
c WORKING PAPER 82

UNDERSTANDING LISP PROGRAMS:

TOWARDS A PROGRAMMER'S APPRENTICE

Charles Rich and Howard E. Shrobe

Massachusetts Institute of Technology

Artificial Intelligence Laboratory

December. 1974

Abstract

Several attempts have been made to produce tools which will help the programmer
of complex computer systems. A new approach is proposed which integrates the
programmer's lntenttons. the program code, and the comments, by relating them to a
knowledge base of programming techniques. Our research will extend the work of
Sussman, Goldstein, and Hewitt on program descrtptton and annotatIon. A prototype
system will be implemented which answers questions and detects bugs in simple LISP
programs.

This report describes research done at the Artificial Intelligence
Laboratory of the Massachusetts Institute of Technology. Support
for the laboratory's artificial intelligence research is provided
in part by the Advanced Research Projects Agency of the Department
of Defense under Office of Naval Research contract N00014-70~A-
0362-0005.

Working Papers are informal papers intended· for internal use.

TABLE OF CONTENTS

CHAPTER ZERO. MOTIVATION AND SCENARIO

0.0 The Complexity Barrier
0.1 Relationship To Other Work
0.1.1 Limitations of Previous Approaches
0.1.2 Knowledge Based Approaches
0.2 Scenarios
0.3 The Game Plan

CHAPTER ONE. THE KNOWLEDGE BASE

1.0 Introduction
l.l The Contents Of The Knowledge Base
1.1.1 Descriptive Models
1.1.2 Implementation Plans
1.1.3 LISP Sp'ecialized Knowledge
1.2 Organization Of The Knowledge Base
1.2.1 Prototypes and Instantiations
1.2.2 Forking of Models

'cHApTER TWO. PROGRAM TELEOLOGY AND ANNOTATION

2.1 The Function of Annotation
2.2 Theoretical Framework for Teleology
2.2.1 Segmentation of the Code
2.2.2 Program Specs
2.2.3 Purpose Links.
2.2.4 Plans
2.3 Annotation and the P.A.

CHAPTER THREE. RECOGNITION AND UNDERSTANDING

3.0 Introduction
3.1 Surface Structure in Programs
3.2 Building the Model of the Program
3.3 Control Structure and Implementation Issues
3.4 Advice Taking and Assimilation of New Information
3.5 Relation to Natural Language Understanding

1

1
4
4
9

17
25

29

29
34
S4
40
46
48
50
51

54
58
58
60
64
67
14

76

76
77
83
92
94
95

o

:'10 O',r, "

o

•

CHAPTER ZERO. MOTIVATION AND SCENARIO

0.0 The Complexity Barrier

During the past decade the power of computational facilities has increased by several orders of

magnitude. The transition from tab equipment systems to the modern day computer utility,

exemplified by MULT/CS. has taken little more than two decades. Moreover we are faced with

the realistic prospect that current generation hardware will itself be superseeded within another

decade by LSI and other technologies. sophisticated enough to house in a desk drawer computers

more powerful than those of the last generation.

During this period, software develoment has also proceeded at an amazing rate. It has similarly

taken only about two decades for the transition from the first FORTRAN compiler, to modern

PL/I (and to other structured languages>, optimizing compilers, sophisticated data-base managing

systems, complex operating systems like MULTICS, etc. Within the Artificial Intelligence

community. this same progress has taken place. The transition from the batch LISP 1.5 to higher

powered interactive dialects such as MACLISP and INTERLISP has also taken less than two

decades. In addition, new specialized A.I. languages have been developed, e.g. PLAN N ER,

CONNIVER, and QA4.

Unfortunately, the result of such advances has been, to a large extent, merely to open Pandora's

box. Each advance in computing hardware or in the power of programming languages, has

spawned a new generation of yet more sophisticated and complex programs. Modern large scale

programs are, to a large extent, caught on the horns of a dilemma. On the one hand, the sheer

C' magnitude of most large software systems dictates that they be produced in a project in which

PAGE 2

responsibilities for sub~modules is parcelled out; on the other hand, the interactions between these

submodules are frequently so diverse that they defy coordination among an entire project of

individuals none of whom see the entire picture because of this division of labor. This suggests

that design and even coding must be accompUshed by a single individual. Unfortunately, one

individual usually is no more successful at keeping all the interactions straight than is the entire

project. The end result of this situation is that software is both notoriously late and famously

unreliable.

There are additional difficulties brought about by the economics of large scale production.

Programmers have become "proletarianized". The elite expert programmer who crafted a system

and stayed with it for many years, finely tuning it and adding new bells and whistles with ease,

c

~
has by and large been superseeded by an entire generation of college graduates who were ~

introduced to computing in their courses, and who are hired and fired by programming shops in

accord with the winds of the market place. Each such individual must pay the price of getUng up

to speed on the current system being produced, usually mastering only that corner of the system

necessary for his individual task before he is transferred to another project or layed off. The net

result of this process is that each new feature added to a system carries with it an extreme

likelihood of introducing a new "bug". The computer software industry has a folklore of "horror

stories" caused by this process. Time-sharing systems are put on the air only to crash seven times

in the first hour, deleting some user's files in the process; companies switch to a canned inventory

system only to find out that they no longer know how many of certain items they now have. etc.

We have, thus, come up against what Terry Winograd has referred to as the "complexity barrier". C
Winograd, working not in large scale commercial programming, but in the research environment

PAGE 3

C of the M .I.T. Artificial Intelligence Laboratory, observed this same phenomenon of programs

growing larger and more complex than could be handled by either an individual or a project.

SH RDLU, Winograd's magnum opus, is precisely such a program. Designed as a research project

in computer understanding of natural language, SH RDLU also incorporates a problem· solving

component to solve extremely simple construction tasks in a world which contained a collection of

toy blocks, boxes and a table. Even after several rounds of "cleaning up the code" (which had the

express purpose of clarifying the interactions), it is still well known that parts of the program

(particularly those which involve interaction between the semantic specialists and the dictionary)

should be touched only by a select crew of experts. Given that SH RDLU, impressive as it is, is not

anywhere near to the machine intelligence to which A.I. aspires, Winograd and others (including

the authors of this paper) have concluded that continued research in A.I. is dependent on

producing a means of breaking through this barrier of complexity.

It should be realized that this barrier is not caused simply by the size of the program, but rather is

due to the fact that, as the size increases, the number of relationships between modules (assuming

the code is coded modularly) increases conSiderably quicker. In order for a program to work. it is

necessary for these interactions (function or subroutine calls, shared variables, etc.) to be both .
syntactically, and semantically correct. For example, a routine might expect as input a particular

type of Ust called an s-marker Ust. A syntactic check, at least in LISP, could only verify that the

routine is being passed a ltst; a semantic check would verify that a s~marker Ust was being passed

in. The essense of the complexity barrier is that, as the size of the program grows, the much more

rapid growth of the interactions between modules makes it virtually impossible to design a new

module which can function within the constraints of the existing program.

! I
~ .

PAGE 4

c
0.1 RELATIONSHIP TO OTHER WORK

0.1.1 Limitations of Previous Approaches

A great deal of the work done within Computer Science departments for the past several years has

to some extent or other been motivated by a desire to deal with this issue of bringing the

complexity problem under control. Several approaches have been proposed, all of which suggest

that the answer is to force the computer to help manage the complexity.

A first cut solution to the complexity problem involves the construction of a set of tools to ease the

programmer's job. Such tools would include cross reference generators, pretty-printers, various

break-point setters and related debugging aids, etc. The best example of this approach is the work

done in constructing INTERLISP ireitelman,1974>. What typifies this approach, is the idea that \~

the system should provide all the assistance that it can, without its having to know very much

about the program at hand.

The limitation of this approach is that a system so designed can provide little aid to the

programmer in actually designing the program. This is intrinsic to the approach; the system is not

expected to have knowledge of the programmer's intentions to any real degree. The services

rendered by this type of system are limit~ to a very valuable collection of essentially syntactic aids.

Such aids provide extremely valuable information: cross references, stack snapshots on failure, etc.;

all of these are indispensible to a programmer trying to design or debug a program. They do .

require, however, that the programmer actively knows the interactions, goal structure and overal1

intentions of the whole system (or at least of that part of it on which he is currently working). C
Keeping track of these facts tends to be a tasK which is better suited to a machine than a person.

• PAGE!)

because it exceeds the storage capacities of most people's active memory. To summarize, these tools

provide much needed help, but they do fall short of breaking the complexity b~rrier.

A second approach has been to design new languages or formalisms which in some way will bring

the complexity problem under control by imposing structure on the code. This general trend has

come to be called structured programmtng, and in the non-A.I. world is most associa~ed with

Edsger Dijk.stra, C.A.R. Hoare, and others <Dahl, Dijk.stra, and Hoare, 1972>. this school has also

ad vocated changes in the methodology of programming, the central ideas being "top down

programming", "stepwise refinement", "goto-Iess programming", and "modularity".

Within the Artificial Intelligence community there have also been a number of researchers

involved in the development of better languages and formalisms. In particular, there has been

what seems to be a never ending series of powerful new languages, each claiming to solve many of

the problems of writing large A.1. systems (and each suceeding to some extent). Such efforts

include PLANNER <HeWitt, 1971>, CONNIVER <Sussman and McDermott, 1972>, Q.A4 <Rulifson,

Dirksen. and Waldinger, 1972>, and the ACTORS formalism <HeWitt, et. aI., 1973>. Although all

of these researchers would not consider themselves part of the structured programming movement.

(quite the contrary, most of these languages are designed to escape, in one way or another, the rules

of "structured programming"), there is still the shared assumption (with which we agree) that better

formalisms and languages can solve some of the compleXity problem.

Formalism and language design does promise to prOVide us with techniques which will help

develop clearer, more structured programs. Yet the problem we face can only be partly solved

through this approach. For one thing, there is a wen known phenomenon that stronger formalisms

PAGE 6

breed m9re complex programs; e.g. PLANNER and its decendents have opened A.I.

programming to the type of complexity exemplified by SH RDLU. This difficulty. however. is not

really the'cr~x of the matter; after all, we really do want to construct programs as complex as this

(in fact, much more complex). The problem is that, within the realm of commercial programming

as well as within the A.I. community. it is unrealistic to think that even the perfect language could

be adopted overnight. Old programs have to be maintained, new language processors need to be

implemented on a host of different machines. and most importantly. programmers have to adopt to
•

the new language or methodology. This simply does not happen qUickly, if at all; most

. programmers still use FORT RAN or COBOL; most A.1. programming is still done in LISP. Thus,

we feel that it is more productive at this point to discuss means of helping programmers with the

complexities they encounter within the language systems they currently use; nevertheless. we feel it

important to note that the system which we will propose constructing in this document ~i11 be

capable of a rather straightforward adaptation to new languages.

A radical approach to the compleXity proble~ has been to suggest that the easiest way out is simply

to make the machine do everything; i.e. automattc programming. This approach has bt;!en put

forward most clearly by Robert Balzer <"Automatic Programming"j Balzer 1973>, and is currently

being investigated by several researchers at M.I.T.. The proposed idea is to have the machine

produce efficient code, given only an English or some other "high level" description of the

problem. Although. this approach does seem seductive. it is our estimate that it will not in the

short run produce results of much value to the designer of large-scale A.I. programs (or other large

scale programs). It is interesting to note. however. that our approach does seem in many ways to be

a step towards such "automagic programming".

c

o

• PAGE 7

c~ Another criticism of automatic programming is that, in general, computers ought to aid in

programming, not assume the overall task. This can be seen by looking at applications of

computers in engineering disciplines other than software engineering. At present, although

computers play a valuable role as aids in architectural deSign, it is unclear that the aesthetic sense

necessary for automatic design could be formalized to the extent necessary to paCkage it into

computer programs. (It is, after all, quite difficult to package it into people). Furthermore, the

problem of representation of vague concepts, is precisely the crux of real attempts to simulate

human intelligence on the computer. This suggests that in the near future automatic programming

ought not to, and will not be of appreciable help in constructing the type of complex programs

which typify work in A.I.

A final idea with much currency is that of program verlflcatton. The central idea of this approach

is to construct in the f.irst order logic a. statement of some property of the program (usually· an

overall statement of the program's behavior). Further, it is observed that various other statements

in the first order logic can be attached to locations in the flowchart of· the program. These are

then used to construct a proof of the desired property of the program. Most well known among the

advocates of this approach are Floyd <"Assigning Meaning to Programs", 1967>, Burstall <"Proving

Properties of Programs by Structural Induction", 1969>, and others. Peter Deutsch <"An .Interactive

Program Verifier", 1973> has constructed a program which performs this verification function for

a series of numetical programs of moderate compleXity. Although he departs in several respects

from the approach originally presented by Floyd, it is still fair to say that the approach basically

involves a resolution-like . theorem-prover working on assertions in the first order logiC. Because of

this a sizable part of his effort is diverted into keeping the theorm proving process from engaging

in exponential explOSions.

PAGES

In general. this approach seems to us to have two difficulties. First. the process is best suited to

proving programs correct once they have been designed. whereas we see the main problem. as

designing programs within a highly complex domain. Secondly. although we find the idea of

certifying programs to be attractive. the method used by the above researchers forces the

programmer to express his intentions in a language (first order logic) which is frequently

unnatural to him. and in some cases inadequate for the task. Furthermore. the knOWledge used in

constructing these proofs is itself often obscure (for example. Burstall <Burstan. 19'72> uses category

theory to prove properties about programs using list structure). Because of this. the system would

be inaccessible to the average programmer who has a more "common-sense" understanding of his

program design.

o

We have summarized these approaches not to take "cheap shots" at them, but rather to see what ",,-j

limitations they have run into. Chief among these difficulties is the inability to bring into use the

basic knowledge of programming skills which· the average programmer has at his. disposal.

Furthermore. all of these approaches have difficulty integrating into their operation the

programmer's knowledge of the overall intentions and goal structure of his program. They,

therefore, have to',either explicitly disavow certain types of services or to remove the programmer

from the formulation of the program's design.

Althoug~ there is great value to many of the services which these various approaches can render,

we feel that they suffer from not being integrated into the proper total system. In the next two

sections we will describe and present scenarios of what we think such a total integrated system

ought to be like. Many of the capabilities of these earlier approaches will be incorporated into the C
system which we are proposing. Nevertheless, it would be incorrect to include our system in any of

PAGE 9

(" the previously reviewed categories.

0.1.2 Knowledge Based Approaches

Within the Aritificial Intelligence Laboratory at M.I.T. there has developed over the past several

years a growing belief that the essense of building intelligent automata is contained within the

question of how to build a knowlege based system which can employ its base of knowledge to solve

problems within a particular domain. We propose to try to apply this approach to the problem

domain of program design. verification. documentation and bug detection.

The overall motivation for this project is the belief that man-machine interaction can be a

symbiotic relationship in which the overall productivity is greater than the sum of the parts. This

(/ is a large question which could be approached in any of a number of engineering disciplines. We

have chosen software engineering for several reasons. First. we know it best. Secondly. it presents

an area of large complexity where we can both break out of the traps accompar;tying "toy

problems" and still cut the domain dbwn to a manageable size. Finally. and perhaps most

significantly. software engineering is very much a case of the cobbler's child who has no shoes.

We hope to at least save a sole in this thesis.

We, therefore, are not intending to begin research on how to replace programmers, but rather on

how a knowledgeable computer could help an already competent programmer. It has been our

experience that we can produce better and cleaner code faster when working with a partner who

shares our understanding of the intentions and goal structure of our program. We, therefore,

believe that the appropriate metaphor for our work is that of creating a program with the

capabilities of a junior colleague working on a joint project. The program should know the

PAGE 10

problem domain,implementation techniques, and the programming language being used fairly
c

well. It need not know everything in advance; it can always ask its senior partner for advice or

further information. Furthermore, this program might well be capable of paying more attention to

details, of writing trivial parts of the code, of checking that certain constraints are satisfied, and

. even (in some cases) of c1eaning up a large system after it has been put together. Given that

programmers are popularly and correctly identified in the public mind as practicing black magic,

we have named our proposed junior colleague EUCRATES, the sorceror's apprentice of Greek

mythology. Unlike that mythological character, however, we want our apprentice to be a diligent.

careful helper, who does not overstep the bounds of his capabilites.

We see several past research efforts as having relevance to the tasks we are undertaking, although
,.,-----".

this project is in many ways breaking into virgin territory. We have already pointed out that we ~J

are departing from the approaches summarized in the last section, particularly by virtue of the fact

that we see knowledge based programming as the essence of the task. To further sharpen that

distinction, let us add that the knowledge which we would Wish to encode in our system can not

and would not appear as some abstracted or formalized version of the programmer's "common

sense" knowledge. Thus, we would not repre~nt knowledge about list structure as theorems in the

theory of categories, but rather as the "facts" which every LISP programmer knows, namely that

there are "cars" and "cdrs", etc. Much of our work will involve codifying enou,gh of these "facts"

into the system to get any useful behaVior out of it at all.·

c

PAGE 11

c- 0.1.2.1 Winograd's "A" System

The type of system we are trying to design was suggested to us by Terry Winograd's "Bteaking the

Complexity Barrier" paper <Winograd, 19'73>. In that paper, it is suggested that a programming

environment unifying editors, debuggers, programming language systems and a knowledge base (to

be called the "A" system) would be a valuable tool to put at the disposal of t,he programmer of

complex systems. Further, Winograd suggests the use of program annotation to help the system

understand the goals, purposes, and methods which the programmer is employing. To this end he

identifies three types of comment namely "conditions", "assertions" and "purposes". These will be

seen to have their counterparts within our system.

The" A" system as proposed would inc1ude: (1) a documentation and question answering facility. i.e.

the system could explain various facts about the way the program works as well as insert

documentation "on the fly". (2)· several levels of interpreters, each capable of a unjque~tradeoff

between efficiency and carefulness in execution. At one extreme, everything is checked and the

system runs slowly; at the other, carefully compiled code is run unchecked. (3) An editor integrated

into the other sections so that changes to the code can be inserted to fix problems "on the fly·, and

so that proposed changes to the code can be checked and criticized as they are being made .

. What is lacking in this description of the "A" ~ystem is any idea of how various parts of the system

perform their duties. Our major task will be in filling in these details, which are anything but

trivial. The proposed features seem to us to be a fair description of those tools which seem most

important, and the work proposed here will center on one of these, namely the question answering -

documentation system. However, the ideas which we will employ to accomplish our goals ar-e not

touched upon in Winograd's paper; it is not a description of an existing system.

•
PAGE 12

0.1.2.2 Smith and Hewitt's Programming Apprentice
o

A second piece of related research has been summarized in Smith and Hewitt's "Towards a

Prograrpming Apprentice" <Smith and Hewitt, 1974>. Here a system is proposed and described

which is intended to achieve many of the aims of the "A" system through a process caned "Meta-

evaluation". Intended to run within a system based on HeWitt's ACTORS formalism; the approach

involves certain concepts which we have found very useful. Most important among these is the

notion of attaching to every identifiable segment of code a statement describing the behavior of

the code; this is intended to say "what" the code does, not "how· it does it. We have used this

concept to help us formalize the semantics of program description.

. There are, howev~r, extremely important differences between this approach and ours. First among
4-~

these is that we are attacking a different problem than that addressed by Smith and Hewitt. Their 10

goal is to justify that a module satisfies the contract (i.e. behavioral description) attached to it; to

do this they evaluate the behavior of the code on abstract input using an environment of forking

contexts and background knowledge. Out of this, they hope to realize a "justification" which

captures the teleological structure of the program and to use this to further aid the programmer.
,.

Our goal is to build a knowledge base containing such information already and to use it to help

the programmer design code. Rather than meta-evaluating code, we try to recognize it as being

Similar to s,omething which we already understand; we use such recognition to build a model of

the code's behavior and teleology.

A second important difference is that we see the structure of the knowledge base as being the

essential question, while Hewitt sees the construction of more modular programming styles and C
formalisms as a central task. Given such an ACTORS formalism, Hewitt and Smith believe that

PAGE 13

C· they could build a meta-evaluating system which would serve as the base for their apprentice~

(~'

i'

Because of this, Smith and Hewitt's system will have to wait for the implementation of a language

based on this new formalism, while ours might be of use to the programmer of already existing

LISP systems. In many ways these two approaches wind up being complementary in the sense that

they attacK different ends of the same large problem. Each system will be able to incorporate most

of the ideas of the other.

0.1.2.3 Sussman's HACKER

Many of our ideas about program teleology follow from work reported by Sussman in • A

Computational Model of Skill Acquisition" <Sussman, 1973>, which describes a program called

.. HACK ERN which can write, debug and learn new programs for the Blocks World. The main

ideas we have found relevant center around the notions of "purposes" Within a program and the

realization of this concept as the functional relationship between segments ,of code. Sussman

identifies two such relationships, namely prerequisite and main step. In addition, he conects these

concepts to the temporal sequencing of a program and to the possible causes of "bugs" within a

program.

HACK ER achieves its ends by attempting to pose a simple solution (i.e. a first order

approximation) to the problem with which it is presented. It then runs the proposed program in a

"careful" mode in which annotation is checked and a complete history is maintained in the form of

process snapshots called the "chrontext". If a Violation is detected, the "chrontext" is analyzed and

the essense of the goal structure is abstracted from it. Th,is is then checked against a catalogue of

. known types of "bugs" to find the fix. This information is also used to compile "critics" which will

prevent the faulty plan from being proposed again.

PAGE 14

Again we find that in many ways our work is complementary to the work reported. In particular,
c

we do not set ourselves the goal of automatic program proposal and debugging, but rather that of

interaction with the programmer who is doing these things. Secondly, we wish to have avaiUable

during the design phase, to as great an extent as possible, the kind of knowledge which HACKER

abstracts at the time of the disaster. Finally, we are working within a domain which is in no sense

a toy domain like, the blocks world. We, therefore, find ourselves much more often in a situation

of partial knowledge, in which interaction with the programmer becomes essential.

0.1.2.4 Goldstein's MYCROFT

The final work which has advanced the technology of programming assistance is a program

designed to help debug simple programs written by children within the LOGO system. These

I"":
programs are designed to drawn pictures on a display by guiding a "turtle" with simple "forward"~i

an~ "right" commands. Goldstein's MYCROFT <Goldstein, 1974> debugs these programs by

comparing the picture actually drawn (actually an internal representation of it) to a "moder of .

what the program ought to do. Using the model and the code, the system discerns what the "plan"

of the program must have been and from this generates the program's annotation. This is then

used to gUide the debugger in finding the problem and proposing a correction.

The differences between this approach and curs are mainly those already stated, namely that we

wish to aid in the design of programs which are more complex than those possible within the

limitations set by Mycroft and that we see debugging as being only a part of that process.

Moreover, to accomplish our aims, we think that the user must specify his "plan" in advance, and

that, in our domain, it would be extremely difficult to figure out the "ptan" without having hints C
and a similar "plan" within the knowledge base. We do find, however, that Goldstein's notion of

PAGE 15

(- using the plan as a driving force in debugging is an extremely valuable contribution.

Furthermore, his classification of plan types has provided a starting point for our thinking.

0.1.2.5 Greg Ruth's Sort-Program Debugger

One other thesis done recently at M.I.T. bears some relevance to our overall goal of building a

system capable of analyzing and understanding programs. Greg Ruth <Ruth,1973> constructed a

system which is capable of debugging sorting programs written by children in an elementary

programming class. Ruth's system knows several different sorting algorithms (e.g. bubble sort.

interchange. etc.) and uses these as the driving force of the debugging session. Bugs are found by

first finding that algorithm which most closely matches the student's program. and then classifying

(,:' aU differences as bugs.

Although there are superficial similarities between this approach and that which we wi11 present

here, the essense of the two systems are essentially dissimilar. Like us. Ruth wants the driving

element of his system to represent a class of programs. He therefore represents his algorithms as

production rules in a context free grammar. Recognition, or more appropriately matching. can

then be handled by a simple parser which takes the students program as text and parses it against

the algorithm grammar. This procedure, it seems to us, inherently limits the system to working

within a remarkably narrow range of permissable programs and, therefore, would seem to be an

unlikely candidate for further development. Furthermore, the approach seems incapable of

providing much assistance to a sophisticated programmer during the design phase.

PAGE 16

0.1.2.6 Others

The works cited above have been mainly useful to us in clarifying what kind of knowledge the

programming assistant would have to be in control of. None of them address the issue of

representation of knowledge within a large domain. (To estimate the size of our domain, we can

start with the fact that M ACLISP has over 100 subrs available to the user, and that the basic

techniques which the aver!lge programmer calls upon might well be an order or, magnitude greater

in size. Then, there are more involved concepts, such as those summarized 'in Knuth's several

volumes). Our thinking: on this issue is still largely unsettled but to the extent that we have ideas

they have been influenced by Minsky's "Frame Systems" paper <Minsky, 1974> in which the idea of

"chunking" the knowledge into "frames" with "slots" and "default values" was presented. Mu~hof

the structure we will present here has this flavor to it. However, the other main thesis of this

paper, namely the "hypothesize and jump" paradigm of recognition represents an idea which we

have yet to explore very deeply. In some regards, we find the paradigm of recognition presented

by Marcus in his "wait-and-see" parser <Marcus, 1974> equally compelling. It is in this area of

representations and its relationship to understanding and recogriition paradigms that our ideas are

in the greatest need of clarification.

o

o

PAGE 17

..

C 0.2 SCENARIOS

In this section we illustrate some of the behaviors which the programming apprentice should have.

Most of these will be seen to fall into the category of design and coding advise, i.e. they help the

programmer avoid errors, or they catch the errors before they get entangled into a complicated web

of the design. Most of the examples presented here are real in the sense that the knowledge which

the apprentice calls upon in these examples was also used by the author in writing code very

similar to that presented here. Most of the mistakes shown here were real bugs in the code. It is

also interesting that this code is part of the P.A. system; it i$ part of the mechanism already

created to attach annotation to code in such a way that both are accessible during program

execution, editing, etc.

(-
In this presentation all dialogue is in English. This is primarily for reading ease. Although we

feel that the system we are designing will have adequate knowledge to communicate in natural

language, we also feel that the essense of our research ought not to be in that direction at the

current time. In the dialogues which follow the programmer will be indicated by the Roman text,

while the Apprentice will be indicated by the Goth i c. Program code in UPPER CASE will be the
i

output of the apprentice, programs in lower case are to be understood as the programmer's input.

The ttaitcs text are explanatory comments added by the authors to help indicate what the

apprentice is doing.

c

PAGE 18

0.2.1. First Scenario: Initial Design

I'd like to build a hash table

O.K. you'll need an· insert, a lookup, an array, a hasher, and ~ptionallya delete
rout ine.

The P.A. knows th, matn parts of a Mslztng s'Jstem.

Here's the code for the hasher.

(setq htable-size 8179)
(array hash-table t htable-size)
{defun hasher (key)

(hash-table (abs (\ (maknum key) htable-size))))

O.K. let's do the insert routine.

I'd advise using lists for buckets

The. P.A. knows that there are several wa'1s of dotng haslatng s.,stems, It also knows that tn
LISP the most common approach ts to use luts.

That seems alright; what are other choices?

Rehash. I i near and overf 1014 •.

P.A. gtves name foralternattve schemes. It could explatn an., of tlaese but tlal programmer does
not ask htm to.

O.K. let's use lists. Give me an outline.

Programmer asks for some htnts on !tOW to structure tlae lookup routIne.

The lookup takes one argument, the key. It has 2 stepsl
1. hash to get a bucket.
2. lookup the key in the bucket.

The p.a. knows the structure of thts t,pe of lookup and gtves a broad outltne oftt. If asked to
tt could go tnto much greater detatl. .

O.K. here's my code.
(defun lookup (key)

(do «*f (hash key) (cdr *f)))
«nu I I *f))
(cond .((eq (caar *f) key) (return (car *f))))))

o

c

PAGE 19

(-- lsi t correct that the car of each entry is the key?

c

The P.A. figures out from tts knowledge of tlae program's structure tlaat tlae ftrst element of
each entr., must be the key.

Yes, Now let's do the insert.

I'm sorry, but there's a mistake on the second line. By (hash key) you must mean
to use the hash routine, but its name is hasher not hash. Should I fix that?

. The P .A. catches a "spelltng" mtstake. It does this b, seeing that a parttcular function
appltcatton must be ihe call to tlae hasAlng functton. Stnce It alread., knows that this routtne Is
named hasher not hash, tt both spots and fixes the error. It IS Important to realtze that thts
check would have worked even If the correct name and tM name t.,ped bore no stmtlartt'j to each
other. The check emplo,ed here IS semanttc, not a s'jntacttc check for. close to correct spelltngs of
common words as Is done In INTERLISP.

Yes, then give me an outline of the insert routine.

Insert takes a key and the data item(s) ae the arguments. In general it has two
steps:

1. Hash to the bucket
2. Insert the entry which is built from the key and the data item(s) into the

bucket.

Again the P.A. uses tts knowledge of the structure of Aaslltng scAemis to advIse thf User on Aow
to proceed.'

O.K., here's the code:

(defun insert (key parent name)
(store (hasher key) (cons (cons parent name) key)))

I'm sorry but I see a few problems:
1. You're bui Iding an entry here by doing:

(CONS (CONS PARENT NAME) KEY)
But in the lookup rout i ne the car of the entry is the key.
2. The first argo to store must be a subscripted array reference, but hasher is
not an array. It returns one member of the array hash-table, namely a bucket.

The P.A. knows about tlae posstble dependencies In tM Aashlng scheme, In parttcular, that the
entr, but/der of Insert must agree In certatn detatls wttA tAt ke.,.extractor of tlae lookup routtne.
Also It knows s,ntacttc restrtcttons of tAt bastc LISP functtons.

Let's fix the first. Reverse the order of the arguments to the outer cons.

It ts wortA nottclng that, althougla tAt P.A. nottces tlae bug, tt Is tAe programmer who proposes (I

solutton. T hts wtll be tAt normal mode of operatton.

I assume you mean the followin.g, it ",i II fix the first problem.
(CONS KEY (CONS PARENT NAME))

T Ite P .A. rechecks the problem and sees that It IS now ftxed

Let me see the second problem again.

PAGE 20

In the following form, the first argument must be a subscripted array reference:
(STORE (HASHER KEY) (CONS KEY (CONS PARENT NAME)))

N ottce tltat tltt ftrst ftx has been carrted forwardti~.e. tlae patcla tsnow In place

What.is the name of the array?

hash-table

change the first argo to (hash-table (hasher key»

I assume you mean:
(STORE (HASH-TABLE (HASHER KEV)) •••)

. That won't work ei there Hash-table is an array; its arguments must be numbers.
But hasher returns a bucket which is a list.

Tlte P.A. agatn checks for arguments being of tlte rtght t,pe.Thts ttme It can dothts becauu It
knows the deftntttonsof hash-table and has Iter. It checks to.see If tlte one produces the rIght
ktnd of data for the other. StnClth,., don't ttcomplatns.

I'm going to change hasher so that it will return the subscript of the bucket rather than the
bucket?

You can't. In the lookup routine hasher Is required to return a list so that it
can be searched by cdr'ing down.

The P.A. here searches through tts knowledge of tlte program structure to see what mtght
depend on tltt current deftnttton of hasher, and If tlte dange wtll break tlr.at dependenC'J. It
sees that there ruould be a problem In thts case.

O.K., let me see the code for hasher.

T he programmer ts tntendtng to use the old code as a model forwrtttng a new module.

Here it is.
(DEFUN HASHER (KEY)

(HASH-TABLE (ABS (\ (MAKNUM KEY) HTABLE-SIZE)))

Rename this one bucket-hasher. Also make a function called number-hasher out of the inner
form. It will take a key as its argument and return the subscript in the array of the appropriate
bucket. .

•

o

o

PAGE 21

('. Is this what you want?

(OEFUN NUMBER-HASHER (KEY)
(ABS (\ (MAKNUM KEY) HTABLE-SIZE»)

(OEFUN BUCKET-HASHER (KEY)
(HASH-TABLE (ABS (\ (MAKNUM KEY) HTABLE-SIZE»»

The P.A. performs a stmple edtttng functton, but also uses Us knowledge of the program's
structure to butld Uself an Internal model of the new functton, so that It can answer questtons
about It also.

Yes. Now change the inner form in buck.et hasher to call number-hasher with k.ey as the
argument.

(OEFUN BUCKET-HASHER (KEY)
(HASH-TABLE (NUMBER-HASHER KEY»)

The P.A. uses Us knowledge of the new functton to see tltat tlte call to It ts legtttmate, and that
the old function conttnues to behave as before. Stnce tltu IS true, tt now nottces that the name
change must be propogated to ever,thtng that depended on tltts routtne.

Should I change al I references to HASHER to BUCKET-HASHER?

Yes, except for the one in INSERT. Change that to NUMBER-HASHER. Then check out the.
insert routine.

lOEFUN INSERT (KEY PARENT NAME)
(STORE (HASHER KEY) (CONS KEV (CONS PARENT NAME»»

How do you want me to fix this?

Change the first argo of store to
(hash-table (number-hasher key»

(STORE (HASH-TABLE (NUMBER-HASHER KEY»
(CONS KEY (CONS PARENT NAME»)

O.K. but there is sti II another bug. After you do this store, there wil I only be
one entry in the bucket. If there was anything in the bucket before the store,
it won't be there afterwards.

The P.A. nottces tltat tlte tnsert routIne wtll not sattsf'Y tts descrtptton of an tnsert, namel1 that
. It adds a new element wttltout delmng old ones. It does thts "" constdertng the effect of eaU
of the steps and then tr'Ytng to demonstrate that the overall spectftcattons are met.

Let me see the form starting with the cons.

(CONS KEY (CONS PARENT NAME)

o.k., change that to:

(cons (cons key (cons parent name»
(bucket-hasher key».

You no have a ork i n9 i nser trout i ne:

(OEFUN INSERT (KEY PARENT NAME)
(STORE (HASHER KEY)

(CONS
(CONS (CONS PARENT NAME) KEY»)
(BUCKET -HASHER KEY))))

PAGE 22

The sesston conttnues unttl both the user and the P.A. ar, sattsfttd. TA, program, togltlan
wltlt all tlte knowledl' about It are ftled awa, for future us,.

c

c

PAGE~

(~ 0.2.2 Scenario 2: Working on An Existing Program

c

I'd like to work on the hashing system again.

O.k.

What does an entry look like?

(KEV. (PARENT.NAME»

The P.A. dlspla,s a "t,p'car' entr, of the hash-table. Nottce that tt constructed this during the
sesston presented In tile last scenarto "., appl,tng tts understandtng of the structure of the code
to tdentef., the entr, compostng segment. From tilts tt constructed a "t.,ptca/' entr.,.

What are the restrictions on key?

None.

Call entry-. any entry whose key is an atom.

entry-l is-a entry
(key entry-l) is-a atom.

Th.e apprenttce reports that tt has added a new model to Its knowledge base.

When is ENTRY referenced?

In the lookup routine, where its key part is checked, while looking up the entry
In the bucket. In the insert routine ~here the entry is built and inserted into
the bucket.

The apprenttce checks through tts model of the program to see where tile conceptual enttt.,
ENT RY Is referenced and how. Nottce that there ts no modulartzed routtne to butld an entr.,
or to extract the ke, from an entr.,. The apprentice's model of the program,h.owever, does
contains such concepts wtth po'nters tnto that part of the code which reaitzes the behavtor of
these constructs.

I am going to make a change to the lookup routine. If the entry is an ENTRY-I, then the test in
the bucket lookup will check to see if the parent part of the entry is equal to an additional input
called *parent.

The programmer gIVes the apprenttce Informatton descrtbtng modlftcattons to the plan of the
program . . The apprenttce wtll try to ftt these mods tnto tts extstlng models of the program
structure so that tt can check that the programmer's changes to the code wtll accompltsh what he

PAGE 24

Intended to.

Since the only distinguishing featu~-e of the EfHRV-lis that its key is an atom,
I wi II assume that the check for ENTRV-l is a check that the key i s a~ atom.

Tlte apprenttce explatns tlte conceptual clranges It Itas made. NotIce tltat It IS working wltlt tlae
concepts KEY,' ENTRY, etc. ratker tkan WIth. car's etc. TAen If tke programmer Changes the
format of the entr,. tlte model Is sttll correct at tAe top level.

c,

c. ,

The programmer conttnues worktng on furtlter modtftcattons. However, we feel that the general

capabtltttes kave been IndIcated sufftctentl,.

o

,~
I I

'0

c

..
PAGE 25

(: 0.3 THE GAME PLAN

(0,

0.3.1 Outline of the Proposal

The remainder of this document will present a summary of the framework which we believe, will

be a sufficient base for the capabilities of the apprentice. We believe that the essense of our task

will be to create a knowledge base which captures the semanti,cs of programs. Chapter 1 will

present our preliminary thoughts on this matter. Chapter 2 will further develop these ideas and

show that the framework developed is adequate to account for most annotation which we have

seen attached to programs., This is of extreme importance. for we believe that annotation is an

extremely valuable and often vital aid in program understanding. Chapter 3 will then explain

how the structures developed in, the first two Chapters will allow the system to understand a piece

of code it has never seen. By understanding. we will mean the creation of a model of the program

sufficient to answer questions and to identify bugs. Because this process will bear such similarity

to classic AI recognition problems such as vision and natural language understanding. we will most

frequently refer to it as the recognttton problem.

0.3.2 Research Plan and Schedule

It is important to realize that. at the current time. virtually no code has been written. The research

we are proposing can. therefore. best be explained as creating the programs which this document

hints at. Our basic and firm belief. reflected in the organization of this document. is that the same

foundation underlies aU the various tasks we would wish the P.A. to perform. This foundation is

the knowledge base and the modelling of program teleology developed in Chapters One and Two.

Of the many roles the P.A. can play in assisting the programmer. we will choose one to be a

demonstration of the viability of our ideas--program explanatton. Namely. we will build a system

PAGE 26

which will be capable of answering an the "wh-" (what, why, when, where, how, etc.) type questions
c

about an arbitrary program using hash-tables. Further, it should have the capability to answer

questions about dependencies within the program. Finany, it should have the ability to detect (but

not correct) bugs. We feel this is a good choice, because it will make it as explicit and convincing

as possible that the P.A. reany "understands" programs. We will probably limit the LISP code we

wi1l handle to several basic functions such as: cons, car, cdr, rplaca, rplacd. prog. progn. do. go,

return, condo and, or.

In order to accomplish this we see two main tasks immediately ahead. The first is the data base

design. Although we feel that we know what needs to be in the knowledge base, the question to be

immediately settled is how is the knowledge base to be structured. We plan to settle this within the.
~-\

next month. Secondly. the recognition task must be studied further. Given a fixed design for the 0

knowledge base, we feel that the next two months might well be spent in exploring this area both

in terms of limiting the problem to a manageable size and then in terms of actually writing some

code. Having done this the remainder of our time will be spent on examining how to make the

question answering-bug detection system work.

0.3.3 Towards A Programming Apprentice

This section will simply be an outline of those capabilities which we feel a complete programming

apprentice ought to have. When our research is completed, we will be able to present a detailed

account of how we implemented a program explainer using our knowledge base and mode11ing

techniques as foundation. Furthermore, we will also give in the final research report hopefully

convincing presentations of how the same foundation could be used to implement the remainder of C
the following behaviors:

PAGE 27

(~ (1) Program Explanation

-answering "wh-questions", why, what, how, when.
-explaining behavioural relationships between code segments behavioural relations
between segments of code
-generating summaries of program structure .j'

(2) Debugging Assistance

-ideas of Sussman, Goldstein, Hewitt
-closely related to informal verification

(3) Automatic Coding

-on a local basis,as different from "automatic programming"
-also possibility of "cleaning" up code, i.e. rewriting it making surface structure reflect
underlying model more clearly
-automatically generate extra annotation from information in knowledge base

(4) Intelligent Editor

-check for propogation effects of changes
-user can give editing instructions in semantic rather than syntactic terms

0.3.4 Resource Requirements

In order to accomplish the tasks which we have set for ourselves, we will need a large amount of

computer time. Fortunately, that time is available to us on the A.I. Lab's PDP-IO. Other than thiS,

we have no reqUirements for resources or materials. We are, therefore, prepared to carryon our

research without further resource allocations from either the department or the Institute.

0.3~5 Division of Effort

This work is being conducted as a joint project, precisely because its structure defies natural

C divison. In particular, the knowledge base is the k.ey to the whole system. If it is properly

designed, then the intended application parts of the system (i.e. the recognition system. the question

.~

PAGE 28

answering system and the bug detection system) will be relatively simple to implement. We.

therefore, find it virtually impossible and certainly inappropriate to state a division of

responsibilty.Both of us are accountable for the whole project; it. is both of our responslbU'tes as

well as that of our advisors to guarantee that the work is, in fact. shared equal1y. We believe that

the rest of this document will indicate that this method does indeed workJ the work presented here

has been work done mutually. In fact, it has been an exciting phenomenon so far that we are . .

acting as each other's advisors more than our official advisors are (although th~y are by no means

shirking their duties).

o

• PAGE 29

CHAPTER ONE. THE KNOWLEDGE BASE

1.0 Introduction

\

In the preceeding scenarios, we presented several examples of useful and desirable behavior which

we might want a programmers helper to be able to perform. An essential aspect of each of these

is, in our view. that the programmers helper would have to be knowledgeable, i.e. capable with

only a little help of "understanding" what we are doing. We feel that the essense of such

understanding is the existence of a large base of active knowledge containing substantial

information from the domain of programming which is structured in such a way that the relevant

information can be called into use in the apropriate situations. Given that the knowledge we are

referring to is familiar to any programmer, our goal wi1l be to design the appropriate structure and

then to load into the data base a representation of some small segment of programming knowldege.

so that the programming apprentice can perform its services~

In general. the goals of our research will be centered around this approach of understanding a

program in terms of already existing knowledge; we feel that this dictates that a major part of the

overall system must be dedicated to the task of recognizing the conceptual structure ofa program

and to the identification of those concepts which are used in the course of a program. Frequently,

this is anything but trivial. For example, hash tables, which we will use as a running example,

consist of several functions (i.e. insert, delete, E:tc.) and several data structures (lists, arrays, etc.). It

is the totality of the code used to represent all of these Which, in fact, constitutes a hash table. In

addition, as anyone familiar with programming knows, the actual code to make a hash table will

vary tremendously from one programmer to another. Nevertheless, the understander of such code ,

typically understands it by constructing a model of the program's behaVior which depends very

PAGE 30

little on the particular hackery of the coder. In fact, the kinds of description used in such a model.
o

and their arrangement seem to be remarkably more predictable than the actual code.

It therefore follows that the knowledge base, which is to be the central tool of this understanding

process, should be structured in such a way that it can be Viewed as having semi-discrete units

which the programming apprentice can use as conceptual building blocks in constructing a model

of the program. Given such building blocks to refer to, the programmer can tell his apprentice

that a particular segment of code corresponds (more or less) to one of these conceptual building

blocks, thereby, associating with this segment of code all of the knowledge contained in the

referenced conceptual building block. This will allow the programmer to comment his code largely

by comments of the form "this is a foobar" or "using the frobbie technique", rather than by having

to include detailed descriptions or explanations of the program's goal structure, etc. The latter type

of detailed annotation is in practice difficult to formulate in a line by line format and is therefore

usually completely avoided by professional programmers.

The buildi'1g blocks, out of which the, knowledge base is constructed are, therefore, to be regarded

as generalizations of programs, rather than as representations of a specific segment of code. For

examp·le, the node in the knowledge base corresponding to "hash table" will be a single conceptual

unit Which can instantiate itself to any of the various implementations of a hash table, while yet

maintaining that knowledge which is true of hash tables in general. Since objects in the world of

programming are characterized sometimes by what they do, sometimes by what they are good for,

and other times by how they are internally structured, all of this information will be present in the.

• PAGE Sl

•

(" 1.0.1 Design Criteria, A Priori

OUT current ideas about the structure of the knowledge base are formed and motivated from two

directions. First, we have to establish what knowledge is in a fundamental sense sufftctent for the

P.A. to be able to perform the kinds of tasks we have in mind. One way we get a feeling for this

is to imagine specific performance scenarios, and then satisfy ourselves that, programming and

implementation issues aside, the knowledge required can be accounted for and is somehow present

or at least implicit in the system. 'An example of applying this methodology is to consider the

answering of "WH-questions", i.e. what would we expect the P.A. (in explanation mode) to answer

when the user points to a selment of code anp asks a question that boils down to,a form of How?

Why?, Where?, What?, When?,etc. First we have to decide what the programmer would have in

-
mind when asking such a question, and then assign one or more internal operational definitions

which will correspond to the programmers meanings, but may then be implemented technically.

Such an exercise may define a fundamental capability or basic class of required knowledge. e.g.

respectively the ability to cross-reference and index the code and generate unambiguous

explanatory references to locations in the code in answer to "where" questions; or, in answer to
'

"When" questions, we must develop a time representation appropriate to the expressfori of timing

relationships in the domain of programming. Alternatively, as in the case of "how" and "why"

questions, a performance scenario may give us insight into how particular aspects of the

knowledge base would actually be used. Thus. one major input into the design of th~~ledge is

motivation from the intended applications.

The second important design criterion is that we are striving towards a naturalistic representation,

i.e. that the organization and interrelation of concepts in the knowledge base parallel as closely as . .

possible the way human users naturally conceive of their work and express themselves. Thus any

PAGE 92

c
terminology or grouping of concepts that are natural to human programmers should be reflected in

,
the layout of the knowledge base. This implies, of course, quite a bit of redundancy in the

knowledge base. We are not primarily interested, for the purpose of constructing a P.A .• in

finding "minimar abstract formalisms for the concept space. Keeping the organization of the

•
knowledge base naturalistic will also facilitate the development of the system in the direction of •

understanding user comments and generating explanations in natural language .

. The major character of the knowledge base emerging from t~e two criteria above is that it

necessarily contains a variety of representations. In the following subsections we will describe some

of these that we have ideas about at this time. Though it is not always easy. we will try to separate

questions of implementation from more basic questions of representation.'

1.0.2 Justification of Hash Tables as Research Example

In our research so far we have used the example of a program using a hash table and associated

programming concepts as an aid to gUiding and stimulating our thinking about the problems of

building a P.A. The issues discussed ;n this paper will also ,be illustrated primarily by examples

drawn from this subdomain of programming techniques. The fact that we have found this

example useful is certainly a most important. and possibly totally adequate justification. but we

would also like to stop a moment and justify this choice on a more theoretical, though admittedly

somewhat post hoc basis. Let us try to get a feeling for how large the conceptual space of

programming techniques might be, and then how much of this space is covered by our chosen

example of hash table programs. The space might be divided into two areas, program dynamiCS

or control structure, and program data structures. Under each heading we might list loosely all, the C
forms we can think of. Such a list might be: .

•

•

Data Structures:

Control Structures:

arrays
lists
trees
tables
property Ii ste

iteration
dispatching
subroutines
coroutines
interrupts

stacks
sets
bags
rings
queues

recursion
backtracking
pattern directed invocation
paral lei processing

Of these topics. hash table programs introduce the following subsets:

Data Structures: arrays. lists, tables, rings

Control Structures: iteration, linear plans, subroutines. recursion

PAGE SS

Our justification is then that these are a reasonable number of basic concepts to expect to be

covered by one example. In choosing additional research examples. we will try to cover

(~' complimentary aspects of the domain.

PAGE 34

1.1 THE CONTENTS OF THE KNOWLEDGE BASE

The knowledge base is required to contain an adequate representation for understanding programs.

We distinguish three broad categories of such knowledge. The first, descrtf1tlve models are

intended to answer "what" type questions. The s.econd type of information, which we caU plans, is

explanations of how various behaviors are realized. Finally, information about the semantics and

typical forms of LISP code must also be contained in the knowledge base. The rest of this chapter

will explore these domains in s0n:te detail.

1.1.1 Descriptive Models

1.1.1.1 Conceptual Relat~dness

There seems to be a deep-seated dualism between object and process in the way people talk about

the entities in the domain of the P.A. For example, a hash table can be thought of either as a

concrete ,object consisting of an array of assoc,ation lists, or as an entity whose behaviour is

described by the laws of associative retrieval. In fact, neither of these is' a complete description

alone. There are, after all, several techniques of associative retrieval, and arrays are used for many

things besides hashing data. Probably both kinds of description would be expected in answer to

the question "what" is a hash table. Thus in our knowledge base we will need to be able to capture

both flavors of description. The first kind is what might be called concef1tual relatedness

information, and leads us to think of implementations like Winston Nets with relational pointers

telling what is part-of or a-kind-of something else, what depend-on something else, etc. This

provides the decomposition sense of the answer to "what".

c

c

PAGE 35

1.1.1.2 Intrinsic Descriptions

Also, attached to some concept (or node in the net) we see a need for a behavioural description. In

this regard we are prone to follow Carl Hewitt's notions and speak of specifying the behaviour in

terms of its incoming expectations or precondtttons , and its outgoing entailments, or postcondtttons.

These together constitute the tntrlnslc description, or what we will can specs. The intrinsic

description of a hash table deletion routine for example, would contain clauses which, notation

aside for the moment, would express the following.

Intrinsic Description (Specs) for HASH-TABLE-DELETE

Precond i t ion: Well-formedness of input arguments.
Postconditioh: The item to be deleted is not in the table.

In most cases, the object which is represented by a descriptive model will have a range of

(- beha viors, such as insert. lookup. delete for the case of hash tables. In terms of the code, this

might well be represented by there being several functions which. taken as a cluster, comprise this

C:\

total repetoire; in fact. most decent LISP programmers would use such a implementation.

Moreover, conceptually these various capabilities represent a unified whole. We are, therefore, led
\

to seeing the intrinsic description as a collection of cases which collectively describe the objects total

range.of behaviour under all conditions.

An important point that wilt develop from our hash table example is that we often· find it natural

to describe the behaviour of entities partly in terms of their interaction with other entities. In this .
case there are important interactions between the insertion, deletion, and lookup components of a

hashing scheme, for example that if you insert an entry and then delete it, a subsequent lookup

wi11 fail. These kinds of relationships between segments of code are properly part of their intrinsic

descriptions, because they are independent of the surrounding teleology, or goal structure in which

---_ ... __ ._ .. - '--'

PAGE S6

the components are employed.
o

However. a segment of code may also have extrtnstc relationships to other entities. For example to

say that a hash table represents the currently reserved airline seats. is to give an extrinsic

description of the hash table. At a different level. the information that the programmer's purpose

in calling a particular subroutine is because one of its postconditions is the precondition of a

subsequent segment of code. is another kind of extrinsi~ description. The purpose of a segment of

code is part of its extrinsic description. and will often vary if the code is used in several different

places. However. the intrinsic description is always the same. The arranging of code into an

interwoven structure of compatible purposes is very much the essence of the programmer's

occupation. The basic schemas that he uses in arranging this teleology is what we will refer to

(following Sussman) as plans. These will be discussed in more detail in a following section.

1.1.1.3 Deductive Reasoning

On a primarily introspective basis we feel (in disagreement with Winograd in the" A" Paper) that

sophisticated deductive capabilities are not the major bottleneck in constructing a P.A. It is our

observation that in reasoning about their programs in the contexts of debugging or informal

verification, people typically employ only rather short direct lines of deduction. People do not

naturally verify their programs in the strict sense of Floyd. for example. wherein the efficiency of

an automatic theorm prover for the first order quantificational logic would be a major issue.

Rather. it seems programmers use a "common sense" mode of reasoning. wherein the knowledge is

looser and quite Wide-ranging. The key problem is to choose the relevant information. and once

this is done. the deductive steps are usually few. For example. sUJ)pose the P.A. was faced with a . 0
hashing program in which at some point an item that was expected to be in the table. failed to be

PAGE 37

(' found by the lookup routine. The logical place to look for clues would be in the specs of the

various routines participating in this process, especially because the precondition-postcondition

pairs have a strong deductive flavor to them. (i.e. given that the precondition is met, and that the

routine was called, it is valid to assert the postconditions). The relevant information in this. case

might be represented in some simple logical notation, of the following flavor:

«Insert (entry key data) -> (member (entry key data»)

«Delete key) -> (erase '(member (entry key 7»»

«Member (entry key data» -> «Lookup key) - data»

Notice that this is not intended to imply that the predicate calculus would be a good

representational scheme for this kind of knowledge. Q.uite the contrary, the need to use an

operation like Erase (in order to' represent side effects), as well as a need to keep track of which

<: • facts depend on what other facts , e.g. (lookup key)..data) should not remain true after (member

entry ~ey data) has been deleted, clearly suggests that a procedural, data-base language is advised

for doing logical deductions. However, we also do not believe it is the case that gulping up 'Micro-

Planner or Conniver whole hog wi11 meet the needs of the total system we are constructing, either.

We do have some ideas at this time on how we might construct our system to have the desired

properties. The essense of the idea is localization of the reasoning process, so a simple deductive

mechanism will not be swamped by irrelevant theorems.

The deductive facts described above provide one example of this localization, in that they will be

attached to the appropriate descriptive models, rather than hanging loose in a CONNIVER or

MICRO-PLANNER data base. The reasoning component of the P.A. might then have several (7

C'
/

plus or minus 2?) "scratch-pad" deductive databases (a la Micro-Planner). When a particular

concept becomes involved in the current focus of reasoning. its associated theorems (e.g. the

PAGE sa

o
program specs, used for deductive purposes) are bro~ght into the current deductive scratch-pad. If

a conclusion can still not be reached, the P.A. might consider widening the focus, thus bringing in

more, but potentially less relevant, information. Reasoning may also take place simultaneously at

several levels of abstraction, so· there must also be a mechanism for. communication between the

databases.

1.1.1.4 Examples

We have taken seriously the common observation that one of the best things about the new

M ACLISP manual is its generous use of examples complimentary to the definitional explanations.

Clearly, any system that claims to be at all anthropomorphic in its behaViour, must have the ability

to manipulate and reason with examples. It turns out upon reflection that examples are often a
,n

compact way to implicitly represent knowledge about the behaViour of an entity. Therefore, we '0

find it useful to allow the descriptive model to contain "typicaf examples in addition to the other

information already described.

For example, in the abstract, if you have an object X to which can be app1i~ operations A - Z

with varying results, explicitly you would have to represent this information something like:

(A X) - Ri

(B X) • R2

(C X) .. R3 etc.

But if you have the system interpreter easily available (e.g. a "careful" version of the LISP

interpreter), you can simply make a temporary copy of the object X, apply the operator of interes~

in a scratch-pad context and "see what happens". o

PAGE 39

(- Examples are also often a convenient way to teach (i.e. input) new concepts. For example, to

explain a new data structure FOO, rather than giving a list of constraints, the user might find it

more convenient to give a canonical example. e.g.

(((XYZ). A). B)

Then if later an execution interrupt occurs when trying to take the CDDAR of a FOO data ob jeet,

the P.A. might hypothesize that the bug is due to the ill-formed ness of the data object (rather than

due to incorrect processing). Evidence for this hypothesis would then be obtained (and this is the

way people operate) by attempting to take the CDDAR of a known example of FOO.In this case

it would be found that CDDAR is illegal. suggesting that something is wrong with the process that

is requesting the CDDAR to be clone. rather than with the process that formed the FOO.

('," There is of course a large area of research in determining what exactly constitutes what is

passingly referred to above as a "canoriical example". It is in a sense true that people in such

situations are abstracting a higher level description from the example presented. In fact there are

certain "culturally" accepted conventions and heuristics that are used to help this process of

understanding examples. For example. if you see the list

'(MARY HAD A LITTLE LAMB) ... ,.,.

you usually interpret this as meaning an arbitrary string. Obviously. we are not seriously suggested

that a P.A. needs to have a comprehensive knowledge of fairy tales. Rather. we simply Wish to

point out the existence of (ertain informal notations (e.g. less formal than a strict pattern syntax).

Another common conventional inter~retation is that higher multiplicities '(greater than 3 or 4, say)

usually indicate the generalized "n-multiplicity" tase. For example. a function with a variable

number of arguments is not usually illustrated with only one or two arguments, since many people

might find such an example misleading.

PAGE 40

It would also be desirable, but a somewhat harder problem, for the P.A. to be able to generate its

own examples from more abstract descriptions: This capability could become a very important and

powerful aspect of its reasoning apparatus. Finally,and· this is a complete research project in its

own right which will certainly not be addressed here, it would of course be useful if the P.A. could

conversely generate abstract descriptions from one or more examples.

1.1.1.5 Typical Bugs

There will be a whole class of information in the knowledge base concerned with "bugs·. How the

P .A. would use this information to assist the programmer in debugging was hinted at in the

scenarios of Chapter Zero. Let us just mention here for completeness in the description of the

knowledge base that attached to various nodes would be information about typical bugs that are

associated with them. Frequently, such information might already be implicitly present. For

example, in the descriptive model of an array, the specs require as a prerequisite that the args must

be "in bounds". The function of the additional information on bugs is to adv.ise the P.A about

what bugs are likely to appear. This information is of heuristic value in debugging sessions.

1.1.2 Implementation Plans

Another form of information which clearly must be kept in the knowledge base might well be

though of as implementat~on plans. It is important to realize that given an object, there are

typicany several ways of achieving the desired behavior. In our example of the hash table there

are in fact three rather wen established implementation plans. One can use the hash-rehash

scheme, overflow tables, or lists to implement the required behavior of a bucket. In numerical

o

calculations, square roots might use the successive approximation plans (Newton's method, the 0
halving method) or alternatively a series expansion might .be employed. Virtually all interesting

PAGE 41

(~ computations have these varieties of implementation plans available to them.

(,
, ,/

The choice of implementation plan is a choice which is typically made once and thereby sets the

context for much further understanding of the program. As an example, consider the

implementation of a queue. Virtually every time-sharing system maintains several queues, and they

are frequently implementaed in different ways. One typical method is to use a LISP style list. The

characteristics of this method is that free storage is somehow linked together, and that entries on

the queue are chained together by forward pOinters. Typically, such queues are used where entries
\

are either entered at places other than the rear (say threaded in by priority), or where entries can

be removed (for example, a quit or phone disconnect forces the entry to be. removed from the

allocation queue).

On the other hand, it is frequently the case that such behaVior is not needed and that a Simpler

method can be employed. Namely an array can be used with a front and a back pointer. Removal

and insertion of items is accomplished by moving these two pointers. Garbage collection is not

needed.

Given that this choice has been made, it is clear that a context has been set for understanding the

program which implements the plan. If a LISP style list structure is employed, references to the

forward and backward pointer, or to the array are unlikely to make much sense. Similarly, if one

had in mind an array oriented queue with front and. back pointers, then a reference to the free

storage list would be out of context. Even worse, there might be cases where the same concept

served different functions In two different implementation plans.

PAGE 42,

o
Clearly the descriptive model (in the sense we used it in the previous section) must point at all of

the implementation plans, yet once a chOice of these various plans has been made, it is as if the

others were blocked out. Concepts, objects, specifications, etc. are only relevant to that

implementation plan which is active.

The clearest distinction we can make between implementation plans and .descriptive models is that

the latter explains what an object is, while the former explains how that behavior is to be realized.

In particular,the plan is intended to present a htgh level, goal ortented description of how the

behavior is to accomplished. Thus, a minimal plan would be just a sequence of what other

segments of code are to be called upon. Such descriptions are, however, are by themselves

misleading. Consider, for example, the "plan" to build two S-block high towers. Simply'

enumerating the steps we would get the following plan:

1. Put b on a

2. Put c on b

3. Put e on d

4. Put f on e

Although this is a correct procedure, it is misleading as a general plan for accomplishing the stated

goal, because steps Sand 4 clearly do not have to come after steps 1 and 2.

In contrast, consider a "plan" to find a hash table item. Our current approach would have us state

the plan as

I. Hash to the bucket

2. Lookup the item in the bucket o
Clearly this is not misleading as the previous example was, since this ordering is reqUired. The

•
PAGE 43

(e reverse ordering of doing a random bucket search followed by a hash would produce garbage at

best. Thus, this aproach of "listing the goal steps" can be seen to be inadequate to explain th_e fun

richness of the intertwining of the various steps involved in the plan. This inadequacy occurs

precisely because the simple notion of ordering of "high level" steps has no notion of purpose

within it. That is, a more complete notion of plan would reqUire that we specify not only what the

steps are (in a high level, goal oriented fashion), but also wh, each step is thought to be valid and

how it helps to accomplish the overall goal.

The key to giving a clear semantics to such a notion is in realizing that any segment of code which

we are talking about has (at least potentially) a descriptive model containg the specs of that

segment. These specify what the code can do. A purpose will be defined as a correspondence of

(' the postconditions of one set of specs to either the preconditions or postconditions of some other set

of specs (perhaps even its own). For example, in a hash table lookup, tlile postconditions of the

c

specs for the hash step are that a bucket is returned which contains the reqUired entry. This

corresponds to the precondition of the bucket lookup routine, which reqUires that the entry be

present' in the bucket, and promises as a postcondition that it will return an entry with the reqUired

key. This in turn, corresponds to the postcondition of the hash table lookup routine.~ Thus the

following scheme exists:

PAGE 44

o
Specs for HASH-LOOKUP

.. ·,,····.·----------Precondi tion: given KEY

Postcondition: return ENTRY such that
~------------~ (KEY ENTRV) • given KE

Specs for HASHER Specs for BUCKET-LOOKUP

Precond i t ion: "i ven BUCKET and KEY such

;
--, ... - • bha t (MEMBER BUCKET ENTRY)

Postcondition: return BUCKET such Postcondition: return ENTRY such that
(MEMBER BUCKET ENTRY) (KEY ENTRY) - given KEY

recondition: given KEY

In general, plans do not tend to be this Simple. For one thing, frequently there will be several

purpose arrows eminating from one set of' specs, indicating that several courses of action will be

pursued at this point, i.e. that there are independent sub-goals which can be pursued in any order .

. Secondly, even in this plan there have been simplifications made to ease the exposition. one of

which is to only present the top level of the plans, i.e. no indication is here given of how hasher or

bucket-lookup achieve their specs. This is as it should be, since that information is clearly in the

plans for these sub-steps which can be found by going to the descriptive models of hasher and

bucket-lookup and asking for their plans.

Although we will go into this in greater d~tai1 in a later section, we will point out here that the

plan imposes limits on the ordering of the steps in the actually realized code. Clearly. if there is a

purpose link between A and B, then A must precede B in the actual execution of the code. (In the

case of a loop it will be true that both A has a purpose link to B and the reverse. I.e. both must

precede each other, hence a loop). On the other hand, if A has purpose links to B and to C we can o
only say that A must precede both of the other segments; the ordering of Band C is

PAGE 45

(- undetermined. Therefore, a plan imposes a partial ordering of step execution. If this ordering is

further specified into a strict total ordering, then we will have produced a flowchart of the

computation to be performed.

(

In summary, then, the plan provides both the explanation of how a computation is to be

accomplished and a generalized ordering of the steps which can be instantiated into a flowchart of

an actual segment of code. In general, the answer to a "how" question is contained in the plan. On

the other hand, "why" questions are typically asked about a particular segment in the context of a

particular plan. Answers to such questions are contained in the information provided by the

purpose links of the plan. For example, the answer to "why is the bucket lookup called" in the

above example is that the bucket lookup will find the desired item if it's in the bucket, and the

hasher routine guarantees that it will be in the bucket if it's in the hash table at all. More

succintly, we could have said that it was called to return the item. In any case, the information was

in the plan~ Thus, almost all of the information we need in contained in the plans and the

descriptive models.

1.1.2.1 Representation of Time

One of the WH-questions which the P.A. will of course be called upon to answer is "When". For

example, "when is the variable x boundr. The most basic way to answer this in the .context of

programming sequential machines is in terms of before and after, e.g. "x is bound after.y is set to

NIL, and before F is called." Thus, our model of time at this level i~ simply the flowchart of the

program. This, in turn, as we showed in the last section, is nothing more than an instance of the

implementation plan for the program. The important and difficult issue here is to determine

which reference points will be relevant to the programmer's current intentions, and will thus

PAGE 46

constitute the "correct" answer to his question. Programs also' have the notions of duration and
o

contemporaneousness. both in the sense of coextensive intervals and coincidence at a point in time.

For example, "During the execution of the interpretation functions, the value of PTR is the

current input word", or "N is always greater than 100 between the first and fifth iterations·. The

methods we develop for describing timing relationships will thus have to satisfy these criteria.

Furthermore, it will also be true that what is a point in time at one level of description (e.g. a

function call), will be expanded into an interval with internal details at a lower level of description

(e.g. the model of the function's own behaviour).

1.1.3 LISP Specialized Knowledge

Once an implementation plan has been chosen, it is not necesarilly the case that the code has been
,.<-"

determined. Returning to our running example of a hash table, suppose that it was already known ~J

that the buckets were being implemented as lists. This would strongly suggest that a plan known

as cdring down the list would be suitable for the look up routine. Now this plan is a specific form

of a very general plan know as iteration which can have several code realizations in LISP

including do-loops. open coded loops using go-to's or even a recursion. Thus the following all

accomplish the same task:

(DEFUN LOOKER (LIST ITEM)
(COND «EQ (CAR LIST) ITEM) (CAR LIST»

(T (LOOKER (COR LIST) ITEM»»

(DEFUN LOOKER (LIST ITEM)
(DO «*F (CAR LI sn (CAR~»

(*R (COR LISn ,(COR *R))
«EQ *F ITEM) ~»)

(DEFUN LOOKER (LIST ITEM)
(PROG (FIRST REST)

(SETa FIRST (CAR LIST»
(SETa REST (COR Ll sn)

o

(

c

LP (COND «Ea FIRST I TEM) (RETURN FIRST)))
(SETa FIRST (CAR REST))
{SETa REST (CDR REST))
(GO LP)))

PAGE 47

In addition, each of these pieces of code can be varied in several ways and still exhibit the same

behavior. Thus, a third domain of knowledge must be pointed to by the implementation plans,

which can roughly be characterized as code level knowledge. Within this domain must be

knowledge of the meaning of the various forms of code (particulalry so for fexprs andfsubrs),

recognizers for frequenlty used code (cliches), and the ability to infer behavioral similarity at the

low level. A great fraction of this knowledge will be represented as templates (or fancy pattern

matchers) which can gobble up expected pieces of code, and create models of their behavior and

purposes. Thus, although seemingly less profound, this area is absolutely essential to the overall

process of program recognition and understanding. It is, after all, fairly trivial to state that in

order to understand a large program one must first be able to recognize smaller segments of code

as dOing something which one already understands.

PAGE 48

1;2 ORGANIZATION OF THE KNOWLEDGE BASE

We do not see the organization of the knowledge deyelopi,ng in any sort of strict or global
"

hierarchy. Nevertheless. it is useful to recognize the existence of descriptions at different levels of

abstraction. which in reference to a particular locus in the network of concepts can be arranged

roughly in layers. For example. consider the following fragment from the description of a

compiler:

COMPILER
I

SYMBOL-TABLE

--is-a

HASH-TABLE .
~ ----r--cooponent

LOOKUP1 '. I NSERTl ON

plan-is

ITERATIVE-PLAN

-template-is

GO TO-LOOP

I
lP (•••)

(. ..)
(GO LP)

appltcatton domatn

desert pttve ' model

plans

LISP code templates

In this example we see nodes at all levels (and, in fact, we have simplified). The distinctions

between Ja yen is most flear between extremes. The lowest level of description is of course the

o

LIS P code itself. At the other end of the spectrum, there is the application domain, in which the C
programmer conceives of his program as the solution to some problem. specified in application

PAGE 49

(~ terms (in this case the appliCation is to build a compiler). In going from one layer of description to

another there are implicit choices that have been made. For example, the concept of a symbol

table in a compiler was here implemented as a hash table, but it could have also been a linear list.

Likewise, there are many choices to be made in how to implement the hash table, e.g. bucket hash,

overflow tables, linear rehash, etc. At another level, the iterative plan that is used in the

implementation of the lookup routine (e.g. in a bucket hash to. search down the association list of

the bucket), may be implemented either as a goto loop, or as a list recursion. Particular nodes may

also occur at differring levels of description, depending on context. For example, the COMPILER

node, which is at the topmost level ;n this local hierarchy, might just be one of several lower level

components in a network describing a much larger system.

In order to achieve this desired level of fleXibility, it seems necessary to rejeCt strict global

hierarchies as a design methodology. Rather, we suggest that the appropriate structure is that of a

knowledge network in which it is a prIorI possible to connect any node to any other. However, in

order that this does not lead to total anarchy, it is also necessary that any node connect only to a

small subset of the nodes of the total network, namely those which it should naturally "know·

about. Clearly as new knowledge is added to the network, connections will be added to some nodes,

but in general each node will still be directly connected to only a few other nodes. Furthermore,

each node may contain several active elements which might well correspond to local strategies for

accomplishing certain goals, such as local recognizers, etc. These might call on other such active

elements in nodes to which this node is connected (as an example, is-a type connections are naturaly

handled this way). Thus, the limitation on the connections at each node, both serves to give the

illusion of local hierarchy and to keep control flow within reason

C'·
'. "

PAGE 50

o
1.2.1 Prototypes and Instantiations

It will often be the case. in the knowledge base that a single concept will be used in many different

places. For example, our model of an ARRAY could be implicated in the idea of HASH-TABLE

if the table is implemented as a LISP array. Elsewhere in a large program which used hashing

and also stacks, the ARRAY model could again be used in the context of the implementation of a

fixed-size stack. One way to handle this situation is to f01l0w Minsky's Frame Paper <Minsky

1974> and create a prototypical model of ARRAY, to which are attached default instantiations of

important features, and any other general knowledge about arrays that the system has, such as

typical bugs (e.g. subscript out of bounds), perhaps an example, and eventually natural language

processing related information, such as typical lexical realizations.

For each particular occurence of the concept in the context of describing other, perhaps higher

level, entities, an tnstanttatton of the prototype is inserted. Extrinsic relations between the

particular array and the context of use are represented using the instantiation. Typically the
\

prototypical intrinsic description will be shared by all the instantiations, but in the case where more

specific or idiosyncratic information is known, this would be attached to the instantiation directly.

Thus, when enquiring about the properties of a concept, a search is first made on the local

instantiation, and then secondly any unspecified information can be filled in from the prototype. jf

it exists. There are, of course, much more sophisticated approaches to this general problem of

prototypical models and instantiations, but we have no evidence at this time for ways in which

ways the simple ideas presented here are lacking for our intended application.

o

PAGE 51

(' 1.2.2 Forking of Models

Because the knowledge base is intended to represent general concepts. there will of necessity be

points in the models where choices or forks occur. For example. the model of hash tables has such

a point in its desciption of implementation plans <e.g. hash-rehash vs. buckets. etc.) It is,

therefore, apparent that the P.A. needs to have some coherent philosophy of how to handle

alternatives. To this end, we have discerned three classes of forking that occur in the domain of

describing programs.

1.2.2.1 Variations

One kind of mUltiplicity of models occurs when there is one basic form of a concept, either in the

sense of being canonical or else some sort of default, but there are also minor v~riations possible of

("'"
" several features. This is often the case when LISP programmers define, their own variations of

the standard LISP functions. ' For example, in one of the programs we were looking at for

inspiration, the programmer defined a function MAPCAR2, which was "identical to MAPCAR

except that the results of NIL are not included in the final list". In such cases, the most natural

form of representation'seems to be to consider the relationship between the canonical form and the

variations very similarly to the relationship between the prototype and its instantiations, described

in a previous section. Thus each variation would refer to the canonical version, and have its own

local list of variations and exceptions. LikeWise, the canonical form should probably have some

indication of the existence of possible variations.

C" . -"'

PAGE 52

1.2.2.2 Design Choices
0"· : .

There are other cases of forking in which each of the alternatives are of equal stature, such that

none can properly be thought of as the root of the others. in the sense of the previous section. In

all the cases we have come across, the forking occurs on the basis of what can be thought of as one

or more design choices. The Simplest case is that in which one design choice determines forks at

several (one or more) different points in the mode1. For example, there are four ways one can

handle so-called "collisions" in hash tables: (I) rehash, (2) linear search, (3) buckets, (4) overflow

table. Given that the choice is made once between these design alternatives (think of it as setting

the position of a global switch), which of the alternative behaviours and implementations are

chosen at choice points in the insert, lookup, and delete routines is also determined. This might be

illustrated in tabular f9rm as follows. Suppose the branches of the forks in the models of the

three routines are labelled respectively, Fl: a,b,c,d; F2: p,q,r,s; F3: w;x,y,z.

Design Choice F1 F2 F3

(1) a p w
(2) b q)(

(3) c r y
(4) d s z

A slightly more complicated situation would occur if there were several design choices, but as long

as they acted independently, i.e. the choice at each fork was determined only by the position of one

global "switch", the implementation seems to fonow directly from the present exposition.

However, the third and most complex class of forking behaViour results when there is a high

degree of interaction between choices at different forks. In this case, even though there may be o
clear design choices in the mind of the programmer, the decisions. are not separable. This kind of

PAGE 53

•

(- feedback and non-isolatability is a major feature in the domain of electronics design <Sussman

and Brown 1974>. However, we have found difficulty finding natural examples of this kind in

programming. This may either be a result of the nature of the domain itself, or, more probably,

due to the fact that people are not very good at handling the type of reasoning required in such

situations, so they avoid them in programming. Nevertheless we can give here an abstract schema

similar to the one above to illustrate. Again, consider three forks, FI: a,b,cj F2: p,q,rj F3: x,y,z.

The fonowing interactions could hold:

(i) the choice of a determines the choice of either p or q

(ii) the choice of c determines the choice of x

(iii) the choice of z determines the choice of q

Further computation shows that there are only four permissible combinations.

("-

Permissible Comb Fl F2 F3

(1) a p y
(2) a q z
(3) b r y
(4) c r)(

Recast in this tabular format, this class of forking seems to resemble closely the previous case of

simple design switches. The point to be kept in mind, however is that the four cases here do not

correspond to four simple options of one choice, but result rather, out of the interaction of several

choices.

·._--_._-_._----

PAGE 54

CHAPTER TWO. PROGRAM TELEOLOGY AND ANNOTATION
o

2.1 The Function of Annotation

As mentioned in the previous chapter, our programmer appr~ntice's major task wiit be the

construction of a model of the program which it is working on, using concepts from .its knowledge

base. We follow this approach primarily because we feel that this is what expert programmers do

when presented with code with which they are unfamiliar. It has been our observation that this

process of program understanding ranges from difficult to the impossible unless various forms of

clues, particularly mnemonic names and line by line commentary,. are given to the person who is

attempting to make sense of the code. Even with these, it is still a non-trivial task to understand

the program unless the overall plan and intentions of the code are known. Although commentary
".----, . \

on code is in general famously negleCted, by studying the comments of various of our colleagues, '0

we have discerned several ways in which people do use annotation to help simplify the process of

understanding.

Annotation of code can, in general, be divided into two broad categories. First, there are comments

that assume there is available to the reader a knowledge base of information relevant to the code

under consideration, i.e. the assumption is that the code is doing something the reader knows

about. The other category contains precisely those comments used when this assumption cannot be

made. In this cas!, the comments will attempt to present or fill in the missing background

knowledge. Because this second dass of commentary is, by definiton, more demanding of the

programmer writing the code, it is precisely these comments which programmers most frequently

skip. Given that the design of our apprentice reqUires it to have on hand a large base of 0
. background information, it is our hope that programmers might be able to use the apprentice,

•

• PAGE 55

(~, without having to pay a huge price in constructing detailed commentary.

In those cases where the programmer is intending a comment to refer to already existing

background knowledge, it has been our observation that the most frequent way of indicating this is

through the use of mnemonic identifiers. Thus, for example, the lookup routine for the hash table

would typically be called LOOKUP, or some variant, rather than say FUNCI. We would expect

this practice to carryover into the P.A. environment, and consider this a perfectly valid and quite

efficient manner of documenting code. Nonetheless, as any eKperienced programmer will attest, it

does have its problems. Firstly, one may get tired of the burden of having to continually make up

"meaningful" names, and since they also tend to be longer than calling variables VI,V2,V3, etc., one

also can get tired of the extra typing incurred. Further, often if one later slightly changes the

(;' behaViour of a segment of code, the mnemonic names then also have to be changed; or if left

alone, they become misleading. Finally, with mnemonic names, as compared to automatically

generated unique symbols, there is always the danger of inadvertent duplication.

c

The second form of commentary which refers to the knowledge base are comments of ·the form

"this is the hash table lookup routine" or "the next five functions make up the hash table-.

Typically, such comments appear at the "head" of the code, that is, they typicaUy precede a discrete

unit of code and appear as an introductory remark. Such comments serve the function of setting

context and supplying necessary but unstated information. For example, the comment "thiS is the

bucket lookup" provides among other things a pointer to the desctpttve model which contains the

specs for the function on which it appears. Similarly "use the rehash scheme", would have the

effect of telling us what implementation plan(s) are being used. Another important function or

these comments, as illustrated by the previous example, is that they can choose among the various

PAGE 56

possibilities presented by a fork point in the knowledge base. In general. these types of

commentary serve the role of aiding the programming apprentice, in understanding the program

(i.e. in constructing an internal model of its structure and behavior) by selecting the appropriate

units of knowledge out of the knowledge base. Because of this we call these selector annotation.

The second broad category of annotation involves those drcumstances in which the programmer

feels that there is relennt information to convey which is not 'available within the background

knowledge. In this case, he is faced with the task of presenting the knowledge on the page.

Because the information which he must present is identical to that which would have been in the

knowledge base. the comments which the programmer wilt use to do this Will, typically, have a one­

to-one correspondance to the types of ob jeets contained in the knowledge base. That is, they wil1

answer how. what. and, why type questions by presenting parts of the specs and pla.ns for the

referenced code.

Comments that answer "why" questions. are what we call purpose annotation. For example.

"positive. so function-23 won't get gronked" or "to make var-tO positive for the square-rooter".

These tend to be "side of the code" commentary. What typifies purpose comments is that they

establish a link between the behaviour of the code upon which they appear and some other

segment to which they refer. In this example. the comment informs us that the purpose of the

current behaViour of making something positive (assuming we were also reading the code, we

would know what the something was). was because the behaviour of function-23 is undeSirable if

this is not the case. That is to say. this segment is establis~ing a prerequisite for function-23.

..

o

o

Another answer to "why" questions is that the current step is being performed to achieve an overall 0
goal, i.e. it is a ma~n step. We will explain the theoretical framework which this refers to in the

PAGE 57

..

(,next section.

"How" questions, tend. by and large, to be answered by the selector comments which we mentioned

above. but they are occasionally given explicit answers on the page. Again. these tend to be

comments too large to be on the side of the code and. therefore, often appear as "top of the code"

introductions. When given, they present a teleology for the segment, i.e. a schema of steps and

their purposes. For example, the code might have an introduction like "use the hash routine to get

a bucket, then use the bucket lookup to get the answer". Again, we will have much more to say

about the theoretical framework for this in the next section.

The remaining class of this trilogy, "what" comments, can usually be typified as providing aU or

part of a a descrtpttve model to the apprentice. We therefore refer to these as deftntttonal

annotation. For example, in an interactive bibliography program, we observed a half-page

comment which explained the structure and use of an entity call a "prompt". The details of this

are not relevant here, but it was interesting for us to note that this description included precisely

those elements which belong in descriptive models, e.g. specs, parts decompostions, etc. It is

extremely typical for such definitions to define a data structure which will have limited

application, i.e. it is used only in one section of the system and is of relatively little value to. future

programs. If, however, it defined something of more general value, the apprentice should be able

to file it away in its knowledge base, since the information already has the right structure.

As a special case of the above, there is a very common form of commentary, namely stating

explicitly the specs of a segment of code. Sometimes these will appear as simple "head of the code"

type statements, e.g. "when given a list, returns its third element, if present, otherwise returns

PAGE 58

o
'foobar". More often, however, these specs are broken up into their components. namely pre- and

post- conditions. Because segmentation boundaries are often arbitrarily drawn in LISP, these two

types of commentary often appear as "side of the code" comments. For example. "assume a

negative", or "now the item is in table". The first example is a modal expression, and specifies a

condition that is assumed or expected to hold just prior to the execution of the segment of code

which it annotates, presumably because the correct behaviour of the code depends on the specified

condition. These we will call expectations. The second example asserts that a certain condition will

hold immediately follo¥1ing (and usually as a result of) the annotated SEGMENT of code. These

we will call asserttons. These two concepts will have an important role in the theoretical

framework to be described fonowing.

,"-""\
Finally, just to complete our survey of program commentary, we must pay homage to the incredible 'V

diversity and imaginativeness one finds in the annotation of some hackers' programs-everything

from sonnets to Pig Latin. We make no claims for our P.A. vis a vis such material. Nonetheless,

even in the domain of more idiosyncratic annotation, there are several recurrent forms that bear

mention and consideration. The following is a suggestive list: "thiS is a kludge", "missing code to

be inserted here", "this needs to be fixed", etc.

2.2 Theoretical Framework for Teleology

2.2.1 Segmentation of the Code

In order to establish the connection between the raw LISP code and the varied levels of descriptive

framework outlined in Chapter I, we need the notion of segmenting the code, that is to say drawing 0
a conceptual box around one portion of the LISP code and speaking of it as a unit with input-

PAGE 59

(output (or before-after) behaviour. The boundaries one choses to divide up code segments are

arbitrary. That is to say. where one thinks the boundary is depends on what one is interested in.

Furthermore. anyone segment will typically be subdivided internally into smaller segments. with

correspondingly more primitive behaviour, as the level of descriptive detail requires. For example.

a whole function definition. a group of related functions (obviously not reqUired to appear

contiguously in the code listing). or a single form within a function may be thought of as code

segments. The only reqUirement is that they are aggregated for the purpose of describing their

net behaviour.

It is also important to realize that the decomposition of a segment will typically not be complete. i.e.

some code will be left over when a segment is divided into its logical parts. For example. consider

(- the following code:

CDEFUN A
(PROG ()

(B •••)
(C •••)
(RETURN X»)

Here the main segment is A. whose two component parts are invocations of Band C respectively.

The PROGN and RETURN statements are what could be called the connectiVe msue between the

subsegments of A. As such they carry very important control structure information. The PROGN

specifies the temporal sequence between the invocation of the t~o steps. Band C. and the

RETURN determines what the net output of the function A will be.

A second complication in the segmentation can arise when segments overlap. For example. a singJe

C:" line of code could be a natural part of two different contiguous segments, in much the same way

that a single resistor in an electronics circuit <Sussman and Brown. 1974> could be natural1y·

PAGE 60

thought of as being simultaneously part of both the output network of one transistor, and the bias
o

network of the next. However, this situation occurs much less often in programming, as compared

to electronics, probably because in programming the poSSibility exists of making independent

subroutine caUs.

Thus code segments, or segments for short, will be the basic formal object upon which the

theoretical framework for describing programs is built. It bears emphasis here that in the situation

of recognizing and understanding a previously unseen LISP program, the problem of properly

dividing the code into functional segments is both difficult and crucial. The analogous problem

has been faced in visual recognition research and is as yet unsolved in the general case. We will

come· back to this problem in Chapter S following, where we discuss program recognition and

understanding at greater length.

2.2.2 Program Specs

Our notions of how to describe the intrinsic behaviour of code segments follow firstly the rich

tradition of input-output specification and more parochially. Carl Hewitt's elaboration of the idea

of "contract" in the development of his "actor" formalism. The essential idea is that a given

segment of code has certain expectations, incoming assumptions, or pre-condtttons (we will use the

terms interchangeably) that are assumed to hold just prior to execution commencing for that

segment, and upon which the correct functioning of that segment of code depends. These are the

tnput specs of the segment. Correspondingly, the output specs, are a set of assertions, outgOing

entailments, or post-condtttons that are promised to hold just following, and usually as a result of,

the correct execution of the code segment. Moreover, the specs are intended to be only the intrinsic C
description of the code segment, in the sense explained in Chapter One. That is to say, the

PAGE 61

(- condit~ons in the specs should be a reflection of the internal workings of the code segment, and

will be the same regardless of the context in which it appears. The bas!c syntax of a specs

expression is the following:

(SPECS segment-name (input-objects) (output-objects)
(EXPECT (pre-condition))
(EXPECT
(ASSERT (post-condition))
(ASSERT •••))

Thus we see the program spees are essentially a list of clauses of two types, EXPECT clauses,

expressing pre-conditions, and ASSERT clauses, expressing post-conditions. preceeded by header

information. The header information consists of the segment name. and a list of input objects and

of output objects, The input objects are the data structures which are in any sense input to the

(~ behaviour of the segment. In particular, any ob jeet mentioned in a pre-condition must appear in

the list of input objects. In terms of LISP code, the input objects could be formal arguments to a

function, if the segment were a separate LISP function, or else just globally available data

structures, to which the code segment referred. Correspondingly, any object upon which the

be~a viour of the segment has a side effect (e.g. changing value, creating a new object) must

appear in the list of output objects. The post-conditions will express the (new) properties of the

output objects. often referring to some of the input objects to do so. In the LISP code, the output

object could be the returned function value, or more generally. a global data structure which was

modified. This is all quite general, so let us proceed with an example. The following is the way

we currently enVisage representing the intrinsic behaviour of say. a segment of code that performs

. the square root. In order to present the following examples, we have had to choose some details of

C-···
/

notation. We have done this in the way we currently find most natural. We certainly expec!t the

notation to change in detail as our research progresses, so that the current version should be taken

"with a grain of salt":

(SPECS SORT (NUMBER-l) (NUMBER-2)
(EXPECT (GE NUMBER-l 0))
(ASSERT (EO (TIMES NUMBER-2 NUMBER-2) NUMBER-l))

PAGE 62

The first thing to remark about the example is our convention for naming the input and output

objects. NUMBER-I and NUMBER-2. respectively. The choice of local symbol is not arbitrary.

Rather. it is intended to carry with it type information about the object referred to. Following the

discussion in Chapt4!r One, each object is seen a~ an instantiation of s~me prototype, e.g.

NUMBER-I is an abject about which we can get more information by referring to the description

of the prototypical NUMBER. The notion is that a naming convention is an indirect reference to

background knowledge. We will make use of this quite often. For example, in debugging mode,

the P.A. might check the implicit (in the notation) expectation that the input was a well-formed

NUMBER by applying the LISP predicate NUMBERP to a particular input in question. The . , .

information that this was a correct strategy would be part of the knowledge associated with the

concept NUMBER. There wou'ld also be other information associated with NUMBER, for

instance, that it made sense to talk about the SIGN and EXPONENT of a number, and how to

calculate them if necessary. The reference to the concept of SIGN is then itself also a potential

indirection to more information, e.g. that the possible signs are NEG, POS, and ZERO.

An alternative form of the first of the specs above might take advantage of this implicit

knowledge. for example:

(EXPECT (SIGN NUMBER-l POS))

Thus. we see that the exact form of the c1auses of the specs will be greatly influenced by the

deductive mechanisms that will use them. Since our P.A. will use database-like deduction rather

than standard theorem proving. it is not surprising that our input-output conditions have the

o

o

PAGE 63

(flavor of PLANNER statements, rather than predicate calculus expressions.

(

c

Returning to our ongoing example of hash table programming, let us present what might be the

specs of the insert, lookup, and delete routines. respectively.

(SPECS INSERT (ITEM-l TABlE-l) (TABlE-l)
(EXPECT (NOT (MEMBER ITEM-l TABlE-l))
(ASSERT (MEMBER ITEM-l TABLE-I)))

(SPECS lOOKUP (KEY-I TABLE-I) (ITEM-I)
(CASES

«EXPECT (MEMBER ITEM-l TABlE-lJ)
(ASSERT (KEY ITEM-l KEY-l))))

«EXPECT (NOT (MEMBER ITEM-l TABlE-l)))
(ASSERT (EQUAL ITEM-l NIL)))))

(SPECS DELETE {KEY-l TABLE-lJ fTABLE-U
(ERASE (MEMBER ITEM-l TABLE-I)))

The first thing to notice in the above example is that the specs of the lookup routine splits up into

cases . . This will often occur when we are describing more complicated behaviours. The syntax is

intended to mean that each top level dause within the CASE expression is itself a set of input-

output specs. For each case, if the expectations are met, then the resulti l1g output conditions may

be asserted. The expectations of the code segment as a whole will be considered satisfied if and

only if all non-CASE-embedded expectations are met, and the expectations of at least one case in

each CASE expression are also met. The examples above also make use of the indirect reference

feature in several places. Firstly, in the lookup routine, the input object KE:Y-I potentially brings

into the context the knowledge associated with the concept of KEY, e.g. that KEY's are part of

ITEM's. This relationship would be used by the deductive mechanisms to resolve the referent of

ITEM-l in (MEMBER ITEM-l TABLE-I) as the ITEM whose KEY is KEY-I. Similarly, in the

specs for the delete routine. Finally, the ERASE statement should be noticed in the specs for the

PAGE 64

delete routine. This reminds us again that we are using a database deductive scheme, wherein side

effects are simulated by manipulating the current assertions in the database .

. 2.2.3 Purpose Links

Now that we have formalized intrinsic descriptions in our system in the form of program specs, we

are in a position to give a formal charac~rization of the extrinsic relationships between code

segments. This is found in the notion of purpose ltnks. A purpose link is supposed to reflect the

intuitive idea that segments of code. are built by the programmer into a ·purposefur (i.e.

teleological or goal-directed) structure by the way their input-:outputbehaviours interrelate. Thus

we will define a purpose link formally as establishing a correspondence (in various senses) between

parts of the specs of two segments. The various ~inds of correspondences wilt then give rise to

different kinds of purpose links.

On' this basis we di~id'e purpose links into two broad classes. Firstly, we have the class of

': ' \,' .
correspondences between the output specs of one segment, and the input assumptions of another.

, .. ,

This iscal1eda prfirequt~lte link. The Simplest example is an identity match between one output

clause of segment A and one input clause of segment B, e.g.

'"

(SPECS A (.,.) (ROOT -1 •••)
(EXPECT • ".J
(ASSERT (S'IGN ROOT-l POS))
(ASS.ERT ••• J)

(SPECS.B (ROOT -2 •••) (••• 1
'" " 'i" ,',' ": ", .. ".1' .

(EXPECT •••)
{EXPECT (SIGN. ROOT~2POS»

j' ~. '. .,!l' j" '" , ., . ".'-

(ASSERT ••• »
<. ;, ,.'

Irriplicit ir(the p~rpose rel~tiOns.1ip between these two segments of cOde is thus also the fact the

o

c

PAGE 65

(: ROOT-l corresponds to ROOT-2, i.e. that the programmer intends in his plan for the output

ob ject of A to be the input object to B. It is important to remark here that a necessary ordering

condition immediately follows from the prerequisite link between A and B, i.e. that the execution

of A precede the execution of B. These kinds of necessary conditions wilt play an important role

in the recognizing program structure, as we will describe in Chapter 3.

The second basic class of purpose links is called matn-step links. This is the class in which there-is

a correspondence-between the output specs of one segment, called the subordinate segment, and the

output specs of its superordinate. For example, adding more detail to the specs for hash table

insertion: (Note that in following examples, for ease of reading we will omit the unique

instantiation identifiers on object names, where there is no ambiguity; i.e. we will simply say

(-- BUCKET instead of BUCKET-n, when there is only one bucket in the context.)

c

(SPECS INSERT (KEY DATA) (ENTRY)
(EXPECT •••)
(ASSERT (MEMBER TABLE ENTRY»
(ASSERT ••• »

(SPECS BUCKET-INSERT (BUCKET KEY DATA) (ENTRY)
(EXPECT (EO BUCKET (HASH KEY»)
(ASSERT (MEMBER BUCKET ENTRY»

- (ASSERT ••• »

In this example we enVisage the situation where the INSERT segment is itself made up of two

subordinate segments. The first is to determine (by application of the hashing algorithm) the

appropriate bucket in which to insert the item, and the second, called BUCKET-INSERT, actually

puts the item into the chosen bucket. The BUCKET-INSERT 'code segment thus achieves a main

step in the described behaviour of the INSERT segment, of which it is a part. For a main-step

purpose link to be meaningful between two segments e;g. B is a mainstep of A, it is a necessary

PAOE66

condition that B is subsumed by A. This can take two forms: either the code segment B is

explicitly part of the open code of segment A, or segment A contains a can to the function which is

'segment B.

We have avoided referring to purllose links as matclatngs because in the general case a simple

pattern match will be insufficient to link together one segment's outgOing assertions and the
.

incoming assumptions of some other segment. A simple example of this is given in the SPECS for

INSERT presented above. There clearly exists a main-step link between the BUCKET-INSERT

and the INSERT, namely, the BUCKET;.INSERT routine achieves the overall goal of INSERT

by putting the entry into the table. However, this connection is not a simple syntactiC match;

BUCKET-INSERT only promises to acheive:

(MEMBER BUCKET ENTRY)

while INSERT reqUires:

(MEMBER TABLE ENTRY)

Clearly. the purpose link is not a simple pattern match, but rather also includes'the justifying
I

.deduction:

«MEMBER BUCKET ENTRV)-->(MEMBER TABLE ENTRY»

.
Another type of complication of our simple model is that there are links between segments which

do not seem to fit naturally into the framework of purpose ltnks. For example. consider a code

segment whose job it is to put a red block on a table. Let us assume that the programmer has

available a painting routine (which can paint blocks red) and a positioning routine (which wilt be .

o

used to put the block on the table). There is no clear ordering of these steps. i.e the block can be 0
painted and then pOSitioned, or the other way around; let us look at the structure of these routines.

(SPECS REO-BLOCK-ON-TABLE (TABLE-I BLOCK-I) (BLOCK-I)
(ASSERT (ON TABLE BLOCK-i»
(ASSERT (REO BLOCK-I»)

(SPECS ON-TABLE (TABLE-2 BLOCK-2) (BLOCK-2)
(ASSERT (ON TABLE-2 BLOCK-2»)

(SPECS PAINT-REO (BLOCK-3) (BLOCK-3)
(ASSERT (REO BLOCK-3»»

PAGE 67

The most obvious links are the two main-step purposes between the output assertions of ON-

TABLE and PAINT-RED, and the output assertions of the main routine. Secondly, and more

subtly, if the plan is to work it must be the case that the BLOCK which is the output of ON-

TABLE is the same as the input BLOCK of PAINT-RED. We will call this type of links a

shared-value link. These links carry a necessary condition that the code must be arranged in such

a way that a value can in fact be shared by the two routines involved. This can be done in either

of two ways: either the data structure is available globally to both segments (i.e. it is bound at a

higher levet), or it is passed as an explicit argument in a function call to the second segment. At

the highest conceptual level, therefore, shared value links do not impose ordering but merely .

syntactic restraints which guarantee that the value may be shared.

2.2.4 Plans

We are now in a position to clarify what we mean by a plan. In the context of the P.A., a plan is

defined formatty as a schema of purpose (and perhaps other) links between segments of code. For

example,

PLAN P1: [A] •• ---------------P----~ I·· I··
[BJ-pre-t> [Cl-pre--+ [OJ [El

PAGE 68

This should be understood as follows: there is a code segment. A. which is achieved as two main

steps. 0 and E. 0 has. a thain of segments. B and C. which are prerequisites. Given this plan of a

program, which specifies the important behavioral interactions (e.g. the purpose links) between

code segments, it next make sense to consider how the actual surface structure (see Section S.I for .

definition) of the code might be arranged compatible with the plan. For. example. program GI

satisfies the necessary conditions implied by the purpose links:

PROGRAM Gl:·

[A]

So would

PROGRAM G2~

[Al

[8]

[eJ
[OJ

[EJ

[E]
(Bl
[el
[OJ

However, 03 could not be a possible implementation of plan Pl. because the prerequisites of

segment 0 do not preceed it in the actual code.

PROGRAM G3:

[Al
tOJ
[El
[B)
[e)

A plan may be specified to varying degrees of detail, in two different senses. Firstly, plans may be

nested Within plans bec;ause what is called a segment (i.e. "box") at one level of description (or

planning), can itself have internal structure, made up of sub-segments interrelated by their own

plan. For example, the top level segment A in plan PI, could (and will typically) itself enter in as a

o

o

o

PAGE 69

(~ component of some larger plan.

Along another dimension, a plan can be further particularized by specifying the form of the actual

input-output spec clauses that enter into the purpose links. Thus for example, rather than just

saying there is a prerequisite link between Band C in plan PI, we might be more specific, for

example:

(PREREQ (B. (ASSERT (GE ROOT e)))
(c. (EXPECT (NOT (SIGN ROOT NEG)))))

This says specifically that there is a prerequisite link between the output assertion of B that (GE

ROOT 0) and the input expectation of C that (NOT (SIGN ROOT NEG». Note again that. in

fact, such a link references the deductive fact that (ge x 0) implies (not (sign x neg» which would.

(.. be in the descriptive model of SIGN. Depending on the state of knowledge'of the P.A.. the plans

that are its current attention will vary in both these senses of detail. At one end of the spectrum.

the plan for a current user's program will be highly detailed and partitularized, so that enough

information is immediately available for programming assistance. Leaving aside for the moment

the question of how the plan becomes particularized. let us give an example of how we think the

complete plan might look for a simple program. Suppose the user had a program to sum the

numbers from 1 to 10 using an iteration. The specs of the whole program viewed as a segment are

thus:

(SPECS SUMMATION () (SUM)
(ASSERT (EO SUM (SIGMA (I 1 Ie) (I)))))

where the SIGMA expression has the obvious syntax. The internal structure of the program then

consists in this case of the four standard blocks in an iterative plan: IN IT, BODY, BUMP. and

TEST. They have particular specs as follows.

(SPECS INITO (SUM CTR)
(ASSERT (EQ CTR 1.»
(ASSERT (EQ SUM 0.»)

(SPECS BODY (SUM-l CTR) (SUM-l)
(EXPECT (EQ (SUM-l (SIGMA (1 1 (SUBl CTR) (I) H»
(EXPECT (LE CTR 10.))
(ASSERT (EQ SUM-l (SIGMA (I 1 CTR) (J}»))) .

(SPECS BUMP (CTR-l) (CTR-l)
(EXPECT (LE CTR-1 10.»
(ASSERT (EQ CTR-l (PLUS CTR-1 1.)})}

(SPECS EXIT-TEST (CTR) ()
(CASES

((EXPECT (LE CTR 10.»
«EXPECT (GT CTR 10.»»

PAGE 70

First tet us give the basic ptan schema which this program follows. Then we will discuss each

purpose link in detail. The ptan is:

me

pren II----------+~ [SUMMATION)

[INITJ-pre--r---+~B!OY ... -' ---;

Ipre

1----+ [BUMP]

Ipre pre pre

11---+ £TEST1-~-'"

Perhaps the most impor~ant purpose link in this plan is:

(MSTEP (Bo.OY.(ASS~RT (EQ SUM-1 (SIGMA (I 1 CTR)(I})})
(SUMMATION. (ASSERT (EQ SUM (SIGMA (J 1 Hn (I}»}»)

This. together with a deductive fact about SIGMA (namely that sigma from ito jor f(i) is equal

o

c

PAGE 71

(," to f(j) plus sigma from i to j-l) says that each iteration of the body in soine sense achieves a main

step of the superordinate segment. The required deductive fact which allows the match would be

associated with the descriptive model of SIGMA in the network of background knowledge.

Furthermore, the match implies that the final output object of SUMMATION, ie. SUM, is the

same SUM as appears in the output of each step of the BODY.

(PREREQ (INIT. (ASSERT (EQ CTR 1.»)
(BODY. (EXPECT (LE CTR 10.»»

(PREREQ (J NIT. (ASSERT (EQ CTR 1.»))
(BUMP. (EXPECT (LE CTR 10.»»

(PREREQ (INIT.(ASSERT (EQ CTR 1.»)
{EXIT-TEST. {CASE (EXPECT (LE CTR 10.»»)

The above prerequisite links express the fact that the purpose of the INIT segment is to satisfy the

(~/ input expectations of the other three segments (at least on the first iteration). Notice that the
I

match here is between the assertion (EQ.. CTR 1.) and (LE CTR 10.). This points out one of the

kinds of 'smarts' ~he deductive and pattern matching mechanisms must have. Furthermore, notice

that in the last link it is specifically indicated that it is a CASE of EXIT-TEST that is involved.

It will turn out that the case structure of program specs will carry a large part of the descriptive
I

power of the formalism we have developed for plans. For example, the other case or the specs for

EXIT-TEST is satisfied by the following prerequisite link:

(PREREQ (BUMP. (ASSERT (EQ CTR (PLUS CTR 1.»»
(EXIT-TEST. (CASE (EXPECT (GT CTR 10.»»)

Here we see some rather sophisticated reasoning implicit in the matching of conditions. Firstly,

within the specs for the BUMP itself the interpreter (a noncommital w~rd) needs to distinguish

between the old and new values of the CTR. The clues to this are in the fact that CTR is both

PAGE 72

the input and output object of BUMP. Secondly, given the expectation of BUMP that (LE CTR

. 10.), a possible value to substitute for CTR in (PLUS CTR I.) is 10., giving (BUMP.(ASSERT (EQ.

CTR 11.»), which then matches with the case (EXPECT (GT CTR 10.» in the EXIT-TEST. To

summarize, this prerequisite is the condition that the iteration eventually terminate.

(PAEAEO (EXIT-TEST. (CASE (ASSERT (LE CTR 10.»»
(BODY. (EXPECT (LE CTR 10.»»

(PAEAEu (EXIT-TEST. (CASE (ASSERT (LE CTR 10.»»
<BUMP. (EXPECT (LE CTR 10.»»

(PAEAEO (BODY. (ASSERT (LE CTR 10.)
(BUMP. (EXPECT (LE CTR 10.»»

These prerequisites establish the basiC iterative framework; that is to say, given the failure case of
, 'I .

the EXIT-TEST, the,prerequisites are then satisfied for another iteration through the BODY and'

BUMP. One should notice here that the clause (ASSER'!' (LE CTR 10.» does not explicitly appear

in the specs of EXIT-TEST or BODY. T.o be pedantic, the specs for these segments shou1d have

been written:

(SPECS EX IT-TEST (CTA) (•••)
(CASES

«EXPECT (LE CTR 1e.)}
(ASSERT (LE CTR 10.» ••• etc.

(SPECS BODY (CTA ...) (...)
(EXPECT (LE CTR 10.»

(ASSERT (LE CTR 1e.»)

However, it seems quitereasonabJe to assign to the interpretative and deductive mechanisms of the

P.A. the responSibility to automatically generate such redundant assertions from a general rule.

The rule would state that any input condition is automatically an output condition if none of its

terms appear in the list of output objects (i.e. there are no side effects on any of the terms). In

o

o

PAGE 73

(- fact, exactly this would happen in any PLANNER-like language, since assertions wi11 not disappear

unless explicitly erased.

Now that we have given an example of a particular plan in gory detail, let us move to a higher

level and acknowledge the existence of broad classes of plans. For example, the particular plan

presented here is only one member of a class of many possible iterative plans. All the members of

this class have the concepts of INIT, BODY, BUMP, and TEST in common, but may use them

slightly differently in particular instantiations. For instance, the BODY, BUMP, and TEST might

be implemented in various orders. More profoundly, it is true that all iterations implicitly refer to

some total ordering of the items being iterated over (numerical, list position, etc.); which particular

total ordering is use is peculiar to each individual iterative plan. Other examples of classes of

(plans are recursive plans, linear plans, and dispatch plans. We are not certain at this point in the

research how best to capture the shared properties of these classes of 9lans. Perhaps it will be

possible to represent in the same formalism a prototypical member of each class. More likely,

however, there will probably be some cluster of expertise in the knowledge base having to do with

each class of plans, which will be applied to members of the class as appropriate.

Finally, let us summarize here by saying that plans are very much the central notion in the whole

operation of the P.A. The plan will form the core of the model that is built of a particui~r user's

LISP program. Thus we expect a significant portion of our research effort to go into learning

how to represent plans in such a way that they first, naturally fol1ow the way programmers

organize their code and then second~ can be utilized by the P.A. in order to perform its various

services.

PAGE 74

2.3 Annotation and the P.A.

Since the P.A. will be one of a new breed of systems programs that are prepared to deat with

program commentary and annotatio~ for purposes other than pretty-printing on code listings, the

first step is to develop mechanisms whereby the traditional barriers between code and commentary

are broken down. As far as the P.A. is concerned, both will be clues to understanding a program.

Since annotation wil1 play such an important role in the P.A. scenario, we might also seek to

implement code annotation in a way to improve where possible on the current method. A majOr

difficulty with traditional comments is that they are forced to appear linearly throughout the code,

which means they refer implicity by their position to the immediately following segment of code.

and by explicit mention to arbitary other segments. This suggested to us a general scheme for

storing and accessing program comments, which we implemented as follows. FirsUy. in order to

facilitate "walking around" in the code, we back-pointered all the code list structure in the program,

so that from any point it is possible to find out what higher level expression it is embedded in ..
J.

Secondly. we implem~nted the ability to refer explicitly (by pointer or by giving it a unique name)

to any list structure or substructure in the code. Using this, all the commentary can be stored and

indexed in such a way that a single annotation may refer to many segments of code (e.g. "these are

the error recovery routines"), and conversely it is possible to determine, for any segment of code, all

the items of annotation which refer to it. We believe this should be it good and flexible

framework in which the P.A. will be able to do its work.

We have assumed to a large extent that the programming apprentice will be using a large pre-

established knowledge base to which it incrementally adds new knowledge. Because of this, we

o

have concluded that most of a user's commentary could be put into the form of seltctors and C
mnemontc tdenttfters. Ir. addition, we have assumed that the user will include the more complex

•

PAGE 75

C forms of commentary to the same extent as he does now. However, to be honest, it must be

admitted that the average programmer controls a body of knowledge of sufficient size that it

would require us several man years of effort and several additional computers of storage to be able

to present this knowledge to the programmer as a unified whole. Furth~rmore; we would initially

require the programmer to formalize his commentary to anow the apprentice to understand him. It

therefore becomes implicit in our discussions of annotation here, that we expect (or wilt require)

programmers to change their behaviour somewhat when interacting with the P.A., in terms of the

character (and perhaps quantity) of their comments. One might then ask how difficult wi11 it be to

get programmers to conform to the restricitons of the apprentice environment. This would seem to

depend on hQw good a helper the apprentice turns out to be. We believe that if a P.A. is really

successful in helping the programmer with his work, there will be, no problem getting him to

provide enough annotation to make it possible

PAGE 76

.~. \

CHAPTER THREE .. RECOGNITION AND UNDERSTANDING

3.0 Introduction

In the previous two chapters we have been engaged in the business of building up the knowledge

base and descriptive fO'imalisms necessary for the P.A. to represent programs at various levels of
~,' ",

abstraction. The central topic of this chapter witlbe.to describe how the link-up is made between

the P.A.'s rich knowledge base, on the one hand, and a user's particular LISP program, on the

other. As a prelude to this important discussion, we wish in this section to move the focus of

description back. to the code level. Here we wish to ask what kinds of descriptive concepts will be

reqUired at the code le~el, separating thiS, for the moment, from the mechanisms and processes by

which the actual fimd description is generated. As an aid to this, let us suppose the following

highly simplified (and unworkable) two-stage model of the recognitiQn process:

(STEP I) The so-called surface structure of the program is generated from
the code bottom-up by a super indexing program, which utilizes only
knowledge of LISP syntax and the semantics of the basic LISP functions,
such as PROG, COND, EVAL, etc. What information this surface structure
analysis of the program might yield is the ~opjc of ~ection 3.1.

(STEP 2) The surface structure is merged into a larger model of the
program built up by the P.A. from its store of descriptive models and plans
on the basis of the commentary supplied by the programmer. The key
feature of the merging is that the correspondence is made between the
formal segments of the abstract description of the program and actual
segments al the code level. A more realistic treatment of building this
complete model of the program is the topiC of S~tlon 3.2.·

Before going on, let us reiterate that this description of the recognition process should be taken

only as an item of pedagogy, used to introduce the issues. The two-stage scheme will not work in

practice, for several reasons. Firstly, it entirely finesses the segmentation problem, discussed in

· .

,.~ ,\
'0

Chapter Two. Unl;:!ss the segmentation into functions, PROG's, etc., 'at the code level fortUitously 0
matches exactly the groupings coming down from the higher levels of description, the merging

•
PAGE T1

(_ process of STEP 2 becomes extremely messy. Secondly, the two-stage process above artifically, and

critically, separates the program description into two aspects (syntactic in STEP 1 and semantic in

STEP 2, approximately), ignoring the important fact that clues to both kinds of information come

from several shared sources: the raw code itself (including mnemonic identifiers), the

accompanying annotation, and all the P.A.'s background knowledge about programming as

implicated from the other two sources. Any realistic solution to the recognitiun problem will have

to take advantage of this heterarchy.

3.1 Surface Structure in Programs

The major job of the surface structure representation of code is to show the control relationships

between segments of code. This information is potentially derivable simply from the nesting

(. syntax of LISP, the rules of the LISP interpreter, and the semantics of the special LISP functions

like PROG, COND, AND, OR, etc. At this surface level in LISP, there are only two ba~ic

execution time relationships thilt can hold between code segments. (Of course, at higher levels of

abstraction from the code, more complex kinds of control relationships can and will be expressed).

The first basic surface structure relationship is the Invokes, or calling rel~tionship. A --inv--> B.

which means that the behaviour of B is invoked as a subpart of the behaviour of A. In ,terms of

execution sequence, this is:

(enter A),(enter B),(exit B),(exit A)

This relationship can result either from an explicit function call in A to a segment B, or the body

of B might appear as open code in the body of A. The second basic relationship is the next. or

sequential relationship, A --nxt--> B, which simply means that the execution of segment B does (or

c\ can. depending on branching tests) immediately follow the execution of segment A. i.e.

(enter A),(exit A),(enter B),(exit B)

PAGE 78

The generalized notions. of sequentiality. A --nxt.-'"> B, and indirect invocation, A --invt)-? B,

derive of course from the transitivity of "next" and "invokes", in the obvious way. Finally. for

completeness, we should mention the existence of a third candidate execution relationship. te.

(enter A),(enter B),(exit A),(exit B)

This is the case of unconstrained coroutines, which cannot be implemented in the basic semantics

of LISP.

To illustrate our notion of the surface structure representation of a program, let us consider again

the plan ~xample from Chapter Two. The following is called the skeleton pla.n of the program

because only the type of 'purpose links between segments is indicated (e.g. mainstep, prereq). A

;

more complete plan wooid show in addition the specs of each segment, and which aSsertions and

expectations entered into the various relationships.

PLAN P1:
[A] .~-------""'I-m-s----rl •.
[8]-pre--+ [Cl--pre-+ [OJ [El

Now let us take an actutl LISP program which is an implementation of plan ·Pl. For simpUcity.

assume each of the segments, B, C, D, and E have been implemented already as separate LISP

functions. The code for the program is then:

<OEFUN A (...)
(PROGN

(E · ... ,
(9 · .. :~
(C · .. !
(O · ...)))

Using the notation developed above, the skeleton surfa.ce structure representation of this program

would be:

o

c

..
PAGE 79

invokes
SKELETON S2:

[AJ-1 ----I -1--}
[EJ-nxt ... [B1-nxt-+ [Cl-nxt ... [01

This representation of the program.is immediately useful for comparing with its skeleton plan. In

particu lar the P.A can verify that the, necessary ordering conditions implied by the prerequisite

and mainstep relationships in the plan are satisfied in the surface structur~, i.e.

PLAN

[OJ --ms-> [AJ
[EJ --ms-> [AJ
[BJ --pre-> [C1
[CL--pre-> [OJ

SURFACE STRUCTURE

[AJ --'i nv-> [01
[AJ -- i nv-> [E1
[BJ --nxt*-> [C1 v i a [BJ -.,.mct->[C1
[Cl --nxt*-> (0) vi a [CJ --nxt-> [01

Note that the surface structure rel~tiQnship [E]--nxt->[B] is supetfluDus as-far as the plan is

(~i concerned. Tbis is quite typical in . program analysis, and is s}mply"a reflection of the fact that

some details of the code arrangement ate not constrained by the underlying plan.

c

It is very important to realize why the P.A must have models of the semantics of the special LISP

functions like PROG, COND, etc. in order to derive the surface structure of programs. The

nesting syntax of LISP is l'Iot enough. To bring this out, consider the following--two programs,

which are syntactically parallel, and, yet have very different surface structures:

(DEFUNUPDATE (DATA KEV)
(PROGN

, (DELETE KEV)
(INSERT DATA:KEV})}

(DEFUN INSERT (DAT~ KEV>
(BUCKET-INSERT

(ENTRV OATA_KEV)
(HASH KEV»~

In the case of the UPDATE program on the left, the P.A; must have ." its knowledge base the

information thaCPROGN is a special kind of LISP function (a FEXPR), whichdoes not follow

the usual rules of evaluation. Rather, the plan for PROGN is to evaluate each of its argument

...

.. formj'in sequence. Th~ P.A .. can then derive the correct surface structure skeleton (or UPDA:r_~. ' . o

. ' \

, (uPOA TE1- i nv~ (PROGN11 i nv (I NSERTl

- . InK'
i nv-+ lOELETE]

'.
" 5

It is interesting to contr.ast ,this with the surface skeleton of the INSERT program on the 'right.

On the right, the fu~,ction syntactically parallelling PROGN is BUCK.ET..:INSERT. which is a
, ~

normal user.:wriuenfunction (j.e. ail EXPR). Thus the normal rules of-LISP enluation apply in

deriving the surfaceslructure. fir~t ,the arguments to a function are evaluated in left-to-right
~ .'" "', ' .

~ 1-

order, and then the function is' invoked. Acco~ding to these semaritics~. the surface strucwe comes
-"iT,".'"

out quite differently:: Ji\.

[I NSERTJ lnv--+[BUCKET-INSERT]

fox,
inv~[HASH)

[nK'
'!'w~ [ENTRY]

The surface structure analysis is yet incomplete. In addition to the control flow between segments,

a super LISP indexer would be able to extract from code some information about data structure
, ,

(e.g. variable) use. For example, current LISP indexers keep track of what level atoms are bound

at, when th,ey are read-rfferenced, and when their values are changed. The knowledge required to

-extract th,isinformation .from code includes knowing the semantics of LISP lambda-binding in 0
general, and specifically the input-output specs of basic LISP functions that lambda bind, such as

PAGE 81

(' PROG, DO, etc., and Df the basic LISP functiDns that can mDdify data structures, such as SETc:t

RPLACA, RPLACD, etc. As mentiDned in Chapter One, this infDrmatiDn WDuid be part of the

P.A.'s knDwledge base. To. develDp this further, let us recDnsider the summatiDn example from

Chapter Two., this time giving an actual LISP implementatiDn Df the plan.

[summat ion]

(DEFUN SUMMATION ()
(PROG (SUM CTR)

I (SETa SUM 0)
I (SETaCTR 1)

[ini t)

I LP (SETa SUM (PLUS SUM CTR» [bDdy)

I (SETa eTR (PLUS eTR I)} I [bump]

I (COND «LE CTA 10) (GO LP»)) [test)

(RETURN SUM) »

The skeletDn Df this program is:

inVDkes

,
I'

I
I
I
I

[summat i onl---.I,...----... I----... I~-----TI
[initl--n.t->[bidYl--n.t->[bU.Pl--:::~.tl

This skeletDn is quite similar to. the first example Df this sectiDn and it c"Juld Similarly be verified

against its plan, which is given in Chapter Two.. We will nDt do. that here. Rather let us use this

example to. develDp SDme new aspects Df surface structure. The "invDkes" arrD,ws in this example

(". are a refiectiDn Df the embedding in [summatiDn] Df the Dpen code fDr its subsegments. The four

PAGE 82

basic "next" arrows between the subsegments, nnlt], [body], [bump], and [test] are simply a

reflection of the explicit order of their appearance in the code for a sequential machine. The

relationship [test]--nxt->l:body], is more interesting, however. It is a result of understanding the . '

meaning of the code (GO LP) at the end of the [test] segment, and the tag conventions for PROG.

In addition to basic control structure relationships, the surface structure representation of a

program like this migh~ also contain whatever information about input and output objects of a
"

segment can be derived from a simple analysis of the syntax and basic LISP semantics of a

program (i.e. not using any background knowledge about the programmer's higher level

intentions). This could be done most naturally by adding to each segment in the control structure

skeleton, a skeleton specs, which, indicates at least the input and output objects of the segment. as

derived from the indexer's analysis. and possibly some simple expectations and assertions

transferred up to a segment from the specs of the basic LISP functions within it. In the present

example. the P.A migh~ proceed as follows (if it couldn't bring in all this knOWledge ready-made

from its descriptive model of summations and loops). From the code construct (RETURN SUM).

which is part of the important connective tissue between the subsegments of the SUMMATION

program. it might conclude

(SPECS SUMM~TION () (SUM»

Looking at the (jnit] segment. the P.A. might conclude directly from the SETQ,:s that SUM ,and

CTR were output oOjects. and that there were no input objects. Thus.

(SPECS I NIT () (SUM eTR»

Reasoning similarly for the other segments, the skeleton specs to be inc1uded in the ~urface

structure representation :would be:

(SPECS BODY ~SUM CTR) (SUM»

o

c

•

(0.

PAGE 83

(SPECS BUMP (CTR) (CTR»

(SPECS TEST (CTR) (»

This completes our description of surface structure information about a program. Let us repeat

here that the forgoing discussion should not be taken to imply that a. complete surface structure

representation is to be generated by the P.A. by the methods indicated, as a first step towards

understanding the program. Rather, this is the kind of information the P.A. can extract from the

raw code as a last resort analysis in the absence of strong gUidance from its bilckground knowledge

base.

3.2 Building the Model of the Program

(In this section we will undertake to give a more realistic account of how the P.A. would go about

understanding a LISP program it had never seen before. We will do this in two steps. First we

will define the input~output conditions of the recognition and understanding task we wish the P.A.

c

to perform. Then we will give an informal scenario that reflects our current notions of what the

intervening processing might look like. Our scenario will of neces.dty be quite loose, since

discovering exactly how to do the understanding is the major probi!m we are proposing to

research.

3.2.1 Definition of Understanding

At the level of a simple block diagram, the recognition and understanding process could thought

of as follows:

PAGE 84

o
,-

LISP Prograllllll8r's U

N
COde Annotat ion 0

E

R

S
T HODEL OF THE
A

KNOULEBGE BASE N PROGRArI
0

Descrlpti~e Hodels I

Plans and lImp lementatlons N
Special LISP Knowledge ~

Iu..~.

Thus, in the context of the P.A., we wtll defIne understandtng as tlte process and result of butldlng

a complete model of the program. The model of a program is a complex data structure that describes

the program in many ways. Please refer now to the figure on the following page, which gives an

exampl~ of a complete model.

c

•

c.ode

lP

C:

PAGE 85

ITERATIVE-PLAN-1 r--+--~:.;.:.:;...:;::~::..I

t--~~V:;';;':~=----t-cSPECS SUnnATION (J (sun)
'-----or'

(ASSERT (Ea (sun (SIGt1C1 (J 1 18) (J)))))))+_ ..

s!EfS .. (SPECS INIT () (sun CTR)

(ASSERT (Ea CTR 1»
(ASSERT (Ea sun 8»)

StUo\).(SPECS BODY (sun CTR) (SU,!)

XPECT (Ea sun (SIGnA (I 1
(EXPECT (LE CTR 18» ________ -

~(ASSERT (Ea sun (SIGnA H 1 CTR) (I))))),----li---

--.=..I-.--+.SPECS BU",' (CTR) (CTR)

rt EXPECT (LE CTR 18» ---~ I (ASSERT (Ea CTR (PlUS eTR U»))

r;;;-;;:::;;;;::';l::-.z~~--~SPECS EXIT-TEST (CTR) (.n:sn
l i (CASES
L-.((EXPECT (lE CTR 18))

«EXPECT (&T CTR 18»)'

Model of Summation Program

PAGE 86

This figure gives the model for the summation program. which we have been using as a

illustration in several previous sections. We have chosen to use it as the example in this section on

understanding because it is much smaller and simpler than the full hash table system we have been

using as our primary mustration elsewhere. This allows us to give the reader a better feeling for

.'. : t
what the complete aralysis of a program might look like. The model of the program. as you can

see. pulls together aU the various kinds of representation we have been developing for program

description:

(I) The model includes the teleolog'1 of the program. represented in terms of
the aggregation of the code into segments with associated specs. and their
interlation in terms of plans and purpose links.

(2) The model includes the surface structure of the program. as represented
by "next" and "invokes" arrows between segme~ts.

(3) The model relates segments of the program to descriptive models in the
knowledge base via prototype-instantiation conventions. e.g. a particular
summation program is recognized as an instance of summation programs in
general, so that any knowledge the P.A. has about the prototypical entity is
a vailable to help deal with the present case. The same holds true for lower
level concepts also; for example if a variable is called a "counter" in the
model, this implicates all the knowledge theP.A. has compiled about counters
in general.

(4) The model of the program reflects the destgn chotces that have been
made in the particular program. For example. in the P.A.'s knowledge base
there are listed several possible implementations for· iterative plans (DO­
loops, recursion, nOTO-loops). In the model describing this program
however, only the alternative that was actually chosen in this instance is
shown (i.e. nOTO-loop).

(5) Finally of course, the model also includes the actual code and annotatIon
that compris"s the program being described.

On the input side of ~he understanding process, we have:

(I) The raw LISP code.

Glues to, what the programmer is trying to do are buried here in the form of
the code it~elf, and also often in the choice of mnemonic identifiers used to
name functions. variables. etc.

o

c

•
PAGE 87

(2) The programmer's annotation.

Here the programmer hopefully makes his intentions more explicit. In' the
ideal case, this annotation would simply be comments in natural language,
made as the programmer saw appropriate as reminders necessaty to himself
or a colleague who will read the code at some later time. More rf'alistically,
for the first generations of apprentice, the annotation will have to be in
some convenient and hopefully natural-feeling formal language. As for the
content, it is a research question to what degree it will ha"e to be more
pedantic and extensive than would be appropriate for say, a human
assistant. Also, this issue is closely related to how well the P.A. uses its
k.nowledge base to facilitate understanding.

(3) The knowledge base.

(a) Descriptive models.
These specify what is conceptually related to what else, so that the P.A. may
generate expectations about what to look for in the code. For example, from.
the descriptive model of hash tables, the P.A. has the expecta~ioll to find an
insert routine, lOOKUp routine, etc. Similarly. once the P.A. has discerned that
an iterative plan is being used in a program. it then knows to look for an
initialization. body. bump. and test. This kind of gUidance in what to look
for is crucial to the P.A.'s success in understanding the program. (And
indeed, the same is true for people. to a great extent.)

(b) Plans and implementations.
Encoded here is the P.A.'s knowledge about standard forms of program
control structure. and how they may be implemented in LISP. Here again,
the P.A. gains power by often knowing ahead of time what the design
alternatives were. so that recognition becomes only a case (If determining
which choice was made in a particular program.

(c) Special LISP knowledge.
Of course, in order to analyze the code in detail the P.A. haS to know the
basic syntax of LISP, how the interpreter works. and the semantics of the
basic LISP functions. Also in this area of the knowledge base are templates
which help span the gap between the lowest level implementation plans, and
the particular programmer's idiosyncratic LISP code segment.

3.2.1 Scenario for Understanding a Program

We are now in a position to present a scenario of what we expect the internal behaviour of the

. ' C, P.A. to be when it is trying to build up a model of a program it has never seen before. Important

aspects of this behaViour to pay attention to are the order in which parts of the program are

PAGE 88

recognized, and how the various· sources of information interact However, it is also important. to

keep in mind that this ::lcenario for understanding the summation program is intended only to give

a "feel" for the kind of processing and reasoning that we believe will take place. Firstly. it is

certainly the case thatthe exact details of order and.method by which the parts of the program are

recognized in this scenario are not canonical--we intend them only to be plausible and suggestive

of how we think things should happen. Secondly, this one example, in its intentional simplicity

and small size, will ine~itably miss many important issues in the recognition problem. Third and

finally, the plain fact is that we don't know yet exactly how the recognition processes will operate-

as stated before, that is part of our research problem. In any case, let us get on with it. Here

again is the the program, with its associated meagre annotation:
\ .

(OEFUN SUMMATION ()
. (PROG (SUM eTA)

(SETa ~ SUM 0) ; in it i a I i ze
(SETa eTA 1)

LP (SEta SUM (PLUS SUM CTR»
(SETa eTA (PLUS eTR I)} ;bump ctr
(CONO «LE eTR IB) (GO LP»}
(RE1URN SUM) »

The first major break in understanding this program is to put it in the context of the appropriate

descriptive. model. In this case, the programmer has provided this information in the way he

named the function, i.e. SUMMATION. Assuming the P.A's lexical knowledge of English was

adequate, this would immediately invoke the descriptive model of summations. If the function was

not mnemonically nal11ed (at least as far as the P.A could understand), the P.A. could alternatively

ask the programmer explictly, "what is this program all aboutt. Now, the descriptive model of

summations would include something like the following fragment:

•

o

c

•

•

ITERATIVE-PLAN

(DO «?VAR INIT BUnp)
(?VAR INIT BUnp»

(TEST RETURN-VALUE)
BODY))

PAGE 89

RECURSION \

Given that the program is a summation routine, the P.A. thus knows it must have an iterative

plan, composed of an init, body. bump. and test In order to find the code segments that play these

roles. however. it first has to determine which of the possible implementations was chosen: do-loop.

goto-loop, or recursion. One way for this to happen would have been if the programmer had a

comment at the beginning of the code something like ";using a goto loop'''. Alternatively. each of

the design alternatives knows enough to be able to look at the code and :see if they were chosen.

For instance, the recursion choice might simply look to see if there is a recursion relationship, A --

inv(c--> A. in the surface structure of the code. Similarly. the do-loop recognizer needs simply look

C for the surface syntax of the LISP DO construct. Fina11y. in this example. the ~oto-loop recognizer·

would succeed by noticing the PROG construct and the (GO LP) statement. The next major

PAGE 90

hurdle is now to figure out how to divide up the code into segments. Sometimes this can be quite

,easy. For exampl~, consider the following alternative summation program implemented using the

DO construct.

(OEFUN SUMMATION ()
(00 «CTR 1 (PLUS eTR 1»

(SUM 0»
«GT· CTR 10) SUM)
(SETa SUM (PLUS SUM CTR»»

Here we have an example of a "quick. kill". From the template associated with the DO-loop

implementation in the knowledge base shown above,we can immediately break. up the code into

segments by simple pattern matching to the syntax of the DO construct. In our primary example,

using the GOTO imp~,ementation however, it is not so easy. One way to begin is to use the fac~

that the initialh:ation segment of an iterative plan must always appear first in order at the surface

level. Thus, by the way, the n;initialize" comment on the first line of the PROG in the example

program is superfluous to the P.A., given that it k.nows the general fact about the position of

initializations; Now that we know where the init segment starts, we need to figure out where it

ends. The clue to this ,is to recognize what part of the code lies inside the iteration loop. The P.A.

has already recognized the (GO LP) statement at the bottom of the iteration, from which it is a

short step to recognize the the tag LP above delimits the beginning of the iterated code. Since the

initialization is not supposed to lie inside the iteration, we have now established that the end of the

initialization segment, is delimited by the LP tag. Now, within the iteration loop. we have to find

the body. bump. and test, which can be varied in their order. However, each have their

identifying features. For a start, the exit test segment expects to contain some LISP control

•

o

primitive, such as COND, AND, or OR, with a GO embedded in it. This can be immediately

recognized as the eOND clause second line from the bottom. That leaves the bump and body to 0
"

be accounted for. In this example, we have the helpful comment ":bump" on the fourth SETQ. in

PAGE 91 .

("- the code. The P.A. would then assume (correctly) that the bump segment started there and

extended until the beginning of the exit test CONDo Alternatively, if the comment had been

c

absent, it seems reasonable to expect the P.A. to have figured out for itself what was the bump

segment, by noticing that it was the only line of code which reset the variable CTR (assuming it

had already realized the semantic significance of the variable name). As. a last resort, of course,

the P.A. could always enquire of the programmer where the bump step occurred. Having

recognized the bump step, we are essentially finished with the segmentation problem, since all that

is left over is the body of the loop, which must be the remaining code inside the iteration.

Now that the code is properly diVided into segments the P.A. will complete the model by filling; in

the specs for each segment, and the relationships between segments, both teleological (purpose

\

links) and surface structure. The surface structure relationships are the easier of the two. In this

case the "next" and "invokes" arrows would be immediately filled by some standard algorithm

operating on the surface syntax and semantics of the code, as implied in Section 3.1. Following that.

the problem of filling in the futl details of the specs and the purpose links could be attacked two

ways. One way, which would probably work quite well in this simple example. would be to first

calculate all the input-output conditions of each segment and then the purpose links between them.

directly from some standard algorithm applied to the raw code. Howevet this would not be typical

of how we think the P.A. should operate. More realistica1ly. in the descriptive model for each

~egment type in the plan would be a skeleton or template set of specs that only needed to be

adjusted slightly to fit an instantiation of such a segment type appearing in actual code. For

example, the prototypical bump segment has an input expectation about the old value of the

counter variable, and an output assertion about the new value. It only remains for the P.A. to

determine in a particular program. which variable is the counter, and what the value ranges are.

PAGE 92

This apptiessimihuly for the other segments. Morever, these prototypical segments in the

k.nowledge base are themselves related together by purpose links into plans. Thus rather than

doing pattern matching and deduction on the user program's specs in order to figure out the plan,

most or all of the plan comes from the knowledge base along with recognizing the segment types.

For example, it is represented in the knowledge base that there" is a prerequisite link between the

bump and the test, the text and th~ body, a mainstep link between the body and the invoking

segment, etc. Again, a~" in the case of the specs, only the details have to be adjusted to the program

at hand. This completes our scenario of how the model is built. We now claim that the P.A.

understands the program.

3.3 Control Structure and Implementation Issues

Several words and phrases, for example, "invokes", "recognizers", and "identifying features", which

seemed natural to use in the preceeding scenario, suggest certain kinds of control structures that

would be appropriate for the P.A In trying to evaluate these various recognition paradigms of

currency in A.I. it is useful to lay them along a dimension, which at one end might be called

"hypothesize, and jump", and at the other extreme, "wait ,and see"., These contrasting approaches

might be exemplified respectively by Minsky's Frame <Minsky,I974> paradigm, and Marcus' Walt- "

and-See Parser <Marcus; 1974>.

If we were to apply Min~ky's approach to our P.A. recognition problem, it seems natural to identify

the descriptive models of the our knowledge base as the "frames" of Minsky's theory. The

descriptive model is thus "invoked" when its clues or "indentifying features" (or IMP'S in

Winograd's interpretation), are satisfied by features in the object program. This invocation of a

descriptive model corresponds to making the hypothesis. The system then tries to verify that the

o

c

• PAGE9S

(' hypothesis (frame, model) does in fact fit well. During this phase, the comrol flow in strongly top-

down, i.e. the frame expects certain features to be present a priori, and recognition becomes a case

of trying to actually find them in the object If the hypothesis turns out not to fit, it is abandoned.

and the "jump" is made to another one based on the bugs in the current model. and the new

information gathered.

Other aspects of recognizing LISP programs have a more bottom-up nature. For instance, there

seems to be a need in the P.A. system for templates, (or what Marcus calls "groupers") to recognize
. . .

such standard structural units as DO-loops, GOTO-loops, etc. This is analgous to Marcus' use .of

groupers to conglomerate noun phrases or verb groups' in parsing natu~al language. These groups

are then passed up to the next level of recognition, where they are fitted into more abstraCt

('. descriptions. In the P.A. this next level of abstraction would be the plans, corresponding roughly

to sentences in the natural language situation.

In any case, these remarks suggest that we need to do more research in the area of control

structures for our P.A. To this end, let us give now the following list of relevant issues that are

indicated by our investigation thus far:

(I) Top-down and bottom-up.

The control structure clearly will have to support information {Jow in . both
directions.

(2) Multiple sources of information.

As we have seen, the P .A. needs to pick up clues from the code and
annotation, and gUidance from the knowledge base. It should take
advantage of the most useful information for each recognition subproblem.
regardless of source. This implies a sophisticated arbitration mechanism
between information sources.

PAGE 94

(3) IncQmplete knowledge.

Almost certa~rily. there will be situations in which the P.A. does not know
enough to b. able to perform in the manner desired by. the user. In such
cases, partially useful behaviour, rather than complete failure, should result.
For example, the P.A. should be able to take a.dvice and assimilate new
information to recover from ·incomplete knowledge.

(4) Contradictions.

In a similar anthropomorphic vein, the P.A.'s control structure should be able
to tolerate contradictory information, both in the. knOWledge base, and as
inputs to the, recognition process.

(5) Order of recognition ..

In cases where the order in which component parts of a program structure
are recognized is intrinsically arbitrary, the control structure should not be
capriciously sensitive to the order.

3.4 Advice Taking and Assimilation of New l!lformation
, .

Situations in which the P.A. has incomplete knowledge can be divided into two classes, with

respectively appropriate recovery behaviours. The first case is typically when the P.A. is trying to

recognize a program it has never seen before, but the programmer has provided insufficient
'.

annotation. In this case, the appropriate behaviour is for the P.A to initiate an advice taking

interaction with the user. This will be particularly effective because the P.A. will be able to ask

for help in an intelligent fashion, i.e. by asking very pointed questions. For example, in the

summation program example, the P.A. might ask

.2!.

What imp'e~entation have you chosen -. .
(a) GOrS-loop?
(b) OO-Ioop?
(c) Recursion?

Where do you bump the counter?

What variable is serving to accumulate th8SUIR?

..

o

c

•
PAGE 95

(-' In all these cases, the P.A. has figured things out to a certain point, and uses this partial knowledge

to compose a specific and pertinent question to the user.

The second class of incomplete know lege is more profound. Suppose a user is using a new data

structure or programming technique which is not in the P.A.'s knowlege base. The P.A. needs to

have mechanisms to assimilate this new information. In the simpler case of a new data structure,

one way to do this would be to ask the programmer to explain the new construct to the apprentice.

Given that the P.A. knew some things about data structures in general (e,g. they have associated

composer and decomposer functions), this interaction could be facilitated by the P.A. prompting the

programmer for the relevant information .. An elegant and very powerful solution to the

assimilation problem, Which might be better for learning about new prDgramming techniques,is .

(/ suggested by the fact that the model built to represent a new user program has'the same forms as

the permanent knowlege in the knowlege base. What is suggested is a general technique for taking

a specific program model, variable-izing it appropriately (herein lies the difficult problem). so it

can then be inserted in. the knowledge base as a permanent descriptive model. We do not suggest

we have a way of doing these things, but we do feel that the system we are developing lends itself

welt to research in this direction.

3.5 Relation to Natural Language Understanding

There are some interesting parallels that can be drawn between understanding a program you have

never seen before, and understanding sentences in natural language. In both cases, a key

component in the understanding system. is the background knowledge base, which establishes a

context for understanding the semantics of the particular utterance in question. The huge problem

in natural language understanding research is that if you try to advance h1!yond conversations in

PAGE 96

toy domains like the blocks world, this background knowledge quickly amounts to having a

common-sense model of the whole world of human existence. Unfortunately, building such a

representation of the world is exactly the central unsolved research project of the entire AJ.

community. Howtver, in the case of building a programming apprentice, we believe our research
, ' ,

will confirm that the knowledge base for understanding programs is manageably small and well-'

defined.

The parallel goes deeper than this also. Consider the roles of syntax and semantics in

understanding the two kinds of utterances. In the case of natural language. there is a problem

with making the semantics sufficiently strong to gUide the recognition process, but fortunately (and

perhaps not coincidentally) the syntax of natural language carries a lot of information. Thus. a
! .

o

lot of meaningful processing can be done. especially at the low level (such as aggregating noun 0
phrases and verb phrases), without much real understanding of what the sentence means. In the

case of LISP programs, however, the basic syntax is so simple and regular that it carries almost no

information at all. Programs are, understood only by invoking the precisely defined semantics of

the LISP "lexicon" (i.e. the basic LISP functions). and the strong models of the background

knowledge.

Thus. to summarize, our research is very much compltmlntar'1 to current natural language

understanding research. In both cases, as suggested previously, the control structure issues are very

Similar: top-down and bottom-up. multiple sources of information, etc. However. we contrast

nicely on the relative predominance in the recognition process of syntax vs. semantics. In the case

of our research on program l:Inderstanding. we are able explore the role of background semantics 0
, to a much greater extent.

..

• .. PAGE 97

BIBLIOGRAPHY

Balzer, (1973) "Automatic Programming", Institute Technical Memo, University of Southern
California I Information Sciences Institute, Los Angeles, Cal. . .

Bursta1t, R. M. (1969) "Proving Properties of Programs by Structural Induction", Comput. JI. vol.
12, pp. 4-8

Burstall, R. M. (1972) "Some Techniques for Proving Properties of ProgrDms Which Alter Data
Structures", Machine Intelligence 7, Edinburgh University Press.

Dahl, O.j., Dijkstra, E .• And Hoare. C. A. R. (1972) Structured Programming. Academic Press, 1972.

Deutsch, Peter (1973) "An Interactive Program Verifier", Xerox PARC Report CSL-73-1. Palo Alto,
Ca.

Floyd. R. W. (1967) "Assigning Meaning to Programs", Mathematical Aspects of Computer Science.
J.T. Schwartz (ed.) vol. 19. Am. Math. Soc. pp. 19-32. Providence Rhode Island.

Goldstein, Ira (1974) "Understanding Simple Picture Programs" PhD. TheSiS, M.I.T. A.I. Lab.
Technical Report 294.

HeWitt, Car1.(l971) "Description and Theoretical Analysis (using Schemata) of PLANN ER: A
Language for Proving Theorems and Manipulating Models in a Robot", M.i.t. Ai Memo No.
2ru. .

Hewitt, C., Bishop. P., And Steiger. R. (1973)"A Universal Modular Actor Formalism for Artificial
Intelligence", Proceedings of IJCAI-73, Stanford California.

Marcus, Mitchell (1974) "Wait-And-See Strategies For Parsing Natural Language" M.I.T. A.I.
Working Paper 75.

McDermott, D. V., and Sussman, G.].(1972) "The CONNIVER Reference M.anual". M.I.T.
Artificial Intelligence Laboratory, Memo 259.

Minsky, Marvin (1974) "A Framework for Representing Knowleqge" M.LT. A.1. Memo 306.

Rulifson, J.F .• Derksen, JA., and Waldinger, R.J (1972) "Q..A4: A Procedure Calculus for Intuitive
Reasoning", Stanford Research Institute, Artificial Intelligence Center. Tectmical Note 73, Menlo
Park, Ca.

Ruth, Gregory (1973) "Analysis of Algorithm Implementations" M.i.t. Phd. Thesis, Project Mac
Technical Report 130.

