWM ELT

NODE-STACK-ITEM :TEST #'EQUAL :COUNT IMM

2 78

---- -" m4pq -- -- -- -- -- --

APPENDIX H. INTERFACE BETWEEN STRUCTURE-BUILDLYG A17VD GB 279

H.3 Interface During POP Stage

Pop-struct examines the rules added to the current state set via the

COMPLETE function. It drops completed template elements corresponding to

the added rules into the second item on the stack. If the completed symbol

is part of a left-recursive cycle, two resulting stacks are generated: one

constructed by dropping the left-recursive structure between the

top-of-stack and second item before the completed portion is popped; and

the other constructed by dropping the completed portion without adding a

left-recursive structure. The GB component is consulted by

drop-into-next-lower in order to link traces, percolate features,

check-empty category conditions, assign case and assign theta.

(DEFUN POP-STRUCT (LIST-OF-RULES)

(LET ((RECURSIVE-RULES) (TEMP-ITEM) (TOS) (COMPLETED-SYMBOL NIL)

(COMPLETED-SYMBOLS

(REMOVE-DUPLICATES (GET-COMPLETED-SYMBOLS LIST-OF-RULES)))

(STACK))

Loop over each parse-stack in *SET-OF-STACKS checking each one against

the list of completed symbols until nothing more can be popped.

(LOOP WHILE (NOT (ZEROP (FILL-POINTER *SET-OF-STACKS)) DO

Pop of f a stack and initialize temp-item and top-of -stack (f eature

percolation and trace linking will be done in dropping stage).

(SETQ STACK (VECTOR-POP *SET-OF-STACKS)

TEMP-ITEM STACK TS (TOS TEMP-ITEM))

Iterate over current stack until no more completed-symbols or no more

items can be popped.

(DO* ((ITEM-POPPED T))

((OR (ITEM-INCOMPLETE-NODES TOS) (NOT ITEM-POPPED)))

Initialization for completed-symbol loop

(SETQ ITEM-POPPED NIL COMPLETED-SYMBOL (NODE-CAT (CAR TOSM

Recursive rules check: Drop a recursive rule in between TOS and

SECOND before popping if the completed-symbol is part of a recursive

cycle.

(WHEN (SETQ RECURSIVE-RULES (POP-GET-RECURSE COMPLETED-SYMBOL))

(LOOP FOR STACK IN

(DROP-RECURSE-INTO-NEXT-LOWER

TOS RECURSIVE-RULES TEMP-ITEM DO

(VECTOR-PUSH-EXTEND STACK *TEMP-STACKS 60M

Now drop into SECOND without dropping a recursive rule first.

(IF (AND (EQ COMPLETED-SYMBOL (CONVERT-TO-TREE (CAR TOS)))

.(NOT (ITEM-INCOMPLETE-NODES TOS))

(MEMBER (CONVERT-TO-TREE (CAR TOS))

(HEADERS-OF (CONVERT-TO-TREE (SECOND-ITEM TEMP-ITEM)))))

Drop TOS into place performing feature percolation, case, theta

and trace tests.

(SETQ TEMP-ITEM (DROP-INTO-NEXT-LOWER COMPLETED-SYMBOL TEMP-ITEM)

ITEM-POPPED T)

Put the temp-item into a list if it hasn't been processed.

(SETQ TEMP-ITEM (LIST TEMP-ITEM)))

APPENDIX H. INTERRACE BETTVEEY STRUCTURE-BUILDING AN'ID GB 280

Add the modified stack onto the final *TEMP-STACKS list and prepare

to iterate over the next stack.

(WHEN TEMP-ITEM (VECTOR-PUSH-EXTEND-TEMP-ITEM *TEMP-STACKS 50M)

Set *SET-OF-STACKS to the successfully modified stacks and print out all

intermediate parses if *STRUCTURE-TRACE is T.

(LOOP WHILE (NOT (ZEROP (FILL-POINTER *TEMP-STACKS)) DO

(VECTOR-PUSH-EXTEND (VECTOR-POP *TEMP-STACKS) *SET-OF-STACKS))))

Drop-into-next-lower drops a completed non-terminal into the appropriate

slot in the second item of the stack. It also performs trace linking,

feature percolation, ECP checking, case assignment and theta-assignment.

(DEFUN DROP-INTO-NEXT-LOWER (COMPLETED-SYMBOL TEMP-STACK)

(LET ((TOS NIL) (ELEMENT-TO-REPLACE NIL) (FINAL-RESULT NIL) (RESULTS))

;; Set up a-positions and a-bar-positions.

(LOOP FOR PHRASE IN TEMP-STACK DO (SET-A-AND-A-BAR-POSITIONS PHRASE))

Drop the replacement element into place. Note: we must first link all

traces to antecedents. Any that are unlinked will be discarded.

(SETQ RESULTS (FIND-AND-LINK-TRACES TEMP-STACK))

If there are results (i.e., if trace-linking succeeds), then check

Binding conditions, perform feature percolation, ECP checking, case

assignment and theta assignment. Finally, pop the top of the stack.

(LOOP FOR RESULT IN RESULTS DO

;; Examine the top of stack element.

(SETQ TOS (TOS RESULT))

(UNLESS

(OR

;; Check Binding conditions.

(EQ (CHECK-BINDING-CONDITIONS TOS) 'FAILURE)

;; Do feature percolation.

(EQ (PERCOLATE-FEATURES TOS) 'FAILURE)

;; Check language-specific effects.

(EQ (CHECK-LANGUAGE-SPECIFIC-EFFECTS RESULT) 'FAILURE))

Percolate Tense and AGR up to INFL.

(PERCOLATE-TENSE-AND-AGR TOS (CDR RESULT))

; ; Set up all Government relationships

(SET-UP-GOVERNMENT RESULT)

(UNLESS

(OR

;; Check empty-category requirements.

(EQ (ECP TS) 'FAILURE)

; ; Perform case and theta assignment.

(EQ (PERFORM-CASE-ASSIGNMENT TOS RESULT))FAILURE)

;; Perform theta assignment.

(EQ (PERFORM-THETA-ASSIGNMENT TOS RESULT) 'FAILURE))

Drop TOS into place (into first incomplete element of second stack

item).

(SETQ ELEMENT-TO-REPLACE

(FIND-COMPLETED-SYMBOL-NODE COMPLETED-SYMBOL (SECOND RESULT)))

(PUSH (SUBST TOS ELEMENT-TO-REPLACE RESULT :TEST EQ) FINAL-RESULT)))

FINALLY (RETURN FINAL-RESULT))))

.APPENDIX H. IINTERFACE BETWEEN STRUCTURE-B[T DING AD GB 281

Drop-recurse-into-next-lower creates a new stack for each left-recursive

template. Each stack is constructed by inserting-a recursive template-

between the first and second stack elements. Then drop-into-next-lower is

called to drop the completed item into place and perform GB constraint

checking.

(DEFUN DROP-RECURSE-INTO-NEXT-LOWER (TOP-OF-STACK RECURSIVE-TEMPLATES TEMP-STACK)

(LET ((RESULTS IL))

Iterate over each left-recursive template dropping it into place unless

the top-of-stack element already has the recursive template on top.

(LOOP FOR CYCLE IN RECURSIVE-TEMPLATES DO

(UNLESS

;; Check that the cycle has not already been added

(CHECK-CYCLE-EQUALITY CYCLE (CDR (CONVERT-TO-TREE TEMP-STACKM

(SETQ RESULTS

(APPEND

RESULTS

(DROP-INTO-NEXT-LOWEP,

(NODE-CAT (CAR TOP-OF-STACK))

(CONS TOP-OF-STACK

(APPEND

(CONVERT-TO-NODES CYCLE) (CDR TEMP-STACKMM)

FINALLY (RETURN RESULTS))))

HA interface During Replacement Stage

Move-elements-back is called by Structural-replacement in order to drop

moved elements back into their base positions.

(DEFUN MOVE-ELEMENTS-BACK (PARSE-TREE)

(LET ((BASE-POSITION) (MOVED-ELEMENT))

(COND ((NULL PARSE-TREE) NIL)

((SETQ MOVED-ELEMENT ATOM PARSE-TREE))

(WHEN (SETQ BASE-POSITION (NODE-ANTECEDENT MOVED-ELEMENT))

(DROP-INTO-BASE-POSITION MOVED-ELEMENT BASE-POSITIONM

(T (MOVE-ELEMENTS-BACK (CAR PARSE-TREE))

(MOVE-ELEMENTS-BACK (CDR PARSE-TREEMM

T 'VG AND GB
APPENDIX H. INTERFACE BETWEEN STRUCTUT E-BUILDIL

282

Drop-into-base-position moves an element into a base position, unless the

base position is not a *final* base position (i.e., it is an intermediate

landing site on the way to the base position). If this is the case, the

final base position is found via a recursive call to

Drop-into-base-position. Finally, when the true base position is found, the

moved element is placed there via Transfer-slot-values. Then all landing

sites (intermediate and final) are evacuated via the function Evacuate.

(DEFUN DROP-INTO-BASE-POSITION (MOVED-ELEMENT BASE-POSITION)

(LET ((NEW-BASE-POSITION))

(UNLESS (NODE-TRACE MOVED-ELEMENT)

(IF (NOT (SETQ NEW-BASE-POSITION (NODE-ANTECEDENT BASE-POSITIONM

(TRANSFER-SLOT-VALUES MOVED-ELEMENT BASE-POSITION)

(DROP-INTO-BASE-POSITION MOVED-ELEMENT NE14-BASE-POSITION)

(EVACUATE BASE-POSITION))

(EVACUATE MOVED-ELEMENTM)

Collapse-structure merges equivalent structures by first removing all

evacuated elements intervening between X-bar levels, and then joining the

two equivalent structures into one. For example:

[INFL-MAX [N-MAX IL] EINFL-MAX II

[INFL-MAX [INFL-MAX ... 1 (Remove-evacuat'ed)

[INFL-MAX (Merge-equivalent-structure)

(DEFUN COLLAPSE-STRUCTURE (PARSE-TRtE)

(MERGE-EQUIVALENT-STRUCTURE (REMOVE-EVACUATED PARSE-TREEM

Evacuate sets the CDR of the tree to NIL.

(DEFUN EVACUATE (PARSE-TR EE) (SETF (CDR PARSE-TREE) IL))

Removed-evacuated removes all NIL elements intervening between X-bar levels.

For example:

EINFL-MAX [N-MAX NIL] [INFL-MAX

(INFL-MAX [N-MAX NIL] [INFL-MAX ... 1

(DEFUN REMOVE-EVACUATED (PARSE-TREE)

(IF (ATOM PARSE-TREE)

PARSE-TREE

(IF (EVACUATED? PARSE-TREE) NIL

(APPEND (LIST (REMOVE-EVACUATED (6AR PARSE-TREE)))

(WHEN (CDR PARSE-TREE)

(LIST (REMOVE-EVACUATED (CDR PARSE-TREE))))))))

Merge-equivalent-structure joins two equivalent structures into one.

For example: EIITFL-MAX INFL-MAX . .. 11 ==> INFL-MAX

(DEFUN MERGE-EQUIVALENT-STRUCTURE (PARSE-TREE)

(IF (ATOM PARSE-TREE)

PARSE-TREE

(IF (SAME-CATEGORY-UNDER PARSE-TREE)

(WHEN (CDR PARSE-TREE)

(LIST (MERGE-EQUIVALENT-STRUCTURE (CDR PARSE-TREEM)

(APPEND (LIST (MERGE-EQUIVALEXT-STRUCTURE (CAR PkRSE-TREEM

APPENDLY H. INTERFACE BETWEEN STRUCTURE-BUILDENG AND GB 283

.(LIST (MERGE-EQUIVALENT-STRUCTURE (CDR PRSE-TREEMM)

Evacuated? determines whether an element has been evacuated.

(DEFUN EVACUATED? (PARSE-TREE)

(AND (NULL (SECOND PARSE-TREE)) (NOT (THIRD PARSE-TREE))))

Same-category-under determines whether an structure contains two equivalent

structures.

(DEFUN SAME-CATEGORY-UNDER (TOS)

(LET ((CONVERTED (CONVERT-TO-TREE TOSM

(AND (EQ (CAR CONVERTED) (CAR (SECOND CONVERTED))) (LENGTH CONVERTED) 2)

Replace-source-with-target determines the correct translation of heads and

their arguments according to theta-role matching routines. As each maximal

projection is analyzed, the translation of the head is chosen, and then each

argument of the head is positioned and structurally realized according to

the requirements of the target language head.

(DEFUN REPLACE-SOURCE-WITH-TARGET (BASE-TREE)

(LET* ((MAX (GET-MAX-ELT BASE-TREE))

(HEAD (GET-HEAD-ELT MAW

(EXT (GET-EXT-ELT MAX BASE-TREE))

(INT (GET-INT-ELT MAW

(TRANSLATION NIL)

(EXTERNAL NIL)

(INTERNAL IL))

Select the head's translation and internal/external arguments.

(MULTIPLE-VALUE-SETQ

(TRANSLATION EXTERNAL INTERNAL)

(MATCH-TRANSLATION-AND-ARGUMENTS EXT INT HEAD))

Set up the translation of the head.

(SETF (NODE-WORD HEAD) TRANSLATION)

;; Position the arguments.

(SET-UP-ARGUMENT-POSITIONING MAX EXTERNAL INTERNAL)

;; Structurally realize the arguments.

(SET-UP-STRUCTURAL-REALIZATION MAX EXTERNAL INTERNAL)

Translate each of the arguments.

(LOOP FOR ELT IN MAX DO

(UNLESS (EQ (CAR ELT) HEAD) (REPLACE-SOURCE-WITH-TARGET ELTM))

APPENDIX H. INTERFACE BET�VEEN STRUCTURE-BUILDING AND GB 284

H.5 Interface During Generation Stage

Move-alpha restructures a tree by:

1. adding/removing adjoined elements and specifiers.

2. changing the constituent order.

3. locating all positions that elements could move or adjoin to and

moving elements to these positions.

It then applies GB constraints to ensure that the movement(s) is valid.

(DEFUN MOVE-ALPHA (TEST-TREE)

(LET ((TEST-TREES

;; Drop base-generated adjunctions and specifiers into place.

(GENERATE-CORRECT-ADJUNCTIONS-AND-SPECIFIERS

*CURRENT-BASE-SPECIFIERS-AND-ADJUNCTION)))

Restructure the tree to be compatible with the constituent order of the

language.

(GENERATE-CORRECT-CONSTITUENT-ORDER TEST-TREES *CURRENT-CONSTITUENT-ORDER)

Iterate over each test-tree locating substitution and adjunction

candidates.

(LOOP FOR TEST-TREE IN TEST-TREES DO

Locate candidates for movement (i.e., those elements that could

potentially leave a trace behind).

(LOOP FOR ELT IN (GET-MOVEMENT-CANDIDATES *CURRENT-TRACES TEST-TREE) DO

Find positions to which the element can move.

(LOOP FOR POSSIBLE-SUBSTITUTION

IN (GET-SUBSTITUTION-CANDIDATES

ELT TEST-TREE

*CURRENT-CHOICE-OF-SPEC

*CURRENT-DERIVED-SPECIFIERS-AND-ADJUNCTION

*CURRENT-BOUNDING-NODES DO

(PUSH (LIST ELT POSSIBLE-SUBSTITUTION) SUBSTITUTION-CANDIDkTES))

Find positions to which the element can adjoin.

(LOOP FOR POSSIBLE-ADJUNCTION

IN (GET-ADJUNCTION-CANDIDATES

ELT TEST-TREE

*CURRENT-ADJUNCTION

*CURRENT-DERIVED-SPECIFIERS-AND-ADJUNCTION

*CURRENT-BOUNDING-NODES DO

(PUSH (LIST ELT POSSIBLE-ADJUNCTION) DERIVED-ADJUNCTION-CANDIDATES)))

Perf orm'movement and adjunction.

(PERFORM-MOVEMENT

SUBSTITUTION-CkNDIDATES DERIVED-ADJUNCTION-CANDIDATES TEST-TREE))

Now check GB constraints.

(DO ((I 0 (i+ i)) (N (FILL-POINTER *SURFACE-TREES))) ((= I N))

(SETQ TREE (AREF *SURFACE-TREES I) TOS (TOS TREE))

;; Set up a-positions and a-bar-positions.

(SET-A-AND-A-BAR-POSITIONS PHRASE)

(UNLESS

;; Check Binding conditions.

(EQ (CHECK-BINDING-CONDITIONS TS) 'FAILURE)

I

-APPENDLY H. INTERFACE BETIVEEN STRUCTURE-BUILDING AND GB 285

;; Set up all Government relationships

(SET-UP-GOVERNMENT TREE)

Check empty-category requirements perform case and theta assignment

and perform theta assignment. If any of these fail, reject the

structure.

(WHEN (OR (EQ (ECP TOS) 'FAILURE)

(EQ (PERFORM-CASE-ASSIGNMENT TOS RESULT) 'FAILURE)

(EQ (PERFORM-THETA-ASSIGNMENT TOS RESULT) 'FAILURE))

(SETF (AREF *SURFACE-TREES NILMM

GENERATE synthesizes the surface words and then returns the surface sentence.

(DEFUN GENERATE (STACK) (SURFACE-FORM (MORPHER STACK)GENERATEM

analysis (Kimmo)

source language

source dictionary (for Kimmo)

source automata (for Kimno)

analysis (Kimmo)

t arget language

target dictionary (for Kimmo)

target automata (f or Kimmo)

;;; Source language variables for morphological

(DEFVAR *SOURCE-LANGUAGE)

(DEFVAR *SOURCE-DIC) i

(DEFVAR *SOURCE-AUT)

;;; Target language variables for morphological

(DEFVAR *TARGET-LANGUAGE)

(DEFVAR *TARGET-DIC)

(DEFVAR *TARGET-AUT)

;;; Source morphological analysis of *CURRENT-SENTENCE

(DEFVAR *CURRENT-MORPH-SENTENCE) ; morph source sentence

- (DEFVAR *CURRENT-MORPH-CATS) ; morph cats of source sentence

(DEFVAR *CURRENT-MORPH-WORD) ; morph word of source sentence

(DEFVAR *REST-MORPH) ; rest of source sentence morph words

286

,kppendix I

a var'a es or

This appendix contains all global variables required for the Kimmo system, the Earley parser,

the precompiler, the translation routines, -�nd the GB component. In general, these variables

are *not* user modifiable, but certain of them (the last five) are set up to be toggled by the

user at after the system has been loaded.

KIMMO

CT..APPENDIX-I. GLOBAL VARIABLES FOR �,NFITRAN

it
. EARLEY

28 7

;;; Global Lists (Earley)

(DEFVAR *GRAMMAR-NAMES NIL)

(DEFVAR *DICTIONARY-NAMES NIL)

(DEFVAR *CURRENT-SENTENCE NIL)

; ; ; State set variables (Earley)

(DEFVAR *STATE-SET-NAMES NIL)

(DEFVAR *STATE-SET-NUMBER 0)

(DEFVAR *STATE-SET NIL)

(DEFVAR *LIST-OF-LEFT-RECURSIONS)

(DEFVAR *LAMBDA-RULES NIL)

(DEFVAR *NUMBER-OF-WORDS)

;;; Variables for parsing information

(DEFVAR *CURRENT-GRAMMAR NIL)

(DEFVAR *DICTIONARY NIL)

*INITIAL-RULE NIL)

(DEFVAR *TERMINALS NIL)

(DEFVAR *NON-TERMINALS NIL)

(DEFVAR *DERIVES-LIST NIL)

(DEFVAR *LEFT-DERIVES-TERMINALS NIL)

(DEFVAR *LEFT-DERIVES-RULES NIL)

(DEFVAR *LIST-OF-INDIRECT-CYCLES NIL)

; f or grammar names

; for dictionary names

;for sentence currently being parsed

f or state-set names

running tally of the state sets

current state-set

left-recursive rules in each state

lambda-rules in current state set

number of words in input sentence

(Earley)

; f or grammar rules (f or Earley)

;f or dictionary entries (for Earley)

;for unique starting rule

;for terminal symbols (lex categories)

;for non-terminal symbols (phrases)

;plist of all derived terminals

;plist of left-most derived terminals

;stacks pushed from a symbol (for PUSH)

;left-recursive cycles (for POP)

VARIABLES USED PRECOMPILER (SET-UP-XBAR)

If anything in *XBAR-PROCESS-LIST has been modified since the last execution

of the system, the X-BAR preprocessor will need to be invoked for each

language.

(DEFVAR *XBAR-PROCESS-LIST

'(*CONSTITUENT-ORDER *BASIC-CATEGORIES *PRE-TERMINALS *CHOICE-OF-SPEC

*ADJUNCTION *EMPTY-FEATURE-HOLDERS *OPTIONAL-SPECIFIERS *PRO-DROP

*TRACES))

4 language-independent X-bar adjunction skeletons.

(DEFVAR *ADJUNCTION-SKELETONS

1(1 (X-MAX ADJUNCT X-MAX)

2 (X-MAX X-MAX ADJUNCT)

3 (X ADJUNCT X)

4 (X X ADJUNCTM

APPENDIX I. GLOBAL VARIABLES FOR 71TRAN 288

Variables set up by SET-UP-XBAR (based on *pro-drop,

*current-empty-f eature-holders and urrent-traces).

(DEFVAR *CURRENT-EMPTY NIL)

(DEFVAR *CURRENT-POSSIBLE-EMPTY-ELEMENTS)

(DEFVAR *CURRENT-HEAD-FIRST? NIL)

;;; Variables set up when DEFGRAMMAR is executed.

(DEFVAR *CURRENT-SENTENCE-NODE NIL)

(DEFVAR *CURRENT-GRAMMAR-NAME NIL)

(DEFVAR *CURRENT-COMBINED-TERMINALS NIL)

VARIABLES FOR TRANSLATION ROUTINES

Names of files contain parameter settings.

(DEFVAR *PARAMETER-SETTINGS-FILENAMES NIL)

Parameter names (for file loadin only)

(DEFVAR *LANGUAGE-PARkMETER-SETTINGS '(FEATURES MATCH-LISTS SPLITS-AND-MERGES))

; ; ; Translation system parameter settings.

(DEFVAR *CURRENT-FEATURES NIO

(DEFVAR *CURRENT-MATCH-LISTS NIL)

(DEFVAR *CURRENT-SPLITS-AND-MERGES NIL)

Changes to T if global parameters have been loaded.

(DEFVAR *GLOBAL-PARAMETER-LOAD? NIL)

Record of all GB parameters to be loaded.

(DEFVAR *GLOBAL-PARAMETERS

'(*CONSTITUENT-ORDER *BASIC-CATEGORIES *PRE-TERMINALS *CHOICE-OF-SPEC

*ADJUNCTION *EMPTY-FEATURE-HOLDERS *OPTIONAL-SPECIFIERS

*CLITICS *CLITIC-DOUBLING *CANONICAL-SEMANTIC-MAPPINGS *GOVERNORS

*CASE-ASSIGNMENT *PRO-DROP *TRACES *ECP *BOUNDING-NODES

*LANGUAGE-SPECIFIC-EFFECTS *BASE-SPECIFIERS-AND-ADJUNCTION

*DERIVED-SPECIFIERS-AND-ADJUNCTION))

Structures used to hold results from each of the translation stages.

(DEFVAR *SET-OF-STACKS

(MAKE-ARRAY--1(1000) :INITIAL-ELEMENT NIL :ADJUSTABLE T :FILL-POINTER 0))

(DEFVAR *TEMP-STACKS

(MAKE-ARRAY)(1000) :INITIAL-ELEMENT NIL DJUSTABLE T :FILL-POINTER 0))

(DEFVAR *PARSE-TREES

(MAKE-ARRAY 200) :INITIAL-ELEMENT NIL :ADJUSTABLE T :FILL-POINTER 0))

(DEFVAR *OLD-PARSE-TREES

(MAKE-ARRAY 200) :INITIAL-ELEMENT NIL :ADJUSTABLE T :FILL-POINTER 0))

(DEFVAR *SOURCE-BASE-TREES

(MAKE-ARRAY 200) :INITIAL-ELEMENT NIL :ADJUSTABLE T :FILL-POINTER 0))

,APPENDIX 1 -LOBAL 1�1RIABLES FOR UlVITRAN

(DEFVAR *TARGET-BASE-TREES

(MAKE-ARRAY 200) :INITIAL-ELEMENT NIL :ADJUSTABLE T :FILL-POINTER 0))

(DEFVAR *SURFACE-TREES

(MAKE-ARRAY 200) :INITIAL-ELEMENT NIL :ADJUSTABLE T :FILL-POINTER 0))

(DEFVAR *TARGET-RESULT

(MAKE-ARRAY 200) :INITIAL-ELEMENT NIL :ADJUSTABLE T :FILL-POINTER 0))

VARIABLES USED BY GB COMPONENT

289

;;; GB parameters

(DEFVAR *CONSTITUENT-ORDER NIL)

(DEFVAR *BASIC-CATEGORIES NIL)

(DEFVAR *PRE-TERMINALS NIL)

(DEFVAR *CHOICE-OF-SPEC NIL)

(DEFVAR *ADJUNCTION NIL)

(DEFVAR *EMPTY-FEATURE-HOLDERS NIL)

(DEFVAR *OPTIONAL-SPECIFIERS NIL)

(DEFVAR *CLITICS NIL)

(DEFVAR *CLITIC-DOUBLING NIL)

�(DEFYAR *CANONICAL-SEMANTIC-MAPPINGS NIL)

(DEFVAR *GOVERNORS NIL)

(DEFVAR *CASE-ASSIGNMEIT NIL)

(DEFVAR *PRO-DROP NIL)

(DEFVAR *TRACES NIL)

(DEFVAR *ECP NIL)

; constituent-order parameter

; basic categories

; pre-terminal categories

; choices of specs

; choices of adjunctions

; feature-holding empty cats

; optional specifiers

; clitics (if there are any)

; clitic-doubling parameter

; syntax -- > semantics mappings

; governing nodes parameter

; case-assignment parameter

; pro-drop (agr-rich) parameter

; trace categories

; ECP (chain-conditions) parameter

; bounding-node parameter

; lang-specific movement effects

; base generated elements

; derived elements

(DEFVAR

(DEFVAR

(DEFVAR

(DEFVAR

*BOUNDING-NODES NIL)

*LANGUAGE-SPECIFIC-EFFECTS NIL)

*BASE-SPECIFIERS-AND-ADJUNCTION NIL)

*DERIVED-SPECIFIERS-AND-ADJUNCTION NIL

Variables that are set up according to the parameter settings of the

language currently being processed.

(DEFVAR *CURRENT-CONSTITUENT-ORDER NIL)

(DEFVAR *CURRENT-BASIC-CATEGORIES NIL)

(DEFVAR *CURRENT-PRE-TERMINALS NIL)

(DEFVAR *CURRENT-CHOICE-OF-SPEC NIL)

(DEFVAR *CURRENT-ADJUNCTION NIL)

(DEFVAR *CURRENT-EMPTY-FEATURE-HOLDERS NIL)

(DEFVAR. *CURRENT-OPTIONAL-SPECIFIERS NIL)

(DEFVAR *CURRENT-CLITICS NIL)

(DEFVAR *CURRENT-CLITIC-DOUBLING NIL)

(DEFVAR *CURRENT-CANONICAL-SEMANTIC-MAPPINGS NIL)

(DEFVAR *CURRENT-GOVERNORS NIL)

(DEFVAR *CURRENT-CASE-ASSIGNMENT NIL)

(DEFVAR. *CURRENT-PRO-DROP NIL)

(DEFVAR

(DEFVAR

(DEFVAR

*CURRENT-TRACES NIL)

*CURRENT-ECP NIL)

*CURRENT-BOUNDING-NODES NIL)

APPENDIX I. GLOBAL VARIABLES FOR tT-VlTRAN

(DEFVAR *CURRENT-LANGUAGE-SPECIFIC-EFFECTS NIL)

(DEFVAR *CURRENT-BASE-SPECIFIERS-AND-ADJUNCTION NIL)

(DEFVAR *CURRENT-DERIVED-SPECIFIERS-AND-ADJUNCTION NIL)

290

;; ; Variables accessed by GB modules.

(DEFVAR *AGR-RICH NIL)

(DEFVAR *CHAIN-CONDITIONS NIL)

(DEFVkR *CLITIC-THETA-TRANSMIT NIL)

; trace module

; trace module

; theta module

Flags that the user may toggle.

(DEFVAR

(DEFVAR

(DEFVAR

(DEFVAR

(DEFVAR

*RECOGNIZE-ONLY NIL)

*STRUCTURE-TRACE NIL)

*STATE-SET-TRACE T)

*PREPROCESS T)

*GB-TRACE T)

; flag for recognizing vs. parsing

; trace f or building structure

; trace for printing out state set information

; turn the preprocessor on

; turn the gb-trac on

"I

.Appendix J

1* 40

ans a ion ou ines o I

This appendix shows a of the functions required for setting up the parameter values of the

source language, performing precompilation, and translating a sentence. The translation in-

cludes preprocessing, morphological analysis, parsing, structural replacement, thematic substi-

tution, and generation. Because the GB component wll be accessed, Earley is called with the

GB-COMPONENT? variable set to T.

Translate asks for a source and target language and then sets up the source

and target parameter values, as well as the morphological analyzers. It

then asks for an input sentence until the user says :QUIT.

(DEFUN TRANSLATE NIL

(LET ((SOURCE NIL) (TARGET NIL) (INPUT NW)

; ; Loop until :QUIT initializing the source and target languages.

(LOOP UNTIL (OR (EQ INPUT :QUIT) (EQ SOURCE :QUIT) (EQ TARGET :QUIT)) DO

;; Read source language.

(SETQ INPUT NIL SOURCE (ENTER-SOURCE))

(UNLESS (EQ SOURCE :QUIT)

Read target language.

(SETQ TARGET (ENTER-TARGET))

(UNLESS (EQ TARGET :QUIT)

Initialize source and target files to read in for-morphological

analysis.

�(SET-UP-FILES SOURCE) (SET-UP-FILES TARGET)

Initialize source and target information for morphological

analysis.

(INITIALIZE-SOURCE SOURCE) (INITIALIZE-TARGET TARGET)

Loop until new source or target language needed or :QUIT (exit

translation loop).

(SETQ INPUT (READ-INPUT-SENTENCE SOURCE TARGET)M)))

291

---- - - I

�APPENDIX J TRANSLATION RO ITTINES OF lVITRAN 292

Read-input-sentence asks for an input sentence and runs through the

translation loop until the user says :QUIT or NEW (to enter new source and

target languages)

(DEFUN READ-INPUT-SENTEXCE (SOURCE TARGET)

(LET ((INPUT NIL))

(LOOP UNTIL (OR (EQ INPUT :QUIT) (EQ INPUT :EW)) DO

;; Ask for input sentence

(FORMAT

T

"'&Enter input sentence,

:NEW for new source and target, or :QUIT to exit:

(SETQ INPUT (RUN-THROUGH-TRANSLATION-LOOP SOURCE TARGET))

FINALLY (RETURN INPUT))))

Run-through-translation-loop checks that the sentence is in the correct

format and that all input words are in the dictionary (i.e., are

morphologically analyzable). The sentence is then put through

preprocessing, morphological analysis, parsing and translation. The user

may continue to translate from source to target language, or may say the

keyword :EW meaning that a new source and input language are to be

specified. The keyword :QUIT ends the translation loop, and the keyword

:ABORT allows the source and target language to stay the same, but the

sentence to be re-entered. Also, the preprocessor may be turned on or off

(*PREPROCESS defaults to T, but user may change it to NIL).

(DEFUN RUN-THROUGH-TRANSLATION-LOOP (SOURCE TARGET)

(LET ((INPUT NIL))

(SETQ INPUT (READ))

Loop until new source or target language needed, :QUIT (exit translation

loop) or :ABORT (enter new sentence).

(LOOP UNTIL (OR (EQ INPUT :QUIT) (EQ INPUT :NEW) (EQ INPUT :ABORT)) DO

;; Prompt until sentence is in correct form or until :QUIT, :ABORT, :EW

(COND ((ATOM INPUT)

(FORMAT

T

"'&Please enter input in list form,

:NEW for now source and target, or :QUIT to exit:

(SETQ INPUT (READM

; test for no final punctuation

((FINAL-PUNC-MISSING? INPUT)

(FORMAT

T

"'&Please terminate sentence with final punctuation,

:NEW for new source and target, or :QUIT to exit:

(SETQ INPUT (READM

Preprocess the input, check the spelling (perform morphological

analysis), and parse the sentence.

(T (SETQ INPUT

(PREPROCESS-MORPH-PARSE-TRANSLATE INPUT SOURCE TARGET))))

FINALLY (RETURN INPUTM)

'APPENDIX- J. TRANSLATION ROUTINES OF UNITRAN

Preprocess-morph-parse-translate sets up grammar according to x-bar, and

then sets up parsing structures based on the grammar. It then performs

preprocessing based on the language replacements, does a morphological

analysis (checking the spelling), parses and translates the sentence.

(DEFUN PREPROCESS-MORPH-PARSE-TRANSLATE (INPUT SOURCE)

(LET MORPH-INPUT NIL))

;; Set up source language-specific variables.

(SET-UP-CURRENT-GLOBALS SOURCE)

;;,Preprocess the input if the preprocessor has been turned on.

(WHEN *PREPROCESS

(SETQ INPUT (PRE-PROCESS-SPLITS-AND-MERGES INPUT *CURRENT-REPLACEMENTS)))

Check the spelling of the input by performing a morphological analysis.

(FORMAT T "'&Checking spelling of 'a INPUT)

(MULTIPLE-VALUE-SETQ (MORPH-INPUT INPUT)

(ASK-ABOUT-UNDEFINED-WORD

INPUT (WORD-NOT-DEFINED-l? *URCE-AUT *SOURCE-DIC INPUT)))

If the user wants to quit, enter a new sentence, or enter new languages,

just set the input to the response (without doing any processing).

Otherwise, set up the current sentence, print out the morphological

analysis and parse the sentence.

(UNLESS (OR (EQ INPUT :NEW) (EQ INPUT :QUIT) (EQ INPUT :ABORT))

(FORMAT T "'&Morphological analysis done.")

(PPRINT MORPH-INPUT)

Set up XBAR information (i.e., the grammar) and parameter settings of

the source language.

(SET-UP-CURRENT-LANGUAGE SOURCE)

;; Set up input sentence and morphologically analyzed input sentence.

(SETQ *CURRENT-SENTENCE INPUT INPUT MORPH-INPUT)

(FORMAT T "'&Parsing . . . ")

; ; Parse the sentence using the gb-component.

(EARLEY INPUT T)

;; Perform structural replacement on the resulting parse-trees.

(STRUCTURAL-REPLACEMENT *PARSE-TREES)

;; Perform thematic substitution on the base forms of the source language.

(THEMATIC-SUBSTITUTION *SOURCE-BASE-TREES)

Perform structural movement (move-alpha) on the base forms of the

target language.

(STRUCTURAL-MOVEMENT *TARGET-BASE-TREES)

;; Set up target language-specific variables.

(SET-UP-CURRENT-GLOBALS TARGET)

Set up XBAR information�(i.e., the grammar) and parameter settings of

the target language.

(SET-UP-CURRENT-LANGUAGE TARGET)

;; Perform morphological synthesis on each of the surface trees.

(MORPHOLOGICAL-SYNTHESIS *SURFACE-TREES)

; ; Prompt user for new input sentence,

(FORMAT

T "'&Enter input sentence,

:NEW for new source and target, or :QUIT to exit:

293

-4 vi--004 4-011-mv�"-

APPENDIX J. TRANSLATION ROUTINES OF r TRAN 294

(SETQ INPUT (READM) INPUT)

Set up XBAR information (i.e., the grammar) and parameter settings of the

current language.

(DEFUN SET-UP-CURRENT-LANGUAGE (LANGUAGE)

(WHEN (NOT (BOUNDP *CURRENT-GRAMMAR-NAME))

(FORMAT T "'&Building XBAR processor . . ") (SET-UP-XBAR LANGUAGE))

Set up parameters for current language.

(SET-UP-PARAMETERS))

Earley loops over all possible morphological analyses of the input

collecting all possible parses. (Get-all-combination-cats ensures that

ambiguity is accounted for.)

(DEFUN EARLEY (INPUT &OPTIONAL (GB-COMPONENT? NIL))

(LET ((PARSE-COUNT 0))

(SETQ *NUMBER-OF-WORDS (LENGTH INPUT))

(CLEAR-INPUT)

;; Parse each possible sentence in the input

(LOOP FOR SENTENCE IN (GET-ALL-COMBINATION-CATS INPUT) DO

Initialize parsing structures to NIL.

(INITIALIZE-SENTENCE-STRUCTURES-TO-NIL)

;; Maintain parse count.

(SETQ PARSE-COUNT (i+ PARSE-COUNT))

(WHEN = PARSE-COUNT 1) (SET-ARRAY-NIL *OLD-PARSE-TREES))

(FORMAT T "'&Parse number 'a:" PARSE-COUNT)

(FORMAT T `&-V (PARSE-SENTENCE SENTENCE GB-COMPONENT?))

;; Print out all possible parses for this sentence

(FORMAT T "'2&There are 'A parses of 'A."

(ARRAY-LENGTH *PARSE-TREES) *CURRENT-SENTENCE)

(DO M 0 1 i)) (N (FILL-POINTER *PARSE-TREES))) ((= I N))

(WHEN = PARSE-COUHT 1)

(VECTOR-PUSH-EXTEND (AREF *SET-OF-STACKS V *PARSE-TREES))

(PPRINT-NODES (AREF *PARSE-TREES I)))

(FORMAT T "'&Hit any key to continue

(READ-CHAR)

; ; Carriage return after each set of parses.

(FORMAT T `2&`))))

Perform structural replacement on the parse-trees.

(DEFUN STRUCTURAL-REPLACEMENT (PARSE-TREES)

(COPY-ARRAY-ELEMENTS PARSE-TREES *SOURCE-BASE-TREES)

(DO ((I 1+ i)) (N (FILL-POINTER *SOURCE-BASE-TREES))) I N))

(MOVE-ELEMENTS-BACK (AREF *SOURCE-BASE-TREES I))

(COLLAPSE-STRUCTURE (AREF *SOURCE-BASE-TREES I)

.APPENDIX J. TRANSLATIO..V ROUTINES OF UINITRAN 295

Perform thematic substitution on the base forms of the source language.

(DEFUN THEMATIC-SUBSTITUTION (SOURCE-BASE-TREES)

(COPY-ARRAY-ELEMENTS SOURCE-BASE-TREES *TARGET-BASE-TREES)

(DO ((I 1 i)) (N (FILL-POINTER *TARGET-BASE-TREES))) ((= I N))

(REPLACE-SOURCE-WITH-TARGET (AREF *TARGET-BASE-TREES I))

(SET-UP-STRUCTURAL-REALIZkTION (AREF *TARGET-BASE-TREES I))))

Perform structural movement (move-alpha) on the base forms of the target

language.

(DEFUN STRUCTURAL-MOVEMENT (TkRGET-BkSE-TREES)

(COPY-ARRAY-ELEMENTS TARGET-BASE-TREES *TEMP-STACKS)

(DO ((I 1 i)) (N (FILL-POINTER *TEMP-STkCKS))) ((= I N))

(MOVE-ALPHA (AREF *TEMP-STACKS IM)

Perform morphological synthesis on each of the surface trees.

(DEFUN MORPHOLOGICAL-SYNTHESIS (SURFACE-TREES)

(COPY-ARRAY-ELEMENTS SURFACE-TREES *TARGET-RESULT)

(DO ((I 1 i)) (N (FILL-POINTER *TkAGET-RESULT))) ((= I N))

(GENERATE

(CHANGE-FEATS-TO-AFFIX

(LEXICALIZATION (AREF *TARGET-RESULT IMM

xairn e s

This appendix shows how the system handles various types of phenomena. Each example shows:

the source language surface froin, the orphologically analyzed input, the source language -

structure(s), the source language D-structure(s), the target language D-structure(s), the target

language S-structure(s), and the target language surface form(s).

K.1 Free Inversion

a. Source Language Surface Form: Vio a lart'a Juan

b. Morphologically Analyzed Input:

((ver V SG P3 PAST INTRANS (EXTERNAL (AGENT ANIMATE))
(SUBCAT (P-GOAL ANIMATE)) (SUBCAT (GOAL INANIMATE)))

(a P (SUB CAT (N)))
(mari-a N SG FEM ANIMATE PROPER P3)
Ouan N SG MASC ANIMATE PROPER P3))

296

.Appendix 14(

APPENDIY K. EXA111PLES

c. Source Language S-structure:

[c-MAX
[I-MAX

[I-SPEC [N-MAX. e [nom masc p3 sg animate agentfl,i]
[I El
[I-COMPLEMENT

[V-MAX
[V-MAX ver [past p3 sg]

[V-CONIPLEMENT
[P-MAX. [P a]

[N-MAX. [N mari-al
robj fem p3 sg animate goal]flfl

[N-MAX. [N juan] [oni masc p3 sg animate agentfliflfl

d. Source Language D-structure:

[C-MAX
[I-MAX

[I-SPEC [N-MAX. [N juan] [nom niasc p3 sg animate agent]]]
[I E]
[I-COMPLEMENT

[V-MAX ver [past p3 sgl
[V-COMPLEMENT

[P-MAX. [P alI
[N-MAX [N mari-a]

[obj fem p3 sg animate goalflflflfl

e. Target Language D-structure (and S-structure):

[C-MAX
[I-MAX

[I-SPEC [N-MAX [N John] [nom niasc p3 sg animate agentfl]

[I El
[I-COMPLEMENT

[V-MAX see [past p3 sg]
[V-COMPLEMENT

[P-MAX. [P a]
[N-MAX. [N niary]

[obj fein p3 sg animate goall"flIfl]

297

If. Target Language Surface Form: John saul Aary

APPENDIX K. EXA1,11PLES

K.2 Verb-Preposing

a. Source Language Surface Form: Qite' leyo' Jimn

b. Morphologically Analyzed Input:

((que- N INANIMATE NEUT P3 WH WH-PHRASE-A)
(leer V SG P3 PAST INTRANS (EXTERNAL AGENT ANIMATE))
(SUBCAT (GOAL INANIMATE)))

(juan N SG MASC ANIMATE PROPER. P3))

c. Source Language S-structure:

[C-MAX
[C-SPEC [N-MAX [N que-] 'obj goal inanimate]].]

[C E]
[C-COMPLEMENT

[I-MAX [V leer [past p3 sg]]
[I-MAX

[I-SPEC [N-MAX [N juan] [nom masc p3 so, animate agentfl]
E]

_11-COMPLEMENT
[V-MAX [past p3 so,]

[V ej
[V-COMPLEMENT

[N-MAX e [obj goal inanin-iatel'-fl]JI11

d. Source Language D-structure:

[C-MAX
[C E]
[C-COMPLEMENT

[I-MAX
[I-SPEC [N-MAX [N juan] [nom masc. p3 sg animate agentfl]
[I E]
[I-COMPLEMENT

[V-MAX [past p3 sgj

[leer [past p3 sg]]
[V-COMPLEMENT

[N-MAX [N que-] 'obj goal inani.mate]]jj]fl1
L A

298

APPEINDE K EXAAIPLES

e. Target Language D-structure:

[CI-MAX
[C E]
[C-COMPLEMENT

[I-MAX
[I-SPEC [N-MAX [N John] [nom niasc p3 sg animate agentfl]

[I E]
[I-COTHPLEMENT

[V-MAX [past p3 sg]
[read [past p3 sg]]

[V-COMPLEMENT

LIN-MAX [N what] [obj goal inaniinate11111111

f. Target Language S-structures:

[C-MAX.
[C E]
[C-COMPLEMENT

[I-MAX
[I-SPEC [N-MAX [N John] oni masc p3 sg animate agent]]]
[I E]
[I-COMPLEMENT

[V-MAX [past p3 sgl
[read [past p3 sgj]

[V-COMPLEMENT
[N-MAX [N whatl [obj goal inanimate]]]]]]]

[C-MAX
[C-SPEC [N-MAX [N what] [obj goal inanimatefl]p
[C E]
[C-COMPLEMENT

[I-MAX [DO-AUX do [past p3 sg]]
[I-MAX

[I-SPEC [N-MAX [N John] [nom niasc p3 sg animate agentfl]
[I E]
[I-COMPLEMENT

[V-MAX [inf]
[V read]

[V-COMPLENIE-NT
[N-MAX e [obj goal inanimate]]jfljflfl

299

g. Target Language Surface Forms: John read what and 11"hat did John ead

i

APPENDI.V K. EXAMPLES

K.3 Subject-Aux Inversion (SAI)

a. Source Language Surface Form: What did John ad

b. Morphologically Analyzed Input:

((what INANIMATE NEUT P3 WH WH-PHRASE-A)
(do DO-ATTX PL SG P3 P2 P1 PAST)
(joh N SG MASC ANIMATE POPER. P3)
(read V SG P3 PAST INTRANS (EXTER.'\AL AGENT ANIMATE))
(StTBCAT (GOAL INANIMATE))))

c. Source Language S-structure:

[C-MAX
[C-SPEC [N-MAX [N what] [obj goal inanimatefli]
[C El
[C-COMPLEMENT

[I-MAX [DO-AUX do [past p3 sgJ1
[I-MAX

[I-SPEC [N-NIAX 'N John] [nom masc p3 sg animate agentfl]

[I E]
[I-COMPLEMENT

[V-MAX [inf]
[V read]

[V-COIVIPLEMENT

[N-MAX e [obj goal inaniniatelliII11111

d. Source Language D-structure:

[C-MAX
[C E]
[C-COMPLEMENT

[I-MAX [DO-AUX do [past p3 sg]]
[I-MAX

[I-SPEC [N-MAX [N John] [nom mase p3 sg aimate agentfl]

[I E]
[I-COMPLEMENT

[V-MAX [inf]
[V readl

[V-COMPLEMENT
[N-MAX [N what] [obj goal inanimateflI111111I i

300

APPENDLY K. EXAMPLES

e., Target Language D-structure:

[C-MAX
[C E]
[C-COMPLEMENT

[I-MAX
J-SPEC [N-MAX [N juan] [nom masc 13 sg animate agent]]]
[I E]
[I-COMPLEMENT

[V-MAX [past p3 sgj
[leer [past p3 sg']

[V-COMPLEMENT
[N-MAX [N que-] [obj goal inanimate]]]]]]]]

f. Target Language S-structures:

[C-MAX
[C E]
[C-COMPLEMENT

[I-MAX
J-SPEC [N-MAX [N juan] [nom masc p3 sg animate agent]]]
[I E]
[I-COMPLEMENT

[V-MAX [past p3 sg]
[leer [past p3 sgj]

[V-COMPLEMENT

[N-MAX [N que-] [obj goal inaniniate11111111
[C-MAX

[C-SPEC [N-MAX [N que-] [obj goal inanimate]]-]
[C E]
[C-COMPLEMENT

[I-MAX [V leer [past p3 sg]],-
J-MAX

J-SPEC [N-MAX [N juan] [norn niasc p3 sg animate agentfl]
[I E]
[I-COMPLEMENT

[V-MAX [past p3 sg]
[V e]-

[V-COMPLEMENT
[N-MAX e [obj goal inanimate]]-]]]]]]]

301

g. Target Language Surface Forms: Juan leyo' quc and QuC' cyo' Juan

APPENDIX K. EXAIVIPLES

KA Thematic Divergence

a. Source Language Surface Form: El libro nic gitsta a n'

b. Morphologically Analyzed Input:

((el DET MASC SG)
(libro N INANIMATE MASC SG)

(me CL-DAT NEUT PRONOtTN S ANIMATE P)
(gustar V SG P3 PRES (EXTERNAL (AGENT INANIMATE))
(SUBCAT (PATIENT ANIMATE)))

(a P (SUBCAT (N)))
(mi- N NEUT PRONOUN SG ANIMATE P))

c. Source Language S-structure (and D-structure):

[C-MAX
[I-MAX

[I-SPEC [N-MAX [DET el] N libro] [p3 sg animate agent nom]]]
[I E [pres p3 sg]l
[I-COMPLEMENT

[V-MAX [pres p3 sgj
[V [CL-DAT e p sg obj animate]] [V gustafl

[P-MAX [P a]
[N-MAX [N -ni- p so, animate patient objflj]jfl

d. Target Language D-structure:

[C-MAX
[I-MAX

[I-SPEC [N-MAX [N me] [pi sg animate patient obj]]]
[I E [pres p3 sg]]
[I-COMPLEMENT

[V-MAX [pres p3 sg] [V ike]
[N-MAX [DET the] [N book] [p3 sg inanimate goal nomfl]fl]

e. Target Language S-structure:

[C-MAX
[I-MAX

J-SPEC [N-MAX [N 1] [pi sg animate agent nom]]]

[I E [pres p3 sg]]
[I-COMPLEMENT

[V-MAX [pres p3 sg] [V like]
[N-MAX [DET the] [N ook] [p3 sg inanimate goal obiflIfl]

302

f. Target Language Surface Form: I llke the book

I A 11 I, I 11 - I I . i � �

APPEIYDIX K. EXA111PLES

K.5 Raising

a. Source Language Surface Form: Jokn scevis to hatc cats

b. Morphologically Analyzed Input:

((john N SG MASC ANIMATE PROPER P3)
(seem V SG P3 PRES (SUBCAT PROPOSITION))
(to INF I SUBCAT (V)))
(hate V INF (SUBCAT (GOAL)) (EXTERNAL (AGENT)))
(cats N NEUT PL))

c. Source Language S-structure:

[C-MAX
[I-MAX

[I-SPEC [N-MAX [N John] [p3 sg masc agent non-illi]
[I E [pres p3 sg]]
[I-COMPLEMENT

[V-MAX [pres p3 sg]
[V seem]

[C-MAX
[I-MAX

J-SPEC [N-MAX e [p3 sg niasc agent, nonilfli
[I to [inQ
[I-COMPLEMENT

[V-MAX [inf]
[V hate] N-MAX [N cats] [pl neut goal objjjj]]jj]fl

d. Source Language D-structure:

[C-MAX
[I-MAX

[I E [pres p3 sg]]
[I-COMPLEMENT

[V-MAX [pres p3 sg]
[V seem]

[C-MAX
J-MAX

[I-SPEC [N-N'LIAX John] [p3 sg niasc agent noni]]]
[I to fl]
[I-COMPLE-,%,IENT

[V-MAX 'inf
[V hate] [N-MAX IN cats] [pl neut goal objjfl]]flfl]

303

APPENDIX K EXAMPLES 304

e. Target Language D-structure:

[C-MAX
J-MAX

[I E [pres p3 sg]]

[I-COMPLEMENT
[V-MAX [pres p3 sg]

[V parecer]
[C-MAX

[I-MAX.
[I-SPEC [N-MAX [N juan] [p3 sg iasc agent noii-ifl]
[I [infl]
[I-COMPLEMENT

[V-MAX [inf]

[V odiar] [N-MAX [DET los] [N gatos] [pl neut goal objjj]fljflj]

f. Target Language S-structure:

[C-MAX
[I-MAX

J-SPEC [N-MAX [N juan] [p3 sg masc agent nomfld
[I E [pres p3 sg]]
[I-COMPLEMENT

[V-MAX [pres p3 sg]
[V parecer]

[C-MAX
J-MAX

[I-SPEC [N-MAX e]-]
[I [infl]
[I-COMPLEMENT

[V-MAX [inf]
[V odiar] [N-MAX [DET los] [N gatos] [pl neut goal obj]fl]j]flfl

[C-MAX
[I-MAX.

[I-SPEC [N-MAX e [pro p3 sgj]l
[I E [pres p3 sg]]
[I-COMPLEMENT

[V-MAX [pres p3 sg]
[V parecerl

[C-MAX [C que]
[I-MAX

[I-SPEC [N-MAX [N juanj 13 sg iiasc agent nonifl]
[I [pres subj p3 sofl

CO MMPLEMENT
[V-MAX

[V odiar] [N-MAX. [DET los] [N gatos] [pl neut goal obj]jfljfl]j]

APPENDIX K. EXAMPLES 305

9 -Target Language Surface Form: Jztan parcce odlar los gatos, Parcce que Jitan Mile los gatos

K.6 Clitic Doubling

a. Source Language Surface Form: Alaxi'a Ic dio el lib-ro a Jitan

b. Morphologically Analyzed Input:

((mari-a N SG FEM ANIMATE PROPER P3)
(le C-DAT NEUT PONOUN P3 SG OBJ ANIMATE)
(dar V SC P3 PAST

(EXTERNAL (AGENT ANIMATE))
(SUBCAT (GOAL INANIMATE) (PATIENT ANIMATE)))

(el DET MASC SG)
(libro, N INANIMATE MASC SG)
(a P (SUBCAT (N)))
Ouan N SG MASC ANIMATE PROPER P3))

c. Source Language S-structure -(and D-structure):

[I-MAX

[T-SPEC [N-MAX [N mari-al [p3 sg feni agent noni aimates

[I E [past p3 sg]]
[I-COMPLEMENT

[V-MAX [past p3 sg]
[V [CL-DAT le [p3 sg patient obj animates [V dar]'j

[V-COMPLEMENT
[N-MAX [DET el] [N libro] 'sg niasc goal obj inanimate]]

[P-MAX [P a] [N-MAX [N juanj [p3 sg masc patient obj'aniniate1111111

d. Target Language D-structure (and S-structure):

[I-MAX
[I-SPEC [N-MAX [N mary] [p3 sg fem agent nom aniniatefll'
[I E [past p3 sg]]
[I-COMPLEMENT

[V-MAX [past p3 sgj
[V give]
[V-COMPLEMENT

[N-MAX [DET the] [N book] [sg rnasc goal obj inanimate]]
[P-MAX [P to] [N-MAX [N John] [p3 sg masc patient obj animatelflfl]]

e. Target Language Surface Form: Allary gave the book to John

ft- -

APPEINDIX K. EXAMPLES

K.7 Null Subject

a. Source Language Surface Form: Vi la pchcitla

b. Morphologically Analyzed Input:

((ver V SG PI PAST INTRANS (EXTERNAL (AGENT ANIMATE))
(SUBCAT (P-GOAL ANIMATE)) (SUBCAT (GOAL INANTNIATE)))

(la DET FEM SG)
(peli-cula N NANIMATE FEM SG))

c. Source Language S-structure (and D-structure):

[C,-MAX
[I-MAX

J-SPEC [N-MAX e [norn pro pI sg animate agentfl]
J E]
[I-COMPLEMENT

[V-MAX ver [past pt sg]
[V-COMPLEMENT

[N-MAX.
[DET la]
[N peli-culal [obj fem p3 sg animate goal]]flfl]

d. Target Language D-structure:

[C-MAX
[I-MAX

[I-SPEC [N-MAX e [nom pl sg animate agent]]]
J E]
[I-COMPLEMENT

[V-MAX see [past pI sgj
[V-COMPLEMENT

[N-MAX
[DET the]

[N movie] 'obj feni p3 sg aimate goal]flflfl

e. Target Language S-structure:

[C-MAX
[I-MAX

[I-SPEC [N-MAX I noni pI sg animate agentfl]
El

[I-COMPLEMENT
[V-MAX see [past pI sg]

[V-COMPLEMENT
[N-MAX

[DET the]
[N movie] [obj feni p3 sg animate ooal"flfl]

306

---- . -

APPENDIX K.'-EXAlk/IPLES 30 7

f. Target Language Surface Forn-t I auy the movic

.4f �,
I

Abney, S. 1987) "Licensing and Parsing," Proceedings of NELS 17, University of Massachusetts

at Amherst Aherst, MA.

Barton, G. Edward, Jr. 1984) "Toward a Principle-Based Parser," Massachusetts Institute of

Technology, Cambridge, MA, Al Memo 788.

Berwick, Robert C 1985) The Acquisition of Syntactic Knowledge, MIT Press, Cambridge,

MA.

Berwick, Robert C 1985) "Class Notes, Natural Language Processing and Knowledge Repre-

sentation," Massachusetts Institute of Technology, Cambridge, MA, Course 6863.

Borer, H. 1984) Parametric Syntax: Case Studies in Semitic and Romance Languages, Foris

Publications, Dordrecht.

Chomsky, Noam A. 1977) "On Wh-Movement," in Formal Syntax, Culicover, P. W., and T.

Wasow (eds.), Academic Press, New York.

Chomsky, Noam A. (1981a) Principles and Parameters in Syntactic Theory," in Explanation

in Linguistics, Hornstein, N. and D. Lightfoot (eds.), Longman, London and New York.

Chomsky, Noam A. (1981b) Lectures on Government and Binding, Foris Publications, Dor-

drecht.

Chomsky, Noam A. (1986a) Barriers, MIT Press, Cambridge, MA.

Chomsky, Noam A. (1986b) Knowledge of Language: Its Nature, Origin and (Tse, MIT Press,

Cambridge, MA.

Earley, Jay 1970) "An Efficient Context-Free Parsing Algorithm," Communications of the

A CM 13:2 94-102.

308

Ice erences

309

Dorr, Bonnie J. 1988) "A Lexical Conceptual Approach to (veneration for Machine Transla-

tion," Massachusetts Institute of Technology, Cambridge, N:IA, Ph.D. Proposal, Al Memo

1015.

Fong, Sandiway 1986) "Specifying (oordination in Logic," S.M. thesis, Department of Elec-

trical Engineering and Computer Science, Massachusetts Institute of Technology.

Frazier, Lyn 1986) "Natural Classes in Language Processing," presented at the Cognitive

Science Seminar, November, Cambridge, MA.

Gazdar, G., E. Klein, G. Pullum, and 1. Sag 1985) GeneraliZed Pase Structure Gammar,

Basil Blackwell, Oxford, England.

Guerssel, Mohamed, Kenneth Hale, Mary Laughren, Beth Levin, and Josie White Eagle 1985)

"A Cross-Linguistic Study of Transitivity Alternations,"

Hale, K. 1973) "A Note on Subject-Object Inversion -in Navajo," in Issues in inguistics:

Papers in Honor of Henry and Rence Kahane, B. Kachrue et. al. (eds.), niversity of

Illinois Press, Urbana.

Jaeggli, Osvaldo Adolfo 1980) "On Some Phonologically Null elements in Syntax," Ph.D.

thesis, Department of Linguistics and Philosophy, Massachusetts Institute of Technology.

Jaeggli, Osvaldo Adolfo 1981) Topics in Romance Syntax, Fori-s Publications, Dordrecht, Hol-

land/Cinnan-iinson, USA.

Karttunen, L., and K. Wittenburg 1983) "A Two-Level Morphological Analysis of English,"

Texas Linguistic Form 22, 163-278.

Kashket, Michael B. 1987) "A Government-Binding Based Parser for Warlpiri a Free-word

Order Language," Master of Science thesis, Massachusetts Institute of Technology.

Richard S. 1975) rench Syntax: The Transformational Cycle, MIT Press, Cambridge,

MA.

Kayne, Richard S. 1981) "ECP Extensions," Linguistic Inquiry 12:1, 93-133.

Levin, Beth, and Malka Rappaport 1985) "The Formation of Adjectival Passives," Center

for ognitive Science, Massachusetts Institute of Technology, ambridge, MA., Lexicon

Project Working Papers 2.

310

Lightfoot, David 1982) The .-Language Lottery: Tou,,ard a Biology of Gramniars, MIT Press,

Cambridge, MA.

Nassi, Robert J., Bernard Bernstein and Teodore F. Nuzzi 1965) Reiliew TeXt i Spanish

Three Years, Anisco School Publications, New York, NY.

Quicoli, C. 1976) "Clitic Movement in French Causatives," Linguistic Analysis 62.

Rappaport, Malka, and Beth Levin 1986) "What to Do with Theta-Roles," Center for og-

nitive Science, Massachusetts Institute of Technology, ambridge, MA., Lexicon Project

Working Papers 11.

Rienisd"k, Henk van and Edwin Williams 1986) ntroditetion to the Theory of Gram-mar, MIT

Press, Cambridge, MA.

Ristad, Eric S. 1986) "Computational Complexity of urrent GPSG Theory," assachusetts

- Institute of Technology, Cambridge, MA, Al emo 894.

Rivas, A. 1977) "A Theory of Clitics," Ph.D. thesis, Department of Linguistics, Massachusetts

Institute of Technology.

Rizzi, Luigi 1978) "Violations of Wh Island Constraint in Italian and the Subjacency Condi-

tion," Montreal Wrking Papers in Linguistics.

Sharp, Randall M. 1985) "A Model of Grammar Based on Principles of Government and

Binding," M.S. thesis, Department of Computer Science, University of British Columbia.

Slocum, Jonathan (1984a) "METAL: The LRC Machine Translation System," Linguistics Re-

search Center, niversity of Texas, Austin, Working Paper LRC-84-2.

Slocum, Jonathan (1984b) "Machine Translation: Jts History, Current Status, and Future

Prospects," Linguistics Research Center, University of Texas, Austin, Working Paper LRC-

84-3.

Stockwell, Robert P., J. Donald Bowen and John W. Martin (I 965) The Gra'm maticalStructures

of English and Spanish, University of Chicago Press, hicago Illinois and London.

Strozer J 1976) "Clitics in Spanish," Ph.D. thesis, Department of Linguistics, UCLA.

Thiersch, Craig and Hans-Peter Kolb 1986) "Strict X-Bar Parsing: Prolegoniena to a Government-

Binding Parser," University of Tilburg and Univeristy of Tebingen, The Netherlands.

311

Torrego, Esther 1984) "On Inversion and Some of Its Effects," Linguistic Inquiry 15:1, 103-129.

Wehrli, Eric 1984) "A Government-binding Parser for French," Institut' pour les Etudes Se-

mantiques et Cognitives, Universite de Geneve, Working Paper 48.

Wexler, Kenneth and M. Rita Manzini 1986) Parameters and Learnability in Bindin The-

ory, presented at the Cognitive Science &mina-r, Septembcr, 'ambridge, MA.

