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Abstract 

Several attempts have been made to produce tools which will help the programmer 
of complex computer systems. A new approach is proposed which integrates the 
programmer's lntenttons. the program code, and the comments, by relating them to a 
knowledge base of programming techniques. Our research will extend the work of 
Sussman, Goldstein, and Hewitt on program descrtptton and annotatIon. A prototype 
system will be implemented which answers questions and detects bugs in simple LISP 
programs. 
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CHAPTER ZERO. MOTIVATION AND SCENARIO 

0.0 The Complexity Barrier 

During the past decade the power of computational facilities has increased by several orders of 

magnitude. The transition from tab equipment systems to the modern day computer utility, 

exemplified by MULT/CS. has taken little more than two decades. Moreover we are faced with 

the realistic prospect that current generation hardware will itself be superseeded within another 

decade by LSI and other technologies. sophisticated enough to house in a desk drawer computers 

more powerful than those of the last generation. 

During this period, software develoment has also proceeded at an amazing rate. It has similarly 

taken only about two decades for the transition from the first FORTRAN compiler, to modern 

PL/I (and to other structured languages>, optimizing compilers, sophisticated data-base managing 

systems, complex operating systems like MULTICS, etc. Within the Artificial Intelligence 

community. this same progress has taken place. The transition from the batch LISP 1.5 to higher 

powered interactive dialects such as MACLISP and INTERLISP has also taken less than two 

decades. In addition, new specialized A.I. languages have been developed, e.g. PLAN N ER, 

CONNIVER, and QA4. 

Unfortunately, the result of such advances has been, to a large extent, merely to open Pandora's 

box. Each advance in computing hardware or in the power of programming languages, has 

spawned a new generation of yet more sophisticated and complex programs. Modern large scale 

programs are, to a large extent, caught on the horns of a dilemma. On the one hand, the sheer 

C' magnitude of most large software systems dictates that they be produced in a project in which 
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responsibilities for sub~modules is parcelled out; on the other hand, the interactions between these 

submodules are frequently so diverse that they defy coordination among an entire project of 

individuals none of whom see the entire picture because of this division of labor. This suggests 

that design and even coding must be accompUshed by a single individual. Unfortunately, one 

individual usually is no more successful at keeping all the interactions straight than is the entire 

project. The end result of this situation is that software is both notoriously late and famously 

unreliable. 

There are additional difficulties brought about by the economics of large scale production. 

Programmers have become "proletarianized". The elite expert programmer who crafted a system 

and stayed with it for many years, finely tuning it and adding new bells and whistles with ease, 

c 

~ 
has by and large been superseeded by an entire generation of college graduates who were ~ 

introduced to computing in their courses, and who are hired and fired by programming shops in 

accord with the winds of the market place. Each such individual must pay the price of getUng up 

to speed on the current system being produced, usually mastering only that corner of the system 

necessary for his individual task before he is transferred to another project or layed off. The net 

result of this process is that each new feature added to a system carries with it an extreme 

likelihood of introducing a new "bug". The computer software industry has a folklore of "horror 

stories" caused by this process. Time-sharing systems are put on the air only to crash seven times 

in the first hour, deleting some user's files in the process; companies switch to a canned inventory 

system only to find out that they no longer know how many of certain items they now have. etc. 

We have, thus, come up against what Terry Winograd has referred to as the "complexity barrier". C 
Winograd, working not in large scale commercial programming, but in the research environment 
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C of the M .I.T. Artificial Intelligence Laboratory, observed this same phenomenon of programs 

growing larger and more complex than could be handled by either an individual or a project. 

SH RDLU, Winograd's magnum opus, is precisely such a program. Designed as a research project 

in computer understanding of natural language, SH RDLU also incorporates a problem· solving 

component to solve extremely simple construction tasks in a world which contained a collection of 

toy blocks, boxes and a table. Even after several rounds of "cleaning up the code" (which had the 

express purpose of clarifying the interactions), it is still well known that parts of the program 

(particularly those which involve interaction between the semantic specialists and the dictionary) 

should be touched only by a select crew of experts. Given that SH RDLU, impressive as it is, is not 

anywhere near to the machine intelligence to which A.I. aspires, Winograd and others (including 

the authors of this paper) have concluded that continued research in A.I. is dependent on 

producing a means of breaking through this barrier of complexity. 

It should be realized that this barrier is not caused simply by the size of the program, but rather is 

due to the fact that, as the size increases, the number of relationships between modules (assuming 

the code is coded modularly) increases conSiderably quicker. In order for a program to work. it is 

necessary for these interactions (function or subroutine calls, shared variables, etc.) to be both . 
syntactically, and semantically correct. For example, a routine might expect as input a particular 

type of Ust called an s-marker Ust. A syntactic check, at least in LISP, could only verify that the 

routine is being passed a ltst; a semantic check would verify that a s~marker Ust was being passed 

in. The essense of the complexity barrier is that, as the size of the program grows, the much more 

rapid growth of the interactions between modules makes it virtually impossible to design a new 

module which can function within the constraints of the existing program. 
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c 
0.1 RELATIONSHIP TO OTHER WORK 

0.1.1 Limitations of Previous Approaches 

A great deal of the work done within Computer Science departments for the past several years has 

to some extent or other been motivated by a desire to deal with this issue of bringing the 

complexity problem under control. Several approaches have been proposed, all of which suggest 

that the answer is to force the computer to help manage the complexity. 

A first cut solution to the complexity problem involves the construction of a set of tools to ease the 

programmer's job. Such tools would include cross reference generators, pretty-printers, various 

break-point setters and related debugging aids, etc. The best example of this approach is the work 

done in constructing INTERLISP ireitelman,1974>. What typifies this approach, is the idea that \~ 

the system should provide all the assistance that it can, without its having to know very much 

about the program at hand. 

The limitation of this approach is that a system so designed can provide little aid to the 

programmer in actually designing the program. This is intrinsic to the approach; the system is not 

expected to have knowledge of the programmer's intentions to any real degree. The services 

rendered by this type of system are limit~ to a very valuable collection of essentially syntactic aids. 

Such aids provide extremely valuable information: cross references, stack snapshots on failure, etc.; 

all of these are indispensible to a programmer trying to design or debug a program. They do . 

require, however, that the programmer actively knows the interactions, goal structure and overal1 

intentions of the whole system (or at least of that part of it on which he is currently working). C 
Keeping track of these facts tends to be a tasK which is better suited to a machine than a person. 
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because it exceeds the storage capacities of most people's active memory. To summarize, these tools 

provide much needed help, but they do fall short of breaking the complexity b~rrier. 

A second approach has been to design new languages or formalisms which in some way will bring 

the complexity problem under control by imposing structure on the code. This general trend has 

come to be called structured programmtng, and in the non-A.I. world is most associa~ed with 

Edsger Dijk.stra, C.A.R. Hoare, and others <Dahl, Dijk.stra, and Hoare, 1972>. this school has also 

ad vocated changes in the methodology of programming, the central ideas being "top down 

programming", "stepwise refinement", "goto-Iess programming", and "modularity". 

Within the Artificial Intelligence community there have also been a number of researchers 

involved in the development of better languages and formalisms. In particular, there has been 

what seems to be a never ending series of powerful new languages, each claiming to solve many of 

the problems of writing large A.1. systems (and each suceeding to some extent). Such efforts 

include PLANNER <HeWitt, 1971>, CONNIVER <Sussman and McDermott, 1972>, Q.A4 <Rulifson, 

Dirksen. and Waldinger, 1972>, and the ACTORS formalism <HeWitt, et. aI., 1973>. Although all 

of these researchers would not consider themselves part of the structured programming movement. 

(quite the contrary, most of these languages are designed to escape, in one way or another, the rules 

of "structured programming"), there is still the shared assumption (with which we agree) that better 

formalisms and languages can solve some of the compleXity problem. 

Formalism and language design does promise to prOVide us with techniques which will help 

develop clearer, more structured programs. Yet the problem we face can only be partly solved 

through this approach. For one thing, there is a wen known phenomenon that stronger formalisms 
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breed m9re complex programs; e.g. PLANNER and its decendents have opened A.I. 

programming to the type of complexity exemplified by SH RDLU. This difficulty. however. is not 

really the'cr~x of the matter; after all, we really do want to construct programs as complex as this 

(in fact, much more complex). The problem is that, within the realm of commercial programming 

as well as within the A.I. community. it is unrealistic to think that even the perfect language could 

be adopted overnight. Old programs have to be maintained, new language processors need to be 

implemented on a host of different machines. and most importantly. programmers have to adopt to 
• 

the new language or methodology. This simply does not happen qUickly, if at all; most 

. programmers still use FORT RAN or COBOL; most A.1. programming is still done in LISP. Thus, 

we feel that it is more productive at this point to discuss means of helping programmers with the 

complexities they encounter within the language systems they currently use; nevertheless. we feel it 

important to note that the system which we will propose constructing in this document ~i11 be 

capable of a rather straightforward adaptation to new languages. 

A radical approach to the compleXity proble~ has been to suggest that the easiest way out is simply 

to make the machine do everything; i.e. automattc programming. This approach has bt;!en put 

forward most clearly by Robert Balzer <"Automatic Programming"j Balzer 1973>, and is currently 

being investigated by several researchers at M.I.T.. The proposed idea is to have the machine 

produce efficient code, given only an English or some other "high level" description of the 

problem. Although. this approach does seem seductive. it is our estimate that it will not in the 

short run produce results of much value to the designer of large-scale A.I. programs (or other large 

scale programs). It is interesting to note. however. that our approach does seem in many ways to be 

a step towards such "automagic programming". 

c 

o 
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c~ Another criticism of automatic programming is that, in general, computers ought to aid in 

programming, not assume the overall task. This can be seen by looking at applications of 

computers in engineering disciplines other than software engineering. At present, although 

computers play a valuable role as aids in architectural deSign, it is unclear that the aesthetic sense 

necessary for automatic design could be formalized to the extent necessary to paCkage it into 

computer programs. (It is, after all, quite difficult to package it into people). Furthermore, the 

problem of representation of vague concepts, is precisely the crux of real attempts to simulate 

human intelligence on the computer. This suggests that in the near future automatic programming 

ought not to, and will not be of appreciable help in constructing the type of complex programs 

which typify work in A.I. 

A final idea with much currency is that of program verlflcatton. The central idea of this approach 

is to construct in the f.irst order logic a. statement of some property of the program (usually· an 

overall statement of the program's behavior). Further, it is observed that various other statements 

in the first order logic can be attached to locations in the flowchart of· the program. These are 

then used to construct a proof of the desired property of the program. Most well known among the 

advocates of this approach are Floyd <"Assigning Meaning to Programs", 1967>, Burstall <"Proving 

Properties of Programs by Structural Induction", 1969>, and others. Peter Deutsch <"An .Interactive 

Program Verifier", 1973> has constructed a program which performs this verification function for 

a series of numetical programs of moderate compleXity. Although he departs in several respects 

from the approach originally presented by Floyd, it is still fair to say that the approach basically 

involves a resolution-like . theorem-prover working on assertions in the first order logiC. Because of 

this a sizable part of his effort is diverted into keeping the theorm proving process from engaging 

in exponential explOSions. 
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In general. this approach seems to us to have two difficulties. First. the process is best suited to 

proving programs correct once they have been designed. whereas we see the main problem. as 

designing programs within a highly complex domain. Secondly. although we find the idea of 

certifying programs to be attractive. the method used by the above researchers forces the 

programmer to express his intentions in a language (first order logic) which is frequently 

unnatural to him. and in some cases inadequate for the task. Furthermore. the knOWledge used in 

constructing these proofs is itself often obscure (for example. Burstall <Burstan. 19'72> uses category 

theory to prove properties about programs using list structure). Because of this. the system would 

be inaccessible to the average programmer who has a more "common-sense" understanding of his 

program design. 

o 

We have summarized these approaches not to take "cheap shots" at them, but rather to see what ",,-j 

limitations they have run into. Chief among these difficulties is the inability to bring into use the 

basic knowledge of programming skills which· the average programmer has at his. disposal. 

Furthermore. all of these approaches have difficulty integrating into their operation the 

programmer's knowledge of the overall intentions and goal structure of his program. They, 

therefore, have to',either explicitly disavow certain types of services or to remove the programmer 

from the formulation of the program's design. 

Althoug~ there is great value to many of the services which these various approaches can render, 

we feel that they suffer from not being integrated into the proper total system. In the next two 

sections we will describe and present scenarios of what we think such a total integrated system 

ought to be like. Many of the capabilities of these earlier approaches will be incorporated into the C 
system which we are proposing. Nevertheless, it would be incorrect to include our system in any of 
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(" the previously reviewed categories. 

0.1.2 Knowledge Based Approaches 

Within the Aritificial Intelligence Laboratory at M.I.T. there has developed over the past several 

years a growing belief that the essense of building intelligent automata is contained within the 

question of how to build a knowlege based system which can employ its base of knowledge to solve 

problems within a particular domain. We propose to try to apply this approach to the problem 

domain of program design. verification. documentation and bug detection. 

The overall motivation for this project is the belief that man-machine interaction can be a 

symbiotic relationship in which the overall productivity is greater than the sum of the parts. This 

(/ is a large question which could be approached in any of a number of engineering disciplines. We 

have chosen software engineering for several reasons. First. we know it best. Secondly. it presents 

an area of large complexity where we can both break out of the traps accompar;tying "toy 

problems" and still cut the domain dbwn to a manageable size. Finally. and perhaps most 

significantly. software engineering is very much a case of the cobbler's child who has no shoes. 

We hope to at least save a sole in this thesis. 

We, therefore, are not intending to begin research on how to replace programmers, but rather on 

how a knowledgeable computer could help an already competent programmer. It has been our 

experience that we can produce better and cleaner code faster when working with a partner who 

shares our understanding of the intentions and goal structure of our program. We, therefore, 

believe that the appropriate metaphor for our work is that of creating a program with the 

capabilities of a junior colleague working on a joint project. The program should know the 
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problem domain,implementation techniques, and the programming language being used fairly 
c 

well. It need not know everything in advance; it can always ask its senior partner for advice or 

further information. Furthermore, this program might well be capable of paying more attention to 

details, of writing trivial parts of the code, of checking that certain constraints are satisfied, and 

. even (in some cases) of c1eaning up a large system after it has been put together. Given that 

programmers are popularly and correctly identified in the public mind as practicing black magic, 

we have named our proposed junior colleague EUCRATES, the sorceror's apprentice of Greek 

mythology. Unlike that mythological character, however, we want our apprentice to be a diligent. 

careful helper, who does not overstep the bounds of his capabilites. 

We see several past research efforts as having relevance to the tasks we are undertaking, although 
,.,-----". 

this project is in many ways breaking into virgin territory. We have already pointed out that we ~J 

are departing from the approaches summarized in the last section, particularly by virtue of the fact 

that we see knowledge based programming as the essence of the task. To further sharpen that 

distinction, let us add that the knowledge which we would Wish to encode in our system can not 

and would not appear as some abstracted or formalized version of the programmer's "common 

sense" knowledge. Thus, we would not repre~nt knowledge about list structure as theorems in the 

theory of categories, but rather as the "facts" which every LISP programmer knows, namely that 

there are "cars" and "cdrs", etc. Much of our work will involve codifying enou,gh of these "facts" 

into the system to get any useful behaVior out of it at all.· 

c 
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c- 0.1.2.1 Winograd's "A" System 

The type of system we are trying to design was suggested to us by Terry Winograd's "Bteaking the 

Complexity Barrier" paper <Winograd, 19'73>. In that paper, it is suggested that a programming 

environment unifying editors, debuggers, programming language systems and a knowledge base (to 

be called the "A" system) would be a valuable tool to put at the disposal of t,he programmer of 

complex systems. Further, Winograd suggests the use of program annotation to help the system 

understand the goals, purposes, and methods which the programmer is employing. To this end he 

identifies three types of comment namely "conditions", "assertions" and "purposes". These will be 

seen to have their counterparts within our system. 

The" A" system as proposed would inc1ude: (1) a documentation and question answering facility. i.e. 

the system could explain various facts about the way the program works as well as insert 

documentation "on the fly". (2)· several levels of interpreters, each capable of a unjque~tradeoff 

between efficiency and carefulness in execution. At one extreme, everything is checked and the 

system runs slowly; at the other, carefully compiled code is run unchecked. (3) An editor integrated 

into the other sections so that changes to the code can be inserted to fix problems "on the fly·, and 

so that proposed changes to the code can be checked and criticized as they are being made . 

. What is lacking in this description of the "A" ~ystem is any idea of how various parts of the system 

perform their duties. Our major task will be in filling in these details, which are anything but 

trivial. The proposed features seem to us to be a fair description of those tools which seem most 

important, and the work proposed here will center on one of these, namely the question answering -

documentation system. However, the ideas which we will employ to accomplish our goals ar-e not 

touched upon in Winograd's paper; it is not a description of an existing system. 
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0.1.2.2 Smith and Hewitt's Programming Apprentice 
o 

A second piece of related research has been summarized in Smith and Hewitt's "Towards a 

Prograrpming Apprentice" <Smith and Hewitt, 1974>. Here a system is proposed and described 

which is intended to achieve many of the aims of the "A" system through a process caned "Meta-

evaluation". Intended to run within a system based on HeWitt's ACTORS formalism; the approach 

involves certain concepts which we have found very useful. Most important among these is the 

notion of attaching to every identifiable segment of code a statement describing the behavior of 

the code; this is intended to say "what" the code does, not "how· it does it. We have used this 

concept to help us formalize the semantics of program description. 

. There are, howev~r, extremely important differences between this approach and ours. First among 
4-~ 

these is that we are attacking a different problem than that addressed by Smith and Hewitt. Their 10 

goal is to justify that a module satisfies the contract (i.e. behavioral description) attached to it; to 

do this they evaluate the behavior of the code on abstract input using an environment of forking 

contexts and background knowledge. Out of this, they hope to realize a "justification" which 

captures the teleological structure of the program and to use this to further aid the programmer. 
,. 

Our goal is to build a knowledge base containing such information already and to use it to help 

the programmer design code. Rather than meta-evaluating code, we try to recognize it as being 

Similar to s,omething which we already understand; we use such recognition to build a model of 

the code's behavior and teleology. 

A second important difference is that we see the structure of the knowledge base as being the 

essential question, while Hewitt sees the construction of more modular programming styles and C 
formalisms as a central task. Given such an ACTORS formalism, Hewitt and Smith believe that 
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C· they could build a meta-evaluating system which would serve as the base for their apprentice~ 

(~' 

i' 

Because of this, Smith and Hewitt's system will have to wait for the implementation of a language 

based on this new formalism, while ours might be of use to the programmer of already existing 

LISP systems. In many ways these two approaches wind up being complementary in the sense that 

they attacK different ends of the same large problem. Each system will be able to incorporate most 

of the ideas of the other. 

0.1.2.3 Sussman's HACKER 

Many of our ideas about program teleology follow from work reported by Sussman in • A 

Computational Model of Skill Acquisition" <Sussman, 1973>, which describes a program called 

.. HACK ERN which can write, debug and learn new programs for the Blocks World. The main 

ideas we have found relevant center around the notions of "purposes" Within a program and the 

realization of this concept as the functional relationship between segments ,of code. Sussman 

identifies two such relationships, namely prerequisite and main step. In addition, he conects these 

concepts to the temporal sequencing of a program and to the possible causes of "bugs" within a 

program. 

HACK ER achieves its ends by attempting to pose a simple solution (i.e. a first order 

approximation) to the problem with which it is presented. It then runs the proposed program in a 

"careful" mode in which annotation is checked and a complete history is maintained in the form of 

process snapshots called the "chrontext". If a Violation is detected, the "chrontext" is analyzed and 

the essense of the goal structure is abstracted from it. Th,is is then checked against a catalogue of 

. known types of "bugs" to find the fix. This information is also used to compile "critics" which will 

prevent the faulty plan from being proposed again. 
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Again we find that in many ways our work is complementary to the work reported. In particular, 
c 

we do not set ourselves the goal of automatic program proposal and debugging, but rather that of 

interaction with the programmer who is doing these things. Secondly, we wish to have avaiUable 

during the design phase, to as great an extent as possible, the kind of knowledge which HACKER 

abstracts at the time of the disaster. Finally, we are working within a domain which is in no sense 

a toy domain like, the blocks world. We, therefore, find ourselves much more often in a situation 

of partial knowledge, in which interaction with the programmer becomes essential. 

0.1.2.4 Goldstein's MYCROFT 

The final work which has advanced the technology of programming assistance is a program 

designed to help debug simple programs written by children within the LOGO system. These 

I"": 
programs are designed to drawn pictures on a display by guiding a "turtle" with simple "forward"~i 

an~ "right" commands. Goldstein's MYCROFT <Goldstein, 1974> debugs these programs by 

comparing the picture actually drawn (actually an internal representation of it) to a "moder of . 

what the program ought to do. Using the model and the code, the system discerns what the "plan" 

of the program must have been and from this generates the program's annotation. This is then 

used to gUide the debugger in finding the problem and proposing a correction. 

The differences between this approach and curs are mainly those already stated, namely that we 

wish to aid in the design of programs which are more complex than those possible within the 

limitations set by Mycroft and that we see debugging as being only a part of that process. 

Moreover, to accomplish our aims, we think that the user must specify his "plan" in advance, and 

that, in our domain, it would be extremely difficult to figure out the "ptan" without having hints C 
and a similar "plan" within the knowledge base. We do find, however, that Goldstein's notion of 
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(- using the plan as a driving force in debugging is an extremely valuable contribution. 

Furthermore, his classification of plan types has provided a starting point for our thinking. 

0.1.2.5 Greg Ruth's Sort-Program Debugger 

One other thesis done recently at M.I.T. bears some relevance to our overall goal of building a 

system capable of analyzing and understanding programs. Greg Ruth <Ruth,1973> constructed a 

system which is capable of debugging sorting programs written by children in an elementary 

programming class. Ruth's system knows several different sorting algorithms (e.g. bubble sort. 

interchange. etc.) and uses these as the driving force of the debugging session. Bugs are found by 

first finding that algorithm which most closely matches the student's program. and then classifying 

(,:' aU differences as bugs. 

Although there are superficial similarities between this approach and that which we wi11 present 

here, the essense of the two systems are essentially dissimilar. Like us. Ruth wants the driving 

element of his system to represent a class of programs. He therefore represents his algorithms as 

production rules in a context free grammar. Recognition, or more appropriately matching. can 

then be handled by a simple parser which takes the students program as text and parses it against 

the algorithm grammar. This procedure, it seems to us, inherently limits the system to working 

within a remarkably narrow range of permissable programs and, therefore, would seem to be an 

unlikely candidate for further development. Furthermore, the approach seems incapable of 

providing much assistance to a sophisticated programmer during the design phase. 



PAGE 16 

0.1.2.6 Others 

The works cited above have been mainly useful to us in clarifying what kind of knowledge the 

programming assistant would have to be in control of. None of them address the issue of 

representation of knowledge within a large domain. (To estimate the size of our domain, we can 

start with the fact that M ACLISP has over 100 subrs available to the user, and that the basic 

techniques which the aver!lge programmer calls upon might well be an order or, magnitude greater 

in size. Then, there are more involved concepts, such as those summarized 'in Knuth's several 

volumes). Our thinking: on this issue is still largely unsettled but to the extent that we have ideas 

they have been influenced by Minsky's "Frame Systems" paper <Minsky, 1974> in which the idea of 

"chunking" the knowledge into "frames" with "slots" and "default values" was presented. Mu~hof 

the structure we will present here has this flavor to it. However, the other main thesis of this 

paper, namely the "hypothesize and jump" paradigm of recognition represents an idea which we 

have yet to explore very deeply. In some regards, we find the paradigm of recognition presented 

by Marcus in his "wait-and-see" parser <Marcus, 1974> equally compelling. It is in this area of 

representations and its relationship to understanding and recogriition paradigms that our ideas are 

in the greatest need of clarification. 

o 

o 
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.. 

C 0.2 SCENARIOS 

In this section we illustrate some of the behaviors which the programming apprentice should have. 

Most of these will be seen to fall into the category of design and coding advise, i.e. they help the 

programmer avoid errors, or they catch the errors before they get entangled into a complicated web 

of the design. Most of the examples presented here are real in the sense that the knowledge which 

the apprentice calls upon in these examples was also used by the author in writing code very 

similar to that presented here. Most of the mistakes shown here were real bugs in the code. It is 

also interesting that this code is part of the P.A. system; it i$ part of the mechanism already 

created to attach annotation to code in such a way that both are accessible during program 

execution, editing, etc. 

(-
In this presentation all dialogue is in English. This is primarily for reading ease. Although we 

feel that the system we are designing will have adequate knowledge to communicate in natural 

language, we also feel that the essense of our research ought not to be in that direction at the 

current time. In the dialogues which follow the programmer will be indicated by the Roman text, 

while the Apprentice will be indicated by the Goth i c. Program code in UPPER CASE will be the 
i 

output of the apprentice, programs in lower case are to be understood as the programmer's input. 

The ttaitcs text are explanatory comments added by the authors to help indicate what the 

apprentice is doing. 

c 
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0.2.1. First Scenario: Initial Design 

I'd like to build a hash table 

O.K. you'll need an· insert, a lookup, an array, a hasher, and ~ptionallya delete 
rout ine. 

The P.A. knows th, matn parts of a Mslztng s'Jstem. 

Here's the code for the hasher. 

(setq htable-size 8179) 
(array hash-table t htable-size) 
{defun hasher (key) 

(hash-table (abs (\ (maknum key) htable-size)))) 

O.K. let's do the insert routine. 

I'd advise using lists for buckets 

The. P.A. knows that there are several wa'1s of dotng haslatng s.,stems, It also knows that tn 
LISP the most common approach ts to use luts. 

That seems alright; what are other choices? 

Rehash. I i near and overf 1014 •. 

P.A. gtves name foralternattve schemes. It could explatn an., of tlaese but tlal programmer does 
not ask htm to. 

O.K. let's use lists. Give me an outline. 

Programmer asks for some htnts on !tOW to structure tlae lookup routIne. 

The lookup takes one argument, the key. It has 2 stepsl 
1. hash to get a bucket. 
2. lookup the key in the bucket. 

The p.a. knows the structure of thts t,pe of lookup and gtves a broad outltne oftt. If asked to 
tt could go tnto much greater detatl. . 

O.K. here's my code. 
(defun lookup (key) 

(do «*f (hash key) (cdr *f))) 
«nu I I *f)) 
(cond .( (eq (caar *f) key) (return (car *f)))))) 

o 

c 
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(-- lsi t correct that the car of each entry is the key? 

c 

The P.A. figures out from tts knowledge of tlae program's structure tlaat tlae ftrst element of 
each entr., must be the key. 

Yes, Now let's do the insert. 

I'm sorry, but there's a mistake on the second line. By (hash key) you must mean 
to use the hash routine, but its name is hasher not hash. Should I fix that? 

. The P .A. catches a "spelltng" mtstake. It does this b, seeing that a parttcular function 
appltcatton must be ihe call to tlae hasAlng functton. Stnce It alread., knows that this routtne Is 
named hasher not hash, tt both spots and fixes the error. It IS Important to realtze that thts 
check would have worked even If the correct name and tM name t.,ped bore no stmtlartt'j to each 
other. The check emplo,ed here IS semanttc, not a s'jntacttc check for. close to correct spelltngs of 
common words as Is done In INTERLISP. 

Yes, then give me an outline of the insert routine. 

Insert takes a key and the data item(s) ae the arguments. In general it has two 
steps: 

1. Hash to the bucket 
2. Insert the entry which is built from the key and the data item(s) into the 

bucket. 

Again the P.A. uses tts knowledge of the structure of Aaslltng scAemis to advIse thf User on Aow 
to proceed.' 

O.K., here's the code: 

(defun insert (key parent name) 
(store (hasher key) (cons (cons parent name) key))) 

I'm sorry but I see a few problems: 
1. You're bui Iding an entry here by doing: 

(CONS (CONS PARENT NAME) KEY) 
But in the lookup rout i ne the car of the entry is the key. 
2. The first argo to store must be a subscripted array reference, but hasher is 
not an array. It returns one member of the array hash-table, namely a bucket. 

The P.A. knows about tlae posstble dependencies In tM Aashlng scheme, In parttcular, that the 
entr, but/der of Insert must agree In certatn detatls wttA tAt ke.,.extractor of tlae lookup routtne. 
Also It knows s,ntacttc restrtcttons of tAt bastc LISP functtons. 

Let's fix the first. Reverse the order of the arguments to the outer cons. 

It ts wortA nottclng that, althougla tAt P.A. nottces tlae bug, tt Is tAe programmer who proposes (I 

solutton. T hts wtll be tAt normal mode of operatton. 



I assume you mean the followin.g, it ",i II fix the first problem. 
(CONS KEY (CONS PARENT NAME)) 

T Ite P .A. rechecks the problem and sees that It IS now ftxed 

Let me see the second problem again. 
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In the following form, the first argument must be a subscripted array reference: 
(STORE (HASHER KEY) (CONS KEY (CONS PARENT NAME))) 

N ottce tltat tltt ftrst ftx has been carrted forwardti~.e. tlae patcla tsnow In place 

What.is the name of the array? 

hash-table 

change the first argo to (hash-table (hasher key» 

I assume you mean: 
(STORE (HASH-TABLE (HASHER KEV)) ••• ) 

. That won't work ei there Hash-table is an array; its arguments must be numbers. 
But hasher returns a bucket which is a list. 

Tlte P.A. agatn checks for arguments being of tlte rtght t,pe.Thts ttme It can dothts becauu It 
knows the deftntttonsof hash-table and has Iter. It checks to.see If tlte one produces the rIght 
ktnd of data for the other. StnClth,., don't ttcomplatns. 

I'm going to change hasher so that it will return the subscript of the bucket rather than the 
bucket? 

You can't. In the lookup routine hasher Is required to return a list so that it 
can be searched by cdr'ing down. 

The P.A. here searches through tts knowledge of tlte program structure to see what mtght 
depend on tltt current deftnttton of hasher, and If tlte dange wtll break tlr.at dependenC'J. It 
sees that there ruould be a problem In thts case. 

O.K., let me see the code for hasher. 

T he programmer ts tntendtng to use the old code as a model forwrtttng a new module. 

Here it is. 
(DEFUN HASHER (KEY) 

(HASH-TABLE (ABS (\ (MAKNUM KEY) HTABLE-SIZE))) 

Rename this one bucket-hasher. Also make a function called number-hasher out of the inner 
form. It will take a key as its argument and return the subscript in the array of the appropriate 
bucket. . 

• 

o 

o 
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('. Is this what you want? 

(OEFUN NUMBER-HASHER (KEY) 
(ABS (\ (MAKNUM KEY) HTABLE-SIZE») 

(OEFUN BUCKET-HASHER (KEY) 
(HASH-TABLE (ABS (\ (MAKNUM KEY) HTABLE-SIZE»» 

The P.A. performs a stmple edtttng functton, but also uses Us knowledge of the program's 
structure to butld Uself an Internal model of the new functton, so that It can answer questtons 
about It also. 

Yes. Now change the inner form in buck.et hasher to call number-hasher with k.ey as the 
argument. 

(OEFUN BUCKET-HASHER (KEY) 
(HASH-TABLE (NUMBER-HASHER KEY») 

The P.A. uses Us knowledge of the new functton to see tltat tlte call to It ts legtttmate, and that 
the old function conttnues to behave as before. Stnce tltu IS true, tt now nottces that the name 
change must be propogated to ever,thtng that depended on tltts routtne. 

Should I change al I references to HASHER to BUCKET-HASHER? 

Yes, except for the one in INSERT. Change that to NUMBER-HASHER. Then check out the. 
insert routine. 

lOEFUN INSERT (KEY PARENT NAME) 
(STORE (HASHER KEY) (CONS KEV (CONS PARENT NAME»» 

How do you want me to fix this? 

Change the first argo of store to 
(hash-table (number-hasher key» 

(STORE (HASH-TABLE (NUMBER-HASHER KEY» 
(CONS KEY (CONS PARENT NAME») 

O.K. but there is sti II another bug. After you do this store, there wil I only be 
one entry in the bucket. If there was anything in the bucket before the store, 
it won't be there afterwards. 

The P.A. nottces tltat tlte tnsert routIne wtll not sattsf'Y tts descrtptton of an tnsert, namel1 that 
. It adds a new element wttltout delmng old ones. It does thts "" constdertng the effect of eaU 
of the steps and then tr'Ytng to demonstrate that the overall spectftcattons are met. 

Let me see the form starting with the cons. 



(CONS KEY (CONS PARENT NAME) 

o.k., change that to: 

(cons (cons key (cons parent name» 
(bucket-hasher key». 

You no .... have a .... ork i n9 i nser trout i ne: 

(OEFUN INSERT (KEY PARENT NAME) 
(STORE (HASHER KEY) 

(CONS 
(CONS (CONS PARENT NAME) KEY») 
(BUCKET -HASHER KEY)))) 
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The sesston conttnues unttl both the user and the P.A. ar, sattsfttd. TA, program, togltlan 
wltlt all tlte knowledl' about It are ftled awa, for future us,. 

c 

c 
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(~ 0.2.2 Scenario 2: Working on An Existing Program 

c 

I'd like to work on the hashing system again. 

O.k. 

What does an entry look like? 

(KEV. (PARENT.NAME» 

The P.A. dlspla,s a "t,p'car' entr, of the hash-table. Nottce that tt constructed this during the 
sesston presented In tile last scenarto "., appl,tng tts understandtng of the structure of the code 
to tdentef., the entr, compostng segment. From tilts tt constructed a "t.,ptca/' entr.,. 

What are the restrictions on key? 

None. 

Call entry-. any entry whose key is an atom. 

entry-l is-a entry 
(key entry-l) is-a atom. 

Th.e apprenttce reports that tt has added a new model to Its knowledge base. 

When is ENTRY referenced? 

In the lookup routine, where its key part is checked, while looking up the entry 
In the bucket. In the insert routine ~here the entry is built and inserted into 
the bucket. 

The apprenttce checks through tts model of the program to see where tile conceptual enttt., 
ENT RY Is referenced and how. Nottce that there ts no modulartzed routtne to butld an entr., 
or to extract the ke, from an entr.,. The apprentice's model of the program,h.owever, does 
contains such concepts wtth po'nters tnto that part of the code which reaitzes the behavtor of 
these constructs. 

I am going to make a change to the lookup routine. If the entry is an ENTRY-I, then the test in 
the bucket lookup will check to see if the parent part of the entry is equal to an additional input 
called *parent. 

The programmer gIVes the apprenttce Informatton descrtbtng modlftcattons to the plan of the 
program . . The apprenttce wtll try to ftt these mods tnto tts extstlng models of the program 
structure so that tt can check that the programmer's changes to the code wtll accompltsh what he 
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Intended to. 

Since the only distinguishing featu~-e of the EfHRV-lis that its key is an atom, 
I wi II assume that the check for ENTRV-l is a check that the key i s a~ atom. 

Tlte apprenttce explatns tlte conceptual clranges It Itas made. NotIce tltat It IS working wltlt tlae 
concepts KEY,' ENTRY, etc. ratker tkan WIth. car's etc. TAen If tke programmer Changes the 
format of the entr,. tlte model Is sttll correct at tAe top level. 

c, 

c. , 

The programmer conttnues worktng on furtlter modtftcattons. However, we feel that the general 

capabtltttes kave been IndIcated sufftctentl,. 

o 

,~ 
I I 

'0 

c 
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(: 0.3 THE GAME PLAN 

(0, 

0.3.1 Outline of the Proposal 

The remainder of this document will present a summary of the framework which we believe, will 

be a sufficient base for the capabilities of the apprentice. We believe that the essense of our task 

will be to create a knowledge base which captures the semanti,cs of programs. Chapter 1 will 

present our preliminary thoughts on this matter. Chapter 2 will further develop these ideas and 

show that the framework developed is adequate to account for most annotation which we have 

seen attached to programs., This is of extreme importance. for we believe that annotation is an 

extremely valuable and often vital aid in program understanding. Chapter 3 will then explain 

how the structures developed in, the first two Chapters will allow the system to understand a piece 

of code it has never seen. By understanding. we will mean the creation of a model of the program 

sufficient to answer questions and to identify bugs. Because this process will bear such similarity 

to classic AI recognition problems such as vision and natural language understanding. we will most 

frequently refer to it as the recognttton problem. 

0.3.2 Research Plan and Schedule 

It is important to realize that. at the current time. virtually no code has been written. The research 

we are proposing can. therefore. best be explained as creating the programs which this document 

hints at. Our basic and firm belief. reflected in the organization of this document. is that the same 

foundation underlies aU the various tasks we would wish the P.A. to perform. This foundation is 

the knowledge base and the modelling of program teleology developed in Chapters One and Two. 

Of the many roles the P.A. can play in assisting the programmer. we will choose one to be a 

demonstration of the viability of our ideas--program explanatton. Namely. we will build a system 
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which will be capable of answering an the "wh-" (what, why, when, where, how, etc.) type questions 
c 

about an arbitrary program using hash-tables. Further, it should have the capability to answer 

questions about dependencies within the program. Finany, it should have the ability to detect (but 

not correct) bugs. We feel this is a good choice, because it will make it as explicit and convincing 

as possible that the P.A. reany "understands" programs. We will probably limit the LISP code we 

wi1l handle to several basic functions such as: cons, car, cdr, rplaca, rplacd. prog. progn. do. go, 

return, condo and, or. 

In order to accomplish this we see two main tasks immediately ahead. The first is the data base 

design. Although we feel that we know what needs to be in the knowledge base, the question to be 

immediately settled is how is the knowledge base to be structured. We plan to settle this within the. 
~-\ 

next month. Secondly. the recognition task must be studied further. Given a fixed design for the 0 

knowledge base, we feel that the next two months might well be spent in exploring this area both 

in terms of limiting the problem to a manageable size and then in terms of actually writing some 

code. Having done this the remainder of our time will be spent on examining how to make the 

question answering-bug detection system work. 

0.3.3 Towards A Programming Apprentice 

This section will simply be an outline of those capabilities which we feel a complete programming 

apprentice ought to have. When our research is completed, we will be able to present a detailed 

account of how we implemented a program explainer using our knowledge base and mode11ing 

techniques as foundation. Furthermore, we will also give in the final research report hopefully 

convincing presentations of how the same foundation could be used to implement the remainder of C 
the following behaviors: 
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(~ (1) Program Explanation 

-answering "wh-questions", why, what, how, when. 
-explaining behavioural relationships between code segments behavioural relations 
between segments of code 
-generating summaries of program structure .j' 

(2) Debugging Assistance 

-ideas of Sussman, Goldstein, Hewitt 
-closely related to informal verification 

(3) Automatic Coding 

-on a local basis,as different from "automatic programming" 
-also possibility of "cleaning" up code, i.e. rewriting it making surface structure reflect 
underlying model more clearly 
-automatically generate extra annotation from information in knowledge base 

(4) Intelligent Editor 

-check for propogation effects of changes 
-user can give editing instructions in semantic rather than syntactic terms 

0.3.4 Resource Requirements 

In order to accomplish the tasks which we have set for ourselves, we will need a large amount of 

computer time. Fortunately, that time is available to us on the A.I. Lab's PDP-IO. Other than thiS, 

we have no reqUirements for resources or materials. We are, therefore, prepared to carryon our 

research without further resource allocations from either the department or the Institute. 

0.3~5 Division of Effort 

This work is being conducted as a joint project, precisely because its structure defies natural 

C divison. In particular, the knowledge base is the k.ey to the whole system. If it is properly 

designed, then the intended application parts of the system (i.e. the recognition system. the question 
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answering system and the bug detection system) will be relatively simple to implement. We. 

therefore, find it virtually impossible and certainly inappropriate to state a division of 

responsibilty.Both of us are accountable for the whole project; it. is both of our responslbU'tes as 

well as that of our advisors to guarantee that the work is, in fact. shared equal1y. We believe that 

the rest of this document will indicate that this method does indeed workJ the work presented here 

has been work done mutually. In fact, it has been an exciting phenomenon so far that we are . . 

acting as each other's advisors more than our official advisors are (although th~y are by no means 

shirking their duties). 

o 
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CHAPTER ONE. THE KNOWLEDGE BASE 

1.0 Introduction 

\ 

In the preceeding scenarios, we presented several examples of useful and desirable behavior which 

we might want a programmers helper to be able to perform. An essential aspect of each of these 

is, in our view. that the programmers helper would have to be knowledgeable, i.e. capable with 

only a little help of "understanding" what we are doing. We feel that the essense of such 

understanding is the existence of a large base of active knowledge containing substantial 

information from the domain of programming which is structured in such a way that the relevant 

information can be called into use in the apropriate situations. Given that the knowledge we are 

referring to is familiar to any programmer, our goal wi1l be to design the appropriate structure and 

then to load into the data base a representation of some small segment of programming knowldege. 

so that the programming apprentice can perform its services~ 

In general. the goals of our research will be centered around this approach of understanding a 

program in terms of already existing knowledge; we feel that this dictates that a major part of the 

overall system must be dedicated to the task of recognizing the conceptual structure ofa program 

and to the identification of those concepts which are used in the course of a program. Frequently, 

this is anything but trivial. For example, hash tables, which we will use as a running example, 

consist of several functions (i.e. insert, delete, E:tc.) and several data structures (lists, arrays, etc.). It 

is the totality of the code used to represent all of these Which, in fact, constitutes a hash table. In 

addition, as anyone familiar with programming knows, the actual code to make a hash table will 

vary tremendously from one programmer to another. Nevertheless, the understander of such code , 

typically understands it by constructing a model of the program's behaVior which depends very 
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little on the particular hackery of the coder. In fact, the kinds of description used in such a model. 
o 

and their arrangement seem to be remarkably more predictable than the actual code. 

It therefore follows that the knowledge base, which is to be the central tool of this understanding 

process, should be structured in such a way that it can be Viewed as having semi-discrete units 

which the programming apprentice can use as conceptual building blocks in constructing a model 

of the program. Given such building blocks to refer to, the programmer can tell his apprentice 

that a particular segment of code corresponds (more or less) to one of these conceptual building 

blocks, thereby, associating with this segment of code all of the knowledge contained in the 

referenced conceptual building block. This will allow the programmer to comment his code largely 

by comments of the form "this is a foobar" or "using the frobbie technique", rather than by having 

to include detailed descriptions or explanations of the program's goal structure, etc. The latter type 

of detailed annotation is in practice difficult to formulate in a line by line format and is therefore 

usually completely avoided by professional programmers. 

The buildi'1g blocks, out of which the, knowledge base is constructed are, therefore, to be regarded 

as generalizations of programs, rather than as representations of a specific segment of code. For 

examp·le, the node in the knowledge base corresponding to "hash table" will be a single conceptual 

unit Which can instantiate itself to any of the various implementations of a hash table, while yet 

maintaining that knowledge which is true of hash tables in general. Since objects in the world of 

programming are characterized sometimes by what they do, sometimes by what they are good for, 

and other times by how they are internally structured, all of this information will be present in the. 



• PAGE Sl 

• 

(" 1.0.1 Design Criteria, A Priori 

OUT current ideas about the structure of the knowledge base are formed and motivated from two 

directions. First, we have to establish what knowledge is in a fundamental sense sufftctent for the 

P.A. to be able to perform the kinds of tasks we have in mind. One way we get a feeling for this 

is to imagine specific performance scenarios, and then satisfy ourselves that, programming and 

implementation issues aside, the knowledge required can be accounted for and is somehow present 

or at least implicit in the system. 'An example of applying this methodology is to consider the 

answering of "WH-questions", i.e. what would we expect the P.A. (in explanation mode) to answer 

when the user points to a selment of code anp asks a question that boils down to,a form of How? 

Why?, Where?, What?, When?,etc. First we have to decide what the programmer would have in 

-
mind when asking such a question, and then assign one or more internal operational definitions 

which will correspond to the programmers meanings, but may then be implemented technically. 

Such an exercise may define a fundamental capability or basic class of required knowledge. e.g. 

respectively the ability to cross-reference and index the code and generate unambiguous 

explanatory references to locations in the code in answer to "where" questions; or, in answer to 
' ........... 

"When" questions, we must develop a time representation appropriate to the expressfori of timing 

relationships in the domain of programming. Alternatively, as in the case of "how" and "why" 

questions, a performance scenario may give us insight into how particular aspects of the 

knowledge base would actually be used. Thus. one major input into the design of th~~ledge is 

motivation from the intended applications. 

The second important design criterion is that we are striving towards a naturalistic representation, 

i.e. that the organization and interrelation of concepts in the knowledge base parallel as closely as . . 

possible the way human users naturally conceive of their work and express themselves. Thus any 
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c 
terminology or grouping of concepts that are natural to human programmers should be reflected in 

, 
the layout of the knowledge base. This implies, of course, quite a bit of redundancy in the 

knowledge base. We are not primarily interested, for the purpose of constructing a P.A .• in 

finding "minimar abstract formalisms for the concept space. Keeping the organization of the 

• 
knowledge base naturalistic will also facilitate the development of the system in the direction of • 

understanding user comments and generating explanations in natural language . 

. The major character of the knowledge base emerging from t~e two criteria above is that it 

necessarily contains a variety of representations. In the following subsections we will describe some 

of these that we have ideas about at this time. Though it is not always easy. we will try to separate 

questions of implementation from more basic questions of representation.' 

1.0.2 Justification of Hash Tables as Research Example 

In our research so far we have used the example of a program using a hash table and associated 

programming concepts as an aid to gUiding and stimulating our thinking about the problems of 

building a P.A. The issues discussed ;n this paper will also ,be illustrated primarily by examples 

drawn from this subdomain of programming techniques. The fact that we have found this 

example useful is certainly a most important. and possibly totally adequate justification. but we 

would also like to stop a moment and justify this choice on a more theoretical, though admittedly 

somewhat post hoc basis. Let us try to get a feeling for how large the conceptual space of 

programming techniques might be, and then how much of this space is covered by our chosen 

example of hash table programs. The space might be divided into two areas, program dynamiCS 

or control structure, and program data structures. Under each heading we might list loosely all, the C 
forms we can think of. Such a list might be: . 
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Data Structures: 

Control Structures: 

arrays 
lists 
trees 
tables 
property Ii ste 

iteration 
dispatching 
subroutines 
coroutines 
interrupts 

stacks 
sets 
bags 
rings 
queues 

recursion 
backtracking 
pattern directed invocation 
paral lei processing 

Of these topics. hash table programs introduce the following subsets: 

Data Structures: arrays. lists, tables, rings 

Control Structures: iteration, linear plans, subroutines. recursion 

PAGE SS 

Our justification is then that these are a reasonable number of basic concepts to expect to be 

covered by one example. In choosing additional research examples. we will try to cover 

(~' complimentary aspects of the domain. 
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1.1 THE CONTENTS OF THE KNOWLEDGE BASE 

The knowledge base is required to contain an adequate representation for understanding programs. 

We distinguish three broad categories of such knowledge. The first, descrtf1tlve models are 

intended to answer "what" type questions. The s.econd type of information, which we caU plans, is 

explanations of how various behaviors are realized. Finally, information about the semantics and 

typical forms of LISP code must also be contained in the knowledge base. The rest of this chapter 

will explore these domains in s0n:te detail. 

1.1.1 Descriptive Models 

1.1.1.1 Conceptual Relat~dness 

There seems to be a deep-seated dualism between object and process in the way people talk about 

the entities in the domain of the P.A. For example, a hash table can be thought of either as a 

concrete ,object consisting of an array of assoc,ation lists, or as an entity whose behaviour is 

described by the laws of associative retrieval. In fact, neither of these is' a complete description 

alone. There are, after all, several techniques of associative retrieval, and arrays are used for many 

things besides hashing data. Probably both kinds of description would be expected in answer to 

the question "what" is a hash table. Thus in our knowledge base we will need to be able to capture 

both flavors of description. The first kind is what might be called concef1tual relatedness 

information, and leads us to think of implementations like Winston Nets with relational pointers 

telling what is part-of or a-kind-of something else, what depend-on something else, etc. This 

provides the decomposition sense of the answer to "what". 

c 

c 
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1.1.1.2 Intrinsic Descriptions 

Also, attached to some concept (or node in the net) we see a need for a behavioural description. In 

this regard we are prone to follow Carl Hewitt's notions and speak of specifying the behaviour in 

terms of its incoming expectations or precondtttons , and its outgoing entailments, or postcondtttons. 

These together constitute the tntrlnslc description, or what we will can specs. The intrinsic 

description of a hash table deletion routine for example, would contain clauses which, notation 

aside for the moment, would express the following. 

Intrinsic Description (Specs) for HASH-TABLE-DELETE 

Precond i t ion: Well-formedness of input arguments. 
Postconditioh: The item to be deleted is not in the table. 

In most cases, the object which is represented by a descriptive model will have a range of 

(- beha viors, such as insert. lookup. delete for the case of hash tables. In terms of the code, this 

might well be represented by there being several functions which. taken as a cluster, comprise this 

C:\ 

total repetoire; in fact. most decent LISP programmers would use such a implementation. 

Moreover, conceptually these various capabilities represent a unified whole. We are, therefore, led 
\ 

to seeing the intrinsic description as a collection of cases which collectively describe the objects total 

range.of behaviour under all conditions. 

An important point that wilt develop from our hash table example is that we often· find it natural 

to describe the behaviour of entities partly in terms of their interaction with other entities. In this . 
case there are important interactions between the insertion, deletion, and lookup components of a 

hashing scheme, for example that if you insert an entry and then delete it, a subsequent lookup 

wi11 fail. These kinds of relationships between segments of code are properly part of their intrinsic 

descriptions, because they are independent of the surrounding teleology, or goal structure in which 
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the components are employed. 
o 

However. a segment of code may also have extrtnstc relationships to other entities. For example to 

say that a hash table represents the currently reserved airline seats. is to give an extrinsic 

description of the hash table. At a different level. the information that the programmer's purpose 

in calling a particular subroutine is because one of its postconditions is the precondition of a 

subsequent segment of code. is another kind of extrinsi~ description. The purpose of a segment of 

code is part of its extrinsic description. and will often vary if the code is used in several different 

places. However. the intrinsic description is always the same. The arranging of code into an 

interwoven structure of compatible purposes is very much the essence of the programmer's 

occupation. The basic schemas that he uses in arranging this teleology is what we will refer to 

(following Sussman) as plans. These will be discussed in more detail in a following section. 

1.1.1.3 Deductive Reasoning 

On a primarily introspective basis we feel (in disagreement with Winograd in the" A" Paper) that 

sophisticated deductive capabilities are not the major bottleneck in constructing a P.A. It is our 

observation that in reasoning about their programs in the contexts of debugging or informal 

verification, people typically employ only rather short direct lines of deduction. People do not 

naturally verify their programs in the strict sense of Floyd. for example. wherein the efficiency of 

an automatic theorm prover for the first order quantificational logic would be a major issue. 

Rather. it seems programmers use a "common sense" mode of reasoning. wherein the knowledge is 

looser and quite Wide-ranging. The key problem is to choose the relevant information. and once 

this is done. the deductive steps are usually few. For example. sUJ)pose the P.A. was faced with a . 0 
hashing program in which at some point an item that was expected to be in the table. failed to be 
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(' found by the lookup routine. The logical place to look for clues would be in the specs of the 

various routines participating in this process, especially because the precondition-postcondition 

pairs have a strong deductive flavor to them. (i.e. given that the precondition is met, and that the 

routine was called, it is valid to assert the postconditions). The relevant information in this. case 

might be represented in some simple logical notation, of the following flavor: 

«Insert (entry key data) -> (member (entry key data») 

«Delete key) -> (erase '(member (entry key 7»» 

«Member (entry key data» -> «Lookup key) - data» 

Notice that this is not intended to imply that the predicate calculus would be a good 

representational scheme for this kind of knowledge. Q.uite the contrary, the need to use an 

operation like Erase (in order to' represent side effects), as well as a need to keep track of which 

<: • facts depend on what other facts , e.g. (lookup key)..data) should not remain true after (member 

entry ~ey data) has been deleted, clearly suggests that a procedural, data-base language is advised 

for doing logical deductions. However, we also do not believe it is the case that gulping up 'Micro-

Planner or Conniver whole hog wi11 meet the needs of the total system we are constructing, either. 

We do have some ideas at this time on how we might construct our system to have the desired 

properties. The essense of the idea is localization of the reasoning process, so a simple deductive 

mechanism will not be swamped by irrelevant theorems. 

The deductive facts described above provide one example of this localization, in that they will be 

attached to the appropriate descriptive models, rather than hanging loose in a CONNIVER or 

MICRO-PLANNER data base. The reasoning component of the P.A. might then have several (7 

C' 
/ 

plus or minus 2?) "scratch-pad" deductive databases (a la Micro-Planner). When a particular 

concept becomes involved in the current focus of reasoning. its associated theorems (e.g. the 
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program specs, used for deductive purposes) are bro~ght into the current deductive scratch-pad. If 

a conclusion can still not be reached, the P.A. might consider widening the focus, thus bringing in 

more, but potentially less relevant, information. Reasoning may also take place simultaneously at 

several levels of abstraction, so· there must also be a mechanism for. communication between the 

databases. 

1.1.1.4 Examples 

We have taken seriously the common observation that one of the best things about the new 

M ACLISP manual is its generous use of examples complimentary to the definitional explanations. 

Clearly, any system that claims to be at all anthropomorphic in its behaViour, must have the ability 

to manipulate and reason with examples. It turns out upon reflection that examples are often a 
,n 

compact way to implicitly represent knowledge about the behaViour of an entity. Therefore, we '0 

find it useful to allow the descriptive model to contain "typicaf examples in addition to the other 

information already described. 

For example, in the abstract, if you have an object X to which can be app1i~ operations A - Z 

with varying results, explicitly you would have to represent this information something like: 

(A X) - Ri 

(B X) • R2 

(C X) .. R3 etc. 

But if you have the system interpreter easily available (e.g. a "careful" version of the LISP 

interpreter), you can simply make a temporary copy of the object X, apply the operator of interes~ 

in a scratch-pad context and "see what happens". o 
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(- Examples are also often a convenient way to teach (i.e. input) new concepts. For example, to 

explain a new data structure FOO, rather than giving a list of constraints, the user might find it 

more convenient to give a canonical example. e.g. 

(((XYZ). A). B) 

Then if later an execution interrupt occurs when trying to take the CDDAR of a FOO data ob jeet, 

the P.A. might hypothesize that the bug is due to the ill-formed ness of the data object (rather than 

due to incorrect processing). Evidence for this hypothesis would then be obtained (and this is the 

way people operate) by attempting to take the CDDAR of a known example of FOO.In this case 

it would be found that CDDAR is illegal. suggesting that something is wrong with the process that 

is requesting the CDDAR to be clone. rather than with the process that formed the FOO. 

('," There is of course a large area of research in determining what exactly constitutes what is 

passingly referred to above as a "canoriical example". It is in a sense true that people in such 

situations are abstracting a higher level description from the example presented. In fact there are 

certain "culturally" accepted conventions and heuristics that are used to help this process of 

understanding examples. For example. if you see the list 

'(MARY HAD A LITTLE LAMB) ... ,.,. 

you usually interpret this as meaning an arbitrary string. Obviously. we are not seriously suggested 

that a P.A. needs to have a comprehensive knowledge of fairy tales. Rather. we simply Wish to 

point out the existence of (ertain informal notations (e.g. less formal than a strict pattern syntax). 

Another common conventional inter~retation is that higher multiplicities '(greater than 3 or 4, say) 

usually indicate the generalized "n-multiplicity" tase. For example. a function with a variable 

number of arguments is not usually illustrated with only one or two arguments, since many people 

might find such an example misleading. 
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It would also be desirable, but a somewhat harder problem, for the P.A. to be able to generate its 

own examples from more abstract descriptions: This capability could become a very important and 

powerful aspect of its reasoning apparatus. Finally,and· this is a complete research project in its 

own right which will certainly not be addressed here, it would of course be useful if the P.A. could 

conversely generate abstract descriptions from one or more examples. 

1.1.1.5 Typical Bugs 

There will be a whole class of information in the knowledge base concerned with "bugs·. How the 

P .A. would use this information to assist the programmer in debugging was hinted at in the 

scenarios of Chapter Zero. Let us just mention here for completeness in the description of the 

knowledge base that attached to various nodes would be information about typical bugs that are 

associated with them. Frequently, such information might already be implicitly present. For 

example, in the descriptive model of an array, the specs require as a prerequisite that the args must 

be "in bounds". The function of the additional information on bugs is to adv.ise the P.A about 

what bugs are likely to appear. This information is of heuristic value in debugging sessions. 

1.1.2 Implementation Plans 

Another form of information which clearly must be kept in the knowledge base might well be 

though of as implementat~on plans. It is important to realize that given an object, there are 

typicany several ways of achieving the desired behavior. In our example of the hash table there 

are in fact three rather wen established implementation plans. One can use the hash-rehash 

scheme, overflow tables, or lists to implement the required behavior of a bucket. In numerical 

o 

calculations, square roots might use the successive approximation plans (Newton's method, the 0 
halving method) or alternatively a series expansion might .be employed. Virtually all interesting 
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(~ computations have these varieties of implementation plans available to them. 

( , 
, ,/ 

The choice of implementation plan is a choice which is typically made once and thereby sets the 

context for much further understanding of the program. As an example, consider the 

implementation of a queue. Virtually every time-sharing system maintains several queues, and they 

are frequently implementaed in different ways. One typical method is to use a LISP style list. The 

characteristics of this method is that free storage is somehow linked together, and that entries on 

the queue are chained together by forward pOinters. Typically, such queues are used where entries 
\ 

are either entered at places other than the rear (say threaded in by priority), or where entries can 

be removed (for example, a quit or phone disconnect forces the entry to be. removed from the 

allocation queue). 

On the other hand, it is frequently the case that such behaVior is not needed and that a Simpler 

method can be employed. Namely an array can be used with a front and a back pointer. Removal 

and insertion of items is accomplished by moving these two pointers. Garbage collection is not 

needed. 

Given that this choice has been made, it is clear that a context has been set for understanding the 

program which implements the plan. If a LISP style list structure is employed, references to the 

forward and backward pointer, or to the array are unlikely to make much sense. Similarly, if one 

had in mind an array oriented queue with front and. back pointers, then a reference to the free 

storage list would be out of context. Even worse, there might be cases where the same concept 

served different functions In two different implementation plans. 
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o 
Clearly the descriptive model (in the sense we used it in the previous section) must point at all of 

the implementation plans, yet once a chOice of these various plans has been made, it is as if the 

others were blocked out. Concepts, objects, specifications, etc. are only relevant to that 

implementation plan which is active. 

The clearest distinction we can make between implementation plans and .descriptive models is that 

the latter explains what an object is, while the former explains how that behavior is to be realized. 

In particular,the plan is intended to present a htgh level, goal ortented description of how the 

behavior is to accomplished. Thus, a minimal plan would be just a sequence of what other 

segments of code are to be called upon. Such descriptions are, however, are by themselves 

misleading. Consider, for example, the "plan" to build two S-block high towers. Simply' 

enumerating the steps we would get the following plan: 

1. Put b on a 

2. Put c on b 

3. Put e on d 

4. Put f on e 

Although this is a correct procedure, it is misleading as a general plan for accomplishing the stated 

goal, because steps Sand 4 clearly do not have to come after steps 1 and 2. 

In contrast, consider a "plan" to find a hash table item. Our current approach would have us state 

the plan as 

I. Hash to the bucket 

2. Lookup the item in the bucket o 
Clearly this is not misleading as the previous example was, since this ordering is reqUired. The 
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(e reverse ordering of doing a random bucket search followed by a hash would produce garbage at 

best. Thus, this aproach of "listing the goal steps" can be seen to be inadequate to explain th_e fun 

richness of the intertwining of the various steps involved in the plan. This inadequacy occurs 

precisely because the simple notion of ordering of "high level" steps has no notion of purpose 

within it. That is, a more complete notion of plan would reqUire that we specify not only what the 

steps are (in a high level, goal oriented fashion), but also wh, each step is thought to be valid and 

how it helps to accomplish the overall goal. 

The key to giving a clear semantics to such a notion is in realizing that any segment of code which 

we are talking about has (at least potentially) a descriptive model containg the specs of that 

segment. These specify what the code can do. A purpose will be defined as a correspondence of 

(' the postconditions of one set of specs to either the preconditions or postconditions of some other set 

of specs (perhaps even its own). For example, in a hash table lookup, tlile postconditions of the 

c 

specs for the hash step are that a bucket is returned which contains the reqUired entry. This 

corresponds to the precondition of the bucket lookup routine, which reqUires that the entry be 

present' in the bucket, and promises as a postcondition that it will return an entry with the reqUired 

key. This in turn, corresponds to the postcondition of the hash table lookup routine.~ Thus the 

following scheme exists: 
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o 
Specs for HASH-LOOKUP 

.. ·,,····.·----------Precondi tion: given KEY 

Postcondition: return ENTRY such that 
~------------~ (KEY ENTRV) • given KE 

Specs for HASHER Specs for BUCKET-LOOKUP 

Precond i t ion: "i ven BUCKET and KEY such 

;
--, ... - • bha t (MEMBER BUCKET ENTRY) 

Postcondition: return BUCKET such Postcondition: return ENTRY such that 
(MEMBER BUCKET ENTRY) (KEY ENTRY) - given KEY 

recondition: given KEY 

In general, plans do not tend to be this Simple. For one thing, frequently there will be several 

purpose arrows eminating from one set of' specs, indicating that several courses of action will be 

pursued at this point, i.e. that there are independent sub-goals which can be pursued in any order . 

. Secondly, even in this plan there have been simplifications made to ease the exposition. one of 

which is to only present the top level of the plans, i.e. no indication is here given of how hasher or 

bucket-lookup achieve their specs. This is as it should be, since that information is clearly in the 

plans for these sub-steps which can be found by going to the descriptive models of hasher and 

bucket-lookup and asking for their plans. 

Although we will go into this in greater d~tai1 in a later section, we will point out here that the 

plan imposes limits on the ordering of the steps in the actually realized code. Clearly. if there is a 

purpose link between A and B, then A must precede B in the actual execution of the code. (In the 

case of a loop it will be true that both A has a purpose link to B and the reverse. I.e. both must 

precede each other, hence a loop). On the other hand, if A has purpose links to B and to C we can o 
only say that A must precede both of the other segments; the ordering of Band C is 
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(- undetermined. Therefore, a plan imposes a partial ordering of step execution. If this ordering is 

further specified into a strict total ordering, then we will have produced a flowchart of the 

computation to be performed. 

( 

In summary, then, the plan provides both the explanation of how a computation is to be 

accomplished and a generalized ordering of the steps which can be instantiated into a flowchart of 

an actual segment of code. In general, the answer to a "how" question is contained in the plan. On 

the other hand, "why" questions are typically asked about a particular segment in the context of a 

particular plan. Answers to such questions are contained in the information provided by the 

purpose links of the plan. For example, the answer to "why is the bucket lookup called" in the 

above example is that the bucket lookup will find the desired item if it's in the bucket, and the 

hasher routine guarantees that it will be in the bucket if it's in the hash table at all. More 

succintly, we could have said that it was called to return the item. In any case, the information was 

in the plan~ Thus, almost all of the information we need in contained in the plans and the 

descriptive models. 

1.1.2.1 Representation of Time 

One of the WH-questions which the P.A. will of course be called upon to answer is "When". For 

example, "when is the variable x boundr. The most basic way to answer this in the .context of 

programming sequential machines is in terms of before and after, e.g. "x is bound after.y is set to 

NIL, and before F is called." Thus, our model of time at this level i~ simply the flowchart of the 

program. This, in turn, as we showed in the last section, is nothing more than an instance of the 

implementation plan for the program. The important and difficult issue here is to determine 

which reference points will be relevant to the programmer's current intentions, and will thus 
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constitute the "correct" answer to his question. Programs also' have the notions of duration and 
o 

contemporaneousness. both in the sense of coextensive intervals and coincidence at a point in time. 

For example, "During the execution of the interpretation functions, the value of PTR is the 

current input word", or "N is always greater than 100 between the first and fifth iterations·. The 

methods we develop for describing timing relationships will thus have to satisfy these criteria. 

Furthermore, it will also be true that what is a point in time at one level of description (e.g. a 

function call), will be expanded into an interval with internal details at a lower level of description 

(e.g. the model of the function's own behaviour). 

1.1.3 LISP Specialized Knowledge 

Once an implementation plan has been chosen, it is not necesarilly the case that the code has been 
,.<-" 

determined. Returning to our running example of a hash table, suppose that it was already known ~J 

that the buckets were being implemented as lists. This would strongly suggest that a plan known 

as cdring down the list would be suitable for the look up routine. Now this plan is a specific form 

of a very general plan know as iteration which can have several code realizations in LISP 

including do-loops. open coded loops using go-to's or even a recursion. Thus the following all 

accomplish the same task: 

(DEFUN LOOKER (LIST ITEM) 
(COND «EQ (CAR LIST) ITEM) (CAR LIST» 

(T (LOOKER (COR LIST) ITEM»» 

(DEFUN LOOKER (LIST ITEM) 
(DO «*F (CAR LI sn (CAR~» 

(*R (COR LISn ,(COR *R)) 
«EQ *F ITEM) ~») 

(DEFUN LOOKER (LIST ITEM) 
(PROG (FIRST REST) 

(SETa FIRST (CAR LIST» 
(SETa REST (COR Ll sn ) 

o 



( 

c 

LP (COND «Ea FIRST I TEM) (RETURN FIRST))) 
(SETa FIRST (CAR REST)) 
{SETa REST (CDR REST)) 
(GO LP))) 
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In addition, each of these pieces of code can be varied in several ways and still exhibit the same 

behavior. Thus, a third domain of knowledge must be pointed to by the implementation plans, 

which can roughly be characterized as code level knowledge. Within this domain must be 

knowledge of the meaning of the various forms of code (particulalry so for fexprs andfsubrs), 

recognizers for frequenlty used code (cliches), and the ability to infer behavioral similarity at the 

low level. A great fraction of this knowledge will be represented as templates (or fancy pattern 

matchers) which can gobble up expected pieces of code, and create models of their behavior and 

purposes. Thus, although seemingly less profound, this area is absolutely essential to the overall 

process of program recognition and understanding. It is, after all, fairly trivial to state that in 

order to understand a large program one must first be able to recognize smaller segments of code 

as dOing something which one already understands. 
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1;2 ORGANIZATION OF THE KNOWLEDGE BASE 

We do not see the organization of the knowledge deyelopi,ng in any sort of strict or global 
" 

hierarchy. Nevertheless. it is useful to recognize the existence of descriptions at different levels of 

abstraction. which in reference to a particular locus in the network of concepts can be arranged 

roughly in layers. For example. consider the following fragment from the description of a 

compiler: 

COMPILER 
I 

SYMBOL-TABLE 

--is-a 

HASH-TABLE . 
~ ----r--cooponent 

LOOKUP1 '. I NSERTl ON 

plan-is 

ITERATIVE-PLAN 

-template-is 

GO TO-LOOP 

I 
lP ( ••• ) 

(. .. ) 
(GO LP) 

appltcatton domatn 

desert pttve ' model 

plans 

LISP code templates 

In this example we see nodes at all levels (and, in fact, we have simplified). The distinctions 

between Ja yen is most flear between extremes. The lowest level of description is of course the 

o 

LIS P code itself. At the other end of the spectrum, there is the application domain, in which the C 
programmer conceives of his program as the solution to some problem. specified in application 
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(~ terms (in this case the appliCation is to build a compiler). In going from one layer of description to 

another there are implicit choices that have been made. For example, the concept of a symbol 

table in a compiler was here implemented as a hash table, but it could have also been a linear list. 

Likewise, there are many choices to be made in how to implement the hash table, e.g. bucket hash, 

overflow tables, linear rehash, etc. At another level, the iterative plan that is used in the 

implementation of the lookup routine (e.g. in a bucket hash to. search down the association list of 

the bucket), may be implemented either as a goto loop, or as a list recursion. Particular nodes may 

also occur at differring levels of description, depending on context. For example, the COMPILER 

node, which is at the topmost level ;n this local hierarchy, might just be one of several lower level 

components in a network describing a much larger system. 

In order to achieve this desired level of fleXibility, it seems necessary to rejeCt strict global 

hierarchies as a design methodology. Rather, we suggest that the appropriate structure is that of a 

knowledge network in which it is a prIorI possible to connect any node to any other. However, in 

order that this does not lead to total anarchy, it is also necessary that any node connect only to a 

small subset of the nodes of the total network, namely those which it should naturally "know· 

about. Clearly as new knowledge is added to the network, connections will be added to some nodes, 

but in general each node will still be directly connected to only a few other nodes. Furthermore, 

each node may contain several active elements which might well correspond to local strategies for 

accomplishing certain goals, such as local recognizers, etc. These might call on other such active 

elements in nodes to which this node is connected (as an example, is-a type connections are naturaly 

handled this way). Thus, the limitation on the connections at each node, both serves to give the 

illusion of local hierarchy and to keep control flow within reason 

C'· 
'. " 
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1.2.1 Prototypes and Instantiations 

It will often be the case. in the knowledge base that a single concept will be used in many different 

places. For example, our model of an ARRAY could be implicated in the idea of HASH-TABLE 

if the table is implemented as a LISP array. Elsewhere in a large program which used hashing 

and also stacks, the ARRAY model could again be used in the context of the implementation of a 

fixed-size stack. One way to handle this situation is to f01l0w Minsky's Frame Paper <Minsky 

1974> and create a prototypical model of ARRAY, to which are attached default instantiations of 

important features, and any other general knowledge about arrays that the system has, such as 

typical bugs (e.g. subscript out of bounds), perhaps an example, and eventually natural language 

processing related information, such as typical lexical realizations. 

For each particular occurence of the concept in the context of describing other, perhaps higher 

level, entities, an tnstanttatton of the prototype is inserted. Extrinsic relations between the 

particular array and the context of use are represented using the instantiation. Typically the 
\ 

prototypical intrinsic description will be shared by all the instantiations, but in the case where more 

specific or idiosyncratic information is known, this would be attached to the instantiation directly. 

Thus, when enquiring about the properties of a concept, a search is first made on the local 

instantiation, and then secondly any unspecified information can be filled in from the prototype. jf 

it exists. There are, of course, much more sophisticated approaches to this general problem of 

prototypical models and instantiations, but we have no evidence at this time for ways in which 

ways the simple ideas presented here are lacking for our intended application. 

o 
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(' 1.2.2 Forking of Models 

Because the knowledge base is intended to represent general concepts. there will of necessity be 

points in the models where choices or forks occur. For example. the model of hash tables has such 

a point in its desciption of implementation plans <e.g. hash-rehash vs. buckets. etc.) It is, 

therefore, apparent that the P.A. needs to have some coherent philosophy of how to handle 

alternatives. To this end, we have discerned three classes of forking that occur in the domain of 

describing programs. 

1.2.2.1 Variations 

One kind of mUltiplicity of models occurs when there is one basic form of a concept, either in the 

sense of being canonical or else some sort of default, but there are also minor v~riations possible of 

( "'" 
" several features. This is often the case when LISP programmers define, their own variations of 

the standard LISP functions. ' For example, in one of the programs we were looking at for 

inspiration, the programmer defined a function MAPCAR2, which was "identical to MAPCAR 

except that the results of NIL are not included in the final list". In such cases, the most natural 

form of representation'seems to be to consider the relationship between the canonical form and the 

variations very similarly to the relationship between the prototype and its instantiations, described 

in a previous section. Thus each variation would refer to the canonical version, and have its own 

local list of variations and exceptions. LikeWise, the canonical form should probably have some 

indication of the existence of possible variations. 

C" . -"' 
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1.2.2.2 Design Choices 
0"· : . 

There are other cases of forking in which each of the alternatives are of equal stature, such that 

none can properly be thought of as the root of the others. in the sense of the previous section. In 

all the cases we have come across, the forking occurs on the basis of what can be thought of as one 

or more design choices. The Simplest case is that in which one design choice determines forks at 

several (one or more) different points in the mode1. For example, there are four ways one can 

handle so-called "collisions" in hash tables: (I) rehash, (2) linear search, (3) buckets, (4) overflow 

table. Given that the choice is made once between these design alternatives (think of it as setting 

the position of a global switch), which of the alternative behaviours and implementations are 

chosen at choice points in the insert, lookup, and delete routines is also determined. This might be 

illustrated in tabular f9rm as follows. Suppose the branches of the forks in the models of the 

three routines are labelled respectively, Fl: a,b,c,d; F2: p,q,r,s; F3: w;x,y,z. 

Design Choice F1 F2 F3 

(1) a p w 
(2) b q )( 

(3) c r y 
(4) d s z 

A slightly more complicated situation would occur if there were several design choices, but as long 

as they acted independently, i.e. the choice at each fork was determined only by the position of one 

global "switch", the implementation seems to fonow directly from the present exposition. 

However, the third and most complex class of forking behaViour results when there is a high 

degree of interaction between choices at different forks. In this case, even though there may be o 
clear design choices in the mind of the programmer, the decisions. are not separable. This kind of 
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(- feedback and non-isolatability is a major feature in the domain of electronics design <Sussman 

and Brown 1974>. However, we have found difficulty finding natural examples of this kind in 

programming. This may either be a result of the nature of the domain itself, or, more probably, 

due to the fact that people are not very good at handling the type of reasoning required in such 

situations, so they avoid them in programming. Nevertheless we can give here an abstract schema 

similar to the one above to illustrate. Again, consider three forks, FI: a,b,cj F2: p,q,rj F3: x,y,z. 

The fonowing interactions could hold: 

(i) the choice of a determines the choice of either p or q 

(ii) the choice of c determines the choice of x 

(iii) the choice of z determines the choice of q 

Further computation shows that there are only four permissible combinations. 

("-

Permissible Comb Fl F2 F3 

(1) a p y 
(2) a q z 
(3) b r y 
(4) c r )( 

Recast in this tabular format, this class of forking seems to resemble closely the previous case of 

simple design switches. The point to be kept in mind, however is that the four cases here do not 

correspond to four simple options of one choice, but result rather, out of the interaction of several 

choices. 
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CHAPTER TWO. PROGRAM TELEOLOGY AND ANNOTATION 
o 

2.1 The Function of Annotation 

As mentioned in the previous chapter, our programmer appr~ntice's major task wiit be the 

construction of a model of the program which it is working on, using concepts from .its knowledge 

base. We follow this approach primarily because we feel that this is what expert programmers do 

when presented with code with which they are unfamiliar. It has been our observation that this 

process of program understanding ranges from difficult to the impossible unless various forms of 

clues, particularly mnemonic names and line by line commentary,. are given to the person who is 

attempting to make sense of the code. Even with these, it is still a non-trivial task to understand 

the program unless the overall plan and intentions of the code are known. Although commentary 
".----, . \ 

on code is in general famously negleCted, by studying the comments of various of our colleagues, '0 

we have discerned several ways in which people do use annotation to help simplify the process of 

understanding. 

Annotation of code can, in general, be divided into two broad categories. First, there are comments 

that assume there is available to the reader a knowledge base of information relevant to the code 

under consideration, i.e. the assumption is that the code is doing something the reader knows 

about. The other category contains precisely those comments used when this assumption cannot be 

made. In this cas!, the comments will attempt to present or fill in the missing background 

knowledge. Because this second dass of commentary is, by definiton, more demanding of the 

programmer writing the code, it is precisely these comments which programmers most frequently 

skip. Given that the design of our apprentice reqUires it to have on hand a large base of 0 
. background information, it is our hope that programmers might be able to use the apprentice, 
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(~, without having to pay a huge price in constructing detailed commentary. 

In those cases where the programmer is intending a comment to refer to already existing 

background knowledge, it has been our observation that the most frequent way of indicating this is 

through the use of mnemonic identifiers. Thus, for example, the lookup routine for the hash table 

would typically be called LOOKUP, or some variant, rather than say FUNCI. We would expect 

this practice to carryover into the P.A. environment, and consider this a perfectly valid and quite 

efficient manner of documenting code. Nonetheless, as any eKperienced programmer will attest, it 

does have its problems. Firstly, one may get tired of the burden of having to continually make up 

"meaningful" names, and since they also tend to be longer than calling variables VI,V2,V3, etc., one 

also can get tired of the extra typing incurred. Further, often if one later slightly changes the 

(;' behaViour of a segment of code, the mnemonic names then also have to be changed; or if left 

alone, they become misleading. Finally, with mnemonic names, as compared to automatically 

generated unique symbols, there is always the danger of inadvertent duplication. 

c 

The second form of commentary which refers to the knowledge base are comments of ·the form 

"this is the hash table lookup routine" or "the next five functions make up the hash table-. 

Typically, such comments appear at the "head" of the code, that is, they typicaUy precede a discrete 

unit of code and appear as an introductory remark. Such comments serve the function of setting 

context and supplying necessary but unstated information. For example, the comment "thiS is the 

bucket lookup" provides among other things a pointer to the desctpttve model which contains the 

specs for the function on which it appears. Similarly "use the rehash scheme", would have the 

effect of telling us what implementation plan(s) are being used. Another important function or 

these comments, as illustrated by the previous example, is that they can choose among the various 
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possibilities presented by a fork point in the knowledge base. In general. these types of 

commentary serve the role of aiding the programming apprentice, in understanding the program 

(i.e. in constructing an internal model of its structure and behavior) by selecting the appropriate 

units of knowledge out of the knowledge base. Because of this we call these selector annotation. 

The second broad category of annotation involves those drcumstances in which the programmer 

feels that there is relennt information to convey which is not 'available within the background 

knowledge. In this case, he is faced with the task of presenting the knowledge on the page. 

Because the information which he must present is identical to that which would have been in the 

knowledge base. the comments which the programmer wilt use to do this Will, typically, have a one­

to-one correspondance to the types of ob jeets contained in the knowledge base. That is, they wil1 

answer how. what. and, why type questions by presenting parts of the specs and pla.ns for the 

referenced code. 

Comments that answer "why" questions. are what we call purpose annotation. For example. 

"positive. so function-23 won't get gronked" or "to make var-tO positive for the square-rooter". 

These tend to be "side of the code" commentary. What typifies purpose comments is that they 

establish a link between the behaviour of the code upon which they appear and some other 

segment to which they refer. In this example. the comment informs us that the purpose of the 

current behaViour of making something positive (assuming we were also reading the code, we 

would know what the something was). was because the behaviour of function-23 is undeSirable if 

this is not the case. That is to say. this segment is establis~ing a prerequisite for function-23. 

.. 

o 

o 

Another answer to "why" questions is that the current step is being performed to achieve an overall 0 
goal, i.e. it is a ma~n step. We will explain the theoretical framework which this refers to in the 
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.. 

(,next section. 

"How" questions, tend. by and large, to be answered by the selector comments which we mentioned 

above. but they are occasionally given explicit answers on the page. Again. these tend to be 

comments too large to be on the side of the code and. therefore, often appear as "top of the code" 

introductions. When given, they present a teleology for the segment, i.e. a schema of steps and 

their purposes. For example, the code might have an introduction like "use the hash routine to get 

a bucket, then use the bucket lookup to get the answer". Again, we will have much more to say 

about the theoretical framework for this in the next section. 

The remaining class of this trilogy, "what" comments, can usually be typified as providing aU or 

part of a a descrtpttve model to the apprentice. We therefore refer to these as deftntttonal 

annotation. For example, in an interactive bibliography program, we observed a half-page 

comment which explained the structure and use of an entity call a "prompt". The details of this 

are not relevant here, but it was interesting for us to note that this description included precisely 

those elements which belong in descriptive models, e.g. specs, parts decompostions, etc. It is 

extremely typical for such definitions to define a data structure which will have limited 

application, i.e. it is used only in one section of the system and is of relatively little value to. future 

programs. If, however, it defined something of more general value, the apprentice should be able 

to file it away in its knowledge base, since the information already has the right structure. 

As a special case of the above, there is a very common form of commentary, namely stating 

explicitly the specs of a segment of code. Sometimes these will appear as simple "head of the code" 

type statements, e.g. "when given a list, returns its third element, if present, otherwise returns 



PAGE 58 

o 
'foobar". More often, however, these specs are broken up into their components. namely pre- and 

post- conditions. Because segmentation boundaries are often arbitrarily drawn in LISP, these two 

types of commentary often appear as "side of the code" comments. For example. "assume a 

negative", or "now the item is in table". The first example is a modal expression, and specifies a 

condition that is assumed or expected to hold just prior to the execution of the segment of code 

which it annotates, presumably because the correct behaviour of the code depends on the specified 

condition. These we will call expectations. The second example asserts that a certain condition will 

hold immediately follo¥1ing (and usually as a result of) the annotated SEGMENT of code. These 

we will call asserttons. These two concepts will have an important role in the theoretical 

framework to be described fonowing. 

,"-""\ 
Finally, just to complete our survey of program commentary, we must pay homage to the incredible 'V 

diversity and imaginativeness one finds in the annotation of some hackers' programs-everything 

from sonnets to Pig Latin. We make no claims for our P.A. vis a vis such material. Nonetheless, 

even in the domain of more idiosyncratic annotation, there are several recurrent forms that bear 

mention and consideration. The following is a suggestive list: "thiS is a kludge", "missing code to 

be inserted here", "this needs to be fixed", etc. 

2.2 Theoretical Framework for Teleology 

2.2.1 Segmentation of the Code 

In order to establish the connection between the raw LISP code and the varied levels of descriptive 

framework outlined in Chapter I, we need the notion of segmenting the code, that is to say drawing 0 
a conceptual box around one portion of the LISP code and speaking of it as a unit with input-
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( output (or before-after) behaviour. The boundaries one choses to divide up code segments are 

arbitrary. That is to say. where one thinks the boundary is depends on what one is interested in. 

Furthermore. anyone segment will typically be subdivided internally into smaller segments. with 

correspondingly more primitive behaviour, as the level of descriptive detail requires. For example. 

a whole function definition. a group of related functions (obviously not reqUired to appear 

contiguously in the code listing). or a single form within a function may be thought of as code 

segments. The only reqUirement is that they are aggregated for the purpose of describing their 

net behaviour. 

It is also important to realize that the decomposition of a segment will typically not be complete. i.e. 

some code will be left over when a segment is divided into its logical parts. For example. consider 

(- the following code: 

CDEFUN A 
(PROG () 

(B ••• ) 
(C ••• ) 
(RETURN X») 

Here the main segment is A. whose two component parts are invocations of Band C respectively. 

The PROGN and RETURN statements are what could be called the connectiVe msue between the 

subsegments of A. As such they carry very important control structure information. The PROGN 

specifies the temporal sequence between the invocation of the t~o steps. Band C. and the 

RETURN determines what the net output of the function A will be. 

A second complication in the segmentation can arise when segments overlap. For example. a singJe 

C:" line of code could be a natural part of two different contiguous segments, in much the same way 

that a single resistor in an electronics circuit <Sussman and Brown. 1974> could be natural1y· 
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thought of as being simultaneously part of both the output network of one transistor, and the bias 
o 

network of the next. However, this situation occurs much less often in programming, as compared 

to electronics, probably because in programming the poSSibility exists of making independent 

subroutine caUs. 

Thus code segments, or segments for short, will be the basic formal object upon which the 

theoretical framework for describing programs is built. It bears emphasis here that in the situation 

of recognizing and understanding a previously unseen LISP program, the problem of properly 

dividing the code into functional segments is both difficult and crucial. The analogous problem 

has been faced in visual recognition research and is as yet unsolved in the general case. We will 

come· back to this problem in Chapter S following, where we discuss program recognition and 

understanding at greater length. 

2.2.2 Program Specs 

Our notions of how to describe the intrinsic behaviour of code segments follow firstly the rich 

tradition of input-output specification and more parochially. Carl Hewitt's elaboration of the idea 

of "contract" in the development of his "actor" formalism. The essential idea is that a given 

segment of code has certain expectations, incoming assumptions, or pre-condtttons (we will use the 

terms interchangeably) that are assumed to hold just prior to execution commencing for that 

segment, and upon which the correct functioning of that segment of code depends. These are the 

tnput specs of the segment. Correspondingly, the output specs, are a set of assertions, outgOing 

entailments, or post-condtttons that are promised to hold just following, and usually as a result of, 

the correct execution of the code segment. Moreover, the specs are intended to be only the intrinsic C 
description of the code segment, in the sense explained in Chapter One. That is to say, the 
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(- condit~ons in the specs should be a reflection of the internal workings of the code segment, and 

will be the same regardless of the context in which it appears. The bas!c syntax of a specs 

expression is the following: 

(SPECS segment-name (input-objects) ( output-objects) 
(EXPECT ( pre-condition )) 
(EXPECT 
(ASSERT ( post-condition )) 
(ASSERT ••• )) 

Thus we see the program spees are essentially a list of clauses of two types, EXPECT clauses, 

expressing pre-conditions, and ASSERT clauses, expressing post-conditions. preceeded by header 

information. The header information consists of the segment name. and a list of input objects and 

of output objects, The input objects are the data structures which are in any sense input to the 

(~ behaviour of the segment. In particular, any ob jeet mentioned in a pre-condition must appear in 

the list of input objects. In terms of LISP code, the input objects could be formal arguments to a 

function, if the segment were a separate LISP function, or else just globally available data 

structures, to which the code segment referred. Correspondingly, any object upon which the 

be~a viour of the segment has a side effect (e.g. changing value, creating a new object) must 

appear in the list of output objects. The post-conditions will express the (new) properties of the 

output objects. often referring to some of the input objects to do so. In the LISP code, the output 

object could be the returned function value, or more generally. a global data structure which was 

modified. This is all quite general, so let us proceed with an example. The following is the way 

we currently enVisage representing the intrinsic behaviour of say. a segment of code that performs 

. the square root. In order to present the following examples, we have had to choose some details of 

C-··· 
/ 

notation. We have done this in the way we currently find most natural. We certainly expec!t the 

notation to change in detail as our research progresses, so that the current version should be taken 



"with a grain of salt": 

(SPECS SORT (NUMBER-l) (NUMBER-2) 
(EXPECT (GE NUMBER-l 0)) 
(ASSERT (EO (TIMES NUMBER-2 NUMBER-2) NUMBER-l)) 
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The first thing to remark about the example is our convention for naming the input and output 

objects. NUMBER-I and NUMBER-2. respectively. The choice of local symbol is not arbitrary. 

Rather. it is intended to carry with it type information about the object referred to. Following the 

discussion in Chapt4!r One, each object is seen a~ an instantiation of s~me prototype, e.g. 

NUMBER-I is an abject about which we can get more information by referring to the description 

of the prototypical NUMBER. The notion is that a naming convention is an indirect reference to 

background knowledge. We will make use of this quite often. For example, in debugging mode, 

the P.A. might check the implicit (in the notation) expectation that the input was a well-formed 

NUMBER by applying the LISP predicate NUMBERP to a particular input in question. The . , . 

information that this was a correct strategy would be part of the knowledge associated with the 

concept NUMBER. There wou'ld also be other information associated with NUMBER, for 

instance, that it made sense to talk about the SIGN and EXPONENT of a number, and how to 

calculate them if necessary. The reference to the concept of SIGN is then itself also a potential 

indirection to more information, e.g. that the possible signs are NEG, POS, and ZERO. 

An alternative form of the first of the specs above might take advantage of this implicit 

knowledge. for example: 

(EXPECT (SIGN NUMBER-l POS)) 

Thus. we see that the exact form of the c1auses of the specs will be greatly influenced by the 

deductive mechanisms that will use them. Since our P.A. will use database-like deduction rather 

than standard theorem proving. it is not surprising that our input-output conditions have the 

o 

o 
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( flavor of PLANNER statements, rather than predicate calculus expressions. 

( 

c 

Returning to our ongoing example of hash table programming, let us present what might be the 

specs of the insert, lookup, and delete routines. respectively. 

(SPECS INSERT (ITEM-l TABlE-l) (TABlE-l) 
(EXPECT (NOT (MEMBER ITEM-l TABlE-l)) 
(ASSERT (MEMBER ITEM-l TABLE-I))) 

(SPECS lOOKUP (KEY-I TABLE-I) (ITEM-I) 
(CASES 

«EXPECT (MEMBER ITEM-l TABlE-lJ) 
(ASSERT (KEY ITEM-l KEY-l)))) 

«EXPECT (NOT (MEMBER ITEM-l TABlE-l))) 
(ASSERT (EQUAL ITEM-l NIL))))) 

(SPECS DELETE {KEY-l TABLE-lJ fTABLE-U 
(ERASE (MEMBER ITEM-l TABLE-I))) 

The first thing to notice in the above example is that the specs of the lookup routine splits up into 

cases . . This will often occur when we are describing more complicated behaviours. The syntax is 

intended to mean that each top level dause within the CASE expression is itself a set of input-

output specs. For each case, if the expectations are met, then the resulti l1g output conditions may 

be asserted. The expectations of the code segment as a whole will be considered satisfied if and 

only if all non-CASE-embedded expectations are met, and the expectations of at least one case in 

each CASE expression are also met. The examples above also make use of the indirect reference 

feature in several places. Firstly, in the lookup routine, the input object KE:Y-I potentially brings 

into the context the knowledge associated with the concept of KEY, e.g. that KEY's are part of 

ITEM's. This relationship would be used by the deductive mechanisms to resolve the referent of 

ITEM-l in (MEMBER ITEM-l TABLE-I) as the ITEM whose KEY is KEY-I. Similarly, in the 

specs for the delete routine. Finally, the ERASE statement should be noticed in the specs for the 
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delete routine. This reminds us again that we are using a database deductive scheme, wherein side 

effects are simulated by manipulating the current assertions in the database . 

. 2.2.3 Purpose Links 

Now that we have formalized intrinsic descriptions in our system in the form of program specs, we 

are in a position to give a formal charac~rization of the extrinsic relationships between code 

segments. This is found in the notion of purpose ltnks. A purpose link is supposed to reflect the 

intuitive idea that segments of code. are built by the programmer into a ·purposefur (i.e. 

teleological or goal-directed) structure by the way their input-:outputbehaviours interrelate. Thus 

we will define a purpose link formally as establishing a correspondence (in various senses) between 

parts of the specs of two segments. The various ~inds of correspondences wilt then give rise to 

different kinds of purpose links. 

On' this basis we di~id'e purpose links into two broad classes. Firstly, we have the class of 

': ' \,' . 
correspondences between the output specs of one segment, and the input assumptions of another. 

, .. , 

This iscal1eda prfirequt~lte link. The Simplest example is an identity match between one output 

clause of segment A and one input clause of segment B, e.g. 

'" 

(SPECS A (.,.) (ROOT -1 ••• ) 
(EXPECT • ".J 
(ASSERT (S'IGN ROOT-l POS)) 
(ASS.ERT ••• J) 

(SPECS.B (ROOT -2 ••• ) ( ••• 1 
'" " 'i" ,',' ": ", .. ".1' . 

(EXPECT ••• ) 
{EXPECT (SIGN. ROOT~2POS» 

j' ~. '. .,!l' j" '" , ., . ".'-

(ASSERT ••• » 
<. ;, ,.' 

Irriplicit ir(the p~rpose rel~tiOns.1ip between these two segments of cOde is thus also the fact the 

o 

c 
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(: ROOT-l corresponds to ROOT-2, i.e. that the programmer intends in his plan for the output 

ob ject of A to be the input object to B. It is important to remark here that a necessary ordering 

condition immediately follows from the prerequisite link between A and B, i.e. that the execution 

of A precede the execution of B. These kinds of necessary conditions wilt play an important role 

in the recognizing program structure, as we will describe in Chapter 3. 

The second basic class of purpose links is called matn-step links. This is the class in which there-is 

a correspondence-between the output specs of one segment, called the subordinate segment, and the 

output specs of its superordinate. For example, adding more detail to the specs for hash table 

insertion: (Note that in following examples, for ease of reading we will omit the unique 

instantiation identifiers on object names, where there is no ambiguity; i.e. we will simply say 

(-- BUCKET instead of BUCKET-n, when there is only one bucket in the context.) 

c 

(SPECS INSERT (KEY DATA) (ENTRY) 
(EXPECT ••• ) 
(ASSERT (MEMBER TABLE ENTRY» 
(ASSERT ••• » 

(SPECS BUCKET-INSERT (BUCKET KEY DATA) (ENTRY) 
(EXPECT (EO BUCKET (HASH KEY») 
(ASSERT (MEMBER BUCKET ENTRY» 

- (ASSERT ••• » 

In this example we enVisage the situation where the INSERT segment is itself made up of two 

subordinate segments. The first is to determine (by application of the hashing algorithm) the 

appropriate bucket in which to insert the item, and the second, called BUCKET-INSERT, actually 

puts the item into the chosen bucket. The BUCKET-INSERT 'code segment thus achieves a main 

step in the described behaviour of the INSERT segment, of which it is a part. For a main-step 

purpose link to be meaningful between two segments e;g. B is a mainstep of A, it is a necessary 
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condition that B is subsumed by A. This can take two forms: either the code segment B is 

explicitly part of the open code of segment A, or segment A contains a can to the function which is 

'segment B. 

We have avoided referring to purllose links as matclatngs because in the general case a simple 

pattern match will be insufficient to link together one segment's outgOing assertions and the 
. 

incoming assumptions of some other segment. A simple example of this is given in the SPECS for 

INSERT presented above. There clearly exists a main-step link between the BUCKET-INSERT 

and the INSERT, namely, the BUCKET;.INSERT routine achieves the overall goal of INSERT 

by putting the entry into the table. However, this connection is not a simple syntactiC match; 

BUCKET-INSERT only promises to acheive: 

(MEMBER BUCKET ENTRY) 

while INSERT reqUires: 

(MEMBER TABLE ENTRY) 

Clearly. the purpose link is not a simple pattern match, but rather also includes'the justifying 
I 

.deduction: 

«MEMBER BUCKET ENTRV)-->(MEMBER TABLE ENTRY» 

. 
Another type of complication of our simple model is that there are links between segments which 

do not seem to fit naturally into the framework of purpose ltnks. For example. consider a code 

segment whose job it is to put a red block on a table. Let us assume that the programmer has 

available a painting routine (which can paint blocks red) and a positioning routine (which wilt be . 

o 

used to put the block on the table). There is no clear ordering of these steps. i.e the block can be 0 
painted and then pOSitioned, or the other way around; let us look at the structure of these routines. 



(SPECS REO-BLOCK-ON-TABLE (TABLE-I BLOCK-I) (BLOCK-I) 
(ASSERT (ON TABLE BLOCK-i» 
(ASSERT (REO BLOCK-I») 

(SPECS ON-TABLE (TABLE-2 BLOCK-2) (BLOCK-2) 
(ASSERT (ON TABLE-2 BLOCK-2») 

(SPECS PAINT-REO (BLOCK-3) (BLOCK-3) 
(ASSERT (REO BLOCK-3»» 
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The most obvious links are the two main-step purposes between the output assertions of ON-

TABLE and PAINT-RED, and the output assertions of the main routine. Secondly, and more 

subtly, if the plan is to work it must be the case that the BLOCK which is the output of ON-

TABLE is the same as the input BLOCK of PAINT-RED. We will call this type of links a 

shared-value link. These links carry a necessary condition that the code must be arranged in such 

a way that a value can in fact be shared by the two routines involved. This can be done in either 

of two ways: either the data structure is available globally to both segments (i.e. it is bound at a 

higher levet), or it is passed as an explicit argument in a function call to the second segment. At 

the highest conceptual level, therefore, shared value links do not impose ordering but merely . 

syntactic restraints which guarantee that the value may be shared. 

2.2.4 Plans 

We are now in a position to clarify what we mean by a plan. In the context of the P.A., a plan is 

defined formatty as a schema of purpose (and perhaps other) links between segments of code. For 

example, 

PLAN P1: [A] •• ---------------P----~ I·· I·· 
[BJ-pre-t> [Cl-pre--+ [OJ [El 
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This should be understood as follows: there is a code segment. A. which is achieved as two main 

steps. 0 and E. 0 has. a thain of segments. B and C. which are prerequisites. Given this plan of a 

program, which specifies the important behavioral interactions (e.g. the purpose links) between 

code segments, it next make sense to consider how the actual surface structure (see Section S.I for . 

definition) of the code might be arranged compatible with the plan. For. example. program GI 

satisfies the necessary conditions implied by the purpose links: 

PROGRAM Gl:· 

[A] 

So would 

PROGRAM G2~ 

[Al 

[8] 

[eJ 
[OJ 

[EJ 

[E] 
(Bl 
[el 
[OJ 

However, 03 could not be a possible implementation of plan Pl. because the prerequisites of 

segment 0 do not preceed it in the actual code. 

PROGRAM G3: 

[Al 
tOJ 
[El 
[B) 
[e) 

A plan may be specified to varying degrees of detail, in two different senses. Firstly, plans may be 

nested Within plans bec;ause what is called a segment (i.e. "box") at one level of description (or 

planning), can itself have internal structure, made up of sub-segments interrelated by their own 

plan. For example, the top level segment A in plan PI, could (and will typically) itself enter in as a 

o 

o 

o 
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(~ component of some larger plan. 

Along another dimension, a plan can be further particularized by specifying the form of the actual 

input-output spec clauses that enter into the purpose links. Thus for example, rather than just 

saying there is a prerequisite link between Band C in plan PI, we might be more specific, for 

example: 

(PREREQ (B. (ASSERT (GE ROOT e))) 
(c. (EXPECT (NOT (SIGN ROOT NEG))))) 

This says specifically that there is a prerequisite link between the output assertion of B that (GE 

ROOT 0) and the input expectation of C that (NOT (SIGN ROOT NEG». Note again that. in 

fact, such a link references the deductive fact that (ge x 0) implies (not (sign x neg» which would. 

(.. be in the descriptive model of SIGN. Depending on the state of knowledge'of the P.A.. the plans 

that are its current attention will vary in both these senses of detail. At one end of the spectrum. 

the plan for a current user's program will be highly detailed and partitularized, so that enough 

information is immediately available for programming assistance. Leaving aside for the moment 

the question of how the plan becomes particularized. let us give an example of how we think the 

complete plan might look for a simple program. Suppose the user had a program to sum the 

numbers from 1 to 10 using an iteration. The specs of the whole program viewed as a segment are 

thus: 

(SPECS SUMMATION () (SUM) 
(ASSERT (EO SUM (SIGMA (I 1 Ie) (I))))) 

where the SIGMA expression has the obvious syntax. The internal structure of the program then 

consists in this case of the four standard blocks in an iterative plan: IN IT, BODY, BUMP. and 

TEST. They have particular specs as follows. 



(SPECS INITO (SUM CTR) 
(ASSERT (EQ CTR 1.» 
(ASSERT (EQ SUM 0.») 

(SPECS BODY (SUM-l CTR) (SUM-l) 
(EXPECT (EQ (SUM-l (SIGMA (1 1 (SUBl CTR) (I) H» 
(EXPECT (LE CTR 10.)) 
(ASSERT (EQ SUM-l (SIGMA (I 1 CTR) (J}»))) . 

(SPECS BUMP (CTR-l) (CTR-l) 
(EXPECT (LE CTR-1 10.» 
(ASSERT (EQ CTR-l (PLUS CTR-1 1.)})} 

(SPECS EXIT-TEST (CTR) () 
(CASES 

((EXPECT (LE CTR 10.» 
«EXPECT (GT CTR 10.»» 
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First tet us give the basic ptan schema which this program follows. Then we will discuss each 

purpose link in detail. The ptan is: 

me 

pren II----------+~ [SUMMATION) 

[INITJ-pre--r---+~B!OY ... -' ---; 

Ipre 

1----+ [BUMP] 

Ipre pre pre 

11---+ £TEST1-~-'" 

Perhaps the most impor~ant purpose link in this plan is: 

(MSTEP (Bo.OY.(ASS~RT (EQ SUM-1 (SIGMA (I 1 CTR)(I})}) 
(SUMMATION. (ASSERT (EQ SUM (SIGMA (J 1 Hn (I}»}») 

This. together with a deductive fact about SIGMA (namely that sigma from ito jor f(i) is equal 

o 

c 
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(," to f(j) plus sigma from i to j-l) says that each iteration of the body in soine sense achieves a main 

step of the superordinate segment. The required deductive fact which allows the match would be 

associated with the descriptive model of SIGMA in the network of background knowledge. 

Furthermore, the match implies that the final output object of SUMMATION, ie. SUM, is the 

same SUM as appears in the output of each step of the BODY. 

(PREREQ (INIT. (ASSERT (EQ CTR 1.») 
(BODY. (EXPECT (LE CTR 10.»» 

(PREREQ (J NIT. (ASSERT (EQ CTR 1.»)) 
(BUMP. (EXPECT (LE CTR 10.»» 

(PREREQ (INIT.(ASSERT (EQ CTR 1.») 
{EXIT-TEST. {CASE (EXPECT (LE CTR 10.»») 

The above prerequisite links express the fact that the purpose of the INIT segment is to satisfy the 

(~/ input expectations of the other three segments (at least on the first iteration). Notice that the 
I 

match here is between the assertion (EQ.. CTR 1.) and (LE CTR 10.). This points out one of the 

kinds of 'smarts' ~he deductive and pattern matching mechanisms must have. Furthermore, notice 

that in the last link it is specifically indicated that it is a CASE of EXIT-TEST that is involved. 

It will turn out that the case structure of program specs will carry a large part of the descriptive 
I 

power of the formalism we have developed for plans. For example, the other case or the specs for 

EXIT-TEST is satisfied by the following prerequisite link: 

(PREREQ (BUMP. (ASSERT (EQ CTR (PLUS CTR 1.»» 
(EXIT-TEST. (CASE (EXPECT (GT CTR 10.»») 

Here we see some rather sophisticated reasoning implicit in the matching of conditions. Firstly, 

within the specs for the BUMP itself the interpreter (a noncommital w~rd) needs to distinguish 

between the old and new values of the CTR. The clues to this are in the fact that CTR is both 
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the input and output object of BUMP. Secondly, given the expectation of BUMP that (LE CTR 

. 10.), a possible value to substitute for CTR in (PLUS CTR I.) is 10., giving (BUMP.(ASSERT (EQ. 

CTR 11.»), which then matches with the case (EXPECT (GT CTR 10.» in the EXIT-TEST. To 

summarize, this prerequisite is the condition that the iteration eventually terminate. 

(PAEAEO (EXIT-TEST. (CASE (ASSERT (LE CTR 10.»» 
(BODY. (EXPECT (LE CTR 10.»» 

(PAEAEu (EXIT-TEST. (CASE (ASSERT (LE CTR 10.»» 
<BUMP. (EXPECT (LE CTR 10.»» 

(PAEAEO (BODY. (ASSERT (LE CTR 10.) 
(BUMP. (EXPECT (LE CTR 10.»» 

These prerequisites establish the basiC iterative framework; that is to say, given the failure case of 
, 'I . 

the EXIT-TEST, the,prerequisites are then satisfied for another iteration through the BODY and' 

BUMP. One should notice here that the clause (ASSER'!' (LE CTR 10.» does not explicitly appear 

in the specs of EXIT-TEST or BODY. T.o be pedantic, the specs for these segments shou1d have 

been written: 

(SPECS EX IT-TEST (CTA) ( ••• ) 
(CASES 

«EXPECT (LE CTR 1e.)} 
(ASSERT (LE CTR 10.» ••• etc. 

(SPECS BODY (CTA ... ) ( ... ) 
(EXPECT (LE CTR 10.» 

(ASSERT (LE CTR 1e.») 

However, it seems quitereasonabJe to assign to the interpretative and deductive mechanisms of the 

P.A. the responSibility to automatically generate such redundant assertions from a general rule. 

The rule would state that any input condition is automatically an output condition if none of its 

terms appear in the list of output objects (i.e. there are no side effects on any of the terms). In 

o 

o 
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(- fact, exactly this would happen in any PLANNER-like language, since assertions wi11 not disappear 

unless explicitly erased. 

Now that we have given an example of a particular plan in gory detail, let us move to a higher 

level and acknowledge the existence of broad classes of plans. For example, the particular plan 

presented here is only one member of a class of many possible iterative plans. All the members of 

this class have the concepts of INIT, BODY, BUMP, and TEST in common, but may use them 

slightly differently in particular instantiations. For instance, the BODY, BUMP, and TEST might 

be implemented in various orders. More profoundly, it is true that all iterations implicitly refer to 

some total ordering of the items being iterated over (numerical, list position, etc.); which particular 

total ordering is use is peculiar to each individual iterative plan. Other examples of classes of 

( plans are recursive plans, linear plans, and dispatch plans. We are not certain at this point in the 

research how best to capture the shared properties of these classes of 9lans. Perhaps it will be 

possible to represent in the same formalism a prototypical member of each class. More likely, 

however, there will probably be some cluster of expertise in the knowledge base having to do with 

each class of plans, which will be applied to members of the class as appropriate. 

Finally, let us summarize here by saying that plans are very much the central notion in the whole 

operation of the P.A. The plan will form the core of the model that is built of a particui~r user's 

LISP program. Thus we expect a significant portion of our research effort to go into learning 

how to represent plans in such a way that they first, naturally fol1ow the way programmers 

organize their code and then second~ can be utilized by the P.A. in order to perform its various 

services. 
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2.3 Annotation and the P.A. 

Since the P.A. will be one of a new breed of systems programs that are prepared to deat with 

program commentary and annotatio~ for purposes other than pretty-printing on code listings, the 

first step is to develop mechanisms whereby the traditional barriers between code and commentary 

are broken down. As far as the P.A. is concerned, both will be clues to understanding a program. 

Since annotation wil1 play such an important role in the P.A. scenario, we might also seek to 

implement code annotation in a way to improve where possible on the current method. A majOr 

difficulty with traditional comments is that they are forced to appear linearly throughout the code, 

which means they refer implicity by their position to the immediately following segment of code. 

and by explicit mention to arbitary other segments. This suggested to us a general scheme for 

storing and accessing program comments, which we implemented as follows. FirsUy. in order to 

facilitate "walking around" in the code, we back-pointered all the code list structure in the program, 

so that from any point it is possible to find out what higher level expression it is embedded in .. 
J. 

Secondly. we implem~nted the ability to refer explicitly (by pointer or by giving it a unique name) 

to any list structure or substructure in the code. Using this, all the commentary can be stored and 

indexed in such a way that a single annotation may refer to many segments of code (e.g. "these are 

the error recovery routines"), and conversely it is possible to determine, for any segment of code, all 

the items of annotation which refer to it. We believe this should be it good and flexible 

framework in which the P.A. will be able to do its work. 

We have assumed to a large extent that the programming apprentice will be using a large pre-

established knowledge base to which it incrementally adds new knowledge. Because of this, we 

o 

have concluded that most of a user's commentary could be put into the form of seltctors and C 
mnemontc tdenttfters. Ir. addition, we have assumed that the user will include the more complex 



• 

PAGE 75 

C forms of commentary to the same extent as he does now. However, to be honest, it must be 

admitted that the average programmer controls a body of knowledge of sufficient size that it 

would require us several man years of effort and several additional computers of storage to be able 

to present this knowledge to the programmer as a unified whole. Furth~rmore; we would initially 

require the programmer to formalize his commentary to anow the apprentice to understand him. It 

therefore becomes implicit in our discussions of annotation here, that we expect (or wilt require) 

programmers to change their behaviour somewhat when interacting with the P.A., in terms of the 

character (and perhaps quantity) of their comments. One might then ask how difficult wi11 it be to 

get programmers to conform to the restricitons of the apprentice environment. This would seem to 

depend on hQw good a helper the apprentice turns out to be. We believe that if a P.A. is really 

successful in helping the programmer with his work, there will be, no problem getting him to 

provide enough annotation to make it possible 
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CHAPTER THREE .. RECOGNITION AND UNDERSTANDING 

3.0 Introduction 

In the previous two chapters we have been engaged in the business of building up the knowledge 

base and descriptive fO'imalisms necessary for the P.A. to represent programs at various levels of 
~,' ", 

abstraction. The central topic of this chapter witlbe.to describe how the link-up is made between 

the P.A.'s rich knowledge base, on the one hand, and a user's particular LISP program, on the 

other. As a prelude to this important discussion, we wish in this section to move the focus of 

description back. to the code level. Here we wish to ask what kinds of descriptive concepts will be 

reqUired at the code le~el, separating thiS, for the moment, from the mechanisms and processes by 

which the actual fimd description is generated. As an aid to this, let us suppose the following 

highly simplified (and unworkable) two-stage model of the recognitiQn process: 

(STEP I) The so-called surface structure of the program is generated from 
the code bottom-up by a super indexing program, which utilizes only 
knowledge of LISP syntax and the semantics of the basic LISP functions, 
such as PROG, COND, EVAL, etc. What information this surface structure 
analysis of the program might yield is the ~opjc of ~ection 3.1. 

(STEP 2) The surface structure is merged into a larger model of the 
program built up by the P.A. from its store of descriptive models and plans 
on the basis of the commentary supplied by the programmer. The key 
feature of the merging is that the correspondence is made between the 
formal segments of the abstract description of the program and actual 
segments al the code level. A more realistic treatment of building this 
complete model of the program is the topiC of S~tlon 3.2.· 

Before going on, let us reiterate that this description of the recognition process should be taken 

only as an item of pedagogy, used to introduce the issues. The two-stage scheme will not work in 

practice, for several reasons. Firstly, it entirely finesses the segmentation problem, discussed in 

· . 

,.~ ..... ,\ 
'0 

Chapter Two. Unl;:!ss the segmentation into functions, PROG's, etc., 'at the code level fortUitously 0 
matches exactly the groupings coming down from the higher levels of description, the merging 
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(_ process of STEP 2 becomes extremely messy. Secondly, the two-stage process above artifically, and 

critically, separates the program description into two aspects (syntactic in STEP 1 and semantic in 

STEP 2, approximately), ignoring the important fact that clues to both kinds of information come 

from several shared sources: the raw code itself (including mnemonic identifiers), the 

accompanying annotation, and all the P.A.'s background knowledge about programming as 

implicated from the other two sources. Any realistic solution to the recognitiun problem will have 

to take advantage of this heterarchy. 

3.1 Surface Structure in Programs 

The major job of the surface structure representation of code is to show the control relationships 

between segments of code. This information is potentially derivable simply from the nesting 

( . syntax of LISP, the rules of the LISP interpreter, and the semantics of the special LISP functions 

like PROG, COND, AND, OR, etc. At this surface level in LISP, there are only two ba~ic 

execution time relationships thilt can hold between code segments. (Of course, at higher levels of 

abstraction from the code, more complex kinds of control relationships can and will be expressed). 

The first basic surface structure relationship is the Invokes, or calling rel~tionship. A --inv--> B. 

which means that the behaviour of B is invoked as a subpart of the behaviour of A. In ,terms of 

execution sequence, this is: 

(enter A),(enter B),(exit B),(exit A) 

This relationship can result either from an explicit function call in A to a segment B, or the body 

of B might appear as open code in the body of A. The second basic relationship is the next. or 

sequential relationship, A --nxt--> B, which simply means that the execution of segment B does (or 

c\ can. depending on branching tests) immediately follow the execution of segment A. i.e. 

(enter A),(exit A),(enter B),(exit B) 
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The generalized notions. of sequentiality. A --nxt.-'"> B, and indirect invocation, A --invt)-? B, 

derive of course from the transitivity of "next" and "invokes", in the obvious way. Finally. for 

completeness, we should mention the existence of a third candidate execution relationship. te. 

(enter A),(enter B),(exit A),(exit B) 

This is the case of unconstrained coroutines, which cannot be implemented in the basic semantics 

of LISP. 

To illustrate our notion of the surface structure representation of a program, let us consider again 

the plan ~xample from Chapter Two. The following is called the skeleton pla.n of the program 

because only the type of 'purpose links between segments is indicated (e.g. mainstep, prereq). A 

; 

more complete plan wooid show in addition the specs of each segment, and which aSsertions and 

expectations entered into the various relationships. 

PLAN P1: 
[A] .~-------""'I-m-s----rl •. 
[8]-pre--+ [Cl--pre-+ [OJ [El 

Now let us take an actutl LISP program which is an implementation of plan ·Pl. For simpUcity. 

assume each of the segments, B, C, D, and E have been implemented already as separate LISP 

functions. The code for the program is then: 

<OEFUN A ( ... ) 
(PROGN 

(E · ... , 
(9 · .. :~ 
(C · .. ! 
(O · ... ) ) ) 

Using the notation developed above, the skeleton surfa.ce structure representation of this program 

would be: 

o 

c 
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invokes 
SKELETON S2: 

[AJ-1 ----I -1--} 
[EJ-nxt ... [B1-nxt-+ [Cl-nxt ... [01 

This representation of the program.is immediately useful for comparing with its skeleton plan. In 

particu lar the P.A can verify that the, necessary ordering conditions implied by the prerequisite 

and mainstep relationships in the plan are satisfied in the surface structur~, i.e. 

PLAN 

[OJ --ms-> [AJ 
[EJ --ms-> [AJ 
[BJ --pre-> [C1 
[CL--pre-> [OJ 

SURFACE STRUCTURE 

[AJ --'i nv-> [01 
[AJ -- i nv-> [E1 
[BJ --nxt*-> [C1 v i a [BJ -.,.mct->[C1 
[Cl --nxt*-> (0) vi a [CJ --nxt-> [01 

Note that the surface structure rel~tiQnship [E]--nxt->[B] is supetfluDus as-far as the plan is 

(~i concerned. Tbis is quite typical in . program analysis, and is s}mply"a reflection of the fact that 

some details of the code arrangement ate not constrained by the underlying plan. 

c 

It is very important to realize why the P.A must have models of the semantics of the special LISP 

functions like PROG, COND, etc. in order to derive the surface structure of programs. The 

nesting syntax of LISP is l'Iot enough. To bring this out, consider the following--two programs, 

which are syntactically parallel, and, yet have very different surface structures: 

(DEFUNUPDATE (DATA KEV) 
(PROGN 

, (DELETE KEV) 
(INSERT DATA:KEV})} 

(DEFUN INSERT (DAT~ KEV> 
(BUCKET-INSERT 

(ENTRV OATA_KEV) 
(HASH KEV»~ 

In the case of the UPDATE program on the left, the P.A; must have ." its knowledge base the 

information thaCPROGN is a special kind of LISP function (a FEXPR), whichdoes not follow 

the usual rules of evaluation. Rather, the plan for PROGN is to evaluate each of its argument 
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.. formj'in sequence. Th~ P.A .. can then derive the correct surface structure skeleton (or UPDA:r_~. ' . o 

. ' \ 

, (uPOA TE1- i nv~ (PROGN11 i nv ..... (I NSERTl 

- . InK' 
i nv-+ lOELETE] 

'. 
" 5 

It is interesting to contr.ast ,this with the surface skeleton of the INSERT program on the 'right. 

On the right, the fu~,ction syntactically parallelling PROGN is BUCK.ET..:INSERT. which is a 
, ~ 

normal user.:wriuenfunction (j.e. ail EXPR). Thus the normal rules of-LISP enluation apply in 

deriving the surfaceslructure. fir~t ,the arguments to a function are evaluated in left-to-right 
~ .'" "', ' . 

~ .... 1-

order, and then the function is' invoked. Acco~ding to these semaritics~. the surface strucwe comes 
-"iT,".'" 

out quite differently:: Ji\. 

[I NSERTJ lnv--+[BUCKET-INSERT] 

fox, 
inv~[HASH) 

[nK' 
'!'w~ [ENTRY] 

The surface structure analysis is yet incomplete. In addition to the control flow between segments, 

a super LISP indexer would be able to extract from code some information about data structure 
, , 

(e.g. variable) use. For example, current LISP indexers keep track of what level atoms are bound 

at, when th,ey are read-rfferenced, and when their values are changed. The knowledge required to 

-extract th,isinformation .from code includes knowing the semantics of LISP lambda-binding in 0 
general, and specifically the input-output specs of basic LISP functions that lambda bind, such as 
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(' PROG, DO, etc., and Df the basic LISP functiDns that can mDdify data structures, such as SETc:t 

RPLACA, RPLACD, etc. As mentiDned in Chapter One, this infDrmatiDn WDuid be part of the 

P.A.'s knDwledge base. To. develDp this further, let us recDnsider the summatiDn example from 

Chapter Two., this time giving an actual LISP implementatiDn Df the plan. 

[summat ion] 

(DEFUN SUMMATION () 
(PROG (SUM CTR) 

I (SETa SUM 0) 
I (SETaCTR 1) 

[ini t) 

I LP (SETa SUM (PLUS SUM CTR» [bDdy) 

I (SETa eTR (PLUS eTR I)} I [bump] 

I (COND «LE CTA 10) (GO LP»)) [test) 

(RETURN SUM) » 

The skeletDn Df this program is: 

inVDkes 

, 
I' 

I 
I 
I 
I 

[summat i onl---.I,...----... I----... I~-----TI 
[initl--n.t->[bidYl--n.t->[bU.Pl--:::~.tl 

This skeletDn is quite similar to. the first example Df this sectiDn and it c"Juld Similarly be verified 

against its plan, which is given in Chapter Two.. We will nDt do. that here. Rather let us use this 

example to. develDp SDme new aspects Df surface structure. The "invDkes" arrD,ws in this example 

(". are a refiectiDn Df the embedding in [summatiDn] Df the Dpen code fDr its subsegments. The four 
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basic "next" arrows between the subsegments, nnlt], [body], [bump], and [test] are simply a 

reflection of the explicit order of their appearance in the code for a sequential machine. The 

relationship [test]--nxt->l:body], is more interesting, however. It is a result of understanding the . ' 

meaning of the code (GO LP) at the end of the [test] segment, and the tag conventions for PROG. 

In addition to basic control structure relationships, the surface structure representation of a 

program like this migh~ also contain whatever information about input and output objects of a 
" 

segment can be derived from a simple analysis of the syntax and basic LISP semantics of a 

program (i.e. not using any background knowledge about the programmer's higher level 

intentions). This could be done most naturally by adding to each segment in the control structure 

skeleton, a skeleton specs, which, indicates at least the input and output objects of the segment. as 

derived from the indexer's analysis. and possibly some simple expectations and assertions 

transferred up to a segment from the specs of the basic LISP functions within it. In the present 

example. the P.A migh~ proceed as follows (if it couldn't bring in all this knOWledge ready-made 

from its descriptive model of summations and loops). From the code construct (RETURN SUM). 

which is part of the important connective tissue between the subsegments of the SUMMATION 

program. it might conclude 

(SPECS SUMM~TION () (SUM» 

Looking at the (jnit] segment. the P.A. might conclude directly from the SETQ,:s that SUM ,and 

CTR were output oOjects. and that there were no input objects. Thus. 

(SPECS I NIT () (SUM eTR» 

Reasoning similarly for the other segments, the skeleton specs to be inc1uded in the ~urface 

structure representation :would be: 

(SPECS BODY ~SUM CTR) (SUM» 

o 

c 
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(SPECS BUMP (CTR) (CTR» 

(SPECS TEST (CTR) (» 

This completes our description of surface structure information about a program. Let us repeat 

here that the forgoing discussion should not be taken to imply that a. complete surface structure 

representation is to be generated by the P.A. by the methods indicated, as a first step towards 

understanding the program. Rather, this is the kind of information the P.A. can extract from the 

raw code as a last resort analysis in the absence of strong gUidance from its bilckground knowledge 

base. 

3.2 Building the Model of the Program 

( In this section we will undertake to give a more realistic account of how the P.A. would go about 

understanding a LISP program it had never seen before. We will do this in two steps. First we 

will define the input~output conditions of the recognition and understanding task we wish the P.A. 

c 

to perform. Then we will give an informal scenario that reflects our current notions of what the 

intervening processing might look like. Our scenario will of neces.dty be quite loose, since 

discovering exactly how to do the understanding is the major probi!m we are proposing to 

research. 

3.2.1 Definition of Understanding 

At the level of a simple block diagram, the recognition and understanding process could thought 

of as follows: 
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LISP Prograllllll8r's U 

N 
COde Annotat ion 0 

E 

R 

S 
T HODEL OF THE 
A 

KNOULEBGE BASE N PROGRArI 
0 
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Plans and lImp lementatlons N 
Special LISP Knowledge ~ 

Iu..~. 

Thus, in the context of the P.A., we wtll defIne understandtng as tlte process and result of butldlng 

a complete model of the program. The model of a program is a complex data structure that describes 

the program in many ways. Please refer now to the figure on the following page, which gives an 

exampl~ of a complete model. 

c 
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ITERATIVE-PLAN-1 r--+--~:.;.:.:;...:;::~::..I 

t--~~V:;';;':~=----t-cSPECS SUnnATION (J (sun) 
'-----or' 

(ASSERT (Ea (sun (SIGt1C1 (J 1 18) (J)))))) )+_ .. 

s!EfS .. (SPECS INIT () (sun CTR) 

(ASSERT (Ea CTR 1» 
(ASSERT (Ea sun 8») 

StUo\ ).(SPECS BODY (sun CTR) (SU,!) 

XPECT (Ea sun (SIGnA (I 1 
(EXPECT (LE CTR 18» ________ -

~(ASSERT (Ea sun (SIGnA H 1 CTR) (I))))),----li---

--.=..I-.--+.SPECS BU",' (CTR) (CTR) 

rt EXPECT (LE CTR 18» ---~ I (ASSERT (Ea CTR (PlUS eTR U»)) 

r;;;-;;:::;;;;::';l::-.z~~--~SPECS EXIT-TEST (CTR) (.n:sn 
l i (CASES 
L-.( (EXPECT (lE CTR 18)) 

«EXPECT (&T CTR 18»)' 

Model of Summation Program 
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This figure gives the model for the summation program. which we have been using as a 

illustration in several previous sections. We have chosen to use it as the example in this section on 

understanding because it is much smaller and simpler than the full hash table system we have been 

using as our primary mustration elsewhere. This allows us to give the reader a better feeling for 

.'. : t 
what the complete aralysis of a program might look like. The model of the program. as you can 

see. pulls together aU the various kinds of representation we have been developing for program 

description: 

(I) The model includes the teleolog'1 of the program. represented in terms of 
the aggregation of the code into segments with associated specs. and their 
interlation in terms of plans and purpose links. 

(2) The model includes the surface structure of the program. as represented 
by "next" and "invokes" arrows between segme~ts. 

(3) The model relates segments of the program to descriptive models in the 
knowledge base via prototype-instantiation conventions. e.g. a particular 
summation program is recognized as an instance of summation programs in 
general, so that any knowledge the P.A. has about the prototypical entity is 
a vailable to help deal with the present case. The same holds true for lower 
level concepts also; for example if a variable is called a "counter" in the 
model, this implicates all the knowledge theP.A. has compiled about counters 
in general. 

(4) The model of the program reflects the destgn chotces that have been 
made in the particular program. For example. in the P.A.'s knowledge base 
there are listed several possible implementations for· iterative plans (DO­
loops, recursion, nOTO-loops). In the model describing this program 
however, only the alternative that was actually chosen in this instance is 
shown (i.e. nOTO-loop). 

(5) Finally of course, the model also includes the actual code and annotatIon 
that compris"s the program being described. 

On the input side of ~he understanding process, we have: 

(I) The raw LISP code. 

Glues to, what the programmer is trying to do are buried here in the form of 
the code it~elf, and also often in the choice of mnemonic identifiers used to 
name functions. variables. etc. 

o 

c 
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(2) The programmer's annotation. 

Here the programmer hopefully makes his intentions more explicit. In' the 
ideal case, this annotation would simply be comments in natural language, 
made as the programmer saw appropriate as reminders necessaty to himself 
or a colleague who will read the code at some later time. More rf'alistically, 
for the first generations of apprentice, the annotation will have to be in 
some convenient and hopefully natural-feeling formal language. As for the 
content, it is a research question to what degree it will ha"e to be more 
pedantic and extensive than would be appropriate for say, a human 
assistant. Also, this issue is closely related to how well the P.A. uses its 
k.nowledge base to facilitate understanding. 

(3) The knowledge base. 

(a) Descriptive models. 
These specify what is conceptually related to what else, so that the P.A. may 
generate expectations about what to look for in the code. For example, from. 
the descriptive model of hash tables, the P.A. has the expecta~ioll to find an 
insert routine, lOOKUp routine, etc. Similarly. once the P.A. has discerned that 
an iterative plan is being used in a program. it then knows to look for an 
initialization. body. bump. and test. This kind of gUidance in what to look 
for is crucial to the P.A.'s success in understanding the program. (And 
indeed, the same is true for people. to a great extent.) 

(b) Plans and implementations. 
Encoded here is the P.A.'s knowledge about standard forms of program 
control structure. and how they may be implemented in LISP. Here again, 
the P.A. gains power by often knowing ahead of time what the design 
alternatives were. so that recognition becomes only a case (If determining 
which choice was made in a particular program. 

(c) Special LISP knowledge. 
Of course, in order to analyze the code in detail the P.A. haS to know the 
basic syntax of LISP, how the interpreter works. and the semantics of the 
basic LISP functions. Also in this area of the knowledge base are templates 
which help span the gap between the lowest level implementation plans, and 
the particular programmer's idiosyncratic LISP code segment. 

3.2.1 Scenario for Understanding a Program 

We are now in a position to present a scenario of what we expect the internal behaviour of the 

. ' C, P.A. to be when it is trying to build up a model of a program it has never seen before. Important 

aspects of this behaViour to pay attention to are the order in which parts of the program are 
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recognized, and how the various· sources of information interact However, it is also important. to 

keep in mind that this ::lcenario for understanding the summation program is intended only to give 

a "feel" for the kind of processing and reasoning that we believe will take place. Firstly. it is 

certainly the case thatthe exact details of order and.method by which the parts of the program are 

recognized in this scenario are not canonical--we intend them only to be plausible and suggestive 

of how we think things should happen. Secondly, this one example, in its intentional simplicity 

and small size, will ine~itably miss many important issues in the recognition problem. Third and 

finally, the plain fact is that we don't know yet exactly how the recognition processes will operate-

as stated before, that is part of our research problem. In any case, let us get on with it. Here 

again is the the program, with its associated meagre annotation: 
\ . 

(OEFUN SUMMATION () 
. (PROG (SUM eTA) 

(SETa ~ SUM 0) ; in it i a I i ze 
(SETa eTA 1) 

LP (SEta SUM (PLUS SUM CTR» 
(SETa eTA (PLUS eTR I)} ;bump ctr 
(CONO «LE eTR IB) (GO LP»} 
(RE1URN SUM) » 

The first major break in understanding this program is to put it in the context of the appropriate 

descriptive. model. In this case, the programmer has provided this information in the way he 

named the function, i.e. SUMMATION. Assuming the P.A's lexical knowledge of English was 

adequate, this would immediately invoke the descriptive model of summations. If the function was 

not mnemonically nal11ed (at least as far as the P.A could understand), the P.A. could alternatively 

ask the programmer explictly, "what is this program all aboutt. Now, the descriptive model of 

summations would include something like the following fragment: 

• 

o 

c 
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ITERATIVE-PLAN 

(DO «?VAR INIT BUnp) 
(?VAR INIT BUnp» 

(TEST RETURN-VALUE) 
BODY) ) 
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RECURSION \ 

Given that the program is a summation routine, the P.A. thus knows it must have an iterative 

plan, composed of an init, body. bump. and test In order to find the code segments that play these 

roles. however. it first has to determine which of the possible implementations was chosen: do-loop. 

goto-loop, or recursion. One way for this to happen would have been if the programmer had a 

comment at the beginning of the code something like ";using a goto loop'''. Alternatively. each of 

the design alternatives knows enough to be able to look at the code and :see if they were chosen. 

For instance, the recursion choice might simply look to see if there is a recursion relationship, A --

inv(c--> A. in the surface structure of the code. Similarly. the do-loop recognizer needs simply look 

C for the surface syntax of the LISP DO construct. Fina11y. in this example. the ~oto-loop recognizer· 

would succeed by noticing the PROG construct and the (GO LP) statement. The next major 
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hurdle is now to figure out how to divide up the code into segments. Sometimes this can be quite 

,easy. For exampl~, consider the following alternative summation program implemented using the 

DO construct. 

(OEFUN SUMMATION () 
(00 «CTR 1 (PLUS eTR 1» 

(SUM 0» 
«GT· CTR 10) SUM) 
(SETa SUM (PLUS SUM CTR»» 

Here we have an example of a "quick. kill". From the template associated with the DO-loop 

implementation in the knowledge base shown above,we can immediately break. up the code into 

segments by simple pattern matching to the syntax of the DO construct. In our primary example, 

using the GOTO imp~,ementation however, it is not so easy. One way to begin is to use the fac~ 

that the initialh:ation segment of an iterative plan must always appear first in order at the surface 

level. Thus, by the way, the n;initialize" comment on the first line of the PROG in the example 

program is superfluous to the P.A., given that it k.nows the general fact about the position of 

initializations; Now that we know where the init segment starts, we need to figure out where it 

ends. The clue to this ,is to recognize what part of the code lies inside the iteration loop. The P.A. 

has already recognized the (GO LP) statement at the bottom of the iteration, from which it is a 

short step to recognize the the tag LP above delimits the beginning of the iterated code. Since the 

initialization is not supposed to lie inside the iteration, we have now established that the end of the 

initialization segment, is delimited by the LP tag. Now, within the iteration loop. we have to find 

the body. bump. and test, which can be varied in their order. However, each have their 

identifying features. For a start, the exit test segment expects to contain some LISP control 

• 

o 

primitive, such as COND, AND, or OR, with a GO embedded in it. This can be immediately 

recognized as the eOND clause second line from the bottom. That leaves the bump and body to 0 
" 

be accounted for. In this example, we have the helpful comment ":bump" on the fourth SETQ. in 
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("- the code. The P.A. would then assume (correctly) that the bump segment started there and 

extended until the beginning of the exit test CONDo Alternatively, if the comment had been 

c 

absent, it seems reasonable to expect the P.A. to have figured out for itself what was the bump 

segment, by noticing that it was the only line of code which reset the variable CTR (assuming it 

had already realized the semantic significance of the variable name). As. a last resort, of course, 

the P.A. could always enquire of the programmer where the bump step occurred. Having 

recognized the bump step, we are essentially finished with the segmentation problem, since all that 

is left over is the body of the loop, which must be the remaining code inside the iteration. 

Now that the code is properly diVided into segments the P.A. will complete the model by filling; in 

the specs for each segment, and the relationships between segments, both teleological (purpose 

\ 

links) and surface structure. The surface structure relationships are the easier of the two. In this 

case the "next" and "invokes" arrows would be immediately filled by some standard algorithm 

operating on the surface syntax and semantics of the code, as implied in Section 3.1. Following that. 

the problem of filling in the futl details of the specs and the purpose links could be attacked two 

ways. One way, which would probably work quite well in this simple example. would be to first 

calculate all the input-output conditions of each segment and then the purpose links between them. 

directly from some standard algorithm applied to the raw code. Howevet this would not be typical 

of how we think the P.A. should operate. More realistica1ly. in the descriptive model for each 

~egment type in the plan would be a skeleton or template set of specs that only needed to be 

adjusted slightly to fit an instantiation of such a segment type appearing in actual code. For 

example, the prototypical bump segment has an input expectation about the old value of the 

counter variable, and an output assertion about the new value. It only remains for the P.A. to 

determine in a particular program. which variable is the counter, and what the value ranges are. 
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This apptiessimihuly for the other segments. Morever, these prototypical segments in the 

k.nowledge base are themselves related together by purpose links into plans. Thus rather than 

doing pattern matching and deduction on the user program's specs in order to figure out the plan, 

most or all of the plan comes from the knowledge base along with recognizing the segment types. 

For example, it is represented in the knowledge base that there" is a prerequisite link between the 

bump and the test, the text and th~ body, a mainstep link between the body and the invoking 

segment, etc. Again, a~" in the case of the specs, only the details have to be adjusted to the program 

at hand. This completes our scenario of how the model is built. We now claim that the P.A. 

understands the program. 

3.3 Control Structure and Implementation Issues 

Several words and phrases, for example, "invokes", "recognizers", and "identifying features", which 

seemed natural to use in the preceeding scenario, suggest certain kinds of control structures that 

would be appropriate for the P.A In trying to evaluate these various recognition paradigms of 

currency in A.I. it is useful to lay them along a dimension, which at one end might be called 

"hypothesize, and jump", and at the other extreme, "wait ,and see"., These contrasting approaches 

might be exemplified respectively by Minsky's Frame <Minsky,I974> paradigm, and Marcus' Walt- " 

and-See Parser <Marcus; 1974>. 

If we were to apply Min~ky's approach to our P.A. recognition problem, it seems natural to identify 

the descriptive models of the our knowledge base as the "frames" of Minsky's theory. The 

descriptive model is thus "invoked" when its clues or "indentifying features" (or IMP'S in 

Winograd's interpretation), are satisfied by features in the object program. This invocation of a 

descriptive model corresponds to making the hypothesis. The system then tries to verify that the 

o 

c 
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(' hypothesis (frame, model) does in fact fit well. During this phase, the comrol flow in strongly top-

down, i.e. the frame expects certain features to be present a priori, and recognition becomes a case 

of trying to actually find them in the object If the hypothesis turns out not to fit, it is abandoned. 

and the "jump" is made to another one based on the bugs in the current model. and the new 

information gathered. 

Other aspects of recognizing LISP programs have a more bottom-up nature. For instance, there 

seems to be a need in the P.A. system for templates, (or what Marcus calls "groupers") to recognize 
. . . 

such standard structural units as DO-loops, GOTO-loops, etc. This is analgous to Marcus' use .of 

groupers to conglomerate noun phrases or verb groups' in parsing natu~al language. These groups 

are then passed up to the next level of recognition, where they are fitted into more abstraCt 

('. descriptions. In the P.A. this next level of abstraction would be the plans, corresponding roughly 

to sentences in the natural language situation. 

In any case, these remarks suggest that we need to do more research in the area of control 

structures for our P.A. To this end, let us give now the following list of relevant issues that are 

indicated by our investigation thus far: 

(I) Top-down and bottom-up. 

The control structure clearly will have to support information {Jow in . both 
directions. 

(2) Multiple sources of information. 

As we have seen, the P .A. needs to pick up clues from the code and 
annotation, and gUidance from the knowledge base. It should take 
advantage of the most useful information for each recognition subproblem. 
regardless of source. This implies a sophisticated arbitration mechanism 
between information sources. 
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(3) IncQmplete knowledge. 

Almost certa~rily. there will be situations in which the P.A. does not know 
enough to b. able to perform in the manner desired by. the user. In such 
cases, partially useful behaviour, rather than complete failure, should result. 
For example, the P.A. should be able to take a.dvice and assimilate new 
information to recover from ·incomplete knowledge. 

(4) Contradictions. 

In a similar anthropomorphic vein, the P.A.'s control structure should be able 
to tolerate contradictory information, both in the. knOWledge base, and as 
inputs to the, recognition process. 

(5) Order of recognition .. 

In cases where the order in which component parts of a program structure 
are recognized is intrinsically arbitrary, the control structure should not be 
capriciously sensitive to the order. 

3.4 Advice Taking and Assimilation of New l!lformation 
, . 

Situations in which the P.A. has incomplete knowledge can be divided into two classes, with 

respectively appropriate recovery behaviours. The first case is typically when the P.A. is trying to 

recognize a program it has never seen before, but the programmer has provided insufficient 
'. 

annotation. In this case, the appropriate behaviour is for the P.A to initiate an advice taking 

interaction with the user. This will be particularly effective because the P.A. will be able to ask 

for help in an intelligent fashion, i.e. by asking very pointed questions. For example, in the 

summation program example, the P.A. might ask 

.2!. 

What imp'e~entation have you chosen -. . 
(a) GOrS-loop? 
(b) OO-Ioop? 
(c) Recursion? 

Where do you bump the counter? 

What variable is serving to accumulate th8SUIR? 

.. 

o 

c 
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(-' In all these cases, the P.A. has figured things out to a certain point, and uses this partial knowledge 

to compose a specific and pertinent question to the user. 

The second class of incomplete know lege is more profound. Suppose a user is using a new data 

structure or programming technique which is not in the P.A.'s knowlege base. The P.A. needs to 

have mechanisms to assimilate this new information. In the simpler case of a new data structure, 

one way to do this would be to ask the programmer to explain the new construct to the apprentice. 

Given that the P.A. knew some things about data structures in general (e,g. they have associated 

composer and decomposer functions), this interaction could be facilitated by the P.A. prompting the 

programmer for the relevant information .. An elegant and very powerful solution to the 

assimilation problem, Which might be better for learning about new prDgramming techniques,is . 

(/ suggested by the fact that the model built to represent a new user program has'the same forms as 

the permanent knowlege in the knowlege base. What is suggested is a general technique for taking 

a specific program model, variable-izing it appropriately (herein lies the difficult problem). so it 

can then be inserted in. the knowledge base as a permanent descriptive model. We do not suggest 

we have a way of doing these things, but we do feel that the system we are developing lends itself 

welt to research in this direction. 

3.5 Relation to Natural Language Understanding 

There are some interesting parallels that can be drawn between understanding a program you have 

never seen before, and understanding sentences in natural language. In both cases, a key 

component in the understanding system. is the background knowledge base, which establishes a 

context for understanding the semantics of the particular utterance in question. The huge problem 

in natural language understanding research is that if you try to advance h1!yond conversations in 
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toy domains like the blocks world, this background knowledge quickly amounts to having a 

common-sense model of the whole world of human existence. Unfortunately, building such a 

representation of the world is exactly the central unsolved research project of the entire AJ. 

community. Howtver, in the case of building a programming apprentice, we believe our research 
, ' , 

will confirm that the knowledge base for understanding programs is manageably small and well-' 

defined. 

The parallel goes deeper than this also. Consider the roles of syntax and semantics in 

understanding the two kinds of utterances. In the case of natural language. there is a problem 

with making the semantics sufficiently strong to gUide the recognition process, but fortunately (and 

perhaps not coincidentally) the syntax of natural language carries a lot of information. Thus. a 
! . 

o 

lot of meaningful processing can be done. especially at the low level (such as aggregating noun 0 
phrases and verb phrases), without much real understanding of what the sentence means. In the 

case of LISP programs, however, the basic syntax is so simple and regular that it carries almost no 

information at all. Programs are, understood only by invoking the precisely defined semantics of 

the LISP "lexicon" (i.e. the basic LISP functions). and the strong models of the background 

knowledge. 

Thus. to summarize, our research is very much compltmlntar'1 to current natural language 

understanding research. In both cases, as suggested previously, the control structure issues are very 

Similar: top-down and bottom-up. multiple sources of information, etc. However. we contrast 

nicely on the relative predominance in the recognition process of syntax vs. semantics. In the case 

of our research on program l:Inderstanding. we are able explore the role of background semantics 0 
, to a much greater extent. 

.. 
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