RISC/os (UMIPS)
Programmer’s Guide
Volume |
Order Number 3207DOC

Bl

The power of RISC is in the system.

RISC/os (UMIPS)
Programmer’s Guide
Volume |
Order Number 3207DOC

March 1989

Your comments on our products and publications are wel-
come. A postage-paid form is provided for this purpose
on the last page of this manual.

Mfg. Part Number 84-00062A/02-00298

© 1988 MIPS Computer Systems, Inc. All Rights Reserved.

RISCompiler and RISC/os are Trademarks of MIPS Computer Systems, Inc.
UNIX is a Trademark of AT&T.
Ethernet is a Trademark of XEROX.

MIPS Computer Systems, Inc.
930 Arques Ave.
Sunnyvale, CA 94086

Customer Service Telephone Numbers:

California: (800) 992-MIPS
All other states: (800) 443-MIPS
International: 415) 330-7966

Mfg. Past Number 84-00062/02-00298

Table of Contehts

Preface

Chapter 1: Programming in a UMIPS
System Environment: An Overview

UNIX System Tools and Where You Can
Read About Them

Three Programming Environments
Summary

Chapter 2: Programming Basics

Introduction |
Choosing a Programming Language
The UMIPS/Language Interface
Analysis/Debugging

Program Organizing Utilities

Chapter 3: Application Programming

Introduction _
Application Programming
Language Selection

Advanced Programming Tools
Programming Support Tools
Project Control Tools

liber, A Library System

TABLE OF CONTENTS

11
13
1-5

t 22

2-8
2-34
2-53

31
32
34
39
3-15
3-23
325

Table of Contents

Chapter 4: C Language

Introduction

Lexical Conventions
Storage Class and Type
Operator Conversions
Expressions and Operators
Declarations

Statements

External Definitions
Scope Rules

Compiler Control Lines
Types Revisited

Constant Expressions
Portability Considerations
Syntax Summary

Chapter 5: lint

Introduction
Usage
lint Message Types

Chapter 6: make

Introduction

Basic Features

Description Files and Substitutions
Recursive Makefiles

Source Code Control System Filenames:

the Tilde
Command Usage
Suggestions and Warnings

iv. PROGRAMMER’S GUIDE

4-1
4-2
4-5

" 4-8

4-10
4-19
4-33
4-37

. 4-40

442
4-45
4-48
4-49
4-50

5-1

5-4

6-1
62
6-5
6-8

6-12
6-15
6-18

Internal Rules

Chapter 7: Source Code Control
System (SCCS)

Introduction

SCCS For Beginners

Delta Numbering

SCCS Command Conventions
SCCS Commands

SCCS Files

Chapter 8: An Introduction to RCS

Abstract

Functions of RCS

Getting Started with RCS
Automatic Identification

How to Combine MAKE and RCS
Additional Informaion on RCS

Chapter 9: awk

The awk Programming Language
Using awk

Input and Output

Patterns |

Actions

Special Features

TABLE OF CONTENTS

- Table of Contents

6-19

71
72
7-6
7-8
7-10
728

82
84

88
89
8-10

9-1
9-12
9-13
9-21
9-26
9-31

v

Table of Contents

Chapter 10: lex

An Overview of lex Programming
Writing lex Programs

Running lex under the UNIX System

Chapter 11: yacc

Introduction

Basic Specifications

Parser Operation

' Ambiguity and Conflicts
Precedence

Error Handling

The yacc Environment

Hints for Preparing Specifications
Advanced Topics

Examples

Chapter 12: curses/terminfo

Introduction

‘Overview

Working with curses Routines
Working with terminfo Routines

Working with the terminfo Database

curses Program Examples

Chapter 13: File and Record Locking

Introduction
Terminology

vi PROGRAMMER’S GUIDE

10-1
.10-3

110-14

111

11-3

119
11-13
11-17
11-20
11-23
11-24
11-27
11-32

12-1
12-2
12-6
12-38
12-43
12-51

131
13-2

e

- Table of Contents

File Protection 133
Selecting Advisory or Mandatory Locking 13-12
Chapter 14: Shared Libraries

~ Introduction 14-1
Using a Shared Library 14-2
Building a Shared Library 14-11
Summary 14-32
Chapter 15: Interprocess Communication
Introduction 15-1
Messages 152
Semaphores 15-27
Shared Memory 15-32
Chapter 16: Interprocess Communication

Tutorial

Abstract 161
Goals 162
Processes 163
Pipes 16-4
Socketpairs 168
Domains and Protocols 16-10
Datagrams in the UNIX Domain 16-12
Datagrams in the Internet Domain 16-15
Connections 16-19
Reads, Writes, Recvs, etc. 16-30
Choices 16-32
What to do Next

1633

TABLE OF CONTENTS vii

‘Table of Contents

Acknowledgements
References

Chapter 17: Advanced IPC Tutorial

Introduction

Introduction

Network Library Routines
Client/Server Model
Advanced Topics

Chapter 18: External Data Representation
Protocol Specification

- Introduction .
XDR Library Primitives

XDR Stream Implementation
XDR Standard

Advanced Topics

Synopsis of XDR Routines

Chapter 19: Remote Procedure Call
Programming Guide

Introduction

Layers of RPC

" Higher Layers of RPC
Lower Layers of RPC
Other RPC Features
Synopsis of RPC Routines

Glossary
Index

vii PROGRAMMER’S GUIDE

16-34

16-35

17-1
17-1
17-13
17-19
17-27

18-1
18-6

18-19
18-21
18-26
18-31

19-1
19-2
194
19-10
19-16
19-37

Purpose

This guide is designed to give you information about programming in a RISC/os
(UMIPS) system environment. It does not attempt to teach you how to write pro-
grams. Rather, it is intended to supplement texts on programming languages by con-
centrating on the other elements that are part of getting programs into operation.

Audience and Prerequisite Knowledge

As the title suggests, we are addressing programmers, especially those who have not
worked extensively with the RISC/os (UMIPS) system. No special level of program-
ming involvement is assumed. We hope the book will be useful to people who write
only an occasional program as well as those who work on or manage large application
development projects.

Programmers in the expert class, or those engaged in developing system software, may
find this guide lacks the depth of information they need. For them we recommend
the Programmer’s Reference Manual.

Knowledge of terminal use, of a RISC/os (UMIPS) system editor, and of the
RISC/os (UMIPS) system directory/file structure is assumed. If you feel shaky about
your mastery of these basic tools, you might want to look over the User’s Guide
before tackling this one.

Organization
The material is organized into nineteen chapters, as follows:
® Chapter 1 — Overview

Identifies the special features of the RISC/os (UMIPS) system that make up
the programming environment: the concept of building blocks, pipes, special
files, shell programming, etc. As a framework for the material that follows,
three different levels of programming in a RISC/os (UMIPS) system are
defined: single-user, applications, and systems programming.

® Chapter 2 — Programming Basics
Describes the most fundamental utilities needed to get programs running.
® Chapter 3 — Application Programming

Enlarges on many of the topics covered in the previous chapter with particular
emphasis on how things change as the project grows bigger. Describes tools
for keeping programming projects organized.

® Chapters 4 through 19 — Support Tools, Descriptions, and Tutorials

Includes detailed information about the use of many of the RISC/os (UMIPS)
system tools.

At the end of the text is a glossary and an index.

PREFACE ix

Purpose

The C Connection

The RISC/os (UMIPS) system supports many programming languages, and C com-
pilers are available on many different operating systems. Nevertheless, the relation-
ship between the RISC/os (UMIPS) operating system and C has always been and
remains very close. Most of the code in the RISC/os (UMIPS) operating system is C,
and over the years many organizations using the RISC/os (UMIPS) system have come
to use C for an increasing portion of their application code.. Thus, while this guide is
intended to be useful to you no matter what language(s) you are using, you will find
that, unless there is a specific language-dependent point to be made, the examples
assume you are programming in C.

Notation Conventions

‘Whenever the text includes examples of output from the computér and/or commands
entered by you, we follow the standard notation scheme that is common throughout
RISC/os (UMIPS) system documentation:

® Commands that you type in from your terminal are shown in bold type.

® Text that is printed on your terminal by the computer is shown in constant
width type. Constant width type is also used for code samples because it
allows the most accurate representation of spacing. Spacing is often a matter
of coding style, but is sometimes critical. In cases where the line on the com-
puter screen is longer than can be shown in this document, the backslant ("\")
is used at the end of the line to indicate that the next line is actually still a part
of the current line.

B Comments added to a display to show that part of the display has been omitted
are shown in italic type and are indented to separate them from the text that
represents computer output or input. Comments that explain the input or out-
put are shown in the same type font as the rest of the display.

Italics are also used to show substitutable values, such as, filename, when the
format of a command is shown.

® There is an implied RETURN at the end of each command and menu response
lxenter. Where you may be expected to enter only a RETURN (as in the
case where you are accepting a menu default), the symbol <CR> is used.

® In cases where you are expected to enter a control character, it is shown as,
for example, CTRL-D. This means that you press the d key on your keyboard
while holding down the CTRL key.

® The dollar sign, $, and pound sign, #, symbols are the standard default prompt
signs for an ordinary user and root respectively. $ means you are logged in as
an ordinary user. # means you are logged in as root.

B When the # prompt is used in an example, it means the command illustrated
may be used only by root.

x PROGRAMMER’S GUIDE

Purpose

Command References

When commands are mentioned in a section of the text for the first time, a reference
to the manual section where the command is formally described is included in

parentheses: command(section). The numbered sections are located in the following
manuals: '

Section (1) User’s Reference Manual
Sections (1M), (7) System Administrator’s Reference Manual
Sections (2), (3), (4), (5) Programmer’s Reference Manual

Information in the Examples

While every effort has been made to present displays of information just as they
appear on your terminal, it is possible that your system may produce slightly different
output. Some displays depend on a particular machine configuration that may differ
from yours. Changes between releases of the RISC/os (UMIPS) system software may
cause small differences in what appears on your terminal.

Where complete code samples are shown, we have tried to make sure they compile
and work as represented. Where code fragments are shown, while we can’t say that
they have been compiled, we have attempted to maintain the same standards of cod-
ing accuracy for them.

PREFACE xi

Chapter 1: Programming in a UNIX System
Environment: An Overview

UNIX System Tools and Where You Can
Read About Them

Tools Covered and Not Covered in this Guide
The Shell as a Prototyping Tool

Three Programming Environments
Single-User Programmer
Application Programming
Systems Programmers

Summary

TABLE OF CONTENTS

1-1
1-1
1-1

13
13

1-4

15

UMIPS System Tools and Where You Can
Read About Them |

The term "UMIPS system tools” can stand some clarification. In the narrowest
sense, it means an existing piece of software used as a component in a new task. In a
broader context, the term is often used to refer to elements of the UMIPS system that
might also be called features, utilities, programs, filters, commands, languages, func-
tions, and so on. It gets confusing because any of the things that might be called by
one or more of these names can be, and often are, used in the narrow way as part of
the solution to a programming problem.

Tools Covered and Not Covered in this Guide

The Programmer’s Guide is about tools used in the process of creating programs
in a UMIPS system environment, so let’s take a minute to talk about which tools we
mean, which ones are not going to be covered in this book, and where you might find
information about those not covered here. Actually, the subject of things not covered
in this guide might be even more important to you than the things that are. We
couldn’t possibly cover everything you ever need to know about UMIPS system tools
in this one volume.

Tools not covered in this text:

® the login procedure

8 UMIPS system editors and how to use them

® how the file system is organized and how you move around in it

® shell programming

Information about these subjects can be found in the User’s Guide and a number
of commercially available texts.

Tools covered here can be classified as follows:

® utilities for getting programs running

utilities for organizing software development projects
specialized languages
debugging and analysis tools

compiled language components that are not part of the language syntax, for
example, standard libraries, systems calls, and functions

The Shell as a Prototyping Tool

Any time you log in to a UMIPS system machine you are using the shell. The
shell is the interactive command interpreter that stands between you and the UMIPS
system kernel, but that’s only part of the story. Because of its ability to start
processes, direct the flow of control, field interrupts and redirect input and output it
is a full-fledged programming language. Programs that use these capabilities are
known as shell procedures or shell scripts.

PROGRAMMING IN A UMIPS SYSTEM ENVIRONMENT 1-1

UMIPS System Tools

Much innovative use of the shell involves stringing together commands to be run
under the control of a shell script. The dozens and dozens of commands that can be
used in this way are documented in the User’s Reference Manual. Time spent with the
User’s Reference Manual can be rewarding. Look through it when you are trying to
find a command with just the right option to handle a knotty programming problem.
The more familiar you become with the commands described in the manual pages the
more you will be able to take full advantage of the UMIPS system environment.

It is not our purpose here to instruct you in shell programming. What we want to
stress here is the important part that shell procedures can play in developing proto-
types of full-scale applications. While understanding all the nuances of shell program-
ming can be a fairly complex task, getting a shell procedure up and running is far less
time-consuming than writing, compiling and debugging compiled code.

This ability to get a program into production quickly is what makes the shell a
valuable tool for program development. Shell programming allows you to "build on
the work of others" to the greatest possible degree, since it allows you to piece
together major components simply and efficiently. Many times even large applications
can be done using shell procedures. Even if the application is initially developed as a

prototype system for testing purposes rather than being put into production, many
months of work can be saved. : '

With a prototype for testing, the range of possible user errors can be
determined—something that is not always easy to plan out when an application is
being designed. The method of dealing with strange user input can be worked out
inexpensively, avoiding large re-coding problems.

A common occurrence in the UMIPS system environment is to find that an avail-
able UMIPS system tool can accomplish with a couple of lines of instructions what
might take a page and a half of compiled code. Shell procedures can intermix com-
piled modules and regular UMIPS system commands to let you take advantage of
work that has gone before.

1-2 PROGRAMMER'’S GUIDE

Three Programming Environments

We distinguish among three programming environments to emphasize that the
information needs and the way in which UMIPS system tools are used differ from one
environment to another. We do not intend to imply a hierarchy of skill or experi-
ence. Highly-skilled programmers with years of experience can be found in the
"single-user" category, and relative newcomers can be members of an application
development or systems programming team.

Single-User Programmer

Programmers in this environment are writing programs only to ease the perfor-
mance of their primary job. The resulting programs might well be added to the stock
of programs available to the community in which the programmer works. This is
similar to the atmosphere in which the UMIPS system thrived; someone develops a
useful tool and shares it with the rest of the organization. Single-user programmers
may not have externally imposed requirements, or co-authors, or project management
concerns. The programming task itself drives the coding very directly. One advan-
tage of a timesharing system such as UMIPS is that people with programming skills
can be set free to work on their own without having to go through formal project
approval channels and perhaps wait for months for a programming department to
solve their problems.

Single-user programmers need to know how to:
select an appropriate language

compile and run programs

use system libraries

analyze programs

debug programs

keep track of program versions

Most of the information to perform these functions at the single-user level can be
found in Chapter 2. ’

Application Programming

Programmers working in this environment are developing systems for the benefit
of other, non-programming users. Most large commercial computer applications still
involve a team of applications development programmers. They may be employees of
the end-user organization or they may work for a software development firm. Some
of the people working in this environment may be more in the project management
area than working programmers.

Information needs of people in this environment include all the topics in Chapter
2, plus additional information on:

| software control systems

8 file and record locking

PROGRAMMING IN A UMIPS SYSTEM ENVIRONMENT 1-3

Three Programming Environments

8 communication between processes
#@ shared memory

® advanced debugging techniques

These topics are discussed in Chapter 3.

Systems Programmers

These are programmers engaged in writing software tools that are part of, or
closely related to the operating system itself. The project may involve writing a new
device driver, a data base management system or an enhancement to the UMIPS sys-
tem kernel. In addition to knowing their way around the operating system source
code and how to make changes and enhancements to it, they need to be thoroughly
familiar with all the topics covered in Chapters 2 and 3.

1-4 PROGRAMMER’S GUIDE

Summary

In this overview chapter we have described the way that the UMIPS system
developed and the effect that has on the way programmers now work with it. We
have described what is and is not to be found in the other chapters of this guide to
help programmers. We have also suggested that in many cases programming prob-
lems may be easily solved by taking advantage of the UMIPS system interactive com-
mand interpreter known as the shell. Finally, we identified three programming
environments in the hope that it will help orient the reader to the organization of the
text in the remaining chapters.

PROGRAMMING IN A UMIPS SYSTEM ENVIRONMENT 1-5

Chapter 2: Progralmming Basics

Introduction 21
Choosing a Programming Language 22
Supported Languages in a UNIX System Environment 2-2

C Language 2-2
FORTRAN 23
Pascal 2-3
COBOL 23
PL/1 24
Assembly Language 24
Special Purpose Languages 2-4
awk 24

lex 2-5
yacc 2-5

M4 2-5

be and de 2-5
curses 2-5
Compiling and Link Editing 25
Compiling C Programs ‘ 2-6
Compiling FORTRAN Programs 2-6
Compiler Diagnostic Messages 2-6
Link Editing 2-6
The UMIPS/Language Interface 28
Why C Is Used to Illustrate the Interface ' 2-8
How Arguments Are Passed to a Program 2-8
System Calls and Subroutines 2-10
Categories of System Calls and Subroutines 2-11
Where the Manual Pages Can Be Found - 217
How System Calls and Subroutines Are Used in C Programs 2-18
Header Files and Libraries 2-22
Object File Libraries 2-23
Input/QOutput 2-23
Three Files You Always Have 2-24
Named Files 2-24
Low-level I/O and Why You Shouldn’t Use It 2-25
System Calls for Environment or Status Information 2-26
Processes o227
system(3S) 2-28
exec(2) 2-28

TABLE OF CONTENTS i

Table of Contents

fork(2)

Pipes
Error Handling
Signals and Interrupts

Analysis/Debugging

Sample Program
cflow

ctrace

cxref

lint utility

pixie utility
pixstats utility
prof

size

strip

Program Organizing Utilities

The make Command
The Archive
Use of SCCS by Single-User Programmers

PROGRAMMER’S GUIDE

2-28
2-30
2-31
2-32

234

2-34
2-37
2-40
2-44
2-48
2-48
2-50
2-51
2-52
2-52

2-53
2-53
2-54
2-60

Introduction

The information in this chapter is for anyone just learning to write programs to run in
a UNIX system environment. In Chapter 1 we identified one group of UNIX system
users as single-user programmers. People in that category, particularly those who are
not deeply interested in programming, may find this chapter (plus related reference
manuals) tells them as much as they need to know about coding and running pro-
grams on a UNIX system computer. :

Programmers whose interest does run deeper, who are part of an application develop-
ment project, or who are producing programs on one UNIX system computer that are
being ported to another, should view this chapter as a starter package.

PROGRAMMING BASICS 2-1

Choosing a Programming Language

How do you decide which programming language to use in a given situation? One
answer could be, "I always code in HAIRBOL, because that’s the language I know
best." Actually, in some circumstances that’s a legitimate answer. But assuming
more than one programming language is available to you, that different programming
languages have their strengths and weaknesses, and assuming that once you’ve learned
to use one programming language it becomes relatively easy to learn to use another,
you might approach the problem of language selection by asking yourself questions
like the following: ‘

® What is the nature of the task this program is to do?
Does the task call for the development of a complex algorithm, or is th1s a
simple procedure that has to be done on a lot of records?

® Does the programming task have many separate parts?
Can the program be subdivided into separately compilable functions, or is it
one module?

® How soon does the program have to be available?
Is it needed right now, or do I have enough time to work out the most efficient
process possible?

® What is the scope of its use?
Am I the only.person who will use this program, or is it going to be distributed
to the whole world?

B Is there a possibility the program will be ported to other systems?

B What is the life-expectancy of the program?
Is it going to be used just a few times, or will it still be going strong five years
from now?

Supported Languages in a UMIPS System Environment

This section and the section that follows, briefly describe some full scale program-
ming languages and special purpose languages available under UMIPS. The discus-
sion does not include all languages available under UMIPS, many of which must be
purchased separately. For information on other languages available, contact your
UMIPS service representative.

C Language :

C is intimately associated with the UNIX system since it was originally developed for
use in recoding the UNIX system kernel. If you need to use a lot of UNIX system
function calls for low-level /O, memory or device management, or inter-process com-
munication, C language is a logical first choice. Most programs, however, don’t
require such direct interfaces with the operating system so the decision to choose C
might better be based on one or more of the following characteristics:

® a variety of data types: character, integer, long integer, float, and double
m Jow level constructs (most of the UNIX system kernel is written in C)
m derived data types such as arrays, functions, pointers, structures and unions

® multi-dimensional arrays

2-2 PROGRAMMER’S GUIDE

Language Selection

m scaled pointers, and the ability to do pointer arithmetic
B Dbit-wise operators

® a variety of flow-of-control statements: if, if-else, switch, while, do-while, and
for

B a high degree of portability

C is a language that lends itself readily to structured programming. It is natural in C
to think in terms of functions. The next logical step is to view each function as a
separately compilable unit. This approach (coding a program in small pieces) eases
the job of making changes and/or improvements. If this begins to sound like the
UNIX system philosophy of building new programs from existing tools, it’s not just
coincidence. As you create functions for one program you will surely find that many
can be picked up, or quickly revised, for another program.

A difficulty with C is that it takes a fairly concentrated use of the language over a
period of several months to reach your full potential as a C programmer. If you are a
casual programmer, you might make life easier for yourself if you choose a’less
demanding language. ‘

FORTRAN

The oldest of the high-level programming languages, FORTRAN is still highly prized
for its variety of mathematical functions. If you are writing a program for statistical
analysis or other scientific applications, FORTRAN is a good choice. An original
design objective was to produce a language with good operating efficiency. This has
been achieved at the expense of some flexibility in the area of type definition and data
abstraction. There is, for example, only a single form of the iteration statement.
FORTRAN also requires using a somewhat rigid format for input of lines of source
code. This shortcoming may be overcome by using one of the UNIX system tools
designed to make FORTRAN more flexible.

Pascal

Originally designed as a teaching tool for block structured programming, Pascal has
gained quite a wide acceptance because of its straightforward style. Pascal is highly
structured and allows system level calls (characteristics it shares with C). Since the
intent of the developers, however, was to produce a language to teach people about
programming it is perhaps best suited to small projects. Among its inconveniences
are its lack of facilities for specifying initial values for variables and limited file pro-
cessing capability. Fortunately, MIPS’ Pascal provides numerous extensions to over-
come some of the limitations of standard Pascal. '

COBOL

Probably morevpr(‘)grammers are familiar with COBOL than with any other single pro-
gramming language. It is frequently used in business applications because its
strengths lie in the management of input/output and in defining record layouts.

It is somewhat cumbersome to use COBOL for complex algorithms, but it works well
in cases where many records have to be passed through a simple process; a payroll
withholding tax calculation, for example. It is a rather tedious language to work with
because each program requires a lengthy amount of text merely to describe record lay-
outs, processing environment and variables used in the code. The COBOL language
is wordy so the compilation process is often quite complex. Once written and put
into production, COBOL programs have a way of staying in use for years, and what
might be thought of by some as wordiness comes to be considered self-

PROGRAMMING BASICS 2-3

Language Selection

documentation. The investment in programmer time often makes them resistant to
change.

PL/I

PL/T is a general-purpose, high-level programming language that combines the best
features of several other languages such as FORTRAN, COBOL, and ALGOL.
MIPS’ PL/I conforms to ANSI standard X3.74-1981: a carefully designed subset (sub-
set G) of the language that is both more efficient and easier to learn. Refer to the
MIPS-PL/I Language Reference for details on the language.

Assembly Language

The closest approach to machine language, assembly language is specific to the partic-
ular computer on which your program is to run. High-level languages are translated
into the assembly language for a specific processor as one step of the compilation.
The most common need to work in assembly language arises when you want to do
some task that is not within the scope of a high-level language. Since assembly
language is machine-specific, programs written in it are not portable.

Special Purpose Languages

In addition to the above formal programming -languages, the UNIX system environ-
ment frequently offers one or more of the special purpose languages listed below.

Since UNIX system utilities and commands are packaged in functional groupings, it is
NOTE| possible that not all the facilities mentioned will be available on all systems.

awk

awk (its name is an acronym constructed from the initials of its developers) scans an
input file for lines that match pattern(s) described in a specification file. On finding a
line that matches a pattern, awk performs actions also described in the specification.
It is not uncommon that an awk program can be written in a couple of lines to do
functions that would take a couple of pages to describe in a programming language
like FORTRAN or C. For example, consider a case where you have a set of records
that consist of a key field and a second field that represents a quantity. You have
sorted the records by the key field, and you now want to add the quantities for
records with duplicate keys and output a file in which no keys are duplicated. The
pseudo-code for such a program might look like this:

Read the first record into a hold area;

Read additional records until EOF;

{

If the key matches the key of the record in the hold area,
add the quantity to the quantity field of the held record;
If the key does not match the key of the held record,
write the held record,
move the new record to the hold area;

}

At EOF, write out the last record from the hold area.

2-4 PROGRAMMER'’S GUIDE

Language Selection

An awk program to accomplish this task would look like this:

[qty[$1] += $2 }
END { for (key in gty) print key, qtylkeyl]}

This illustrates only one characteristic of awk; its ability to work with associative
arrays. With awk, the input file does not have to be sorted, which is a requirement of
the pseudo-program.

lex

lex is a lexical analyzer that can be added to C or FORTRAN programs. A lexical
analyzer is interested in the vocabulary of a language rather than its grammar, which
is a system of rules deﬁning the structure of a language. lex can produce C language
subroutines that recogmze regular expressions specified by the user, take some action
when a regular expression is recognized and pass the output stream on to the next
program.

yace

yacc (Yet Another Compiler Compiler) is a tool for describing an input language to a
computer program. yacc produces a C language subroutine that parses an input
stream according to rules laid down in a specification file. The yacc specification file
establishes a set of grammar rules together with actions to be taken when tokens in
the input match the rules. lex may be used with yacc to control the input process and
pass tokens to the parser that applies the grammar rules.

M4

M4 is a macro processor that can be used as a preprocessor for assembly language,
and C programs. It is described in Section (1) of the Programmer's Reference Manual.

be and dc

bc enables you to use a computer terminal as you would a programmable calculator.
You can edit a file of mathematical computations and call be to execute them. The
be program uses de. You can use dc directly, if you want, but it takes a little getting
used to since it works with reverse Polish notation. That means you enter numbers
into a stack followed by the operator. bc and dc are described in Sectlon (1) of the
User’s Reference Manual.

curses

Actually a library of C functions, curses is included in this list because the set of
functions just about amounts to a sub-language for dealing with terminal screens. If
you are writing programs that include interactive user screens, you will want to
become familiar with this group of functions.

In addition to all the foregoing, don’t overlook the possibility of using shell pro-
cedures.

Compiling and Link Editing
The command used for compiling depends on the language used;
m for C programs, cc both compiles and link edits

m for COBOL programs, cobol both compiles and link edits

PROGRAMMING BASICS 2-5

Languége Selection

® for FORTRAN programs, 77 both compiles and link edits
m for Pascal programs, pec both compiles and link edits

® for PL/I programs, PL/I both compiles and link edits.

Compiling C Programs

To use the C compilation system you must have your source code in a file with a
filename that ends in the characters .c, as in mycode.c. The command to invoke the
compiler is: '

cc mycode.c

If the compilation is successful the process proceeds through the link edit stage and
the result will be an executable file by the name of a.out.

Several options to the cc command are available to control its operation. For a com-
plete list of these options, see the Languages Programmer’s Guide or the ce(1) manual
page in the User’s Reference Manual.

For more information on compiling C and Fortran Programs, and programs written in
other languages available under UMIPS, refer to the Languages Programmer’s Guide.

Compiling FORTRAN Programs

The 77 command invokes the FORTRAN compilation system. The operation of the
command is similar to that of the cc command, except the source code file(s) must
have a .f suffix. The f77 command compiles your source code and calls in the link
editor to produce an executable file whose name is a.out.

For more information on the command line options available with FORTRAN, see
the Languages Programmer’s Guide and the £77(1) manual page in the User’s Reference
Manual.

Compiler Diagnostic Messages

The C compiler generates error messages for statements that don’t compile. The
messages are generally quite understandable, but in common with most language com-
pilers they sometimes point several statements beyond where the actual error
occurred. For example, if you inadvertently put an extra ; at the end of an if state-
ment, a subsequent else will be flagged as a syntax error. In the case where a block
of several statements follows the if, the line number of the syntax error caused by the
else will start you looking for the error well past where it is. Unbalanced curly
braces, { }, are another common source of syntax errors.

Link Editing

The 1d command invokes the link editor directly. The typical user, however, seldom
invokes 1d directly. A more common practice is to use a language compilation con-
trol command (such as cc) that invokes Id. The link editor combines several object
files into one, performs relocation, resolves external symbols, incorporates startup
routines, and supports symbol table information used by dbx. You may, of course,
start with a single object file rather than several. The resulting executable module is
left in a file named a.out.

Any file named on the Id command line that is not an object file (typically, a name
ending in o) is assumed to be an archive library or a file of link editor directives. The
Id command has numerous options. They are described in the Larnguages
Programmer’s Guide and the 1d(1) manual page in the User’s Reference Manual.

2-6 PROGRAMMER’S GUIDE

The UMIPS/Language Interface

When a program is run in a computer it depends on the operating system for a variety
of services. Some of the services such as bringing the program into main memory
and starting the execution are completely transparent to the program. They are, in
effect, arranged for in advance by the link editor when it marks an object module as
executable. As a programmer you seldom need to be concerned about such matters.

Other services, however, such as input/output, file. management, storage allocation do
require work on the part of the programmer. These connections between a program
and the UNIX operating system are what is meant by the term UNIX system/language
interface. The topics included in this section are:

B How arguments are passed to a program
System calls and subroutines

Header files and libraries

Input/Output

Processes

Error Handling, Signals, and Inteirupts

Why C Is Used to lllustrate the Interface

Throughout this section C programs are used to illustrate the interface between the
UNIX system and programming languages because C programs make more use of the
interface mechanisms than other high-level languages. What is really being covered in
this section then is the UNIX system/C Language interface. The way that other
languages deal with these topics is described in the user’s guides for those languages.

How Arguments Are Passed to a Program

Information or control data can be passed to a C program as arguments on the com-
mand line. When the program is run as a command, arguments on the command line
are made available to the function main in two parameters, an argument count and an
array of pointers to character strings. (Every C program is required to have an entry
module by the name of main.) Since the argument count is always given, the program
does not have to know in advance how many arguments to expect. The character
strings pointed at by elements of the array of pointers contain the argument informa-
tion.

The arguments are presented to the program traditionally as arge and argv, although
any names you choose will work. arge is an integer that gives the count of the
number of arguments. Since the command itself is considered to be the first argu-
ment, argv[0], the count is always at least one. argv is an array of pointers to charac-
ter strings (arrays of characters terminated by the null character \0).

If you plan to pass runtime parameters to your program, you need to include code to
deal with the information. Two possible uses of runtime parameters are:

® as control data. Use the information to set internal flags that control the
operation of the program.

PROGRAMMING BASICS 2-7

The UMIPS/Language Interface

m to provide a variable filename to the program.

Figures 2-1 and 2-2 show program fragments that illustrate these uses.

#include <stdio.h>

main(argc, argv)
int argc;
char *argvl[];
{
void exit();
int oflag = FALSE;

int pflag = FALSE; /* Function Flags */
int rflag = FALSE;
int ch;
while ((ch = getopt(argc,argv, "opr")) != EOF)

{
/* For options present, set flag to TRUE */ _
/* If no options present, print error message */

switch (ch)

{,

case 'o’:
oflag
break;

case 'p’
pflag,
break;

case 'xr’:
rflag
break;

default:
(void) fprintf (stderr,
"Usage: %s [-opr]l\n", argv[0]);
exit(2);

I
[

]
i

1;

)

Figure 2-1: Using Command Line Arguments to Set Flags

2-8 PROGRAMMER’S GUIDE

The UMIPS/Language Interface

#include <stdio.h>

main(argc, argv)
int argce;
char *argvl[];
{
FILE *fopen(), *fin;
void perror(), exit();

if (argc > 1)
{
if ((fin = fopen(argv([l], "r")) == NULL)
{
/* First string (%s) is program name */
/* (argv[0]) , *x/

/* Second string (%s) is name of file */
/* that could not be opened (argv[1l]) */
(void) fprintf (stderr,

"%s: cannot open %s: ",
argv([0], argv[1]);
perror(™);
exit(2);

}

Figure 2-2: Using argv[n] Pointers to Pass a Filename

The shell, which makes arguments available to your program, considers an argument
to be any non-blank characters separated by blanks or tabs. Characters enclosed in
double quotes ("abc def") are passed to the program as one argument even if blanks
or tabs are among the characters. It goes without saying that you are responsible for
error checking and otherwise making sure the argument received is what your pro-
gram expects it to be.

A third argument is also present, in addition to arge and argv. The third argument,
known as envp, is an array of pointers to environment variables. You can find more
information on envp in the Programmer’s Reference Manual under exec(2) and
environ(5).

System Calls and Subroutines

System calls are requests from a program for an action to be performed by the UNIX
system kernel. Subroutines are precoded modules used to supplement the functional-
ity of a programming language.

PROGRAMMING BASICS 2-9

The UMIPS/Language Interface

Both system calls and subroutines look like functions such as those you might code
for the individual parts of your program. There are, however, differences between
them:

B At link edit time, the code for subroutines is copied into the object file for
your program; the code invoked by a system call remains in the kernel.

B At execution time, subroutine code is executed as if it was code you had writ-
ten yourself; a system function call is executed by switching from your process
area to the kernel.

This means that while subroutines make your executable object file larger, runtime
overhead for context switching may be less and execution may be faster.

Categories of System Calls and Subroutines
System calls divide fairly neatly into the following categories:

m file access

® file and directory manipulation
® process control
]

environment control and status informatioh

You can generally tell the category of a subroutine by the section of the Programmer’s -

Reference Manual in which you find its manual page. However, the first part of Sec-
tion 3 (3C and 3S) covers such a variety of subroutines it might be helpful to classify
them further. :

® The subroutines of sub-class 3S constitute the UNIX system/C Language stan-
dard 1/0, an efficient I/O buffering scheme for C.

® The subroutines of sub-class 3C do a variety of tasks. They have in common
the fact that their object code is stored in libc.a. They can be divided into the
following categories: '

O string manipulation

O character conversion

O character classification

O environment management

0 memory management
Figure 2-3 lists the functions that compose the standard I/O subfoutines. Frequently,
one manual page describes several related functions. In Figure 2-3 the left hand

column contains the name that appears at the top of the manual page; the other
names in the same row are related functions described on the same manual page.

2-10 PROGRAMMER’S GUIDE

The UMIPS/Language Interface

Function Name(s) Purpose
fclose fllush close or flush a stream
ferror feof clearerr fileno | stream status inquiries
fopen freopen fdopen open a stream
fread fwrite binary input/output
fseek rewind ftell reposition a file pointer in a stream
getc getchar fgetc getw | get a character or word from a stream
gets fgets get a string from a stream
popen pclose begin or end a pipe to/from a process
printf fprintf sprintf ‘.print formatted éutput
putc putchar fputc pﬁtw put a character or word on a stream
puts fputs put a string on a stream
scanf fscanf sscanf convert formatted input
setbuf setvbuf assign buffering to a stream
%system issue a command through the shell
tmpfile create a temporary file
tmpnam tempnam create a name for a temporary file
ungetc push character back into input stream
vprintf viprintf vsprintf print formatted output of a varargs argument list

For all functions: #include <stdio.h>
The functions are described in the Programmer’s Reference Manual, Section 3.

Figure 2-3: C Language Standard I/O Subroutines

Figure 2-4 lists string handling functions that are grouped under the heading
string(3C) in the Programmer’s Reference Manual.

PROGRAMMING BASICS 2-11

The UMIPS/Language Interface

String Operations

strcat(sl, s2)
strncat(s1, s2, n)
stremp(s1, s2)
strncmp(sl, s2, n)

strepy(s1, s2)

strnepy(sl, s2, n)

strdup(s)
strchr(s, ¢)
strrchr(s, c)
strlen(s)

strpbrk(s1, s2)

strspn(sl, s2)
strespn(sl, s2)

strtok(s1, s2)

append a copy of s2 to the end of sl.
append n characters from s2 to the end of sl.

compare two strings. Returns an integer less than, greater
than or equal to 0 to show that sl is lexicographically less
than, greater than or equal to s2.

compare n characters from the two strings. Results are other-
wise identical to strcmp. '

copy s2 to sl, stopping after the null character (\0) has been
copied.

. copy n characters from s2 to s1. s2 will be truncated if it is

longer than n, or padded with null characters if it is.shorter
than n.

returns a pointer to a new string that is a duplicate of the
string pointed to by s. ‘

returns a pointer to the first occurrence of character ¢ in
string s, or a NULL pointer if c is not in s.

returns a pointer to the last occurrence of character c in string
s, or a NULL pointer if c is not in s.

returns the number of characters in s up to the first null char-
acter.

returns a pointer to the first occurrence in sl of any character
from s2, or a NULL pointer if no character from s2 occurs in
s1.

returns the length of the initial segment of s1, which consists
entirely of characters from s2.

returns the length of the initial segment of s1, which consists
entirely of characters not from s2.

look for occurrences of s2 within s1.

For all functions: #include <string.h>
string.h provides extern definitions of the string functions.

Figure 2-4: String Operations

2-12 PROGRAMMER’S GUIDE

The UMIPS/Language Interface

Figure 2-5 lists macros that classify ASCII character-coded integer values. These
macros are described under the heading ctype(3C) in Section 3 of the Programmer’s
Reference Manual.

Classify Characters

isalpha(c) is ¢ a letter

isupper(c) is ¢ an upper-case letter

islower(c) is ¢ a lower-case letter

isdigit(c) is ¢ a digit [0-9]

isxdigit(c) | isca hexadecimal digit [0-9], [A-F] or [a-f]

isalnum(c) is ¢ an alphanumeric (letter or digit)

isspace(c) is ¢ a space, tab, carriage return, new-line, vertical tab or
form-feed

ispunct(c) is ¢ a punctuation character (neither control nor
alphanumeric)

isprint(c) is ¢ a printing character, code 040 (space) through 0176 (tilde)

isgraph(c) same as isprint except false for 040 (space)

isentrl(c) is ¢ a control character (less than 040) or a delete character
(0177)

isascii(c) is ¢ an ASCII character (code less than 0200)

For all functions: #include <ctype.h>
Nonzero return == true; zero return == false

Figure 2-5: Classifying ASCII Character-Coded Integer Values

Figure 2-6 lists functions and macros that are used to convert characters, integers, or
strings from one representation to another.

PROGRAMMING BASICS 2-13

The UMIPS/Language Interface

Function Name(s)

Purpose

a64l 164a convert between
long integer and
base-64 ASCII
string
ecvt fevt gevt | convert floating-
: point number to
string
13tol Itol3 convert between
- 3-byte integer
and long integer
strtod atof convert string to
double-precision
number
strtol atol atoi | convert string to
integer
conv(3C): Translate Characters
toupper lower-case to upper-case
_toupper | macro version of toupper
tolower upper-case to lower-case
_tolower macro version of tolower
toascii turn off all bits that are not part of a standard ASCII

character; intended for compatibility with other sys-
tems

For all conv(3C) macros: #include <ctype.h>

Figure 2-6: Conversion Functions and Macros

Where the Manual Pages Can Be Found
System calls are listed alphabetically in Section 2 of the Programmer’s Reference
Manual. Subroutines are listed in Section 3. We have described above what is in the
first subsection of Section 3. The remaining subsections of Section 3 are:

3M—functions that make up the Math Library, libm

2-14 PROGRAMMER’S GUIDE

The UMIPS/Language Interface

m 3X—various specialized functions
® 3F—the FORTRAN intrinsic function library, libF77
B 3N—Networking Support Utilities

How System Calls and Subroutines Are Used in C Programs

Information about the proper way to use system calls and subroutines is given on the
manual page, but you have to know what you are looking for before it begins to make
sense. To illustrate, a typical manual page (for gets(3S)) is shown in Figure 2-7. -

NAME
gets, fgets - get a string from a stream

SYNOPSIS
#includg <stdio.h>

char xgets (s)
char xs;

char xfgets (s, n, stream)
char xs;

int n;

FILE xstream;

DESCRIPTION
Gets reads characters from the standard input stream, stdin, into
the array pointed to by s, until a new-line character is read or an
end-of-file condition is encountered. The new-line character is
discarded and the string is terminated with a null character.

Fgets reads characters from the stream into the array pointed to
by s, until n-1 characters are read, or a new-line character is read
and transferred to s, or an end-of-file condition is encountered.
The string is then terminated with a null character.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), getc(3S), scanf(3S).

DIAGNOSTICS :
If end-of-file is encountered and no characters have been read, no
characters are transferred to s and a NULL pointer is returned.
If a read error occurs, such as trying to use these functions on a
file that has not been opened for reading, a NULL pointer is
returned. Otherwise s is returned.

Figure 2-7: Manual Page for gets(3S)

As you can see from the illustration, two related functions are described on this page:
gets and fgets. Each function gets a string from a stream in a slightly different way.
The DESCRIPTION section tells how each operates. '

PROGRAMMING BASICS 2-15

The UMIPS/Language Interface

It is the SYNOPSIS section, however, that contains the critical information about
how the function (or macro) is used in your program. Notice in Figure 2-7 that the
first line in the SYNOPSIS is

#include <stdio.h>

This means that to use gets or fgets you must bring the standard I/O header file into
your program (generally right at the top of the file). There is something in stdio.h
that is needed when you use the described functions. Figure 2-9 shows a version of
stdio.h. Check it to see if you can understand what gets or fgets uses.

The next thing shown in the SYNOPSIS section of a system call or subroutine manual
page that documents system calls or subroutines is the formal declaration of the func-
tion. The formal declaration tells you:

B the type of object returned by the function

In our example, both gets and fgets return a character pointer.

® the object or objects the function expects to receive when called

These are the things enclosed in the parentheses of the function. gets expects
a character pointer. (The DESCRIPTION section sheds light on what the
tokens of the formal declaration stand for.)

B how the function is gbing to treat those objects
The declaration
char *s;

" in gets means that the token s enclosed in the parentheses will be considered
to be a pointer to a character string. Bear in mind that in the C language,
when passed as an argument, the name of an array is converted to a pointer to
the beginning of the array.

We have chosen a simple example here in gets. If you want to test yourself on some-

thing a little more complex, try working out the meaning of the elements of the fgets
declaration.

While we’re on the subject of fgets, there is another piece of C esoterica that we’ll
explain. Notice that the third parameter in the fgets declaration is referred to as
stream. A stream, in this context, is a file with its associated buffering. It is

declared to be a pointer to a defined type FILE. Where is FILE defined? Right! In
stdio.h. '

To finish off this discussion of the way you use functions described in the
Programmer’s Reference Manual in your own code, in Figure 2-8 we show a program
fragment in which gets is used.

2-16 PROGRAMMER’S GUIDE

The UMIPS/Language Interface

#include <stdio.h>

maing()
{
char sarray[80];
for(;;)
{
if (gets(sarray) != NULL)

/* Do something with the string */

)

Figuré 2-8: How gets Is Used in a Program

You might ask, "Where is gets reading from?" The answer is, "From the standard
input." That generally means from something being keyed in from the terminal where
the command was entered to get the program running, or output from another com-
mand that was piped to gets. How do we know that? The DESCRIPTION section
of the gets manual page says, "gets reads characters from the standard input...."
Where is the standard input defined? In stdio.h.

PROGRAMMING BASICS 2-17

The UMIPS/Language Interface

#ifndef
#define

#define
#define

typedef
int

_NFILE
_NFILE 20

BUFSIZ 1024
_SBFSIZ 8

struct {
cnt;

unsigned char *_ptr;
unsigned char *_base;

char
char

}'FILE;

_flag;
_file;

#define _IOFBF 0000
/* _IOLBF means that a file’s output
/* will be buffered line by line,

#define
#define
#define
#define
#define
#define
#define
#define

_IOREAD 0001
_IOWRT 0002

_IONBF 0004
_IOMYBUF 0010
_IOEOF 0020
_IOERR 0040
_IOLBF 0100
_IORW 0200

*/
*/

/* In addition to being flags, _IONBF, */

#ifndef
#define
#endif

#ifndef
#define
#endif

#define
#define
#define

#define
#define

#ifndef

/* _IOLBF and IOFBF are possible */
/* values for "type"™ in setvbuf. *x/
NULL
NULL 0
EQF
EOF (-1)
stdin (&_iob[0])
stdout (&_iob[1])
stderr (&_iob[2])
_bufend(p) _bufendtab[(p)->_file]
_bufsiz(p) (_bufend(p) — (p)—>_base)
lint
getc(p) (—(p)->_cnt < 0 ? _filbuf(p) : (int) 2

#define

#define

*(p)—>_ptrt++)
putc(x, p) (—(p)—>_cnt < 0 ?

_flsbuf((unsigned char) (x), (p))
(int) (*(p)—>_ptr++ = (unsigned char)

#define
#define
#define
#define
#define
#define

getchar() getc(stdin)

putchar(x) putc((x), stdout)
clearerr(p) ((void) ((p)—>_flag &=
feof(p) ((p)->_flag & _TIOEOF)
ferror(p) ((p)->_flag & _IOERR)
fileno(p) (p)->_file

2-18 PROGRAMMER’S GUIDE

(x)))

(_IOERR | _IOEOF)))

The UMIPS/Language Interface

#endif

extern FILE _iob[_NFILE];

extern FILE *fopen(), *fdopen(), *freopen(), *popen(), *tmpfile();

extern long ftell();

extern void rewind(), setbuf();

extern char *ctermid(), *cuserid(), *fgets(), *gets(), \
*tempnam(), *tmpnam();

extern unsigned char *_bufendtabl[];

#define L_ctermid 9

#define L_cuserid 9

#define P_tmpdir "/usr/tmp/"

#define I_tmpnam (sizeof(P_tmpdir) + 15)
#endif

Figure 2-9: A Version of stdio.h

Header Files and Libraries

In the earlier parts of this chapter there have been frequent references to stdio.h, and
a version of the file itself is shown in Figure 2-9. stdio.h is the most commonly used
header file in the UNIX system/C environment, but there are many others.

Header files carry definitions and declarations that are used by more than one func- -
tion. Header filenames traditionally have the suffix .h, and are brought into a pro-
gram at compile time by the C-preprocessor. The preprocessor does this because it
interprets the #include statement in your program as a directive; as indeed it is. All
keywords preceded by a pound sign (#) at the beginning of the line, are treated as
preprocessor directives. The two most commonly used directives are #include and
#define. We have already seen that the #include directive is used to call in (and pro-
cess) the contents of the named file. The #define directive is used to replace a name
with a token-string. For example,

##define _NFILE 20

sets to 20 the number of files a program can have open at one time. See cpp(1) for
the complete list.

In the pages of the Programmer’s Reference Manual there are about 45 different .h
files named. The format of the #include statement for all these shows the file name
enclosed in angle brackets (<>), as in

#include <stdio.h>

The angle brackets tell the C preprocessor to look in the standard places for the file.
In most systems the standard place is in the /usr/include directory. If you have some
definitions or external declarations that you want to make available in several files,
you can create a .h file with any editor, store it in a convenient directory and make it
the subject of a #include statement such as the following:

#include "../defs/rec.h"

PROGRAMMING BASICS 2-19

The UMIPS/Language Interface

It is necessary, in this case, to provide the relative pathname of the file and enclose it
in quotation marks (""). Fully-qualified pathnames (those that begin with /) can
create portability and organizational problems. An alternative to long or fully-
qualified pathnames is to use the -Idir preprocessor option when you compile the pro-
gram. This option directs the preprocessor to search for #include files whose names
are enclosed in ", first in the directory of the file being compiled, then in the direc-
tories named in the -I option(s), and finally in directories on the standard list. In
addition, all #include files whose names are enclosed in angle brackets (< >) are first
searched for in the list of directories named in the -I option and finally in the direc-
tories on the standard list. :

Object File Libraries

It is common practice in UNIX system computers to keep modules of compiled code
(object files) in archives; by convention, designated by a .a suffix. System calls from
Section 2, and the subroutines in Section 3, subsections 3C and 3S, of the
Programmer’s Reference Manual that are functions (as distinct from macros) are kept
in an archive file by the name of libc.a. libc.a is found in the directory /usr/lib.
Many systems also have a directory /usr/lib. Where both /lib and /usr/lib- occur,
/usr/lib is apt to be used to hold archives that are related to specific applications.

During the link edit phase of the compilation and link edit process, copies of some of
the object modules in an archive file are loaded with your executable code. By
default the ec command that invokes the C compilation system causes the link editor
to search libc.a. If you need to point the link editor to other libraries that are not
searched by default, you do it by naming them explicitly on the command line with
the -1 option. The format of the -1 option is -Ix where x is the library name, and can
be up to nine characters. For example, if your program includes functions from the
curses screen control package, the option

-lcurses

will cause the link editor to search for /lib/libcurses.a or for /usr/lib/libcurses.a and
use the first one it finds to resolve references in your program.

In cases where you want to direct the order in which archive libraries are searched,
you may use the -L dir option. Assuming the -L option appears on the command line
ahead of the -l option, it directs the link editor to search the named directory for
libx.a before looking in /lib and /usr/lib. This is particularly useful if you are testing
out a new version of a function that already exists in an archive in a standard direc-
tory. Its success is due to the fact that once having resolved a reference the link edi-
tor stops looking. That’s why the -L option, if used, should appear on the command
line ahead of any -1 specification.

Input /Output

We talked some about I/QO earlier in this chapter in connection with system calls and
subroutines. A whole set of subroutines constitutes the C language standard I/O
package, and there are several system calls that deal with the same area. In this sec-
tion we want to get into the subject in a little more detail and describe for you how to
deal with input and output concerns in your C programs. First off, let’s briefly define
what the subject of I/O encompasses. It has to do with

2-20 PROGRAMMER’S GUIDE

The UMIPS/Language Interface

B creating and sometimes removing files
® opening and closing files used by your program
® transferring information from a file to your program (reading)

® transferring information from your program to a file (writing)

In this section we will describe some of the subroutines you might choose for transfer-
ring information, but the heaviest emphasis will be on dealing with files.

Three Files You Always Have

Programs are permitted to have several files open simultaneously. The number may
vary. from system to system; the most common maximum is 20. _NFILE in stdio.h
specifies the number of standard I/O FILEs a program is permitted to have open.

Any program automatically starts off with three files. If you will look again at Figure
2-9, about midway through you will see that stdio.h contains three #define directives
that equate stdin, stdout, and stderr to the address of _iob[0], _iob[1], and _iob[2],
respectively. The array _iob holds information dealing with the way standard I/O
handles streams. It is a representation of the open file table in the control block for
your program. The position in the array is a digit that is also known as the file
descriptor. The default in UNIX systems is to associate all three of these files with
your terminal. - : '

The real significance is that functions and macros that deal wiih stdin or stdout can
be used in your program with no further need to open or close files. For example,
gets, cited above, reads a string from stdin; puts writes a null-terminated string to
stdout. There are others that do the same (in slightly different ways: character at a
time, formatted, etc.). You can specify that output be directed to stderr by using a
function such as fprintf. fprintf works the same as printf except that it delivers its
formatted output to a named stream, such as stderr. You can use the shell’s redirec-
tion feature on the command line to read from or write into a named file. If you want
to separate error messages from ordinary output being sent to stdout and thence pos-
sibly piped by the shell to a succeeding program, you can do it by using one function
to handle the ordinary output and a variation of the same function that names the
stream, to handle error messages.

Named Files

Any files other than stdin, stdout, and stderr that are to be used by your program
must be explicitly connected by you before the file can be read from or written to.
This can be done using the standard library routine fopen. fopen takes a pathname
(which is the name by which the file is known to the UNIX file system), asks the sys-
tem to keep track of the connection, and returns a pointer that you then use in func-
tions that do the reads and writes.

A structure is defined in stdio.h with a type of FILE. In your program you need to
have a declaration such as

FILE *fin;

The declaration says that fin is a pointer to a FILE. You can then assign the name of
a particular file to the pointer with a statement in your program like this:

"_.n

fin = fopen("filename", "r");

where filename is the pathname to open. The "r" means that the file is to be opened
for reading. This argument is known as the mode. As you might suspect, there are
modes for reading, writing, and both reading and writing. Actually, the file open

PROGRAMMING BASICS 2-21

The UMIPS/Language Interface

function is often included in an if statement such as:

if ((fin = fopen("file", "r")) == NULL)
(void)fprintf(stderr,"$s: Can’t open input file %s\n", \
argv[0],"file");

that takes advantage of the fact that fopen returns a NULL pointer if it can’t open the
file.

Once the file has been successfully opened, the pointer fin is used in functions (or
macros) to refer to the file. For example:

int ¢;
c = getc(fin);

brings in a character at a time from the file into an integer variable called ¢. The vari-
able ¢ is declared as an integer even though we are reading characters because the
function gete() returns an integer. Getting a character is often incorporated into
some flow-of-control mechanism such as:

while ((c = getc(fin)) != EOF)

that reads through the file until EOF is returned. EOF, NULL, and the macro getc
are all defined in stdio.h. getc and others that make up the standard I/O package
keep advancing a pointer through the buffer associated with the file; the UNIX system
and the standard 1/O subroutines are responsible for seeing that the buffer is refilled
(or written to the output file if you are producing output) when the pointer reaches
the end of the buffer. All these mechanics are mercifully invisible to the program and
the programmer.

The function fclose is used to break the connection between the pointer in your pro-
gram and the pathname. The pointer may then be associated with another file by
another call to fopen. This re-use of a file descriptor for a different stream may be
necessary if your program has many files to open. For output files it is good to issue
an fclose call because the call makes sure that all output has been sent from the out-
put buffer before disconnecting the file. The system call exit closes all open files for
you. It also gets you completely out of your process, however, so it is safe to use
only when you are sure you are completely finished.

L.ow-level I/0 and Why You Shouldn’t Use It

The term low-level 1/0 is used to refer to the process of using system calls from Sec-
tion 2 of the Programmer’s Reference Manual rather than the functions and subrou-
tines of the standard 1I/0 package. We are going to postpone until Chapter 3 any dis-
cussion of when this might be advantageous. If you find as you go through the infor-
mation in this chapter that it is a good fit with the objectives you have as a program-
mer, it is a safe assumption that you can work with C language programs in the UNIX
system for a good many years without ever having a real need to use system calls to
handle your I/O and file accessing problems. The reason low-level I/O is perilous is
because it is more system-dependent. Your programs are less portable and probably
no more efficient.

2-22 PROGRAMMER’S GUIDE

The UMIPS/Language Interface

System Calls for Environment or Status Information

Under some circumstances you might want to be able to monitor or control the
environment in your computer. There are system calls that can be used for this pur-
pose. Some of them are shown in Figure 2-10.

Function Name(s) Purpose
chdir change working directory
chmod change access permission of a file
chown | change owner and group of a file
getpid getpgrp getppid get process IDs
getuid geteuid getgid get user IDs
ioctl control device
link unlink add or remove a directory entry
mount umount mount or unmount a file system
nice : change priority of a process
stat fstat get file status
time get time
ulimit get and set user limits
uname get name of current UNIX system

Figure 2-10: Environment and Status System Calls

As you can see, many of the functions shown in Figure 2-10 have equivalent UNIX
system shell commands. Shell commands can easily be incorporated into shell scripts
to accomplish the monitoring and control tasks you may need to do. The functions
are available, however, and may be used in C programs as part of the UNIX
system/C Language interface. They are documented in Section 2 of the Programmers’
Reference Manual.

PROGRAMMING BASICS 2-23

The UMIPS/Language Interface

Processes

Whenever you execute a command in the UNIX system you are initiating a process
that is numbered and tracked by the operating system. A flexible feature of the
UNIX system is that processes can be generated by other processes. This happens
more than you might ever be aware of. For example, when you log in to your system
you are running a process, very probably the shell. If you then use an editor such as
vi, take the option of invoking the shell from vi, and execute the ps command, you
will see a display something like that in Figure 2-11 (which shows the results of a ps -f
command): '

UID PID PPID C STIME TTY TIME COMMAND
abc 24210 1 0 06:13:14 tty29 0:05 —sh

abc 24631 24210 O 06:59:07 tty29 0:13 vi c2.uli
abc 28441 28358 80 09:17:22 tty29 0:01 ps —-f

abc 28358 24631 2 09:15:14 tty29 0:01 sh -i

Figure 2-11: Process Status

As you can see, user abc (who went through the steps described above) now ‘has four-
processes active. It is an interesting exercise to trace the chain that is shown in the
Process ID (PID) and Parent Process ID (PPID) columns. The shell that was started
when user abc logged on is Process 24210; its parent is the initialization process (Pro-
cess ID 1). Process 24210 is the parent of Process 24631, and so on.

The four processes in the example above are all UNIX system shell level commands,
but you can spawn new processes from your own program. (Actually, when you issue
the command from your terminal to execute a program you are asking the shell to
start another process, the process being your executable object module with all the
functions and subroutines that were made a part of it by the link editor.)

You might think, "Well, it’s one thing to switch from one program to another when
I’m at my terminal working interactively with the computer; but why would a program
want to run other programs, and if one does, why wouldn’t I just put everything
together into one big executable module?"

Overlooking the case where your program is itself an interactive application with
diverse choices for the user, your program may need to run one or more other pro-
grams based on conditions it encounters in its own processing. (If it’s the end of the
month, go do a trial balance, for example.) The usual reasons why it might not be
practical to create one monster executable are:

® The load module may get too big to fit in the maximum process size for your
system.

® You may not have control over the object code of all the other modules you
want to include.

Suffice it to say, there are legitimate reasons why this creation of new processes might
need to be done. There are three ways to do it:

B system(3S)—request the shell to execute a command

2-24 PROGRAMMER’S GUIDE

The UMIPS/Language Interface

® exec(2)—stop this process and start another

B fork(2)—start an additional copy of this process

system(3S)
The formal declaration of the system function looks like this:

#include <stdio.h>

int system(string)
char sstring;

The function asks the shell to treat the string as a command line. The string can
therefore be the name and arguments of any executable program or UNIX system
shell command. If the exact arguments vary from one execution to the next, you may
want to use sprintf to format the string before issuing the system command. When
the command has finished running, system returns the shell exit status to your pro-
gram. Execution of your program waits for the completion of the command initiated
by system and then picks up again at the next executable statement.

exec(2)

exec is the name of a family of functions that includes execy, execle, execve, execlp,
and execvp. They all have the function of transforming the calling process into a new
process. The reason for the variety is to provide different ways ‘of pulling together
and presenting the arguments of the function. An example of one version (execl)
might be:

execl("/bin/prog2", "prog", progargl, progarg2, (char %)0);
For execl the argument list is

/bin/prog2 path name of the new process file
prog the name the new process gets in its argv[0]

progargl, arguments to prog2 as char «’s
progarg2

(char)0 a null char pointer to mark the end of the arguments

Check the manual page in the Programmer’s Reference Manual for the rest of the
details. The key point of the exec family is that there is no return from a successful
execution: the calling process is finished, the new process overlays the old. The new
process also takes over the Process ID and other attributes of the old process. If the
call to exec is unsuccessful, control is returned to your program with a return value of
-1. You can check errno (see below) to learn why it failed. '

fork(2)

The fork system call creates a new process that is an exact copy of the calling pro-
cess. The new process is known as the child process; the caller is known as the
parent process. The one major difference between the two processes is that the child
gets its own unique process ID. When the fork process has completed successfully, it
returns a 0 to the child process and the child’s process ID to the parent. If the idea
of having two identical processes seems a little funny, consider this:

PROGRAMMING BASICS 2-25

The UMIPS/Language Interface

m Because the return value is different between the child process and the parent,
the program can contain the logic to determine different paths.

m The child process could say, "Okay, I'm the child. I’'m supposed to issue an
exec for an entirely different program.”

®m The parent process could say, "My child is going to be execing a new process.
I’ll issue a wait until I get word that that process is finished."

To take this out of the storybook world where programs talk like people and into the
world of C programming (where people talk like programs), your code might include
statements like this: '

#include <errno.h?

int ch_stat, ch_pid, status;
char *progargl;

char *progarg2;

void exit();

extern int errno;

if ((ch_pid = fork()) < 0)

{

/* Could not fork...
check errno
*/

} .

else if (ch_pid == 0) /* child */

{
(void)execl("/bin/prog2","prog"”, progargl, progarg2, (char *)0);
exit(2); /* execl() failed */ ‘

]

else /* parent */

{
while ((status = wait(&ch_stat)) != ch_pid)
{

if (status < 0 && errno == ECHILD)
break;
errno = 0;
]
]

Figure 2-12: Example of fork

Because the child process ID is taken over by the new exec’d process, the parent
knows the ID. What this boils down to is a way of leaving one program to run
another, returning to the point in the first program where processing left off. This is
exactly what the system(3S) function does. As a matter of fact, system accomplishes
it through this same procedure of forking and execing, with a wait in the parent.

2-26 PROGRAMMER’S GUIDE

The UMIPS/Language Interface

Keep in mind that the fragment of code above includes a minimum amount of check-
ing for error conditions. There is also potential confusion about open files and which
program is writing to a file. Leaving out the possibility of named files, the new pro-
cess created by the fork or exec has the three standard files that are automatically
opened: stdin, stdout, and stderr. If the parent has buffered output that should
appear before output from the child, the buffers must be flushed before the fork.
Also, if the parent and the child process both read input from a stream, whatever is
read by one process will be lost to the other. That is, once something has been
delivered from the input buffer to a process the pointer has moved on.

Pipes

The idea of using pipes, a connection between the output of one process and the
input of another, when working with commands executed by the shell is well esta-
blished in the UNIX system environment. For example, to learn the number of
archive files in your system you might enter a command like:

echo /lib/*.a /usr/lib/*.a | we -w

that first echoes all the files in /lib and /usr/lib that end in .a, then pipes the results
to the we command, which counts their number.

A feature of the UNIX system/C Language interface is the ability to establish pipe
connections between your process and a command to be executed by the shell, or
between two cooperating processes. The first uses the popen(3S) subroutine that is
part of the standard I/0O package; the second requires the system call pipe(2).

popen is similar in concept to the system subroutine in that it causes the shell to exe-
cute a command. The difference is that once having invoked popen from your pro-
gram, you have established an open line to a concurrently running process through a
stream. You can send characters or strings to this stream with standard I/O. subrou-
tines just as you would to stdout or to a named file. The connection remains open
until your program invokes the companion pclose subroutine. A common application
of this technique might be a pipe to a printer spooler. For example:

PROGRAMMING BASICS 2-27

The UMIPS/Language Interface

#include <stdio.h>

main()
{
FILE *pptr;
char *outstring;
if ((pptr = popen("lp","w")) != NULL)
{
for(;;)
{
/* Organize output */

(void) fprintf(pptr, "$s\n", outstring);

pclose(pptr);
}

}

Figure 2-13: Example of a popen pipe

Error Handling

Within your C programs you must determine the appropriate level of checking for
valid data and for acceptable return codes from functions and subroutines. If you use
any of the system calls described in Section 2 of the Programmer’s Reference Manual,
you have a way in which you can find out the probable cause of a bad return value.

UNIX system calls that are not able to complete successfully almost always return a
value of -1 to your program. (If you look through the system calls in Section 2, you
will see that there are a few calls for which no return value is defined, but they are the
exceptions.) In addition to the -1 that is returned to the program, the unsuccessful
system call places an integer in an externally declared variable, errno. You can deter-
mine the value in errno if your program contains the statement

#include <errno.h>
The value in errno is not cleared on successful calls, so your program should check it

only if the system call returned a -1. The errors are described in intro(2) of the
Programmer’s Reference Manual.

2-28 PROGRAMMER’S GUIDE

The UMIPS/Language Interface

The subroutine perror(3C) can be used to print an error message (on stderr) based
on the value of errno.

Signals and Interrupts

Signals and interrupts are two words for the same thing. Both words refer to mes-
sages passed by the UNIX system to running processes. Generally, the effect is to
cause the process to stop running. Some signals are generated if the process attempts
to do something illegal; others can be initiated by a user against his or her own
processes, or by the super-user against any process.

There is a system call, kill, that you can include in your program to send signals to
other processes running under your user-id. The format for the kill call is:

kill(pid, sig)

where pid is the process number against which the call is directed, and sig is an
integer from 1 to 19 that shows the intent of the message. The name "kill" is some-
thing of an overstatement; not all the messages have a "drop dead" meaning. Some of
the available signals are shown in Figure 2-14 as they are defined in <sys/signal.h>.

PROGRAMMING BASICS 2-29

The UMIPS/Language Interface

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

SIGHUP
SIGINT
SIGQUIT
SIGILL
SIGTRAP
SIGIOT
SIGABRT
SIGEMT
SIGFPE
SIGKILL
SIGBUS
SIGSEGV
SIGSYS
SIGPIPE
SIGALRM
SIGTERM
SIGUSR1
SIGUSR2
SIGCLD
SIGPWR

/*#define SIGWIND
/*#define SIGPHONE

#define SIGPOLL 22

#define

NSIG

#define MAXSIG

23
32

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*

hangup */

interrupt (rubout) */

quit (ASCII FS) */

illegal instruction (not reset when caught)*/
trace trap (not reset when caught) */

IOT instruction */

used by abort, replace SIGIOT in the future */
EMT instruction */

floating point exception */

kill (cannot be caught or ignored) */

bus error */

segmentation violation */

bad argument to system call */

write on a pipe with no one to read it */
alarm clock */

software termination signal from kill */

user defined signal 1 */

user defined signal 2 */
death of a child */
power—fail restart */

SIGWIND and SIGPHONE only used in UNIX/PC #/

20/* window change */
21/* handset, line status change */

/*

/*
/*
/*
/*
/'k

‘pollable event occurred */

The valid signal number is from 1 to NSIG-1 */
size of u_signal[], NSIG-1 <{= MAXSIG*/

MAXSIG is larger than we need now. */

In the future, we can add more signal */
number without changing user.h */

Figure 2-14: Signal Numbers Defined in /usr/include/sys/signal.h

The signal(2) system call is designed to let you code methods of dealing with incom-

ing signals.

You have a three-way choice. You can (a) accept whatever the default

action is for the signal, (b) have your program ignore the signal, or (c) write a func-
tion of your own to deal with it.

2-30 PROGRAMMER’S GUIDE

Analysis /Debugging

The UNIX system provides several commands designed to help you discover the
causes of problems in programs and to learn about potential problems.

Sample Program

To illustrate how these commands are used and the type of output they produce, we
have constructed a sample program that opens and reads an input file and performs
one to three subroutines according to options specified on the command line. This
program does not do anything you couldn’t do quite easily on your pocket calculator,
but it does serve to illustrate some points. The source code is shown in Figure 2-15.
The header file, recdef.h, is shown at the end of the source code.

The output produced by the various analysis and debugging tools illustrated in this
section may vary slightly from one installation to another. The Programmer’s Refer-
ence Manual is a good source of additional information about the contents of the
reports.

PROGRAMMING BASICS 2-31

Analysis/Debugging

/* Main module —- restate.c */

#include <stdio.h>
#include "recdef.h"

#define TRUE 1
#define FALSE O

main(argc, argv)
int argc;
char *argv([];

{

FILE *fopen(), *fin;
void exit();

int getopt():

int oflag = FALSE;

int pflag = FALSE;
int rflag = FALSE;
int ch;

struct rec first;
extern int opterr; o
extern float oppty(), pft(), rfe();

if (argc < 2)
{
(void) fprintf(stderr, "%s: Must specify \
option\n",argv[0]);
(void) fprintf(stderr, "Usage: %s —rpo\n", argv[0]);
exit(2); ' -
)

opterr = FALSE;
while ((ch = getopt(argc,argv,"opr")) != EOF)
{
switch(ch)
{
case 'o’:
oflag
break;
case 'p’:
pflag
break;
case 'r’:
rflag
break;
default:

TRUE;

TRUE;

TRUE;

(void) fprintf(stderr, "Usage: %s -rpo\n",argv[0]);

exit(2);
}
)
if ((fin = fopen("info","r")) == NULL)
{
(void) fprintf(stderr, "$%s: cannot open input file \
$s\n",argv[0] ,"info");

2-32 PROGRAMMER’S GUIDE

Analysis/Debugging

exit(2);
}

if (fscanf(fin, "$s%f%f3f3f%£%f",first.pname,sfirst.ppx,
sfirst.dp,&first.i, sfirst.c,&first.t,sfirst.spx) != 7)
{
(void) fprintf(stderr,"$s: cannot read first record \
from %s\n",
argv([0],"info");
exit(2);
) .

printf("Property: %s\n",first.pname);

if(oflagqg)
printf(" Opportunity Cost: $%#5.2f\n", oppty(&first));

if(pflag)
printf(" Anticipated Profit(loss): $%#7.2f\n", \
pft(s&first));

if(rflagqg))
printf(" Return on Funds Employed: %#3.2f%%\n", \
rfe(s&first));

-

/* End of Main Module —— restate.c */
/* Oppbrtunity Cost —— oppty.c */
#include "recdef.h"

float

oppty(ps)
struct rec *ps;
{
return(ps—>i/12 * ps—>t * ps->dp);
}
/* Profit —— pft.c */

#include "recdef.h"

float
pft(ps)
struct rec *ps;
{
return(ps—>spx — ps—>ppx + ps—>c);
)

/* Return on Funds Employed -- rfe.c */
#include "recdef.h"
float

rfe(ps)
struct rec *ps;

PROGRAMMING BASICS 2-33

Analysis /Debugging

{
return(1l00 * (ps—>spx — ps—»>c) / ps—’rspXx);
)

/* Header File —-— recdef.h */

struct rec { /* To hold input */
char pname[25];
float ppx;
float dp;
float 1i;
float c;
float t;
float spx;
} o

Figure 2-15: Source Code for Sample Program

cflow

cflow produces a chart of the external references in C, yacc, lex, and assembly
language files. Using the modules of our sample program, the command

cflow restate.c oppty.c pft.c rfe.c
produces the output shown in Figure 2-16. »

main: int(), <restate.c 115

fprintf: <>
exit: <
getopt: <>
fopen: <
fscanf: <>
printf: <
oppty: float(), <oppty.c 7>
pft: float(), <pft.c 7>

0 rfe: float(), <rfe.c 8>

=

R oo doul s Wi

Figure 2-16: cflow Output, No Options

2-34 PROGRAMMER’S GUIDE

Analysis /Debugging

The -r option looks at the caller:callee relationship from the other side. It produces

the output shown in Figure 2-17.

1 exit: <>

2 main : <>
3 fopen: <>
4 main : 2
5 fprintf: <>
6 main : 2
7 fscanf: <>
8 main : 2
9 getopt: <
10 main : 2

11 main: int(), <restate.c.11>
12 oppty: float(), <oppty.c 7>

13- main : 2

14 pft: float(), <pft.c 7>

15 main : 2

16 printf: <>

17 main : 2

18 rfe: float(), <rfe.c 8>.
19 main : 2 -

Figure 2-17: cflow Output, Using -r Option

The -ix option causes external and static data symbols to be included. Our sample
program has only one such symbol, opterr. The output is shown in Figure 2-18.

main: int(), <{restate.c 11>

1

2 fprintf: <>
3 exit: <>

4 opterr: <>
5 getopt: <>
6 fopen: <>

7 fscanf: <>
8 printf: <
9

1

oppty: float(), <oppty.c 7>

0 pft: float(), <pft.c 7>
11 rfe: float(), <rfe.c 8>

Figure 2-18: cflow Output, Using -ix Option

PROGRAMMING BASICS 2-35

Analysis /Debugging

Combining the -r and the -ix options produces the output shown in Figure 2-19.

1 exit: <

2 main : <>
3 fopen: <>
4 main : 2
5 fprintf: <>
6 main : 2
7 fscanf: <>
8 main : 2
9 getopt: <>
10 main : 2

11 main: int(), <restate.c 11>
12 oppty: float(), <oppty.c 7>

13 main : 2

14 opterr: <>

15 main : 2

16 pft: float(), - <pft.c 7>
17 main : 2 :

18 printf: <>

19 main : 2

20 rfe: float(), <rfe.c 8>
21 main : 2

Figure 2-19: eflow Output, Using -r and -ix Options

ctrace

ctrace lets you follow the execution of a C program statement by statement. ctrace
takes a .c file as input and inserts statements in the source code to print out variables
as each program statement is executed. You must direct the output of this process to
a temporary .c file. The temporary file is then used as input to ce. When the result-
ing a.out file is executed it produces output that can tell you a lot about what is going
on in your program.

Options give you the ability to limit the number of times through loops. You can also
include functions in your source file that turn the trace off and on so you can limit the
output to portions of the program that are of particular interest.

ctrace accepts only one source code file as input. To use our sample program to illus-
trate, it is necessary to execute the following four commands:

ctrace restate.c > ct.main.c
ctrace oppty.c > ct.op.c
ctrace pft.c > ct.p.c

ctrace rfe.c > ct.r.c

The names of the output files are completely arbitrary. Use any names that are con-
venient for you. The names must end in .c, since the files are used as input to the C
compilation system.

cc -0 ct.run ct.main.c ct.op.c ct.p.c ct.r.c

Now the command

2-36 PROGRAMMER’S GUIDE

Analysis /Debugging

ct.run -opr

produces the output shown in Figure 2-20. The command above will cause the output
to be directed to your terminal (stdout). It is probably a good idea to direct it to a
file or to a printer so you can refer to it.

PROGRAMMING BASICS 2-37

Analysis /Debugging

8 main(argc, argv)

23 if (argc < 2)
/* argc == 2 */

30 opterr = FALSE;

/* FALSE == 0 */
/* opterr == 0 */
31 while ((ch = getopt(argc,argv,”opr")) != EOF)

/* argc == 2 */ _
/* argv == 15729316 */
/* ch == 111 or ‘o’ or "t" */

32 {
33 switch(ch)
/* ch == 111 or ‘o’ or "t" */

35 case 'o’:
36 oflag = TRUE;

/* TRUE == 1 or "h" */

/* oflag == 1 or "h" */
37 break;
48 }
31 while ((ch = getopt(argc,argv,”opxr")) != EOF)

/* argc == 2 */)
/* argv == 15729316 */
/* ch == 112 or 'p’ */

32 {
33 switch(ch)
/* ch == 112 or ’'p’ */

38 case 'p’:
39 pflag = TRUE;

/* TRUE == 1 or "h" */

/* pflag == 1 or "h" */
40 break;
48 }
31 while ((ch = getopt(argc,argv,”opr")) != EOF)

/* argec == 2*/
/* argv == 15729316 */
/* ch == 114 or 'x’ */

32 {
33 switch(ch)
/* ch == 114 or 'r’ */

41 case 'r’:
42 rflag = TRUE;

/* TRUE == 1 or "h" */

/* rflag == 1 or "h" */
43 . break;
48 }
31 while ((ch = getopt(argc,argv,”opxr")) != EOF)

/* argc == 2 */
/* argv == 15729316 */
/* ch == -1 %/
49 if ((fin = fopen("info","r")) == NULL)
/* fin == 140200 */
54 if (fscanf(fin, "$s%f%f%f%£%£f%f",first.pname,sfirst.ppx,
&first.dp,sfirst.i, sfirst.c,&first.t,sfirst.spx) = 7)
/* fin == 140200 */

2-38 PROGRAMMER’S GUIDE

Analysis/Debugging

/% first.pname == 15729528 */
61 printf("Property: %s0,first.pname);
/* first.pname == 15729528 or "Linden Place" */ \

Property: Linden_Place

63 if(oflag)
/* oflag == 1 or "h" */

64 - printf(" Opportunity Cost: $%#5.2f0,o0oppty(&first));
5 oppty(ps) : ‘
8 return(ps—>i/12 * ps—->t * ps—>dp);

/* ps—>i == 1069044203 */

/* ps—>t == 1076494336 */

/* ps—>dp == 1088765312 */ Opportunity Cost: \
$4476.87

66 if(pflag) :
/* pflag == 1 or "h" */
67 printf(" Anticipated Profit(loss): $%#7.2f0, \
pft(sfirst));

(5]

pft(ps)
return(ps—>spx — ps—?ppx + ps—>c);
/* ps—>spx == 1091649040 */
/* ps—>ppx == 1091178464 */
/* ©5-rc == 1087409536 */ Anticipated Profit(loss): \
$85950,00

(o]

69 if(rflagqg)
/* rflag == 1 or "h" */
70 printf(" Return on Funds Employed: %#3.2f%%0, \
rfe(sfirst));
6 rfe(ps)
9 return(100 * (ps—>spx — ps—>c) / ps—>spXx);
/* ps—>spx == 1091649040 */
/* ps—>c == 1087409536 */ Return on Funds Employed: \
94.00%

/* return */

Figure 2-20: ctrace Output

Using a program that runs successfully is not the optimal way to demonstrate ctrace.
It would be more helpful to have an error in the operation that could be detected by
ctrace. It would seem that this utility might be most useful in cases where the pro-
gram runs to completion, but the output is not as expected.

PROGRAMMING BASICS 2-39

Analysis /Debugging

cxref

cxref analyzes a group of C source code files and builds a cross-reference table of the
automatic, static, and global symbols in each file.

The command
$cxref -¢ -0 cx.op restate.c oppty.c bft.c rfe.c

produces the output shown in Figure 2-21 in a file named, in this case, cx.op. The -¢

option causes the reports for the four .c files to be combined in one cross-reference
file.

restate.c:

oppty.c:

pft.c:

rfe.c:

SYMBOL FILE FUNCTION LINE -

BUFSIZ /usr/include/stdio.h - *9

EOF /usr/include/stdio.h - 49 *50
restate.c - 31

FALSE restate.c - *6 15 16 17 30

FILE /usr/include/stdio.h - *29 73 74
restate.c main 12

L ctermid /usr/include/stdio.h - *80

L_cuserid /usr/include/stdio.h - *81

L_tmpnam /usr/include/stdio.h - *83

NULL /usr/include/stdio.h - 46 *47
restate.c - 49

P_tmpdir /usr/include/stdio.h - *82

TRUE restate.c -= *5 36 39 42

_IOEOF /usr/include/stdio.h - *41

_IOERR /usr/include/stdio.h - *x42

_IOFBF /usr/include/stdio.h - *36

_IOLBF /usr/include/stdio.h - *43

_IOMYBUF /usr/include/stdio.h - *40

_IONBF /usr/include/stdio.h - *39

_IOREAD /usr/include/stdio.h - *37

_IORW /usr/include/stdio.h —— *44

_IOWRT /usr/include/stdio.h - *38

_NFILE /usr/include/stdio.h - 2 *3 73

_SBFSIZ /usr/include/stdio.h - *16

Figure 2-21: cxref Output, Using -¢ Option (sheet 1 of 4)

2-40 PROGRAMMER'’S GUIDE

SYMBOL

_base
_bufend()

_bufendtab
_bufsiz()

_cnt

_file

_flag
iob

_ptr
argc

argv

C

ch
clearerr()

ctermid()
cuserid()

dp

exit()
fdopen()
feof()
ferror()
fgets()
fileno()

fin
first

Figure 2-21: cxref Output, Using -¢ Option (sheet 2 of 4)

FILE

/usr/include/stdio.

/usr/include/stdio.
/usr/include/stdio.

/usr/include/stdio.
/usr/include/stdio.
/usr/include/stdio.
/usr/include/stdio.
/usr/include/stdio.

restate.c

/usr/include/stdio.

restate.c
restate.c
restate.c
restate.c
./recdef.h
pft.c
restate.c
rfe.c
restate.c

/usr/include/stdio.
/usr/include/stdio.

/usr/include/stdio.

./recdef.h

oppty.c
restate.c

restate.c

/usr/include/stdio.
/usr/include/stdio.
/usr/include/stdio.
/usr/include/stdio.

/usr/include/stdio.

restate.c
restate.c

==

=2 -2~ =g =

=3

Analysis /Debugging

FUNCTION LINE

main
main

*26

*57
*78

*58

*20

*28

*27

*73

25 26 45 51 57
*21

8

*9 23 31

8 o

*10 25 26 31 45 51 57
*6

8

55

9

- *18 31 33

*67

*77

*77

*4

8

55

*13 27 46 52 58
*74

*68

*69

*71

*70

*12 49 54
*19 54 55 61 64 67 70

PROGRAMMING BASICS

2-41

Analysis/Debugging

SYMBOL
fopen()
fprintf
freopen()

fscanf
ftell()

getc()
getchar()
getopt()

gets()

lint
main()

oflag
oppty()

opterr
P

pdpll
pflag
pft()
pname
popen()

pPpx

Figure 2-21: cxref Output, Using -c¢ Option (sheet 3 of 4)

FILE

/usr/include/stdio.

restate.c
restate.c

/usr/include/stdio.

restate.c

/usr/include/stdio.
/usr/include/stdio.

/usr/include/stdio.

restate.c

/usr/include/stdio.

./recdef.h

oppty.c
restate.c

/usr/include/stdio.

restate.c
restate.c

oppty.c
restate.c
restate.c

/usr/include/stdio.

/usr/include/stdio.
restate.c

pft.c
restate.c
./recdef.h
restate.c

‘/uSr/include/stdio.

./recdef.h
pft.c
restate.c

FUNCTION LINE

pft
main

*74
12 49
25 26 45 51 57

*74
54

*75

*61

*65

*14 31

*77
*5
8
55
60

*8
*15 36 63

*5

*21 64

*20 30

*57 *58 *61 62 *62
63 64 67 *67 68
*68 69 *69 70 *70
11

*16 39 66

*5
*21 67
*2

54 61

*74
*3

54

2-42 PROGRAMMER’S GUIDE

SYMBOL

printf
ps

putc()
putchar()

rec

reWind()
rfe()
rflag
setbuf ()

Spx

stderr

stdin
stdout

tempnam()
tmpfile()
tmpnam(.)

u37o
u3b
u3b5
vax
X

FILE

restate.c
oppty.c
oppty.c
pft.c
pft.c
rfe.c
rfe.c

/usr/include/stdio.

/usr/include/stdio.

./recdef.h

oppty.c
pft.c

restate.c

rfe.c

/usr/include/stdio.

restate.c
rfe.c
restate.c

/usr/include/stdio.

./recdef.h
pft.c
restate.c
rfe.c

/usr/include/stdio.

restate.c

/usr/include/stdio.
/usr/include/stdio.

./recdef.h

oppty.c
restate.c

/usr/include/stdio.
/usr/include/stdio.

/usr/include/stdio.
/usr/include/stdio.
/usr/include/stdio.
/usr/include/stdio.
/usr/include/stdio.
/usr/include/stdio.

=

=S B N -2 - N -

Analysis/Debugging

FUNCTION LINE

main 61 64 67 70
- 5

oppty *6 8

- 5

pft *6 8

rfe *7 9

- *62

- *66
—— *1

main 19

- *76

main *21 70,'
—_ *6
main *17 42 69

- *76
P *g

main 55

- *55

- 25 26 45 51 57
- *53

- *54

J— *7

main 55
- *77

- *74

- 8 19
- 8 19
- 8 19

- *62 63 64 66 *66

Figure 2-21: cxref Output, Using -¢ Option (sheet 4 of 4)

PROGRAMMING BASICS 2-43

Analysis /Debugging

lint

lint looks for features in a C program that are apt to cause execution errors, that are
wasteful of resources, or that create problems of portability.

The command
lint restate.c oppty.c pft.c rfe.c
produces the output shown in Figure 2-22.

restate.c:

restate.c

(71) warning: main() returns random value to invocation environment

oppty.c:
pft.c:
rfe.c:

function returns value which‘is always ignored
printf '

Figure 2-22: lint Output

lint has options that will produce additional information. Check the User’s Reference
Manual. The error messages give you the line numbers of some items you may want
to review.

pixie, pixstats, and prof

The pixie(1), pixstats(1) and prof(1) utilities can be used to examine characteristics of
programs. These utilities are introduced here and described in detail in the Language
Programmer’s Guide.

The pixie Utility

pixie reads an executable program, partltlons it into basic blocks, and writes an
equivalent program containing additional code that counts the execution of each basic
block. (A basic block is a region of the program that can be entered only at the
beginning and exited only at the end). pixie also generates a ﬁle containing the
address of each of the basic blocks. For example:

$ cc -0 wC wec.c
$ 1ls we*

wcC wC.cC

In this example, we generate an executable wc(1) from
the source code and then run pixie on it:

$ pixie wc

2-44 PROGRAMMER'’S GUIDE

Analysis/Debugging

pixie registers: r31, r30, and r22.

0ld code = 15008 bytes, new code = 45036 bytes (3.0x)
$ 1s wc*

wc wc.Addrs wc.c wc.pixie

@

The pixstats Utility

pixstats(1) and prof(1) can analyze the files produced by pixie and produce a listing
of profiling data. pixstats analyzes a program’s execution characteristics. First use
pixie to "translate and instrument” the executable object module for the program, as
was done above to create we.pixie. Next, execute the translation on an appropriate
input. This produces a .Counts file:

$ we.pixie wec.c
126 319 2180 we.c

Here we use wc.pixie as if it was the standard wc program,
getting a wordcount of wc.c and also creating the .Counts file:

$ 1ls wc*
wc we.Addrs wc.Counts wc.c wc.pixie

Now, use pixstats to generate a detailed report on opcode frequencies, interlocks, a
mini-profile, and more:

$ pixstats wc
pixstats wc:
42450 (1.008) cycles (0.0034s @ 12.5MHz)
42094 (1.000) instructions ‘
12399 (0.295) basic blocks
187 (0.004) calls
6134 (0.146) loads
2925 (0.069) stores
9059 (0.215) loadst+stores
9059 (0.215) data bus use
2661 (0.063) partial word references
10885 (0.259) branches
5094 (0.121) nops
0 (0.000) load interlock cycles
356 (0.008) multiply/divide interlock cycles \
(12/35 cycles)
(0.000) flops (0 mflop/s @ 12.5MHz)
(0.000) floating point data interlock cycles
(0.000) floating point add unit interlock cycles
(0.000) floating point multiply unit \
interlock cycles
(0.000) floating point divide unit interlock cycles
0 (0.000) other floating point interlock cycles
0 (0.000) 1 cycle interlocks (2 cycle stalls —— \
not counted in total)
0 (0.000) overlapped floating point cycles
88 (0.002) interlock cycles due to basic block boundary

o O O O

(=}

0.326 load nops per load

PROGRAMMING BASICS 2-45

Analysis /Debugging

0.323 stores per memory reference
0.294 partial word references per reference

3.4 instructions per basic block

3.9 instructions per branch

0.273 backward branches per branch
0.277 branch nops per branch
227 cycles per call

225 instructions per call

Additional information in the listing includes:

Register saves/restore

Instruction concentration

opcode distribution
Register usage

The prof Utility

prof produces a report on the amount of execution time spent in various portions of
your program and the number of times each function is called. For example:

$ prof wc

Profile listing generated Fri Jul 22 16:20:22 1988 with:

prof wc

—plrocedures] using basic—block counts;

cycles executed in each

*
* sorted in descending order by the number of
*
*

procedure; unexecuted procedures are excluded

* ¥ ¥ X

42094

cycles %cycles

33923
2286
1365
1161
1128

713
347
240
162
96
83
66

2-46

cycles

cum % cycles bytes

/call /line

23
455
43
282
713
87
48
162
24
42

80.59. 80.59 33923
5.43 86.02
3.24 89.26
2,76 92.02
2.68 94.70
1.69 96.39
0.82 97.22
0.57 97.79
0.38 98.17
0.23 98.40
0.20 98.60
0.16 98.76

PROGRAMMER’S GUIDE

66

16
12

5
29
18
20
24
19
11
18
23
16

procedure (file)

main (wc.c)

fclose (flsbuf.c)
memcpy (memcpy.s)
_flsbuf (flsbuf.c)
_doprnt (doprnt.c)
_cleanup (flsbuf.c)
fread (fread.c)
_filbuf (filbuf.c)
malloc (malloc.c)
printf (printf.c)
_findbuf (flsbuf.c)
wcp (wc.c)

Analysis /Debugging

65 0.15 98.91 65 18 _endopen (fopen.c)
64 0.15 99.06 22 27 fflush (flsbuf.c)
47 0.11 99.17 47 33 _xflsbuf (flsbuf.c)
46 0.11 99.28 46 12 morecore (malloc.c)
39 0.09 99.38 39 20 _findiop (findiop.c)
33 0.08 99.45 11 7 sbrk (sbrk.s)
30 0.07 99.52 30 24 wrtchk (flsbuf.c)
30 0.07 99.60 15 12 isatty (isatty.c)
30 0.07 99.67 6 16 read (read.s)
24 0.06 99.72 6 16 close (close.s)
23 0.05 99.78 23 5 strlen (strlen.s)
18 0.04 99.82 18 11 free (malloc.c)
16 0.04 99.86 16 5 __start (../crtltext.s)
13 0.03 99.89 13 26 -fopen (fopen.c)
12 0.03 99.92 6 16 ioctl (ioctl.s)
7 0.02 99.94 7 10 exit (cuexit.c)
6 0.01 99.95 6 16 open (open.s)
6 0.01 99.96 6 16 getpagesize (getpagesize.s)
6 0.01 99.98 6 16 write (write.s)
4 0.01 99.99 ? 12 findbucket (malloc.c)
3 0.00 100.00 ? 6 _dwmultu (dwmultu.s)
2 0.00 100.00 2 8 exit (exit.s)

The remainder of the listing contains:

* -—-pJrocedures] using invocation counts; *

* -—h[eavy] using basic-block counts; *

For further information on these and other options to the prof command, refer to
prof(1).

size

size produces information on the number of bytes occupied by the three sections
(text, data, and bss) of a common object file when the program is brought into main
memory to be run. Here are the results of one invocation of the size command with
our object file as an argument.

11832 + 3872 + 2240 = 17944

Don’t confuse this number with the number of characters in the object file that
appears when you do an Is -1 command. That figure includes the symbol table and
other header information that is not used at run time.

strip

strip removes the symbol and line number information from a common object file.
When you issue this command the number of characters shown by the Is -1 command
approaches the figure shown by the size command, but still includes some header
information that is not counted as part of the .text, .data, or .bss section. After the
strip command has been executed, it is no longer possible to use the file with the dbx
command.

PROGRAMMING BASICS 2-47

Program Organizing Utilities

The following three utilities are helpful in keeping your programming work organized
effectively.

The make Command

When you have a program that is made up of more than one module of code you
begin to run into problems of keeping track of which modules are up to date and
which need to be recompiled when changes are made in another module. The make
command is used to ensure that dependencies between modules are recorded so that
changes in one module results in the re-compilation of dependent programs. Even
control of a program as simple as the one shown in Figure 2-15 is made easier through
the use of make.

The make utility requires a description file that you create with an editor. The

description file (also referred to by its default name: makefile) contains the informa-
tion used by make to keep a target file current. The target file is typically an execut-
- able program. A description file contains three types of information:

dependency information tells the make utility the relationship between the modules
that comprise the target program.

executable commands needed to generate the target program. make uses the
dependency information to determine which executable
commands should be passed to the shell for execution.

macro definitions provide a shorthand notation within the description file to
make maintenance easier. Macro definitions can be over-
ridden by information from the command line when the
make command is entered.

The make command works by checking the "last changed" time of the modules named
in the description file. When make finds a component that has been changed more
recently than modules that depend on it, the specified commands (usually compila-
tions) are passed to the shell for execution.

The make command takes three kinds of arguments: options, macro definitions, and
target filenames. If no description filename is given as an option on the command
line, make searches the current directory for a file named makefile or Makefile. Fig-
ure 2-23 shows a makefile for our sample program.

2-48 PROGRAMMER’S GUIDE

Program Organizing Utilities

OBJECTS = restate.o oppty.o pft.o rfe.o
all: restate
restate: $(OBJECTS)
$(CC) $(CFLAGS) $(LDFLAGS) $(OBJECTS) -o restate

$(OBJECTS): ./recdef.h

clean: .
rm —f $(OBJECTS)

clobber: clean
rm —f restate

Figure 2-23: make Description File

The following things are worth noticing in this description file:

m It identifies the target, restate, as being dependent on the four object modules.
Each of the object modules in turn is defined as being dependent on the header
file, recdef.h, and by default, on'its corresponding source file.

B A macro, OBJECTS, is defined as a convenient shorthand for referring to all
of the component modules.

Whenever testing or debugging results in a change to one of the components of
restate, for example, a command such as the following should be entered:

$ make CFLAGS=-g restate

This has been a very brief overview of the make utility. There is more on make in
Chapter 3, and a detailed description can be found in the chapter make.

The Archive

The most common use of an archive file, although not the only one, is to hold object
modules that make up a library. The library can be named on the link editor com-
mand line (or with a link editor option on the cc command line). This causes the link
editor to search the symbol table of the archive file when attempting to resolve refer-
ences. :

The ar command is used to create an archive file, to manipulate its contents and to
maintain its symbol table. The structure of the ar command is a little different from
the normal UNIX system arrangement of command line options. When you enter the
ar command you include a one-character key from the set drqtpmx that defines the
type of action you intend. The key may be combined with one or more additional
characters from the set vuaibcls that modify the way the requested operation is per-
formed. The makeup of the command line is

ar -key [posname] afile [name]...

where posname is the name of a member of the archive and may be used with some
optional key characters to make sure that the files in your archive are in a particular
order. The afile argument is the name of your archive file. By convention, the suffix
.a is used to indicate the named file is an archive file. (libc.a, for example, is the

PROGRAMMING BASICS 2-49

Program Organizing Utilities

archive file that contains many of the object files of the standard C subroutines.) One
or more names may be furnished. These identify files that are subjected to the action
specified in the key.

We can make an archive file to contain the modules used in our sample program,
restate. The command to do this is

$ ar -rv rste.a restate.o oppty.o pft.o rfe.o
If these are the only .o files in the current directory, you can use shell metacharacters
as follows:

$ ar -rv rste.a *.0

Either command will produce this feedback:

— restate.o

- oppty.o

- pft.o

- rfe.o

ar: creating rste.a

Qo o o

The nm command is used to get a variety of information from the symbol table of
common object files, The object files can be, but don’t have to be, in an archive file.
Figure 2-24 shows the output of this command when executed with the -f (for full)
option on the archive we just created. The object files were compiled with the -g
option.

2-50 PROGRAMMER’S GUIDE

Program Organizing Utilities

Symbols from rste.a[restate.o]

Name Value | Class Type Size | Line | Section
.Ofake strtag | struct 16
restate.c file

—¢nt 0 | strmem int

_ptr 4 | strmem *Uchar

_base 8 | strmem *Uchar

_flag 12 | strmem char

file 13 | strmem char

.eos endstr 16

rec strtag struct 52

pname 0 | strmem char[25] 25

pPpX 28 | strmem float

dp 32 | strmem float

i 36 | strmem float

c 40 | strmem float

t 44 | strmem float

spx 48 | strmem float

.€0s endstr 52

main 0 | extern | int() 520 .text
.bf 10 | fen 11 | .text
argc 0 | argm’t int

argv 4 | argm’t **char

fin 0 | auto *struct-.Ofake 16

oflag 4 | auto int

pflag 8 | auto int

rflag 12 | auto int

ch 16 | auto int

first 20 | auto struct-rec 52

.ef 518 | fcn 61 | .text
FILE typdef struct-.Ofake 16

text 0 | static 31 39 | .text
.data 520 | static 4 | .data
.bss 824 | static : .bss
_iob 0 | extern

fprintf 0 | extern

exit 0 | extern

opterr 0 | extern

getopt 0 | extern

fopen 0 | extern

fscanf 0 | extern

printf 0 | extern

oppty 0 | extern

pft 0 | extern

rfe 0 | extern

Figure 2-24: nm Output, with -f Option (sheet 1 of 4)

PROGRAMMING BASICS 2-51

Program Organizing Utilities

Symbols from rste.af[oppty.o]

Name Value Class - Type Size | Line | Section

oppty.c file

rec strtag struct 52

pname 0 | strmem char([25] 25

ppx 28 | strmem float

dp 32 | strmem float

i 36 | strmem float

c 40 | strmem float

t 44 | strmem float

Spx 48 | strmem float

.€0s endstr 52

oppty 0 | extern float() 64 .text

.bf 10 | fen 7 | .text

ps 0 | argm’t *struct-rec 52

.ef 62 | fen 3 | .text

text 0 | static 4 1| .text

.data 64 | static .data

.bss 72 | static .bss
Figure 2-24: nm Output, with -f Option (sheet 2 of 4)

Symbols from rste.a[pft.o]

Name | Value Class Type Size | Line | Section

pft.c file -

rec strtag struct 52

pname 0 | strmem char[25] 25

ppx 28 | strmem " float

dp 32 | strmem float

i 36 | strmem float

c 40 | strmem float

t 44 | strmem float

SpX 48 | strmem float

..€08 endstr 52

pft 0 | extern float() 60 .text

..bf 10 | fen "7 | .text

ps 0 | argm’t *struct-rec 52 ,

..ef 58 | fen 3 | .text

..text 0 | static 4 .text

..data 60 | static .data

..bss 60 | static .bss

Figure 2-24: nm Output, with -f Option (sheet 3 of 4)

2-52

PROGRAMMER'’S GUIDE

Program Organizing Utilities

Symbols from rste.a[rfe.o]

Name [Value Class Type Size | Line | Section
rfe.c file

rec strtag struct 52

pname 0 | strmem char[25] 25

pPpx 28 | strmem float

dp 32 | strmem float

i 36 | strmem float

c 40 | strmem float

t 44 | strmem float

spx 48 | strmem float

.€08 endstr 52

rfe 0 | extern float() 68 .text
.bf 10 | fen 8 | .text
ps 0 | argm’t *struct-rec 52 v
.ef ‘ 64 | fcn 3| .text
text 0 | static 4 1| .text
.data 68 | static .data
.bss 76 | static .bss

Figure 2-24: nm Output, with -f Option (sheet 4 of 4)

For nm to work on an archive file all of the contents of the archive have to be object
modules. If you have stored other things in the archive, you will get the message:

nm: rste.a bad magic

when you try to execute the command.

Use of SCCS by Single-User Programmers

The UNIX system Source Code Control System (SCCS) is a set of programs designed
to keep track of different versions of programs. When a program has been placed
under control of SCCS, only a single copy of any one version of the code can be
retrieved for editing at a given time. When program code is changed and the program
returned to SCCS, only the changes are recorded. Each version of the code is
identified by its SID, or SCCS IDentifying number. By specifying the SID when the
code is extracted from the SCCS file, it is possible to return to an earlier version. If
an early version is extracted with the intent of editing it and returning it to SCCS, a
new branch of the development tree is started. The set of programs that make up
SCCS appear as UNIX system commands. The commands are:

PROGRAMMING BASICS 2-53

Program Organizing Utilities

admin
get
delta
prs
rmdel
cde
what
scesdiff
comb
val

It is most common to think of SCCS as a tool for project control of large program-
ming projects. It is, however, entirely possible for any individual user of the UNIX
system to set up a private SCCS system. See the SCCS User’s Guide in this docu-
ment.

In addition, .the UMIPS system provides RCS, which is similar to, but many would
say better than, SCCS. It is an alternate source control tool described in a separte
chapter of this document and the following man pages:

res(1)

ci(1)

co(1) :
rcsmerge(1)
resdiff(1)
rlog(1)

2-54 PROGRAMMER'S GUIDE

Chapter 3: Application Programming

Introduction

Application Programming
Numbers
Portability
Documentation
Project Management

Language Selection

Influences

Special Purpose Languages
What awk Is Like
How awk Is Used .
Where to Find More Information
What lex and yace Are Like
How lex Is Used
Where to Find More Information
"How yacce Is Used
Where to Find More Information

Advanced Programming Tools

Memory Management
File and Record Locking

How File and Record Locking Works

lockf

Where to Find More Information
Interprocess Communications

IPC get Calls

IPC ctl Calls

IPC op Calls

Where to Find More Information
Programming Terminal Screens

curses

Where to Find More Information

Programming Support Tools
Link Edit Command Language
Common Object File Format

Where to Find More Information
Libraries
The Object File Library

35
35
35
3-6-
3-7
3-7
3-8

39

39
3-10
3-10
3-11
3-12
3-12
3-13
3-13
3-13
3-13
3-13
3-14
3-14

3-15
3-15
3-15
3-16
3-16
3-16

TABLE OF CONTENTS i

Table of Contents

Common Object File Interface Macros (1dfen.h)
The Math Library
Shared Libraries
Symbolic Debugger
Where to Find More Information
lint as a Portability Tool
Where to Find More Information

Project Control Tools
make
Where to Find More Information
SCCS '
Where to Find More Information

liber, A Library System

ii PROGRAMMER’S GUIDE

3-18
3-18
3-20
321
3-21
321
3-22

3-23
3-23
3-23
3-23
3-24

3-25

Introduction

This chapter deals with programming where the objective is to produce sets of pro-
grams (applications) that will run on a UNIX system computer.

The chapter begins with a discussion of how the ground rules change as you move up
the scale from writing programs that are essentially for your own private use (we have
called this single-user programming), to working as a member of a programming team
developing an application that is to be turned over to others to use.

There is a section on how the criteria for selecting appropriate programming
languages may be influenced by the requirements of the application.

The next three sections of the chapter deal with a number of loosely-related topics
that are of importance to programmers working in the application development
environment. Most of these mirror topics that were discussed in the chapter "Pro-
gramming Basics", but here we try to point out aspects of the subject that are particu-
larly pertinent to application programming. They are covered under the following
headings: o

Advanced Programming deals with such topics as File and Record Locking, Inter-
process Communication, and programming terminal
'screens.

Support Tools covers the Common Object File Format, link editor direc-
tives, shared libraries, SDB, and lint.

Project Control Tools includes some discussion of make and SCCS.

The chapter concludes with a description of a sample application called liber that
uses several of the components described in earlier portions of the chapter.

APPLICATION PROGRAMMING 3-1

Application Programming

The characteristics of the application programming environment that make it different
from single-user programming have at their base the need for interaction and for shar-
ing of information.

Numbers

Perhaps the most obvious difference between application programming and single-user
programming is in the quantities of the components. Not only are applications gen-
erally developed by teams of programmers, but the number of separate modules of
code can grow into the hundreds on even a fairly simple application.

When more than one programmer works on a project, there is a need to share such
information as:

® the operation of each function
® the number, identity and type of arguments expected by a function

m if pointers are passed to a function, are the objects being pointed to modified
by the called function, and what is the lifetime of the pointed-to object

® the data type returned by a function

In an application, there is an odds-on possibility that the same function can be used
in many different programs, by many different programmers. The object code needs
to be kept in a library accessible to anyorie on the project who needs it.

Portability

When you are working on a program to be used on a single model of a computer,
your concerns about portability are minimal. In application development, on the
other hand, a desirable objective often is to produce code that will run on many
different UNIX system computers. Some of the things that affect portability will be
touched on later in this chapter.

Documentation

A single-user program has modest needs for documentation. There should be enough
to remind the program’s creator how to use it, and what the intent was in portions of
the code.

On an application development project there is a significant need for two types of
internal documentation:

® comments throughout the source code that enable successor programmers to
understand easily what is happening in the code. Applications can be expected
to have a useful life of 5 or more years, and frequently need to be modified
during that time. It is not realistic to expect that the same person who wrote
the program will always be available to make modifications. Even if that does
happen the comments will make the maintenance job a lot easier.

® hard-copy descriptions of functions should be available to all members of an
application development team. Without them it is difficult to keep track of
available modules, which can result in the same function being written over

3-2 PROGRAMMER’S GUIDE

Application Programming
again.
Unless end-users have clear, readily-available instructions in how to install and use an

application they either will not do it at all (if that is an option), or do it improperly.

The microcomputer software industry has become ever more keenly aware of the
importance of good end-user documentation. There are cases on record where the
success of a software package has been attributed in large part to the fact that it had
exceptionally good documentation. There are also cases where a pretty good piece of
software was not widely used due to the inaccessibility of its manuals. There appears
to be no truth to the rumor that in one or two cases, end-users have thrown the
software away and just read the manual.

Project Management

Without effective project management, an application development project is in trou-
ble. This subject will not be dealt with in this guide, except to mention the following
three things that are vital functions of project management:

® tracking dependencies between modules of code
W dealing with change requests in a controlled way.

® seeing that milestone dates are met

APPLICATION PROGRAMMING 3-3

Language Selection

In this section we talk about some of the considerations that influence the selection of
programming languages, and describe two of the special purpose languages that are
part of the UNIX system environment.

Influences

In single-user programming the choice of language is often a matter of personal
preference; a language is chosen because it is the one the programmer feels most
comfortable with.

An additional set of considerations comes into play when making the same decision

for an application development project.

m s there an existing standard within the organization that should be observed?

A firm may decide to emphasize one language because a good supply of pro-
grammers is available who are familiar with it. '

® Does one language have better facilities for handling the particular algorithm?

One would like to see all language selection based on such objective cri-
teria, but it is often necessary to balance this against the skills of the organi-
zation.

® s there an inherent compatibility between the language and the UNIX operat-
ing system?

This is sometimes the impetus behind selecting C for programs destined for
a UNIX system machine.

m Are there existing tools that can be used?

If parsing of input lines is an important phase of the application, perhaps a
parser generator such as yacc should be employed to develop what the
application needs.

® Does the application integrate other software into the whole package?

If, for example, a package is to be built around an existing data base
management system, there may be constraints on the variety of languages
the data base management system can accommodate.

Special Purpose Languages

The UNIX system contains a number of tools that can be included in the category of
special purpose languages. Three that are especially interesting are awk, lex, and
yacc.

3-4 PROGRAMMER’S GUIDE

Language Selection

What awk Is Like

The awk utility scans an ASCII input file record by record, looking for matches to
specific patterns. When a match is found, an action is taken. Patterns and their
accompanying actions are contained in a specification file referred to as the program.
The program can be made up of a number of statements. However, since each state-
ment has the potential for causing a complex action, most awk programs consist of
only a few. The set of statements may include definitions of the pattern that separates
one record from another (a newline character, for example), and what separates one
field of a record from the next (white space, for example). It may also include
actions to be performed before the first record of the input file is read, and other
actions to be performed after the final record has been read. All statements in
between are evaluated in order for each record in the input file. To paraphrase the
action of a simple awk program, it would go something like this:

Look through the input file.
Every time you see this specific pattern, do this action.

A more complex awk program might be paraphrased like this:

First do some initialization.

Then, look through the input file. :
Every time you see this specific pattern, do this action.
Every time you see this other pattern, do another action.
After all the records have been read, do these final things.

The directions for finding the -patterns and for describing the actions can get pretty
complicated, but the essential idea is as simple as the two sets of statements above.

One of the strong points of awk is that once you are familiar with the language syntax,
programs can be written very quickly. They don’t always run very fast, however, so
they are seldom appropriate if you want to run the same program repeatedly on a
large quantities of records. In such a case, it is likely to be better to translate the
program to a compiled language.

How awk Is Used

One typical use of awk would be to extract information from a file and print it out in
a report. Another might be to pull fields from records in an input file, arrange them
in a different order and pass the resulting rearranged data to a function that adds
records to your data base. There is an example of a use of awk in the sample applica-
tion at the end of this chapter.

Where to Find More Information

‘The manual page for awk is in Section (1) of the User’s Reference Manual. The
chapter "awk" in this guide contains a description of the awk syntax and a number of
examples showing ways in which awk may be used.

What lex and yacc Are Like

lex and yacc are often mentioned in the same breath because they perform comple-
mentary parts of what can be viewed as a single task: making sense out of input. The
two utilities also share the common characteristic of producing source code for C
language subroutines from specifications that appear on the surface to be quite simi-
lar.

APPLICATION PROGRAMMING 3-5

Language Selection

Recognizing input is a recurring problem in programming. Input can be from various
sources. In a language compiler, for example, the input is normally contained in a file
of source language statements. The UNIX system shell language most often receives
its input from a person keying in commands from a terminal. Frequently, information
coming out of one program is fed into another where it must be evaluated.

The process of input recognition can be subdivided into two tasks: lexical analysis
and parsing, and that’s where lex and yace come in. In both utilities, the
specifications cause the generation of C language subroutines that deal with streams of
characters; lex generates subroutines that do lexical analysis while yacc generates sub-
routines that do parsing.

To describe those two tasks in dictionary terms:

Lexical analysis has to do with identifying the words or vocabulary of a
language as distinguished from its grammar or structure.

Parsing is the act of describing units of the language grammatically. Students
in elementary school are often taught to do this with sentence diagrams.

Of course, the important thing to remember here is that in each case the rules for our
lexical analysis or parsing are those we set down ourselves in the lex or yacc
specifications. Because of this, the dividing line between lexical analysis and parsing
sometimes becomes fuzzy.

The fact that lex and yacc produce C language source code means that these parts of
what may be a large programming project can be separately maintained. The gen-
erated source code is processed by the C compiler to produce an object file. The
object file can be link edited with others to produce programs that then perform what-
ever process follows from the recognition of the input. '

How lex Is Used

A lex ‘subroutine scans a stream of input characters and waves a flag each time it
identifies something that matches one or another of its rules. The waved flag is
referred to as a token. The rules are stated in a format that closely resembles the one
used by the UNIX system text editor for regular expressions. For example,

[\t]+

describes a rule that recognizes a string of one or more blanks or tabs (without men-
tioning any action to be taken). A more complete statement of that rule might have
this notation:

[\t]l+ ;

which, in effect, says to ignore white space. It carries this meaning because no action
is specified when a string of one or more blanks or tabs is recognized. The semicolon
marks the end of the statement. Another rule, one that does take some action, could
be stated like this:

[0-9]+ {
i = atoi(yytext);
return(NBR) ;
}

3-6 PROGRAMMER'’S GUIDE

Language Selection

This rule depends on several things:

® NBR must have been defined as a token in an earlier part of the lex source
code called the declaration section. (It may be in a header file which is
#include’d in the declaration section.)

B jis declared as an extern int in the declaration section.

B [t is a characteristic of lex that things it finds are made available in a character
string called yytext. ‘ ‘

® Actions can make use of standard C syntax. Here, the standard C subroutine,
atoi, is used to convert the string to an integer.

What this rule boils down to is lex saying, "Hey, I found the kind of token we call
NBR, and its value is now in i."

To review the steps of the process:

1. The lex specification statements are processed by the lex utility to produce a
file called lex.yy.c. (This is the standard name for a file generated by lex, just
as a.out is the standard name for the executable file generated by the link edi-
tor.)

2. lex.yy.c is transformed by the C compiler (with a =—c option) into an object
file called lex.yy.o that contains a subroutine called yylex().

3. lex.yy.o is link edited with other subroutines. Presumably one of those sub-
routines will call yylex() with a statement such as:

while((token = yylex()) != 0)

and other subroutines (or even main) will deal with what
comes back.

Where to Find More Information

The manual page for lex is in Section (1) of the User’s Reference Manual. A tutorial
on lex is contained later in this guide.

How yacc Is Used
yace subroutines are produced by pretty much the same series of steps as lex:

- 1. The yace specification is processed by the yace utility to produce a file called
y.tab.c.

2. y.tab.c is compiled by the C compiler producing an object file, y.tab.o, that
contains the subroutine yyparse(). A significant difference is that yyparse()
calls a subroutine called yylex() to perform lexical analysis.

3. The object file y.tab.o may be link edited with other subroutines, one of
which will be called yylex().
There are two things worth noting about this sequence:

1. The parser generated by the yacc specifications calls a lexical analyzer to scan
the input stream and return tokens.

2. While the lexical analyzer is called by the same name as one produced by lex,
it does not have to be the product of a lex specification. It can be any sub-
routine that does the lexical analysis.

APPLICATION PROGRAMMING 3-7

Language Selection

What really differentiates these two utilities is the format for their rules. As noted
above, lex rules are regular expressions like those used by UNIX system editors. yace
rules are chains of definitions and alternative definitions, written in Backus-Naur
form, accompanied by actions. The rules may refer to other rules defined further
down the specification. Actions are sequences of C language statements enclosed in
braces. They frequently contain numbered variables that enable you to reference
values associated with parts of the rules. An example might make that easier to

understand:

%token NUMBER

%%

expr : numb [$$ = $1; }
| expr '+’ expr [$8 = $1 + $3;)
| expr -’ expr [$$ = $1 - $3; }
| expr ’*’ expr [$$ = $1 * $3;)
| expr '/’ expr [68 = 81 / $3;)
| 7(’ expr ’)’ [$8 = $2;)

numb : NUMBER [8 = $1;)

.
’

This fragment of a yacc specification shows

NUMBER identified as a token in.the declaration section
the start of the rules section indicated by the pair of percent signs

a number of alternate definitions for expr separated by the | sign and ter-
minated by the semicolon

actions to be taken when a rule is matched

within actions, numbered variables used to represent components of the rule:
$$ means the value to be returned as the value of the whole rule
$n means the value associated with the nth component of the rule, counting

from the left

numb defined as meaning the token NUMBER. This is a trivial example that
illustrates that one rule can be referenced within another, as well as within
itself.

As with lex, the compiled yacc object file will generally be link edited with other sub-
routines that handle processing that takes place after the parsing—or even ahead of it.

Where to Find More Information

The manual page for yacc is in Section (1) of the User’s Reference Manual. A
detailed description of yace may be found in the chapter "yacc" in this guide.

3-8

PROGRAMMER’S GUIDE

(‘?

Advanced Programming Tools

In "Programming Basics" we described the use of such basic elements of programming
in the UNIX system environment as the standard I/O library, header files, system
calls and subroutines. In this section we introduce tools that are more apt to be used
by members of an application development team than by a single-user programmer,
The section contains material on the following topics:

B memory management

m file and record locking

M interprocess communication
|

programming terminal screens

Memory Management

There are situations where a program needs to ask the operating system for blocks of
memory. It may be, for example, that a number of records have been extracted from
a data base and need to be held for some further processing. Rather than writing
them out to a file on secondary storage and then reading them back in again, it is
likely to be a great deal more efficient to hold them in memory for the duration of the
process. (This is not to ignore the possibility that portions of memory may be paged
out before the program is finished; but such an occurrence is not pertinent to this
discussion.) There are two C language subroutines available for acquiring blocks of
memory and they are both called malloc. One of them is malloe(3C), the other is
malloc(3X). Each has several related commands that do specialized tasks in the same
area. They are:

® free—to inform the system that space is being relinquished
® realloc—to change the size and possibly move the block
® calloc—to allocate space for an array and initialize it to zeros
In addition, malloc(3X) has a function, mallopt, that provides for control over the

space allocation algorithm, and a structure, mallinfo, from which the program can get
information about the usage of the allocated space.

malloc(3X) runs faster than the other version. It is loaded by specifying
-Imalloc

on the cc(1) or ld(1) command line to direct the link editor to the proper library.
When you use malloc(3X) your program should contain the statement

#include <malloc.h)
where the values for mallopt options are defined.

See the Programmer’s Reference Manual for the formal definitions of the two mallocs.

APPLICATION PROGRAMMING 3-9

Advanced Programming Tools

File and Record Locking

The provision for locking files, or portions of files, is primarily used to prevent the
sort of error that can occur when two or more users of a file try to update information
at the same time. The classic example is the airlines reservation system where two
ticket agents each assign a passenger to Seat A, Row 5 on the 5 o’clock flight to
Detroit. A -locking mechanism is designed to prevent such mishaps by blocking
Agent B from even seeing the seat assignment file until Agent A’s transaction is com-
plete.

File locking and record locking are really the same thing, except that file locking
implies the whole file is affected; record locking means that only a specified portion of
the file is locked. (Remember, in the UNIX system, file structure is undefined; a
record is a concept of the programs that use the file.)

Two types of locks are available: read locks and write locks. If a process places a
read lock on a file, other processes can also read the file but all are prevented from
writing to it, that is, changing any of the data. If a process places a write lock on a
file, no other processes can read or write in the file until the lock is removed. Write
locks are also known as exclusive locks. The term shared lock is sometimes applied
to read locks. .

Another distinction ‘needs to be made between mandatory and advisory locking.
Mandatory locking means that the discipline is enforced automatically for the system
calls that read, write or create files. This is done through a permission flag esta-
blished by the file’s owner (or the super-user). Advisory locking means that the
processes that use the file take the responsibility for setting and removing locks as
needed. Thus mandatory may sound like a simpler and better deal, but it isn’t so.
The mandatory locking capability is included in the system to comply with an agree-
ment with /usr/group, an organization that represents the interests of UNIX system
users. The principal weakness in the mandatory method is that the lock is in place
only while the single system call is being made. It is extremely common for a single
transaction to require a series of reads and writes before it can be considered com-
plete. In cases like this, the term atomic is used to describe a transaction that must
be viewed as an indivisible unit. The preferred way to manage locking in such a cir-
cumstance is to make certain the lock is in place before any I/O starts, and that it is
not removed until the transaction is done. That calls for locking of the advisory
variety.

How File and Record Locking Works

The system call for file and record locking is fentl(2). Programs should include the
line

#include <fcntl.hd>

to bring in the header file shown in Figure 3-1.

/* Flag values accessible teo open(2) and fcntl(2) */

/* (The first three can only be set by open) */

#define O_RDONLY 0 '

#define O_WRONLY 1

#define O_RDWR 2

#define O_NDELAY 04 /* Non-blocking I/O */ .
#define O_APPEND 010 /* append (writes guaranteed at the end) */
#define O_SYNC 020 /* synchronous write option */

3-10 PROGRAMMER’S GUIDE

(

Advanced Programming Tools

/* Flag values accessible only to open(2) */ _
#define O_CREAT 00400 /* open with file create (uses third open arg)*/
#define O_TRUNC 01000 /* open with truncation */

#define O_EXCL 02000 /* exclusive open */

/* fcntl(2) requests */

#define F _DUPFD 0 /* Duplicate fildes */

#define F_GETFD 1 /* Get fildes flags */

#define F_SETFD 2 /* Set fildes flags */

#define F_GETFL 3 /* Get file flags */

#define F_SETFL 4 /* Set file flags */

#define F_GETLK 5 /* Get file lock */

#define F_SETLK 6 /* Set file lock */

#define F_SETLKW 7 /* Set file lock and wait */

fidefine F_CHKFL 8 /* Check legality of file flag changes */

/* file segment locking set data type — information
/* passed to system by user */
struct flock {
short 1_type;
short 1_whence;
long 1_start;
long 1_1len; /* len = 0 means until end of file */
short 1_sysid;
short 1_pid;
}i
/* file segment locking types */
/* Read lock */
#define F_RDLCK 01
~ /* Write lock */
#define F_WRLCK 02
/* Remove lock(s) */
#define F_UNLCK 03

Figure 3-1: The fentl.h Header File

The format of the fentl(2) system call is

int‘fcntl(fildes, cmd, arg)
int fildes, cmd, arg;

fildes is the file descriptor returned by the open system call. In addition to defining
tags that are used as the commands on fentl system calls, fentl.h includes the declara-

tion for a struct flock that is used to pass values that control where locks are to be
placed.

lockf

A subroutine, lockf(3), can also be used to lock sections of a file or an entire file.
The format of lockf is:

APPLICATION PROGRAMMING 3-11

Advanced Programming Tools

#include <unistd.h>

int lockf (fildes, function, size)
int fildes, function;
long size;

fildes is the file descriptor; function is one of four control values defined in unistd.h
that let you lock, unlock, test and lock; or simply test to see if a lock is already in

place. size is the number of contiguous bytes to be locked or unlocked. The section

of contiguous bytes can be either forward or backward from the current offset in the
file. (You can arrange to be somewhere in the middle of the file by using the Iseek(2)
system call.)

Where to Find More Information

There is an example of file and record locking in the sample application at the end of
this chapter. The manual pages that apply to this facility are fentl(2), fentl(S),
lockf(3), and chmod(2) in the Programmer's Reference Manual. The chapter "File and
Record Locking" is a detailed discussion of the subject with a number of examples.

Interprocess Communications

In Chapter 2 we described forking and execing as methods of communicating between
~ processes. Business applications running on a UNIX system computer often need
more sophisticated methods. In applications, for example, where fast response is
critical, a number of processes may be brought up at the start of a business day to be
constantly available to handle transactions on demand. This cuts out initialization
time that can add seconds to the time required to deal with the transaction. To go
back to the ticket reservation example again for a moment, if a customer calls to
reserve a seat on the 5 o’clock flight to Detroit, you don’t want to have to say, "Yes,
sir. Just hang on a minute while I start up the reservations program." In transaction
driven systems, the normal mode of processing is to have all the components of the
application standing by waiting for some sort of an indication that there is work to do.

To meet requirements of this type the UNIX system offers a set of nine system calls
and their accompanying header files, all under the umbrella name of Interprocess
Communications (IPC).

The IPC system calls come in sets of three; one set each for messages, semaphores,
and shared memory. These three terms define three different styles of communica-
tion between processes:

messages . communication is in the form of data stored in a buffer. The
buffer can be either sent or received.

semaphores communication is in the form of positive integers with a value
between 0 and 32,767. Semaphores may be contained in an array
the size of which is determined by the system administrator. The
default maximum size for the array is 25.

shared memory communication takes place through a common area of main
memory. One or more processes can attach a segment of
memory and as a consequence can share whatever data is placed
there.

3-12 PROGRAMMER’S GUIDE

Advanced Programming Tools

The sets of IPC system calls are:

msgget semget shmget
msgetl semctl shmetl
msgop semop shmop

IPC get Calls

The get calls each return to the calling program an identifier for the type of IPC. facil-
ity that is being requested.

IPC ctl Calls

The ctl calls provide a variety of control operations that include obtaining
(IPC_STAT), setting (IPC_SET) and removing (IPC_RMID), the values in data struc-
tures associated with the identifiers picked up by the get calls.

IPC op Calls

The op manual pages describe calls that are used to perform the particular operations
characteristic of the type of IPC facility being used. msgop has calls that send or
receive messages. semop (the only one of the three that is actually the name of a sys-
tem call) is used to increment or decrement the value of a semaphore, among other
functions. shmop has calls that attach or detach shared memory segments.

Where to Find More information

An example of the use of some IPC features is included in the sample application at
the end of this chapter. The system calls are all located in Section (2) of the
" Programmer’s Reference Manual. Don’t overlook intro(2). It includes descriptions of
the data structures that are used by IPC facilities. A detailed description of IPC, with
many code examples that use the IPC system calls, is contained in the chapter
"Advanced IPC Tutorial".

Programming Terminal Screens

The facility for setting up terminal screens to meet the needs of your application is
provided by two parts of the UNIX system. The first of these, terminfo, is a data
base of compiled entries that describe the capabilities of terminals and the way they
perform various operations.

The terminfo data base normally begins at the directory /usr/lib/terminfo. The
members of this directory are themselves directories, generally with single-character
names that are the first character in the name of the terminal. The compiled files of
operating characteristics are at the next level down the hierarchy. For example, the
entry for a Teletype 5425 is located in both the file /usr/lib/terminfe/5/5425 and the
file /usr/lib/terminfo/t/tty5425.

Describing the capabilities of a terminal can be a painstaking task. Quite a good
selection of terminal entries is included in the terminfo data base that comes with
your 3B2 Computer. However, if you have a type of terminal that is not already
described in the data base, the best way to proceed is to find a description of one that
comes close to having the same capabilities as yours and building on that one. There
is a routine (setupterm) in curses(3X) that can be used to print out descriptions from
the data base. Once you have worked out the code that describes the capabilities of
your terminal, the tic(IM) command is used to compile the entry and add it to the

APPLICATION PROGRAMMING 3-13

Advanced Programming Tools

data base.

curses

After you have made sure that the operating capabilities of your terminal are a part of
the terminfo data base, you can then proceed to use the routines that make up the
curses(3X) package to create and manage screens for your application.

The curses library includes functions to:

define portions of your terminal screen as windows

define pads that extend beyond the borders of your physical terminal screen
and let you see portions of the pad on your terminal

read input from a terminal screen into a program
write output from a program to your terminal screen

manipulate the information in a window in a virtual screen area and then send
it to your physical screen

Where to Find More Information

In the sample application at the end of this chapter, we show how you might use
curses routines. See the chapter "curses/terminfo”. The manual pages for curses are
in Section (3X), and those for terminfo are in Section (4) of the Programmer's Refer-
ence Manual.

3-14

PROGRAMMER'’S GUIDE

Programming Support Tools

This section covers UNIX system components that are part of the programming
environment, but that have a highly specialized use. We refer to such things as:

B link edit command language
B Common Object File Format
B libraries

B Symbolic Debugger

® lint as a portability tool

Link Edit Command Language

The link editor command language is for use when the default arrangement of the 1d
output will not do the job. The default locations for the standard Common Object
File Format sections are described in a.out(4) in the Programmer’s Reference Manual.

The link editor command language provides directives for describing dlfferent
arrangements. The two major types of link editor directives are MEMORY and SEC-
TIONS. MEMORY directives can be uséd to define the boundaries of configured and
unconfigured sections of memory within a inachine, to name sections, and to assign
specific attributes (read, write, execute, and initialize) to portions of memory. SEC-
TIONS directives, among a lot of other functions, can be used to bind sections of the
object file to specific addresses within the configured portions of memory.

Why would you want to be able to do those things? Well, the truth is that in the
majority of cases you don’t have to worry about it. The need to control the link edi-
tor output becomes more urgent under two, possibly related, sets of circumstances.

O Your application is large and consists of a lot of object files.

O The hardware your application is to run on is tight for space.

Where to Find More Information

For more information on the Link Editor Command Language, see the Languages
Programmers Guide and 1d(1) in the Users Reference Manual.

Common Object File Format

The details of the Common Object File Format have never been looked on as stimu-
lating reading. In fact, they have been recommended to hard-core insomniacs as pre-
ferred bedtime fare. However, if you’re going to break into the ranks of really
sophisticated UNIX system programmers, you’re going to have to get a good grasp of
COFF. A knowledge of COFF is fundamental to using the link editor command
language. It is also good background knowledge for tasks such as:

B setting up archive libraries or shared libraries

® using the Symbolic Debugger

APPLICATION PROGRAMMING 3-15

Programming Support Tools

The following system header files contain definitions of data structures of parts of the
Common Object File Format:

<syms.h> symbol table format

<linenum.h> line number entries

<ldfcn.h> COFF access routines

<filehdr.h> file header for a common object file

<a.out.h> common assembler and link editor output
<scnhdr.h> “section header for a common object file
<reloc.h> relocation information for a common object file

<storclass.h> storage classes for common object files

The object file access routines are described below under the heading "The Object
File Library." :

Where to Find More Information

See the Assembly Language Programmer’s Guide for a detailed description of the
MIPS’ object file format.

Libraries

A library is a collection of related object files and/or declarations that simplify pro-
gramming effort. Programming groups involved in the development of applications
often find it convenient to establish private libraries. For example, an application
with a number of programs using a common data base can keep the I/O routines in a
library that is searched at link edit time.

Prior to Release 3.0 of the UNIX System V the libraries, whether system supphed or
application developed, were collections of common object format files stored in an
archive (filename.a) file that was searched by the link editor to resolve references.
Files in the archive that were needed to satisfy unresolved references became a part
of the resulting executable.

Beginning with Release 3.0, shared libraries are supported. Shared libraries are simi-
lar to archive libraries in that they are collections of object files that are acted upon
by the link editor. The difference, however, is that shared libraries perform a static
linking between the file in the library and the executable that is the output of Id. The
result is a saving of space, because all executables that need a file from the hbrary
share a single copy. We go into shared libraries later in this section.

In Chapter 2 we described many of the functions that are found in the standard C
library, libc.a. The next two sections describe two other libraries, the object file
library and the math library.

The Object File Library

The object file library provides functions for the access and manipulation of object
files. Some functions locate portions of an object file such as the symbol table, the
file header, sections, and line number entries associated with a function. Other func-
tions read these types of entries into memory. The need to work at this level of detail
with object files occurs most often in the development of new tools that manipulate
object files. For a description of the format of an object file and the symbol table see
the Assembly Language Programmer’s Guide. The object file library consists of
several portions. The functions reside in /usr/lib/libmld.a and are loaded during the
compilation of a C language program by the -1 command line option:

3-16 PROGRAMMER’S GUIDE

(

Programming Support Tools

cc file

which causes the link editor to search the object file library. The argument -lld must
appear after all files that reference functions in libld.a.

The following header files must be included in the source code.

#include <stdio.h>
#include <a.out.h>
#include <ldfen.h>

Function Reference Brief Description

ldaclose ldclose(3X) Close object file being processed.

ldahread ldahread(3X) Read archive header.

ldaopen ldopen(3X) Open object file for reading.

ldclose ldclose(3X) Close object file being processed.

ldfhread ldfhread(3X) Read file header of object file being processed.

ldgetname | ldgetname(3X) | Retrieve the name of an object file symbol table entry.

ldlinit ldiread(3X) Prepare object file for reading line number entries via
ldlitem.

ldlitem ldlread(3X) Read line number entry from object file after ldlinit.

ldiread ldIread(3X) Read line number entry from object file.

‘1dlseek ldiseek(3X) Seeks to the line number entries of the object file
being processed.

ldnlseek ldlseek(3X) Seeks to the line number entries of the object file
being processed given the name of a section.

ldnrseek ldrseek(3X) Seeks to the relocation entries of the object file being
processed given the name of a section.

ldnshread | ldshread(3X) Read section header of the named section of the
object file being processed.

Idnsseek ldsseek(3X) Seeks to the section of the object file being processed
given the name of a section.

ldohseek ldohseek(3X) Seeks to the optional file header of the object file

' being processed. ’

ldopen Idopen(3X) Open object file for reading.

ldrseek ldrseek(3X) Seeks to the relocation entries of the object file being
processed.

ldshread ldshread(3X) Read section header of an object file being processed.

APPLICATION PROGRAMMING 3-17

Programming Support Tools

Function Reference Brief Description

ldsseek ldsseek(3X) Seeks to the section of the object file being processed.

ldtbindex | ldtbindex(3X) | Returns the long index of the symbol table entry at the
current position of the object file being processed.

ldtbread | ldtbread(3X) | Reads a specific symbol table entry of the object file
being processed.

ldtbseek | ldtbseek(3X) | Seeks to the symbol table of the object file being pro-

cessed.

sgetl sputl(3X) Access long integer data in a machine independent
format.

sputl sputl(3X) Translate a long integer into a machine independent
format.

Common Object File Interface Macros (ldfcn.h)

The interface between the calling program and the object file access routines is based
on the defined type LDFILE, which is in the header file ldfen.h (see ldfen(4)). The
primary purpose of this structure is to provide uniform access to both simple object
files and to object files that are members of an archive file.

The function ldopen(3X) allocates and initializes the LDFILE structure and returns a
pointer to the structure. The fields of the LDFILE structure may be accessed indivi-
dually through the following macros:

® The TYPE macro returns the magic number of the file, which is used to distin-
guish between archive files and object files that are not part of an archive.

® The IOPTR macro returns the file pointer, which was opened by ldopen(3X)
and is used by the input/output functions of the C library.

® The OFFSET macro returns the file address of the beginning of the object file.
This value is non-zero only if the object file is a member of the archive file.

m The HEADER macro accesses the file header structure of the object file.

Additional macros are provided to access an object file. These macros parallel the
input/output functions in the C library; each macro translates a reference to an
LDFILE structure into a reference to its file descriptor field. The available macros
are described in ldfen(4) in the Programmer’s Reference Manual.

The Math Library

The math library package consists of functions and a header file. The functions are
located and loaded during the compilation of a C language program by the —I option
on a command line, as follows:

cc file =lm

This option causes the link editor to search the math library, libm.a. In addition to
the request to load the functions, the header file of the math library should be

3-18 PROGRAMMER’S GUIDE

(

Programming Support Tools

included in the program being compiled. This is accomplished by including the line:
#include <math.h>
near the beginning of each file that uses the routines.
The functions are grouped into the following categories:
® trigonometric functions
® Bessel functions
® hyperbolic functions
® miscellaneous functions
Trigonometric Functions

These functions are used to compute angles (in radian measure), sines, cosines, and
tangents. All of these values are expressed in double-precision.

Function Reference Brief Description

acos trig(3M) Return arc cosine.

asin trig(3M) Return arc sine.

atan trig(3M) Return arc tangent.

atan2 trig(3M) Return arc tangent of
a ratio.

cos trig(3M) Return cosine.

sin trig(3M) Return sine.

tan trig(3M) Return tangent.

Bessel Functions

These functions calculate Bessel functions of the first and second kinds of several
orders for real values. The Bessel functions are j0, j1, jn, y0, y1, and yn. The func-
tions are located in section bessel(3M).

Hyperbolic Functions

These functions are used to compute the hyperbolic sine, cosine, and tangent for real
values.

Function | Reference . Brief Description
cosh sinh(3M) | Return hyperbolic cosine.
sinh - sinh(3M) | Return hyperbolic sine.
tanh sinh(3M) | Return hyperbolic tangent.

Miscellaneous Functions

These functions cover a wide variety of operations, such as natural logarithm,
exponential, and absolute value. In addition, several are provided to truncate the
integer portion of double-precision numbers.

APPLICATION PROGRAMMING 3-19

Programming Support Tools

Function Reference Brief Description

ceil floor(3M) Returns the smallest integer not less
than a given value.

exp exp(3M) Returns the exponential function of a
given value.

fabs floor(3M) Returns the absolute value of a given
value. '

floor floor(3M) Returns the largest integer not greater
than a given value.

fmod floor(3M) Returns the remainder produced by
the division of two given values.

gamma gamma(3M) | Returns the natural log of the absolute
value of the result of applying the
gamma function to a given value.

hypot hypot(3M) Return the square root of the sum of
the squares of two numbers.

log exp(3M) Returns. the natural logarithm of a
given value.

log10 exp(3M) Returns the logarithm base ten of a
given value.

matherr | matherr(3M) | Error-handling function.

pow exp(3M) Returns the result of a given value
raised to another given value.

sqrt exp(3M) Returns the square root of a given

Shared Libraries

On small machines, shared libraries can both improve performance and reduce
maintenance, offering both disk storage and memory savings. This may not always be
true on large, high performance systems, such as MIPS machines.
emphasis is on performance, and when disk space and memory are more plentiful,
the use of shared libraries may not be worth the performance loss and increased
shared libraries are beneficial in certain
instances. See the chapter "Shared Libraries" for a detailed discussion of shared

maintenance complexities.

libraries.

3-20 PROGRAMMER'’S GUIDE

However,

value.

When the

Programming Support Tools

Symbolic Debugger

This section describes the use of the symbolic debugger dbx within the context of an
application development project.

dbx works on a process, and enables a programmer to find errors in the code. It is a
tool a programmer might use while coding and unit testing a program, to make sure it
runs according to its design. dbx would normally be used prior to the time the pro-
gram is turned over, along with the rest of the application, to testers. During this
phase of the application development cycle programs are compiled with the =g option
of cc to facilitate the use of the debugger. The symbol table should not be stripped
from the object file. Once the programmer is satisfied that the program is error-free,
strip(1) can be used to reduce the file storage overhead taken by the file.

If the application uses a private shared library, the possibility arises that a program
bug may be located in a file that resides in the shared library. Dealing with a problem
of this sort calls for coordination by the administrator of the shared library. Any
change to an object file that is part of a shared library means the change effects all
processes that use that file. One program’s bug may be another program’s feature.

Where to Find More Information

See the Language Programmer’s Guide and dbx(1) in the User’s Reference Manual for
details on the use of dbx. The manual page is in Section (1) of the User’s Reference
Manual.

lint as a Portability Tool

It is a characteristic of the UNIX system that language compilation systems are some-
what permissive. Generally speaking it is a design objective that a compiler should
run fast. Most C compilers, therefore, let some things go unflagged as long as the
language syntax is observed statement by statement. This sometimes means that while
your program may run, the output will have some surprises. It also sometimes means
that while the program may run on the machine on which the compilation system
runs, there may be real difficulties in running it on some other machine.

That’s where lint comes in. lint produces comments about inconsistencies in the
code. The types of anomalies flagged by lint are:

® cases of disagreement between the type of value expected from a called func-
tion and what the function actually returns

® disagreement between the types and number of arguments expected by func-
tions and what the function receives

B inconsistencies that might prove to be bugs
® things that might cause portability problems
Here is an example of a portability problem that would be caught by lint. Code such
as this:
int i = lseek(fdes, offset, whence)

would get by most compilers. However, Iseek returns a long integer representing the
address of a location in the file. On a machine with a 16-bit integer and a bigger long
int, it would produce incorrect results, because i would contain only the last 16 bits of

APPLICATION PROGRAMMING 3-21

Programming Support Tools

the value returned.

Since it is reasonable to expect that an application written for a UNIX system
machine will be able to run on a variety of computers, it is important that the use of
lint be a regular part of the application development.

Where to Find More Information

The chapter "lint" contains a description of lint with examples of the kinds of condi-
tions it uncovers. The manual page is in Section (1) of the User’s Reference Manual.

3-22 PROGRAMMER’S GUIDE

(

Project Control Tools

Volumes have been written on the subject of project control. It is an item of top
priority for the managers of any application development team. Two UNIX system
tools that can play a role in this area are described in this section.

make

make is extremely useful in an application development project for keeping track of
what object files need to be recompiled as changes are made to source code files.
One of the characteristics of programs in a UNIX system environment is that they are
made up of many small pieces, each in its own object file, that are link edited
together to form the executable file. Quite a few of the UNIX system tools are
devoted to supporting that style of program architecture. For example, archive
libraries, shared libraries and even the fact that the cc command accepts .o files as
well as .c files, and that it can stop short of the Id step and produce .o files instead of
an a.out, are all important elements of modular architecture. The two main advan-
tages of this type of programming are that ‘

® A file that performs one function can be re-used in any program that needs it.

B When one function is changed, the whole program does ot have to be recom-
piled.

On the flip side, however, a consequence of the proliferation of object files is an
increased difficulty in keeping track of what does need to be recompiled, and what
doesn’t. make is designed to help deal with this problem. You use make by describ-
ing in a specification file, called makefile, the relationship (that is, the dependencies)
between the different files of your program. Once having done that, you conclude a
session in which possibly a number of your source code files have been changed by
runmng the make command. make takes care of generating a new a.out by compar-
mg the time-last-changed of your source code files with the dependency rules you have
given it.

make has the ability to work with files in archive libraries or under control of the
Source Code Control System (SCCS).

Where to Find More Information

The make(1) manual page is contained in the User’s Reference Manual. Refer to the
chapter "make" in this guide for a complete description of how to use make.

SCCS

SCCS is an acronym for Source Code Control System. It consists of a set of 14 com-
mands used to track evolving versions of files. Its use is not limited to source code;

any text files can be handled, so an application’s documentation can also be put under
control of SCCS. SCCS can:

B store and retrieve files under its control
® allow no more than a single copy of a file to be edited at one time

B provide an audit trail of changes to files

APPLICATION PROGRAMMING 3-23

Project Control Tools

B reconstruct any earlier version of a file that may be wanted

SCCS files are stored in a special coded format. Only through commands that are
part of the SCCS package can files be made available in a user’s directory for editing,
compiling, etc. From the point at which a file is first placed under SCCS control,
only changes to the original version are stored. For example, let’s say that the pro-
gram, restate, which was used in several examples in Chapter 2, was controlled by
SCCS. One of the original pieces of that program is a file called oppty.c that looks
like this: -

/* Opportunity Cost —- oppty.c */
#include "recdef.h"

float
oppty(ps)
struct rec *ps;

{
return(ps->i/12 * ps—->t * ps—>dp);
} .

If you decide to add a message to this function, you might change the file like this:

/* Opportunity Cost —— oppty.c */
#include "recdef.h"
#include <stdio.h>

float

oppty(ps)

struct rec *ps;

{
(void) fprintf(stderr, "Opportunity calling\n");
return(ps—>i/12 * ps—>t * ps—->dp);

}

SCCS saves only the two new lines from the second version, with a coded notation

that shows where in the text the two lines belong. It also includes a note of the ver--

sion number, lines deleted, lines inserted, total lines in the file, the date and time of
the change and the login id of the person making the change.

Where to Find More Information

SCCS commands are in Section (1) of the User’s Reference Manual. The chapter
"Source Code Control System (SCCS)" in this guide is an SCCS user’s guide.

3-24 PROGRAMMER'’S GUIDE

liber, A Library System

To illustrate the use of UNIX system programming tools in the development of an
application, we are going to pretend we are engaged in the development of a com-
puter system for a library. The system is known as liber. The early stages of system
development, we assume, have already been completed; feasibility studies have been
done, the preliminary design is described in the coming paragraphs. We are going to
stop short of producing a complete detailed design and module specifications for our
system. You will have to accept that these exist. In using portions of the system for
examples of the topics covered in this chapter, we will work from these virtual
specifications. '

We make no claim as to the efficacy of this design. It is the way it is only in order to
provide some passably realistic examples of UNIX system programming tools in use.

liber is a system for keeping track of the books in a library. The hardware consists of
a single computer with terminals throughout the library. One terminal is used for
adding new books to the data base. Others are used for checking out books and as
electronic card catalogs. o

The design of the system calls for it to be brought up at the beginning of the day and
remain running while the library is in operation. The system has one master index
that contains the unique identifier of each title in the library. When the system is run-
ning the index resides in memory. Semaphores are used to control access to the
index. In the pages that follow fragments of some of the system’s programs are
shown to illustrate the way they work together. The startup program performs the
system initialization; opening the semaphores and shared memory; reading the index
into the shared memory; and kicking off the other programs. The id numbers for the
shared memory and semaphores (shmid, wrtsem, and rdsem) are read from a file dur-
ing initialization. The programs all share the in-memory index. They attach it with
the following code:

/* attach shared memory for index */
if ((int)(index = (INDEX *) shmat(shmid, NULL, 0)) == -1)
{
(void) fprintf(stderr, "shmat failed: %d\n", errno);
exit(1l);
)

Of the programs shown, add-books is the only one that alters the index. The sema-
phores are used to ensure that no other programs will try to read the index while
add-books is altering it. The checkout program locks the file record for the book, so
that each copy being checked out is recorded separately and the book cannot be
checked out at two different checkout stations at the same time.

The program fragments do not provide any details on the structure of the index or the
book records in the data base.

/* liber.h - header file for the
* library system.
*/
typedef ... INDEX; /* data structure for book file index */
typedef struct { /* type of records in book file */
char title[30];
char author[30];

APPLICATION PROGRAMMING 3-25

SAMPLE APPLICATION: liber

} BOOK;

int shmid;
int wrtsem;
int rdsem;
INDEX *index;

int book_

file;

BOOK book_buf;
/* startup program */

1. Open shared memory for file index and read it in.
2. Open two semaphores for providing exclusive write access

to

index.

file where they can be accessed by the programs.
4., Start programs: add-books, card-catalog, and checkout ‘
' running on the various terminals throughout the library.

#include
#include
#incliude
#include
#include
#include

*
*
*
* 3, Stash id’s for shared memory segment and semaphores in a
®
*
*

{stdio.h>
{sys/types.h>
{sys/ipc.h>
{sys/shm.h>
{(sys/sem.h>
"liber.h"

void exit();
extern int errno;

key_ t key:;
int shmid;
int wrtsem;
int rdsem;
FILE *ipc_file;

main()

{

if ((shmid = shmget(key, sizeof(INDEX), \

IPC_CREAT | 0666)) == -1)
{
(void) fprintf(stderr, "startup: shmget failed: \
errno=%d\n", errno);
exit(1l);
}
if ((wrtsem = semget(key, 1, IPC_CREAT | 0666)) == -1)
{

(void) fprintf(stderr, "startup: semget failed: \

errno=%d\n", errno);

exit(1l);

3-26 PROGRAMMER’S GUIDE

SAMPLE APPLICATION: ljber

if ((rdsem = semget(key, 1, IPC_CREAT | 0666)) == —-1)
{
(void) fprintf(stderr, "startup: semget failed: \
errno=%d\n", errno);
exit(1l);
}
(void) fprintf(ipc_file, "$d\n%d\n%d\n", \
shmid, wrtsem, rdsem);

/*

*

Start the add-books program running on the terminal
in the basement. Start the checkout and card-catalog
programs running on the various other terminals
throughout the library.

* o

*

*/

/* card-catalog program */

/*
* 1, Read -screen for author and title.
* 2. Use semaphores to prevent reading index while it is
* being written.
* 3, Use index to get position of book record in book file.
*

4, Print book record on screen or indicate book was not
* found. '
* 5, Go to 1.

*/
#include <stdio.h>
#include {sys/types.h>
#include {sys/ipc.h>
#include {sys/sem.h>

#include <fecntl.h?
#include "liber.h"

void exit();
extern int errno;
struct sembuf sop[l];

main() {
while (1)
{
/*
* Read author/title/subject information from screen.
*/
/*

* Wait for write semaphore to reach 0

APPLICATION PROGRAMMING 3-27

SAMPLE APPLICATION: liber

* (index not being written).

*/
sop[0] .sem_op = 1;
if (semop(wrtsem, sop, 1) == -1)

{
(void) fprintf(stderr, "semop failed: %d\n", errno);
exit(1l);
}
/*
* Increment read semaphore so potential writer will
* wait for us to finish reading the index.
*/
sop[0] .sem_op = 0;
if (semop(rdsem, sop, 1) == -1)
{
(void) fprintf(stderr, "semop failed: %d\n", errno);
exit(1l);

)

}
/* Use index to find file pointer(s) for book(s) */

/* Decrement -read semaphore */

sop[0] .sem _op = -1; ’

if (semop(rdsem, sop, 1) == -1)

{
(void) fprintf(stderr, "semop failed: %d\n", -errno);
exit(1l);

}

/*
* Now we use the file pointers found in the index to
* read the book file. Then we print the information
* on the book(s) to the screen.

*/
} /* while */
}
/* checkout program */
/*
* 1, Read screen for Dewey Decimal number of book to be
* checked out.
* 2, Use semaphores to prevent reading index while it is
* being written.
* 3, Use index to get position of book record in book file.
* 4, If book not found print message on screen, otherwise
* lock book record and read.
* 5, If book already checked out print message on screen,
* otherwise mark record "checked out" and write
* back to book file.
* 6., Unlock book record.
* 7. Go to 1.
*/
#include <{stdio.h>
#include <sys/types.h>
3-28 PROGRAMMER’S GUIDE

SAMPLE APPLICATION: liber

#include <{sys/ipc.h>
#include {sys/sem.h>
#include <fcntl.h>
#include "liber.h"

void exit();

long lseek();

extern int errno;
struct flock flk;
struct sembuf sop[l];
long bookpos;

main()
{
while (1)
{
/*
* Read Dewey Decimal number from screen.
*/
/%

* Wait for write semaphore to reach 0
* (index not being written).
*/
sop[0].sem_flg = 0;
sop[0].sem_op = 0; =
if (semop(wrtsem, sop, 1) == -1)
{
(void) fprintf(stderr, "semop failed: %d\n", errno);
exit(1l); ’
}
/*
* Increment read semaphore so potential writer
* will wait for us to finish reading the index.
*/
sop[0] .sem_op = 1;
if (semop(rdsem, sop, 1) == -1)
{
(void) fprintf(stderr, "semop failed: %d\n", errno);
exit(1l);

/*
* Now we can use the index to find the book’s
* record position.
* Assign this value to "bookpos"

*/
/* Decrement read semaphore */
sop[0].sem op = —-1;
if (semop(rdsem, sop, 1) == —1)

{

(void) fprintf(stderr, "semop failed: %d\n", errno);

APPLICATION PROGRAMMING 3-29

SAMPLE APPLICATION: liber

exit(1l);
}

/*
* Lock the book’s record in book file,
* read the record.
*/
flk.1l_type = F_WRLCK;
flk.1_whence = 0;
flk.1 _start = bookpos;
flk.1l len = sizeof(BOOK);
if (fcntl(book_file, F_SETLKW, &flk) == -1)
{
(void) fprintf(stderr, "trouble locking: %d\n", errno);
exit(1l);

if (lseek(book file, bookpos, 0) == —1)
Error processing for Iseek;
if (read(book_file, &book buf, sizeof(BOOK)) == —-1)

Error processing for read ;

/%
* If the book is checked out inform the client,
* otherwise mark the book’s record as checked out
* and write it back into the book file.

*/

/* Unlock the book’s record in book file. */
flk.1l_type = F_UNLCK;
if (fontl(book_file, F_SETLK, &flk) == -1)
{
(void) fprintf(stderr, "trouble unlocking: \
$d\n", errno); :
exit(1l);
}
} /* while */

/* add-books program */

/*
* 1. Read a new book entry from screen.
* 2, Insert book in book file.
* 3, Use semaphore "wrtsem" to block new readers.
* 4, Wait for semaphore "rdsem" to reach 0,
* 5, Insert book into index.
* 6. Decrement wrtsem,
* 7. Go to 1.
*/

#include <stdio.h>
#include <sys/types.h>

3-30 PROGRAMMER'’S GUIDE

SAMPLE APPLICATION: liber

#include <sys/ipc.h>
#include <sys/sem.h>
#include "liber.h"

void exit();

extern int errno;
struct sembuf sopl[l];
BOOK bookbuf;

main()

{

for (:;)
{

/*
* Read information on new book from screen.

*/
addscr (sbookbuf) ;

/* write new record at the end of the bookfile.
* Code not shown, but

addscr() returns a 1 if title information has

* been entered, 0 if not.

*/

*

/*
* Increment write semaphore, blocking new readers
* from accessing the index.
*/
sop[0] .sem_flg = 0;
sop[0] .sem_op = 1;
if (semop(wrtsem, sop, 1) == -1)
{
(void) fprintf(stderr, "semop failed: %d\n", errno);
exit(l);
}
/*
* Wait for read semaphore to reach 0 (all readers
* to finish using the index).
*/ _
sop[0] .sem_op = 0;
if (semop(rdsem, sop, 1) == -1)
{
(void) fprintf(stderr, "semop failed: %d\n", errno);
exit(1l);
}
/*
* Now that we have exclusive access to the index
* we insert our new book with its file pointer.

*/

APPLICATION PROGRAMMING 3-31

SAMPLE APPLICATION: liber

/*
* Decrement write semaphore, permitting readers
* to read index.

*/

sop[0] .sem_op = —1;

if (semop(wrtsem, sop, 1) == -1)

{
(void) fprintf(stderr, "semop failed: %d\n", errno);
exit(1l); ' ' .

}

} /* for */

The cxample following, addscr(), illustrates two significant points about curses

. screens:

1. Information read in from a curses window can be stored in fields that are part
of a structure defined in the header file for the application.

2. The address of the structure can be passed from another function where the
record is processed. . :

/* addscr is called from add-books.
* The user is prompted for title
* information.

*/

#include <curses.h>
WINDOW *cmdwin;

addscr(bb)
struct BOOK *bb;
{ ‘

int c;

initscr();
nonl();

noecho() ;
cbreak();

cndwin = newwin(6, 40, 3, 20);
mvprintw(0, 0, "This screen is for adding titles to the data base");
mvprintw(l, 0, "Enter a to add; q to quit: ");
refresh();
for (i)
{
refresh();
c = getch();
switch (c) {
case 'a’:
werase(cmdwin) ;
box(cmdwin, ’ |/, =');

3-32 PROGRAMMER’S GUiDE

SAMPLE APPLICATION

mvwprintw(cemdwin, 1, 1, "Enter title: ");
wmove (cmdwin, 2, 1);

echo();

wrefresh(cmdwin) ;
wgetstr(cmdwin, bb->title);
noecho();

werase(cmdwin) ;

box(cmdwin, ‘|’, '=');
mvwprintw(cmdwin, 1, 1, "Enter author: ");
wmove (cmdwin, 2, 1);

echo();

wrefresh(cmdwin) ;
wgetstr(cmdwin, bb->author);
noecho();

werase(cmdwin);
wrefresh(cmdwin) ;

endwin();

return(l);
case ’'q’

erase();

endwin();

return(0);

)<
)

#

Makefile for liber library system
#

CC = cc

CFLAGS = -0
all: startup add-books checkout card-catalog

startup: liber.h startup.c
$(CC) $(CFLAGS) —o startup startup.c

add-books: add-books.o addscr.o
$(CC) $(CFLAGS) -o add-books add-books.o addscr.o

add-books.o: liber.h

checkout: liber.h checkout.c)
$(CC) $(CFLAGS) -o checkout checkout.c

card-catalog: liber.h card-catalog.c
$(CC) $(CFLAGS) -o card-catalog card-catalog.c

APPLICATION PROGRAMMING

: liber

3-33

Chapter 4: C Language

Introduction 41
Lexical Conventions 42
Comments 42
Identifiers (Names) . 4-2
Keywords 4-2
Constants 4-2
Integer Constants 4-2
Explicit Long Constants 4-3
Character Constants 4-3
Floating Constants 4-3
Enumeration Constants 4-3
Siring Literals 4-4
Syntax Notation 4-4
Storage Class and Type 45
Storage Class 4-5
Type 4-5
Objects and lvalues 4-7
Operator Conversions 4-8
Characters and Integers 4-8
Float and Double 4-8
Floating and Integral 4-8
Pointers and Integers 4-8
Unsigned 4-9
Arithmetic Conversions : 49
Void 4-9
Expressions and Operators 4-10
Primary Expressions 4-10
Function Calls 4-11
Unary Operators 4-12
Multiplicative Operators 4-14
Additive Operators 4-14
Shift Operators 4-15
Relational Operators 4-15
Equality Operators 4-15
Bitwise AND Operator 4-16
Bitwise Exclusive OR Operator 4-16
Bitwise Inclusive OR Operator 416

TABLE OF CONTENTS i

Table of Contents

Logical AND Operator 4-16
Logical OR Operator 4-17
Conditional Operator 4-17
Assignment Operators 4-17
Comma Operator . 4-18
Declarations ' : 4-19
Storage Class Specifiers 4-19
Type Specifiers 4-20
Type Qualifiers 421
Program Execution Rules 4-22
Declarators ' _ A 422
Meaning of Declarators ' 4-23
Pointer Declarations 4-24
Function Declaration 4-25
Structure and Union Declarations 4-26
Enumeration Declarations 4-28
Initialization : 4-29
Type Names 4-31
Implicit Declarations 4-32
typedef 4-32
Statements , : 4-33
Expression Statement 4-33
Compound Statement or Block 4-33
Conditional Statement 4-33
while Statement 4-34
do Statement 4-34
for Statement 4-34
switch Statement 4-34
break Statement 4-35
continue Statement _ 4-35
return Statement . 4-36
goto Statement 4-36
Labeled Statement : 4-36
Null Statement . 4-36
External Definitions 4-37
External Function Definitions 4-37
External Data Definitions 4-39

ii PROGRAMMER’S GUIDE

_—

Scope Rules
Lexical Scope
Scope of Externals

Compiler Control Lines
Token Replacement
File Inclusion
Conditional Compilation
Line Control
Version Control

Types Revisited
Structures and Unions
Functions
Arrays, Pointers, and Subscripting
Explicit Pointer Conversions

Constant Expressions
Portability Considerations

Syntax Summary
Expressions
Declarations
Statements
External Definitions
Preprocessor

TABLE OF CONTENTS

Table of Contents

4-40
4-40
4-40

4-42
4-42
4-43
4-43
4-44
4-44

445
445
445
4-46
4-46

4-48

4-49

4-50
4-50
4-51
4-54
4-55
4-55

Introduction

This chapter contains a summary of the grammar and syntax rules of the C Pro-
gramming Language supported by UMIPS. Refer to the Languages Programmer’s
Guide for information on the following subjects:

® How to compile C language programs

® Alignment, size, and value ranges C language variables,

m Storage mapping of C language arrays, structures, and unions
L]

Interface between C language programs and programs written in Pascal and
FORTRAN

C LANGUAGE 4-1

Lexical Conventions

There are six classes of tokens: identifiers, keywords, constants, string literals,
operators, and other separators. Blanks, tabs, new-lines, and comments (collectively,
"white space") as described below are ignored except as they serve to separate tokens.
Some white space is required to separate otherwise adjacent identifiers, keywords,
and constants.

If the input stream has been parsed into tokens up to a given character, the next
token is taken to include the longest string of characters that could possibly constitute
a token.

Comments

The characters /+ introduce a comment that terminates with the characters /.
Comments do not nest.

Identifiers (Names)

An identifier is a sequence of letters and digits. The first character must be a
letter. The underscore (_) and the dollar sign ($) count as letters. The dollar sign
counts as as a letter only when the -Wf, -X dollar option is used. Uppercase and
lowercase letters are different. There is no limit on the length of a name. Other
implementations may collapse case distinctions for external names, and may reduce
- the number of significant characters for both external and non-external names.

Keywords

The following identifiers are reserved for use as keywords and may not be used
otherwise:

auto do goto sizeof void
break double if static volatile
case else int struct while
char enum. long switch

const extern register typedef

continue float return union

default for signed unsigned

Some implementations also reserve the word fortran.

Constants

There are several kinds of constants. Each has a type; an introduction to types is
given in "Storage Class and Type."

Integer Constants

An integer constant consisting of a sequence of digits is taken to be octal if it
begins with 0 (digit zero). An octal constant consists of the digits 0 through 7 only.
A sequence of digits preceded by 0x or 0X (digit zero) is taken to be a hexadecimal
integer. The hexadecimal digits include a or A through f or F with values 10 through
15. Otherwise, the integer constant is taken to be decimal. A decimal constant

4-2 PROGRAMMER’S GUIDE

Lexical Conventions

whose value exceeds the largest signed machine integer is taken to be long; an octal
or hex constant that exceeds the largest unsigned machine integer is likewise taken to
be long. Otherwise, integer constants are int.

Explicit Long Constants

A decimal, octal, or hexadecimal integer constant immediately followed by 1
(letter ell) or L is a long constant. As discussed below, on MIPS Computers integer
and long values may be considered identical.

Character Constants

A character constant is a character enclosed in single quotes, as in ‘x’. The value
of a character constant is the numerical value of the character in the machine’s char-
acter set. Certain nongraphic characters, the single quote (°) and the backslash (\),
may be represented according to the table of escape sequences shown in Figure 4-1:

new-line NL (LF) \n
horizontal tab HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
backslash \ \\
single quote ’ V
bit pattern ddd \ddd

Figure 4-1: Escape Sequences for Nongraphic Characters

The escape \ddd consists of the backslash followed by 1, 2, or 3 octal digits that
are taken to specify the value of the desired character. A special case of this con-
struction is \0 (not followed by a digit), which indicates the ASCII character NUL. If
the character following a backslash is not one of those specified, the behavior is
undefined. An explicit new-line character is illegal in a character constant. The type
of a character constant is int.

Floating Constants

A floating constant consists of an integer part, a decimal point, a fraction part, an
e or E, and an optionally signed integer exponent. The integer and fraction parts
both consist of a sequence of digits. Either the integer part or the fraction part (not
both) may be missing. Either the decimal point or the e and the exponent (not both)
may be missing. Every floating constant has type double.

Enumeration Constants

Names declared as enumerators (see "Structure, Union, and Enumeration
Declarations" under "Declarations") have type int.

C LANGUAGE 4-3

Lexical Conventions

String Literals

A string literal is a sequence of characters surrounded by double quotes, as in
. A string literal has type "array of char" and storage class static (see "Storage
Class and Type") and is initialized with the given characters. The compiler places a
null byte (\0) at the end of each string literal so that programs that scan the string
literal can find its end. In a string literal, the double quote character (") must be pre-
ceded by a \; in addition, the same escapes as described for character constants may
be used.

" "
coe

A \ and the immediately following new-lme are ignored. All string literals, even
when written 1dent1ca11y, are distinct.

Syntax Notation

Syntactic categories are indicated by italic type and literal words and characters
by bold type. Alternative categories are listed on separate lmes An optional entry is
indicated by the subscript "opt," so that

{ expression opt }

indicates an optional expression enclosed in braces. The syntax is summarized in
"Syntax Summary" at the end of the chapter.

4-4 PROGRAMMER’S GUIDE

Storage Class and Type

The C language bases the interpretation of an identifier upon two attributes of the
identifier: its storage class and its type. The storage class determines the location
and lifetime of the storage associated with an identifier; the type determines the mean-
ing of the values found in the identifier’s storage.

Storage Class
There are five declarable storage classes:
® automatic

static

external

]
]
W register
L]

volatile

Automatic variables are local to each invocation of a block (see "Compound State-
ment or Block" in "Statements") and are discarded upon exit from the block. Static
variables are local to a block but retain their values upon reentry to a block even after
control has left the block. External variables exist and retain their values throughout
the execution of the entire program and may be used for communication between
functions, even separately compiled functions. Register variables are (if possible)
stored in the fast registers of the machine; like automatic variables, they are local to
each block and disappear on exit from the block. Volatile storage class is for vari-
ables whose contents may be modified in ways unknown to the compiler. The com-
piler does not optimize those variables assigned a volatile storage class specifier.

Type

The C language supports several fundamental types of objects. Objects declared
as characters (char) are large enough to store any member of the implementation’s
character set. If a genuine character from that character set is stored in a char vari-
able, its value is equivalent to the integer code for that character. Other quantities
may be stored into character variables, but the implementation is machine dependent.
In particular, char may be signed or unsigned by default. In this implementation the
default is unsigned.

Up to three sizes of integer, declared short int, int, and long int, are available.
Longer integers provide no less storage than shorter ones, but the implementation
may make either short integers or long integers, or both, equivalent to plain integers.
Plain integers have the natural size suggested by the host machine architecture. The
other sizes are provided to meet special needs. The sizes for the MIPS Computer are
shown in Figure 4-2.

C LANGUAGE 4-5

Storage Class and Type

MIPS Computer
(ASCII)
char 8 bits
int 32
short 16
long 32
float 32
double 64
float range +10 +38
double range +10 +38

Figure 4-2: MIPS Computer Hardware Characteristics

The properties of enum types (see "Structure, Union, and Enumeration Declara-
tions" under "Declarations") are identical to those of some integer types. The imple-
mentation may use the range of values to determine how to allot storage.

Unsigned integers, declared unsigned, obey the laws of arithmetic modulo 2"
where n is the number of bits in the representation.

Single-precision floating point (float) and double precision floating point (double)
may be synonymous in some implementations.

Because objects of the foregoing types can usefully be interpreted as numbers,
they will be referred to as arithmetic types. Char, int of all sizes whether unsigned or
not, and enum will collectively be called integral types. The float and double types
will collectively be called floating types.

The void type specifies an empty set of values. It is used as the type returned by
functions that generate no value.

Besides the fundamental arithmetic types, there is a conceptually infinite class of
derived types constructed from the fundamental types in the following ways:

B arrays of objects of most types

® functions that return objects of a given type

B pointers to objects of a given type

B structures containing a sequence of objects of various types

B unions capable of containing any one of several objects of various types

In general these methods of constructing objects can be applied recursively.

4-6 PROGRAMMER’S GUIDE

Storage Class and Type

Objects and lvalues

An object is a manipulatable region of storage. An lvalue is an expression refer-
ring to an object. An obvious example of an lvalue expression is an identifier. There
are operators that yield lvalues: for example, if E is an expression of pointer type,
then «E is an lvalue expression referring to the object to which E points. The name
"lvalue" comes from the assignment expression E1 = E2 in which the left operand E1
must be an lvalue expression. The discussion of each operator below indicates
whether it expects lvalue operands and whether it yields an lvalue.

C LANGUAGE 4-7

Operator Conversions

A number of operators may, depending on their operands, cause conversion of
the value of an operand from one type to another. This part explains the result to be
expected from such conversions. The conversions demanded by most ordinary opera-
tors are summarized under "Arithmetic Conversions." The summary will be supple-
mented as required by the discussion of each operator.

Characters and Integers

A character or a short integer may be used wherever an integer may be used. In
all cases the value is converted to an integer. Conversion of a shorter integer to a
longer preserves sign. On the machines from MIPS Computer Systems, sign exten-
sion of char variables does not occur. It is guaranteed that a member of the standard
character set is non-negative.

On machines that treat characters as signed, the characters of the ASCII set are
all non-negative. However, a character constant specified with an octal escape suffers
sign extension and may appear negative; for example, \377° has the value ~1.

When a longer integer is converted to a shorter integer or to a char, it is trun-
cated on the left. Excess bits are simply discarded.

Float and Double

All floating arithmetic in C is carried out in double precision by default. When-
ever a float appears in an expression it is lengthened to double by zero padding its
fraction. When a double must be converted to float, for example by an assignment,
the double is rounded before truncation to float length. This result is undefined if it
cannot be represented as a float. The compiler option -float prevents the promotion
of objects from float to double in expressions, but not as actual arguments in function
calls.

The use of prototypes to declare formal arguments to functions prevents promo-
tion of the corresponding actual arguments.

Floating and Integral

Conversions of floating values to integral type are rather machine dependent. In
particular, the direction of truncation of negative numbers varies. The result is
undefined if it will not fit in the space provided. The implementation conforms to
ANSI/IEEE 754-1985.

Conversions of integral values to floating type behave well. Some loss of accuracy
occurs if the destination lacks sufficient bits.

Pointers and Integers

An expression of integral type may be added to or subtracted from a pointer; in
such a case, the first is converted as specified in the discussion of the addition opera-
tor. Two pointers to objects of the same type may be subtracted; in this case, the
result is converted to an integer as specified in the discussion of the subtraction
operator.

4-8 PROGRAMMER’S GUIDE

Operator Conversions

Unsigned

Whenever an unsigned integer and a plain integer are combined, the plain integer
is converted to unsigned and the result is unsigned. The value is the least unsigned
integer congruent to the signed integer:

(modulo 2wordsize).

In a 2’s complement representation, this conversion is conceptual; and there is no
actual change in the bit pattern.

When an unsigned short integer is converted to long, the value of the result is the
same numerically as that of the unsigned integer. Thus, the conversion amounts to
padding with zeros on the left.

Arithmetic Conversions

A great many operators cause conversions and yield result types in a similar way.
This pattern will be called the "usual arithmetic conversions."

1. First, any operands of type char or short are converted to int, and any
operands of type unsigned char or unsigned short are converted to unsigned
int.

2. Then, if either operand is double, the other is converted to double and that is
the type of the result.

3. Otherwise, if either operand is unsigned long, the other is converted to
unsigned long and that is the type of the result.

4. Otherwise, if either operand is long, the other is converted to long and that is
the type of the result.

5. Otherwise, if one operand is long, and the other is unsigned int, they are both
converted to unsigned long and that is the type of the result.

6. Otherwise, if either operand is unsigned, the other is converted to unsigned
and that is the type of the result.

7. Otherwise, both operands must be int, and that is the type of the result.

Void

The (nonexistent) value of a void object may not be used in any way, and neither
explicit nor implicit conversion may be applied. Because a void expression denotes a
nonexistent value, such an expression may be used only as an expression statement
(see "Expression Statement” under "Statements") or as the left operand of a comma
expression (see "Comma Operator" under "Expressions”).

An expression may be converted to type void by use of a cast. For example, this
makes explicit the discarding of the value of a function call used as an expression
statement.

C LANGUAGE 4-9

Expressions and Operators

The precedence of expression operators is the same as the order of the major
subsections of this section, highest precedence first. Thus, for example, the expres-
sions referred to as the operands of + (see "Additive Operators") are those expres-
sions defined under "Primary Expressions”, "Unary Operators”, and "Multiplicative
Operators”. Within each subpart the operators have the same precedence. Left- or
right-associativity is specified in each subsection for the operators discussed therein.
The precedence and associativity of all the expression operators are summarized in
the grammar of "Syntax Summary".

Otherwise, the order of evaluation of expressions is undefined. In particular, the
compiler considers itself free to compute subexpressions in the order it believes most
efficient even if the subexpressions involve side effects. Expressions involving a com-
mutative and associative operator (x, +, &, |,) may be rearranged arbitrarily even in
the presence of parentheses; to force a partlcular order of evaluation, an explicit tem-
porary must be used.

The handling of overflow and divide check in expression evaluation is undefined.
Most existing implementations of C ignore integer overflows; treatment of division by
0 and all floating-point exceptions varies between machines and is usually adjustable
by a library function.

Primary Expressions

Primary expressions involving ., ->, subscripting, and function calls group left to
right.

primary-expression:
identifier
constant
string literal
(expression)
primary-expression [expression]|
primary-expression (expression-list opt)
primary-expression . identifier
primary-expression -> identifier

expression-list:
expression
expression-list , expression

An identifier is a primary expression provided it has been suitably declared as dis-
cussed below. Its type is specified by its declaration. If the type of the identifier is
“array of ...", then the value of the identifier expression is a pointer to the first object
in the array; and the type of the expression is "pointer to ...". Moreover, an array
identifier is not an lvalue expression. Likewise, an identifier that is declared "function
returning ...", when used except in the function-name position of a call, is converted
o "pointer to function returning ...".

A constant is a primary expression. Its type may be int, long, or double depend-
ing on its form. Character constants have type int and floating constants have type
double.

4-10 PROGRAMMER’S GUIDE

Expressions and Operators

A string literal is a primary expression. Its type is originally "array of char", but
following the same rule given above for identifiers, this is modified to "pointer to
char" and the result is a pointer to the first character in the string literal. (There is an
exception in certain initializers; see "Initialization" under "Declarations.")

A parenthesized expression is a primary expression whose type and value are
identical to those of the unadorned expression. The presence of parentheses does not
affect whether the expression is an lvalue.

A primary expression followed by an expression in square brackets is a primary
expression. The intuitive meaning is that of a subscript. Usually, the primary expres-
sion has type "pointer to ...", the subscript expression is int, and the type of the
result is "...". The expression E1[E2] is identical (by definition) to *((E1)+(E2)).
All the clues needed to understand this notation are contained in this subpart together
with the discussions in "Unary Operators” and "Additive Operators" on identifiers, x
and =+, respectively. The implications are summarized under "Arrays, Pointers, and
Subscripting" under "Types Revisited."

Function Calls

An expression that specifies a function call must have a type pointer to the func-
tion returning void or returning an object type other than an array.

If the function call expression has a type that specifies the type for its parameters,
the number of arguments must agree with the number of parameters. The type of
each argument must have a value that can be assigned to an object with the
unqualified version of the type of its corresponding parameter.

A function call can be defined as a postfix expression followed by an argument list
enclosed in parentheses (). A null argument list can be specified by specifying only
the parentheses. Arguments to the function can be specified by a command separated
list of expressions within the parentheses. The postfix expression specifies the func-
tion called.

If the expression specifying the function call consists of an undeclared identifier,
the identifier is implicitly declared as if the following declaration appeared in the
innermost block containing the function call:

extern int identifier()

The expression specifying the argument can be of any object type. In the function
call, each parameter is assigned the value of the corresponding argument.

If the function call doesn’t contain a function prototype declarator, integral pro-
motions are performed on each argument; arguments that have type float are pro-
moted to double. Such promotions are referred to as default argument promotions.
Results are undefined for the following conditions:

B When the number of arguments doesn’t agree with the number of arguments.

B When the function prototype declarator is not specified at the function
definition, and the types of arguments after promotion are not the same as
those of the parameters after promotion.

C LANGUAGE 4-11

Expressions and Operators

® When the function prototype declarator is specified at the function definition,
and the types of arguments after promotion are not the same as those of the
parameters after promotion.

B When the function prototype ends with an ellipsis (, ...).

If a function prototype declarator is specified at the function called, the arguments are
implicitly converted to the types of the corresponding parameters. When an ellipsis
notation in a function prototype declarator is specified, the argument type conversion
is stopped after the last declared parameter. Default argument promotions.are per-
formed on trailing arguments. Results are undefined when a call is executed under
the following conditions:

B a parameter is declared with a type that is not the same after the default argu-
ment promotion, and

B a function prototype of the same type is not specified in the function definition.

Only those conversions just described are performed implicitly. The number and

types of arguments are not compared with those of the parameters in a function

definition that contains no function prototype declarator.

The order of evaluation of the function designator, the arguments, and subexpres-
sions within the arguments is unspecified, but there is a sequence point before the
actual call.

Recursive function calls are permitted, both directly and indirectly, through any
sequence of other functions.

A primary expression followed by a dot followed by an identifier is an expression.
The first expression must be a structure or a union, and the identifier must name a
member of the structure or union. The value is the named member of the structure
or union, and it is an lvalue if the first expression is an lvalue.

A primary expression followed by an arrow (built from = and >) followed by an
identifier is an expression. The first expression must be a pointer to a structure or a
union and the identifier must name a member of that structure or union. The result is
an lvalue referring to the named member of the structure or union to which the
pointer expression points. Thus the expression E1=—>MOS is the same as
(xE1).MOS. Structures and unions are discussed in "Structure, Union, and Enumera-
tion Declarations" under "Declarations."”

Unary Operators

Expressions with unary operators group right to left.

4-12 PROGRAMMER’S GUIDE

Expressions and Operators

unary-expression:
* expression
& lvalue
— expression
! expression
~ expression
++ lvalue
——lvalue
lvalue ++
lvalue ——
(type-name) expression
sizeof expression
sizeof (type-name)

The unary * operator means "indirection"; the expression must be a pointer, and the
result is an lvalue referring to the object to which the expression points. If the type
of the expression is "pointer to ...," the type of the result is "

The result of the unary & operator is a pointer to the object referred to by the
Ivalue. If the type of the Ivalue is "...", the type of the result is "pointer to ...".

The result of the unary = operator is the negative of its operand. The usual arith-
metic conversions are performed The negatlve of an unsigned quantlty is computed
by subtracting its value from 2" where n is the number of bits in the corresponding
signed type.

There is no unary 4+ operator.

The result of the logical negation operator ! is one if the value of its operand is
zero, zero if the value of its operand is nonzero. The type of the result is int. It is
applicable to any arithmetic type or to pointers.

The ~ operator yields the one’s complement of its operand. The usual arithmetic
conversions are performed. The type of the operand must be integral.

The object referred to by the Ivalue operand of prefix ++ is incremented. The
value is the new value of the operand but is not an lvalue. The expression +=+x is
equivalent to x += 1. See the discussions "Additive Operators" and "Assignment
Operators" for information on conversions.

The lvalue operand of prefix —= is decremented analogously to the prefix ++
operator.

When postfix ++ is applied to an lvalue, the result is the value of the object
referred to by the lvalue. After the result is noted, the object is incremented in the
same manner as for the preﬁx ++ operator. The type of the result is the same as the
type of the lvalue expression.

When postfix == is applied to an lvalue, the result is the value of the object
referred to by the lvalue. After the result is noted, the object is decremented in the
manner as for the prefix == operator. The type of the result is the same as the type
of the lvalue expression. ‘

An expression preceded by the parenthesized name of a data type causes conver-
sion of the value of the expression to the named type. This construction is called a
cast. Type names are described in "Type Names" under "Declarations.”

C LANGUAGE 4-13

Expressions and Operators

The sizeof operator yields the size in bytes of its operand. (A byte is undefined
by the language except in terms of the value of sizeof. However, in all existing imple-
mentations, a byte is the space required to hold a char.) When applied to an array,
the result is the total number of bytes in the array. The size is determined from the
declarations of the objects in the expression. This expression is semantically an
unsigned constant and may be used anywhere a constant is required. Its major use is
in communication with routines like storage allocators and I/O systems.

The sizeof operator may also be applied to a parenthesized type name. In that
case it yields the size in bytes of an object of the indicated type.

The construction sizeof(fype) is taken to be a unit, so the expression
sizeof(type) =2 is the same as (sizeof(type))=2.

Multiplicative Operators

The multiplicative operators *, /, and % group left to right. The usual arlthmetlc
conversions are performed.

multiplicative expression:
expression x expression
expression / expression
expression % expression

The binary * operator indicates multiplication. The % operator is associative, and
expressions with several multiplications at the same level may be rearranged by the
compiler. The binary / operator indicates division.

The binary % operator yields the remainder from the division of the first expres-
sion by the second. The operands must be integral.

When positive integers are divided, truncation is toward 0; but the form of trunca-
tion is machine-dependent if either operand is negative. On all machines covered by
this manual, the remainder has the same sign as the dividend. It is always true that
(a/b)sb + a%b is equal to a (if b is not 0).

Additive Operators

The additive operators + and = group left to right. The usual arithmetic conver-
sions are performed. There are some additional type possibilities for each operator.

additive-expression:
expression + expression
expression — expression

The result of the + operator is the sum of the operands. A pointer to an object
in an array and a value of any integral type may be added. The latter is in all cases
converted to an address offset by multiplying it by the length of the object to which
the pointer points. The result is a pointer of the same type as the original pointer
that points to another object in the same array, appropriately offset from the original
object. Thus if P is a pointer to an object in an array, the expression P+1 is a
pointer to the next object in the array. No further type combinations are allowed for
pointers.

4-14 PROGRAMMER’S GUIDE

Expressions and Operators

The + operator is associative, and expressions with several additions at the same
level may be rearranged by the compiler.

The result of the — operator is the difference of the operands. The usual arith-
metic conversions are performed. Additionally, a value of any integral type may be
subtracted from a pointer, and then the same conversions for addition apply.

If two pointers to objects of the same type are subtracted, the result is converted
(by division by the length of the object) to an int representing the number of objects
separating the pointed-to objects. This conversion will in general give unexpected
results unless the pointers point to objects in the same array, since pointers, even to
objects of the same type, do not necessarily differ by a multiple of the object length.

Shift Operators

The shift operators << and >> group left to right. Both perform the usual arith-
metic conversions on their operands, each of which must be integral. Then the right
operand is converted to int; the type of the result is that of the left operand. The
result is undefined if the right operand is negative or greater than or equal.to the
length of the object in bits.

shift-expression:
expression << expression
expression >> expression

The value of E1<<E2 is E1 (interpreted as a bit pattern) left-shifted E2 bits.
Vacated bits are 0 filled. The value of E1>>E2 is E1 right-shifted E2 bit positions.
The right shift is guaranteed to be logical (0 fill) if E1 is unsigned; otherwise, it may
be arithmetic.

Relational Operators
The relational operators group left to right.

relational-expression:
expression < expression
expression > expression
expression <= expression
expression >= expression

The operators < (less than), > (greater than), <= (less than or equal to), and >=
(greater than or equal to) all yield 0 if the specified relation is false and 1 if it is true.
The type of the result is int. The usual arithmetic conversions are performed. Two
pointers may be compared; the result depends on the relative locations in the address
space of the pointed-to objects. Pointer comparison is portable only when the
pointers point to objects in the same array.

Equality Operators

equality-expression:
expression == expression
expression != expression

The == (equal to) and the != (not equal to) operators are exactly analogous to the
relational operators except for their lower precedence. (Thus a<b == c¢<d is 1

C LANGUAGE 4-15

Expressions and Operators

whenever a<b and ¢<d have the same truth value.)

A pointer may be compared to an integer only if the integer is the constant 0. A
pointer to which 0 has been assigned is guaranteed not to point to any object and will
appear to be equal to 0. In conventional usage, such a pointer is considered to be
null.

Bitwise AND Operator
and-expression:
expression & expression

The & operator is associative, and expressions involving & may be rearranged. The
usual arithmetic conversions are performed. The result is the bitwise AND function
of the operands. The operator applies only to integral operands.

Bitwise Exclusive OR Operator
exclusive-or-expression:
expression ~ expression

The ~ operator is associative, and expressions -involving ~ may be rearranged. The
usual arithmetic conversions are performed; the result is the bitwise exclusive OR
function of the operands. The operator applies only to integral operands.

Bitwise Inclusive OR Operator
inclusive-or-expression:
expression | expression

The | operator is associative, and expressions involving | may be rearranged. The
usual arithmetic conversions are performed; the result is the bitwise inclusive OR
function of its operands. The operator applies only to integral operands.

Logical AND Operator
logical-and-expression:
expression && expression

The && operator groups left to right. It returns 1 if both its operands evaluate to
nonzero, 0 otherwise. Unlike &, && guarantees left to right evaluation; moreover,
the second operand is not evaluated if the first operand evaluates to 0.

The operands need not have the same type, but each must have one of the funda-
mental types or be a pointer. The result is always int.

4-16 PROGRAMMER’S GUIDE

|
§
('

Expressions and Operators

Logical OR Operator

logical-or-expression:
expression || expression

The || operator groups left to right. It returns 1 if either of its operands evaluates to
nonzero, 0 otherwise. Unlike |, || guarantees left to right evaluation; moreover, the
second operand is not evaluated if the value of the first operand evaluates to nonzero.

The operands need not have the same type, but each must have one of the funda-
mental types or be a pointer. The result is always int.

Conditional Operator

conditional-expression:
expression ? expression : expression

Conditional expressions group right to left. The first expression is evaluated; and if it
is nonzero, the result is the value of the second expression, otherwise that of third
expression. If possible, the usual arithmetic conversions are performed to bring the
second and third expressions to-a common type. If both are structures or unions of
the same type, the result has the type of the structure or union. If both pointers are
of the same type, the result has the common type. Otherwise, one must be a pointer
and the other the constant 0, and the result has the type of the pointer. Only one of
the second and third expressions is evaluated.

Assignment Operators

There are a number of assignment operators, all of which group right to left. All
require an lvalue as their left operand, and the type of an assignment expression is
that of its left operand. The value is the value stored in the left operand after the
assignment has taken place. The two parts of a compound assignment operator are
separate tokens.

assignment-expression:
lvalue = expression
lvalue += expression
lvalue —= expression
lvalue x= expression
lvalue /= expression
lvalue %= expression
Wvalue >>= expression
lvalue <<= expression
lvalue &= expression
lvalue ~= expression
Ivalue |= expression

In the simple assignment with =, the value of the expression replaces that of the
object referred to by the lIvalue. If both operands have arithmetic type, the right
operand is converted to the type of the left preparatory to the assignment. Second,
both operands may be structures or unions of the same type. Finally, if the left
operand is a pointer, the right operand must in general be a pointer of the same type.

C LANGUAGE 4-17

Expressions and Operators

However, the constant 0 may be assigned to a pointer; it is guaranteed that this value
will produce a null pointer distinguishable from a pointer to any object.

The behavior of an expression of the form E1 op = E2 may be inferred by taking
it as equivalent to E1 = E1 op (E2); however, E1 is evaluated only once. In += and
—=, the left operand may be a pointer, in which case the (integral) right operand is
converted as explained in "Additive Operators." All right operands and all non-
pointer left operands must have arithmetic type.

Comma Operator

comma-expression:
expression , expression

A pair of expressions separated by a comma is evaluated left to right, and the value
of the left expression is discarded. The type and value of the result are the type and
value of the right operand. This operator groups left to right. In contexts where
comma is given a special meaning, e.g., in lists of actual arguments to functions (see
"Primary Expressions") and lists of initializers (see "Initialization" under "Declara-
tions"), the comma operator as described in this subpart can only appear in
parentheses. For example, '

f(a, (t=3, t+2), c)

has three arguments, the second of which has the value 5.

4-18 PROGRAMMER’S GUIDE

Declarations

Declarations are used to specify the interpretation that C gives to each identifier;
they do not necessarily reserve storage associated with the identifier. Declarations
have the form

declaration:

decl-specifiers declarator-list opt’

The declarators in the declarator-list contain the identifiers being declared. The decl-
specifiers consist of a sequence of type and storage class specifiers.

decl-specifiers:
type-specifier decl-specifiers

t
sc-specifier decl-specifiers op

opt
The list must be self-consistent in a way described below.

Storage Class Specifiers
The sc-specifiers are:

sc-specifier:
auto
static
extern
register
typedef

The typedef specifier does not reserve storage, but can be called a "storage class
specifier" for syntactic convenience. See "typedef' for more information. The
storage classes are as follows:

Auto An auto declaration indicates that storage is allocated at execution
and exists only for the duration of that block activation.

Static The compiler allocates storage for a static declara tion at compile
time. This allocation remains fixed for the duration of the program.
Static variables reside in the program bss section if they are not ini-
tialized, otherwise they are placed in the data section.

Register The compiler allocates variables with the register storage class to
registers. For programs compiled using the to assign all variables to
registers, regardless of the storage class specified.

Extern The extern storage class indicates that the variable refers to storage
defined elsewhere in an external data definition. The compiler doesn’t
- allocate storage to extern variable declarations; it uses the following

logic in defining and referencing them:

Extern is omitted 1If an initializer is present, a definition for the symbol is emit-
ted. Having two or more such definitions among all the files
comprising a program results in an error at link time or
before. If no initializer is present, a common definition is
emitted. Any number of common definitions of the same
identifier may coexist.

C LANGUAGE 4-19

Declarations

Extern is present The compiler assumes that declaration refers to a name
defined elsewhere. A declaration having an initializer is ille-
gal. If a declared identifier is never used, the compiler
doesn’t issue an external reference to the linker.

Volatile The volatile storage class is specified for those variables that may be
modified in ways unknown to the compiler. For example, volatile
might be specified for an object corresponding to a memory mapped
input/autput port or an object accessed by an asynchronously inter-
rupting function. FExcept for expression evaluation, no phase of the
compiler optimizes any of the code dealing with volatile objects.

NOTE. If a pointer specified as volatile is assigned to another pointer without the

volatile specification, the compiler treats the other pointer as non-volatile. In the fol-

lowing example:

volatile int *1;
int *j;

(volatile*)j %-i;
3108282356*10

the compiler treats j as a non-volatile pointer and the object it points to as non-
volatile, and may optimize it.

The compiler option volatile causes all objects to be compiled as volatile.

Type Specifiers
The type-specifiers are

type-specifier:

struct-or-union-specifier

typedef-name

enum-specifier
basic-type-specifier:

basic-type

basic-type basic-type-specifiers
basic-type:

char

short

int -

long

unsigned

signed

float

double

void

At most one of the words long or short may be specified in conjunction with int; the
meaning is the same as if int were not mentioned. The word long may be specified in
conjunction with float; the meaning is the same as double. The word unsigned may
be specified alone, or in conjunction with int or any of its short or long varieties, or
with char. ’

4-20 PROGRAMMER’S GUIDE

Declarations

Otherwise, at most on type-specifier may be given in a declaration. In particular,
adjectival use of long, short, or unsigned is not permitted with typedef names. If the
type-specifier is missing from a declaration, it is taken to be int.

Specifiers for structures, unions, and enumerations are discussed in "Structure,
Union, and Enumeration Declarations." Declarations with typedef names are dis-
cussed in "typedef."”

Type Qualifiers

A type-qualifier has the following syntax:

type-specifier:
const (reserved for future use)
volatile

Const and volatile must appear only once in the same specifier or qualifier list, either
directly or by one or more typedef specifications.

The properties associated with qualified types are meaningful only for expressions
that are lvalues. A const object that is not volatile can be placed in a read-only
region of storage.

A volatile object can be modified in ways unknown to the compiler. Theérefore,
any expression referring to such an object must be evaluated according to the
sequence rules described the "Program Execution Rules" section. Furthermore, at
every sequence point, the value last stored agrees with that specified by the program
execution rules, except as modified by factors not known by the compiler. For exam-
ple, changes in the values of associated with I/O registers are unknown.

A volatile declaration can be used to describe an object that corresponds to a
memory-mapped input/output port, or an object accessed by an asynchronously inter-
rupting function. Actions on objects so declared are neither optimized nor reordered
by the C compiler, except as permitted by the rules for evaluating expressions.

The following rules apply when the specifier or qualifier list for the declaration of
an object that has aggregate or union types includes any type qualifiers:

® The type of any lvalue referring to a member or element of the object with
scalar type (including, recursively, any member or element with scalar type of
all contained aggregates or unions) has the equivalently qualified version of its
specified type.

® The object has the specified aggregate or union type.
The following rules apply in order for two qualified scalar types to be the same:
® Both must have the identically qualified version of the same scalar type.

® The order of type qualifiers within a list of specifiers or qualifiers does not
affect the specified type.

The following declaration is an example of an object that can be modified at execu-
tion time and for which the compiler cannot safely optimize references:

extern volatile int real_time_clock

C LANGUAGE 4-21

Declarations

Program Execution Rules

This section describes the rules that C language compiler observes when compil-
ing programs using the O1 command line option for optimization. This is the default,
which permits the compiler to perform only minimum optimizations.

Accessing a volatile object, modifying an object, modifying a file, or callin a
function that does any of those operations are all side effects. Evaluation of an
expression can produce side effects. "At certain specified points during execu-
tion, called sequence points, all side effects of previous valuations are com-
pleted, and no side effects of subsequent evaluations have taken place.

The compiler evaluates all expressions as specified by the semantics. The com-
piler doesn’t evaluate part of an expression if (1) it determines that the value of
the expression is not needed and (2) no side effects are produced by the non-
evaluation (including those that result from calling a function or accessing a
volatile object. '

After a machine interrupt, only the values of objects as they existed at the pre-
vious sequence point are reliable. The results of objects between the previous
sequence point and the next sequence point are unknown.

An instance of each object with automatic storage duration is associated with
each entry into a block. Such an object exists and retains its last-stored value
during the execution of the block and while the block is suspended (by a call of
a function or receipt of an interrupt signal).

The compiler ensures that at sequence points, volatile objects are stable with
respect to previous evaluations being complete and subsequent evaluations not
yet having occurred.

Declarators

- The declarator-list appearing in a declaration is a comma-separated sequence of
declarators, each of which may have an initializer:

declarator-list:

init-declarator
init-declarator , declarator-list

init-declarator:

declarator mmallzerop ¢

Initializers are discussed in "Initialization." The specifiers in the declaration indicate

the type and storage class of the objects to which the declarators refer. Declarators
have the syntax:

declarator:
pointer . direct-declarator
, opt
direct-declarator
identifier
(declarator)

4-22

direct_declarator [constant-expression
direct-declarator (parameter-type-list)

direct-declarator (identifier-list opt)

opt]

PROGRAMMER’S GUIDE

Declarations

pointer:
* type-qualifier-list , Dt
* type-qualifier-list opt
type-qualifier-list:
type-qualifier
type-qualifier-list type-qualifier
parameter-type-list: :
parameter-list
parameter-list , . . .

pointer

parameter-list

parameter-declaration

parameter-list , parameter-declaration
parameter-declaration:
declaration-specifiers declarator
declaration-specifiers abstract-declarator opt
identifier-list '
identifier
identifier-list , identifier

The grouping is the same as in expressions.

Meaning of Declarators

Each -declarator is taken to be an assertion that when a construction of the same
form as the declarator appears in an expression, it yields an object of the indicated
type and storage class.

Each declarator contains exactly one identifier; it is this identifier that is declared.
If an unadorned identifier appears as a declarator, then it has the type indicated by
the specifier heading the declaration.

A declarator in parentheses is identical to the unadorned declarator, but the bind-
ing of complex declarators may be altered by parentheses. See the examples below.

Now imagine a declaration

T D1

where T is a type-specifier (like int, etc.) and D1 is a declarator. Suppose this
declaration makes the identifier have type "... T ," where the "..." is empty if D1 is
just a plain identifier (so that the type of x in "int x" is just int). Then if D1 has the
form

*xD
the type of the contained identifier is "... pointer to T ."
If D1 has the form |
DO
then the contained identifier has the type "... function returning T."

If D1 has the form

D[constant-expression)
or

D]

then the contained identifier has type "... array of T." In the first case, the constant

C LANGUAGE 4-23

Declarations

expression is an expression whose value is determinable at compile time, whose type
is int, and whose value is positive. (Constant expressions are defined precisely in
"Constant Expressions.") When several "array of" specifications are adjacent, a
multi-dimensional array is created; the constant expressions that specify the bounds of
the arrays may be missing only for the first member of the sequence. This elision is
useful when the array is external and the actual definition, which allocates storage, is
given elsewhere. The first constant expression may also be omitted when the declara-
tor is followed by initialization. In this case the size is calculated from the number of
initial elements supplied.

An array may be constructed from one of the basic types, from a pointer, from a
structure or union, or from another array (to generate a multi-dimensional array).

Not all the possibilities allowed by the syntax above are actually permitted. The
restrictions are as follows: functions may not return arrays or functions although they
may return pointers; there are no arrays of functions although there may be arrays of
pointers to functions. Likewise, a structure or union may not contain a function; but
it may contain a pointer to a function.

As an example, the declaration
int i, *ip, £(), *fip (), (*pfi) O3

declares an integer i, a pointer ip to an integer, a function f returning an integer, a
function fip returning a pointer to an integer, and a pointer pfi to a function, which
returnis an integer. It is especially useful to compare the last two. The binding of
*fip() is *(fip()). The declaration suggests, and the same construction in an expres-
sion requires, the calling of a function fip, and then using indirection through the
(pointer) result to yield an integer. In the declarator (*pfi)(), the extra parentheses
are necessary, as they are also in an expression, to indicate that indirection through a
pointer to a function yields a function, which is then called; it returns an integer.

As another example,
float fa[17], *afp[17];

declares an array of float numbers and an array of pointers to float numbers. Finally,
static int x3d[3][5][7];

declares a static 3-dimensional array of integers, with rank 3x5x7. In complete
detail, x3d is an array of three items; each item is an array of five arrays; each of the
latter arrays is an array of seven integers. Any of the expressions x3d, x3d[i],
x3d[i] [j]1, x3d[i] [j][k] may reasonably appear in an expression. The first three have
type "array" and the last has type int.

Pointer Declarations

If, in the declaration T D1, D1 has the following format:
* type-qualzﬁer-listOP 'D

and the type specified for ident in the declaration T D is derived-declarator-type T,
then the type specified for ident is derived-declarator-type type-qualifier-list pointer to
T. If the type qualifier list includes volatile, the identifier is a volatile-qualified
pointer.

4-24 PROGRAMMER’S GUIDE

Declarations

For two ponter types to be same, both must be identically qualified and both must

be pointers to the same type.

Function Declaration

or

If, in the declaration T D1, D1 has the following format:

parameter—type—list

identifier-list°P)

and the type specified for ident in the declaration T D is derived-declarator-type T,
then the type specified for ident is derived-declarator-type function returning T.

The following rules apply to function declarations:

A function declarator must not specify a return type that is a function. type or an
array type.

An identifier list in a function declarator that is not part of a function definition
must be empty. '

All declarations of a specific function in the same scope must specify the same

type.

The parameter types and optional parameter identifiers are specified in a parame-
ter type list. If the list ends with an ellipsis (;...), information need not be
specified on the number of types of parameters following the comma; void
specified as the only item indicates a function with no parameters.

The storage-class specifier in a declaration is recognized only only when the
declared parameter is one of the members of the parameter type list for a func-
tion definition. Otherwise, the storage-class specifier is ignored.

The identifier list declares only the identifiers of the parameters of the function. If
the function declarator is part of a function definition, an empty list specifies that
the function has no parameters. If the function declarator is not part of a func-
tion definition, an empty list specifies that no information about the number or
types of the parameters is supplied.

Two function types must specify the same return type in order for them to be the
same. Two associated parameter type lists must specify the same number of
parameters and agree in the use of the ellipsis terminator.

If one function type uses a parameter typelist, and the other is is specified by a
function definition that contains an identifier list, both must have the same
number of parameters. The type of each identifier must be the same type as the
corresponding prototype parameter, if the type resulting from default argument
promotion to the type of the identifier is the same type as the type of the
corresponding prototype parameters.

For each parameter declared with a function or array type, the parameter type
compared is the one that results from conversion to pointer type. For each
parameter declared with qualified type, the parameter type compares is the
unqualified version of its declared type.

C LANGUAGE 4-25

Declarations

Consider the following example:

int f(void), *fip(), (*pfl)(;
This example declares the following:

The function f with no parameters returning an int

The function fip with no parameter specifications
returning a pointer to an int.

A pointer pfl to-a function with no parameter
specification returning an int.

Note that the binding of *fip() is *(fip()) and the same construction in an expression
requires a call to fip; then, the use of indirection through the yields an int. In the
declarator (*pf1)(), the extra parentheses are required to indicate that indirection
through a pointer to a function yields a function designator. The designator is then
used to call a function, which returns an int.

If the declaration occurs .outside of a function, the identifiers have full scope and
external linkage. If the declaration occurs inside a function, the identifiers of the
function f and fip have block scope and external linkage; the identifier of the pointer
pfl has block scope and no linkage.

The following example
int (*apfl1[3]) (int *x, int *y);

declares an array apfl of three pointer to functions returning int. Each function has
‘two parameters that are pointers to int. The identifiers x and y are declared for
descriptive purposes only; they go out of scope at the end of the apfl declaration.

The declaration
int (*fpfl(int (*) (long), int))(int, ...);

declares a function fpfl that returns a pointer to a function returning an int. The
function fpfl has two parameters: a pointer to a function returning a and int (with
one parameters of type long), and an int. The pointer returned by fpfl points to a
function that has at least one parameter with the type int.

Structure and Union Declarations

A structure is an object consisting of a sequence of named members. FEach
member may have any type. A union is an object that may, at a given time, contain
any one of several members. Structure and union specifiers have the same form.

struct-or-union-specifier: _
struct-or-union { struct-decl-list }
struct-or-union identifier { struct-decl-list }
struct-or-union identifier

struct-or-union:
struct
union

The struct-decl-list is a sequence of declarations for the members of the structure or
union:

4-26 PROGRAMMER’S GUIDE

(

Declarations

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
type-specifier struct-declarator-list ;

struct-declarator-list:
struct-declarator
struct-declarator , struct-declarator-list

In the usual case, a struct-declarator is just a declarator for a member of a structure
or union. . A structure member may also consist of a specified number of bits. Such a
member is also called a field; its length, a non-negative constant expression, is set off
from the field name by a colon.

struct-declarator:
declarator
declarator : constant-expression
: constant-expression

Within a structure, the objects declared have addresses that increase as the -
declarations are read left to right. Each non-field member of a structure begins on an
addressing boundary appropriate to its type; therefore, there may be unnamed holes
in a structure. Field members are packed into machine integers; they do not straddle
words. A field that does not fit into the space remaining in a word is put into the
next word. No field may be wider than a word. (See Figure 4-2 for sizes of basic

_types on machines from MIPS Computer Systems.)

A struct-declarator with no declarator, only a colon and a width, indicates an
unnamed field useful for padding to conform to externally-imposed layouts. As a spe-
cial case, a field with a width of O specifies alignment of the next field at an implemen-
tation dependent boundary.

The language does not restrict the types of things that are declared as fields.
Moreover, even int fields may be considered to be unsigned. For these reasons, it is
strongly recommended that fields be declared as unsigned where that is the intent.
There are no arrays of fields, and the address-of operator, &, may not be applied to
them, so that there are no pointers to fields.

A union may be thought of as a structure all of whose members begin at offset 0
and whose size is sufficient to contain any of its members. At most, one of the
members can be stored in a union at any time.

A structure or union specifier of the second form, that is, one of

struct identifier { struct-decl-list }
union identifier { struct-decl-list }

declares the identifier to be the structure tag (or union tag) of the structure specified
by the list. A subsequent declaration may then use the third form of specifier, one of

struct identifier
union identifier

C LANGUAGE 4-27

Declarations

Structure tags allow definition of self-referential structures. Structure tags also
permit the long part of the declaration to be given once and used several times. It is
illegal to declare a structure or union that contains an instance of itself, but a struc-
ture or union may contain a pointer to an instance of itself.

The third form of a structure or union specifier may be used prior to a declaration
that gives the complete specification of the structure or union in situations in which
the size of the structure or union is unnecessary. The size is unnecessary in two situa-
tions: when a pointer to a structure or union is being declared and when a typedef
name is declared to be a synonym for a structure or union. This, for example, allows
the declaration of a pair of structures that contain pointers to each other.

The names of members and tags do not conflict with each other or with ordinary
variables. A particular name may not be used twice in the same structure, but the
same name may be used in several different structures in the same scope.

A simple but important example of a structure declaration is the following binary
tree structure:

struct tnode

{
char tword[20];
int count;
struct tnode *left;
struct tnode *right;
}: '

which contains an array of 20 characters, an integer, and two pointers to similar struc-
tures. Once this declaration has been given, the declaration

struct tnode s, *sp;

declares s to be a structure of the given sort and sp to be a pointer to a structure of
the given sort. With these declarations, the expression

sp->count

refers to the count field of the structure to which sp points;
s.left

refers to the left subtree pointer of the structure s; and
s.right->tword [0]

refers to the first character of the tword member of the right subtree of s.

Enumeration Declarations

Enumeration variables and constants have integral type.

4-28 PROGRAMMER’S GUIDE

Declarations

enum-specifier:
enum { enum-list }
enum identifier { enum-list }
enum identifier

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier = constant-expression

The identifiers in an enum-list are declared as constants and may appear wherever
constants are required. If no enumerators with = appear, then the values of the
corresponding constants begin at 0 and increase by 1 as the declaration is read from
left to right. An enumerator with = gives the associated identifier the value indicated;
subsequent identifiers continue the progression from the assigned value.

The names of enumerators in the same scope must all be distinct from each other
and from those of ordinary variables.

The role of the identifier in the enumfspeciﬁer is ‘entirely analogous to that of the
structure tag in a struct-specifier; it names a particular enumeration. For example,

enum color { chartreuse, burgundy, claret=20, winedark };
enum color *cp, col;

col = claret;
cp = &col;

if (*cp == burgundy)

makes color the enumeration-tag of a type describing various colors, and then
declares cp as a pointer to an object of that type and col as an object of that type.
The possible values are drawn from the set {0,1,20,21}.

Initialization

A declarator may specify an initial value for the identifier being declared. The
initializer is preceded by = and consists of an expression or a list of values nested in
braces.

initializer:
= expression
= { initializer-list }
= { initializer-list , }

initializer-list:
expression
initializer-list , initializer-list
{ initializer-list }
{ initializer-list , }

All the expressions in an initializer for a static or external variable must be constant

C LANGUAGE 4-29

Declarations

expressions, which are described in "Constant Expressions,” or expressions that
reduce to the address of a previously declared variable, possibly offset by a constant
expression. Automatic or register variables may be initialized by arbitrary expressions
involving constants and previously declared variables and functions.

Static and external variables that are not initialized are guaranteed to start off as
zero. Automatic and register variables that are not initialized are guaranteed to start
off as garbage.

When an initializer applies to a scalar (a pointer or an object of arithmetic type),
it consists of a single expression, perhaps in braces. The initial value of the object is
taken from the expression; the same conversions as for assignment are performed.

When the declared variable is an aggregate (a structure or array), the initializer
consists of a brace-enclosed, comma-separated list of initializers for the members of
the aggregate written in increasing subscript or member order. If the aggregate con-
tains subaggregates, this rule applies recursively to the members of the aggregate. If
there are fewer initializers in the list than there are members of the aggregate, then
the aggregate is padded with zeros. It is not permitted to initialize unions or
automatic aggregates. ’

Braces may in some cases be omitted. If the initializer begins with a left brace,
then the succeeding comma-separated list of initializers initializes the members: of the
.aggregate; it is erroneous for there to be more initializers than members. If, however,
the initializer does not begin with a left brace, then only enough elements from the list
are taken to account for the members of the aggregate; any remaining members are
left to initialize the next member of the aggregate of which the current aggregate is a
part.

A final abbreviation allows a char array to be initialized by a string literal. In this
case successive characters of the string literal initialize the members of the array.

For example,
int x[] ={1,3,5};

declares and initializes x as a one-dimensional array that has three members, since no
‘size was specified and there are three initializers.

float y[41[3] =

{
[1I 3[5)I
{ 2, 4, 61},
{ 3,5 71,

}i

is a completely-bracketed initialization: 1, 3, and 5 initialize the first row of the array
y[0], namely y[0][0], y[0][1], and y[0][2]. Likewise, the next two lines initialize
y[1] and y[2]. The initializer ends early and therefore y[3] is initialized with 0. Pre-
cisely, the same effect could have been achieved by

float y[4]1[3] =
{

i, 3, 5, 2, 4, 6, 3, 5, 17
}i

The initializer for y begins with a left brace but that for y[0] does not; therefore,
three elements from the list are used. Likewise, the next three are taken successively
for y[1] and y[2]. Also,

4-30 PROGRAMMER’S GUIDE

Declarations

float y[4]1[3] =
{

ft13), {213, {313} (4]
}:

initializes the first column of y (regarded as a two-dimensional array) and leaves the
rest 0.

Finally,
char msg[] = "Syntax error on line %s\n";

shows a character array whose members are initialized with a string literal. The
length of the string (or size of the array) includes the terminating NUL character, \0.

Type Names

In two contexts (to specify type conversions explicitly by means of a cast and as
an argument of sizeof), it is desired to supply the name of a data type. This is accom-
plished using a "type name," which in essence is a declaration for an object.of that
type that omits the name of the object.

type-name:
type-specifier abstract-declarator

abstract-declarator:

pointer

pointer tdirect-abstract-declarator
direct-abstract-declarator:

(abstract-declarator)

direct-abstract-declarator ., [constant-expression topt]

direct-abstract-declarator opt (parameter-type-list opt)
To avoid ambiguity, in the construction

(abstract-declarator)

the abstract-declarator is required to be nonempty. Under this restriction, it is possi-
ble to identify uniquely the location in the abstract-declarator where the identifier
would appear if the construction were a declarator in a declaration. The named type
is then the same as the type of the hypothetical identifier. For example,

int

int *

int *[3]

int (*)[3]

int *()

int (*)()

int (*[3])()
name respectively the types "integer," "pointer to integer,"” "array of three pointers to
integers," "pointer to an array of three integers,” "function returning pointer to

integer," "pointer to function returning an integer,” and "array of three pointers to
functions returning an integer."
(=]

C LANGUAGE 4-31

Declarations

Implicit Declarations

It is not always necessary to specify both the storage class and the type of
identifiers in a declaration. The storage class is supplied by the context in external
definitions and in declarations of formal parameters and structure members. In a
declaration inside a function, if a storage class but no type is given, the identifier is
assumed to be int; if a type but no storage class is indicated, the identifier is assumed
to be auto. An exception to the latter rule is made for functions because auto func-
tions do not exist. If the type of an identifier is "function returning ...," it is impli-
citly declared to be extern.

In an expression, an identifier followed by (and not already declared is contextu-
ally declared to be "function returning int".

typedef

Declarations whose "storage class" is typedef do not define storage but instead
define identifiers that can be used later as if they were type keywords naming funda-
mental or derived types.

typedef-name:
identifier

Within the scope of a declaration involving typedef, each identifier appearing as part
of any declarator therein becomes syntactically equivalent to the type keyword naming
the type associated with the identifier in the way described in "Meaning of Declara-
tors." For example, after

typedef int MILES, *KLICKSP;
typedef struct [double re, im; } complex;

the constructions

MILES distance;
extern KLICKSP metricp;
complex z, *zp;

are all legal declarations; the type of distance is int, that of metricp is "pointer to int,"
and that of z is the specified structure. The zp is a pointer to such a structure.

The typedef does not introduce brand-new types, only synonyms for types that
could be specified in another way. Thus in the example above distance is considered
to have exactly the same type as any other int object.

4-32 PROGRAMMER’S GUIDE

Statements

Except as indicated, statements are executed in sequence.

Expression Statement
Most statements are expression statements, which have the form
expression ;

Usually expression statements are assignments or function calls.

Compound Statement or Block

So that several statements can be used where one is expected, the compound
statement (also, and equivalently, called "block") is provided:

compound-statement:

{ declaration-list Dt statement-list ot }
declaration-list:

declaration

declaration declaration-list

statement-list:
statement
statement statement-list

If any of the identifiers in the declaration-list were previously declared, the outer
declaration is pushed down for the duration of the block, after which it resumes its
force.

Any initializations of auto or register variables are performed each time the block
is entered at the top. It is currently possible (but a bad practice) to transfer into a
block; in that case the initializations are not performed. Initializations of static vari-
ables are performed only once when the program begins execution. Inside a block,
extern declarations do not reserve storage so initialization is not permitted.

Conditional Statement
The two forms of the conditional statement are

if (expression) statement
if ((expression) statement else statement

In both cases, the expression is evaluated; if it is nonzero, the first substatement is
executed. In the second case, the second substatement is executed if the expression
is 0. The else ambiguity is resolved by connecting an else with the last encountered
else-less if.

C LANGUAGE 4-33

Statements

while Statement
The while statement has the form
while (expression) statement

The substatement is executed repeatedly so long as the value of the expression
remains nonzero. The test takes place before each execution of the statement.

do Statement
The do statement has the form
do statement while (expression) ;

The substatement is executed repeatedly until the value of the expression becomes 0.
The test takes place after each execution of the statement.

for Statement
The for statement has the form:
for (exp—lopt ; exP-.Zopt; exp—30pt) Statement
Except for the behavior of continue, this statement is equivalent to
exp-1 ;
while (exp-2)
{

statement
exp-3 ;
}

Thus the first expression specifies initialization for the loop; the second specifies a
test, made before each iteration, such that the loop is exited when the expression
becomes 0. The third expression often specifies an incrementing that is performed
after each iteration.

Any or all of the expressions may be dropped. A missing exp-2 makes the
implied while clause equivalent to while(1); other missing expressions are simply
dropped from the expansion above.

switch Statement

The switch' statement causes control to be transferred to one of several statements
depending on the value of an expression. It has the form

switch (expression) statement

The usual arithmetic conversion is performed on the expression, but the result must
be int. The statement is typically compound. Any statement within the statement
may be labeled with one or more case prefixes as follows:

case constant-expression :

where the constant expression must be int. No two of the case constants in the same
switch may have the same value. Constant expressions are precisely defined in

4-34 PROGRAMMER'’S GUIDE

Statements

"Constant Expressions."

There may also be at most one statement prefix of the form

default :
which properly goes at the end of the case constants.

When the switch statement is executed, its expression is evaluated and compared
in turn with each case constant. If one of the case constants is equal to the value of
the expression, control is passed to the statement following the matched case prefix.
If no case constant matches the expression and if there is a default prefix, control
passes to the statement prefixed by default. If no case matches and if there is no
default, then none of the statements in the switch is executed.

The prefixes case and default do not alter the flow of control, which continues
unimpeded across such prefixes. That is, once a case constant is matched, all case
statements (and the default) from there to the end of the switch are executed. To exit
from a switch, see "break Statement." '

Usually, the statement that is the subject of a switch is compound. Declarations
may appear at the head of this statement, but initializations of automatic or register
variables are ineffective. A simple example of a complete switch statement is:.

switch (c¢) {
case 'o’:
oflag
break;
case ’'p’
pflag
break;
case 'r’:
rflag
break;
default
(void) fprintf(stderr, "Unknown option\n");
exit(2);

TRUE;

TRUE;

TRUE;

break Statement

The statement break ; causes termination of the smallest enclosing while, do, for,

or switch statement; control passes to the statement following the terminated state-
ment. '

continue Statement

The statement continue ; causes control to pass to the loop-continuation portion
of the smallest enclosing while, do, or for statement; that is to the end of the loop.
More precisely, in each of the statements

while (...) do for (...)
{ { {
contin: ; contin: ; contin: ;
} } while (...); }

C LANGUAGE 4-35

Statements

a continue is equivalent to goto contin. (Following the contin: is a null statement;
see "Null Statement.")

return Statement

A function returns to its caller by means of the return statement, which has one

of the forms

return ;
return expression ;

In the first case, the returned value is undefined. In the second case, the value of the
expression is returned to the caller of the function. If required, the expression is con-
verted, as if by assignment, to the type of function in which it appears. Flowing off
the end of a function is equivalent to a return with no returned value.

goto Statement
Control may be transferred unconditionally by means of the statement
goto identifier ;

The 'identifier must be a label (see "Labeled Statement") located in the current func-
tion.

Labeled Statement
Any statement may be preceded by label prefixes of the form
identifier : |

which serve to declare the identifier as a label. The only use of a label is as a target
of a goto. The scope of a label is the current function, excluding any subblocks in
which the same identifier has been redeclared. See "Scope Rules."

Null Statement
The null statement has the form
H

A null statement is useful to carry a label just before the } of a compound statement
or to supply a null body to a looping statement such as while.

4-36 PROGRAMMER’S GUIDE

External Definitions

A C program consists of a sequence of external definitions. An external
definition declares an identifier to have storage class extern (by default) or perhaps
static, and a specified type. The type-specifier (see "Type Specifiers” in "Declara-
tions") may also be empty, in which case the type is taken to be int. The scope of
external definitions persists to the end of the file in which they are declared just as the
effect of declarations persists to the end of a block. The syntax of external definitions
is the same as that of all declarations except that only at this level may the code for
functions be given.

External Function Definitions

A function definition has the following syntax:

unction-definition:
f fi opt

decl-speciﬁersOp " declarator-declaration-list compound-statement

The identifier (the name of the function) must adhere to the following rules:

® The identifier declared (the name of the function) must have a function type, as
specified in the declarator portion of the function definition.

m The return type of a function shall be void or an object type other than an
array.

m If the declarator includes a parameter type list, the declaration of each parame-
ter must include an identifier except when the parameter list consists of a single
parameter of type void; such a list must not contain an identifier. No declara-
tion list can follow. ‘

m If the declarator contains an identifier list, only those names in the list can be
declared in the declaration list.

B An identifier declared as a typedef name must not be redeclared as a parame-
ter.

m The declarations in the declaration list can contain only register storage-class
specifiers; no initializations are permitted.

The declarator in a function definition specifies the name of the function being
defined and the identifiers of its parameters. If the parameter contains a parameter
type list, the list also specifies the types of all the parameters. The declarator also
serves as a function prototype for later calls to the same function in the same transla-
tion unit. If the declarator contains an identifier list, the parameter types can be
declared in a subsequent declaration list. Any undeclared parameter has the type
int.

Results are unknown if a function that accepts a variable number of arguments is
defined without a parameter type list that ends with the ellipsis notation.

On entry to a function, the value of the argument expression is converted to the
type of its corresponding parameter, as if by assignment to ‘the parameter. Array
expressions and function designators as arguments are convertéd to pointers before
the call. A declaration of a parameter as "array of fype" is adjusted to "pointer to
type;" a declaration of a parameter as "function of fype" is adjusted to "pointer to
function returning fype."

C LANGUAGE 4-37

External Definitions

Each parameter has automatic storage duration, whose identifier is an Ivalue. The
parameter must be declared at the head of the compound statement that constitutes
the function body; it cannot be redeclared in the function body except within a closed
block. Consider the following example:

extern int max(int a, int b)
{

return a > b ? a : b; }
In the above example,

extern is the storage-class specifier (default)

int is the type specifier (default).

max(int a, int b) is the function declarator.

{ return a > b ? a : b; } is the function declarator.

The following example is similar to this example, except it uses the identifier-list form
for the parameter declarations:

extern int max(a, b)
int a, b;
{

return a> b ? a : b;

}

In this example, int a, b; is the declaration list for the parameters; it is also the

default and can be omitted. The first example differs from the second in that it acts

as a prototype declaration that forces conversion of the arguments of subsequent calls
to the function.

The following example permits the passing of one function to another:

int f(void)

VAR Y

g(f):
Because (. does not follow g(f), f must be declared explicitly. The definition of g
might appear as follows:

g(int (*funcp)(void))
{

/*...*/ (*funcp)() /* or funcp() ...*/
)

The definition could also appear as follows:

g(int (*funcp)(void))
{

/*...%/ (*func) () /* orfunc() ...*/
}

A simple example of a complete function definition is

4-38 PROGRAMMER’S GUIDE

External Definitions

int max(a, b, c)
‘int a, b, c¢;

{
int m;
m= (a > b) ? a: b;
return((m > c¢) ? m : ¢);
}

Here int is the type-specifier; max(a, b, ¢) is the function-declarator; int a, b, c; is the
declaration-list for the formal parameters; { ... } is the block giving the code for the
statement.

In the absence of prototypes, the C program converts all float actual parameters
to double, so formal parameters declared float have their declaration adjusted to read
double. All char and short formal parameter declarations are similarly adjusted to
read int. Also, since a reference to an array in any context (in particular as an actual
parameter) is taken to mean a pointer to the first element of the array, declarations of
formal parameters declared "array of ..." are adjusted to read "pointer to ...".

External Data Definitions
An external data definition has the form

data-definition:
declaration

The storage class of such data may be extern (which is the default) or static, but not
auto or register.

C LANGUAGE 4-39

Scope Rules

A C program need not all be compiled at the same time. The source text of the
program may be kept in several files, and precompiled routines may be loaded from
libraries. Communication among the functions of a program may be carried out both
through explicit calls and through manipulation of external data.

Therefore, there are two kinds of scopes to consider: first, what may be called
the lexical scope of an identifier, which is essentially the region of a program during
which it may be used without drawing "undefined identifier" diagnostics; and second,
the scope associated with external identifiers, which is characterized by the rule that
references to the same external identifier are references to the same object.

Lexical Scope

The lexical scope of identifiers declared in external definitions persists from the
definition through the end of the source file in which they appear. The lexical scope
of identifiers that are formal parameters persists through the function with which they
are associated. The lexical scope of identifiers declared at the head of a block per-
sists until the end of the block. The lexical scope of labels is the whole of the func-
tion in which they appear.

In all cases, however, if an identifier is explicitly declared at'th_e head of a block,
including the block constituting a function, any declaration of that identifier outside
the block is suspended until the end of the block.

Remember also (see "Structure, Union, and Enumeration Declarations” in
"Declarations") that tags, identifiers associated with ordinary variables, and identities
associated with structure and union members form three disjoint classes which do not
conflict. Members and tags follow the same scope rules as other identifiers. The
enum constants are in the same class as ordinary variables and follow the same scope
rules. The typedef names are in the same class as ordinary identifiers. They may be
redeclared in inner blocks, but an explicit type must be given in the inner declaration:

typedef float distance;

{

int distance;

The int must be present in the second declaration, or it would be taken to be a
declaration with no declarators and type distance.

Scope of Externals

If a function refers to an identifier declared to be extern, then somewhere among
the files or libraries constituting the complete program there must be at least one
external definition for the identifier. All functions in a given program that refer to the
same external identifier refer to the same object, so care must be taken that the type
and size specified in the definition are compatible with those specified by each func-
tion that references the data.

It is illegal to explicitly initialize any external identifier more than once in the set
of files and libraries comprising a multi-file program. It is legal to have more than
one data definition for any external non-function identifier; explicit use of extern does
not change the meaning of an external declaration.

4-40 PROGRAMMER’S GUIDE

Scope Rules

In restricted environments, the use of the extern storage class takes on an addi-
tional meaning. In these environments, the explicit appearance of the extern keyword
in external data declarations of identities without initialization indicates that the
storage for the identifiers is allocated elsewhere, either in this file or another file. It is
required that there be exactly one definition of each external identifier (without
extern) in the set of files and libraries comprising a mult-file program.

Identifiers declared static at the top level in external definitions are not visible in
other files. Functions may be declared static.

C LANGUAGE 4-41

Compiler Control Lines

The C compilation system contains a preprocessor capable of macro substitution,
conditional compilation, and inclusion of named files. Lines beginning with # com-
municate with this preprocessor. There may be any number of blanks and horizontal
tabs between the # and the directive, but no additional material (such as comments)
is permitted. These lines have syntax independent of the rest of the language; they
may appear anywhere and have effect that lasts (independent of scope) until the end
* of the source program file.

Token Replacement
A control line of the form
##define identifier token-string opt

causes the preprocessor to replace subsequent instances of the identifier with the
given string of tokens. Semicolons in or at the end of the token-string are part of that
string. A line of the form

#define identifier(identifier, ...) token-string opt

where there is no space between the first identifier and the (, is a macro deﬁnmon
with arguments There may be zero or more formal parameters. Subsequent
instances of the first identifier followed by a (, a sequence of tokens delimited by
commas, and a) are replaced by the token string in the definition. Each occurrence
of an identifier mentioned in the formal parameter list of the definition is replaced by
the corresponding token string from the call. The actual arguments in the call are
token strings separated by commas; however, commas in quoted strings or protected
by parentheses do not separate arguments. The number of formal and actual parame-
ters must be the same. Strings and character constants in the token-string are
scanned for formal parameters, but strings and character constants in the rest of the
program are not scanned for defined identifiers to replace.

In both forms the replacement string is rescanned for more defined identifiers. In
both forms a long definition may be continued on another line by writing \ at the end
of the line to be contmued This facility is most valuable for definition of "manifest
constants," as in

#define TABSIZE 100

int table[TABSIZE];
A control line of the fdrm
#undef identifier
causes the identifier’s pfeprocessor definition (if any) to be forgotten.

If a #defined identifier is the subject of a subsequent #define with no intervening
#undef, then the two token-strings are compared textually. If the two token-strings
are not identical (all white space is considered as equivalent), then the identifier is
considered to be redefined.

4-42 PROGRAMMER’S GUIDE

Compiler Control Lines

File Inclusion
A control line of the form
#include "filename"

causes the replacement of that line by the entire contents of the file filename. The
named file is searched for first in the directory of the file containing the #include, and
then in a sequence of specified or standard places. Alternatively, a control line of the
form

#include <filename >

searches only the specified or standard places and not the directory of the #include.
(How the places are specified is not part of the language. See cpp(1) for a descrip-
tion of how to specify additional hbrarles)

#includes may be nested.

Conditional Compilation
A compiler control line of the form
#Hf restricted-constant-expression

checks whether the restricted-constant expression evaluates to nonzero. (Constant
expressions are discussed in "Constant Expressions"; the following additional restric-
tions apply here: the constant expression may not contain sizeof, casts, or an
enumeration constant.)

A restricted-constant expression may also contain the additional unary expression
defined identifier
or
defined (identifier)

which evaluates to one if the identifier is currently defined in the preprocessor and
zero if it is not.

All currently defined identifiers in restricted-constant-expressions are replaced by
their token-strings (except those identifiers modified by defined) just as in normal text.
The restricted-constant expression will be evaluated only after all expressions have
finished. During this evaluation, all undefined (to the procedure) identifiers evaluate
to zero.

A control line of the form
#ifdef identifier

checks whether the identifier is currently defined in the preprocessor; i.e., whether it
has been the subject of a #define control line. It is equivalent to #if defined
(identifier).

A control line of the form
#ifndef identifier

checks whether the identifier is currently undefined in the preprocessor. It is
equivalent to #if !defined (identifier).

C LANGUAGE 4-43

Compiler Control Lines

All three forms are followed by an arbitrary number of lines, possibly containing
a control line

#else
and then by a control line
#endif

If the checked condition is true, then any lines between #else and #endif are ignored.
If the checked condition is false, then any lines between the test and a #else or, lack-
ing a #else, the #endif are ignored.

Another control directive is
#elif restri<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>