
Part of the five-volume
W!iICi- Microsoft" Win32<e Developer's Reference Ubrary

The essential reference to Win32®
technologies and APls

David Iseminger
Series Editor

wwwo /semingerctJm

t®

UI
mon
ntrol

Ind'ows
User Interface

The essential reference to Win32®
technologies and APls

David Iseminger
Series Editor

Indows
User Interface

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2000 by Microsoft Corporation; portions © 2000 by David Iseminger.

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by
any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Iseminger, David, 1969-

Microsoft Win32 Developer's Reference Library I David Iseminger.
p. cm.

ISBN 0-7356-0816-4
1. Microsoft Win32. 2. Operating systems (Computers) I. Title.

QA76.76.063 174 1999
005.26'8--dc2l 99-045609

CIP

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 WCWC 4 3 2 1 0 9

Distributed in Canada by Penguin Books Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press
International directly at fax (425) 936-7329. Visit our Web site at mspress.microsoft.com.

BackOffice, FrontPage, Microsoft, Microsoft Press, MSDN, Visual Basic, Visual C++, Visual
FoxPro, Visual InterDev, Visual J++, Visual SourceSafe, Visual Studio, Win32, Windows, and
Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries. Other product and company names mentioned herein may be the
trademarks of their respective owners.

The example companies, organizations, products, people, and events depicted herein are fictitious. No
association with any real company, organization, product, person, or event is intended or should be
inferred.

Acquisitions Editor: Ben Ryan
Project Editor: Wendy Zucker

Part No. 097-0002307

Acknowledgements
Acknowledgements are often tricky things; generally, the day after books are
printed you think of someone who absolutely should have been recognized,
whom you now have rudely omitted. You'd think authors would keep an
ongoing list. Oh well, here goes:

First, thanks to Ben Ryan at Microsoft Press for sharing my enthusiasm about
the series idea, and for keeping up with the myriad of issues that cropped up,
and for managing the business details associated with publishing this series.
Thanks also to Steve Guty at Microsoft Press for seeing certain publishing
issues through the wringer.

Wendy Zucker kept in step with the difficult and tight schedule at Microsoft
Press, and orchestrated things in the way only project editors can endure.
John Pierce was also instrumental in seeing the publishing process through
completion; many thanks to both of them. The cool Win32 cover art was
created by Greg Hickman-thanks for the excellent work; I'm a firm believer
that artwork and packaging are integral to the success of a project. Marketing
acknowledgements go out to Jocelyn Paul, for her coordination efforts with
MSDN and her other unsung victories.

On the SDK side of things, thanks to Morgan Seeley for introducing me to the
editor at Microsoft Press, and thereby routing this series to the right place.
Throughout the process, Julie Solon provided lots of Win32 feedback and
helped gather feedback from others, all of which was quite helpful in compiling
the right collection of technologies ... thanks to Julie for the help on that. Guy
Smith pointed me to the information I needed for Volumes 4 and 5, and was
always very responsive.

On the developer side of things, thanks go out to Lars Opstad and Paramesh
Vaidyanathan for their help and openness, respectively, with letting me
provide the common coding errors found in Chapter 5 of each of these
volumes. Thanks on my behalf, and on behalf of anyone who finds that
information useful (I'm sure that includes a bunch of people!).

Thanks are also in order for artist-guru David Deyo for transforming my
functional "circled i" logo into a 3D piece of art, as well as for his work on the
Iseminger.com site. You can see more of his artwork through links found at
www.iseminger.com.

Last, but certainly not least, thanks to Margot Hutchison for doing all the things
great agents do best.

v

Contents

Chapter 1: Introduction ... 1

How the Win32 Library Is Structured .. 2
How the Win32 Library Is Designed ... 3

Chapter 2: What's in This Volume? ... 5

Controls .. 5
Resources ... 6
User Input .. 6

Windowing ... 7

Chapter 3: Using Microsoft Reference Resources .. 9

The Microsoft Developer Network (MSDN) .. 10

Comparing MSDN and MSDN Online .. 10
MSDN Subscriptions ... 11

MSDN Library Subscription ... 13
MSDN Professional Subscription ... 13

MSDN Universal Subscription ... 14
Purchasing an MSDN Subscription .. 14

Using MSDN ... 15
Exploring MSDN .. 16
Quick Tips .. 19

Using MSDN Online .. 19

Exploring MSDN Online .. 21
MSDN Online Features .. 22

MSDN Online Registered Users ... 26
The Windows Programming Reference Series .. 27

Chapter 4: Finding the Developer Resources You Need ... 29

Developer Support .. 29
Online Resources .. 31
Learning Products ... 32

Conferences ... 34
Other Resources .. 35

vi Contents

Chapter 5: Getting the Most Out of Win32 Technologies: Part 2 37

Avoiding Invalid Validation .. 37
Working with Handle-Based Objects .. 38
Verify Correlated Parameters ... 39
Limits of Exception Handling .. 40

Kernel mode NULL dereference is unsafe, even when protected by try-
except .. 40
Use _leave in the try block of a try-finally ... 41
Ramifications of returning from a finally block ... 42

Be wary of execution order .. 43
A void relying on exceptions instead of correct validation 43

Alternate Code Paths .. 44

Trusted Data Sources ... 45
Solutions Summary ... 47

Chapter 6: Controls .. 49

Controls ... 49
About Controls ... 49

Predefined Controls .. 49
Control Reference .. 50

Control Messages ... 50
Buttons .. 52

About Buttons .. 52
Button Reference ... 53

Button Functions .. 53
Button Messages ... 56

Button Styles .. 69
Combo Boxes .. 72

About Combo Boxes .. 72

Combo-Box Types and Styles .. 72
Combo-Box Reference ... 73

Combo-Box Functions .. 73
Combo-Box Structures ... 77
Combo-Box Messages .. 84

Combo-Box Styles .. 130
Edit Controls ... 131

About Edit Controls ... 132

Getting Information About Edit Control Programming Elements 132
Rich-Edit Controls .. 132

Contents vii

About Rich-Edit Controls .. 133
Getting More Information About Rich-Edit Controls 133

Scroll Bars ... 134
About Scroll Bars ... 134
Scroll-Bar Reference .. 134

Scroll-Bar Functions ... 134

Scroll-Bar Structures .. 154
Scroll-Bar Messages ... 157

Scroll-Bar Control Styles ... 170

Static Controls ... 171
About Static Controls ... 171

Static-Control Types ... 171
Static-Control Reference .. 173

Static-Control Messages ... 173
Static-Control Styles ... 181

Chapter 7: Resources ... 185

Resources .. 185

About Resources .. 185
Finding and Loading Resources ... 186
Adding, Deleting, and Replacing Resources .. 187

Enumerating Resources .. 187
Resource File Formats .. 187

Getting More Information About Resources .. 190
Carets .. 190

About Carets .. 190

Caret Visibility ... 191
Caret Blink Time .. 191
Caret Position ... 191

Removing a Caret ... 191
Caret Reference .. 192

Caret Functions ... 192
Cursors .. 199

About Cursors .. 199

Cursor Reference .. '" 200
Cursor Functions ... 200
Cursor Structures .. 216

Cursor Messages ... 216
Icons .. 218

About Icons .. 218

viii Contents

Icon Reference ... 218
Icon Functions .. 218
Icon Structures .. 239

·Menus .. 244

About Menus .. 244
Menu Bars and Menus .. 244

Menu Reference ... 246
Menu Functions .. 246
Menu Structures .. 297
Menu Messages .. 311

Strings : .. 321
About Strings ... 321

Win32 String Functions .. 321
String 'Resources ... 322

String Reference .. 323
String Functions .. 323

Chapter 8: User Input. .. 369

Common Dialog-Box Library ... 369
About Common Dialog Boxes ... 369

Dialog-Box Types .. 369
Getting More Information About Common Dialog Boxes 371

Mouse Input .. 371
About Mouse Input .. 371
Mouse-Input Reference .. 372

Mouse-Input Functions ... 372
Mouse-Input Structures .. 385
Mouse-Input Messages ... 387
Mouse-Input Macros ... 437

Keyboard Accelerators .. 442
About Keyboard Accelerators .. 442

Accelerator Tables .. 442
Accelerator Table Creation ... 443

Accelerator Keystroke Assignments ... 444
Accelerators and Menus ... 445
UI State ... 445

Keyboard Accelerator Reference ... 446
Keyboard Accelerator Functions .. 446
Keyboard Accelerator Structures .. 452
Keyboard Accelerator Messages .. 453

Contents ix

Keyboard Input. ... 466
About Keyboard Input ... 466

Keyboard-Input Model ... 466
Keyboard-Input Reference ... 467

Keyboard-Input Functions .. 467
Keyboard-Input Structures .. 509
Keyboard-Input Messages .. 517

Chapter 9: Windowing .. ", , .. , ", ", "", .. " .. """"" .. , " .. , .. " ,"'"",,537
Dialog Boxes ... 537

About Dialog Boxes ... 537
Dialog Box Reference .. 537

Dialog Box Functions ... 537

Dialog Box Structures .. 582
Dialog Box Messages ... 595

Messages and Message Queues ... 603
About Messages and Message Queues .. 604

Win32 Messages ... 604

Message Types ... 604
Message Routing .. 606

Message Handling .. 608
Message Filtering '" ... 610
Posting and Sending Messages ... 611
Message Deadlocks .. 612
Broadcasting Messages ... 612
Query Messages .. 613

Message and Message Queue Reference ... 614
Message and Message Queue Functions .. 614
Message and Message Queue Structures .. 645

Message and Message Queue Messages ... 646
Multiple Document Interface .. 648

About the Multiple Document Interface .. 648
Frame, Client, and Child Windows .. 649
Child Window Creation .. 650
Child Window Activation ... 650
Multiple Document Menus ... 650
Multiple Document Accelerators .. 651

Child Window Size and Arrangement.. .. 651
Icon Title Windows .. 652
Child Window Data ... ; 652

x Contents

Multiple Document Interface Reference .. 653
Multiple Document Interface Functions ... 653
Multiple Document Interface Structures .. 659
Multiple Document Interface Messages ... 661

Timers ... 673
About Timers ... 673

Timer Operations .. 673
High-Resolution Timer ... 674

Timer Reference .. 674
Timer Functions .. 674
Timer Messages .. 679

Window Classes .. 680
About Window Classes .. 680

Types of Window Classes .. 681

Getting More Information About Window Classes 681
Window Procedures .. 681

About Window Procedures .. 681
Window Procedure Reference ... 682

Window Procedure Functions .. 682
Window Properties .. 686

About Window Properties .. 686

Assigning Window Properties .. 686
Enumerating Window Properties .. 686

Window Property Reference .. 687

Window Property Functions ... 687
Windows ... 694

About Windows ... 694
Desktop Window .. 694
Application Windows ... 695

Getting More Information About Windows ... 697

Appendix A ... 699

Appendix B ... 705

CHAPTER 1

Introduction

Welcome to the Microsoft Win32 Developer's Reference Library, your comprehensive
reference guide to the Win32 development environment. This pack, and the entire
Windows Programming Reference Series, is designed to deliver the most complete,
authoritative, and accessible reference information available for Windows
programming-without sacrificing focus. You'll notice that each book is dedicated to a
logical group of technologies or development concerns; this approach has been taken
specifically to enable you-the time-pressed and information-overloaded applications
developer-to find the information you need quickly, efficiently, and intuitively.

In addition to its focus on Win32 reference material, the Win32 Library contains hard­
won insider tips and tricks designed to make your programming life easier. For example,
a thorough explanation and detailed tour of the new version of MSDN Online is included,
as is a section that helps you get the most out of your MSDN subscription. Don't have an
MSDN subscription, or don't know why you should? I've included information about that,
too, including the differences between the three levels of MSDN subscription, what each
level offers, and why you'd want a subscription when MSDN Online is available over the
Internet.

Microsoft is fairly well known for its programming, so doesn't it make sense to share
some of that knowledge? I thought it made sense, so that's why this-the Windows
Programming Reference Series-is the source where you'll find such shared knowledge.
Part 1 of each volume contains advice on how to avoid common programming problems.
There is a reason for including so much reference, overview, shared-knowledge, and
programming information about Win32 in a single publication: the Win32 Library is
geared toward being your one-stop printed reference resource for the Win32
programming environment.

To ensure that you don't get lost in all the information provided in the Win32 Library,
each volume's appendixes provide an all-encompassing programming directory to help
you find easily the particular programming element for which you're looking. This
directory suite, which covers all the functions, structures, enumerations, and other
programming elements found in Win32, gets you quickly to the volume and page you
need, and provides an overview of Microsoft technologies that would otherwise take you
hours of time, reams of paper, and potfuls of coffee to compile yourself.

2 Volume 2 Microsoft Windows User Interface

How the Win32 Library Is Structured
The Win32 Library consists of five volumes, each of which focuses on a particular area
of the Win32 programming environment. The programming areas into which the five
Win32 Library volumes have been divided are the following:

Volume 1: Base Services

Volume 2: User Interface

Volume 3: GDI (Graphics Device Interface)

Volume 4: Common Controls

Volume 5: The Windows Shell

Dividing the Win32 Library-and, therefore, dividing Win32-into these functional
categories enables a software developer who's focusing on a particular programming
area (such as the user interface) to maintain that focus under the confines of one
volume. This approach enables you to keep one reference book open and handy, or
tucked under your arm while researching that aspect of Windows programming on sandy
beaches, without risking back problems (from toting around a 2,OOO-page Win32 tome),
and without having to shuffle among multiple less-focused books.

Within each Win32 Library volume, there is also a deliberate structure. This per-volume
structure has been created to further focus the reference material in a developer-friendly
manner, and to enable developers to gather easily the information they need. To that
end, each volume in the Win32 Library has the following parts:

Part 1: Introduction and Overview

Part 2: Reference

Part 3: Windows Programming Directory

Part 1 provides an introduction to the Win32 Library and the Windows Programming
Reference Series (what you're reading now), and a handful of chapters designed to help
you get the most out of Win32, MSDN, and MSDN Online, including a collection of
insider tips and tricks. Just as each volume's Reference section (Part 2) contains
different reference material, each volume's Part 1- contains different tips and tricks. To
ensure that you don't miss out on some of them, make sure you take a look at Part 1 in
each Win32 Library volume.

Part 2 contains the Win32 reference material particular to its volume, but it is much more
than a simple collection of function and structure definitions. Because a comprehensive
reference resource should include information about how to use a particular technology,
as well as its definitions of programming elements, the information in Part 2 combines
complete programming element definitions, as well as instructional and explanation
material for each programming area.

Chapter 1 Introduction 3

Part 3 is the directory of Windows programming information. One of the biggest
challenges of the IT professional is finding information in the sea of available resources,
and Windows programming is no exception. In order to help you get a handle on Win32
programming references and Microsoft technologies in general, Part 3 puts all such
information into an understandable, manageable directory that enables you to find
quickly the information you need.

How the Win32 Library Is Designed
The Win32 Library and all packs in the Windows Programming Reference Series are
designed to deliver the most pertinent information in the most accessible way possible.
The Win32 Library is also designed to integrate seamlessly with MSDN and MSDN
Online by providing a look and a feel that are consistent with their electronic means of
disseminating Microsoft reference information. In other words, the way that a given
function reference appears on the pages of this book has been designed specifically to
emulate the way that MSDN and MSDN Online present their respective function
reference pages.

The reason for maintaining such integration is simple: to make it easy for you-the
developer of Windows applications-to use the tools and get the ongoing information
you need to create quality programs. By providing a "common interface" among
reference resources, your familiarity with the Win32 Library reference material can be
applied immediately to MSDN or MSDN Online, and vice versa. In a word, it means
consistency.

You'll find this philosophy of consistency and simpliCity applied throughout Windows
Programming Reference Series publications. I've designed the series to go hand-in­
hand with MSDN and MSDN Online resources. Such conSistency lets you leverage your
familiarity with electronic reference material and apply that familiarity to let you get away
from your computer if you'd like, take a book with you, and-in the absence of keyboards
and e-mail and upright chairs-get your programming reading and research done. Of
course, each of the Win32 Library books fits nicely right next to your mouse pad too,
even when opened to a particular reference page.

With any job, the simpler and more consistent your tools are, the more time you can
spend doing work instead of figuring out how to use your tools. The structure and design
of the Win32 Library provide you with a comprehensive, pre-sharpened toolset to build
compelling Windows applications.

CHAPTER 2

What's in This Volume?

Just like the first volume, this second volume of the Microsoft Win32 Developer's
Reference Library-Volume 2: Windows User Interlace-contains reference material
that pertains to a certain area of the Win32 programming environment: in this case,
reference information about the Windows User Interface. Almost every application that's
written to run on the Windows group of operating systems uses the Windows User
Interface, and that makes this volume an important part of the core programming
reference needed by any Windows application programmer.

5

Let's get specific about this user interface. There are all sorts of different user interface
elements, but there are certain basic, primitive user interface elements that constitute the
building blocks upon which Windows applications are built. These basic user interface
elements are rounded out in their entirety in the following list:

Controls

Resources

User Input

Windowing

Even a quick look at this list of four basic elements begs a more detailed description. As
done with each volume's Chapter 2, let's go into more detail about each of these
categories.

Controls
Controls are programmatic elements that enable applications to perform simple input
and output, and are generally used to get feedback from users through the use of dialog
boxes. Controls are found in almost every Windows application and are as follows:

Buttons

Combo Boxes

Edit Controls

List Boxes

Rich Edit Controls

Scroll Bars

Static Controls

6 Volume 2 Microsoft Windows User Interface

Because these controls are as common as they are (try using a dialog box without
buttons), descriptions of each aren't provided here; instead, suffice it to say that these
controls are the base programming tools used to get feedback from users in dialog
boxes and other places.

Resources
Resources can be used by application developers to enable users that interact with their
applications to facilitate either communication or the exchange of information between
application and user. Resources come in two flavors: standard resources and custom
(application-defined) resources. Technically, a resource is binary data that you can add
to the executable file of a Win32 application, but perhaps the most effective way to
introduce Windows User Interface resources is to list the standard resources available in
Win32:

Carets

Cursors

Icons

Menus

Strings

User Input
The programmatic elements and reference information that support user input are
reasonably self-explanatory; they support the capability of applications to accept and
manipulate user input from various devices. User input incorporates the following areas
of programming reference:

Common Dialog Box Library

Mouse Input

Keyboard Accelerators

Keyboard Input

Chapter 2 What's in This Volume? 7

Windowing
To develop applications on the Windows platform, you generally have to provide the
basic programming code behind creating, manipulating, and maintaining windows. The
section devoted to providing programmatic reference for such windowing activities is
termed aptly Windowing. The following list outlines the technologies or user interface
material geared toward providing windowing reference:

Dialog Boxes

Messages and Message Queues

Multiple-Document Interfaces (MDls)

Timers

Window Classes

Window Procedures

Window Properties

Windows

In Part 2 of this volume, each of these four basic elements and their respective
subcategories is explained in detail, with overview and explanatory material at the
beginning of each, and detailed reference material following. Each section provides a
comprehensive reference for you to thumb through as you create your application's user
interface.

CHAPTER 3

Using Microsoft Reference
Resources

These days, it isn't the availability of information that's the problem, it's the availability of
information. You read that right...but I'll clarify.

9

Not long ago, getting the information you needed was a challenge, because there wasn't
enough of it; to find the information you needed, you had to find out where such
information might be located and then actually get access to that location, because it
wasn't at your fingertips or on some globally available backbone, and such searching
took time. In short, the availability of information was limited.

Today, information surrounds us and sometimes stifles us; we're overloaded with too
much information, and if we don't take measures to filter out what we don't need to meet
our goals, soon we become inundated and unable to discern what's "junk information"
and what's information that we need to stay current and, therefore, competitive. In short,
the overload of available information makes it more difficult for us to find what we really
need, and wading through the deluge slows us down.

This truism applies to Microsoft's own reference material, too; not because there is
information that isn't needed, but because there is so much information that finding what
you need can be as challenging as figuring out what to do with it once you have it.
Developers need a way to cut through the information that isn't pertinent to them, and to
get what they're looking for. One way to ensure you can get to the information you need
is to know the tools you use. Carpenters know how to use nail guns, and it makes them
more efficient. Bankers know how to use ten-key machines, and it makes them more
adept. If you're a developer of Windows applications, two tools you should know are
MSDN and MSDN Online. The third tool for developers~reference books from the
Windows Programming Reference Series-can help you get the most out of the first two.

Books in the Windows Programming Reference Series, such as those found in the MicrosoJ
Win32 Developer's Reference Library, provide reference material that focuses on a given
area of Windows programming. MSDN and MSDN Online, in comparison, contain all of the
reference material that all Microsoft programming technologies has amassed over the past
few years, and create one large repository of information. Regardless of how well such
information is organized, there's a lot of it, and if you don't know your way around, finding
what you need (even though it's in there, somewhere) can be frustrating, time consuming,
and an overall bad experience.

This chapter will give you the insight and tips you need to navigate MSDN and MSDN
Online, and to enable you to use each of them to the fullest of their capabilities. Also,
other Microsoft reference resources are investigated, and by the end of the chapter,

10 Volume 2 Microsoft Windows User Interface

you'll know where to go for the Microsoft reference information you need (and how to get
there quickly and efficiently).

The Microsoft Developer Network (MSDN)
MSDN stands for Microsoft Developer Network, and its intent is to provide developers with
a network of information to enable the development of Windows applications. Many
people either have worked with MSDN or heard of it, and quite a few have one of the
three available subscription levels to MSDN, but there are many, many more who don't
have subscriptions and could use some concise direction on what MSDN can do for a
developer or development group. If you fall into any of these categories, this section is
for you.

There is some clarification to be done with MSDN and its offerings: if you've heard of
MSDN, or had experience with MSDN Online, you might have asked yourself one of
these questions during the process of getting up to speed with either resource:

• Why do I need a subscription to MSDN if resources such as MSDN Online are
accessible for free over the Internet?

• What are the differences between the three levels of MSDN subscriptions?

• What happened to Site Builder Network ... or, What is this Web Library?

• Is there a difference between MSDN and MSDN Online, other than the fact that one is
on the Internet and the other is on a CD? Do their features overlap, separate,
coincide, or what?

If you have asked these questions, then lurking somewhere in the back of your thoughts
has probably been a sneaking suspicion that maybe you aren't getting the most out of
MSDN. Or, maybe, you're wondering whether you're paying too much for too little, or not
enough to get the resources you need. Regardless, you want to be in the know, not in
the dark. By the end of this chapter, you will know the answers to all these questions and
more, along with some tips and hints on how to make the most effective use of MSDN
and MSDN Online.

Comparing MSDN and MSDN Online
Part of the challenge of differentiating between MSDN and MSDN Online comes with
determining which one has the features you need. Confounding this differentiation is the
fact that both have some content in common, yet each offers content unavailable with
the other. But can their difference be boiled down? Yes, if broad strokes and some
generalities are used:

• MSDN provides reference content and the latest Microsoft product software, all
shipped to its subscribers on CD (or, in some cases, on DVD).

• MSDN Online provides reference content and a development community forum, and
is available only over the Internet.

Chapter 3 Using Microsoft Reference Resources 11

Each delivery mechanism for the content that Microsoft is making available to Windows
developers is appropriate for the medium, and each plays on the strength of the medium
to provide its "customers" with the best presentation of material, as possible. These
strengths and medium considerations enable MSDN and MSDN Online to provide
developers with different feature sets, each of which has its advantages.

MSDN is perhaps less "immediate" than MSDN Online, because it gets to its subscribers
in the form of CDs that come in the mail. However, MSDN can sit in your CD drive (or on
your hard drive), and isn't subject to Internet speeds or failures. Also, MSDN has a
software download feature that enables subscribers to automatically update their local
MSDN content over the Internet, as soon as it becomes available, without them having
to wait for the update CD to come in the mail. The interface with which MSDN displays
its material-which looks a whole lot like a specialized browser window-is linked also to
the Internet as a browser-like window. To coordinate further MSDN with the immediacy
of the Internet, MSDN Online has dedicated a section of the site to MSDN subscribers
that enable subscription material to be updated (on their local machines) as soon as it's
available.

MSDN Online has lots of editorial and technical columns that are published directly to
the site, and tailored (not surprisingly) to the issues and challenges faced by developers
of Windows applications or Windows-based Web sites. MSDN Online also has a
customizable interface (much like MSN.com) that enables visitors to tailor the
information that's presented upon visiting the site to the areas of Windows development
in which they are most interested. However, MSDN Online, while full of up-tO-date
reference material and extensive online developer community content, doesn't come
with Microsoft product software or reside on your local machine.

Since it's easy to confuse the differences and similarities between MSDN and MSDN
Online, it makes sense to figure out a way to quickly identify how and where they depart.
Figure 3-1 puts the differences-and similarities-between MSDN and MSDN Online
into a quickly identifiable format.

One feature you will notice that is shared between MSDN and MSDN Online is the
interface-the interfaces are very similar. That's almost certainly a result of attempting to
ensure that developers' user experience with MSDN is easily associated with the
experience had on MSDN Online, and vice versa.

Remember, too, that if you are an MSDN subscriber you can still use MSDN Online and
its features. So, it isn't an "either/or" question with regard to whether you need an MSDN
subscription or whether you should use MSDN Online; if you have an MSDN
subscription, you probably will continue to use MSDN Online and the additional features
provided with your MSDN subscription.

MSDN Subscriptions
If you're wondering whether you might benefit from a subscription to MSDN, but not quite
sure what the differences between its subscription levels are, you aren't alone. This

12 Volume 2 Microsoft Windows User Inter1ace

section aims to provide a quick guide to the differences in subscription levels, and it even
chances giving you an approximation on what each subscription level will set you back.

MSDN

Microsoft SOftware:
" Operating Systems
" BackOffice Products
" Developer Tools
" Beta Releases
" Complete SDKs and DDKs
" All Content 01'1 CD
Real-Time Updates
Priority Support Incidents
MSDN Online Exclusives
MSDN Magazine

Figure 3-1: The similarities and differences in coverage between MSDN and MSDN
Online.

There are three subscription levels for MSDN: Library, Professional, and Universal. Each
has a different set of features. Each progressive level encompasses the lower level's

Chapter 3 Using Microsoft Reference Resources 13

features, and includes additional features. In other words, with the Professional
subscription, you get everything provided in the Library subscription plus additional
features; with the Universal subscription, you get everything provided in the Professional
subscription plus even more features.

MSDN Library Subscription
The MSDN Library subscription is the basic MSDN subscription. While the Library
subscription doesn't come with the Microsoft product software that the Professional and
Universal subscriptions provide, it does come with other features that developers might
find necessary in their development effort. With the Library subscription, you get the
following:

• The Microsoft reference library, including SDK and DDK documentation (updated
quarterly)

• Lots of sample code, which you can cut and paste into your projects, royalty free

• The complete Microsoft Knowledge Base-the collection of bugs and workarounds

• Technology specifications for Microsoft technologies

• The complete set of product documentation, such as Visual Studio, Office, and others

• Complete (and, in some cases, partial) electronic copies of selected books and
magazines

• Conference and seminar papers-if you weren't there, you can use MSDN's notes

In addition to these items, you get:

• Archives of MSDN Online columns

• Periodic e-mails from Microsoft, chock full of development-related information

• A subscription to MSDN News, a bimonthly newspaper from the MSDN folks

• Access to subscriber-exclusive areas and material on MSDN Online

MSDN Professional Subscription
The MSDN Professional subscription is a superset of the Library subscription. In addition
to the features outlined in the previous section, MSDN Professional subscribers get the
following:

• Complete set of Windows operating systems, including release versions of
Windows 95, Windows 98, and Windows NT 4.0 Server and Workstation

• Windows SDKs and DDKs, in their entirety

• International versions of Windows operating systems (as chosen)

• Priority technical support for two incidents in a development and test environment

14 Volume 2 Microsoft Windows User Interface

MSDN Universal Subscription
The MSDN Universal subscription is the all-encompassing version of the MSDN
subscription. In addition to everything provided in the Professional subscription,
Universal subscribers get the following:

• The latest version of Visual Studio, Enterprise Edition

• The BackOffice test platform, which includes all sorts of Microsoft product software
incorporated in the BackOffice family, each with special 10-connection license for use
in the development of your software products

• Additional development tools, such as Office Developer, Front Page, and Project

• Priority technical support for two additional incidents in a development and test
environment (for a total of four incidents)

Purchasing an MSDN Subscription
Of course, all of the features that you get with MSDN subscriptions aren't free. MSDN
subscriptions are one-year subscriptions, which are current as of this writing. Just as
each MSDN subscription escalates in functionality of incorporation of features, so does it
escalate in price. Please note that prices are subject to change.

The MSDN Library subscription has a retail price of $199, but if you're renewing an
existing subscription you get a $100 rebate in the box. There are other perks for existing
Microsoft customers, but those vary. Check out the Web site for more details.

The MSDN Professional subscription is a bit more expensive than the Library, with a
retail price of $699. If you're a current customer renewing your subscription, you again
get a break in the box, this time in the nature of a $200 rebate. You get that break also if
you're an existing Library subscriber who's upgrading to a Professional subscription.

The MSDN Universal subscription takes a big jump in price, sitting at $2,499. If you're
upgrading from the Professional subscription, the price drops to $1,999; if you're
upgrading from the Library subscription level, there's an in-the-box rebate for $200.

As is often the case, there are both academic and volume discounts available from
various resellers, including Microsoft, so those who are in school or in the corporate
environment can use their status (as learner or learned) to get a better deal-and, in
most cases, the deal is much better. Also, if your organization is using lots of Microsoft
products, whether MSDN is a part of that group or not, whoever's in charge of
purchasing should look into the Microsoft Open License program; the Open License
program gives purchasing breaks for customers who buy lots of products. Check out
www.microsoft.com//icensing for more details. Who knows? If your organization qualifies,
you could end up getting an engraved pen from your purchasing department, or, if you're
really lucky, maybe even a plaque of some sort, for saving your company thousands of
dollars on Microsoft products.

You can get MSDN subscriptions from a number of sources, including online sites
specializing in computer-related information, such as www.iseminger.com (shameless
self-promotion, I know), or your favorite online software site. Note that not all software

Chapter 3 Using Microsoft Reference Resources 15

resellers carry MSDN subscriptions; you might have to hunt around to find one. Of
course, if you have a local software reseller that you frequent, you can check out
whether the reseller carries MSDN subscriptions, too.

As an added bonus for owners of this Win32 Library, in the back of Volume 1: Base
Services, you'll find a $200 rebate good toward an MSDN Universal subscription. For
those of you doing the math, that means you actually make money when you purchase
the Win32 Library and an MSDN Universal subscription. That means every developer in
your organization can have the printed Win32 Library on their desk and the MSDN
Universal subscription available on their desktop, and still come out $50 ahead. That's
the kind of math even accountants can like.

Using MSDN
MSDN subscriptions come with an installable interface, and the Professional and
Universal subscriptions also come with a bunch of Microsoft product software, such as
Windows platform versions and BackOffice applications. There's no need to tell you how
to use Microsoft product software, but there's a lot to be said for providing some quick but
useful guidance on getting the most out of the interface to present and move through the
seemingly endless supply of reference material provided with any MSDN subscription.

To those who have used MSDN, the interface shown in Figure 3-2 is likely familiar: it's
the navigational front end to MSDN reference material.

Office Developer Documentation

Windows R e:sowrce Kits
Tools and Technologies

Figure 3-2: The MSDN interface.

MSDN Library
April 1999 release

Welcome to the April 1999
release of the MSDN Library. To
begin your exploration of what's
new in this release, click any of
the links on the right.

The MSDN Library is the
essential reference for
developers, with more than a
gigabyte of technical
programming information,
including sample code!
documentation! technical
articles! the Microsoft
Developer Knowledge Base, and
anything els8 you might need
to develop solutions that
implement Microsoft
technology.

Dr. GUlis Espresso Stand
Dr. GUI introduces the April
1333 release of the MSDN
Library.

What's: New on the Librarol
Clkk here for a
comprehensive hotlinked lis!:
of new content in this release.

MSD~l Features
Check out these packages of
articles about our latest
technologies.

MSDN Online
Find out what's new for MSDN
Online members and read
seleded columns from our
Web site,

16 Volume 2 Microsoft Windows User Interface

The interface is familiar and straightforward enough, but if you don't have a grasp on its
features and exploration tools, you can be left a little lost in its sea of information. With a
few sentences of explanation and some tips for effective exploration, however, you can
increase its effectiveness dramatically.

Exploring MSDN
One of the primary features of MSDN-and, to many people, its primary drawback-is
the sheer volume of information it contains, over 1.1 GB and growing. The creators of
MSDN likely realized this, however, and have taken steps to assuage the problem. Most
of those steps relate to enabling developers to selectively move through MSDN's
content.

Basic exploration through MSDN is simple, and a lot like moving through Windows
Explorer and its folder structure. Instead of folders, MSDN has books into which it
organizes its topics. Expand a book by clicking the + box to its left, and display its
contents with its nested books or reference pages, as shown in Figure 3-3. If you don't
see the left pane in your MSDN viewer, go to the View menu and choose Navigation
Tabs, and they'll appear.

il
if!. ., Welcome to the MSDN Library
f:t:1 • Visual Studio 6.0 Documentation
8:1 ., Office Developer Documentation
if! • Windows CE Documentation
Ei (tlJ PI.HOIm SDK

III • What', New?
III • 8ackOilice
B CQJ Base Services

[B • Microsoft Clustering Service
iil • Debugging and Error Handling
Hl • DLLs, Processes, and Threads

III • Filesand 110
8 (tlJ Memory

6 t.QI Memory Management
EJ I.i1l About Memory Management

[t.! • Virtual Address Space
l£ ., Virtual Memory Functions

1El Heap Functions

@1 IMmW ••
al • Very Large Memory (VLM)
~ Global and Local Functions
~ Standard C Library Functions

ttl ., Using the Virtual MemOlY Functions
.. ., Memor}' Management Reference

f:f.l File Mapping

Access Validation Functions
The Win32 API provides a set of functions that a process can
use to verify whether it has a specified type of access to a
given memory address or range of addresses. The following
access validation functions are available.

Is:BadCodeptr

IsBadReadPtr

hftadStrinqPtr Determines whether the calling
process has read access to the
memory pointed to by a null­
terminated string pointer. The
function validates access for a
specified number of characters or
until it encounters the string's
terminating null character.

Determines whether the calling
process has write access to the
memory at a specified range of
addresses.

Figure 3-3: Basic exploration of MSDN.

The four tabs in the left pane of MSDN-increasingly referred to as property sheets
these days-are the primary means of moving through MSDN content. These four tabs,

Chapter 3 Using Microsoft Reference Resources 17

in coordination with the Active Subset drop-down box above the four tabs, are the tools
you use to search through MSDN content. When used to their full extent, these
coordinated exploration tools greatly improve your MSDN experience.

The Active Subset drop-down box is a filter mechanism; choose the subset of MSDN
information with which you're interested in working from the drop-down box, and the
information in each of the four Navigation Tabs (including the Contents tab) limits the
information it displays to the information contained in the selected subset. This means
that any searches you do in the Search tab and in the index presented in the Index tab
are filtered by their results and/or matches to the subset you define, greatly narrowing
the number of potential results for a given inquiry, and enabling you, thereby, to find the
information you're really looking for. In the Index tab, results that might match your
inquiry but aren't in the subset you have chosen are dimmed (but still selectable). In the
Search tab, they simply aren't displayed.

MSDN comes with the following pre-defined subsets:

Entire Collection

MSDN, Content on Disk 2 only

MSDN, Knowledge Base

MSDN, Technical Articles and
Backgrounders·

Platform SDK, Base Services

Platform SDK, Data Access Services

Platform SDK, Management Services

Platform SDK, Networking Services

Platform SDK, Tools and Languages

Platform SDK, Web Services

Platform SDK, Win32 API

Visual Basic Documentation

MSDN, Books and Periodicals

MSDN, Content on Disk 3 only

MSDN, Office Development

Platform SDK, BackOffice

Platform SDK, Component Services

Platform SDK, Graphics and
Multimedia Services

Platform SDK, Messaging and
Collaboration Services

Platform SDK, Security

Platform SDK, User Interface
Services

Platform SDK, What's New?

Repository 2.0 Documentation

Visual C++ Documentation

Visual C++, Platform SDK and WinCE Visual C++, Platform SDK, and
Docs Enterprise Docs

Visual FoxPro Documentation

Visual J++ Documentation

Visual Studio Product Documentation

VisuallnterDev Documentation

Visual SourceSafe Documentation

18 Volume 2 Microsoft Windows User Interface

As you can see, this bunch of filtering options essentially mirrors the structure of
information delivery used by MSDN. But, what if you are interested in viewing the
information in a handful of these subsets? For example, what if you want to search on a
certain keyword through the Platform SDK's Security, Networking Services, and
Management Services subsets, as well as a little section that's nested way into the Base
Services subset? Simple-you define your own subset.

You define subsets by choosing the View menu, and then selecting the Define Subset
menu item. You're presented with the window shown in Figure 3-4.

I nterprocess Communication: f
Performance Monitoring: PlatF(
Removable Storage Manager:
TerminalS ervices: PlatForm S [

Figure 3-4: The Define Subset window.

Defining a subset is easy; just take the following steps:

1. Choose the information you want in the new subset; you can choose entire subsets or
selected books/content within available subsets.

2. Add your selected information to the subset you're creating by clicking the Add
button.

3. Name the newly created subset by typing in a name in the Save New Subset As box.
Note that defined subsets (including any you create) are arranged in alphabetical
order.

Chapter 3 Using Microsoft Reference Resources 19

You also can delete entire subsets from the MSDN installation, if you so desire. Simply
select the subset you want to delete from the Select Subset To Display drop-down box,
and then click the Delete button nearby.

Once you have defined a subset, it becomes available in MSDN just like the pre-defined
subsets, and filters the information available in the four Navigation Tabs, just like the pre­
defined subsets do.

Quick Tips
Now that you know how to explore MSDN, there are a handful of tips and tricks that you
can use to make MSDN as effective as it can be.

Use the Locate button to get your bearings. Perhaps it's human nature to need to
know where you are in the grand scheme of things, but, regardless, it can be
bothersome to have a reference page displayed in the right pane (perhaps jumped to
from a search) without the Contents tab in the left pane being synchronized in terms of
the reference page's location in the information tree. Even if you know the general
technology in which your reference page resides, it's nice to find out where it is in the
content structure. This is easy to fix: simply click the Locate button in the navigation
toolbar, and all references will be synchronized.

Use the Back button just like a browser. The Back button in the navigation tool bar
functions just like a browser's Back button; if you need information on a reference page
you viewed previously, you can use the Back button to get there, instead of going
through the process of doing another search.

Define your own subsets and use them. Like I said at the beginning of this chapter,
the availability of information these days can sometimes make it difficult to get your work
done. By defining subsets of MSDN that are tailored to the work you do, you can
become more efficient.

Use an underscore at the beginning of your named subsets. Subsets in the Active
Subset drop-down box are arranged in alphabetical order, and the drop-down box
shows only a few subsets at a time (making it difficult to get a grip on available subsets, I
think). Underscores come before letters in alphabetical order; so, if you use an
underscore on all of your defined subsets, you get them placed at the front of the listing
of available subsets in the Active Subset drop-down box. Also, by using an underscore,
you can see immediately which subsets you've defined, and which ones come with
MSDN-it saves a few seconds at most, but those seconds can add up.

Using MSDN Online
MSDN Online shares a lot of similarities with MSDN, and that probably isn't by accident;
when you can go from one developer resource to another and immediately be able to
work with its content, your job is made easier. However, MSDN Online is different
enough that it merits explaining in its own right...and it should be; it's a different delivery
medium, and can take advantage of the Internet in ways that MSDN simply cannot.

20 Volume 2 Microsoft Windows User Interface

If you've used Microsoft's home page before (www.msn.comorhome.microsoft.com).
you're familiar with the fact that you can customize the page to your liking; choose from
an assortment of available national news, computer news, local news, weather, stock
quotes, and other collections of information or news that suit your tastes or interests.
You even can insert a few Web links, and have them readily accessible when you visit
the site. The MSDN Online home page can be customized in a similar way, but its
collection of headlines, information, and news sources are all about development. The
information you choose specifies the information you see when you go to the MSDN
Online home page, just like the Microsoft home page.

There are a couple of ways to get to the customization page: you can go to the MSDN
Online home page (msdn.microsoft.com) and click the Customize button at the top of
the page, or you can go there directly by pointing your browser to
msdn.microsoft.com/msdn-online/start/custom. However you get there, the page you'll
see is shown in Figure 3-5.

Select or clurthe
check bolo!es abolJQto
turn the categories on
or off. To change the
order in which the
categorlesappuron
the home page.. click a
category name, and
then click the up or

down arrow .it to the

right

customize iWil;'j,.'d]i;(!!if~;1 Roaming

Customize the information that appears on your MSDN Online home p~ge, Select your preferences
from the sections below~ then return here and choose Save. (yes, we know it's a lot of choices,
There's a lot of information on this site.) You can update your choices at any time by visiting this
Customize page.

',w"Ii""",,,
You can customize the headlines you see on the MSDN Online home page by selecting from the list of
technologies below, or you can choose a template we'IJe preselected just for Web developers. Either
way, your selections will customize what you see under Developer News! Libraries! and Support.

r· Web Development P None (clears all)
We'll soon offer more preselected technology templates for other developer specialties; write us and
let us know what you'd prefer.

If you select Allow Duplicate Headlines below, your home page will show multiple instances of some
headlines! each tagged for a different technology:

r Allow Duplicate Headlines

Figure 3-5: The MSDN Online customization page.

As you can see from Figure 3-5, there are lots of technologies from which to choose. If
you're interested in Web development, you can choose the Web Development radio
button near the top of the Technologies section, and a pre-defined subset of Web­
oriented technologies is selected. For more Win32 Library-oriented technologies, you
can go through and choose the appropriate technologies. If you want to choose all the

Chapter 3 Using Microsoft Reference Resources 21

technologies in a given technology group, check the Include All box in the technology's
shaded title area.

You can choose also which categories are included in the information MSDN Online
presents to you, as well as their arranged order. The available categories are the
following:

Developer News

Libraries

Member Community

Support

Voices

Search

Events & Training

Personal Links

Once you've defined your profile-that is, customized the MSDN Online content you want
to see-MSDN Online shows you the most recent information pertinent to your profile
when you go to MSDN Online's home page, with the categories you've chosen included
in the order you specify. Note that clearing a given check box-such as Libraries-clears
that category from the body of your MSDN Online home page (and excludes headlines
for that category), but does not remove that category from the MSDN Online site
navigation toolbar. In other words, if you clear the category, it won't be part of your
customized MSDN Online page's headlines, but it'll be still available as a site feature.

Finally, if you want your profile to be available to you regardless of which computer you're
using, you can direct MSDN Online to create a roaming profile. Creating a roaming profile
for MSDN Online results in your profile being stored on MSDN Online's server, much like
roaming profiles in Windows 2000, and thereby makes your profile available to you
regardless of the computer you're using. The option of creating a roaming profile is
available when you customize your MSDN Online home page (and can be done any time
thereafter). The creation of a roaming profile, however, requires that you become a
registered member of MSDN Online. More information about becoming a registered
MSDN Online user is provided in the section titled MSDN Online Registered Users.

Exploring MSDN Online
Once you're done customizing the MSDN Online home page to get the headlines you're
most interested in seeing, exploring MSDN Online is really easy. A banner that sits just
below the MSDN Online logo functions as a navigation toolbar, with drop-down menus
that can take you to the available areas on MSDN Online, as Figure 3-6 illustrates.

The available menu categories-which group the available sites and features within
MSDN Online-are the following:

Home

Libraries

Downloads

Search MSDN

Voices

Community

Site Guide

22 Volume 2 Microsoft Windows User Interface

online resource for developers, Here's some information to guide you through the site:

a chronological list all the latest information posted to the MSDN Online site.
Map can give you the view from above.

for navigating the site.
, See About MSDN to learn about the MSDN subscription progrern j the MSDN ISV programj

newsletter, and more.
decode the latestterm or acronym that has you stumped.

I us how we can make the site easier to use and what kinds of information you'd like to see

Photo Credits: PhotoDisc

~id you find this material useful? Gripes? Compliments? Suggestions for other artfcles? Write usl

© 1999 Microsoft Corporation, All rights rililSarlJad. Terms of use.

Figure 3-6: The MSDN Online navigation toolbar with its drop-down menus.

The navigation toolbar is available regardless of where you are in MSDN Online, so the
capability to explore the site from this familiar menu is always available, leaving you a
click away from any area on MSDN Online. These menu categories create a functional
and logical grouping of MSDN Online's feature offerings.

MSDN Online Features
Each of MSDN Online's seven feature categories contains various sites that contain the
features available to developers visiting MSDN Online.

Home is already familiar; clicking on Home in the navigation tool bar takes you to the
MSDN Online home page that you've customized (perhaps), showing you all the latest
headlines for technologies that you've indicated you're interested in reading about.

Voices is a collection of columns and articles that make up MSDN Online's magazine
section, and can be linked to directly at msdn.microsoft.com/voices. The Voices home
page is shown in Figure 3-7.

There is a bunch of different "voices" in the Voices site, each and adds its own particular
twist to the issues that developers face. Both application and Web developers can get
their fill of magazine-like articles from the sizable list of different articles available (and
frequently refreshed) in the Voices site.

Chapter 3 Using Microsoft Reference Resources 23

Libraries is where the reference material available on MSDN Online lives. The Libraries
site is divided into two sections: Library and Web Workshop. This distinction divides the
reference material between what used to be MSDN and Site Builder Network; that is,
Windows application development and Web development. Choosing Library from the
Libraries menu takes you to a page you can explore in traditional MSDN fashion, and
gain access to traditional MSDN reference material; the Library home page can be linked
to directly at msdn.microsoft.com/library. Choosing Web Workshop takes you to a site
that enables you to explore the Web Workshop in a slightly different way, starting with a
bulleted list of start pOints, as shown in Figure 3-8. The Web Workshop home page can
be linked to directly at msdn.microsoft.com/workshop.

Code Comer.
Geek Speak ..

Office Talk.
Deep C++.

New trom 1"1SDN Online
columnists and fe-atm"er 'Writers

Parsing and Sharing
XML is all about sharing. Columnist Charlie Heinemann talks about the Microsoft XML
parser, and how XML can make your data available.

Incorporating Digital Media Acquisition into Site Design
Nadja Vol Ochs details how to implement digital rights management on Web sites.

Handling EHceptions in [: and C++, Part 3
In his third installment on exception handling, columnist Robert Schmidt addresses

(d Voices Archive the syntax and semantics of Standard c++ exception handling.

Figure 3-7: The Voices home page.

by Robert
Schmidt

Community is a place where developers can go to take advantage of the online forum
of Windows and Web developers, in which ideas or techniques can be shared, advice
can be found or given (through MHM, or Members Helping Members), and Online
Special Interest Groups (OSIGs) can find a forum to Voice their opinions or chat with
other developers. The Community site is full of all sorts of useful stuff, including featured
books, promotions and downloads, case studies, and more. The Community home page
can be linked to directly at msdn.microsoft.com/commUl1ity. Figure 3-9 provides a look at
the Community home page.

24 Volume 2 Microsoft Windows User Interface

ESSENTIALS.

Component Deuelopmant •

CC!ntent Br Component DeliYerv •

Data Acceu; & Databases.

Design.

DHTML, HTML 81 ess •
Lianguages S. Daualopmllilnt Tools.

Mllilssaglng & Collaboration.

N&tworking. Protocols +
& Data Formats

Reusing Bro ser Technolo9':1 •

Security III Cr'lptography +

Server Tlilchnologies •

Streaming 8e Interacl::illl! Media.

Web contilnt Milnagement •

XML (Extensible Markup Language.) +

ESSENTIALS
This section contains core
inform.o'tion and references}
including information on
authoring for different
browsers .!lind pl.otforms j end­
to-end examples of working
Web sites} slides from
conferences) specs) and
comprehensive links to
references and standards.

Welcome

The MSDN Online Web
Workshop provides the latest
information about Internet
technologies, induding
reference material and in­
depth articles on all aspects
of Web site design and
dellelopment. Choose the
categories on the left to
navigate via content listings.
Use the index to look up
keywords, and the search
page for specific queries.
Check our What's New page
for updates.

The mON Online te"m

~ 1999 Micro;!!:oft Corporation, All rights reserved, Terms of un.

Figure 3-8: The Web Workshop home page, with its bulleted list of exploration
start pOints.

l2.!na
Your Membership.

OSIGs a

Member Gazattliil ..

Case Studies.

Downloads: ..

Mambars: Helping.
Members

Offers ..

Trilining.

MSDN Stores ..

Welcome to the MSDN Online Member Community .§i
Updated June 4, 1999

With an MSDN Online membership, developers can easily access techniCo!lI
information, tools, and a community of developers ready to help sol¥e the
toughest challenges. Join no~" and take advantage of member benefits,

Online Special-Interest Groups

Access the information you need, when you need it, with OnHo:;: Special··Intere..;t
Group·.: (OSIGs). Web-based access to relevant newsgroups, sorted by product,
make it easy for you to get informfltion you need to do your job, Take advantage
of special offers, find useful links, and stay up to date with the latest product and
technology news.

Members Helping Members

Members Helping Members (MHM) is a networking and support tool that helps
developers get connected, solve problems, and gain recognition within the
developer community. Get answers Quickly by searching the MHM database for
people who can answer your technical questions, Or, register as a ¥olunteer and
help other developers when they need it. Sign up nowl

MSDN Online Certified Membership

MSDN __ -""""'"­
SqL_

-....-
, c++

Viaua1~Pn

.......0-

vIRAIi .J++ -­_

Figure 3-9: The Community home page.

Chapter 3 Using Microsoft Reference Resources 25

The Downloads site is where developers can find all sorts of useable items fit to be
downloaded, such as tools, samples, images, and sounds. The Downloads site is also
where MSDN subscribers go to get their subscription content updated to the latest and
greatest releases over the Internet, as described previously in this chapter in the Using
MSDN section. The Downloads home page can be linked to directly at
msdn.microsoft.com/downloads. The Downloads home page is shown in Figure 3-10.

Teols ... Welcome to the MSDN Online Downloads Area
Samples ...

Images.. Tools
Sounds ..

Subscriber ..
Do nloads

Want to tryout some great new products? Check out our tools area) where MSDN Online members and
guests can download over 40 trial, beta and full versions of the latest developer products:,

Samples

In this section! you will find a great variety of samples which demonstrate ways to use the latest and
greatest Microsoft technologies to make your applications the best they can be. All samples have code
that can be downloaded, most can be browsed online, and many have live demonstration pages.
Choose from the Table of Contents to find samples focused on a particular product or technology,
Entries prefixed with ~ are for users registered with Visual Studio only -- to get access to these,
register your product today,

Visit the Visual Studio solutions Center for sample solutions designed to help you learn and understand
end-to-end application architecture and design,

Images

Download Web-ready images for free from our Images Downloads area, Currently, we have a great
collection created by Little Men's studio J Inc. Little Men's Studio provides original clip art collections]
iconss and free quotes on affordable custom graphics, Our image categories include rules, clip art,
buttons J bullets, photographs, and more. We will be updating this collection with more images so be
sure to check back frequently.

Figure 3-10: The Downloads home page.

The Site Guide is just what its name suggests: a guide to the MSDN Online site that
aims at helping developers find items of interest, and includes links to other pages on
MSDN Online, such as a recently posted files listing, site maps, glossaries, and other
useful links. The Site Guide home page can be linked to directly at
msdn. microsoft. com/siteguide.

The Search MSDN site on MSDN Online has been improved over previous versions,
and includes the capability to restrict searches to either of the libraries (Library or Web
Workshop), as well as other finely tuned search capabilities. The Search MSDN home
page can be linked to directly at msdn.microsoft.com/search. The Search MSDN home
page is shown in Figure 3-11.

26 Volume 2 Microsoft Windows User Interface

1. Enter your search word(s) or phrase, or select a saved phrase from the drop-down list:

2. Select your search criteria:

I exact phra,e .•

3. Specify your search scope:

{.. All sections of MSDN Library

r selected sections of MSDN library

P'! Visual Studio Documentation

P; Visual Basic Documentation

pi Visual c++ Documentation

P; Visual Fox Pro Documentation

J;ii Visual InterDev Documentation

~ Visual J++ Documentation

Pi Visual SourceSafe Documentation

R' Tools & Technologies (including Win eE)

Fl Other SDK Documentation

p: OOK Documentation

F?'; Windows Resource Kits

Pi Specifications

R! Technical Articles

pi Backgrounders

R' Books and Partial Books

F7 Periodicals

Figure 3-11: The Search MSDN home page.

MSDN Online Registered Users

Seat(h TiP$:
Quick

AdvaMed

You might have noticed that some features of MSDN Online-such as the capability to
create a roaming profile of the entry ticket to some community features-require you to
become a registered user. Unlike MSDN subscriptions, becoming a registered user of
MSDN Online won't cost you anything more than a few minutes of registration time.

Some features of MSDN Online require registration before you can take advantage of
their offerings. For example, becoming a member of an OSIG requires registration. That
feature alone is enough of a reason to register; rather than attempting to call your
developer buddy for an answer to a question (only to find out that she's on vacation for
two days, and your deadline is in a few hours), you can go to MSDN Online's Community
site and ferret through your OSIG to find the answer in a handful of clicks. Who knows?
Maybe your developer buddy will begin calling you with questions-you don't have to tell
her where you're getting all your answers.

There are actually a number of advantages to being a registered user, such as the
choice to receive newsletters right in your inbox-if you want to. You can get also all
sorts of other timely information, such as chat reminders that let you know when experts
on a given subject will be chatting in the MSDN Online Community site. You also can
sign up to get newsletters based on your membership in various OSIGs-again, only if

Chapter 3 Using Microsoft Reference Resources 27

you want to. It's easy for me to suggest that you become a registered user for MSDN
Online-I'm a registered user, and it's a great resource.

The Windows Programming Reference Series
The Windows Programming Reference Series provides developers with timely, concise,
and focused material on a given topic, enabling them to get their work done as efficiently
as possible. In addition to providing reference material for Microsoft technologies, each
Pack in the Windows Programming Reference Series also includes material that helps
developers get the most out of its technologies, and provides insights that might
otherwise be difficult to find.

The Windows Programming Reference Series currently includes the following Packs:

Win32 Library

Active Directory Services Library

Networking Services Library

In the near future (subject, of course, to technology release schedules, demand, and
other forces that can impact publication decisions), you can look for these prospective
Windows Programming Reference Series Packs that cover the following material:

COM/DCOM 2.0 Library

Web Reference Library

Web Technologies Library

What else might you find in the future? Planned topics, such as a Security Pack,
Language Reference Pack, MFC Pack, BackOffice Pack, or other pertinent topics that
developers using Microsoft products need in order to get the most out of their
development efforts, are prime subjects for future membership in the Windows
Programming Reference Series. If you have feedback you want to provide on such
packs, or on the Windows Programming Reference Series in general, you can send e­
mail to the following address:

winprs@microsoft.com

If you're sending e-mail about a particular pack, make sure you put the name of the pack
in the subject line. For example, an e-mail about the Win32 Library would have a subject
line that reads "Win32 Library." There aren't any guarantees that you'll get a reply, but I'll
read all of the e-mail and do what I can to ensure your comments, concerns, or
(especially) compliments get to the right place.

CHAPTER 4

Finding the Developer Resources
You Need

29

There are all sorts of resources out there for developers of Windows applications, and
they can provide answers to a multitude of questions or problems that developers face
every day, but finding those resources is sometimes harder than the original problem.
This chapter aims to provide you with a one-stop resource to find as many developer
resources as are available, again making your job of actually developing the application
just a little easier.

While Microsoft provides lots of resource material through MSDN and MSDN Online, and
although the Windows Programming Resource Series provides lots of focused reference
material and development tips and tricks, there is a lot more information to be had. Some
of it is from Microsoft, some from the general development community, and some from
companies that specialize in such development services. Regardless of which resource
you choose, in this chapter you can find out what your development resource options are
and, therefore, be more informed about the resources that are available to you.

Microsoft provides developer resources through a number of different media, channels,
and approaches. The extensiveness of Microsoft's resource offerings mirrors the fact
that many are appropriate under various circumstances. For example, you wouldn't go to
a conference to find the answer to a specific development problem in your programming
project; instead, you might use one of the other Microsoft resources.

Developer Support
Microsoft's support sites cover a wide variety of support issues and approaches,
including all of Microsoft's products, but most of those sites are not pertinent to
developers. Some sites, however, are designed for developer support; the Product
Services Support page for developers is a good central place to find the support
information you need. Figure 4-1 shows the Product Services Support page for
developers, which can be found at www.microsoft.comlsupport/customerldevelop.htm.

Note that there are a number of options for support from Microsoft, including everything
from simple online searches of known bugs in the Knowledge Base to hands-on
consulting support from Microsoft Consulting Services, and everything in between. The
Web page displayed in Figure 4-1 is a good starting point from which you can find out
more information about Microsoft's support services.

30 Volume 2 Microsoft Windows User Interface

Microsoft offers a wide variety of support for Developers. The Microsoft
Developer Net\\'ork (MSDN) is packed with news, resources and technical

1"'-"'-'-"=="--=1 ~::!~~~uc~~a!~~ ~~~:~~a~I~:~rs~:~c~~h:r~'n~i~i:~~pnpeoe~~r~h~~: ~:~~nnt~gpef~~
our regular e-mail news watch.

r±l Business Solutions Microsoft:: offers developers with Premier Support for Developer, Pay-per-
ffl Partners 81: Resellers Incident Support, Priorit" Annual Support and special consulting services, If

Developers 'IOU need morE! than occasional developer support, one of these options is
Home User sure to be right for 'IOU.

Education

Do you need help now?

Go to the Mkrosofi.: DeIJe!oper Network (MSDN) Support Ser ... iceDesk,

Support Options

Ptemier Support for Developers
Priorft't Annual Support
Pay~Per~Incident Support
Consult Line

For additional information, read the Premier Support for
Developers data sheet. (pre_dev.doc, 641<)

Figure 4-1: The Product Services Support page for developers.

Premier Support from Microsoft provides extensive support for developers, and there
are different packages geared toward different Microsoft customers. The packages of
Premier Support that Microsoft provides are:

• Premier Support for Enterprises

• Premier Support for Developers

• Premier Support for Microsoft Certified Solution Providers

• Premier Support for OEMs

If you're a developer, you might fall into any of these categories. To find out more
information about Microsoft's Premier Support, get in contact with them at 1-800-936-
2000.

Priority Annual Support from Microsoft is geared toward developers or organizations
that have more than an occasional need to call Microsoft with support questions, and
need priority handling of their support questions or issues. There are three packages of
Priority Annual Support offered by Microsoft:

• Priority Comprehensive Support

• Priority Developer Support

• Priority Desktop Support

Chapter 4 Finding the Developer Resources You Need 31

As a developer, the best support option for you is the Priority Developer Support. To get
more information about Priority Developer Support, you can reach Microsoft at 1-800-
936-3500.

Microsoft also offers a Pay-Per-Incident support option, so you can get help if there's
just one question for which you must have an answer. With Pay-Per-Incident support,
you call a toll-free number and provide your Visa, MasterCard, or American Express card
number, after which you receive support for your incident. In loose terms, an incident is
some problem or issue that can't be broken down into sub-issues or sub-problems (that
is, it can't be broken down into smaller pieces). The number to call for Pay-Per-Incident
support is 1-800-936-5800.

Note that Microsoft provides two priority technical support incidents as part of the MSDN
Professional Subscription, and provides four priority technical support incidents as part
of the MSDN Universal Subscription.

You can also submit questions to Microsoft engineers through Microsoft's support Web
site, but if you're on a deadline you might want to rethink this approach, or consider
going to MSDN Online and looking into the Community site there for help with your
development question. To submit a question to Microsoft engineers online, go to
support. microsoft. comlsupportlwebresponse. asp.

Online Resources
Microsoft also provides extensive developer support through its community of
developers found on MSDN Online. At MSDN Online's Community site, you will find
OSIGs that cover all sorts of issues in an online, ongoing fashion. To get to MSDN
Online's Community site, go to msdn.microsoft.comlcommunity.

Microsoft's MSDN Online also provides its Knowledge Base online, which is part of the
Personal Support Center on Microsoft's corporate site. You can search the Knowledge
Base online at support.microsoft.comlsupportlsearch.

Microsoft provides a number of newsgroups that developers can use to view
information on newsgroup-specific topics, providing yet another developer resource for
finding information about creating Windows applications. To find out which newsgroups
are available, and how to get to them, go to support.microsoft.comlsupportlnews.

There is a handful of newsgroups that will probably be of particular interest to readers of
the Microsoft Win32 Developer's Reference Library, and they are the following:

microsoft. public. win32.programmer. *

microsoft.public. vc. *

microsoft.public. vb. *

microsoft.public.platformsdk. *

microsoft.public.cert. *

microsoft. public. certification. *

32 Volume 2 Microsoft Windows User Interface

Of course, Microsoft isn't the only newsgroup provider on which newsgroups pertaining
to Windows development are hosted. Usenet has all sorts of newsgroups-too many to
list-that host ongoing discussions pertaining to developing applications on the Windows
platform. You can access newsgroups on Windows development just as you access any
other newsgroup; generally, you'll need to contact your ISP to find out the name of the
mail server, and then use a news reader application to visit, read, or post to the Usenet
groups.

Learning Products
Microsoft provides a number of products that help enable developers to learn the
particular tasks or tools that they need to achieve their goals (or to finish their tasks).
One product line that is geared toward developers is called the Mastering Series, and
its products provide comprehensive, well-structured, interactive teaching tools for a wide
variety of development topiCS.

The Mastering Series from Microsoft consists of interactive tools that group books and
CDs together so that you can master the topic in question. To get more information
about the Mastering Series of products, or to find out what kind of offerings the
Mastering Series has, check out msdn.microsoft.com/mastering.

Other learning products are available from other vendors, too, such as other publishers,
other applications providers that create tutorial-type content and applications, and
companies that issue videos (both taped and broadcast over the Internet) on specific
technologies. For one example of a company that issues technology-based instructional
or overview videos, take a look at www.compchannel.com.

Another way of learning about development in a particular language (such as
Visual C++, Visual FoxPro, or Visual Basic), for a particular operating system, or for a
particular product (such as SQL Server or Commerce Server) is to go through and read
the preparation materials available to get certified as a Microsoft Certified Solution
Developer (MCSD). Before you get too defensive about not having enough time to get
certified, or in having no interest in getting your certification (maybe you do-there are
benefits, you know), let me state that the point of the journey is not necessarily to arrive.
In other words, you don't have to get your certification for the preparation materials to be
useful; in fact, they might teach you things that you thought you knew well, but actually
didn't know as well as you thought you did. The fact of the matter is that the coursework
and the requirements to get through the certification process are rigorous, difficult, and
quite detail-oriented. If you have what it takes to get your certification, you have an
extremely strong grasp on the fundamentals (and then some) of application
programming and the developer-oriented information about Windows platforms.

You are required to take a set of core exams to get an MCSD certification, and then you
must choose one topic from many available elective exams to complete your certification
requirements. Core exams are chosen from among a group of available exams; you
must pass a total of three exams to complete the core requirements. There are "tracks"
that candidates generally choose and that point their certification in a given direction,

Chapter 4 Finding the Developer Resources You Need 33

such as Visual C++ development or Visual Basic development. The core exams and
their exam numbers are as follows.

Desktop Applications Development (one required):

• Designing and Implementing Desktop Applications with Microsoft Visual C++ 6.0 (70-
016)

• Designing and Implementing Desktop Applications with Microsoft Visual FoxPro 6.0
(70-155)

• DeSigning and Implementing Desktop Applications with Microsoft Visual Basic 6.0
(70-176)

Distributed Applications Development (one required):

• Designing and Implementing Distributed Applications with Microsoft Visual C++ 6.0
(70-015)

• Designing and Implementing Distributed Applications with Microsoft Visual FoxPro 6.0
(70-156)

• Designing and Implementing Distributed Applications with Microsoft Visual Basic 6.0
(70-175)

Solutions Architecture:

• Analyzing Requirements and Defining Solution Architectures (70-100)

Elective exams enable candidates to choose from a number of additional exams to
complete their MCSD exam requirements. The following lists the available MCSD
elective exams.

Available elective exams:

• Any Desktop or Distributed exam not used as a core requirement

• Designing and Implementing Data Warehouses with Microsoft Sal Server 7.0 and
Microsoft Decision Support Services 1.0

• Developing Applications with C++ Using the Microsoft Foundation Class Library 4.0
Library

• Implementing OLE in Microsoft Foundation Class Library 4.0 Applications

• Implementing a Database Design on Microsoft Sal Server 6.5

• Designing and Implementing Databases with Microsoft Sal Server 7.0

• Designing and Implementing Web Sites with Microsoft FrontPage 98

• Designing and Implementing Commerce Solutions with Microsoft Site Server 3.0,
Commerce Edition

• Microsoft Access for Windows 95 and the Microsoft Access Developer's Toolkit

• Designing and Implementing Solutions with Microsoft Office 2000 and
Microsoft Visual Basic for Applications

34 Volume 2 Microsoft Windows User Interface

• Designing and Implementing Database Applications with Microsoft Access 2000

• Designing and Implementing Collaborative Solutions with Microsoft Outlook 2000 and
Microsoft Exchange Server 5.5

• Designing and Implementing Web Solutions with Microsoft VisuallnterDev 6.0

• Designing and Implementing Distributed Applications with Microsoft Visual FoxPro 6.0

• Designing and Implementing Desktop Applications with Microsoft Visual FoxPro 6.0

• Developing Applications with Microsoft Visual Basic 5.0

• Designing and Implementing Distributed Applications with Microsoft Visual Basic 6.0

• Designing and Implementing Desktop Applications with Microsoft Visual Basic 6.0

The best news about these exams isn't that there are lots from which to choose. The
best news is that, because there are exams that must be passed to become certified,
there are books and other materials out there to teach you how to meet the knowledge
level necessary to pass the exams, and that means those resources are available to
you-regardless of whether you care one whit about becoming an MCSD or not.

The way to leverage this information is to get study materials for one or more of these
exams-and don't be fooled by believing that if the book is bigger it must be better,
because that certainly isn't always the case-and go through the exam preparation
material. Such exam preparation material is available from all sorts of publishers,
including Microsoft Press, IDG, Sybex, and others. Most exam preparation texts also
have practice exams that let you self-assess your grasp of the material. You might be
surprised by how much you learn, even though you might have been in the field working
on complex projects for some time.

Of course, these exam requirements, and the exams themselves, can change over time;
more electives become available, exams based on revised versions of software are
retired, and so on. For more information about the certification process, or for more
information about the exams, check out www.microsoft.comltrain_cert/dev.

Conferences
As in any industry, Microsoft and the development community as a whole sponsor
conferences throughout the year-occurring throughout the country and around the
world~on various topics. There are probably more conferences available than any
human being could possibly attend and still be sane, but often a given conference is
geared toward a particular topic, so choosing to focus on a given development topic
enables developers to select the number of conferences that apply to their efforts and
interests.

Chapter 4 Finding the Developer Resources You Need 35

MSDN itself hosts or sponsors almost a hundred conferences a year (some of them are
regional and duplicated in different locations, so these could be considered one
conference that happens multiple times). Other conferences are held in one central
location, such as the big one-the Professional Developers Conference (PDC).
Regardless of which conference you're looking for, Microsoft has provided a central site
for providing event information, and enables users (such as yourself) to search the site
for conferences, based on many different criteria. To find out what conferences or other
events are going on in your area of interest of development focus, go to
events. microsoft. com.

Other Resources
There are other resources available for developers of Windows applications, some of which
might be mainstays for one developer and unheard of for another. The listing of developer
resources in this chapter has been geared toward getting you more than started with
finding the developer resources you need: it's geared toward getting you 100 percent of the
way, but there are always exceptions.

Perhaps you're just getting started, and you want to get more hands-on instruction than
MSDN Online or MCSD preparation materials provide. Where can you go? One option is
to check out your local college for instructor-led courses. Most community colleges offer
night classes, in case you have that pesky day job with which to contend and,
increasingly, community colleges are outfitted with rather nice computer labs that enable
you to get hands-on development instruction and experience, without having to work on
a 386/20.

There are undoubtedly other resources that some people know about that have been
useful, or maybe invaluable. If you have a resource that should be shared with others, let
me know about it by sending me e-mail at the following address, and-who
knows?~aybe someone else will benefit from your knowledge:

winprs@microsoft.com

If you're sending e-mail about a particularly useful resource, type "Resources" in the
subject line. There aren't any guarantees that you'll get a reply, but I'll read all of the e-mail
and do what I can to ensure your resource idea gets considered.

CHAPTER 5

Getting the Most Out of Win32
Technologies: Part 2

37

This chapter is the second of the five-part collection of common programming errors that
is included in the Microsoft Win32 Developer's Reference Library to help you avoid these
simple programming pitfalls. This collection of common programming errors is distributed
in each Win32 Library volume's Chapter 5 in the following fashion:

Volume 1: Overview and Solution Summary

Volume 2: Avoiding Invalid Validation

Volume 3: RPC Errors and Kernel-Mode Specifiers

Volume 4: Buffer Overflows and Miscellaneous Errors

Volume 5: Memory Abuse and Miscalculations

This of course is Volume 2, and the errors and examples found in this chapter provide
insights that can help you avoid problems with invalid validations in your programming
projects. So without further ado, here they are!

Avoiding Invalid Validation
Parameter validation can be a complex process. Validation is often skipped in what
appears to be a "private interface" for a given application or component; the problem
arises when these "private interfaces" are exposed to other components or applications
and, therefore, become callable by "non-private" code. The best weapon against this
common programming error is to know that careful validation is necessary for any
exposed function.

One way to sum up this section is "never assume." Another way to sum up this section is
"private interfaces need checks, too." The following is a list of rules that can help you
avoid these programming problems:

• Validate all objects referenced by generic handles.

• Don't assume correlation between parameter~verify all supposedly correlated data.

• Exception handling is not always the answer. Check return values and error codes,
whenever possible.

• Include parameter validation in alternate (private) interfaces, or reject calls from
untrusted sources.

• Carefully review al/ code paths, not just the primary code path.

• In general, treat all data as suspect.

38 Volume 2 Microsoft Windows User Interface

Working with Handle-Based Objects
Any exported routine that has generic handle parameters should verify that the object is
the desired type. Kernel-mode entry pOints are the most dangerous place for this type of
problem, because improper checks can lead to system failure (a bug check), which
tends to make your application less than desirable on corporate or home desktops.
Although these interfaces accept generic objects, such as files or object handles, they
often need very specific object types to work correctly. If an algorithm requires a specific
type of object, verify that the specific type of object it requires is the object it receives.
Such validation is often difficult, especially when a forward-looking application
programmer wants to ensure his or her routine works with objects that have yet to be
defined, but such validation is necessary to avoid problems.

Since handles are accessible to other threads within a given process, handles are
volatile. Kernel code should expect handles to change over time. Consider the following
fragment from a buffered I/O path of a driver:

This handle might have come from user mode and should not be trusted. Great care
must be taken when the object type in the previous call is passed as zero, because
separate object type validation must be performed. The code fragment does set the
object type, but specifies the previous mode as kernel and does not set the desired
access mask. Suppose this kernel interface performs a fast copy of this file over the
network; clearly, this code needs read access to the file and, therefore, the caller should
have had read access, or had no business presenting this handle. The better code
fragment might be:

Now, consider the following fragment. It attempts to write safely to a file from which it has
received the handle from user mode:

Chapter 5 Getting the Most Out of Win32 Technologies: Part 2 39

NULL) :

Remarks
By the time the ZwWriteFileO function gets control, this handle might be invalid-or,
worse, the handle might be for an open file to which the caller doesn't have write access.

Verify Correlated Parameters
Some functions assume that the values of two independent input fields are bound by a
correlation, without explicitly verifying that the correlation is satisfied. Don't rely on
implicit correlation-verify it.

(continued)

40 Volume 2 Microsoft Windows User Interface

(continued)

Remarks
In this example, the FalseCorrelationVictim() function has been "fooled" into believing
that the size of the buffer was correctly indicated by the value of the Type field in the
input structure. The real size of the buffer is in BufferSize, which has been verified only
to be at least large enough to cover the Type field. This type of attack can be particularly
insidious when it is possible for an input buffer to contain variably sized components, the
size of which might be calculated as the difference between BufferSize and the size of
the fixed portion of the input structure data-for instance, a buffer header followed by a
data packet. If the routine can be manipulated into "believing" that the fixed portion is
larger than the size of the indicated packet, large values will be calculated for the trailing
buffer size when the difference wraps around zero. In many cases, this problem is
created by checking a passed value and utilizing a calculated value that should match.

Limits of Exception Handling
Exception handling can be quite useful for catching and handling many problems.
However, exception handling can cause problems if it is overused, as the following
sections explain.

Kernel mode NULL dereference is unsafe, even when protected by
try-except
The most common case of this problem is when the code assumes that dereferencing
spoofed or incorrect values will be caught by exception handling and, therefore, the code
does not sufficiently check input values. Don't fall for this-there are many ways to ''fool''
exception handling. Even NULL can be mapped as a valid address. To avoid this
common error, check values explicitly.

Example

Chapter 5 Getting the Most Out of Win32 Technologies: Part 2 41

size,

Return, break, continue, and goto from the try block of a try-finally cause unwind; this
approach negatively impacts performance (even in error handling code). A better
approach is to use _leave. Return from the try block of a try-finally causes function
execution to end after the last statement in the finally block.

Example

(continued)

42 Volume 2 Microsoft Windows User Interface

(ContinUed)

Ramifications ot returning trom a tinally block
Return from a finally blOCk halts UnWind, effectively handling an exception, ff one Was
taised. Return from a finally blOCk aher return from a try block resuhs in the finally's return value being retUrned; loss of the try blOCk's value.

Example

Chapter 5 Getting the Most Out of Win32 Technologies: Part 2 43

Be wary of execution order
An except block's filter argument of try-except block containing a try-finally is
evaluated before the finally, which occurs before the exception handler.

Remarks
In this example, blocks are executed in order numbered for the case where a single
exception is raised in block 3. The filter (4) and except (7) blocks do not execute unless
an exception occurs in block 2, 3, 5, or 6. Block 6 does not execute if an exception
occurs in block 2, 3, or 5. When an exception occurs in block 5 or 6, the filter is executed
before block 7.

Avoid relying on exceptions instead of correct validation
Taking exceptions due to bad memory references in user mode, even within the
protected block of a try-except, must be avoided.

44 Volume 2 Microsoft Windows User Interface

Stacks are built from a range of committed pages, followed by a guard page. This guard
page, when tripped by stack expansion (for example, because of recursion), turns into a
mapped page, and the handler for the guard page exception (in this case the kernel)
creates another guard page. This process is repeated for each stack page required until
the lower limit of the stack is reached; since a given thread's stack limits are known, the
kernel handles this expansion.

When the lower limit of the stack is reached, the guard page is not created. Any further
attempt to grow the stack results in an access violation, as the unmapped page is
touched (or no access violation occurs, as the data at the mapped page is trashed).

When a thread takes an exception in an out-of-stack condition, its process is terminated,
without recourse to any stack-based exception handlers.

Touching a guard page outside of a thread's stack also results in a guard page
exception, and the page is mapped. Such action does not result in stack expansion,
because it isn't within the current thread's stack base and stack limits.

Thus, if an attacker can cause an out of range access that happens to coincide with the
guard page of another thread's stack, that thread becomes limited to the currently
committed stack (now including the guard page that was just mapped). An attempt to
use more stack than this results in process termination.

Alternate Code Paths
There are often multiple means of changing the state of an object. Occasionally,
alternate means of performing the change are missing test checks that the more usual
entry point is being afforded. Since it is difficult to verify that all routes have the same
access checks, using common validation code will simplify the process of checking all
possible code paths.

Example

Chapter 5 Getting the Most Out of Win32 Technologies: Part 2 45

Remarks
The problem with this example is that the GetlnfoFromObject() function has created a
timing window in which a non-administrative user can access Object from a different
thread while in state A. Had the user merely attempted to change to state A by using the
ChangeObjectToStateA() function, a failure due to insufficient privileges would have
resulted. Although the RevertToPreviousState{) function call places Object back into
an allowed state to the user prior to returning; asynchronous access to the object in state
A was available to the user throughout the call to the ReadObjectlnfo() function.

Trusted Data Sources
Many application components expect all inputs to be controlled by some other code. If a
component is receiving formatted data from a "trusted" data source and makes
assumptions as to the format of the input data, it must verify that the data came from the
trusted source. Unless the data source can be verified 100 percent as a "trusted" entity,
all data must be treated as suspect. Since this is a very general class of attack, many
previously cited examples are specific manifestations.

In rare cases of developer negligence, this class might appear as a complete lack of any
data verification, with the code citing the "internal" or "private" nature of the interface as
verification that the entity providing the data is trustworthy and has correctly formatted
the data. Data-processing bugs in these cases are frequently written off as bugs in the
''trusted'' component, further exposing the incorrectly secured interface to attack.

46 Volume 2 Microsoft Windows User Interface

More commonly, this class of programming error is discovered when analyzing the
behavior of a component that has already verified portions of the data correctly, or that
has a previous relationship with the entity supplying the data in which correctly verified
information has been successfully received and processed. These attacks are much
subtler because they require an attacker to know enough about the interface to provide
data that is partly or mostly verifiable. Additionally, these bugs are tedious and difficult to
track and eradicate, by similar reasoning.

Example

Remarks
The programming error here is subtle and made more difficult by the fact that it occurs in
the very code that is attempting to verify that the packet is valid. There is no guarantee
that the user name string indicated in the packet is NULL terminated, potentially causing
an exception when strlen violates the buffer size of the indicated packet.

Chapter 5 Getting the Most Out of Win32 Technologies: Part 2 47

Solutions Summary
It's nice to have a concise version of the solutions to these common programming
problems, so this section summarizes how to avoid the issues discussed in this chapter.

Avoiding Invalid Validation

1. Working with Handle-Based Objects: Validate all objects referenced by generic
handles.

2. Verify Correlated Parameters: Don't assume correlation between parameters. Verify
all supposedly correlated data.

3. Limits of Exception Handling: Exception handling is not always the answer. Check
return values and error codes, whenever possible.

4. Alternate Code Paths: Include parameter validation in alternate (private) interfaces, or
reject calls from untrusted sources.

5. Trusted Data Sources: Treat all data as suspect.

49

CHAPTER 6

Controls

Controls
A control is a child window that an application uses in conjunction with another window
to perform simple input and output (1/0) tasks. Controls are most often used within dialog
boxes, but they can be used also in other windows. Controls within dialog boxes provide
the user with the means to type text, choose options, and direct a dialog box to complete
its action. Controls in other windows provide a variety of services, such as letting the
user choose commands, view status, and view and edit text.

About Controls

Name

BUTTON

Controls, like other windows, belong to a window class, either predefined or owner­
defined. The window class and the corresponding window procedure define the
properties of the control, as well as its appearance, behavior, and purpose.
An application can create controls individually by specifying the name of the window
class when calling the CreateWindowEx function. An application also can direct the
system to create controls for a dialog box by specifying the controls in the dialog-box
template.

Predefined Controls
The system provides several predefined window classes for controls. Controls belonging
to these window classes are called predefined controls. An application creates a
predefined control of a particular type by specifying the appropriate window class name
in either the CreateWindowEx function or the dialog-box template. The following are the
predefined window classes:

Description

Creates button controls. These controls typically notify the parent window
when the user chooses the control. For more information, see Buttons.

COMBOBOX Creates combo boxes. These controls are a combination of list boxes and
edit controls, letting the user choose and edit items. For more information,
see Combo Boxes.

EDIT

LlSTBOX

Creates edit controls. These controls let the user view and edit text. For
more information, see Edit Controls.

Creates list boxes. These controls display a list from which the user can
select one or more items. For more information, see List Boxes.

50 Volume 2 Microsoft Windows User Interface

RICH EDIT Creates Rich Edit version 1.0 controls. These controls let the user view and
edit text with character and paragraph formatting, and can include
embedded COM objects. For more information, see Rich-Edit Controls.

RICH EDIT _CLASS Creates Rich Edit version 2.0 controls. These controls let the user view and
edit text with character and paragraph formatting, and can include
embedded COM objects. For more information, see Rich-Edit Controls.

SCROLLBAR Creates scroll-bar controls. These controls let the user choose the direction
and distance to scroll information in a related window. For more information,
see Scroll Bars.

STATIC Creates static controls. These controls often act as labels for other controls.
For more information, see Static Controls.

Each predefined window class has a corresponding set of control styles that enable an
application to vary the appearance and behavior of the controls the class creates. For
example, the BUTTON class supports styles to create push buttons, radio buttons, check
boxes, and group boxes. An application specifies the style when creating the control.

Each predefined window class has a corresponding set of notification and control
messages. Applications rely on the notification messages to determine when the user
has provided input to the controls. For example, a push button sends a BN_CLICKED
message to the parent window when the user clicks the button. Applications use the
control messages to retrieve information from the controls, and to manipulate the
appearance and behavior of the controls. For example, an application can send a
BM_GETCHECK message to a check box to determine whether it currently contains a
check mark.

Most applications make extensive use of predefined controls in dialog boxes and other
windows. Because predefined controls offer many capabilities, a full discussion of each
is beyond the scope of this topic.

Control Reference
Control Messages

An application sends a WM_GETFONT message to a control to retrieve the font with
which the control is currently drawing its text.

To send this message, call the Send Message function with the following parameters.

) ;

(WPARAM) wParam;
(LPARAM) 7Param;

Parameters

II not used; must be zero
II not used; must be zero

This message has no parameters.

Return Values

Chapter 6 Controls 51

The return value is a handle to the font used by the control, or NULL if the control is
using the system font.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Controls Overview, Control Messages, WM_SETFONT

An application sends a WM_SETFONT message to specify the font that a control is to
use when drawing text.

To send this message, call the SendMessage function with the following parameters.

~~ndM~ss:ag~t'
(jiI'lND) :h')lnq. ' ,

~,::s~uO:tli. :";;' .

::~~ll&;~fi
Parameters
wParam

Handle to the font. If this parameter is NULL, the control uses the default system font
to draw text.

IParam
The low-order word of IParam specifies whether the control should be redrawn
immediately upon setting the font. If this parameter is TRUE, the control redraws
itself.

52 Volume 2 Microsoft Windows User Interface

Return Values
This message does not return a value.

Remarks
The WM_SETFONT message applies to all controls, not just those in dialog boxes.

The best time for the owner of a dialog-box control to set the font of the control is when it
receives the WM_INITDIALOG message. The application should call the DeleteObject
function to delete the font when it is no longer needed; for example, after it destroys the
control.

The size of the control does not change as a result of receiving this message. To avoid
clipping text that does not fit within the boundaries of the control, the application should
correct the size of the control window before it sets the font.

When a dialog box uses the DS_SETFONT style to set the text in its controls, the
system sends the WM_SETFONT message to the dialog-box procedure before it creates
the controls. An application can create a dialog box that contains the DS_SETFONT
style by calling any of the following functions:

• CreateDialoglndirect

• CreateDialoglndirectParam

• DialogBoxlndirect

• DialogBoxlndirectParam

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Controls Overview, Control Messages, CreateDialoglndirect,
CreateDialoglndirectParam, DeleteObject, DialogBoxlndirect,
DialogBoxlndirectParam, DLGTEMPLATE, MAKELPARAM, WM_INITDIALOG

Buttons
Dialog boxes and controls support communication between an application and the user.
A button is a control that the user can click to provide input to an application.

About Buttons
There are several types of buttons, and one or more button styles to distinguish among
buttons of the same type. The user clicks a button using the mouse or keyboard. Clicking

Chapter 6 Controls 53

a button typically changes its visual appearance and state (from checked to cleared, for
example). The system, button, and application cooperate in changing the button's
appearance and state. A button can send messages to its parent window, and a parent
window can send messages to a button. Some buttons are painted by the system, some
by the application. Suttons can be used alone or in groups, and can appear with or
without application-defined text (a label). They belong to the SUTTON window class.

Although an application can use buttons in overlapped, pop-up, and child windows, they
are designed for use in dialog boxes, where the system standardizes their behavior. If an
application uses buttons outside dialog boxes, it increases the risk that the application
might behave in a nonstandard fashion. Applications typically use either buttons in dialog
boxes or window subclassing to create customized buttons.

Button Reference
Button Functions

CheckDlgButton
The CheckDlgButton function changes the check state of a button control.

Parameters
hDlg

[in] Handle to the dialog box that contains the button.

nlDButton
[in] Specifies the identifier of the button to modify.

uCheck
[in] Specifies the check state of the button. This parameter can be one of the following
values:

Value Meaning

SST_CHECKED

SST_INDETERMINATE

Sets the button state to checked.

Sets the button state to shaded, indicating an
indeterminate state. Use this value only if the button
has the SS_3STATE or SS_AUT03STATE style.

Sets the button state to cleared.

54 Volume 2 Microsoft Windows User Interface

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
The CheckDlgButton function sends a BM_SETCHECK message to the specified
button control in the specified dialog box.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

Buttons Overview, Button Functions, CheckRadioButton, IsDlgButtonChecked

CheckRadioButton
The CheckRadioButton function adds a check mark (checks) to a specified radio button
in a group and removes a check mark (clears) from all other radio buttons in the group.

Parameters
hDlg

[in] Handle to the dialog box that contains the radio button.

nlDFirstButton
[in] Specifies the identifier of the first radio button in the group.

nlDLastButton
[in] Specifies the identifier of the last radio button in the group.

nlDCheckButton
[in] Specifies the identifier of the radio button to select.

Chapter 6 Controls 55

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
The CheckRadioButton function sends a BM_SETCHECK message to each of the
radio buttons in the indicated group.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

Buttons Overview, Button Functions, BM_SETCHECK, CheckDlgButton,
IsDlgButtonChecked

IsDlgButtonChecked
The IsDlgButtonChecked function determines whether a button control has a check
mark next to it, or whether a three-state button control is shaded, checked, or neither.

Parameters
hDlg

[in] Handle to the dialog box that contains the button control.

nlDButton
[in] Specifies the identifier of the button control.

Return Values
The return value from a button created with the BS_AUTOCHECKBOX,
BS_AUTORADIOBUTTON, BS_AUT03STATE, BS_CHECKBOX, BS_RADIOBUTTON,
or BS_3STATE style can be one of the following:

56 Volume 2 Microsoft Windows User Interface

Value

BST _CHECKED

BST _INDETERMINATE

Meaning

Button is checked.

Button is shaded, indicating an indeterminate state
(applies only if the button has the BS_3STATE or
BS_AUT03STATE style).

Button is cleared.

If the button has any other style, the return value is zero.

Remarks
The IsDlgButtonChecked function sends a BM_GETCHECK message to the specified
button control.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

Buttons Overview, Button Functions, CheckDlgButton

Button Messages

8M_CLICK
An application sends a BM_CLlCK message to simulate the user clicking a button. This
message causes the button to receive the WM_LBUTTONDOWN and
WM_LBUTTONUP messages, and the button's parent window to receive a
BN_CLlCKED notification message.

To send this message, call the Send Message function with the following parameters.

Chapter 6 Controls 57

Parameters
This message has no parameters.

Return Values
This message does not return a value.

Remarks
If the button is in a dialog box and the dialog box is not active, the BM_CLlCK message
might fail. To ensure success in this situation, call the SetActiveWindow function to
activate the dialog box before sending the BM_CLlCK message to the button.

Windows NT/2000: Requires Windows NT 3.5 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Buttons Overview, Button Messages, BN_CLlCKED, SetActiveWindow,
WM_LBUTTONDOWN, WM_LBUTTONUP

An application sends a BM_GETCHECK message to retrieve the check state of a radio
button or check box.

To send this message, call the Send Message function with the following parameters.

'SendMe~l>age{:" ~"
";(Hl1ruj)~J;l1q;~! ;0

'ilf(:$~~CH~!~IC,'i, '
~WPARA'MrilV,aafam; .' ,.'
(LP:j.~klfiram; ,

Parameters
This message has no parameters.

Return Values
The return value from a button created with the BS_AUTOCHECKBOX,
BS_AUTORADIOBUTTON, BS_AUT03STATE, BS_CHECKBOX, BS_RADIOBUTTON,
or BS_3ST ATE style can be one of the following:

58 Volume 2 Microsoft Windows User Interface

Value

BST _CHECKED

BST _INDETERMINATE

Meaning

Button is checked.

Button is shaded, indicating an indeterminate state
(applies only if the button has the BS_3STATE or
BS_AUT03STATE style).

Button is cleared.

If the button has any other style, the return value is zero.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Buttons Overview, Button Messages, BM_GETSTATE, BM_SETCHECK

BM_GETIMAGE
An application sends a BM_GETIMAGE message to retrieve a handle to the image
(either icon or bitmap) associated with the button.

To send this message, call the SendMessage function with the following parameters.

Parameters
wParam

Specifies the type of image to associate with the button. This parameter can be one of
the following values:

IMAGE_BITMAP
IMAGE_ICON

IParam
This parameter is not used.

Value

Ox0003

Chapter 6 Controls 59

Return Values
The return value is a handle to the image, if any; otherwise, it is NULL.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.

Buttons Overview, Button Messages, BM_SETIMAGE

An application sends a BM_GETSTATE message to determine the state of a button or
check box.

To send this message, call the Send Message function with the following parameters.

,{':tf"

~f;l"~~~~!.;
Parameters
This message has no parameters.

Return Values
The return value specifies the current state of the button. You can use the following
values to extract information about the state:

Meaning

Specifies the check state (radio buttons and check boxes only). A
value of BST _UNCHECKED indicates the button is cleared; a value
of BST _CHECKED indicates the button is checked. A radio button is
checked when it contains a dot; a check box is checked when it
contains an X. A value of BST _INDETERMINATE indicates the check
state is indeterminate (applies only if the button has the BS_3STATE
or BS_AUT03STATE style). A three-state check box is shaded when
its state is indeterminate.

(continued)

60 Volume 2 Microsoft Windows User Interface

(continued)

Value

BST _CHECKED

BST_FOCUS

BST_INDETERMINATE

Meaning

Indicates the button is checked.

Specifies the focus state. A nonzero value indicates that the button
has the keyboard focus.

Indicates the button is shaded because the state of the button is
indeterminate. This value applies only if the button has the
BS_3STATE or BS_AUT03STATE style.

Specifies the highlight state. A nonzero value indicates that the
button is highlighted. A button is highlighted automatically when the
user positions the cursor over it, and presses and holds the left
mouse button. The highlighting is removed when the user releases
the mouse button.

Indicates the button is cleared. Same as a return value of zero.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Buttons Overview, Button Messages, BM_GETCHECK, BM_SETSTATE

An application sends a BM_SETCHECK message to set the check state of a radio
button or check box.

To send this message, call the Send Message function with the following parameters.

Parameters
wParam

Specifies the check state. This parameter can be one of the following values:

Chapter 6 Controls 61

Value Meaning

SST_CHECKED

SST_INDETERMINATE

Sets the button state to checked.

IParam
This parameter is not used.

Return Values

Sets the button state to shaded, indicating an
indeterminate state. Use this value only if the button
has the SS_3STATE or SS_AUT03STATE style.

Sets the button state to cleared.

This message always returns zero.

Remarks
The BM_SETCHECK message has no effect on push buttons.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Suttons Overview, Sutton Messages, BM_GETCHECK, BM_GETSTATE,
BM_SETSTATE

An application sends a BM_SETIMAGE message to associate a new image (icon or
bitmap) with the button.

To send this message, call the Send Message function with the following parameters.

62 Volume 2 Microsoft Windows User Interface

Parameters
wParam

Specifies the type of image to associate with the button. This parameter can be one of
the following values:

IMAGE_BITMAP
IMAGE_ICON

IParam
Handle to the image to associate with the button.

Return Values
The return value is a handle to the image previously associated with the button, if any;
otherwise, it is NULL.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.

Buttons Overview, Button Messages, BM_GETIMAGE

An application sends a BM_SETSTATE message to change the highlight state of a
button. The highlight state indicates whether the button is highlighted as if the user had
pushed it.

To send this message, call the Send Message function with the following parameters.

Parameters
wParam

Specifies whether the button is to be highlighted. A value of TRUE highlights the
button; a value of FALSE removes any highlighting.

IParam
This parameter is not used.

Return Values
This message always returns zero.

Chapter 6 Controls 63

Remarks
Highlighting only affects the appearance of a button. It has no effect on the check state
of a radio button or check box.

A button is highlighted automatically when the user positions the cursor over it, and
presses and holds the left mouse button. The highlighting is removed when the user
releases the mouse button.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Buttons Overview, Button Messages, BM_GETSTATE, BM_SETCHECK

An application sends a BM_SETSTVLE message to change the style of a button.

To send this message, call the Send Message function with the following parameters.

Parameters
wParam

Specifies the new button style. This parameter can be a combination of button styles.
For a table of button styles, see Button Styles.

IParam
The low-order word of IParam specifies whether the button is to be redrawn. A value
of TRUE redraws the button; a value of FALSE does not redraw the button.

Return Values
This message always returns zero.

64 Volume 2 Microsoft Windows User Interface

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Buttons Overview, Button Messages, LOWORD

The BN_CLICKED notification code is sent when the user clicks a button.

The parent window of the button receives the BN_CLlCKED notification code through
the WM_COMMAND message.

Parameters
wParam

The low-order word contains the button's control identifier.

The high-order word specifies the notification message.

IParam
Handle to the button.

Remarks
A disabled button does not send a BN_CLICKED notification message to its parent
window.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Chapter 6 Controls 65

Buttons Overview, Button Messages, HIWORD, LOWORD, WM_COMMAND

The BN_DBLCLK notification code is sent when the user double-clicks a button. This
notification is sent automatically for BS_USERBUTTON, BS_RADIOBUTTON, and
BS_OWNERDRAW buttons. Other button types send BN_DBLCLK only if they have the
BS_NOTIFY style.

The parent window of the button receives the BN_DBLCLK notification code through the
WM_COMMAND message.

1;~i~~l~~~f;~*W~t'~Y
Parameters
wParam

The low-order word contains the button's control identifier.

The high-order word specifies the notification message.

IParam
Handle to the button.

Remarks
BN_DBLCLK is the same as the BN_DOUBLECLICKED notification message.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Buttons Overview, Button Messages, BN_CLICKED, BN_DOUBLECLICKED,
HIWORD, LOWORD, WM_COMMAND

66 Volume 2 Microsoft Windows User Interface

BN_DOUBLECLICKED
The BN_DOUBLECLICKED notification code is sent when the user double-clicks a
button. This notification is sent automatically for BS_USERBUTTON,
BS_RADIOBUTTON, and BS_OWNERDRAW buttons. Other button types send
BN_DOUBLECLICKED only if they have the BS_NOTIFY style.

The parent window of the button receives the BN_DOUBLECLICKED notification code
through the WM_COMMAND message.

Parameters
wParam

The low-order word contains the button's control identifier.

The high-order word specifies the notification message.

IParam
Handle to the button.

Remarks
BN_DOUBLECLICKED is the same as the BN_DBLCLK notification message.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Buttons Overview, Button Messages, BN_DBLCLK, DRAWITEMSTRUCT, HIWORD,
LOWORD, WM_COMMAND, WM_DRAWITEM

The BN_KILLFOCUS notification code is sent when a button loses the keyboard focus.
The button must have the BS_NOTIFY style to send this notification message.

Chapter 6 Controls 67

The parent window of the button receives the BN_KILLFOCUS notification code through
the WM_COMMAND message.

LRESUI. T:CALLBACicfl1"cio:wp~04(· . •. ..., >

jt.¥[~:~~~~1~iii~~i~1~f~~"i'~D;' ..
Parameters
wParam

The low-order word contains the button's control identifier.

The high-order word specifies the notification message.

IParam
Handle to the button.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Buttons Overview, Button Messages, BN_SETFOCUS, HIWORD, LOWORD,
WM_COMMAND

The BN_SETFOCUS notification code is sent when a button receives the keyboard
focus. The button must have the BS_NOTIFY style to send this notification message.

The parent window of the button receives the BN_SETFOCUS notification code through
the WM_COMMAND message.

~!~:~:~:~

68 Volume 2 Microsoft Windows User Interface

Parameters
wParam

The low-order word contains the button's control identifier.

The high-order word specifies the notification message.

IParam
Handle to the button.

Windows NT/2000: Requires Windows NT 3.51 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Buttons Overview, Button Messages, BN_KILLFOCUS, HIWORD, LOWORD,
WM_COMMAND

WM_ CTLCOLORBTN
The WM_CTLCOLORBTN message is sent to the parent window of a button before
drawing the button. The parent window can change the button's text and background
colors. However, only owner-drawn buttons respond to the parent window processing
this message.

utisULTCAlLBACIHHnti:owpr!lc'·· ',"
HiND; ~}\tlld. '. If :hallld 1 ~ to wi rW.¢w

\Attttt·~Mig •. ' ;d~M..:hd;\)LO~~Tjt· ,
..• WPAAAM.wp~rall1;, . ~andl·e.: tQ, 'b;~tt.Qri d1$pli~y;coo~e~tc~b(;S
';:~AtW4 'Fp~rdnf; ,hanti1~;-t'Ol>uti~fi;'dtiw«Dt;... '1.' '.,

~ ~,:~c ',"",'<f 'j c'' ~ c<': :"~:/ ,'\. 1-;":' " . <l.' '.
1;;' ,.

Parameters
wParam

Handle to the display context for the button.

IParam
Handle to the button.

Return Values
If an application processes this message, it must return a handle to a brush. The system
uses the brush to paint the background of the button.

Style

Chapter 6 Controls 69

Remarks
By default, the DefWindowProc function selects the default system colors for the button.
Buttons with the BS_PUSHBUTTON, BS_DEFPUSHBUTTON, or BS_PUSHLIKE styles
do not use the returned brush; buttons with these styles are always drawn with the
default system colors. Drawing push buttons requires several different brushes-face,
highlight, and shadow-but the WM_CTlCOlORBTN message allows only one brush to
be returned. To provide a custom appearance for push buttons, use an owner-drawn
button.

The system does not destroy automatically the returned brush. It is the application's
responsibility to destroy the brush when it is no longer needed.

The WM_CTlCOlORBTN message is never sent between threads; it is sent only within
one thread.

The text color of a check box or radio button applies to the box or button, its check mark,
and the text. The focus rectangle for these buttons remains the system default color
(typically, black). The text color of a group box applies to the text, but not to the line that
defines the box. The text color of a push button applies only to its focus rectangle; it
does not affect the color of the text.

If a dialog-box procedure handles this message, then it should cast the desired return
value to a BOOl and return the value directly. If the dialog-box procedure returns
FALSE, then default message handling is performed. The DWL_MSGRESUL T value set
by the SetWindowlong function is ignored.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 2.0 or later.
Header: Declared in winuser.h; include windows.h.

Buttons Overview, Button Messages, DefWindowProc, RealizePalette, SelectPalette

Button Styles
If you create a button by specifying the BUTTON class with the CreateWindow or
CreateWindowEx function, you can specify a combination of the following button styles:

Meaning

Creates a button that is the same as a check box, except that the
box can be shaded as well as checked or cleared. Use the shaded
state to show that the state of the check box is not determined.

(continued)

70 Volume 2 Microsoft Windows User Interface

(continued)

Style

BS_AUT03STATE

BS_AUTOCHECKBOX

BS_AUTORADIOBUTTON

BS_BITMAP

BS_BOTTOM

BS_CENTER

BS_CHECKBOX

BS_DEFPUSHBUTTON

Meaning

Creates a button that is the same as a three-state check box,
except that the box changes its state when the user selects it. The
state cycles through checked, shaded, and cleared.

Creates a button that is the same as a check box, except that the
check state automatically toggles between checked and cleared
each time the user selects the check box.

Creates a button that is the same as a radio button, except that,
when the user selects it, the system automatically sets the button's
check state to checked, and automatically sets the check state for
all other buttons in the same group to cleared.

Specifies that the button displays a bitmap.

Places text at the bottom of the button rectangle.

Centers text horizontally in the button rectangle.

Creates a small, empty check box with text. By default, the text is
displayed to the right of the check box. To display the text to the
left of the check box, combine this flag with the BS_LEFTTEXT
style (or with the equivalent BS_RIGHTBUTTON style).

Creates a push button that behaves like a BS_PUSHBUTTON
style button, but also has a heavy black border. If the button is in a
dialog box, the user can select the button by pressing the ENTER
key, even when the button does not have the input focus. This
style is useful for enabling the user to quickly select the most likely
(default) option.

Specifies that the button is two-dimensional; it does not use the
default shading to create a three-dimensional image.

Creates a rectangle in which other controls can be grouped. Any
text associated with this style is displayed in the rectangle's upper­
left corner.

Specifies that the button displays an icon.

Left-justifies the text in the button rectangle. However, if the button
is a check box or radio button that does not have the
BS_RIGHTBUTTON style, the text is left justified on the right side
of the check box or radio button.

Places text on the left side of the radio button or check box when
combined with a radio-button or check-box style. Same as the
BS_RIGHTBUTTON style.

Wraps the button text to multiple lines if the text string is too long
to fit on a single line in the button rectangle.

Style

BS_RADIOBUTTON

BS_RIGHTBUTTON

BS_TEXT

BS_TOP

BS_USERBUTTON

Chapter 6 Controls 71

Meaning

Enables a button to send BN_KILLFOCUS and BN_SETFOCUS
notification messages to its parent window.

Note that buttons send the BN_CLICKED notification message
regardless of whether it has this style. To get BN_DBLCLK
notification messages, the button must have the
BS_RADIOBUTTON or BS_OWNERDRAW style.

Creates an owner-drawn button. The owner window receives a
WM_MEASUREITEM message when the button is created and a
WM_DRA WITEM message when a visual aspect of the button has
changed. Do not combine the BS_OWNERDRAW style with any
other button styles.

Creates a push button that posts a WM_COMMAND message to
the owner window when the user selects the button.

Makes a button (such as a check box, three-state check box, or
radio button) look and act like a push button. The button looks
raised when it is not pushed or checked, and sunken when it is
pushed or checked.

Creates a small circle with text. By default, the text is displayed to
the right of the circle. To display the text to the left of the circle,
combine this flag with the BS_LEFTTEXT style (or with the
equivalent BS_RIGHTBUTTON style). Use radio buttons for
groups of related, but mutually exclusive, choices.

Right-justifies text in the button rectangle. However, if the button
is a check box or radio button that does not have the
BS_RIGHTBUTTON style, the text is right-justified on the right
side of the check box or radio button.

Positions a radio button's circle or a check box's square on the .
right side of the button rectangle. Same as the BS_LEFTTEXT
style.

Specifies that the button displays text.

Places text at the top of the button rectangle.

Obsolete, but provided for compatibility with 16-bit versions of
Windows. Win32-based applications should use
BS_OWNERDRAW instead.

Places text in the middle (vertically) of the button rectangle.

72 Volume 2 Microsoft Windows User Interface

Combo Boxes
A combo box is a unique type of control, defined by the COMBOBOX class, that
combines much of the functionality of a list box and an edit control.

About Combo Boxes
The Win32 API provides three types of combo boxes:

• Simple combo boxes (CBS_SIMPLE)

• Drop-down combo boxes (CBS_DROPDOWN)

• Drop-down list boxes (CBS_DROPDOWNLlST)

There is also a number of combo-box styles that define specific properties. For example,
two styles enable an application to create an owner-drawn combo box, making the
application responsible for displaying information in the control.

A combo box consists of a list and a selection field. The list presents the options that a
user can select, and the selection field displays the current selection. Except in drop­
down list boxes, the selection field is an edit control and can be used to enter text not
available in the list.

Combo-Box Types and Styles
Combo boxes can be characterized by type and style. Combo-box types determine
whether the combo-box list is a drop-down list and whether the selection field is an edit
control. A drop-down list appears only when the user opens it, so it uses less screen
space than a list that is always visible. If the selection field is an edit control, the user can
enter information not available in the list; otherwise, the user can select only items in the
list.

The following table shows the three combo-box types, and indicates their drop-down list
and edit control attributes:

Combo-box type Drop-down list Edit control

Drop-down combo box Yes Yes

Drop-down list box Yes No

Simple combo box No Yes

Combo-box styles define specific properties of a combo box. You can combine styles;
however, some styles apply only to certain combo-box types.

Combo-Box Reference
Combo-Box Functions

DlgDirListComboBox

Chapter 6 Controls 73

The DlgDirListComboBox function replaces the contents of a combo box with the
names of the subdirectories and files in a specified directory. You can filter the list of
names by specifying a set of file attributes. The list of names can include mapped drive
letters.

1.;I~,llf~:~~j~~~~;~;t;~~}<;~~~~~~~
~":'illiir'!JFiJ(j!t:fPe': " <1tft:ilt!tati;1~is 1:~'%l1~sp]'ai' , ''''',','i <:<:;i:L~,./:;~'i

" • ~ \-' • 1, ' N' _ ",' :-... >;',::.::::::,:;'<,~/, ... ,"";::~~~:'<~'"
J{-:,~.,:\; ;:;.>.'~'.,,>,:'~ ::i:: '.":>- , ,,,,::'.' :-.~ ,>,,)}:' .. ;:/., .. ',.:~~'::.,:;~:: ~:·/i'.{-·::·:':·'" .. ~::::· .:.:;;~;,'~ t: :;:~/ . .1\ ~~':~'i:;,>';-:' ~}':::;:};.'.':: ·:tX·:;:~::;;'~

Parameters
hDlg

[in] Handle to the dialog box that contains the combo box.

IpPathSpec
[in/out] Pointer to a buffer containing a null-terminated string that specifies an absolute
path, relative path, or file name. An absolute path can begin with a drive letter (for
example, d:\) or a UNC name (for example, \\machinename\sharename).

The function splits the string into a directory and a file name. The function searches
the directory for names that match the file name. If the string does not specify a
directory, the function searches the current directory.

If the string includes a file name, the file name must contain at least one wildcard
character (? or *). If the string does not include a file name, the function behaves as if
you had specified the asterisk wildcard character (*) as the file name. All names in the
specified directory that match the file name and have the attributes specified by the
uFileType parameter are added to the list displayed in the combo box.

nlDComboBox
[in] Specifies the identifier of a combo box in the hDlg dialog box. If this parameter is
zero, DlgDirListComboBox does not try to fill a combo box.

nlDStaticPath
[in] Specifies the identifier of a static control in the hDlg dialog box.
DlgDirListComboBox sets the text of this control to display the current drive and
directory. This parameter can be zero if you do not want to display the current drive
and directory.

74 Volume 2 Microsoft Windows User Interface

uFiletype
[in] A set of bit flags that specify the attributes of the files or directories to be added to
the combo box. This parameter can be a combination of the following values:

Value

DDL_ARCHIVE

DDL_DIRECTORY

DDL_DRIVES

DDL_EXCLUSIVE

DDL_HIDDEN

DDL_POSTMSGS

DDL_READONL Y

DDL_READWRITE

Return Values

Meaning

Includes archived files.

Includes subdirectories, which are enclosed in brackets ([]).

All mapped drives are added to the list. Drives are listed in
the form [-x-], where x is the drive letter.

Includes only files with the specified attributes. By default,
read-write files are listed even if DDL_READWRITE is not
specified.

Includes hidden files.

If this flag is set, DlgDirListComboBox uses the
PostMessage function to send messages to the combo box.
If this flag is not set, DlgDirListComboBox uses the
Send Message function.

Includes read-only files.

Includes read-write files with no additional attributes; this is
the default setting.

Includes system files.

If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. For example, if the string specified by
IpPathSpec is not a valid path, the function fails. To get extended error information, call
GetLastError.

Remarks
If IpPathSpec specifies a directory, DlgDirListComboBox changes the current directory
to the specified directory before filling the combo box. The text of the static control
identified by the nlDStaticPath parameter is set to the name of the new current directory.

DlgDirListComboBox sends the CB_RESETCONTENT and CB_DIR messages to the
combo box.

Windows NT 4.0 and later: If uFileType includes the DDL_DIRECTORY flag and
IpPathSpec specifies a first-level directory, such as C:\TEMP, the combo box will always
include a " .. " entry for the root directory. This is true even if the root directory has hidden
or system attributes, and the DDL_HIDDEN and DDL_SYSTEM flags are not specified.
The root directory of an NTFS volume has both hidden and system attributes.

Windows NT/2000: The list displays long file names, if any.

Chapter 6 Controls 75

Windows 95: The list displays short file names (the 8.3 form). You can use the
SHGetFilelnfo or GetFuliPathName functions to get the corresponding long file name.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Combo Boxes Overview, Combo-Box Functions, DlgDirList,
DlgDirSelectComboBoxEx, GetFuliPathName, SHGetFilelnfo

DlgDirSelectComboBoxEx
The DlgDirSelectComboBoxEx function retrieves the current selection from a combo
box filled by using the DlgDirListComboBox function. The selection is interpreted as a
drive letter, file, or directory name.

dO;;~~r~r;~~l~~~ti~tB~~~f/·~~,fJ:,·'}rj;;~ii~Q~'; iii"i . i !~;. i'«Ci ii.

l;~rlrl }Mtt;tI1Y. c.:' tt <PPl nl'MI to W1,f.1!·tf~fj;(p~~hi str~ rtlJ. i'.< i 'i: ;;~.:'
int nCoant. ">"'lI ntlm.b'er 'oi"'cll'aracters in ~athstY'1l'f9 i... i''';'',.

jnt rflDCoPrbci:Sc?x' tI combti-b'~x identifier' . '" '
r~' ? .• : / i •• ; • i

Parameters
hDlg

[in] Handle to the dialog box that contains the combo box.

IpString
[out] Pointer to the buffer that receives the selected path.

nCount
[in] Specifies the length, in characters, of the buffer pointed to by the IpString
parameter.

nlDComboBox
[in] Specifies the integer identifier of the combo-box control in the dialog box.

Return Values
If the current selection is a directory name, the return value is nonzero.

76 Volume 2 Microsoft Windows User Interface

If the current selection is not a directory name, the return value is zero. To get extended
error information, call GetLastError.

Remarks
If the current selection specifies a directory name or drive letter, the
DlgDirSelectComboBoxEx function removes the enclosing brackets (and hyphens, for
drive letters), so the name or letter is ready to be inserted into a new path or file name. If
there is no selection, the contents of the buffer pointed to by IpString do not change.

The DlgDirSelectComboBoxEx function does not allow more than one file name to be
returned from a combo box.

DlgDirSelectComboBoxEx sends CB_GETCURSEL and CB_GETLBTEXT messages
to the combo box.

In the Win32 API, you can use this function with all three types of combo boxes
(CBS_SIMPLE, CBS_DROPDOWN, and CBS_DROPDOWNLlST).

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.1ib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000.

Combo Boxes Overview, Combo-Box Functions, CB_GETCURSEL, CB_GETLBTEXT,
DlgDirListComboBox

GetComboBoxlnfo
The GetComboBoxlnfo function retrieves information about the specified combo box.

BOOL J2etCOIiI!>oS'oxI nfo (
, 111MB irjfn~Cdmbo:;~, ", "' Ihiw'd la totOll1bO
.; PtQ.MBOBOX1~FO pdf Ii

Parameters
hwndCombo

[in] Handle to the combo box.

pcbi
[out] Pointer to a COMBOBOXINFO structure that receives the information.

Chapter 6 Controls 77

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.
Library: Use user32.lib.

Combo Boxes Overview, Combo-Box Functions, COMBOBOXINFO, GetListBoxlnfo

Combo-Box Structures

COMBOBOXINFO
The COMBOBOXINFO structure contains combo-box status information.

Members
cbSize

Specifies the size, in bytes, of the structure.

rcltem
Pointer to a RECT structure that specifies the coordinates of the edit box.

rcButton
Pointer to a RECT structure that specifies the coordinates of the button that contains
the drop-down arrow.

78 Volume 2 Microsoft Windows User Interface

stateButton
Specifies the combo-box button state. This parameter can be one of the following
values:

Value Meaning

o
STATE_SYSTEM_INVISIBLE

STATE_SYSTEM_PRESSED

hwndCombo
Handle to the combo box.

hwndltem
Handle to the edit box.

hwndList
Handle to the drop-down list.

The button exists and is not pressed.

There is no button.

The button is pressed.

Windows NT/2000: Requires Windows NT 4.0 SP3 or later.
Windows 95/98: Requires Windows 98.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.

Combo Boxes Overview, Combo-Box Structures, GetComboBoxlnfo, RECT

COMPAREITEMSTRUCT
The COMPAREITEMSTRUCT structure supplies the identifiers and application-supplied
data for two items in a sorted, owner-drawn list box or combo box.

Whenever an application adds a new item to an owner-drawn list box or combo box
created with the CBS_SORT or LBS_SORT style, the system sends the owner a
WM_COMPAREITEM message. The IParam parameter of the message contains a long
pointer to a COMPAREITEMSTRUCT structure. Upon receiving the message, the owner
compares the two items and returns a value indicating which item sorts before the other.

:t#pt\der·s'i;Y'tl9t t~~~qt1R~R~I,1~M.~~R\Jcf{, ';.,
. ;~Jl'rr:(FiIkPe:;'.~t;;~~~:;'i '·:'r. t '

YUH CtUD;;,· .. ,
.. HW'ND'~¥{ii~.tt'eln:~
, \J nn;1t~m.rOl; .,

;Ul.ONi.t;.Pt'lfl.teinData,h .
unif ;., ... dtemiu4;

ULONG_PTR itemData2;
DWORD dwLocaleld

} COMPAREITEMSTRUCT:

Members
CtlType

Chapter 6 Controls 79

Specifies either ODT _LlSTBOX (an owner-drawn list box) or ODT _COMBOBOX (an
owner-drawn combo box).

CtilO
Specifies the identifier of the list box or combo box.

hwndltem
Handle to the control.

iteml01
Specifies the index of the first item in the list box or combo box being compared.

This member will be -1 if the item has not been inserted, or when searching for a
potential item in the list box or combo box.

itemOata1
Specifies application-supplied data for the first item being compared. This value was
passed as the IParam parameter of the message that added the item to the list box or
combo box.

iteml02
Specifies the index of the second item in the list box or combo box being compared.

itemOata2
Specifies application-supplied data for the second item being compared. This value
was passed as the IParam parameter of the message that added the item to the list
box or combo box.

This member will be -1 if the item has not been inserted, or when searching for a
potential item in the list box or combo box.

dwLocaleld
Specifies the locale identifier. To create a locale identifier, use the MAKELCIO macro.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Unsupported.
Header: Declared in winuser.h; include windows.h.

Combo Boxes Overview, Combo-Box Structures, MAKELCIO, WM_COMPAREITEM

80 Volume 2 Microsoft Windows User Interface

ORA WITEMSTRUCT
The ORAWITEMSTRUCT structure provides information the owner window must have to
determine how to paint an owner-drawn control or menu item. The owner window of the
owner-drawn control or menu item receives a pointer to this structure as the IParam
parameter of the WM_ORAWITEM message.

Members
CtlType

Specifies the control type. This member can be one of the values shown in the
following table:

Value

OOT_BUTTON

OOT _COMBOBOX

OOT _LlSTBOX

OOT _LlSTVIEW

OOT_MENU

OOT_STATIC

OOT_TAB

CtIIO

Meaning

Owner-drawn button

Owner-drawn combo box

Owner-drawn list box

List view control

Owner-drawn menu item

Owner-drawn static control

Tab control

Specifies the identifier of the combo box, list box, button, or static control. This
member is not used for a menu item.

itemlO
Specifies the menu item identifier for a menu item or the index of the item in a list box
or combo box. For an empty list box or combo box, this member can be -1 . This
allows the application to draw only the focus rectangle at the coordinates specified by
the rcltem member, even though there are no items in the control. This indicates to
the user whether the list box or combo box has the focus. How the bits are set in the
itemAction member determines whether the rectangle is to be drawn as though the
list box or combo box has the focus.

Chapter 6 Controls 81

itemAction
Specifies the drawing action required. This member can be one or more of the values
shown in the following table:

Value

ODA_DRAWENTIRE

ODA_FOCUS

itemState

Meaning

The entire control needs to be drawn.

The control has lost or gained the keyboard focus. The
itemState member should be checked to determine
whether the control has the focus.

The selection status has changed. The itemState
member should be checked to determine the new
selection state.

Specifies the visual state of the item after the current drawing action takes place. This
member can be a combination of the values shown in the following table:

Value

ODS_COMBOBOXEDIT

ODS_DEFAULT

ODS_DISABLED

ODS_FOCUS

ODS_GRAYED

ODS_NOFOCUSRECT

hwndltem

Meaning

The menu item is to be checked. This bit is used only in
a menu.

The drawing takes place in the selection field (edit
control) of an owner-drawn combo box.

The item is the default item.

The item is to be drawn as disabled.

The item has the keyboard focus.

The item is to be dimmed. This bit is used only in a
menu.

Windows 98, Windows 2000: The item is being hot­
tracked; that is, the item will be highlighted when the
mouse is on the item.

Windows 98, Windows 2000: The item is inactive, and
the window associated with the menu is inactive.

Windows 2000: The control is drawn without the
keyboard accelerator cues.

Windows 2000: The control is drawn without focus
indicator cues.

The menu item's status is selected.

Handle to the control for cqmbo boxes, list boxes, buttons, and static controls. For
menus, this member is a handle to the menu containing the item.

82 Volume 2 Microsoft Windows User Interface

hOC
Handle to a device context; this device context must be used when performing
drawing operations on the control.

rcltem
Specifies a rectangle that defines the boundaries of the control to be drawn. This
rectangle is in the device context specified by the hOC member. The system
automatically clips anything that the owner window draws in the device context for
combo boxes, list boxes, and buttons, but does not clip menu items. When drawing
menu items, the owner window must not draw outside the boundaries of the rectangle
defined by the rcltem member.

itemOata
Specifies the application-defined value associated with the menu item. For a control,
this parameter specifies the value last assigned to the list box or combo box by the
LB_SETITEMOATA or CB_SETITEMOATA message. If the list box or combo box
has the LBS_HASSTRINGS or CBS_HASSTRINGS style, this value is initially zero.
Otherwise, this value is initially the value that was passed to the list box or combo box
in the IParam parameter of one of the following messages:

• CB_AOOSTRING

• CB_INSERTSTRING

• LB_ADDSTRING

• LB_INSERTSTRING

If ctlType is ODT_BUTTON or ODT_STATIC, then item Data is zero.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Combo Boxes Overview, Combo-Box Structures, CB_AODSTRING,
CB_INSERTSTRING, CB_SETITEMDATA, LB_ADDSTRING, LB_INSERTSTRING,
LB_SETITEMDATA, WM_DRAWITEM

MEASUREITEMSTRUCT
The MEASUREITEMSTRUCT structure informs the system of the dimensions of an
owner-drawn control or menu item. This allows the system to process user interaction
with the control correctly.

typedef struct tagMEASUREITEMSTRUCT {
UINT CtlType:
UINT CtlID:
UINT itemID;
UINT itemWidth;

UI.NT 1temHeigh'f;;

ijL?N~ ... P:rt~1~e'".o~t~;
}·····MEASl.JREITEM:ST~UC:r,>,·.·······

Members
CtlType

Chapter 6 Controls 83

Specifies the control type. This member can be one of the values shown in the
following table:

Value

ODT_BUTTON

ODT _COMBOBOX

ODT _LlSTBOX

ODT _LlSTVIEW

ODT_MENU

CtliO

Meaning

Owner-drawn button

Owner-drawn combo box

Owner-drawn list box

Owner-draw list view control

Owner-drawn menu

Specifies the identifier of the combo box, list box, or button. This member is not used
for a menu.

itemlO
Specifies the identifier for a menu item or the position of a list-box or combo-box item.
This value is specified for a list box only if it has the LBS_OWNERDRAWVARIABLE
style; this value is specified for a combo box only if it has the
CBS_OWNERDRAWVARIABLE style.

itemWidth
Specifies the width, in pixels, of a menu item. Before returning from the message, the
owner of the owner-drawn menu item must fill this member.

item Height
Specifies the height, in pixels, of an individual item in a list box or a menu. Before
returning from the message, the owner of the owner-drawn combo box, list box, or
menu item must fill out this member.

itemOata
Specifies the application-defined value associated with the menu item. For a control,
this member specifies the value last assigned to the list box or combo box by the
lB_SETITEMOATA or CB_SETITEMOATA message. If the list box or combo box
has the LB_HASSTRINGS or CB_HASSTRINGS style, this value is initially zero.
Otherwise, this value is initially the value passed to the list box or combo box in the
IParam parameter of one of the following messages:

84 Volume 2 Microsoft Windows User Interface

• CB_ADDSTRING

• CB_INSERTSTRING

• LB_ADDSTRING

• LB_INSERTSTRING

Remarks
The owner window of an owner-drawn control receives a pOinter to the
MEASUREITEMSTRUCT structure as the IParam parameter of a WM_MEASUREITEM
message. The owner-drawn control sends this message to its owner window when the
control is created, then the owner fills in the appropriate members in the structure for the
control and returns. This structure is common to all owner-drawn controls.

If an application does not fill the appropriate members of MEASUREITEMSTRUCT, the
control or menu item might not be drawn properly.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Combo Boxes Overview, Combo-Box Structures, CB_ADDSTRING,
CB_INSERTSTRING, CB_SETITEMDATA, LB_ADDSTRING, LB_INSERTSTRING,
LB_SETITEMDATA, WM_MEASUREITEM

Combo-Box Messages

CB_ADDSTRING
An application sends a CB_ADDSTRING message to add a string to the list box of a
combo box. If the combo box does not have the CBS_SORT style, the string is added to
the end of the list. Otherwise, the string is inserted into the list, and the list is sorted.

To send this message, call the Send Message function with the following parameters.

-,~f

Parameters
wParam

This parameter is not used.

IParam

Chapter 6 Controls 85

Pointer to the null-terminated string to be added. If you create the combo box with an
owner-drawn style but without the CBS_HASSTRINGS style, the value of the IParam
parameter is stored as item data instead of the string to which it would otherwise
point. The item data can be retrieved or modified by sending the CB_GETITEMDATA
or CB_SETITEMDATA message.

Return Values
The return value is the zero-based index to the string in the list box of the combo box. If
an error occurs, the return value is CB_ERR. If insufficient space is available to store the
new string, the return value is CB_ERRSPACE.

Remarks
If you create an owner-drawn combo box with the CBS_SORT style, but without the
CBS_HASSTRINGS style, the WM_COMPAREITEM message is sent one or more
times to the owner of the combo box, so the new item can be placed properly in the list.

To insert a string at a specific location within the list, use the CB_INSERTSTRING
message.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Combo Boxes Overview, Combo-Box Messages, CB_DIR, CB_INSERTSTRING,
WM_COMPAREITEM

CB_DELETESTRING
An application sends a CB_DELETESTRING message to delete a string in the list box of
a combo box.

To send this message, call the SendMessage function with the following parameters.

86 Volume 2 Microsoft Windows User Interface

Parameters
wParam

Specifies the zero-based index of the string to delete.

IParam
This parameter is not used.

Return Values
The return value is a count of the strings remaining in the list. If the wParam parameter
specifies an index greater than the number of items in the list, the return value is
CB_ERR.

Remarks
If you create the combo box with an owner-drawn style, but without the
CBS_HASSTRINGS style, the system sends a WM_DELETEITEM message to the
owner of the combo box, so the application can free any additional data associated with
the item.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Combo Boxes Overview, Combo-Box Messages, CB_RESETCONTENT,
WM_DELETEITEM

An application sends a CB_DIR message to a combo box to add names to the list
displayed by the combo box. The message adds the names of directories and files that
match a specified string and set of file attributes. CB_DIR also can add mapped drive
letters to the list.

To send this message, call the Send Message function with the following parameters.

Semlt1ess&steif.,
. :~HWtlDJhW~d ...

. ~CBJ).IR. ...

) ;

(WPARAM) wParam;
(LPARAM) 7Param;

II fil. attributet (UrNT)
f/ f11 e name (LPCrSrR)

Chapter 6 Controls 87

Parameters
wParam

Specifies the attributes of the files or directories to be added to the combo box. This
parameter can be one or more of the following values:

Value Meaning

DDL_ARCHIVE

DDL_DIRECTORY

DDL_DRIVES

DDL_EXCLUSIVE

DDL_HIDDEN

DDL_READONL Y

DDL_READWRITE

IParam

Includes archived files.

Includes subdirectories, which are enclosed in brackets ([D.
All mapped drives are added to the list. Drives are listed in
the form [-x-] , where x is the drive letter.

Includes only files with the specified attributes. By default,
read-write files are listed even if DDL_READWRITE is not
specified.

Includes hidden files.

Includes read-only files.

Includes read-write files with no additional attributes. This is
the default.

Includes system files.

Pointer to a null-terminated string that specifies an absolute path, relative path, or file
name. An absolute path can begin with a drive letter (for example, d:\) or a UNC name
(for example, \\machinename\sharename).

If the string specifies a file name or directory that has the attributes specified by the
wParam parameter, the file name or directory is added to the list. If the file or directory
name contains wildcard characters (? or *), all files or directories that match the
wildcard expression and have the attributes specified by the wParam parameter are
added to the list displayed in the combo box.

Return Values
If the message succeeds, the return value is the zero-based index of the last name
added to the list.

If an error occurs, the return value is CB_ERR. If there is insufficient space to store the
new strings, the return value is CB_ERRSPACE.

Remarks
Windows NT 4.0 and later: If wParam includes the DDL_DIRECTORY flag and IParam
specifies all the subdirectories of a first-level directory, such as C:\TEMP*, the list box
will always include a u •• " entry for the root directory. This is true even if the root directory

88 Volume 2 Microsoft Windows User Interface

has hidden or system attributes, and the DDL_HIDDEN and DDL_SYSTEM flags are not
specified. The root directory of an NTFS volume has hidden and system attributes.

Windows NT/2000: The list displays long file names, if any.

Windows 95: The list displays short file names (the 8.3 form). You can use the
SHGetFilelnfo or GetFuliPathName functions to get the corresponding long file name.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 2.0 or later.
Header: Declared in winuser.h; include windows.h.

Combo Boxes Overview, Combo-Box Messages, CB_ADDSTRING,
CB_INSERTSTRING, DlgDirListComboBox

CB_FINDSTRING
An application sends a CB_FINDSTRING message to search the list box of a combo
box for an item beginning with the characters in a specified string.

To send this message, call the Send Message function with the following parameters.

Parameters
wParam

Specifies the zero-based index of the item preceding the first item to be searched.
When the search reaches the bottom of the list box, it continues from the top of the list
box back to the item specified by the wParam parameter. If wParam is -1 , the entire
list box is searched from the beginning.

IParam
Pointer to the null-terminated string that contains the characters for which to search.
The search is not case-sensitive, so this string can contain any combination of
uppercase and lowercase letters.

Chapter 6 Controls 89

Return Values
The return value is the zero-based index of the matching item. If the search
is unsuccessful, it is CB_ERR.

Remarks
If you create the combo box with an owner-drawn style, but without the
CBS_HASSTRINGS style, what the CB_FINDSTRING message does depends on
whether your application uses the CBS_SORT style. If you use the CBS_SORT style,
WM_COMPAREITEM messages are sent to the owner of the combo box to determine
which item matches the specified string. If you do not use the CBS_SORT style, the
CB_FINDSTRING message searches for a list item that matches the value of the IParam
parameter.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Combo Boxes Overview, Combo-Box Messages, CB_FINDSTRINGEXACT,
CB_SELECTSTRING, CB_SETCURSEL, WM_COMPAREITEM

CB_FINDSTRINGEXACT
An application sends a CB_FINDSTRINGEXACT message to find the first list-box string
in a combo box that matches the string specified in the IParam parameter.

To send this message, call the Send Message function with the following parameters.

Parameters
wParam

Specifies the zero-based index of the item preceding the first item to be searched.
When the search reaches the bottom of the list box, it continues from the top of the list
box back to the item specified by the wParam parameter. If wParam is -1, the entire
list box is searched from the beginning.

90 Volume 2 Microsoft Windows User Interface

IParam
Pointer to the nUll-terminated string for which to search. This string can contain a
complete file name, including the extension. The search is not case-sensitive, so this
string can contain any combination of uppercase and lowercase letters.

Return Values
The return value is the zero-based index of the matching item. If the search is
unsuccessful, it is CB_ERR.

Remarks
If you create the combo box with an owner-drawn style, but without the
CBS_HASSTRINGS style, what the CB_FINDSTRINGEXACT message does depends
on whether your application uses the CBS_SORT style. If you use the CBS_SORT style,
WM_COMPAREITEM messages are sent to the owner of the combo box to determine
which item matches the specified string. If you do not use the CBS_SORT style, the
CB_FINDSTRINGEXACT message searches for a list item that matches the value of the
IParam parameter.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Combo Boxes Overview, Combo-Box Messages, CB_FINDSTRING,
CB_SELECTSTRING, WM_COMPAREITEM

An application sends a CB_GETCOUNT message to retrieve the number of items in the
list box of a combo box.

To send this message, call the SendMessage function with the following parameters.

Chapter 6 Controls 91

Parameters
This message has no parameters.

Return Values
The return value is the number of items in the list box. If an error occurs, it is CB_ERR.

Remarks
The index is zero-based, so the returned count is one greater than the index value of the
last item.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Combo Boxes Overview, Combo-Box Messages

CB_GETCURSEL
An application sends a CB_GETCURSEL message to retrieve the index of the currently
selected item, if any, in the list box of a combo box.

To send this message, call the SendMessage function with the following parameters.

Parameters
This message has no parameters.

Return Values
The return value is the zero-based index of the currently selected item. If no item is
selected, it is CB_ERR.

92 Volume 2 Microsoft Windows User Interface

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Combo Boxes Overview, Combo-Box Messages, CB_SELECTSTRING,
CB_SETCURSEL

CB_GETDROPPEDCONTROLRECT
An application sends a CB_GETDROPPEDCONTROLRECT message to retrieve the
screen coordinates of the drop-down list box of a combo box.

To send this message, call the Send Message function with the following parameters.

Parameters
wParam

This parameter is not used.

IParam
Pointer to the RECT structure that receives the coordinates.

Return Values
If the message succeeds, the return value is nonzero.

If the message fails, the return value is zero.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Chapter 6 Controls 93

Combo Boxes Overview, Combo-Box Messages, RECT

CB_GETDROPPEDSTATE
An application sends a CB_GETDROPPEDSTATE message to determine whether the
list box of a combo box is dropped down.

To send this message, call the Send Message function with the following parameters.

'f1f~:{~;~~}tWf{:~);,,~f: h:~~j:~dtt'~Q ';~~stt~a.ti'~·wtndoW " .',,'
~~Jfi:l')j~$~ftDs'f~1'f:.!ll;'~~;~g.~tbse~d··;!'.. ,'"•

" ~"'tw~;Ii.flit; .' "f;'/notu,se!l':1'IlllStbe zer'O,
,JtAt:1Y>·l~iraR1}/lInri.xil~ed ;;~ust beiei'o
'""~,'~'0'.f'., 3:,\ .: '>,.t}''\"ii ,t,' f,(,

~.:, ':- ,", " '¢ ,!" y

Parameters
This message has no parameters.

Return Values
If the list box is visible, the return value is TRUE; otherwise, it is FALSE.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Combo Boxes Overview, Combo-Box Messages, CB_SHOWDROPDOWN

CB_GETDROPPEDWIDTH
An application sends the CB_GETDROPPEDWIDTH message to retrieve the minimum
allowable width, in pixels, of the list box of a combo box with either the
CBS_DROPDOWN or CBS_DROPDOWNLIST style.

To send this message, call the SendMessage function with the following parameters.

94 Volume 2 Microsoft Windows User Interface

Parameters
This message has no parameters.

Return Values
If the message succeeds, the return value is the width, in pixels.

If the message fails, the return value is CB_ERR.

Remarks
By default, the minimum allowable width of the drop-down list box is zero. The width of
the list box is either the minimum width allowable or the combo-box width, whichever is
larger.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Combo Boxes Overview, Combo-Box Messages, CB_SETDROPPEDWIDTH

CB_GETEDITSEL
An application sends a CB_GETEDITSEL message to get the starting and ending
character positions of the current selection in the edit control of a combo box.

To send this message, call the SendMessage function with the following parameters.

Parameters
wParam

Chapter 6 Controls 95

Pointer to a DWORD value that receives the starting position of the selection. This
parameter can be NULL.

IParam
Pointer to a DWORD value that receives the ending position of the selection. This
parameter can be NULL.

Return Values
The return value is a zero-based DWORD value with the starting position of the selection
in the low-order word, and with the ending position of the first character after the last
selected character in the high-order word.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Combo Boxes Overview, Combo-Box Messages, CB_SETEDITSEL, HIWORD,
LOWORD

CB_GETEXTENDEDUI
An application sends a CB_GETEXTENDEDUI message to determine whether a combo
box has the default user interface or the extended user interface.

To send this message, call the Send Message function with the following parameters.

r;;;lj~ .•. ·.,.· •.. :.~.:.· .. ;.l.:.' .•. :.;i ·.f.i!./:.· .. ~.,!, •• ~ ... (.-.:.; .• ~f .. ! .• • .• ,~.".~.~ .•. ;.~.'! .. ::l,·,'.i .• ,., •.•. !:·.·,·.· •. ,·.·.!.r'·'t:·u s.'e'df·iillu$;t~>:be
t. ~.'. ':'~'.:, "'~, ..•.. :.,.... -: .' :~,".,.... ..
f(".' .'. ,~(:~.;

Parameters
This message has no parameters.

96 Volume 2 Microsoft Windows User Interface

Return Values
If the combo box has the extended user interface, the return value is TRUE; otherwise, it
is FALSE.

Remarks
By default, the F4 key opens or closes the list, and the DOWN ARROW key changes the
current selection. In a combo box with the extended user interface, the F4 key is
disabled, and pressing the DOWN ARROW key opens the drop-down list.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

" ..

Combo Boxes Overview, Combo-Box Messages, CB_SETEXTENDEDUI

CB_ GETHORIZONTALEXTENT
An application sends the CB_GETHORIZONTALEXTENT message to retrieve from a
combo box the width, in pixels, by which the list box can be scrolled horizontally (the
scrollable width). This is applicable only if the list box has a horizontal scroll bar.

To send this message, call the SendMessage function with the following parameters.

Parameters
This message has no parameters.

Return Values
The return value is the scrollable width, in pixels.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.

Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Chapter 6 Controls 97

Combo Boxes Overview, Combo-Box Messages, CB_SETHORIZONTALEXTENT

CB_GETITEMDATA
An application sends a CB_GETITEMDATA message to a combo box to retrieve the
application-supplied value associated with the specified item in the combo box.

To send this message, call the SendMessage function with the following parameters.

Parameters
wParam

Specifies the zero-based index of the item.

IParam
This parameter is not used.

Return Values
The return value is the value associated with the item. If an error occurs, it is CB_ERR.

If the item is in an owner-drawn combo box created without the CBS_HASSTRINGS
style, the return value is the value contained in the IParam parameter of the
CB_ADDSTRING or CB_INSERTSTRING message that added the item to the combo
box. If the CBS_HASSTRINGS style was not used, the return value is the IParam
parameter contained in a CB_SETITEMDATA message.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

98 Volume 2 Microsoft Windows User Interface

Combo Boxes Overview, Combo-Box Messages, CB_ADDSTRING,
CB_INSERTSTRING, CB_SETITEMDATA

CB_GETITEMHEIGHT
An application sends a CB_GETITEMHEIGHT message to determine the height of list
items or the selection field in a combo box.

To send this message, call the SendMessage function with the following parameters.

Parameters
wParam

Specifies the combo-box component whose height is to be retrieved.

This parameter must be -1 to retrieve the height of the selection field. It must be zero
to retrieve the height of list items, unless the combo box has the
CBS_OWNERDRAWVARIABLE style. In that case, the wParam parameter is the
zero-based index of a specific list item.

IParam
This parameter is not used.

Return Values
The return value is the height, in pixels, of the list items in a combo box. If the combo
box has the CBS_OWNERDRAWVARIABLE style, it is the height of the item specified
by the wParam parameter. If wParam is -1, the return value is the height of the edit­
control (or static-text) portion of the combo box. If an error occurs, the return value is
CB_ERR.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Chapter 6 Controls 99

Combo Boxes Overview, Combo-Box Messages, CB_SETITEMHEIGHT,
WM_MEASUREITEM

CB_GETLBTEXT
An application sends a CB_GETLBTEXT message to retrieve a string from the list of a
combo box.

To send this message, call the SendMessage function with the following parameters.

Parameters
wParam

Specifies the zero-based index of the string to retrieve.

IParam
Pointer to the buffer that receives the string. The buffer must have sufficient space for
the string and a terminating null character. You can send a CB_GETLBTEXTLEN
message prior to the CB_GETLBTEXT message to retrieve the length, in bytes, of
the string.

Return Values
The return value is the length of the string, in bytes, excluding the terminating null
character. If wParam does not specify a valid index, the return value is CB_ERR.

Remarks
If you create the combo box with an owner-drawn style, but without the
CBS_HASSTRINGS style, the buffer pOinted to by IParam receives the data associated
with the item.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

100 Volume 2 Microsoft Windows User Interface

Combo Boxes Overview, Combo-Box Messages, CB_GETLBTEXTLEN

CB_GETLBTEXTLEN
An application sends a CB_GETLBTEXTLEN message to retrieve the length, in
characters, of a string in the list of a combo box.

To send this message, call the Send Message function with the following parameters.

Parameters
wParam

Specifies the zero-based index of the string.

IParam
This parameter is not used.

Return Values
The return value is the length of the string, in characters, excluding the terminating null
character. Under certain conditions, this value may actually be greater than the length of
the text. For more information, see the Remarks section.

If the wParam parameter does not specify a valid index, the return value is CB_ERR.

Remarks
Under certain conditions, the return value is larger than the actual length of the text. This
occurs with certain mixtures of ANSI and Unicode, and is due to the operating system
ailowing for the possible existence of double-byte character set (OBCS) characters
within the text. The return value, however, always will be at least as large as the actual
length of the text; so, you can use it always to guide buffer allocation. This behavior can
occur when an application uses both ANSI functions and common dialog boxes, which
use Unicode.

To obtain the exact length of the text, use the WM_GETTEXT, LB_GETTEXT, or
CB_GETLBTEXT message, or the GetWindowText function.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Chapter 6 Controls 101

Combo Boxes Overview, Combo-Box Messages, CB_GETLBTEXT, GetWindowText,
LB_GETTEXT, WM_GETTEXT

An application sends a CB_GETLOCALE message to retrieve the current locale of the
combo box. The locale is used to determine the correct sorting order of both displayed
text for combo boxes with the CBS_SORT style and text added by using the
CB_ADDSTRING message.

To send this message, call the Send Message function with the following parameters.

Parameters
This message has no parameters.

Return Values
The return value specifies the current locale of the combo box. The high word contains
the country/region code, and the low-order word contains the language identifier.

Remarks
The language identifier is made up of a sublanguage identifier and a primary language
identifier. The PRIMARYLANGID macro obtains the primary language identifier, and the
SUBLANGID macro obtains the sublanguage identifier.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.

102 Volume 2 Microsoft Windows User Interface

Windows CE: Requires version 2.0 or later.
Header: Declared in winuser.h; include windows.h.

Combo Boxes Overview, Combo-Box Messages, CB_ADDSTRING, CB_SETLOCALE,
HIWORD, LOWORD, PRIMARYLANGID, SUBLANGID

CB_GETTOPINDEX
An application sends the CB_GETTOPINDEX message to retrieve the zero-based index
of the first visible item in the list-box portion of a combo box. Initially, the item with index
o is at the top of the list box, but if the list-box contents have been scrolled, another item
may be at the top.

To send this message, call the Send Message function with the following parameters.

Parameters
This message has no parameters.

Return Values
If the message is successful, the return value is the index of the first visible item in the
list box of the combo box.

If the message fails, the return value is CB_ERR.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Combo Boxes Overview, Combo-Box Messages, CB_SETTOPINDEX

Chapter 6 Controls 103

CB_INITSTORAGE
An application sends the CB_INITSTORAGE message before adding a large number of
items to the list-box portion of a combo box. This message allocates memory for storing
list-box items.

To send this message, call the Send Message function with the following parameters.

Parameters
wParam

Specifies the number of items to add.

IParam
Specifies the amount of memory to allocate for item strings, in bytes.

Return Values
If the message is successful, the return value is the total number of items for which
memory has been pre-allocated; that is, the total number of items added by all
successful CB_INITSTORAGE messages.

If the message fails, the return value is CB_ERRSPACE.

Windows NT/2000: For Windows NT version 4.0, this message does not allocate the
specified amount of memory; however, it always returns the value specified in the
wParam parameter. For Windows 2000, the message allocates memory, and returns the
success and error values described above.

Remarks
The CB_INITSTORAGE message helps speed up the initialization of combo boxes that
have a large number of items (over 100). It reserves the specified amount of memory, so
that subsequent CB_ADDSTRING, CB_INSERTSTRING, and CB_DIR messages take
the shortest time possible. You can use estimates for the wParam and IParam
parameters. If you overestimate, the extra memory is allocated; if you underestimate, the
normal allocation is used for items that exceed the requested amount.

Windows NT/2000: Requires Windows 2000.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

104 Volume 2 Microsoft Windows User Interface

Combo Boxes Overview, Combo-Box Messages, CB_ADDSTRING, CB_DIR,
CB_INSERTSTRING

CB_INSERTSTRING
An application sends a CB_INSERTSTRING message to insert a string into the list box
of a combo box. Unlike the CB_ADDSTRING message, the CB_INSERTSTRING
message does not cause a list with the CBS_SORT style to be sorted.

To send this message, call the Send Message function with the following parameters.

Parameters
wParam

Specifies the zero-based index of the position at which to insert the string. If this
parameter is -1 , the string is added to the end of the list.

IParam
Pointer to the null-terminated string to be inserted. If you create the combo box with
an owner-drawn style, but without the CBS_HASSTRINGS style, the value of the
IParam parameter is stored, instead of the string to which it would otherwise pOint.

Return Values
The return value is the index of the position at which the string was inserted. If an error
occurs, the return value is CB_ERR. If there is insufficient space available to store the
new string, it is CB_ERRSPACE.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95198: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Combo Boxes Overview, Combo-Box Messages, CB_ADDSTRING, CB_DIR

Chapter 6 Controls 105

CB_LIMITTEXT
An application sends a CB_LIMITTEXT message to limit the length of the text the user
can type into the edit control of a combo box.

To send this message, call the Send Message function with the following parameters.

Parameters
wParam

Specifies the maximum number of characters the user can enter, not including the null
terminator. If this parameter is zero, the text length is limited to Ox7FFFFFFE
characters.

IParam
This parameter is not used.

Return Values
The return value is always TRUE.

Remarks
If the combo box does not have the CBS_AUTOHSCROLL style, setting the text limit to
be larger than the size of the edit control has no effect.

The CB_LlMITTEXT message limits only the text the user can enter. It has no effect on
any text already in the edit control when the message is sent, and it has no effect on the
length of the text copied to the edit control when a string in the list box is selected.

The default limit to the text a user can enter in the edit control is 30,000 characters.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Combo Boxes Overview, Combo-Box Messages

106 Volume 2 Microsoft Windows User Interface

CB_RESETCONTENT
An application sends a CB_RESETCONTENT message to remove all items from the list
box and edit control of a combo box.

To send this message, call the SendMessage function with the following parameters.

Parameters
This message has no parameters.

Return Values
This message always returns CB_OKAY.

Remarks
If you create the combo box with an owner-drawn style, but without the
CBS_HASSTRINGS style, the owner of the combo box receives a WM_DELETEITEM
message for each item in the combo box.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Combo Boxes Overview, Combo-Box Messages, CB_DELETESTRING,
WM_DELETEITEM

CB_SELECTSTRING
An application sends a CB_SELECTSTRING message to search the list of a combo box
for an item that begins with the characters in a specified string. If a matching item is
found, it is selected and copied to the edit control.

To send this message, call the Send Message function with the following parameters.

Chapter 6 Controls 107

SendMesuge(
(HWHD . .)hWnd.
C!.,..SEtECT:STRING.
.(we~J.,wp~ .. .nflnk ,
(LMAAM) ~Param:

t lhaodl e.todesUoiltlon wfhdow

, ,~ , '~ , '," :';"';"',

1.

/lime$sag,f}:tosel1d•.......
Ii ,1Mm(l;f.tte.Ill:.pr aced:! 11\:1 stti rt
lIse/Jrcn str.11'l9 ...

" ,," " ~<'~:' "J

Parameters
wParam

Specifies the zero-based index of the item preceding the first item to be searched.
When the search reaches the bottom of the list, it continues from the top of the list
back to the item specified by the wParam parameter. If wParam is -1, the entire list is
searched from the beginning.

IParam
Pointer to the null-terminated string that contains the characters for which to search.
The search is not case-sensitive, so this string can contain any combination of
uppercase and lowercase letters.

Return Values
If the string is found, the return value is the index of the selected item. If the search is
unsuccessful, the return value is CB_ERR, and the current selection is not changed.

Remarks
A string is selected only if the characters from the starting point match the characters in
the prefix string.

If you create the combo box with an owner-drawn style, but without the
CBS_HASSTRINGS style, what the CB_SELECTSTRING message does depends on
whether you use the CBS_SORT style. If the CBS_SORT style is used, the system
sends WM_COMPAREITEM messages to the owner of the combo box to determine
which item matches the specified string. If you do not use the CBS_SORT style,
CB_SELECTSTRING attempts to match the DWORD value against the value of the
IParam parameter.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1 .0 or later.
Header: Declared in winuser.h; include windows.h.

Combo Boxes Overview, Combo-Box Messages, CB_FINDSTRING,
CB_FINDSTRINGEXACT, CB_SETCURSEL, WM_COMPAREITEM

108 Volume 2 Microsoft Windows User Interface

An application sends a CB_SETCURSEL message to select a string in the list of a
combo box. If necessary, the list scrolls the string into view. The text in the edit control of
the combo box changes to reflect the new selection, and any previous selection in the
list is removed.

To send this message, call the SendMessage function with the following parameters.

Parameters
wParam

Specifies the zero-based index of the string to select. If this parameter is
-1, any current selection in the list is removed, and the edit control is cleared.

IParam
This parameter is not used.

Return Values
If the message is successful, the return value is the index of the item selected. If
wParam is greater than the number of items in the list or if wParam is -1, the return
value is CB_ERR, and the selection is cleared.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Combo Boxes Overview, Combo-Box Messages, CB_FINDSTRING, CB_GETCURSEL,
CB_SELECTSTRING

CB_SETDROPPEDWIDTH
An application sends the CB_SETDROPPEDWIDTH message to set the maximum width
allowable, in pixels, of the list box of a combo box with either the CBS_DROP DOWN or
CBS_DROPDOWNLIST style.

Chapter 6 Controls 109

To send this message, call the Send Message function with the following parameters.

~dlt61ja.~e(·' ...

,~ak::tQW!DTIt: .',' ."'~i.::i~!;e~:/:!~~nat fon wi ~gow
,":,4w;~1:,~rIJfrf ' .• '. ,"1'/ Widttl~f;:H·~t a.ox " ' .
. ~·;~~tl~;p,!r4~f;·· ·Jr~~o'tij$~dJ,Jn~$t);~.ztrr~;': ,'.'

Parameters
wParam

Specifies the width of the list box, in pixels.

IParam
This parameter is not used.

Return Values
If the message is successful, the return value is the new width of the list box.

If the message fails, the return value is CB_ERR.

Remarks
By default, the minimum allowable width of the drop-down list box is zero. The width of
the list box is either the minimum width allowable or the combo-box width, whichever is
larger.

" .. , _.,'

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Combo Boxes Overview, Combo-Box Messages, CB_GETDROPPEDWIDTH

CB_SETEDITSEL
An application sends a CB_SETEDITSEL message to select characters in the edit
control of a combo box.

To send this message, call the Send Message function with the following parameters.

110 Volume 2 Microsoft Windows User Interface

Parameters
wParam

This parameter is not used.

IParam
The low-order word of IParam specifies the starting position. If the low-order word is -
1, the selection, if any, is removed.

The high-order word of IParam specifies the ending position. If the high-order word is
-1, all text from the starting position to the last character in the edit control is selected.

Return Values
If the message succeeds, the return value is TRUE. If the message is sent to a combo
box with the CBS_DROPDOWNLIST style, it is CB_ERR.

Remarks
The positions are zero-based. The first character of the edit control is in the zero
position. The first character after the last selected character is in the ending position. For
example, to select the first four characters of the edit control, use a starting position of 0
and an ending position of 4.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Combo Boxes Overview, Combo-Box Messages, CB_GETEDITSEL, MAKELPARAM

CB_SETEXTENDEDUI
An application sends a CB_SETEXTENDEDUI message to select either the default user
interface or extended user interface for a combo box that has either the
CBS_DROPDOWN or CBS_DROPDOWNLIST style.

Chapter 6 Controls 111

To send this message, call the Send Message function with the following parameters.

SendMessage(
(HWND) hWnd.
CS..5ETEXTENOEDUI.
(WPARAMY WParanl:
. (I"PARAM). 7 PaptTfl.;.

) :

Parameters
wParam

1/ handle t.odestination window
II message to send
II user interfac~tyfJe

. /In.otuse4,;!I)u.st pe zero

Specifies whether the combo box uses the extended user interface or the default user
interface. A value of TRUE selects the extended user interface; a value of FALSE
selects the standard user interface.

IParam
This parameter is not used.

Return Values
If the operation succeeds, the return value is CB_OKAY. If an error occurs, it is
CB_ERR.

Remarks
By default, the F4 key opens or closes the list, and the DOWN ARROW key changes the
current selection. In the extended user interface, the F4 key is disabled, and the DOWN
ARROW key opens the drop-down list.

Windows NT/2000: Requires Windows NT 3.1 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Combo Boxes Overview, Combo-Box Messages, CB_GETEXTENDEDUI

CB_SETHORIZONTALEXTENT
An application sends the CB_SETHORIZONTALEXTENT message to set the width, in
pixels, by which a list box can be scrolled horizontally (the scrollable width). If the width
of the list box is smaller than this value, the horizontal scroll bar horizontally scrolls items
in the list box. If the width of the list box is equal to or greater than this value, the
horizontal scroll bar is hidden or, if the combo box has the CBS_DISABLENOSCROLL
style, disabled.

112 Volume 2 Microsoft Windows User Interface

To send this message, call the Send Message function with the following parameters.

Parameters
wParam

Specifies the scrollable width of the list box, in pixels.

IParam
This parameter is not used.

Return Values
No return value.

Windows NT/2000: Requires Windows NT 4.0 or later.
Windows 95/98: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winuser.h; include windows.h.

Combo Boxes Overview, Combo-Box Messages, CB_GETHORIZONTALEXTENT

CB_SETITEMDATA
An application sends a CB_SETITEMDATA message to set the value associated with
the specified item in a combo box.

To send this message, call the Send Message function with the following parameters.

~~~;~j~,~~d~c~;;' , 
::;.f'~~t!l~E!tG~r~; 
',;' ;(WJf~MI);:~A",:r;aj!}: 
:i':~~PAriA"b:,t/tii:~Jilf 
')i'r:;~j(~,~~}~~~\ ;'i{;,\" ~~ ",~ .. :'~:! '1< < ~ ~ ;'t':': ~ 

Parameters 
wParam 

Specifies the item's zero-based index. 

IParam 
Specifies the new value to be associated with the item. 



Chapter 6 Controls 113 

Return Values 
If an error occurs, the return value is CB_ERR. 

Remarks 
If the specified item is in an owner-drawn combo box created without the 
CBS_HASSTRINGS style, this message replaces the value in the IParam parameter of 
the CB_ADDSTRING or CB_INSERTSTRING message that added the item to the 
combo box. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Combo Boxes Overview, Combo-Box Messages, CB_ADDSTRING, 
CB_GETITEMDATA, CB_INSERTSTRING 

CB_SETITEMHEIGHT 
An application sends a CB_SETITEMHEIGHT message to set the height of list items or 
the selection field in a combo box. 

To send this message, call the Send Message function with the following parameters. 

$~rid~~;$~gtf{ , 
,(~NDSjfWnd, '" ..... 
cB.,.;S£TI:tE;MH£lGflJ. ... ·•· 
• (\~PARAMi~~Piind~;:;' 

.,:·<~~A~)·JP~~~m; .. 

Parameters 
wParam 

~atldt~j tQ d~st inat i o~lIfi nd.611f 
. ·lI·~$sat~t;ci 
' .. , ... ~;; ite/ll~\jndex 

"it'em lJieight, ' 
" . c'; "" " f 

:~; 

Specifies the component of the combo box for which to set the height. 

This parameter must be -1 to set the height of the selection field. It must be zero to 
set the height of list items, unless the combo box has the 
CBS_OWNERDRAWVARIABLE style. In that case, the wParam parameter is the 
zero-based index of a specific list item. 

IParam 
Specifies the height, in pixels, of the combo-box component identified by wParam. 



114 Volume 2 Microsoft Windows User Interface 

Return Values 
If the index or height is invalid, the return value is CB_ERR. 

Remarks 
The selection-field height in a combo box is set independently from the height of the list 
items. An application must ensure that the height of the selection field is not smaller than 
the height of a particular list item. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Combo Boxes Overview, Combo-Box Messages, CB_GETITEMHEIGHT, 
WM_MEASUREITEM 

An application sends a CB_SETLOCALE message to set the current locale of the 
combo box. If the combo box has the CBS_SORT style and strings are added using 
CB_ADDSTRING, the locale of a combo box affects how list items are sorted. 

To send this message, call the Send Message function with the following parameters. 

Parameters 
wParam 

Specifies the locale identifier for the combo box to use for sorting when adding text. 

IParam 
This parameter is not used. 



Chapter 6 Controls 115 

Return Values 
The return value is the previous locale identifier. If wParam specifies a locale not 
installed on the system, the return value is CB_ERR, and the current combo box locale 
is not changed. 

Remarks 
Use the MAKELCID macro to construct a locale identifier, and the MAKELANGID macro 
to construct a language identifier. The language identifier is made up of a primary 
language identifier and a sublanguage identifier. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 2.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Combo Boxes Overview, Combo-Box Messages, CB_ADDSTRING, CB_GETLOCALE, 
MAKELANGID, MAKELCID 

CB_SETTOPINDEX 
An application sends the CB_SETTOPINDEX message to ensure that a particular item 
is visible in the list box of a combo box. The system scrolls the list-box contents, so that 
either the specified item appears at the top of the list box or the maximum scroll range 
has been reached. 

To send this message, call the SendMessage function with the following parameters. 

Parameters 
wParam 

Specifies the zero-based index of the list item. 

IParam 
This parameter is not used. 



116 Volume 2 Microsoft Windows User Interface 

Return Values 
If the message is successful, the return value is zero. 

If the message fails, the return value is CB_ERR. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Combo Boxes Overview, Combo-Box Messages, CB_GETTOPINDEX 

CB_SHOWDROPDOWN 
An application sends a CB_SHOWDROPDOWN message to show or hide the list box of 
a combo box that has either the CBS_DROPDOWN or CBS_DROPDOWNLIST style. 

To send this message, call the Send Message function with the following parameters. 

Parameters 
wParam 

Specifies whether the drop-down list box is to be shown or hidden. A value of TRUE 
shows the list box; a value of FALSE hides it. 

IParam 
This parameter is not used. 

Return Values 
The return value is always TRUE. 

Remarks 
This message has no effect on a combo box created with the CBS_SIMPLE style. 



':~-\$ 
Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1 .0 or later. 
Header: Declared in winuser.h; include windows.h. 

Chapter 6 Controls 117 

Combo Boxes Overview, Combo-Box Messages, CB_GETDROPPEDSTATE 

CBN_CLOSEUP 
The CBN_CLOSEUP notification message is sent when the list box of a combo box has 
been closed. The parent window of the combo box receives this notification message 
through the WM_COMMAND message. 

Parameters 
wParam 

The low-order word specifies the control identifier of the combo box. 

The high-order word specifies the notification message. 

IParam 
Handle to the combo box. 

Remarks 
If the user changed the current selection, the combo box also sends the 
CBN_SELCHANGE notification when the drop-down list closes. In general, you cannot 
predict the order in which notifications will be sent. In particular, a CBN_SELCHANGE 
notification message may occur either before or after a CBN_CLOSEUP notification 
message. 

To execute a specific process each time the user selects a list item, you can handle 
either the CBN_SELCHANGE or CBN_CLOSEUP notification message. Typically, you 
would wait for the CBN_CLOSEUP notification before processing a change in the 
current selection. This can be particularly important if a significant amount of processing 
is required. 

This notification message is not sent to a combo box that has the CBS_SIMPLE style. 



118 Volume 2 Microsoft Windows User Interface 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Combo Boxes Overview, Combo-Box Messages, CBN_DROPDOWN, 
CBN_SELCHANGE, HIWORD, LOWORD, WM_COMMAND 

The CBN_DBLCLK notification message is sent when the user double-clicks a string in 
the list box of a combo box. The parent window of the combo box receives this 
notification message through the WM_COMMAND message. 

Parameters 
wParam 

The low-order word specifies the control identifier of the combo box. 

The high-order word specifies the notification message. 

IParam 
Handle to the combo box. 

Remarks 
This notification message occurs only for a combo box with the CBS_SIMPLE style. In a 
combo box with the CBS_DROPDOWN or CBS_DROPDOWNLIST style, a double-click 
cannot occur, because a single click closes the list box. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 2.0 or later. 
Header: Declared in winuser.h; include windows.h. 



Chapter 6 Controls 119 

a~~ii··~~g 
Combo Boxes Overview, Combo-Box Messages, CBN_SELCHANGE, HIWORD, 
LOWORD, WM_COMMAND 

The CBN_DROPDOWN notification message is sent when the list box of a combo box is 
about to be made visible. The parent window of the combo box receives this notification 
message through the WM_COMMAND message. 

Parameters 
wParam 

The low-order word specifies the control identifier of the combo box. 

The high-order word specifies the notification message. 

IParam 
Handle to the combo box. 

Remarks 
This notification message is sent only if the combo box has either the 
CBS_DROPDOWN or CBS_DROPDOWNLIST style. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Combo Boxes Overview, Combo-Box Messages, CBN_CLOSEUP, HIWORD, 
LOWORD, WM_COMMAND 



120 Volume 2 Microsoft Windows User Interface 

CBN_EDITCHANGE 
The CBN_EDITCHANGE notification message is sent after the user has taken an action 
that might have altered the text in the edit control portion of a combo box. Unlike the 
CBN_EDITUPDATE notification message, this notification message is sent after the 
system updates the screen. The parent window of the combo box receives this 
notification message through the WM_COMMAND message. 

Parameters 
wParam 

The low-order word specifies the control identifier of the combo box. 

The high-order word specifies the notification message. 

IParam 
Handle to the combo box. 

Remarks 
If the combo box has the CBS_DROPDOWNLIST style, this notification message is not 
sent. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Combo Boxes Overview, Combo-Box Messages, CBN_EDITUPDATE, HIWORD, 
LOWORD, WM_COMMAND 

CBN EDITUPDATE 
The CBN_EDITUPDATE notification message is sent when the edit control portion of a 
combo box is about to display altered text. This notification message is sent after the 
control has formatted the text, but before it displays the text. The parent window of the 
combo box receives this notification message through the WM_COMMAND message. 



LRESULT CALLBACK W1ndowProc( 
II handle to window 
II WM_COMMANO 

Chapter 6 Controls 121 

HWNO hwn<i. 
UINT uMsg. 
WPAAAM"{P<lram. 
LPARAM lParam 

tl combo-pox .. i denti fi er. CBN..,EOITU.PDATr: 

) : 

Parameters 
wParam 

Il handl etocombg box (HWND) 

The low-order word specifies the control identifier of the combo box. 

The high-order word specifies the notification message. 

IParam 
Handle to the combo box. 

Remarks 
If the combo box has the CBS_DROPDOWNLIST style, this notification message is not 
sent. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Combo Boxes Overview, Combo-Box Messages, CBN_EDITCHANGE, HIWORD, 
LOWORD, WM_COMMAND 

CBN_ERRSPACE 
The CBN_ERRSPACE notification message is sent when a combo box cannot allocate 
enough memory to meet a specific request. The parent window of the combo box 
receives this notification message through the WM_COMMAND message. 



122 Volume 2 Microsoft Windows User Interface 

Parameters 
wParam 

The low-order word specifies the control identifier of the combo box. 

The high-order word specifies the notification message. 

IParam 
Handle to the combo box. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Combo Boxes Overview, Combo-Box Messages, HIWORD, LOWORD, 
WM_COMMAND 

CBN_KILLFOCUS 
The CBN_KILLFOCUS notification message is sent when a combo box loses the 
keyboard focus. The parent window of the combo box receives this notification message 
through the WM_COMMAND message. 

Parameters 
wParam 

The low-order word specifies the control identifier of the combo box. 

The high-order word specifies the notification message. 

IParam 
Handle to the combo box. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 



Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Chapter 6 Controls 123 

Combo Boxes Overview, Combo-Box Messages, CBN_SETFOCUS, HIWORD, 
LOWORD, WM_COMMAND 

CBN_SELCHANGE 
The CBN_SELCHANGE notification message is sent when the user changes the current 
selection in the list box of a combo box. The user can change the selection either by 
clicking in the list box or using the arrow keys. The parent window of the combo box 
receives this notification in the form of a WM_COMMAND message with 
CBN_SELCHANGE in the high-order word of the wParam parameter. 

Parameters 
wParam 

The low-order word specifies the control identifier of the combo box. 

The high-order word specifies the notification message. 

IParam 
Handle to the combo box. 

Remarks 
To get the index of the current selection, send the CB_GETCURSEL message to the 
control. 

The CBN_SELCHANGE notification message is not sent when the current selection is 
set using the CB_SETCURSEL message. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 



124 Volume 2 Microsoft Windows User Interface 

Combo Boxes Overview, Combo-Box Messages, CBN_CLOSEUP, CBN_DBLCLK, 
HIWORD, LOWORD, WM_COMMAND 

CBN_SELENDCANCEL 
The CBN_SELENDCANCEL notification message is sent when the user selects an item, 
but then selects another control or closes the dialog box. It indicates that the user's initial 
selection is to be ignored. The parent window of the combo box receives this notification 
message through the WM_COMMAND message. 

Parameters 
wParam 

The low-order word specifies the control identifier of the combo box. 

The high-order word specifies the notification message. 

IParam 
Handle to the combo box. 

Remarks 
In a combo box with the CBS_SIMPLE style, the CBN_SELENDCANCEL notification 
message is not sent. The CBN_SELENDOK notification message is sent immediately 
before every CBN_SELCHANGE notification message. 

Windows NT/2000: Requires Windows NT 3.1 or iater. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include wihdows.h. 

Combo Boxes Overview, Combo-Box Messages, CBN_SELCHANGE, 
CBN_SELENDOK, HIWORD, LOWORD, WM_COMMAND 



Chapter 6 Controls 125 

The CBN_SELENDOK notification message is sent when the user selects a list item, or 
selects an item and then closes the list. It indicates that the user's selection is to be 
processed. The parent window of the combo box receives this notification message 
through the WM_COMMAND message. 

I.;.~SU ~1 ;CAf..LBAiKAlJi'MOW'r,o:~(:,.. i ..•• >~. . ..... 
HWKnh:w~d.· .•.. ·Yf·h~ndfeto~indow 

. ·.btt{f:UMsg. .......... . }X .wtttQ~M~ND .... :... . 
:~~AMJ.t.~P6if'a~,: .... 'NiGPmbU-liox:i dent.ifier~. :CBtL~ELENflOK' 

. ':t~A~ ipi~alTF .·,,11 han ~l e;t6combotipx ~HWN.Dj'·· 
): 

Parameters 
wParam 

The low-order word specifies the control identifier of the combo box. 

The high-order word specifies the notification message. 

IParam 
Handle to the combo box. 

Remarks 
In a combo box with the CBS_SIMPLE style, the CBN_SELENDOK notification 
message is sent immediately before every CBN_SELCHANGE notification message. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Combo Boxes Overview, Combo-Box Messages, CBN_SELCHANGE, 
CBN_SELENDCANCEL, HIWORD, LOWORD, WM_COMMAND 

CBN_SETFOCUS 
The CBN_SETFOCUS notification message is sent when a combo box receives the 
keyboard focus. The parent window of the combo box receives this notification message 
through the WM_COMMAND message . 

. tR£SVlT·. eAtI,&AtKcWfnJfoWProc'(> '.' .: ... 
~"HtlND ~W;d~Y~'" ?11)hi{l~J ~ tri. :;~'rfiiow 



126 Volume 2 Microsoft Windows User Interface 

Parameters 
wParam 

The low-order word specifies the control identifier of the combo box. 

The high-order word specifies the notification message. 

IParam 
Handle to the combo box. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Combo Boxes Overview, Combo-Box Messages, CBN_KILLFOCUS, HIWORD, 
LOWORD, WM_COMMAND 

WM_COMPAREITEM 
The system sends the WM_COMPAREITEM message to determine the relative position 
of a new item in the sorted list of an owner-drawn combo box or list box. Whenever the 
application adds a new item, the system sends this message to the owner of a combo 
box or list box created with either the CBS_SORT or LBS_SORT style. 

A window receives this message through its WindowProc function. 

l..lt~$Ul t CA~~~AC~~\!UndoWil'~()~~;\,/ ,'::r. ;. 
·IlJtJHDlrwn\1;"" It handle 't1il window ' • ." 

. . UiNi·uM~g'.:' . 'if wt'U~,iJMPAR~ne:M ttlfNfJ' '.: 
WPAAAf,f.~pa~tint*·· J;i.tp:rit~~l,Hf~n{1tjerT.· ". '. . 
tP.A~'lPa.ram' J/it'em.. da~. rtPcOMPARafi~'~STRl1ft),:'" 

) ;: ..:;;;. 

Parameters 
wParam 

Specifies the identifier of the control that sent the WM_COMPAREITEM message. 



Chapter 6 Controls 127 

IParam 
Pointer to a COMPAREITEMSTRUCT structure that contains the identifiers and 
application-supplied data for two items in the combo box or list box. 

Return Values 
The return value indicates the relative position of the two items. It may be any of the 
values shown in the following table: 

Value Meaning 

-1 Item 1 precedes item 2 in the sorted order. 

o Items 1 and 2 are equivalent in the sorted order. 

1 Item 1 follows item 2 in the sorted order. 

Remarks 
When the owner of an owner-drawn combo box or list box receives this message, the 
owner returns a value indicating which of the items specified by the 
COMPAREITEMSTRUCT structure will appear before the other. Typically, the system 
sends this message several times until it determines the exact position for the new item. 

If a dialog-box procedure handles this message, it should cast the desired return value 
to a BOOl and return the value directly. The DWL_MSGRESUL T value set by the 
SetWindowlong function is ignored. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Combo Boxes Overview, Combo-Box Messages, COMPAREITEMSTRUCT 

The WM_DRAWITEM message is sent to the owner window of an owner-drawn button, 
combo box, list box, or menu when a visual aspect of the button, combo box, list box, or 
menu has changed. 

A window receives this message through its WindowProc function. 

f..ItiS:OlTtAL~BACKWtndoWp'ro~t.... ... . .. 
HW'Hlthwfl'd. . ,'>: I r:handl ~ tci'wi~ow .' 
UU4r )iM$17.', .h\llr-t.ORAwlr~M: . . 

(continued) 



128 Volume 2 Microsoft Windows User Interface 

(continued) 

Parameters 
wParam 

Specifies the identifier of the control that sent the WM_ORAWITEM message. If the 
message was sent by a menu, this parameter is zero. 

IParam 
Pointer to a ORAWITEMSTRUCT structure containing information about the item to 
be drawn and the type of drawing required. 

Return Values 
If an application processes this message, it should return TRUE. 

Remarks 
By default, the OefWindowProc function draws the focus rectangle for an owner-drawn 
list-box item. 

The itemAction member of the ORA WITEMSTRUCT structure specifies the drawing 
operation that an application should perform. 

Before returning from processing this message, an application should ensure that the 
device context identified by the hOC member of the ORAWITEMSTRUCT structure is in 
the default state. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Combo Boxes Overview, Combo-Box Messages, DefWindowProc, 
ORAWITEMSTRUCT 

WM_MEASUREITEM 
The WM_MEASUREITEM message is sent to the owner window of an owner-drawn 
button, combo box, list box, list-view control, or menu item when the control or menu is 
created. 

A window receives this message through its WindowProc function. 



LRESULT CALLBACK W1ndowProc( 
HWNO hwnd, II handle to window 
UINT uMsg, / I WM_MEASURElTEM 
WPARAM wParam, 1/ control identifier (UINT) 
LPAAAM1Param /litem data (LPMEASUREITEMSTRlJCT) 

): 

Parameters 
wParam 

Chapter 6 Controls 129 

Contains the value of the CtllD member of the MEASUREITEMSTRUCT structure 
pointed to by the IParam parameter. This value identifies the control that sent the 
WM_MEASUREITEM message. 

If the value is zero, the message was sent by a menu. If the value is nonzero, the 
message was sent by either a combo box or a list box. If the value is nonzero, and the 
value of the itemlD member of the MEASUREITEMSTRUCT pointed to by IParam is 
(UINT)-1, the message was sent by a combo-box edit field. 

IParam 
Pointer to a MEASUREITEMSTRUCT structure that contains the dimensions of the 
owner-drawn control or menu item. 

Return Values 
If an application processes this message, it should return TRUE. 

Remarks 
When the owner window receives the WM_MEASUREITEM message, the owner fills in 
the MEASUREITEMSTRUCT structure pointed to by the IParam parameter of the 
message, and returns; this informs the system of the dimensions of the control. If a list 
box or combo box is created with either the LBS_OWNERDRAWVARIABLE or 
CBS_OWNERDRAWVARIABLE style, this message is sent to the owner for each item in 
the control; otherwise, this message is sent once. 

The system sends the WM_MEASUREITEM message to the owner window of combo 
boxes and list boxes created with the OWNERDRAWFIXED style before sending the 
WM_INITDIALOG message. As a result, when the owner receives this message, the 
system has not yet determined the height and width of the font used in the control; 
function calls and calculations requiring these values should occur in the main function 
of the application or library. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 



130 Volume 2 Microsoft Windows User Interface 

Combo Boxes Overview, Combo-Box Messages, MEASUREITEMSTRUCT, 
WM_INITDIALOG 

Combo-Box Styles 
To create a combo box using the CreateWindow or CreateWindowEx function, specify 
the COMBOBOX class, appropriate window-style constants, and a combination of the 
following combo-box styles: 

Style Description 

CBS_AUTOHSCROLL 

CBS_DISABLENOSCROLL 

CBS_DROPDOWNLIST 

CBS_HASSTRINGS 

CBS_LOWERCASE 

CBS_NOINTEGRALHEIGHT 

Automatically scrolls the text in an edit control to 
the right when the user types a character at the 
end of the line. If this style is not set, only text that 
fits within the rectangular boundary is allowed. 

Shows a disabled vertical scroll bar in the list box 
when the box does not contain enough items to 
scroll. Without this style, the scroll bar is hidden 
when the list box does not contain enough items. 

Similar to CBS_SIMPLE, except that the list box is 
not displayed unless the user selects an icon next 
to the edit control. 

Similar to CBS_DROPDOWN, except that the edit 
control is replaced by a static text item that 
displays the current selection in the list box. 

Specifies that an owner-drawn combo box 
contains items conSisting of strings. The combo 
box maintains the memory and address for the 
strings so the application can use the 
CB_GETLBTEXT message to retrieve the text for 
a particular item. 

For accessibility issues, see Exposing Owner­
Drawn Combo-Box Items. 

Converts to lowercase aii text in both the selection 
field and list. 

Specifies that the size of the combo box is exactly 
the size specified by the application when it 
created the combo box. Normally, the system 
sizes a combo box so that it does not display 
partial items. 



Style 

CBS_OEMCONVERT 

CBS_OWNERDRAWFIXED 

CBS_OWNERDRAWVARIABLE 

CBS_SORT 

CBS_UPPERCASE 

Ed it Controls 

Chapter 6 Controls 131 

Description 

Converts text entered in the combo-box edit 
control from the Windows character set to the 
OEM character set, and then back to the Windows 
set. This ensures proper character conversion 
when the application calls the CharToOem 
function to convert a Windows string in the combo 
box to OEM characters. This style is most useful 
for combo boxes that contain file names, and 
applies only to combo boxes created with the 
CBS_SIMPLE or CBS_DROPDOWN style. 

Specifies that the owner of the list box is 
responsible for drawing its contents, and that the 
items in the list box are all the same height. The 
owner window receives a WM_MEASUREITEM 
message when the combo box is created, and a 
WM_DRAWITEM message when a visual aspect 
of the combo box has changed. 

Specifies that the owner of the list box is 
responsible for drawing its contents, and that the 
items in the list box are variable in height. The 
owner window receives a WM_MEASUREITEM 
message for each item in the combo box when 
you create the combo box, and a 
WM_DRAWITEM message when a visual aspect 
of the combo box has changed. 

Displays the list box at all times. The current 
selection in the list box is displayed in the edit 
control. 

Automatically sorts strings added to the list box. 

Converts to uppercase all text in both the 
selection field and list. 

The Win32 API provides dialog boxes and controls to support communication between 
the application and the user. An edit control is a rectangular control window typically 
used in a dialog box to permit the user to enter and edit text by typing on the keyboard. 

Edit controls support both the Unicode character set in which characters are two bytes, 
and ANSI character sets in which characters are one byte. For more information about 
Unicode and ANSI character sets, see Chapter 12, Unicode, in the Base Services 
volume. 

The Win32 API also provides support for rich-edit controls, which support many features 
not available in system edit controls. For more information, see Rich-Edit Controls, which 



132 Volume 2 Microsoft Windows User Interface 

are described in an overview later in this chapter, and in detail on the DVD that 
accompanies the Microsoft Win32 Developer's Reference Library. 

About Edit Controls 
An edit control is selected and receives the input focus when a user either clicks 
the mouse inside it or presses the TAB key. After it is selected, the edit control displays 
its text (if any) and a flashing caret that indicates the insertion point. The user can then 
enter text, move the insertion point, or select text to be edited by using the keyboard or 
the mouse. An edit control can send notification messages to its parent window in the 
form of WM_COMMAND messages. For more information about messages from an edit 
control, see Edit Control Notification Messages. A parent window can send messages to 
an edit control in a dialog box by calling the SendDlgltemMessage function. Each of the 
messages sent to edit controls is discussed in this overview. 

The system provides both single-line edit controls (sometimes called SLEs) and multiline 
edit controls (sometimes called MLEs). Edit controls belong to the EDIT window class. 

A combo box is a control that combines much of the functionality of an edit control and a 
list box. In a combo box, the edit control displays the current selection, and the list box 
presents options a user can select. 

Many developers use the dialog boxes provided in the common dialog-box library 
(Comdlg32.d") to perform tasks that otherwise might require customized edit controls. 

Getting Information About Edit Control Programming Elements 
For detailed information on Edit Control reference, please refer to the Microsoft Win32 
Developer's Reference Library companion DVD bundled in the back of the Base 
Services volume. 

Rich-Edit Controls 
Rich-edit controls provide a programming interface for formatting text. However, an 
application must implement any UI components necessary to make formatting 
operations available to the user. A rich-edit control is a window in which the user can 
enter, edit, format, print, and save text. The text can be assigned character and 
paragraph formatting, and can include embedded COM objects. 

Rich-edit controls support .almost a" of the messages and notification messages used 
with multiline edit controls. Thus, applications that already use edit controls can be easily 
changed to use rich-edit controls. Additional messages and notifications enable 
applications to access the functionality unique to rich-edit controls. Beginning with Rich 
Edit 2.0, there are also single-line or multiline, capabilities and plain or rich text. For 
information about edit controls, see Edit Controls. 



Chapter 6 Controls 133 

About Rich·Edit Controls 
The original specification for rich-edit controls is Rich Edit 1.0; the current specification is 
Rich Edit 3.0. Each version of rich edit is a superset of the preceding one, except that 
only Asian versions of Rich Edit 1.0 have a vertical text option. Before creating a rich-edit 
control, you should call the LoadLibrary function to verify which version of Rich Edit is 
installed. The following table shows which DLL corresponds to which version of rich edit. 
Note that the name of the file did not change from version 2.0 to version 3.0. This allows 
version 2.0 to be upgraded to version 3.0 without breaking existing code: 

Rich Edit version DLL 

1.0 

2.0 

3.0 

Riched32.dll 

Riched20.dll 

Riched20.dll 

Windows NTIWindows2000 

Microsoft Windows NT version 4.0 includes both Rich Edit 1.0 and 2.0. Windows 2000 
includes Rich Edit 3.0 with a Rich Edit 1.0 emulator. 

Windows 98 

Windows 98 includes both Rich Edit 1.0 and 2.0. 

Windows 95 

Windows 95 includes only Rich Edit 1.0. However, Riched20.dll is compatible with 
Windows 95, and may be installed if an application that uses Rich Edit 2.0 has been 
installed. 

Getting More Information About Rich·Edit Controls 
The companion DVD that is bundled inside the Base Services volume of the Microsoft 
Win32 Developer's Reference Library has the complete set of reference information for 
Rich-Edit Controls, which incorporates the Text Object Model. Publishing constraints 
associated with volumes in the Windows Programming Reference Series-which are 
governed by the mission to provide concise, compact, and portable reference 
books-did not allow Rich-Edit Controls to be included in the printed version. (Rich-Edit 
Controls is approximately 200 pages-by itself!) 

However, in order to provide you with the most complete and comprehensive guide to 
Win32 development, the Microsoft Win32 Developer's Reference Library includes all of 
its information in electronic form on the DVD. If you have not gone already, go through 
the installation process on the companion DVD, and the entire body of Rich-Edit Control 
programming information (and much, much more) will be a click away. 



134 Volume 2 Microsoft Windows User Interface 

Scroll Bars 
A window in a Win32-based application can display a data object, such as a document 
or bitmap, that is larger than the window's client area. When provided with a scroll bar, 
the user can scroll a data object in the client area to bring into view the portions of the 
object that extend beyond the borders of the window. 

About Scroll Bars 
Scroll bars should be included in any window for which the content of the client area 
extends beyond the window's borders. A scroll bar's orientation determines the direction 
in which scrolling occurs when the user operates the scroll bar. A horizontal scroll bar 
enables the user to scroll the content of a window to the left or right. A vertical scroll bar 
enables the user to scroll the content of a window up or down. 

Scroll·Bar Reference 
Scroll·Bar Functions 

EnableScrol1 Bar 
The EnableScroliBar function enables or disables one or both scrOll-bar arrows. 

Parameters 
hWnd 

[in] Handle to a window or a scroll-bar control, depending on the value of the 
wSBflags parameter. 

wSBflags 
[in] Specifies the scroll-bar type. This parameter can be one of the following values: 

Value Meaning 

Enables or disables the arrows on the horizontal and vertical scroll 
bars that are associated with the specified window. The hWnd 
parameter must be the handle to the window. 

Indicates that the scroll bar is a scroll-bar control. The hWnd must 
be the handle to the scroll-bar control. 



Chapter 6 Controls 135 

Meaning 

Enables or disables the arrows on the horizontal scroll bar that is 
associated with the specified window. The hWnd parameter must 
be the handle to the window. 

Enables or disables the arrows on the vertical scroll bar that is 
associated with the specified window. The hWnd parameter must 
be the handle to the window. 

wArrows 
[in] Specifies whether the scroll-bar arrows are enabled or disabled, and indicates the 
arrows that are enabled or disabled. This parameter can be one of the following 
values: 

Value Meaning 

ESB_DISABLE_BOTH 

ESB_DISABLE_DOWN 

ESB_DISABLE_LEFT 

ESB_DISABLE_L TUP 

ESB_DISABLE_RIGHT 

ESB_DISABLE_RTDN 

ESB_DISABLE_UP 

ESB_ENABLE_BOTH 

Return Values 

Disables both arrows on a scroll bar. 

Disables the down arrow on a vertical scroll bar. 

Disables the left arrow on a horizontal scroll bar. 

Disables the left arrow on a horizontal scroll bar or the 
up arrow on a vertical scroll bar. 

Disables the right arrow on a horizontal scroll bar. 

Disables the right arrow on a horizontal scroll bar or the 
down arrow on a vertical scroll bar. 

Disables the up arrow on a vertical scroll bar. 

Enables both arrows on a scroll bar. 

If the arrows are enabled or disabled as specified, the return value is nonzero. 

If the arrows are already in the requested state, or if an error occurs, the return value is 
zero. To get extended error information, call GetLastError. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Scroll Bars Overview, Scroll-Bar Functions, ShowScroliBar 



136 Volume 2 Microsoft Windows User Interface 

GetScrollBarlnfo 
The GetScro"Barlnfo function retrieves information about the specified scroll bar. 

Parameters 
hwnd 

[in] Handle to a window associated with the scroll bar whose information is to be 
retrieved. If the idObject parameter is OBJID_CLlENT, hwnd is a handle to a scro"­
bar control. Otherwise, hwnd is a handle to a window created with the WS_ VSCROLL 
style and/or the WS_HSCROLL style. 

idObject 
[in] Specifies the scroll-bar object. This parameter can be one of the following values: 

Value Meaning 

OBJID_CLlENT 

OBJID_HSCROLL 

OBJID_ VSCROLL 

psbi 

The hwnd parameter is a handle to a scroll-bar control. 

The horizontal scroll bar of the hwndwindow. 

The vertical scroll bar of the hwnd window. 

[out] Pointer to a SCROLLBARINFO structure to receive the information. Before 
calling GetScro"Barlnfo, set the cbSize member to sizeof(SCROLLBARINFO). 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Windows NT/2000: Requires Windows NT 4.0 SP3 or later. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Scroll Bars Overview, Scroll-Bar Functions, SCROLLBARINFO 



Chapter 6 Controls 137 

GetScrollinfo 
The GetScrolllnfo function retrieves the parameters of a scroll bar, including the 
minimum and maximum scrolling positions, page size, and position of the scroll box 
(thumb). 

Parameters 
hwnd 

[in] Handle to a scroll-bar control or a window with a standard scroll bar, depending on 
the value of the fnBar parameter. 

fnBar 
[in] Specifies the type of scroll bar for which to retrieve parameters. This parameter 
can be one of the following values: 

Value Meaning 

SB_CTL Retrieves the parameters for a scroll-bar control. The hwnd parameter 
must be the handle to the scroll-bar control. 

SB_HORZ Retrieves the parameters for the window's standard horizontal scroll bar. 

SB_ VERT Retrieves the parameters for the window's standard vertical scroll bar. 

Ipsi 
[in/out] Pointer to a SCROLLINFO structure. Before calling GetScrolllnfo, set the 
cbSize member of the structure to sizeof(SCROLLlNFO), and set the fMask member 
to specify the scroll-bar parameters to retrieve. Before returning, the function copies 
the specified parameters to the appropriate members of the structure. 

The fMask member can be one or more of the following values: 

Value Meaning 

SIF _ TRACKPOS 

Copies the scroll page to the nPage member of the 
SCROLLINFO structure pointed to by Ipsi. 

Copies the scroll position to the nPos member of the 
SCROLLINFO structure painted to by Ipsi. 

Copies the scroll range to the nMin and nMax members of the 
SCROLLINFO structure pointed to by Ipsi. 

Copies the current scroll-box tracking position to the 
nTrackPos member of the SCROLLINFO structure pointed to 
by Ipsi. 



138 Volume 2 Microsoft Windows User Interface 

Return Values 
If the function retrieved any values, the return value is nonzero. 

If the function does not retrieve any values, the return value is zero. To get extended 
error information, call GetLastError. 

Remarks 
The GetScrolllnfo function enables applications to use 32-bit scroll positions. Although the 
messages that indicate scroll-bar position, WM_HSCROLL and WM_ VSCROLL, provide 
only 16 bits of position data, the functions SetScrolllnfo and GetScrollinfo provide 32 bits 
of scroll-bar position data. Thus, an application can call GetScrolllnfo while processing 
either the WM_HSCROLL or WM_ VSCROLL message to obtain 32-bit scroll-bar position 
data. 

To get the 32-bit position of the scroll box (thumb) during a 8B_ THUMBTRACK 
notification in a WM_HSCROLL or WM_VSCROLL message, call GetScrolllnfo with 
the 81F _ TRACKP08 value in the fMask member of the SCROLLINFO structure. The 
function returns the tracking position of the scroll box in the nTrackPos member of the 
SCROLLINFO structure. This allows you to get the position of the scroll box as the user 
moves it. The following sample code illustrates the technique: 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 



Chapter 6 Controls 139 

Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Scroll Bars Overview, Scroll-Bar Functions, SCROLLINFO, SetScrolllnfo, 
WM_HSCROLL, WM_ VSCROLL 

GetScrol1 POS 

The GetScrollPos function retrieves the current position of the scroll box (thumb) in the 
specified scroll bar. The current position is a relative value that depends on the current 
scrolling range. For example, if the scrolling range is a through 100, and the scroll box is 
in the middle of the bar, the current position is 50. 

Note The GetScroliPos function is provided for backward compatibility. 
New applications should use the GetScrolllnfo function. 

Parameters 
hWnd 

[in] Handle to a scroll-bar control or a window with a standard scroll bar, depending on 
the value of the nBar parameter. 

nBar 
[in] Specifies the scroll bar to be examined. This parameter can be one of the 
following values: 

Value Meaning 

SB_VERT 

Return Values 

Retrieves the position of the scroll box in a scroll-bar control. The 
hWnd parameter must be the handle to the scroll-bar control. 

Retrieves the position of the scroll box in a window's standard 
horizontal scroll bar. 

Retrieves the position of the scroll box in a window's standard 
vertical scroll bar. 

If the function succeeds, the return value is the current position of the scroll box. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 



140 Volume 2 Microsoft Windows User Interface 

Remarks 
The GetScroliPos function enables applications to use 32-bit scroll positions. Although 
the messages that indicate scroll-bar position, WM_HSCROLL and WM_ VSCROLL, are 
limited to 16 bits of position data, the functions SetScroliPos, SetScroliRange, 
GetScroliPos, and GetScroliRange support 32-bit scroll-bar position data. Thus, an 
application can call GetScroliPos while processing either the WM_HSCROLL or 
WM_ VSCROLL message to obtain 32-bit scroll-bar position data. 

To get the 32-bit position of the scroll box (thumb) during a SB_ THUMBTRACK 
notification in a WM_HSCROLL or WM_ VSCROLL message, use the GetScrolllnfo 
function. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Scroll Bars Overview, ScrOll-Bar Functions, GetScrolllnfo, GetScroliRange, 
SetScrolllnfo, SetScroliPos, SetScroliRange, WM_HSCROLL, WM_ VSCROLL 

GetScrol1 Range 
The GetScroliRange function retrieves the current minimum and maximum scroll-box 
(thumb) positions for the specified scroll bar. 

Note The GetScroliRange function is provided for compatibility only. New applications 
should use the GetScrolllnfo function. 

"O~l;'Getscrol:"J~anget .... 
:;):~";:<;"_ -: c. ~~: >,': :~_~'.;;' '</:_ ~' '!': ;- - '-, , 

> HWND.h¥nd; .... ·U 
. irt~·nB~r;· 

.t~~Nt.lp~ih~O$; 
tenT, ·lpM(fxPQ$· 

): ... 

Parameters 
hWnd 

[in] Handle to a scroll-bar control or a window with a standard scroll bar, depending on 
the value of the nBar parameter. 



Chapter 6 Controls 141 

nBar 
[in] Specifies the scroll bar from which the positions are retrieved. This parameter can 
be one of the following values: 

Value Meaning 

/pMinPos 

Retrieves the positions of a scroll-bar control. The hWnd parameter 
must be the handle to the scroll-bar control. 

Retrieves the positions of the window's standard horizontal scroll bar. 

Retrieves the positions of the window's standard vertical scroll bar. 

[out] Pointer to the integer variable that receives the minimum position. 

/pMaxPos 
[out] Pointer to the integer variable that receives the maximum position. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
If the specified window does not have standard scroll bars, or is not a scroll-bar control, 
the GetScroliRange function copies zero to the /pMinPos and IpMaxPos parameters. 

The default range for a standard scroll bar is 0 through 100. The default range for a 
scroll-bar control is empty (both values are zero). 

The messages that indicate scroll-bar position, WM_HSCROLL and WM_ VSCROLL, 
are limited to 16 bits of position data. However, because SetScrolllnfo, SetScroliPos, 
SetScroliRange, GetScrolllnfo, GetScroliPos, and GetScroliRange support 32-bit 
scroll-bar position data, there is a way to circumvent the 16-bit barrier of the 
WM_HSCROLL and WM_ VSCROLL messages. See GetScrolllnfo for a description of 
the technique. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 



142 Volume 2 Microsoft Windows User Interface 

Scroll Bars Overview, Scroll-Bar Functions, GetScrollinfo, GetScrollPos, 
SetScrollinfo, SetScrollPos, SetScrollRange, WM_HSCROLL, WM_ VSCROLL 

Scroll DC 
The ScroliDC function scrolls a rectangle of bits horizontally and vertically. 

Parameters 
hDC 

dx 

dy 

[in] Handle to the device context that contains the bits to be scrolled. 

[in] Specifies the amount, in device units, of horizontal scrolling. This parameter must 
be a negative value to scroll to the left. 

[in] Specifies the amount, in device units, of vertical scrolling. This parameter must be 
a negative value to scroll up. 

IprcScrol/ 
[in] Pointer to a RECT structure containing the coordinates of the bits to be scrolled. 
The only bits affected by the scroll operation are bits in the intersection of this 
rectangle and the rectangle specified by IprcClip. If IprcScrol/ is NULL, the entire client 
area is used. 

IprcClip 
[in] Pointer to a RECT structure containing the coordinates of the clipping rectangle. 
The only bits that will be painted are the bits that remain inside this rectangle after the 
s.croll operation has been completed. If IprcClipis NULL, the entire client area is used. 

hrgnUpdate 
[in] Handle to the region uncovered by the scrolling process. Scroll DC defines this 
region; it is not necessarily a rectangle. 

IprcUpdate 
[out] Pointer to a RECT structure that receives the coordinates of the rectangle 
bounding the scrolling update region. This is the largest rectangular area that requires 
repainting. When the function returns, the values in the structure are in client 



Chapter 6 Controls 143 

coordinates, regardless of the mapping mode for the specified device context. This 
allows applications to use the update region in a call to the InvalidateRgn function, if 
required. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
If the JprcUpdate parameter is NULL, the system does not compute the update rectangle. 
If both the hrgnUpdate and JprcUpdate parameters are NULL, the system does not 
compute the update region. If hrgnUpdate is not NULL, the system proceeds as though it 
contains a valid handle to the region uncovered by the scrolling process (defined by 
ScroIlDC). 

When you must scroll the entire client area of a window, use the ScroliWindowEx 
function. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Scroll Bars Overview, Scroll-Bar Functions, InvalidateRgn, RECT, ScroliWindowEx 

ScroliWindow 
The ScroliWindow function scrolls the content of the specified window's client area. 

Note The ScroliWindow function is provided for backward compatibility. New 
applications should use the ScroliWindowEx function. 

BooiScrol1Window( 
HW~D hW[1d; J /:hantIJ e'tow1ndo~, ,," 
1nt.XAl1Iount, ' ,M hortzbntal .. !;,cro.lling 
tnt, ~Al/I{}u~t.. ''It vel':Hcafscroll 1119 " 
COMSl' REeT" r IpRect i " .' II, tr~'ekt:~<irea''', ' 
CONST Rtc'r:* !pC1.ipRect M cll.ppingNkt/il1!ille" . 

+:, ' 



144 Volume 2 Microsoft Windows User Interface 

Parameters 
hWnd 

[in] Handle to the window where the client area is to be scrolled. 

XAmount 
[in] Specifies the amount, in device units, of horizontal scrolling. If the window being 
scrolled has the CS_OWNDC or CS_CLASSDC style, then this parameter uses 
logical units rather than device units. This parameter must be a negative value to 
scroll the content of the window to the left. 

YAmount 
[in] Specifies the amount, in device units, of vertical scrolling. If the window being 
scrolled has the CS_OWNDC or CS_CLASSDC style, then this parameter uses 
logical units rather than device units. This parameter must be a negative value to 
scroll the content of the window up. 

IpRect 
[in] Pointer to the RECT structure specifying the portion of the client area to be 
scrolled. If this parameter is NULL, the entire client area is scrolled. 

IpClipRect 
[in] Pointer to the RECT structure containing the coordinates of the clipping rectangle. 
Only device bits within the clipping rectangle are affected. Bits scrolled from the 
outside of the rectangle to the inside are painted; bits scrolled from the inside of the 
rectangle to the outside are not painted. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
If the caret is in the window being scrolled, ScroliWindow automatically hides the caret 
to prevent it from being erased and, then, restores the caret after the scrolling is finished. 
The caret position is adjusted accordingly. 

The area uncovered by ScroliWindow is not repainted, but it is combined into the 
window's update region. The application eventually receives a WM_PAINT message 
notifying it that the region must be repainted. To repaint the uncovered area at the same 
time the scrolling is in action, call the UpdateWindow function immediately after calling 
ScroliWindow. 

If the IpRect parameter is NULL, the positions of any child windows in the window are 
offset by the amount specified by the XAmount and YAmount parameters; invalid 
(unpainted) areas in the window are also offset. ScroliWindow is faster when IpRect is 
NULL. 



Chapter 6 Controls 145 

If IpRect is not NULL, the positions of child windows are not changed and invalid areas 
in the window are not offset. To prevent updating problems when IpRect is not NULL, 
call UpdateWindow to repaint the window before calling ScroliWindow. 

fa~lf~i{t~~rlts· •• ·· 
Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Scroll Bars Overview, Scroll-Bar Functions, RECT, Scroll DC, ScroliWindowEx, 
UpdateWindow 

ScrollWindowEx 
The ScroliWindowEx function scrolls the content of the specified window's client area. 

Parameters 
hWnd 

dx 

dy 

[in] Handle to the window where the client area is to be scrolled. 

[in] Specifies the amount, in device units, of horizontal scrolling. This parameter must 
be a negative value to scroll to the left. 

[in] Specifies the amount, in device units, of vertical scrolling. This parameter must be 
a negative value to scroll up. 

prc$croll 
[in] Pointer to a RECT structure that specifies the portion of the client area to be 
scrolled. If this parameter is NULL, the entire client area is scrolled. 



146 Volume 2 Microsoft Windows User Interface 

prcClip 
[in] Pointer to a RECT structure that contains the coordinates of the clipping rectangle. 
Only device bits within the clipping rectangle are affected. Bits scrolled from the 
outside of the rectangle to the inside are painted; bits scrolled from the inside of the 
rectangle to the outside are not painted. This parameter may be NULL. 

hrgnUpdate 
[in] Handle to the region that is modified to hold the region invalidated by scrolling. 
This parameter may be NULL. 

prcUpdate 
[out] Pointer to a RECT structure that receives the boundaries of the rectangle 
invalidated by scrolling. This parameter may be NULL. 

flags 
[in] Specifies flags that control scrolling. This parameter can be one of the following 
values: 

Value Meaning 

SW _SCROLLCHILDREN 

SW _SMOOTHSCROLL 

Return Values 

Erases the newly invalidated region by sending a 
WM_ERASEBKGND message to the window when 
specified with the SW_INVALIDATE flag. 

Invalidates the region identified by the hrgnUpdate 
parameter after scrolling. 

Scrolls all child windows that intersect the rectangle 
pOinted to by the prc$croll parameter. The child 
windows are scrolled by the number of pixels 
specified by the dx and dy parameters. The system 
sends a WM_MOVE message to all child windows 
that intersect the prc$croll rectangle, even if they do 
not move. 

Windows 98, Windows 2000: Scrolls using smooth 
scrolling. Use the HIWORD portion of the flags 
parameter to indicate how much time the smooth­
scrolling operation should take. 

If the function succeeds, the return value is SIMPLEREGION (rectangular invalidated 
region), COMPLEXREGION (nonrectangular invalidated region; overlapping rectangles), 
or NULLREGION (no invalidated region). 

If the function fails, the return value is ERROR. To get extended error information, call 
GetLastError. 

Remarks 
If the SW_INVALIDATE and SW_ERASE flags are not specified, ScroliWindowEx does 
not invalidate the area that is scrolled from. If either of these flags is set, 



Chapter 6 Controls 147 

ScroliWindowEx invalidates this area. The area is not updated until the application calls 
the UpdateWindow function, calls the RedrawWindow function (specifying the 
RDW_UPDATENOW or RDW_ERASENOW flag), or retrieves the WM_PAINT message 
from the application queue. 

If the window has the WS_CLlPCHILDREN style, the returned areas specified by 
hrgnUpdate and prcUpdate represent the total area of the scrolled window that must be 
updated, including any areas in child windows that need updating. 

If the SW_SCROLLCHILDREN flag is specified, the system does not properly update the 
screen if part of a child window is scrolled. The part of the scrolled child window that lies 
outside the source rectangle is not erased and is not properly redrawn in its new 
destination. To move child windows that do not lie completely within the rectangle 
specified by prcScroll, use the DeferWindowPos function. The cursor is repositioned if 
the SW_SCROLLCHILDREN flag is set and the caret rectangle intersects the scroll 
rectangle. 

All input and output coordinates (for prcScroll, prcClip, prcUpdate, and hrgnUpdate) are 
determined as client coordinates, regardless of whether the window has the 
CS_OWNDC or CS_CLASSDC class style. Use the LPtoDP and DPtoLP functions to 
convert to and from logical coordinates, if necessary. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Scroll Bars Overview, Scroll-Bar Functions, DeferWindowPos, DPtoLP, LPtoDP, 
RECT, RedrawWindow, UpdateWindow 

SetScroll1 nfo 
The SetScrollinfo function sets the parameters of a scroll bar, including the minimum 
and maximum scrolling positions, the page size, and the position of the scroll box 
(thumb). The function also redraws the scroll bar, if requested. 



148 Volume 2 Microsoft Windows User Interface 

Parameters 
hwnd 

[in] Handle to a scroll-bar control or a window with a standard scroll bar, depending on 
the value of the fnBar parameter. 

fnBar 
[in] Specifies the type of scroll bar for which to set parameters. This parameter can be 
one of the following values: 

Value Meaning 

'psi 

Sets the parameters of a scroll-bar control. The hwnd parameter must 
be the handle to the scroll-bar control. 

Sets the parameters of the window's standard horizontal scroll bar. 

Sets the parameters of the window's standard vertical scroll bar. 

[in] Pointer to a SCROLLINFO structure. Before calling SetScrollinfo, set the cbSize 
member of the structure to sizeof(SCROLLlNFO), set the fMask member to indicate 
the parameters to set, and specify the new parameter values in the appropriate 
members. 

The fMask member can be one or more of the following values: 

Value Meaning 

SIF _DISABLENOSCROLL 

SIF_RANGE 

fRedraw 

Disables the scroll bar instead of removing it, if the 
scroll bar's new parameters make the scroll bar 
unnecessary. 

Sets the scroll page to the value specified in the 
nPage member of the SCROLLINFO structure 
pointed to by 'psi. 
Sets the scroll position to the value specified in the 
nPos member of the SCROLLINFO structure pointed 
to by 'psi. 
Sets the scroll range to the value specified in the 
nMin and nMax members of the SCROLLINFO 
structure painted to by 'psi. 

[in] Specifies whether the scroll bar is redrawn to reflect the changes to the scroll bar. 
If this parameter is TRUE, the scroll bar is redrawn; otherwise, it is not redrawn. 

Return Values 
The return value is the current position of the scroll box. 



Chapter 6 Controls 149 

Remarks 
The SetScrollinfo function performs range checking on the values specified by the 
nPage and nPos members of the SCROLLINFO structure. The nPage member must 
specify a value from 0 to nMax - nMin + 1. The nPos member must specify a value 
between nMin and nMax - max(nPage-1, 0). If either value is beyond its range, the 
function sets it to a value that is just within the range. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Scroll Bars Overview, Scroll-Bar Functions, GetScrollinfo, SCROLLINFO 

SetScroll Pos 
The SetScroliPos function sets the pOSition of the scroll box (thumb) in the specified 
scroll bar and, if requested, redraws the scroll bar to reflect the new position of the scroll 
box. 

Note The SetScroliPos function is provided for backward compatibility. New 
applications should use the SetScrollinfo function. 

Parameters 
hWnd 

[in] Handle to a scroll-bar control or window with a standard scroll bar, depending on 
the value of the nBar parameter. 

nBar 
[in] Specifies the scroll bar to be set. This parameter can be one of the following 
values: 



150 Volume 2 Microsoft Windows User Interface 

Value 

nPos 

Meaning 

Sets the position of the scroll box in a scroll-bar control. The hWnd 
parameter must be the handle to the scroll-bar control. 

Sets the position of the scroll box in a window's standard horizontal 
scroll bar. 

Sets the position of the scroll box in a window's standard vertical 
scroll bar. 

[in] Specifies the new position of the scroll box. The position must be within the 
scrolling range. For more information about the scrolling range, see the 
SetScroliRange function. 

bRedraw 
[in] Specifies whether the scroll bar is redrawn to reflect the new scroll-box position. If 
this parameter is TRUE, the scroll bar is redrawn. If it is FALSE, the scroll bar is not 
redrawn. 

Return Values 
If the function succeeds, the return value is the previous position of the scroll box. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
If the scroll bar is redrawn by a subsequent call to another function, setting the bRedraw 
parameter to FALSE is useful. 

Because the messages that indicate scroll-bar position, WM_HSCROLL and 
WM_ VSCROLL, are limited to 16 bits of position data, applications that rely solely on 
those messages for position data have a practical maximum value of 65,535 for the 
SetScroliPos function's nPos parameter. 

However, because the SetScrollinfo, SetScroliPos, SetScroliRange, GetScrollinfo, 
GetScroliPos, and GetScroliRange functions support 32-bit scroll-bar position data, 
there is a way to circumvent the 16-bit barrier of the WM_HSCROLL and 
WM_ VSCROLL messages. See GetScrolllnfo for a description of the technique. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 2.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 



Chapter 6 Controls 151 

II~~:·· 
Scroll Bars Overview, Scroll-Bar Functions, GetScrolllnfo, GetScroliPos, 
GetScroliRange, SetScrolllnfo, SetScroliRange 

SetScrol1 Range 
The SetScroliRange function sets the minimum and maximum position values for the 
specified scroll bar. 

Note The SetScroliRange function is provided for backward compatibility. New 
applications should use the SetScrolllnfo function. 

Parameters 
hWnd 

[in] Handle to a scroll-bar control or a window with a standard scroll bar, depending on 
the value of the nBar parameter. 

nBar 
[in] Specifies the scroll bar to be set. This parameter can be one of the following 
values: 

Value Meaning 

nMinPos 

Sets the range of a scroll-bar control. The hWnd parameter must 
be the handle to the scroll-bar control. 

Sets the range of. a window's standard horizontal scroll bar. 

Sets the range of a window's standard vertical scroll bar. 

[in] Specifies the minimum scrolling position. 

nMaxPos 
[in] Specifies the maximum scrolling position. 

bRedraw 
[in] Specifies whether the scroll bar should be redrawn to reflect the change. If this 
parameter is TRUE, the scroll bar is redrawn; if it is FALSE, the scroll bar is not 
redrawn. 



152 Volume 2 Microsoft Windows User Interface 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
You can use SetScroliRange to hide the scroll bar by setting nMinPos and nMaxPos to 
the same value. An application should not call the SetScroliRange function to hide a 
scroll bar while processing a scroll-bar message. New applications should use the 
ShowScroliBar function to hide the scroll bar. 

If the call to SetScroliRange immediately follows a call to the SetScroliPos function, the 
bRedraw parameter in SetScroliPos must be zero to prevent the scroll bar from being 
drawn twice. 

The default range for a standard scroll bar is 0 through 100. The default range for a 
scroll-bar control is empty (both the nMinPos and nMaxPos parameter values are zero). 
The difference between the values specified by the nMinPos and nMaxPos parameters 
must not be greater than the value of MAXLONG. 

Because the messages that indicate scroll bar position, WM_HSCROLL and 
WM_ VSCROLL, are limited to 16 bits of position data, applications that rely solely on 
those messages for position data have a practical maximum value of 65,535 for the 
SetScroliRange function's nMaxPos parameter. 

However, because the SetScrolllnfo, SetScroliPos, SetScroliRange, GetScrolllnfo, 
GetScroliPos, and GetScroliRange functions support 32-bit scroll-bar position data, 
there is a way to circumvent the 16-bit barrier of the WM_HSCROLL and 
WM_ VSCROLL messages. See GetScroll/nfo for a description of the technique. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 2.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Scroll Bars Overview, Scroll-Bar Functions, GetScrolllnfo, GetScroliPos, 
GetScroliRange, SetScrolllnfo, SetScroliPos, ShowScroliBar 

ShowScrol1 Bar 
The ShowScroliBar function shows or hides the specified scroll bar. 



BOOl ShowScrol1Bar( 
HWND hWnd. /I handle to window 
1nt w8ar. II scroll bar 
BOOl bShow II scroll-bar visibility 

) ; 

Parameters 
hWnd 

Chapter 6 Controls 153 

[in] Handle to a scroll-bar control or a window with a standard scroll bar, depending on 
the value of the wBar parameter. 

wBar 
[in] Specifies the scroll bar(s) to be shown or hidden. This parameter can be one of 
the following values: 

Value Meaning 

bShow 

Shows or hides a window's standard horizontal and vertical scroll bars. 

Shows or hides a scroll-bar control. The hWnd parameter must be the 
handle to the scroll-bar control. 

Shows or hides a window's standard horizontal scroll bars. 

Shows or hides a window's standard vertical scroll bar. 

[in] Specifies whether the scroll bar is shown or hidden. If this parameter is TRUE, the 
scroll bar is shown; otherwise, it is hidden. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
You should not call this function to hide a scroll bar while processing a scroll bar 
message. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 



154 Volume 2 Microsoft Windows User Interface 

Scroll Bars Overview, Scroll-Bar Functions, EnableScroliBar 

Scroll-Bar Structures 

SCROLLBARINFO 
The SCROLLBARINFO structure contains scroll-bar information. 

Members 
cbSize 

Specifies the size, in bytes, of the structure. Before calling the GetScroliBarlnfo 
function, set cbSize to sizeof(SCROLLBARINFO). 

rcScroliBar 
Pointer to a RECT structure that indicates the coordinates of the scroll bar. 

dxyLineButton 
Height or width of the thumb. 

xyThumbTop 
Position of the top or left of the thumb. 

xyThumbBottom 
Position of the bottom or right of the thumb. 

reserved 
Reserved. 

rgstate 
An array of DWORD elements. Each element indicates the state of a scroll-bar 
component. The following table shows the scroll-bar component that corresponds to 
each array index: 

Index Scroll-bar component 

o 
1 

The scroll bar itself 

The top or right arrow button 



Chapter 6 Controls 155 

Index Scroll-bar component 

2 The page-up or page-right region 

3 The scroll box (thumb) 

4 The page-down or page-left region 

5 The bottom or left arrow button 

The DWORD element for each scroll-bar component can include a combination of the 
following bit flags: 
Value Meaning 

STATE_SYSTEM_INVISIBLE For the scroll bar itself, indicates that the 
specified vertical or horizontal scroll bar does 
not exist. For the page-up or page-down 
regions, indicates the thumb is positioned so 
that the region does not exist. 

STATE_SYSTEM_OFFSCREEN For the scroll bar itself, indicates that the 
window is sized so that the specified vertical or 
horizontal scroll bar is not displayed currently. 

STATE_SYSTEM_PRESSED The arrow button or page region is pressed. 

STATE_SYSTEM_UNAVAILABLE The component is disabled. 

Windows NT/2000: Requires Windows NT 4.0 SP3 or later. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Scroll Bars Overview, Scroll-Bar Structures, GetScroliBarlnfo, RECT 

SCROLLINFO 
The SCROLLINFO structure contains scroll-bar parameters to be set by the 
SetScrolllnfo function (or SBM_SETSCROLLINFO message), or retrieved by the 
GetScrollinfo function (or SBM_GETSCROLLINFO message). 



156 Volume 2 Microsoft Windows User Interface 

Members 
cbSize 

Specifies the size, in bytes, of this structure. 

fMask 
Specifies the scroll-bar parameters to set or retrieve. This member can be a 
combination of the following values: 

Value Meaning 

SIF _ALL Combination of SIF _PAGE, SIF _POS, SIF _RANGE, and 
SIF _ TRACKPOS. 

SIF _DISABLENOSCROLL This value is used only when setting a scroll bar's 
parameters. If the scroll bar's new parameters make the 
scroll bar unnecessary, disable the scroll bar, instead of 
removing it. 

SIF _PAGE The nPage member contains the page size for a 
proportional scroll bar. 

SIF _POS The nPos member contains the scroll-box position, 
which is not updated while the user drags the scroll box. 

SIF _RANGE The nMin and nMax members contain the minimum and 
maximum values for the scrolling range. 

SIF _ TRACKPOS The nTrackPos member contains the current position of 
the scroll box while the user is dragging it. 

nMin 
Specifies the minimum scrolling position. 

nMax 
Specifies the maximum scrolling position. 

nPage 
Specifies the page size. A scroll bar uses this value to determine the appropriate size 
of ihe proportionai scroll box. 

nPos 
Specifies the position of the scroll box. 

nTrackPos 
Specifies the immediate position of a scroll box that the user is dragging. An 
application can retrieve this value while processing the SB_ THUMBTRACK 
notification message. An application cannot set the immediate scroll position; the 
SetScrollinfo function ignores this member. 



Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Chapter 6 Controls 157 

Scroll Bars Overview, Scroll-Bar Structures, GetScrolllnfo, SBM_GETSCROlLiNFO, 
SBM_SETSCROlLiNFO, SetScrolllnfo 

Scroll-Bar Messages 

An application sends the SBM_ENABlE_ARROWS message to enable or disable one 
or both arrows of a scroll-bar control. 

To send this message, call the Send Message function with the following parameters. 

'~;~~:~ia~~;.j!f',>·.·./' . 
~$.U'ff~CE"J.R.t0W$~~' . 
Ylw~R#Ji~/~~r~mi;':: " 

:.;{#Pc~~AMt ~j?ir,il~r 
c)';:~"~;' ,/~, .. ~:' ;,¢' ""< .~~~ 

Parameters 
wParam 

Specifies whether the scroll-bar arrows are enabled or disabled, and indicates which 
arrows are enabled or disabled. This parameter can be one of the following values: 

Value Meaning 

ESB_DISABlE_BOTH Disables both arrows on a scroll bar. 

ESB_DISABlE_DOWN Disables the down arrow on a vertical scroll bar. 

ESB_DISABlE_LEFT Disables the left arrow on a horizontal scroll bar. 

ESB_DISABLE_L TUP Disables the left arrow on a horizontal scroll bar or the up 
arrow on a vertical scroll bar. 

ESB_DISABLE_RTDN Disables the right arrow on a horizontal scroll bar or the 
down arrow on a vertical scroll bar. 

ESB_DISABLE_UP Disables the up arrow on a vertical scroll bar. 

ESB_ENABLE_BOTH Enables both arrows on a scroll bar. 



158 Volume 2 Microsoft Windows User Interface 

IParam 
This parameter is not used. 

Return Values 
If the message succeeds, the return value is TRUE; otherwise, it is FALSE. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 2.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Scroll Bars Overview, Scroll-Bar Messages 

SBM_GETPOS 
An application sends the SBM_GETPOS message to retrieve the current position of the 
scroll box of a scroll-bar control. The current position is a relative value that depends on 
the current scrolling range. For example, if the scrolling range is a through 100, and the 
scroll box is in the middle of the bar, the current position is 50. 

To send this message, call the SendMessage function with the following parameters. 

Parameters 
This message has no parameters. 

Return Values 
The return value is the current position of the scroll box in the scroll bar. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 2.0 or later. 
Header: Declared in winuser.h; include windows.h. 



Chapter 6 Controls 159 

Scroll Bars Overview, Scroll-Bar Messages, SBM_GETRANGE, SBM_SETPOS, 
SBM_SETRANGE,SBM_SETRANGEREDRAW 

SBM_GETRANGE 
An application sends the SBM_GETRANGE message to a scroll-bar control to retrieve 
the minimum and maximum position values for the control. 

To send this message, call the Send Message function with the following parameters. 

s~n<lfo1essa~e( '. 
(ANNo) .l:iflnd~ 

'S8~GETiAN~E~' .••. 
HiP,A'lwn iitPa rarrn 
( LPARAliIf1pi1ram; 

); .. ' 

Parameters 
wParam 

{ " f 

. 'il.'ha~~~:t~ ~~~S~.i~~t~ dn:~i,t1dOW 
.... itl messageto'send' ....,. ' . 
. ·'tlmjn.fmu~.p;siHonn:PUff} " 

If ma:~i~lJ.mJ}O s1 1; i on (LP Irrn • 

Pointer to a variable that receives the minimum scrolling position. 

IParam 
Pointer to a variable that receives the maximum scrolling position. 

Return Values 
This message does not return a value. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 2.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Scroll Bars Overview, Scroll-Bar Messages, SBM_GETPOS, SBM_SETPOS, 
SBM_SETRANGE,SBM_SETRANGEREDRAW 

SBM_GETSCROLLINFO 
An application sends the SBM_GETSCROLLINFO message to retrieve the parameters 
of a scroll bar. 



160 Volume 2 Microsoft Windows User Interface 

To send this message, call the Send Message function with the following parameters. 

Parameters 
wParam 

This parameter is not used. 

IParam 
Pointer to a SCROLLINFO structure. Before sending the message, set the cbSize 
member of the structure to sizeof(SCROLLINFO), and set the fMask member to 
specify the scroll-bar parameters to retrieve. Before returning, the message copies the 
specified parameters to the appropriate members of the structure. 

The fMask member can be one or more of the following values: 

Value Meaning 

SIF_PAGE 

SIF _POS 

SIF_RANGE 

SIF _ TRACKPOS 

Return Values 

Combination of SIF _PAGE, SIF _POS, SIF _RANGE, and 
SIF _ TRACKPOS. 

Copies the scroll page to the nPage member. 

Copies the scroll position to the nPos member. 

Copies the scroll range to the nMin and nMax members. 

Copies the current scroll-box tracking position to the 
nTrackPos member. 

If the message retrieved any values, the return value is TRUE; otherwise, it is FALSE. 

Remarks 
The messages that indicate scrOll-bar position, WM_HSCROLL and WM_VSCROLL, 
provide only 16 bits of position data. However, the SCROLLINFO structure used by 
SBM_GETSCROLLINFO, SBM_SETSCROLLINFO, GetScrolllnfo, and SetScrolllnfo 
provides 32 bits of scroll-bar position data. You can use these messages and functions 
while processing either the WM_HSCROLL or WM_ VSCROLL message to obtain 32-bit 
scroll-bar position data. 

To get the 32-bit position of the scroll box (thumb) during a SB_ THUMBTRACK notification 
in a WM_HSCROLL or WM_ VSCROLL message, send SBM_GETSCROLLINFO with the 
SIF _ TRACKPOS value in the fMask member of the SCROLLINFO structure. The message 
returns the tracking position of the scroll box in the nTrackPos member of the 



Chapter 6 Controls 161 

SCROLLINFO structure. This allows you to get the position of the scroll box as the user 
moves it. Alternatively, you can use the GetScrolllnfo function to get the same information. 

, .. ~,' ~~i1""':iJ"Y~ements 
Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Scroll Bars Overview, Scroll-Bar Messages, GetScrolllnfo, SBM_SETSCROLLINFO, 
SCROLLINFO, SetScrolllnfo 

An application sends the SBM_SETPOS message to a scroll-bar control to set the 
position of the scroll box (thumb) and, if requested, redraw the scroll bar to reflect the 
new position of the scroll box. 

To send this message, call the Send Message function with the following parameters. 

~njM~$sAJe(' " 
·,.(HWtm,hwhd', 
. 'S&M2..SE1'POS. • ... 
,+(tIIlARAM). wPa ram; 

HPAAAM) JPariim: 

Parameters 
wParam 

Specifies the new position of the scroll box. It must be within the scrolling range. 

IParam 
Specifies whether the scroll bar should be redrawn to reflect the new scroll box 
position. If this parameter is TRUE, the scroll bar is redrawn; if it is FALSE, the scroll 
bar is not redrawn. 

Return Values 
If the position of the scroll box changed, the return value is the previous pOSition of the 
scroll box; otherwise, it is zero. 

Remarks 
If the scroll-bar control is redrawn by a subsequent call to another function, setting the 
IParam parameter to FALSE is useful. 



162 Volume 2 Microsoft Windows User Interface 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 2.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Scroll Bars Overview, Scroll-Bar Messages, SBM_GETPOS, SBM_GETRANGE, 
SBM_SETRANGE,SBM_SETRANGEREDRAW 

An application sends the SBM_SETRANGE message to a scroll-bar control to set the 
minimum and maximum position values for the control. 

To send this message, call the SendMessage function with the following parameters. 

Parameters 
wParam 

Specifies the minimum scrolling position. 

IParam 
Specifies the maximum scrolling position. 

Return Values 
If the position of the scroll box changed, the return value is the previous position of the 
scroi! box; otherwise, it is zero. 

Remarks 
The default minimum and maximum position values are zero. The difference between 
the values specified by the wParam and IParam parameters must not be greater than 
MAXLONG. 

If the minimum and maximum position values are equal, the scroll-bar control is hidden 
and, in effect, disabled. 



Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 2.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Chapter 6 Controls 163 

Scroll Bars Overview, Scroll-Bar Messages, SBM_GETPOS, SBM_GETRANGE, 
SBM_SETPOS,SBM_SETRANGEREDRAW 

SBM_SETRANGEREDRAW 
An application sends the SBM_SETRANGEREDRAW message to a scroll-bar control to 
set the minimum and maximum position values, and to redraw the control. 

To send this message, call the Send Message function with the following parameters. 

Parameters 
wParam 

Specifies the minimum scrolling position. 

IParam 
Specifies the maximum scrolling position. 

Return Values 
If the position of the scroll box changed, the return value is the previous position of the 
scroll box; otherwise, it is zero. 

Remarks 
The default minimum and maximum position values are zero. The difference between 
the values specified by the wParam and IParam parameters must not be greater than 
MAXLONG. 

If the minimum and maximum position values are equal, the scroll-bar control is hidden 
and, in effect, disabled. 



164 Volume 2 Microsoft Windows User Interface 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 2.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Scroll Bars Overview, Scroll-Bar Messages, SBM_GETPOS, SBM_GETRANGE, 
SBM_SETPOS,SBM_SETRANGE 

SBM_SETSCROLLINFO 
An application sends the SBM_GETSCROLLINFO message to set the parameters of a 
scroll bar. 

To send this message, call the Send Message function with the following parameters. 

Parameters 
wParam 

Specifies whether the scroll bar is redrawn to reflect the new scroll-box position. If this 
parameter is TRUE, the scroll bar is redrawn; if it is FALSE, the scroll bar is not 
redrawn. 

IParam 
Pointer to a SCROLLINFO structure. Before sending the message, set the cbSize 
member of the structure to sizeof(SCROLLINFO), set the fMask member to indicate 
the parameters to set, and specify the new parameter values in the appropriate 
members. 

The fMask member can be one or more of the following values. 

Value Meaning 

SIF _DISABLENOSCROLL Disables the scroll bar instead of removing it, if the 
scroll bar's new parameters make the scroll bar 
unnecessary. 

Sets the scroll page to the value specified in the 
nPage member. 



Chapter 6 Controls 165 

Value Meaning 

Sets the scroll position to the value specified in the 
nPos member. 

Return Values 

Sets the scroll range to the value specified in the 
nMin and nMax members. 

The return value is the current position of the scroll box. 

Remarks 
The messages that indicate scroll-bar position, WM_HSCROLL and WM_ VSCROLL, 
provide only 16 bits of position data. However, the SCROLLINFO structure used by 
SBM_GETSCROLLINFO, SBM_SETSCROLLINFO, GetScrolllnfo, and SetScrolllnfo 
provides 32 bits of scroll-bar position data. You can use these messages and functions 
while processing either the WM_HSCROLL or WM_ VSCROLL message to obtain 32-bit 
scroll-bar position data. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Scroll Bars Overview, Scroll-Bar Messages, GetScrolllnfo, SBM_GETSCROLLINFO, 
SCROLLINFO, SetScrolllnfo 

WM_CTLCOLORSCROLLBAR 
The WM_CTLCOLORSCROLLBAR message is sent to the parent window of a scroll­
bar control when the control is about to be drawn. By responding to this message, the 
parent window can use the display context handle to set the background color of the 
scroll-bar control. 

A window receives this message through its WindowProc function. 



166 Volume 2 Microsoft Windows User Interface 

Parameters 
wParam 

Handle to the device context for the scroll-bar control. 

IParam 
Handle to the scroll bar. 

Return Values 
If an application processes this message, it must return the handle to a brush. The 
system uses the brush to paint the background of the scroll-bar control. 

Remarks 
By default, the DefWindowProc function selects the default system colors for the scroll­
bar control. 

The system does not automatically destroy the returned brush. It is the application's 
responsibility to destroy the brush when it is no longer needed. 

The WM_CTLCOLORSCROLLBAR message is never sent between threads; it is only 
sent within the same thread. 

If a dialog-box procedure handles this message, it should cast the desired return value 
to a BOOL and return the value directly. If the dialog-box procedure returns FALSE, 
default message handling is performed. The DWL_MSGRESUL T value set by the 
SetWindowLong function is ignored. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 2.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Scroll Bars Overview, Scroll-Bar Messages, DefWindowProc, RealizePalette, 
Select Palette, WM_CTLCOLORBTN, WM_CTLCOLORDLG, WfvCCTLCOLOREDiT, 
WM_CTLCOLORLISTBOX, WM_CTLCOLORMSGBOX, WM_CTLCOLORSTATIC 

The WM_HSCROLL message is sent to a window when a scroll event occurs in the 
window's standard horizontal scroll bar. This message is also sent to the owner of a 
horizontal scroll-bar control when a scroll event occurs in the control. 

A window receives this message through its WindowProc function. 



Chapter 6 Controls 167 

LRESULT CALLBACK WfndowProc( 

) ; 

HWND hwnd. // handle to window 
UINT uMs9. /I WM...;HSCROLL 
WPARA~· wPara.,,!! 
LPARAM ···1 Param· 

Parameters 
wParam 

The low-order word specifies a scroll-bar value that indicates the user's scrolling 
request. This word can be one of the following values: 

Value Meaning 

SB_ENDSCROLL 

SB_LEFT 

SB_LlNELEFT 

SB_LlNERIGHT 

SB_PAGELEFT 

SB_PAGERIGHT 

SB_RIGHT 

SB_ THUMBPOSITION 

SB_ THUMBTRACK 

Ends scroll. 

Scrolls to the upper left. 

Scrolls left by one unit. 

Scrolls right by one unit. 

Scrolls left by the width of the window. 

Scrolls right by the width of the window. 

Scrolls to the lower right. 

The user has dragged the scroll box (thumb) and 
released the mouse button. The high-order word 
indicates the position of the scroll box at the end of the 
drag operation. 

The user is dragging the scroll box. This message is 
sent repeatedly until the user releases the mouse 
button. The high-order word indicates the position to 
which the scroll box has been dragged. 

The high-order word specifies the current position of the scroll box if the low-order 
word is SB_ THUMBPOSITION or SB_ THUMBTRACK; otherwise, this word is not 
used. 

IParam 
If the message is sent by a scroll bar, this parameter is the handle to the scroll-bar 
control. If the message is not sent by a scroll bar, this parameter is NULL. 

Return Values 
If an application processes this message, it should return zero. 

Remarks 
The SB_ THUMBTRACK notification message is used typically by applications that 
provide feedback as the user drags the scroll box. 



168 Volume 2 Microsoft Windows User Interface 

If an application scrolls the content of the window, it must also reset the position of the 
scroll box by using the SetScrollPos function. 

Note that the WM_HSCROLL message carries only 16 bits of scroll-box position data. 
Thus, applications that rely solely on WM_HSCROLL (and WM_VSCROLL) for scroll 
position data have a practical maximum position value of 65,535. 

However, because the SetScrolllnfo, SetScrollPos, SetScrollRange, GetScrolllnfo, 
GetScrollPos, and GetScrollRange functions support 32-bit scroll-bar position data, 
there is a way to circumvent the 16-bit barrier of the WM_HSCROLL and 
WM_ VSCROLL messages. See GetScrolllnfo for a description of the technique. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Scroll Bars Overview, Scroll-Bar Messages, GetScrolllnfo, GetScrollPos, 
GetScrollRange, SetScrolllnfo, SetScrollPos, SetScrollRange, WM_ VSCROLL 

WM_VSCROLL 
The WM_ VSCROLL message is sent to a window when a scroll event occurs in the 
window's standard vertical scroll bar. This message is sent also to the owner of a vertical 
scroll-bar control when a scroll event occurs in the control. 

A window receives this message through its WindowProc function. 

Parameters 
wParam 

The low-order word specifies a scroll-bar value that indicates the user's scrolling 
request. This parameter can be one of the following values: 



Value 

SB_BOTTOM 

SB_ENDSCROLL 

SB_LlNEDOWN 

SB_LlNEUP 

SB_PAGEDOWN 

SB_PAGEUP 

SB_ THUMBPOSITION 

SB_ THUMBTRACK 

Meaning 

Scrolls to the lower right. 

Ends scroll. 

Scrolls one line down. 

Scrolls one line up. 

Scrolls one page down. 

Scrolls one page up. 

Chapter 6 Controls 169 

The user has dragged the scroll box (thumb) and 
released the mouse button. The high-order word 
indicates the position of the scroll box at the end of the 
drag operation. 

The user is dragging the scroll box. This message is 
sent repeatedly until the user releases the mouse 
button. The high-order word indicates the position to 
which the scroll box has been dragged. 

Scrolls to the upper left. 

The high-order word specifies the current position of the scroll box if the high-order 
word is SB_ THUMBPOSITION or SB_ THUMBTRACK; otherwise, this word is not 
used. 

IParam 
If the message is sent by a scroll bar, this parameter is the handle to the scroll-bar 
control. If the message is not sent by a scroll bar, this parameter is NULL. 

Return Values 
If an application processes this message, it should return zero. 

Remarks 
The SB_ THUMBTRACK notification message is used typically by applications that 
provide feedback as the user drags the scroll box. 

If an application scrolls the content of the window, it must reset also the position of the 
scroll box by using the SetScroliPos function. 

Note that the WM_VSCROLL message carries only 16 bits of scroll-box position data. 
Thus, applications that rely solely on WM_ VSCROLL (and WM_HSCROLL) for scroll 
position data have a practical maximum position value of 65,535. 

However, because the SetScrolllnfo, SetScroliPos, SetScroliRange, GetScrolllnfo, 
GetScroliPos, and GetScroliRange functions support 32-bit scroll-bar position data, 
there is a way to circumvent the 16-bit barrier of the WM_HSCROLL and 
WM_ VSCROLL messages. See GetScrolllnfo for a description of the technique. 



170 Volume 2 Microsoft Windows User Interface 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Scroll Bars Overview, Scroll-Bar Messages, GetScrolllnfo, GetScroliPos, 
GetScroliRange, SetScrolllnfo, SetScroliPos, SetScroliRange, WM_HSCROLL 

Scroll-Bar Control Styles 

Style 

To create a scroll-bar control using the CreateWindow or CreateWindowEx function, 
specify the SCROLLBAR class, appropriate window style constants, and a combination 
of the following scroll-bar control styles. Some of the styles create a scroll-bar control 
that uses a default width or height. However, you always must specify the x-coordinates 
and y-coordinates and the other dimensions of the scroll bar when you call 
CreateWindow or CreateWindowEx: 

Meaning 

SBS_BOnOMALIGN Aligns the bottom edge of the scroll bar with the bottom edge of the 
rectangle defined by the x, y, nWidth, and nHeight parameters of 
CreateWindowEx. The scroll bar has the default height for system 
scroll bars. Use this style with the SBS_HORZ style. 

SBS_RIGHTALIGN 

Designates a horizontal scroll bar. If neither the SBS_BOTTOMALIGN 
nor SBS_ TOP ALIGN style is specified, the scroll bar has the height, 
width, and position specified by the x, y, nWidth, and nHeight 
parameters of CreateWindowEx. 

Aligns the left edge of the scroll bar with the left edge of the rectangle 
defined by the x, y, nWidth, and nHeight parameters of 
CreateWindowEx. The scroll bar has the default width for system 
scroll bars. Use this style with the SBS_ VERT style. 

Aligns the right edge of the scroll bar with the right edge of the 
rectangle defined by the x, y, nWidth, and nHeight parameters of 
CreateWindowEx. The scroll bar has the default width for system 
scroll bars. Use this style with the SBS~ VERT style. 

DeSignates a size box. If you specify neither the 
SBS_SIZEBOXBOTTOMRIGHTALIGN nor the 
SBS_SIZEBOXTOPLEFTALIGN style, the size box has the height, 
width, and position specified by the x, y, nWidth, and nHeight 
parameters of CreateWindowEx. 



Chapter 6 Controls 171 

Style Meaning 

SBS_SIZEBOX 
BOTTOMRIGHTALIGN 

Aligns the lower-right corner of the size box with the lower-right corner 
of the rectangle specified by the x, y, nWidth, and nHeightparameters 
of CreateWindowEx. The size box has the default size for system 
size boxes. Use this style with the SBS_SIZEBOX style. 

SBS_SIZEBOX 
TOPLEFTALIGN 

SBS_SIZEGRIP 

SBS_ TOPALIGN 

Static Controls 

Aligns the upper left corner of the size box with the upper left corner of 
the rectangle specified by the x, y, nWidth, and nHeight parameters of 
CreateWindowEx. The size box has the default size for system size 
boxes. Use this style with the SBS_SIZEBOX style. 

Same as SBS_SIZEBOX, but with a raised edge. 

Aligns the top edge of the scroll bar with the top edge of the rectangle 
defined by the x, y, nWidth, and nHeight parameters of 
CreateWindowEx. The scroll bar has the default height for system 
scroll bars. Use this style with the SBS_HORZ style. 

Designates a vertical scroll bar. If you specify neither the 
SBS_RIGHTALIGN nor the SBS_LEFTALIGN style, the scroll bar has 
the height, width, and position specified by the x, y, nWidth, and 
nHeight parameters of CreateWindowEx. 

Dialog boxes and controls support communication between an application and the user. 
A static control is a control that enables an application to provide the user with 
informational text and graphics that, typically, require no response. 

About Static Controls 
Applications often use static controls to label other controls or to separate a group of 
controls. Although static controls are child windows, they cannot be selected. Therefore, 
they cannot receive the keyboard focus or have a keyboard interface. A static control 
that has the SS_NOTIFY style receives mouse input, notifying the parent window when 
the user clicks or double-clicks the control. Static controls belong to the STATIC window 
class. 

Although static controls can be used in overlapped, pop-up, and child windows, they are 
designed for use in dialog boxes, where the system standardizes their behavior. By 
using static controls outside dialog boxes, a developer increases the risk that the 
application might behave in a nonstandard fashion. Typically, a developer uses either 
static controls in dialog boxes or the SS_OWNERDRAW style to create customized 
static controls. 



172 Volume 2 Microsoft Windows User Interface 

Static-Control Types 
There are four types of static controls: 

• simple graphics 

• text 

• image 
• owner-drawn 

Each type has one or more styles. 

Simple Graphics Static Control 
A simple graphics static control displays a frame or a filled rectangle. A frame can be 
drawn in a number of styles, including black, gray, or white. In addition, a frame can be 
drawn with an etched style to give it a three-dimensional appearance. The frame styles 
include SS_BLACKFRAME, SS_GRAYFRAME, SS_WHITEFRAME, 
SS_ETCHEDHORZ, SS_ETCHEDVERT, and SS_ETCHEDFRAME. 

A rectangle can be filled with color in one of three styles: black, gray, or white. These 
styles are defined by the constants SS_BLACKRECT, SS_GRAYRECT, and 
SS_WHITERECT. 

Text Static Control 
A text static control displays text in a rectangle in one of five styles: 

• left-aligned without word wrap 

• left-aligned with word wrap 

• centered 

• right-aligned 

• Simple 

These styles are defined by the constants SS_LEFTNOWORDWRAP, SS_LEFT, 
SS_CENTER, SS_RIGHT, and SS_SIMPLE, respectively. The system rearranges the 
text in these controls in predefined ways, except for "simple" text, which is not 
rearranged. 

An application can change the text in a text static control at any time by using either the 
SetWindowText function or the WM_SETTEXT message. 

The system displays as much text as it can in the static control, and clips whatever does 
not fit. To calculate an appropriate size for the control, retrieve the font metrics for the 
text. For more information about fonts and font metrics, see Fonts and Text. 

Image Static Control 
An image static control can display bitmaps, icons (including animated icons), or 
enhanced metafiles. The type of graphic that a particular static control displays depends 
on the control's style: SS_BITMAP, SS_'CON, or SS_ENHMETAFILE. An application 
specifies the style when it creates the control and specifies a handle to the bitmap, icon, 



Chapter 6 Controls 173 

or metafile for the control to display. After the control is created, an application can 
associate a different graphic with the control by sending it an STM_SETIMAGE 

message, specifying a handle to the new graphic object. An application can retrieve a 
handle to the graphic object currently associated with a static control by sending it an 
STM_GETIMAGE message. An application sends messages to a static control by using 
the SendDlgltemMessage function. 

Owner-Drawn Static Control 
By using the SS_OWNERDRAW style, an application can take responsibility for painting 
a static control. The parent window of an owner-drawn static control (its owner) receives 
a WM_DRAWITEM message whenever the static control needs to be painted. The 
message includes a pointer to a DRAWITEMSTRUCT structure that contains information 
that the owner window uses when drawing the control. 

Static-Control Reference 
Static-Control Messages 
The following messages are used with static controls (STM_GETICON 
and STM_SETICON are used only with icons): 

STM_GETICON 
STM_GETIMAGE 
STM_SETICON 
STM_SETIMAGE 

Static controls with the SS_NOTIFY style send the following notification messages to 
their parent window: 

STN_CLlCKED 
STN_DBLCLK 
STN_DISABLE 
STN_ENABLE 
WM_CTLCOLORSTATIC 

STM_GETICON 
An application sends the STM_GETICON message to retrieve a handle to the icon 
associated with a static control that has the SS_ICON style. 

To send this message, call the Send Message function with the following parameters. 



174 Volume 2 Microsoft Windows User Interface 

Parameters 
This message has no parameters. 

Return Values 
The return value is a handle to the icon, or it is NULL if either the static control has no 
associated icon or an error occurred. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Static Controls Overview, Static-Control Messages, sTM_sETICON 

STM_GETIMAGE 
An application sends an sTM_GETIMAGE message to retrieve a handle to the image 
associated with a static control. 

To send this message, call the Send Message function with the following parameters. 

Parameters 
wParam 

Specifies the type of image to retrieve. This parameter can be one of the following 
values: 

IMAGE_BITMAP 
IMAGE_CURSOR 
IMAGE_ENHMETAFILE 
IMAGE_ICON 

IParam 
This parameter is not used. 



Chapter 6 Controls 175 

Return Values 
The return value is a handle to the image, if any; otherwise, it is NULL. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Static Controls Overview, Static-Control Messages, STM_SETIMAGE 

An application sends the STM_SETICON message to associate an icon with an icon 
control. 

To send this message, call the Send Message function with the following parameters. 

SendMesng~( 

) ' ~; 

(HWlD)hwnq, 
~TJ1LSETlCOtf. '. 
(WPARAM)wPa.ram; 
<UARAM) IParam~ 

Parameters 
wParam 

:c;;'handle. t{'tl~$I1natioh 
i/nles'sage tojend .', 
I I .handleto 1<:o~'(HICON) 

Handle to the icon to associate with the icon control. 

IParam 
This parameter is not used. 

Return Values 
The return value is a handle to the icon previously associated with the icon control, or 
zero if an error occurs. 

:~~/ 
Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 



176 Volume 2 Microsoft Windows User Interface 

Static Controls Overview, Static-Control Messages, Loadlcon, STM_GETICON 

An application sends an STM_SETIMAGE message to associate a new image (icon or 
bitmap) with a static control. 

To send this message, call the SendMessage function with the following parameters. 

;~rl:~~~~J.~l,,/;~", , 
L',;"$'r.t.:.&~t,tf.fAGt'" , 

i":t.f;~~\ 
::J:::t :\'" ~,t:o~:,,~,\','c _, 

Parameters 
wParam 

Specifies the type of image to associate with the static control. This parameter can be 
one of the following values: 

IMAGE_BITMAP 
IMAGE_CURSOR 
IMAGE_ENHMETAFILE 
IMAGE_ICON 

IParam 
Handle to the image to associate with the static control. 

Return Values 
The return value is a handle to the image previously associated with the static control, if 
any; otherwise, it is NULL. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Static Controls Overview, Static-Control Messages, STM_GETIMAGE 



Chapter 6 Controls 177 

STN_CLICKED 
The STN_CLICKED notification message is sent when the user clicks a static control 
that has the SS_NOTIFY style. The parent window of the control receives this 
notification message through the WM_COMMAND message. 

L~ESULTCALLBAC,KW~n~otf~roc( ". . , .. 
. /iWNDhit'nd# '. ·// .. handleto.window 

i~;:j;:::t'f~;~~~~;~I~d;~;~;i;~; 
Parameters 
wParam 

The low-order word is a static-control identifier. 

The high-order word is the notification message. 

IParam 
Handle to the static control. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Static Controls Overview, Static-Control Messages, HIWORD, LOWORD, 
STN_DBLCLK, WM_COMMAND 

The STN_DBLCLK notification message is sent when the user double-clicks a static 
control that has the SS_NOTIFY style. The parent window of the control receives this 
notification message through the WM_COMMAND message. 

LRESOlTCALtBACKJ'1hdp~P"oc(" , .. 

. i1~b:·:;if:ilif~';;;~;;~;n:;~t~~):' 
).:: .. '> " ..'" . ".~' 



178 Volume 2 Microsoft Windows User Interface 

Parameters 
wParam 

The low-order word is a static-control identifier. 

The high-order word is the notification message. 

IParam 
Handle to the static control. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Static Controls Overview, Static-Control Messages, HIWORD, LOWORD, 
STN_CLICKED, WM_COMMAND 

The STN_DISABLE notification message is sent when a static control is disabled. The 
static control must have the SS_NOTIFY style to receive this notification message. The 
parent window of the control receives this notification message through the 
WM_COMMAND message. 

Parameters 
wParam 

The low-order word is a static-control identifier. 

The high-order word is the notification message. 

IParam 
Handle to the static control. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 



Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Chapter 6 Controls 179 

Static Controls Overview, Static-Control Messages, HIWORD, LOWORD, 
STN_ENABLE, WM_COMMAND 

The STN_ENABLE notification message is sent when a static control is enabled. The 
static control must have the SS_NOTIFY style to receive this notification message. The 
parent window of the control receives this notification message through the 
WM_COMMAND message. 

Parameters 
wParam 

The low-order word is a static-control identifier. 

The high-order word is the notification message. 

IParam 
Handle to the static control. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Static Controls Overview, Static-Control Messages, HIWORD, LOWORD, 
STN_DISABLE, WM_COMMAND 



180 Volume 2 Microsoft Windows User Interface 

WM_ CTLCOLORSTATIC 
A static control, or an edit control that is read-only or disabled, sends the 
WM_CTLCOLORSTATIC message to its parent window when the control is about to be 
drawn. By responding to this message, the parent window can use the specified device 
context handle to set the text and background colors of the static control. 

A window receives this message through its WindowProc function. 

Parameters 
wParam 

Handle to the device context for the static-control window. 

IParam 
Handle to the static control. 

Return Values 
If an application processes this message, the return value is a handle to a brush that the 
system uses to paint the background of the static control. 

Remarks 
By default, the DefWindowProc function selects the default system colors for the static 
control. 

Edit controls that are not read-only or disabled do not send the 
WM_CTLCOLORSTATIC message; instead, they send the WM_CTLCOLOREDIT 
message. However, for compatibility purposes, the system sends the 
WM_CTLCOLOREDIT message for read-only and disabled edit controls if the 
application was designed for Windows 3.1 or earlier. 

The system does not destroy automatically the returned brush. It is the application's 
responsibility to destroy the brush when it is no longer needed. 

The WM_CTLCOLORSTATIC message is never sent between threads; it is sent only 
within the same thread. 

If a dialog-box procedure handles this message, it should cast the desired return value 
to a BOOL and return the value directly. If the dialog-box procedure returns FALSE, 
default message handling is performed. The DWL_MSGRESUL T value set by the 
SetWindowLong function is ignored. 



Chapter 6 Controls 181 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 2.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Static Controls Overview, Static-Control Messages, DefWindowProc, RealizePalette, 
Select Palette, WM_CTLCOLORBTN, WM_CTLCOLORDLG, WM_CTLCOLOREDIT, 
WM_CTLCOLORLISTBOX, WM_CTLCOLORMSGBOX, 
WM_CTLCOLORSCROLLBAR 

Static-Control Styles 
To create a static control using the CreateWindow or CreateWindowEx function, 
specify the STATIC class, appropriate window style constants, and a combination of the 
following static-control styles: 

Style Description 

SS_BLACKFRAME 

SS_CENTERIMAGE 

Specifies a bitmap is to be displayed in the static 
control. The text is the name of a bitmap (not a file 
name) defined elsewhere in the resource file. The 
style ignores the nWidth and nHeight parameters; the 
control automatically sizes itself to accommodate the 
bitmap. 

Specifies a box with a frame drawn in the same color 
as the window frames. This color is black in the 
default color scheme. 

Specifies a rectangle filled with the current window 
frame color. This color is black in the default color 
scheme. 

Specifies a simple rectangle, and centers the text in 
the rectangle. The text is formatted before it is 
displayed. Words that extend past the end of a line 
are automatically wrapped to the beginning of the 
next centered line. Words that are longer than the 
width of the control are truncated. 

Specifies that, if the bitmap or icon is smaller than the 
client area of the static control, the rest of the client 
area is filled with the color of the pixel in the top-left 
corner of the bitmap or icon. If the static control 
contains a single line of text, the text is centered 
vertically in the client area of the control. 

(continued) 



182 Volume 2 Microsoft Windows User Interface 

(continued) 

Style 

SS_ENDELLIPSIS or 
SS_PATHELLIPSIS 

SS_ENHMETAFILE 

SS_ETCHEDFRAME 

SS_ETCHEDHORZ 

SS_ETCHEDVERT 

Description 

Windows NT/2000: Replaces part of the string with 
ellipses ( ... ), if necessary, so that the result fits in the 
specified rectangle. 

You can specify SS_END_ELLIPSIS to replace 
characters at the end of the string, or 
SS_PATHELLIPSIS to replace characters in the 
middle of the string. If the string contains backslash (\) 
characters, SS_PATHELLIPSIS preserves as much of 
the text after the last backslash as possible. 

Specifies an enhanced metafile is to be displayed in 
the static control. The text is the name of a metafile. 
An enhanced metafile static control has a fixed size; 
the metafile is scaled to fit the static control's client 
area. 

Draws the frame of the static control using the 
EDGE_ETCHED edge style. For more information, 
see the DrawEdge function. 

Draws the top and bottom edges of the static control 
using the EDGE_ETCHED edge style. For more 
information, see the DrawEdge function. 

Draws the left and right edges of the static control 
using the EDGE_ETCHED edge style. For more 
information, see the DrawEdge function. 

Specifies a box with a frame drawn with the same 
color as the screen background (desktop). This color 
is gray in the default color scheme. 

Specifies a rectangle filled with the current screen 
background color. This color is gray in the default 
color scheme. 

Specifies an icon is to be displayed in the dialog box. 
The text is the name of an icon (not a file name) 
defined elsewhere in the resource file. The icon can 
be an animated cursor. The style ignores the nWidth 
and nHeight parameters; the control automatically 
sizes itself to accommodate the icon. 



SS_LEFTNOWORDWRAP 

SS_REALSIZEIMAGE 

Chapter 6 Controls 183 

Description 

Specifies a simple rectangle, and left-aligns the text 
in the rectangle. The text is formatted before it is 
displayed. Words that extend past the end of a line 
are automatically wrapped to the beginning of the 
next left-aligned line. Words that are longer than the 
width of the control are truncated. 

Specifies a simple rectangle, and left-aligns the text 
in the rectangle. Tabs are expanded, but words are 
not wrapped. Text that extends past the end of a line 
is clipped. 

Prevents interpretation of ampersand (&) characters 
in the control's text as accelerator prefix characters; 
these are displayed with the ampersand removed 
and the next character in the string underlined. This 
static control style may be included with any of the 
defined static controls. You can combine 
SS_NOPREFIX with other styles. This can be useful 
when file names or other strings that may contain an 
ampersand (&) must be displayed in a static control 
in a dialog box. 

Sends the parent window STN_CLlCKED, 
STN_DBLCLK, STN_DISABLE, and STN_ENABLE 
notification messages when the user clicks or double­
clicks the control. 

Specifies that the owner of the static control is 
responsible for drawing the control. The owner 
window receives a WM_DRAWITEM message 
whenever the control needs to be drawn. 

Prevents a static icon or bitmap control (that is, static 
controls that have the SS_ICON or SS_BITMAP 
style) from being resized as it is loaded or drawn. If 
the icon or bitmap is larger than the destination area, 
the image is clipped. 

Specifies a simple rectangle, and right-aligns the text 
in the rectangle. The text is formatted before it is 
displayed. Words that extend past the end of a line 
are automatically wrapped to the beginning of the 
next right-aligned line. Words that are longer than the 
width of the control are truncated. 

(continued) 



184 Volume 2 Microsoft Windows User Interface 

(continued) 

Style 

SS_RIGHT JUST 

SS_SUNKEN 

SS_WHITEFRAME 

SS_ WORDELLI PSIS 

Description 

Specifies that the lower right corner of a static control 
with the SS_BITMAP or SS_ICON style is to remain 
fixed when the control is resized. Only the top and left 
sides are adjusted to accommodate a new bitmap or 
icon. 

Specifies a simple rectangle, and displays a single 
line of left-aligned text in the rectangle. The text line 
cannot be shortened or altered in any way. The 
control's parent window or dialog box must not 
process the WM_CTLCOLORSTATIC message. 

Draws a half-sunken border around a static control. 

Specifies a box with a frame drawn with the same 
color as the window background. This color is white in 
the default color scheme. 

Specifies a rectangle filled with the current window 
background color. This color is white in the default 
color scheme. 

Windows NT/2000: Truncates text that does not fit, 
and adds ellipses ( ... ). 



185 

CHAPTER 7 

Resources 

Resources 
A resource is binary data that you can add to the executable file of a Win32-based 
application. A resource can be either standard or defined. The data in a standard 
resource describes an icon, cursor, menu, dialog box, bitmap, enhanced metafile, font, 
accelerator table, message-table entry, string-table entry, or version information. An 
application-defined resource, also called a custom resource, contains any data required 
by a specific application. 

About Resources 
This overview describes the functions that enable applications to find a resource in a 
module; load a resource into memory; add, delete or replace a resource in an 
executable file; and generate a list of the resources contained in a module. For specific 
information about the organization of resource data within executable files, refer to the 
resource formats documentation. 

For information about how to create standard resources, refer to the following table: 

Resource Topic 

Accelerator table 

Bitmap 

Cursor 

Dialog box 

Enhanced metafile 

Font 

Icon 

Menu 

Message-table entry 

String-table entry 

Version information 

Keyboard Accelerators 

Bitmaps 

Cursors 

Dialog Boxes 

Metafiles 

Fonts and Text 

Icons 

Menus 

.Your message-compiler documentation 

Strings 

Version Information 

For information about how to include resource data in a Win32-based executable file, 
refer to the documentation for your resource compiler. 



186 Volume 2 Microsoft Windows User Interface 

Finding and Loading Resources 
Before using a resource, an application must load it into memory. The FindResource 
and FindResourceEx functions find a resource in a module and return a handle to the 
binary resource data. FindResource locates a resource by type and name. 
FindResourceEx locates the resource by type, name, and language. Information about 
FindResource in this topic also applies to FindResourceEx. 

The LoadResource function uses the resource handle returned by FindResource to 
load the resource into memory. After an application loads a resource by using 
LoadResource, the system automatically unloads and reloads the resource as memory 
conditions and application execution require. Thus, an application need not explicitly 
unload a resource it no longer needs. 

An application can use FindResource and LoadResource to find and load any type of 
resource, but these functions should be used only if the application must access the 
binary resource data for subsequent function calls. To use a resource immediately, an 
application should use one of the following resource-specific functions to find and load 
resources in one call. 

Function 

FormatMessage 

LoadAccelerators 

LoadBitmap 

LoadCursor 

Loadlcon 

Loadlmage 

LoadMenu 

LoadString 

Action 

Loads and formats a message-table entry. 

Loads an accelerator table. 

Loads a bitmap resource. 

Loads a cursor resource. 

Loads an icon resource. 

Loads an icon, cursor, bitmap, or enhanced metafile resource. 

Loads a menu resource. 

Loads a string-table entry. 

Before terminating, an application should release the memory occupied by accelerator 
tables, bitmaps, cursors, icons, and menus by using one of the functions in the following 
table. 

Resource 

Accelerator table 

Bitmap 

Cursor 

Icon 

Menu 

Release function 

DestroyAcceleratorTable 

DeleteObject 

DestroyCursor 

Destroylcon 

DestroyMenu 

When the application terminates, the system automatically releases the memory 
occupied by the other types of resources. 



Chapter 7 Resources 187 

Adding, Deleting, and Replacing Resources 
Applications must frequently add, delete, or replace resources in executable files. Two 
methods can be used to accomplish these tasks. The first method is to edit the resource­
definition file, recompile the resources, and add the recompiled resources to the 
application's executable file. The second method is to copy the resource data directly 
into the application's executable file. 

For example, to localize an English-language application for use in Norway, it may be 
necessary to replace the English dialog box with one using Norwegian. A developer 
creates an appropriate dialog box by using a dialog-box editor or by writing a template in 
the resource-definition file. The developer then recompiles the resources and adds the 
new resources to the application's executable file. 

If an appropriate dialog box exists in binary form, however, the developer can copy the 
data directly to the executable file being localized by using three Win32 functions. The 
BeginUpdateResource function creates an update handle for the executable file whose 
resources are to be changed. The UpdateResource function uses this handle to add, 
delete, or replace a resource in the executable file. The EndUpdateResource function 
closes the handle. 

After an update handle to an executable file is created by BeginUpdateResource, an 
application can use UpdateResource repeatedly to make changes to the resource data. 
Each call to UpdateResource contributes to an internal list of additions, deletions, and 
replacements but does not actually write the data to the executable file. Immediately 
before closing the update handle, EndUpdateResource writes the accumulated 
changes to the executable file. 

Sometimes, an application must copy resources or find resource sizes. The 
LoadLibrary function provides a module handle to an executable file whose resources 
are to be copied, and the LockResource function provides a pointer to the resource 
data in the specified module. The SizeofResource function returns the size, in bytes, of 
a specified resource. 

Enumerating Resources 
Three Win32 functions enable an application to obtain lists of resource types, names, 
and languages in a specified module. The EnumResourceTypes function provides a list 
of resource types found in the module, the EnumResourceNames function provides the 
name of each resource within a given type, and the EnumResourceLanguages function 
provides the language of each resource of a given name and type. These functions and 
their associated callback functions enable applications to create a list of all resources in 
a module. This process is described in Creating a Resource List. 

Resource File Formats 
This section describes the format of the binary resource file that the resource compiler 
creates based on the contents of the resource-definition file. This file usually has an .res 



188 Volume 2 Microsoft Windows User Interface 

extension. The linker reformats the .res file into a resource object file and then links it to 
the executable file of a Win32-based application. 

A binary resource file consists of a number of concatenated resource entries. Each entry 
consists of a resource header and the data for that resource. A resource header is 
DWORD-aligned in the file and consists of the following: 

• A DWORD that contains the size of the resource header 

• A DWORD that contains the size of the resource data 

• The resource type 

• The resource name 

• Additional resource information 

The RESOURCEHEADER structure describes the format of this header. The data for 
the resource follows the resource header and is specific to each type of resource. Some 
resources also employ a resource-specific group header structure to provide information 
about a group of resources. For a group list of the structures that describe the format of 
resources, see Resource Structures. 

Accelerator Table Resources 

An accelerator table is one resource entry in a resource file. It does not have a group 
header. An ACCELTABLEENTRY structure describes each entry in the accelerator 
table. Multiple accelerator tables are permitted. 

Cursor and Icon Resources 

The system handles each icon and cursor as a single file. However, these are stored in 
.res files and in executable files as a group of icon resources or a group of cursor 
resources. The file formats of icon and cursor resources are similar. In the .res file a 
resource group header follows all of the individual icon or cursor group components. 

The format of each icon component closely resembles the format of the .ico file. Each 
icon image is stored in a BITMAPINFO structure followed by the color device­
independent bitmap (DIB) bits of the icon's XOR mask. The monochrome DIB bits of the 
icon's AND mask follow the color DIB bits. 

The format of each cursor component resembles the format of the .cur file. Each cursor 
image is stored in a BITMAPINFO structure followed by the monochrome device­
independent bitmap (DIB) bits of the cursor's XOR mask, and then by the monochrome 
DIB bits of the cursor's AND mask. Note that there is a difference in the bitmaps of the 
two resources: unlike icons, cursor XOR masks do not have color DIB bits. Although the 
bitmaps of the cursor masks are monochrome and do not have DIB headers or color 
tables, the bits are still in DIB format with respect to alignment and direction. Another 
significant difference between cursors and icons is that cursors have a hotspot and icons 
do not. 



Chapter 7 Resources 189 

The group header for both icon and cursor resources consists of a NEWHEADER 
structure plus one or more RESDIR structures. There is one RESDIR structure for each 
icon or cursor. The group header contains the information a Win32-based application 
needs to select the correct icon or cursor to display. Both the group header and the data 
that repeats for each icon or cursor in the group have a fixed length. This allows the 
application to access randomly the information. 

Dialog-Box Resources 

A dialog box is also one resource entry in the resource file. It consists of one 
DLGTEMPLATE dialog-box header structure plus one DLGITEMTEMPLATE structure 
for each control in the dialog box. The DLGTEMPLATEEX and DLGITEMTEMPLATEEX 
structures describe the format of extended dialog-box resources. 

Font Resources 

Fonts are stored in the resource file as a group of resources. Individual fonts make up a 
font group. A FONT Statement resource definition statement in the .rc file defines each 
font. Each individual font in the resource consists of the complete contents of the related 
.tnt file. A FONTGROUPHDR structure follows all the individual font components in the 
.res file. 

Font resources are not added to the resources of a specific application. Instead, they are 
normally added to executable files that have a .fon extension. These files are usually 
resource-only dynamic-link libraries (DLLs) instead of applications. 

Menu Resources 

A menu resource consists of a MENUHEADER structure followed by one or more 
NORMALMENUITEM or POPUPMENUITEM structures, one for each menu item in the 
menu template. The MENUEX_TEMPLATE_HEADER and 
MENUEX_TEMPLATE_ITEM structures describe the format of extended menu 
resources. 

Message-Table Resources 

A message table is a resource that contains formatted text for display as an error 
message or in a message box. The main structure in a message-table resource is the 
MESSAGE_RESOURCE_DATA structure. 

Version Resources 

The main structure in a version resource is the VS_FIXEDFILEINFO structure. 
Additional structures include the VarFilelnfo structure to store language information 
data, and StringFilelnfo for user-defined string information. All strings in a version 
resource are in Unicode format for Win32-based applications. Each block of information 
is aligned on a DWORD boundary. 



190 Volume 2 Microsoft Windows User Interface 

Getting More Information About Resources 
The companion DVD that is bundled inside the Base Services volume of the Microsoft 
Win32 Developer's Reference Library has the complete set of reference information for 
Resources. Publishing constraints associated with volumes in the Windows 
Programming Reference Series-which are governed by the mission to provide concise, 
compact, and portable reference books-did not allow the reference section for 
Resources to be included in the printed version. 

However, in order to provide you with the most complete and comprehensive guide to 
Win32 development, the Win32 Library includes all of its information in electronic form 
on the DVD. If you have not already, go through the installation process on the 
companion DVD, and the entire body of Resource programming reference (and much, 
much more) will be a click away. 

Carets 
A caret is a blinking line, block, or bitmap in the client area of a window. The caret 
typically indicates the place at which text or graphics will be inserted. The following 
illustration shows some common variations in the appearance of the caret: 

Underline 
Vertical One I 
Solid Blodl 
Gray Blodl 
BitmapW 

A Win32-based application can create a caret, change its blink time, and display, hide, or 
relocate the caret. 

About Carets 
The system provides one caret per message queue. A window should create a caret 
only when it has the keyboard focus or is active. The window should destroy the caret 
before losing the keyboard focus or becoming inactive. For more information on 
keyboard input, see Keyboard Input. 

Use the CreateCaret function to specify the parameters for a caret. The system forms a caret 
by inverting the pixel color within the rectangle specified by the caret's position, width, and 
height. The width and height are specified in logical units; therefore, the appearance of a caret 
is subject to the window's mapping mode. 



Chapter 7 Resources 191 

Caret Visibility 
After the caret is defined, use the ShowCaret function to make the caret visible. When 
the caret appears, it automatically begins flashing. To display a solid caret, the system 
inverts every pixel in the rectangle; to display a gray caret, the system inverts every 
other pixel; to display a bitmap caret, the system inverts only the white bits of the bitmap. 

Caret Blink Time 
The elapsed time, in milliseconds, required to invert the caret is called the blink time. The 
caret will blink as long as the thread that owns the message queue has a message 
pump processing the messages. 

The user can set the blink time of the caret using the Control Panel and applications 
should respect the settings that the user has chosen. An application can determine the 
caret's blink time by using the GetCaretBlinkTime function. If you are writing an 
application that allows the user to adjust the blink time, such as a Control Panel applet, 
use the SetCaretBlinkTime function to set the rate of the blink time to a specified 
number of milliseconds. 

The flash time is the elapsed time, in milliseconds, required to display, invert, and restore 
the caret's display. The flash time of a caret is twice as much as the blink time. 

Caret Position 
You can determine the position of the caret using the GetCaretPos function. The 
position, in client coordinates, is copied to a POINT structure specified by a parameter in 
GetCaretPos. An application can move a caret in a window by using the SetCaretPos 
function. A window can move a caret only if it already owns the caret. SetCaretPos can 
move the caret whether it is visible or not. 

Removing a Caret 
You can temporarily remove a caret by hiding it, or you can permanently remove the 
caret by destroying it. To hide the caret, use the HideCaret function. This is useful when 
your application must redraw the screen while processing a message, but must keep the 
caret out of the way. When the application finishes drawing, it can display the caret 
again by using the ShowCaret function. Hiding the caret does not destroy its shape or 
invalidate the insertion point. Hiding the caret is cumulative; that is, if the application calls 
HideCaret five times, it must also call ShowCaret five times before the caret will 
reappear. 

To remove the caret from the screen and destroy its shape, use the DestroyCaret 
function. DestroyCaret destroys the caret only if the window involved in the current task 
owns the caret. 



192 Volume 2 Microsoft Windows User Interface 

Caret Reference 
Caret Functions 

CreateCaret 
The CreateCaret function creates a new shape for the system caret and assigns 
ownership of the caret to the specified window. The caret shape can be a line, block, or 
bitmap. 

Parameters 
hWnd 

[in] Handle to the window that owns the caret. 

hBitmap 
[in] Handle to the bitmap that defines the caret shape. If this parameter is NULL, the 
caret is solid. If this parameter is (HBITMAP) 1, the caret is gray. If this parameter is a 
bitmap handle, the caret is the specified bitmap. The bitmap handle must have been 
created by the CreateBitmap, CreateDIBitmap, or LoadBitmap function. 

If hBitmap is a bitmap handle, CreateCaret ignores the nWidth and nHeight 
parameters; the bitmap defines its own width and height. 

nWidth 
[in] Specifies the width of the caret in logical units. If this parameter is zero, the width 
is set to the system-defined window border width. If hBitmap is a bitmap handle, 
CreateCaret ignores this parameter. 

nHeight 
[in] Specifies the height, in logical units, of the caret. If this parameter is zero, the 
height is set to the system-defined window border height. If hBitmap is a bitmap 
handle, CreateCaret ignores this parameter. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 



Chapter 7 Resources 193 

Remarks 
The nWidth and nHeight parameters specify the caret's width and height, in logical units; 
the exact width and height, in pixels, depend on the window's mapping mode. 

CreateCaret automatically destroys the previous caret shape, if any, regardless of the 
window that owns the caret. The caret is hidden until the application calls the 
ShowCaret function to make the caret visible. 

The system provides one caret per queue. A window should create a caret only when it 
has the keyboard focus or is active. The window should destroy the caret before losing 
the keyboard focus or becoming inactive. 

You can retrieve the width or height of the system's window border by using the 
GetSystemMetrics function, specifying the SM_CXBORDER and SM_CYBORDER 
values. Using the window border width or height guarantees that the caret will be visible 
on a high-resolution screen. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Carets Overview, Caret Functions, CreateBitmap, CreateDIBitmap, DestroyCaret, 
GetSystemMetrics, HideCaret, LoadBitmap, ShowCaret 

DestroyCaret 
The DestroyCaret function destroys the caret's current shape, frees the caret from the 
window, and removes the caret from the screen. 

If the caret shape is based on a bitmap, DestroyCaret does not free the bitmap. 

·jl1Qf;p,~t.tQ~c~r&t1ttOI·Q):'ft~ ...~.:' ", 

Parameters 
This function has no parameters. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 



194 Volume 2 Microsoft Windows User Interface 

Remarks 
DestroyCaret destroys the caret only if a window in the current task owns the caret. If a 
window that is not in the current task owns the caret, DestroyCaret does nothing and 
returns FALSE. 

The system provides one caret per queue. A window should create a caret only when it 
has the keyboard focus or is active. The window should destroy the caret before losing 
the keyboard focus or becoming inactive. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Carets Overview, Caret Functions, CreateCaret, HideCaret, ShowCaret 

GetCaretBlinkTime 
The GetCaretBlinkTime function returns the elapsed time, in milliseconds, required to 
invert the caret's pixels. The user can set this value using the Control Panel. 

Parameters 
This function has no parameters. 

Return Values 
If the function succeeds, the return value is the blink time, in milliseconds. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 



Chapter 7 Resources 195 

Carets Overview, Caret Functions, SetCaretBlinkTime 

GetCaretPos 
The GetCaretPos function copies the caret's position, in client coordinates, to the 
specified POINT structure. 

Parameters 
IpPoint 

[out] Pointer to the POINT structure that is to receive the client coordinates of the 
caret. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
The caret position is always given in the client coordinates of the window that contains 
the caret. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Carets Overview, Caret Functions, POINT, SetCaretPos 

HideCaret 
The HideCaret function removes the caret from the screen. Hiding a caret does not 
destroy its current shape or invalidate the insertion pOint. 



196 Volume 2 Microsoft Windows User Interface 

Parameters 
hWnd 

[in] Handle to the window that owns the caret. If this parameter is NULL, HideCaret 
searches the current task for the window that owns the caret. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
HideCaret hides the caret only if the specified window owns the caret. If the specified 
window does not own the caret, HideCaret does nothing and returns FALSE. 

Hiding is cumulative. If your application calls HideCaret five times in a row, it must also 
call ShowCaret five times before the caret is displayed. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Carets Overview, Caret Functions, CreateCaret, DestroyCaret, GetCaretPos, 
SetCaretPos, ShowCaret 

SetCaretBlinkTime 
The SetCaretBlinkTime function sets the caret blink time to the specified number of 
milliseconds. The blink time is the elapsed time, in milliseconds, required to invert the 
caret's pixels. 

QOOlSe£CaretBl1tttt:1l11e ~">':.i.c. 
"'IJ:J;ffIuMS~l:(uiit~ :'f/\b:l\Q'k;.:tilite 
1~i:/ ,.:' .... 



Parameters 
uMSeconds 

[in] Specifies the new blink time, in milliseconds. 

Return Values 
If the function succeeds, the return value is nonzero. 

Chapter 7 Resources 197 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
The user can set the blink time using the Control Panel. Applications should respect the 
setting that the user has chosen. The SetCaretBlinkTime function should only be used 
by application that allow the user to set the blink time, such as a Control Panel applet. 

If you change the blink time, subsequently activated applications will use the modified 
blink time, even if you restore the previous blink time when you lose the keyboard focus 
or become inactive. This is due to the multithreaded environment, where deactivation of 
your application is not synchronized with the activation of another application. This 
feature allows the system to activate another application even if the current application 
has stopped responding. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Carets Overview, Caret Functions, GetCaretBlinkTime 

SetCaretPos 
The SetCaretPos function moves the caret to the specified coordinates. If the window 
that owns the caret was created with the CS_OWNDC class style, then the specified 
coordinates are subject to the mapping mode of the device context associated with that 
window. 



198 Volume 2 Microsoft Windows User Interface 

Parameters 
x 

[in] Specifies the new x-coordinate of the caret. 
y 

[in] Specifies the new y-coordinate of the caret. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
SetCaretPos moves the caret whether or not the caret is hidden. 

The system provides one caret per queue. A window should create a caret only when it 
has the keyboard focus or is active. The window should destroy the caret before losing 
the keyboard focus or becoming inactive. A window can set the caret position only if it 
owns the caret. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Carets Overview, Caret Functions, GetCaretPos, HideCaret, ShowCaret 

ShowCaret 
The ShowCaret function makes the caret visible on the screen at the caret's current 
position. When the caret becomes visible, it begins flashing automatically. 

Parameters 
hWnd 

[in] Handle to the window that owns the caret. If this parameter is NULL, ShowCaret 
searches the current task for the window that owns the caret. 



Chapter 7 Resources 199 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
ShowCaret shows the caret only if the specified window owns the caret, the caret has a 
shape, and the caret has not been hidden two or more times in a row. If one or more of 
these conditions is not met, ShowCaret does nothing and returns FALSE. 

Hiding is cumulative. If your application calls HideCaret five times in a row, it must also 
call ShowCaret five times before the caret reappears. 

The system provides one caret per queue. A window should create a caret only when it 
has the keyboard focus or is active. The window should destroy the caret before losing 
the keyboard focus or becoming inactive. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Carets Overview, Caret Functions, CreateCaret, DestroyCaret, GetCaretPos, 
HideCaret, SetCaretPos 

Cursors 
A cursor is a small picture whose location on the screen is controlled by a pointing 
device, such as a mouse, pen, or trackball. In the remainder of this overview, the term 
mouse refers to any pointing device. 

When the user moves the mouse, the system moves the cursor accordingly. The cursor 
functions in the Microsoft Win32 application programming interface (API) enable 
applications to create, load, display, animate, move, confine, and destroy cursors. 

About Cursors 
The Microsoft Win32 API provides a set of standard cursors that are available for any 
application to use at any time. The SDK header files contain identifiers for the standard 
cursors-the identifiers have the "IDC_" prefix. 



200 Volume 2 Microsoft Windows User Interface 

Each standard cursor has a corresponding default image associated with it. The user or 
an application can replace the default image associated with any standard cursor at any 
time. An application replaces a: default image by using the SetSystemCursor function. 

An application can use the Getlconlnfo function to retrieve the current image for a 
cursor and can draw the cursor by using the DrawlconEx function. To draw the default 
image for a standard cursor, specify the OI_COMPAT flag in the call to DrawlconEx. If 
you do not specify the OLCOMPAT flag, DrawlconEx draws the standard cursor using 
the image that the user specified. 

Custom cursors are designed for use in a specific application and can be any design the 
developer defines. The following illustration shows several custom cursors: 

Cursors can be either monochrome or color, and either static or animated. The type of 
cursor used on a particular computer system depends on the system's display. Old 
displays such as VGA do not support color or animated cursors. New displays, whose 
display drivers use the device-independent bitmap (018) engine, support them. 

Cursors and icons are similar and can be used interchangeably in many situations. The 
only difference between them is that an image specified as a cursor must be in the 
format that the display can support. For example, a cursor must be monochrome for a 
VGA display. 

Cursor Reference 
Cursor Functions 

ClipCursor 
The ClipCursor function confines the cursor to a rectangular area on the screen. If a 
subsequent cursor position (set by the SetCursorPos function or the mouse) lies 
outside the rectangle, the system automatically adjusts the position to keep the cursor 
inside the rectangular area. 

Parameters 
IpRect 

[in] Pointer to the RECT structure that contains the screen coordinates of the upper­
left and lower-right corners of the confining rectangle. If this parameter is NULL, the 
cursor is free to move anywhere on the screen. 



Chapter 7 Resources 201 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
The cursor is a shared resource. If an application confines the cursor, it must release the 
cursor by using ClipCursor before relinquishing control to another application. 

The calling process must have WINSTA_WRITEATTRIBUTES access to the window 
station. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Cursors Overview, Cursor Functions, GetClipCursor, GetCursorPos, RECT, 
SetCursorPos 

CopyCursor 
The CopyCursor function copies the specified cursor. 

1~~~t~t,y~ff~if'1fi~~i;~,: ' 
Parameters 
pcur 

[in] Handle to the cursor to be copied. 

Return Values 
If the function succeeds, the return value is the handle to the duplicate cursor. 

If the function fails, the return value is NULL. To get extended error information, call 
GetLastError. 



202 Volume 2 Microsoft Windows User Interface 

Remarks 
The CopyCursor function enables an application or DLL to obtain the handle to a cursor 
shape owned by another module. Then, if the other module is freed, the application is 
still able to use the cursor shape. 

Before closing, an application must call the DestroyCursor function to free any system 
resources associated with the cursor. 

Do not use the CopyCursor function for animated cursors. Instead, use the Copylmage 
function. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Cursors Overview, Cursor Functions, Copylcon, Copylmage, DestroyCursor, 
GetCursor, SetCursor, ShowCursor 

CreateCursor 
The CreateCursor function creates a cursor having the specified size, bit patterns, and 
hotspot. 

Parameters 
hlnst 

[in] Handle to the current instance of the application creating the cursor. 

xHotSpot 
[in] Specifies the horizontal position of the cursor's hot spot. 

yHotSpot 
[in] Specifies the vertical position of the cursor's hot spot. 



Chapter 7 Resources 203 

nWidth 
[in] Specifies the width, in pixels, of the cursor. 

nHeight 
[in] Specifies the height, in pixels, of the cursor. 

pvANDPlane 
[in] Pointer to an array of bytes that contains the bit values for the AND mask of the 
cursor, as in a device-dependent monochrome bitmap. 

pvXORPlane 
[in] Pointer to an array of bytes that contains the bit values for the XOR mask of the 
cursor, as in a device-dependent monochrome bitmap. 

Return Values 
If the function succeeds, the return value is a handle to the cursor. 

If the function fails, the return value is NULL. To get extended error information, call 
GetLastError. 

Remarks 
The nWidth and nHeight parameters must specify a width and height that are supported 
by the current display driver, because the system cannot create cursors of other sizes. 
To determine the width and height supported by the display driver, use the 
GetSystemMetrics function, specifying the SM_CXCURSOR or SM_CYCURSOR 
value. 

Before closing, an application must call the DestroyCursor function to free any system 
resources associated with the cursor. 

,', ' : 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Cursors Overview, Cursor Functions, Createlcon, DestroyCursor, GetModuleHandle, 
GetSystemMetrics, SetCursor 

DestroyCursor 
The DestroyCursor function destroys a cursor and frees any memory the cursor 
occupied. Do not use this function to destroy a shared cursor. 



204 Volume 2 Microsoft Windows User Interface 

Parameters 
hCursor 

[in] Handle to the cursor to be destroyed. The cursor must not be in use. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
The DestroyCursor function destroys a nonshared cursor. Do not use this function to 
destroy a shared cursor. A shared cursor is valid as long as the module from which it 
was loaded remains in memory. The following functions obtain a shared cursor: 

• LoadCursor 

• LoadCursorFromFile 

• Loadlmage (if you use the LR_SHARED flag) 

• Copylmage (if you use the LR_COPYRETURNORG flag and the hlmage parameter 
is a shared cursor) 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Cursors Overview, Cursor Functions, CopyCursor, Copylmage, CreateCursor, 
LoadCursor, LoadCursorFromFile, Loadlmage 

GetClipCursor 
The GetClipCursor function retrieves the screen coordinates of the rectangular area to 
which the cursor is confined. 



BOOL::SetCl1 pCursor (. 

,itr~~~~~ef~?t ... HWJ~fr;e~~.~p.~r~t~at.~s '".".; 

Parameters 
IpRect 

Chapter 7 Resources 205 

[out] Pointer to a RECT structure that receives the screen coordinates of the confining 
rectangle. The structure receives the dimensions of the screen if the cursor is not 
confined to a rectangle. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
The cursor is a shared resource. If an application confines the cursor with the 
ClipCursor function, it must later release the cursor by using ClipCursor before 
relinquishing control to another application. 

The calling process must have WINSTA_READATTRIBUTES access to the window 
station. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.1ib. 

Cursors Overview, Cursor Functions, ClipCursor, GetCursorPos, RECT 

GetCursor 
The GetCursor function retrieves the handle to the current cursor. 

Parameters 
This function has no parameters. 



206 Volume 2 Microsoft Windows User Interface 

Return Values 
The return value is the handle to the current cursor. If there is no cursor, the return value 
is NULL. 

Windows 98, and Windows NT 4.0 SP3 and later: To get the cursor for another 
thread, use GetGUIThreadlnfo. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Cursors Overview, Cursor Functions, GetGUIThreadlnfo, SetCursor 

GetCursorlnfo 
The GetCursorlnfo function retrieves information about the global cursor. 

Parameters 
pci 

[out] Pointer to a CURSORINFO structure that receives the information. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Windows NT/2000: Requires Windows NT 4.0 SP3 or later. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 



Chapter 7 Resources 207 

__ ISQ· 

Cursors Overview, Cursor Functions, CURSORINFO 

GetCursorPos 
The GetCursorPos function retrieves the cursor's position, in screen coordinates. 

Parameters 
IpPoint 

[out] Pointer to a POINT structure that receives the screen coordinates of the cursor. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
The cursor position is always specified in screen coordinates, and is not affected by the 
mapping mode of the window that contains the cursor. 

The calling process must have WINSTA_READATTRIBUTES access to the window 
station. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

'; '" 

Cursors Overview, Cursor Functions, ClipCursor, POINT, SetCursor, SetCursorPos, 
ShowCursor 



208 Volume 2 Microsoft Windows User Interface 

LoadCursor 
The LoadCursor function loads the specified cursor resource from the executable (.exe) 
file associated with an application instance. 

Note This function has been superseded by the Loadlmage function. 

Parameters 
hlnstance 

[in] Handle to an instance of the module whose executable file contains the cursor to 
be loaded. 

IpCursorName 
[in] Pointer to a null-terminated string that contains the name of the cursor resource to 
be loaded. Alternatively, this parameter can consist of the resource identifier in the 
low-order word and zero in the high-order word. The MAKEINTRESOURCE macro 
also can be used to create this value. 

To use one of the cursors predefined in the Microsoft Win32 API, the application must 
set the hlnstance parameter to NULL and the IpCursorName parameter to one the 
following values: 

Value 

IDC_APPSTARTING 

I DC_ARROW 

I DC_CROSS 

IDC_HAND 

IDC_HELP 

IDC_IBEAM 

IDC_ICON 

IDC_NO 

IDC_SIZE 

IDC_SIZEALL 

IDC_SIZENESW 

IDC_SIZENS 

IDC_SIZENWSE 

IDC_SIZEWE 

Meaning 

Standard arrow and small hourglass 

Standard arrow 

Crosshair 

Windows 2000: Hand 

Arrow and question mark 

I-beam 

Obsolete for applications marked version 4.0 or later 

Slashed circle 

Obsolete for applications marked version 4.0 or later; use 
IDC_SIZEALL 

Four-pointed arrow pointing north, south, east, and west 

Double-pointed arrow pointing northeast and southwest 

Double-pointed arrow pointing north and south 

Double-pointed arrow pointing northwest and southeast 

Double-pointed arrow pointing west and east 



Value 

IDC_UPARROW 

I DC_WAIT 

Return Values 

Meaning 

Vertical arrow 

Hourglass 

Chapter 7 Resources 209 

If the function succeeds, the return value is the handle to the newly loaded cursor. 

If the function fails, the return value is NULL. To get extended error information, call 
GetLastError. 

Remarks 
The LoadCursor function loads the cursor resource only if it has not been loaded; 
otherwise, it retrieves the handle to the existing resource. This function returns a valid 
cursor handle only if the IpCursorName parameter is a pOinter to a cursor resource. If 
IpCursorName is a pointer to any type of resource other than a cursor (such as an icon), 
the return value is not NULL, even though it is not a valid cursor han9le. 

The LoadCursor function searches the cursor resource most appropriate for the cursor 
for the current display device. The cursor resource can be a color or monochrome 
bitmap. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Cursors Overview, Cursor Functions, Loadlmage, MAKEINTRESOURCE, SetCursor, 
SetCursorPos, ShowCursor 

LoadCursorFromFile 
The LoadCursorFromFile function creates a cursor based on data contained in a file. 
The file is specified by its name or by a system cursor identifier. The function returns a 
handle to the newly created cursor. Files containing cursor data may be in either cursor 
(.cur) or animated cursor (.ani) format. 

HClJR$O~;t.()adCul'~orfriI)jRF11e( 
,1..PC:rSTRlpf f:1 e}/ame 



210 Volume 2 Microsoft Windows User Interface 

Parameters 
IpFileName 

[in] Specifies the source of the file data to be used to create the cursor. The data in 
the file must be in either .cur or .ani format. 

If the high-order word of IpszFileName is nonzero, it is a pOinter to a string that is a 
fully qualified name of a file containing cursor data. 

If the high-order word of IpszFileName is zero, the low-order word is a system cursor 
identifier. The function then searches the [cursors] section in the WIN.INI file for the 
file associated with the name of that system cursor. For a list of cursor identifiers, see 
Remarks. 

Return Values 
If the function is successful, the return value is a handle to the new cursor. 

If the function fails, the return value is NULL. To get extended error information, call 
GetLastError. GetLastError may return the following value: 

Value Meaning 

The specified file cannot be found. 

Remarks 
The following is a list of system cursor names and identifiers: 

Cursor name Cursor identifier 

"AppStarting" OCR_APPSTARTING 

"Arrow" OCR_NORMAL 

"Crosshair" OCR_CROSS 

"Hand" Windows 2000: OCR_HAND 

"Help" OCR_HELP 

"I Beam" OCR_IBEAM 

"Icon" OCR_ICON 

"No" OCR_NO 

"Size" OCR_SIZE 

"SizeAII" OCR_SIZEALL 

"SizeNESW" OCR_SIZENESW 

"SizeNS" OCR_SIZENS 

"SizeNWSE" OCR_SIZENWSE 

"SizeWE" OCR_SIZEWE 

"UpArrow" OCR_UP 

"Wait" OCR_WAIT 



Chapter 7 Resources 211 

For example, if the Win.ini file contains the following: 

then the following call causes LoadCursorFromFile to obtain cursor data from the file 
Arrow.ani: 

If the Win.ini file does not contain an entry for the specified system cursor, the function 
fails and returns NULL. 

Windows NT/2000: Requires Windows NT 3.5 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Cursors Overview, Cursor Functions, LoadCursor, SetCursor, SetSystemCursor 

SetCursor 
The SetCursor function establishes the cursor shape. 

Parameters 
hCursor 

[in] Handle to the cursor. The cursor must have been created by the CreateCursor 
function or loaded by the LoadCursor or Loadlmage function. If this parameter is 
NULL, the cursor is removed from the screen. 

Windows 95: The width and height of the cursor must be the values returned by the 
GetSystemMetrics function for SM_CXCURSOR and SM_CYCURSOR. In addition, 
either the cursor bit depth must match the bit depth of the display or the cursor must 
be monochrome. 

Return Values 
The return value is the handle to the previous cursor, if there was one. 



212 Volume 2 Microsoft Windows User Interface 

If there was no previous cursor, the return value is NULL. 

Remarks 
The cursor is set only if the new cursor is different from the previous cursor; otherwise, 
the function returns immediately. 

The cursor is a shared resource. A window should set the cursor shape only when the 
cursor is in its client area or when the window is capturing mouse input. In systems 
without a mouse, the window should restore the previous cursor before the cursor leaves 
the client area or before it relinquishes control to another window. 

If your application must set the cursor while it is in a window, make sure the class cursor 
for the specified window's class is set to NULL. If the class cursor is not NULL, the 
system restores the class cursor each time the mouse is moved. 

The cursor is not shown on the screen if the internal cursor display count is less than 
zero. This occurs if the application uses the ShowCursor function to hide the cursor 
more times than to show the cursor. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Cursors Overview, Cursor Functions, CreateCursor, GetCursor, GetSystemMetrics, 
LoadCursor, Loadlmage, SetCursorPos, ShowCursor 

SetCursorPos 
The SetCursorPos function moves the cursor to the specified screen coordinates. If the 
new coordinates are not within the screen rectangle set by the most recent ClipCursor 
function call, the system automatically adjusts the coordinates, so that the cursor stays 
within the rectangle. 



Parameters 
x 

Chapter 7 Resources 213 

[in] Specifies the new x-coordinate of the cursor, in screen coordinates. 
y 

[in] Specifies the new y-coordinate of the cursor, in screen coordinates. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
The cursor is a shared resource. A window should move the cursor only when the cursor 
is in its client area. 

The calling process must have WINSTA_WRITEATTRIBUTES access to the window 
station. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Cursors Overview, Cursor Functions, ClipCursor, GetCursorPos, SetCaretPos, 
SetCursor, ShowCursor 

SetSystemCursor 
The SetSystemCursor function enables an application to customize the system cursors. 
It replaces the contents of the system cursor specified by the id parameter with the 
contents of the cursor specified by the hcur parameter, and then destroys hcur. 



214 Volume 2 Microsoft Windows User Interface 

Parameters 
hcur 

id 

[in] Handle to a cursor. The function replaces the contents of the system cursor 
specified by idwith the contents of the cursor handled by hcur. 

The system destroys hcur by calling the DestroyCursor function. Therefore, hcur 
cannot be a cursor loaded using the LoadCursor function. To specify a cursor loaded 
from a resource, copy the cursor using the CopyCursor function, then pass the copy 
to SetSystemCursor. 

[in] Specifies the system cursor to replace with the contents of hcur. This parameter 
can be one of the following values: 

Value 

OCR_APPSTARTING 

OCR_CROSS 

OCR_HAND 

OCR_HELP 

OCR_I BEAM 

OCR_NO 

OCR_NORMAL 

OCR_SIZEALL 

OCR_SIZENS 

OCR_SIZENWSE 

OCR_SIZEWE 

OCR_UP 

OCR_WAIT 

Meaning 

Standard arrow and small hourglass 

Crosshair 

Windows 2000: Hand 

Arrow and question mark 

I-beam 

Slashed circle 

Standard arrow 

Four-pointed arrow pointing north, south, east, and 
west 

Double-pointed arrow pointing northeast and 
southwest 

Double-pointed arrow pointing north and south 

Double-pointed arrow pointing northwest and 
southeast 

Double-pointed arrow pOinting west and east 

Vertical arrow 

Hourglass 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Windows NT/2000: Requires Windows NT 3.5 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 



Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Chapter 7 Resources 215 

Cursors Overview, Cursor Functions, DestroyCursor, LoadCursor, 
LoadCursorFromFile, SetCursor 

ShowCursor 
The ShowCursor function displays or hides the cursor. 

Parameters 
bShow 

[in] Specifies whether the internal display counter is to be incremented or 
decremented. If bShow is TRUE, the display count is incremented by one. If bShow is 
FALSE, the display count is decremented by one. 

Return Values 
The return value specifies the new display counter. 

Remarks 
This function sets an internal display counter that determines whether the cursor should 
be displayed. The cursor is displayed only if the display count is greater than or equal to 
o. If a mouse is installed, the initial display count is O. If no mouse is installed, the display 
count is -1. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Cursors Overview, Cursor Functions, ClipCursor, GetCursorPos, SetCursor, 
SetCursorPos 



216 Volume 2 Microsoft Windows User Inter1ace 

Cursor Structures 

CURSORINFO 
The CURSORINFO structure contains global cursor information. 

Members 
cbSize 

Specifies the size, in bytes, of the structure. 

flags 
Specifies the cursor state. This parameter can be one of the following values: 

Value Meaning 

o 
CURSOR_SHOWING 

hCursor 
Handle to the cursor. 

ptScreenPos 

The cursor is hidden. 

The cursor is showing. 

A POINT structure that receives the screen coordinates of the cursor. 

Windows NT/2000: Requires Windows NT 4.0 SP3 or later. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Cursors Overview, Cursor Structures, GetCursorlnfo, POINT 

Cursor Messages 
The following message is used with cursors: 

WM_SETCURSOR 



Chapter 7 Resources 217 

The WM_SETCURSOR message is sent to a window if the mouse causes the cursor to 
move within a window and mouse input is not captured. 

A window receives this message through its WindowProc function. 

Parameters 
wParam 

Handle to the window that contains the cursor. 

IParam 
The low-order word of IParam specifies the hit-test code. 

The high-order word of IParam specifies the identifier of the mouse message. 

Return Values 
If an application processes this message, it should return TRUE to halt further 
processing or FALSE to continue. 

Remarks 
The high-order word of IParam is zero when the window enters menu mode. 

The DefWindowProc function passes the WM_SETCURSOR message to a parent 
window before processing. If the parent window returns TRUE, further processing is 
halted. Passing the message to a window's parent window gives the parent window 
control over the cursor's setting in a child window. The DefWindowProc function also 
uses this message to set the cursor to an arrow if it is not in the client area, or to the 
registered class cursor if it is in the client area. If the low-order word of the IParam 
parameter is HTERROR and the high-order word of IParam specifies that one of the 
mouse buttons is pressed, DefWindowProc calls the MessageBeep function. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 



218 Volume 2 Microsoft Windows User Interface 

Icons 

Cursors Overview, Cursor Messages, DefWindowProc, HIWORD, LOWORD, 
MessageBeep 

An ieon is a picture that consists of a bitmap image combined with a mask to create 
transparent areas in the picture. The term icon can refer to either of the following: 

• A single icon image. This is a resource of type RT _ICON. 

• A group of images, from which the system or an application can choose the most 
appropriate icon based on size and color depth. This is a resource of type 
RT _GROUP _ICON. 

About Icons 
The system uses icons throughout the user interface to represent objects, such as files, 
folders, shortcuts, applications, and documents. The icon functions provided by the 
Win32 API enable applications to create, load, display, arrange, animate, and destroy 
icons. 

Icon Reference 
Icon Functions 

Copylcon 
The Copylcon function copies the specified icon from another module to the current 
module. 

Parameters 
h/eon 

[in] Handle to the icon to be copied. 

Return Values 
If the function succeeds, the return value is a handle to the duplicate icon. 

If the function fails, the return value is NULL. To get extended error information, call 
GetLastError. 



Chapter 7 Resources 219 

Remarks 
The Copylcon function enables an application or dynamic-link library (DLL) to get its 
own handle to an icon owned by another module. If the other module is freed, the 
application icon still will be able to use the icon. 

Before closing, an application must call the Destroylcon function to free any system 
resources associated with the icon. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Icons Overview, Icon Functions, CopyCursor, Destroylcon, Drawlcon, DrawlconEx 

Createlcon 
The Createlcon function creates an icon that has the specified size, colors, and bit 
patterns. 

Parameters 
hlnstance 

[in] Handle to the instance of the module creating the icon. 

nWidth 
[in] Specifies the width, in pixels, of the icon. 

nHeight 
[in] Specifies the height, in pixels, of the icon. 

cPlanes 
[in] Specifies the number of planes in the XOR bitmask of the icon. 



220 Volume 2 Microsoft Windows User Interface 

cBitsPixel 
[in] Specifies the number of bits-per-pixel in the XOR bitmask of the icon. 

IpbANDbits 
[in] Pointer to an array of bytes that contains the bit values for the AND bitmask of the 
icon. This bitmask describes a monochrome bitmap. 

IpbXORbits 
[in] Pointer to an array of bytes that contains the bit values for the XOR bitmask of the 
icon. This bitmask describes a monochrome or device-dependent color bitmap. 

Return Values 
If the function succeeds, the return value is a handle to an icon. 

If the function fails, the return value is NULL. To get extended error information, call 
GetLastError. 

Remarks 
The nWidth and nHeight parameters must specify, respectively, a width and a height 
supported by the current display driver, because the system cannot create icons of other 
sizes. To determine the width and height supported by the display driver, use the 
GetSystemMetrics function, specifying the SM_CXICON or SM_CYICON value. 

Createlcon applies the following truth table to the AND and XOR bitmasks: 

AND bitmask XOR bitmask Display 

o 
o 
1 
1 

o 
1 
o 
1 

Black 

White 

Screen 

Reverse screen 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Icons Overview, Icon Functions, GetSystemMetrics 



Chapter 7 Resources 221 

CreatelconFromResource 
The CreatelconFromResource function creates an icon or cursor from resource bits 
describing the icon. 

To specify a desired height or width, use the CreatelconFromResourceEx function. 

Parameters 
presbits 

[in] Pointer to a buffer containing the icon or cursor resource bits. These bits are 
typically loaded by calls to the LookuplconldFromDirectory (in Windows 95, you 
also can call LookuplconldFromDirectoryEx) and LoadResource functions. 

dwResSize 
[in] Specifies the size, in bytes, of the set of bits pOinted to by the presbits parameter. 

flcon 
[in] Specifies whether an icon or a cursor is to be created. If this parameter is TRUE, 
an icon is to be created. If it is FALSE, a cursor is to be created. 

dwVer 
[in] Specifies the version number of the icon or cursor format for the resource bits 
pointed to by the presbits parameter. This parameter can be one of the following 
values: 

Format DwVer 

Windows 2.x 

Windows 3.x 

Ox00020000 
Ox00030000 

All Win32-based applications use the Windows 3.x format for icons and cursors. 

Return Values 
If the function succeeds, the return value is a handle to the icon or cursor. 

If the function fails, the return value is NULL. To get extended error information, call 
GetLastError. 

Remarks 
The CreatelconFromResource, CreatelconFromResourceEx, Createlconlndirect, 
Getlconlnfo, LookuplconldFromDirectory, and LookuplconldFromDirectoryEx 



222 Volume 2 Microsoft Windows User Interface 

functions allow shell applications and icon browsers to examine and use resources 
throughout the system. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Icons Overview, Icon Functions, CreatelconFromResourceEx, Createlconlndirect, 
Getlconlnfo, LoadResource, LookuplconldFromDirectory, 
LookuplconldFromDirectoryEx 

CreatelconFromResourceEx 
The CreatelconFromResourceEx function creates an icon or cursor from resource bits 
describing the icon. 

Parameters 
pb/conBits 

[in] Pointer to a buffer containing the icon or cursor resource bits. These bits are 
typically loaded by calls to the LookuplconldFromDirectoryEx and LoadResource 
functions. 

cblconBits 
[in] Specifies the size, in bytes, of the set of bits pOinted to by the pblconBits 
parameter. 

flcon 
[in] Specifies whether an icon or a cursor is to be created. If this parameter is TRUE, 
an icon is to be created. If it is FALSE, a cursor is to be created. 



Chapter 7 Resources 223 

dwVersion 
[in] Specifies the version number of the icon or cursor format for the resource bits 
pointed to by the pblconBits parameter. This parameter can be one of the following 
values: 

Format dwVersion 

Windows 2.x 

Windows 3.x 

Ox00020000 
Ox00030000 

All Win32-based applications use the Windows 3.x format for icons and cursors. 

cxDesired 
[in] Specifies the desired width, in pixels, of the icon or cursor. If this parameter is 
zero, the function uses the SM_CXICON or SM_CXCURSOR system metric value to 
set the width. 

cyDesired 
[in] Specifies the desired height, in pixels, of the icon or cursor. If this parameter is 
zero, the function uses the SM_CYICON or SM_CYCURSOR system metric value to 
set the height. 

uFlags 
[in] Specifies a combination of the following values: 

Value 

LR_DEFAUL TCOLOR 

LR_MONOCHROME 

Return Values 

Meaning 

Uses the default color format. 

Creates a monochrome icon or cursor. 

If the function succeeds, the return value is a handle to the icon or cursor. 

If the function fails, the return value is NULL. To get extended error information, call 
GetLastError. 

Remarks 
The CreatelconFromResource, CreatelconFromResourceEx, Createlconlndirect, 
Getlconlnfo, and LookuplconldFromDirectoryEx functions allow shell applications 
and icon browsers to examine and use resources throughout the system. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 



224 Volume 2 Microsoft Windows User Interface 

Icons Overview, Icon Functions, BITMAPINFOHEADER, CreatelconFromResource, 
Createlconlndirect, Getlconlnfo, LoadResource, LookuplconldFromDirectoryEx 

Createlconlndirect 
The Createlconlndirect function creates an icon or cursor from an ICONINFO structure. 

Parameters 
piconinfo 

[in] Pointer to an ICONINFO structure the function uses to create the icon or cursor. 

Return Values 
If the function succeeds, the return value is a handle to the icon or cursor that is created. 

If the function fails, the return value is NULL. To get extended error information, call 
GetLastError. 

Remarks 
The system copies the bitmaps in the ICONINFO structure before creating the icon or 
cursor. Because the system may select temporarily the bitmaps in a device context, the 
hbmMask and hbmColor members of the ICONINFO structure should not already be 
selected into a device context. The application must continue to manage the original 
bitmaps, and delete them when they are no longer necessary. 

When you are finished using the icon, destroy it using the Destroylcon function. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Icons Overview, Icon Functions, Destroylcon, ICONINFO 



Chapter 7 Resources 225 

Destroylcon 
The Destroylcon function destroys an icon and frees any memory the icon occupied. 

Parameters 
hlcon 

[in] Handle to the icon to be destroyed. The icon must not be in use. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
It is only necessary to call Destroylcon for icons and cursors created with the 
Createlconlndirect and the Copylcon functions. Do not use this function to destroy a 
shared icon. A shared icon is valid as long as the module from which it was loaded 
remains in memory. The following functions obtain a shared icon: 

• Loadlcon 
• Loadlmage (if you use the LR_SHARED flag) 

• Copylmage (if you use the LR_COPYRETURNORG flag and the hlmage parameter 
is a shared icon) 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

: .. ;" . : ,x 
Icons Overview, Icon Functions, Copylcon, Createlconlndirect 

Drawlcon 
The Drawlcon function draws an icon or cursor into the specified device context. 



226 Volume 2 Microsoft Windows User Interface 

To specify additional drawing options, use the DrawlconEx function. 

Parameters 
hOC 

[in] Handle to the device context into which the icon or cursor will be drawn. 

X 
[in] Specifies the logical x-coordinate of the upper-left corner of the icon. 

y 
[in] Specifies the logical y-coordinate of the upper-left corner of the icon. 

hlcon 
[in] Handle to the icon to be drawn. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
Drawlcon places the icon's upper-left corner at the location specified by the X and Y 
parameters. The location is subject to the current mapping mode of the device context. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.1ib. 

Icons Overview, Icon Functions, Createlcon, DrawlconEx, Loadlcon 



Chapter 7 Resources 227 

DrawlconEx 
The DrawlconEx function draws an icon or cursor into the specified device context, 
performing the specified raster operations, and stretching or compressing the icon or 
cursor, as specified. 

Parameters 
hdc 

[in] Handle to the device context into which the icon or cursor will be drawn. 

xL eft 
[in] Specifies the logical x-coordinate of the upper-left corner of the icon or cursor. 

yTop 
[in] Specifies the logical y-coordinate of the upper-left corner of the icon or cursor. 

h/con 
[in] Handle to the icon or cursor to be drawn. This parameter can identify an animated 
cursor. 

cxWidth 
[in] Specifies the logical width of the icon or cursor. If this parameter is zero and the 
diF/ags parameter is DLDEFAUL TSIZE, the function uses the SM_CXICON or 
SM_CXCURSOR system metric value to set the width. If this parameter is zero and 
DLDEFAUL TSIZE is not used, the function uses the actual resource width. 

cyWidth 
[in] Specifies the logical height of the icon or cursor. If this parameter is zero and the 
diF/ags parameter is DI_DEFAUL TSIZE, the function uses the SM_CYICON or 
SM_CYCURSOR system metric value to set the width. If this parameter is zero and 
DLDEFAULTSIZE is not used, the function uses the actual resource height. 

isteplfAniCur 
[in] Specifies the index of the frame to draw, if h/con identifies an animated cursor. 
This parameter is ignored if h/con does not identify an animated cursor. 

hbrFlickerFreeDraw 
[in] Handle to a brush that the system uses for flicker-free drawing. If 
hbrFlickerFreeDraw is a valid brush handle, the system creates an offscreen bitmap 



228 Volume 2 Microsoft Windows User Interface 

using the specified brush for the background color, draws the icon or cursor into the 
bitmap, and copies the bitmap into the device context identified by hdc. If 
hbrFlickerFreeDraw is NULL, the system draws the icon or cursor directly into the 
device context. 

diFlags 
[in] Specifies the drawing flags. This parameter can be one of the following values: 

Value 

DI_DEFAUL TSIZE 

DUMAGE 

DI_MASK 

DLNORMAL 

Return Values 

Meaning 

Draws the icon or cursor using the system default image, 
instead of the user-specified image. 

Draws the icon or cursor using the width and height specified, 
by the system metric values for cursors or icons, if the 
cxWidth and cyWidth parameters are set to zero. If this flag 
is not specified, and cxWidth and cyWidth are set to zero, the 
function uses the actual resource size. 

Draws the icon or cursor using the image. 

Draws the icon or cursor using the mask. 

Combination of DUMAGE and DI_MASK. 

If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
The DrawlconEx function places the icon's upper-left corner at the location specified by 
the xLeft and yTop parameters. The location is subject to the current mapping mode of 
the device context. 

Windows NT/2000: Requires Windows NT 3.5 or later. 
Windows 95/98: Requires \Nindows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Icons Overview, Icon Functions, Copylmage, Loadlmage 



Chapter 7 Resources 229 

Duplicatelcon 
The Duplicatelcon function creates a duplicate of a specified icon. 

Parameters 
hlnst 

[in] This parameter is not used; it can be NULL. 

hlcon 
[in] Handle to the icon to be duplicated. 

Return Values 
If successful, the function returns the handle to the new icon that was created. If 
unsuccessful, it returns NULL. 

Remarks 
You must destroy the icon handle returned by Duplicatelcon by calling the Destroylcon 
function. 

Windows NT/2000: Requires Windows NT 3.5 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shellapLh. 
Library: Use shell32.1ib. 

Icons Overview, Icon Functions, Destroylcon 

ExtractAssociatedlcon 
The ExtractAssociatedlcon function returns a handle to an indexed icon found in a file 
or an icon found in an associated executable file. 



230 Volume 2 Microsoft Windows User Interface 

Parameters 
hlnst 

[in] Specifies the instance of the application calling the function. 

IplconPath 
[in] Pointer to a string that specifies the full path and file name of the file that contains 
the icon. The function extracts the icon handle from that file, or from an executable file 
associated with that file. 

If the icon handle is obtained from an executable file, the function stores the full path 
and file name of that executable in the string pointed to by IplconPath. 

Ipi/con 
[in] Pointer to a WORD that specifies the index of the icon whose handle is to be 
obtained. 

If the icon handle is obtained from an executable file, the function stores the icon's 
identifier in the WORD pointed to by Ipi/con. 

Return Values 
If the function succeeds, the return value is an icon handle. If the icon is extracted from 
an associated executable file, the function stores the full path and file name of the 
executable file in the string pointed to by IplconPath, and stores the icon's identifier in 
the WORD painted to by Ipi/con. 

If the function fails, the return value is NULL. 

Remarks 
The ExtractAssociatedlcon function first looks for the indexed icon in the file specified 
by IplconPath. If the function cannot obtain the icon handle from that file, and the file has 
an associated executable file, it looks in that executable file for an icon. Associations 
with executable files are based on file name extensions, are stored in the per-user part 
of the registry, and can be defined using File Manager's Associate command. 

Windows NT/2000: Requires Windows NT 3.5 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in shellapi.h. 
Library: Use sheIl32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Icons Overview, Icon Functions, Extractlcon 



Chapter 7 Resources 231 

Extractlcon 
The Extractlcon function retrieves a handle to an icon from the specified executable file, 
dynamic-link library (DLL), or icon file. 

To retrieve an array of handles to large or small icons, use the ExtractlconEx function. 

Parameters 
hlnst 

[in] Handle to the instance of the application calling the function. 

IpszExeFileName 
[in] Pointer to a null-terminated string specifying the name of an executable file, DLL, 
or icon file. 

nlconlndex 
[in] Specifies the zero-based index of the icon to retrieve. For example, if this value is 
0, the function returns a handle to the first icon in the specified file. 

If this value is -1, the function returns the total number of icons in the specified file. If 
the file is an executable file or DLL, the return value is the number of 
RT _GROUP _ICON resources. If the file is an .ico file, the return value is 1. 

Windows 95/98, Windows NT 4.0, and Windows 2000: If this value is a negative 
number not equal to -1 , the function returns a handle to the icon in the specified file 
whose resource identifier is equal to the absolute value of nlconlndex. For example, 
use -3 to extract the icon whose resource identifier is 3. To extract the icon whose 
resource identifier is 1, use the ExtractlconEx function. 

Return Values 
The return value is a handle to an icon. If the file specified was not an executable file, 
DLL, or icon file, the return is 1. If no icons were found in the file, the return value is 
NULL. 

Remarks 
You must destroy the icon handle returned by Extractlcon by calling the Destroylcon 
function. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 



232 Volume 2 Microsoft Windows User Interface 

Header: Declared in shellapi.h. 
Library: Use shell32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Icons Overview, Icon Functions, Destroylcon, ExtractlconEx 

Extractlcon Ex 
The ExtractlconEx function creates an array of handles to large or small icons extracted 
from the specified executable file, dynamic-link library (DLL), or icon file. 

Parameters 
IpszFile 

[in] Pointer to a nUll-terminated string specifying the name of an executable file, DLL, 
or icon file from which icons will be extracted. 

nlconlndex 
[in] Specifies the zero-based index of the first icon to extract. For example, if this 
value is zero, the function extracts the first icon in the specified file. 

If this value is -1 and phlconLarge and phiconSmall are both NULL, the function 
returns the total number of icons in the specified file. If the file is an executable file or 
DLL, the return value is the number of RT _GROUP _ICON resources. If the file is an 
.ico file, the return value is 1. 

Windows 95/98, Windows NT 4.0, and Windows 2000: If this value is a negative 
number, and either phfconLarge or phiconSmaii is not NULL, the function begins by 
extracting the icon whose resource identifier is equal to the absolute value of 
nlconlndex. For example, use -3 to extract the icon whose resource identifier is 3. 

phiconLarge 
[out] Pointer to an array of icon handles that receives handles to the large icons 
extracted from the file. If this parameter is NULL, no large icons are extracted from the 
file. 

phiconSmall 
[out] Pointer to an array of icon handles that receives handles to the small icons 
extracted from the file. If this parameter is NULL, no small icons are extracted from 
the file. 



Chapter 7 Resources 233 

nlcons 
[in] Specifies the number of icons to extract from the file. 

Return Values 
If the nlconlndex parameter is -1, the phiconLarge parameter is NULL, and the 
phiconSmaIJ parameter is NULL, then the return value is the number of icons contained 
in the specified file. Otherwise, the return value is the number of icons successfully 
extracted from the file. 

Remarks 
You must destroy all icons extracted by ExtractlconEx by calling the Destroylcon 
function. 

To retrieve the dimensions of the large and small icons, use the GetSystemMetrics 
function with the SM_CXICON, SM_CYICON, SM_CXSMICON, and SM_CYSMICON 
flags. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in shellapi.h. 
Library: Use sheIl32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Icons Overview, Icon Functions, Destroylcon, Extractlcon 

Getlconlnfo 
The Getlconlnfo function retrieves information about the specified icon or cursor. 

Parameters 
hlcon 

[in] Handle to the icon or cursor. To retrieve information about a standard icon or 
cursor, specify one of the following values: 



234 Volume 2 Microsoft Windows User Interface 

Value 

IDC_APPSTARTING 

IDC_ARROW 

I DC_CROSS 

IDC_HAND 

IDC_HELP 

IDC_'BEAM 

IDC_NO 

IDC_SIZEALL 

IDC_SIZENS 

IDC_SIZENWSE 

IDC_SIZEWE 

IDC_UPARROW 

I DC_WAIT 

IDI_APPLICATION 

IDI_ASTERISK 

IDI_EXCLAMATION 

IDLHAND 

IDLQUESTION 

IDI_WINLOGO 

piconinfo 

Meaning 

Standard arrow and small hourglass cursor 

Standard arrow cursor 

Crosshair cursor 

Windows 2000: Hand cursor 

Arrow and question-mark cursor 

I-beam cursor 

Slashed circle cursor 

Four-pointed arrow cursor pointing north, south, east, and 
west 

Double-pointed arrow cursor pointing northeast and 
southwest 

Double-pointed arrow cursor pointing north and south 

Double-pointed arrow cursor pointing northwest and 
southeast 

Double-pointed arrow cursor pointing west and east 

Vertical-arrow cursor 

Hourglass cursor 

Application icon 

Asterisk icon 

Exclamation-point icon 

Stop-sign icon 

Question-mark icon 

Windows logo icon 

[out] Pointer to an ICONINFO structure. The function fills in the structure's members. 

Return Values 
If the function succeeds, the return value is nonzero and the function fills in the members 
of the specified ICONINFO structure. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
Getlconlnfo creates bitmaps for the hbmMask and hbmColor members of ICONINFO. 
The calling application must manage these bitmaps and delete them when they are no 
longer necessary. 



Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Chapter 7 Resources 235 

Icons Overview, Icon Functions, Createlcon, CreatelconFromResource, 
Createlconlndirect, Destroylcon, Drawlcon, DrawlconEx, ICONINFO, Loadlcon, 
LookuplconldFromDirectory 

Loadlcon 
The Loadlcon function loads the specified icon resource from the executable (.exe) file 
associated with an application instance. 

Note This function has been superseded by the Loadlmage function. 

Parameters 
hlnstance 

[in] Handle to an instance of the module whose executable file contains the icon to be 
loaded. This parameter must be NULL when a standard icon is being loaded. 

IplconName 
[in] Pointer to a nUll-terminated string that contains the name of the icon resource to 
be loaded. Alternatively, this parameter can contain the resource identifier in the low­
order word and zero in the high-order word. Use the MAKEINTRESOURCE macro to 
create this value. 

To use one of the predefined icons, set the hlnstance parameter to NULL and the 
IplconName parameter to one of the following values: 

Value Description 

IDLAPPLICATION 

IDLASTERISK 

IDLERROR 

Default application icon 

Same as IDUNFORMATION 

Hand-shaped icon 

(continued) 



236 Volume 2 Microsoft Windows User Interface 

(continued) 

Value 

IOI_EXCLAMATION 

IOLHANO 

IOUNFORMATION 

IOLQUESTION 

IOLWARNING 

IOLWINLOGO 

Return Values 

Description 

Same as IOLWARNING 

Same as IOLERROR 

Asterisk icon 

Question-mark icon 

Exclamation-point icon 

Windows logo icon 

If the function succeeds, the return value is a handle to the newly loaded icon. 

If the function fails, the return value is NULL. To get extended error information, call 
GetLastError. 

Remarks 
Loadlcon loads the icon resource only if it has not been loaded; otherwise, it retrieves a 
handle to the existing resource. The function searches the icon resource for the icon 
most appropriate for the current display. The icon resource can be a color or 
monochrome bitmap. 

Loadlcon can only load an icon whose size conforms to the SM_CXICON and 
SM_CYICON system metric values. Use the Loadlmage function to load icons of other 
sizes. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Oeclared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Icons Overview, Icon Functions, Createlcon, Loadlmage, MAKEINTRESOURCE 

LookuplconldFromDirectory 
The LookuplconldFromDirectory function searches through icon or cursor data for the 
icon or cursor that best fits the current display device. 

To specify a desired height or width, use the LookuplconldFromDirectoryEx function. 



Parameters 
presbits 

Chapter 7 Resources 237 

[in] Pointer to the icon or cursor directory data. Because this function does not 
validate the resource data, it causes a general protection (GP) fault or returns an 
undefined value if presbits is not pointing to valid resource data. 

f/con 
[in] Specifies whether an icon or a cursor is sought. If this parameter is TRUE, the 
function is searching for an icon; if the parameter is FALSE, the function is searching 
for a cursor. 

Return Values 
If the function succeeds, the return value is an integer resource identifier for the icon or 
cursor that best fits the current display device. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
A resource file of type RT _GROUP _ICON (RT _GROUP _CURSOR indicates cursors) 
contains icon (or cursor) data in several device-dependent and device-independent 
formats. LookuplconldFromDirectory searches the resource file for the icon (or cursor) 
that best fits the current display device and returns its integer identifier. The 
FindResource and FindResourceEx functions use the MAKEINTRESOURCE macro 
with this identifier to locate the resource in the module. 

The icon directory is loaded from a resource file with resource type RT _GROUP _ICON 
(or RT _GROUP _CURSOR for cursors), and an integer resource name for the specific 
icon to be loaded. LookuplconldFromDirectory returns an integer identifier that is the 
resource name of the icon that best fits the current display device. 

The Loadlcon, LoadCursor, and Loadlmage functions use this function to search the 
specified resource data for the icon or cursor that best fits the current display device. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 



238 Volume 2 Microsoft Windows User Interface 

Icons Overview, Icon Functions, CreatelconFromResource, Createlconlndirect, 
FindResource, FindResourceEx, Getlconlnfo, LoadCursor, Loadlcon, Loadlmage, 
LookuplconldFromDirectoryEx, MAKEINTRESOURCE 

LookuplconldFromDirectoryEx 
The LookuplconldFromDirectoryEx function searches through icon or cursor data for 
the icon or cursor that best fits the current display device. 

Parameters 
presbits 

[in] Pointer to the icon or cursor directory data. Because this function does not 
validate the resource data, it causes a general protection (GP) fault or returns an 
undefined value if presbits is not pointing to valid resource data. 

flcon 
[in] Specifies whether an icon or a cursor is sought. If this parameter is TRUE, the 
function is searching for an icon; if the parameter is FALSE, the function is searching 
for a cursor. 

cxDesired 
[in] Specifies the desired width, in pixels, of the icon. If this parameter is zero, the 
function uses the SM_CXICON or SM_CXCURSOR system metric value. 

cyDesired 
[in] Specifies the desired height, in pixels, of the icon. If this parameter is zero, the 
function uses the SM_CYICON or SM_CYCURSOR system metric value. 

Flags 
[in] Specifies a combination of the following values: 

Value Meaning 

LR_DEFAUL TCOLOR 

LR_MONOCHROME 

Return Values 

Uses the default color format. 

Creates a monochrome icon or cursor. 

If the function succeeds, the return value is an integer resource identifier for the icon or 
cursor that best fits the current display device. 



Chapter 7 Resources 239 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
A resource file of type RT _GROUP _ICON (RT _GROUP _CURSOR indicates cursors) 
contains icon (or cursor) data in several device-dependent and device-independent 
formats. LookuplconldFromDirectoryEx searches the resource file for the icon (or 
cursor) that best fits the current display device and returns its integer identifier. The 
FindResource and FindResourceEx functions use the MAKEINTRESOURCE macro 
with this identifier to locate the resource in the module. 

The icon directory is loaded from a resource file with resource type RT _GROUP _ICON 
(or RT _GROUP _CURSOR for cursors), and an integer resource name for the specific 
icon to be loaded. LookuplconldFromDirectoryEx returns an integer identifier that is 
the resource name of the icon that best fits the current display device. 

The Loadlcon, Loadlmage, and LoadCursor functions use this function to search the 
specified resource data for the icon or cursor that best fits the current display device. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Icons Overview, Icon Functions, CreatelconFromResourceEx, Createlconlndirect, 
FindResource, FindResourceEx, Getlconlnfo, LoadCursor, Loadlcon, Loadlmage, 
LookuplconldFromDirectory, MAKEINTRESOURCE 

Icon Structures 

ICONINFO 
The ICONINFO structure contains information about an icon or cursor. 

typedEif. struct_ICONlftFO 
aoQ·L . fI.dQl1; . ,. . 

1fWORD. xHotspot;·· 
DWORO' yHlltspot; . 
. I'ISITMAPhJ:!mJllask;. 

" HaTIMAPh1iincp1o.r.; ...• ,: . 
1 ICONINFO{ 



240 Volume 2 Microsoft Windows User Interface 

Members 
flcon 

Specifies whether this structure defines an icon or a cursor. A value of TRUE 
specifies an icon; FALSE specifies a cursor. 

xHotspot 
Specifies the x-coordinate of a cursor's hot spot. If this structure defines an icon, the 
hot spot is always in the center of the icon, and this member is ignored. 

yHotspot 
Specifies the y-coordinate of the cursor's hot spot. If this structure defines an icon, the 
hot spot is always in the center of the icon, and this member is ignored. 

hbmMask 
Specifies the icon bitmask bitmap. If this structure defines a black and white icon, this 
bitmask is formatted so that the upper half is the icon AND bitmask and the lower half 
is the icon XOR bitmask. Under this condition, the height should be an even multiple 
of two. If this structure defines a color icon, this mask only defines the AND bitmask of 
the icon. 

hbmColor 
Handle to the icon color bitmap. This member can be optional if this structure defines 
a black and white icon. The AND bitmask of hbmMask is applied with the SRCAND 
flag to the destination; subsequently, the color bitmap is applied (using XOR) to the 
destination by using the SRCINVERT flag. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Icons Overview, Icon Structures, Createlconlndirect, Getlconlnfo 

ICONMETRICS 
The ICON METRICS structure contains the scalable metrics associated with icons. This 
structure is used with the SystemParameterslnfo function when the 
SPI_GETICONMETRICS or SPLSETICONMETRICS action is specified. 



1nt iVertSpacing; 
int iTitleWrap; 
LOG FONT .1 fFont; 

J ICONMETRICS. FAR *lPICONMETRICS: 

Members 
cbSize 

Specifies the size of the structure, in bytes. 

iHorzSpacing and iVertSpacing 

Chapter 7 Resources 241 

Horizontal and vertical space, in pixels, for each arranged icon. 

iTitleWrap 
Title-wrapping flag. If this member is nonzero, icon titles wrap to a new line. If this 
member is zero, titles do not wrap. 

If Font 
Specifies the font to use for icon titles. 

Windows NT/2000: Requires Windows NT 3.5 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Unicode: Declared as Unicode and ANSI structures. 

Icons Overview, Icon Structures, SystemParameterslnfo 

WM_ERASEBKGND 
The WM_ERASEBKGND message is sent when the window background must be 
erased (for example, when a window is resized). The message is sent to prepare an 
invalidated portion of a window for painting. 

A window receives this message through its WindowProc function. 

LRf:S\JLrpAj.,~BACK W1n(lowProc( 
HWNllhwnd it .bal1~d1'e1;ow1;ndow .. 

,J1Ita uMsf/:. llwf'LERASESKGJiD' 
:2:.W~ARAMwPlH·llm. ~ i/handle~~t~~devi Cflcontex.t, (HOC) . 
'\LPAAAM1Piir;am /f.·!iot ;use({ 

).:; . 



242 Volume 2 Microsoft Windows User Interface 

Parameters 
wParam 

Handle to the device context. 

IParam 
This parameter is not used. 

Return Values 
An application should return nonzero if it erases the background; otherwise, it should 
return zero. 

Remarks 
The DefWindowProc function erases the background by using the class background 
brush specified by the hbrBackground member of the WNDCLASS structure. If 
hbrBackground is NULL, the application should process the WM_ERASEBKGND 
message and erase the background. 

An application should return nonzero in response to WM_ERASEBKGND if it processes 
the message and erases the background; this indicates that no further erasing is 
required. If the application returns zero, the window will remain marked for erasing. 
(Typically, this indicates that the fErase member of the PAINTSTRUCT structure will be 
TRUE.) 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Icons Overview, Icon Messages, BeginPaint, DefWindowProc, PAINTSTRUCT, 
WM_ICONERASEBKGND, WNDCLASS 

WM~CONERASEBKGND 

The WM_ICONERASEBKGND message is sent to a minimized window when the 
background of the icon must be filled before painting the icon. A window receives this 
message only if a class icon is defined for the window; otherwise, WM_ERASEBKGND 
is sent. 

A window receives this message through its WindowProc function. 



.UINTuMsg • 

... ~:~~i~:~t~r . 
h 

Parameters 
wParam 

Handle to the device context of the icon. 

IParam 
This parameter is not used. 

Return Values 

Chapter 7 Resources 243 

An application should return nonzero if it processes this message. 

Remarks 
The DefWindowProc function fills the icon background with the class background brush 
of the parent window. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Icons Overview, Icon Messages, DefWindowProc, WM_ERASEBKGND 

The WM_PAINTICON message is sent to a minimized window when the icon is to be 
painted, but only if the application is written for 16-bit Windows. A window receives this 
message only if a class icon is defined for the window; otherwise, WM_PAINT is sent, 
instead. 

A window receives this message through its WindowProc function. 



244 Volume 2 Microsoft Windows User Interface 

Parameters 
This message has no parameters. 

Return Values 
An application should return zero if it processes this message. 

Remarks 
The DefWindowProc function draws the class icon. For compatibility with 16-bit 
Windows, wParam is TRUE. However, this value has no significance. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Icons Overview, Icon Messages, DefWindowProc, WM_ICONERASEBKGND, 
WM_PAINT 

Menus 

About Menus 
A menu is a list of menu items. Clicking a menu item opens a submenu or causes the 
application to carry out a command. 

Menu Bars and Menus 
A menu is arranged in a hierarchy. At the top level of the hierarchy is the menu bar, 
menus drop down from the menu bar, and at the lower levels are submenus. A menu bar 
is sometimes called a top-level menu, and the menus and submenus are also known as 
pop-up menus. 

A menu item can either carry out a command or open a submenu. An item that carries 
out a command is called a command item or a command. 

An item on the menu bar almost always opens a menu. Menu bars rarely contain 
command items. A menu opened from the menu bar drops down from the menu bar and 
is sometimes called a drop-down menu. When a drop-down menu is displayed, it is 
attached to the menu bar. A menu item on the menu bar that opens a drop-down menu 
is also called a menu name. 



Chapter 7 Resources 245 

The menu names on a menu bar represent the main categories of commands that an 
application provides. Selecting a menu name from the menu bar typically opens a menu 
whose menu items correspond to the commands in a category. For example, a menu bar 
might contain a File menu name that, when clicked by the user, activates a menu with 
menu items such as New, Open, and Save. To get information about a menu bar, call 
GetMenuBarlnfo. 

Only an overlapped or pop-up window can contain a menu bar; a child window cannot 
contain one. If the window has a title bar, the system positions the menu bar just below 
it. A menu bar is always visible. A submenu is not visible, however, until the user selects 
a menu item that activates it. For more information about overlapped and pop-up 
windows, see Window Types. 

Each menu must have an owner window. The system sends messages to a menu's 
owner window when the user selects the menu or chooses an item from the menu. 
These messages are described in Messages Used with Menus. 

Shortcut Menus 
The system also provides shortcut menus. A shortcut menu is not attached to the menu 
bar; it can appear anywhere on the screen. An application typically associates a shortcut 
menu with a portion of a window, such as the client area, or with a specific object, such 
as an icon. For this reason, these menus are also called context menus. 

A shortcut menu remains hidden until the user activates it, typically by right-clicking a 
selection, a tool bar, or a taskbar button. The menu is usually displayed at the position of 
the caret or mouse cursor. 

The Window Menu 
The Window menu (also known as the System menu or Control menu) is a pop-up 
menu defined and managed almost exclusively by the operating system. The user can 
open the window menu by either clicking the application icon on the title bar or right­
clicking anywhere on the title bar. 

The Window menu provides a standard set of menu items that the user can choose to 
change a window's size or position, or close the application. Items on the window menu 
can be added, deleted, and modified, but most applications just use the standard set of 
menu items. An overlapped, pop-up, or child window can have a window menu. It is 
uncommon for an overlapped or pop-up window not to include a window menu. 

When the user chooses a command from the Window menu, the system sends a 
WM_SVSCOMMAND message to the menu's owner window. In most applications, the 
window procedure does not process messages from the window menu. Instead, it Simply 
passes the messages to the DefWindowProc function for system-default processing of 
the message. If an application adds a command to the window menu, the window 
procedure must process the command. 

An application can use the GetSystemMenu function to create a copy of the default 
window menu to modify. Any window that does not use the GetSystemMenu function to 
make its own copy of the window menu receives the standard window menu. 



246 Volume 2 Microsoft Windows User Interface 

Help Identifier 
Associated with each menu bar, menu, submenu, and shortcut menu is a help identifier. 
If the user presses the F1 key while the menu is active, this value is sent to the owner 
window as part of a WM_HELP message. 

Menu Reference 
Menu Functions 

AppendMenu 
The AppendMenu function appends a new item to the end of the specified menu bar, 
drop-down menu, submenu, or shortcut menu. You can use this function to specify the 
content, appearance, and behavior of the menu item. 

Note The AppendMenu function has been superseded by the InsertMenultem 
function. You still can use AppendMenu, however, if you do not need any of the 
extended features of InsertMenultem. 

Parameters 
hMenu 

[in] Handle to the menu bar, drop-down menu, submenu, or shortcut menu to be 
changed. 

uFlags 
[in] Specifies flags to control the appearance and behavior of the new menu item. This 
parameter can be a combination of the values listed in the following Remarks section. 

ulDNewltem 
[in] Specifies either the identifier of the new menu item or, if the uFlags parameter is 
set to MF _POPUP, a handle to the drop-down menu or submenu. 

IpNewltem 
[in] Specifies the content of the new menu item. The interpretation of IpNewltem 
depends on whether the uFlags parameter includes the MF _BITMAP, 
MF _OWNERDRAW, or MF _STRING flag, as shown in the following table: 



Value 

MF_BITMAP 

MF _OWNERDRAW 

MF_STRING 

Return Values 

Chapter 7 Resources 247 

Description 

Contains a bitmap handle. 

Contains an application-supplied value that can be used to 
maintain additional data related to the menu item. The 
value is in the item Data member of the structure pOinted to 
by the Iparam parameter of either the WM_MEASURE or 
WM_DRAWITEM message that is sent when the menu is 
created or its appearance is updated. 

Contains a pointer to a null-terminated string. 

If the function succeeds, the return value is nonzero. If the function fails, the return value 
is zero. To get extended error information, call GetLastError. 

Remarks 
The application must call the DrawMenuBar function whenever a menu changes, 
whether or not the menu is in a displayed window. 

To get keyboard accelerators to work with bitmap or owner-drawn menu items, the 
owner of the menu must process the WM_MENUCHAR message. For more information, 
see Owner-Drawn Menus and the WM_MENUCHAR message. 

The following flags can be set in the uFlags parameter: 

Value 

MF_BITMAP 

MF_CHECKED 

MF_ENABLED 

MF_GRAYED 

MF_MENUBARBREAK 

Description 

Uses a bitmap as the menu item. The IpNewltem parameter 
contains a handle to the bitmap. 

Places a check mark next to the menu item. If the 
application provides check-mark bitmaps (see 
SetMenultemBitmaps), this flag displays the check-mark 
bitmap next to the menu item. 

Disables the menu item so that it cannot be selected, but 
the flag does not dim it. 

Enables the menu item so that it can be selected, and 
restores it from its dimmed state. 

Disables the menu item and dims it, so that it cannot be 
selected. 

Functions the same as the MF _MENUBREAK flag for a 
menu bar. For a drop-down menu, submenu, or shortcut 
menu, the new column is separated from the old column by 
a vertical line. 

(continued) 



248 Volume 2 Microsoft Windows User Interface 

(continued) 

Value 

MF_MENUBREAK 

MF _OWNERDRAW 

Description 

Places the item on a new line (for a menu bar) or in a new 
column (for a drop-down menu, submenu, or shortcut 
menu) without separating columns. 

Specifies that the item is an owner-drawn item. Before the 
menu is displayed for the first time, the window that owns 
the menu receives a WM_MEASUREITEM message to 
retrieve the width and height of the menu item. Then, the 
WM_DRAWITEM message is sent to the window procedure 
of the owner window whenever the appearance of the menu 
item must be updated. 

Specifies that the menu item opens a drop-down menu or 
submenu. The ulDNewltem parameter specifies a handle to 
the drop-down menu or submenu. This flag is used to add a 
menu name to a menu bar, or a menu item that opens a 
submenu to a drop-down menu, submenu, or shortcut 
menu. 

Draws a horizontal dividing line. This flag is used only in a 
drop-down menu, submenu, or shortcut menu. The line 
cannot be dimmed, disabled, or highlighted. The IpNewltem 
and ulDNewltem parameters are ignored. 

Specifies that the menu item is a text string; the IpNewltem 
parameter is a pOinter to the string. 

Does not place a check mark next to the item (default). 
If the application supplies check-mark bitmaps (see 
SetMenultemBitmaps), this flag displays the clear bitmap 
next to the menu item. 

The following groups of flags cannot be used together: 

• MF _BITMAP, MF _STRING, and MF _OWNERDRAW 

• MF _CHECKED and MF _UNCHECKED 
• MF _DISABLED, MF _ENABLED, and MF _GRAYED 

• MF _MENUBARBREAK and MF _MENUBREAK 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 



Chapter 7 Resources 249 

U!~''Also 
Menus Overview, Menu Functions, CreateMenu, DeleteMenu, DestroyMenu, 
DrawMenuBar, InsertMenu, InsertMenultem, ModifyMenu, RemoveMenu, 
SetMenultemBitmaps 

CheckMenultem 
The CheckMenultem function sets the state of the specified menu item's check-mark 
attribute to either selected or clear. 

Note The CheckMenultem function has been superseded by the SetMenultemlnfo 
function. You still can use CheckMenultem, however, if you do not need any of the 
extended features of SetMenultemlnfo. 

DWORD che<ilOO!n:ultem(' 
.. HkfNUh[t!enlJ;. . IIJ:landietii' ,menu.' 

.' . jHNTUtDChe~ijtem;: . . .. . '. 
UrN! uChe~k / .. 

,< '~c ' 

H·'> 

Parameters 
hmenu 

[in] Handle to the menu of interest. 

ulDCheckltem 
[in] Specifies the menu item whose check-mark attribute is to be set, as determined 
by the uCheck parameter. 

uCheck 
[in] Specifies flags that control the interpretation of the ulDCheckltem parameter and 
the state of the menu item's check-mark attribute. This parameter can be a 
combination of either MF _BYCOMMAND, or MF _BYPOSITION and MF _CHECKED 
or MF _UNCHECKED. 

Value 

MF _BYCOMMAND 

MF _BYPOSITION 

MF_CHECKED 

MF_UNCHECKED 

Meaning 

Indicates that the ulDCheckltem parameter gives the 
identifier of the menu item. The MF _BYCOMMAND flag is 
the default, if neither the MF _BYCOMMAND nor 
MF _BYPOSITION flag is specified. 

Indicates that the ulDCheckltem parameter gives the zero­
based relative position of the menu item. 

Sets the check-mark attribute to the selected state. 

Sets the check-mark attribute to the clear state. 



250 Volume 2 Microsoft Windows User Interface 

Return Values 
The return value specifies the previous state of the menu item (either MF _CHECKED or 
MF _UNCHECKED). If the menu item does not exist, the return value is -1. 

Remarks 
An item in a menu bar cannot have a check mark. 

The ulDCheckltem parameter identifies a item that opens a submenu or a command 
item. For an item that opens a submenu, the ulDCheckltem parameter must specify the 
position of the item. For a command item, the ulDCheckltem parameter can specify 
either the item's position or its identifier. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.1ib. 

Menus Overview, Menu Functions, EnableMenultem, GetMenultemlD, 
SetMenultemBitmaps, SetMenultemlnfo 

CheckMenuRadioltem 
The CheckMenuRadioltem function checks a specified menu item and makes it a radio 
item. At the same time, the function clears all other menu items in the associated group, 
and clears the radio-item type flag for those items . 

... " .. 
< >' <,~, t~\ 

Parameters 
hmenu 

[in] Handle to the menu that contains the group of menu items. 

idFirst 
[in] Identifier or position of the first menu item in the group. 



Chapter 7 Resources 251 

idLast 
[in] Identifier or position of the last menu item in the group. 

idCheck 
[in] Identifier or position of the menu item to check. 

uFlags 
[in] Value specifying the meaning of idFirst, idLast, and idCheck. If this parameter is 
MF _BYCOMMAND, the other parameters specify menu item identifiers. If it is 
MF _BYPOSITION, the other parameters specify the menu item positions. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, use the 
GetLastError function. 

Remarks 
The CheckMenuRadioltem function sets the MFT _RADIOCHECK type flag and the 
MFS_CHECKED state for the item specified by idCheck and, at the same time, clears 
both flags for all other items in the group. The selected item is displayed using a bullet 
bitmap instead of a check-mark bitmap. 

For more information about menu item type and state flags, see the MENUITEMINFO 
structure. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Menus Overview, Menu Functions, MENUITEMINFO 

CreateMenu 
The CreateMenu function creates a menu. The menu is initially empty, but it can be 
filled with menu items by using the InsertMenultem, AppendMenu, and InsertMenu 
functions. 

H~~HlJ,·¢.,.~~t~~~{vq~Q),t;::'~;)\' 



252 Volume 2 Microsoft Windows User Interface 

Parameters 
This function has no parameters. 

Return Values 
If the function succeeds, the return value is a handle to the newly created menu. 

If the function fails, the return value is NULL. To get extended error information, call 
GetLastError. 

Remarks 
Resources associated with a menu that is assigned to a window are freed automatically. 
If the menu is not assigned to a window, an application must free system resources 
associated with the menu before closing. An application frees menu resources by calling 
the DestroyMenu function. 

Windows 95: The system can support a maximum of 16,364 menu handles. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Menus Overview, Menu Functions, AppendMenu, CreatePopupMenu, DestroyMenu, 
InsertMenu, InsertMenultem, SetMenu 

CreatePopupMenu 
The CreatePopupMenu function creates a drop-down menu, submenu, or shortcut 
menu. The menu is initially empty. You can insert or append menu items by using the 
InsertMenultem function. You also can use the InsertMenu function to insert menu 
items, and the AppendMenu function to append menu items. 

IiME8ll.Cr~t~apu·pJ.tenu{VOlD}: .. 

Parameters 
This function has no parameters. 

Return Values 
If the function succeeds, the return value is a handle to the newly created menu. 



Chapter 7 Resources 253 

If the function fails, the return value is NULL. To get extended error information, call 
GetLastError. 

Remarks 
The application can add the new menu to an existing menu, or it can display a shortcut 
menu by calling the TrackPopupMenuEx or TrackPopupMenu function. 

Resources associated with a menu that is assigned to a window are freed automatically. 
If the menu is not assigned to a window, an application must free system resources 
associated with the menu before closing. An application frees menu resources by calling 
the DestroyMenu function. 

Windows 95: The system can support a maximum of 16,364 menu handles. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Menus Overview, Menu Functions, AppendMenu, CreateMenu, DestroyMenu, 
InsertMenu, InsertMenultem, SetMenu, TrackPopupMenu, TrackPopupMenuEx 

DeleteMenu 
The DeleteMenu function deletes an item from the specified menu. If the menu item 
opens a menu or submenu, this function destroys the handle to the menu or submenu, 
and frees the memory used by the menu or submenu. 

Parameters 
hMenu 

[in] Handle to the menu to be changed. 

uPosition 
[in] Specifies the menu item to be deleted, as determined by the uFlags parameter. 



254 Volume 2 Microsoft Windows User Interface 

uFlags 
[in] Specifies how the uPosition parameter is interpreted. This parameter must be one 
of the following values: 

Value Meaning 

MF _BYPOSITION 

Return Values 

Indicates that uPosition gives the identifier of the menu item. 
The MF _BYCOMMAND flag is the default flag if neither the 
MF _BYCOMMAND nor MF _BYPOSITION flag is specified. 

Indicates that uPosition gives the zero-based relative position 
of the menu item. 

If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
The application must call the DrawMenuBar function whenever a menu changes, 
whether or not the menu is in a displayed window. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Menus Overview, Menu Functions, DrawMenuBar, RemoveMenu 

DestroyMenu 
The DestroyMenu function destroys the specified menu and frees any memory that the 
menu occupies. 

~f 
Parameters 
hMenu 

[in] Handle to the menu to be destroyed. 



Chapter 7 Resources 255 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
Before closing, an application must use the DestroyMenu function to destroy a menu 
that is not assigned to a window. A menu that is assigned to a window is automatically 
destroyed when the application closes. 

DestroyMenu is recursive; that is, it will destroy the menu and all its submenus. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Menus Overview, Menu Functions, CreateMenu, DeleteMenu, RemoveMenu, 
SetMenultemlnfo 

DrawMenuBar 
The DrawMenuBar function redraws the menu bar of the specified window. If the menu 
bar changes after the system has created the window, this function must be called to 
draw the changed menu bar. 

Parameters 
hWnd 

[in] Handle to the window whose menu bar needs redrawing. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 



256 Volume 2 Microsoft Windows User Interface 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 2.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Menus Overview, Menu Functions, DeleteMenu, InsertMenultem, RemoveMenu, 
SetMenultemlnfo 

EnableMenultem 
The EnableMenultem function enables, disables, or dims the specified menu item. 

B~Ot.o. Enabl ~Me~ult~III(' 
· H~tUlhM~titJ.Jii;~·:: .. 
· ... l1lN1.uJ UtnabUi!I tem. 
· .. 1,11 tiT .. uEn~il1 e 

~ ~,' • , c " c' -I' ': ';. ,0 

)h>, 

Parameters 
hMenu 

[in] Handle to the menu. 
ulDEnableltem 

[in] Specifies the menu item to be enabled, disabled, or dimmed, as determined by the 
uEnable parameter. This parameter specifies an item in a menu bar, menu, or 
submenu. 

uEnable 
[in] Controls the interpretation of the ulDEnableltem parameter and indicate whether 
the menu item is enabled, disabled, or dimmed. This parameter must be a 
combination of either MF _BYCOMMAND or MF _BYPOSITION, and either 
MF _ENABLED, MF _DISABLED, or MF _GRAYED. 
Value 

MF _BYCOMMAND 

MF _BYPOSITION 

Meaning 

Indicates that ulDEnableltem gives the identifier of the menu 
item. If neither the MF _BYCOMMAND nor MF _BYPOSITION 
flag is specified, the MF _BYCOMMAND flag is the default 
flag. 

Indicates that ulDEnableltem gives the zero-based relative 
position of the menu item. 



Value 

MF _DISABLED 

MF_ENABLED 

MF_GRAYED 

Return Values 

Chapter 7 Resources 257 

Meaning 

Indicates that the menu item is disabled, but not dimmed, so 
that it cannot be selected. 
Indicates that the menu item is enabled and restored from a 
dimmed state, so that it can be selected. 
Indicates that the menu item is disabled and dimmed, so that 
it cannot be selected. 

The return value specifies the previous state of the menu item (it is either 
MF _DISABLED, MF _ENABLED, or MF _GRAYED). If the menu item does not exist, the 
return value is -1. 

Remarks 
An application must use the MF _BYPOSITION flag to specify the correct menu handle. If 
the menu handle to the menu bar is specified, the top-level menu item (an item in the 
menu bar) is affected. To set the state of an item in a drop-down menu or submenu by 
position, an application must specify a handle to the drop-down menu or submenu. 

When an application specifies the MF _BYCOMMAND flag, the system checks all items 
that open submenus in the menu identified by the specified menu handle. Therefore, 
unless duplicate menu items are present, specifying the menu handle to the menu bar is 
sufficient. 

The InsertMenu, InsertMenultem, LoadMenulndirect, ModifyMenu, and 
SetMenultemlnfo functions can also set the state (enabled, disabled, or dimmed) of a 
menu item. 

When you change a window menu, the menu bar is not updated immediately. To force 
the update, call DrawMenuBar. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Menus Overview, Menu Functions, DrawMenuBar, GetMenultemlD, InsertMenu, 
InsertMenultem, LoadMenulndirect, ModifyMenu, SetMenultemlnfo, 
WM_SVSCOMMAND 



258 Volume 2 Microsoft Windows User Interface 

EndMenu 
The EndMenu function ends the calling thread's active menu. 

Parameters 
This function has no parameters. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
If a platform does not support EndMenu, send the owner of the active menu a 
WM_CANCELMODE message. 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.1ib. 

Menus Overview, Menu Functions, WM_CANCELMODE 

GetMenu 
The GetMenu function retrieves a handle to the menu assigned to the specified window. 

Parameters 
hWnd 

[in] Handle to the window whose menu handle is to be retrieved. 



Chapter 7 Resources 259 

Return Values 
The return value is a handle to the menu. If the specified window has no menu, the 
return value is NULL. If the window is a child window, the return value is undefined. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Menus Overview, Menu Functions, GetSubMenu, SetMenu 

GetMenuBarlnfo 
The GetMenuBarlnfo function retrieves information about the specified menu bar. 

Parameters 
hwnd 

[in] Handle to the window (menu bar) whose information is to be retrieved. 

idObject 
[in] Specifies the menu object. This parameter can be one of the following values: 

Value Meaning 

OBJID_CLlENT 

OBJID_MENU 

idltem 

The pop-up menu associated with the window. 

The menu bar associated with the window (see the 
GetMenu function). 

The system menu associated with the window (see the 
GetSystemMenu function). 

[in] Specifies the item for which to retrieve information. If this parameter is zero, the 
function retrieves information about the menu itself. If this parameter is 1, the function 
retrieves information about the first item on the menu, and so on. 



260 Volume 2 Microsoft Windows User Interface 

pmbi 
[out] Pointer to a MENUBARINFO structure that receives the information. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Windows NT/2000: Requires Windows NT 4.0 SP3 or later. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Menus Overview, Menu Functions, GetMenu, GetSystemMenu, MENUBARINFO 

GetMenuCheckMarkDimensions 
The GetMenuCheckMarkDimensions function returns the dimensions of the default 
check-mark bitmap. The system displays this bitmap next to selected menu items. 
Before calling the SetMenultemBitmaps function to replace the default check-mark 
bitmap for a menu item, an application must determine the correct bitmap size by calling 
GetMenuCheckMarkDimensions. 

Note The GetMenuCheckMarkDimensions function is included only for compatibility 
with 16-bit versions of Windows. For Win32-based applications, use the 
GetSystemMetrics function with the CXMENUCHECK and CYMENUCHECK values to 
retrieve the bitmap dimensions. 

t.~i;'i •• ~~~pW~~J~iil~n~\~~,<~'ip,~, 
Parameters 
This function has no parameters. 

Return Values 
The return value specifies the height and width, in pixels, of the default check-mark 
bitmap. The high-order word contains the height; the low-order word contains the width. 



Chapter 7 Resources 261 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Menus Overview, Menu Functions, SetMenultemBitmaps 

GetMenuDefaultltem 
The GetMenuDefaultltem function determines the default menu item on the specified 
menu. 

Parameters 
hMenu 

[in] Handle to the menu for which to retrieve the default menu item. 

fByPos 
[in] Specifies whether to retrieve the menu item's identifier or its position. If this 
parameter is FALSE, the identifier is returned. Otherwise, the position is returned. 

gmdiFlags 
[in] Specifies how the function searches for menu items. This parameter can be zero 
or more of the following values: 

Value Meaning 

GMDLGOINTOPOPUPS Specifies that if the default item is one that opens a 
submenu, the function is to search recursively in the 
corresponding submenu. If the submenu has no default 
item, the return value identifies the item that opens the 
submenu. 

By default, the function returns the first default item on 
the specified menu, regardless of whether it is an item 
that opens a submenu. 

(continued) 



262 Volume 2 Microsoft Windows User Interface 

(continued) 

Value 

GMDLUSEDISABLED 

Return Values 

Meaning 

Specifies that the function is to return a default item, 
even if it is disabled. 

By default, the function skips disabled or dimmed items. 

If the function succeeds, the return value is the identifier or position of the menu item. 

If the function fails, the return value is -1. To get extended error information, call 
GetLastError. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Menus Overview, Menu Functions, SetMenuDefaultltem 

GetMenulnfo 
The GetMenulnfo function gets information about a specified menu. 

Parameters 
hmenu 

[in] Handle for a menu. 

/pcmi 
[out] Pointer to a MENUINFO structure containing information for the menu. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 



a:,~MLlirements 
Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Menus Overview, Menu Functions 

GetMenultemCount 

Chapter 7 Resources 263 

The GetMenultemCount function determines the number of items in the specified 
menu. 

int'6fiMefHlltemCo~nt< . 
tt"U~, hYenu •.. II It~ndl e,(Qmen II 

) : 

Parameters 
hMenu 

[in] Handle to the menu to be examined. 

Return Values 
If the function succeeds, the return value specifies the number of items in the menu. 

If the function fails, the return value is -1. To get extended error information, call 
GetLastError. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Menus Overview, Menu Functions, GetMenultemlD 



264 Volume 2 Microsoft Windows User Interface 

GetMenultemlD 
The GetMenultemlD function retrieves the menu item identifier of a menu item located 
at the specified position in a menu. 

Parameters 
hMenu 

[in] Handle to the menu that contains the item whose identifier is to be retrieved. 

nPos 
[in] Specifies the zero-based relative position of the menu item whose identifier is to 
be retrieved. 

Return Values 
The return value is the identifier of the specified menu item. If the menu item identifier is 
NULL, or if the specified item opens a submenu, the return value is -1. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Menus Overview, Menu Functions, GetMenultemCount 

GetMenultemlnfo 
The GetMenultemlnfo function retrieves information about a menu item. 



Parameters 
hMenu 

[in] Handle to the menu that contains the menu item. 

ultem 

Chapter 7 Resources 265 

[in] Identifier or position of the menu item to get information about. The meaning of 
this parameter depends on the value of fByPosition. 

fByPosition 
[in] Specifies the meaning of ultem. If this parameter is FALSE, ultem is a menu item 
identifier. Otherwise, it is a menu item position. 

Ipmii 
[in/out] Pointer to a MENUITEMINFO structure that specifies the information to 
retrieve and receives information about the menu item. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, use the 
GetLastError function. 

Remarks 
To retrieve a menu item of type MFT_STRING, first find the size of the string by setting 
the dwTypeData member of MENUITEMINFO to NULL and then calling 
GetMenultemlnfo. The value of cch is the size needed. Then, allocate a buffer of this 
size, place the pOinter to the buffer in dwTypeData, and call GetMenultemlnfo once 
again to fill the buffer with the string. 

If the retrieved menu item is of some other type, then GetMenultemlnfo sets the 
dwTypeData member to a value whose type is specified by the fType member and sets 
cch to O. 

Windows 2000 and Windows 98: Both dwTypeData and cch are used with 
MIIM_STRING. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Menus Overview, Menu Functions, SetMenultemlnfo, MENUITEMINFO 



266 Volume 2 Microsoft Windows User Interface 

GetMenultemRect 
The GetMenultemRect function retrieves the bounding rectangle for the specified menu 
item. 

Parameters 
hWnd 

[in] Handle to the window containing the menu. 

Windows 98 and Windows 2000: If this value is NULL and the hMenu parameter 
represents a pop-up menu, the function will find the menu window. 

hMenu 
[in] Handle to a menu. 

u/tem 
[in] Zero-based position of the menu item. 

/pre/tem 
[out] Pointer to a RECT structure that receives the bounding rectangle of the specified 
menu item expressed in screen coordinates. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, use the 
GetLastError function. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Menus Overview, Menu Functions, RECT 



Chapter 7 Resources 267 

GetMenuState 
The GetMenuState function retrieves the menu flags associated with the specified menu 
item. If the menu item opens a submenu, this function also returns the number of items 
in the submenu. 

Note The GetMenuState function has been superseded by the GetMenultemlnfo 
function. You still can use GetMenuState, however, if you do not need any of the 
extended features of GetMenultemlnfo. 

Parameters 
hMenu 

[in] Handle to the menu that contains the menu item whose flags are to be retrieved. 

uld 
[in] Specifies the menu item for which the menu flags are to be retrieved, as 
determined by the uFlags parameter. 

uFlags 
[in] Specifies how the uld parameter is interpreted. This parameter can be one of the 
following values: 

Value 

MF _BYCOMMAND 

MF _BYPOSITION 

Return Values 

Description 

Indicates that the uld parameter gives the identifier of the 
menu item. The MF _BYCOMMAND flag is the default if 
neither the MF _BYCOMMAND nor MF _BYPOSITION flag 
is specified. 

Indicates that the uld parameter gives the zero-based 
relative position of the menu item. 

If the specified item does not exist, the return value is -1. 

If the menu item opens a submenu, the low-order byte of the return value contains the 
menu flags associated with the item, and the high-order byte contains the number of 
items in the submenu opened by the item. 

Otherwise, the return value is a mask (Boolean OR) of the menu flags. Following are the 
menu flags associated with the menu item: 



268 Volume 2 Microsoft Windows User Interface 

Value 

MF _DISABLED 

MF_GRAYED 

MF_HILITE 

MF _MENUBARBREAK 

MF_MENUBREAK 

MF _OWNERDRAW 

MF_POPUP 

MF _SEPARATOR 

Remarks 

Meaning 

A check mark is placed next to the item (for drop-down 
menus, submenus, and shortcut menus only). 

The item is disabled. 

The item is disabled and dimmed. 

The item is highlighted. 

This is the same as the MF _MENUBREAK flag, except for 
drop-down menus, submenus, and shortcut menus, where 
the new column is separated from the old column by a 
vertical line. 

The item is placed on a new line (for menu bars) or in a new 
column (for drop-down menus, submenus, and shortcut 
menus) without separating columns. 

The item is owner-drawn. 

The menu item is a submenu. 

There is a horizontal dividing line (only for drop-down 
menus, submenus, and shortcut menus). 

In addition, it is possible to test an item for a flag value of MF _ENABLED, MF _STRING, 
MF _UNCHECKED, or MF _UNHILITE. However, since these values equate to zero, you 
must use an expression to test for them: 

Flag 

MF_ENABLED 

MF_STRING 

MF _UNCHECKED 

MF _UNHILITE 

Expression to test for the flag 

! (Flag~(MF _DISABLED I MF _GRAYED 

! (Flag~(MF _BITMAP I MF _OWNERDRAW) 

! (Flag~MF _CHECKED) 

! (Flag~HILlTE) 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Menus Overview, Menu Functions, GetMenu, GetMenultemCount, GetMenultemlD, 
GetMenultemlnfo 



Chapter 7 Resources 269 

GetMenuString 
The GetMenuString function copies the text string of the specified menu item into the 
specified buffer. 

Note The GetMenuString function has been superseded. Use the GetMenultemlnfo 
function to retrieve the menu item text. 

;u$~f§nf~;~l ,')': :".":;"",, .', 
;1". ;f;:t.:):l~h~~~'l:',:;t~;,}~lt,l!fef!~: ·;d .. : 
; .. "i ... ',;f I" llItifl11J:tt;:em:l~Glentiff:er:.:. 

':,;.:t,·:[ .. ; ~:~:e$~rrf1~~;.,:{lhpf~~~;~,~.r'!;~ihe·#~r1~~/··· '. 
:1:1fJ"':~Ha'x:c.{Jp;nt"i· f:l '!mI~iiilullJ;;l el1cgtfkOf',.$ t ring 
;J~it"/r~l,if//'·/'.;'O~{i oos;" '.: 

Parameters 
hMenu 

[in] Handle to the menu. 

ulDltem 
[in] Specifies the menu item to be changed, as determined by the uFlag parameter. 

IpString 
[out] Pointer to the buffer that receives the null-terminated string. 

If IpString is NULL, the function returns the length of the menu string. 

nMaxCount 
[in] Specifies the maximum length, in characters, of the string to be copied. If the 
string is longer than the maximum specified in the nMaxCount parameter, the extra 
characters are truncated. 

If nMaxCount is 0, the function returns the length of the menu string. 

uFlag 
[in] Specifies how the ulDltem parameter is interpreted. This parameter must be one 
of the following values: 

Value 

MF _BYPOSITION 

Return Values 

Meaning 

Indicates that ulDltem gives the identifier of the menu item. If 
neither the MF _BYCOMMAND nor MF _BYPOSITION flag is 
specified, then MF _BYCOMMAND is the default flag. 

Indicates that ulDltem gives the zero-based relative position 
of the menu item. 

If the function succeeds, the return value specifies the number of characters copied to 
the buffer, not including the terminating null character. 



270 Volume 2 Microsoft Windows User Interface 

If the function fails, the return value is zero. 

If the specified item is not of type MFT _STRING, then the return value is zero. 

Windows 98 and Windows 2000: MIIM_STRING supersedes MFT _STRING. 

Remarks 
The nMaxCount parameter must be one larger than the number of characters in the text 
string, to accommodate the terminating null character. 

If nMaxCount is 0, the function returns the length of the menu string. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Menus Overview, Menu Functions, GetMenultemlD 

GetSubMenu 
The GetSubMenu function retrieves a handle to the drop-down menu or submenu 
activated by the specified menu item. 

HM£ttU ~!t:SubMenu( 
Ht4ENUhMenu.;,1 handl edtomenu 

. ·1nt'.l1P\1S·' IllneijU It.em pO~i~l~n 
)f 

Parameters 
hMenu 

[in] Handle to the menu. 

nPos 
[in] Specifies the zero-based relative position in the specified menu of an item that 
activates a drop-down menu or submenu. 

Return Values 
If the function succeeds, the return value is a handle to the drop-down menu or submenu 
activated by the menu item. If the menu item does not activate a drop-down menu or 
submenu, the return value is NULL. 



. t"~rifS 
Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Chapter 7 Resources 271 

Menus Overview, Menu Functions, CreatePopupMenu, GetMenu 

GetSystemMenu 
The GetSystemMenu function allows the application to access the window menu (also 
known as the system menu or the control menu) for copying and modifying. 

~·ai;w~:~i~~~~t:i~i.~'··· 
;;,i..~:, :'.;;.:..;. ::: :,:.'.~::~:.: .. '. ~ ·,:t~,:·: ;.~.?\<:.; ;; ",",' :'<'. ": .• .. . ~ .... : 

Parameters 
hWnd 

[in] Handle to the window that will own a copy of the window menu. 

bRevert 
[in] Specifies the action to be taken. If this parameter is FALSE, GetSystemMenu 
returns a handle to the copy of the window menu currently in use. The copy is initially 
identical to the window menu, but it can be modified. 

If this parameter is TRUE, GetSystemMenu resets the window menu back to the 
default state. The previous window menu, if any, is destroyed. 

Return Values 
If the bRevert parameter is FALSE, the return value is a handle to a copy of the window 
menu. If the bRevert parameter is TRUE, the return value is NULL. 

Remarks 
Any window that does not use the GetSystemMenu function to make its own copy of the 
window menu receives the standard window menu. 

The window menu initially contains items with various identifier values, such as 
SC_CLOSE, SC_MOVE, and SC_SIZE. 

Menu items on the window menu send WM_SYSCOMMAND messages. 



272 Volume 2 Microsoft Windows User Interface 

All predefined window menu items have identifier numbers greater than OxFOOO. If an 
application adds commands to the window menu, it should use identifier numbers less 
than OxFOOO. 

The system automatically grays items on the standard window menu, depending on the 
situation. The application can perform its own checking or dimming by responding to the 
WM_INITMENU message that is sent before any menu is displayed. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Menus Overview, Menu Functions, GetMenu, InsertMenultem, SetMenultemlnfo, 
WM_INITMENU, WM_SYSCOMMAND 

HiliteMenultem 
The HiliteMenultem function highlights or removes the highlighting from an item in a 
menu bar. 

Parameters 
hwnd 

[in] Handle to the window that contains the menu. 

hmenu 
[in] Handle to the menu bar that contains the item to be highlighted. 

ultemHilite 
[in] Specifies the menu item to be highlighted. This parameter is either the identifier of 
the menu item or the offset of the menu item in the menu bar, depending on the value 
of the uHilite parameter. 



Chapter 7 Resources 273 

uHilite 
[in) Controls the interpretation of the ultemHilite parameter, and indicates whether the 
menu item is highlighted. This parameter must be a combination of either 
MF _BYCOMMAND or MF _BYPOSITION and MF _HI LITE or MF _UNHILITE. 

Value 

MF _BYPOSITION 

Return Values 

Meaning 

Indicates that ultemHilite gives the identifier of the menu 
item. 

Indicates that ultemHilite gives the zero-based relative 
position of the menu item. 

Highlights the menu item. If this flag is not specified, the 
highlighting is removed from the item. 

Removes highlighting from the menu item. 

If the menu item is set to the specified highlight state, the return value is nonzero. 

If the menu item is not set to the specified highlight state, the return value is zero. 

Remarks 
The MF _HILITE and MF _UNHILITE flags can be used only with the HiliteMenultem 
function; they cannot be used with the ModifyMenu function. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Menus Overview, Menu Functions, ModifyMenu 

InsertMenu 
The InsertMenu function inserts a new menu item into a menu, moving other items 
down the menu. 

Note The InsertMenu function has been superseded by the InsertMenultem function. 
You still can use InsertMenu, however, if you do not need any of the extended features 
of InsertMenultem. 



274 Volume 2 Microsoft Windows User Interface 

Parameters 
hMenu 

[in] Handle to the menu to be changed. 

uPosition 
[in] Specifies the menu item before which the new menu item is to be inserted, as 
determined by the uFlags parameter. 

uFlags 
[in] Specifies flags that control the interpretation of the uPosition parameter and the 
content, appearance, and behavior of the new menu item. This parameter must be a 
combination of one of the following required values, and at least one of the values 
listed in the following Remarks section: 

Value Description 

MF _BYPOSITION 

ulDNewltem 

Indicates that the uPosition parameter gives the identifier of 
the menu item. The MF _BYCOMMAND flag is the default if 
neither the MF _BYCOMMAND nor MF _BYPOSITION flag 
is specified. 

Indicates that the uPosition parameter gives the zero-based 
relative position of the new menu item. If uPosition is -1 , 
the new menu item is appended to the end of the menu. 

[in] Specifies either the identifier of the new menu item or, if the uFlags parameter has 
the MF _POPUP flag set, a handle to the drop-down menu or submenu. 

IpNewltem 
[in] Specifies the content of the new menu item. The interpretation of IpNewltem 
depends on whether the uFlags parameter includes the MF _BITMAP, 
MF _OWNERDRAW, or MF _STRING flag, as follows: 

Value 

MF_BITMAP 

MF _OWNERDRAW 

Description 

Contains a bitmap handle. 

Contains an application-supplied value that can be used to 
maintain additional data related to the menu item. The 
value is in the item Data member of the structure pointed to 
by the Iparam parameter of the WM_MEASUREITEM or 
WM_DRAWITEM message sent when the menu item is 
created or its appearance is updated. 
Contains a pOinter to a null-terminated string (the default). 



Chapter 7 Resources 275 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
The application must call the DrawMenuBar function whenever a menu changes, 
whether or not the menu is in a displayed window. 

The following list describes the flags that can be set in the uFlags parameter: 

Value Description 

MF _BITMAP Uses a bitmap as the menu item. The IpNewltem parameter 
contains a handle to the bitmap. 

MF _CHECKED Places a check mark next to the menu item. If the application 
provides check-mark bitmaps (see SetMenultemBitmaps), 
this flag displays the check-mark bitmap next to the menu 
item. 

MF _DISABLED Disables the menu item so that it cannot be selected, but 
does not dim it. 

MF _ENABLED Enables the menu item so that it can be selected, and 
restores it from its dimmed state. 

MF _GRAYED Disables the menu item and dims it, so that it cannot be 
selected. 

MF _MENUBARBREAK Functions the same as the MF _MENUBREAK flag for a 
menu bar. For a drop-down menu, submenu, or shortcut 
menu, the new column is separated from the old column by a 
vertical line. 

MF _MENUBREAK Places the item on a new line (for menu bars) or in a new 
column (for a drop-down menu, submenu, or shortcut menu) 
without separating columns. 

MF _OWNERDRAW Specifies that the item is an owner-drawn item. Before the 
menu is displayed for the first time, the window that owns the 
menu receives a WM_MEASUREITEM message to retrieve 
the width and height of the menu item. Then, the 
WM_DRAWITEM message is sent to the window procedure 
of the owner window whenever the appearance of the menu 
item must be updated. 

MF _POPUP Specifies that the menu item opens a drop-down menu or 
submenu. The ulDNewltem parameter specifies a handle to 
the drop-down menu or submenu. This flag is used to add a 
menu name to a menu bar or a menu item that opens a 
submenu to a drop-down menu, submenu, or shortcut menu. 

continued 



276 Volume 2 Microsoft Windows User Interface 

(continued) 

Value 

MF_UNCHECKED 

Description 

Draws a horizontal dividing line. This flag is used only in a 
drop-down menu, submenu, or shortcut menu. The line 
cannot be dimmed, disabled, or highlighted. The IpNewltem 
and ulDNewltem parameters are ignored. 

Specifies that the menu item is a text string; the IpNewltem 
parameter is a pointer to the string. 

Does not place a check mark next to the menu item (default). 
If the application supplies check-mark bitmaps (see the 
SetMenultemBitmaps function), this flag displays the clear 
bitmap next to the menu item. 

The following groups of flags cannot be used together: 

• MF _BYCOMMAND and MF _BYPOSITION 

• MF _DISABLED, MF _ENABLED, and MF _GRAYED 

• MF _BITMAP, MF _STRING, MF _OWNERDRAW, and MF _SEPARATOR 

• MF _MENUBARBREAK and MF _MENUBREAK 

• MF _CHECKED and MF _UNCHECKED 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Menus Overview, Menu Functions, AppendMenu, DeleteMenu, DrawMenuBar, 
InsertMenultem, ModifyMenu, RemoveMenu, SetMenultemBitmaps, 
WM_DRAWITEM, WM_MEASUREITEM 

InsertMenultem 
The InsertMenultem function inserts a new menu item at the specified position in 
a menu. 



Chapter 7 Resources 277 

BOOl InsertMenuItem( 

J4~~~~~~~i~!I/~f,~i_i~~~I~~" 
Parameters 
hMenu 

[in] Handle to the menu in which the new menu item is inserted. 

ultem 
[in] Identifier or position of the menu item before which to insert the new item. The 
meaning of this parameter depends on the value of fByPosition. 

fByPosition 
[in] Value specifying the meaning of ultem. If this parameter is FALSE, ultem is a 
menu item identifier. Otherwise, it is a menu item position. 

/pmii 
[in] Pointer to a MENUITEMINFO structure that contains information about the new 
menu item. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, use the 
GetLastError function. 

Remarks 
The application must call the DrawMenuBar function whenever a menu changes, 
whether or not the menu is in a displayed window. 

In order for keyboard accelerators to work with bitmap or owner-drawn menu items, the 
owner of the menu must process the WM_MENUCHAR message. See Owner-Drawn 
Menus and the WM_MENUCHAR Message for more information. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.1ib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Menus Overview, Menu Functions, DrawMenuBar, MENUITEMINFO 



278 Volume 2 Microsoft Windows User Interface 

IsMenu 
The IsMenu function determines whether a handle is a menu handle. 

Parameters 
hMenu 

[in] Handle to be tested. 

Return Values 
If hMenu is a menu handle, the return value is nonzero. 

If hMenu is not a menu handle, the return value is zero. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Menus Overview, Menu Functions 

LoadMenu 
The LoadMenu function loads the specified menu resource from the executable (.exe) 
file associated with an application instance. 

Parameters 
hlnstance 

[in] Handle to the module containing the menu resource to be loaded. 

IpMenuName 
[in] Pointer to a null-terminated string that contains the name of the menu resource. 
Alternatively, this parameter can consist of the resource identifier in the low-order 



Chapter 7 Resources 279 

word and zero in the high-order word. To create this value, use the 
MAKEINTRESOURCE macro. 

Return Values 
If the function succeeds, the return value is a handle to the menu resource. 

If the function fails, the return value is NULL. To get extended error information, call 
GetLastError. 

Remarks 
The DestroyMenu function is used, before an application closes, to destroy the menu 
and free memory that the loaded menu occupied. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Menus Overview, Menu Functions LoadMenulndirect, MAKEINTRESOURCE 

LoadMenulndirect 
The LoadMenulndirect function loads the specified menu template in memory. 

Parameters 
IpMenuTemplate 

[in] Pointer to a menu template or an extended menu template. 

A menu template consists of a MENUITEMTEMPLATEHEADER structure followed by 
one or more contiguous MENUITEMTEMPLATE structures. An extended menu 
template consists of a MENUEX_TEMPLATE_HEADER structure followed by one or 
more contiguous MENUEX_TEMPLATE_ITEM structures. 

Return Values 
If the function succeeds, the return value is a handle to the menu. 



280 Volume 2 Microsoft Windows User Interface 

If the function fails, the return value is NULL. To get extended error information, call 
GetLastError. 

Remarks 
For both the ANSI and Unicode versions of this function, the strings in the 
MENUITEMTEMPLATE structure must be Unicode strings. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Menus Overview, Menu Functions, LoadMenu, MENUEX_TEMPLATE_HEADER, 
MENUEX_ TEMPLATE_ITEM, MENUITEMTEMPLA TE, 
MENUITEMTEMPLA TEHEADER 

MenultemFromPoint 
The MenultemFromPoint function determines which menu item, if any, is at the 
specified location. 

Parameters 
hWnd 

[in] Handle to the window containing the menu. 

Windows 98 and Windows 2000: If this value is NULL and the hMenu parameter 
represents a pop-up menu, the function will find the menu window. 

hMenu 
[in] Handle to the menu containing the menu items to hit test. 

ptScreen 
[in] A POINT structure that specifies the location to test. If hMenu specifies a menu 
bar, this parameter is in window coordinates. Otherwise, it is in client coordinates. 



Chapter 7 Resources 281 

Return Values 
Returns the zero-based position of the menu item at the specified location or -1 if no 
menu item is at the specified location. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Menus Overview, Menu Functions, POINT 

ModifyMenu 
The ModifyMenu function changes an existing menu item. This function is used to 
specify the content, appearance, and behavior of the menu item. 

Note The ModifyMenu function has been superseded by the SetMenultemlnfo 
function. You still can use ModifyMenu, however, if you do not need any of the 
extended features of SetMenultemlnfo. 

Parameters 
hMnu 

[in] Handle to the menu to be changed. 

uPosition 
[in] Specifies the menu item to be changed, as determined by the uFlags parameter. 

uFlags 
[in] Specifies flags that control the interpretation of the uPosition parameter and the 
content, appearance, and behavior of the menu item. This parameter must be a 
combination of one of the following required values and at least one of the values 
listed in the following Remarks section: 



282 Volume 2 Microsoft Windows User Interface 

Value 

MF _BYPOSITION 

ulDNewltem 

Meaning 

Indicates that the uPosition parameter gives the identifier of 
the menu item. The MF _BYCOMMAND flag is the default if 
neither the MF _BYCOMMAND nor MF _BYPOSITION flag is 
specified. 

Indicates that the uPosition parameter gives the zero-based 
relative position of the menu item. 

[in] Specifies either the identifier of the modified menu item or, if the uFlags parameter 
has the MF _POPUP flag set, a handle to the drop-down menu or submenu. 

IpNewltem 
[in] Pointer to the content of the changed menu item. The interpretation of this 
parameter depends on whether the uFlags parameter includes the MF _BITMAP, 
MF _OWNERDRAW, or MF _STRING flag: 

Value 

MF_BITMAP 

MF _OWNERDRAW 

Return Values 

Meaning 

Contains a bitmap handle. 

Contains a value supplied by an application that is used to 
maintain additional data related to the menu item. The 
value is in the itemData member of the structure pointed to 
by the Iparam parameter of the WM_MEASUREITEM or 
WM_DRAWITEM message sent when the menu item is 
created or its appearance is updated. 

Contains a pOinter to a null-terminated string (the default). 

If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
If ModifyMenu replaces a menu item that opens a drop-down menu or submenu, the 
function destroys the old drop-down menu or submenu and frees the memory used by it. 

In order for keyboard accelerators to work with bitmap or owner-drawn menu items, the 
owner of the menu must process the WM_MENUCHAR message. See Owner-Drawn 
Menus and WM_MENUCHARfor more information. 

The application must call the DrawMenuBar function whenever a menu changes, 
whether or not the menu is in a displayed window. To change the attributes of existing 
menu items, it is much faster to use the CheckMenultem and EnableMenultem 
functions. 



Chapter 7 Resources 283 

The following list describes the flags that may be set in the uFlags parameter: 

Value Meaning 

MF _BITMAP Uses a bitmap as the menu item. The IpNewltem parameter 
contains a handle to the bitmap. 

MF _BYCOMMAND Indicates that the uPosition parameter specifies the identifier 
of the menu item (the default). 

MF _BYPOSITION Indicates that the uPosition parameter specifies the zero­
based relative position of the new menu item. 

MF _CHECKED Places a check mark next to the item. If your application 
provides check-mark bitmaps (see the SetMenultemBitmaps 
function), this flag displays a selected bitmap next to the menu 
item. 

MF _DISABLED Disables the menu item so that it cannot be selected, but this 
flag does not dim it. 

MF _ENABLED Enables the menu item so that it can be selected, and restores 
it from its dimmed state. 

MF _GRAYED Disables the menu item and dims it, so that it cannot be 
selected. 

MF _MENUBARBREAK Functions the same as the MF _MENUBREAK flag for a menu 
bar. For a drop-down menu, submenu, or shortcut menu, the 
new column is separated from the old column by a vertical 
line. 

MF _MENUBREAK Places the item on a new line (for menu bars) or in a new 
column (for a drop-down menu, submenu, or shortcut menu) 
without separating columns. 

MF _OWNERDRAW Specifies that the item is an owner-drawn item. Before the 
menu is displayed for the first time, the window that owns the 
menu receives a WM_MEASUREITEM message to retrieve 
the width and height of the menu item. Then, the 
WM_DRAWITEM message is sent to the window procedure of 
the owner window whenever the appearance of the menu item 
must be updated. 

MF _POPUP Specifies that the menu item opens a drop-down menu or 
submenu. The ulDNewltem parameter specifies a handle to 
the drop-down menu or submenu. This flag is used to add a 
menu name to a menu bar or a menu item that opens a 
submenu to a drop-down menu, submenu, or shortcut menu. 

MF _SEPARATOR Draws a horizontal dividing line. This flag is used only in a 
drop-down menu, submenu, or shortcut menu. The line cannot 
be dimmed, disabled, or highlighted. The IpNewltem and 
ulDNewltem parameters are ignored. 

(continued) 



284 Volume 2 Microsoft Windows User Interface 

(continued) 

Value Meaning 

Specifies that the menu item is a text string; the IpNewltem 
parameter is a painter to the string. 

Does not place a check mark next to the item (the default). If 
your application supplies check-mark bitmaps (see the 
SetMenultemBitmaps function), this flag displays a clear 
bitmap next to the menu item. 

The following groups of flags cannot be used together: 

• MF _BYCOMMAND and MF _BYPOSITION 

• MF _DISABLED, MF _ENABLED, and MF _GRAYED 

• MF _BITMAP, MF _STRING, MF _OWNERDRAW, and MF _SEPARATOR 

• MF _MENUBARBREAK and MF _MENU BREAK 

• MF _CHECKED and MF _UNCHECKED 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Menus Overview, Menu Functions, AppendMenu, CheckMenultem, DrawMenuBar, 
EnableMenultem, SetMenultemBitmaps, SetMenultemlnfo, WM_DRAWITEM, 
WM_MEASUREITEM 

RemoveMenu 
The RemoveMenu function deletes a menu item or detaches a submenu from the 
specified menu. If the menu item opens a drop-down menu or submenu, RemoveMenu 
does not destroy the menu or its handle, allowing the menu to be reused. Before this 
function is called, the GetSubMenu function should retrieve a handle to the drop-down 
menu or submenu. 



Parameters 
hMenu 

[in] Handle to the menu to be changed. 

uPosition 

Chapter 7 Resources 285 

[in] Specifies the menu item to be deleted, as determined by the uFlags parameter. 

uFlags 
[in] Specifies how the uPosition parameter is interpreted. This parameter must be one 
of the following values: 

Value 

MF _BYCOMMAND 

MF _BYPOSITION 

Return Values 

Meaning 

Indicates that uPosition gives the identifier of the menu item. 
If neither the MF _BYCOMMAND nor MF _BYPOSITION flag 
is specified, then MF _BYCOMMAND is the default flag. 

Indicates that uPosition gives the zero-based relative 
position of the menu item. 

If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
The application must call the DrawMenuBar function whenever a menu changes, 
whether or not the menu is in a displayed window. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.1ib. 

Menus Overview, Menu Functions, CreatePopupMenu, DeleteMenu, DrawMenuBar, 
GetSubMenu 

SetMenu 
The SetMenu function assigns a new menu to the specified window. 



286 Volume 2 Microsoft Windows User Interface 

Parameters 
hWnd 

[in] Handle to the window to which the menu is to be assigned. 

hMenu 
[in] Handle to the new menu. If this parameter is NULL, the window's current menu is 
removed. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
The window is redrawn to reflect the menu change. A menu can be assigned to any 
window that is not a child window. 

The SetMenu function replaces the previous menu, if any, but it does not destroy it. An 
application should call the DestroyMenu function to accomplish this task. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Menus Overview, Menu Functions, DestroyMenu, GetMenu 

SetMenu Defaultltem 
The SetMenuDefaultltem function sets the default menu item for the specified menu. 



Parameters 
hMenu 

[in] Handle to the menu to set the default item for. 

ultem 

Chapter 7 Resources 287 

[in] Identifier or position of the new default menu item, or -1 for no default item. The 
meaning of this parameter depends on the value of fByPos. 

fByPos 
[in] Value specifying the meaning of ultem. If this parameter is FALSE, ultem is a 
menu item identifier. Otherwise, it is a menu item position. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, use the 
GetLastError function. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Menus Overview, Menu Functions, GetMenuDefaultitem 

SetMenulnfo 
The SetMenulnfo function sets information for a specified menu. 

Parameters 
hmenu 

[in] Handle to a menu. 

/pcmi 
[in] Pointer to a MENUINFO structure for the menu. 



288 Volume 2 Microsoft Windows User Interface 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Menus Overview, Menu Functions 

SetMenultemBitmaps 
The SetMenultemBitmaps function associates the specified bitmap with a menu item. 
Whether the menu item is selected or clear, the system displays the appropriate bitmap 
next to the menu item. 

Parameters 
hMenu 

[in] Handle to the menu containing the item to receive new check-mark bitmaps. 

uPosition 
[in] Specifies the menu item to be changed, as determined by the uFlags parameter. 

uFlags 
[in] Specifies how the uPosition parameter is interpreted. The uFlags parameter must 
be one of the following values: 

Value Meaning 

Indicates that uPosition gives the identifier of the menu item. 
If neither MF _BYCOMMAND nor MF _BYPOSITION is 
specified, MF _BYCOMMAND is the default flag. 



Chapter 7 Resources 289 

Value Meaning 

MF _BYPOSITION Indicates that uPosition gives the zero-based relative 
position of the menu item. 

hBitmapUnchecked 
[in] Handle to the bitmap displayed when the menu item is not selected. 

hBitmapChecked 
[in] Handle to the bitmap displayed when the menu item is selected. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
If either the hBitmapUnchecked or hBitmapChecked parameter is NULL, the system 
displays nothing next to the menu item for the corresponding check state. If both 
parameters are NULL, the system displays the default check-mark bitmap when the item 
is selected, and removes the bitmap when the item is not selected. 

When the menu is destroyed, these bitmaps are not destroyed; it is up to the application 
to destroy them. 

The selected and clear bitmaps should be monochrome. The system uses the Boolean 
AND operator to combine bitmaps with the menu, so that the white part becomes 
transparent and the black part becomes the menu-item color. If you use color bitmaps, 
the results might be undesirable. 

Use the GetSystemMetrics function with the CXMENUCHECK and CYMENUCHECK 
values to retrieve the bitmap dimensions. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Menus Overview, Menu Functions, GetSystemMetrics 



290 Volume 2 Microsoft Windows User Interface 

SetMenultemlnfo 
The SetMenultemlnfo function changes information about a menu item. 

Parameters 
hMenu 

[in] Handle to the menu that contains the menu item. 

ultem 
[in] Identifier or position of the menu item to change. The meaning of this parameter 
depends on the value of fByPosition. 

fByPosition 
[in] Value specifying the meaning of ultem. If this parameter is FALSE, ultem is a 
menu item identifier. Otherwise, it is a menu item position. 

Ipmii 
[in] Pointer to a MENUITEMINFO structure that contains information about the menu 
item and specifies which menu item attributes to change. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, use the 
GetLastError function. 

Remarks 
The application must call the DrawMenuBar function whenever a menu changes, 
whether or not the menu is in a displayed window. 

In order for keyboard accelerators to work with bitmap or owner-drawn menu items, the 
owner of the menu must process the WM_MENUCHAR message. See Owner-Drawn 
Menus and the WM_MENUCHAR Message for more information. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 



Chapter 7 Resources 291 

Menus Overview, Menu Functions, DrawMenuBar, GetMenultemlnfo, 
MENUITEMINFO 

TrackPopupMenu 
The TrackPopupMenu function displays a shortcut menu at the specified location and 
tracks the selection of items on the menu. The shortcut menu can appear anywhere on 
the screen. 

To specify an area of the screen the menu should not overlap, use the 
TrackPopupMenuEx function. 

Parameters 
hMenu 

[in] Handle to the shortcut menu to be displayed. The handle can be obtained by 
calling CreatePopupMenu to create a new shortcut menu, or by calling GetSubMenu 
to retrieve a handle to a submenu associated with an existing menu item. 

uFlags 
[in] Use zero of more of these flags to specify function options. 

Use one of the following flags to specify how the function positions the shortcut menu 
horizontally: 

Value 

TPM_CENTERALIGN 

TPM_RIGHT ALIGN 

Meaning 

If this flag is set, the function centers the shortcut 
menu horizontally relative to the coordinate specified 
by the x parameter. 

If this flag is set, the function positions the shortcut 
menu so that its left side is aligned with the 
coordinate specified by the x parameter. 

Positions the shortcut menu so that its right side is 
aligned with the coordinate specified by the x 
parameter. 



292 Volume 2 Microsoft Windows User Interface 

Use one of the following flags to specify how the function positions the shortcut menu 
vertically: 

Value 

TPM_BOnOMALIGN 

TPM_ VCENTERALIGN 

Meaning 

If this flag is set, the function positions the shortcut 
menu so that its bottom side is aligned with the 
coordinate specified by the y parameter. 

If this flag is set, the function positions the shortcut 
menu so that its top side is aligned with the 
coordinate specified by the y parameter. 

If this flag is set, the function centers the shortcut 
menu vertically relative to the coordinate specified by 
the y parameter. 

Use the following flags to determine the user selection without having to set up a 
parent window for the menu: 

Value Meaning 

TPM_RETURNCMD 

If this flag is set, the function does not send 
notification messages when the user clicks on a menu 
item. 

If this flag is set, the function returns the menu item 
identifier of the user's selection in the return value. 

Use one of the following flags to specify which mouse button the shortcut menu 
tracks: 

Value Meaning 

TPM_LEFTBUTTON 

TPM_RIGHTBUTTON 

If this flag is set, the user can select menu items with 
only the left mouse button. 

If this flag is set, the user can select menu items with 
both the left and right mouse buttons. 

Windows 98, Windows 2000: Use one of the following flags to modify the animation 
of a menu: 

Value Meaning 

TPM_HORNEGANIMATION Animates the menu from left to right. 

TPM_HORPOSANIMATION Animates the menu from right to left. 

TPM_NOANIMATION Displays menu without animation. 

TPM_VERNEGANIMATION Animates the menu from bottom to top. 

TPM_VERPOSANIMATION Animates the menu from top to bottom. 



x 

y 

Chapter 7 Resources 293 

For any animation to occur, the SystemParameterslnfo function must set 
SPI_SETMENUANIMATION. Also, all the TPM_*ANIMATION flags, except for 
TPM_NOANIMATION, are ignored if menu fade animation is on. See the 
SPI_GETMENUFADE flag in SystemParameterslnfo. 

Windows 98, Windows 2000: Use the TPM_RECURSE flag to display a menu when 
another menu is already displayed. This is intended to support context menus within a 
menu. 

[in] Specifies the horizontal location of the shortcut menu, in screen coordinates. 

[in] Specifies the vertical location of the shortcut menu, in screen coordinates. 

nReserved 
Reserved; must be zero. 

hWnd 
[in] Handle to the window that owns the shortcut menu. This window receives all 
messages from the menu. The window does not receive a WM_COMMAND message 
from the menu until the function returns. 

If you specify TPM_NONOTIFY in the uFlags parameter, the function does not send 
messages to the window identified by hWnd. However, you still must pass a window 
handle in hWnd. It can be any window handle from your application. 

prcRect 
Ignored. 

Return Values 
If you specify TPM_RETURNCMD in the uFlags parameter, the return value is the 
menu-item identifier of the item that the user selected. If the user cancels the menu 
without making a selection, or if an error occurs, then the return value is zero. 

If you do not specify TPM_RETURNCMD in the uFlags parameter, the return value is 
nonzero if the function succeeds and zero if it fails. To get extended error information, 
call GetLastError. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Menus Overview, Menu Functions, CreatePopupMenu, GetSubMenu, RECT, 
SystemParameterslnfo, TrackPopupMenuEx, WM_COMMAND 



294 Volume 2 Microsoft Windows User Interface 

TrackPopupMenuEx 
The TrackPopupMenuEx function displays a shortcut menu at the specified location 
and tracks the selection of items on the shortcut menu. The shortcut menu can appear 
anywhere on the screen. 

Parameters 
hmenu 

[in] Handle to the shortcut menu to be displayed. This handle can be obtained by 
calling the CreatePopupMenu function to create a new shortcut menu, or by calling 
the GetSubMenu function to retrieve a handle to a submenu associated with an 
existing menu item. 

fuFlags 
[in] Specifies function options. 

Use one of the following flags to specify how the function positions the shortcut menu 
horizontally: 

Value 

TPM_ CENTERALIGN 

TPM_RIGHTALIGN 

Meaning 

If this flag is set, the function centers the shortcut menu 
horizontally relative to the coordinate specified by the x 
parameter. 

If this flag is set, the function positions the shortcut menu 
so that its left side is aligned with the coordinate specified 
by the x parameter. 

Positions the shortcut menu so that its right side is 
aligned vvlth the coordinate specified by the x parameter. 

Use one of the following flags to specify how the function positions the shortcut menu 
vertically: 

Value 

TPM_BOTTOMALIGN 

Meaning 

If this flag is set, the function positions the shortcut menu 
so that its bottom side is aligned with the coordinate 
specified by the y parameter. 



Value 

TPM_ VCENTERALIGN 

Chapter 7 Resources 295 

Meaning 

If this flag is set, the function positions the shortcut menu 
so that its top side is aligned with the coordinate specified 
by the y parameter. 

If this flag is set, the function centers the shortcut menu 
vertically relative to the coordinate specified by the y 
parameter. 

Use the following flags to determine the user selection without having to set up a 
parent window for the menu: 

Value Meaning 

TPM_RETURNCMD 

If this flag is set, the function does not send notification 
messages when the user clicks on a menu item. 

If this flag is set, the function returns the menu item 
identifier of the user's selection in the return value. 

Use one of the following flags to specify which mouse button the shortcut menu 
tracks: 

Value Meaning 

TPM_LEFTBUTTON 

TPM_RIGHTBUTTON 

If this flag is set, the user can select menu items with only 
the left mouse button. 

If this flag is set, the user can select menu items with 
both the left and right mouse buttons. 

Windows 98, Windows 2000: Use one of the following flags to modify the animation 
of a menu: 

Value Meaning 

TPM_HORNEGANIMATION 

TPM_HORPOSANIMATION 

TPM_NOANIMATION 

TPM_ VERNEGANIMATION 

TPM_ VERPOSANIMATION 

Animates the menu from left to right. 

Animates the menu from right to left. 

Displays menu without animation. 

Animates the menu from bottom to top. 

Animates the menu from top to bottom. 

For any animation to occur, the SystemParameterslnfo function must set 
SPLSETMENUANIMATION. Also, all the TPM_*ANIMATION flags, except for 
TPM_NOANIMATION, are ignored if menu fade animation is on. See the 
SPI_GETMENUFADE flag in SystemParameterslnfo. 

Windows 98, Windows 2000: Use the TPM_RECURSE flag to display a menu when 
another menu is already displayed. This is intended to support context menus within a 
menu. 

Use one of the following flags to specify whether to accommodate horizontal or 
vertical alignment: 



296 Volume 2 Microsoft Windows User Interface 

x 

y 

Value 

TPM_HORIZONTAL 

TPM_ VERTICAL 

Meaning 

If the menu cannot be shown at the specified location 
without overlapping the excluded rectangle, the system 
tries to accommodate the requested horizontal alignment 
before the requested vertical alignment. 

If the menu cannot be shown at the specified location 
without overlapping the excluded rectangle, the system 
tries to accommodate the requested vertical alignment 
before the requested horizontal alignment. 

The excluded rectangle is a portion of the screen that the menu should not overlap; it 
is specified by Jptpm. 

[in] Horizontal location of the shortcut menu, in screen coordinates. 

[in] Vertical location of the shortcut menu, in screen coordinates. 

hwnd 
[in] Handle to the window that owns the shortcut menu. This window receives all 
messages from the menu. The window does not receive a WM_COMMAND message 
from the menu until the function returns. 

If you specify TPM_NONOTIFY in the fuFJags parameter, the function does not send 
messages to the window identified by hwnd. However, you still have to pass a window 
handle in hwnd. It can be any window handle from your application. 

Jptpm 
[in] Pointer to a TPMPARAMS structure that specifies an area of the screen the menu 
should not overlap. This parameter can be NULL. 

Return Values 
If you specify TPM_RETURNCMD in the fuFJags parameter, the return value is the 
menu-item identifier of the item that the user selected. If the user cancels the menu 
without making a selection, or if an error occurs, then the return value is zero. 

If you do not specify TPM_RETURNCMD in the fuFJags parameter, the return value is 
nonzero if the function succeeds and zero if it fails. To get extended error information, 
call GetLastError. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 



Chapter 7 Resources 297 

Menus Overview, Menu Functions, CreatePopupMenu, GetSubMenu, 
SystemParameterslnfo, TPMPARAMS, WM_COMMAND 

Menu Structures 

MDINEXTMENU 
The MDINEXTMENU structure contains information about the menu to be activated. 

~11a1::::~; .......... . 
Members 
hmenuln 

Receives a handle to the current menu. 

hmenuNext 
Specifies a handle to the menu to be activated. 

hwndNext 
Specifies a handle to the window to receive the menu notification messages. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Menus Overview, Menu Structures, WM_NEXTMENU 

MENUBARINFO 
The MENUBARINFO structure contains menu bar information. 



298 Volume 2 Microsoft Windows User Interface 

Members 
cbSize 

Specifies the size, in bytes, of the structure. 

rcBar 
Pointer to a RECT structure that specifies the coordinates of the menu bar, pop-up 
menu, or menu item. 

hMenu 
Handle to the menu bar or pop-up menu. 

hwndMenu 
Handle to the submenu. 

fBarFocused 
If the menu bar or pop-up menu has the focus, this parameter is TRUE. Otherwise, 
the parameter is FALSE. 

fFocused 
If the menu item has the focus, this parameter is TRUE. Otherwise, the parameter is 
FALSE. 

Windows NT/2000: Requires Windows NT 4.0 SP3 or later. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Menus Overview, Menu Structures, GetMenuBarlnfo, RECT 

The MENUEX_TEMPLATE_HEADER structure defines the header for an extended 
menu template. This structure definition is for explanation only; it is not present in any 
standard header file. 



Members 
wVersion 

Chapter 7 Resources 299 

Template version number. This member must be 1 for extended menu templates. 

wOffset 
Offset of the first MENUEX_TEMPLATE_ITEM structure, relative to the end of this 
structure member. If the first item definition immediately follows the dwHelpld 
member, this member should be 4. 

dwHelpld 
Help identifier of menu bar. 

Remarks 
An extended menu template consists of a MENUEX_TEMPLATE_HEADER structure 
followed by one or more contiguous MENUEX_TEMPLATE_ITEM structures. The 
MENUEX_TEMPLATE_ITEM structures, which are variable in length, are aligned on 
DWORD boundaries. To create a menu from an extended menu template in memory, 
use the LoadMenulndirect function . 

. ....... . 
Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 

Menus Overview, Menu Structures, LoadMenulndirect, MENUEX_TEMPLATE_ITEM 

The MENUEX_TEMPLATE_ITEM structure defines a menu item in an extended menu 
template. This structure definition is for explanation only; it is not present in any standard 
header file. 



300 Volume 2 Microsoft Windows User Interface 

Members 
dwType 

Menu item type. This member can be a combination of the type (beginning with MFT) 
values listed with the MENUITEMINFO structure. 

dwState 
Menu item state. This member can be a combination of the state (beginning with 
MFS) values listed with the MENUITEMINFO structure. 

uld 
Menu item identifier. This is an application-defined 16-bit value used as a handle to 
the menu item. In an extended menu resource, items that open drop-down menus or 
submenus, as well as command items, can have identifiers. 

bReslnfo 
Value specifying whether the menu item is the last item in the menu bar, drop-down 
menu, submenu, or shortcut menu and whether it is an item that opens a drop-down 
menu or submenu. This member can be zero or more of these values: 

Value Meaning 

Ox01 

Ox80 

The structure defines an item that opens a drop-down menu or 
submenu. Subsequent structures define menu items in the 
corresponding drop-down menu or submenu. 

The structure defines the last menu item in the menu bar, drop­
down menu, submenu, or shortcut menu. 

For 32-bit applications, this member is a word; for 16-bit applications, it is a byte. 

szText 
Menu item text. This member, which is a null-terminated Unicode string, is aligned on 
a word boundary. The size of the menu item definition varies depending on the length 
of this string. 

dwHelpld 
Help identifier for a drop-down menu or submenu. This member, which is included 
only for items that open drop-down menus or submenus, is located at the first 
DWORD boundary following the variable-length szText member. 

Remarks 
An extended menu template consists of a MENU EX_ TEMPLATE_HEADER structure 
followed by one or more contiguous MENUEX_TEMPLATE_ITEM structures. The 
MENUEX_TEMPLATE_ITEM structures, which are variable in length, are aligned on 
DWORD boundaries. To create a menu from an extended menu template in memory, 
use the LoadMenulndirect function. 



Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 

Menus Overview, Menu Structures, LoadMenulndirect, 
MENUEX_ TEMPLATE_HEADER, MENUITEMINFO 

MENUGETOBJECTINFO 

Chapter 7 Resources 301 

The MENUGETOBJECTINFO structure contains information about the menu that the 
mouse cursor is on. 

Members 
dwFlags 

Position of the mouse cursor with respect to the item indicated by uPos. It can be one 
of the following values: 

Value 

MNGOF _BOTTOMGAP 

MNGOF _ TOPGAP 

uPos 

Meaning 

Mouse is on the bottom of the item indicated by uPos. 

Mouse is on the top of the item indicated by uPos. 

Position of the item the mouse cursor is on. 

hmenu 
Handle to the menu the mouse cursor is on. 

riid 
Identifier of the requested interface. Currently, it can be only IDropTarget. 

pvObj 
Pointer to the interface corresponding to the riid member. This pointer is to be 
returned by the application when processing the message. 



302 Volume 2 Microsoft Windows User Interface 

Remarks 
The MENUGETOBJECTINFO structure is used only in drag-and-drop menus. When the 
WM_MENUGETOBJECT message is sent, IParam is a pointer to this structure. 

To create a drag-and-drop menu, call SetMenulnfo with MNS_DRAGDROP set. 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in winuser.h. 

Menus Overview, Menu Structures, SetMenulnfo 

MENUINFO 
The MENUINFO structure contains information about a menu. 

'trj5~~~,r)~;~~~u,c::" t:agMEfi¥lN,§C :(tr y ' .' 
. r, c[)VI'.oRl't '<: b:~.1.Z.~ ;. c' ": • •• c 

,,9~qR~.tMa$KI: .• ' ... 
PlfORI;t .... dwSt,yle: 
un"r ·..~yf;tax.: 

'H~Rusli hb~Ba ck~"·; ., .. 
" tiWGoRD·dwC(Jf\·textHel pID:,. 

,(;J~9I'lG~PTRdwMe(\uDat·a:.< .• 
h~EflIUINfO; FAR *l::Pm:;f:lUINfO;c .' , 
;,typ~deiMENirIN;£OCON~r 'FAR *l::pf1MtNUr§FO~ 

Members 
cbSize 

Size of the structure, in bytes 

fMask 
Members to retrieve or set (except for MIM_APPL YTOSUBMENUS). This member 
can be one or more of the following values: 

Value Meaning 

MIM_APPL YTOSUBMENUS Settings apply to the menu and all of its submenus. 
SetMenulnfo uses this flag and GetMenulnfo 
ignores this flag. 

MIM_BACKGROUND Retrieves or sets the hbrBack member. 

MIM_HELPID Retrieves or sets the dwContextHelplD member. 



Value 

MIM_MAXHEIGHT 

MIM_MENUDATA 

MIM_STYLE 

dwStyle 

Chapter 7 Resources 303 

Meaning 

Retrieves or sets the cyMax member. 
Retrieves or sets the dwMenuData member. 

Retrieves or sets the dwStyle member. 

Style of the menu. It can be one or more of the following values: 

Value Meaning 

MNS_AUTODISMISS 

MNS_CHECKORBMP 

MNS_NOTIFYBYPOS 

cyMax 

Menu automatically ends when mouse is outside the 
menu for approximately 10 seconds. 

The same space is reserved for the check mark and 
the bitmap. If the check mark is drawn, the bitmap is 
not. All check marks and bitmaps are aligned. Used 
for menus where some items use check marks and 
some use bitmaps. 

Menu items are OLE drop targets or drag sources. 
Menu owner receives WM_MENUDRAG and 
WM_MENUGETOBJECT messages. 

Menu is modeless; that is, there is no menu modal 
message loop while the menu is active. 

No space is reserved to the left of an item for a check 
mark. The item still can be selected, but the check 
mark will not appear next to the item. 

Menu owner receives a WM_MENUCOMMAND 
message, instead of a WM_COMMAND message, 
when the user makes a selection. 

Maximum height of the menu in pixels. When the menu items exceed the space 
available, scroll bars are automatically used. The default (0) is the screen height. 

hbrBack 
Brush to use for the menu's background. 

dwContextHelplD 
The context help identifier. This is the same value used in GetMenuContextHelpld 
and SetMenuContextHelpld. 

dwMenuData 
An application-defined value. 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in winuser.h. 



304 Volume 2 Microsoft Windows User Interface 

Menus Overview, Menu Structures 

MENUITEMINFO 
The MENUITEMINFO structure contains information about a menu item. 

Members 
cbSize 

Size of structure, in bytes. 

fMask 
Members to retrieve or set. This member can be one or more of these values: 

Value Meaning 

MIIM_CHECKMARKS 

MIIM_DATA 

MIIM_FTYPE 

MIIM_ID 

MIIM_STATE 

MIIM_STRING 

Windows 98, Windows 2000: Retrieves or sets the 
hbmpltem member. 

Retrieves or sets the hbmpChecked and 
hbmpUnchecked members. 

Retrieves or sets the dwltemData member. 

Windows 98, Windows 2000: Retrieves or sets the 
fType member. 

Retrieves or sets the wiD member. 

Retrieves or sets the fState member. 

Windows 98, Windows 2000: Retrieves or sets the 
dwTypeData member. 

Retrieves or sets the hSubMenu member. 



Value 

fType 

Chapter 7 Resources 305 

Meaning 

Retrieves or sets the fType and dwTypeData members. 

Windows 98, Windows 2000: MIIM_ TYPE is replaced by 
MIIM_BITMAP, MIIM_FTYPE, and MIIM_STRING. 

Menu item type. This member can be one or more of these values: 

Value Meaning 

MFT _BITMAP Displays the menu item using a bitmap. The low-order 
word of the dwTypeData member is the bitmap handle, 
and the cch member is ignored. 

Windows 98, Windows 2000: MFT _BITMAP is replaced 
by MIIM_BITMAP and hbmpltem. 

MFT _MENUBARBREAK Places the menu item on a new line (for a menu bar) or in 
a new column (for a drop-down menu, submenu, or 
shortcut menu). For a drop-down menu, submenu, or 
shortcut menu, a vertical line separates the new column 
from the old. 

MFT _MENUBREAK Places the menu item on a new line (for a menu bar) or in 
a new column (for a drop-down menu, submenu, or 
shortcut menu). For a drop-down menu, submenu, or 
shortcut menu, the columns are not separated by a 
vertical line. 

MFT _OWNERDRAW Assigns responsibility for drawing the menu item to the 
window that owns the menu. The window receives a 
WM_MEASUREITEM message before the menu is 
displayed for the first time, and a WM_DRAWITEM 
message whenever the appearance of the menu item 
must be updated. If this value is specified, the 
dwTypeData member contains an application-defined 
value. 

MFT _RADIOCHECK Displays selected menu items using a radio-button mark 
instead of a check mark if the hbmpChecked member is 
NULL. 

MFT _RIGHT JUSTIFY Right-justifies the menu item and any subsequent items. 
This value is valid only if the menu item is in a menu bar. 

MFT _RIGHTORDER Windows 95/98, Windows 2000: Specifies that menus 
cascade right-to-Ieft (the default is left-to-right). This is 
used to support right-to-Ieft languages, such as Arabic 
and Hebrew. 

(continued) 



306 Volume 2 Microsoft Windows User Interface 

(continued) 

Value 

MFT_SEPARATOR 

Meaning 

Specifies that the menu item is a separator. A menu item 
separator appears as a horizontal dividing line. The 
dwTypeData and cch members are ignored. This value 
is valid only in a drop-down menu, submenu, or shortcut 
menu. 

Displays the menu item using a text string. The 
dwTypeData member is the pointer to a nUll-terminated 
string, and the cch member is the length of the string. 

Windows 98, Windows 2000: MFT _STRING is replaced 
by MIIM_STRING. 

The MFT _BITMAP, MFT _SEPARATOR, and MFT _STRING values cannot be 
combined with one another. Set fMask to MIIM_ TYPE to use fType. 

Windows 98 and Windows 2000: fType is used only if fMask has a value of 
MIIM_FTYPE. 

fState 
Menu item state. This member can be one or more of these values: 

Value Meaning 

MFS_HILITE 

MFS_UNCHECKED 

Checks the menu item. For more information about 
selected menu items, see the hbmpChecked member. 

Specifies that the menu item is the default. A menu can 
contain only one default menu item, which is displayed in 
bold. 

Disables the menu item and dims it, so that it cannot be 
selected. This is equivalent to MFS_GRAYED. 

Enables the menu item, so that it can be selected. This is 
the default state. 

Disables the menu item and dims it, so that it cannot be 
selected. This is equivalent to MFS_DISABLED. 

Highlights the menu item. 

Unchecks the menu item. For more information about clear 
menu items, see hbmpUnchecked. 

Removes the highlight from the menu item. This is the 
default state. 

Set fMask to MIIM_STATE to use fState. 

wiD 
Application-defined 16-bit value that identifies the menu item. Set fMask to MIIM_ID 
to use wiD. 



Chapter 7 Resources 307 

hSubMenu 
Handle to the drop-down menu or submenu associated with the menu item. If the 
menu item is not an item that opens a drop-down menu or submenu, this member is 
NULL. Set fMask to MIIM_SUBMENU to use hSubMenu. 

hbmpChecked 
Handle to the bitmap to display next to the item, if it is selected. If this member is 
NULL, a default bitmap is used. If the MFT _RADIOCHECK type value is specified, the 
default bitmap is a bullet. Otherwise, it is a check mark. Set fMask to 
MIIM_CHECKMARKS to use hbmpChecked. 

hbmpUnchecked 
Handle to the bitmap to display next to the item if it is not selected. If this member is 
NULL, no bitmap is used. Set fMask to MIIM_CHECKMARKS to use 
hbmpUnchecked. 

dwltemData 
Application-defined value associated with the menu item. Set fMask to MIIM_DATA to 
use dwltemData. 

dwTypeData 
Content of the menu item. The meaning of this member depends on the value of 
fType and is used only if the MIIM_ TYPE flag is set in the fMask member. 

To retrieve a menu item of type MFT _STRING, first find the size of the string by 
setting the dwTypeData member of MENUITEMINFO to NULL and then calling 
GetMenultemlnfo. The value of cch is the size needed. Then, allocate a buffer of this 
size, place the pOinter to the buffer in dwTypeData, and call GetMenultemlnfo once 
again to fill the buffer with the string. If the retrieved menu item is of some other type, 
then GetMenultemlnfo sets the dwTypeData member to a value whose type 
is specified by the fType member. 

When using with the SetMenultemlnfo function, this member should contain a value 
whose type is specified by the fType member. 

Windows 98 and Windows 2000: dwTypeData is used only if the MIIM_STRING 
flag is set in the fMask member. 

cch 
Length of the menu item text when information is received about a menu item of the 
MFT _STRING type. This member is used only if the MIIM_ TYPE flag is set in the 
fMask member and is zero, otherwise. This member is ignored when the content of a 
menu item is set by calling SetMenultemlnfo. 

Before calling GetMenultemlnfo, the application must set this member to the length 
of the buffer pointed to by the dwTypeData member. If the retrieved menu item is of 
type MFT _STRING (as indicated by the fType member), then GetMenultemlnfo sets 
cch to the length of the retrieved string. If the retrieved menu item is of some other 
type, then GetMenultemlnfo sets the cch field to zero. 

Windows 98, Windows 2000: cch is used when the MIIM_STRING flag is set in the 
fMask member. 



308 Volume 2 Microsoft Windows User Interface 

hbmpltem 
Windows 98, Windows 2000: Handle to the bitmap to be displayed, or it can be one 
of the values in the following table. It is used when the MIIM_BITMAP flag is set in the 
fMask member: 

Value Bitmap to be displayed 

HBMMENU_CALLBACK 

HBMMENU_MBAR_CLOSE 

HBMMENU_MBAR_CLOSE_D 

HBMMENU_MBAR_MINIMIZE 

HBMMENU_MBAR_MINIMIZE_D 

HBMMENU_MBAR_RESTORE 

HBMMENU_POPUP_CLOSE 

HBMMENU_POPUP _MAXIMIZE 

HBMMENU_POPUP _MINIMIZE 

HBMMENU_POPUP_RESTORE 

HBMMENU_SYSTEM 

Remarks 

A bitmap that is drawn by the window that 
owns the menu. The application must process 
the WM_MEASUREITEM and 
WM_DRAWITEM messages. 

Close button for the menu bar. 

Disabled close button for the menu bar. 

Minimize button for the menu bar. 

Disabled minimize button for the menu bar. 

Restore button for the menu bar. 

Close button for the submenu. 

Maximize button for the submenu. 

Minimize button for the submenu. 

Restore button for the submenu. 

Windows icon, or the icon of the window 
specified in dwltemData. 

A menu can display items using either text or bitmaps, but not both. 

The MENUITEMINFO structure is used with the GetMenultemlnfo, InsertMenultem, 
and SetMenultemlnfo functions. 

Windows 98 and Windows 2000: The menu can display items using text, bitmaps, or 
both. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Unicode: Declared as Unicode and ANSI structures. 

Menus Overview, Menu Structures, GetMenultemlnfo, InsertMenultem, 
SetMenultemlnfo, WM_DRAWITEM, WM_MEASUREITEM 



Chapter 7 Resources 309 

MENUITEMTEMPLATE 
The MENUITEMTEMPLATE structure defines a menu item in a menu template. 

Members 
mtOption 

Specifies one or more of the following predefined menu options that control the 
appearance of the menu item as shown in the following table: 

Value Meaning 

MF _CHECKED Indicates that the menu item has a check mark next to it. 

MF _GRAYED Indicates that the menu item is initially inactive and drawn 
with a shaded effect. 

MF _HELP Indicates that the menu item has a vertical separator to its 
left. 

MF _MENUBARBREAK Indicates that the menu item is placed in a new column. 
The old and new columns are separated by a bar. 

MF _MENUBREAK Indicates that the menu item is placed in a new column. 

MF _OWNERDRAW Indicates that the owner window of the menu is 
responsible for drawing all visual aspects of the menu 
item, including highlighted, selected, and inactive states. 
This option is not valid for an item in a menu bar. 

MF_POPUP 

mtiD 

Indicates that the item is one that opens a drop-down 
menu or submenu. 

Specifies the menu item identifier of a command item; a command item sends a 
command message to its owner window. The MENUITEMTEMPLATE structure for an 
item that opens a drop-down menu or submenu does not contain the mtlD member. 

mtString 
Specifies the null-terminated string for the menu item. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 



310 Volume 2 Microsoft Windows User Interface 

Menus Overview, Menu Structures, LoadMenulndirect, 
MENUITEMTEMPLATEHEADER 

MENUITEMTEMPLATEHEADER 
The MENUITEMTEMPLATEHEADER structure defines the header for a menu template. 
A complete menu template consists of a header and one or more menu item lists. 

Members 
versionNumber 

Specifies the version number. This member must be zero. 

offset 
Specifies the offset, in bytes, from the end of the header. The menu item list begins at 
this offset. Usually, this member is zero, and the menu item list follows immediately 
after the header. 

Remarks 
One or more MENUITEMTEMPLATE structures are combined to form the menu item list. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Menus Overview, Menu Structures, LoadMenulndirect, MENUITEMTEMPLATE 

TPMPARAMS 
The TPMPARAMS structure contains extended parameters for the 
TrackPopupMenuEx function. 



RECT rcExclude: 
} TPMPARAMS. *LPTPMPARAMS: 

Members 
cbSize 

Size of structure, in bytes. 

rcExclude 

Chapter 7 Resources 311 

Rectangle to exclude when positioning the window, in screen coordinates. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Menus Overview, Menu Structures, Rectangle, TrackPopupMenuEx 

Menu Messages 

WM_COMMAND 
The WM_COMMAND message is sent when the user selects a command item from a 
menu; a control sends a notification message to its parent window; or an accelerator 
keystroke is translated. 

A window receives this message through its WindowProc function. 

lREStll"JicAttBA:CK Wi ndoWP4'Qc( ( ...... . 
HWNn#,md,. . il Ma6~1.e:t6wtnaQW .•.... 
I.lIHT·uMsg.· .. ' ·'aWrU;nMM*fitLl/'··· 
WPARAt( wPahnn; . II'n(}trf1~afion~odeand 1den~ifj er 
HAllAM: iPaia~ ,:11. han(fje;'\).o.~ontr()T (HWNI).} , 

n 
Parameters 
wParam 

The high-order word specifies the notification code if the message is from a control. If 
the message is from an accelerator, this value is 1. If the message is from a menu, 
this value is zero. 

The low-order word specifies the identifier of the menu item, control, or accelerator. 



312 Volume 2 Microsoft Windows User Interface 

IParam 
Handle to the control sending the message if the message is from a control. 
Otherwise, this parameter is NULL. 

Return Values 
If an application processes this message, it should return zero. 

Remarks 
Accelerator keystrokes that select items from the window menu are translated into 
WM_SYSCOMMAND messages. 

If an accelerator keystroke occurs that corresponds to a menu item when the window 
that owns the menu is minimized, no WM_COMMAND message is sent. However, if an 
accelerator keystroke occurs that does not match any of the items in the window's menu 
or in the window menu, a WM_COMMAND message is sent, even if the window is 
minimized. 

If an application enables a menu separator, the system sends a WM_COMMAND 
message with the low-word of the wParam parameter set to zero when the user selects 
the separator. 

Windows 98, Windows 2000: If a menu is defined with a MENUINFO.dwStyle value of 
MNS_NOTIFYBYPOS, WM_MENUCOMMAND is sent, instead of WM_COMMAND. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Menus Overview, Menu Messages, HIWORD, LOWORD, MENUINFO, 
WM_MENUCOMMAND, WM_SYSCOMMAND 

WM_CONTEXTMENU 
The WM_CONTEXTMENU message notifies a window that the user clicked the right 
mouse button (right-clicked) in the window. 

A window receives this message through its WindowProc function. 



WPARAM wParam, II handle to window (HWND) 
LPARAM 7Param 1/ horizontal and vertical position 

): 

Parameters 
wParam 

Chapter 7 Resources 313 

Handle to the window in which the user right-clicked the mouse. This can be a child 
window of the window receiving the message. For more information about processing 
this message, see the Remarks section. 

IParam 
The low-order word specifies the horizontal position of the cursor, in screen 
coordinates, at the time of the mouse click. 

The high-order word specifies the vertical position of the cursor, in screen 
coordinates, at the time of the mouse click. 

Return Values 
No return value. 

Remarks 
A window can process this message by displaying a shortcut menu using the 
TrackPopupMenu or TrackPopupMenuEx function. To obtain the horizontal and 
vertical positions, use the following code: 

If a window does not display a shortcut menu, it should pass this message to the 
DefWindowProc function. If a window is a child window, DefWindowProc sends the 
message to the parent. Otherwise, DefWindowProc displays a default shortcut menu if 
the specified position is in the window's caption. 

DefWindowProc generates the WM_CONTEXTMENU message when it processes the 
WM_RBUTTONUP or WM_NCRBUTTONUP message or when the user types 
SHIFT +F1 O. The WM_CONTEXTMENU message is generated also when the user 
presses and releases the VK_APPS key. 

If the context menu is generated from the keyboard-for example, if the user types 
SHIFT +F1 O-then the x-coordinates and y-coordinates are -1, and the application 
should display the context menu at the location of the current selection instead of at 
(xPos, yPos). 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 



314 Volume 2 Microsoft Windows User Interface 

Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Menus Overview, Menu Messages, DefWindowProc, GET _X_LPARAM, 
GET _ Y _LPARAM, TrackPopupMenu, TrackPopupMenuEx, WM_NCRBUTTONUP, 
WM_RBUTTONUP 

WM_ENTERMENULOOP 
The WM_ENTERMENULOOP message informs an application's main window 
procedure that a menu modal loop has been entered. 

A window receives this message through its WindowProc function. 

Parameters 
wParam 

Specifies whether the window menu was entered using the TrackPopupMenu 
function. This parameter has a value of TRUE if the window menu was entered using 
TrackPopupMenu, and FALSE if it was not. 

IParam 
This parameter is not used. 

Return Values 
An application should return zero if it processes this message. 

Remarks 
The DefWindowProc function returns zero. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 



Chapter 7 Resources 315 

Menus Overview, Menu Messages, DefWindowProc, WM_EXITMENULOOP 

WM_EXITMENULOOP 
The WM_EXITMENULOOP message informs an application's main window procedure 
that a menu modal loop has been exited. 

A window receives this message through its WindowProc function. 

Parameters 
wParam 

Specifies whether the menu is a shortcut menu. This parameter has a value of TRUE 
if it is a shortcut menu, and FALSE if it is not. 

IParam 
This parameter is not used. 

Return Values 
An application should return zero if it processes this message. 

Remarks 
The DefWindowProc function returns zero. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Menus Overview, Menu Messages, DefWindowProc, WM_ENTERMENULOOP 



316 Volume 2 Microsoft Windows User Interface 

WM_MENUCOMMAND 
The WM_MENUCOMMAND message is sent when the user makes a selection from a 
menu. 

A window receives this message through its WindowProc function. 

Parameters 
wParam 

Specifies the zero-based index of the item selected. 

IParam 
Handle to the menu for the item selected. 

Remarks 
The WM_MENUCOMMAND message gives you a handle to the menu-so that you can 
access the menu data in the MENUINFO structure-and also gives you the index of the 
selected item, which is typically what applications need. In contrast, the 
WM_COMMAND message gives you the menu item identifier. 

The WM_MENUCOMMAND message is sent only for menus that are defined with the 
MNS_NOTIFYBYPOS flag set in the dwStyle member of the MENUINFO structure. 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in winuser.h. 

Menus Overview,'Menu Messages 

The WM_MENUDRAG message is sent to the owner of a drag-and-drop menu when the 
user drags a menu item. 

A window receives this message through its WindowProc function. 



LRESUl.T CALLBACK W1ndowProc( 
HWNDbwnd. 
UINTuN$g. 
wpA:RAMwe~ram~ 
LP.ARAM 7Param 

Parameters 
wParam 

1/ .nandl e .. tQw.i ndow 
II>WM ... t1ENUDRA~ 
/1 

Chapter 7 Resources 317 

Specifies the position of the item where the drag operation began. 

IParam 
Handle to the menu containing the item. 

Return Values 
The application should return one of the following values: 

Value 

Remarks 

Meaning 

Menu should remain active. If the mouse is released, it 
should be ignored. 

Menu should be ended. 

The application can call the DoDragDrop function in response to this message. 

To create a drag-and-drop menu, call SetMenulnfo with MNS_DRAGDROP. 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in winuser.h. 

Menus Overview, Menu Messages, SetMenulnfo 

WM_MENUGETOBJECT 
The WM_MENUGETOBJECT message is sent to the owner of a drag-and-drop menu 
when the mouse cursor enters a menu item or moves from the center of the item to the 
top or bottom of the item. 

A window receives this message through its WindowProc function. 



318 Volume 2 Microsoft Windows User Interface 

Parameters 
wParam 

This parameter is not used. 

IParam 
Pointer to a MENUGETOBJECTINFO structure. 

Return Values 
The application should return one of the following values: 

Values 

MNGO_NOINTERFACE 

Meaning 

An interlace pointer was returned in the pvObj member 
of MENUGETOBJECTINFO. 

The interface is not supported. 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in winuser.h. 

Menus Overview, Menu Messages 

WM_MENURBUTTONUP 
The WM_MENURBUTTONUP message is sent when the user releases the right mouse 
button while the cursor is on a menu item. 

A window receives this message through its WindowProc function. 



Parameters 
wParam 

Chapter 7 Resources 319 

Specifies the position of the item when the mouse was released. 

IParam 
Handle to the menu containing the item. 

Remarks 
The WM_MENURBUTTONUP message allows applications to provide a context­
sensitive menu-also known as a shortcut menu-for the menu item specified in this 
message. To display a context-sensitive menu for a menu item, call the 
TrackPopupMenuEx function with TPM_RECURSE. 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in winuser.h. 

Menus Overview, Menu Messages 

The WM_NEXTMENU message is sent to an application when the right or left arrow key 
is used to switch between the menu bar and the system menu. 

A window receives this message through its WindowProc function. 

UESU~T"CAU.BAi:l< WindOwPrQ~{ , 
HWiI)in~nd,. 11 lia.!1~;l e'to:~; n.<lQIV 
~INTuM~d~ Jf'WM)~EltrMENU' 
'P~JW.t'wpa'r~m.l r·\tir't~aJ -keyc6tte,. . 

.' kPARA.r.llp.aralTl.,:f:( l1\enU.i!1fQt'!!I~tJOh{LP~~ltJI~;TMEfoI11) .... 
h: 

Parameters 
wParam 

Specifies the virtual-key code of the key. 

IParam 
Pointer to a MDINEXTMENU structure that contains information about the menu to be 
activated. 



320 Volume 2 Microsoft Windows User Interface 

Remarks 
In responding to this message, the application can specify both the menu to switch to in 
the hmenuNext member of MDINEXTMENU and the window to receive the menu 
notification messages in the hwndNext member of the MDINEXTMENU structure. You 
must set both members for the changes to take effect (they are initially NULL). 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Menus Overview, Menu Messages, MDINEXTMENU 

WM_UNINITMENUPOPUP 
The WM_UNINITMENUPOPUP message is sent when a drop-down menu or submenu 
has been destroyed. 

A window receives this message through its WindowProc function. 

Parameters 
wParam 

Handle to the menu. 

IParam 
The high-order word identifies the menu that was destroyed. Currently, it can only be 
MF _SYSMENU (the window menu). 

Remarks 
If an application receives a WM_INITMENUPOPUP message, it will receive a 
WM_UNINITMENUPOPUP message. 



Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in winuser.h. 

Menus Overview, Menu Messages, HIWORD 

Strings 

About Strings 

Chapter 7 Resources 321 

The string functions give Microsoft Win32-based applications the means to copy, 
compare, sort, format, and convert character strings, as well as the means to determine 
the character type of each character in a string. All the string functions support the 
single-byte, double-byte, and Unicode character sets, if these character sets are 
supported by the operating system on which the application is run. 

Win32 String Functions 
Many Win32 string functions duplicate or enhance familiar string functions from the 
standard C run-time (CRT) library. Many of the enhancements enable Win32 functions to 
work with Unicode or extended character sets. For example, the functions in the 
following table are identical to standard C functions, except that the Win32 functions are 
enhanced for use with Unicode: 

Win32 function 

Lstrcat 

Lstrcmp 

Lstrcmpi 

Lstrcpy 

Lstrlen 

Standard CRT function 

strcat 

strcmp 

strcmpi 

strcpy 

strlen 

The strlen function, for example, always returns the number of bytes in a string, but the 
Istrlen function returns the number of characters, regardless of whether the characters 
are 1 or 2 bytes wide. 

The following Win32 functions differ from standard C functions, such as tolower and 
toupper, in that they operate on any character in a character set. By using the 
CharLower function, for example, a Win32-based application can convert an uppercase 
U with an umlaut (0) to lowercase (u). For more information about character sets, see 
Single-Byte Character Sets: 



322 Volume 2 Microsoft Windows User Interface 

Function 

CharLower 
CharLowerBuff 

CharNext 
CharPrev 

CharUpper 
CharUpperBuff 

Description 

Converts a character or string to lowercase. 

Converts a character string to lowercase. 

Moves to the next character in a string. 

Moves to the preceding character in a string. 

Converts a character or string to uppercase. 

Converts a string to uppercase. 

The following Win32 functions make determinations about a character, based on the 
semantics of the language selected by the user. These functions are Unicode-enabled: 

Function 

IsCharAlpha 

IsCharAlphaNumeric 
IsCharLower 

IsCharUpper 

Description 

Determines whether a character is alphabetic. 

Determines whether a character is alphanumeric. 

Determines whether a character is lowercase. 

Determines whether a character is uppercase. 

The wsprintf and wvsprintf functions are extensions to the standard C functions sprintf 
and vsprintf. The Win32 versions support format specifications unique to Unicode. 

String Resources 
An application that maintains character strings in resources can be translated into new 
languages with minimum effort. Instead of searching for strings in the source modules, 
you can translate the strings in the resource file and relink the application. In addition, 
using string resources simplifies creation of Unicode and non-Unicode versions of the 
application from the same source files. 

The LoadString function loads a string resource from an application's executable file. 
The FormatMessage function loads a string resource and interprets formatting options 
that might be embedded in the string. 

Win32-based resources in binary form are stored in Unicode format. When loading 
resources, applications can use the Unicode version of the resource functions 
(LoadStringW, for example) to obtain resources as Unicode data. 



Stri ng Reference 
String Functions 

CharLower 

Chapter 7 Resources 323 

The CharLower function converts a character string or a single character to lowercase. 
If the operand is a character string, the function converts the characters in place. 

Parameters 
Ipsz 

[in/out] Pointer to a null-terminated string, or specifies a single character. If the high­
order word of this parameter is zero, the low-order word must contain a single 
character to be converted. 

Return Values 
If the operand is a character string, the function returns a pointer to the converted string. 
Since the string is converted in place, the return value is equal to Ipsz. 

If the operand is a single character, the return value is a 32-bit value whose high-order 
word is zero and whose low-order word contains the converted character. 

There is no indication of success or failure; failure is rare. There is no extended error 
information for this function; do not call GetLastError. 

Remarks 
Windows NT/2000: To make the conversion, the function uses the language driver for 
the current language selected by the user at setup, or by using Control Panel. If no 
language has been selected, the system completes the conversion by using internal 
default mapping. The conversion is made based on the code page associated with the 
process locale. 

Windows 95: The function makes the conversion based on the information associated 
with the user's default locale, which is the locale selected by the user at setup, or by 
using Control Panel. Windows 95 does not have language drivers. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1 .0 or later. 
Header: Declared in winuser.h; include windows.h. 



324 Volume 2 Microsoft Windows User Interface 

Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Strings Overview, String Functions, CharLowerBuff, CharUpper, CharUpperBuff 

CharLowerBuff 
The CharLowerBuff function converts uppercase characters in a buffer to lowercase 
characters. The function converts the characters in place. 

Parameters 
Ipsz 

[in/out] Pointer to a buffer containing one or more characters to process. 

cchLength 
[in] Specifies the size, in TCHARs, of the buffer pointed to by Ipsz. 

The function examines each character, and converts uppercase characters to 
lowercase characters. The function examines the number of characters indicated by 
cchLength, even if one or more characters are null characters. 

Return Values 
The return value is the number of TCHARs processed. For example, if 
CharLowerBuff("Acme of Operating Systems", 10) succeeds, then the return 
value is 10. 

Remarks 
Windows NT/2000: To make the conversion, the function uses the language driver for 
the CUiient language selected by the user at setup, or by using Controi Panel. If no 
language has been selected, the system completes the conversion by using internal 
default mapping. The conversion is made based on the code page associated with the 
process locale. 

Windows 95: The function makes the conversion based on the information associated 
with the user's default locale, which is the locale selected by the user at setup, or by 
using Control Panel. Windows 95 does not have language drivers. 



Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Chapter 7 Resources 325 

Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Strings Overview, String Functions, CharLower, CharUpper, CharUpperBuff 

CharNext 
The CharNext function returns a pointer to the next character in a string. 

B~c;::. 
Parameters 
Ipsz 

[in] Pointer to a character in a null-terminated string. 

Return Values 
The return value is a pOinter to the next character in the string, or to the terminating null 
character if at the end of the string. 

If Ipsz points to the terminating null character, the return value is equal to Ipsz. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1 .0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Strings Overview, String Functions, CharNextExA, CharPrev 



326 Volume 2 Microsoft Windows User Interface 

CharNextExA 
The CharNextExA function retrieves the pointer to the next character in a string. This 
function can handle strings consisting of either single-byte or multi-byte characters. 

Il~l#lf\%if 
);:" ... 

Parameters 
CodePage 

[in] Identifier of the code page to use to check lead-byte ranges. Can be one of the 
code-page values provided in the "Code-Page Identifiers" table in Unicode and 
Character Set Constants, or one of the following predefined values: 

Value 

IpCurrentChar 

Meaning 

Use system default ANSI code page. 

Use system default ANSI code page. 

Use system default OEM code page. 

[in] Pointer to a character in a null-terminated string. 

dwFlags 
Reserved; must be zero. 

Return Values 
The return value is a pOinter to the next character in the string, or to the terminating null 
character if at the end of the string. 

If IpCurrentChar pOints to the terminating null character, the return value is equal to 
IpCurrentChar. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Strings Overview, String Functions, CharNext, CharPrevExA 



Chapter 7 Resources 327 

CharPrev 
The CharPrev function returns a pointer to the preceding character in a string. 

LPTSTR CharPrev( 
LPCTSTR 1 pszStart. II first~r~r.~.c~~r.; 
LPC;TSllt1psZCul'rent .../1. cubi'~l1t"9ba~actet; 

) ; 

Parameters 
IpszStart 

[in] Pointer to the beginning of the string. 

IpszCurrent 
[in] Pointer to a character in a null-terminated string. 

Return Values 
The return value is a pointer to the preceding character in the string, or to the first 
character in the string if the IpszCurrent parameter equals the IpszStart parameter. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.01 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Strings Overview, String Functions, CharNext, CharPrevExA 

CharPrevExA 
The CharPrevExA function retrieves the pointer to the preceding character in a string. 
This function can handle strings consisting of either single-byte or multi-byte characters. 



328 Volume 2 Microsoft Windows User Interface 

Parameters 
CodePage 

[in] Identifier of the code page to use to check lead-byte ranges. Can be one of the 
code-page values provided in the "Code-Page Identifiers" table in Unicode and 
Character Set Constants, or one of the following predefined values: 

Value 

o 
CP_ACP 

CP_OEMCP 

IpStart 

Meaning 

Use system default ANSI code page. 

Use system default ANSI code page. 

Use system default OEM code page. 

[in] Pointer to the beginning of the string. 

IpCurrentChar 
[in] Pointer to a character in a nUll-terminated string. 

dwFlags 
Reserved; must be zero. 

Return Values 
The return value is a pointer to the preceding character in the string, or to the first 
character in the string if the IpCurrentChar parameter equals the IpStart parameter. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Strings Overview, String Functions, CharNextExA, CharPrev 

CharToOem 
The CharToOem function translates a string into the OEM-defined character set. (OEM 
stands for original equipment manufacturer.) 



Parameters 
IpszSrc 

[in] Pointer to the null-terminated string to translate. 

IpszDst 

Chapter 7 Resources 329 

[out] Pointer to the buffer for the translated string. If the CharToOem function is being 
used as an ANSI function, the string can be translated in place by setting the IpszDst 
parameter to the same address as the IpszSrc parameter. This cannot be done if 
CharToOem is being used as a wide-character function. 

Return Values 
The return value is always nonzero. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Strings Overview, String Functions, CharToOemBuff, OemToChar, OemToCharBuff 

CharToOemBuff 
The CharToOemBuff function translates a specified number of characters in a string 
into the OEM-defined character set. (OEM stands for original equipment manufacturer.) 

BOOlCna I"ToQeIllBu ff( " 
, LPCTSTR ipszSrc;. 'J/s~rfn!1 to> translate., 

LPSTR 7.psZ[)$.t.1 I tf'atls1a:ted:.strj ng'. ". . .' 
DWORD qch[)stLen.gth . J rlength (jT.stri,ng to:~ransl l: '.' . .' 

Parameters 
IpszSrc 

[in] Pointer to the null-terminated string to translate. 

IpszDst 
[out] Pointer to the buffer for the translated string. If the CharToOemBuff function is 
being used as an ANSI function, the string can be translated in place by setting the 
IpszDst parameter to the same address as the IpszSrc parameter. This cannot be 
done if CharToOemBuff is being used as a wide-character function. 



330 Volume 2 Microsoft Windows User Interface 

cchDstLength 
[in] Specifies the number of characters to translate in the string identified by the 
IpszSrc parameter. 

Return Values 
The return value is always nonzero. 

Remarks 
Unlike the CharToOem function, the CharToOemBuff function does not stop converting 
characters when it encounters a null character in the buffer pointed to by IpszSrc. The 
CharToOemBuff function converts all cchDstLength characters. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Strings Overview, String Functions, CharToOem, OemToChar, OemToCharBuff 

CharUpper 
The CharUpper function converts a character string or a single character to uppercase. 
If the operand is a character string, the function converts the characters in place. 

Parameters 
Ipsz 

[in/out] Pointer to a null-terminated string or specifies a single character. If the high­
order word of this parameter is zero, the low-order word must contain a single 
character to be converted. 

Return Values 
If the operand is a character string, the function returns a pOinter to the converted string. 
Since the string is converted in place, the return value is equal to Ipsz. 



Chapter 7 Resources 331 

If the operand is a single character, the return value is a 32-bit value whose high-order 
word is zero and whose low-order word contains the converted character. 

There is no indication of success or failure; failure is rare. There is no extended error 
information for this function; do not call GetLastError. 

Remarks 
Windows NT/2000: To make the conversion, the function uses the language driver for 
the current language selected by the user at setup, or by using Control Panel. If no 
language has been selected, the system completes the conversion by using internal 
default mapping. The conversion is made based on the code page associated with the 
process locale. 

Windows 95: The function makes the conversion based on the information associated 
with the user's default locale, which is the locale selected by the user at setup, or by 
using Control Panel. Windows 95 does not have language drivers. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Strings Overview, String Functions, CharLower, CharLowerBuff, CharUpperBuff 

CharUpperBuff 
The CharUpperBuff function converts lowercase characters in a buffer to uppercase 
characters. The function converts the characters in place. 

Parameters 
Ipsz 

[in] Pointer to a buffer containing one or more characters to process. 

cchLength 
[in] Specifies the size, in TCHARs, of the buffer pOinted to by Ipsz. 



332 Volume 2 Microsoft Windows User Interface 

The function examines each character, and converts lowercase characters to 
uppercase characters. The function examines the number of characters indicated by 
cchLength, even if one or more characters are null characters. 

Return Values 
The return value is the number of TCHARs processed. 

For example, if CharUpperBuff("Zenith of API Sets", 10) succeeds, then the return 
value is 10. 

Remarks 
Windows NT/2000: To make the conversion, the function uses the language driver for 
the current language selected by the user at setup, or by using Control Panel. If no 
language has been selected, the system completes the conversion by using internal 
default mapping. The conversion is made based on the code page associated with the 
process locale. 

Windows 95: The function makes the conversion based on the information associated 
with the user's default locale, which is the locale selected by the user at setup, or by 
using Control Panel. Windows 95 does not have language drivers. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.1ib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Strings Overview, String Functions, CharLower, CharLowerBuff, CharUpper 

CompareString 
The CompareString function compares two character strings, using the locale specified 
by the given identifier as the basis for the comparison. 



Chapter 7 Resources 333 

1nt cchCount2 II size of second string 
) : 

Parameters 
Locale 

[in] Specifies the locale used for the comparison. This parameter can be one of the 
following predefined locale identifiers: 

Value 

LOCALE_SYSTEM_DEFAULT 

LOCALE_USER_DEFAULT 

Meaning 

The system's default locale. 

The current user's default locale. 

This parameter also can be a locale identifier created by the MAKELCID macro. 

dwCmpFlags 
[in] A set of flags that indicate how the function compares the two strings. By default, 
these flags are not set. This parameter can specify zero to get the default behavior, or 
it can be any combination of the following values: 

Value Meaning 

NORM_IGNORECASE 

NORM_IGNOREKANATYPE 

NORM_IGNORENONSPACE 

NORM_IGNORESYMBOLS 

NORM_IGNOREWIDTH 

SORT _STRINGSORT 

IpString1 

Ignore case. 

Do not differentiate between Hiragana and 
Katakana characters. Corresponding Hiragana 
and Katakana characters compare as equal. 

Ignore nonspacing characters. 

Ignore symbols. 

Do not differentiate between a single-byte 
character and the same character as a double­
byte character. 

Treat punctuation the same as symbols. 

[in] Pointer to the first string to be compared. 

cchCount1 
[in] Specifies the size, in TCHARs, of the string pOinted to by the IpString1 parameter. 
The count does not include the null-terminator. If this parameter is -1, the string is 
assumed to be null-terminated, and the length is calculated automatically. 

IpString2 
[in] Pointer to the second string to be compared. 

cchCount2 
[in] Specifies the size, in TCHARs, of the string pOinted to by the IpString2 parameter. 
The count does not include the null-terminator. If this parameter is -1, the string is 
assumed to be null-terminated, and the length is calculated automatically. 



334 Volume 2 Microsoft Windows User Interface 

Return Values 
If the function succeeds, the return value is one of the following values: 

Value Meaning 

The string pointed to by the IpString1 parameter is 
equal in lexical value to the string pOinted to by the 
IpString2 parameter. 

The string pOinted to by the IpString1 parameter is 
greater in lexical value than the string pOinted to by 
the IpString2 parameter. 

The string pointed to by the IpString1 parameter is 
less in lexical value than the string pointed to by the 
IpString2 parameter. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. GetLastError may return one of the following error codes: 

ERROR_INVALID _FLAGS 
ERROR_INVALID_PARAMETER 

Remarks 
Notice that, if the return value is CSTR_EQUAL, the two strings are "equal" in the 
collation sense, although not necessarily identical. 

To maintain the C run-time convention of comparing strings, the value 2 can be 
subtracted from a nonzero return value. The meaning of < 0, ==0 and> 0 is consistent, 
then, with the C run times. 

If the two strings are of different lengths, they are compared up to the length of the 
shortest one. If they are equal to that point, the return value will indicate that the longer 
string is greater. For more information about locale identifiers, see Locales. 

Typically, strings are compared using what is called a "word sort" technique. In a word 
sort, all punctuation marks and other nonalphanumeric characters, except for the hyphen 
and the apostrophe, come before any alphanumeric character. The hyphen and the 
apostrophe are treated differently than the other nonalphanumeric symbols, in order to 
ensure that words such as "coop" and "co-op" stay together within a sorted list. 

If the SORT _STRINGSORT flag is specified, strings are compared using what is called a 
"string sort" technique. In a string sort, the hyphen and apostrophe are treated like any 
other nonalphanumeric symbols: they come before the alphanumeric symbols. 

The following table shows a list of words sorted both ways: 

Word sort String sort Word sort String sort 

billet 

bills 

bill's 

billet 

t-ant 

tanya 

t-ant 

t-aria 



Chapter 7 Resources 335 

Word sort String sort Word sort String sort 

bill's bills t-aria tanya 

cannot can't sued sue's 

cant cannot sues sued 

can't cant sue's sues 

con co-op went we're 

coop con were went 

co-op coop we're were 

The Istrcmp and Istrcmpi functions use a word sort. The CompareString and 
LCMapString functions default to using a word sort, but use a string sort if their caller 
sets the SORT _STRINGSORT flag. 

The CompareString function is optimized to run at the highest speed when 
dwCmpFlags is set to either a or NORM_IGNORECASE, and cchCount1 and cchCount2 
have the value -1. 

The CompareString function ignores Arabic Kashidas during the comparison. Thus, if 
two strings are identical, save for the presence of Kashidas, CompareString returns a 
value of 2; the strings are considered "equal" in the collation sense, although they are 
not necessarily identical. 

For DBCS locales, the flag NORM_IGNORECASE has an effect on all the wide (two­
byte) characters, as well as on the narrow (one-byte) characters. This includes the wide 
Greek and Cyrillic characters. 

In Chinese Simplified, the sorting order used to compare the strings is based on the 
following sequence: symbols, digit numbers, English letters, and Chinese Simplified 
characters. The characters within each group sort in character-code order. 

In Chinese Traditional, the sorting order used to compare strings is based on the number 
of strokes in the characters. Symbols, digit numbers, and English characters are 
considered to have zero strokes. The sort sequence is symbols, digit numbers, English 
letters, and Chinese Traditional characters. The characters within each stroke-number 
group sort in character-code order. 

In Japanese, the sorting order used to compare the strings is based on the Japanese 
50-on sorting sequence. The Kanji ideographic characters sort in character-code order. 

In Japanese, the flag NORM_IGNORENONSPACE has an effect on the daku-on, 
handaku-on, chou-on, you-on, and soku-on modifiers, and on the repeat kana/kanji 
characters. 

In Korean, the sort order is based on the sequence: symbols, digit numbers, Jaso and 
Hangeul, Hanja, and English. Within the Jaso-Hangeul group, each Jaso character is 
followed by the Hangeuls that start with that Jaso. Hanja characters are sorted in 
Hangeul pronunciation order. Where multiple Hanja have the same Hangeul 
pronunciation, they are sorted in character-code order. 



336 Volume 2 Microsoft Windows User Interface 

The flag NORM_IGNORENONSPACE only has an effect for the locales in which 
accented characters are sorted in a second pass from main characters. All characters in 
the string first are compared without regard to accents, and (if the strings are equal) a 
second pass over the strings is performed to compare accents. In this case, this flag 
causes the second pass to not be performed. For locales that sort accented characters 
in the first pass, this flag has no effect. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winnls.h; include windows.h. 
Library: Use kerneI32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Strings Overview, String Functions, FoldString, GetSystemDefaultLCID, 
GetUserDefaultLCID, LCMapString, Istrcmp, Istrcmpi, MAKELCID 

FoldString 
The FoldString function maps one string to another, performing a specified 
transformation option. 

i,nt~:F6'ldStrf:rrg,(,,~,~~ '>" :~£, ' 

'D~QRD cj;MaPfJ,ags. 
LPCrSJR "psrc$tr~.: '/1 ;sPlJrce. 
il1t·cch$J'C~... 'ft~ lz::e 
lPrs.u 7pDestSpr. Ild~.$tf 
int>C'ch:f)e,s;t ';·';,J(i 9t~:e' 

) " 
Parameters 
dwMapFlags 

[in] A set of bit flags that indicate the type of transformation to be used during 
mapping. This value can be a combination of the following values: 

Value Meaning 

MAP_COMPOSITE Map accented characters to composite characters, 
in which the accent and base character are 
represented by two character values. This value 
cannot be combined with MAP _PRECOMPOSED. 



Value 

MAP _FOLDCZONE 

MAP _FOLDDIGITS 

MAP_PRECOMPOSED 

IpSrcStr 

Chapter 7 Resources 337 

Meaning 

Expand all ligature characters, so that they are 
represented by their two-character equivalent. For 
example, the ligature "re" expands to the two 
characters "a" and "e." This value cannot be 
combined with MAP _PRECOMPOSED or 
MAP _COMPOSITE. 

Fold compatibility zone characters into standard 
Unicode equivalents. For information about 
compatibility zone characters, see the following 
Remarks section. 

Map all digits to Unicode characters 0 through 9. 
Map accented characters to precomposed 
characters, in which the accent and base character 
are combined into a single character value. This 
value cannot be combined with MAP_COMPOSITE. 

[in] Pointer to the string to be mapped. 

cchSrc 
[in] Specifies the size, in TCHARs, of the IpSrcStr buffer. If cchSrc is -1, IpSrcStr is 
assumed to be null-terminated, and the length is calculated automatically. 

IpDestStr 
[out] Pointer to the buffer to store the mapped string. 

cchDest 
[in] Specifies the size, in TCHARs, of the IpDestStrbuffer. If cchDest is zero, the 
function returns the number of characters required to hold the mapped string, and the 
buffer pointed to by IpDestStr is not used. 

Return Values 
If the function succeeds, the return value is the number of TCHARs written to the 
destination buffer or, if the cchDest parameter is zero, the number of characters required 
to hold the mapped string. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. GetLastError may return one of the following error codes: 

ERROR_INSUFFICIENT _BUFFER 
ERROR_INVALlD_FLAGS 
ERROR_INVALlD_PARAMETER 

Remarks 
The mapped string is null-terminated if the source string is null-terminated. 

The IpSrcStr and IpDestStr pointers must not be the same. If they are the same, the 
function fails and GetLastError returns ERROR_INVALlD_PARAMETER. 



338 Volume 2 Microsoft Windows User Interface 

The compatibility zone in Unicode consists of characters, in the range OxF900 through 
OxFFEF, that are assigned to characters from other character-encoding standards, but are 
actually variants of characters that are already in Unicode. The compatibility zone is used to 
support round-trip mapping to these standards. Applications can use the MAP _FOLDCZONE 
flag to avoid supporting the duplication of characters in the compatibility zone. 

Windows NT/2000:, Requires Windows NT 3.1 or later. 
Windows 95/98: Unsupported. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winnls.h; include windows.h. 
Library: Use kerneI32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Strings Overview, String Functions, CompareString, LCMapString 

GetStringTypeA 
The GetStringTypeA function returns character-type information for the characters in 
the specified source string. For each character in the string, the function sets one or 
more bits in the corresponding 16-bit element of the output array. Each bit identifies a 
given character type, such as whether the character is a letter, a digit, or neither. 

Parameters 
Locale 

[in] Specifies the locale identifier. This value uniquely defines the ANSI code page to 
use to translate the string pointed to by IpSrcStrfrom ANSI to Unicode. The function, 
then, analyzes each Unicode character for character-type information. 

This parameter can be a locale identifier created by the MAKELCID macro, or one of 
the following predefined values: 

Value 

LOCALE_SYSTEM_DEFAULT 

LOCALE_USER_DEFAULT 

Meaning 

Default system locale 

Default user locale 



Chapter 7 Resources 339 

Note that the Locale parameter does not exist in the GetStringTypeW function. 
Because of that parameter difference, an application cannot automatically invoke the 
proper A or W version of GetStringType* through the use of the #define UNICODE 
switch. An application can circumvent this limitation by using GetStringTypeEx, 
which is the recommended function. 

dwlnfoType 
[in] Specifies the type of character information the user wants to retrieve. The various 
types are divided into different levels (see the following Remarks section for a list of 
the information included in each type). This parameter can specify one of the following 
character-type flags: 

Flag Meaning 

CT _CTYPE1 Retrieve character-type information 

CT _CTYPE2 Retrieve bidirectional layout information 

Retrieve text processing information 

IpSrcStr 
[in] Pointer to the string for which character types are requested. If cchSrc is -1, the 
string is assumed to be null-terminated. This must be an ANSI string. Note that this 
can be a double-byte character set (DBCS) string if the locale is appropriate for 
DBCS. 

cchSrc 
[in] Specifies the size, in characters, of the string pointed to by the IpSrcStr parameter. 
If this count includes a null terminator, the function returns character-type information 
for the null terminator. If this value is -1, the string is assumed to be null-terminated, 
and the length is calculated automatically. 

IpCharType 
[out] Pointer to an array of 16-bit values. The length of this array must be large 
enough to receive one 16-bit value for each character in the source string. When the 
function returns, this array contains one word corresponding to each character in the 
source string. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. GetLastError may return one of the following error codes: 

ERROR_INVALID_FLAGS 
ERROR_INVALID_PARAMETER 

Remarks 
The IpSrcStr and IpCharType pointers must not be the same. If they are the same, the 
function fails, and GetLastError returns ERROR_INVALID_PARAMETER. 



340 Volume 2 Microsoft Windows User Interface 

The Locale parameter is only used to perform string conversion to Unicode. It has 
nothing to do with the CTYPEs the function returns. The CTYPEs are solely determined 
by Unicode code points, and do not vary on a locale basis. For example, Greek letters 
are CLALPHA for any Locale value. 

The character-type bits are divided into several levels. The information for one level can 
be retrieved by a single call to this function. Each level is limited to 16 bits of information, 
so that the other mapping routines, which are limited to 16 bits of representation per 
character, also can return character-type information. 

The character types supported by this function include the following: 

Ctype 1 
These types support ANSI C and POSIX (LC_CTYPE) character-typing functions. A 
bitwise-OR of these values is returned in the array pointed to by the IpCharType 
parameter, when the dwlnfoType parameter is set to CT _CTYPE1. For DBCS locales, 
the Ctype 1 attributes apply to both narrow characters and wide characters. The 
Japanese hiragana and katakana characters, and the kanji ideograph characters, all 
have the C1_ALPHA attribute. 

Name Value Meaning 

CLUPPER OxOOO1 Uppercase 

C1_LOWER OxOOO2 Lowercase 

C1_DIGIT OxOOO4 Decimal digits 

C1_SPACE OxOOO8 Space characters 

C1_PUNCT OxOO10 Punctuation 

C1_CNTRL OxOO20 Control characters 

C1_BLANK OxOO40 Blank characters 

C1_XDIGIT OxOO80 Hexadecimal digits 

C1_ALPHA Ox0100 Any linguistic character: alphabetic, syllabary, or 
ideographic 

The following character types are either constant or computable from basic types and 
do not need to be supported by this function: 

Type Description 

Alphanumeric 

Printable 

Alphabetic characters and digits (C1_ALPHA and CLDIGIT) 

Graphic characters and blanks (all C1_* types except CLCNTRL) 

The Windows version 3.1 functions IsCharUpper and IsCharLower do not always 
produce correct results for characters in the range Ox80-0x9f, so they may produce 
different results than this function for characters in that range. (For example, the 
German Windows version 3.1 language driver incorrectly reports Ox9a, lowercase s 
hacek, as uppercase.) 



Chapter 7 Resources 341 

Ctype 2 
These types support proper layout of Unicode text. For DBCS locales, Ctype 2 
applies to both narrow and wide characters. The direction attributes are assigned so 
that the bidirectional layout algorithm standardized by Unicode produces accurate 
results. These types are mutually exclusive. For more information about the use of 
these attributes, see The Unicode Standard: Worldwide Character Encoding, Volumes 
1 and 2, Addison Wesley Publishing Company: 1991, 1992, ISBN 0201567881. 

Name Value Meaning 

Strong 
C2_LEFTTORIGHT OxOO01 Left to right 
C2_RIGHTTOLEFT OxOO02 Right to left 
Weak 
C2_EUROPENUMBER OxOO03 European number, European digit 
C2_EUROPESEPARATOR OxOO04 European numeric separator 
C2_EUROPETERMINATOR OxOO05 European numeric terminator 
C2_ARABICNUMBER OxOO06 Arabic number 
C2_COMMONSEPARATOR OxOO07 Common numeric separator 
Neutral 
C2_BLOCKSEPARATOR OxOO08 Block separator 
C2_SEGMENTSEPARATOR OxOO09 Segment separator 
C2_WHITESPACE OxOOOA White space 
C2_0THERNEUTRAL OxOOOB Other neutrals 
Not applicable 
C2_NOTAPPLICABLE OxOOOO No implicit directionality (for example, 

control codes) 

Ctype 3 
These types are intended to be placeholders for extensions to the POSIX types 
required for general text processing or for the standard C library functions. A bitwise­
OR of these values is returned when dwlnfoType is set to CT _CTYPE3. For DBCS 
locales, the Cypte 3 attributes apply to both narrow characters and wide characters. 
The Japanese hiragana and katakana characters, and the kanji ideograph characters, 
all have the C3_ALPHA attribute. 

Name Value Meaning 

C3_NONSPACING OxOO01 Nonspacing mark 

C3_DIACRITIC OxOO02 Diacritic nonspacing mark 
C3_ VOWELMARK OxOO04 Vowel nonspacing mark 
C3_SYMBOL OxOO08 Symbol 
C3_KATAKANA Ox0010 Katakana character 

(continued) 



342 Volume 2 Microsoft Windows User Interface 

(continued) 

Name Value Meaning 

C3_HI RAGANA Ox0020 Hiragana character 
C3_HALFWIDTH Ox0040 Half-width (narrow) character 
C3_FULLWIDTH Ox0080 Full-width (wide) character 

C3_IDEOGRAPH Ox0100 Ideographic character 
C3_KASHIDA Ox0200 Arabic Kashida character 
C3_LEXICAL Ox0400 Punctuation that is counted as part of the word 

(Kashida, hyphen, feminine/masculine ordinal 
indicators, equal sign, and so forth) 

C3_ALPHA Ox8000 All linguistic characters (alphabetic, syllabary, 
and ideographic) 

Not applicable 

C3_NOTAPPLICABLE OxOOOO Not applicable 

Windows NT/2000: Requires Windows NT 3.5 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winnls.h; include windows.h. 
Library: Use kerneI32.lib. 

Strings Overview, String Functions, GetLocalelnfo, GetStringTypeEx, 
GetStringTypeW 

GetStri ngTypeEx 
The GetStringTypeEx function returns character-type information for the characters in 
the specified source string. For each character in the string, the function sets one or 
more bits in the corresponding 16-bit element of the output array. Each bit identifies a 
given character type, such as whether the character is a letter, a digit, or neither. 

Unlike its close relatives GetStringTypeA and GetStringTypeW, GetStringTypeEx 
exhibits appropriate A or W behavior through the use of the #define UNICODE switch. It 
is the recommended function. 



Parameters 
Locale 

Chapter 7 Resources 343 

[in] Specifies the locale identifier. This value uniquely defines the ANSI code page to 
use to translate the string pointed to by IpSrcStrfrom ANSI to Unicode. The function, 
then, analyzes each Unicode character for character-type information. Note that the 
W version of this function ignores this parameter. 

This parameter can be a locale identifier created by the MAKELCID macro, or one of 
the following predefined values: 

Value Meaning 

LOCALE_SYSTEM_DEFAUL T Default system locale 

LOCALE_USER_DEFAUL T Default user locale 

dwlnfoType 
[in] Specifies the type of character information the user wants to retrieve. The various 
types are divided into different levels (see the following Remarks section for a list of 
the information included in each type). This parameter can specify one of the following 
character-type values: 

Value 

CT_CTYPE1 

CT_CTYPE2 

CT_CTYPE3 

IpSrcStr 

Meaning 

Retrieve character-type information 

Retrieve bidirectional layout information 

Retrieve text processing information 

[in] Pointer to the string for which character types are requested. If cchSrc is -1, the 
string is assumed to be null-terminated. 

cchSrc 
[in] Specifies the size, in TCHARs, of the string pointed to by the IpSrcStrparameter. 
If this count includes a null terminator, the function returns character-type information 
for the null terminator. If this value is -1, the string is assumed to be null-terminated 
and the length is calculated automatically. 

IpCharType 
[out] Pointer to an array of 16-bit values. The length of this array must be large 
enough to receive one 16-bit value for each character in the source string. When the 
function returns, this array contains one word corresponding to each character in the 
source string. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. GetLastError may return one of the following error codes: 



344 Volume 2 Microsoft Windows User Interface 

ERROR_INVALID_FLAGS 
ERROR_INVALID_PARAMETER 

Remarks 
The GetStringTypeEx function exists to circumvent a limitation caused by the difference 
in parameters of GetStringTypeA and GetStringTypeW. That parameter difference 
prevents an application from automatically invoking the proper A or W version of 
GetStringType* through the use of the #define UNICODE switch. GetStringTypeEx, 
on the other hand, behaves properly as regards that switch. Thus, it is the recommended 
function. 

The Locale parameter is only used to perform string conversion to Unicode. It has 
nothing to do with the CTYPEs the function returns. The CTYPEs are determined solely 
by Unicode code points, and do not vary on a locale basis. For example, Greek letters 
are CLALPHA for any Locale value. 

The IpSrcStr and IpCharType pointers must not be the same. If they are the same, then, 
the function fails and GetLastError returns ERROR_INVALID_PARAMETER. 

The character-type bits are divided into several levels. The information for one level can 
be retrieved by a single call to this function. Each level is limited to 16 bits of information, 
so that the other mapping routines, which are limited to 16 bits of representation per 
character, also can return character-type information. 

The character types supported by this function include the following: 

Ctype 1 
These types support ANSI C and POSIX (LC_CTYPE) character-typing functions. A 
combination of these values is returned in the array pOinted to by the IpCharType 
parameter when the dwlnfoType parameter is set to CT _CTYPE1: 

Name Value Meaning 

CLUPPER OxOOO1 Uppercase 

C1_LOWER OxOOO2 Lowercase 

CLDIGIT OxOOO4 Decimal digits 

CLSPACE OxOOO8 Space characters 

C1_PUNCT OxOO10 Punctuation 

C1_CNTRL OxOO20 Control characters 

C1_BLANK OxOO40 Blank characters 

CLXDIGIT OxOO80 Hexadecimal digits 

C1_ALPHA Ox0100 Any linguistic character: alphabetic, syllabary, or 
ideographic 

The following character types are either constant or computable from basic types, and 
do not need to be supported by this function: 



Chapter 7 Resources 345 

Type Description 

Alphanumeric 

Printable 
Alphabetical characters and digits (C1_ALPHA and C1_DIGIT) 

Graphical characters and blank (all CL* types except for 
C1_CNTRL) 

Ctype 2 
These types support proper layout of Unicode text. The direction attributes are 
assigned so that the bidirectional layout algorithm standardized by Unicode produces 
accurate results. These types are mutually exclusive. For more information about the 
use of these attributes, see The Unicode Standard: Worldwide Character Encoding, 
Volumes 1 and 2, Addison Wesley Publishing Company: 1991, 1992, ISBN 
0201567881. 

Name Value Meaning 

Strong 

C2_LEFTTORIGHT OxOO01 Left to right 
C2_RIGHTTOLEFT OxOO02 Right to left 

Weak 

C2_EUROPENUMBER OxOO03 European number, European digit 

C2_EUROPESEPARATOR OxOO04 European numeric separator 
C2_EUROPETERMINATOR OxOO05 European numeric terminator 
C2_ARABICNUMBER OxOO06 Arabic number 

C2_COMMONSEPARATOR OxOO07 Common numeric separator 

Neutral 

C2_BLOCKSEPARATOR OxOO08 Block separator 
C2_SEGMENTSEPARATOR OxOO09 Segment separator 

C2_WHITESPACE OxOOOA White space 
C2_0THERNEUTRAL OxOOOB Other neutrals 

Not applicable 
C2_NOTAPPLICABLE OxOOOO No implicit directionality (for example, 

control codes) 

Ctype 3 
These types are intended to be placeholders for extensions to the POSIX types 
required for general text processing or for the standard C library functions. A 
combination of these values is returned when dwlnfoType is set to CT _CTYPE3: 

Name Value Meaning 

C3_NONSPACING 

C3_DIACRITIC 

C3_ VOWELMARK 

Ox0001 

Ox0002 

Ox0004 

Nonspacing mark 

Diacritic nonspacing mark 

Vowel nonspacing mark 

(continued) 



346 Volume 2 Microsoft Windows User Interface 

(continued) 

Name Value Meaning 

C3_SYMBOL OxOO08 Symbol 

C3_KATAKANA Ox0010 Katakana character 

C3_HI RAGANA Ox0020 Hiragana character 

C3_HALFWIDTH Ox0040 Half-width character 

C3_FULLWIDTH Ox0080 Full-width character 

C3_IDEOGRAPH Ox0100 Ideographic character 

C3_KASHIDA Ox0200 Arabic Kashida character 

C3_LEXICAL Ox0400 Punctuation that is counted as part of 
the word (Kashida, hyphen, 
feminine/masculine ordinal indicators, 
equal sign, and so forth) 

C3_ALPHA Ox8000 All linguistic characters (alphabetic, 
syllabary, and ideographic) 

Not applicable 

C3_NOTAPPLICABLE OxOOOO Not applicable 

Windows NT/2000: Requires Windows NT 3.5 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winnls.h; include windows.h. 
Library: Use kerneI32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Strings Overview, String Functions, GetLocalelnfo, GetStringTypeA, GetStringTypeW 

GetStringTypeW 
The GetStringTypeW function returns character-type information for the characters in 
the specified source string. For each character in the string, the function sets one or 
more bits in the corresponding 16-bit element of the output array. Each bit identifies a 
given character type, such as whether the character is a letter, a digit, or neither. 



Parameters 
dwlnfoType 

Chapter 7 Resources 347 

[in] Specifies the type of character information the user wants to retrieve. The various 
types are divided into different levels (see the following Remarks section for a list of 
the information included in each type). This parameter can specify one of the following 
character-type values. 

Value Meaning 

CT_CTYPE1 

CT_CTYPE2 

CT_CTYPE3 

IpSrcStr 

Retrieve character-type information 

Retrieve bidirectional layout information 

Retrieve text processing information 

[in] Pointer to the string for which character types are requested. If cchSrc is -1, the 
string is assumed to be null-terminated. This must be a Unicode string. 

cchSrc 
[in] Specifies the size, in wide characters, of the string pOinted to by the IpSrcStr 
parameter. If this count includes a null terminator, the function returns character-type 
information for the null terminator. If this value is -1, the string is assumed to be nulI­
terminated, and the length is calculated automatically. 

IpCharType 
[out] Pointer to an array of 16-bit values. The length of this array must be large 
enough to receive one 16-bit value for the number of characters specified in the 
cchSrc parameter. When the function returns, this array contains one word 
corresponding to each Unicode character in the source string. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. GetLastError may return one of the following error codes: 

ERROR_INVALI D _FLAGS 
ERROR_INVALlD_PARAMETER 

Remarks 
Note that the GetStringTypeA function has one more parameter than the 
GetStringTypeW function: GetStringTypeA has a first parameter that is an LCID 
named Locale. This parameter does not exist in the GetStringTypeW function. Because 
of that parameter difference, an application cannot invoke automatically the proper A or 
W version of GetStringType* through the use of the #define UNICODE switch. An 
application can circumvent this limitation by using GetStringTypeEx; it is the 
recommended function. 



348 Volume 2 Microsoft Windows User Interface 

The IpSrcStr and IpCharType pointers must not be the same. If they are the same, the 
function fails and GetLastError returns ERROR_INVALlD_PARAMETER. 

The character-type bits are divided into several levels. The information for one level can 
be retrieved by a single call to this function. Each level is limited to 16 bits of information, 
so that the other mapping routines, which are limited to 16 bits of representation per 
character, can also return character-type information. 

The character types supported by this function include the following: 

Ctype 1 
These types support ANSI C and POSIX (LC_CTYPE) character-typing functions. A 
combination of these values is returned in the array pointed to by the IpCharType 
parameter when the dwlnfoType parameter is set to CT _CTYPE1: 

Name Value Meaning 

C1_UPPER OxOO01 Uppercase 

C1_LOWER OxOO02 Lowercase 

C1_DIGIT OxOO04 Decimal digits 

C1_SPACE OxOO08 Space characters 

C1_PUNCT Ox0010 Punctuation 

C1_CNTRL Ox0020 Control characters 

CCBLANK Ox0040 Blank characters 

CCXDIGIT Ox0080 Hexadecimal digits 

C1_ALPHA Ox0100 Any linguistic character: alphabetic, syllabary, or 
ideographic 

The following character types are either constant or computable from basic types, and 
do not need to be supported by this function: 

Type 

Alphanumeric 

Printable 

Ctype 2 

Description 

Alphabetical characters and digits (C1_ALPHA and C1_DIGIT) 

Graphical characters and blanks (all C1_* types except CCCNTRL) 

These types support proper layout of Unicode text. The direction attributes are 
assigned so that the bidirectional layout algorithm standardized by Unicode produces 
accurate results. These types are mutually exclusive. For more information about the 
use of these attributes, see The Unicode Standard: Worldwide Character Encoding, 
Volumes 1 and 2, Addison Wesley Publishing Company: 1991, 1992, ISBN 
0201567881. 



Chapter 7 Resources 349 

Name Value Meaning 

Strong 

C2_LEFTTORIGHT OxOOO1 Left to right 

C2_RIGHTTOLEFT OxOOO2 Right to left 

Weak 

C2_EUROPENUMBER OxOOO3 European number, European digit 

C2_EUROPESEPARATOR OxOOO4 European numeric separator 

C2_EUROPETERMINATOR OxOOO5 European numeric terminator 

C2_ARABICNUMBER OxOOO6 Arabic number 

C2_COMMONSEPARATOR OxOOO7 Common numeric separator 

Neutral 

C2_BLOCKSEPARATOR OxOOO8 Block separator 

C2_SEGMENTSEPARATOR OxOOO9 Segment separator 

C2_WHITESPACE OxOOOA White space 

C2_0THERNEUTRAL OxOOOB Other neutrals 

Not applicable 

C2_NOT APPLICABLE OxOOOO No implicit directionality (for example, 
control codes) 

Ctype 3 
These types are intended to be placeholders for extensions to the POSIX types 
required for general text processing or for the standard C library functions. A 
combination of these values is returned when dwlnfoType is set to CT _CTYPE3: 

Name Value Meaning 

C3_NONSPACING OxOOO1 Nonspacing mark 

C3_DIACRITIC OxOOO2 Diacritic nonspacing mark 

C3_ VOWELMARK OxOOO4 Vowel nonspacing mark 

C3_SYMBOL OxOOO8 Symbol 

C3_KATAKANA OxOO10 Katakana character 

C3_HIRAGANA OxOO20 Hiragana character 

C3_HALFWIDTH OxOO40 Half-width character 

C3_FULLWIDTH OxOO80 Full-width character 

C3_IDEOGRAPH Ox0100 Ideographic character 

C3_KASHIDA Ox0200 Arabic Kashida character 

C3_LEXICAL Ox0400 Punctuation that is counted as part of the 
word (Kashida, hyphen, feminine/masculine 
ordinal indicators, equal sign, and so forth) 

(continued) 



350 Volume 2 Microsoft Windows User Interface 

(continued) 

Name 

Not applicable 

C3_NOT APPLICABLE 

Value 

Ox8000 

OxOOOO 

Meaning 

All linguistic characters (alphabetic, syllabary, 
and ideographic) 

Not applicable 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Unsupported. 
Windows CE: Unsupported. 
Header: Declared in winnls.h; include windows.h. 
Library: Use kerneI32.lib. 

Strings Overview, String Functions, GetLocalelnfo, GetStringTypeA, 
GetStringTypeEx 

IsCharAlpha 
The IsCharAlpha function determines whether a character is an alphabetic character. 
This determination is based on the semantics of the language selected by the user 
during setup, or through Control Panel. 

Parameters 
ch 

[in] Specifies the character to be tested. 

Return Values 
If the character is alphabetic, the return value is nonzero. 

If the character is not alphabetic, the return value is zero. To get extended error 
information, call GetLastError. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 



Chapter 7 Resources 351 

Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

_*~~E;s;"~',Z"; ,'; 

Strings Overview, String Functions, IsCharAlphaNumeric 

IsChar AlphaN umeric 
The IsCharAlphaNumeric function determines whether a character is either an 
alphabetic, or a numeric character. This determination is based on the semantics of the 
language selected by the user during setup, or through Control Panel. 

Parameters 
ch 

[in] Specifies the character to be tested. 

Return Values 
If the character is alphanumeric, the return value is nonzero. 

If the character is not alphanumeric, the return value is zero. To get extended error 
information, call GetLastError. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Strings Overview, String Functions, IsCharAlpha 



352 Volume 2 Microsoft Windows User Interface 

IsCharLower 
The IsCharLower function determines whether a character is lowercase. This 
determination is based on the semantics of the language selected by the user during 
setup, or through Control Panel. 

Parameters 
ch 

[in] Specifies the character to be tested. 

Return Values 
If the character is lowercase, the return value is nonzero. 

If the character is not lowercase, the return value is zero. To get extended error 
information, call GetLastError. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Strings Overview, String Functions, IsCharUpper 

IsCharUpper 
The IsCharUpper function determines whether a character is uppercase. This 
determination is based on the semantics of the language selected by the user during 
setup, or through Control Panel. 

Parameters 
ch 

[in] Specifies the character to be tested. 



Chapter 7 Resources 353 

Return Values 
If the character is uppercase, the return value is nonzero. 

If the character is not uppercase, the return value is zero. To get extended error 
information, call GetLastError. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.1ib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Strings Overview, String Functions, IsCharLower 

LoadString 
The LoadString function loads a string resource from the executable (.exe) file 
associated with a specified module, copies the string into a buffer, and appends a 
terminating null character. 

8~zt:f~~it~¥~;,: 
,i,,~~~t:~?'!~:r~r.,!f; " 
Parameters 
hfnstance 

.::~.: i" .. 

[in] Handle to an instance of the module whose executable file contains the string 
resource. 

ufD 
[in] Specifies the integer identifier of the string to be loaded. 

fpBuffer 
[out] Pointer to the buffer to receive the string. 

nBufferMax 
[in] Specifies the size of the buffer, in TCHARs. The string is truncated and null­
terminated if it is longer than the number of characters specified. 



354 Volume 2 Microsoft Windows User Interface 

Return Values 
If the function succeeds, the return value is the number of TCHARs copied into the 
buffer, not including the null-terminating character, or zero if the string resource does not 
exist. To get extended error information, call GetLastError. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Strings Overview, String Functions, FormatMessage, LoadAccelerators, LoadBitmap, 
LoadCursor, Loadlcon, LoadMenu, LoadMenulndlrect 

Istrcat 
The Istrcat function appends one string to another. 

Parameters 
IpString1 

[in/out] Pointer to a null-terminated string. The buffer must be large enough to contain 
both strings. 

IpString2 
[in] Pointer to the null-terminated string to be appended to the string specified in the 
IpString1 parameter. 

Return Values 
If the function succeeds, the return value is a pointer to the buffer. 

If the function fails, the return value is NULL. To get extended error information, call 
GetLastError. 



Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winbase.h; include windows.h. 
Library: Use kerneI32.lib. 

Chapter 7 Resources 355 

Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Strings Overview, String Functions, Istrcmp, Istrcmpi, Istrcpy, Istrlen 

Istrcmp 
The Istrcmp function compares two character strings. The comparison is case-sensitive. 

To perform a comparison that is not case-sensitive, use the Istrcmpi function. 

Parameters 
IpString1 

[in] Pointer to the first null-terminated string to be compared. 

IpString2 
[in] Pointer to the second null-terminated string to be compared. 

Return Values 
If the string pOinted to by IpString1 is less than the string pointed to by IpString2, the 
return value is negative. If the string pOinted to by IpString1 is greater than the string 
pOinted to by IpString2, the return value is positive. If the strings are equal, the return 
value is zero. 

Remarks 
The Istrcmp function compares two strings by checking the first characters against each 
other, the second characters against each other, and so on, until it finds an inequality or 
reaches the ends of the strings. 

The function returns the difference of the values of the first unequal characters it 
encounters. For example, Istrcmp determines that "abcz" is greater than "abcdefg" and 
returns the difference of z and d. 



356 Volume 2 Microsoft Windows User Interface 

The language (locale) selected by the user at setup time, or through Control Panel, 
determines the string that is greater (or whether the strings are the same). If no language 
(locale) is selected, the system performs the comparison by using default values. 

With a double-byte character set (DBCS) version of the system, this function can 
compare two DBCS strings. 

The Istrcmp function uses a word sort, rather than a string sort. A word sort treats 
hyphens and apostrophes differently than it treats other symbols that are not 
alphanumeric, in order to ensure that words such as "coop" and "co-op" stay together 
within a sorted list. Note that in 16-bit versions of Windows Istrcmp uses a string sort. 
For a detailed discussion of word sorts and string sorts, see the Remarks section of the 
reference page for the CompareString function. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winbase.h; include windows.h. 
Library: Use kerneI32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Strings Overview, String Functions, CompareString, Istrcat, Istrcmpi, Istrcpy, Istrlen 

Istrcmpi 
The Istrcmpi function compares two character strings. The comparison is not case­
sensitive. 

To perform a comparison that is case-sensitive, use the Istrcmp function. 

Parameters 
IpString1 

[in] Pointer to the first null-terminated string to be compared. 

IpString2 
[in] Pointer to the second null-terminated string to be compared. 



Chapter 7 Resources 357 

Return Values 
If the string pointed to by IpString1 is less than the string pointed to by IpString2, the 
return value is negative. If the string pointed to by IpString1 is greater than the string 
pointed to by IpString2, the return value is positive. If the strings are equal, the return 
value is zero. 

Remarks 
The Istrcmpi function compares two strings by checking the first characters against 
each other, the second characters against each other, and so on, until it finds an 
inequality or reaches the ends of the strings. 

The function returns the difference of the values of the first unequal characters it 
encounters. For example, Istrcmpi determines that "abcz" is greater than "abcdefg" and 
returns the difference of z and d. 

The language (locale) selected by the user at setup time, or through Control Panel, 
determines the string that is greater (or whether the strings are the same). If no language 
(locale) is selected, the system performs the comparison by using default values. 

For some locales, the Istrcmpi function may be insufficient. If this occurs, use 
CompareString to ensure proper comparison. For example, in Japan call 
CompareString with the IGNORE_CASE, IGNORE_KANATYPE, and IGNORE_WIDTH 
values to achieve the most appropriate non-exact string comparison. The 
IGNORE_KANATYPE and IGNORE_WIDTH values are ignored in non-Asian locales, so 
you can set these values for all locales and be guaranteed to have a culturally correct 
"insensitive" sorting, regardless of the locale. Note that specifying these values slows 
performance, so use them only when necessary. 

With a double-byte character set (DBCS) version of the system, this function can 
compare two DBCS strings. 

The Istrcmpi function uses a word sort, instead of a string sort. A word sort treats 
hyphens and apostrophes differently than it treats other symbols that are not 
alphanumeric, in order to ensure that words such as "coop" and "co-op" stay together 
within a sorted list. Note that in 16-bit versions of Windows Istrcmpi uses a string sort. 
For a detailed discussion of word sorts and string sorts, see the Remarks section of the 
reference page for the CompareString function. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winbase.h; include windows.h. 
Library: Use kerneI32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 



358 Volume 2 Microsoft Windows User Interface 

Strings Overview, String Functions, CompareString, Istrcat, Istrcmp, Istrcpy, Istrlen 

Istrcpy 
The Istrcpy function copies a string to a buffer. 

To copy a specified number of characters, use the Istrcpyn function. 

Parameters 
IpString1 

[out] Pointer to a buffer to receive the contents of the string pOinted to by the IpString2 
parameter. The buffer must be large enough to contain the string, including the 
terminating null character. 

IpString2 
[in] Pointer to the null-terminated string to be copied. 

Return Values 
If the function succeeds, the return value is a pointer to the buffer. 

If the function fails, the return value is NULL. To get extended error information, call 
GetLastError. 

Remarks 
With a double-byte character set (DBCS) version of the system, this function can be 
used to copy a DBCS string. 

The Istrcpy function has an undefined behavior if source and destination buffers 
overlap. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winbase.h; include windows.h. 
Library: Use kerneI32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 



Chapter 7 Resources 359 

:D:;~~.~I$()···· 
Strings Overview, String Functions, Istrcat, Istrcmp, Istrcmpi, Istrlen 

Istrcpyn 
The Istrcpyn function copies a specified number of characters from a source string into 
a buffer. 

L~l$T:Rl $trcpyN .• . 
. ... JLPl'~R. J pSt ".1:nfll ,; .. 
. : LPC'T.STR1PStr1ng2~ 

il'lt>.ff;1axLength 
); 

Parameters 
IpString1 

[out] Pointer to a buffer into which the function copies characters. The buffer must be 
large enough to contain the number of TCHARs specified by iMaxLength, including 
room for a terminating null character. 

IpString2 
[in] Pointer to a null-terminated string from which the function copies characters. 

iMaxLength 
[in] Specifies the number of TCHARs to be copied from the string pOinted to by 
IpString2 into the buffer pointed to by IpString1, including a terminating null character. 

Return Values 
If the function succeeds, the return value is a pOinter to the buffer. 

If the function fails, the return value is NULL. To get extended error information, call 
GetLastError. 

Remarks 
Note that the buffer pOinted to by IpString1 must be large enough to include a 
terminating null character, and the string length value specified by iMaxLength includes 
room for a terminating null character. Thus, the following code 

TCHARch~ufferC5~2];r; .. · •.•.... ..... 
1 s tl'cpyn(cI)Buffer" . 'rabcdefghj 41:.1 mn.QP~ .4}: 

copies the string "abc", followed by a terminating null character, to chBuffer. 

The Istrcpyn function has an undefined behavior if source and destination buffers 
overlap. 



360 Volume 2 Microsoft Windows User Interface 

Windows NT/2000: Requires Windows NT 3.5 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winbase.h; include windows.h. 
Library: Use kerneI32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Strings Overview, String Functions, Istrcat, Istrcmp, Istrcmpi, Istrcpy, Istrlen 

Istrlen 
The Istrlen function returns the length in TCHARs of the specified string (not including 
the terminating null character). 

Parameters 
IpString 

[in] Pointer to a nUll-terminated string. 

Return Values 
The return value specifies the length of the string, in TCHARs. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winbase.h; inciude windows.h. 
Library: Use kerneI32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows and Windows 
NT/2000. 

Strings Overview, String Functions, Istrcat, Istrcmp, Istrcmpi, Istrcpy 



Chapter 7 Resources 361 

OemToChar 
The OemToChar function translates a string from the OEM-defined character set into 
either an ANSI or a wide-character string. (OEM stands for original equipment 
manufacturer.) 

BOOL.OemToChar( 
·Lp~~rR.}p$z$/"c ~. 
~pnTR.··7p$z[)$t"····· 

hi, 

Parameters 
IpszSrc 

[in] Pointer to a nUll-terminated string of characters from the OEM-defined character 
set. 

IpszDst 
[out] Pointer to the buffer for the translated string. If the OemToChar function is being 
used as an ANSI function, the string can be translated in place by setting the IpszDst 
parameter to the same address as the IpszSrc parameter. This cannot be done if 
OemToChar is being used as a wide-character function. 

Return Values 
The return value is always nonzero. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Strings Overview, String Functions, CharToOem, CharToOemBuff, OemToCharBuff 

OemToCharBuff 
The OemToCharBuff function translates a specified number of characters in a string 
from the OEM-defined character set into either an ANSI or a wide-character string. (OEM 
is the acronym for original equipment manufacturer.) 

BOOI.'.pe!llt PCll~'rB~f~("'i 
Lpr;.TSTRlp$zS;r(:, j 

(continued) 



362 Volume 2 Microsoft Windows User Interface 

(continued) 

Parameters 
IpszSrc 

[in] Pointer to a buffer containing one or more characters from the OEM-defined 
character set. 

IpszDst 
[out] Pointer to the buffer for the translated string. If the OemToCharBuff function is 
being used as an ANSI function, the string can be translated in place by setting the 
IpszDst parameter to the same address as the IpszSrc parameter. This cannot be 
done if the OemToCharBuff function is being used as a wide-character function. 

cchDstLength 
[in] Specifies the number of TCHARs to translate in the buffer identified by the IpszSrc 
parameter. 

Return Values 
The return value is always nonzero. 

Remarks 
Unlike the OemToChar function, the OemToCharBuff function does not stop converting 
characters when it encounters a null character in the buffer pOinted to by IpszSrc. The 
OemToCharBuff function converts all cchDstLength characters. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Strings Overview, String Functions, CharToOem, CharToOemBuff, OemToChar 

wsprintf 
The wsprintf function formats and stores a series of characters and values in a buffer. 
Any arguments are converted and copied to the output buffer, according to the 
corresponding format specification in the format string. The function appends a 



Chapter 7 Resources 363 

terminating null character to the characters it writes, but the return value does not 
include the terminating null character in its character count. 

1nt ~spr1ntf( 
lPTSTR 7 pOut. 
LPCTSTR 7pFmt. 

II butpli.t buffer 
II format-control string 
I r ?pti 60a1 a ~~umenh 

) : 
~' , ;,',., " ' 

Parameters 
IpOut 

[out] Pointer to a buffer to receive the formatted output. The maximum size of the 
buffer is 1024 bytes. 

IpFmt 
[in] Pointer to a null-terminated string that contains the format-control specifications. In 
addition to ordinary ASCII characters, a format specification for each argument 
appears in this string. For more information about the format specification, see the 
Remarks section. 

[in] Specifies one or more optional arguments. The number and type of argument 
parameters depend on the corresponding format-control specifications in the IpFmt 
parameter. 

Return Values 
If the function succeeds, the return value is the number of characters stored in the output 
buffer, not counting the terminating null character. 

If the function fails, the return value is less than the length of the expected output. To get 
extended error information, call GetLastError. 

Remarks 
The format-control string contains format specifications that determine the output format 
for the arguments following the IpFmt parameter. Format specifications, discussed 
below, always begin with a percent sign (%). If a percent sign is followed by a character 
that has no meaning as a format field, the character is not formatted (for example, %% 
produces a single percent-sign character). 

The format-control string is read from left to right. When the first format specification (if 
any) is encountered, it causes the value of the first argument after the format-control 
string to be converted and copied to the output buffer, according to the format 
specification. The second format specification causes the second argument to be 
converted and copied, and so on. If there are more arguments than format 
specifications, the extra arguments are ignored. If there are not enough arguments for all 
of the format specifications, the results are undefined. 



364 Volume 2 Microsoft Windows User Interface 

A format specification has the following form: 

%[-] [#][O][width][.precision] type 

Each field is a single character or a number signifying a particular format option. The 
type characters that appear after the last optional format field determine whether the 
associated argument is interpreted as a character, string, or number. The simplest 
format specification contains only the percent sign and a type character (for example, 
%8). The optional fields control other aspects of the formatting. Following are the 
optional and required fields and their meanings: 

Field Meaning 

# 

o 

width 

.precision 

type 

Value 

c 

C 

d 

Pad the output with blanks or zeros to the right to fill the field width, 
justifying output to the left. If this field is omitted, the output is padded to 
the left, justifying it to the right. 

Prefix hexadecimal values with Ox (lowercase) or OX (uppercase). 

Pad the output value with zeros to fill the field width. If this field is omitted, 
the output value is padded with blank spaces. 

Copy the specified minimum number of characters to the output buffer. 
The width field is a nonnegative integer. The width specification never 
causes a value to be truncated. If the number of characters in the output 
value is greater than the specified width, or if the width field is not present, 
all characters of the value are printed, subject to the precision 
specification. 

For numbers, copy the specified minimum number of digits to the output 
buffer. If the number of digits in the argument is less than the specified 
precision, the output value is padded on the left with zeros. The value is 
not truncated when the number of digits exceeds the specified precision. 
If the specified precision is 0 or omitted entirely, or if the period (.) 
appears without a number following it, the precision is set to 1. 

For strings, copy the specified maximum number of characters to the 
output buffer. 

Output the corresponding argument as a character, string, or number. 
This field can be any of the following values: 

Meaning 

Single character. This value is interpreted as type WCHAR, if the calling 
application defines UNICODE, and as type CHAR, otherwise. 

Single character. This value is interpreted as type CHAR, if the calling 
application defines UNICODE, and as type WCHAR, otherwise. 

Signed decimal integer. This value is equivalent to i. 



Value 

hc, hC 

hd 

hS,hS 

hu 

Chapter 7 Resources 365 

Meaning 

Single character. The wsprintf function ignores character 
arguments with a numeric value of zero. This value is always 
interpreted as type CHAR, even when the calling application 
defines UNICODE. 

Signed short integer argument. 

String. This value is always interpreted as type LPSTR, even 
when the calling application defines UNICODE. 

Unsigned short integer. 

Signed decimal integer. This value is equivalent to d. 

Ic, IC Single character. The wsprintf function ignores character 
arguments with a numeric value of zero. This value is always 
interpreted as type WCHAR, even when the calling application 
does not define UNICODE. 

Id Long signed integer. This value is equivalent to Ii. 

Ii Long signed integer. This value is equivalent to Id. 

Is, IS String. This value is always interpreted as type LPWSTR, even 
when the calling application does not define UNICODE. This 
value is equivalent to ws. 

lu Long unsigned integer. 

lx, IX Long unsigned hexadecimal integer in lowercase or uppercase. 

p Windows 2000: Pointer. The address is printed using 
hexadecimal. 

s String. This value is interpreted as type LPWSTR, when the 
calling application defines UNICODE, and as type LPSTR, 
otherwise. 

S String. This value is interpreted as type LPSTR, when the calling 
application defines UNICODE, and as type LPWSTR, otherwise. 

u Unsigned integer argument. 

x, X Unsigned hexadecimal integer in lowercase or uppercase. 

Note Unlike other Win32 functions, wsprintf uses the C calling convention Lcdecl), 
instead of the standard call Lstdcall) calling convention. As a result, it is the 
responsibility of the calling process to pop arguments off the stack, and arguments are 
pushed on the stack from right to left. In C-Ianguage modules, the C compiler performs 
this task. 



366 Volume 2 Microsoft Windows User Interface 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Strings Overview, String Functions, wvsprintf 

wvsprintf 
The wvsprintf function formats and stores a series of characters and values in a buffer. 
The items pOinted to by the argument list are converted and copied to an output buffer, 
according to the corresponding format specification in the format-control string. The 
function appends a terminating null character to the characters it writes, but the return 
value does not include the terminating null character in its character count. 

i ritWV$Jl~1.nt;f( .. ' .' 
.. ····LPrsrR:· Jpo:1]M~t.." 
..... J,;PCTSTR IPf6~hli£f. 

v~_nst.:~,..gH~t : . 
l:" 

Parameters 
IpOutput 

[out] Pointer to a buffer to receive the formatted output. 

IpFormat 
[in] Pointer to a null-terminated string that contains the format-control specifications. In 
addition to ordinary ASCII characters, a format specification for each argument 
appears in this string. For more information about the format specification, see 
wsprintf. 

arglist 
[in] A variable argument list; each element of the list specifies an argument for the 
format-control string. The number, type, and interpretation of the arguments depend 
on the corresponding format-control specifications in the IpFmt parameter. 



Chapter 7 Resources 367 

Return Values 
If the function succeeds, the return value is the number of characters stored in the buffer, 
not counting the terminating null character. 

If the function fails, the return value is less than the length of the expected output. To get 
extended error information, call GetLastError. 
Remarks 
The function copies the format-control string into the output buffer character by 
character, starting with the first character in the string. When it encounters a format 
specification in the string, the function retrieves the value of the next available argument 
(starting with the first argument in the list), converts that value into the specified format, 
and copies the result to the output buffer. The function continues to copy characters and 
expand format specifications in this way until it reaches the end of the format-control 
string. If there are more arguments than format specifications, the extra arguments are 
ignored. If there are not enough arguments for all of the format specifications, the results 
are undefined. 

, '~~~;".c 
Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Strings Overview, String Functions, wsprintf 





369 

CHAPTER 8 

User Input 

Common Dialog-Box Library 
The Common Dialog-Box Library contains a set of dialog boxes for performing common 
tasks, such as opening files and printing documents. The common dialog boxes provide 
a uniform user interface that lets users carry out these common tasks without being 
forced to learn new techniques with each application. 

About Common Dialog Boxes 
The common dialog boxes include the Open and Save As file dialog boxes; the Find 
and Replace editing dialog boxes; the Print, Print Setup, and Page Setup printing 
dialog boxes; and the Color and Font dialog boxes. 

You can create common dialog boxes for your applications by using the common dialog­
box functions. These functions supply the dialog-box procedures and templates for the 
common dialog boxes. You supply the initial values for the dialog boxes and the 
addresses of the variables and buffers that receive the input from the dialog boxes. 

Dialog-Box Types 
The Common Dialog-Box Library provides a creation function and a structure for each 
type of common dialog box. To use a common dialog box in its simplest form, you call its 
creation function and specify a pointer to a structure containing initial values and option 
flags. After initializing the dialog box, the dialog-box procedure uses the structure to 
return information about the user's input. You also can customize a common dialog box 
to suit the needs of your application. 

The following table provides a brief description of the different types of common dialog 
boxes, and shows the function and structure used with each type: 

Dialog box Description 

Color 

Find 

Displays available colors and optionally lets the user create custom 
colors. The user can select a basic or custom color. Use the 
ChooseColor function and CHOOSECOLOR structure. 

Displays a dialog box in which the user can type the string to find. 
The user can also specify search options, such as the search 
direction and whether the search is case-sensitive. Use the 
FindText function and FINDREPLACE structure. 

(continued) 



370 Volume 2 Microsoft Windows User Interface 

(continued) 

Dialog box 

Font 

Open 

Page Setup 

Print 

Replace 

Save As 

Description 

Displays lists of available fonts, point sizes, and other font attributes 
that the user can select. Use the ChooseFont function and 
CHOOSEFONT structure. 

Displays a dialog box in which the user can type or select the name 
of a file or shell name-space object to open. The dialog box includes 
lists of drives, directories, and shell name-space extensions that 
enable the user to browse the shell name-space. It also includes a 
list of file name extensions that enables the user to filter the file 
names displayed. Use the GetOpenFileName function and 
OPEN FILENAME structure. 

Displays the current page configuration. The user can select page 
configuration options, such as paper orientation, size, source, and 
margins. Use the PageSetupDlg function and PAGESETUPDLG 
structure. 

Displays information about the installed printer and its configuration. 
The user can select print job options, such as the range of pages to 
print and the number of copies, and start the printing process. Use 
the PrintDlg function and PRINTDLG structure. 

Windows 2000: To display a Print property sheet rather than a 
Print dialog box, use the PrintDlgEx function with the 
PRINTDLGEX structure. The General page of the property sheet is 
similar to the Print dialog box. The property sheet can also have 
additional application-specific and driver-specific property pages 
following the General page. 

Displays a dialog box in which the user can type the string to find 
and the replacement string. The user can specify search options, 
such as whether the search is case-sensitive, and replacement 
options, such as the scope of replacement. Use the ReplaceText 
function and FINDREPLACE structure. 

Displays a dialog box in which the user can type or select the name 
with which to save a file or shell name-space object. The dialog box 
includes lists of drives, directories, and shell name-space extensions 
that enable the user to browse the shell name space. It also 
includes a list of file name extensions that enables the user to filter 
the file names displayed. Use the GetSaveFileName function and 
OPENFILENAME structure. 

Note Although a Print Setup dialog box also is available, it has been superseded by 
the Page Setup dialog box. Applications written for Windows 95/98 or for Windows NT 
versions 3.51 or later should use the Page Setup dialog box, instead of the Print Setup 
dialog box. 



Chapter 8 User Input 371 

All common dialog boxes are modal, except the Find and Replace dialog boxes. Modal 
dialog boxes must be closed by the user before the function used to create the dialog box 
can return. The Find and Replace dialog boxes are modeless; the function returns before 
the dialog box closes. If you use the Find and Replace dialog boxes, you must also use 
the IsDialogMessage function in the main message loop of your application to ensure that 
these dialog boxes correctly process keyboard input, such as the TAB and ESC keys. 

Getting More Information About Common Dialog Boxes 
The companion CD that is bundled inside the Base Services volume of the Microsoft 
Win32 Developer's Reference Library has the complete set of reference information for 
Common Dialog Boxes. Publishing constraints associated with volumes in the Windows 
Programming Reference Series-which are governed by the mission to provide concise, 
compact, and portable reference books~id not allow all of the overview and reference 
information about Common Dialog Boxes to be included in the printed version. I've 
included an overview in this printed version to provide you with some degree of 
familiarity with them, and more importantly, to alert you to their existence (in case you 
did not know already). 

In order to provide you with the most complete and comprehensive guide to Win32 
development, the Win32 Library includes the complete set of information pertaining to 
Common Dialog Boxes in electronic form on the DVD. If you have not already, go 
through the installation process on the companion DVD, and everything you want to 
know about Common Dialog Boxes (and much, much more) will be a click away. 

Mouse Input 

About Mouse Input 
The mouse is an important, but optional, user-input device for Win32-based applications. 
A well-written Win32-based application should include a mouse interface, but it should 
not depend solely on the mouse for acquiring user input. The application should provide 
full keyboard support as well. 

A Win32-based application receives mouse-input in the form of messages that are sent 
or posted to its windows. 

Additional overview information about Mouse Input, including double-click messages and 
how to detect and work with a mouse wheel, can be found on the companion DVD 
located in the back of the Base Services volume. 



372 Volume 2 Microsoft Windows User Interface 

Mouse-Input Reference 
Mouse-Input Functions 

Drag Detect 
The DragDetect function captures the mouse and tracks its movement until the user 
releases the left button, presses the ESC key, or moves the mouse outside the drag 
rectangle around the specified pOint. The width and height of the drag rectangle are 
specified by the SM_CXDRAG and SM_CYDRAG values returned by the 
GetSystemMetrics function. 

Parameters 
hwnd 

pt 
[in] Handle to the window receiving mouse input. 

[in] Initial position of the mouse, in screen coordinates. The function determines the 
coordinates of the drag rectangle by using this point. 

Return Values 
If the user moved the mouse outside of the drag rectangle while holding down the left 
button, the return value is nonzero. 

If the user did not move the mouse outside of the drag rectangle while holding down the 
left button, the return value is zero. 

Remarks 
The system metrics for the drag rectangle are configurable, allowing for larger or smaller 
drag rectangles. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 



Chapter 8 User Input 373 

Mouse Input Overview, Mouse-Input Functions, GetSystemMetrics 

GetCapture 
The GetCapture function retrieves a handle to the window (if any) that has captured the 
mouse. Only one window at a time can capture the mouse; this window receives mouse 
input whether or not the cursor is within its borders. 

Parameters 
This function has no parameters. 

Return Values 
The return value is a handle to the capture window associated with the current thread. If 
no window in the thread has captured the mouse, the return value is NULL. 

Remarks 
A NULL return value means the current thread has not captured the mouse. However, it 
is possible that another thread or process has captured the mouse. 

Windows 98 and Windows NT 4.0 SP3 and later: To get a handle to the capture 
window on another thread, use the GetGUIThreadlnfo function. 

' .. : 
" ,". 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.1ib. 

Mouse Input Overview, Mouse-Input Functions, GetGUIThreadlnfo, ReleaseCapture, 
SetCapture 

GetDoubleClickTime 
The GetDoubleClickTime function retrieves the current double-click time for the mouse. 
A double-click is a series of two clicks of the mouse button, the second occurring within a 



374 Volume 2 Microsoft Windows User Interface 

specified time after the first. The double-click time is the maximum number of 
milliseconds that may occur between the first and second click of a double-click. 

Parameters 
This function has no parameters. 

Return Values 
The return valUe specifies the current double-click time, in milliseconds. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Mouse Input Overview, Mouse-Input Functions, SetDoubleClickTime 

GetMouseMovePointsEx 
The GetMouseMovePointsEx function retrieves a history of up to 64 previous 
coordinates of the mouse or pen. 

Parameters 
cbSize 

[in] Specifies the size, in bytes, of the MOUSEMOVEPOINT structure. 

/ppt 
[in] Pointer to a MOUSEMOVEPOINT structure containing valid mouse coordinates 
(in screen coordinates). It may contain also a time stamp. 

The GetMouseMovePointsEx function searches for the point in the mouse­
coordinates history. If the function finds the pOint, it returns the last nBufPoints prior to 
and including the supplied point. 



Value 

Chapter 8 User Input 375 

If your application supplies a time stamp, the GetMouseMovePointsEx function will 
use it to differentiate between two equal points that were recorded at different times. 

An application should call this function using the mouse coordinates received from the 
WM_MOUSEMOVE message and convert them to screen coordinates. 

IpptBuf 
[in] Pointer to a buffer that will receive the points. It should be at least 
cbSize* nBuffPoints in size. 

nBufPoints 
[in] Specifies the number of points to retrieve. 

resolution 
[in] Specifies the resolution desired. This parameter can be one of the following 
values: 

Return Values 

Meaning 

Retrieves the pOints using the display 
resolution. 

Retrieves high resolution points. Points can 
range from zero to 65,535 (OxFFFF) in both 
x- and y-coordinates. This is the resolution 
provided by absolute coordinate pointing 
devices such as drawing tablets. 

If the function succeeds, the return value is the number of points in the buffer. Otherwise, 
the function returns -1. For extended error information, your application can call 
GetLastError. The GetLastError function can return the following error code: 

Value Meaning 

Remarks 

The point specified by Ippt could not be found 
or is no longer in the system buffer. 

The system retains the last 64 mouse coordinates and their time stamps. If your 
application supplies a mouse coordinate to GetMouseMovePointsEx and the 
coordinate exists in the system's mouse-coordinate history, the function retrieves the 
specified number of coordinates from the system's history. You also can supply a time 
stamp, which will be used to differentiate between identical points in the history. 

The GetMouseMovePointsEx function will return points that eventually were dispatched 
not only to the calling thread but also to other threads. 



376 Volume 2 Microsoft Windows User Interface 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Requires Windows 98. 
Windows CE: Requires version 2.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Mouse Input Overview, Mouse-Input Functions, MOUSEMOVEPOINT 

The mouse_event function synthesizes mouse motion and button clicks. 

Windows NT/2000: This function has been superseded. Use Send Input instead. 

Parameters 
dwFlags 

[in] Specifies various aspects of mouse motion and button clicking. This parameter 
can be certain combinations of the following values: 

Value Meaning 

MOUSEEVENTF_ABSOLUTE 

MOUSEEVENTF _LEFTDOWN 

MOUSEEVENTF _LEFTUP 

MOUSEEVENTF _MIDDLEDOWN 

MOUSEEVENTF _MIDDLEUP 

Specifies that the dx and dy parameters 
contain normalized absolute coordinates. If not 
set, those parameters contain relative data: 
the change in position since the last reported 
position. This flag can be set, or not set, 
regardless of what kind of mouse or mouse­
like device, if any, is connected to the system. 
For further information about relative mouse 
motion, see the following Remarks section. 

Specifies that the left button is down. 

Specifies that the left button is up. 

Specifies that the middle button is down. 

Specifies that the middle button is up. 



dx 

dy 

Value 
MOUSEEVENTF_MOVE 

MOUSEEVENTF _RIGHTDOWN 
MOUSEEVENTF _RIGHTUP 

MOUSEEVENTF _WHEEL 

MOUSEEVENTF _XDOWN 

MOUSEEVENTF _XUP 

Chapter 8 User Input 377 

Meaning 
Specifies that movement occurred. 

Specifies that the right button is down. 

Specifies that the right button is up. 

Windows NT/2000: Specifies that the wheel 
has been moved, if the mouse has a wheel. 
The amount of movement is specified in 
dwData 

Windows 2000: Specifies that an X button 
was pressed. 

Windows 2000: Specifies that an X button 
was released. 

The values that specify mouse button status are set to indicate changes in status, not 
ongoing conditions. For example, if the left mouse button is pressed and held down, 
MOUSEEVENTF _LEFTDOWN is set when the left button is first pressed, but not for 
subsequent motions. Similarly, MOUSEEVENTF _LEFTUP is set only when the button 
is first released. 

[in] Specifies the mouse's absolute position along the x-axis or its amount of motion 
since the last mouse event was generated, depending on the setting of 
MOUSEEVENTF _ABSOLUTE. Absolute data is specified as the mouse's actual x­
coordinate; relative data is specified as the number of mickeys moved. A mickey is 
the amount that a mouse has to move for it to report that it has moved. 

[in] Specifies the mouse's absolute position along the y-axis or its amount of motion 
since the last mouse event was generated, depending on the setting of 
MOUSEEVENTF _ABSOLUTE. Absolute data is specified as the mouse's actual y­
coordinate; relative data is specified as the number of mickeys moved. 

dwData 
[in] If dwFlags contains MOUSEEVENTF _WHEEL, then dwData specifies the amount 
of wheel movement. A positive value indicates that the wheel was rotated forward, 
away from the user; a negative value indicates that the wheel was rotated backward, 
toward the user. One wheel click is defined as WHEEL_DELTA, which is 120. 

Windows 2000: If dwFlags contains MOUSEEVENTF _XDOWN or 
MOUSEEVENTF _XUP, then dwData specifies which X buttons were pressed or 
released. This value may be any combination of the following flags: 

Value Meaning 

XBUTTON1 

XBUTTON2 

Set if the first X button was pressed or released. 

Set if the second X button was pressed or released. 

If dwFlags is not MOUSEEVENTF _WHEEL, MOUSEEVENTF _XDOWN, or 
MOUSEEVENTF _XUP, then dwData should be zero. 



378 Volume 2 Microsoft Windows User Interface 

dwExtralnfo 
[in] Specifies an additional value associated with the mouse event. An application 
calls GetMessageExtralnfo to obtain this extra information. 

Return Values 
This function has no return value. 

Remarks 

" 

If the mouse has moved, indicated by MOUSEEVENTF _MOVE being set, dx and dy 
hold information about that motion. The information is specified as absolute or relative 
integer values. 

If MOUSEEVENTF _ABSOLUTE value is specified, dx and dycontain normalized 
absolute coordinates between ° and 65,535. The event procedure maps these 
coordinates onto the display surface. Coordinate (0,0) maps onto the upper-left corner of 
the display surface, (65535,65535) maps onto the lower-right corner. 

If the MOUSEEVENTF _ABSOLUTE value is not specified, dx and dy specify relative 
motions from when the last mouse event was generated (the last reported position). 
Positive values mean the mouse moved right (or down); negative values mean the 
mouse moved left (or up). 

Relative mouse motion is subject to the settings for mouse speed and acceleration level. 
An end user sets these values using the Mouse application in Control Panel. An 
application obtains and sets these values with the SystemParameterslnfo function. 

The system applies two tests to the specified relative mouse motion when applying 
acceleration. If the specified distance along either the x or y axis is greater than the first 
mouse threshold value, and the mouse acceleration level is not zero, the operating 
system doubles the distance. If the specified distance along either the x- or y-axis is 
greater than the second mouse threshold value, and the mouse acceleration level is 
equal to two, the operating system doubles the distance that resulted from applying the 
first threshold test. It is thus possible for the operating system to multiply relatively­
specified mouse motion along the x- or y-axis by up to four times. 

Once acceleration has been applied, the system scales the resultant value by the 
desired mouse speed. Mouse speed can range from 1 (slowest) to 20 (fastest) and 
represents how much the pOinter moves based on the distance the mouse moves. The 
default value is 10, which results in no additional modification to the mouse motion. 

The mouse_event function is used to synthesize mouse events by applications that 
need to do so. It is used also by applications that need to obtain more information from 
the mouse than its position and button state. For example, if a tablet manufacturer wants 
to pass pen-based information to its own applications, it can write a dynamic-link library 
(DLL) that communicates directly to the tablet hardware, obtains the extra information, 
and saves it in a queue. The DLL then calls mouse_event with the standard button and 
x/y position data, along with, in the dwExtralnfo parameter, some pOinter or index to the 
queued extra information. When the application needs the extra information, it calls the 



Chapter 8 User Input 379 

DLL with the pOinter or index stored in dwExtralnfo, and the DLL returns the extra 
information. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 2.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Mouse Input Overview, Mouse-Input Functions, GetMessageExtralnfo, 
SystemParameterslnfo 

ReleaseCapture 
The ReleaseCapture function releases the mouse capture from a window in the current 
thread and restores normal mouse-input processing. A window that has captured the 
mouse receives all mouse input, regardless of the position of the cursor, except when a 
mouse button is clicked while the cursor hot spot is in the window of another thread. 

Parameters 
This function has no parameters. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
An application calls this function after calling the SetCapture function. 

Windows 95: Calling ReleaseCapture causes the window that is losing the mouse 
capture to receive a WM_CAPTURECHANGED message. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 



380 Volume 2 Microsoft Windows User Interface 

Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Mouse Input Overview, Mouse-Input Functions, GetCapture, SetCapture, 
WM_CAPTURECHANGED 

SetCapture 
The SetCapture function sets the mouse capture to the specified window belonging to 
the current thread. Once a window has captured the mouse, all mouse input is directed 
to that window, regardless of whether the cursor is within the borders of that window. 
Only one window at a time can capture the mouse. 

If the mouse cursor is over a window created by another thread, the system will direct 
mouse input to the specified window only if a mouse button is down. 

Parameters 
hWnd 

[in] Handle to the window in the current thread that is to capture the mouse. 

Return Values 
The return value is a handle to the window that had previously captured the mouse. If 
there is no such window, the return value is NULL. 

Remarks 
Only the foreground window can capture the mouse. When a background window 
attempts to do so, the window receives messages only for mouse events that occur 
when the cursor hot spot is within the visible portion of the window. Also, even if the 
foregiOund window has captured the mouse, the user can stiii click another window, 
bringing it to the foreground. 

When the window no longer requires all mouse input, the thread that created the window 
should call the ReleaseCapture function to release the mouse. 

This function cannot be used to capture mouse input meant for another process. 

When the mouse is captured, menu hotkeys and other keyboard accelerators do not 
work. 

Windows 95: Calling SetCapture causes the window that is losing the mouse capture to 
receive a WM_CAPTURECHANGED message. 



Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Chapter 8 User Input 381 

Mouse Input Overview, Mouse-Input Functions, GetCapture, ReleaseCapture, 
WM_CAPTURECHANGED 

SetDoubleClickTime 
The SetDoubleClickTime function sets the double-click time for the mouse. A double­
click is a series of two clicks of a mouse button, the second occurring within a specified 
time after the first. The double-click time is the maximum number of milliseconds that 
may occur between the first and second clicks of a double-click. 

Parameters 
ulnterval 

[in] Specifies the number of milliseconds that may occur between the first and second 
clicks of a double-click. If this parameter is set to zero, the system uses the default 
double-click time of 500 milliseconds. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
The SetDoubleClickTime function alters the double-click time for all windows in the 
system. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 



382 Volume 2 Microsoft Windows User Interface 

Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Mouse Input Overview, Mouse-Input Functions, GetDoubleClickTime 

SwapMouseButton 
The SwapMouseButton function reverses or restores the meaning of the left and right 
mouse buttons. 

Parameters 
fSwap 

[in] Specifies whether the mouse button meanings are reversed or restored. If this 
parameter is TRUE, the left button generates right-button messages and the right 
button generates left-button messages. If this parameter is FALSE, the buttons are 
restored to their original meanings. 

Return Values 
If the meaning of the mouse buttons was reversed previously, before the function was 
called, the return value is nonzero. 

If the meaning of the mouse buttons was not reversed, the return value is zero. 

Remarks 
Button swapping is provided as a convenience to people who use the mouse with their 
left hands. The SwapMouseButton function usually is called by Control Panel only. 
Although an application is free to call the function, the mouse is a shared resource and 
reversing the meaning of its buttons affects all applications. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Mouse Input Overview, Mouse-Input Functions, SetDoubleClickTime 



Chapter 8 User Input 383 

TrackMouseEvent 
The TrackMouseEvent function posts messages when the mouse pOinter leaves a 
window or hovers over a window for a specified amount of time. 

BOO I.; . Trac:kMou.uEv6nt( 
LPTRACKMOUS~EV.ENt 1:p£~eni:lra,ckllt r<lc~ing ;·n.formqt1on 

Parameters 
IpEventTrack 

[in/out] Pointer to a TRACKMOUSEEVENT structure that contains tracking 
information. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, return value is zero. To get extended error information, call 
GetLastError. 

The function can post the following messages: 

Message Meaning 

WM_MOUSEHOVER 

WM_MOUSELEAVE 

WM_NCMOUSEHOVER 

WM_NCMOUSELEAVE 

Remarks 

The mouse hovered over the client area of the window for 
the period of time specified in a prior call to 
TrackMouseEvent. Hover tracking stops when this 
message is generated. The application must call 
TrackMouseEvent again if it requires further tracking of 
mouse-hover behavior. 

The mouse left the client area of the window specified in 
a prior call to TrackMouseEvent. All tracking requested 
by TrackMouseEvent is canceled when this message is 
generated. The application must call TrackMouseEvent 
when the mouse reenters its window if it requires further 
tracking of mouse-hover behavior. 

Windows 98, Windows 2000: The same meaning as 
WM_MOUSEHOVER, except this is for the nonclient 
area of the window. 

Windows 98, Windows 2000: The same meaning as 
WM_MOUSELEAVE, except this is for the nonclient area 
of the window. 

The mouse pointer is considered to be hovering when it stays within a specified 
rectangle for a specified period of time. Call SystemParameterslnfo and use the values 



384 Volume 2 Microsoft Windows User Interface 

SPLGETMOUSEHOVERWIDTH, SPI_GETMOUSEHOVERHEIGHT, and 
SPI_GETMOUSEHOVERTIME to retrieve the size of the rectangle and the time. 

Note The _ TrackMouseEvent function calls TrackMouseEvent if it exists, otherwise 
_ TrackMouseEvent emulates TrackMouseEvent. The _ TrackMouseEvent function is 
in commctrl,h and is exported by COMCTRL32.DLL. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Mouse Input Overview, Mouse-Input Functions, SystemParameterslnfo, 
_ TrackMouseEvent, TRACKMOUSEEVENT 

_ TrackMouseEvent 
The _ TrackMouseEvent function posts messages when the mouse pointer leaves a 
window or hovers over a window for a specified amount of time. This function calls 
TrackMouseEvent, if it exists; otherwise, it emulates it. 

Windows NT/2000: Requires Windows 2000 (or Windows NT 4.0 with Internet Explorer 
3.0 or later). 
Windows 95/98: Requires Windows 98 (or Windows 95 with Internet Explorer 3.0 or 
later). 
Windows CE: Unsupported. 
Header: Declared in commctrLh. 
Library: Use comctI32.lib. 

Mouse Input Overview, Mouse-Input Functions, SystemParameterslnfo, 
TrackMouseEvent, TRACKMOUSEEVENT 



Chapter 8 User Input 385 

Mouse-Input Structures 

MOUSEMOVEPOINT 
The MOUSEMOVEPOINT structure contains information about the mouse's location in 
screen coordinates. 

typede,f structtagMOUSEMOVE..pcmrf { 

tnt x: 
tnt· . J: 
DWORD·time· 

" , _, >, ~ 0, tc , < 

ULOttG::':PTR dWEx;tralnfo; 
}. MOUSEMOVEPO.IN:1' ,*Pf.10USEMOvEPonrl;~ 

Members 
x 

Specifies the x-coordinate of the mouse. 

y 
Specifies the y-coordinate of the mouse. 

time 
Specifies the time stamp of the mouse coordinate. 

dwExtralnfo 
Specifies extra information associated with this coordinate. 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Mouse Input Overview, Mouse-Input Structures, GetMouseMovePointsEx 

TRACKMOUSEEVENT 
The TRACKMOUSEEVENT structure is used by the TrackMouseEvent function to track 
when the mouse pointer leaves a window or hovers over a window for a specified 
amount of time. 

typedef stfl,lctiagTRAC~MQUSEEVENT { 
. PWORO'cbSlie; . > . 

(continued) 



386 Volume 2 Microsoft Windows User Interface 

(continued) 

Members 
cbSize 

Specifies the size of the TRACKMOUSEEVENT structure. 

dwFlags 
Specifies the services requested. This member can be a combination of the following 
values: 

Value Meaning 

hwndTrack 

The caller wants to cancel a prior tracking request. 

The caller should also specify the type of tracking that it wants 
to cancel. For example, to cancel hover tracking, the caller 
must pass the TME_CANCEL and TME_HOVER flags. 

The caller wants hover notification. Notification is delivered as 
a WM_MOUSEHOVER message. 

If the caller requests hover tracking while hover tracking is 
already active, the hover timer will be reset. 

This flag is ignored if the mouse pointer is not over the 
specified window or area. 

The caller wants leave notification. Notification is delivered as 
a WM_MOUSELEAVE message. 

If the mouse is not over the specified window or area, a leave 
notification is generated immediately, and no further tracking is 
performed. 

Windows 98, Windows 2000: The caller wants hover and 
leave notification for the nonclient areas. Notification is 
delivered as WM_NCMOUSEHOVER and 
WM_NCMOUSELEAVE messages. 

The function fills in the structure instead of treating it as a 
tracking request. The structure is filled such that had that 
structure been passed to TrackMouseEvent, it would 
generate the current tracking. The only anomaly is that the 
hover time-out returned is always the actual time-out and not 
HOVER_DEFAULT, if HOVER_DEFAULT was specified 
during the original TrackMouseEvent request. 

Specifies a handle to the window to track. 



Chapter 8 User Input 387 

dwHoverTime 
Specifies the hover time-out (if TME_HOVER was specified in dwFlags), in 
milliseconds. Can be HOVER_DEFAULT, which means to use the system default 
hover time-out. 

Remarks 
The system default hover time-out is initially the menu drop-down time, which is 400 
milliseconds. You can call SystemParameterslnfo and use 
SPI_GETMOUSEHOVERTIME to retrieve the default hover time-out. 

The system default hover rectangle is the same as the double-click rectangle. You can 
call SystemParameterslnfo and use SPI_GETMOUSEHOVERWIDTH and 
SPLGETMOUSEHOVERHEIGHT to retrieve the size of the rectangle within which the 
mouse pOinter has to stay for TrackMouseEvent to generate a WM_MOUSEHOVER 
message. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Mouse Input Overview, Mouse-Input Structures, SystemParameterslnfo, 
TrackMouseEvent 

Mouse-Input Messages 

WM_APPCOMMAND 
The WM_APPCOMMAND message notifies a window that the user generated an 
application command event, for example, by clicking an application command button 
using the mouse or typing an application command key on the keyboard. 

A window receives this message through its WindowProc function. 

LaESliLT'~L~BA(;~Wfnda~cocr ..; .• ........ . 

.k~~~a~~~{~;tf;~!:~M~:;~i;' .... 
tPARAM1R4:rJUlI . :··;lIcommaflii.·; lfiivtclt.,·.affli: 

, o~ y" c ,''' • v ., ' ,-- ~;:, !,."; \' ~, >~ t" , 

}J~:>o:;' ",,'~' ,·,;:::,:t~ </r~~:,';,·'f.~, 



388 Volume 2 Microsoft Windows User Interface 

Parameters 
wParam 

Handle to the window where the user clicked the button or pressed the key. This can 
be a child window of the window receiving the message. For more information about 
processing this message, see the Remarks section. 

IParam 
Use the following code to crack the IParam parameter: 

<:n1(1 ~Git,-Afl.Pt0MMMiO:·L.PARAMhpa:ram) • 
'l1'o,e¥i Ce",GEr..;OEVICE3PAM~;U~.ar&m)<:, . 
dwkeys ;'·;GE'l'.:](fY'srATE .. :JP~Af{AM(lti\l·r~!llh . 

Where cmd indicates the application command. This parameter can be one of the 
following values: 

Value Meaning 

APPCOMMAND _BASS_BOOST 

APPCOMMAND_BASS_DOWN 

APPCOMMAND_BASS_UP 

APPCOMMAND_BROWSER_BACKWARD 

APPCOMMAND _BROWSER_FAVORITES 

APPCOMMAND_BROWSER_FORWARD 

APPCOMMAND_BROWSER_HOME 

APPCOMMAND_BROWSER_REFRESH 

APPCOMMAND_BROWSER_SEARCH 

APPCOMMAND_BROWSER_STOP 

APPCOMMAND_LAUNCH_APP1 

APPCOMMAND_LAUNCH_APP2 

APPCOMMAND_LAUNCH_MAIL 

APPCOMMAND _MEDIA_NEXTTRACK 

APPCOMMAND_MEDIA_PLAY _PAUSE 

APPCOMMAND_MEDIA_PREVIOUSTRACK 

APPCOMMAND_MEDIA_SELECT 

APPCOMMAND_MEDIA_STOP 

APPCOMMAND_ TREBLE_DOWN 

APPCOMMAND_ TREBLE_UP 

APPCOMMAND_ VOLUME_DOWN 

APPCOMMAND_ VOLUME_MUTE 

APPCOMMAND _VOLUME_UP 

Toggle the bass boost on and off. 

Decrease the bass. 

Increase the bass. 

Move backward. 

Open favorites. 

Move forward. 

Move home. 

Refresh page. 

Open search. 

Stop download. 

Start App1. 

Start App2. 

Open mail. 

Go to next track. 

Play or pause playback. 

Go to previous track. 

Go to Media Select mode. 

Stop playback. 

Decrease the treble. 

Increase the treble. 

Lower the volume. 

Mute the volume. 

Raise the volume. 



Chapter 8 User Input 389 

Where uDevice indicates the input device that generated the input event. It can be 
one of the following values: 

Value 

FAPPCOMMAND_KEY 

FAPPCOMMAND_MOUSE 

FAPPCOMMAND_OEM 

Meaning 

User pressed a key. 

User clicked a mouse button. 

An unidentified hardware source 
generated the event. It could be a 
mouse or a keyboard event. 

Where dwKeys indicates whether various virtual keys are down. It can be one or more 
of the following values: 

Value 

MK_CONTROL 

MK_LBUTTON 

MK_MBUTTON 

MK_RBUTTON 

MK_SHIFT 

MK_XBUTTON1 

MK_XBUTTON2 

Return Values 

Meaning 

The CTRL key is down. 

The left mouse button is down. 

The middle mouse button is down. 

The right mouse button is down. 

The SHIFT key is down. 

The first X button is down. 

The second X button is down. 

If an application processes this message, it should return TRUE. For more information 
about processing the return value, see the Remarks section. 

Remarks 
DefWindowProc generates the WM_APPCOMMAND message when it processes the 
WM_XBUTTONUP or WM_NCXBUTTONUP message, or when the user types an 
application command key. 

If a child window does not process this message and instead calls DefWindowProc, 
DefWindowProc will send the message to its parent window. If a top level window does 
not process this message and instead calls DefWindowProc, DefWindowProc will call 
a shell hook with the hook code equal to HSHELL_APPCOMMAND. 

To get the coordinates of the cursor if the message was generated by a button click on 
the mouse, the application can call GetMessagePos. An application can test whether 
the message was generated by the mouse by checking whether IParam contains 
FAPPCOMMAND_MOUSE. 

Unlike other windows messages, an application should return TRUE from this message 
if it processes it. Doing so will allow software that simulates this message on Windows 
systems earlier than Windows 2000 to determine whether the window procedure 
processed the message or called DefWindowProc to process it. 



390 Volume 2 Microsoft Windows User Interface 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Unsupported. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Mouse Input Overview, Mouse-Input Messages, DefWindowProc, 
GET _APPCOMMAND_LPARAM, GET _DEVICE_LPARAM, 
GET_KEVSTATE_LPARAM, ShellProc, WM_NCXBUTTONUP, WM_XBUTTONUP 

WM_CAPTURECHANGED 
The WM_CAPTURECHANGED message is sent to the window that is losing the mouse 
capture. 

A window receives this message through its WindowProc function. 

LREStil1eAI..LgAel¢:w~:ndowprcO:e:(',' ....' 

'~t~t:.;?:1C-~~C:~f~;~;~;; . 
I..PARAM rparam' / l~ahdfe'ttlwi nq'Qw{.HWNO) 

c ~ , .'<'~' o~,~",:,,, """c,,~ 

).; 

Parameters 
wParam 

This parameter is not used. 

IParam 
Handle to the window gaining the mouse capture. 

Return Values 
An application should return zero if it processes this message. 

Remarks 
A window receives this message even if it calls ReleaseCapture itself. An application 
should not attempt to set the mouse capture in response to this message. 

When it receives this message, a window should redraw itself, if necessary, to reflect the 
new mouse-capture state. 



a_lreriients 
Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Chapter 8 User Input 391 

Mouse Input Overview, Mouse-Input Messages, ReleaseCapture, SetCapture 

WM_LBUTTONDBLCLK 
The WM_LBUTTONDBLCLK message is posted when the user double-clicks the left 
mouse button while the cursor is in the client area of a window. If the mouse is not 
captured, the message is posted to the window beneath the cursor. Otherwise, the 
message is posted to the window that has captured the mouse. 

A window receives this message through its WindowProc function. 

LRUUlTCAb.LMCK Wlnci():wP~t\li(t.· • 
·HWtU(:hwnd... . .tl~h&r1dl.~ . to :i-J1hao:w 

···.~~!'~~~~~A~i tfJ~.~~~~~~~I~:t:~~::~ ... :.;,.: 
•. LP:AJW\lpara1l1 u:(~·rfi()nt~l .. !~ti<1¥~FHial 
Y: .... . .' •. ' .o.' : ... ;' ·.·i; 

,~ , '" ,. 

Parameters 
wParam 

Indicates whether various virtual keys are down. This parameter can be one or more 
of the following values: 

Value 

MK_CONTROL 

MK_LBUTTON 

MK_MBUTTON 

MK_RBUTTON 

MK_SHIFT 

MK_XBUTTON1 

MK_XBUTTON2 

IParam 

Description 

The CTRL key is down. 

The left mouse button is down. 

The middle mouse button is down. 

The right mouse button is down. 

The SHIFT key is down. 

Windows 2000: The first X button is down. 

Windows 2000: The second X button is down. 

The low-order word specifies the x-coordinate of the cursor. The coordinate is relative 
to the upper-left corner of the client area. 



392 Volume 2 Microsoft Windows User Interface 

The high-order word specifies the y-coordinate of the cursor. The coordinate is 
relative to the upper-left corner of the client area. 

Return Values 
If an application processes this message, it should return zero. 

Remarks 
Use the following code to obtain the horizontal and vertical position: 

You can use also the MAKE POINTS macro to convert the IParam parameter to a 
POINTS structure. 

Only windows that have the CS_DBLCLKS style can receive WM_LBUTTONDBLCLK 
messages, which the system generates whenever the user presses, releases, and again 
presses the left mouse button within the system's double-click time limit. Double-clicking 
the left mouse button actually generates a sequence of four messages: 
WM_LBUTTONDOWN, WM_LBUTTONUP, WM_LBUTTONDBLCLK, and 
WM_LBUTTONUP. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Mouse Input Overview, Mouse-Input Messages, GET _X_LPARAM, GET _ Y _LPARAM, 
GetCapture, GetDoubleClickTime, MAKEPOINTS, POINTS, SetCapture, 
SetDoubleClickTime, WM_LBUTTONDOWN, WM_LBUTTONUP 

WM_LBUTTONDOWN 
The WM_LBUTTONDOWN message is posted when the user presses the left mouse 
button while the cursor is in the client area of a window. If the mouse is not captured, the 
message is posted to the window beneath the cursor. Otherwise, the message is posted 
to the window that has captured the mouse. 

A window receives this message through its WindowProc function. 



Chapter 8 User Input 393 

WPARAM wParam. II key indicator 
LPARAM 7Param II horizontal and vertical position 

) : 

Parameters 
wParam 

Indicates whether various virtual keys are down. This parameter can be one or more 
of the following values: 

Value 

MK_CONTROL 

MK_LBUTTON 

MK_MBUTTON 

MK_RBUTTON 

MK_SHIFT 

MK_XBUTTON1 

MK_XBUTTON2 

IParam 

Description 

The CTRL key is down. 

The left mouse button is down. 

The middle mouse button is down. 

The right mouse button is down. 

The SHIFT key is down. 

Windows 2000: The first X button is down. 

Windows 2000: The second X button is down. 

The low-order word specifies the x-coordinate of the cursor. The coordinate is relative 
to the upper-left corner of the client area. 

The high-order word specifies the y-coordinate of the cursor. The coordinate is 
relative to the upper-left corner of the client area. 

Return Values 
If an application processes this message, it should return zero. 

Remarks 
Use the following code to obtain the horizontal and vertical position: 

iPos SETL.lCLP,6,'RAMdP~ram}: 
yP()s •. ·.~.·.·.GEI_Y_L~ARAl'1{~para~~;< 

You can use also the MAKEPOINTS macro to convert the IParam parameter to a 
POINTS structure. 

To detect that the ALT key was pressed, check whether GetKeyState(VK_MENU) < O. 
Note that this must not be GetAsyncKeyState. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 



394 Volume 2 Microsoft Windows User Interface 

Mouse Input Overview, Mouse-Input Messages, GET_X_LPARAM, GET_Y_LPARAM, 
GetCapture, MAKE POINTS, POINTS, SetCapture, WM_LBUTTONDBLCLK, 
WM_LBUTTONUP 

The WM_LBUTTONUP message is posted when the user releases the left mouse 
button while the cursor is in the client area of a window. If the mouse is not captured, the 
message is posted to the window beneath the cursor. Otherwise, the message is posted 
to the window that has captured the mouse. 

A window receives this message through its WindowProc function. 

Parameters 
wParam 

Indicates whether various virtual keys are down. This parameter can be one or more 
of the following values: 

Value 

MK_CONTROL 

MK_MBUTTON 

MK_RBUTTON 

MK_SHIFT 

MK_XBUTTON 1 

MK_XBUTTON2 

IParam 

Description 

The CTRL key is down. 

The middle mouse button is down. 

The right mouse button is down. 

The SHIFT key is down. 

Windows 2000: The first X button is down. 

Windows 2000: The second X button is down. 

The low-order word specifies the x-coordinate of the cursor. The coordinate is relative 
to the upper-left corner of the client area. 

The high-order word specifies the y-coordinate of the cursor. The coordinate is 
relative to the upper-left corner of the client area. 

Return Values 
If an application processes this message, it should return zero. 



Chapter 8 User Input 395 

Remarks 
Use the following code to obtain the horizontal and vertical position: 

xPos = GET_X_LPARAMC1Param): 
yPos .,:; GET_Y_LPARAM(lPara~): 

You can use also the MAKEPOINTS macro to convert the IParam parameter to a 
POINTS structure. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Mouse Input Overview, Mouse-Input Messages, GET _X_LPARAM, GET _ Y _LPARAM, 
GetCapture, MAKEPOINTS, POINTS, SetCapture, WM_LBUTTONDBLCLK, 
WM_LBUTTONDOWN 

WM_MBUTTONDBLCLK 
The WM_MBUTTONDBLCLK message is posted when the user double-clicks the 
middle mouse button while the cursor is in the client area of a window. If the mouse is 
not captured, the message is posted to the window beneath the cursor. Otherwise, the 
message is posted to the window that has captured the mouse. 

A window receives this message through its WindowProc function. 

Parameters 
wParam 

Indicates whether various virtual keys are down. This parameter can be one or more 
of the following values: 

Value 

MK_CONTROL 

MK_LBUTTON 

Description 

The CTRL key is down. 

The left mouse button is down. 
(continued) 



396 Volume 2 Microsoft Windows User Interface 

(continued) 

Value 

MK_MBUTTON 

MK_RBUTTON 

MK_SHIFT 

MK_XBUTTON1 

MK_XBUTTON2 

IParam 

Description 

The middle mouse button is down. 

The right mouse button is down. 

The SHIFT key is down. 

Windows 2000: The first X button is down. 

Windows 2000: The second X button is down. 

The low-order word specifies the x-coordinate of the cursor. The coordinate is relative 
to the upper-left corner of the client area. 

The high-order word specifies the y-coordinate of the cursor. The coordinate is 
relative to the upper-left corner of the client area. 

Return Values 
If an application processes this message, it should return zero. 

Remarks 
Use the following code to obtain the horizontal and vertical position: 

xPo'S"" GE,T....x_LPARAM.nP,arallt),~: 
yPPiS':;: GET;;"LlPAR~I4(lfa'ralTl): .: 

You can use also the MAKEPOINTS macro to convert the IParam parameter to a 
POINTS structure. 

Only windows that have the CS_DBLCLKS style can receive WM_MBUTTONDBLCLK 
messages, which the system generates when the user presses, releases, and again 
presses the middle mouse button within the system's double-click time limit. Double­
clicking the middle mouse button actually generates four messages: 
WM_MBUTTONDOWN, WM_MBUTTONUP, WM_MBUTTONDBLCLK, and 
WM_MBUTTONUP again. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Mouse Input Overview, Mouse-Input Messages, GET _X_LPARAM, GET _ Y _LPARAM, 
GetCapture, GetDoubleClickTime, MAKE POINTS, POINTS, SetCapture, 
SetDoubleClickTime, WM_MBUTTONDOWN, WM_MBUTTONUP 



Chapter 8 User Input 397 

WM_MBUTTONDOWN 
The WM_MBUTTONDOWN message is posted when the user presses the middle 
mouse button while the cursor is in the client area of a window. If the mouse is not 
captured, the message is posted to the window beneath the cursor. Otherwise, the 
message is posted to the window that has captured the mouse. 

A window receives this message through its WindowProc function. 

Parameters 
wParam 

Indicates whether various virtual keys are down. This parameter can be one or more 
of the following values: 

Value Description 

MK_CONTROL 

MK_LBUTTON 

MK_MBUTTON 

MK_RBUTTON 

MK_SHIFT 

MK_XBUTTON1 

MK_XBUTTON2 

IParam 

The CTRL key is down. 

The left mouse button is down. 

The middle mouse button is down. 

The right mouse button is down. 

The SHIFT key is down. 

Windows 2000: The first X button is down. 

Windows 2000: The second X button is down. 

The low-order word specifies the x-coordinate of the cursor. The coordinate is relative 
to the upper-left corner of the client area. 

The high-order word specifies the y-coordinate of the cursor. The coordinate is 
relative to the upper-left corner of the client area. 

Return Values 
If an application processes this message, it should return zero. 

Remarks 
Use the following code to obtain the horizontal and vertical position: 



398 Volume 2 Microsoft Windows User Interface 

You can use also the MAKEPOINTS macro to convert the IParam parameter to a 
POINTS structure. 

To detect that the AL T key was pressed, check whether GetKeyState(VK_MENU) < O. 
Note that this must not be GetAsyncKeyState. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Mouse Input Overview, Mouse-Input Messages, GET _X_LPARAM, GET _ Y _LPARAM, 
GetCapture, MAKEPOINTS, POINTS, SetCapture, WM_MBUTTONDBLCLK, 
WM_MBUTTONUP 

The WM_MBUTTONUP message is posted when the user releases the middle mouse 
button while the cursor is in the client area of a window. If the mouse is not captured, the 
message is posted to the window beneath the cursor. Otherwise, the message is posted 
to the window that has captured the mouse. 

A window receives this message through its WindowProc function. 

LR£SUL1:GAiLL8AeK;\t1~w'rl:)~(;;i){: ';'7> ;!;:£ 

···.I~:~·~J,j~r~f~1~~~~~l~f.~~;i~~ . 
};,', ',:,) '),., ':'s ,L'e: r., 
Parameters 
wParam 

Indicates whether various virtual keys are down. This parameter can be one or more 
of the following values: 

Value 

MK_CONTROL 

MK_LBUTTON 

MK_RBUTTON 

MK_SHIFT 

Description 

The CTRL key is down. 

The left mouse button is down. 

The right mouse button is down. 

The SHIFT key is down. 



Chapter 8 User Input 399 

Value 

MK_XBUTTON1 

MK_XBUTTON2 

IParam 

Description 

Windows 2000: The first X button is down. 

Windows 2000: The second X button is down. 

The low-order word specifies the x-coordinate of the cursor. The coordinate is relative 
to the upper-left corner of the client area. 

The high-order word specifies the y-coordinate of the cursor. The coordinate is 
relative to the upper-left corner of the client area. 

Return Values 
If an application processes this message, it should return zero. 

Remarks 
Use the following code to obtain the horizontal and vertical position: 

You can use also the MAKE POINTS macro to convert the IParam parameter to a 
POINTS structure. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Mouse Input Overview, Mouse-Input Messages, GET _X_LPARAM, GET _ Y _LPARAM, 
GetCapture, MAKEPOINTS, POINTS, SetCapture, WM_MBUTTONDBLCLK, 
WM_MBUTTONDOWN 

WM_MOUSEACTIV ATE 
The WM_MOUSEACTIVATE message is sent when the cursor is in an inactive window 
and the user presses a mouse button. The parent window receives this message only if 
the child window passes it to the DefWindowProc function. 

A window receives this message through its WindowProc function. 

(continued) 



400 Volume 2 Microsoft Windows User Interface 

(continued) 

Parameters 
wParam 

Handle to the top-level parent window of the window being activated. 

IParam 
The low-order word specifies the hit-test value returned by the DefWindowProc 
function as a result of processing the WM_NCHITTEST message. For a list of hit-test 
values, see WM_NCHITTEST. 

The high-order word specifies the identifier of the mouse message generated when 
the user pressed a mouse button. The mouse message is either discarded or posted 
to the window, depending on the return value. 

Return Values 
The return value specifies whether the window should be activated and whether the 
identifier of the mouse message should be discarded. It must be one of the following 
values: 

Value 

MA_ACTIVATEAN 0 EAT 

MA_NOACTIVATE 

MA_NOACTIVATEANDEAT 

Remarks 

Meaning 

Activates the window, and does not discard the mouse 
message. 

Activates the window, and discards the mouse 
message. 

Does not activate the window, and does not discard 
the mouse message. 

Does not activate the window, but discards the mouse 
message. 

The DefWindowProc function passes the message to a child window's parent window 
before any processing occurs. The parent window determines whether to activate the 
child window. If it activates the child window, the parent window should return 
MA_NOACTIVATE or MA_NOACTIVATEANDEAT to prevent the system from 
processing the message further. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 



Chapter 8 User Input 401 

Mouse Input Overview, Mouse-Input Messages, DefWindowProc, HIWORD, LOWORD, 
WM_NCHITTEST 

WM_MOUSEHOVER 
The WM_MOUSEHOVER message is posted to a window when the cursor hovers over 
the client area of the window for the period of time specified in a prior call to 
TrackMouseEvent. 

A window receives this message through its WindowProc function. 

lRtStllTCA1LaAC:~Wjndowproc( 
IiW.II,/lhWf/d. llinandle.towinddw ..... . 
uIwru~$$l. .... . NWM...,.MOUSEHOVER 
WpARAMl'ip~r'c1fri. ·11 key indicator ' . . 
[PARAMrpar"m '1{hor1zontal andvert1 caT 

h 

Parameters 
wParam 

Indicates whether various virtual keys are down. This parameter can be one or more 
of the following values: 

Value 

MK_CONTROL 

MK_LBUTTON 

MK_MBUTTON 

MK_RBUTTON 

MK_SHIFT 

MK_XBUTTON1 

MK_XBUTTON2 

IParam 

Description 

The CTRL key is depressed. 

The left mouse button is depressed. 

The middle mouse button is depressed. 

The right mouse button is depressed. 

The SHIFT key is depressed. 

Windows 2000: The first X button is down. 

Windows 2000: The second X button is down. 

The low-order word specifies the x-coordinate of the cursor. The coordinate is relative 
to the upper-left corner of the client area. 

The high-order word specifies the y-coordinate of the cursor. The coordinate is 
relative to the upper-left corner of the client area. 

Return Values 
If an application processes this message, it should return zero. 



402 Volume 2 Microsoft Windows User Interface 

Remarks 
Hover tracking stops when WM_MOUSEHOVER is generated. The application must call 
TrackMouseEvent again if it requires further tracking of mouse hover behavior. 

Use the following code to obtain the horizontal and vertical position: 

You can use also the MAKEPOINTS macro to convert the IParam parameter to a 
POINTS structure. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Mouse Input Overview, Mouse-Input Messages, GET _X_LPARAM, GET _ Y _LPARAM, 
GetCapture, MAKEPOINTS, POINTS, SetCapture, TrackMouseEvent, 
TRACKMOUSEEVENT,WM_MOUSEHOVER 

WM_MOUSELEA VE 
The WM_MOUSELEAVE message is posted to a window when the cursor leaves the 
client area of the window specified in a prior call to TrackMouseEvent. 

A window receives this message through its WindowProc function. 

Parameters 
This message has no parameters. 

Return Values 
If an application processes this message, it should return zero. 



Chapter 8 User Input 403 

Remarks 
All tracking requested by TrackMouseEvent is canceled when this message is 
generated. The application must call TrackMouseEvent when the mouse reenters its 
window if it requires further tracking of mouse hover behavior. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Mouse Input Overview, Mouse-Input Messages, GetCapture, SetCapture, 
TrackMouseEvent, TRACKMOUSEEVENT, WM_NCMOUSELEAVE 

The WM_MOUSEMOVE message is posted to a window when the cursor moves. If the 
mouse is not captured, the message is posted to the window that contains the cursor. 
Otherwise, the message is posted to the window that has captured the mouse. 

A window receives this message through its WindowProc function. 

Parameters 
wParam 

Indicates whether various virtual keys are down. This parameter can be one or more 
of the following values: 

Value 

MK_CONTROL 

MK_LBUTTON 

MK_MBUTTON 

MK_RBUTTON 

MK_SHIFT 

Description 

The CTRL key is down. 

The left mouse button is down. 

The middle mouse button is down. 

The right mouse button is down. 

The SHIFT key is down. 

(continued) 



404 Volume 2 Microsoft Windows User Interface 

(continued) 

Value 

MK_XBUTTON1 
MK_XBUTTON2 

IParam 

Description 

Windows 2000: The first X button is down. 

Windows 2000: The second X button is down. 

The low-order word specifies the x-coordinate of the cursor. The coordinate is relative 
to the upper-left corner of the client area. 

The high-order word specifies the y-coordinate of the cursor. The coordinate is 
relative to the upper-left corner of the client area. 

Return Values 
If an application processes this message, it should return zero. 

Remarks 
Use the following code to obtain the horizontal and vertical position: 

You can use also the MAKEPOINTS macro to convert the IParam parameter to a 
POINTS structure. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Mouse Input Overview, Mouse-Input Messages, GET _X_LPARAM, GET _ Y _LPARAM, 
GetCapture, MAKEPOINTS, POINTS, SetCapture 

WM_MOUSEWHEEL 
The WM_MOUSEWHEEL message is sent to the focus window when the mouse wheel 
is rotated. The DefWindowProc function propagates the message to the window's 
parent. There should be no internal forwarding of the message, since DefWindowProc 
propagates it up the parent chain until it finds a window that processes it. 

A window receives this message through its WindowProc function. 



Parameters 
wParam 

al't.d verticalpGs1tion· 

Chapter 8 User Input 405 

The low-order word indicates whether various virtual keys are down. This parameter 
can be one or more of the following values: 

Value Description 

MK_CONTROL 

MK_LBUTTON 

MK_MBUTTON 

MK_RBUTTON 

MK_SHIFT 

MK_XBUTTON1 

MK_XBUTTON2 

The CTRL key is down. 

The left mouse button is down. 

The middle mouse button is down. 

The right mouse button is down. 

The SHIFT key is down. 

Windows 2000: The first X button is down. 

Windows 2000: The second X button is down. 

The high-order word indicates the distance the wheel is rotated, expressed in 
multiples or divisions of WHEEL_DELTA, which is 120. A positive value indicates that 
the wheel was rotated forward, away from the user; a negative value indicates that the 
wheel was rotated backward, toward the user. 

IParam 
The low-order word specifies the x-coordinate of the pointer, relative to the upper-left 
corner of the screen. 

The high-order word specifies the y-coordinate of the pointer, relative to the upper-left 
corner of the screen. 

Return Values 
If an application processes this message, it should return zero. 

Remarks 
Use the following code to crack the wParam parameter: 

Use the following code to obtain the horizontal and vertical positions: 

You can use also the MAKEPOINTS macro to convert the IParam parameter to a 
POINTS structure. 



406 Volume 2 Microsoft Windows User Interface 

The wheel rotation will be a multiple of WHEEL_DELTA, which is set at 120. This is the 
threshold for action to be taken, and one such action (for example, scrolling one 
increment) should occur for each delta. 

The delta was set to 120 to allow Microsoft or other vendors to build finer-resolution 
wheels in the future, including perhaps a freely rotating wheel with no notches. The 
expectation is that such a device would send more messages per rotation, but with a 
smaller value in each message. To support this possibility, you should either add the 
incoming delta values until WHEEL_DELTA is reached (so for a delta-rotation you get 
the same response), or scroll partial lines in response to the more frequent messages. 
You could choose also your scroll granularity, and accumulate deltas until it is reached. 

Windows 95 and Windows NT 3.51: Support for the mouse wheel is provided through 
a separately running module, MSWheel, that generates a MSH_MOUSEWHEEL 
message. The MSWheel module, which consists of MSWheel.exe and MSWheel.dll, is 
instal/ed with the Intel/iPoint software that is shipped with the IntelliMouse pointing 
device. In addition, MSH_MOUSEWHEEL is defined in the header file (ZMouse.h) that 
an application must use to implement support for the wheel via the MSWheel module. 

Note There are no fwKeys for MSH_MOUSEWHEEL. Otherwise, the parameters are 
exactly the same as for WM_MOUSEWHEEL. 

It is up to the application to forward MSH_MOUSEWHEEL to any embedded objects or 
controls. The application is required to send the message to an active embedded OLE 
application. It is optional that the application sends it to a wheel-enabled control with 
focus. If the application does send the message to a control, it can check the return 
value to see if the message was processed. Controls are required to return a value of 
TRUE if they process the message. 

Windows NT/2000: Requiies Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Mouse Input Overview, Mouse-Input Messages, GET_KEYSTATE_WPARAM, 
GET _WHEEL_DELTA_WPARAM, GET _X_LPARAM, GET _ Y _LPARAM, 
GetSystemMetrics, HIWORD, LOWORD, mouse_event, SystemParameterslnfo 



Chapter 8 User Input 407 

The WM_NCHITTEST message is sent to a window when the cursor moves, or when a 
mouse button is pressed or released. If the mouse is not captured, the message is sent 
to the window beneath the cursor. Otherwise, the message is sent to the window that 
has captured the mouse. 

A window receives this message through its WindowProc function . 

. L:R!~~:~!:~~~~i~t~';~;~;i~~;!~~~.r:\{~·:~'~~~~~g~'~:'t. ' .. 
4lJI:" ·~M~' .. , ".:;,:~ ~~f ~Nt;;t1~~lgi~' .' ~:: ; . 

. .,WPARAM wPI~m •... ~·n, .11<it,·:tI.s~~ 1 '. ; '. '.fi. 
'flpAAAr4.i1 p$ ra';'; .l.~.:{ Y·i~";o~.fk6ti·ta~1·~·a:ri!fve ri:1c;~i ;:) ';~~ :t~ /~ 'c c ,{{ ',' :;' ' '~.~"~: ' «~:~' ~~,. ' ~ '"J""~' ' ; ," ,'~, ,~<\?,,:,': ,;,~?,~~ '~"' ";' ,,'~,:' ~'\< , 

Parameters 
wParam 

This parameter is not used. 

IParam 
The low-order word specifies the x-coordinate of the cursor. The coordinate is relative 
to the upper-left corner of the screen. 

The high-order word specifies the y-coordinate of the cursor. The coordinate is 
relative to the upper-left corner of the screen. 

Return Values 
The return value of the DefWindowProc function is one of the following values, 
indicating the position of the cursor hot spot: 

Value Location of hot spot 

HTBORDER 

HTBOTTOM 

HTBOTTOMLEFT 

HTBOTTOMRIGHT 

HTCAPTION 

HTCLIENT 

HTCLOSE 

In the border of a window that does not have a sizing border 

In the lower-horizontal border of a resizable window (the user 
can click the mouse to resize the window vertically) 

In the lower-left corner of a border of a resizable window (the 
user can click the mouse to resize the window diagonally) 

In the lower-right corner of a border of a resizable window (the 
user can click the mouse to resize the window diagonally) 

In a title bar 

In a client area 

In a Close button 

(continued) 



408 Volume 2 Microsoft Windows User Interface 

(continued) 

Value 

HTERROR 

HTGROWBOX 
HTHELP 
HTHSCROLL 
HTLEFT 

HTMAXBUTTON 
HTMENU 
HTMINBUTTON 
HTNOWHERE 

HTREDUCE 
HTRIGHT 

HTSIZE 
HTSYSMENU 
HTTOP 
HTTOPLEFT 
HTTOPRIGHT 
HTTRANSPARENT 

HTVSCROLL 
HTZOOM 

Remarks 

Location of hot spot 

On the screen background or on a dividing line between 
windows (same as HTNOWHERE, except that the 
DefWindowProc function produces a system beep to indicate 
an error) 
In a size box (same as HTSIZE) 
In a Help button 
In a horizontal scroll bar 
In the left border of a resizable window (the user can click the 
mouse to resize the window horizontally) 
In a Maximize button 
In a menu 
In a Minimize button 
On the screen background or on a dividing line between 
windows 
In a Minimize button 
In the right border of a resizable window (the user can click the 
mouse to resize the window horizontally) 
In a size box (same as HTGROWBOX) 
In a window menu or in a Close button in a child window 
In the upper-horizontal border of a window 
In the upper-left corner of a window border 
In the upper-right corner of a window border 
In a window currently covered by another window in the same 
thread (the message will be sent to underlying windows in the 
same thread until one of them returns a code that is not 
HTTRANSPARENT) 
In the vertical scroll bar 
In a Maximize button 

Use the following code to obtain the horizontal and vertical position: 

You can use also the MAKEPOINTS macro to convert the IParam parameter to a 
POINTS structure. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 



Chapter 8 User Input 409 

Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

,~ , , 

l>td'P!~~"'T 
Mouse Input Overview, Mouse-Input Messages, DefWindowProc, GET _X_LPARAM, 
GET _V _LPARAM, MAKEPOINTS, POINTS 

WM_NCLBUTTONDBLCLK 
The WM_NCLBUTTONDBLCLK message is posted when the user double-clicks the left 
mouse button while the cursor is within the nonclient area of a window. This message is 
posted to the window that contains the cursor. If a window has captured the mouse, this 
message is not posted. 

A window receives this message through its WindowProc function. 

cLRESULT' c"AUBACK Wi nClowPrpc( 
HWl'Whwnd. c.l! handl e to .window 

cUlNTliM,s9.. .IFWM.:...NC LBUHONDBLCLK 
WPA~wt'arall1 •. c if. hit~test value 
~P:.1~J,f IParam· It cursorj)osition 

):f . 

Parameters 
wParam 

Specifies the hit-test value returned by the DefWindowProc function as a result of 
processing the WM_NCHITTEST message. For a list of hit-test values, see 
WM_NCHITTEST. 

IParam 
Specifies a POINTS structure that contains the x- and y-coordinates of the cursor. 
The coordinates are relative to the upper-left corner of the screen. 

Return Values 
If an application processes this message, it should return zero. 

Remarks 
You can use also the GET _X_LPARAM and GET _ V _LPARAM macros to extract the 
values of the x- and y- coordinates from IParam. 

xPos;;;cGELLLPARA~nParam) ; 
YPQs:=GET..;LLPARAM( 1 Patam); 



410 Volume 2 Microsoft Windows User Interface 

By default, the DefWindowProc function tests the specified point to find out the location 
of the cursor and performs the appropriate action. If appropriate, DefWindowProc sends 
the WM_SYSCOMMAND message to the window. 

A window does not need to have the CS_DBLCLKS style to receive 
WM_NCLBUTTONDBLCLK messages. 

The system generates a WM_NCLBUTTONDBLCLK message when the user presses, 
releases, and again presses the left mouse button within the system's double-click time 
limit. Double-clicking the left mouse button actually generates four messages: 
WM_NCLBUTTONDOWN, WM_NCLBUTTONUP, WM_NCLBUTTONDBLCLK, and 
WM_NCLBUTTONUP again. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Mouse Input Overview, Mouse-Input Messages, DefWindowProc, GET _X_LPARAM, 
GET _ Y _LPARAM, MAKEPOINTS, POINTS, WM_NCHITTEST, 
WM_NCLBUTTONDOWN, WM_NCLBUTTONUP, WM_SYSCOMMAND 

WM_NCLBUTTONDOWN 
The WM_NCLBUTTONDOWN message is posted when the user presses the left mouse 
button while the cursor is within the nonclient area of a window. This message is posted 
to the window that contains the cursor. If a window has captured the mouse, this 
message is not posted. 

A window receives this message through its WindowProc function. 

Parameters 
wParam 

Specifies the hit-test value returned by the DefWindowProc function as a result of 
processing the WM_NCHITTEST message. For a list of hit-test values, see 
WM_NCHITTEST. 



Chapter 8 User Input 411 

IParam 
Specifies a POINTS structure that contains the x- and y-coordinates of the cursor. 
The coordinates are relative to the upper-left corner of the screen. 

Return Values 
If an application processes this message, it should return zero. 

Remarks 
The DefWindowProc function tests the specified pOint to find the location of the cursor 
and performs the appropriate action. If appropriate, DefWindowProc sends the 
WM_SYSCOMMAND message to the window. 

You can use also the GET_X_LPARAM and GET_ Y_LPARAM macros to extract the 
values of the x- and y- coordinates from IParam. 

·;·~t!~~~f~!:t~i~~f;0 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Mouse Input Overview, Mouse-Input Messages, DefWindowProc, GET_X_LPARAM, 
GET _ Y _LPARAM, MAKEPOINTS, POINTS, WM_NCHITTEST, 
WM_NCLBUTTONDBLCLK, WM_NCLBUTTONUP, WM_SYSCOMMAND 

WM_NCLBUTTONUP 
The WM_NCLBUTTONUP message is posted when the user releases the left mouse 
button while the cursor is within the nonclient area of a window. This message is posted 
to the window that contains the cursor. If a window has captured the mouse, this 
message is not posted. 

A window receives this message through its WindowProc function. 



412 Volume 2 Microsoft Windows User Interface 

Parameters 
wParam 

Specifies the hit-test value returned by the DefWindowProc function as a result of 
processing the WM~NCHITTEST message. For a list of hit-test values, see 
WM_NCHITTEST. 

IParam 
Specifies a POINTS structure that contains the x- and y-coordinates of the cursor. 
The coordinates are relative to the upper-left corner of the screen. 

Return Values 
If an application processes this message, it should return zero. 

Remarks 
The DefWindowProc function tests the specified point to find out the location of the 
cursor and performs the appropriate action. If appropriate, DefWindowProc sends the 
WM_SYSCOMMAND message to the window. 

You can use also the GET _X_LPARAM and GET _ Y _LPARAM macros to extract the 
values of the x- and y- coordinates from IParam. 

If it is appropriate to do so, the system sends the WM_SYSCOMMAND message to the 
window. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Mouse input Overview, Mouse-Input iv1essages, DefWindowProc, GET _X_LPARAM, 
GET _ Y _LPARAM, MAKEPOINTS, POINTS, WM_NCHITTEST, 
WM_NCLBUTTONDBLCLK, WM_NCLBUTTONDOWN, WM_SYSCOMMAND 

WM NCMBUTTONDBLCLK 
The WM_NCMBUTTONDBLCLK message is posted when the user double-clicks the 
middle mouse button while the cursor is within the nonclient area of a window. This 
message is posted to the window that contains the cursor. If a window has captured the 
mouse, this message is not posted. 



Chapter 8 User Input 413 

A window receives this message through its WindowProc function. 

Parameters 
wParam 

Specifies the hit-test value returned by the DefWindowProc function as a result of 
processing the WM_NCHITTEST message. For a list of hit-test values, see 
WM_NCHITTEST. 

IParam 
Specifies a POINTS structure that contains the x- and y-coordinates of the cursor. 
The coordinates are relative to the upper-left corner of the screen. 

Return Values 
If an application processes this message, it should return zero. 

Remarks 
A window does not need to have the CS_DBLCLKS style to receive 
WM_NCMBUTTONDBLCLK messages. 

The system generates a WM_NCMBUTTONDBLCLK message when the user presses, 
releases, and again presses the middle mouse button within the system's double-click 
time limit. Double-clicking the middle mouse button actually generates four messages: 
WM_NCMBUTTONDOWN, WM_NCMBUTTONUP, WM_NCMBUTTONDBLCLK, and 
WM_NCMBUTTONUP again. 

You can use also the GET _X_LPARAM and GET _ Y _LPARAM macros to extract the 
values of the x- and y- coordinates from IParam. 

If it is appropriate to do so, the system sends the WM_SYSCOMMAND message to the 
window. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 



414 Volume 2 Microsoft Windows User Interface 

Mouse Input Overview, Mouse-Input Messages, DefWindowProc, GET _X_LPARAM, 
GET_Y_LPARAM, MAKEPOINTS, POINTS, WM_NCHITTEST, 
WM_NCMBUTTONDOWN, WM_NCMBUTTONUP, WM_SYSCOMMAND 

WM_NCMBUTTONDOWN 
The WM_NCMBUTTONDOWN message is posted when the user presses the middle 
mouse button while the cursor is within the nonclient area of a window. This message is 
posted to the window that contains the cursor. If a window has captured the mouse, this 
message is not posted. 

A window receives this message through its WindowProc function. 

Parameters 
wParam 

Specifies the hit-test value returned by the DefWindowProc function as a result of 
processing the WM_NCHITTEST message. For a list of hit-test values, see 
WM_NCHITTEST. 

IParam 
Specifies a POINTS structure that contains the x- and y-coordinates of the cursor. 
The coordinates are relative to the upper-left corner of the screen. 

Return Values 
If an application processes this message, it should return zero. 

Remarks 
You can use also the GET_X_LPARAM and GET_Y_LPARAM macros to extract the 
values of the x- and y- coordinates from IParam. 

If it is appropriate to do so, the system sends the WM_SYSCOMMAND message to the 
window. 



Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Chapter 8 User Input 415 

Mouse Input Overview, Mouse-Input Messages, DefWindowProc, GET _X_LPARAM, 
GET _ Y _LPARAM, MAKEPOINTS, POINTS, WM_NCHITTEST, 
WM_NCMBUTTONDBLCLK, WM_NCMBUTTONUP, WM_SYSCOMMAND 

WM_NCMBUTTONUP 
The WM_NCMBUTTONUP message is posted when the user releases the middle 
mouse button while the cursor is within the nonclient area of a window. This message is 
posted to the window that contains the cursor. If a window has captured the mouse, this 
message is not posted. 

A window receives this message through its WindowProc function. 

Parameters 
wParam 

Specifies the hit-test value returned by the DefWindowProc function as a result of 
processing the WM_NCHITTEST message. For a list of hit-test values, see 
WM_NCHITTEST. 

IParam 
Specifies a POINTS structure that contains the x- and y-coordinates of the cursor. 
The coordinates are relative to the upper-left corner of the screen. 

Return Values 
If an application processes this message, it should return zero. 

Remarks 
You can use also the GET_X_LPARAM and GET_ Y_LPARAM macros to extract the 
values of the x- and y- coordinates from IParam. 



416 Volume 2 Microsoft Windows User Interface 

If it is appropriate to do so, the system sends the WM_SYSCOMMAND message to the 
window. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Mouse Input Overview, Mouse-Input Messages, DefWindowProc, GET _X_LPARAM, 
GET_Y_LPARAM, MAKEPOINTS, POINTS, WM_NCHITTEST, 
WM_NCMBUTTONDBLCLK, WM_NCMBUTTONDOWN, WM_SYSCOMMAND 

WM_NCMOUSEHOVER 
The WM_NCMOUSEHOVER message is posted to a window when the cursor hovers 
over the nonclient area of the window for the period of time specified in a prior call to 
TrackMouseEvent. 

A window receives this message through its WindowProc function. 

Parameters 
wParam 

Specifies the hit-test value returned by the DefWindowProc function as a result of 
processing the WM_NCHITTEST message. For a list of hit-test values, see 
WM_NCHITTEST. 

IParam 
Specifies a POINTS structure that contains the x- and y-coordinates of the cursor. 
The coordinates are relative to the upper-left corner of the screen. 

Return Values 
If an application processes this message, it should return zero. 



Chapter 8 User Input 417 

Remarks 
Hover tracking stops when this message is generated. The application must call 
TrackMouseEvent again if it requires further tracking of mouse hover behavior. 

You can use also the GET_X_LPARAM and GET_ Y_LPARAM macros to extract the 
values of the x- and y- coordinates from IParam. 

)(f>os'=GE1:":X,2EPARAM<lparamJ; .. 
YPlisC,"'GET,..,Y_EeARAt-tC J.Jia ram"); •. •·· 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Mouse Input Overview, Mouse-Input Messages, DefWindowProc, GET _X_LPARAM, 
GET _ Y _LPARAM, MAKEPOINTS, POINTS, TrackMouseEvent, 
TRACKMOUSEEVENT, WM_NCHITTEST, WM_MOUSEHOVER 

WM_NCMOUSELEAVE 
The WM_NCMOUSELEAVE message is posted to a window when the cursor leaves the 
nonclient area of the window specified in a prior call to TrackMouseEvent. 

A window receives this message through its WindowProc function. 

~~Es~t.iCACJ:l3AqKWJMQwprQc( •..... / •...• ; ....... < 
.• HWf4D.~Wn(i. ' "j 1.1landleio~indo~· 
•.. UI~TU./t1sg • ...... ·.··.J.l(lt~rlCM(HJSEJ.EAVE . 

·Wp~~MwfariJl1f, II 
1.PARAM l'paraTil 

Parameters 
This message has no parameters. 

Return Values 
If an application processes this message, it should return zero. 



418 Volume 2 Microsoft Windows User Interface 

Remarks 
All tracking requested by TrackMouseEvent is canceled when this message is 
generated. The application must call TrackMouseEvent when the mouse reenters its 
window if it requires further tracking of mouse hover behavior. 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Mouse Input Overview, Mouse-Input Messages, TrackMouseEvent, 
TRACKMOUSEEVENT, WM_MOUSELEAVE, WM_SYSCOMMAND 

WM_NCMOUSEMOVE 
The WM_NCMOUSEMOVE message is posted to a window when the cursor is moved 
within the nonclient area of the window. This message is posted to the window that 
contains the cursor. If a window has captured the mouse, this message is not posted. 

A window receives this message through its WindowProc function. 

Parameters 
wParam 

Specifies the hit-test value returned by the DefWindowProc function as a result of 
processing the WM_NCHITTEST message. For a list of hit-test values, see 
WM_NCHITTEST. 

IParam 
Specifies a POINTS structure that contains the x- and y-coordinates of the cursor. 
The coordinates are relative to the upper-left corner of the screen. 

Return Values 
If an application processes this message, it should return zero. 



Chapter 8 User Input 419 

Remarks 
If it is appropriate to do so, the system sends the WM_SYSCOMMAND message to the 
window. 

You can use also the GET _X_LPARAM and GET _ Y _LPARAM macros to extract the 
values of the x- and y- coordinates from IParam. 

•• ~;!~·~i:~,±e~i~:Z~~;:~;·";i~~;"';~:.?";1 
Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Mouse Input Overview, Mouse-Input Messages, DefWindowProc, GET_X_LPARAM, 
GET _ Y _LPARAM, MAKEPOINTS, POINTS, WM_NCHITTEST, WM_SYSCOMMAND 

WM_NCRBUTTONDBLCLK 
The WM_NCRBUTTONDBLCLK message is posted when the user double-clicks the 
right mouse button while the cursor is within the nonclient area of a window. This 
message is posted to the window that contains the cursor. If a window has captured the 
mouse, this message is not posted. 

A window receives this message through its WindowProc function. 

Parameters 
wParam 

Specifies the hit-test value returned by the DefWindowProc function as a result of 
processing the WM_NCHITTEST message. For a list of hit-test values, see 
WM_NCHITTEST. 

IParam 
Specifies a POINTS structure that contains the x- and y-coordinates of the cursor. 
The coordinates are relative to the upper-left corner of the screen. 



420 Volume 2 Microsoft Windows User Interface 

Return Values 
If an application processes this message, it should return zero. 

Remarks 
A window does not need to have the CS_DBLCLKS style to receive 
WM_NCRBUTTONDBLCLK messages. 

The system generates a WM_NCRBUTTONDBLCLK message when the user presses, 
releases, and again presses the right mouse button within the system's double-click time 
limit. Double-clicking the right mouse button actually generates four messages: 
WM_NCRBUTTONDOWN, WM_NCRBUTTONUP, WM_NCRBUTTONDBLCLK, and 
WM_NCRBUTTONUP again. 

You can use also the GET _X_LPARAM and GET _ Y _LPARAM macros to extract the 
values of the x- and y- coordinates from IParam. 

If it is appropriate to do so, the system sends the WM_SYSCOMMAND message to the 
window. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Mouse Input Overview, Mouse-Input Messages, DefWindowProc, GET _X_LPARAM, 
GET_Y_LPARAM, MAKEPOINTS, POINTS, WM_NCHITTEST, 
WM_NCRBUTTONDOWN, WM_NCRBUTTONUP, WM_SYSCOMMAND 

WM_NCRBUTTONDOWN 
The WM_NCRBUTTONDOWN message is posted when the user presses the right 
mouse button while the cursor is within the nonclient area of a window. This message is 
posted to the window that contains the cursor. If a window has captured the mouse, this 
message is not posted. 

A window receives this message through its WindowProc function. 

LRESULTCAltSAiCK Windo!lfProc( 
. )'IfWltDhiffld/ '.: Ilhiindl~., ~b.W1'ndow.. ,. 
,fltjlj--~ ,,;-,,:,' '... I/Wrt..tiC RB UTTO.~ QOWN.;." 



Chapter 8 User Input 421 

Ilh1.t~test.v.al ill! ,'.,.,' WPARAM wParam, 
LPARAM 7 Param 

>i 'f 
1/ cursor position ' . ,. ' 

'.' , ., _."". ".' >.~c <!'.:":.,;,,;< c. :··,.{e ', .. , "j .:. '<~:" .• :.: .::;:~~~J)':';!;~:~ :71~t~~:ti:'~\"t';~,~(!:1r:";4' 

Parameters 
wParam 

" 

Specifies the hit-test value returned by the DefWindowProc function as a result of 
processing the WM_NCHITTEST message. For a list of hit-test values, see 
WM_NCHITTEST. 

IParam 
Specifies a POINTS structure that contains the x- and y-coordinates of the cursor. 
The coordinates are relative to the upper-left corner of the screen. 

Return Values 
If an application processes this message, it should return zero. 

Remarks 
You can use also the GET _X_LPARAM and GET _ Y _LPARAM macros to extract the 
values of the x- and y- coordinates from IParam. 

If it is appropriate to do so, the system sends the WM_SYSCOMMAND message to the 
window. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Mouse Input Overview, Mouse-Input Messages, DefWindowProc, GET_X_LPARAM, 
GET _ Y _LPARAM, MAKEPOINTS, POINTS, WM_NCHITTEST, 
WM_NCRBUTTONDBLCLK, WM_NCRBUTTONUP, WM_SYSCOMMAND 

WM_NCRBUTTONUP 
The WM_NCRBUTTONUP message is posted when the user releases the right mouse 
button while the cursor is within the nonclient area of a window. This message is posted 
to the window that contains the cursor. If a window has captured the mouse, this 
message is not posted. 



422 Volume 2 Microsoft Windows User Interface 

A window receives this message through its WindowProc function. 

Parameters 
wParam 

Specifies the hit-test value returned by the DefWindowProc function as a result of 
processing the WM_NCHITTEST message. For a list of hit-test values, see 
WM_NCHITTEST. 

IParam 
Specifies a POINTS structure that contains the x- and y-coordinates of the cursor. 
The coordinates are relative to the upper-left corner of the screen. 

Return Values 
If an application processes this message, it should return zero. 

Remarks 
You can use also the GET _X_LPARAM and GET _ Y _LPARAM macros to extract the 
values of the x- and y- coordinates from IParam. 

If it is appropriate to do so, the system sends the WM_SYSCOMMAND message to the 
window. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Mouse Input Overview, Mouse-Input Messages, DefWindowProc, GET_X_LPARAM, 
GET_Y_LPARAM, MAKEPOINTS, POINTS, WM_NCHITTEST, 
WM_NCRBUTTONDBLCLK, WM_NCRBUTTONDOWN, WM_SYSCOMMAND 



Chapter 8 User Input 423 

WM_NCXBUTTONDBLCLK 
The WM_NCXBUTTONDBLCLK message is posted when the user double-clicks the 
first or second X button while the cursor is in the nonclient area of a window. This 
message is posted to the window that contains the cursor. If a window has captured the 
mouse, this message is not posted. 

A window receives this message through its WindowProc function. 

,t.;({E~U LT'CAlJ.;8ACKWJ ~~a,p,~~el.;!.: <;;:'!.~ . 

·\:~~~;~;;~,V~~;;h1t·!~i~~;'~~~ •• v~t:~t' 
LP:~MK;para~ .)' 1~!Jrsd~'~q'~i:t;drt" ;::' '< ." , 

');: : .• ". "'j.'., ".,', .. 

Parameters 
wParam 

The low-order word specifies the hit-test value returned by the DefWindowProc 
function from processing the WM_NCHITTEST message. For a list of hit-test values, 
see WM_NCHITTEST. 

The high-order word indicates which button was double-clicked. It can be one of the 
following values: 

Value Meaning 

XBUTTON1 

XBUTTON2 

IParam 

The first X button was double-clicked. 

The second X button was double-clicked. 

Pointer to a POINTS structure that contains the x- and y-coordinates of the cursor. 
The coordinates are relative to the upper-left corner of the screen. 

Return Values 
If an application processes this message, it should return TRUE. For more information 
about processing the return value, see the Remarks section. 

Remarks 
Use the following code to crack the wParam parameter: 

ytHittest= GETJGHITtEST.;,:WJlAJ~AMtlr{par,aml;' 
Iwatl.tt,on . """Gl;Lxs'unOJll:",~p:ARAM{WPitr'ain) ';':.; 

You can use also the following code to get the x- and y-coordinates from IParam: 

GEr~x~t;PARAl<1npiNamh ' 
&ET'_~ ..,~A~( lV~ram}; 



424 Volume 2 Microsoft Windows User Interface 

By default, the DefWindowProc function tests the specified point to get the position of 
the cursor and performs the appropriate action. If appropriate, it sends the 
WM_SYSCOMMAND message to the window. 

A window does not need to have the CS_DBLCLKS style to receive 
WM_NCXBUTTONDBLCLK messages. The system generates a 
WM_NCXBUTTONDBLCLK message when the user presses, releases, and again 
presses an X button within the system's double-click time limit. Double-clicking one of 
these buttons actually generates four messages: WM_NCXBUTTONDOWN, 
WM_NCXBUTTONUP, WM_NCXBUTTONDBLCLK, and WM_NCXBUTTONUP again. 

Unlike the WM_NCLBUTTONDBLCLK, WM_NCMBUTTONDBLCLK, and 
WM_NCRBUTTONDBLCLK messages, an application should return TRUE from this 
message if it processes it. Doing so will allow software that simulates this message on 
Windows systems earlier than Windows 2000 to determine whether the window 
procedure processed the message or called DefWindowProc to process it. 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Unsupported. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Mouse Input Overview, Mouse-Input Messages, DefWindowProc, GET _X_LPARAM, 
GET _ Y _LPARAM, MAKEPOINTS, POINTS, WM_NCHITTEST, 
WM_NCXBUTTONDOWN, WM_NCXBUTTONUP, WM_SYSCOMMAND 

WM_NCXBUTTONDOWN 
The WM_NCXBUTTONDOWN message is posted when the user presses the first or 
second X button while the cursor is in the nonclient area of a window. This message is 
posted to the window that contains the cursor. If a window has captured the mouse, this 
message is not posted. 

A window receives this message through its WindowProc function. 



Parameters 
wParam 

Chapter 8 User Input 425 

The low-order word specifies the hit-test value returned by the DefWindowProc 
function from processing the WM_NCHITTEST message. For a list of hit-test values, 
see WM_NCHITTEST. 

The high-order word indicates which button was pressed. It can be one of the 
following values: 

Value Meaning 

XBUTTON1 

XBUTTON2 

IParam 

The first X button was pressed. 

The second X button was pressed. 

Pointer to a POINTS structure that contains the x- and y-coordinates of the cursor. 
The coordinates are relative to the upper-left corner of the screen. 

Return Values 
If an application processes this message, it should return TRUE. For more information 
about processing the return value, see the Remarks section. 

Remarks 
Use the following code to crack the wParam parameter: 

n~ntes to:;;' 'tEk'lGHthtlE..:14p~~M 
fWBtfttcOb~!, Ci~t:j:~~irbfiJ.~~, 

You can use also the following code to get the x- and y-coordinates from IParam: 

'XP()S ;"'$ET,; ... :x.4t~ARAM(}Fara{llYr 
YPoi "';'. ~ET.:..Y,:;LPAR'AMbpai~;am1~;; 

By default, the DefWindowProc function tests the specified point to get the position of 
the cursor and performs the appropriate action. If appropriate, it sends the 
WM_SYSCOMMAND message to the window. 

Unlike the WM_NCLBUTTONDOWN, WM_NCMBUTTONDOWN, and 
WM_NCRBUTTONDOWN messages, an application should return TRUE from this 
message if it processes it. Doing so will allow software that simulates this message on 
Windows systems earlier than Windows 2000 to determine whether the window 
procedure processed the message or called DefWindowProc to process it. 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Unsupported. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 



426 Volume 2 Microsoft Windows User Interface 

Mouse Input Overview, Mouse-Input Messages, DefWindowProc, GET _X_LPARAM, 
GET_Y_LPARAM, MAKEPOINTS, POINTS, WM_NCHITTEST, 
WM_NCXBUTTONDBLCLK, WM_NCXBUTTONUP, WM_SYSCOMMAND 

WM_NCXBUTTONUP 
The WM_NCXBUTTONUP message is posted when the user releases the first or 
second X button while the cursor is in the nonclient area of a window. This message is 
posted to the window that contains the cursor. If a window has captured the mouse, this 
message is not posted. 

A window receives this message through its WindowProc function. 

Parameters 
wParam 

The low-order word specifies the hit-test value returned by the DefWindowProc 
function from processing the WM_NCHITTEST message. For a list of hit-test values, 
see WM_NCHITTEST. 

The high-order word indicates which button was released. It can be one of the 
following values: 

Value Meaning 

XBUTTON1 

XBUTTON2 

IParam 

The first X button was released. 

The second X button was released. 

Pointer to a POINTS structure that contains the x- and y-coordinates of the cursor. 
The coordinates are relative to the upper-left corner of the screen. 

Return Values 
If an application processes this message, it should return TRUE. For more information 
about processing the return value, see the Remarks section. 

Remarks 
Use the following code to crack the wParam parameter: 



nHittest = GET_NCHITTEST_WPARAM(wParam); 
fwButton = GET_XBUTTON_WPARAM(wParam); 

Chapter 8 User Input 427 

You can use also the following code to get the x- and y-coordinates from IParam: 

xPo.s '" GELX-LPARAM(lParamJ; 
yPos.= GET _LLPARAM( lPa ram) : 

By default, the DefWindowProc function tests the specified pOint to get the position of 
the cursor and performs the appropriate action. If appropriate, it sends the 
WM_SYSCOMMAND message to the window. 

Unlike the WM_NCLBUTTONUP, WM_NCMBUTTONUP, and WM_NCRBUTTONUP 
messages, an application should return TRUE from this message if it processes it. Doing 
so will allow software that simulates this message on Windows systems earlier than 
Windows 2000 to determine whether the window procedure processed the message or 
called DefWindowProc to process it. 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Unsupported. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Mouse Input Overview, Mouse-Input Messages, DefWindowProc, GET _X_LPARAM, 
GET _ Y _LPARAM, MAKEPOINTS, POINTS, WM_NCHITTEST, 
WM_NCXBUTTONDBLCLK, WM_NCXBUTTONDOWN, WM_SYSCOMMAND 

WM_RBUTTONDBLCLK 
The WM_RBUTTONDBLCLK message is posted when the user double-clicks the right 
mouse button while the cursor is in the client area of a window. If the mouse is not 
captured, the message is posted to the window beneath the cursor. Otherwise, the 
message is posted to the window that has captured the mouse. 

A window receives this message through its WindowProc function. 



428 Volume 2 Microsoft Windows User Interface 

Parameters 
wParam 

Indicates whether various virtual keys are down. This parameter can be one or more 
of the following values: 

Value 

MK_CONTROL 

MK_LBUTTON 

MK_MBUTTON 

MK_RBUTTON 

MK_SHIFT 

MK_XBUTTON1 

MK_XBUTTON2 

IParam 

Description 

The CTRL key is down. 

The left mouse button is down. 

The middle mouse button is down. 

The right mouse button is down. 

The SHIFT key is down. 

Windows 2000: The first X button is down. 

Windows 2000: The second X button is down. 

The low-order word specifies the x-coordinate of the cursor. The coordinate is relative 
to the upper-left corner of the client area. 

The high-order word specifies the y-coordinate of the cursor. The coordinate is 
relative to the upper-left corner of the client area. 

Return Values 
If an application processes this message, it should return zero. 

Remarks 
Only windows that have the CS_DBLCLKS style can receive WM_RBUTTONDBLCLK 
messages, which the system generates whenever the user presses, releases, and again 
presses the right mouse button within the system's double-click time limit. Double­
clicking the right mouse button actually generates four messages: 
WM_RBUTTONDOWN, WM_RBUTTONUP, WM_RBUTTONDBLCLK, and 
WM_RBUTTONUP again. 

Use the following code to obtain the horizontal and vertical position: 

You can use also the MAKEPOINTS macro to convert the IParam parameter to a 
POINTS structure. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 



Chapter 8 User Input 429 

Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Mouse Input Overview, Mouse-Input Messages, GET_X_LPARAM, GET_Y_LPARAM, 
GetCapture, GetDoubleClickTime, MAKEPOINTS, POINTS, SetCapture, 
SetDoubleClickTime, WM_RBUTTONDOWN, WM_RBUTTONUP 

WM_RBUTTONDOWN 
The WM_RBUTTONDOWN message is posted when the user presses the right mouse 
button while the cursor is in the client area of a window. If the mouse is not captured, the 
message is posted to the window beneath the cursor. Otherwise, the message is posted 
to the window that has captured the mouse. 

A window receives this message through its WindowProc function. 

~it'~~fit~~:~r~i~~,x";; ,,' 
:iimt'\il;a~:jt~fMci:l<PQ$it'i Oft'· 

Parameters 
wParam 

;,'>~>~,).'{" '-~':"\:;'.;'/',/~:,~; 'f;":"~' /:'::. ~2'~'< 
:r-\(l " 0"" ' 

Indicates whether various virtual keys are down. This parameter can be one or more 
of the following values: 

Value 

MK_CONTROL 

MK_LBUTTON 

MK_MBUTTON 

MK_RBUTTON 

MK_SHIFT 

MK_XBUTTON1 

MK_XBUTTON2 

IParam 

Description 

The CTRL key is down. 

The left mouse button is down. 

The middle mouse button is down. 

The right mouse button is down. 

The SHIFT key is down. 

Windows 2000: The first X button is down. 

Windows 2000: The second X button is down. 

The low-order word specifies the x-coordinate of the cursor. The coordinate is relative 
to the upper-left corner of the client area. 

The high-order word specifies the y-coordinate of the cursor. The coordinate is 
relative to the upper-left corner of the client area. 



430 Volume 2 Microsoft Windows User Interface 

Return Values 
If an application processes this message, it should return zero. 

Remarks 
Use the following code to obtain the horizontal and vertical position: 

?<~o~:"0~.~f;tJ~'~~~~~lZga;ra~>:,~.,".· 
yPo~·'" Gn:;(Y'_LP~RAMn.pai'am)'f; 

You can use also the MAKEPOINTS macro to convert the IParam parameter to a 
POINTS structure. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Mouse Input Overview, Mouse-Input Messages, GET _X_LPARAM, GET _ Y _LPARAM, 
GetCapture, MAKEPOINTS, POINTS, SetCapture, WM_RBUTTONDBLCLK, 
WM_RBUTTONUP 

The WM_RBUTTONUP message is posted when the user releases the right mouse 
button while the cursor is in the client area of a window. If the mouse is not captured, the 
message is posted to the window beneath the cursor. Otherwise, the message is posted 
to the window that has captured the mouse. 

A window receives this message through its WindowProc function. 

lRESULt.cA.U.BACK \tIjn.(\qwP~!)~t . .' 
"KWHD hwnd~'~· . hil~dretD \t1nd6w\· 

ulNTUMsg. II wM;Jll\uri6tiUP} . 
WP:ARAM IItPaf'a'/1J. , (I key Jndi,cators , . ' 
LPARAM IPa.ram ' .. lIhorfzotit'a (~n~.,'~etti·ch 

): ~ 

Parameters 
wParam 

Indicates whether various virtual keys are down. This parameter can be one or more 
of the following values: 



Chapter 8 User Input 431 

Value Description 

The CTRL key is down. MK_CONTROL 

MK_LBUnON 

MK_MBUnON 

MK_SHIFT 

MK_XBUTTON1 

MK_XBUnON2 

The left mouse button is down. 

The middle mouse button is down. 

The SHIFT key is down. 

IParam 

Windows 2000: The first X button is down. 

Windows 2000: The second X button is down. 

The low-order word specifies the x-coordinate of the cursor. The coordinate is relative 
to the upper-left corner of the client area. 

The high-order word specifies the y-coordinate of the cursor. The coordinate is 
relative to the upper-left corner of the client area. 

Return Values 
If an application processes this message, it should return zero. 

Remarks 
Use the following code to obtain the horizontal and vertical position: 

~!!;),:~r~~,*~jt:K~~j}~:~~~~:i;:'i;;;;':e'}t},';':";"~;; ,/:, 
You can use also the MAKEPOINTS macro to convert the IParam parameter to a 
POINTS structure. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Mouse Input Overview, Mouse-Input Messages, GET _X_LPARAM, GET _ Y _LPARAM, 
GetCapture, MAKEPOINTS, POINTS, SetCapture, WM_RBUTTONDBLCLK, 
WM_RBUTTONDOWN 

WM_XBUTTONDBLCLK 
The WM_XBUTTONDBLCLK message is posted when the user double-clicks the first or 
second X button while the cursor is in the client area of a window. If the mouse is not 



432 Volume 2 Microsoft Windows User Interface 

captured, the messge is posted to the window beneath the cursor. Otherwise, the 
message is posted to the window that has captured the mouse. 

A window receives this message through its WindowProc function. 

Parameters 
wParam 

The low-order word indicates whether various virtual keys are down. It can be one or 
more of the following values: 

Value Meaning 

MK_CONTROL 

MK_LBUTTON 

MK_MBUTTON 

MK_RBUTTON 

MK_SHIFT 

MK_XBUTTON1 

MK_XBUTTON2 

The CTRL key is down. 

The left mouse button is down. 

The middle mouse button is down. 

The right mouse button is down. 

The SHIFT key is down. 

The first X button is down. 

The second X button is down. 

The high-order word indicates which button was double-clicked. It can be one of the 
following values: 

Value Meaning 

XBUTTON1 

XBUTTON2 

IParam 

The first X button was double-clicked. 

The second X button was double-clicked. 

The low-order word specifies the x-coordinate of the cursor. The coordinate is relative 
to the upper-left corner of the client area. 

The high-order word specifies the y-coordinate of the cursor. The coordinate is 
relative to the upper-left corner of the client area. 

Return Values 
If an application processes this message, it should return TRUE. For more information 
about processing the return value, see the Remarks section. 



Chapter 8 User Input 433 

Remarks 
Use the following code to crack the wParam parameter: 

,,~~:~~gE=~~~l~t~~~~~~~~~ai~%4~~2[~;~;~:;K;fi?,~~;~;~t::~;\"~.'{:~.::;~~"".+!l··;f::';.'7'~:··."Y"::''''.'. 
Use the following code to obtain the horizontal and vertical position: 

You can use also the MAKEPOINTS macro to convert the IParam parameter to a 
POINTS structure. 

Only windows that have the CS_DBLCLKS style can receive WM_XBUTTONDBLCLK 
messages, which the system generates whenever the user presses, releases, and again 
presses an X button within the system's double-click time limit. Double-clicking one of 
these buttons actually generates four messages: WM_XBUTTONDOWN, 
WM_XBUTTONUP, WM_XBUTTONDBLCLK, and WM_XBUTTONUP again. 

Unlike the WM_LBUTTONDBLCLK, WM_MBUTTONDBLCLK, and 
WM_RBUTTONDBLCLK messages, an application should return TRUE from this 
message if it processes it. Doing so will allow software that simulates this message on 
Windows systems earlier than Windows 2000 to determine whether the window 
procedure processed the message or called DefWindowProc to process it. 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Unsupported. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Mouse Input Overview, Mouse-Input Messages, DefWindowProc, 
GET _KEYSTATE_WPARAM, GET _X_LPARAM, GET _XBUTTON_WPARAM, 
GET _ Y _LPARAM, GetCapture, GetDoubleClickTime, SetCapture, 
SetDoubleClickTime, MAKEPOINTS, POINTS, WM_XBUTTONDOWN, 
WM_XBUTTONUP 

WM_XBUTTONDOWN 
The WM_XBUTTONDOWN message is posted when the user presses the first or 
second X button while the cursor is in the client area of a window. If the mouse is not 
captured, the messge is posted to the window beneath the cursor. Otherwise, the 
message is posted to the window that has captured the mouse. 



434 Volume 2 Microsoft Windows User Interface 

A window receives this message through its WindowProc function. 

Parameters 
wParam 

The low-order word indicates whether various virtual keys are down. It can be one or 
more of the following values: 

Value Meaning 

MK_CONTROL 

MK_LBUTTON 

MK_MBUTTON 

MK_RBUTTON 

MK_SHIFT 

MK_XBUTTON1 

MK_XBUTTON2 

The CTRL key is down. 

The left mouse button is down. 

The middle mouse button is down. 

The right mouse button is down. 

The SHIFT key is down. 

The first X button is down. 

The second X button is down. 

The high-order word indicates which button was pressed. It can be one of the 
following values: 

Value 

XBUTTON1 

XBUTTON2 

IParam 

Meaning 

The first X button was pressed. 

The second X button was pressed. 

The low-order word specifies the x-coordinate of the cursor. The coordinate is relative 
to the upper-left corner of the client area. 

The high-order word specifies the y-coordinate of the cursor. The coordinate is 
relative to the upper-left corner of the client area. 

Return Values 
If an application processes this message, it should return TRUE. For more information 
about processing the return value, see the Remarks section. 

Remarks 
Use the following code to crack the wParam parameter: 



Chapter 8 User Input 435 

fwKeys = GET .. KE:VSTATE-WPARAf!I <wpara,in):. . 
f\'iBlJtton= GET""XBUnoN_wp.ARAM (wPl ram); . 

Use the following code to obtain the horizontal and vertical position: 

i~d:,·~',::J~L~;~,~~g~::t:ttk~l~~f5J1:·)':;,:;~:;:.;.::::,\»(-w\~~;·;~t:'(;;~;:;;;<:;'i'· .... 
You can use also the MAKEPOINTS macro to convert the IParam parameter to a 
POINTS structure. 

Unlike the WM_LBUTTONDOWN, WM_MBUTTONDOWN, and WM_RBUTTONDOWN 
messages, an application should return TRUE from this message if it processes it. Doing 
so will allow software that simulates this message on Windows systems earlier than 
Windows 2000 to determine whether the window procedure processed the message or 
called DefWindowProc to process it. 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Unsupported. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Mouse Input Overview, Mouse-Input Messages, GET_KEYSTATE_WPARAM, 
GET_X_LPARAM, GET_XBUTTON_WPARAM, GET_Y_LPARAM, GetCapture, 
MAKEPOINTS, POINTS, SetCapture, WM_XBUTTONDBLCLK, WM_XBUTTONUP 

The WM_XBUTTONUP message is posted when the user releases the first or second X 
button while the cursor is in the client area of a window. If the mouse is not captured, the 
message is posted to the window beneath the cursor. Otherwise, the message is posted 
to the window that has captured the mouse. 

A window receives this message through its WindowProc function. 

:~~~l';:~t'::J:~~' 



436 Volume 2 Microsoft Windows User Interface 

Parameters 
wParam 

The low-order word indicates whether various virtual keys are down. It can be one or 
more of the following values: 

Value Meaning 

MK_CONTROL 

MK_LBUTTON 

M K_M BUTTON 

MK_RBUTTON 

MK_SHIFT 

MK_XBUTTON1 

MK_XBUTTON2 

The CTRL key is down. 

The left mouse button is down. 

The middle mouse button is down. 

The right mouse button is down. 

The SHIFT key is down. 

The first X button is down. 

The second X button is down. 

The high-order word indicates which button was released. It can be one of the 
following values: 

Value Meaning 

XBUTTON1 

XBUTTON2 

IParam 

The first X button was released. 

The second X button was released. 

The low-order word specifies the x-coordinate of the cursor. The coordinate is relative 
to the upper-left corner of the client area. 

The high-order word specifies the y-coordinate of the cursor. The coordinate is 
relative to the upper-left corner of the client area. 

Return Values 
If an application processes this message, it should return TRUE. For more information 
about processing the return value, see the Remarks section. 

Remarks 
Use the following code to crack the wParam parameter: 

Use the following code to obtain the horizontal and vertical position: 

You can use also the MAKEPOINTS macro to convert the IParam parameter to a 
POINTS structure. 



Chapter 8 User Input 437 

Unlike the WM_LBUTTONUP, WM_MBUTTONUP, and WM_RBUTTONUP messages, 
an application should return TRUE from this message, if it processes it. This will allow 
software that simulates this message on Windows systems earlier than Windows 2000 to 
determine whether the window procedure processed the message or called 
DefWindowProc to process it. 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Unsupported. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Mouse Input Overview, Mouse-Input Messages, GET_KEYSTATE_WPARAM, 
GET_X_LPARAM, GET_XBUTTON_WPARAM, GET_Y_LPARAM, GetCapture, 
MAKE POINTS, POINTS, SetCapture, WM_XBUTTONDBLCLK, 
WM_XBUTTONDOWN 

Mouse-Input Macros 

The GET_APPCOMMAND_LPARAM macro retrieves the application command from 
the specified LPARAM value. 

Parameters 
IParam 

Specifies the value to be converted. 

Return Values 
The return value is the bits of the high-order word representing the application 
command. It can be one of the following values: 

Value 

APPCOMMAND_BASS_BOOST 

APPCOMMAND_BASS_DOWN 

APPCOMMAND_BASS_UP 

Meaning 

Toggle the bass boost on and off. 

Decrease the bass. 

Increase the bass. 

(continued) 



438 Volume 2 Microsoft Windows User Interface 

(continued) 

Value 

APPCOMMAND_BROWSER_BACKWARD 

APPCOMMAND_BROWSER_FAVORITES 

APPCOMMAND_BROWSER_FORWARD 

APPCOMMAND_BROWSER_HOME 

APPCOMMAND_BROWSER_REFRESH 

APPCOMMAND_BROWSER_SEARCH 

APPCOMMAND_BROWSER_STOP 

APPCOMMAND_LAUNCH_APP1 

APPCOMMAND_LAUNCH_APP2 

APPCOMMAND_LAUNCH_MAIL 

APPCOMMAND_MEDIA_NEXTTRACK 

APPCOMMAND_MEDIA_PLAY _PAUSE 

APPCOMMAND_MEDIA_PREVIOUSTRACK 

APPCOMMAND_MEDIA_SELECT 

APPCOMMAND_MEDIA_STOP 

APPCOMMAND_ TREBLE_DOWN 

APPCOMMAND_ TREBLE_UP 

APPCOMMAND_ VOLUME_DOWN 

APPCOMMAND_ VOLUME_MUTE 

APPCOMMAND_ VOLUME_UP 

Mouse Input Overview, Mouse-Input Macros 

Meaning 

Move backward. 

Open favorites. 

Move forward. 

Move home. 

Refresh page. 

Open search. 

Stop download. 

Start App1. 

Start App2. 

Open mail. 

Go to next track. 

Play or pause playback. 

Go to previous track. 

Go to Media Select mode. 

Stop playback. 

Decrease the treble. 

Increase the treble. 

Lower the volume. 

Mute the volume. 

Raise the volume. 

The GET _DEVICE_LPARAM macro retrieves the input device type from the specified 
LPARAM value. 

Parameters 
IParam 

Specifies the value to be converted. 



Chapter 8 User Input 439 

Return Values 
The return value is the bit of the high-order word representing the input device type. It 
can be one of the following values: 

Value 

FAPPCOMMAND_KEY 

FAPPCOMMAND_MOUSE 
FAPPCOMMAND_OEM 

Meaning 

User pressed a key. 

User clicked a mouse button. 
An undentified hardware source generated the 
event. It could be a mouse or keyboard event. 

Mouse Input Overview, Mouse-Input Macros 

The GET_KEYSTATE_LPARAM macro retrieves the state of certain virtual keys from 
the specified LPARAM value. 

Parameters 
IParam 

Specifies the value to be converted. 

Return Values 
The return value is the low-order word representing the virtual key state. It can be one of 
the following values: 

Value 

MK_CONTROL 

MK_LBUTTON 

MK_MBUTTON 

MK_RBUTTON 

MK_SHIFT 

MK_XBUTTON1 

MK_XBUTTON2 

Meaning 

The CTRL key is down. 

The left mouse button is down. 

The middle mouse button is down. 

The right mouse button is down. 

The SHIFT key is down. 

The first X button is down. 

The second X button is down. 



440 Volume 2 Microsoft Windows User Interface 

Mouse Input Overview, Mouse-Input Macros 

The GET_KEYSTATE_WPARAM macro retrieves the state of certain virtual keys from 
the specified WPARAM value. 

Parameters 
wParam 

Specifies the value to be converted. 

Return Values 
The return value is the low-order word representing the virtual key state. It can be one of 
the following values: 

Value Meaning 

MK_CONTROL 

MK_LBUTTON 

M K_M BUTTON 

MK_RBUTTON 

MK_SHIFT 

MK_XBUTTON1 

MK_XBUTTON2 

The CTRL key is down. 

The left mouse button is down. 

The middle mouse button is down. 

The right mouse button is down. 

The SHIFT key is down. 

The first X button is down. 

The second X button is down. 

The GET_NCHITTEST_WPARAM macro retrieves the hit-test value from the specified 
WPARAM value. 



Parameters 
wParam 

Specifies the value to be converted. 

Return Values 

Chapter 8 User Input 441 

The return value is the low-order word representing the hit-test value. For a list of hit-test 
values, see WM_NCHITTEST. 

The GET _XBUTTON_ WPARAM macro retrieves the state of certain buttons from the 
specified WPARAM value. 

Parameters 
wParam 

Specifies the value to be converted. 

Return Values 
The high-order word indicates which button was released. It can be either of the 
following values: 

Value Meaning 

XBUTTON1 

XBUTTON2 

The first X button was released. 

The second X button was released. 

The GET _WHEEL_DEL TA_ WPARAM macro retrieves the wheel-delta value from the 
specified WPARAM value . 

. ~. 

Parameters 
wParam 

Specifies the value to be converted. 



442 Volume 2 Microsoft Windows User Interface 

Return Values 
The return value is the high-order word representing the wheel-delta value. It indicates 
the distance that the wheel is rotated, expressed in multiples or divisions of 
WHEEL_DELTA, which is 120. A positive value indicates that the wheel was rotated 
forward, away from the user; a negative value indicates that the wheel was rotated 
backward, toward the user. 

Keyboard Accelerators 
A keyboard accelerator (or, simply, accelerator) is a keystroke or combination of 
keystrokes that generates a WM_COMMAND or WM_SYSCOMMAND message for an 
application. 

About Keyboard Accelerators 
Accelerators are closely related to menus-both provide the user with access to an 
application's command set. Typically, users rely on an application's menus to learn the 
command set and then switch over to using accelerators as they become more proficient 
with the application. Accelerators provide faster, more direct access to commands than 
menus do. At a minimum, an application should provide accelerators for the more 
commonly used commands. Although accelerators typically generate commands that 
exist as menu items, they can also generate commands that have no equivalent menu 
items. 

Accelerator Tables 
An accelerator table consists of an array of ACCEL structures, each defining an 
individual accelerator. Each ACCEL structure includes the following information: 

• The accelerator's keystroke combination. 

• The accelerator's identifier. 

• Various flags. This includes one that specifies whether the system is to provide visual 
feedback by highlighting the corresponding menu item, if any, when the accelerator is 
used 

To process accelerator keystrokes for a specified thread, the developer must call the 
TranslateAccelerator function in the message loop associated with the thread's 
message queue. The TranslateAccelerator function monitors keyboard input to the 
message queue, checking for key combinations that match an entry in the accelerator 
table. When TranslateAccelerator finds a match, it translates the keyboard input (that 
is, the WM_KEYUP and WM_KEYDOWN messages) into a WM_COMMAND or 
WM_SYSCOMMAND message, and then sends the message to the window procedure 
of the specified window. Figure 8-1 shows how accelerators are processed. 



Message Keyboard input 
queue 

Accelerator 
table 

Chapter 8 User Input 443 

WM_COMMAND Window 
procedure 

Figure 8-1: Processing keyboard accelerators. 

The WM_COMMAND message includes the identifier of the accelerator that caused 
TranslateAccelerator to generate the message. The window procedure examines the 
identifier to determine the source of the message and then processes the message 
accordingly. 

Accelerator tables exist at two different levels. The system maintains a single, system­
wide accelerator table that applies to all applications. An application cannot modify the 
system accelerator table. For a description of the accelerators provided by the system 
accelerator table, see Accelerator Keystroke Assignments. 

The system also maintains accelerator tables for each application. An application can 
define any number of accelerator tables for use with its own windows. A unique 32-bit 
handle (HACCEL) identifies each table. However, only one accelerator table can be 
active at a time for a specified thread. The handle to the accelerator table passed to the 
TranslateAccelerator function determines which accelerator table is active for a thread. 
The active accelerator table can be changed at any time by passing a different 
accelerator-table handle to TranslateAccelerator. 

Accelerator Table Creation 
Several steps are required to create an accelerator table for an application. First, a 
resource compiler is used to create accelerator-table resources and to add them to the 
application's executable file. At run time, the LoadAccelerators function is used to load 
the accelerator table into memory and retrieve the handle to the accelerator table. This 
handle is passed to the TranslateAccelerator function to activate the accelerator table. 

An accelerator table can also be created for an application at run time by passing an 
array of ACCEL structures to the CreateAcceleratorTable function. This method 
supports user-defined accelerators in the application. Like the LoadAccelerators 
function, CreateAcceleratorTable returns an accelerator-table handle that can be 
passed to TranslateAccelerator to activate the accelerator table. 

The system automatically destroys accelerator tables loaded by LoadAccelerators. An 
accelerator table created by CreateAcceleratorTable must be destroyed before an 
application closes; otherwise, the table continues to exist in memory after the application 



444 Volume 2 Microsoft Windows User Interface 

has closed. An accelerator table is destroyed by calling the DestroyAcceleratorTable 
function. 

An existing accelerator table can be copied and modified. The existing accelerator table 
is copied by using the CopyAcceleratorTable function. After the copy is modified, a 
handle to the new accelerator table is retrieved by calling CreateAcceleratorTable. 
Finally, the handle is passed to TranslateAccelerator to activate the new table. 

Accelerator Keystroke Assignments 
An ASCII character code or a virtual-key code can be used to define the accelerator. An 
ASCII character code makes the accelerator case-sensitive. The ASCII "C" character 
can define the accelerator as AL T +C rather than AL T +C. Case-sensitive accelerators 
can, however, be confusing to use. For example, the AL T +C accelerator will be 
generated if the CAPS LOCK key is down or if the SHIFT key is down, but not if both are 
down. 

Typically, accelerators do not need to be case-sensitive, so most applications use 
virtual-key codes for accelerators rather than ASCII character codes. 

Avoid accelerators that conflict with an application's menu mnemonics, because the 
accelerator overrides the mnemonic, which can confuse the user. For more information 
about menu mnemonics, see Menus. 

If an application defines an accelerator that is defined also in the system accelerator 
table, the application-defined accelerator overrides the system accelerator, but only 
within the context of the application. Avoid this practice, however, because it prevents 
the system accelerator from performing its standard role in the user interface. The 
system-wide accelerators are described in the following list: 

Accelerator 

ALT+ESC 

ALT+F4 

ALT+HYPHEN 

AL T +PRINT SCREEN 

AL T +SPACEBAR 

ALT+TAB 

CTRL+ESC 

CTRL+F4 

F1 

PRINT SCREEN 

SHIFT +ALT + TAB 

Description 

Switches to the next application. 

Closes an application or a window. 

Opens the window menu for a document window. 

Copies an image in the active window onto the clipboard. 

Opens the window menu for the application's main window. 

Switches to the next application. 

Switches to the Start menu. 

Closes the active group or document window. 

Starts the application's help file, if one exists. 

Copies an image on the screen onto the clipboard. 

Switches to the previous application. The user must press 
and hold down ALT +SHIFT while pressing TAB. 



Chapter 8 User Input 445 

Accelerators and Menus 
Using an accelerator is the same as choosing a menu item: Both actions cause the 
system to send a WM_COMMAND or WM_SYSCOMMAND message to the 
corresponding window procedure. The WM_COMMAND message includes an identifier 
that the window procedure examines to determine the source of the message. If an 
accelerator generated the WM_COMMAND message, the identifier is that of the 
accelerator. Similarly, if a menu item generated the WM_COMMAND message, the 
identifier is that of the menu item. Because an accelerator provides a shortcut for 
choosing a command from a menu, an application usually assigns the same identifier to 
the accelerator and the corresponding menu item. 

An application processes an accelerator WM_COMMAND message in exactly the same 
way as the corresponding menu item WM_COMMAND message. However, the 
WM_COMMAND message contains a flag that specifies whether the message 
originated from an accelerator or a menu item, in case accelerators must be processed 
differently from their corresponding menu items. The WM_SYSCOMMAND message 
does not contain this flag. 

The identifier determines whether an accelerator generates a WM_COMMAND or 
WM_SYSCOMMAND message. If the identifier has the same value as a menu item in 
the System menu, the accelerator generates a WM_SYSCOMMAND message. 
Otherwise, the accelerator generates a WM_COMMAND message. 

If an accelerator has the same identifier as a menu item and the menu item is grayed or 
disaQled, the accelerator is disabled and does not generate a WM_COMMAND or 
WM_SYSCOMMAND message. Also, an accelerator does not generate a command 
message if the corresponding window is minimized. 

When the user uses an accelerator that corresponds to a menu item, the window 
procedure receives the WM_INITMENU and WM_INITMENUPOPUP messages as 
though the user had selected the menu item. For information about how to process 
these messages, see Menus. 

An accelerator that corresponds to a menu item should be included in the text of the 
menu item. 

UI State 
Windows 2000 enables applications to hide or show various features in the Windows 
user interface (UI). These settings are known as the UI state. The UI state includes the 
following settings: 

• focus indicators (such as focus rectangles on buttons) 

• keyboard accelerators (indicated by underlines in control labels) 

A window can send messages to request a change in the UI state, can query the UI 
state, or enforce a certain state for its child windows. These messages are as follows: 



446 Volume 2 Microsoft Windows User Interface 

Message 

WM_CHANGEUISTATE 

WM_QUERYUISTATE 

WM_UPDATEUISTATE 

Description 

Indicates that the UI state should change. 

Retrieves the UI state for a window. 

Changes the UI state. 

By default, all child windows of a top-level window are created with the same UI state as 
their parent. 

The system handles the UI state for controls in dialog boxes. At dialog-box creation, the 
system initializes the UI state accordingly. All child controls inherit this state. After the 
dialog box is created, the system monitors the user's keystrokes. If the UI-state settings 
are hidden, and the user moves by using the keyboard, the system updates the UI state. 
For example, if the user presses the TAB key to move the focus to the next control, the 
system calls WM_CHANGEUISTATE to make the focus indicators visible. If the user 
presses the ALT key, the system calls WM_CHANGEUISTATE to make the keyboard 
accelerators visible. 

If a control supports exploration between the UI elements is contains, it can update its 
own UI state. The control can call WM_QUERYUISTATE to retrieve and cache the initial 
UI state. Whenever the control receives an WM_UPDATEUISTATE message, it can 
update its UI state and send a WM_CHANGEUISTATE message to its parent. Each 
window will continue to send the message to its parent until it reaches the top-level 
window. The top-level window sends the WM_UPDATEUISTATE message to the 
windows in the window tree. If a window does not pass on the WM_CHANGEUISTATE 
message, it will not reach the top-level window and the UI state will not be updated. 

Keyboard Accelerator Reference 
Keyboard Accelerator Functions 

Copy AcceleratorTable 
The CopyAcceleratorTable function copies the specified accelerator table. This 
function is used to obtain the accelerator-table data that corresponds to an accelerator­
table handle, or to determine the size of the accelerator-table data. 



Parameters 
hAccelSrc 

[in] Handle to the accelerator table to copy. 

IpAccelDst 

Chapter 8 User Input 447 

[out] Pointer to an array of ACCEL structures that receives the accelerator-table 
information. 

cAccelEntries 
[in] Specifies the number of ACCEL structures to copy to the buffer pointed to by the 
IpAccelDst parameter. 

Return Values 
If IpAccelDst is NULL, the return value specifies the number of accelerator-table entries 
in the original table. Otherwise, it specifies the number of accelerator-table entries that 
were copied. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Keyboard Accelerators Overview, Keyboard Accelerator Functions, ACCEL, 
CreateAcceleratorTable, DestroyAcceleratorTable, LoadAccelerators, 
TranslateAccelerator 

CreateAcceleratorTable 
The CreateAcceleratorTable function creates an accelerator table. 

HAC{:'EL~cc"eateAeee 1 eratorTab le( .. . 
LPACCE~.1piJccl •. , llaccele.rator data array. 
i lit cEntrJ es i lnulliber 9f.errt;.r1 eS .1 narray 

h· 

Parameters 
Ipacel 

[in] Pointer to an array of ACCEL structures that describes the accelerator table. 

cEntries 
[in] Specifies the number of ACCEL structures in the array. 



448 Volume 2 Microsoft Windows User Interface 

Return Values 
If the function succeeds, the return value is the handle to the created accelerator table; 
otherwise, it is NULL. To get extended error information, call GetLastError. 

Remarks 
Before an application closes, it must use the DestroyAcceleratorTable function to 
destroy each accelerator table that it created by using the CreateAcceleratorTable 
function. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Keyboard Accelerators Overview, Keyboard Accelerator Functions, ACCEL, 
Copy AcceleratorTable, Destroy AcceleratorTable, LoadAccelerators, 
TranslateAccelerator 

Destroy AcceleratorTable 
The DestroyAcceleratorTable function destroys an accelerator table. Before an 
application closes, it must use this function to destroy each accelerator table that it 
created by using the CreateAcceleratorTable function. 

Parameters 
hAceel 

[in] Handle to the accelerator table to destroy. This handle must have been created by 
a call to the CreateAcceleratorTable function. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 



Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Chapter 8 User Input 449 

Keyboard Accelerators Overview, Keyboard Accelerator Functions, 
CopyAcceleratorTable, CreateAcceleratorTable, LoadAccelerators, 
TranslateAccelerator 

LoadAccelerators 
The LoadAccelerators function loads the specified accelerator table. 

Parameters 
hlnstance 

[in] Handle to the module whose executable file contains the accelerator table to load. 

IpTableName 
[in] Pointer to a nUll-terminated string that contains the name of the accelerator table 
to load. Alternatively, this parameter can specify the resource identifier of an 
accelerator-table resource in the low-order word and zero in the high-order word. To 
create this value, use the MAKEINTRESOURCE macro. 

Return Values 
If the function succeeds, the return value is a handle to the loaded accelerator table. 

If the function fails, the return value is NULL. To get extended error information, call 
GetLastError. 

Remarks 
If the accelerator table has not yet been loaded, the function loads it from the specified 
executable file. 

Accelerator tables loaded from resources are freed automatically when the application 
terminates. 



450 Volume 2 Microsoft Windows User Interface 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Keyboard Accelerators Overview, Keyboard Accelerator Functions, 
CopyAcceleratorTable, CreateAcceleratorTable, DestroyAcceleratorTable, 
MAKEINTRESOURCE 

TranslateAccelerator 
The TranslateAccelerator function processes accelerator keys for menu commands. 
The function translates a WM_KEVDOWN or WM_SVSKEVDOWN message to a 
WM_COMMAND or WM_SVSCOMMAND message (if there is an entry for the key in 
the specified accelerator table) and then sends the WM_COMMAND or 
WM_SVSCOMMAND message directly to the appropriate window procedure. 
TranslateAccelerator does not return until the window procedure has processed the 
message. 

Parameters 
hWnd 

[in] Handle to the window whose messages are to be translated. 

hAccTable 
[in] Handle to the accelerator table. The accelerator table must have been loaded by a 
call to the LoadAccelerators function or created by a call to the 
CreateAcceleratorTable function. 

IpMsg 
[in] Pointer to an MSG structure that contains message information retrieved from the 
calling thread's message queue using the GetMessage or PeekMessage function. 

Return Values 
If the function succeeds, the return value is nonzero. 



Chapter 8 User Input 451 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
To differentiate the message that this function sends from messages sent by menus or 
controls, the high-order word of the wParam parameter of the WM_COMMAND or 
WM_SYSCOMMAND message contains the value 1. 

Accelerator key combinations used to select items from the window menu are translated 
into WM_SYSCOMMAND messages; all other accelerator key combinations are 
translated into WM_COMMAND messages. 

When TranslateAccelerator returns a nonzero value and the message is translated, the 
application should not use the TranslateMessage function to process the message 
again. 

An accelerator need not correspond to a menu command. 

If the accelerator command corresponds to a menu item, the application is sent 
WM_INITMENU and WM_INITMENUPOPUP messages, as if the user were trying to 
display the menu. However, these messages are not sent if any of the following 
conditions exist: 

• The window is disabled. 

• The menu item is disabled. 

• The accelerator key combination does not correspond to an item on the window 
menu and the window is minimized. 

• A mouse capture is in effect. For information about mouse capture, see 
the SetCapture function. 

If the specified window is the active window and no window has the keyboard focus 
(which is generally the case if the window is minimized), TranslateAccelerator 
translates WM_SYSKEYUP and WM_SYSKEYDOWN messages instead of 
WM_KEYUP and WM_KEYDOWN messages. 

If an accelerator keystroke occurs that corresponds to a menu item when the window 
that owns the menu is minimized, TranslateAccelerator does not send a 
WM_COMMAND message. However, if an accelerator keystroke occurs that does not 
match any of the items in the window's menu or in the window menu, the function sends 
a WM_COMMAND message, even if the window is minimized. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 



452 Volume 2 Microsoft Windows User Interface 

Library: Use user32.1ib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Keyboard Accelerators Overview, Keyboard Accelerator Functions, 
CreateAcceleratorTable, GetMessage, LoadAccelerators, MSG, PeekMessage, 
SetCapture, TranslateMessage, WM_COMMAND, WM_INITMENU, 
WM_INITMENUPOPUP, WM_KEYDOWN, WM_SYSKEYDOWN, WM_SYSCOMMAND 

Keyboard Accelerator Structures 

ACCEL 
The ACCEL structure defines an accelerator key used in an accelerator table. 

Members 
fVirt 

Specifies the accelerator behavior. This member can be one or more of the following 
values: 

Value Meaning 

FALT 

FCONTROL 

FNOINVERT 

FSHIFT 

FVIRTKEY 

The AL T key must be held down when the accelerator key is 
pressed. 

The CTRL key must be held down when the accelerator key is 
pressed. 

Specifies that no top-level menu item is highlighted when the 
accelerator is used. If this flag is not specified, a top-level menu 
item will be highlighted, if possible, when the accelerator is 
used. 

The SHIFT key must be held down when the accelerator key is 
pressed. 

The key member specifies a virtual-key code. If this flag is not 
specified, key is assumed to specify a cha~acter code. 



Chapter 8 User Input 453 

key 
Specifies the accelerator key. This member can be either a virtual-key code or a 
character code. 

cmd 
Specifies the accelerator identifier. This value is placed in the low-order word of the 
wParam parameter of the WM_COMMAND or WM_SYSCOMMAND message when 
the accelerator is pressed. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Keyboard Accelerators Overview, Keyboard Accelerator Structures, WM_COMMAND, 
WM_SYSCOMMAND 

Keyboard Accelerator Messages 

WM_CHANGEUISTATE 
An application sends the WM_CHANGEUISTATE message to indicate that the user 
interface (UI) state should be changed. 

To send this message, call the Send Message function with the following parameters: 

Parameters 
wParam 

The low-order word specifies the action to be taken. This member can be one of the 
following values: 

Value Meaning 

The UI-state element specified by the high-order word 
should be hidden. 

(continued) 



454 Volume 2 Microsoft Windows User Interface 

(continued) 

Value 

UIS_INITIALIZE 

Meaning 

The UI-state element specified by the high-order word 
should be changed based on the last input event. For 
more information, see Remarks. 

The UI-state element specified by the high-order word 
should be visible. 

The high-order word specifies which UI-state elements are affected. This member can 
be one or more of the following values: 

Flag Meaning 

UISF _HIDEACCEL Keyboard accelerators 

UISF _HIDEFOCUS Focus indicators 

IParam 
This parameter is not used and must be NULL. 

Remarks 
A window should send this message to itself or its parent when it must change the UI-state 
elements of all windows in the same hierarchy. The window procedure must let 
DefWindowProc process this message, so that the entire window tree has a consistent UI 
state. When the top-level window receives the WM_CHANGEUISTATE message, it sends 
a WM_UPDATEUISTATE message with the same parameters to all of the child windows. 
When the system processes the WM_UPDATEUISTATE message, it makes the change in 
the UI state. 

If the low-order word of wParam is UIS_INITIALlZE, the system will send the 
WM_UPDATEUISTATE message with a UI state based on the last input event. For 
example, if the last input came from the mouse, the system will hide the keyboard cues. 
And, if the last input came from the keyboard, the system will show the keyboard cues. If 
the state that results from processing WM_CHANGEUISTATE is the same as the old 
state, DefWindowProc does not send this message. 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Unsupported. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Keyboard Accelerators Overview, Keyboard Accelerator Messages, DefWindowProc, 
HIWORD, LOWORD, WM_QUERYUISTATE, WM_UPDATEUISTATE 



Chapter 8 User Input 455 

The WM_INITMENU message is sent when a menu is about to become active. It occurs 
when the user clicks an item on the menu bar or presses a menu key. This allows the 
application to modify the menu before it is displayed. 

A window receives this message through its WindowProc function. 

Parameters 
wParam 

Handle to the menu to be initialized. 

IParam 
This parameter is not used. 

Return Values 
If an application processes this message, it should return zero. 

Remarks 
A WM_INITMENU message is sent only when a menu is first accessed; only one 
WM_INITMENU message is generated for each access. For example, moving the 
mouse across several menu items while holding down the button does not generate new 
messages. WM_INITMENU does not provide information about menu items. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Keyboard Accelerators Overview, Keyboard Accelerator Messages, 
WM_INITMENUPOPUP 



456 Volume 2 Microsoft Windows User Interface 

WM_INITMENUPOPUP 
The WM_INITMENUPOPUP message is sent when a drop-down menu or submenu is 
about to become active. This allows an application to modify the menu before it is 
displayed, without changing the entire menu. 

A window receives this message through its WindowProc function. 

Parameters 
wParam 

Handle to the drop-down menu or submenu. 

IParam 
The low-order word specifies the zero-based relative position of the menu item that 
opens the drop-down menu or submenu. 

The high-order word indicates whether the drop-down menu is the window menu. If 
the menu is the window menu, this parameter is TRUE; otherwise, it is FALSE. 

Return Values 
If an application processes this message, it should return zero. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Keyboard Accelerators Overview, Keyboard Accelerator Messages, HIWORD, 
LOWORD, WM_INITMENU 

The WM_MENUCHAR message is sent when a menu is active and the user presses a 
key that does not correspond to any mnemonic or accelerator key. This message is sent 
to the window that owns the menu. 



Chapter 8 User Input 457 

A window receives this message through its WindowProc function. 

LRESULT CALLBACK Window.Proc.( 
HWNP I?wnd. / j ha nelle to wi ndoW 
UI.~T uMsg, IIWM_ME~U,CHJ.R 

WPARAM wParam. 1/ char.8cter .cod~ 
LPARAM .~Par8m !l hal'ldl etottlen~ 

Parameters 
wParam 

The low-order word specifies the character code that corresponds to the key the user 
pressed. 

The high-order word specifies the active menu type. This parameter can be one of the 
following values: 

Value Meaning 

MF_POPUP 

MF_SYSMENU 

IParam 

A drop-down menu, submenu, or shortcut menu 

The window menu 

Handle to the active menu. 

Return Values 
An application that processes this message should return one of the following values in 
the high-order word of the return value: 

Value Meaning 

MNC_CLOSE 

MNC_EXECUTE 

Remarks 

Informs the system that it should discard the character the user 
pressed, and create a short beep on the system speaker. 

Informs the system that it should close the active menu. 

Informs the system that it should choose the item specified in the 
low-order word of the return value. The owner window receives a 
WM_COMMAND message. 

Informs the system that it should select the item specified in the 
low-order word of the return value. 

The low-order word is ignored if the high-order word contains 0 or 1. 

An application should process this message when an accelerator is used to select a 
menu item that displays a bitmap. 



458 Volume 2 Microsoft Windows User Interface 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Keyboard Accelerators Overview, Keyboard Accelerator Messages, HIWORD, 
LOWORD 

WM_MENUSELECT 
The WM_MENUSELECT message is sent to a menu's owner window when the user 
selects a menu item. 

A window receives this message through its WindowProc function. 

Parameters 
wParam 

The low-order word specifies the menu item or submenu index. If the selected item is 
a command item, this parameter contains the identifier of the menu item. If the 
selected item opens a drop-down menu or submenu, this parameter contains the 
index of the drop-down menu or submenu in the main menu, and the IParam 
parameter contains the handle to the main (clicked) menu; use the GetSubMenu 
function to get the menu handle to the drop-down menu or submenu. 

The high-order word specifies one or more menu flags. This parameter can be one or 
more of the following values: 

Value Description 

MF_BITMAP 

MF_CHECKED 

MF _DISABLED 

MF_GRAYED 

MF_HILITE 

MF _MOUSESELECT 

Item displays a bitmap. 

Item is checked. 

Item is disabled. 

Item appears dimmed. 

Item is highlighted. 

Item is selected with the mouse. 



Chapter 8 User Input 459 

Item is an owner-drawn item. MF _OWNERDRAW 

MF_POPUP 

MF_SYSMENU 

Item opens a drop-down menu or submenu. 

IParam 

Item is contained in the window menu. The IParam 
parameter contains a handle to the menu associated with 
the message. 

Handle to the menu that was clicked. 

Return Values 
If an application processes this message, it should return zero. 

Remarks 
If the high-order word of wParam contains OxFFFF and the IParam parameter contains 
NULL, the system has closed the menu. 

Do not use the value -1 for the high-order word of wParam, because this value is 
specified as (UINT) HIWORD(wParam). If the value is OxFFFF, it would be interpreted as 
OxOOOOFFFF, not -1, because of the cast to a UINT. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Keyboard Accelerators Overview, Keyboard Accelerator Messages, GetSubMenu, 
HIWORD, LOWORD 

WM_ QUERYUISTATE 
An application sends the WM_QUERVUISTATE message to retrieve the user interface 
(UI) state for a window. 

To send this message, call the SendMessage function with the following parameters: 



460 Volume 2 Microsoft Windows User Interface 

Parameters 
This message has no parameters. 

Return Values 
The return value is NULL if the focus indicators and the keyboard accelerators are 
visible. Otherwise, the return value can be one or more of the following values: 

Value Meaning 

UISF _HIDEACCEL 

UISF _HIDEFOCUS 

Keyboard accelerators are hidden. 

Focus indicators are hidden. 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Unsupported. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Keyboard Accelerators Overview, Keyboard Accelerator Messages, 
WM_CHANGEUISTATE, WM_UPDATEUISTATE 

The WM_SYSCHAR message is posted to the window with the keyboard focus when a 
WM_SYSKEYDOWN message is translated by the TranslateMessage function. It 
specifies the character code of a system character key-that is, a character key that is 
pressed while the AL T key is down. 

A window receives this message through its WindowProc function. 

Parameters 
wParam 

Specifies the character code of the window menu key. 



Chapter 8 User Input 461 

IParam 
Specifies the repeat count, scan code, extended-key flag, context code, previous key­
state flag, and transition-state flag, as shown in the following table: 

Value 

0-15 

16-23 

24 

25-28 

29 

30 

31 

Return Values 

Meaning 

Specifies the repeat count for the current message. The value is the 
number of times the keystroke was auto-repeated as a result of the user 
holding down the key. If the keystroke is held long enough, multiple 
messages are sent. However, the repeat count is not cumulative. 

Specifies the scan code. The value depends on the original equipment 
manufacturer (OEM). 

Specifies whether the key is an extended key, such as the right-hand 
AL T and CTRL keys that appear on an enhanced 1 01-key or 102-key 
keyboard. The value is 1 if it is an extended key; otherwise, it is o. 
Reserved; do not use. 

Specifies the context code. The value is 1 if the AL T key is held down 
while the key is pressed; otherwise, the value is o. 
Specifies the previous key state. The value is 1 if the key is down before 
the message is sent, or it is 0 if the key is up. 

Specifies the transition state. The value is 1 if the key is being released, 
or it is 0 if the key is being pressed. 

An application should return zero if it processes this message. 

Remarks 
When the context code is zero, the message can be passed to the 
TranslateAccelerator function, which will handle it as though it were a standard key 
message instead of a system character-key message. This allows accelerator keys to be 
used with the active window even if the active window does not have the keyboard 
focus. 

For enhanced 1 01-key and 102-key keyboards, extended keys are the right AL T and 
CTRL keys on the main section of the keyboard; the INS, DEL, HOME, END, PAGE UP, 
PAGE DOWN, and arrow keys in the clusters to the left of the numeric keypad; the 
PRINT SCRN key; the BREAK key; the NUM LOCK key; and the divide (/) and ENTER 
keys in the numeric keypad. Other keyboards might support the extended-key bit in the 
IParam parameter. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 



462 Volume 2 Microsoft Windows User Interface 

Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Keyboard Accelerators Overview, Keyboard Accelerator Messages, 
TranslateAccelerator, TranslateMessage, WM_SYSKEYDOWN 

WM_SVSCOMMAND 
A window receives this message when the user chooses a command from the window 
menu (formerly known as the system or control menu) or when the user chooses the 
maximize button, minimize button, restore button, or close button. 

A window receives this message through its WindowProc function. 

Parameters 
wParam 

Specifies the type of system command requested. This parameter can be one of the 
following values: 

Value Meaning 

SC_CLOSE 

SC_CONTEXTHELP 

SC_HSCROLL 

SC_KEYMENU 

Closes the window. 

Changes the cursor to a question mark with a 
pointer. If the user then clicks a control in the 
dialog box, the control receives a WM_HELP 
message. 

Selects the default item; the user double-clicked 
the window menu. 

Activates the window associated with the 
application-specified hot key. The IParam 
parameter identifies the window to activate. 

Scrolls horizontally. 

Retrieves the window menu as a result of a 
keystroke. For more information, see the Remarks 
section. 

Maximizes the window. 



Value 

SC_MINIMIZE 

SC_MONITORPOWER 

SC_MOUSEMENU 

SC_MOVE 

SC_NEXTWINDOW 

SC_PREVWINDOW 

SC_RESTORE 

SC_SCREENSAVE 

SC_SIZE 

SC_TASKLIST 

SC_VSCROLL 

IParam 

Chapter 8 User Input 463 

Meaning 

Minimizes the window. 
Sets the state of the display. This command 
supports devices that have power-saving features, 
such as a battery-powered personal computer. 

The IParam parameter can have the following 
values: 

1 - the display is going to low power 
2 - the display is being shut off 

Retrieves the window menu as a result of a mouse 
click. 
Moves the window. 

Moves to the next window. 

Moves to the previous window. 

Restores the window to its normal position and 
size. 

Executes the screen-saver application specified in 
the [boot] section of the System.ini file. 

Sizes the window. 

Activates the Start menu. 

Scrolls vertically. 

The low-order word specifies the horizontal position of the cursor, in screen 
coordinates, if a window menu command is chosen with the mouse. Otherwise, this 
parameter is not used. 

The high-order word specifies the vertical position of the cursor, in screen 
coordinates, if a window menu command is chosen with the mouse. This parameter is 
-1 if the command is chosen using a system accelerator, or zero if using a mnemonic. 

Return Values 
An application should return zero if it processes this message. 

Remarks 
To obtain the position coordinates in screen coordinates, use the following code: 

j:l~yr~j~~t~~t~!;::tf:~:,,'t:;~{'~~:!;,~:la'~~f~::~:J~r~2: L" ( " .,', ..... ; ,,',.'.: 

The DefWindowProc function carries out the window menu request for the predefined 
actions specified in the previous table. 

In WM_SYSCOMMAND messages, the four low-order bits of the wParam parameter are 
used internally by the system. To obtain the correct result when testing the value of 



464 Volume 2 Microsoft Windows User Interface 

wParam, an application must combine the value OxFFFO with the wParam value by using 
the bitwise AND operator. 

The menu items in a window menu can be modified by using the AppendMenu, 
GetSystemMenu, InsertMenu, InsertMenultem, ModifyMenu, and SetMenultem 
functions. Applications that modify the window menu must process 
WM_SYSCOMMAND messages. 

An application can carry out any system command at any time by passing a 
WM_SYSCOMMAND message to DefWindowProc. Any WM_SYSCOMMAND 
messages not handled by the application must be passed to DefWindowProc. Any 
command values added by an application must be processed by the application and 
cannot be passed to DefWindowProc. 

Accelerator keys that are defined to choose items from the window menu are translated 
into WM_SYSCOMMAND messages; all other accelerator keystrokes are translated into 
WM_COMMAND messages. 

If the wParam is SC_KEYMENU, IParam contains the character code of the key that is 
used with the AL T key to display the popup menu. For example, pressing AL T +F to 
display the File pop-up menu will cause a WM_SYSCOMMAND with wParam equal to 
SC_KEYMENU and IParam equal to 'f'. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Keyboard Accelerators Overview, Keyboard Accelerator Messages, AppendMenu, 
DefWindowProc, GET _X_LPARAM, GET _ Y _LPARAM, GetSystemMenu, 
InsertMenu, ModifyMenu, WM_COMMAND 

WM_UPDATEUISTATE 
An application sends the WM_UPDATEUISTATE message to change the user interface 
(UI) state for the specified window and all its child windows. 

To send this message, call the Send Message function with the following parameters: 



Parameters 
wParam 

Chapter 8 User Input 465 

The low-order word specifies the action to be performed. This parameter can be one 
of the following values: 

Value Meaning 

The UI-state element specified by the high-order word 
should be hidden. 

The UI-state element specified by the high-order word 
should be changed based on the last input event. For 
more information, see Remarks. 

The UI-state element specified by the high-order word 
should be visible. 

The high-order word specifies which UISTATE elements are affected. This parameter 
can be one or more of the following values: 

Flag Meaning 

UISF _HIDEACCEL Keyboard accelerators 

UISF _HIDEFOCUS Focus indicators 

IParam 
This parameter is not used. 

Remarks 
A window should send this message to change the UI state of all its child windows. In 
contrast to the WM_CHANGEUISTATE message, which is a notification, when 
DefWindowProc processes the WM_UPDATEUISTATE message it changes the UI 
state and propagates the changes to all child windows. 

The DefWindowProcfunction updates the UI state according to the wParam value. If the 
UI state is modified, the function sends the message to all the immediate child windows. 
DefWindowProc also sends this message when it receives a WM_CHANGEUISTATE 
message notifying the system that a child window intends to modify the UI state. 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Unsupported. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 



466 Volume 2 Microsoft Windows User Interface 

Keyboard Accelerators Overview, Keyboard Accelerator Messages, DefWindowProc, 
WM_CHANGEUISTATE, WM_QUERYUISTATE 

Keyboard Input 

About Keyboard Input 
All Win32-based applications should accept user input from the keyboard as well as from 
the mouse. A Win32-based application receives keyboard input in the form of messages 
posted to its windows. 

Keyboard-Input Model 
The system provides device-independent keyboard support for applications by installing 
a keyboard device driver appropriate for the current keyboard. The system provides 
language-independent keyboard support by using the language-specific keyboard layout 
currently selected by the user or the application. The keyboard device driver receives 
scan codes from the keyboard, which are sent to the keyboard layout where they are 
translated into messages and posted to the appropriate windows in your application. 

Assigned to each key on a keyboard is a unique value called a scan code, a device­
dependent identifier for the key on the keyboard. A keyboard generates two scan codes 
when the user types a key-one when the user presses the key and another when the 
user releases the key. 

The keyboard device driver interprets a scan code and translates (maps) it to a virtual-key 
code, a device-independent value defined by the system that identifies the purpose of a key. 
After translating a scan code, the keyboard layout creates a message that includes the scan 
code, the virtual-key code, and other information about the keystroke, and then places the 
message in the system message queue. The system removes the message from the system 
message queue and posts it to the message queue of the appropriate thread. Eventually, the 
thread's message loop removes the message and passes it to the appropriate window 
procedure for processing. Figure 8-2 illustrates the keyboard-input model. 

Keyboard 

1 Scan 
code 

Keyboard Message System Message 
device message 
driver queue 

Figure 8-2: Keyboard-input model. 

Thread 
message 
queue - Window 

procedure 



Chapter 8 User Input 467 

Keyboard-Input Reference 
Keyboard-Input Functions 

Activate Keyboard Layout 
The ActivateKeyboardLayout function sets the input locale identifier (formerly called 
the keyboard layout handle) for the calling thread or the current process. The input 
locale identifier specifies a locale as well as the physical layout of the keyboard. 

Parameters 
hkl 

[in] Input locale identifier to be activated. 

Windows 95/98: This parameter can be obtained using LoadKeyboardLayout or 
GetKeyboardLayoutList, or it can be one of the values in the table that follows. 

Windows NT: The input locale identifier must have been loaded by a previous call to 
the LoadKeyboardLayout function. This parameter must be either the handle to a 
keyboard layout or one of the following values: 

Value 

Flags 

Meaning 

Selects the next locale identifier in the circular list of loaded 
locale identifiers maintained by the system. 

Selects the previous locale identifier in the circular list of loaded 
locale identifiers maintained by the system. 

[in] Specifies how the input locale identifier is to be activated. This parameter can be 
one of the following values: 



468 Volume 2 Microsoft Windows User Interface 

Value Meaning 

KLF_RESET 

KLF_SETFORPROCESS 

KLF _SHIFTLOCK 

KLF _UNLOADPREVIOUS 

Return Values 

If this bit is set, the system's circular list of loaded locale identifiers 
is reordered by moving the locale identifier to the head of the list. If 
this bit is not set, the list is rotated without a change of order. 

For example, if a user had an English locale identifier active, as well 
as French, German, and Spanish locale identifiers loaded (in that 
order), then activating the German locale identifier with the 
KLF _REORDER bit set would produce the following order: German, 
English, French, Spanish. Activating the German locale identifier 
without the KLF _REORDER bit set would produce the following 
order: German, Spanish, English, French. 

If fewer than three locale identifiers are loaded, the value of this flag 
is irrelevant. 

Windows 2000: If set but KLF _SHIFTLOCK is not set, the Caps 
Lock state is turned off by pressing the CAPS LOCK key again. If 
set and KLF _SHIFTLOCK is set also, the Caps Lock state is turned 
off by pressing either SHIFT key. 

These two methods are mutually exclusive, and the setting persists 
as part of the User's profile in the registry. 

Windows 2000: Activates the specified locale identifier for the 
entire process and sends the WM_INPUTLANGCHANGE message 
to the current thread's Focus or Active window. 

Windows 2000: This is used with KLF _RESET. See KLF _RESET 
for an explanation. 

This flag is unsupported. Use the UnloadKeyboardLayout function 
instead. 

Windows NT 3.51 and earlier: The return value is of type BOOl. If the function 
succeeds, it is nonzero. If the function fails, it is zero. 

Windows 95/98, Windows NT 4.0 and later: The return value is of type HKL. If the 
function succeeds, the return value is the previous input locale identifier. Otherwise, it is 
zero. 

To get extended error information, use the GetLastError function. 

Remarks 
This function is not restricted to keyboard layouts. The hkl parameter is actually an input 
locale identifier. This is a broader concept than a keyboard layout, since it also can 
encompass a speech-to-text converter, an IME, or any other form of input. Several input 
locale identifiers can be loaded at anyone time, but only one is active at a time. Loading 
multiple input locale identifiers makes it possible to switch rapidly between them. 



Chapter 8 User Input 469 

Windows 95/98: An application can create a valid input locale identifier by setting the 
high word to zero and the low word to a locale identifier. Using such an input locale 
identifier changes the input language without affecting the physical layout. 

When multiple input method editors (IMEs) are allowed for each locale, passing an input 
locale identifier in which the high word (the device handle) is zero activates the first IME 
in the list belonging to the locale. 

Windows 2000: The KLF _RESET and KLF _SHIFTLOCK flags alter the method by 
which the Caps Lock state is turned off. By default, the Caps Lock state is turned off by 
hitting the CAPS LOCK key again. If only KLF _RESET is set, the default state is 
reestablished. If KLF _RESET and KLF _SHIFTLOCK are set, the Caps Lock state is 
turned off by pressing either CAPS LOCK key. This feature is used to conform to local 
keyboard behavior standards as well as for personal preferences. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Keyboard Input Overview, Keyboard-Input Functions, LoadKeyboardLayout, 
GetKeyboardLayoutName, Unload Keyboard Layout 

Blocklnput 
Blocks keyboard and mouse-input events from reaching applications. 

Parameters 
fBlock 

[in] Specifies the function's purpose. If this parameter is TRUE, keyboard and mouse 
input events are blocked. If this parameter is FALSE, keyboard and mouse events are 
unblocked. Note that only the thread that blocked input can successfully unblock 
input. 

Return Values 
If the function succeeds, the return value is nonzero. 



470 Volume 2 Microsoft Windows User Interface 

If input is already blocked, the return value is zero. To get extended error information, 
call GetLastError. 

Remarks 
When input is blocked, real physical input from the mouse or keyboard will not affect the 
input queue's synchronous key state (reported by GetKeyState and 
GetKeyboardState), nor will it affect the asynchronous key state (reported by 
GetAsyncKeyState). However, the thread that is blocking input can affect both these 
key states by calling Sendlnput. Any other thread will not be able to do so. 

The system will unblock input in the following cases: 

• The thread that blocked input unexpectedly exits without calling Blocklnput with 
fBlock set to FALSE. In this case, the system cleans up properly and re-enables input. 

• Windows 95/98: The system displays the Close Program/Fault dialog box. This can 
occur if the thread faults or if the user presses CTRL+AL T +DEL. 

• Windows 2000: The user presses CTRL+AL T +DEL or the system invokes the Hard 
System Error modal message box (for example, when a program faults or a device 
fails). 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in winable.h. 
Library: Use user32.lib. 

Keyboard Input Overview, Keyboard-Input Functions, GetAsyncKeyState, 
GetKeyboardState, GetKeyState, Sendlnput 

EnableWindow 
The EnableWindow function enables or disables mouse input and keyboard input to the 
specified window or control. When input is disabled, the window does not receive input 
such as mouse clicks and key presses. When input is enabled, the window receives all 
input. 



Parameters 
hWnd 

[in] Handle to the window to be enabled or disabled. 

bEnable 

Chapter 8 User Input 471 

[in] Specifies whether to enable or disable the window. If this parameter is TRUE, the 
window is enabled. If the parameter is FALSE, the window is disabled. 

Return Values 
If the window was previously disabled, the return value is nonzero. 

If the window was not previously disabled, the return value is zero. To get extended error 
information, call GetLastError. 

Remarks 
If the window is being disabled, the system sends a WM_CANCELMODE message. If 
the enabled state of a window is changing, the system sends a WM_ENABLE message 
after the WM_CANCELMODE message. (These messages are sent before 
EnableWindow returns.) If a window is disabled already, its child windows are implicitly 
disabled, although they are not sent a WM_ENABLE message. 

A window must be enabled before it can be activated. For example, if an application is 
displaying a modeless dialog box and has disabled its main window, the application 
must enable the main window before destroying the dialog box. Otherwise, another 
window will receive the keyboard focus and be activated. If a child window is disabled, it 
is ignored when the system tries to determine which window should receive mouse 
messages. 

By default, a window is enabled when it is created. To create a window that is initially 
disabled, an application can specify the WS_DISABLED style in the CreateWindow or 
CreateWindowEx function. After a window has been created, an application can use 
EnableWindow to enable or disable the window. 

An application can use this function to enable or disable a control in a dialog box. A 
disabled control cannot receive the keyboard focus, nor can a user gain access to it. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Keyboard Input Overview, Keyboard-Input Functions, CreateWindow, 
CreateWindowEx, IsWindowEnabled, WM_ENABLE 



472 Volume 2 Microsoft Windows User Interface 

GetActiveWindow 
The GetActiveWindow function retrieves the window handle to the active window 
attached to the calling thread's message queue. 

Parameters 
This function has no parameters. 

Return Values 
The return value is the handle to the active window attached to the calling thread's 
message queue. Otherwise, the return value is NULL. 

Remarks 
To get the handle to the foreground window, you can use GetForegroundWindow. 

Windows 98 and Windows NT 4.0 SP3 and later: To get the window handle to the 
active window in the message queue for another thread, use GetGUIThreadlnfo. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Keyboard Input Overview, Keyboard-Input Functions, GetForegroundWindow, 
GetGUIThreadlnfo, SetActiveWindow 

GetAsyncKeyState 
The GetAsyncKeyState function determines whether a key is up or down at the time the 
function is called, and whether the key was pressed after a previous call to 
GetAsyncKeyState. 



Parameters 
vKey 

Chapter 8 User Input 473 

[in] Specifies one of 256 possible virtual-key codes. For more information, see Virtual­
Key Codes. 

Windows NT/2000: You can use left-distinguishing and right-distinguishing constants 
to specify certain keys. See the Remarks section for further information. 

Return Values 
If the function succeeds, the return value specifies whether the key was pressed since 
the last call to GetAsyncKeyState, and whether the key is currently up or down. If the 
most significant bit is set, the key is down, and if the least significant bit is set, the key 
was pressed after the previous call to GetAsyncKeyState. The return value is zero if a 
window in another thread or process currently has the keyboard focus. 

Windows 95: Windows 95 does not support the left- and right-distinguishing constants. 
If you call GetAsyncKeyState with these constants, the return value is zero. 

Remarks 
The GetAsyncKeyState function works with mouse buttons. However, it checks on the 
state of the physical mouse buttons, not on the logical mouse buttons that the physical 
buttons are mapped to. For example, the call GetAsyncKeyState(VK_LBUTTON) 
always returns the state of the left physical mouse button, regardless of whether it is 
mapped to the left or right logical mouse button. You can determine the system's current 
mapping of physical mouse buttons to logical mouse buttons by calling 

,G~p~~Jgt.~i!~~1!~'$;($&~~~ButrQtn·i,·l·.···:'«~:" 

which returns TRUE if the mouse buttons have been swapped. 

You can use the virtual-key code constants VK_SHIFT, VK_CONTROL, and VK_MENU 
as values for the vKey parameter. This gives the state of the SHIFT, CTRL, or AL T keys 
without distinguishing between left and right. 

Windows NT/2000: You can use the following virtual-key code constants as values for 
vKey to distinguish between the left and right instances of those keys: 

Code Meaning 

VK_LSHIFT 

VK_LCONTROL 

VK_LMENU 

VK_RSHIFT 

VK_RCONTROL 

VK_RMENU 

These left-distinguishing and right-distinguishing constants are available only when you 
call the GetKeyboardState, SetKeyboardState, GetAsyncKeyState, GetKeyState, 
and MapVirtualKey functions. 



474 Volume 2 Microsoft Windows User Interface 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Keyboard Input Overview, Keyboard-Input Functions, GetKeyboardState, GetKeyState, 
GetSystemMetrics, MapVirtualKey, SetKeyboardState 

GetFocus 
The GetFocus function retrieves the handle to the window that has the keyboard focus, 
if the window is attached to the calling thread's message queue. 

Parameters 
This function has no parameters. 

Return Values 
The return value is the handle to the window with the keyboard focus. If the calling 
thread's message queue does not have an associated window with the keyboard focus, 
the return value is NULL. 

Remarks 
GetFocus returns the window with the keyboard focus for the current thread's message 
queue. If GetFocus returns NULL, another thread's queue may be attached to a window 
that has the keyboard focus. 

Use the GetForegroundWindow function to retrieve the handle to the window with 
which the user is currently working. You can associate your thread's message queue 
with the windows owned by another thread by using the AttachThreadlnput function. 

Windows 98 and Windows NT 4.0 SP3 and later: To get the window with the keyboard 
focus on the foreground queue or the queue of another thread, use the 
GetGUIThreadlnfo function. 

.~. : 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 



Header: Declared in winuser.h; include windows.h. 
Library: Use user32.1ib. 

Chapter 8 User Input 475 

Keyboard Input Overview, Keyboard-Input Functions, AttachThreadlnput, 
GetForegroundWindow, GetGUIThreadlnfo, SetFocus, WM_KILLFOCUS, 
WM_SETFOCUS 

GetKeyboardLayout 
The Get Keyboard Layout function retrieves the active input locale identifier (formerly 
called the keyboard layout) for a specified thread. If the idThread parameter is zero, the 
input locale identifier for the active thread is returned. 

Parameters 
idThread 

[injldentifies the thread to query or is zero for the current thread. 

Return Values 
The return value is the input locale identifier for the thread. The low word contains a 
language identifier for the input language and the high word contains a device handle for 
the physical layout of the keyboard. 

Remarks 
The input locale identifier is a broader concept than a keyboard layout, since it can 
encompass also a speech-to-text converter, an IME, or any other form of input. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Keyboard Input Overview, Keyboard-Input Functions, ActivateKeyboardLayout, 
CreateThread, LoadKeyboardLayout 



476 Volume 2 Microsoft Windows User Interface 

GetKeyboardLayoutList 
The GetKeyboardLayoutList function retrieves the input locale identifiers (formerly 
called keyboard layout handles) corresponding to the current set of input locales in the 
system. The function copies the identifiers to the specified buffer. 

Parameters 
nBuff 

[in] Specifies the maximum number of handles that the buffer can hold. 

IpList 
[out] Pointer to the buffer that receives the array of input locale identifiers. 

Return Values 
If the function succeeds, the return value is the number of input locale identifiers copied 
to the buffer or, if nBuff is zero, the return value is the size, in array elements, of the 
buffer needed to receive all current input locale identifiers. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
The input locale identifier is a broader concept than a keyboard layout, since it can 
encompass also a speech-to-text converter, an IME, or any other form of input. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Keyboard Input Overview, Keyboard-Input Functions, GetKeyboardLayout 



Chapter 8 User Input 477 

GetKeyboardLayoutName 
The GetKeyboardLayoutName function retrieves the name of the active input locale 
identifier (formerly called the keyboard layout). 

Parameters 
pwszKLlD 

[out] Pointer to the buffer (of at least KL_NAMELENGTH characters in length) that 
receives the name of the input locale identifier, including the NULL terminator. This 
will be a copy of the string provided to the Load Keyboard Layout function, unless 
layout substitution took place. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
The input locale identifier is a broader concept than a keyboard layout, since it can 
encompass also a speech-to-text converter, an IME, or any other form of input. 

Windows NT/2000: GetKeyboardLayoutName receives the name of the active input 
locale identifier for the system. 

Windows 95: GetKeyboardLayoutName receives the name of the active input locale 
identifier for the calling thread . 

...•.... ' 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Keyboard Input Overview, Keyboard-Input Functions, ActivateKeyboardLayout, 
LoadKeyboardLayout, UnloadKeyboardLayout 



478 Volume 2 Microsoft Windows User Interface 

GetKeyboardState 
The GetKeyboardState function copies the status of the 256 virtual keys to the specified 
buffer. 

Parameters 
IpKeyState 

[in] Pointer to the 256-byte array that will receive the status data for each virtual key. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
An application can call this function to retrieve the current status of all the virtual keys. 
The status changes as a thread removes keyboard messages from its message queue. 
The status does not change as keyboard messages are posted to the thread's message 
queue, nor does it change as keyboard messages are posted to or retrieved from 
message queues of other threads. (Exception: Threads that are connected through 
AttachThreadlnput share the same keyboard state.) 

When the function returns, each member of the array pointed to by the IpKeyState 
parameter contains status data for a virtual key. If the high-order bit is 1, the key is down; 
otherwise, it is up. If the low-order bit is 1, the key is toggled. A key, such as the CAPS 
LOCK key, is toggled if it is turned on. The key is off and untoggled if the low-order bit is 
O. A toggle key's indicator light (if any) on the keyboard will be on when the key is 
toggled, and off when the key is untoggled. 

To retrieve status information for an individual key, use the GetKeyState function. To 
retrieve the current state for an individual key regardless of whether the corresponding 
keyboard message has been retrieved from the message queue, use the 
GetAsyncKeyState function. 

An application can use the virtual-key code constants VK_SHIFT, VK_CONTROL and 
VK_MENU as indices into the array pOinted to by IpKeyState. This gives the status of the 
SHIFT, CTRL, or AL T keys without distinguishing between left and right. An application 
can also use the following virtual-key code constants as indices to distinguish between 
the left and right instances of those keys: 

VK_LSHIFT 
VK_RSHIFT 



VK_LCONTROL 
VK_RCONTROL 
VK_LMENU 
VK_RMENU 

Chapter 8 User Input 479 

These left- and right-distinguishing constants are available to an application only through 
the GetKeyboardState, SetKeyboardState, GetAsyncKeyState, Get KeyState , and 
MapVirtualKey functions. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Keyboard Input Overview, Keyboard-Input Functions, GetAsyncKeyState, 
GetKeyState, MapVirtualKey, SetKeyboardState 

GetKeyNameText 
The GetKeyNameText function retrieves a string that represents the name of a key. 

113r~~~:!iJ,'llk~i!~:~;~~:ti:t~~~;~ss .. ef ... , .... > ..... . 

Parameters 
IParam 

[in] Specifies the second parameter of the keyboard message (such as 
WM_KEYDOWN) to be processed. The function interprets the following portions of 
IParam: 

Bits Meaning 

16-23 

24 

25 

Scan code. 

Extended-key flag. Distinguishes some keys on an enhanced 
keyboard. 

"Don't care" bit. The application calling this function sets this bit to 
indicate that the function should not distinguish between left and right 
CTRL and SHIFT keys, for example. 



480 Volume 2 Microsoft Windows User Interface 

IpString 
[out] Pointer to a buffer that will receive the key name. 

nSize 
[in] Specifies the maximum length, in characters, of the key name, including the 
terminating null character. (This parameter should be equal to the size of the buffer 
pointed to by the IpString parameter.) 

Return Values 
If the function succeeds, a null-terminated string is copied into the specified buffer, and 
the return value is the length of the string, in characters, not counting the terminating null 
character. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
The format of the key-name string depends on the current keyboard layout. The 
keyboard driver maintains a list of names in the form of character strings for keys with 
names longer than a single character. The key name is translated according to the 
layout of the currently installed keyboard. The name of a character key is the character 
itself. The names of dead keys are spelled out in full. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Keyboard Input Overview, Keyboard-Input Functions 

Get KeyState 
The GetKeyState function retrieves the status of the specified virtual key. The status 
specifies whether the key is up, down, or toggled (on, off-alternating each time the key 
is pressed). 



Parameters 
nVirtKey 

Chapter 8 User Input 481 

[in] Specifies a virtual key. If the desired virtual key is a letter or digit (A through Z, a 
through Z, or 0 through 9), nVirtKey must be set to the ASCII value of that character. 
For other keys, it must be a virtual-key code. 

If a non-English keyboard layout is used, virtual keys with values in the range ASCII A 
through Z and 0 through 9 are used to specify most of the character keys. For 
example, for the German keyboard layout, the virtual key of value ASCII 0 (Ox4F) 
refers to the "0" key, whereas VK_OEM_1 refers to the "0 with umlaut" key. 

Return Values 
The return value specifies the status of the specified virtual key, as follows: 

• If the high-order bit is 1, the key is down; otherwise, it is up . 

• If the low-order bit is 1, the key is toggled. A key, such as the CAPS LOCK key, is 
toggled if it is turned on. The key is off and untoggled if the low-order bit is o. A toggle 
key's indicator light (if any) on the keyboard will be on when the key is toggled, and off 
when the key is untoggled. 

Remarks 
The key status returned from this function changes as a thread reads key messages 
from its message queue. The status does not reflect the interrupt-level state associated 
with the hardware. Use the GetAsyncKeyState function to retrieve that information. 

An application calls GetKeyState in response to a keyboard-input message. This 
function retrieves the state of the key when the input message was generated. 

To retrieve state information for all the virtual keys, use the GetKeyboardState function. 

An application can use the virtual-key code constants VK_SHIFT, VK_CONTROL, and 
VK_MENU as values for the nVirtKey parameter. This gives the status of the SHIFT, 
CTRL, or AL T keys without distinguishing between left and right. An application can also 
use the following virtual-key code constants as values for nVirtKeyto distinguish 
between the left and right instances of those keys: 

VK_LSHIFT 
VK_RSHIFT 
VK_LCONTROL 
VK_RCONTROL 
VK_LMENU 
VK_RMENU 

These left-distinguishing and right-distinguishing constants are available to an 
application only through the GetKeyboardState, SetKeyboardState, 
GetAsyncKeyState, GetKeyState, and MapVirtualKey functions. 



482 Volume 2 Microsoft Windows User Interface 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Keyboard Input Overview, Keyboard-Input Functions, GetAsyncKeyState, 
GetKeyboardState, MapVirtualKey, SetKeyboardState 

GetLastlnputlnfo 
The GetLastlnputlnfo function gets the time of the last input event. 

Parameters 
p/ii 

[out] Pointer to a LASTINPUTINFO structure that receives the time of the last input 
event. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. 

Remarks 
This is useful for input idle detection. 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Unsupported. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Keyboard Input Overview, Keyboard-Input Functions, LASTINPUTINFO 



Chapter 8 User Input 483 

IsWindowEnabled 
The IsWindowEnabled function determines whether the specified window is enabled for 
mouse and keyboard input. 

Parameters 
hWnd 

[in] Handle to the window to test. 

Return Values 
If the window is enabled, the return value is nonzero. 

If the window is not enabled, the return value is zero. 

Remarks 
A child window receives input only if it is both enabled and visible. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Keyboard Input Overview, Keyboard-Input Functions, EnableWindow, 
IsWindowVisible 

The keybd_event function synthesizes a keystroke. The system can use such a 
synthesized keystroke to generate a WM_KEYUP or WM_KEYDOWN message. The 
keyboard driver's interrupt handler calls the keybd_event function. 

Windows NT/2000: This function has been superseded. Use Sendlnput instead. 

(continued) 



484 Volume 2 Microsoft Windows User Interface 

(continued) 

Parameters 
bVk 

[in] Specifies a virtual-key code. The code must be a value in the range 1 to 254. For 
a complete list, see Virtual-Key Codes. 

bScan 
This parameter is not used. 

dwFlags 
[in] Specifies various aspects of function operation. This parameter can be one or 
more of the following values: 

Value 

KEYEVENTF_EXTENDEDKEY 

KEYEVENTF_KEYUP 

dwExtralnfo 

Meaning 

If specified, the scan code was preceded by a 
prefix byte having the value DxED (224). 

If specified, the key is being released. If not 
specified, the key is being depressed. 

[in] Specifies an additional value associated with the keystroke. 

Return Values 
This function has no return value. 

Remarks 
An application can simulate a press of the PRINTSCRN key in order to obtain a screen 
snapshot and save it to the clipboard. To do this, call keybd_event with the bVk 
parameter set to VK_SNAPSHOT. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Keyboard Input Overview, Keyboard-Input Functions, GetAsyncKeyState, 
Get KeyState , MapVirtualKey, SetKeyboardState 



Chapter 8 User Input 485 

Load KeyboardLayout 
The LoadKeyboardLayout function loads a new input locale identifier (formerly called 
the keyboard layout) into the system. Several input locale identifiers can be loaded at a 
time, but only one per process is active at a time. Loading multiple input locale identifiers 
makes it possible to rapidly switch between them. 

Parameters 
pwszKLlD 

[in] Pointer to the buffer that specifies the name of the input locale identifier to load. 
This name is a string composed of the hexadecimal value of the language identifier 
(low word) and a device identifier (high word). For example, U.S. English has a 
language identifier of Ox0409, so the primary U.S. English layout is named 
"00000409". Variants of U.S. English layout (such as the Dvorak layout) are named 
"00010409", "00020409", and so on. 

Flags 
[in] Specifies how the input locale identifier is to be loaded. This parameter can be 
one of the following values: 

Value 

KLF _NOTELLSHELL 

Meaning 

If the specified input locale identifier is not already 
loaded, the function loads and activates the input locale 
identifier for the current thread. 

Prevents a SheliProc hook procedure from receiving 
an HSHELL_LANGUAGE hook code when the new 
input locale identifier is loaded. This value is typically 
used when an application loads multiple input locale 
identifiers one after another. Applying this value to all 
but the last input locale identifier delays the shell's 
processing until all input locale identifiers have been 
added. 

Moves the specified input locale identifier to the head of 
the input locale identifier list, making that locale 
identifier the active locale identifier for the current 
thread. This value reorders the input locale identifier list 
even if KLF _ACTIVATE is not provided. 

(continued) 



486 Volume 2 Microsoft Windows User Interface 

(continued) 

Value Meaning 

KLF _REPLACELANG Windows 95/98, Windows NT 4.0, and 
Windows 2000: If the new input locale identifier has 
the same language identifier as a current input locale 
identifier, the new input locale identifier replaces the 
current one as the input locale identifier for that 
language. If this value is not provided and the input 
locale identifiers have the same language identifiers, 
the current input locale identifier is not replaced and the 
function returns NULL. 

KLF _SUBSTITUTE_OK Substitutes the specified input locale identifier with 
another locale preferred by the user. The system starts 
with this flag set, and it is recommended that your 
application always use this flag. The substitution occurs 
only if the HKEY _CURRENT _USER\Keyboard 
Layout\Substitutes registry key explicitly defines a 
substitution locale. For example, if the key includes the 
value name "00000409" with value "00010409", loading 
the U.S. English layout ("00000409") causes the Dvorak 
U.S. English layout ("00010409") to be loaded instead. 
The system uses KLF _SUBSTITUTE_OK when 
booting, and it is recommended that all applications use 
this value when loading input locale identifiers to ensure 
that the user's preference is selected. 

KLF _SETFORPROCESS Windows 2000: This flag is valid only with 
KLF _ACTIVATE. Activates the specified input locale 
identifier for the entire process and sends the 
WM_INPUTLANGCHANGE message to the current 
thread's Focus or Active window. Typically, 
LoadKeyboardLayout activates an input locale 
identifier only for the current thread. 

KLF _UNLOADPREVIOUS This flag is unsupported. Use the 
UnloadKeyboardLayout function, instead. 

Return Values 
If the function succeeds, the return value is the input locale identifier to the locale 
matched with the requested name. If no matching locale is available, the return value is 
NULL. To get extended error information, call GetLastError. 

Remarks 
The input locale identifier is a broader concept than a keyboard layout, since it can 
encompass also a speech-to-text converter, an IME, or any other form of input. 



Chapter 8 User Input 487 

An application can and will typically load the default input locale identifier or IME for a 
language and can do so by specifying only a string version of the language identifier. If an 
application wants to load a specific locale or IME, it should read the registry to determine 
the specific input locale identifier to pass to Load Keyboard Layout. In this case, a request 
to activate the default input locale identifier for a locale will activate the first matching one. 
A specific IME should be activated using an explicit input locale identifier returned from 
GetKeyboardLayout, GetKeyboardLayoutList, or LoadKeyboardLayout. 

Windows 95/98: If an input locale identifier is to be loaded with the same language as a 
previously loaded input locale identifier and the KLF _REPLACELANG flag is not set, the 
call fails. Only one loaded locale may be associated with a language. (It is acceptable for 
multiple IMEs to be loaded with associations to the same language.) 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Keyboard Input Overview, Keyboard-Input Functions, ActivateKeyboardLayout, 
GetKeyboardLayoutName, MAKELANGID, UnloadKeyboardLayout 

Map Virtual Key 



488 Volume 2 Microsoft Windows User Interface 

Value 

o 

2 

3 

Return Values 

Meaning 

uCode is a virtual-key code and is translated into a scan code. If it is a 
virtual-key code that does not distinguish between left-hand and right­
hand keys, the left-hand scan code is returned. If there is no translation, 
the function returns O. 

uCode is a scan code and is translated into a virtual-key code that does 
not distinguish between left-hand and right-hand keys. If there is no 
translation, the function returns O. 

uCode is a virtual-key code and is translated into an unshifted character 
value in the low-order word of the return value. Dead keys (diacritics) are 
indicated by setting the top bit of the return value. If there is no 
translation, the function returns O. 

Windows NT/2000: uCode is a scan code and is translated into a 
virtual-key code that distinguishes between left-hand and right-hand 
keys. If there is no translation, the function returns O. 

The return value is either a scan code, virtual-key code, or character value, depending 
on the value of uCode and uMapType. If there is no translation, the return value is zero. 

Remarks 
An application can use MapVirtualKey to translate scan codes to the virtual-key code 
constants VK_SHIFT, VK_CONTROL, and VK_MENU, and vice versa. These 
translations do not distinguish between the left and right instances of the SHIFT, CTRL, 
or ALT keys. 

Windows NT/2000: An application can get the scan code corresponding to the left or 
right instance of one of these keys by calling MapVirtualKey with uCode set to one of 
the following virtual-key code constants: 

VK_LCONTROL 
VK_LMENU 
VK_LSHIFT 
VK_RCONTROL 
VK_RMENU 
VK_RSHIFT 

These left-distinguishing and right-distinguishing constants are available to an 
application only through the GetKeyboardState, SetKeyboardState, 
GetAsyncKeyState, GetKeyState, and MapVirtualKey functions. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 



Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Chapter 8 User Input 489 

Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Keyboard Input Overview, Keyboard-Input Functions, GetAsyncKeyState, 
GetKeyboardState, GetKeyState, MapVirtualKeyEx, SetKeyboardState 

Map Vi rtual KeyEx 
The MapVirtualKeyEx function translates (maps) a virtual-key code into a scan code or 
character value, or translates a scan code into a virtual-key code. The function translates 
the codes using the input language and an input locale identifier. 

UI.NT Mjl'pVir:tual~eYEx(· .. " .... . ..•.. '. .• ."~ 
OrRT uCoae ;"ITvtrtua l·1<~y~code ors'Ciffc<\d~ 
.ouT UM#lP1:vpe.;I/;tr'~f1~l~1ii{)n::tQ~ed!orm· ',....,. 
HKf..dl'lflkl:1 tini"utl ;C 13. l;e ·1 dentUi;er • 

/ ,j~,. ' ~. :, '~., <"C ~"':;:> . ': /)" ~, .~,,~ 

);'.; 

Parameters 
uCode 

. ' . 
. <:~ ;., 

[in] Specifies the virtual-key code or scan code for a key. How this value is interpreted 
depends on the value of the uMapType parameter. 

uMapType 
[in] Specifies the translation to perform. The value of this parameter depends on the 
value of the uCode parameter. 

Value Meaning 

o uCode is a virtual-key code and is translated into a scan code. If it is a 
virtual-key code that does not distinguish between left-hand and right-hand 
keys, the left-hand scan code is returned. If there is no translation, the 
function returns O. 

uCode is a scan code and is translated into a virtual-key code that does not 
distinguish between left-hand and right-hand keys. If there is no translation, 
the function returns O. 

2 uCode is a virtual-key code and is translated into an unshifted character 
value in the low order word of the return value. Dead keys (diacritics) are 
indicated by setting the top bit of the return value. If there is no translation, 
the function returns O. 

3 Windows NT/2000: uCode is a scan code and is translated into a virtual­
key code that distinguishes between left-hand and right-hand keys. If there 
is no translation, the function returns O. 



490 Volume 2 Microsoft Windows User Interface 

dwhkl 
[in] Input locale identifier to use for translating the specified code. This parameter can 
be any input locale identifier previously returned by the Load Keyboard Layout 
function. 

Return Values 
The return value is either a scan code, virtual-key code, or character value, depending 
on the value of uCode and uMapType. If there is no translation, the return value is zero. 

Remarks 
The input locale identifier is a broader concept than a keyboard layout, since it can also 
encompass a speech-to-text converter, an IME, or any other form of input. 

An application can use MapVirtualKeyEx to translate scan codes to the virtual-key code 
constants VK_SHIFT, VK_CONTROL, and VK_MENU, and vice versa. These 
translations do not distinguish between the left and right instances of the SHIFT, CTRL, 
or ALT keys. 

Windows NT/2000: An application can get the scan code corresponding to the left or 
right instance of one of these keys by calling MapVirtualKeyEx with uCode set to one of 
the following virtual-key code constants: 

VK_LCONTROL 
VK_LMENU 
VK_LSHIFT 
VK_RCONTROL 
VK_RMENU 
VK_RSHIFT 

These left-distinguishing and right-distinguishing constants are available to an 
application only through the GetKeyboardState, SetKeyboardState, 
GetAsyncKeyState, GetKeyState, MapVirtualKey, and MapVirtualKeyEx functions. 
For list complete table of virtual key codes, see Virtual-Key Codes. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 



Chapter 8 User Input 491 

Keyboard Input Overview, Keyboard-Input Functions, GetAsyncKeyState, 
GetKeyboardState, GetKeyState, LoadKeyboardLayout, SetKeyboardState 

Oem KeyScan 
The OemKeyScan function maps OEM ASCII codes 0 through OxOFF into the OEM 
scan codes and shift states. The function provides information that allows a program to 
send OEM text to another program by simulating keyboard input. 

Parameters 
wOemChar 

[in] Specifies the ASCII value of the OEM character. 

Return Values 
The low-order word of the return value contains the scan code of the OEM character, 
and the high-order word contains the shift state, which can be a combination of the 
following bits: 

Bit Meaning 

1 Either SHIFT key is pressed. 

2 Either CTRL key is pressed. 

4 Either AL T key is pressed. 

8 The Hankaku key is pressed. 

16 Reserved (defined by the keyboard layout driver). 

32 Reserved (defined by the keyboard layout driver). 

If the character cannot be produced by a single keystroke using the current keyboard 
layout, the return value is -1. 

Remarks 
This function does not provide translations for characters that require CTRL+AL T or 
dead keys. Characters not translated by this function must be copied by simulating input 
using the AL T + keypad mechanism. The NUM LOCK key must be off. 

This function does not provide translations for characters that cannot be typed with one 
keystroke using the current keyboard layout, such as characters with diacritics requiring 



492 Volume 2 Microsoft Windows User Interface 

dead keys. Characters not translated by this function may be simulated using the AL T + 
keypad mechanism. The NUM LOCK key must be on. 

This function is implemented using the VkKeyScan function. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Keyboard Input Overview, Keyboard-Input Functions, VkKeyScan 

RegisterHotKey 
The RegisterHotKey function defines a system-wide hot key. 

~OQl,' R'~g:l's:ter:lip~K~ ~ ',,~'," , ' .~, 
'HWNO:fil'l'in:i .. ,' " , 

~, ,~c c ,; ,. ~ 

tnt td~· 
UfUt;$fr10df '1'1 er Sf 

In~T'Vk .1 

Parameters 
hWnd 

id 

[in] Handle to the window that will receive WM_HOTKEY messages generated by the 
hot key. If this parameter is NULL, WM_HOTKEY messages are posted to the 
message queue of the calling thread and must be processed in the message loop. 

[in] Specifies the identifier of the hot key. No other hot key in the calling thread should 
have the same identifier. An application must specify a value in the range OxOOOO 
through OxBFFF. A shared dynamic-link library (DLL) must specify a value in the 
range OxCOOO through OxFFFF (the range returned by the GlobalAddAtom function). 
To avoid conflicts with hot-key identifiers defined by other shared DLLs, a DLL should 
use the GlobalAddAtom function to obtain the hot-key identifier. 

fsModifiers 
[in] Specifies keys that must be pressed in combination with the key specified by the 
nVit1Keyparameter in order to generate the WM_HOTKEY message. The fsModifiers 
parameter can be a combination of the following values: 



Chapter 8 User Input 493 

Value Meaning 

MOD_ALT 

MOD_CONTROL 

MOD_SHIFT 

MOD_WIN 

Either AL T key must be held down. 

Either CTRL key must be held down. 

Either SHIFT key must be held down. 

vk 

Either WINDOWS key was held down. These keys are labeled 
with the Microsoft Windows logo. 

[in] Specifies the virtual-key code of the hot key. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
When a key is pressed, the system looks for a match against all hot keys. Upon finding a 
match, the system posts the WM_HOTKEY message to the message queue of the 
thread that registered the hot key. This message is posted to the beginning of the queue 
so it is removed by the next iteration of the message loop. 

This function cannot associate a hot key with a window created by another thread. 

RegisterHotKey fails if the keystrokes specified for the hot key have already been 
registered by another hot key. 

If the window identified by the hWnd parameter already registered a hot key with the 
same identifier as that specified by the id parameter, the new values for the fsModifiers 
and vk parameters replace the previously specified values for these parameters. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.1ib. 

Keyboard Input Overview, Keyboard-Input Functions, GlobalAddAtom, 
UnregisterHotKey, WM_HOTKEY 



494 Volume 2 Microsoft Windows User Interface 

Sendlnput 
The Sendlnput function synthesizes keystrokes, mouse motions, and button clicks. 

Parameters 
nlnputs 

[in] Specifies the number of structures in the plnputs array. 

plnputs 
[in] Pointer to an array of INPUT structures. Each structure represents an event to be 
inserted into the keyboard-input or mouse-input stream. 

cbSize 
[in] Specifies the size, in bytes, of an INPUT structure. If cbSize is not the size of an 
INPUT structure, the function will fail. 

Return Values 
The function returns the number of events that it successfully inserted into the keyboard­
input or mouse-input stream. If the function returns zero, the input was already blocked 
by another thread. 

To get extended error information, call GetLastError. 

Remarks 
The Sendlnput function inserts the events in the INPUT structures serially into the 
keyboard-input or mouse-input stream. These events are not interspersed with other 
keyboard-input or mouse-input events inserted either by the user (with the keyboard or 
mouse) or by calls to keybd_event, mouse_event, or other calls to Sendlnput. 

This function does not reset the keyboard's current state. Any keys that are already 
pressed when the function is called might interfere with the events that this function 
generates. To avoid this problem, check the keyboard's state with the 
GetAsyncKeyState function, and correct as necessary. 

Windows NT/2000: Requires Windows NT 4.0 SP3 or later. 
Windows 95/98: Requires Windows 98. 
Windows CE: Requires version 2.0 or later. 
Header: Declared in,winuser.h; include windows.h. 
Library: Use user32.lib. 



Chapter 8 User Input 495 

~,~'""" 
Keyboard Input Overview, Keyboard-Input Functions, INPUT, GetAsyncKeyState, 
keybd_event, mouse_event 

SetActiveWindow 
The SetActiveWindow function activates a window. The window must be attached to 
the calling thread's message queue. 

Parameters 
hWnd 

[in] Handle to the top-level window to be activated. 

Return Values 
If the function succeeds, the return value is the handle to the window that was previously 
active. 

If the function fails, the return value is NULL. To get extended error information, call 
GetLastError. 

Remarks 
The SetActiveWindow function activates a window, but not if the application is in the 
background. The window will be brought into the foreground (top of Z order) if its 
application is in the foreground when the system activates the window. 

If the window identified by the hWnd parameter was created by the calling thread, the 
active window status of the calling thread is set to hWnd. Otherwise, the active window 
status of the calling thread is set to NULL. 

By using the AttachThreadlnput function, a thread can attach its input processing to 
another thread. This allows a thread to call SetActiveWindow to activate a window 
attached to another thread's message queue. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 



496 Volume 2 Microsoft Windows User Interface 

Keyboard Input Overview, Keyboard-Input Functions, GetActiveWindow, 
SetForegroundWindow, WM_ACTIVATE 

SetFocus 
The SetFocus function sets the keyboard focus to the specified window. The window 
must be attached to the calling thread's message queue. 

Parameters 
hWnd 

[in] Handle to the window that will receive the keyboard input. If this parameter is 
NULL, keystrokes are ignored. 

Return Values 
If the function succeeds, the return value is the handle to the window that previously had 
the keyboard focus. If the hWnd parameter is invalid or the window is not attached to the 
calling thread's message queue, the return value is NULL. To get extended error 
information, call GetLastError. 

Remarks 
The Set Focus function sends a WM_KILLFOCUS message to the window that loses 
the keyboard focus and a WM_SETFOCUS message to the window that receives the 
keyboard focus. It also activates either the window that receives the focus or the parent 
of the window that receives the focus. 

If a window is active but does not have the focus, any key pressed will produce the 
WM_SYSCHAR, WM_SYSKEYDOWN, or WM_SYSKEYUP message. If the 
VK_MENU key is pressed also, the IParam parameter of the message will have bit 
30 set. Otherwise, the messages produced do not have this bit set. 

By using the AttachThreadlnput function, a thread can attach its input processing to 
another thread. This allows a thread to call SetFocus to set the keyboard focus to a 
window attached to another thread's message queue. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 



Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Chapter 8 User Input 497 

Keyboard Input Overview, Keyboard-Input Functions, AttachThreadlnput, GetFocus, 
WM_KILLFOCUS, WM_SETFOCUS, WM_SYSCHAR, WM_SYSKEYDOWN, 
WM_SYSKEYUP 

SetKeyboardState 
The SetKeyboardState function copies a 256-byte array of keyboard key states into the 
calling thread's keyboard input-state table. This is the same table accessed by the 
GetKeyboardState and GetKeyState functions. Changes made to this table do not 
affect keyboard input to any other thread. 

~~F~.:~(t,~,;;~~·~f:~~"~~~:~~~· 
Parameters 
IpKeyState 

[in] Pointer to a 256-byte array that contains keyboard key states. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
Because the SetKeyboardState function alters the input state of the calling thread and 
not the global input state of the system, an application cannot use SetKeyboardState to 
set the NUM LOCK, CAPS LOCK, or SCROLL LOCK (or the Japanese KANA) indicator 
lights on the keyboard. These can be set or cleared using Sendlnput to simulate 
keystrokes. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.1ib. 



498 Volume 2 Microsoft Windows User Interface 

Keyboard Input Overview, Keyboard-Input Functions, GetAsyncKeyState, 
GetKeyboardState, Get KeyState , MapVirtualKey, Sendlnput 

ToAscii 
The ToAscii function translates the specified virtual-key code and keyboard state to the 
corresponding character or characters. The function translates the code using the input 
language and physical keyboard layout identified by the keyboard layout handle. 

To specify a handle to the keyboard layout to use to translate the specified code, use the 
ToAsciiEx function. 

Parameters 
uVirtKey 

[in] Specifies the virtual-key code to be translated. 

uScanCode 
[in] Specifies the hardware scan code of the key to be translated. The high-order bit of 
this value is set if the key is up (not pressed). 

IpKeyState 
[in] Pointer to a 2S6-byte array that contains the current keyboard state. Each element 
(byte) in the array contains the state of one key. If the high-order bit of a byte is set, 
the key is down (pressed). 

The low bit, if set, indicates that the key is toggled on. In this function, only the toggle 
bit of the CAPS LOCK key is relevant. The toggle state of the NUM LOCK and 
SCROLL LOCK keys is ignored. 

IpChar 
[out] Pointer to the buffer that receives the translated character or characters. 

uFlags 
[in] Specifies whether a menu is active. This parameter must be 1 if a menu is active, 
or 0 otherwise. 

Return Values 
If the specified key is a dead key, the return value is negative. Otherwise, it is one of the 
following values: 



Value 

o 

2 

Remarks 

Chapter 8 User Input 499 

Meaning 

The specified virtual key has no translation for the current state of the 
keyboard. 

One character was copied to the buffer. 

Two characters were copied to the buffer. This usually happens when a 
dead-key character (accent or diacritic) stored in the keyboard layout cannot 
be composed with the specified virtual key to form a single character. 

The parameters supplied to the ToAscii function might not be sufficient to translate the 
virtual-key code, because a previous dead key is stored in the keyboard layout. 

Typically, ToAscii performs the translation based on the virtual-key code. In some 
cases, however, bit 15 of the uScanCode parameter may be used to distinguish between 
a key press and a key release. The scan code is used for translating AL T +number key 
combinations. 

Although NUM LOCK is a toggle key that affects keyboard behavior, ToAscii ignores the 
toggle setting (the low bit) of IpKeyState (VK_NUMLOCK, because the uVirtKey 
parameter alone is sufficient to distinguish the cursor movement keys (VK_HOME, 
VK_INSERT, and so on) from the numeric keys (VK_DECIMAL, VK_NUMPADO­
VK_NUMPAD9). 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Keyboard Input Overview, Keyboard-Input Functions, Oem KeyScan , ToAsciiEx, 
ToUnicode, VkKeyScan 

ToAsciiEx 
The ToAsciiEx function translates the specified virtual-key code and keyboard state to 
the corresponding character or characters. The function translates the code using the 
input language and physical keyboard layout identified by the input locale identifier. 

(continued) 



500 Volume 2 Microsoft Windows User Interface 

(continued) 

Parameters 
uVirtKey 

[in] Specifies the virtual-key code to be translated. 

uScanCode 
[in] Specifies the hardware scan code of the key to be translated. The high-order bit of 
this value is set if the key is up (not pressed). 

IpKeyState 
[in] Pointer to a 256-byte array that contains the current keyboard state. Each element 
(byte) in the array contains the state of one key. If the high-order bit of a byte is set, 
the key is down (pressed). 
The low bit, if set, indicates that the key is toggled on. In this function, only the toggle 
bit of the CAPS LOCK key is relevant. The toggle state of the NUM LOCK and SCOLL 
LOCK keys is ignored. 

IpChar 
[out] Pointer to the buffer that receives the translated character or characters. 

uFlags 
[in] Specifies whether a menu is active. This parameter must be 1 if a menu is active, 
zero otherwise. 

dwhkl 
[in] Input locale identifier to use to translate the code. This parameter can be any input 
locale identifier previously returned by the LoadKeyboardLayout function. 

Return Values 
If the specified key is a dead key, the return value is negative. Otherwise, it is one of the 
following values: 

Value Meaning 

o 

2 

Remarks 

The specified virtual key has no translation for the current state of the 
keyboard. 

One character was copied to the buffer. 

Two characters were copied to the buffer. This usually happens when a 
dead-key character (accent or diacritic) stored in the keyboard layout cannot 
be composed with the specified virtual key to form a single character. 

The input locale identifier is a broader concept than a keyboard layout, since it can also 
encompass a speech-to-text converter, an IME, or any other form of input. 



Chapter 8 User Input 501 

The parameters supplied to the ToAsciiEx function might not be sufficient to translate 
the virtual-key code, because a previous dead key is stored in the keyboard layout. 

Typically, ToAsciiEx performs the translation based on the virtual-key code. In some 
cases, however, bit 15 of the uScanCode parameter may be used to distinguish between 
a key press and a key release. The scan code is used for translating AL T +number key 
combinations. 

Although NUM LOCK is a toggle key that affects keyboard behavior, ToAsciiEx ignores 
the toggle setting (the low bit) of IpKeyState (VK_NUMLOCK, because the uVirtKey 
parameter alone is sufficient to distinguish the cursor movement keys (VK_HOME, 
VK_INSERT, and so on) from the numeric keys (VK_DECIMAL, VK_NUMPADO­
VK_NUMPAD9). 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Keyboard Input Overview, Keyboard-Input Functions, LoadKeyboardLayout, 
MapVirtualKeyEx, ToUnicodeEx, VkKeyScan 

ToUnicode 
The ToUnicode function translates the specified virtual-key code and keyboard state to 
the corresponding Unicode character or characters. 

To specify a handle to the keyboard layout to use to translate the specified code, use the 
ToUnicodeEx function. 

Parameters 
wVirtKey 

[in] Specifies the virtual-key code to be translated. 



502 Volume 2 Microsoft Windows User Interface 

wScanCode 
[in] Specifies the hardware scan code of the key to be translated. The high-order bit of 
this value is set if the key is up. 

IpKeyState 
[in] Pointer to a 256-byte array that contains the current keyboard state. Each element 
(byte) in the array contains the state of one key. If the high-order bit of a byte is set, 
the key is down. 

pW5zBuff 
[out] Pointer to the buffer that receives the translated Unicode character or characters. 

cchBuff 
[in] Specifies the size, in wide characters, of the buffer pOinted to by the pW5zBuff 
parameter. 

wFlag5 
[in] Specifies the behavior of the function. If bit 0 is set, a menu is active. Bits 1 
through 31 are reserved. 

Return Values 
The function returns one of the following values: 

Value Meaning 

-1 

o 

2 or more 

Remarks 

The specified virtual key is a dead-key character (accent or diacritic). 
This value is returned regardless of the keyboard layout, even if several 
characters have been typed and are stored in the keyboard state. If 
possible, even with Unicode keyboard layouts, the function has written a 
spacing version of the dead-key character to the buffer specified by 
pW5zBuffer. For example, the function writes the character SPACING 
ACUTE (OxOOB4), rather than the character NON_SPACING ACUTE 
(Ox0301). 

The specified virtual key has no translation for the current state of the 
keyboard. Nothing was written to the buffer specified by pW5zBuffer. 

One character was written to the buffer specified by pW5zBuffer. 

Two or more characters were written to the buffer specified by pW5zBuff. 
The most common cause for this is that a dead-key character (accent or 
diacritic) stored in the keyboard layout could not be combined with the 
specified virtual key to form a single character. 

The parameters supplied to the ToUnicode function might not be sufficient to translate 
the virtual-key code because a previous dead key is stored in the keyboard layout. 

Typically, ToUnicode performs the translation based on the virtual-key code. In some 
cases, however, bit 15 of the wScanCode parameter can be used to distinguish between 
a key press and a key release. 



af~qurf~mE!nts 
Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Unsupported. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Chapter 8 User Input 503 

Keyboard Input Overview, Keyboard-Input Functions, ToAscii, ToUnicodeEx, 
VkKeyScan 

ToUnicodeEx 
The ToUnicodeEx function translates the specified virtual-key code and keyboard state 
to the corresponding Unicode character or characters. 

i.nt TQPni tOdeS)c(. . . . , . 
UINT·wV1 rt/f,ey... ~iJ'i~~l,k:ei~.Qde . 

'Ulfrr:'I'I$ca~CfJd!1~ . .~'C1fIl<c~ec'. .' 
COffslcnnE It>l{e.Y:$tf}t~'':;1 i.~'ey~$i~t~~:a;l'rllJ(" ,,;,', 
, ""~~' ",~,:;, '.'Y'.', '>P'~~"."c, "''''''":''""'''~ "'; .',l~~o'·'~'I"'"'~:~~' ,~,.'~~,~" 

I"PWs:r!~: Brt$zBlJff.'\ . \ ;f:lt;.t:rlltf1:s}a~d;;l<iet~it!HeT'; 

. ··'tit!t~Z1·~;i~;',.~,··· ' .. ~{:~~:~~~·tn1~:~r~!~e~:.ke~. 
HKC qWhki .. 'tF;tnP:utlt~:Cafe'identitier . , " ",,". ,',' " < .,:," ,', \' ':. " ";f 

Parameters 
wVirtKey 

[in] Specifies the virtual-key code to be translated. 

wScanCode 
[in] Specifies the hardware scan code of the key to be translated. The high-order bit of 
this value is set if the key is up. 

IpKeyState 
[in] Pointer to a 256-byte array that contains the current keyboard state. Each element 
(byte) in the array contains the state of one key. If the high-order bit of a byte is set, 
the key is down. 

pW5zBuff 
[out] Pointer to the buffer that receives the translated Unicode character or characters. 

cchBuff 
[in] Specifies the size, in wide characters, of the buffer pOinted to by the pW5zBuff 
parameter. 



504 Volume 2 Microsoft Windows User Interface 

wFlags 
[in] Specifies the behavior of the function. If bit 0 is set, a menu is active. Bits 1 
through 31 are reserved. 

dwhkl 
[in] Input locale identifier used to translate the specified code. This parameter can be 
any input locale identifier previously returned by the LoadKeyboardLayout function. 

Return Values 
The function returns one of the following values: 

Value Meaning 

-1 

o 

1 

2 or more 

Remarks 

The specified virtual key is a dead-key character (accent or diacritic). 
This value is returned regardless of the keyboard layout, even if several 
characters have been typed and are stored in the keyboard state. If 
possible, even with Unicode keyboard layouts, the function has written a 
spacing version of the dead-key character to the buffer specified by 
pwszBuffer. For example, the function writes the character SPACING 
ACUTE (OxOOB4), rather than the character NON_SPACING ACUTE 
(Ox0301). 

The specified virtual key has no translation for the current state of the 
keyboard. Nothing was written to the buffer specified by pwszBuffer. 

One character was written to the buffer specified by pwszBuffer. 

Two or more characters were written to the buffer specified by pwszBuff. 
The most common cause for this is that a dead-key character (accent or 
diacritic) stored in the keyboard layout could not be combined with the 
specified virtual key to form a single character. 

The input locale identifier is a broader concept than a keyboard layout, since it can also 
encompass a speech-to-text converter, an IME, or any other form of input. 

The parameters supplied to the ToUnicodeEx function might not be sufficient to 
translate the virtual-key code because a previous dead key is stored in the keyboard 
layout 

Typically, ToUnicodeEx performs the translation based on the virtual-key code. In some 
cases, however, bit 15 of the wScanCode parameter can be used to distinguish between 
a key press and a key release. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Unsupported. 
Windows CE: Unsupported. 



Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Chapter 8 User Input 505 

Keyboard Input Overview, Keyboard-Input Functions, LoadKeyboardLayout, 
ToAsciiEx, VkKeyScan 

UnloadKeyboardLayout 
The UnloadKeyboardLayout function removes an input locale identifier (formerly called 
a keyboard layout). 

c c 

BOOl UnloadKeyboardlayout( 
HKL hkT II input looaleidenUfierc 

): c 

Parameters 
hkl 

[in] Input locale identifier to unload. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. The function can fail for the following 
reasons: 

• An invalid input locale identifier was passed. 

• The input locale identifier was preloaded. 

• The input locale identifier is in use. 

To get extended error information, call GetLastError. 

Remarks 
The input locale identifier is a broader concept than a keyboard layout, since it can 
encompass also a speech-to-text converter, an IME, or any other form of input. 

Windows 95: Unload Keyboard Layout cannot unload the system default input locale 
identifier. This ensures that an appropriate character set is always available for the user 
to type commands for the shell or names for the file system. 

Windows NT/2000: UnloadKeyboardLayout can unload the system default input locale 
identifier. 



506 Volume 2 Microsoft Windows User Interface 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.1ib. 

Keyboard Input Overview, Keyboard-Input Functions, ActivateKeyboardLayout, 
GetKeyboardLayoutName, Load Keyboard Layout 

UnregisterHotKey 
The UnregisterHotKey function frees a hot key previously registered by the calling 
thread. 

Parameters 
hWnd 

id 

[in] Handle to the window associated with the hot key to be freed. This parameter 
should be NULL if the hot key is not associated with a window. 

[in] Specifies the identifier of the hot key to be freed. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 



Chapter 8 User Input 507 

Keyboard Input Overview, Keyboard-Input Functions, RegisterHotKey, WM_HOTKEY 

VkKeyScan 
The VkKeyScan function translates a character to the corresponding virtual-key code 
and shift state for the current keyboard. 

This function has been superseded by the VkKeyScanEx function. You can still use 
VkKeyScan, however, if you do not need to specify a keyboard layout. 

Parameters 
ch 

[in] Specifies the character to be translated into a virtual-key code. 

Return Values 
If the function succeeds, the low-order byte of the return value contains the virtual-key 
code and the high-order byte contains the shift state, which can be a combination of the 
following flag bits: 

Bit Meaning 

1 Either SHIFT key is pressed. 

2 Either CTRL key is pressed. 

4 Either AL T key is pressed. 

8 The Hankaku key is pressed 

16 Reserved (defined by the keyboard layout driver). 

32 Reserved (defined by the keyboard layout driver). 

If the function finds no key that translates to the passed character code, both the low­
order and high-order bytes contain -1. 

Remarks 
For keyboard layouts that use the right-hand AL T key as a shift key (for example, the 
French keyboard layout), the shift state is represented by the value 6, because the right­
hand AL T key is converted internally into CTRL+AL T. 

Translations for the numeric keypad (VK_NUMPADO through VK_DIVIDE) are ignored. 
This function is intended to translate characters into keystrokes from the main keyboard 
section only. For example, the character "7" is translated into VKJ, not VK_NUMPAD7. 



508 Volume 2 Microsoft Windows User Interface 

VkKeyScan is used by applications that send characters by using the WM_KEYUP and 
WM_KEYDOWN messages. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Keyboard Input Overview, Keyboard-Input Functions, GetAsyncKeyState, 
GetKeyboardState, GetKeyNameText, GetKeyState, SetKeyboardState, 
VkKeyScanEx, WM_KEYDOWN, WM_KEYUP 

VkKeyScanEx 
The VkKeyScanEx function translates a character to the corresponding virtual-key code 
and shift state. The function translates the character using the input language and 
physical keyboard layout identified by the input locale identifier. 

Parameters 
ch 

[in] Specifies the character to be translated into a virtual-key code. 

dwhkl 
[in] Input locale identifier used to translate the character. This parameter can be any 
input locale identifier previously returned by the LoadKeyboardLayout function. 

Return Values 
If the function succeeds, the low-order byte of the return value contains the virtual-key 
code and the high-order byte contains the shift state, which can be a combination of the 
following flag bits: 

Bit Meaning 

1 Either SHIFT key is pressed. 

2 Either CTRL key is pressed. 



Chapter 8 User Input 509 

Bit Meaning 

4 Either ALT key is pressed. 

8 The Hankaku key is pressed 

16 Reserved (defined by the keyboard layout driver). 

32 Reserved (defined by the keyboard layout driver). 

If the function finds no key that translates to the passed character code, both the low­
order and high-order bytes contain -1. 

Remarks 
The input locale identifier is a broader concept than a keyboard layout, since it can 
encompass also a speech-to-text converter, an IME, or any other form of input. 

For keyboard layouts that use the right-hand AL T key as a shift key (for example, the 
French keyboard layout), the shift state is represented by the value 6, because the right­
hand AL T key is converted internally into CTRL+AL T. 

Translations for the numeric keypad (VK_NUMPADO through VK_DIVIDE) are ignored. 
This function is intended to translate characters into keystrokes from the main keyboard 
section only. For example, the character "7" is translated into VK_7, not VK_NUMPAD7. 

VkKeyScanEx is used by applications that send characters by using the WM_KEYUP 
and WM_KEYDOWN messages. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Keyboard Input Overview, Keyboard-Input Functions, GetAsyncKeyState, 
GetKeyboardState, GetKeyNameText, Get KeyState , Load KeyboardLayout, 
SetKeyboardState, ToAsciiEx 

Keyboard-Input Structures 

HARDWAREINPUT 
The HARDWAREINPUT structure contains information about a simulated message 
generated by an input device other than a keyboard or mouse. 



510 Volume 2 Microsoft Windows User Interface 

Members 
uMsg 

Value specifying the message generated by the input hardware. 

wParamL 
Specifies the low-order word of the IParam parameter for uMsg. 

wParamH 
Specifies the high-order word of the IParam parameter for uMsg. 

Windows NT/2000: Unsupported. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Keyboard Input Overview, Keyboard-Input Structures, INPUT, Sendlnput 

INPUT 
The INPUT structure is used by Sendlnput to store information for synthesizing input 
events such as keystrokes, mouse movement, and mouse clicks. 

Members 
type 

Specifies the type of the input event. This member can be one of the following values: 



mi 

ki 

hi 

Value 

INPUT_HARDWARE 

INPUT_KEYBOARD 

Chapter 8 User Input 511 

Meaning 

Windows 95/98: The event is from input hardware other 
than a keyboard or mouse. Use the hi structure of the 
union. 

The event is a keyboard event. Use the ki structure of 
the union. 

The event is a mouse event. Use the mi structure of the 
union. 

A MOUSEINPUT structure that contains information about a simulated mouse event. 

A KEYBDINPUT structure that contains information about a simulated keyboard 
event. 

Windows 95/98: A HARDWAREINPUT structure that contains information about a 
simulated event from input hardware other than a keyboard or mouse. 

Remarks 
This structure contains information identical to that used in the parameter list of the 
keybd_event or mouse_event function. 

Windows 2000: INPUT_KEYBOARD supports nonkeyboard-input methods, such as 
handwriting recognition or voice recognition, as if it were text input by using the 
KEYEVENTF _UNICODE flag. For more information, see the remarks section of 
KEYBDINPUT. 

Windows NT/2000: Requires Windows NT 4.0 SP3 or later. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Keyboard Input Overview, Keyboard-Input Structures, GetMessageExtralnfo, 
Sendlnput, SystemParameterslnfo, keybd_event, mouse_event, HARDWARE, 
KEYBDINPUT, MOUSEINPUT 

KEYBDINPUT 
The KEYBDINPUT structure contains information about a simulated keyboard event. 



512 Volume 2 Microsoft Windows User Interface 

Members 
wVk 

Specifies a virtual-key code. The code must be a value in the range 1 to 254. The 
Winuser.h header file provides macro definitions (VK_*) for each value. If the 
dwFlags member specifies KEYEVENTF _UNICODE, wVk must be o. 

wScan 
Specifies a hardware scan code for the key. If dwFlags specifies 
KEYEVENTF _UNICODE, wScan specifies a Unicode character that is to be sent to 
the foreground application. 

dwFlags 
Specifies various aspects of a keystroke. This member can be certain combinations of 
the following values: 

Value 

KEYEVENTF_EXTENDEDKEY 

KEYEVENTF_KEYUP 

KEYEVENTF_SCANCODE 

KEYEVENTF _UNICODE 

time 

Meaning 

If specified, the scan code was preceded by a 
prefix byte that has the value OxEO (224). 

If specified, the key is being released. If not 
specified, the key is being pressed. 

If specified, wScan identifies the key and wVK 
is ignored. 

Windows 2000: If specified, the system 
synthesizes a VK_PACKET keystroke. The 
wVk parameter must be zero. This flag can only 
be combined with the KEYEVENTF _KEYUP 
flag. For more information, see the Remarks 
section. 

Time stamp for the event, in milliseconds. If this parameter is zero, the system will 
provide its own time stamp. 

dwExtralnfo 
Specifies an additional value associated with the keystroke. Use the 
GetMessageExtralnfo function to obtain this information. 



Chapter 8 User Input 513 

Remarks 
Windows 2000: INPUT_KEYBOARD supports nonkeyboard-input methods-such as 
handwriting recognition or voice recognition-as if it were text input by using the 
KEYEVENTF _UNICODE flag. If KEYEVENTF _UNICODE is specified, Sendlnput sends 
a WM_KEYDOWN or WM_KEYUP message to the foreground thread's message queue 
with wParam equal to VK_PACKET. Once Get Message or PeekMessage obtains this 
message, passing the message to TranslateMessage posts a WM_CHAR message 
with the Unicode character originally specified by w$can. This Unicode character will 
automatically be converted to the appropriate ANSI value if it is posted to an ANSI 
window. 

Windows 2000: Set the KEYEVENTF _SCAN CODE flag to define keyboard input in 
terms of the scan code. This is useful to simulate a physical keystroke regardless of 
which keyboard is currently being used. The virtual key value of a key can change, 
depending on the current keyboard layout or what other keys were pressed, but the scan 
code will be the same always. 

Windows NT/2000: Requires Windows NT 4.0 SP3 or later. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Keyboard Input Overview, Keyboard-Input Structures, GetMessageExtralnfo, INPUT, 
Sendlnput 

LASTINPUTINFO 
The LASTINPUTINFO structure contains the time of the last input. 

tJ';Pffldtlf;Hruc:tt;'lltLA.$1i:w.!tUT1NFlrJ . 
'., unrl~bSize:~ 
....•. , };" ';. ',<" 

D'WOftf>rtwT1:me ( ", " 
J L.AsT1"~UrItffo~*PtA$tl"ffln!"f(l;; 

Members 
cbSize 

Must be set to sizeof (LASTINPUTINFO). 

dwTime 
Tick count when the last input event was received. 



514 Volume 2 Microsoft Windows User Interface 

Remarks 
This function is useful for input idle detection. For more information on tick counts, see 
GetTickCount. 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Unsupported. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Keyboard Input Overview, Keyboard-Input Structures, GetLastlnputlnfo, GetTickCount 

MOUSEINPUT 
The MOUSEINPUT structure contains information about a simulated mouse event. 

Members 
dx 

dy 

Specifies the absolute position of the mouse, or the amount of motion since the last 
mouse event was generated, depending on the value of the dwFlags member. 
Absolute data is specified as the x coordinate of the mouse; relative data is specified 
as the number of pixels moved. 

Specifies the absolute position of the mouse, or the amount of motion since the last 
mouse event was generated, depending on the value of the dwFlags member. 
Absolute data is specified as the y coordinate of the mouse; relative data is specified 
as the number of pixels moved. 

mouseData 
If dwFlags contains MOUSEEVENTF _WHEEL, then mouseData specifies the 
amount of wheel movement. A positive value indicates that the wheel was rotated 
forward, away from the user; a negative value indicates that the wheel was rotated 



Chapter 8 User Input 515 

backward, toward the user. One wheel click is defined as WHEEL_DELTA, which 
is 120. 

Windows 2000: If dwFlags contains MOUSEEVENTF _XDOWN or 
MOUSEEVENTF _XUP, then mouseData specifies which X buttons were pressed or 
released. This value may be any combination of the following flags: 

Value 

XBUTTON1 

XBUTTON2 

Meaning 

Set if the first X button is pressed or released. 

Set if the second X button is pressed or 
released. 

If dwFlags does not contain MOUSEEVENTF _WHEEL, MOUSEEVENTF _XDOWN, 
or MOUSEEVENTF _XUP, then mouseData should be zero. 

dwFlags 
A set of bit flags that specify various aspects of mouse motion and button clicks. The 
bits in this member can be any reasonable combination of the following values: 

Value Meaning 

MOUSEEVENTF_ABSOLUTE 

MOUSEEVENTF _LEFTDOWN 

MOUSEEVENTF _LEFTUP 

MOUSEEVENTF _MIDDLEDOWN 

MOUSEEVENTF _MIDDLEUP 

MOUSEEVENTF_MOVE 

MOUSEEVENTF _RIGHTDOWN 

MOUSEEVENTF _RIGHTUP 

MOUSEEVENTF _ VIRTUALDESK 

MOUSEEVENTF _WHEEL 

Specifies that the dx and dy members contain 
normalized absolute coordinates. If the flag is 
not set, dx and dy contain relative data (the 
change in position since the last reported 
position). This flag can be set, or not set, 
regardless of what kind of mouse or other 
pointing device, if any, is connected to the 
system. 

For further information about relative mouse 
motion, see the following Remarks section. 

Specifies that the left button was pressed. 

Specifies that the left button was released. 

Specifies that the middle button was pressed. 

Specifies that the middle button was released. 

Specifies that movement occurred. 

Specifies that the right button was pressed. 

Specifies that the right button was released. 

Windows 2000: Maps coordinates to the entire 
desktop. Must be used with 
MOUSEEVENTF _ABSOLUTE. 

Windows NT/2000: Specifies that the wheel 
was moved, if the mouse has a wheel. The 
amount of movement is specified in 
mouseData. 

(continued) 



516 Volume 2 Microsoft Windows User Interface 

(continued) 

MOUSEEVENTF _XDOWN 

MOUSEEVENTF _XUP 

Windows 2000: Specifies that an X button was 
pressed. 

Windows 2000: Specifies that an X button was 
released. 

The bit flags that specify mouse button status are set to indicate changes in status, 
not ongoing conditions. For example, if the left mouse button is pressed and held 
down, MOUSEEVENTF _LEFTDOWN is set when the left button is first pressed, but 
not for subsequent motions. Similarly, MOUSEEVENTF _LEFTUP is set only when the 
button is first released. 

You cannot specify both the MOUSEEVENTF _WHEEL flag and either 
MOUSEEVENTF _XDOWN or MOUSEEVENTF _XUP flags simultaneously in the 
dwFlags parameter, because they both require use of the mouseData field. 

time 
Time stamp for the event, in milliseconds. If this parameter is 0, the system will 
provide its own time stamp. 

dwExtralnfo 
Specifies an additional value associated with the mouse event. An application calls 
GetMessageExtralnfo to obtain this extra information. 

Remarks 
If the mouse has moved, indicated by MOUSEEVENTF _MOVE, dx and dy specify 
information about that movement. The information is specified as absolute or relative 
integer values. 

If MOUSEEVENTF _ABSOLUTE value is specified, dx and dy contain normalized 
absolute coordinates between ° and 65,535. The event procedure maps these 
coordinates onto the display surface. Coordinate (0,0) maps onto the upper-left corner of 
the display surface; coordinate (65535,65535) maps onto the lower-right corner. In a 
multimonitor system, the coordinates map to the primary monitor. 

Windows 2000: If MOUSEEVENTF _VIRTUALDESK is specified, the coordinates map 
to the entire virtual desktop. 

If the MOUSEEVENTF _ABSOLUTE value is not specified, dx and dy specify movement 
relative to the previous mouse event (the last reported position). Positive values mean 
the mouse moved right (or down); negative values mean the mouse moved left (or up). 

Relative mouse motion is subject to the effects of the mouse speed and the two-mouse 
threshold values. A user sets these three values with the Pointer Speed slider of the 
Control Panel's Mouse Properties sheet. You can obtain and set these values using the 
SystemParameterslnfo function. 

The system applies two tests to the specified relative mouse movement. If the specified 
distance along either the x or y axis is greater than the first mouse threshold value, and 
the mouse speed is not zero, the system doubles the distance. If the specified distance 
along either the x or y axis is greater than the second mouse threshold value, and the 



Chapter 8 User Input 517 

mouse speed is equal to two, the system doubles the distance that resulted from 
applying the first threshold test. Thus, it is possible for the system to multiply specified 
relative mouse movement along the x or y axis by up to four times. 

Windows NT/2000: Requires Windows NT 4.0 SP3 or later. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Keyboard Input Overview, Keyboard-Input Structures, GetMessageExtralnfo, INPUT, 
Send Input, SystemParameterslnfo 

Keyboard-Input Messages 

The WM_ACTIVATE message is sent to both the window being activated and the 
window being deactivated. If the windows use the same input queue, the message is 
sent synchronously, first to the window procedure of the top-level window being 
deactivated, then to the window procedure of the top-level window being activated. If the 
windows use different input queues, the message is sent asynchronously, so the window 
is activated immediately. 

A window receives this message through its WindowProc function. 

Parameters 
wParam 

The low-order word specifies whether the window is being activated or deactivated. 
This parameter can be one of the following values: 

Value Meaning 

WA_CLlCKACTIVE 
WA_INACTIVE 

Activated by some method other than a mouse click (for 
example, by a call to the SetActiveWindow function or by 
use of the keyboard interface to select the window). 

Activated by a mouse click. 

Deactivated. 



518 Volume 2 Microsoft Windows User Interface 

The high-order word specifies the minimized state of the window being activated or 
deactivated. A nonzero value indicates the window is minimized. 

IParam 
Handle to the window being activated or deactivated, depending on the value of the 
wParam parameter. If the low-order word of wParam is WA_INACTIVE, IParam is the 
handle to the window being activated. If the low-order word of wParam is 
WA_ACTIVE or WA_CLlCKACTIVE, IParam is the handle to the window being 
deactivated. This handle can be NULL. 

Return Values 
If an application processes this message, it should return zero. 

Remarks 
If the window is being activated and is not minimized, the DefWindowProc function sets 
the keyboard focus to the window. If the window is activated by a mouse click, it also 
receives a WM_MOUSEACTIVATE message. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Keyboard Input Overview, Keyboard-Input Messages, DefWindowProc, 
SetActiveWindow, WM_MOUSEACTIVATE, WM_NCACTIVATE 

WM_CHAR 
The WM_CHAR message is posted to the window with the keyboard focus when a 
WM_KEYDOWN message is translated by the TranslateMessage function. WM_CHAR 
contains the character code of the key that was pressed. 

A window receives this message through its WindowProc function. 

LR~S1JI,'l'~A.Lt8ACK·WinXi9w'ri>£({; • ". ; ..... " 

:'.~~~4~~ ," .:j t:~i~lRt;~~.;::~,o¥'~'·h,;·: 
·:WFAIQ\M'!Y/:'dram:.:: II'¢h,lIra{!~~r'i~~'{<'TCH~RJ 

" 
),:l.PA¥ItJ paia~> lif:k'eY{~~t;~·;,~·.::;;~( '; 
1.~ . ~', ~Y':~; :'~.~ ";,",' 0' 



Parameters 
wParam 

Chapter 8 User Input 519 

Specifies the character code of the key. 

IParam 
Specifies the repeat count, scan code, extended-key flag, context code, previous key­
state flag, and transition-state flag, as shown in the following table: 

Value 

0-15 

16-23 

24 

25-28 

29 

30 

31 

Return Values 

Description 

Specifies the repeat count for the current message. The value is the 
number of times the keystroke is autorepeated as a result of the user 
holding down the key. If the keystroke is held long enough, multiple 
messages are sent. However, the repeat count is not cumulative. 

Specifies the scan code. The value depends on the original equipment 
manufacturer (OEM). 

Specifies whether the key is an extended key, such as the right-hand 
AL T and CTRL keys that appear on an enhanced 101- or 102-key 
keyboard. The value is 1 if it is an extended key; otherwise, it is O. 

Reserved; do not use. 

Specifies the context code. The value is 1 if the AL T key is held down 
while the key is pressed; otherwise, the value is O. 

Specifies the previous key state. The value is 1 if the key is down 
before the message is sent, or it is 0 if the key is up. 

Specifies the transition state. The value is 1 if the key is being 
released, or it is 0 if the key is being pressed. 

An application should return zero if it precesses this message. 

Remarks 
Because there is not necessarily a one-to-one correspondence between keys pressed 
and character messages generated, the information in the high-order word of the IParam 
parameter is generally not useful to applications. The information in the high-order word 
applies only to the most recent WM_KEYDOWN message that precedes the posting of 
the WM_CHAR message. 

For enhanced 1 01-key and 102-key keyboards, extended keys are the right AL T and the 
right CTRL keys on the main section of the keyboard; the INS, DEL, HOME, END, PAGE 
UP, PAGE DOWN, and arrow keys in the clusters to the left of the numeric keypad; and 
the divide (I) and ENTER keys in the numeric keypad. Some other keyboards might 
support the extended-key bit in the IParam parameter. 



520 Volume 2 Microsoft Windows User Interface 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Keyboard Input Overview, Keyboard-Input Messages, TranslateMessage, 
WM_KEYDOWN 

The WM_DEADCHAR message is posted to the window with the keyboard focus when 
a WM_KEYUP message is translated by the TranslateMessage function. 
WM_DEADCHAR specifies a character code generated by a dead key. A dead key is a 
key that generates a character, such as the umlaut (double-dot), that is combined with 
another character to form a composite character. For example, the umlaut-O character 
(0) is generated by typing the dead key for the umlaut character, and then typing the 
o key. 

A window receives this message through its WindowProc function. 

Parameters 
wParam 

Specifies the character code generated by the dead key. 

IParam 
Specifies the repeat count, scan code, extended-key flag, context code, previous key­
state flag, and transition-state flag, as shown in the following table: 

Value Description 

0-15 

16-23 

Specifies the repeat count for the current message. The value is the 
number of times the keystroke is auto repeated as a result of the user 
holding down the key. If the keystroke is held long enough, multiple 
messages are sent. However, the repeat count is not cumulative. 

Specifies the scan code. The value depends on the original 
equipment manufacturer (OEM). 



Value 

24 

25-28 
29 

30 

31 

Return Values 

Chapter 8 User Input 521 

Description 

Specifies whether the key is an extended key, such as the right-hand 
AL T and CTRL keys that appear on an enhanced 1 01-key or 102-key 
keyboard. The value is 1 if it is an extended key; otherwise, it is o. 
Reserved; do not use. 

Specifies the context code. The value is 1 if the AL T key is held down 
while the key is pressed; otherwise, the value is O. 

Specifies the previous key state. The value is 1 if the key is down 
before the message is sent, or it is 0 if the key is up. 

Specifies the transition state. The value is 1 if the key is being 
released, or it is 0 if the key is being pressed. 

An application should return zero if it processes this message. 

Remarks 
The WM_DEADCHAR message typically is used by applications to give the user 
feedback about each key pressed. For example, an application can display the accent in 
the current character position without moving the caret. 

Because there is not necessarily a one-to-one correspondence between keys pressed 
and character messages generated, the information in the high-order word of the IParam 
parameter is generally not useful to applications. The information in the high-order word 
applies only to the most recent WM_KEYDOWN message that precedes the posting of 
the WM_DEADCHAR message. 

For enhanced 1 01-key and 102-key keyboards, extended keys are the right AL T and the 
right CTRL keys on the main section of the keyboard; the INS, DEL, HOME, END, PAGE 
UP, PAGE DOWN, and arrow keys in the clusters to the left of the numeric keypad; and 
the divide (/) and ENTER keys in the numeric keypad. Some other keyboards might 
support the extended-key bit in the IParam parameter. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Keyboard Input Overview, Keyboard-Input Messages, TranslateMessage, 
WM_KEYDOWN, WM_KEYUP, WM_SYSDEADCHAR 



522 Volume 2 Microsoft Windows User Interface 

WM_GETHOTKEY 
An application sends a WM_GETHOTKEY message to determine the hot key associated 
with a window. 

To send this message, call the Send Message function with the following parameters: 

Parameters 
This message has no parameters. 

Return Values 
The return value is the virtual-key code and modifiers for the hot key, or NULL if no hot 
key is associated with the window. The virtual-key code is in the low byte of the return 
value and the modifiers are in the high byte. The modifiers can be a combination of the 
following flags: 

Value 

HOTKEYF _AL T 

HOTKEYF _CONTROL 

HOTKEYF_EXT 

HOTKEYF _SHIFT 

Remarks 

Meaning 

ALT key 

CTRL key 

Extended key 

SHIFT key 

These hot keys are unrelated to the hot keys set by the RegisterHotKey function. 

Windows NT/2000: Requires Windows NT 3.; or iater. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Keyboard Input Overview, Keyboard-Input Messages, RegisterHotKey, 
WM_SETHOTKEY 



Chapter 8 User Input 523 

The WM_HOTKEY message is posted when the user presses a hot key registered by 
the RegisterHotKey function. The message is placed at the top of the message queue 
associated with the thread that registered the hot key. 

A window receives this message through its WindowProc function. 

LRi$U"''''; eAt(8AC~:W,tDd ;i~'~~ :", , ,i" 

<~1i(4&~Jt~~~~1~~~1I:,r/' ~;;?;i"1£;i'1;:';J~111: 
• lP;~)l. ;f,t~.~alP.: '" i;ll,!:lpd:~ 
, i, " 0 ;s< '., , . '{,< .o~,; , ":} 

X: ,e:l l,' "';1' 

Parameters 
wParam 

Specifies the identifier of the hot key that generated the message. If the message was 
generated by a system-defined hot key, this parameter will be one of the following 
values: 

Value Meaning 

IDHOT_SNAPDESKTOP 

IDHOT _SNAPWINDOW 

IParam 

The "snap desktop" hot key was pressed. 

The "snap window" hot key was pressed. 

The low-order word specifies the keys that were to be pressed in combination with the 
key specified by the high-order word to generate the WM_HOTKEY message. This 
word can be one or more of the following values: 

Value Meaning 

MOD_ALT 

MOD_CONTROL 

MOD_SHIFT 

MOD_WIN 

Either AL T key was held down. 

Either CTRL key was held down. 

Either SHIFT key was held down. 

Either WINDOWS key was held down. These keys 
are labeled with the Microsoft Windows logo. 

The high-order word specifies the virtual-key code of the hot key. 

Remarks 
WM_HOTKEY is unrelated to the WM_GETHOTKEY and WM_SETHOTKEY hot keys. 
The WM_HOTKEY message is sent for generic hot keys while the 
WM_SEnGETHOTKEY messages relate to window activation hot keys. 



524 Volume 2 Microsoft Windows User Interface 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Keyboard Input Overview, Keyboard-Input Messages, RegisterHotKey, 
WM_GETHOTKEY, WM_SETHOTKEY 

The WM_KEYDOWN message is posted to the window with the keyboard focus when a 
nonsystem key is pressed. A nonsystem key is a key that is pressed when the AL T key 
is not pressed. 

A window receives this message through its WindowProc function . 

. lJtES~(;T:CA.I.U~AtK;Wfit!i~~~Ci'c( '; r")';~; 

·~~~~~.~',~~,~~i~~:I~~~~ 
VA:RAMIPifPHm . . ', HkeY.d ab 

) j 

Parameters 
wParam 

Specifies the virtual-key code of the nonsystem key. 

IParam 
Specifies the repeat count, scan code, extended-key flag, context code, previous key­
state flag, and transition-state flag, as shown in the following table: 

Value 

0-15 

16-23 

24 

25-28 

Description 

Specifies the repeat count for the current message. The value is the 
number of times the keystroke is autorepeated as a result of the user 
holding down the key. If the keystroke is held long enough, multiple 
messages are sent. However, the repeat count is not cumulative. 

Specifies the scan code. The value depends on the original 
equipment manufacturer (OEM). 

Specifies whether the key is an extended key, such as the right-hand 
AL T and CTRL keys that appear on an enhanced 1 01-key or 102-key 
keyboard. The value is 1 if it is an extended key; otherwise, it is O. 

Reserved; do not use. 



Value 

29 

30 

31 

Return Values 

Chapter 8 User Input 525 

Description 

Specifies the context code. The value is always 0 for a 
WM_KEVDOWN message. 

Specifies the previous key state. The value is 1 if the key is down 
before the message is sent, or it is 0 if the key is up. 

Specifies the transition state. The value is always 0 for a 
WM_KEVDOWN message. 

An application should return zero if it processes this message. 

Remarks 
If the F10 key is pressed, the DefWindowProc function sets an internal flag. When 
DefWindowProc receives the WM_KEVUP message, the function checks whether the 
internal flag is set and, if so, sends a WM_SVSCOMMAND message to the top-level 
window. The wParam parameter of the message is set to SC_KEYMENU. 

Because of the autorepeat feature, more than one WM_KEVDOWN message may be 
posted before a WM_KEVUP message is posted. The previous key state (bit 30) can be 
used to determine whether the WM_KEVDOWN message indicates the first down 
transition or a repeated down transition. 

For enhanced 1 01-key and 102-key keyboards, extended keys are the right AL T and 
CTRL keys on the main section of the keyboard; the INS, DEL, HOME, END, PAGE UP, 
PAGE DOWN, and arrow keys in the clusters to the left of the numeric keypad; and the 
divide (I) and ENTER keys in the numeric keypad. Other keyboards might support the 
extended-key bit in the IParam parameter. 

Windows 2000: Applications must pass wParam to TranslateMessage without altering 
it at all. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Keyboard Input Overview, Keyboard-Input Messages, DefWindowProc, 
TranslateMessage, WM_CHAR, WM_KEVUP, WM_SVSCOMMAND 



526 Volume 2 Microsoft Windows User Interface 

The WM_KEYUP message is posted to the window with the keyboard focus when a 
nonsystem key is released. A nonsystem key is a key that is pressed when the AL T key 
is not pressed, or a keyboard key that is pressed when a window has the keyboard 
focus. 

A window receives this message through its WindowProc function. 

t~~lt~;;~l~:~:~t~;'I: 
.. ,LPI'tRA,M,JF!aJe;i}IIJ .. ·(lh:y"i!lI'!lit~;..~, ;; 
:~O~','C,~ ~'~:/,~,~,>o.\:',C""~ ',' ,", 0'", ' -:t" 

)~i,~I,," ~,:~o,< O~" '~~:'< ,;,,' 

Parameters 
wParam 

Specifies the virtual-key code of the nonsystem key. 

IParam 
Specifies the repeat count, scan code, extended-key flag, context code, previous key­
state flag, and transition-state flag, as shown in the following table: 

Value 

0-15 

16-23 

24 

25-28 

29 

30 

31 

Return Values 

Description 

Specifies the repeat count for the current message. The value is the 
number of times the keystroke is autorepeated as a result of the user 
holding down the key. The repeat count is always one for a 
WM_KEYUP message. 

Specifies the scan code. The value depends on the original 
equipment manufacturer (OEM). 
Specifies whether the key is an extended key, such as the right-hand 
AL T and CTRL keys that appear on an enhanced 1 01-key or 102-key 
keyboard. The value is 1 if it is an extended key; otherwise, it is O. 

Reserved; do not use. 

Specifies the context code. The value is always 0 for a WM_KEYUP 
message. 

Specifies the previous key state. The value is always 1 for a 
WM_KEYUP message. 

Specifies the transition state. The value is always 1 for a WM_KEYUP 
message. 

An application should return zero if it processes this message. 



Chapter 8 User Input 527 

Remarks 
The DefWindowProc function sends a WM_SYSCOMMAND message to the top-level 
window if the F10 key or the AL T key was released. The wParam parameter of the 
message is set to SC_KEYMENU. 

For enhanced 1 01-key and 102-key keyboards, extended keys are the right AL T and 
CTRL keys on the main section of the keyboard; the INS, DEL, HOME, END, PAGE UP, 
PAGE DOWN, and arrow keys in the clusters to the left of the numeric keypad; and the 
divide (I) and ENTER keys in the numeric keypad. Other keyboards might support the 
extended-key bit in the IParam parameter. 

Windows 2000: Applications must pass wParam to TranslateMessage without altering 
it at all. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Keyboard Input Overview, Keyboard-Input Messages, DefWindowProc, 
TranslateMessage, WM_KEYDOWN, WM_SYSCOMMAND 

The WM_KlllFOCUS message is sent to a window immediately before it loses the 
keyboard focus. 

A window receives this message through its WindowProc function. 

'lRE,SOLT . CAt:lBACKWi ndOwPr6it· ... 
~W"D· hr/flrJ. ··II.ltandl~·toWlndow; 
~lrn>uM.)g.· .............. ;;1 ". /1~r-tLKtltlFoG.ijS.· . 
WPARAM; l'lP1friiflh ; if. ~arldl:e~to.wrn#.lw. 
t.PA~ l"arsllI .... j/ ·rl~t·U$~~· . 

Parameters 
wParam 

Handle to the window that receives the keyboard focus. This parameter can be NULL. 

IParam 
This parameter is not used. 



528 Volume 2 Microsoft Windows User Interface 

Return Values 
An application should return zero if it processes this message. 

Remarks 
If an application is displaying a caret, the caret should be destroyed at this point. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Keyboard Input Overview, Keyboard-Input Messages, SetFocus, WM_SETFOCUS 

WM_SETFOCUS 
The WM_SETFOCUS message is sent to a window after it has gained the keyboard 
focus. 

A window receives this message through its WindowProc function. 

Parameters 
wParam 

Handle to the window that has lost the keyboard focus. This parameter can be NULL. 

IParam 
This parameter is not used. 

Return Values 
An application should return zero if it processes this message. 

Remarks 
To display a caret, an application should call the appropriate caret functions when it 
receives the WM_SETFOCUS message. 



tli~~~itements 
Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Chapter 8 User Input 529 

Keyboard Input Overview, Keyboard-Input Messages, setFocus, WM_KILLFOCUs 

An application sends a WM_sETHOTKEY message to a window to associate a hot key 
with the window. When the user presses the hot key, the system activates the window. 

To send this message, call the Send Message function with the following parameters: 

Sel1dMessage{ , 
. (HwrU).· flWnd, . 

Wflb.~ETHOrKEV. . 
(t('AR~M >.WfaramL_. . . 
tlPA~M), lParalll;' . 

h. 

Parameters 
wParam 

•. j /., nan/neto desti natt oow; n.dhw: 
. ·'j/.message',t;ose:nd" ;' '. 

oN ;"trtua l'-ke,vcode ; a nd modi f1 ers .. 
N rlQtu,sed: .nlllst,b·ezer~ . , . 

The low-order word specifies the virtual-key code to associate with the window. 

The high-order word can be one or more of the following values: 

Value Meaning 

HOTKEYF _AL T 

HOTKEYF _CONTROL 

HOTKEYF _EXT 

HOTKEYF _SHIFT 

ALT key 

CTRL key 

Extended key 

SHIFT key 

Setting wParam to NULL removes the hot key associated with a window. 

IParam 
This parameter is not used. 

Return Values 
The return value is one of the following: 



530 Volume 2 Microsoft Windows User Interface 

Value 

-1 

o 
1 

2 

Remarks 

Meaning 

The function is unsuccessful-the hot key is invalid. 

The function is unsuccessful-the window is invalid. 

The function is successful, and no other window has the same hot key. 

The function is successful, but another window already has the same hot key. 

A hot key cannot be associated with a child window. 

VK_ESCAPE, VK_SPACE, and VK_ TAB are invalid hot keys. 

When the user presses the hot key, the system generates a WM_SYSCOMMAND 
message with wParam equal to SC_HOTKEY and IParam equal to the window's handle. 
If this message is passed on to DefWindowProc, the system will bring the window's last 
active popup (if it exists) or the window itself (if there is no popup window) to the 
foreground. 

A window can only have one hot key. If the window already has a hot key associated 
with it, the new hot key replaces the old one. If more than one window has the same hot 
key, the window that is activated by the hot key is random. 

These hot keys are unrelated to the hot keys set by RegisterHotKey. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Keyboard Input Overview, Keyboard-Input Messages, RegisterHotKey, 
WM_GETHOTKEY, WM_SYSCOMMAND 

WM_SYSDEADCHAR 
The WM_SYSDEADCHAR message is sent to the window with the keyboard focus 
when a WM_SYSKEYDOWN message is translated by the TranslateMessage function. 
WM_SYSDEADCHAR specifies the character code of a system dead key--that is, a 
dead key that is pressed while holding down the AL T key. 

A window receives this message through its WindowProc function. 



Chapter 8 User Input 531 

L.RESULTCAtLBACJ(W1nCl()wt,,~~(: 
HW8Dflwn<1~ ............. '..l/<ha.· ' 

.~~t~f~~Jy;,r 
l~~.Jp.8;rltl11,.~/I· I<e 

~),<~o'-- ,'j ,;",,")'~;:;::::t '/',,:,~j;<;:/;y: ,:~," 

Parameters 
wParam 

Specifies the character code generated by the system dead key-that is, a dead key 
that is pressed while holding down the AL T key. 

IParam 
Specifies the repeat count, scan code, extended-key flag, context code, previous key­
state flag, and transition-state flag, as shown in the following table: 

Value 

0-15 

16-23 

24 

25-28 

29 

30 

31 

Return Values 

Description 

Specifies the repeat count for the current message. The value is the 
number of times the keystroke is autorepeated as a result of the user 
holding down the key. If the keystroke is held long enough, multiple 
messages are sent. However, the repeat count is not cumulative. 

Specifies the scan code. The value depends on the original 
equipment manufacturer (OEM). 

Specifies whether the key is an extended key, such as the right-hand 
AL T and CTRL keys that appear on an enhanced 1 01-key or 102-key 
keyboard. The value is 1 if it is an extended key; otherwise, it is O. 

Reserved; do not use. 

Specifies the context code. The value is 1 if the AL T key is held down 
while the key is pressed; otherwise, the value is O. 

Specifies the previous key state. The value is 1 if the key is down 
before the message is sent, or it is 0 if the key is up. 

Specifies the transition state. The value is 1 if the key is being 
released, or it is 0 if the key is being pressed. 

An application should return zero if it processes this message. 

Remarks 
For enhanced 1 01-key and 1 02-key keyboards, extended keys are the right AL T and 
CTRL keys on the main section of the keyboard; the INS, DEL, HOME, END, PAGE UP, 
PAGE DOWN, and arrow keys in the clusters to the left of the numeric keypad; and the 
divide (I) and ENTER keys in the numeric keypad. Other keyboards might support the 
extended-key bit in the IParam parameter. 



532 Volume 2 Microsoft Windows User Interface 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Keyboard Input Overview, Keyboard-Input Messages, TranslateMessage, 
WM_DEADCHAR, WM_SYSKEYDOWN 

WM_SYSKEYDOWN 
The WM_SYSKEYDOWN message is posted to the window with the keyboard focus 
when the user presses the F10 key (which activates the menu bar) or holds down the 
AL T key and then presses another key. It also occurs when no window currently has the 
keyboard focus; in this case, the WM_SYSKEYDOWN message is sent to the active 
window. The window that receives the message can distinguish between these two 
contexts by checking the context code in the IParam parameter. 

A window receives this message through its WindowProc function. 

Parameters 
wParam 

Specifies the virtual-key code of the key being pressed. 

IParam 
Specifies the repeat count, scan code, extended-key flag, context code, previous key­
state flag, and transition-state flag, as shown in the following table: 

Value 

0-15 

16-23 

Description 

Specifies the repeat count for the current message. The value is the 
number of times the keystroke is auto repeated as a result of the user 
holding down the key. If the keystroke is held long enough, multiple 
messages are sent. However, the repeat count is not cumulative. 

Specifies the scan code. The value depends on the original 
equipment manufacturer (OEM). 



Value 

24 

25-28 

29 

30 

31 

Return Values 

Chapter 8 User Input 533 

Description 

Specifies whether the key is an extended key, such as the right-hand 
AL T and CTRL keys that appear on an enhanced 1 01-key or 102-key 
keyboard. The value is 1 if it is an extended key; otherwise, it is O. 

Reserved; do not use. 

Specifies the context code. The value is 1 if the AL T key is down while 
the key is pressed; it is 0 if the WM_SVSKEVDOWN message is 
posted to the active window because no window has the keyboard 
focus. 

Specifies the previous key state. The value is 1 if the key is down 
before the message is sent, or it is 0 if the key is up. 

Specifies the transition state. The value is always 0 for a 
WM_SVSKEVDOWN message. 

An application should return zero if it processes this message. 

Remarks 
The DefWindowProc function examines the specified key and generates a 
WM_SVSCOMMAND message if the key is either TAB or ENTER. 

When the context code is zero, the message can be passed to the 
TranslateAccelerator function, which will handle it as though it were a normal key 
message instead of a character-key message. This allows accelerator keys to be used 
with the active window even if the active window does not have the keyboard focus. 

Because of automatic repeat, more than one WM_SVSKEVDOWN message may occur 
before a WM_SVSKEVUP message is sent. The previous key state (bit 30) can be used 
to determine whether the WM_SVSKEVDOWN message indicates the first down 
transition or a repeated down transition. 

For enhanced 1 01-key and 102-key keyboards, enhanced keys are the right AL T and 
CTRL keys on the main section of the keyboard; the INS, DEL, HOME, END, PAGE UP, 
PAGE DOWN, and arrow keys in the clusters to the left of the numeric keypad; and the 
divide (I) and ENTER keys in the numeric keypad. Other keyboards might support the 
extended-key bit in the IParam parameter. 

This message is sent also whenever the user presses the F10 key without the AL T key. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 



534 Volume 2 Microsoft Windows User Interface 

Keyboard Input Overview, Keyboard-Input Messages, DefWindowProc, 
TranslateAccelerator, WM_SYSCOMMAND, WM_SYSKEYUP 

The WM_SYSKEYUP message is posted to the window with the keyboard focus when 
the user releases a key that was pressed while the ALT key was held down. It also 
occurs when no window currently has the keyboard focus; in this case, the 
WM_SYSKEYUP message is sent to the active window. The window that receives the 
message can distinguish between these two contexts by checking the context code in 
the IParam parameter. 

A window receives this message through its WindowProc function. 

t:R£SlJi]",t;Al;~BM,~.~1!14Q~rac,( .;, .... 
ftWDIlWfrd,' ···n.h~ffdl e'·.tQw·1ntHIW 
611ft: ~$g. " J!<~~$YSI\£YU,P ,.. ., 

'W~AM:M.wp!!(rl1m. ", .. /I', virtu'al -k,(:lY'.·c'Me' 
i..~ARA:HZ'p~pa~ . fl. ~,ey .'(iata··· , 
h' ,.' . .. " '. 

Parameters 
wParam 

Specifies the virtual-key code of the key being released. 

IParam 
Specifies the repeat count, scan code, extended-key flag, context code, previous key­
state flag, and transition-state flag, as shown in the following table: 

Value 

0-15 

16-23 

24 

25-28 

Description 

Specifies the repeat count for the current message. The value is the 
number of times the keystroke is autorepeated as a result of the user 
holding down the key. The repeat count is always one for a 
WM_SYSKEYUP message. 

Specifies the scan code. The value depends on the original equipment 
manufacturer (OEM). 

Specifies whether the key is an extended key, such as the right-hand 
AL T and CTRL keys that appear on an enhanced 1 01-key or 102-key 
keyboard. The value is 1 if it is an extended key; otherwise, it is O. 

Reserved; do not use. 



Value 

29 

30 

31 

Return Values 

Chapter 8 User Input 535 

Description 

Specifies the context code. The value is 1 if the AL T key is down while 
the key is released; it is 0 if the WM_SYSKEYDOWN message is 
posted to the active window because no window has the keyboard 
focus. 

Specifies the previous key state. The value is always 1 for a 
WM_SYSKEYUP message. 

Specifies the transition state. The value is always 1 for a 
WM_SYSKEYUP message. 

An application should return zero if it processes this message. 

Remarks 
The DefWindowProc function sends a WM_SYSCOMMAND message to the top-level 
window if the F10 key or the AL T key was released. The wParam parameter of the 
message is set to SC_KEYMENU. 

When the context code is zero, the message can be passed to the 
TranslateAccelerator function, which will handle it as though it were a normal key 
message instead of a character-key message. This allows accelerator keys to be used 
with the active window even if the active window does not have the keyboard focus. 

For enhanced 1 01-key and 102-key keyboards, extended keys are the right AL T and 
CTRL keys on the main section of the keyboard; the INS, DEL, HOME, END, PAGE UP, 
PAGE DOWN, and arrow keys in the clusters to the left of the numeric keypad; and the 
divide (/) and ENTER keys in the numeric keypad. Other keyboards might support the 
extended-key bit in the IParam parameter. 

For non-U.S. enhanced 102-key keyboards, the right AL T key is handled as a 
CTRL+AL T key combination. The following table shows the sequence of messages that 
result when the user presses and releases this key: . 

Message Virtual-key code 

WM_KEYDOWN 

WM_KEYDOWN 

WM_KEYUP 

WM_SYSKEYUP 

VK_CONTROL 

VK_MENU 

VK_CONTROL 

VK_MENU 





CHAPTER 9 

Windowing 

Dialog Boxes 
A dialog box is a temporary window an application creates to retrieve user input. An 
application typically uses dialog boxes to prompt the user for additional information for 
menu items. A dialog box usually contains one or more controls (child windows) with 
which the user enters text, chooses options, or directs the action. 

537 

The Win32 API also provides predefined dialog boxes that support common menu items 
such as Open and Print. Applications that use these menu items should use the 
common dialog boxes to prompt for this user input, regardless of the type of application. 
For more information about using common dialog boxes in your applications, see 
Common Dialog Box Ubrary. 

About Dialog Boxes 
The Win32 API provides many functions, messages, and predefined controls to help 
create and manage dialog boxes, making it easier to develop the user interface for an 
application. 

Dialog Box Reference 
Dialog Box Functions 

CreateDialog 
The CreateDialog macro creates a modeless dialog box from a dialog box template 
resource. The CreateDialog macro uses the CreateDialogParam function. 

H'W:~~~i::J:D~i:!:~~:P~~.~:'Y)ha~q~e tom;duJ~::' 

.).~r:~t[~!::~~ ... ~r~=~ri~;~~~7 



538 Volume 2 Microsoft Windows User Interface 

Parameters 
hlnstance 

[in] Handle to the module whose executable file contains the dialog box template. 

IpTemplate 
[in] Specifies the dialog box template. This parameter is either the pOinter to a null­
terminated character string that specifies the name of the dialog box template or an 
integer value that specifies the resource identifier of the dialog box template. If the 
parameter specifies a resource identifier, its high-order word must be zero and its low­
order word must contain the identifier. You can use the MAKEINTRESOURCE macro 
to create this value. 

hWndParent 
[in] Handle to the window that owns the dialog box. 

IpDialogFunc 
[in] Pointer to the dialog box procedure. For more information about the dialog box 
procedure, see DialogProc. 

Return Values 
If the function succeeds, the return value is the handle to the dialog box. 

If the function fails, the return value is NULL. To get extended error information, call 
GetLastError. 

Remarks 
The CreateDialog function uses the CreateWindowEx function to create the dialog box. 
CreateDialog then sends a WM_INITDIALOG message (and a WM_SETFONT 
message, if the template specifies the DS_SETFONT or DS_SHELLFONT style) to the 
dialog box procedure. The function displays the dialog box if the template specifies the 
WS_ VISIBLE style. Finally, CreateDialog returns the window handle to the dialog box. 

After CreateDialog returns, the application displays the dialog box (if it is not already 
displayed) by using the ShowWindow function. The application destroys the dialog box 
by using the DestroyWindow function. 

Windows 95/98: The system can support a maximum of 255 controls per dialog box 
template. To place more than 255 controls in a dialog box, create the controls in the 
WM_INITDIALOG message handler, instead of placing them in the template. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.1ib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 



Chapter 9 Windowing 539 

Dialog Boxes Overview, Dialog Box Functions, CreateDialoglndirect, 
CreateDialoglndirectParam, CreateDialogParam, CreateWindowEx, 
DestroyWindow, DialogBox, DialogProc, ShowWindow, WM_INITDIALOG, 
WM_SETFONT 

CreateDialoglndirect 
The CreateDialoglndirect macro creates a modeless dialog box from a dialog box 
template in memory. The CreateDialoglndirect macro uses the 
CreateDialoglndirectParam function. 

Parameters 
hlnstance 

[in] Handle to the module that creates the dialog box. 

IpTemplate 
[in] Pointer to a global memory object containing a template that 
CreateDialoglndirect uses to create the dialog box. A dialog box template consists of 
a header that describes the dialog box, followed by one or more additional blocks of 
data that describe each of the controls in the dialog box. The template can use either 
the standard format or the extended format. 

In a standard template, the header is a DLGTEMPLATE structure followed by 
additional variable-length arrays. The data for each control consists of a 
DLGITEMTEMPLATE structure, followed by additional variable-length arrays. 

In an extended dialog box template, the header uses the DLGTEMPLATEEX format 
and the control definitions use the DLGITEMTEMPLATEEX format. 

After CreateDialoglndirect returns, you can free the template, which is only used to 
get the dialog box started. 

hWndParent 
[in] Handle to the window that owns the dialog box. 

IpOialogFunc 
[in] Pointer to the dialog box procedure. For more information about the dialog box 
procedure, see DialogProc. 

Return Values 
If the function succeeds, the return value is the window handle to the dialog box. 



540 Volume 2 Microsoft Windows User Interface 

If the function fails, the return value is NULL. To get extended error information, call 
GetLastError. 

Remarks 
The CreateDialoglndirect macro uses the CreateWindowEx function to create the 
dialog box. CreateDialoglndirect then sends a WM_INITDIALOG message to the 
dialog box procedure. If the template specifies the DS_SETFONT or DS_SHELLFONT 
style, the function also sends a WM_SETFONT message to the dialog box procedure. 
The function displays the dialog box, if the template specifies the WS_ VISIBLE style. 
Finally, CreateDialoglndirect returns the window handle to the dialog box. 

After CreateDialoglndirect returns, you can use the ShowWindow function to display 
the dialog box (if it is not already visible). To destroy the dialog box, use the 
DestroyWindow function. 

In a standard dialog box template, the DLGTEMPLATE structure and each of the 
DLGITEMTEMPLATE structures must be aligned on DWORD boundaries. The creation 
data array that fOllows a DLGITEMTEMPLATE structure must also be aligned on a 
DWORD boundary. All of the other variable-length arrays in the template must be 
aligned on WORD boundaries. 

In an extended dialog box template, the DLGTEMPLATEEX header and each of the 
DLGITEMTEMPLATEEX control definitions must be aligned on DWORD boundaries. 
The creation data array, if any, that follows a DLGITEMTEMPLATEEX structure must 
also be aligned on a DWORD boundary. All of the other variable-length arrays in the 
template must be aligned on WORD boundaries. 

All character strings in the dialog box template, such as titles for the dialog box and 
buttons, must be Unicode strings. To create code that works on both Windows 95/98 and 
Windows NTlWindows 2000, use the MultiByteToWideChar function to generate these 
Unicode strings. 

Windows 95/98: The system can support a maximum of 255 controls per dialog box 
template. To place more than 255 controls in a dialog box, create the controls in the 
WM_INITDlALOG message handler, instead of placing them in the template. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 



Chapter 9 Windowing 541 

Dialog Boxes Overview, Dialog Box Functions, CreateDialog, 
CreateDialoglndirectParam, CreateDialogParam, CreateWindowEx, 
DestroyWindow, DialogProc, DLGITEMTEMPLATE, DLGITEMTEMPLATEEX, 
DLGTEMPLATE, DLGTEMPLATEEX, MultiByteToWideChar, ShowWindow, 
WM_INITDIALOG, WM_SETFONT 

CreateDialoglndirectParam 
The CreateDialoglndirectParam function creates a modeless dialog box from a dialog 
box template in memory. Before displaying the dialog box, the function passes an 
application-defined value to the dialog box procedure as the IParam parameter of the 
WM_INITDIALOG message. An application can use this value to initialize dialog box 
controls. 

Parameters 
hlnstance 

[in] Handle to the module that will create the dialog box. 

IpTemplate 
[in] Pointer to a global memory object that contains the template 
CreateDialoglndirectParam uses to create the dialog box. A dialog box template 
consists of a header that describes the dialog box, followed by one or more additional 
blocks of data that describe each of the controls in the dialog box. The template can 
use either the standard format or the extended format. 

In a standard template, the header is a DLGTEMPLATE structure followed by 
additional variable-length arrays. The data for each control consists of a 
DLGITEMTEMPLATE structure, followed by additional variable-length arrays. 

In an extended dialog box template, the header uses the DLGTEMPLATEEX format 
and the control definitions use the DLGITEMTEMPLATEEX format. 

After CreateDialoglndirectParam returns, you can free the template, which is used 
only to get the dialog box started. 

hWndParent 
[in] Handle to the window that owns the dialog box. 



542 Volume 2 Microsoft Windows User Interface 

IpDialogFunc 
[in] Pointer to the dialog box procedure. For more information about the dialog box 
procedure, see DialogProc. 

IParamlnit 
[in] Specifies the value to pass to the dialog box in the IParam parameter of the 
WM_INITDIALOG message. 

Return Values 
If the function succeeds, the return value is the window handle to the dialog box. 

If the function fails, the return value is NULL. To get extended error information, call 
GetLastError. 

Remarks 
The CreateDialoglndirectParam function uses the CreateWindowEx function to create 
the dialog box. CreateDialoglndirectParam then sends a WM_INITDIALOG message 
to the dialog box procedure. If the template specifies the DS_SETFONT or 
DS_SHELLFONT style, the function also sends a WM_SETFONT message to the dialog 
box procedure. The function displays the dialog box, if the template specifies the 
WS_ VISIBLE style. Finally, CreateDialoglndirectParam returns the window handle to 
the dialog box. 

After CreateDialoglndirectParam returns, you can use the ShowWindow function to 
display the dialog box (if it is not already visible). To destroy the dialog box, use the 
DestroyWindow function. 

In a standard dialog box template, the DLGTEMPLATE structure and each of the 
DLGITEMTEMPLATE structures must be aligned on DWORD boundaries. The creation 
data array that follows a DLGITEMTEMPLATE structure must also be aligned on a 
DWORD boundary. All of the other variable-length arrays in the template must be 
aligned on WORD boundaries. 

In an extended dialog box template, the DLGTEMPLATEEX header and each of the 
DLGITEMTEMPLATEEX control definitions must be aligned on DWORD boundaries. 
The creation data array, if any, that follows a DLGITEMTEMPLATEEX structure must 
also be aligned on a DWORD boundary. All of the other variabie-iength arrays in the 
template must be aligned on WORD boundaries. 

All character strings in the dialog box template, such as titles for the dialog box and 
buttons, must be Unicode strings. To create code that works on both Windows 95/98 and 
Windows NTlWindows 2000, use the MultiByteToWideChar function to generate these 
Unicode strings. 

Windows 95/98: The system can support a maximum of 255 controls per dialog box 
template. To place more than 255 controls in a dialog box, create the controls in the 
WM_INITDIALOG message handler, instead of placing them in the template. 



"D,~,ff~~tiirements 
Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Chapter 9 Windowing 543 

Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Dialog Boxes Overview, Dialog Box Functions, CreateDialog, CreateDialoglndirect, 
CreateDialogParam, CreateWindowEx, DestroyWindow, DialogProc, 
DLGITEMTEMPLATE, DLGITEMTEMPLATEEX, DLGTEMPLATE, 
DLGTEMPLATEEX, MultiByteToWideChar, ShowWindow, WM_INITDIALOG, 
WM_SETFONT 

CreateDialogParam 
The CreateDialogParam function creates a mode less dialog box from a dialog box 
template resource. Before displaying the dialog box, the function passes an application­
defined value to the dialog box procedure as the IParam parameter of the 
WM_INITDIALOG message. An application can use this value to initialize dialog box 
controls. 

HWNO CNiiltel)1 a 1 QgParam( 
HI~S![Atlt£ hIristat'ice:.:~, . 
LPCTSTR 1pTemplatettBme. 
HWNO hWnqParent. 
bt~p ROC, fpD1 a 7 ogFutfC • 

·I.PAAAM qltln1t:Param 

T:. 

Parameters 
hlnstance 

c,'o , 

/ /h~~l'~t01i100trtt!, 
11 dt~ 1 09 ho~ temp 1 ~ te '. 
lI':hlliodle to own~r .w:indow 

;j I dh'll 09 'WX :procetlure 
1/:1hitialfzat1~nv.lue 

[in] Handle to the module whose executable file contains the dialog box template. 

Ip Templa teName 
[in] Specifies the dialog box template. This parameter is either the pOinter to a null­
terminated character string that specifies the name of the dialog box template or an 
integer value that specifies the resource identifier of the dialog box template. If the 
parameter specifies a resource identifier, its high-order word must be zero and low­
order word must contain the identifier. You can use the MAKEINTRESOURCE macro 
to create this value. 

hWndParent 
[in] Handle to the window that owns the dialog box. 



544 Volume 2 Microsoft Windows User Interface 

IpDialogFunc 
[in] Pointer to the dialog box procedure. For more information about the dialog box 
procedure, see DialogProc. 

dwlnitParam 
[in] Specifies the value to pass to the dialog box procedure in the IParam parameter in 
the WM_INITDIALOG message. 

Return Values 
If the function succeeds, the return value is the window handle to the dialog box. 

If the function fails, the return value is NULL. To get extended error information, call 
GetLastError. 

Remarks 
The CreateDialogParam function uses the CreateWindowEx function to create the 
dialog box. CreateDialogParam then sends a WM_INITDlALOG message (and a 
WM_SETFONT message, if the template specifies the DS_SETFONT or 
DS_SHELLFONT style) to the dialog box procedure. The function displays the dialog 
box if the template specifies the WS_ VISIBLE style. Finally, CreateDialogParam returns 
the window handle of the dialog box. 

After CreateDialogParam returns, the application displays the dialog box (if it is not 
already displayed) by using the ShowWindow function. The application destroys the 
dialog box by using the DestroyWindow function. 

Windows 95/98: The system can support a maximum of 255 controls per dialog box 
template. To place more than 255 controls in a dialog box, create the controls in the 
WM_INITDIALOG message handler, instead of placing them in the template. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Dialog Boxes Overview, Dialog Box Functions, CreateDialog, CreateDialoglndirect, 
CreateDialoglndirectParam, CreateWindowEx, DestroyWindow, DialogProc, 
MAKEINTRESOURCE, ShowWindow, WM_INITDIALOG, WM_SETFONT 



Chapter 9 Windowing 545 

DefDlgProc 
The DefDlgProc function carries out default message processing for a window 
procedure belonging to an application-defined dialog box class. 

LRES!JLTDeflllgProc( 
HW.Nll htJ7g.. . . I/. handle to dia1.o.\lbox 
·lJ.~.Hi't.fsg~,·~r':iJ"'.me~iflige ". " ..•........•..... 
:W,~ 'Jip,;p:am ,,0, :ll':J,:~s:t;~s$:aj~'pa .r .. a:litete.r 

'. (PAR!M1Pi:PJl:J!iv. 4J:s:e{~d,llIe$s.a.ge.p.a:r~m~ter'. 

Parameters 
hDlg 

[in] Handle to the dialog box. 

Msg 
[in] Specifies the message. 

wParam 
[in] Specifies additional message-specific information. 

IParam 
[in] Specifies additional message-specific information. 

Return Values 
The return value specifies the result of the message processing and depends on the 
message sent. 

Remarks 
The DefDlgProc function is the window procedure for the predefined class of dialog box. 
This procedure provides internal processing for the dialog box by forwarding messages 
to the dialog box procedure and carrying out default processing for any messages that 
the dialog box procedure returns as FALSE. Applications that create custom window 
procedures for their custom dialog boxes often use DefDlgProc instead of the 
DefWindowProc function to carry out default message processing. 

Applications create custom dialog box classes by filling a WNDCLASS structure with 
appropriate information and registering the class with the RegisterClass function. Some 
applications fill the structure by using the GetClasslnfo function, specifying the name of 
the predefined dialog box. In such cases, the applications modify at least the 
IpszClassName member before registering. In all cases, the cbWndExtra member of 
WNDCLASS for a custom dialog box class must be set to at least 
DLGWINDOWEXTRA. 

The DefDlgProc function must not be called by a dialog box procedure; doing so results 
in recursive execution. 



546 Volume 2 Microsoft Windows User Interface 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Dialog Boxes Overview, Dialog Box Functions, DefWindowProc, GetClasslnfo, 
RegisterClass, WNDCLASS 

DialogBox 
The DialogBox macro creates a modal dialog box from a dialog box template resource. 
DialogBox does not return control until the specified callback function terminates the 
modal dialog box by calling the EndDialog function. The DialogBox macro uses the 
DialogBoxParam function. 

Parameters 
hlnstance 

[in] Handle to the module whose executable file contains the dialog box template. 

IpTemplate 
[in] Specifies the dialog box template. This parameter is either the pOinter to a nulI­
terminated character string that specifies the name of the dialog box template or an 
integer value that specifies the resource identifier of the dialog box template. If the 
parameter specifies a resource identifier, its high-order word must be zero and its low­
order word must contain the identifier. You can use the MAKEINTRESOURCE macro 
to create this value. 

hWndParent 
[in] Handle to the window that owns the dialog box. 

IpOialogFunc 
[in] Pointer to the dialog box procedure. For more information about the dialog box 
procedure, see DialogProc. 



Chapter 9 Windowing 547 

Return Values 
If the function succeeds, the return value is the nResult parameter in the call to the 
End Dialog function used to terminate the dialog box. 

If the function fails because the hWndParent parameter is invalid, the return value is 
zero. The function returns zero in this case for compatibility with previous versions of 
Windows. If the function fails for any other reason, the return value is -1. To get 
extended error information, call GetLastError. 

Remarks 
The DialogBox macro uses the CreateWindowEx function to create the dialog box. 
DialogBox then sends a WM_INITDIALOG message (and a WM_SETFONT message, 
if the template specifies the DS_SETFONT or DS_SHELLFONT style) to the dialog box 
procedure. The function displays the dialog box (regardless of whether the template 
specifies the WS_ VISIBLE style), disables the owner window, and starts its own 
message loop to retrieve and dispatch messages for the dialog box. 

When the dialog box procedure calls the End Dialog function, DialogBox destroys the 
dialog box, ends the message loop, enables the owner window (if previously enabled), 
and returns the nResult parameter specified by the dialog box procedure when it called 
EndDialog. 

Windows 95/98: The system can support a maximum of 255 controls per dialog box 
template. To place more than 255 controls in a dialog box, create the controls in the 
WM_INITDIALOG message handler, instead of placing them in the template. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1 .0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Dialog Boxes Overview, Dialog Box Functions, CreateDialog, CreateWindowEx, 
DialogBoxlndirect, DialogBoxlndirectParam, DialogBoxParam, DialogProc, 
EndDialog, MAKEINTRESOURCE, WM_INITDIALOG, WM_SETFONT 

Dialog Boxl ndi reet 
The DialogBoxlndirect macro creates a modal dialog box from a dialog box template in 
memory. DialogBoxlndirect does not return control until the specified callback function 



548 Volume 2 Microsoft Windows User Interface 

terminates the modal dialog box by calling the EndDialog function. The 
DialogBoxlndirect macro uses the DialogBoxlndirectParam function. 

Parameters 
hlnstance 

[in] Handle to the module that creates the dialog box. 

IpTemplate 
[in] Pointer to a global memory object that contains the template that 
DialogBoxlndirect uses to create the dialog box. A dialog box template consists of a 
header that describes the dialog box, followed by one or more additional blocks of 
data that describe each of the controls in the dialog box. The template can use either 
the standard format or the extended format. 

In a standard template for a dialog box, the header is a DLGTEMPLATE structure, 
followed by additional variable-length arrays. The data for each control consists of a 
DLGITEMTEMPLATE structure, followed by additional variable-length arrays. 

In an extended template for a dialog box, the header uses the DLGTEMPLATEEX 
format and the control definitions use the DLGITEMTEMPLATEEX format. 

hWndParent 
[in] Handle to the window that owns the dialog box. 

IpDialogFunc 
[in] Pointer to the dialog box procedure. For more information about the dialog box 
procedure, see DialogProc. 

Return Values 
If the function succeeds, the return value is the nResult parameter specified in the call to 
the End Dialog function that was used to terminate the dialog box. 

If the function fails because the hWndParent parameter is invaiid, the return vaiue is 
zero. The function returns zero in this case for compatibility with previous versions of 
Windows. If the function fails for any other reason, the return value is -1. To get 
extended error information, call GetLastError. 

Remarks 
The DialogBoxlndirect macro uses the CreateWindowEx function to create the dialog 
box. DialogBoxlndirect then sends a WM_INITDIALOG message to the dialog box 
procedure. If the template specifies the DS_SETFONT or DS_SHELLFONT style, the 
function also sends a WM_SETFONT message to the dialog box procedure. The 
function displays the dialog box (regardless of whether the template specifies the 



Chapter 9 Windowing 549 

WS_ VISIBLE style), disables the owner window, and starts its own message loop to 
retrieve and dispatch messages for the dialog box. 

When the dialog box procedure calls the EndDialog function, DialogBoxlndirect 
destroys the dialog box, ends the message loop, enables the owner window (if 
previously enabled), and returns the nResult parameter specified by the dialog box 
procedure when it called EndDialog. 

In a standard dialog box template, the DLGTEMPLATE structure and each of the 
DLGITEMTEMPLATE structures must be aligned on DWORD boundaries. The creation 
data array that follows a DLGITEMTEMPLATE structure must also be aligned on a 
DWORD boundary. All of the other variable-length arrays in the template must be 
aligned on WORD boundaries. 

In an extended dialog box template, the DLGTEMPLATEEX header and each of the 
DLGITEMTEMPLATEEX control definitions must be aligned on DWORD boundaries. 
The creation data array, if any, that follows a DLGITEMTEMPLATEEX structure must 
also be aligned on a DWORD boundary. All of the other variable-length arrays in the 
template must be aligned on WORD boundaries. 

All character strings in the dialog box template, such as titles for the dialog box and 
buttons, must be Unicode strings. To create code that works on both Windows 95/98 and 
Windows NTIWindows 2000, use the MultiByteToWideChar function to generate these 
Unicode strings. 

Windows 95/98: The system can support a maximum of 255 controls per dialog box 
template. To place more than 255 controls in a dialog box, create the controls in the 
WM_INITDIALOG message handler, instead of placing them in the template. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Dialog Boxes Overview, Dialog Box Functions, CreateWindowEx, DialogBox, 
DialogBoxlndirectParam, DialogBoxParam, OialogProc, DLGITEMTEMPLATE, 
DLGITEMTEMPLATEEX, DLGTEMPLATE, DLGTEMPLATEEX, EndDialog, 
MultiByteToWideChar, WM_INITDIALOG, WM_SETFONT 



550 Volume 2 Microsoft Windows User Interface 

DialogBoxlndirectParam 
The DialogBoxlndirectParam function creates a modal dialog box from a dialog box 
template in memory. Before displaying the dialog box, the function passes an 
application-defined value to the dialog box procedure as the IParam parameter of the 
WM_INITDIALOG message. An application can use this value to initialize dialog box 
controls. 

Parameters 
hlnstance 

[in] Handle to the module that creates the dialog box. 

hDialog Templa te 
[in] Pointer to a global memory object that contains the template that 
DialogBoxlndirectParam uses to create the dialog box. A dialog box template 
consists of a header that describes the dialog box, followed by one or more additional 
blocks of data that describe each of the controls in the dialog box. The template can 
use either the standard format or the extended format. 

In a standard template for a dialog box, the header is a DLGTEMPLATE structure, 
followed by additional variable-length arrays. The data for each control consists of a 
DLGITEMTEMPLATE structure, followed by additional variable-length arrays. 

In an extended template for a dialog box, the header uses the DLGTEMPLATEEX 
format and the control definitions use the DLGITEMTEMPLATEEX format. 

hWndParent 
[in] Handle to the window that owns the dialog box. 

IpDialogFunc 
[in] Pointer to the dialog box procedure. For more information about the dialog box 
procedure, see DialogProc. 

dwlnitParam 
[in] Specifies the value to pass to the dialog box in the IParam parameter of the 
WM_INITDIALOG message. 

Return Values 
If the function succeeds, the return value is the nResult parameter specified in the call to 
the End Dialog function that was used to terminate the dialog box. 



Chapter 9 Windowing 551 

If the function fails because the hWndParent parameter is invalid, the return value is 
zero. The function returns zero in this case for compatibility with previous versions of 
Windows. If the function fails for any other reason, the return value is -1. To get 
extended error information, call GetLastError. 

Remarks 
The DialogBoxlndirectParam function uses the CreateWindowEx function to create 
the dialog box. DialogBoxlndirectParam then sends a WM_INITDIALOG message to 
the dialog box procedure. If the template specifies the DS_SETFONT or 
DS_SHELLFONT style, the function also sends a WM_SETFONT message to the dialog 
box procedure. The function displays the dialog box (regardless of whether the template 
specifies the WS_ VISIBLE style), disables the owner window, and starts its own 
message loop to retrieve and dispatch messages for the dialog box. 

When the dialog box procedure calls the EndDialog function, DialogBoxlndirectParam 
destroys the dialog box, ends the message loop, enables the owner window (if 
previously enabled), and returns the nResult parameter speCified by the dialog box 
procedure when it called EndDialog. 

In a standard dialog box template, the DLGTEMPLATE structure and each of the 
DLGITEMTEMPLATE structures must be aligned on DWORD boundaries. The creation 
data array that follows a DLGITEMTEMPLATE structure must also be aligned on a 
DWORD boundary. All of the other variable-length arrays in the template must be 
aligned on WORD boundaries. 

In an extended dialog box template, the DLGTEMPLATEEX header and each of the 
DLGITEMTEMPLATEEX control definitions must be aligned on DWORDboundaries. 
The creation data array, if any, that follows a DLGITEMTEMPLATEEX structure must 
also be aligned on a DWORD boundary. All of the other variable-length arrays in the 
template must be aligned on WORD boundaries. 

All character strings in the dialog box template, such as titles for the dialog box and 
buttons, must be Unicode strings. To create code that works on both Windows 95/98 and 
Windows NTIWindows 2000, use the MultiByteToWideChar function to generate these 
Unicode strings. 

Windows 95/98: The system can support a maximum of 255 controls per dialog box 
template. To place more than 255 controls in a dialog box, create the controls in the 
WM_INITDIALOG message handler, instead of placing them in the template. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 



552 Volume 2 Microsoft Windows User Interface 

Dialog Boxes Overview, Dialog Box Functions, CreateWindowEx, DialogBox, 
DialogBoxlndirect, DialogBoxParam, DialogProc, DLGITEMTEMPLATE, 
DLGITEMTEMPLATEEX, DLGTEMPLATE, DLGTEMPLATEEX, End Dialog, 
MultiByteToWideChar, WM_'N'TD'ALOG, WM_SETFONT 

DialogBoxParam 
The DialogBoxParam function creates a modal dialog box from a dialog box template 
resource. Before displaying the dialog box, the function passes an application-defined 
value to the dialog box procedure as the IParam parameter of the WM_'NITDIALOG 
message. An application can use this value to initialize dialog box controls. 

Parameters 
hlnstance 

[in] Handle to the module whose executable file contains the dialog box template. 

Ip TemplateName 
[in] Specifies the dialog box template. This parameter is either the pOinter to a null­
terminated character string that specifies the name of the dialog box template or an 
integer value that specifies the resource identifier of the dialog box template. If the 
parameter specifies a resource identifier, its high-order word must be zero and its low­
order word must contain the identifier. You can use the MAKEINTRESOURCE macro 
to create this value. 

hWndParent 
[in] Handle to the window that owns the dialog box. 

IpDialogFunc 
[in] Pointer to the dialog box procedure. For more information about the dialog box 
procedure, see DialogProc. 

dwlnitParam 
[in] Specifies the value to pass to the dialog box in the IParam parameter of the 
WM_'NITD'ALOG message. 

Return Values 
If the function succeeds, the return value is the value of the nResult parameter specified 
in the call to the End Dialog function used to terminate the dialog box. 



Chapter 9 Windowing 553 

If the function fails because the hWndParent parameter is invalid, the return value is 
zero. The function returns zero in this case for compatibility with previous versions of 
Windows. If the function fails for any other reason, the return value is -1. To get 
extended error information, call GetLastError. 

Remarks 
The DialogBoxParam function uses the CreateWindowEx function to create the dialog 
box. DialogBoxParam then sends a WM_INITDIALOG message (and a WM_SETFONT 
message, if the template specifies the DS_SETFONT or DS_SHELLFONT style) to the 
dialog box procedure. The function displays the dialog box (regardless of whether the 
template specifies the WS_ VISIBLE style), disables the owner window, and starts its 
own message loop to retrieve and dispatch messages for the dialog box. 

When the dialog box procedure calls the EndDialog function, DialogBoxParam 
destroys the dialog box, ends the message loop, enables the owner window (if 
previously enabled), and returns the nResult parameter specified by the dialog box 
procedure when it called EndDialog. 

Windows 95/98: The system can support a maximum of 255 controls per dialog box 
template. To place more than 255 controls in a dialog box, create the controls in the 
WM_INITDIALOG message handler, instead of placing them in the template. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Dialog Boxes Overview, Dialog Box Functions, CreateWindowEx, DialogBox, 
DialogBoxlndirect, DialogBoxlndirectParam, DialogProc, End Dialog, 
MAKEINTRESOURCE, WM_INITDIALOG, WM_SETFONT 

DialogProc 
The DialogProc function is an application-defined callback function used with the 
DialogBox function. It processes messages sent to a modal or modeless dialog box. 
The DLGPROC type defines a pOinter to this callback function. DialogProc is a 
placeholder for the application-defined function name. 

't~t; ·':~~~;E~h .. 
(continued) 



554 Volume 2 Microsoft Windows User Interface 

(continued) 

Parameters 
hwndDlg 

[in] Handle to the dialog box. 

uMsg 
[in] Specifies the message. 

wParam 
[in] Specifies additional message-specific information. 

IParam 
[in] Specifies additional message-specific information. 

Return Values 
Typically, the dialog box procedure should return TRUE if it processed the message, and 
FALSE if it did not. If the dialog box procedure returns FALSE, the dialog box manager 
performs the default dialog box operation in response to the message. 

If the dialog box procedure processes a message that requires a specific return value, 
the dialog box procedure should set the desired return value by calling 
SetWindowLong(hwndDlg, DWL_MSGRESUL T, IResulQ immediately before returning 
TRUE. Note that you must call SetWindowLong immediately before returning TRUE; 
doing so earlier might result in the DWL_MSGRESUL T value being overwritten by a 
nested dialog box message. 

The following messages are exceptions to the general rules stated above. Consult the 
documentation for the specific message for details on the semantics of the return value: 

WM_CHARTOITEM 
WM_COMPAREITEM 
WM_CTLCOLORBTN 
WM_CTLCOLORDLG 
WM_CTLCOLOREDIT 
WM_CTLCOLORLISTBOX 

Remarks 

WM_CTLCOLORSCROLLBAR 
WM_CTLCOLORSTATIC 
WM_INITDIALOG 
WM_QUERYDRAGICON 
WM_ VKEYTOITEM 

You should use the dialog box procedure only if you use the dialog box class for the 
dialog box. This is the default class and is used when no explicit class is specified in the 
dialog box template. Although the dialog box procedure is similar to a window procedure, 
it must not call the DefWindowProc function to process unwanted messages. Unwanted 
messages are processed internally by the dialog box window procedure. 



Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Chapter 9 Windowing 555 

Dialog Boxes Overview, Dialog Box Functions, CreateDialog, CreateDialoglndirect, 
CreateDialoglndirectParam, CreateDialogParam, DefWindowProc, DialogBox, 
DialogBoxlndirect, DialogBoxlndirectParam, DialogBoxParam, SetFocus, 
WM_INITDIALOG 

End Dialog 
The End Dialog function destroys a modal dialog box, causing the system to end any 
processing for the dialog box. 

;~~,~A~AA"M.~~'i~' 
;·;1.~~l)'jjDi!$1 

Parameters 
hDlg 

[in] Handle to the dialog box to be destroyed. 

nResult 
[in] Specifies the value to be returned to the application from the function that created 
the dialog box. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
Dialog boxes created by the DialogBox, DialogBoxParam, DialogBoxlndirect, and 
DialogBoxlndirectParam functions must be destroyed using the End Dialog function. 
An application calls End Dialog from within the dialog box procedure; the function must 
not be used for any other purpose. 

A dialog box procedure can call End Dialog at any time, even during the processing of 
the WM_INITDIALOG message. If your application calls the function while 



556 Volume 2 Microsoft Windows User Interface 

WM_INITDIALOG is being processed, the dialog box is destroyed before it is shown and 
before the input focus is set. 

EndDialog does not destroy the dialog box immediately. Instead, it sets a flag and 
allows the dialog box procedure to return control to the system. The system checks the 
flag before attempting to retrieve the next message from the application queue. If the 
flag is set, the system ends the message loop, destroys the dialog box, and uses the 
value in nResult as the return value from the function that created the dialog box. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Dialog Boxes Overview, Dialog Box Functions, DialogBox, DialogBoxlndirect, 
DialogBoxlndirectParam, DialogBoxParam, WM_INITDIALOG 

GetDialogBaseUnits 
The GetDialogBaseUnits function retrieves the system's dialog box base units, which 
are the average width and height of characters in the system font. For dialog boxes that 
use the system font, you can use these values to convert between dialog box template 
units, as specified in dialog box templates, and pixels. For dialog boxes that do not use 
the system font, the conversion from dialog template units to pixels depends on the font 
used by the dialog box. 

For either type of dialog box, it is easier to use the MapDialogRect function to perform 
the conversion. MapDialogRect takes the font into account and correctly converts a 
rectangle from dialog box template units into pixels. 

:~iJ~"~tiif~j~'1~tVQ~i!p:j:~;:;~;'~;l~:/?,~!J>;:i~~:;;:;t;1,:',;;;r,·./<'·,:·;;',",~'j: •. , .,1",:':;:.;:.',;,:1:.::." •• "., ';"i" 

Parameters 
This function has no parameters. 

Return Values 
The return value is a 32-bit value that contains the dialog box base units. The low-order 
word of the return value contains the horizontal dialog box base unit, and the high-order 
word contains the vertical dialog box base unit. 



Chapter 9 Windowing 557 

Remarks 
The horizontal base unit returned by GetDialogBaseUnits is equal to the average width, 
in pixels, of the characters in the system font; the vertical base unit is equal to the height, 
in pixels, of the font. 

For a dialog box that does not use the system font, the base units are the average width 
and height, in pixels, of the characters in the font of the dialog box. You can use the 
GetTextMetrics and GetTextExtentPoint32 functions to calculate these values for a 
selected font. However, by using the MapDialogRect function, you can avoid errors that 
might result if your calculations differ from those performed by the system. 

Each horizontal base unit is equal to 4 horizontal dialog box template units; each vertical 
base unit is equal to 8 vertical dialog box template units. Therefore, to convert dialog box 
template units to pixels, use the following formulas: 

'!~~~~~~;'f :;l;~:~~:i~~(;ti:;~~~~,tI,~:~~'i:!~;,;:,/,'.::":j"/~"(.",j"~'.,'\;~)r"~'. 
Similarly, to convert from pixels to dialog box template units, use the following formulas: 

~::t~~±:}~,~~::'!~;¥~~lJ;,'t~':~.{:~:::ft?::{}:'i'L; .... .~ ..... 
The multiplication is performed before the division to avoid rounding problems, if base 
units are not divisible by 4 or 8. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Dialog Boxes Overview, Dialog Box Functions, MapDialogRect 

GetDlgCtrliD 
The GetDlgCtrllD function returns the identifier of the specified control. 



558 Volume 2 Microsoft Windows User Interface 

Parameters 
hwndCtl 

[in] Handle to the control. 

Return Values 
If the function succeeds, the return value is the identifier of the control. 

If the function fails, the return value is zero. An invalid value for the hwndCtl parameter, 
for example, will cause the function to fail. To get extended error information, call 
GetLastError. 

Remarks 
GetDlgCtrllD accepts child window handles as well as handles of controls in dialog 
boxes. An application sets the identifier for a child window when it creates the window by 
assigning the identifier value to the hmenu parameter when calling the CreateWindow 
or CreateWindowEx function. 

Although GetDlgCtrllD may return a value if hwndCtl is a handle to a top-level window, 
top-level windows cannot have identifiers, and such a return value is never valid. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.1ib. 

Dialog Boxes Overview, Dialog Box Functions, CreateWindow, CreateWindowEx, 
GetDlgltem 

GetDlgltem 
The GetDlgltem function retrieves a handle to a control in the specified dialog box. 

~7i.~:r~:~'" 
Parameters 
hDlg 

[in] Handle to the dialog box that contains the control. 



Chapter 9 Windowing 559 

nlDDlgltem 
[in] Specifies the identifier of the control to be retrieved. 

Return Values 
If the function succeeds, the return value is the window handle of the specified control. 

If the function fails, the return value is NULL, indicating an invalid dialog box handle or a 
nonexistent control. To get extended error information, call GetLastError. 

Remarks 
You can use the GetDlgltem function with any parent-child window pair, not just with 
dialog boxes. As long as the hDlg parameter specifies a parent window and the child 
window has a unique identifier (as specified by the hMenu parameter in the 
CreateWindow or CreateWindowEx function that created the child window), 
GetDlgltem returns a valid handle to the child window. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Dialog Boxes Overview, Dialog Box Functions, CreateWindow, CreateWindowEx, 
GetDlgltemlnt, GetDlgltemText 

GetDlgltemlnt 
The GetDlgltemlnt function translates the text of a specified control in a dialog box into 
an integer value. 

Parameters 
hDlg 

[in] Handle to the dialog box that contains the control of interest. 



560 Volume 2 Microsoft Windows User Interface 

nlDDlgltem 
[in] Specifies the identifier of the control whose text is to be translated. 

Ip Translated 
[out] Pointer to a variable that receives a success or failure value (TRUE indicates 
success, FALSE indicates failure). 

If this parameter is NULL, the function returns no information about success or failure. 

bSigned 
[in] Specifies whether the function should examine the text for a minus sign at the 
beginning, and return a signed integer value if it finds one (TRUE specifies this should 
be done, FALSE specifies that it should not). 

Return Values 
If the function succeeds, the variable pOinted to by IpTranslated is set to TRUE, and the 
return value is the translated value of the control text. 

If the function fails, the variable pOinted to by IpTranslated is set to FALSE, and the 
return value is zero. Note that, since zero is a possible translated value, a return value 
of zero does not indicate failure by itself. 

If IpTranslated is NULL, the function returns no information about success or failure. 

If the bSigned parameter is TRUE, specifying that the value to be retrieved is a signed 
integer value, cast the return value to an int type. To get extended error information, call 
GetLastError. 

Remarks 
The GetDlgltemlnt function retrieves the text of the specified control by sending the 
control a WM_GETTEXT message. The function translates the retrieved text by stripping 
any extra spaces at the beginning of the text and then converting the decimal digits. The 

function stops translating when it reaches the end of the text or encounters a 
nonnumeric character. 

If the bSigned parameter is TRUE, the GetDlgltemlnt function checks for a minus sign 
(-) at the beginning of the text and translates the text into a signed integer value. 
Otherwise, the function creates an unsigned integer value. 

The GetDlgltemlnt function returns zero if the translated value is greater than INT _MAX 
(for signed numbers) or UINT _MAX (for unsigned numbers). 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 



Chapter 9 Windowing 561 

'Ott~~~AlSo 
Dialog Boxes Overview, Dialog Box Functions, GetDlgCtrllD, GetDlgltem, 
GetDlgltemText, SetDlgltemlnt 

GetDlgltem Text 
The GetDlgltemText function retrieves the title or text associated with a control in a 
dialog box. 

Parameters 
hDlg 

[in] Handle to the dialog box that contains the control. 

nlDDlgltem 
[in] Specifies the identifier of the control whose title or text is to be retrieved. 

IpString 
[out] Pointer to the buffer to receive the title or text. 

nMaxCount 
[in] Specifies the maximum length, in characters, of the string to be copied to the 
buffer pOinted to by IpString. If the length of the string exceeds the limit, the string 
is truncated. 

Return Values 
If the function succeeds, the return value specifies the number of characters copied 
to the buffer, not including the terminating null character. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
The GetDlgltemText function sends a WM_GETTEXT message to the control. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 



562 Volume 2 Microsoft Windows User Interface 

Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Dialog Boxes Overview, Dialog Box Functions, GetDlgltemlnt, SetDlgltemlnt, 
SetDlgltemText, WM_GETTEXT 

GetNextDlgGroupltem 
The GetNextDlgGroupltem function retrieves a handle to the first control in a group of 
controls that precedes (or follows) the specified control in a dialog box. 

Parameters 
hDlg 

[in] Handle to the dialog box being searched. 

hetl 
[in] Handle to the control to be used as the starting point for the search. If this 
parameter is NULL, the function uses the last (or first) control in the dialog box as the 
starting pOint for the search. 

bPrevious 
[in] Specifies how the function is to search the group of controls in the dialog box. If 
this parameter is TRUE, the function searches for the previous control in the group. If 
it is FALSE, the function searches for the next control in the group. 

Return Values 
If GetNextDlgGroupltem succeeds, the return value is a handle to the previous (or next) 
control in the group of controls. 

If the function fails, the return value is NULL. To get extended error information, call 
GetLastError. 

Remarks 
The GetNextDlgGroupltem function searches controls in the order (or reverse order) 
they were created in the dialog box template. The first control in the group must have the 
WS_GROUP style; all other controls in the group must have been created consecutively 
and not have the WS_GROUP style. 



Chapter 9 Windowing 563 

When searching for the previous control, the function returns the first control it locates 
that is visible and not disabled. If the control specified by hCtl has the WS_GROUP style, 
the function temporarily reverses the search to locate the first control having the 
WS_GROUP style, then resumes the search in the original direction, returning the first 
control it locates that is visible and not disabled, or returning hwndCtrl if no such control 
is found. 

When searching for the next control, the function returns the first control it locates that is 
visible and not disabled, and does not have the WS_GROUP style. If it encounters a 
control having the WS_GROUP style, the function reverses the search, locates the first 
control having the WS_GROUP style, and returns this control if it is visible and not 
disabled. Otherwise, the function resumes the search in the original direction, and 
returns the first control it locates that is visible and not disabled, or returns hCtl if no such 
control is found. 

If the search for the next control in the group encounters a window with the 
WS_EX_CONTROLPARENT style, the system recursively searches the window's 
children. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Dialog Boxes Overview, Dialog Box Functions, GetNextDlgTabltem 

GetNextDlgTabltem 
The GetNextDlgTabltem function retrieves a handle to the first control that has the 
WS_ TABSTOP style that precedes (or follows) the specified control. 

Parameters 
hDIg 

[in] Handle to the dialog box to be searched. 



564 Volume 2 Microsoft Windows User Interface 

hCtl 
[in] Handle to the control to be used as the starting point for the search. If this 
parameter is NULL, the function uses the last (or first) control in the dialog box as the 
starting point for the search. 

bPrevious 
[in] Specifies how the function is to search the dialog box. If this parameter is TRUE, 
the function searches for the previous control in the dialog box. If this parameter is 
FALSE, the function searches for the next control in the dialog box. 

Return Values 
If the function succeeds, the return value is the window handle of the previous (or next) 
control that has the WS_ T ABSTOP style set. 

If the function fails, the return value is NULL. To get extended error information, call 
GetLastError. 

Remarks 
The GetNextDlgTabltem function searches controls in the order (or reverse order) they 
were created in the dialog box template. The function returns the first control it locates 
that is visible and not disabled, and has the WS_ TABSTOP style. If no such control 
exists, the function returns hCtl. 

If the search for the next control with the WS_ T ABSTOP style encounters a window with 
the WS_EX_CONTROLPARENT style, the system recursively searches the window's 
children. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1 .0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Dialog Boxes Overview, Dialog Box Functions, GetDlgltem, GetNextDlgGroupltem 

IsDialogMessage 
The IsDialogMessage function determines whether a message is intended for the 
specified dialog box and, if it is, processes the message . 

. 80(11.:. l~n1a 16.s*~~e'f' .~~ .'; ~ ';>:'.:.:L .. 

:. ~.~:M1~~:;\.J1j:··.·:b~~~~J'J:t~.~~~·~( , . 
. ··LPlotS~;.tPMsgt: ;\il;lli~ha~;>t:IlI:~es~' 
)~;. ""'; < 'c ,>.;:, '>~;:'1/> f~ :~~~«::><Y»fc ,;.%:~~::~>.:~;,:{1~;tc~L'(J;!:1 c 



Parameters 
hDlg 

[in] Handle to the dialog box. 

/pMsg 

Chapter 9 Windowing 565 

[in] Pointer to an MSG structure that contains the message to be checked. 

Return Values 
If the message has been processed, the return value is nonzero. 

If the message has not been processed, the return value is zero. 

Remarks 
Although the IsDialogMessage function is intended for modeless dialog boxes, you can 
use it with any window that contains controls, enabling the windows to provide the same 
keyboard selection as is used in a dialog box. 

When IsDialogMessage processes a message, it checks for keyboard messages and 
converts them into selections for the corresponding dialog box. For example, the TAB 
key, when pressed, selects the next control or group of controls, and the DOWN 
ARROW key, when pressed, selects the next control in a group. 

Because the IsDialogMessage function performs all necessary translating and 
dispatching of messages, a message processed by IsDialogMessage must not be 
passed to the TranslateMessage or DispatchMessage function. 

Is Dialog Message sends WM_GETDLGCODE messages to the dialog box procedure 
to determine which keys should be processed. 

IsDialogMessage can send DM_GETDEFID and DM_SETDEFID messages to the 
window. These messages are defined in the winuser.h header file as WM_USER and 
WM_USER + 1, so conflicts are possible with application-defined messages having the 
same values. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Dialog Boxes Overview, Dialog Box Functions, DispatchMessage, DM_GETDEFID, 
DM_SETDEFID, MSG, TranslateMessage, WM_GETDLGCODE, WM_USER 



566 Volume 2 Microsoft Windows User Interface 

MapDialogRect 
The MapDialogRect function converts the specified dialog box units to screen units 
(pixels). The function replaces the coordinates in the specified RECT structure with the 
converted coordinates, which allows the structure to be used to create a dialog box or 
position a control within a dialog box. 

Parameters 
hDlg 

[in] Handle to a dialog box. This function accepts only handles returned by one of the 
dialog box creation functions; handles for other windows are not valid. 

IpRect 
[in/out] Pointer to a RECT structure that contains the dialog box coordinates to be 
converted. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
The MapDialogRect function assumes that the initial coordinates in the RECT structure 
represent dialog box units. To convert these coordinates from dialog box units to pixels, 
the function retrieves the current horizontal and vertical base units for the dialog box, 
then applies the following formulas: 

In most cases, the base units for the dialog box are the same as those retrieved by using 
the GetDialogBaseUnits function. If the dialog box template has the DS_SETFONT or 
DS_SHELLFONT style, the base units are the average width and height, in pixels, of the 
characters in the font specified by the template. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 



Chapter 9 Windowing 567 

Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Dialog Boxes Overview, Dialog Box Functions, CreateDialog, CreateDialoglndirect, 
CreateDialoglndirectParam, CreateDialogParam, DialogBox, DialogBoxlndirect, 
DialogBoxlndirectParam, DialogBoxParam, GetDialogBaseUnits, RECT 

MessageBox 
The MessageBox function creates, displays, and operates a message box. The 
message box contains an application-defined message and title, plus any combination 
of predefined icons and push buttons. 

To specify a language identifier, use the MessageBoxEx function. 

Parameters 
hWnd 

[in] Handle to the owner window of the message box to be created. If this parameter is 
NULL, the message box has no owner window. 

IpText 
[in] Pointer to a null-terminated string that contains the message to be displayed. 

IpCaption 
[in] Pointer to a null-terminated string that contains the dialog box title. If this 
parameter is NULL, the default title Error is used. 

uType 
[in] Specifies the contents and behavior of the dialog box. This parameter can be a 
combination of flags from the following groups of flags. 

To indicate the buttons displayed in the message box, specify one of the following 
values: 

Value Meaning 

MB_ABORTRETRYIGNORE The message box contains three push buttons: 
Abort, Retry, and Ignore. 

(continued) 



568 Volume 2 Microsoft Windows User Interface 

(continued) 

Value Meaning 

MB_CANCEL TRYCONTINUE Windows 2000: The message box contains three 
push buttons: Cancel, Try Again, and Continue. 
Use this message box type instead of 
MB_ABORTRETRYIGNORE. 

MB_HELP Windows 95/98, Windows NT 4.0 and later: Adds 
a Help button to the message box. When the user 
clicks the Help button or presses F1 , the system 
sends a WM_HELP message to the owner. 

MB_OK The message box contains one push button: OK. 
This is the default. 

MB_OKCANCEL The message box contains two push buttons: OK 
and Cancel. 

MB_RETRYCANCEL The message box contains two push buttons: Retry 
and Cancel. 

MB_ YESNO The message box contains two push buttons: Yes 
and No. 

MB_ YESNOCANCEL The message box contains three push buttons: 
Yes, No, and Cancel. 

To display an icon in the message box, specify one of the following values: 

Value Meaning 

MB_ICONEXCLAMATION, 
MB_ICONWARNING 
MB_ICONASTERISK, 
MB_ICONINFORMATION 
MB_ICONQUESTION 
MB_ICONERROR, 
MB_ICONHAND, 
MB_ICONSTOP 

An exclamation-point icon appears in the 
message box. 
An icon consisting of a lowercase letter i in a circle 
appears in the message box. 
A question-mark icon appears in the message box. 
A stop-sign icon appears in the message box. 

To indicate the default button, specify one of the following values: 

Value Meaning 

MB_DEFBUTTON2 
MB_DEFBUTTON3 
MB_DEFBUTTON4 

The first button is the default button. 
MB_DEFBUTTON1 is the default unless 
MB_DEFBUTTON2, MB_DEFBUTTON3, or 
MB_DEFBUTTON4 is specified. 
The second button is the default button. 
The third button is the default button. 
The fourth button is the default button. 



Value 

Chapter 9 Windowing 569 

To indicate the modality of the dialog box, specify one of the following values: 

Value Meaning 

MB_SYSTEMMODAL 

The user must respond to the message box before 
continuing work in the window identified by the 
hWnd parameter. However, the user can move to 
the windows of other threads and work in those 
windows. 

Depending on the hierarchy of windows in the 
application, the user might be able to move to 
other windows within the thread. All child windows 
of the parent of the message box are automatically 
disabled, but popup windows are not. 

MB_APPLMODAL is the default if neither 
MB_SYSTEMMODAL nor MB_ T ASKMODAL is 
specified. 

Same as MB_APPLMODAL, except that the 
message box has the WS_EX_ TOPMOST style. 
Use system-modal message boxes to notify the 
user of serious, potentially damaging errors that 
require immediate attention (for example, running 
out of memory). This flag has no effect on the 
user's ability to interact with windows other than 
those associated with hWnd. 

Same as MB_APPLMODAL, except that all the 
top-level windows belonging to the current thread 
are disabled if the hWndparameter is NULL. Use 
this flag when the calling application or library does 
not have a window handle available, but still needs 
to prevent input to other windows in the calling 
thread without suspending other threads. 

To specify other options, use one or more of the following values: 

Meaning 

Windows NT/2000: Same as 
MB_SERVICE_NOTIFICATION, except that the 
system will display the message box only on the 
default desktop of the interactive window station. For 
more information, see Window Stations and 
Desktops. 

Windows NT 4.0 and earlier: If the current input 
desktop is not the default desktop, MessageBox fails. 

(continued) 



570 Volume 2 Microsoft Windows User Interface 

(continued) 

Value 

MB_RIGHT 

MB_RTLREADING 

MB_SETFOREGROUND 

Return Values 

Meaning 

Windows 2000: If the current input desktop is not the 
default desktop, MessageBox does not return until 
the user switches to the default desktop. 

Windows 95/98: This flag has no effect. 

The text is right-justified. 

Displays message and caption text using right-to-Ieft 
reading order on Hebrew and Arabic systems. 

Windows NT/2000: The caller is a service notifying 
the user of an event. The function displays a 
message box on the current active desktop, even if 
there is no user logged on to the computer. 

Terminal Services: If the calling thread has an 
impersonation token, the function directs the 
message box to the session specified in the 
impersonation token. 

If this flag is set, the hWnd parameter must be NULL. 
This is so the message box can appear on a desktop 
other than the desktop corresponding to the hWnd. 

For more information on the changes between 
Windows NT 3.51 and Windows NT 4.0, see 
Remarks. 

Windows NT/2000: This value corresponds to the 
value defined for MB_SERVICE_NOTIFICATION for 
Windows NT version 3.51. 
For more information on the changes between 
Windows NT 3.51 and Windows NT 4.0, see 
Remarks. 
The message box becomes the foreground window. 
Internally, the system calls the 
SetForegroundWindow function for the message 
box. 
The message box is created with the 
WS_EX_ TOPMOST window style. 

If the function succeeds, the return value is one of the following menu-item values: 

Value Meaning 

IDABORT 

IDCANCEL 

Abort button was selected. 

Cancel button was selected. 



Value 

IDCONTINUE 

IDIGNORE 

IDNO 

IDOK 

IDRETRY 
IDTRYAGAIN 

IDYES 

Chapter 9 Windowing 571 

Meaning 

Continue button was selected. 
Ignore button was selected. 

No button was selected. 

OK button was selected. 

Retry button was selected. 

Try Again button was selected. 

Yes button was selected. 

If a message box has a Cancel button, the function returns the IDCANCEL value if either 
the ESC key is pressed or the Cancel button is selected. If the message box has no 
Cancel button, pressing ESC has no effect. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
When you use a system-modal message box to indicate that the system is low on 
memory, the strings pointed to by the IpText and IpCaption parameters should not be 
taken from a resource file, because an attempt to load the resource might fail. 

If you create a message box while a dialog box is present, use a handle to the dialog 
box as the hWnd parameter. The hWnd parameter should not identify a child window, 
such as a control in a dialog box. 

Windows 95: The system can support a maximum of 16,364 window handles. 

Windows NT/2000: The value of MB_SERVICE_NOTIFICATION changed, starting 
with Windows NT 4.0. Windows NT 4.0 provides backward compatibility for pre-existing 
services by mapping the old value to the new value in the implementation of 
MessageBox. This mapping is only done for executables that have a version number 
less than 4.0, as set by the linker. 

To build a service that uses MB_SERVICE_NOTIFICATION, and can run on both 
Windows NT 3.x and Windows NT 4.0, you can do one of the following: 

• At link-time, specify a version number less than 4.0 

• At link-time, specify version 4.0. At run time, use the GetVersionEx function to check 
the system version. Then, when running on Windows NT 3.x, 
use MB_SERVICE_NOTIFICATION_NT3X and, on Windows NT 4.0, use 
MB_SERVICE_NOTIFICATION. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 



572 Volume 2 Microsoft Windows User Interface 

Unicode: Implemented as Unicode and ANSI versions on Windows and 
Windows NT/2000. 

Dialog Boxes Overview, Dialog Box Functions, FlashWindow, MessageBeep, 
MessageBoxEx, MessageBoxlndirect, SetForegroundWindow 

MessageBoxEx 
The MessageBoxEx function creates, displays, and operates a message box. The 
message box contains an application-defined message and title, plus any combination of 
predefined icons and push buttons. The wLanguageld parameter specifies which set of 
language resources is used for the predefined push buttons. 

1~t.,.&$;sa9'e6C>iti(': ...' .; 
'~HWNI:Fhwn.d:i; ••..... . lillahdl ~\'in~r\itrrddw 

i"!I:iff;::ti'a~*~~~ijti 
~cl ;:o:v.~r:" <;c ~: >: :>:'1 ":~o;i' .~'f 

Parameters 
hWnd 

[in] Handle to the owner window of the message box to be created. If this parameter is 
NULL, the message box has no owner window. 

IpText 
[in] Pointer to a null-terminated string that contains the message to be displayed. 

IpCaption 
[in] Pointer to a nUll-terminated string that contains the dialog box title. If this 
parameter is NULL, the default title Error is used. 

uType 
[in] Specifies the contents and behavior of the dialog box. This parameter can be a 
combination of flags from the following groups of flags. 

To indicate the buttons displayed in the message box, specify one of the following 
values: 

Value Meaning 

MB_ABORTRETRYIGNORE The message box contains three push buttons: 
Abort, Retry, and Ignore. 



Chapter 9 Windowing 573 

Value Meaning 

MB_CANCEL TRYCONTINUE Windows 2000: The message box contains three 
push buttons: Cancel, Try Again, and Continue. 
Use this message box type instead of 
MB_ABORTRETRYIGNORE. 

MB_HELP Windows 95/98, Windows NT 4.0 and later: 
Adds a Help button to the message box. When 
the user clicks the Help button or presses F1, the 
system sends a WM_HELP message to the 
owner. 

MB_OK The message box contains one push button: OK. 
This is the default. 

MB_OKCANCEL The message box contains two push buttons: OK 
and Cancel. 

MB_RETRYCANCEL The message box contains two push buttons: 
Retry and Cancel. 

MB_ YESNO The message box contains two push buttons: Yes 
and No. 

MB_ YESNOCANCEL The message box contains three push buttons: 
Yes, No, and Cancel. 

To display an icon in the message box, specify one of the following values: 

Value Meaning 

MB_ICONEXCLAMATION, 
MB_ICONWARNING 
MB_ICONASTERISK, 
MB_ICONINFORMATION 
MB_ICONQUESTION 

MB_ICONERROR, 
MB_ICONHAND, 
MB_ICONSTOP 

An exclamation-point icon appears in the 
message box. 
An icon consisting of a lowercase letter i in a 
circle appears in the message box. 
A question-mark icon appears in the 
message box. 
A stop-sign icon appears in the message box. 

To indicate the default button, specify one of the following values: 

Value Meaning 

The first button is the default button. 
MB_DEFBUTTON1 is the default unless 
MB_DEFBUTTON2, MB_DEFBUTTON3, or 
MB_DEFBUTTON4 is specified. 
The second button is the default button. 

(continued) 



574 Volume 2 Microsoft Windows User Interface 

(continued) 

Value 

MB_DEFBUTTON3 
MB_DEFBUTTON4 

Meaning 

The third button is the default button. 
The fourth button is the default button. 

To indicate the modality of the dialog box, specify one of the following values: 

Value Meaning 

MB_APPLMODAL The user must respond to the message box before 
continuing work in the window identified by the hWnd 
parameter. However, the user can move to the windows of 
other threads and work in those windows. 

Depending on the hierarchy of windows in the application, 
the user might be able to move to other windows within the 
thread. All child windows of the parent of the message box 
are automatically disabled, but popup windows are not. 

MB_APPLMODAL is the default if neither 
MB_SYSTEMMODAL nor MB_ TASKMODAL is specified. 

MB_SYSTEMMODAL Same as MB_APPLMODAL, except that the message box 
has the WS_EX_ TOPMOST style. Use system-modal 
message boxes to notify the user of serious, potentially 
damaging errors that require immediate attention (for 
example, running out of memory). This flag has no effect 
on the user's ability to interact with windows other than 
those associated with hWnd. 

MB_TASKMODAL Same as MB_APPLMODAL, except that all the top-level 
windows belonging to the current thread are disabled if the 
hWnd parameter is NULL. Use this flag when the calling 
application or library does not have a window handle 
available, but still needs to prevent input to other windows 
in the calling thread without suspending other threads. 

To specify other options, use one or more of the following values: 

Values Meaning 

MB_DEFAUL T _DESKTOP _ONLY Windows NT/2000: Same as 
MB_SERVICE_NOTIFICATION, except that the system will 
display the message box only on the default desktop of the 
interactive window station. For more information, see 
Window Stations and Desktops. 



Values 

MB_RTLREADING 

Chapter 9 Windowing 575 

Meaning 

Windows NT 4.0 and earlier: If the current input 
desktop is not the default desktop, MessageBoxEx 
fails. 

Windows 2000: If the current input desktop is not the 
default desktop, MessageBoxEx does not return until 
the user switches to the default desktop. 

Windows 95/98: This flag has no effect. 

The text is right-justified. 

Displays message and caption text using right-to-Ieft 
reading order on Hebrew and Arabic systems. 

Windows NT/2000: The caller is a service notifying the 
user of an event. The function displays a message box 
on the current active desktop, even if there is no user 
logged on to the computer. 

Terminal Services: If the calling thread has an 
impersonation token, the function directs the message 
box to the session specified in the impersonation token. 

If this flag is set, the hWnd parameter must be NULL. 
This is so the message box can appear on a desktop 
other than the desktop corresponding to the hWnd. 

For more information on the changes between 
Windows NT 3.51 and Windows NT 4.0, see Remarks. 

MB_SERVICE_NOTIFICATION_NT3X Windows NT/2000: This value corresponds to the 
value defined for MB_SERVICE_NOTIFICATION for 

MB_SETFOREGROUND 

Windows NT version 3.51. 
For more information on the changes between 
Windows NT 3.51 and Windows NT 4.0, see Remarks. 
The message box becomes the foreground window. 
Internally, the system calls the SetForegroundWindow 
function for the message box. 

The message box is created with the 
WS_EX_ TOPMOST window style. 



576 Volume 2 Microsoft Windows User Interface 

wLanguageld 
[in] Specifies the language in which to display the text contained in the predefined 
push buttons. This value must be in the form returned by the MAKELANGID macro. 
For a list of the language identifiers supported by Win32, see Language Identifiers. 

Note that each localized release of Windows 95/98 and Windows NTlWindows 2000 
typically contains resources only for a limited set of languages. Thus, for example, the 
U.S. version offers LANG_ENGLISH, the French version offers LANG_FRENCH, the 
German version offers LANG_GERMAN, and the Japanese version offers 
LANG_JAPANESE. Each version offers LANG_NEUTRAL. This limits the set of 
values that can be used with the wLanguageld parameter. Before specifying a 
language identifier, you should enumerate the locales that are installed on a system. 

Return Values 
If the function succeeds, the return value is one of the following menu-item values: 

Value Meaning 

IDABORT Abort button was selected. 

IDCANCEL Cancel button was selected. 

IDCONTINUE Continue button was selected. 

IDIGNORE Ignore button was selected. 

IDNO No button was selected. 

IDOK OK button was selected. 

IDRETRY Retry button was selected. 

IDTRYAGAIN Try Again button was selected. 

IDYES Yes button was selected. 

If a message box has a Cancel button, the function returns the IDCANCEL value when 
either the ESC key or Cancel button is pressed. If the message box has no Cancel 
button, pressing the ESC key has no effect. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
When you create a system-modal message box to indicate that the system is low on 
memory, the strings passed as the IpText and IpCaption parameters should not be taken 
from a resource file, because an attempt to load the resource might fail. 

If you create a message box while a dialog box is present, use a handle to the dialog 
box as the hWnd parameter. The hWnd parameter should not identify a child window, 
such as a dialog box. 

Windows 95: The system can support a maximum of 16,364 window handles. 



Chapter 9 Windowing 577 

Windows NT/2000: The value of MB_SERVICE_NOTIFICATION changed, starting with 
Windows NT 4.0. Windows NT 4.0 provides backward compatibility for pre-existing 
services by mapping the old value to the new value in the implementation of 
MessageBoxEx. This mapping is only done for executables that have a version number 
less than 4.0, as set by the linker. 

To build a service that uses MB_SERVICE_NOTIFICATION, and can run on both 
Windows NT 3.x and Windows NT 4.0, you can do one of the following: 

• At link-time, specify a version number less than 4.0 

• At link-time, specify version 4.0. At run time, use the GetVersionEx function to check 
the system version. Then, when running on Windows NT 3.x, use 
MB_SERVICE_NOTIFICATION_NT3X and, on Windows NT 4.0, use 
MB_SERVICE_NOTIFICATION. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows and 
Windows NT/2000. 

Dialog Boxes Overview, Dialog Box Functions, MAKELANGID, MessageBeep, 
MessageBox, MessageBoxlndirect, SetForegroundWindow 

MessageBoxlndirect 
The MessageBoxlndirect function creates, displays, and operates a message box. The 
message box contains application-defined message text and title, any icon, and any 
combination of predefined push buttons. 
5ntMes'sageB(jxlndireet( ". 

CONst;lPJ4SGIrOXPARAMS '1 pMsg80xPariims / / lliesSage rroxfjafaJlleters 
); 

Parameters 
IpMsgBoxParams 

[in] Pointer to a MSGBOXPARAMS structure that contains information used to display 
the message box. 

Return Values 
If the function succeeds, the return value is one of the following menu-item values: 



578 Volume 2 Microsoft Windows User Interface 

Value Meaning 

IDABORT Abort button was selected. 

IDCANCEL Cancel button was selected. 

IDCONTINUE Continue button was selected. 

IDIGNORE Ignore button was selected. 

IDNO No button was selected. 

IDOK OK button was selected. 

IDRETRY Retry button was selected. 

IDTRYAGAIN Try Again button was selected. 

IDYES Yes button was selected. 

If a message box has a Cancel button, the function returns the IDCANCEL value if either 
the ESC key is pressed or the Cancel button is selected. If the message box has no 
Cancel button, pressing ESC has no effect. 

If there is not enough memory to create the message box, the return value is zero. 

Remarks 
When you use a system-modal message box to indicate that the system is low on 
memory, the strings pointed to by the IpszText and IpszCaption members of the 
MSGBOXPARAMS structure should not be taken from a resource file, because an 
attempt to load the resource might fail. 

If you create a message box while a dialog box is present, use a handle to the dialog 
box as the hWnd parameter. The hWnd parameter should not identify a child window, 
such as a control in a dialog box. 

Windows 95: The system can support a maximum of 16,364 window handles. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; inciude windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Dialog Boxes Overview, Dialog Box Functions, MessageBox, MessageBoxEx, 
MSGBOXPARAMS 



Chapter 9 Windowing 579 

SendDlgltemMessage 
The SendDlgltemMessage function sends a message to the specified control in a 
dialog box. 

Parameters 
hDlg 

[in] Handle to the dialog box that contains the control. 

nlDDlgltem 
[in] Specifies the identifier of the control that receives the message. 

Msg 
[in] Specifies the message to be sent. 

wParam 
[in] Specifies additional message-specific information. 

IParam 
[in] Specifies additional message-specific information. 

Return Values 
The return value specifies the result of the message processing and depends on the 
message sent. 

Remarks 
The SendDlgltemMessage function does not return until the message has been 
processed. 

Using SendDlgltemMessage is identical to retrieving a handle to the specified control 
and calling the Send Message function. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 



580 Volume 2 Microsoft Windows User Interface 

Dialog Boxes Overview, Dialog Box Functions, Send Message 

SetDlgltemlnt 
The SetDlgltemlnt function sets the text of a control in a dialog box to the string 
representation of a specified integer value. 

Parameters 
hDlg 

[in] Handle to the dialog box that contains the control. 

nlDDlgltem 
[in] Specifies the control to be changed. 

uValue 
[in] Specifies the integer value used to generate the item text. 

bSigned 
[in] Specifies whether the uValue parameter is signed or unsigned. If this parameter is 
TRUE, uValue is signed. If this parameter is TRUE and uValue is less than zero, a 
minus sign is placed before the first digit in the string. If this parameter is FALSE, 
uValue is unsigned. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
To set the new text, this function sends a WM_SETTEXT message to the specified 
control. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 



Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Chapter 9 Windowing 581 

Dialog Boxes Overview, Dialog Box Functions, GetDlgltemlnt, SetDlgltemText, 
WM_SETTEXT 

SetDlgltemText 
The SetDlgltemText function sets the title or text of a control in a dialog box. 

Parameters 
hDlg 

[in] Handle to the dialog box that contains the control. 

nlDDlgltem 
[in] Specifies the control with a title or text to be set. 

IpString 
[in] Pointer to the null-terminated string that contains the text to be copied to the 
control. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
The SetDlgltemText function sends a WM_SETTEXT message to the specified control. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 



582 Volume 2 Microsoft Windows User Interface 

Dialog Boxes Overview, Dialog Box Functions, GetDlgltemlnt, GetDlgltemText, 
SetDlgltemlnt, WM_SETTEXT 

Dialog Box Structures 

DLGITEMTEMPLATE 
The DLGITEMTEMPLATE structure defines the dimensions and style of a control in a 
dialog box. One or more of these structures are combined with a DLGTEMPLATE 
structure to form a standard template for a dialog box. 

Members 
style 

Specifies the style of the control. This member can be a combination of window style 
values (such as WS_BORDER) and one or more of the control style values (such as 
BS_PUSHBUnON or ES_LEFT). 

dwExtendedStyle 

x 

y 

ex 

ey 

Specifies extended styles for a window. This member is not used to create controls in 
dialog boxes, but applications that use dialog box templates can use it to create other 
types of windows. 

Specifies the x-coordinate, in dialog box units, of the upper-left corner of the control. 
This coordinate is always relative to the upper-left corner of the dialog box's client 
area. 

Specifies the y-coordinate, in dialog box units, of the upper-left corner of the control. 
This coordinate is always relative to the upper-left corner of the dialog box's client 
area. 

Specifies the width, in dialog box units, of the control. 

Specifies the height, in dialog box units, of the control. 



Chapter 9 Windowing 583 

id 
Specifies the control identifier. 

Windows 95/98: Only the first byte is used (that is, 255 is the maximum). 

Remarks 
In a standard template for a dialog box, the DLGITEMTEMPLATE structure is always 
immediately followed by three variable-length arrays specifying the class, title, and 
creation data for the control. Each array consists of one or more 16-bit elements. 

Each DLGITEMTEMPLATE structure in the template must be aligned on a DWORD 
boundary. The class and title arrays must be aligned on WORD boundaries. The 
creation data array must be aligned on a WORD boundary. 

Immediately following each DLGITEMTEMPLATE structure is a class array that 
specifies the window class of the control. If the first element of this array is any value 
other than OxFFFF, the system treats the array as a null-terminated Unicode string that 
specifies the name of a registered window class. If the first element is OxFFFF, the array 
has one additional element that specifies the ordinal value of a predefined system class. 
The ordinal can be one of the following atom values: 

Value Meaning 

Ox0080 Button 

Ox0081 Edit 

Ox0082 Static 

Ox0083 List box 

Ox0084 Scroll bar 

Ox0085 Combo box 

Following the class array is a title array that contains the initial text or resource identifier 
of the control. If the first element of this array is OxFFFF, the array has one additional 
element that specifies an ordinal value of a resource, such as an icon, in an executable 
file. You can use a resource identifier for controls, such as static icon controls, that load 
and display an icon or other resource rather than text. If the first element is any value 
other than OxFFFF, the system treats the array as a null-terminated Unicode string that 
specifies the initial text. 

The creation data array begins at the next WORD boundary after the title array. This 
creation data can be of any size and format. If the first word of the creation data array is 
nonzero, it indicates the size, in bytes, of the creation data (including the size word). The 
control's window procedure must be able to interpret the data. When the system creates 
the control, it passes a pointer to this data in the IParam parameter of the WM_CREATE 
message that it sends to the control. 

If you specify character strings in the class and title arrays, you must use Unicode 
strings. To create code that works on both Windows 95/98 and Windows NTlWindows 
2000, use the MultiByteToWideChar function to generate these Unicode strings. 



584 Volume 2 Microsoft Windows User Interface 

The x, y, ex, and ey members specify values in dialog box units. You can convert these 
values to screen units (pixels) by using the MapDialogReet function. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Dialog Boxes Overview, Dialog Box Structures, CreateDialoglndirect, 
CreateDialoglndirectParam, CreateWindowEx, DialogBoxlndirect, 
DialogBoxlndirectParam, DLGITEMTEMPLATEEX, DLGTEMPLATE, 
DLGTEMPLATEEX, MapDialogRect, MultiByteToWideChar, WM_CREATE 

DLGITEMTEMPLATEEX 
The DLGITEMTEMPLATEEX structure is not defined in any standard header file. The 
structure definition is provided here to explain the format of an extended template for a 
dialog box. 

For each control in a dialog box, an extended dialog box template has a block of data 
that uses the DLGITEMTEMPLATEEX format to describe the control. For a description 
of the format of an extended dialog box template, see DLGTEMPLA TEEX. 

Members 
helplD 

Specifies the help context identifier for the control. When the system sends a 
WM_HELP message, it passes the helplD value in the dwContextld member of the 
HELPINFO structure. 



Chapter 9 Windowing 585 

exStyle 
Specifies extended styles for a window. This member is not used to create controls in 
dialog boxes, but applications that use dialog box templates can use it to create other 
types of windows. 

style 

x 

y 

ex 

ey 

id 

Specifies the style of the control. This member can be a combination of window style 
values (such as WS_BORDER) and one or more of the control style values (such as 
BS_PUSHBUTTON or ES_LEFT). 

Specifies the x-coordinate, in dialog box units, of the upper-left corner of the control. 
This coordinate is always relative to the upper-left corner of the dialog box's client 
area. 

Specifies the y-coordinate, in dialog box units, of the upper-left corner of the control. 
This coordinate is always relative to the upper-left corner of the dialog box's client 
area. 

Specifies the width, in dialog box units, of the control. 

Specifies the height, in dialog box units, of the control. 

Specifies the control identifier. 

windowClass 
Specifies a variable-length array of 16-bit elements that specifies the window class of 
the control. If the first element of this array is any value other than OxFFFF, the 
system treats the array as a null-terminated Unicode string that specifies the name of 
a registered window class. 

If the first element is OxFFFF, the array has one additional element that specifies the 
ordinal value of a predefined system class. The ordinal can be one of the following 
atom values: 

Value Meaning 

OxOO80 Button 

OxOO81 Edit 

OxOO82 Static 

OxOO83 List box 

OxOO84 Scroll bar 

OxOO85 Combo box 

title 
Specifies a variable-length array of 16-bit elements that contains the initial text or 
resource identifier of the control. If the first element of this array is OxFFFF, the array 
has one additional element that specifies the ordinal value of a resource, such as an 



586 Volume 2 Microsoft Windows User Interface 

icon, in an executable file. You can use a resource identifier for controls, such as 
static icon controls, that load and display an icon or other resource rather than text. 

If the first element is any value other than OxFFFF, the system treats the array as a 
null-terminated Unicode string that specifies the initial text. 

extraCount 
Specifies the number of bytes of creation data that follow this member. If this value is 
greater than zero, the creation data begins at the next WORD boundary. This creation 
data can be of any size and format. The control's window procedure must be able to 
interpret the data. When the system creates the control, it passes a pointer to this 
data in the IParam parameter of the WM_CREATE message that it sends to the 
control. 

Remarks 
An extended template for a dialog box consists of a DLGTEMPLATEEX header, 
followed by a DLGITEMTEMPLATEEX structure for each control in the dialog box. 

Each DLGITEMTEMPLATEEX structure must be aligned on a DWORD boundary. The 
variable-length windowClass and title arrays must be aligned on WORD boundaries. 
The creation data array, if any, must be aligned on a WORD boundary. 

If you specify character strings in the windowClass and title arrays, you must use 
Unicode strings. To create code that works on both Windows 95/98 and 
Windows NTlWindows 2000, use the MultiByteToWideChar function to generate these 
Unicode strings. 

The x, y, ex, and ey members specify values in dialog box units. You can convert these 
values to screen units (pixels) by using the MapDialogReet function. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 

Dialog Boxes Overview, Dialog Box Structures, CreateDialoglndirect, 
CreateDialoglndireetParam, CreateWindowEx, DialogBoxlndireet, 
DialogBoxlndireetParam, DLGTEMPLATEEX, MapDialogReet, 
MultiByteToWideChar, WM_CREATE, WM_HELP 

DLGTEMPLATE 
The DLGTEMPLATE structure defines the dimensions and style of a dialog box. This 
structure, which is always the first in a standard template for a dialog box, also specifies 



Chapter 9 Windowing 587 

the number of controls in the dialog box and, therefore, specifies the number of 
subsequent DLGITEMTEMPLATE structures in the template. 

Members 
style 

Specifies the style of the dialog box. This member can be a combination of window 
style values (such as WS_CAPTION or WS_SYSMENU) and dialog box style values 
(such as OS_CENTER). 

For a list of window styles, see Create Window. For a list of dialog box styles, see 
Dialog Box Template Styles. 

If the style member includes the OS_SETFONT style, the header of the dialog box 
template contains additional data specifying the font to use for text in the client area 
and controls of the dialog box. The font data begins on the WORD boundary that 
follows the title array. The font data specifies a 16-bit point size value and a Unicode 
font name string. If possible, the system creates a font according to the specified 
values. Then, the system sends a WM_SETFONT message to the dialog box and to 
each control to provide a handle to the font. If OS_SETFONT is not specified, the 
dialog box template does not include the font data. 

Windows 2000: The OS_SHELLFONT style is not supported in the DLGTEMPLATE 
header. 

dwExtendedStyle 
Specifies extended styles for a window. This member is not used to create dialog 
boxes, but applications that use dialog box templates can use it to create other types 
of windows. 

edit 

x 

y 

ex 

Specifies the number of items in the dialog box. 

Specifies the x-coordinate, in dialog box units, of the upper-left corner of the dialog 
box. 

Specifies the y-coordinate, in dialog box units, of the upper-left corner of the dialog 
box. 

Specifies the width, in dialog box units, of the dialog box. 



588 Volume 2 Microsoft Windows User Interface 

ey 
Specifies the height, in dialog box units, of the dialog box. 

Remarks 
In a standard template for a dialog box, the DLGTEMPLATE structure is always 
immediately followed by three variable-length arrays that specify the menu, class, 
and title for the dialog box. When the DS_SETFONT style is specified, these arrays are 
also followed by a 16-bit value specifying point size and another variable-length array 
specifying a typeface name. Each array consists of one or more 16-bit elements. The 
menu, class, title, and font arrays must be aligned on WORD boundaries. 

Immediately following the DLGTEMPLATE structure is a menu array that identifies a 
menu resource for the dialog box. If the first element of this array is OxOOOO, the dialog 
box has no menu and the array has no other elements. If the first element is OxFFFF, the 
array has one additional element that specifies the ordinal value of a menu resource in 
an executable file. If the first element has any other value, the system treats the array as 
a null-terminated Unicode string that specifies the name of a menu resource in an 
executable file. 

Following the menu array is a class array that identifies the window class of the control. 
If the first element of the array is OxOOOO, the system uses the predefined dialog box 
class for the dialog box and the array has no other elements. If the first element is 
OxFFFF, the array has one additional element that specifies the ordinal value of a 
predefined system window class. If the first element has any other value, the system 
treats the array as a null-terminated Unicode string that specifies the name of a 
registered window class. 

Following the class array is a title array that specifies a null-terminated Unicode string 
that contains the title of the dialog box. If the first element of this array is OxOOOO, the 
dialog box has no title and the array has no other elements. 

The 16-bit point size value and the typeface array follow the title array, but only if the 
style member specifies the DS_SETFONT style. The point-size value specifies the point 
size of the font to use for the text in the dialog box and its controls. The typeface array is 
a null-terminated Unicode string specifying the name of the typeface for the font. When 
these values are specified, the system creates a font having the specified size and 
typeface (if possible), and sends a WM_SETFONT message to the dialog box procedure 
and the control window procedures as it creates the dialog box and controls. 

Following the DLGTEMPLATE header in a standard dialog box template are one or 
more DLGITEMTEMPLATE structures that define the dimensions and style of the 
controls in the dialog box. The edit member specifies the number of 
DLGITEMTEMPLATE structures in the template. These DLGITEMTEMPLATE 
structures must be aligned on DWORD boundaries. 

If you specify character strings in the menu, class, title, or typeface arrays, you must use 
Unicode strings. To create code that works on both Windows 95/98 and 



Chapter 9 Windowing 589 

Windows NTIWindows 2000, use the MultiByteToWideChar function to generate these 
Unicode strings. 

The x, y, ex, and ey members specify values in dialog box units. You can convert these 
values to screen units (pixels) by using the MapDialogReet function. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Dialog Boxes Overview, Dialog Box Structures, CreateDialoglndireet, 
CreateDialoglndireetParam, DialogBoxlndireet, DialogBoxlndireetParam, 
DLGITEMTEMPLATE, DLGITEMTEMPLATEEX, DLGTEMPLATEEX, MapDialogReet, 
MultiByteToWideChar 

DLGTEMPLATEEX 
The DLGTEMPLATEEX structure is not defined in any standard header file. The 
structure definition is provided here to explain the format of an extended template for 
a dialog box. 

An extended dialog box template begins with a DLGTEMPLATEEX header that 
describes the dialog box and specifies the number of controls in the dialog box. For each 
control in a dialog box, an extended dialog box template has a block of data that uses 
the DLGITEMTEMPLATEEX format to describe the control. 

(continued) 



590 Volume 2 Microsoft Windows User Interface 

(continued) 

Members 
dlgVer 

Specifies the version number of the extended dialog box template; this member must 
be 1. 

signature 
Indicates whether a template is an extended dialog box template. If signature is 
OxFFFF, this is an extended dialog box template. In this case, the dlgVer member 
specifies the template version number. 

If signature is any value other than OxFFFF, this is a standard dialog box template 
that uses the DLGTEMPLATE and DLGITEMTEMPLATE structures. 

helplD 
Specifies the help context identifier for the dialog box window. When the system 
sends a WM_HELP message, it passes this value in the dwContextld member of the 
HELPINFO structure. 

exStyle 
Specifies extended windows styles. This member is not used when creating dialog 
boxes, but applications that use dialog box templates can use it to create other types 
of windows. 

For a list of extended window styles, see CreateWindowEx. 

style 
Specifies the style of the dialog box. This member can be a combination of window 
style values and dialog box style values. For a list of windc;>w styles, see 
Create Window. For a list of dialog box styles, see Dialog Box Template Styles. 

If style includes the DS_SETFONT or DS_SHELLFONT dialog box style, the 
DLGTEMPLATEEX header of the extended dialog box template contains four 
additional members (pointsize, weight, italic, and typeface) that describe the font to 
use for the text in the client area and controls of the dialog box. If possible, the system 
creates a font according to the values specified in these members. Then, the system 
sends a WM_SETFONT message to the dialog box and to each control to provide a 
handle to the font. 

For more information, see Dialog Box Fonts. 

cDlgltems 
Specifies the number of controls in the dialog box. 



x 

y 

ex 

cy 

Chapter 9 Windowing 591 

Specifies the x-coordinate, in dialog box units, of the upper-left corner of the 
dialog box. 

Specifies the y-coordinate, in dialog box units, of the upper-left corner of the dialog 
box. 

Specifies the width, in dialog box units, of the dialog box. 

Specifies the height, in dialog box units, of the dialog box. 

menu 
Specifies a variable-length array of 16-bit elements that identifies a menu resource for 
the dialog box. If the first element of this array is OxOOOO, the dialog box has no menu 
and the array has no other elements. If the first element is OxFFFF, the array has one 
additional element that specifies the ordinal value of a menu resource in an 
executable file. If the first element has any other value, the system treats the array as 
a null-terminated Unicode string that specifies the name of a menu resource in an 
executable file. 

windowClass 
Specifies a variable-length array of 16-bit elements that identifies the window class of 
the dialog box. If the first element of the array is OxOOOO, the system uses the 
predefined dialog box class for the dialog box and the array has no other elements. If 
the first element is OxFFFF, the array has one additional element that specifies the 
ordinal value of a predefined system window class. If the first element has any other 
value, the system treats the array as a null-terminated Unicode string that specifies 
the name of a registered window class. 

title 
Specifies a null-terminated Unicode string that contains the title of the dialog box. If 
the first element of this array is OxOOOO, the dialog box has no title and the array has 
no other elements. 

pointsize 
Specifies the point size of the font to use for the text in the dialog box and its controls. 

This members is present only if the style member specifies DS_SETFONT or 
DS_SHELLFONT. 

weight 
Specifies the weight of the font in the range 0 through 1000. This can be any of the 
values listed for the If Weight member of the LOG FONT structure. 

This member is present only if the style member specifies DS_SETFONT or 
DS_SHELLFONT. 

italic 
Indicates whether the font is italic. If this value is TRUE, the font is italic. 

This member is present only if the style member specifies DS_SETFONT or 
DS_SHELLFONT. 



592 Volume 2 Microsoft Windows User Interface 

charset 
Indicates the character set to use. For more information, see the Ifcharset member of 
LOG FONT. 

This member is present only if the style member specifies DS_SETFONT or 
DS_SHELLFONT. 

typeface 
Specifies a null-terminated Unicode string that contains the name of the typeface for 
the font. 

This member is present only if the style member specifies DS_SETFONT or 
DS_SHELLFONT. 

Remarks 
You can use an extended dialog box template, instead of a standard dialog box 
template, in the CreateDialoglndirectParam and DialogBoxlndirectParam functions 
and in the CreateDialoglndirect and DialogBoxlndirect macros. 

Following the DLGTEMPLATEEX header in an extended dialog box template is one or 
more DLGITEMTEMPLATEEX structures that describe the controls of the dialog box. 
The cDlgltems member of the DLGITEMTEMPLATEEX structure specifies the number 
of DLGITEMTEMPLATEEX structures that follow in the template. 

Each DLGITEMTEMPLATEEX structure in the template must be aligned on a DWORD 
boundary. If the style member specifies the DS_SETFONT or DS_SHELLFONT style, 
the first DLGITEMTEMPLATEEX structure begins on the first DWORD boundary after 
the typeface string. If these styles are not specified, the first structure begins on the first 
DWORD boundary after the title string. 

The menu, windowClass, title, and typeface arrays must be aligned on WORD 
boundaries. 

If you specify character strings in the menu, windowClass, title, and typeface arrays, 
you must use Unicode strings. To create code that works on both Windows 95/98 and 
Windows NTIWindows 2000, use the MultiByteToWideChar function to generate these 
Unicode strings. 

The x, y, cx, and cy members specify values in dialog box units. You can convert these 
values to screen units (pixels) by using the MapDialogRect function. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 



Chapter 9 Windowing 593 

a~l~j:~tS()·.··· 
Dialog Boxes Overview, Dialog Box Structures, CreateDialoglndirect, 
CreateDialoglndirectParam, DialogBoxlndirect, DialogBoxlndirectParam, 
DLGITEMTEMPLATEEX, LOG FONT, MapDialogRect, MultiByteToWideChar, 
WM_SETFONT 

MSGBOXPARAMS 
The MSGBOXPARAMS structure contains information used to display a message box. 
The MessageBoxlndirect function uses this structure. 

Members 
cbSize 

Specifies the structure size, in bytes. 

hwndOwner 
Handle to the owner window. This member can be NULL. 

hlnstance 
Handle to the module that contains the icon resource identified by the Ipszlcon 
member, and the string resource identified by the IpszText or IpszCaption member. 

IpszText 
Pointer to a null-terminated string, or the identifier of a string resource, that contains 
the message to be displayed. 

IpszCaption 
Pointer to a nUll-terminated string, or the identifier of a string resource, that contains 
the message box title. If this member is NULL, the default title Error is used. 

dwStyle 
Specifies the contents and behavior of the dialog box. This member can be a 
combination of flags described for the uType parameter of the MessageBoxEx 
function. 



594 Volume 2 Microsoft Windows User Interface 

In addition, you can specify the MB_USERICON flag, if you want the message box to 
display the icon specified by the Ipszlcon member. 

Ipszlcon 
Identifies an icon resource. This parameter can be either a null-terminated string or an 
integer resource identifier passed to the MAKEINTRESOURCE macro. 

To load one of the standard system-defined icons, set the hlnstance member to 
NULL and the Ipszlcon member to one of the values listed with the Loadlcon 
function. 

This member is ignored if the dwStyle member does not specify the MB_USERICON 
flag. 

dwContextHelpld 
Identifies a help context. If a help event occurs, this value is specified in the 
HELPINFO structure that the message box sends to the owner window or callback 
function. 

IpfnMsgBoxCaliback 
Pointer to the callback function that processes help events for the message box. The 
callback function has the following form: 

If this member is NULL, the message box sends WM_HELP messages to the owner 
window when help events occur. 

dwLanguageld 
Specifies the language in which to display the text contained in the predefined push 
buttons. This value must be in the form returned by the MAKELANGID macro. 

For a list of supported language identifiers, see Language Identifiers. Note that each 
localized release of Windows 95/98 and Windows NTlWindows 2000 typically 
contains resources only for a limited set of languages. Thus, for example, the U.S. 
version offers LANG_ENGLISH, the French version offers LANG_FRENCH, the 
German version offers LANG_GERMAN, and the Japanese version offers 
LANG_JAPANESE. Each version offers LANG_NEUTRAL. This limits the set of 
values that can be used with the wLanguageld parameter. Before specifying a 
language identifier, you should enumerate the locales that are installed on a system. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Unicode: Declared as Unicode and ANSI structures. 



Chapter 9 Windowing 595 

Dialog Boxes Overview, Dialog Box Structures, HELPINFO, Loadlcon, 
MAKEINTRESOURCE, MAKELANGID, MessageBoxEx, MessageBoxlndirect, 
WM_HELP 

Dialog Box Messages 
The following messages are used to create and manage dialog boxes and controls 
within dialog boxes: 

DM_GETDEFID 
An application sends a DM_GETDEFID message to retrieve the identifier of the default 
push-button control for a dialog box. 

To send this message, call the SendMessage function with the following parameters. 

Parameters 
This message has no parameters. 

Return Values 
If a default push button exists, the high-order word of the return value contains the value 
DC_HASDEFID and the low-order word contains the control identifier. Otherwise, the 
return value is zero. 

Remarks 
The DefDlgProc function processes this message. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Dialog Boxes Overview, Dialog Box Messages, DefDlgProc, DM_SETDEFID 



596 Volume 2 Microsoft Windows User Interface 

OM_REPOSITION 
The OM_REPOSITION message repositions a top-level dialog box, so that it fits within 
the desktop area. An application can send this message to a dialog box after resizing it 
to ensure that the entire dialog box remains visible. 

To send this message, call the Send Message function with the following parameters. 

Parameters 
This message has no parameters. 

Return Values 
This message has no return value. 

Remarks 
This message has no effect if the dialog box is a child window. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Dialog Boxes Overview, Dialog Box Messages 

An application sends a OM_SETOEFIO message to change the identifier of the default 
push button for a dialog box. 

To send this message, call the SendMessage function with the following parameters. 



.•.. ~~f~~J .. lP~.rp:,,!; 
l:c··./.,:::;; ..•• ·, 

Parameters 
wParam 

Chapter 9 Windowing 597 

/I not used: must be zero 

Specifies the identifier of a push-button control that will become the default. 

IParam 
This parameter is not used. 

Remarks 
This message is processed by the DefDlgProc function. To set the default push button, 
the function can send WM_GETDLGCODE and BM_SETSTYLE messages to both the 
specified control and the current default push button. 

Using the DM_SETDEFID message can result in more than one button appearing to 
have the default push-button state. When the system brings up a dialog box, it draws the 
first push button in the dialog box template with the default state border. Sending a 
DM_SETDEFID message to change the default button will not always remove the default 
state border from the first push button. In these cases, the application should send a 
BM_SETSTYLE message to change the first push-button border style. 

Return Values 
The return value is always TRUE. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Dialog Boxes Overview, Dialog Box Messages, BM_SETSTYLE, DefDlgProc, 
DM_GETDEFID, EM_SETLIMITTEXT, WM_GETDLGCODE 

WM_ CTLCOLORDLG 
The WM_CTLCOLORDLG message is sent to a dialog box before the system draws 
the dialog box. By responding to this message, the dialog box can set its text and 
background colors using the specified display device context handle. 

A window receives this message through its WindowProc function. 

(continued) 



598 Volume 2 Microsoft Windows User Interface 

(continued) 

Parameters 
wParam 

Handle to the device context for the dialog box. 

IParam 
Handle to the dialog box. 

Return Values 
If an application processes this message, it must return a handle to a brush. The system 
uses the brush to paint the background of the dialog box. 

Remarks 
By default, the DefWindowProc function selects the default system colors for the dialog 
box. 

The system does not automatically destroy the returned brush. It is the application's 
responsibility to destroy the brush when it is no longer needed. 

The WM_CTLCOLORDLG message is never sent between threads. It is sent within one 
thread only. 

Note that the WM_CTLCOLORDLG message is sent to the dialog box itself; all of the 
other WM_CTLCOLOR* messages are sent to the owner of the control. 

If a dialog box procedure handles this message, it should cast the desired return value to 
a BOOL and return the value directly. If the dialog box procedure returns FALSE, then 
default message handling is performed. The DWL_MSGRESUL T value set by the 
SetWindowLong function is ignored. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Dialog Boxes Overview, Dialog Box Messages, DefWindowProc, RealizePalette, 
SelectPalette, SetWindowLong 



Chapter 9 Windowing 599 

The WM_ENTERIDLE message is sent to the owner window of a modal dialog box or 
menu that is entering an idle state. A modal dialog box or menu enters an idle state 
when no messages are waiting in its queue, after it has processed one or more previous 
messages. 

A window receives this message through its WindowProc function. 

Parameters 
wParam 

Specifies whether the message is the result of a dialog box or a menu being 
displayed. This parameter can be one of the following values: 

Value 

MSGF _DIALOGBOX 

MSGF_MENU 

IParam 

Meaning 

The system is idle because a dialog box is 
displayed. 

The system is idle because a menu is displayed. 

Handle to the dialog box (if wParam is MSGF _DIALOGBOX) or window containing the 
displayed menu (if wParam is MSGF _MENU). 

Return Values 
An application should return zero if it processes this message. 

Remarks 
You can suppress the WM_ENTERIDLE message for a dialog box by creating the dialog 
box with the DS_NOIDLEMSG style. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Dialog Boxes Overview, Dialog Box Messages, DefWindowProc 



600 Volume 2 Microsoft Windows User Interface 

WM_GETDLGCODE 
The WM_GETDLGCODE message is sent to the window procedure associated with a 
control. By default, the system handles all keyboard input to the control; the system 
interprets certain types of keyboard input as dialog box navigation keys. To override this 
default behavior, the control can respond to the WM_GETDLGCODE message to 
indicate the types of input it wants to process itself. 

A window receives this message through its WindowProc function. 

Parameters 
wParam 

This parameter is not used. 

IParam 
Pointer to an MSG structure (or NULL, if the system is performing a query). 

Return Values 
The return value is one or more of the following values, indicating which type of input the 
application processes: 

Value 

DLGC_BUTTON 

DLGC_DEFPUSHBUTTON 

DLGC_HASSETSEL 

DLGC_RADIOBUTTON 

DLGC_STATIC 

DLGC_UNDEFPUSHBUTTON 

DLGC_WANTALLKEYS 

DLGC_WANTARROWS 

DLGC_WANTCHARS 

DLGC_WANTMESSAGE 

Meaning 

Button 

Default push button 

EM_SETSEL messages 

Radio button 

Static control 

Non-default push button 

All keyboard input 

Direction keys 

WM_CHAR messages 

All keyboard input (the application passes this 
message in the MSG structure to the control) 

TAB key 



Chapter 9 Windowing 601 

Remarks 
Although the DefWindowProc function always returns zero in response to the 
WM_GETDLGCODE message, the window procedure for the predefined control classes 
returns a code appropriate for each class. 

The WM_GETDLGCODE message and the returned values are useful only with user­
defined dialog box controls or standard controls modified by subclassing. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Dialog Boxes Overview, Dialog Box Messages, DefWindowProc, MSG, EM_SETSEL, 
WM_CHAR 

WM_INITDIALOG 
The WM_INITDIALOG message is sent to the dialog box procedure immediately before 
a dialog box is displayed. Dialog box procedures typically use this message to initialize 
controls and carry out any other initialization tasks that affect the appearance of the 
dialog box. 

A window receives this message through its WindowProc function. 

··(~E,sufr.))A~LaAcKi.~1~aOwpl'Oqt 
. '. ti~N;D<hwn~.<. ..··'···{/Il~rjdle:to:Wjndhw 

·11INt·U14S9.<·.... ••...• "UWM_I.ruT.OI'Al.O.G' 
.•. 'W~ARA!otw.P,~am •• · 

'''., LPARAMlPat()f1I' . 

h 

Parameters 
wParam 

Handle to the control to receive the default keyboard focus. The system assigns the 
default keyboard focus only if the dialog box procedure returns TRUE. 

IParam 
Specifies additional initialization data. This data is passed to the system as the 
IParam parameter in a call to the CreateDialoglndirectParam, CreateDialogParam, 
DialogBoxlndirectParam, or DialogBoxParam function used to create the dialog 
box. For property sheets, this parameter is a pointer to the PROPSHEETPAGE 
structure used to create the page. This parameter is zero if any other dialog box 
creation function is used. 



602 Volume 2 Microsoft Windows User Interface 

Return Values 
The dialog box procedure should return TRUE to direct the system to set the keyboard 
focus to the control specified by wParam. Otherwise, it should return FALSE to prevent 
the system from setting the default keyboard focus. 

The dialog box procedure should return the value directly. The DWL_MSGRESUL T 
value set by the SetWindowLong function is ignored. 

Remarks 
The control to receive the default keyboard focus is always the first control in the dialog 
box that is visible and not disabled, and that has the WS_ TABSTOP style. When the 
dialog box procedure returns TRUE, the system checks the control to ensure that the 
procedure has not disabled it. If it has been disabled, the system sets the keyboard 
focus to the next control that is visible and not disabled, and that has the 
WS_TABSTOP. 

An application can return FALSE only if it has set the keyboard focus to one of the 
controls of the dialog box. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Dialog Boxes Overview, Dialog Box Messages, CreateDialoglndirectParam, 
CreateDialogParam, DialogBoxlndirectParam, DialogBoxParam, 
PROPSHEETPAGE, Set Focus 

WM_NEXTDLGCTL 
The WM_NEXTDLGCTL message is sent to a diaiog box procedure to set the keyboard 
focus to a different control in the dialog box. 

A window receives this message through its WindowProc function. 



Parameters 
wParam 

Chapter 9 Windowing 603 

If IParam is TRUE, this parameter identifies the control that receives the focus. If 
IParam is FALSE, this parameter indicates whether the next or previous control with 
the WS_ T ABSTOP style receives the focus. If wParam is zero, the next control 
receives the focus; otherwise, the previous control with the WS_ T ABSTOP style 
receives the focus. 

IParam 
The low-order word indicates how the system uses wParam. If the low-order word is 
TRUE, wParam is a handle associated with the control that receives the focus; 
otherwise, wParam is a flag that indicates whether the next or previous control with 
the WS_ T ABSTOP style receives the focus. 

Return Values 
An application should return zero if it processes this message. 

Remarks 
This message performs additional dialog box management operations beyond those 
performed by the SetFocus function. WM_NEXTDLGCTL updates the default push­
button border, sets the default control identifier, and automatically selects the text of an 
edit control (if the target window is an edit control). 

Do not use the Send Message function to send a WM_NEXTDLGCTL message, if your 
application will concurrently process other messages that set the focus. Use the 
PostMessage function, instead. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Dialog Boxes Overview, Dialog Box Messages, PostMessage, SendMessage, 
SetFocus 

Messages and Message Queues 
This overview describes messages and message queues, and how to use them in your 
Win32-based applications. 



604 Volume 2 Microsoft Windows User Interface 

About Messages and Message Queues 
Unlike MS-DOS-based applications, Win32-based applications are event-driven. They 
do not make explicit function calls (such as C run-time library calls) to obtain input. 
Instead, they wait for the system to pass input to them. 

The system passes all input for an application to the various windows in the application. 
Each window has a function, called a window procedure, that the system calls whenever 
it has input for the window. The window procedure processes the input and returns 
control to the system. For more information about window procedures, see Window 
Procedures. 

Win32 Messages 
The system passes input to a window procedure in the form of messages. Messages are 
generated by both the system and applications. The system generates a message at 
each input event-for example, when the user types, moves the mouse, or clicks a 
control such as a scroll bar. The system also generates messages in response to 
changes in the system brought about by an application, such as when an application 
changes the pool of system font resources or resizes one of its windows. An application 
can generate messages to direct its own windows to perform tasks or communicate with 
windows in other applications. 

The system sends a message to a window procedure with a set of four parameters: a 
window handle, a message identifier, and two values called message parameters. The 
window handle identifies the window for which the message is intended. The system 
uses it to determine which window procedure should receive the message. 

A message identifier is a named constant that identifies the purpose of a message. 
When a window procedure receives a message, it uses a message identifier to 
determine how to process the message. For example, the message identifier 
WM_PAINT tells the window procedure that the window's client area has changed and 
must be repainted. 

Message parameters specify data or the location of data used by a window procedure 
when processing a message. The meaning and value of the message parameters 
depend on the message. A message parameter can contain an integer, packed bit flags, 
a pOinter to a structure containing additional data, and so on. When a message does not 
use message parameters, these typically are set to NULL. A window procedure must 
check the message identifier to determine how to interpret the message parameters. 

Message Types 
This section describes the two types of messages: 

• system-defined messages 

• application-defined messages 



Chapter 9 Windowing 605 

System-Defined Messages 
The system sends or posts a system-defined message when it communicates with an 
application. It uses these messages to control the operations of applications, and to 
provide input and other information for applications to process. An application also can 
send or post system-defined messages. Applications generally use these messages to 
control the operation of control windows created by using preregistered window classes. 

Each system-defined message has a unique message identifier and a corresponding 
symbolic constant (defined in the SDK header files) that states the purpose of the message. 
For example, the WM_PAINT constant requests that a window paint its contents. 

Symbolic constants specify the category to which system-defined messages belong. The 
prefix of the constant identifies the type of window that can interpret and process the 
message. Following are the prefixes and their related message categories: 

Prefix Message category 

ABM Application desktop toolbar 

BM Button control 

CB Combo-box control 

CBEM Extended combo-box control 

COM Common dialog box 

DBT Device 

DL Drag-list box 

OM Default push-button control 

DTM Date and time picker control 

EM Edit control 

HOM Header control 

HKM Hot-key control 

IPM IP address control 

LB List-box control 

LVM List-view control 

MCM Month calendar control 

PBM Progress bar 

PGM Pager control 
PSM Property sheet 

RB Rebar control 

SB Status bar window 

SBM Scroll-bar control 

STM Static control 

TB Toolbar 

(continued) 



606 Volume 2 Microsoft Windows User Interface 

(continued) 

Prefix Message category 

TBM Trackbar 

TCM Tab control 

TTM Tooltip control 

TVM Tree-view control 
UDM Up-down control 

WM General window 

General window messages cover a wide range of information and requests, including 
messages for mouse and keyboard input, menu and dialog box input, window creation 
and management, and dynamic data exchange (DOE). 

Application-Defined Messages 
An application can create messages to be used by its own windows to communicate with 
windows in other processes. If an application creates its own messages, the window 
procedure that receives them must interpret the messages and provide appropriate 
processing. 

Message-identifier values are used as follows: 

• The system reserves message-identifier values in the range OxOOOO through Ox03FF 
(the value of WM_USER -1) for system-defined messages. Applications cannot use 
these values for private messages. 

• Values in the range Ox0400 (the value of WM_USER) through Ox7FFF are available 
for message identifiers for private window classes. 

• If your application is marked version 4.0, you can use message-identifier values in the 
range Ox8000 (WM_APP) through OxBFFF for private messages. 

• The system returns a message identifier in the range OxCOOO through OxFFFF when 
an application calls the RegisterWindowMessage function to register a message. 
The message identifier returned by this function is guaranteed to be unique 
throughout the system. Use of this function prevents conflicts that can arise if other 
applications use the same message identifier for different purposes. 

Message Routing 
The system uses two methods to route messages to a window procedure: posting 
messages to a first-in, first-out (FIFO) queue called a message queue, a system-defined 
memory object that temporarily stores messages; and sending messages directly to a 
window procedure. 

Messages posted to a message queue are called queued messages. They are primarily 
the result of user input entered through Jhe mouse or keyboard, such as 
WM_MOUSEMOVE, WM_LBUTTONDOWN, WM_KEYDOWN, and WM_CHAR 
messages. Other queued messages include the timer, paint, and quit messages: 
WM_TIMER, WM_PAINT, and WM_QUIT. Most other messages, which are sent directly 
to a window procedure, are called nonqueued messages. 



Chapter 9 Windowing 607 

• Queued Messages 

• Nonqueued Messages 

Queued Messages 
The system can display any number of windows at a time. To route mouse and keyboard 
input to the appropriate window, the system uses message queues. 

The system maintains a single system message queue and one thread-specific message 
queue for each GUI thread. To avoid the overhead of creating a message queue for non­
GUI threads, all threads are created initially without a message queue. The system 
creates a thread-specific message queue only when the thread makes its first call to one 
of the Win32 User or GOI functions. 

Whenever the user moves the mouse, clicks the mouse buttons, or types on the 
keyboard, the device driver for the mouse or keyboard converts the input into messages 
and places them in the system message queue. The system removes the messages, 
one at a time, from the system message queue, examines them to determine the 
destination window, and then posts them to the message queue of the thread that 
created the destination window. A thread's message queue receives all mouse and 
keyboard messages for the windows created by the thread. The thread removes 
messages from its queue and directs the system to send them to the appropriate window 
procedure for processing. 

With the exception of the WM_PAINT message, the system always posts messages at 
the end of a message queue. This ensures that a window receives its input messages in 
the proper FIFO sequence. The WM_PAINT message, however, is kept in the queue 
and forwarded to the window procedure only when the queue contains no other 
messages. Multiple WM_PAINT messages for the same window are combined into a 
single WM_PAINT message, consolidating all invalid parts of the client area into a single 
area. Combining WM_PAINT messages reduces the number of times a window must 
redraw the contents of its client area. 

The system posts a message to a thread's message queue by filling an MSG structure 
and, then, copying it to the message queue. Information in MSG includes the handle of 
the window for which the message is intended, the message identifier, the two message 
parameters, the time the message was posted, and the mouse cursor position. A thread 
can post a message to its own message queue, or to the queue of another thread, by 
using the PostMessage or PostThreadMessage function. 

An application can remove a message from its queue by using the GetMessage 
function. To examine a message without removing it from its queue, an application can 
use the PeekMessage function. This function fills MSG with information about the 
message. 

After removing a message from its queue, an application can use the DispatchMessage 
function to direct the system to send the message to a window procedure for processing. 
DispatchMessage takes a pointer to MSG that was filled by a previous call to the 
GetMessage or PeekMessage function. DispatchMessage passes the window handle, . 



608 Volume 2 Microsoft Windows User Interface 

the message identifier, and the two message parameters to the window procedure, but it 
does not pass the time the message was posted or the mouse cursor position. An 
application can retrieve this information by calling the GetMessageTime and 
GetMessagePos functions while processing a message. 

A thread can use the WaitMessage function to yield control to other threads when it has 
no messages in its message queue. The function suspends the thread and does not 
return until a new message is placed in the thread's message queue. 

You can call the SetMessageExtralnfo function to associate a value with the current 
thread's message queue. Then, call the GetMessageExtralnfo function to get the value 
associated with the last message retrieved by the GetMessage or PeekMessage 
function. 

Nonqueued Messages 
Nonqueued messages are sent immediately to the destination window procedure, 
bypassing the system message queue and thread message queue. The system typically 
sends nonqueued messages to notify a window of events that affect it. For example, 
when the user activates a new application window, the system sends the window a 
series of messages, including WM_ACTIVATE, WM_SETFOCUS, and 
WM_SETCURSOR. These messages notify the window that it has been activated, that 
keyboard input is being directed to the window, and that the mouse cursor has been 
moved within the borders of the window. Nonqueued messages can also result when an 
application calls certain system functions. For example, the system sends the 
WM_WINDOWPOSCHANGED message after an application uses the SetWindowPos 
function to move a window. 

Message Handling 
An application must remove and process messages posted to the message queues of its 
threads. A single-threaded application usually uses a message loop in its WinMain 
function to remove and send messages to the appropriate window procedures for 
processing. Applications with multiple threads can include a message loop in each 
thread that creates a window. The following sections describe how a message loop 
works, and explain the role of a window procedure. 

Message Loop 
A simple message loop consists of one function call to each of these three functions: 
GetMessage, TranslateMessage, and DispatchMessage. 



Chapter 9 Windowing 609 

The GetMessage function retrieves a message from the queue and copies it to a 
structure of type MSG. It returns a nonzero value, unless it encounters the WM_QUIT 
message, in which case it returns FALSE and ends the loop. In a Single-threaded 
application, ending the message loop is often the first step in closing the application. An 
application can end its own loop by using the PostQuitMessage function, typically in 
response to the WM_DESTROY message in the window procedure of the application's 
main window. 

If you specify a window handle as the second parameter of GetMessage, only 
messages for the specified window are retrieved from the queue. GetMessage can also 
filter messages in the queue, retrieving only those that fall within a specified range. For 
more information about filtering messages, see Message Filtering. 

A thread's message loop must include TranslateMessage if the thread is to receive 
character input from the keyboard. The system generates virtual-key messages 
(WM_KEYDOWN and WM_KEYUP) each time the user presses a key. A virtual-key 
message contains a virtual-key code that identifies which key was pressed, but not its 
character value. To retrieve this value, the message loop must contain 
TranslateMessage, which translates the virtual-key message into a character message 
(WM_CHAR) and places it back into the application message queue. The character 
message, then, can be removed upon a subsequent iteration of the message loop, and 
dispatched to a window procedure. 

The DispatchMessage function sends a message to the window procedure associated 
with the window handle specified in the MSG structure. If the window handle is 
HWND_ TOPMOST, DispatchMessage sends the message to the window procedures 
of all top-level windows in the system. If the window handle is NULL, DispatchMessage 
does nothing with the message. 

An application's main thread starts its message loop after initializing the application and 
creating at least one window. Once started, the message loop continues to retrieve 
messages from the thread's message queue and dispatch them to the appropriate 
windows. The message loop ends when the GetMessage function removes the 
WM_QUIT message from the message queue. 

Only one message loop is needed for a message queue, even if an application contains 
many windows. DispatchMessage always dispatches the message to the proper 
window; this is because each message in the queue is an MSG structure that contains 
the handle of the window to which the message belongs. 

You can modify a message loop in a variety of ways. For example, you can retrieve 
messages from the queue without dispatching them to a window. This is useful for 
applications that post messages not specifying a window. You can also direct 
GetMessage to search for specific messages, leaving other messages in the queue. 
This is useful if you must temporarily bypass the usual FIFO order of the message 
queue. 

An application that uses accelerator keys must be able to translate keyboard messages 
into command messages. To do this, the application's message loop must include a call 



610 Volume 2 Microsoft Windows User Interface 

to the TranslateAccelerator function. For more information about accelerator keys, see 
Keyboard Accelerators. 

If a thread uses a modeless dialog box, the message loop must include the 
IsDialogMessage function, so that the dialog box can receive keyboard input. 

Window Procedure 
A window procedure is a function that receives and processes all messages sent to the 
window. Every window class has a window procedure, and every window created with 
that class uses that same window procedure to respond to messages. 

The system sends a message to a window procedure by passing the message data as 
arguments to the procedure. Then the window procedure performs an appropriate action 
for the message; it checks the message identifier and, while processing the message, 
uses the information specified by the message parameters. 

A window procedure usually does not ignore a message. If it does not process a 
message, it must send the message back to the system for default processing. The 
window procedure does this by calling the DefWindowProc function, which performs a 
default action and returns a message result. Then the window procedure must return this 
value as its own message result. Most window procedures process just a few messages 
and pass the others on to the system by calling DefWindowProc. 

Because a window procedure is shared by all windows belonging to the same class, it 
can process messages for several different windows. To identify the specific window 
affected by the message, a window procedure can examine the window handle passed 
with a message. For more information about window procedures, see Window 
Procedures. 

Message Filtering 
An application can choose specific messages to retrieve from the message queue (while 
ignoring other messages) by using the GetMessage or PeekMessage function to 
specify a message filter. The filter is a range of message identifiers (specified by a first 
identifier and last identifier), a window handle, or both. GetMessage and PeekMessage 
use a message filter to select which messages to retrieve from the queue. Message 
filtering is useful if an application must search the message queue for messages that 
have arrived later in the queue. It is also useful if an application must process input 
(hardware) messages before processing posted messages. 

The WM_KEYFIRST and WM_KEYLAST constants can be used as filter values to 
retrieve all keyboard messages; the WM_MOUSEFIRST and WM_MOUSELAST 
constants can be used to retrieve all mouse messages. 

Any application that filters messages must ensure that a message satisfying the 
message filter can be posted. For example, if an application filters for a WM_CHAR 
message in a window that does not receive keyboard input, the GetMessage function 
does not return. This effectively "hangs" the application. 



Chapter 9 Windowing 611 

Posting and Sending Messages 
Any application can post and send messages. Like the system, an application posts a 
message by copying it to a message queue, and sends a message by passing the 
message data as arguments to a window procedure. To post messages, an application 
uses the PostMessage function. An application can send a message by calling the 
Send Message, BroadcastSystemMessage, SendMessageCaliback, 
SendMessageTimeout, SendNotifyMessage, or SendDlgltemMessage function. 

Posting Messages 
An application typically posts a message to notify a specific window to perform a task. 
PostMessage creates an MSG structure for the message and copies the message to 
the message queue. The application's message loop eventually retrieves the message 
and dispatches it to the appropriate window procedure. 

An application can post a message without specifying a window. If the application 
supplies a NULL window handle when calling PostMessage, the message is posted to 
the queue associated with the current thread. Because no window handle is specified, 
the application must process the message in the message loop. This is one way to 
create a message that applies to the entire application, instead of to a specific window. 

Occasionally, you might want to post a message to all top-level windows in the system. 
An application can post a message to all top-level windows by calling Post Message and 
specifying HWND_ TOPMOST in the hwnd parameter. 

A common programming error is to assume that the Post Message function always posts 
a message. This is not true when the message queue is full. An application should check 
the return value of the PostMessage function to determine whether the message has 
been posted and, if it has not been, to repost it. 

Sending Messages 
An application typically sends a message to notify a window procedure to perform a task 
immediately. The SendMessage function sends the message to the window procedure 
corresponding to the given window. The function waits until the window procedure 
completes processing and, then, returns the message result. Parent and child windows 
often communicate by sending messages to each other. For example, a parent window 
that has an edit control as its child window can set the text of the control by sending a 
message to it. The control can notify the parent window of changes to the text that are 
carried out by the user by sending messages back to the parent. 

The SendMessageCaliback function also sends a message to the window procedure 
corresponding to the given window. However, this function returns immediately. After the 
window procedure processes the message, the system calls the specified callback 
function. For more information about the callback function, see the SendAsyncProc 
function. 

Occasionally, you might want to send a message to all top-level windows in the system. 
For example, if the application changes the system time, it must notify all top-level 



612 Volume 2 Microsoft Windows User Interface 

windows about the change by sending a WM_ TIMECHANGE message. An application 
can send a message to all top-level windows by calling SendMessage and specifying 
HWND_ TOPMOST in the hwnd parameter. You also can broadcast a message to all 
applications by calling the BroadcastSystemMessage function and specifying 
BSM_APPLICATIONS in the IpdwRecipients parameter. 

By using the InSendMessage or InSendMessageEx function, a window procedure can 
determine whether it is processing a message sent by another thread. This capability is 
useful when message processing depends on the origin of the message. 

Message Deadlocks 
A thread that calls the Send Message function to send a message to another thread 
cannot continue executing until the window procedure that receives the message 
returns. If the receiving thread yields control while processing the message, the sending 
thread cannot continue executing, because it is waiting for SendMessage to return. If 
the receiving thread then sends a message to the calling thread while it is blocked, it can 
cause an application deadlock to occur. 

Note that the receiving thread need not yield control explicitly; calling any of the following 
functions can cause a thread to yield control implicitly: 

DialogBox 
DialogBoxlndirect 
DialogBoxlndirectParam 
DialogBoxParam 
GetMessage 
MessageBox 
PeekMessage 
Send Message 

To avoid potential deadlocks in your application, consider using the 
SendNotifyMessage or SendMessageTimeout function. Otherwise, a window 
procedure can determine whether a message it has received was sent by another thread 
by calling the InSendMessage function. Before calling any of the functions in the 
preceding list while processing a message, the window procedure first should call 
InSendMessage. If this function returns TRUE, the window procedure must call the 
ReplyMessage function before any function that causes the thread to yield control. 

Broadcasting Messages 
Each message consists of a message identifier and two parameters, wParam and 
IParam. The message identifier is a unique value that specifies the message purpose. 
The parameters provide additional information that is message-specific, but the wParam 
parameter is generally a type value that provides more information about the message. 

A message broadcast is simply the sending of a message to components in the system. 
To broadcast a message from an application, use the BroadcastSystemMessage 
function, specifying the reCipients of the message. Instead of specifying individual 



Chapter 9 Windowing 613 

recipients, you must specify one or more types of recipients. These types are 
applications, installable drivers, network drivers, and system-level device drivers. 
BroadcastSystemMessage sends messages to all members of each specified type. 

The system typically broadcasts messages in response to changes that take place within 
system-level device drivers or related components. The driver or related component 
broadcasts the message to applications and other components to notify them of the 
change. For example, the component responsible for disk drives broadcasts a message 
whenever the device driver for the floppy-disk drive detects a change of media, such as 
when the user inserts a disk in the drive. 

The BroadcastSystemMessage function sends messages to recipients in this order: 
system-level device drivers, network drivers, installable drivers, and applications. This 
means that system-level device drivers, if chosen as recipients, always get the first 
opportunity to respond to a message. Within a given recipient type, no driver is 
guaranteed to receive a given message before any other driver. This means that a 
message intended for a specific driver must have a globally-unique message identifier, 
so that no other driver unintentionally processes it. 

Applications receive messages through the window procedure of their top-level windows. 
Messages are not sent to child windows. Services can receive messages through a 
window procedure or their service control handlers. 

Note System-level device drivers use a related, system-level function to broadcast 
system messages. 

Query Messages 
You can create your own custom messages and use them to coordinate activities 
between your applications and other components in the system. This is especially useful 
if you have created your own installable drivers or system-level device drivers. Your 
custom messages can carry information to and from your driver and the applications that 
use the driver. 

To poll recipients for permission to carry out a given action, use a query message. You 
can generate your own query messages by setting the BSF _QUERY value in the 
dwFlags parameter when calling BroadcastSystemMessage. Each recipient of the 
query message must return TRUE for the function to send the message to the next 
recipient. If any recipient returns BROADCAST _QUERY _DENY, the broadcast ends 
immediately and the function returns a zero. 

Windows 95/98: You can create instal/able drivers that broadcast and process 
messages. An installable driver is a dynamic-link library (DLL) that exports a DriverProc 
function. The driver receives messages through its DriverProc function, and can 
broadcast messages using BroadcastSystemMessage. Installable drivers are typically 
used to support multimedia devices, such as sound boards, but can be used for other 
devices and purposes, too. 



614 Volume 2 Microsoft Windows User Interface 

Windows 95/98: Network drivers are DLLs that provide the underlying support for 
applications that use the network functions to connect to and browse network resources. 
System-level device drivers are system-specific executable components that provide 
direct access to (and management of the hardware devices of) the computer. The details 
regarding how these components process system messages are beyond the scope of 
this overview. 

Message and Message Queue Reference 
Message and Message Queue Functions 

BroadcastSystemMessage 
The BroadcastSystemMessage function sends a message to the specified recipients. 
The recipients can be applications, installable drivers, network drivers, system-level 
device drivers, or any combination of these system components. 

Parameters 
dwFlags 

[in] Specifies the broadcast option. This parameter can be one or more of the 
following values: 

Value Meaning 

BSF _ALLOWSFW Windows 2000: Enables the recipient to set the 
foreground window while processing the message. 

BSF _FLUSHD!SK Flushes the disk after each recipient processes 
the message. 

BSF _FORCEIFHUNG Continues to broadcast the message, even if the 
time-out period elapses or one of the recipients 
has stopped responding. 

BSF _IGNORECURRENTTASK Does not send the message to windows that 
belong to the current task. This prevents an 
application from receiving its own message. 



Chapter 9 Windowing 615 

Value Meaning 

BSF _NOHANG Forces an unresponsive application to time out. If 
one of the recipients times out, do not continue 
broadcasting the message. 

BSF _NOTIMEOUTIFNOTHUNG Waits for a response to the message, as long as 
the recipient is not unresponsive. Do not time out. 

BSF _POSTMESSAGE Posts the message. Do not use in combination 
with BSF _QUERY. 

BSF _QUERY Sends the message to one recipient at a time, 
sending to a subsequent recipient only if the 
current recipient returns TRUE. 

BSF _SENDNOTIFYMESSAGE Windows 2000: Sends the message using 
SendNotifyMessage function. Do not use in 
combination with BSF _QUERY. 

IpdwRecipients 
[in] Pointer to a variable that contains and receives information about the recipients of 
the message. This parameter can be one or more of the following values: 

Value Meaning 

BSM_ALLCOMPONENTS 

BSM_ALLDESKTOPS 

BSM_APPLICATIONS 

BSM_I NST ALLABLEDRIVERS 

BSM_NETDRIVER 

BSM_VXDS 

Broadcast to all system components. 

Windows NT/2000: Broadcast to all desktops. 
Requires the SE_ TCB_NAME privilege. 

Broadcast to applications. 

Windows 95/98: Broadcast to installable drivers. 

Windows 95/98: Broadcast to network drivers. 

Windows 95/98: Broadcast to all system-level 
device drivers. 

When the function returns, this variable receives a combination of these values 
identifying which recipients actually received the message. 

If this parameter is NULL, the function broadcasts to all components. 

uiMessage 
[in] Specifies the message to be sent. 

wParam 
[in] Specifies additional message-specific information. 

IParam 
[in] Specifies additional message-specific information. 

Return Values 
If the function succeeds, the return value is a positive value. 

If the function is unable to broadcast the message, the return value is -1 . 



616 Volume 2 Microsoft Windows User Interface 

If the dwFlags parameter is BSF _QUERY, and at least one recipient returned 
BROADCAST _QUERY _DENY to the corresponding message, the return value is zero. 
To get extended error information, call GetLastError. 

Remarks 
If BSF _QUERY is not specified, the function sends the specified message to all 
requested recipients, ignoring values returned by those recipients. 

Windows NT/2000: Requires Windows NT 4.0 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Messages and Message Queues Overview, Message and Message Queue Functions, 
SendNotifyMessage 

DispatchMessage 
The DispatchMessage function dispatches a message to a window procedure. It is 
used typically to dispatch a message retrieved by the GetMessage function. 

'~S#flciB~~t~~~~$;,g,~~C;, 
'c)c;~.<c~~!T,C >;:~~~"f;~~~gc:, 1(~~~:~~r; c 
:, ~ 0 '; ~c,,:,: _,,~;,"< " ',<:~:~>:':i::~>~~'~'>< ," 

Parameters 
Ipmsg 

[in] Pointer to an MSG structure that contains the message. 

Return Values 
The return value specifies the value returned by the window procedure. Although its 
meaning depends on the message being dispatched, the return value generally is 
ignored. 

Remarks 
The MSG structure must contain valid message values. If the Ipmsg parameter points to 
a WM_ TIMER message, and the IParam parameter of the WM_ TIMER message is not 
NULL, IParam pOints to a function that is called instead of the window procedure. 



... c:'idireinents 
Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Library: Use user32.lib. 

Chapter 9 Windowing 617 

Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Messages and Message Queues Overview, Message and Message Queue Functions, 
GetMessage, MSG, PeekMessage, TranslateMessage, WM_TIMER 

GetlnputState 
The GetlnputState function determines whether there are mouse-button or keyboard 
messages in the calling thread's message queue. 

BtlilL ~etInpu;tS.tatE!{VOIl'l); ..... 

Parameters 
This function has no parameters. 

Return Values 
If the queue contains one or more new mouse-button or keyboard messages, the return 
value is nonzero. 

If the there are no new mouse-button or keyboard messages in the queue, the return 
value is zero. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Messages and Message Queues Overview, Message and Message Queue Functions, 
GetQueueStatus 



618 Volume 2 Microsoft Windows User Interface 

GetMessage 
The Get Message function retrieves a message from the calling thread's message queue 
and places it in the specified structure. The function dispatches incoming sent messages 
until a posted message is available. 
This function can retrieve both messages associated with a specified window and thread 
messages posted using the PostThreadMessage function. The function retrieves 
messages that lie within a specified range of message values. Get Message does not 
retrieve messages for windows that belong to other threads or applications. 

Parameters 
/pMsg 

[in] Pointer to an MSG structure that receives message information from the thread's 
message queue. 

hWnd 
[in] Handle to the window whose messages are to be retrieved. The following value 
has a special meaning: 

Value Meaning 

NULL GetMessage retrieves messages for any window that belongs to the 
calling thread, and thread messages posted to the calling thread via 
PostThreadMessage. 

wMsgFilterMin 
[in] Specifies the integer value of the lowest message value to be retrieved. 

wMsgFilterMax 
[in] Specifies the integer value of the highest message value to be retrieved. 

Return Values 
If the function retrieves a message other than WM_QUIT, the return value is nonzero. 

If the function retrieves the WM_QUIT message, the return value is zero. 

If there is an error, the return value is -1. For example, the function fails if hWnd is an 
invalid window handle or IpMsg is an invalid pointer. To get extended error information, 
call GetLastError. 



Chapter 9 Windowing 619 

Warning Because the return value can be nonzero, zero, or -1 , avoid code like this: 

while (GetMessage( lpMsg, hWnd. 0.0» .•• 

The possibility of a -1 return value means that such code can lead to fatal application 
errors. 

Remarks 
An application typically uses the return value to determine whether to end the main 
message loop and exit the program. 

The GetMessage function only retrieves messages associated with the window 
identified by the hWnd parameter or any of its children, as specified by the IsChiid 
function, and within the range of message values given by the wMsgFilterMin and 
wMsgFilterMax parameters. If hWnd is NULL, GetMessage retrieves messages for any 
window that belongs to the calling thread, and thread messages posted to the calling 
thread via PostThreadMessage. GetMessage does not retrieve messages for windows 
that belong to other threads or for threads other than the calling thread, even if hWnd is 
not NULL. Thread messages, posted by the PostThreadMessage function, have a 
message hWnd value of NULL. If wMsgFilterMin and wMsgFilterMax are both zero, 
GetMessage returns all available messages (that is, no range filtering is performed). 
Note that GetMessage will always retrieve WM_QUIT messages, no matter which 
values you specify for wMsgFilterMin and wMsgFilterMax. 

The WM_KEYFIRST and WM_KEYLAST constants can be used as filter values to 
retrieve all messages related to keyboard input; the WM_MOUSEFIRST and 
WM_MOUSELAST constants can be used to retrieve all mouse messages. If the 
wMsgFilterMin and wMsgFilterMax parameters are both zero, the GetMessage function 
returns all available messages (that is, without performing any filtering). 

During this call, the system delivers pending messages that were sent to windows 
owned by the calling thread using the Send Message , SendMessageCaliback, 
SendMessageTimeout, or SendNotifyMessage function. The system can also process 
internal events. Messages are processed in the following order: 

1. Sent messages 

2. Posted messages 

3. Input (hardware) messages and system internal events 

4. Sent messages (again) 

5. WM_PAINT messages 

6. WM_ TIMER messages 

To retrieve input messages before posted messages, use the wMsgFilterMin and 
wMsgFilterMax parameters. 

GetMessage does not remove WM_PAINT messages from the queue. The messages 
remain in the queue until they are processed. 



620 Volume 2 Microsoft Windows User Interface 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Messages and Message Queues Overview, Message and Message Queue Functions, 
IsChild, MSG, PeekMessage, PostMessage, PostThreadMessage, WaitMessage 

GetMessageExtral nfo 
The GetMessageExtralnfo function gets the extra message information for the current 
thread. Extra message information is an application-defined or driver-defined value 
associated with the current thread's message queue. You can use the 
SetMessageExtralnfo function to set a thread's extra message information, which will 
remain until the next call to GetMessage or PeekMessage. 

J.J)AfV.M.· a~1:M~nageEx.'I;ra lrifQ(VQ~'P). 

Parameters 
This function has no parameters. 

Return Values 
The return value specifies the extra information. The meaning of the extra information is 
device-specific. 

Windows NT/2000: Requires Windows NT 3.1 or lateL 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Messages and Message Queues Overview, Message and Message Queue Functions, 
GetMessage, PeekMessage, SetMessageExtralnfo 



Chapter 9 Windowing 621 

GetMessagePos 
The GetMessagePos function returns a long value that gives the cursor position in 
screen coordinates. This position is the point occupied by the cursor when the last 
message retrieved by the GetMessage function occurred. 

bloat) :QftMi$sltgePos('¥Cllbh'" 

Parameters 
This function has no parameters. 

Return Values 
The return value specifies the x-coordinate and y-coordinate of the cursor position. 
The x-coordinate is the low order int and the y-coordinate is the high-order int. 

Remarks 
As noted above, the x-coordinate is in the low-order int of the return value; the y­
coordinate is in the high-order int (both represent signed values because they can take 
negative values on systems with multiple monitors). If the return value is assigned to a 
variable, you can use the MAKEPOINTS macro to obtain a POINTS structure from the 
return value. You can also use the GET_X_LPARAM or GET_Y_LPARAM macro to 
extract the x-coordinate and y-coordinate. 

To determine the current position of the cursor instead of the position when the last 
message occurred, use the GetCursorPos function. 

Important Do not use the LOWORD or HIWORD macros to extract x-coordinate and 
y-coordinate of the cursor position, because these macros return incorrect results on 
systems with multiple monitors. Systems with multiple monitor systems can have 
negative x-coordinates and y-coordinates, and LOWORD and HIWORD treat the 
coordinates as unsigned quantities. 

,;"', 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Messages and Message Queues Overview, Message and Message Queue Functions, 
GetCursorPos, GetMessage, GetMessageTime, HIWORD, LOWORD, 
MAKEPOINTS, POINTS 



622 Volume 2 Microsoft Windows User Interface 

GetMessageTime 
The GetMessageTime function returns the message time for the last message retrieved 
by the GetMessage function from the current thread's message queue. The time is a 
long integer that specifies the elapsed time, in milliseconds, from the time the system 
was started to the time the message was created (that is, placed in the thread's 
message queue). 

Parameters 
This function has no parameters. 

Return Values 
The return value specifies the message time. 

Remarks 
The return value from the GetMessageTime function does not necessarily increase 
between subsequent messages, because the value wraps to zero if the timer count 
exceeds the maximum value for a long integer. 

To calculate time delays between messages, verify that the time of the second message 
is greater than the time of the first message; then, subtract the time of the first message 
from the time of the second message. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Messages and Message Queues Overview, Message and Message Queue Functions, 
GetMessage, GetMessagePos 

GetQueueStatus 
The GetQueueStatus function returns flags that indicate the type of messages found in 
the calling thread's message queue. 

t!~~:~l~~~f~{f~~:,'::i:,r";"'';i i#rt,/,;~:\:;'i";';'h',S:~i~)" 



Parameters 
flags 

Chapter 9 Windowing 623 

[in] Specifies the types of messages for which to check. This parameter can be one or 
more of the following values: 

Value Meaning 

as_ALLEVENTS 

OS_ALLIN PUT 

as_ALLPOSTMESSAGE 

as_HOTKEY 

OS_INPUT 

OS_KEY 

as_MOUSEBUTTON 

as_MOUSEMOVE 

OS_PAINT 

as_POSTMESSAGE 

as_SENDMESSAGE 

Return Values 

An input, WM_ TIMER, WM_PAINT, WM_HOTKEY, 
or posted message is in the queue. 

Any message is in the queue. 

A posted message (other than those listed here) is 
in the queue. 

A WM_HOTKEY message is in the queue. 

An input message is in the queue. 

A WM_KEYUP, WM_KEYDOWN, 
WM_SYSKEYUP, or WM_SYSKEYDOWN 
message is in the queue. 

A WM_MOUSEMOVE message or mouse-button 
message (WM_LBUTTONUP, 
WM_RBUTTONDOWN, and so on) is in the queue. 

A mouse-button message (WM_LBUTTONUP, 
WM_RBUTTONDOWN, and so on) is in the queue. 

A WM_MOUSEMOVE message is in the queue. 

A WM_PAINT message is in the queue. 

A posted message (other than those listed here) is 
in the queue. 

A message sent by another thread or application is 
in the queue. 

A WM_ TIMER message is in the queue. 

The high-order word of the return value indicates the types of messages currently in the 
queue. The low-order word indicates the types of messages that have been added to the 
queue and that are still in the queue since the last call to the GetQueueStatus, 
GetMessage, or PeekMessage function. 

Remarks 
The presence of a as_ flag in the return value does not guarantee that a subsequent 
call to the GetMessage or PeekMessage function will return a message. Get Message 
and PeekMessage perform some internal filtering that can cause the message to be 
processed internally. For this reason, the return value from GetQueueStatus should be 
considered only a hint as to whether GetMessage or PeekMessage should be called. 



624 Volume 2 Microsoft Windows User Interface 

The QS_ALLPOSTMESSAGE and QS_POSTMESSAGE flags differ in when they are 
cleared. QS_POSTMESSAGE is cleared when you call Get Message or PeekMessage, 
whether or not you are filtering messages. QS_ALLPOSTMESSAGE is cleared when 
you call GetMessage or PeekMessage without filtering messages (wMsgFilterMin and 
wMsgFilterMax are 0). This can be useful when you call PeekMessage multiple times to 
get messages in different ranges. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.1ib. 

Messages and Message Queues Overview, Message and Message Queue Functions, 
GetlnputState, GetMessage, PeekMessage 

InSendMessage 
The InSendMessage function determines whether the current window procedure is 
processing a message that was sent from another thread (in the same process or a 
different process) by a call to the Send Message function. 

To obtain additional information about how the message was sent, use the 
InSendMessageEx function. 

l~OQ{II'lS~ndMe~sage( VOJII);· 

Parameters 
This function has no parameters. 

Return Values 
If the window procedure is processing a message sent to it from another thread using 
the Send Message function, the return value is nonzero. 

If the window procedure is not processing a message sent to it from another thread 
using the SendMessage function, the return value is zero. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 



Chapter 9 Windowing 625 

Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

1D;,g~~;AI$O' 
Messages and Message Queues Overview, Message and Message Queue Functions, 
InSendMessageEx, Send Message 

InSendMessageEx 
The InSendMessageEx function determines whether the current window procedure is 
processing a message that was sent from another thread (in the same process or a 
different process). 

DWORPlriSeridMessageEx( 
LPVOID.]pRes..erved 

):- .. . 

Parameters 
IpReserved 

. . 

II not used; must be NlJLL • 

Reserved; must be NULL. 

Return Values 
If the message was not sent, the return value is ISMEX_NOSEND. Otherwise, the return 
value is one or more of the following values: 

Value 

ISMEX_CALLBACK 

Meaning 

The message was sent using the SendMessageCaliback 
function. The thread that sent the message is not blocked. 

The message was sent using the SendNotifyMessage 
function. The thread that sent the message is not blocked. 

The window procedure has processed the message. 
The thread that sent the message is no longer blocked. 

The message was sent using the Send Message or 
SendMessageTimeout function. If ISMEX_REPLIED is 
not set, the thread that sent the message is blocked. 

Windows NT/2000: Requires Windows 2000. 
Windows 95/98: Requires Windows 98. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
library: Use user32.lib. 



626 Volume 2 Microsoft Windows User Interface 

Messages and Message Queues Overview, Message and Message Queue Functions, 
Send Message, SendMessageCaliback, SendMessageTimeout, SendNotifyMessage 

PeekMessage 
The PeekMessage function dispatches incoming sent messages, then checks a thread 
message queue for a message and places the message (if any) in the specified 
structure. 

Parameters 
IpMsg 

[out] Pointer to an MSG structure that receives message information. 

hWnd 
[in] Handle to the window whose messages are to be examined. 

wMsgFilterMin 
[in] Specifies the value of the first message in the range of messages to be examined. 

wMsgFilterMax 
[in] Specifies the value of the last message in the range of messages to be examined. 

wRemoveMsg 
[in] Specifies how messages are handled. This parameter can be one of the following 
values: 

Value Meaning 

PM_NOREMOVE Messages are not removed from the queue after processing by 
PeekMessage. 

PM_REMOVE Messages are removed from the queue after processing by 
PeekMessage. 

Optionally, you can combine the value PM_NOYIELD with either PM_NOREMOVE or 
PM_REMOVE. This flag prevents the system from releasing any thread that is waiting 
for the caller to go idle (see WaitForlnputldle). 

By default, all message types are processed. To specify that only certain message 
should be processed, specify one of more of the following values: 



Value 

Return Values 

Chapter 9 Windowing 627 

Meaning 

Windows 98, Windows 2000: Process mouse and 
keyboard messages. 

Windows 98, Windows 2000: Process paint 
messages. 

Windows 98, Windows 2000: Process all posted 
messages, including timers and hot keys. 
Windows 98, Windows 2000: Process all sent 
messages. 

If a message is available, the return value is nonzero. 

If no messages are available, the return value is zero. 

Remarks 
Unlike the Get Message function, the PeekMessage function does not wait for a 
message to be placed in the queue before returning. 

PeekMessage retrieves only messages associated with the window identified by the 
hWnd parameter or any of its children as specified by the IsChiid function, and within 
the range of message values given by the wMsgFilterMin and wMsgFilterMax 
parameters. If hWnd is NULL, PeekMessage retrieves messages for any window that 
belongs to the current thread making the call. (PeekMessage does not retrieve 
messages for windows that belong to other threads.) If hWnd is -1, PeekMessage 
returns only messages with a hWndvalue of NULL, as posted by the 
PostThreadMessage function. If wMsgFilterMin and wMsgFilterMax are both zero, 
PeekMessage returns all available messages (that is, no range filtering is performed). 
Note that GetMessage will always retrieve WM_QUIT messages, no matter which 
values you specify for wMsgFilterMin and wMsgFilterMax. 

The WM_KEYFIRST and WM_KEYLAST constants can be used as filter values to 
retrieve all keyboard messages; the WM_MOUSEFIRST and WM_MOUSELAST 
constants can be used to retrieve all mouse messages. 

During this call, the system delivers pending messages that were sent to windows 
owned by the calling thread using the Send Message , SendMessageCaliback, 
SendMessageTimeout, or SendNotifyMessage function. The system can also process 
internal events. Messages are processed in the following order: 

1. Sent messages 

2. Posted messages 

3. Input (hardware) messages and system internal events 

4. Sent messages (again) 

5. WM_PAINT messages 

6. WM_ TIMER messages 



628 Volume 2 Microsoft Windows User Interface 

To retrieve input messages before posted messages, use the wMsgFilterMin and 
wMsgFilterMax parameters. 

The PeekMessage function normally does not remove WM_PAINT messages from the 
queue. WM_PAINT messages remain in the queue until they are processed. However, if 
a WM_PAINT message has a null update region, PeekMessage does remove it from 
the queue. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Messages and Message Queues Overview, Message and Message Queue Functions, 
GetMessage, IsChild, MSG, WaitForlnputldle, WaitMessage 

Post Message 
The Post Message function places (posts) a message in the message queue associated 
with the thread that created the specified window, and then returns without waiting for 
the thread to process the message. 

To post a message in the message queue associate with a thread, use the 
PostThreadMessage function. 

Parameters 
hWnd 

[in] Handle to the window whose window procedure is to receive the message. The 
following values have special meanings: 



Chapter 9 Windowing 629 

Value Meaning 

HWND_BROADCAST The message is posted to all top-level windows in the 
system, including disabled or invisible unowned 
windows, overlapped windows, and pop-up windows. 
The message is not posted to child windows. 

NULL 

Msg 

The function behaves like a call to PostThreadMessage 
with the dwThreadld parameter set to the identifier of the 
current thread. 

[in] Specifies the message to be posted. 

wParam 
[in] Specifies additional message-specific information. 

IParam 
[in] Specifies additional message-specific information. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
Messages in a message queue are retrieved by calls to the Get Message or 
PeekMessage function. 

Applications that need to communicate using HWND_BROADCAST should use the 
RegisterWindowMessage function to obtain a unique message for interapplication 
communication. 

If you send a message in the range below WM_USER to the asynchronous message 
functions (PostMessage, SendNotifyMessage, and SendMessageCaliback), its 
message parameters cannot include pointers. Otherwise, the operation will fail. The 
functions will return before the receiving thread has had a chance to process the 
message, and the sender will free the memory before it is used. 

Do not post the WM_QUIT message using PostMessage; use the PostQuitMessage 
function. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 



630 Volume 2 Microsoft Windows User Interface 

Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Messages and Message Queues Overview, Message and Message Queue Functions, 
GetMessage, PeekMessage, PostQuitMessage, PostThreadMessage, 
RegisterWindowMessage, SendMessageCallback, SendNotifyMessage 

PostQuitMessage 
The PostQuitMessage function indicates to the system that a thread has made a 
request to terminate (quit). It is used typically in response to a WM_DESTROY message. 

\'oIfpO$tQu'l:tM~S:Ja;ge:(j; <>;. . ..... . 
i~ttf£xltr:,(jd/iJj·>jrj:;~Xi;ti;;b~ae\'j . ~ 

Parameters 
nExitCode 

[in] Specifies an application exit code. This value is used as the wParam parameter of 
the WM_QUIT message. 

Return Values 
This function does not return a value. 

Remarks 
The PostQuitMessage function posts a WM_QUIT message to the thread's message 
queue and returns immediately; the function indicates to the system that the thread is 
requesting to quit at some time in the future. 

When the thread retrieves the WM_QUIT message from its message queue, it should 
exit its message loop and return control to the system. The exit value returned to the 
system must be the wParam parameter of the WM_QUIT message. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 

Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 



Chapter 9 Windowing 631 

Q:·SeeAIso 
Messages and Message Queues Overview, Message and Message Queue Functions, 
GetMessage, PeekMessage, PostMessage, WM_DESTROY, WM_QUIT 

PostThreadMessage 
The PostThreadMessage function places (posts) a message in the message queue 
of the specified thread, and then returns without waiting for the thread to process the 
message. 

BOOl PostThreadMessage{ 
D'WORO, i qThr/iJad. fj thr€ad .ident ifi er 
UINT Msg. II message 
.WPARAM wParBm. II first message parameter 
lPARAM 7 Paraffl II second message parameter 

) : 

Parameters 
idThread 

[in] Identifier of the thread to which the message will be posted. 

The function fails if the specified thread does not have a message queue. The system 
creates a thread's message queue when the thread makes its first call to one of the 
Win32 USER or GDI functions. For more information, see the Remarks section. 

Msg 
[in] Specifies the type of message to be posted. 

wParam 
[in] Specifies additional message-specific information. 

IParam 
[in] Specifies additional message-specific information. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. GetLastError returns ERROR_INVALlD_ THREAD_ID, if idThread is not 
a valid thread identifier, or if the thread specified by idThread does not have a message 
queue. 

Remarks 
The thread to which the message is posted must have created a message queue, or 
else the call to PostThreadMessage fails. Use one of the following methods to handle 
this situation: 



632 Volume 2 Microsoft Windows User Interface 

• Call PostThreadMessage. If it fails, call the Sleep function, and then call 
PostThreadMessage again. Repeat until PostThreadMessage succeeds. 

• Create an event object, then create the thread. Use the WaitForSingleObject 
function to wait for the event to be set to the signaled state before calling 
PostThreadMessage. In the thread to which the message will be posted, call 
PeekMessage(&msg, NULL, WM_USER, WM_USER, PM_NOREMOVE) to force the 
system to create the message queue. Set the event, to indicate that the thread is 
ready to receive posted messages. 

The thread to which the message is posted retrieves the message by calling the 
GetMessage or PeekMessage function. The hwnd member of the returned MSG 
structu re is NULL. 

Messages sent by PostThreadMessage are not associated with a window. Messages 
that are not associated with a window cannot be dispatched by the DispatchMessage 
function. Therefore, if the recipient thread is in a modal loop (as used by MessageBox 
or DialogBox), the messages will be lost. To intercept thread messages while in a 
modal loop, use a thread-specific hook. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Messages and Message Queues Overview, Message and Message Queue Functions, 
GetCurrentThreadld, GetMessage, GetWindowThreadProcessld, MSG, 
PeekMessage, PostMessage, Sleep, WaitForSingleObject 

RegisterWindowMessage 
The RegisterWindowMessage function defines a new window message that is 
guaranteed to be unique throughout the system. The returned message value can be 
used when calling the Send Message or PostMessage function. 



Parameters 
IpString 

Chapter 9 Windowing 633 

[in] Pointer to a null-terminated string that specifies the message to be registered. 

Return Values 
If the message is registered successfully, the return value is a message identifier in the 
range OxCOOO through OxFFFF. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
The RegisterWindowMessage function is used typically to register messages for 
communicating between two cooperating applications. 

If two different applications register the same message string, the applications return 
the same message value. The message remains registered until the session ends. 

Only use RegisterWindowMessage when more than one application must process the 
same message. For sending private messages within a window class, an application can 
use any integer in the range WM_USER through Ox7FFF. (Messages in this range are 
private to a window class, not to an application. For example, predefined control classes 
such as BUTTON, EDIT, LlSTBOX, and COMBOBOX may use values in this range.) 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Messages and Message Queues Overview, Message and Message Queue Functions, 
PostMessage, Send Message 

ReplyMessage 
The ReplyMessage function is used to reply to a message sent through the 
Send Message function without returning control to the function that called 
SendMessage. 

$Of1Li .R~J)fyM~$Sag~ ( 
LRESULT iResuH . 

'tt 



634 Volume 2 Microsoft Windows User Interface 

Parameters 
IResult 

[in] Specifies the result of the message processing. The possible values are based on 
the message sent. 

Return Values 
If the calling thread was processing a message sent from another thread or process, the 
return value is nonzero. 

If the calling thread was not processing a message sent from another thread or process, 
the return value is zero. 

Remarks 
By calling this function, the window procedure that receives the message allows the 
thread that called SendMessage to continue to run as though the thread receiving the 
message had returned control. The thread that calls the ReplyMessage function also 
continues to run. 

If the message was not sent through Send Message , or if the message was sent by the 
same thread, ReplyMessage has no effect. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Messages and Message Queues Overview, Message and Message Queue Functions, 
InSendMessage, SendMessage 

SendAsyncProc 
The SendAsyncProc function is an application-defined callback function used with the 
SendMessageCaliback function. The system passes the message to the callback 
function after passing the message to the destination window procedure. The 
SENDASYNCPROC type defines a pointer to this callback function. SendAsyncProc is 
a placeholder for the application-defined function name. 



UINTIIMsg, II message 
UL()N(LPTR dw.Datll. 1/ a.ppHcat1on-defined value 
·,t.~ES~li.tC'l;tt~IUH· .,.·.Il ,re~.~lt))fmessage.·pr6ceSsin9 

H·· 

Parameters 
hwnd 

Chapter 9 Windowing 635 

[in] Handle to the window whose window procedure received the message. 

If the SendMessageCaliback function was called with its hwnd parameter set to 
HWND_BROADCAST, the system calls the SendAsyncProc function once for each 
top-level window. 

uMsg 
[in] Specifies the message. 

dwData 
[in] Specifies an application-defined value sent from the SendMessageCaliback 
function. 

IResult 
[in] Specifies the result of the message processing. This value depends on the 
message. 

Return Values 
This callback function does not return a value. 

Remarks 
You install a SendAsyncProc application-defined callback function by passing a 
SENDASYNCPROC pointer to the SendMessageCaliback function. 

The callback function is called only when the thread that called SendMessageCaliback 
calls GetMessage, PeekMessage, or WaitMessage. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Messages and Message Queues Overview, Message and Message Queue Functions, 
GetMessage, PeekMessage, SendMessageCaliback, WaitMessage 



636 Volume 2 Microsoft Windows User Interface 

Send Message 
The Send Message function sends the specified message to a window or windows. It 
calls the window procedure for the specified window, and does not return until the 
window procedure has processed the message. 

To send a message and return immediately, use the SendMessageCaliback or 
SendNotifyMessage function. To post a message to a thread's message queue and 
return immediately, use the PostMessage or PostThreadMessage function. 

LftES}JlrSendM&ssage( 
/Ji\il"11 h /tna'. 

'Il.H1T.· fi/sg, 
~,W~A~wNr{Jm •. 

LPARAM·.'·lPllram 
h. 

Parameters 
hWnd 

[in] Handle to the window whose window procedure will receive the message. If this 
parameter is HWND_BROADCAST, the message is sent to all top-level windows in 
the system, including disabled or invisible unowned windows, overlapped windows, 
and pop-up windows; however, the message is not sent to child windows. 

Msg 
[in] Specifies the message to be sent. 

wParam 
[in] Specifies additional message-specific information. 

IParam 
[in] Specifies additional message-specific information. 

Return Values 
The return value specifies the result of the message processing; it depends on the 
message sent. 

Remarks 
Applications that need to communicate using HWND_BROADCAST should use the 
RegisterWindowMessage function to obtain a unique message for interapplication 
communication. 

If the specified window was created by the calling thread, the window procedure is called 
immediately as a subroutine. If the specified window was created by a different thread, 
the system switches to that thread and calls the appropriate window procedure. 
Messages sent between threads are processed only when the receiving thread executes 
message retrieval code. The sending thread is blocked until the receiving thread 
processes the message. 



Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Chapter 9 Windowing 637 

Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Messages and Message Queues Overview, Message and Message Queue Functions, 
InSendMessage, PostMessage, PostThreadMessage, RegisterWindowMessage 
SendDlgltemMessage, SendMessageCaliback, SendNotifyMessage 

SendMessageCallback 
The SendMessageCaliback function sends the specified message to a window or 
windows. It calls the window procedure for the specified window, and returns 
immediately. After the window procedure processes the message, the system calls the 
specified callback function, passing the result of the message processing and an 
application-defined value to the callback function. 

Parameters 
hWnd 

[in] Handle to the window whose window procedure will receive the message. If this 
parameter is HWND_BROADCAST, the message is sent to all top-level windows in 
the system, including disabled or invisible unowned windows, overlapped windows, 
and pop-up windows; however, the message is not sent to child windows. 

Msg 
[in] Specifies the message to be sent. 

wParam 
[in] Specifies additional message-specific information. 

IParam 
[in] Specifies additional message-specific information. 



638 Volume 2 Microsoft Windows User Interface 

/pCal/Back 
[in] Pointer to a callback function that the system calls after the window procedure 
processes the message. For more information, see SendAsyncProc. 

If hWnd is HWND_BROADCAST, the system calls the SendAsyncProc callback 
function once for each top-level window. 

dwData 
[in] Specifies an application-defined value to be sent to the callback function pOinted 
to by the /pCal/Back parameter. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
If you send a message in the range below WM_USER to the asynchronous message 
functions (PostMessage, SendNotifyMessage, and SendMessageCaliback), its 
message parameters cannot include pointers. Otherwise, the operation will fail. The 
functions will return before the receiving thread has had a chance to process the 
message, and the sender will free the memory before it is used. 

Applications that need to communicate using HWND_BROADCAST should use the 
RegisterWindowMessage function to obtain a unique message for interapplication 
communication. 

The callback function is called only when the thread that called SendMessageCaliback 
also calls GetMessage, PeekMessage, or WaitMessage. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Messages and Message Queues Overview, Message and Message Queue Functions, 
PostMessage, RegisterWindowMessage, SendAsyncProc, SendMessageCaliback, 
SendNotifyMessage 



Chapter 9 Windowing 639 

SendMessageTimeout 
The SendMessageTimeout function sends the specified message to a window or 
windows. The function calls the window procedure for the specified window and, if the 
specified window belongs to a different thread, does not return until the window 
procedure has processed the message or the specified time-out period has elapsed. If 
the window receiving the message belongs to the same queue as the current thread, 
the window procedure is called directly-the time-out value is ignored. 

";.:. .., ",' 

:. :,~".' ",: . :.:~ ~ :',:.:: :,:";";: 

"':: .... ,;. :., 

hPDtlO,~~~~i~',1,PdW~~~,~,~i <, '~ff~,:~':;v~i ,~~J~r' $ynC,~,~ono,u,~ <;all:, 

Parameters 
hWnd 

[in] Handle to the window whose window procedure will receive the message. If this 
parameter is HWND_BROADCAST, the message is sent to all top-level windows in 
the system, including disabled or invisible unowned windows. 

Msg 
[in] Specifies the message to be sent. 

wParam 
[in] Specifies additional message-specific information. 

IParam 
[in] Specifies additional message-specific information. 

fuFlags 
[in] Specifies how to send the message. This parameter can be one or more of the 
following values: 

Value Meaning 

SMTO_ABORTIFHUNG Returns without waiting for the time-out 
period to elapse if the receiving process 
appears to be in a "hung" (unresponsive) 
state. 

Prevents the calling thread from processing 
any other requests until the function returns. 

The calling thread is not prevented from 
processing other requests while waiting for 
the function to return. 

(continued) 



640 Volume 2 Microsoft Windows User Interface 

(continued) 

Value 

SMTO_NOTIMEOUTIFNOTHUNG 

uTimeout 

Meaning 

Windows 2000: Does not return when the 
time-out period elapses if the receiving thread 
is not "hung". 

[in] Specifies the duration, in milliseconds, of the time-out period. If the message is a 
broadcast message, each window can use the full time-out period. For example, if you 
specify a 5-second time-out period and there are three top-level windows that fail to 
process the message, you could have up to a 15-second delay. 

IpdwResult 
[in] Receives the result of the message processing. This value depends on the 
message sent. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails or times out, the return value is zero. To get extended error 
information, call GetLastError. If GetLastError returns zero, then the function timed out. 
SendMessageTimeout does not provide information about individual windows timing 
out if HWND_BROADCAST is used. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Messages and Message Queues Overview, Message and Message Queue Functions, 
InSendMessage, PostMessage, SendDlgltemMessage, Send Message, 
SendMessageCaliback, SendNotifyMessage 

SendNotifyMessage 
The SendNotifyMessage function sends the specified message to a window. If the 
window was created by the calling thread, SendNotifyMessage calls the window 
procedure for the window, and does not return until the window procedure has 
processed the message. If the window was created by a different thread, 
SendNotifyMessage passes the message to the window procedure and returns 
immediately; it does not wait for the window procedure to finish processing the message. 



BOOl SendNot1fyMessage( 
HWND hWnd. II handle to window 
OINT Msg. !l message 
WPARAMwParam. .// f1 rst message p~rall1e.~e!:. 
LPARAM lParam /I second message parameter 

): .. 

Parameters 
hWnd 

Chapter 9 Windowing 641 

[in] Handle to the window whose window procedure will receive the message. If this 
parameter is HWND_BROADCAST, the message is sent to all top-level windows in 
the system, including disabled or invisible unowned windows, overlapped windows, 
and pop-up windows; however, the message is not sent to child windows. 

Msg 
[in] Specifies the message to be sent. 

wParam 
[in] Specifies additional message-specific information. 

IParam 
[in] Specifies additional message-specific information. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
Get Last Error . 

Remarks 
If you send a message in the range below WM_USER to the asynchronous message 
functions (PostMessage, SendNotifyMessage, and SendMessageCaliback), its 
message parameters cannot include pOinters. Otherwise, the operation will fail. The 
functions will return before the receiving thread has had a chance to process the 
message, and the sender will free the memory before it is used. 

Applications that need to communicate using HWND_BROADCAST should use the 
RegisterWindowMessage function to obtain a unique message for interapplication 
communication. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 



642 Volume 2 Microsoft Windows User Interface 

Messages and Message Queues Overview, Message and Message Queue Functions, 
PostMessage, PostThreadMessage, RegisterWindowMessage, Send Message 
SendMessageCaliback, SendNotifyMessage 

SetMessageExtralnfo 
The SetMessageExtralnfo function sets the extra message information for the current 
thread. Extra message information is an application-defined or driver-defined value 
associated with the current thread's message queue. An application can use the 
GetMessageExtralnfo function to retrieve a thread's extra message information. 

Parameters 
IParam 

[in] Specifies the value to associate with the current thread. 

Return Values 
The return value is the previous value associated with the current thread. 

Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Messages and Message Queues Overview, Message and Message Queue Functions, 
GetMessageExtralnfo 

TranslateMessage 
The TranslateMessage function translates virtual-key messages into character 
messages. The character messages are posted to the calling thread's message queue, 
to be read the next time the thread calls the GetMessage or PeekMessage function. 



Parameters 
IpMsg 

Chapter 9 Windowing 643 

[in] Pointer to an MSG structure that contains message information retrieved from the 
calling thread's message queue by using the GetMessage or PeekMessage function. 

Return Values 
If the message is translated (that is, a character message is posted to the thread's 
message queue), the return value is nonzero. 

If the message is WM_KEVDOWN, WM_KEVUP, WM_SVSKEVDOWN, or 
WM_SVSKEVUP, the return value is nonzero, regardless of the translation. 

If the message is not translated (that is, a character message is not posted to the 
thread's message queue), the return value is zero. 

Remarks 
The TranslateMessage function does not modify the message pointed to by the IpMsg 
parameter. 

WM_KEVDOWN and WM_KEVUP combinations produce a WM_CHAR or 
WM_DEADCHAR message. WM_SVSKEVDOWN and WM_SVSKEVUP combinations 
produce a WM_SVSCHAR or WM_SVSDEADCHAR message. 

TranslateMessage produces WM_CHAR messages only for keys that are mapped to 
ASCII characters by the keyboard driver. 

If applications process virtual-key messages for some other purpose, they should not call 
TranslateMessage. For instance, an application should not call TranslateMessage if 
the TranslateAccelerator function returns a nonzero value. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Messages and Message Queues Overview, Message and Message Queue Functions, 
GetMessage, PeekMessage, TranslateAccelerator, WM_CHAR, WM_DEADCHAR, 
WM_KEVDOWN, WM_KEVUP, WM_SVSCHAR, WM_SVSDEADCHAR, 
WM_SVSKEVDOWN, WM_SVSKEVUP 



644 Volume 2 Microsoft Windows User Interface 

WaitMessage 
The WaitMessage function yields control to other threads when a thread has no other 
messages in its message queue. The WaitMessage function suspends the thread and 
does not return until a new message is placed in the thread's message queue. 

BOllI. :tLei;tMe$i:ag~(V~iD) t ' 

Parameters 
This function has no parameters. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
Note that WaitMessage does not return if there is unread input in the message queue 
after the thread has called a function to check the queue. This is because functions such 
as GetMessage, GetQueueStatus, MsgWaitForMultipleObjects, 
MsgWaitForMultipleObjectsEx, PeekMessage, and WaitMessage, check the queue 
and then change the state information for the queue, so that the input is no longer 
considered new. A subsequent call to WaitMessage will not return until new input of 
the specified type arrives. The existing unread input (received prior to the last time the 
thread checked the queue) is ignored. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Messages and Message Queues Overview, Message and Message Queue Functions, 
GetMessage,PeekMessage 



MSG 

Chapter 9 Windowing 645 

Message and Message Queue Structures 

The MSG structure contains message information from a thread's message queue. 

Members 
hwnd 

Handle to the window whose window procedure receives the message. 

message 
Specifies the message identifier. 

wParam 
Specifies additional information about the message. The exact meaning depends on 
the value of the message member. 

IParam 
Specifies additional information about the message. The exact meaning depends on 
the value of the message member. 

time 

pt 

Specifies the time when the message was posted. 

Specifies the cursor position, in screen coordinates, at which the message was 
posted. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Messages and Message Queues Overview, Message and Message Queue Structures, 
GetMessage, PeekMessage 



646 Volume 2 Microsoft Windows User Interface 

Message and Message Queue Messages 

WM APP 
The WM_APP constant is used by applications to help define private messages, usually 
of the form WM_APP+X, where X is an integer value. 

'defl~eWM....App 0x8000 

Remarks 
The WM_APP constant is used to distinguish between message values that are 
reserved for use by the system and values that can be used by an application to send 
messages within a private window class. The following are the ranges of message 
numbers available: 

Range 

o through WM_USER-1 

WM_USER through Ox7FFF 

WM_APP through OxBFFF 

OxCOOO through OxFFFF 

Greater than OxFFFF 

Meaning 

Messages reserved for use by the system 

Integer messages for use by private window classes 

Messages available for use by applications 

String messages for use by applications 

Reserved by the system for future use 

Message numbers in the first range (0 through WM_USER -1) are defined by the 
system. Values in this range that are not explicitly defined are reserved for future use 
by the system. 

Message numbers in the second range (WM_USER through Ox7FFF) can be defined 
and used by an application to send messages within a private window class. These 
values cannot be used to define messages that are meaningful throughout an 
application, because some predefined window classes already define values in this 
range. For example, predefined control classes such as BUTTON, EDIT, LlSTBOX, and 
COMBOBOX can use these values. Messages in this range should not be sent to other 
applications unless the applications have been designed to exchange messages and to 
attach the same meaning to the message numbers. 

Message numbers in the third range (Ox8000 through OxBFFF) are available for 
application to use as private messages. Message in this range do not conflict with 
system messages. 

Message numbers in the fourth range (OxCOOO through OxFFFF) are defined at run time 
when an application calls the RegisterWindowMessage function to retrieve a message 
number for a string. All applications that register the same string can use the associated 
message number for exchanging messages. The actual message number, however, is 
not a constant, and cannot be assumed to be the same between different sessions. 



Chapter 9 Windowing 647 

Message numbers in the fifth range (greater than OxFFFF) are reserved for future use 
by the system. 

aMmen&:" 
Windows NT/2000: Requires Windows NT 3.51 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 2.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Messages and Message Queues Overview, Message and Message Queue Messages, 
RegisterWindowMessage, WM_USER 

The WM_USER constant is used by applications to help define private messages, 
usually of the form WM_USER+X, where X is an integer value. 

#detine ;l!If.LU'sErt .. ( 0.l(040~ ~. 

Remarks 
The following are the ranges of message numbers: 

Range Meaning 

o through WM_USER-1 

WM_USER through Ox7FFF 

WM_APP through OxBFFF 

OxCOOO through OxFFFF 

Greater than OxFFFF 

Messages reserved for use by the system 

Integer messages for use by private window classes 

Messages available for use by applications 

String messages for use by applications 

Reserved by the system for future use 

Message numbers in the first range (0 through WM_USER -1) are defined by the 
system. Values in this range that are not explicitly defined are reserved for future use by 
the system. 

Message numbers in the second range (WM_USER through Ox7FFF) can be defined 
and used by an application to send messages within a private window class. These 
values cannot be used to define messages that are meaningful throughout an 
application, because some predefined window classes already define values in this 
range. For example, predefined control classes such as BUTTON, EDIT, LlSTBOX, and 
COMBO BOX can use these values. Messages in this range should not be sent to other 
applications unless the applications have been designed to exchange messages and to 
attach the same meaning to the message numbers. 



648 Volume 2 Microsoft Windows User Interface 

Message numbers in the third range (Ox8000 through OxBFFF) are available for 
application to use as private messages. Message in this range do not conflict with 
system messages. 

Message numbers in the fourth range (OxCOOO through OxFFFF) are defined at run time 
when an application calls the RegisterWindowMessage function to retrieve a message 
number for a string. All applications that register the same string can use the associated 
message number for exchanging messages. The actual message number, however, is 
not a constant, and cannot be assumed to be the same between different sessions. 

Message numbers in the fifth range (greater than OxFFFF) are reserved for future use by 
the system. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Messages and Message Queues Overview, Message and Message Queue Messages, 
RegisterWindowMessage, WM_APP 

Multiple Document Interface 
The multiple document interface (MOl) is a specification that defines a user interface for 
applications that enable the user to work with more than one document at the same time. 

Note MOl is an application-oriented model. Many new and intermediate users find it 
difficult to learn to use MOl applications. Therefore, many applications are switching to a 
document-oriented model. Therefore, you might want to consider other models for your 
user interface. However, you can use MOl for applications which do not fit easily into an 
existing model until a more suitable model is introduced. 

About the Multiple Document Interface 
Each document in an MOl application is displayed in a separate child window within the 
client area of the application's main window. Typical MOl applications include word­
processing applications that allow the user to work with multiple text documents, and 
spreadsheet applications that allow the user to work with multiple charts and 
spreadsheets. 



Chapter 9 Windowing 649 

Frame, Client, and Child Windows 
An MOl application has three kinds of windows: a frame window, an MOl client window, 
and a number of child windows. The frame window is like the main window of the 
application: it has a sizing border, a title bar, a window menu, a minimize button, and a 
maximize button. The application must register a window class for the frame window and 
provide a window procedure to support it. 

An MOl application does not display output in the client area of the frame window. Instead, 
it displays the MOl client window. An MDI client window is a special type of child window 
belonging to the preregistered window class MOICLIENT. The client wir:ldow is a child of 
the frame window; it serves as the background for child windows. It also provides support 
for creating and manipulating child windows. For example, an MOl application can create, 
activate, or maximize child windows by sending messages to the MOl client window. 

When the user opens or creates a document, the client window creates a child window 
for the document. The client window is the parent window of all MOl child windows in the 
application. Each child window has a sizing border, a title bar, a window menu, a 
minimize button, and a maximize button. Because a child window is clipped, it is 
confined to the client window and cannot appear outside it. 

An MOl application can support more than one kind of document. For example, a typical 
spreadsheet application enables the user to work with both charts and spreadsheets. 
For each type of document that it supports, an MOl application must register a child 
window class and provide a window procedure to support the windows belonging to that 
class. For more information about window classes, see Window Classes. For more 
information about window procedures, see Window Procedures. 

Figure 9-1: A typical MOl application. 

Client 
Window 



650 Volume 2 Microsoft Windows User Interface 

Child Window Creation 
To create a child window, an MOl application either calls the CreateMDIWindow 
function or sends the WM_MDICREATE message to the MOl client window. A more 
efficient way to create an MOl child window is to call the CreateWindowEx function, 
specifying the WS_EX_MOICHILO extended style. A thread in an MOl application can 
use CreateMDIWindow or CreateWindowEx to create a child window in a different 
thread. The WM_MDICREATE message is used only in the context of the same thread. 

To destroy a child window, an MOl application sends a WM_MDIDESTROY message to 
the MOl client window. 

Child Window Activation 
Any number of child windows can appear in the client window at anyone time, but only 
one can be active. The active child window is positioned in front of all other child 
windows, and its border is highlighted. 

The user can activate an inactive child window by clicking it. An MOl application 
activates a child window by sending a WM_MDIACTIVATE message to the MOl client 
window. As the client window processes this message, it sends a WM_MDIACTIVATE 
message to the window procedure of the child window to be activated and to the window 
procedure of the child window being deactivated. 

To prevent a child window from activating, handle the WM_NCACTIVATE message to 
the child window by returning FALSE. 

The system keeps track of each child window's position in the stack of overlapping 
windows. This stacking is known as the Z order. The user can activate the next child 
window in the Z order by clicking Next from the window menu in the active window. An 
application activates the next (or previous) child window in the Z order by sending a 
WM_MDINEXT message to the client window. 

To retrieve the handle to the active child window, the MOl application sends a 
WM_MDIGETACTIVE message to the client window. 

Multiple Document Menus 
The frame window of an MOl application should include a menu bar with a window 
menu. The window menu should include items that either arrange the child windows 
within the client window or close all child windows. The window menu of a typical MOl 
application might include the items in the following table: 

Menu item 

Tile 

Cascade 

Purpose 

Arranges child windows in a tile format, so that each appears in 
its entirety in the client window. 

Arranges child windows in a cascade format. The child windows 
overlap one another, but the title bar of each is visible. 



Menu item 

Arrange Icons 

Close All 

Chapter 9 Windowing 651 

Purpose 

Arranges the icons of minimized child windows along the bottom 
of the client window. 

Closes all child windows. 

Whenever a child window is created, the system automatically appends a new menu 
item to the window menu. The text of the menu item is the same as the text on the menu 
bar of the new child window. By clicking the menu item, the user can activate the 
corresponding child window. When a child window is destroyed, the system 
automatically removes the corresponding menu item from the window menu. 

The system can add up to 10 menu items to the window menu. When the tenth child 
window is created, the system adds the More Windows item to the window menu. 
Clicking this item displays the Select Window dialog box. The dialog box contains a list 
box with the titles of all MOl child windows currently available. The user can activate a 
child window by clicking its title in the list box. 

If your MOl application supports several types of child windows, tailor the menu bar to 
reflect the operations associated with the active window. To do this, provide separate 
menu resources for each type of child window the application supports. When a new 
type of child window is activated, the application should send a WM_MDISETMENU 
message to the client window, passing to it the handle to the corresponding menu. 

When no child window exists, the menu bar should contain only items used to create or 
open a document. 

When the user is moving through an MOl application's menus by using cursor keys, the 
keys behave differently than when the user is moving through a typical application's 
menus. In an MOl application, control passes from the application's window menu to the 
window menu of the active child window, and then to the first item on the menu bar. 

Multiple Document Accelerators 
To receive and process accelerator keys for its child windows, an MOl application must 
include the TranslateMDISysAccel function in its message loop. The loop must call 
TranslateMDISysAccel before calling the TranslateAccelerator or DispatchMessage 
function. 

Accelerator keys on the window menu for an MOl child window are different from those 
for a non-MOl child window. In an MOl child window, the AL T + - (minus) key 
combination opens the window menu, the CTRL+F4 key combination closes the active 
child window, and the CTRL+F6 key combination activates the next child window. 

Child Window Size and Arrangement 
An MOl application controls the size and position of its child windows by sending 
messages to the MOl client window. To maximize the active child window, the 
application sends the WM_MDIMAXIMIZE message to the client window. When a child 
window is maximized, its client area completely fills the MOl client window. In addition, 
the system automatically hides the child window's title bar, and adds the child window's 



652 Volume 2 Microsoft Windows User Interface 

window-menu icon and Restore button to the MOl application's menu bar. The 
application can restore the client window to its original (premaximized) size and position 
by sending the client window a WM_MDIRESTORE message. 

An MOl application can arrange its child windows in either a cascade or tile format. 
When the child windows are cascaded, the windows appear in a stack. The window on 
the bottom of the stack occupies the upper-left corner of the screen, and the remaining 
windows are offset vertically and horizontally, so that the left border and title bar of each 
child window is visible. To arrange child windows in the cascade format, an MOl 
application sends the WM_MDICASCADE message. Typically, the application sends 
this message when the user clicks Cascade on the window menu. 

When the child windows are tiled, the system displays each child window in its entirety, 
overlapping none of the windows. All of the windows are sized, as necessary, to fit within 
the client window. To arrange child windows in the tile format, an MOl application sends 
a WM_MDITILE message to the client window. Typically, the application sends this 
message when the user clicks Tile on the window menu. 

An MOl application should provide a different icon for each type of child window it 
supports. The application specifies an icon when registering the child window class. The 
system automatically displays a child window's icon in the lower portion of the client 
window when the child window is minimized. An MOl application directs the system to 
arrange child window icons by sending a WM_MDIICONARRANGE message to the 
client window. Typically, the application sends this message when the user clicks 
Arrange Icons on the window menu. 

Icon Title Windows 
Because MOl child windows can be minimized, an MOl application must avoid 
manipulating icon title windows as if they were normal MOl child windows. Icon title 
windows appear when the application enumerates child windows of the MOl client 
window. Icon title windows differ from other child windows, however, in that they are 
owned by an MOl child window. 

To determine whether a child window is an icon title window, use the GetWindow 
function with the GW_OWNER index. Non-title windows return NULL. Note that this test 
is insufficient for top-level windows, because menus and dialog boxes are owned 
windo\Ns. 

Child Window Data 
Because the number of child windows varies depending on how many documents the 
user opens, an MOl application must be able to associate data (for example, the name of 
the current file) with each child window. There are two ways to do this: 

• Store child window data in the window structure. 

• Use window properties. 



Chapter 9 Windowing 653 

Window Structure 

When an MOl application registers a window class, it can reserve extra space in the 
window structure for application data specific to this particular class of windows. To store 
and retrieve data in this extra space, the application uses the GetWindowWord, 
SetWindowWord, GetWindowLong, and SetWindowLong functions. 

To maintain a large amount of data for a child window, an application can allocate 
memory for a data structure, and then store the handle to the memory containing the 
structure in the extra space associated with the child window. 

Window Properties 

An MOl application also can store per-document data by using window properties. Per­
document data is data specific to the type of document contained in a particular child 
window. Properties are different from extra space in the window structure in that you do 
not need to allocate extra space when registering the window class. A window can have 
any number of properties. Also, where offsets are used to access the extra space in 
window structures, properties are referred to by string names. For more information 
about window properties, see Window Properties. 

Multiple Document Interface Reference 
Multiple Document Interface Functions 

CreateMDIWindow 
The CreateMDIWindow function creates a multiple document interface (MOl) child 
window. 

:~P;'{~~~~~~~:~t#:, 



654 Volume 2 Microsoft Windows User Interface 

Parameters 
IpClassName 

[in] Pointer to a null-terminated string specifying the window class of the MOl child 
window. The class name must have been registered by a call to the RegisterClassEx 
function. 

IpWindowName 
[in] Pointer to a null-terminated string that represents the window name. The system 
displays the name in the title bar of the child window. 

dwStyle 

x 

y 

[in] Specifies the style of the MOl child window. If the MOl client window is created 
with the MOIS_ALLCHILOSTYLES window style, this parameter can be any 
combination of the window styles listed in the description of the CreateWindow 
function. Otherwise, this parameter can be one or more of the following values: 

Value Meaning 

WS_MAXIMIZE 

WS_MINIMIZE 

WS_VSCROLL 

Creates an MOl child window that has a horizontal scroll 
bar. 

Creates an MOl child window that is initially maximized. 

Creates an MOl child window that is initially minimized. 

Creates an MOl child window that has a vertical scroll bar. 

[in] Specifies the initial horizontal position, in client coordinates, of the MOl child 
window. If this parameter is CW_USEOEFAULT, the MOl child window is assigned 
the default horizontal position. 

[in] Specifies the initial vertical position, in client coordinates, of the MOl child window. 
If this parameter is CW_USEOEFAUL T, the MOl child window is assigned the default 
vertical position. 

nWidth 
[in] Specifies the initial width, in device units, of the MOl child window. If this 
parameter is CW_USEOEFAULT, the MOl child window is assigned the default width. 

nHeight 
[in] Specifies the initial height, in device units, of the MOl child window. If this 
parameter is set to CW_USEOEFAULT, the MOl child window is assigned the default 
height. 

hWndParent 
[in] Handle to the MOl client window that will be the parent of the new MOl child 
window. 

hlnstance 
[in] Handle to the instance of the application creating the MOl child window. 

IParam 
[in] Specifies an application-defined value. 



Chapter 9 Windowing 655 

Return Values 
If the function succeeds, the return value is the handle to the created window. 

If the function fails, the return value is NULL. To get extended error information, call 
GetLastError. 

Remarks 
Using the CreateMDIWindow function is similar to sending the WM_MDICREATE 
message to an MDI client window, except that the function can create an MDI child 
window in a different thread, while the message cannot. 

Windows 95: The system can support a maximum of 16,364 window handles. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Multiple Document Interface Overview, Multiple Document Interface Functions, 
CreateWindow, RegisterClassEx, WM_MDICREATE 

DefFrameProc 
The DefFrameProc function provides default processing for any window messages that 
the window procedure of a multiple document interface (MDI) frame window does not 
process. All window messages that are not explicitly processed by the window procedure 
must be passed to the DefFrameProc function, not to the DefWindowProc function. 

Parameters 
hWnd 

[in] Handle to the MDI frame window. 



656 Volume 2 Microsoft Windows User Interface 

hWndMDIClient 
[in] Handle to the MDI client window. 

uMsg 
[in] Specifies the message to be processed. 

wParam 
[in] Specifies additional message-specific information. 

IParam 
[in] Specifies additional message-specific information. 

Return Values 
The return value specifies the result of the message processing and depends on the 
message. If the hWndMDIClient parameter is NULL, the return value is the same as for 
the DefWindowProc function. 

Remarks 
When an application's window procedure does not handle a message, it typically passes 
the message to the DefWindowProc function to process the message. MDI applications 
use the DefFrameProc and DefMDIChiidProc functions, instead of DefWindowProc, to 
provide default message processing. All messages that an application would usually 
pass to DefWindowProc (such as nonclient messages and the WM_SETTEXT 
message) should be passed to DefFrameProc, instead. The DefFrameProc function 
also handles the following messages: 

Message Response 

Activates the MDI child window that the user chooses. This 
message is sent when the user chooses an MDI child window 
from the window menu of the MDI frame window. The window 
identifier accompanying this message identifies the MDI child 
window to be activated. 

Opens the window menu of the active MDI child window when 
the user presses the AL T + - (minus) key combination. 

Passes the keyboard focus to the MDI client window, which, in 
turn, passes it to the active MDI child window. 

Resizes the MDI client window to fit in the new frame window's 
client area. If the frame window procedure sizes the MDI client 
window to a different size, it should not pass the message to the 
DefWindowProc function. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 



Chapter 9 Windowing 657 

Library: Use user32.1ib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Q5;se$~$() 
Multiple Document Interface Overview, Multiple Document Interface Functions, 
DefMDIChiidProc, DefWindowProc, WM_SETTEXT 

DefMDIChiidProc 
The DefMDIChiidProc function provides default processing for any window message 
that the window procedure of a multiple document interface (MDI) child window does not 
process. A window message not processed by the window procedure must be passed to 
the DefMDIChiidProc function, not to the DefWindowProc function. 

I.RESULfDefMDIChilt:1Pt'oc( 
,HWND . hl/nei • . ' ~c 
, UIN1uMsg',·· 

WPARAMwP8~an1. 
LPARAM 1 Param 

); 

Parameters 
hWnd 

!Im~ssage 
n 
n 

[in] Handle to the MDI child window. 

uMsg 
[in] Specifies the message to be processed. 

wParam 
[in] Specifies additional message-specific information. 

IParam 
[in] Specifies additional message-specific information. 

Return Values 
The return value specifies the result of the message processing and depends on the 
message. 

Remarks 
The DefMDIChiidProc function assumes that the parent window of the MDI child 
window identified by the hWndparameter was created with the MDICLIENT class. 

When an application's window procedure does not handle a message, it typically passes 
the message to the DefWindowProc function to process the message. MDI applications 
use the DefFrameProc and DefMDIChiidProc functions, instead of DefWindowProc, to 
provide default message processing. All messages that an application would usually 



658 Volume 2 Microsoft Windows User Interface 

pass to DefWindowProc (such as nonclient messages and the WM_SETTEXT 
message) should be passed to DefMDIChiidProc, instead. In addition, 
DefMDIChiidProc also handles the following messages: 

Message 

WM_CHILDACTIVATE 

WM_GETMINMAXINFO 

WM_MENUCHAR 

WM_MOVE 

WM_SETFOCUS 

Response 

Performs activation processing when MDI child windows 
are sized, moved, or displayed. This message must be 
passed. 

Calculates the size of a maximized MDI child window, 
based on the current size of the MDI client window. 

Passes the message to the MDI frame window. 

Recalculates MDI client scroll bars, if they are present. 

Activates the child window, if it is not the active MDI child 
window. 

Performs operations necessary for changing the size of a 
window, especially for maximizing or restoring an MDI 
child window. Failing to pass this message to the 
DefMDIChiidProc function produces highly undesirable 
results. 

Handles window menu commands: SC_NEXTWINDOW, 
SC_PREVWINDOW, SC_MOVE, SC_SIZE, and 
SC_MAXIMIZE. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Multiple Document Interface Overview, Multiple Document Interface Functions, 
DefFrameProc, DefWindowProc, WM_CHILDACTIVATE, WM_GETMINMAXINFO, 
WM_MENUCHAR, WM_MOVE, WM_SETFOCUS, WM_SETTEXT, WM_SIZE, 
WM_SYSCOMMAND 

TranslateMDISysAccel 
The TranslateMDISysAccel function processes accelerator keystrokes for window 
menu commands of the multiple document interface (MDI) child windows associated 



Chapter 9 Windowing 659 

with the specified MDI client window. The function translates WM_KEVUP and 
WM_KEVDOWN messages to WM_SVSCOMMAND messages, and sends them to 
the appropriate MDI child windows. 

Parameters 
hWndClient 

[in] Handle to the MDI client window. 

IpMsg 
[in] Pointer to a message retrieved by using the GetMessage or PeekMessage 
function. The message must be an MSG structure and contain message information 
from the application's message queue. 

Return Values 
If the message is translated into a system command, the return value is nonzero. 

If the message is not translated into a system command, the return value is zero. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Multiple Document Interface Overview, Multiple Document Interface Functions, 
GetMessage, PeekMessage, TranslateAccelerator, MSG, WM_KEVDOWN, 
WM_KEVUP, WM_SVSCOMMAND 

Multiple Document Interface Structures 

MDICREATESTRUCT 
The MDICREATESTRUCT structure contains information about the class, title, owner, 
location, and size of a multiple document interface (MDI) child window. 

(continued) 



660 Volume 2 Microsoft Windows User Interface 

(continued) 

Members 
szClass 

Pointer to a null-terminated string specifying the name of the window class of the MOl 
child window. The class name must have been registered by a previous call to the 
RegisterClass function. 

szTitle 
Pointer to a null-terminated string that represents the title of the MOl child window. 
The system displays the title in the child window's title bar. 

hOwner 

x 

y 

ex 

ey 

Handle to the instance of the application creating the MOl client window. 

Specifies the initial horizontal position, in client coordinates, oHhe MOl child window. 
If this member is CW_USEOEFAUL T, the MOl child window is assigned the default 
horizontal position. 

Specifies the initial vertical position, in client coordinates, of the MOl child window. If 
this member is CW_USEOEFAUL T, the MOl child window is assigned the default 
vertical position. . 

Specifies the initial width, in device units, of the MOl child window. If this member is 
CW_USEOEFAULT, the MOl child window is assigned the default width. 

Specifies the initial height, in device units, of the MOl child window. If this member is 
set to CW_USEOEFAULT, the MOl child window is assigned the default height. 

style 
Specifies the style of the MOl child window. If the MOl client window was created with 
the MOIS_ALLCHILOSTYLES window style, this member can be any combination of 
the window styles listed in the description of the CreateWindow function. Otherwise, 
this member can be one or more of the following values: 

Value Meaning 

Creates an MOl child window that has a horizontal scroll 
bar. 

Creates an MOl child window that is initially maximized. 



Chapter 9 Windowing 661 

Value Meaning 

WS_MINIMIZE 

WS_VSCROLL 

Creates an MDI child window that is initially minimized. 

Creates an MDI child window that has a vertical scroll bar. 

IParam 
Specifies an application-defined value. 

Remarks 
When the MDI child window is created, the system sends the WM_CREATE message 
to the window. The IParam parameter of WM_CREATE contains a pointer to a 
CREATESTRUCT structure. The IpCreateParams member of this structure contains 
a pOinter to the MDICREATESTRUCT structure passed with the WM_MDICREATE 
message that created the MDI child window. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Unicode: Declared as Unicode and ANSI structures. 

Multiple Document Interface Overview, Multiple Document Interface Structures, 
CLiENTCREATESTRUCT, CREATESTRUCT, WM_CREATE 

Multiple Document Interface Messages 

WM_MDIACTIVATE 
An application sends the WM_MDIACTIVATE message to a multiple document interface 
(MDI) client window to instruct the client window to activate a different MDI child window. 

To send this message, call the Send Message function with the following parameters. 

Parameters 
wParam 

Handle to the MDI child window to be activated. 



662 Volume 2 Microsoft Windows User Interface 

IParam 
This parameter is not used. 

Return Values 
If an application sends this message to an MDI client window, the return value is zero. 

An MDI child window should return zero if it processes this message. 

Remarks 
As the client window processes this message, it sends WM_MDIACTIVATE to the child 
window being deactivated and to the child window being activated. The message 
parameters received by an MDI child window are as follows: 

wParam 
Handle to the MDI child window being deactivated. 

IParam 
Handle to the MDI child window being activated. 

An MDI child window is activated independently of the MDI frame window. When the 
frame window becomes active, the child window last activated by using the 
WM_MDIACTIVATE message receives the WM_NCACTIVATE message to draw an 
active window frame and title bar; the child window does not receive another 
WM_MDlACTIVATE message. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Multiple Document Interface Overview, Multiple Document Interface Messages, 
WM_MDIGETACTIVE, WM_MDINEXT, WM_NCACTIVATE 

WM_MDICASCADE 
An application sends the WM_MDICASCADE message to a multiple document interface 
(MDI) client window to arrange all its child windows in a cascade format. 

To send this message, call the Send Message function with the following parameters . 

SendMess:age( 
(H'NO). Mind,·· 

. \OfJtDICASCADE •. · 
.. Nh~niHe~<deSti~at.;()nWindOW ,. 

~', ' • • • " ~,o , 

t/·~ssa:¥HLto< sefjg'\ . 



) ; 

(WPARAM) wParam: 
(LPARAM) 7 Param; 

Parameters 
wParam 

Chapter 9 Windowing 663 

// cascade option 
/1 not used; must be zero 

Specifies the cascade behavior. This parameter can be one or more of the following 
values: 

Value Meaning 

MDITILE_SKIPDISABLED Prevents disabled MDI child windows from being 
cascaded. 

MDITILE_ZORDER Windows 2000: Arranges the windows in Z order. 

IParam 
This parameter is not used. 

Return Values 
If the message succeeds, the return value is TRUE. 

If the message fails, the return value is FALSE. 

u{~~~\:,{ 
Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

)Vsct:' 
Multiple Document Interface Overview, Multiple Document Interface Messages, 
WM_MDIICONARRANGE, WM_MDITILE 

An application sends the WM_MDlCREATE message to a multiple document interface 
(MDI) client window to create an MDI child window. 

To send this message, call the Send Message function with the following parameters. 

sendMessage( 

) : 

(TiWND )hltnd; 

WMJIDICREATE. 
(WPARAM) wParam; 
(LPARAM) 7Param; 

I I handl etodestinati uri window. 
./ I message to send 
II not used; must be zero 
/I creation da.ta (LPMOICREATESTRUCT) 



664 Volume 2 Microsoft Windows User Interface 

Parameters 
wParam 

This parameter is not used. 

IParam 
Pointer to an MDICREATESTRUCT structure containing information that the system 
uses to create the MDI child window. 

Return Values 
If the message succeeds, the return value is the handle to the new child window. 

If the message fails, the return value is NULL. 

Remarks 
The MDI child window is created with the style bits WS_CHILD, WS_CLlPSIBLINGS, 
WS_CLlPCHILDREN, WS_SYSMENU, WS_CAPTION, WS_ THICKFRAME, 
WS_MINIMIZEBOX, and WS_MAXIMIZEBOX, plus additional style bits specified in the 
MDICREATESTRUCT structure. The system adds the title of the new child window to 
the window menu of the frame window. An application should use this message to create 
all child windows of the client window. 

If an MDI client window receives any message that changes the activation of its child 
windows while the active child window is maximized, the system restores the active child 
window and maximizes the newly activated child window. 

When an MDI child window is created, the system sends the WM_CREATE message to 
the window. The IParam parameter of the WM_CREATE message contains a pointer to 
a CREATESTRUCT structure. The IpCreateParams member of this structure contains a 
pointer to the MDICREATESTRUCT structure passed with the WM_MDICREATE 
message that created the MDI child window. 

An application should not send a second WM_MDICREATE message while a 
WM_MDICREATE message is still being processed. For example, it should not send a 
WM_MDICREATE message while an MDI child window is processing its 
WM_MDICREATE message. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 



Chapter 9 Windowing 665 

,O{~~~,~I$() 
Multiple Document Interface Overview, Multiple Document Interface Messages, 
CreateMDIWindow, CREATESTRUCT, MDICREATESTRUCT, WM_CREATE, 
WM_MDIDESTROY 

WM_MDIDESTROY 
An application sends the WM_MDIDESTROY message to a multiple document interface 
(MDI) client window to close an MDI child window. 

To send this message, call the Send Message function with the following parameters. 

Parameters 
wParam 

Handle to the MDI child window to be closed. 

IParam 
This parameter is not used. 

Return Values 
This message always returns zero. 

Remarks 
This message removes the title of the MDI child window from the MDI frame window and 
deactivates the child window. An application should use this message to close all MDI 
child windows. 

If an MDI client window receives a message that changes the activation of its child 
windows and the active MDI child window is maximized, the system restores the active 
child window and maximizes the newly activated child window. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 



666 Volume 2 Microsoft Windows User Interface 

Multiple Document Interface Overview, Multiple Document Interface Messages, 
WM_MDICREATE 

WM_MDIGETACTIVE 
An application sends the WM_MDIGETACTIVE message to a multiple document 
interface (MDI) client window to retrieve the handle to the active MDI child window. 

To send this message, call the Send Message function with the following parameters. 

Parameters 
wParam 

This parameter is not used. 

IParam 
Specifies the maximized state. If this parameter is not NULL, it is a pointer to a value 
that indicates the maximized state of the MDI child window. If the value is TRUE, the 
window is maximized; a value of FALSE indicates that it is not. If this parameter is 
NULL, the parameter is ignored. 

Return Values 
The return value is the handle to the active MDI child window. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Multiple Document Interface Overview, Multiple Document Interface Messages 



Chapter 9 Windowing 667 

WM_MDIICONARRANGE 
An application sends the WM_MDIICONARRANGE message to a multiple document 
interface (MDI) client window to arrange all minimized MDI child windows. It does not 
affect child windows that are not minimized. 

To send this message, call the SendMessage function with the following parameters. 

Parameters 
This message has no parameters. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Multiple Document Interface Overview, Multiple Document Interface Messages, 
WM_MDlCASCADE, WM_MDITILE 

WM_MDIMAXIMIZE 
An application sends the WM_MDIMAXIMIZE message to a multiple document interface 
(MDI) client window to maximize an MDI child window. The system resizes the child 
window to make its client area fill the client window. The system places the child 
window's window-menu icon in the rightmost position of the frame window's menu bar, 
and places the child window's restore icon in the leftmost position. The system also 
appends the title bar text of the child window to that of the frame window. 

To send this message, call the Send Message function with the following parameters. 



668 Volume 2 Microsoft Windows User Interface 

Parameters 
wParam 

Handle to the MDI child window to be maximized. 

IParam 
This parameter is not used. 

Return Values 
The return value is always zero. 

Remarks 
If an MDI client window receives any message that changes the activation of its child 
windows while the currently active MDI child window is maximized, the system restores 
the active child window and maximizes the newly activated child window. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Multiple Document Interface Overview, Multiple Document Interface Messages, 
WM_MDIRESTORE 

WM MDINEXT 
An application sends the WM_MDINEXT message to a multiple document interface 
(MDI) client window to activate the next or previous child window. 

To send this message, call the SendMessage function with the following parameters. 

Send~~ssall'~( ......... . 
(HWNDJhWnd, 
WMJtolwEXT ...... 
(WPARAM) 

Parameters 
wParam 

Handle to the MDI child window. The system activates the child window that is 
immediately before or after the specified child window, depending on the value of the 



Chapter 9 Windowing 669 

fNext parameter. If the hwndChild parameter is NULL, the system activates the child 
window that is immediately before or after the currently active child window. 

IParam 
If this parameter is zero, the system activates the next MDI child window, and places 
the child window identified by the hwndChiid parameter behind all other child 
windows. If this parameter is nonzero, the system activates the previous child window, 
placing it in front of the child window identified by hwndChiid. 

Return Values 
The return value is always zero. 

Remarks 
If an MDI client window receives any message that changes the activation of its child 
windows while the active MDI child window is maximized, the system restores the active 
child window and maximizes the newly activated child window. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Multiple Document Interface Overview, Multiple Document Interface Messages, 
WM_MDlACTIVATE, WM_MDIGETACTIVE 

WM_MDIREFRESHMENU 
An application sends the WM_MDIREFRESHMENU message to a multiple document 
interface (MDI) client window to refresh the window menu of the MDI frame window. 

To send this message, call the SendMessage function with the following parameters. 

Parameters 
This message has no parameters. 



670 Volume 2 Microsoft Windows User Interface 

Return Values 
If the message succeeds, the return value is the handle to the frame window menu. 

If the message fails, the return value is NULL. 

Remarks 
After sending this message, an application must call the DrawMenuBar function to 
update the menu bar. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Multiple Document Interface Overview, Multiple Document Interface Messages, 
DrawMenuBar, WM_MDISETMENU 

WM_MDIRESTORE 
An application sends the WM_MDlRESTORE message to a multiple document interface 
(MOl) client window to restore an MOl child window from maximized size or minimized 
size. 

To send this message, call the Send Message function with the following parameters. 

Parameters 
wParam 

Handle to the MOl child window to be restored. 

IParam 
This parameter is not used. 

Return Values 
The return value is always zero. 



Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Chapter 9 Windowing 671 

Multiple Document Interface Overview, Multiple Document Interface Messages, 
WM_MDIMAXIMIZE 

WM_MDISETMENU 
An application sends the WM_MDISETMENU message to a multiple document interface 
(MOl) client window to replace the entire menu of an MOl frame window, to replace the 
window menu of the frame window, or both. 

To send this message, call the Send Message function with the following parameters. 

,S~dM'~i~i~;G:ii'(;A~:~.,(:';~';i;U\{~i;' ..... 
::;~:! .. 

Parameters 
wParam 

Handle to the new frame window menu. If this parameter is NULL, the frame window 
menu is not changed. 

IParam 
Handle to the new window menu. If this parameter is NULL, the window menu is not 
changed. 

Return Values 
If the message succeeds, the return value is the handle to the old frame window menu. 

If the message fails, the return value is zero. 

Remarks 
After sending this message, an application must call the DrawMenuBar function to 
update the menu bar. 

If this message replaces the window menu, the MOl child window menu items are 
removed from the previous window menu and added to the new window menu. 



672 Volume 2 Microsoft Windows User Interface 

If an MOl child window is maximized and this message replaces the MOl frame window 
menu, the window-menu icon and restore icon are removed from the previous frame 
window menu and added to the new frame window menu. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Multiple Document Interface Overview, Multiple Document Interface Messages, 
DrawMenuBar, WM_MDIREFRESHMENU 

An application sends the WM_MDITILE message to a multiple document interface (MOl) 
client window to arrange all of its MOl child windows in a tile format. 

To send this message, call the SendMessage function with the following parameters. 

$~~~~~;~~*~~d~,~ 
, .. ... " l,;~.:. ; 

~, (,tpM~~: ",,,",,,.,,,=,, .. ' 
····<:),;'MAM). 1 p8;1:lJm; 

>- ;; 

Parameters 
wParam 

Specifies the tiling option. This parameter can be one of the following values, 
optionally combined with MDITILE_SKIPDISABLED to prevent disabled MDI child 
windows from being tiled: 

Value Meaning 

MDITILE_HORIZONTAL 

MDITILE_ VERTICAL 

IParam 
This parameter is not used. 

Return Values 

Tiles windows horizontally 

Tiles windows vertically 

If the message succeeds, the return value is TRUE. 



If the message fails, the return value is FALSE. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 

Chapter 9 Windowing 673 

Multiple Document Interface Overview, Multiple Document Interface Messages, 
WM_MDICASCADE, WM_MDIICONARRANGE 

Timers 
A timer is an internal routine that repeatedly measures a specified interval, in 
milliseconds. 

About Timers 
Each time the specified interval (or time-out value) for a timer elapses, the system 
notifies the window associated with the timer. Because the accuracy of a timer depends 
on the system clock rate, and on how often the application retrieves messages from the 
message queue, the time-out value is only approximate. 

If you need a timer with higher precision, use the high-resolution timer. For more 
information, see High-Resolution Timer. If you need to be notified when a timer elapses, 
use the waitable timers. For more information, see Waitable Timer Objects. 

Timer Operations 
A Win32-based application creates a timer by using the SetTimer function. A new timer 
starts timing the interval as soon as it is created. An application can change a timer's 
time-out value by using SetTimer and destroy a timer by using the KillTimer function. 
To use system resources efficiently, applications should destroy timers that are no 
longer necessary. 

Each timer has a unique identifier. When creating a timer, an application can either 
specify an identifier or have the system create a unique value. The first parameter of a 
WM_ TIMER message contains the identifier of the timer that posted the message. 

If you specify a window handle in the call to SetTimer, the application associates the 
timer with that window. Whenever the time-out value for the timer elapses, the system 
posts a WM_ TIMER message to the window associated with the timer. If no window 
handle is specified in the call to SetTimer, the application that created the timer must 
monitor its message queue for WM_ TIMER messages and dispatch them to the 
appropriate window. If you specify a TimerProc callback function, the default window 



674 Volume 2 Microsoft Windows User Interface 

procedure calls the callback function when it processes WM_ TIMER. Therefore, you 
need to dispatch messages in the calling thread, even when you use TimerProc instead 
of processing WM_ TIMER. 

High-Resolution Timer 
A counter is a general term used in programming to refer to an incrementing variable. 
Some systems include a high-resolution performance counter that provides high­
resolution elapsed times. 

If a high-resolution performance counter exists on the system, the 
QueryPerformanceFrequency function can be used to express the frequency, in 
counts per second. The value of the count is processor-dependent. On some 
processors, for example, the count might be the cycle rate of the processor clock. 

The QueryPerformanceCounter function retrieves the current value of the high­
resolution performance counter (if one exists on the system). By calling this function at 
the beginning and end of a section of code, an application essentially uses the counter 
as a high-resolution timer. For example, suppose that QueryPerformanceFrequency 
indicates that the frequency of the high-resolution performance counter is 50,000 counts 
per second. If the application calls QueryPerformanceCounter immediately before and 
immediately after the section of code to be timed, the counter values might be 1500 
counts and 3500 counts, respectively. These values would indicate that .04 seconds 
(2000 counts) elapsed while the code executed. 

Timer Reference 
Timer Functions 

KiliTimer 
The KillTimer function destroys the specified timer. 

Parameters 
hWnd 

[in] Handle to the window associated with the specified timer. This value must be the 
same as the hWndvalue passed to the SetTimer function that created the timer. 

ulDEvent 
[in] Specifies the timer to be destroyed. If the window handle passed to SetTimer is 
valid, this parameter must be the same as the ulDEventvalue passed to SetTimer. 



Chapter 9 Windowing 675 

If the application calls SetTimer with hWnd set to NULL, this parameter must be the 
timer identifier returned by SetTimer. 

Return Values 
If the function succeeds, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 

Remarks 
The KillTimer function does not remove WM_ TIMER messages that are already posted 
to the message queue. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Timers Overview, Timer Functions, SetTimer, WM_TIMER 

QueryPerformanceCounter 
The QueryPerformanceCounter function retrieves the current value of the high­
resolution performance counter, if one exists. 

Parameters 
IpPerformanceCount 

[out] Pointer to a variable that receives the current performance-counter value, in 
counts. If the installed hardware does not support a high-resolution performance 
counter, this parameter can be zero. 

Return Values 
If the installed hardware supports a high-resolution performance counter, the return 
value is nonzero. 



676 Volume 2 Microsoft Windows User Interface 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. For example, if the installed hardware does not support a high-resolution 
performance counter, the function fails. 

Remarks 
On a multiprocessor machine, it should not matter which processor is called. However, 
you can get different results on different processors due to bugs in the basic input/output 
system (BIOS) or the hardware abstraction layer (HAL). To specify processor affinity for 
a thread, use the SetThreadAffinityMask function. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 2.0 or later. 
Header: Declared in winbase.h; include windows.h. 
Library: Use kerneI32.lib. 

Timers Overview, Timer Functions, QueryPerformanceFrequency 

QueryPerformanceFrequency 
The QueryPerformanceFrequency function retrieves the frequency of the high­
resolution performance counter, if one exists. The frequency cannot change while the 
system is running. 

Parameters 
/pFrequency 

[out] Pointer to a variable that receives the current performance-counter frequency, in 
counts per second. If the installed hardware does not support a high-resolution 
performance counter, this parameter can be zero. 

Return Values 
If the installed hardware supports a high-resolution performance counter, the return 
value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. For example, if the installed hardware does not support a high-resolution 
performance counter, the function fails. 



Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 2.0 or later. 
Header: Declared in winbase.h; include windows.h. 
Library: Use kerneI32.lib. 

Chapter 9 Windowing 677 

Timers Overview, Timer Functions, QueryPerformanceCounter 

SetTimer 
The SetTimer function creates a timer with the specified time-out value. 

Parameters 
hWnd 

[in] Handle to the window to be associated with the timer. This window must be owned 
by the calling thread. If this parameter is NULL, no window is associated with the 
timer, and the nlDEvent parameter is ignored. 

nlDEvent 
[in] Specifies a nonzero timer identifier. If the hWnd parameter is NULL, this 
parameter is ignored. If the hWnd parameter is not NULL and the window specified by 
hWnd already has a timer with the value nlDEvent, then the existing timer is replaced 
by the new timer. 

uElapse 
[in] Specifies the time-out value, in milliseconds. 

IpTimerFunc 
[in] Pointer to the function to be notified when the time-out value elapses. For more 
information about the function, see TimerProc. 

If IpTimerFunc is NULL, the system posts a WM_TIMER message to the application 
queue. The hwnd member of the message's MSG structure contains the value of the 
hWnd parameter. 



678 Volume 2 Microsoft Windows User Interface 

Return Values 
If the function succeeds, the return value is an integer identifying the new timer. An 
application can pass this value, or the string identifier, if it exists, to the KillTimer 
function to destroy the timer. 

If the function fails to create a timer, the return value is zero. To get extended error 
information, call GetLastError. 

Remarks 
An application can process WM_ TIMER messages by including a WM_ TIMER case 
statement in the window procedure or by specifying a TimerProc callback function when 
creating the timer. When you specify a TimerProc callback function, the default window 
procedure calls the callback function when it processes WM_ TIMER. Therefore, you 
need to dispatch messages in the calling thread, even when you use TimerProc instead 
of processing WM_ TIMER. 

The wParam parameter of the WM_ TIMER message contains the value of the nlDEvent 
parameter. 

The timer identifier, nlDEvent, is specific to the associated window. Another window can 
have its own timer, which has the same identifier as a timer owned by another window. 
The timers are distinct. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Timers Overview, Timer Functions, KillTimer, MSG, TimerProc, WM_ TIMER 

TimerProc 
The TimerProc function is an application-defined callback function that processes 
WM_ TIMER messages. The TIMERPROC type defines a pointer to this callback 
function. TimerProc is a placeholder for the application-defined function name. 



Parameters 
hwnd 

[in] Handle to the window associated with the timer. 

uMsg 
[in] Specifies the WM_ TIMER message. 

idEvent 
[in] Specifies the timer's identifier. 

dwTime 

Chapter 9 Windowing 679 

[in] Specifies the number of milliseconds that have elapsed since the system was 
started. This is the value returned by the GetTickCount function. 

Return Values 
This function does not return a value. 

Nf;), 
Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 98. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Timers Overview, Timer Functions, GetTickCount, KillTimer, SetTimer, WM_ TIMER 

Timer Messages 
The following message is used with timers: 

WM_TIMER 

WM TIMER 
The WM_ TIMER message is posted to the installing thread's message queue when a 
timer expires. The message is posted by the GetMessage or PeekMessage function. 

A window receives this message through its WindowProc function. 



680 Volume 2 Microsoft Windows User Interface 

Parameters 
wParam 

Specifies the timer identifier. 

IParam 
Pointer to an application-defined callback function that was passed to the SetTimer 
function when the timer was installed. 

Return Values 
An application should return zero if it processes this message. 

Remarks 
You can process the message by providing a WM_TIMER case in the window 
procedure. Otherwise, the default window procedure will call the TimerProc callback 
function specified in the call to the SetTimer function used to install the timer. 

The WM_ TIMER message is a low-priority message. The GetMessage and 
PeekMessage functions post this message only when no other higher-priority messages 
are in the thread's message queue. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Timers Overview, Timer Messages, GetMessage, PeekMessage, SetTimer, 
TimerProc 

Window Classes 
A window class is a set of attributes that the system uses as a template to create a 
window. Every window is a member of a window class. All window classes are process­
specific. 

About Window Classes 
Each window class has an associated window procedure shared by all windows of the 
same class. The window procedure processes messages for all windows of that class 
and, therefore, controls their behavior and appearance. For more information, see 
Window Procedures. 

A process must register a window class before it can create a window of that class. 
Registering a window class associates a window procedure, class styles, and other class 



Chapter 9 Windowing 681 

attributes with a class name. When a process specifies a class name in the 
CreateWindow or CreateWindowEx function, the system creates a window with the 
window procedure, styles, and other attributes associated with that class name. 

Types of Window Classes 
There are three types of window classes: 

• System classes 

• Application global classes 

• Application local classes 

These types differ in scope, and in when and how they are registered and destroyed. 
Complete information about how to work with each of the three types of window classes 
is provided on the companion DVD. 

Getting More Information About Window Classes 
It's important to be aware of the various issues surrounding window classes. The 
companion DVD that is bundled inside the Base Services volume of the Microsoft Win32 
Developer's Reference Library has the complete set of reference information for window 
classes. 

I have included the basic overview of window classes in this printed version to provide 
you with some familiarity with window classes. As an extension of this overview, and in 
an effort to provide you with the most complete and comprehensive guide to Win32 
development, the companion DVD for Microsoft Win32 Developer's Library includes the 
complete set of information pertaining to window classes. If you have not already done 
so, go through the installation process on the companion DVD, and all the window class 
information you need, including detailed usage information and programmatic reference 
(and all sorts of other MSDN-like programming information) will be a click away. 

Window Procedures 
Every window has an associated window procedure--a function that processes all 
messages sent or posted to all windows of the class. All aspects of a window's 
appearance and behavior depend on the window procedure's response to these 
messages. 

About Window Procedures 
Each window is a member of a particular window class. The window class determines 
the default window procedure that an individual window uses to process its messages. 
All windows belonging to the same class use the same default window procedure. For 
example, the system defines a window procedure for the combo box class 
(COMBOBOX); then, all combo boxes use that window procedure. 



682 Volume 2 Microsoft Windows User Interface 

An application typically registers at least one new window class and its associated 
window procedure. After registering a class, the application can create many windows of 
that class, all of which use the same window procedure. Because this means several 
sources could simultaneously call the same piece of code, you must be careful when 
modifying shared resources from a window procedure. For more information, see 
Window Classes. 

Window procedures for dialog boxes (called dialog box procedures) have a similar 
structure, and function as regular window procedures. All pOints referring to window 
procedures in this section also apply to dialog box procedures. For more information, 
see Dialog Boxes. 

Window Procedure Reference 
Window Procedure Functions 

CallWindowProc 
The CaliWindowProc function passes message information to the specified window 
procedure. 

Parameters 
IpPrevWndFunc 

[in] Pointer to the previous window procedure. 

If this value is obtained by calling the GetWindowLong function with the nlndex 
parameter set to GWL_WNDPROC or DWL_DLGPROC, it is actually either the 
address of a window or dialog box procedure, or a handle representing that address. 

hWnd 
[in] Handle to the window procedure to receive the message. 

Msg 
[in] Specifies the message. 

wParam 
[in] Specifies additional message-specific information. The contents of this parameter 
depend on the value of the Msg parameter. 



Chapter 9 Windowing 683 

IParam 
[in] Specifies additional message-specific information. The contents of this parameter 
depend on the value of the Msg parameter. 

Return Values 
The return value specifies the result of the message processing and depends on the 
message sent. 

Remarks 
Use the CaliWindowProc function for window subclassing. Usually, all windows with the 
same class share one window procedure. A subclass is a window or set of windows with 
the same class whose messages are intercepted and processed by another window 
procedure (or procedures) before being passed to the window procedure of the class. 

The SetWindowLong function creates the subclass by changing the window procedure 
associated with a particular window, causing the system to call the new window 
procedure instead of the previous one. An application must pass any messages not 
processed by the new window procedure to the previous window procedure by calling 
CaliWindowProc. This allows the application to create a chain of window procedures. 

If STRICT is defined, the IpPrevWndFunc parameter has the data type WNDPROC. The 
WNDPROC type is declared as follows: 

',~RESV\.;ty:J~!~tlge~¥~ifM~'e~;,j;~lf'fit1~:1,~ri;.'~~~~;~l!>~JiA~1WT·,.,c.;,;·. 

If STRICT is not defined, the IpPrevWndFunc parameter has the data type FARPROC. 
The FARPROC type is declared as follows: 

1:tl'tt FAR\lf:tj!Aff 

In C, the FARPROC declaration indicates a callback function that has an unspecified 
parameter list. In C++, however, the empty parameter list in the declaration indicates that 
a function has no parameters. This subtle distinction can break careless code. Following 
is one way to handle this situation: 

For further information about functions declared with empty argument lists, refer to The 
C++ Programming Language by Bjarne Stroustrup (Addison-Wesley, 1997). 

Windows NT/2000: The CaliWindowProc function handles Unicode-to-
ANSI conversion. You cannot take advantage of this conversion if you call the window 
procedure directly. 



684 Volume 2 Microsoft Windows User Interface 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Window Procedures Overview, Window Procedure Functions, GetWindowLong, 
SetClassLong, SetWindowLong 

DefWindowProc 
The DefWindowProc function calls the default window procedure to provide default 
processing for any window messages that an application does not process. This function 
ensures that every message is processed. DefWindowProc is called with the same 
parameters received by the window procedure. 

Parameters 
hWnd 

[in] Handle to the window procedure that received the message. 

Msg 
[in] Specifies the message. 

wParam 
[in] Specifies additional message information. The content of this parameter depends 
on the value of the Msg parameter. 

IParam 
[in] Specifies additional message information. The content of this parameter depends 
on the value of the Msg parameter. 

Return Values 
The return value is the result of the message processing and depends on the message. 



Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Chapter 9 Windowing 685 

Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Window Procedures Overview, Window Procedure Functions, CaliWindowProc, 
DefDlgProc, WindowProc 

WindowProc 
The WindowProc function is an application-defined function that processes messages 
sent to a window. The WNDPROC type defines a pOinter to this callback function. 
WindowProc is a placeholder for the application-defined function name. 

tRt"sOtir~AtLlt4~KWlt1dQwproc( , .. ,)' 'J 0" 

.. I:. "·.;~~~)~f:.~}2~~~~:~~~1tf:~~~}t;1er.. ' .. ') 
,,' .A~ ;'o/f18ra-Iti;; {tfi rS:T-l1ess~e :~arjirilt!hr! 
,,';,~IlARA";Gl~r~~ ;11 $~~M m~ss·~tJ~par~\T'e~~r .• 
):;,o.{~;'!~/j;!~~«i~')'O~;~ 0 ~~'~ <~>:~<'"c ~;:/ f' " 

Parameters 
hwnd 

[in] Handle to the window. 

uMsg 
[in] Specifies the message. 

wParam 
[in] Specifies additional message information. The contents of this parameter depend 
on the value of the uMsg parameter. 

IParam 
[in] Specifies additional message information. The contents of this parameter depend 
on the value of the uMsg parameter. 

Return Values 
The return value is the result of the message processing and depends on the message 
sent. 



686 Volume 2 Microsoft Windows User Interface 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Requires version 1.0 or later. 
Header: Declared in winuser.h; include windows.h. 

Window Procedures Overview, Window Procedure Functions, CaliWindowProc, 
DefWindowProc, RegisterClass 

Wi ndow Properties 

About Window Properties 
The Win32 API provides several functions that enable applications to use window 
properties. Window properties are used typically to associate data with a subclassed 
window or a window in a multiple document interface (MOl) application. In either case, it 
is not convenient to use the extra bytes specified in the CreateWindow function or class 
structure for the following two reasons: 

• An application might not know how many extra bytes are available or how the space 
is being used. By using window properties, the application can associate data with a 
window without accessing the extra bytes. 

• An application must access the extra bytes by using offsets. However, window 
properties are accessed by their string identifiers, not by offsets. 

Assigning Window Properties 
The SetProp function assigns a window property and its string identifier to a window. 
The GetProp function retrieves the window property identified by a given string. The 
RemoveProp function destroys the association between a window and a window 
property, but does not destroy the data itself. 

Enumerating Window Properties 
The EnumProps and EnumPropsEx functions enumerate all of a window's properties 
by using an application-defined callback function. For more information about the 
callback function, see PropEnumProc. 

EnumPropsEx includes an extra parameter for application-defined data used by the 
callback function. For more information about the callback function, see 
PropEnumProcEx. 



Window Property Reference 
Window Property Functions 

EnumProps 

Chapter 9 Windowing 687 

The EnumProps function enumerates all entries in the property list of a window by 
passing them, one by one, to the specified callback function. EnumProps continues until 
the last entry is enumerated or the callback function returns FALSE. 

To pass application-defined data to the callback function, use the EnumPropsEx 
function. 

Parameters 
hWnd 

[in] Handle to the window whose property list is to be enumerated. 

IpEnumFunc 
[in] Pointer to the callback function. For more information about the callback function, 
see the PropEnumProc function. 

Return Values 
The return value specifies the last value returned by the callback function. It is -1 if the 
function did not find a property for enumeration. 

Remarks 
An application can remove only those properties it has added. It must not remove 
properties added by either other applications or the system itself. 

" ' .. " 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 



688 Volume 2 Microsoft Windows User Interface 

Window Properties Overview, Window Property Functions, EnumPropsEx, GetProp, 
PropEnumProc, RemoveProp, Set Prop 

EnumPropsEx 
The EnumPropsEx function enumerates all entries in the property list of a window by 
passing them, one by one, to the specified callback function. EnumPropsEx continues 
until the last entry is enumerated or the callback function returns FALSE. 

Parameters 
hWnd 

[in] Handle to the window whose property list is to be enumerated. 

IpEnumFunc 
[in] Pointer to the callback function. For more information about the callback function, 
see the PropEnumProcExfunction. 

IParam 
[in] Contains application-defined data to be passed to the callback function. 

Return Values 
The return value specifies the last value returned by the callback function. It is -1 if the 
function did not find a property for enumeration. 

Remarks 
An application can remove only those properties it has added. It must not remove 
properties added by either other applications or the system itself. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 



Chapter 9 Windowing 689 

Window Properties Overview, Window Property Functions, GetProp, 
PropEnumProcEx, RemoveProp, SetProp 

GetProp 
The GetProp function retrieves a data handle from the property list of the given window. 
The given character string identifies the handle to be retrieved. The string and handle 
must have been added to the property list by a previous call to the SetProp function. 

Parameters 
hWnd 

[in] Handle to the window whose property list is to be searched. 

IpString 
[in] Pointer to a null-terminated character string, or contains an atom that identifies a 
string. If this parameter is an atom, it must have been created by using the 
GlobalAddAtom function. The atom, a 16-bit value, must be placed in the low-order 
word of the IpString parameter; the high-order word must be zero. 

Return Values 
If the property list contains the given string, the return value is the associated data 
handle. Otherwise, the return value is NULL. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95198: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Window Properties Overview, Window Property Functions, EnumProps, 
GlobalAddAtom, RemoveProp, SetProp 



690 Volume 2 Microsoft Windows User Interface 

PropEnumProc 
The PropEnumProc function is an application-defined callback function used with the 
EnumProps function. The function receives property entries from a window's property 
list. The PROPENUMPROC type defines a pOinter to this callback function. 
PropEnumProc is a placeholder for the application-defined function name. 

Parameters 
hwnd 

[in] Handle to the window whose property list is being enumerated. 

IpszString 
[in] Pointer to a null-terminated string. This string is the string component of a property 
list entry. This is the string that was specified, along with a data handle, when the 
property was added to the window's property list via a call to the SetProp function. 

hData 
[in] Handle to data. This handle is the data component of a property list entry. 

Return Values 
Return TRUE to continue the property list enumeration. 

Return FALSE to stop the property list enumeration. 

Remarks 
The following restrictions apply to this callback function: 

• The callback function must not yield control or do anything that might yield control to 
other tasks. 

• The callback function can call the RemoveProp function. However, RemoveProp can 
remove only the property passed to the callback function through the callback 
function's parameters. 

• The callback function should not attempt to add properties. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Unicode: Declared as Unicode and ANSI prototypes. 



Chapter 9 Windowing 691 

Window Properties Overview, Window Property Functions, EnumProps, 
EnumPropsEx, PropEnumProcEx, RemoveProp, SetProp 

PropEnumProcEx 
The PropEnumProcEx function is an application-defined callback function used with the 
EnumPropsEx function. The function receives property entries from a window's property 
list. The PROPENUMPROCEX type defines a pointer to this callback function. 
PropEnumProcEx is a placeholder for the application-defined function name. 

r:;~;~~;, ... ,.<" ," 
Parameters 
hwnd 

[in] Handle to the window whose property list is being enumerated. 

IpszString 
[in] Pointer to a null-terminated string. This string is the string component of a property 
list entry. This is the string that was specified, along with a data handle, when the 
property was added to the window's property list via a call to the SetProp function. 

hData 
[in] Handle to data. This handle is the data component of a property list entry. 

dwData 
[in] Application-defined data. This is the value that was specified as the IParam 
parameter of the call to EnumPropsEx that initiated the enumeration. 

Return Values 
Return TRUE to continue the property list enumeration. 

Return FALSE to stop the property list enumeration. 

Remarks 
The following restrictions apply to this callback function: 

• The callback function must not yield control or do anything that might yield control to 
other tasks . 

• The callback function can call the RemoveProp function. However, RemoveProp can 
remove only the property passed to the callback function through the callback 
function's parameters. 



692 Volume 2 Microsoft Windows User Interface 

• The callback function should not attempt to add properties. 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Unicode: Declared as Unicode and ANSI prototypes. 

Window Properties Overview, Window Property Functions, EnumProps, 
EnumPropsEx, PropEnumProc, RemoveProp, SetProp 

RemoveProp 
The RemoveProp function removes an entry from the property list of the specified 
window. The specified character string identifies the entry to be removed. 

Parameters 
hWnd 

[in] Handle to the window whose property list is to be changed. 

IpSfring 
[in] Pointer to a null-terminated character string, or contains an atom that identifies a 
string. If this parameter is an atom, it must have been created using the AddAtom 
function. The atom, a 16-bit value, must be placed in the low-order word of IpString, 
the high-order word must be zero. 

Return Values 
The return value identifies the specified string. If the string cannot be found in the 
specified property list, the return value is NULL. 

Remarks 
An application must free the data handles associated with entries removed from a 
property list. The application can remove only those properties it has added. It must not 
remove properties added either by other applications or the system itself. 

The RemoveProp function returns the data handle associated with the string, so that the 
application can free the data associated with the handle. 



Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 

Chapter 9 Windowing 693 

Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Window Properties Overview, Window Property Functions, AddAtom, EnumProps, 
EnumPropsEx, GetProp, SetProp 

SetProp 
The SetProp function adds a new entry or changes an existing entry in the property list 
of the specified window. The function adds a new entry to the list, if the specified 
character string does not exist already in the list. The new entry contains the string and 
the handle. Otherwise, the function replaces the string's current handle with the specified 
handle. 

Parameters 
hWnd 

[in] Handle to the window whose property list receives the new entry. 

IpString 
[in] Pointer to a null-terminated string, or contains an atom that identifies a string. If 
this parameter is an atom, it must be a global atom created by a previous call to the 
GlobalAddAtom function. The atom, a 16-bit value, must be placed in the low-order 
word of IpString; the high-order word must be zero. 

hData 
[in] Handle to the data to be copied to the property list. The data handle can identify 
any value useful to the application. 

Return Values 
If the data handle and string are added to the property list, the return value is nonzero. 

If the function fails, the return value is zero. To get extended error information, call 
GetLastError. 



694 Volume 2 Microsoft Windows User Interface 

Remarks 
Before destroying a window (that is, before processing the WM_DESTROY message), 
an application must remove all entries it has added to the property list. The application 
must use the RemoveProp function to remove the entries. 

';' 
.': , 

Windows NT/2000: Requires Windows NT 3.1 or later. 
Windows 95/98: Requires Windows 95 or later. 
Windows CE: Unsupported. 
Header: Declared in winuser.h; include windows.h. 
Library: Use user32.lib. 
Unicode: Implemented as Unicode and ANSI versions on Windows NT/2000. 

Window Properties Overview, Window Property Functions, EnumProps, 
EnumPropsEx, GetProp, GlobalAddAtom, RemoveProp 

Windows 
In a graphical Win32-based application, a window is a rectangular area of the screen 
where the application displays output and receives input from the user. Therefore, one of 
the first tasks of a graphical Win32-based application is to create a window. 

A window shares the screen with other windows, including those from other applications. 
Only one window at a time can receive input from the user. The user can use the mouse, 
keyboard, or other input device to interact with this window and the application that 
owns it. 

About Windows 
Desktop Window 
When you start the system, it automatically creates the desktop window. The desktop 
window is a system-defined window that paints the background of the screen and serves 
as the base for all windows displayed by all applications. 

The desktop window uses a bitmap to paint the background of the screen. The pattern 
created by the bitmap is called the desktop wallpaper. By default, the desktop window 
uses the bitmap from a .bmp file specified in the registry as the desktop wallpaper. 

The GetDesktopWindow function returns a handle to the desktop window. 

A system configuration application, such as a Control Panel applet, changes the desktop 
wallpaper by using the SystemParameterslnfo function with the wAction parameter set 
to SPLSETDESKWALLPAPER and the IpvParam parameter specifying a bitmap file 



Chapter 9 Windowing 695 

name. SystemParameterslnfo then loads the bitmap from the specified file, uses the 
bitmap to paint the background of the screen, and enters the new file name in the 
registry. 

Application Windows 
Every graphical Win32-based application creates at least one window, called the main 
window, that serves as the primary interface between the user and the application. Most 
applications also create other windows, either directly or indirectly, to perform tasks 
related to the main window. Each window plays a part in displaying output and receiving 
input from the user. 

When you start an application, the system also associates a taskbar button with the 
application. The taskbar button contains the program icon and title. When the application 
is active, its taskbar button is displayed in the pushed state. 

An application window includes elements such as a title bar, menu bar, window menu 
(formerly known as the system menu), minimize button, maximize button, restore button, 
close button, sizing border, client area, horizontal scroll bar, and vertical scroll bar. An 
application's main window typically includes all of these components. Figure 9-2 shows 
these components in a typical main window. 

Vertical scroll bar 

- "'''71~ln border 

Horizontal scroll bar 

Figure 9-2: Components in an application's main window. 



696 Volume 2 Microsoft Windows User Interface 

Client Area 

The client area is the part of a window where the application displays output, such as 
text or graphics. For example, a desktop-publishing application displays the current page 
of a document in the client area. The application must provide a function, called a 
window procedure, to process input to the window and display output in the client area. 
For more information, see Window Procedures. 

Nonclient Area 

The title bar, menu bar, window menu, minimize and maximize buttons, sizing border, 
and scroll bars are referred to collectively as the window's nonclient area. The system 
manages most aspects of the nonclient area; the application manages the appearance 
and behavior of its client area. 

The title bar displays an application-defined icon and line of text; typically, the text 
specifies the name of the application or indicates the purpose of the window. An 
application specifies the icon and text when creating the window. The title bar also 
makes it possible for the user to move the window by using a mouse or other pointing 
device. 

Most applications include a menu bar that lists the commands supported by the 
application. Items in the menu bar represent the main categories of commands. Clicking 
an item on the menu bar typically opens a shortcut menu whose items correspond to the 
tasks within a given category. By clicking a command, the user directs the application to 
carry out a task. 

The window menu is created and managed by the system. It contains a standard set of 
menu items that, when chosen by the user, set a window's size or position, close the 
application, or perform tasks. For more information, see Menus. 

The buttons in the upper-right corner affect the size and position of the window. When 
you click the maximize button, the system enlarges the window to the size of the screen 
and positions the window, so that it covers the entire desktop, minus the taskbar. At the 
same time, the system replaces the maximize button with the restore button. When you 
click the restore button, the system restores the window to its previous size and position. 
When you click the minimize button, the system reduces the window to the size of its 
taskbar button, positions the window over the taskbar button, and displays the taskbar 
button in its normal state. To restore the application to its previous size and position, 
click its taskbar button. When you click the close button, the application exits. 

The sizing border is an area around the perimeter of the window that enables the user to 
size the window by using a mouse or other pointing device. 

The horizontal scroll bar and vertical scroll bar convert mouse or keyboard input into 
values that an application uses to shift the contents of the client area either horizontally 
or vertically, respectively. For example, a word-processing application that displays a 
lengthy document typically provides a vertical scroll bar to enable the user to scroll up 
and down through the document. 



Chapter 9 Windowing 697 

Getting More Information About Windows 
The companion CD that is bundled inside the Base Services volume of the Microsoft 
Win32 Developer's Reference Library has the complete set of reference information for 
window programming, with detailed overview information and complete programming 
element reference. 

The overview that is provided in the previous section is geared toward getting you 
familiar with window programming, but there is a lot more overview and programming 
information to be had (approximately 200 pages). 

Publishing constraints associated with volumes in the Windows Programming Reference 
Series-which are governed by the mission to provide concise, compact, and portable 
reference books-did not allow the complete set of window programming reference to be 
included in this volume. However, to provide you with all the Win32 programming 
information you need, the Microsoft Win32 Developer's Reference Library includes all 
window programming information on the companion CD. If you have not already done 
so, install the companion CD, and all window programming information (plus a boatload 
more) will be at your fingertips. 





699 

APPENDIX A 

Index A: Elements Grouped by Technology 

The indexes in Part 3 make finding information in the Win32 Library volumes as easy as 
possible. Rather than cluttering the Table of Contents with information about individual 
programmatic elements (and thereby making the TOC uselessly jumbled), I've created 
these indexes and put them in the back of each volume. With these indexes, you'll be 
able to locate the programmatic element you're interested in---and see where it fits within 
the volumes and their technologies-quickly and easily. 

Also, to keep you informed and up-to-date about Microsoft technologies, I've created a 
live Web-based document that maps Microsoft technologies to the locations where you 
can get more information about them. This link gets you to the live index of technologies: 
www.iseminger.com/winprs/technologies 

As always, send me feedback if you can think of ways to improve this section. I can't 
guarantee a reply, but I'll read it, and if others can benefit, I'll incorporate the idea into 
future volumes. 

Button Reference 53 
Button Functions 53 

CheckDlgButton 
CheckRadioButton 
IsDlgButtonChecked 

Button Messages 56 
BM_CLlCK 
BM_GETCHECK 
BM_GETIMAGE 
BM_GETSTATE 
BM_SETCHECK 
BM_SETIMAGE 
BM_SETSTATE 
BM_SETSTYLE 
BN_CLlCKED 
BN_DBLCLK 
BN_DOUBLECLICKED 
BN_KILLFOCUS 
BN_SETFOCUS 
WM_CTLCOLORBTN 

Caret Reference 192 
Caret Functions 192 

CreateCaret 
DestroyCaret 
GetCaretBlinkTime 
GetCaretPos 
HideCaret 

SetCaretBlinkTime 
SetCaretPos 
ShowCaret 

Combo-Box Reference 73 
Combo-Box Functions 73 

DlgDirListComboBox 
DlgDirSelectComboBoxEx 
GetComboBoxl nto 

Combo-Box Structures 77 
COMBOBOXINFO 
COMPAREITEMSTRUCT 
DRAWITEMSTRUCT 
MEASUREITEMSTRUCT 

Combo-Box Messages 84 
CB~DDSTRING 

CB_DELETESTRING 
CB_DIR 
CB_FINDSTRING 
CB_FINDSTRINGEXACT 
CB_GETCOUNT 
CB_GETCURSEL 
CB_GETDROPPEDCONTROLRECT 
CB_GETDROPPEDSTATE 
CB_GETDROPPEDWIDTH 
CB_GETEDITSEL 
CB_GETEXTENDEDUI 
CB_GETHORIZONTALEXTENT 



700 Volume 2 Microsoft Windows User Interface 

Combo-Box Reference (continued) 
Combo-Box Messages (continued) 

CB_GETITEMDATA 
CB_GETITEMHEIGHT 
CB_GETLBTEXT 
CB_GETLBTEXTLEN 
CB_GETLOCALE 
CB_GETTOPINDEX 
CB_INITSTORAGE 
CB_INSERTSTRING 
CB_LlMITTEXT 
CB_RESETCONTENT 
CB_SELECTSTRING 
CB_SETCURSEL 
CB_SETDROPPEDWIDTH 
CB_SETEDITSEL 
CB_SETEXTENDEDUI 
CB_SETHORIZONTALEXTENT 
CB_SETITEMDATA 
CB_SETITEMHEIGHT 
CB_SETLOCALE 
CB_SETTOPINDEX 
CB_SHOWDROPDOWN 
CBN_CLOSEUP 
CBN_DBLCLK 
CBN_DROPDOWN 
CBN_EDITCHANGE 
CBN_EDITUPDATE 
CBN_ERRSPACE 
CBN_KILLFOCUS 
CBN_SELCHANGE 
CBN_SELENDCANCEL 
CBN_SELENDOK 
CBN_SETFOCUS 
WM_COMPAREITEM 
WM_DRAWITEM 
WM_MEASUREITEM 

Control Reference 50 
Control Messages 50 

WM_GETFONT 
WM_SETFONT 

Cursor Reference 200 
Cursor Functions 200 

ClipCursor 
CopyCursor 
CreateCursor 
DestroyCursor 
GetClipCursor 
GetCursor 
GetCursorlnfo 
GetCursorPos 
LoadCursor 
LoadCursorFromFile 
SetCursor 

SetCursorPos 
SetSystemCu rsor 
ShowCursor 

Cursor Structures 216 
CURSORINFO 

Cursor Messages 216 
WM_SETCURSOR 

Dialog Box Reference 537 
Dialog Box Functions 537 

Create Dialog 
CreateDialoglndirect 
CreateDialoglndirectParam 
CreateDialogParam 
DefDlgProc 
DialogBox 
DialogBoxlndirect 
DialogBoxlndirectParam 
DialogBoxParam 
DialogProc 
EndDialog 
GetDialogBaseUnits 
GetDlgCtrliD 
GetDlgltem 
GetDlgltemlnt 
GetDlgltemText 
GetNextDlgGroupltem 
GetNextDlgTabltem 
IsDialogMessage 
MapDialogRect 
MessageBox 
MessageBoxEx 
MessageBoxl ndi rect 
SendDlgltemMessage 
SetDlgltemlnt 
SetDlgltemText 

Dialog Box Structures 582 
DLGITEMTEMPLATE 
DLGITEMTEMPLATEEX 
DLGTEMPLATE 
DLGTEMPLATEEX 
MSGBOXPARAMS 

Dialog Box Messages 595 
DM_GETDEFID 
DM_REPOSITION 
DM_SETDEFID 
WM_CTLCOLORDLG 
WM_ENTERIDLE 
WM_GETDLGCODE 
WM_INITDIALOG 
WM_NEXTDLGCTL 

Icon Reference 218 
Icon Functions 218 

Copylcon 
Createlcon 



Appendix A Index A: Elements Grouped by Technology 701 

CreatelconFromResource 
CreatelconFromResourceEx 
Createlconlndirect 
Destroylcon 
Drawlcon 
DrawlconEx 
Duplicatelcon 
ExtractAssociatedlcon 
Extractlcon 
ExtractlconEx 
Getlconlnfo 
Loadlcon 
LOokuplconldFromDirectory 
LookuplconldFromDirectoryEx 

Icon Structures 239 
ICONINFO 
ICONMETRICS 
WM_ERASEBKGND 
WM_ICONERASEBKGND 
WM_PAINTICON 

Keyboard Accelerator Reference 446 
Keyboard Accelerator Functions 446 

CopyAcceleratorTable 
CreateAcceleratorTable 
DestroyAcceleratorTable 
LoadAccelerators 
TranslateAccelerator 

Keyboard Accelerator Structures 452 
ACCEL 

Keyboard Accelerator Messages 453 
WM_CHANGEUIST ATE 
WM_INITMENU 
WM_INITMENUPOPUP 
WM_MENUCHAR 
WM_MENUSELECT 
WM_QUERYUISTATE 
WM_SYSCHAR 
WM_SYSCOMMAND 
WM_UPDATEUISTATE 

Keyboard-Input Reference 467 
Keyboard-Input Functions 467 

ActivateKeyboardLayout 
Blocklnput 
EnableWindow 
GetActiveWindow 
GetAsyncKeyState 
GetFocus 
GetKeyboardLayout 
GetKeyboardLayoutList 
GetKeyboardLayoutName 
GetKeyboardState 
GetKeyName Text 
GetKeyState 
GetLastlnputlnfo 

IsWindowEnabled 
keybd_event 
LoadKeyboardLayout 
MapVirtualKey 
MapVirtualKeyEx 
OemKeyScan 
RegisterHotKey 
Sendlnput 
SetActiveWindow 
SetFocus 
SetKeyboardState 
ToAscii 
ToAsciiEx 
ToUnicode 
ToUnicodeEx 
UnloadKeyboardLayout 
UnregisterHotKey 
VkKeyScan 
VkKeyScanEx 

Keyboard-Input Structures 509 
HARDWAREINPUT 
INPUT 
KEYBDINPUT 
LASTINPUTINFO 
MOUSEINPUT 

Keyboard-Input Messages 517 
WM_ACTIVATE 
WM_CHAR 
WM_DEADCHAR 
WM_GETHOTKEY 
WM_HOTKEY 
WM_KEYDOWN 
WM_KEYUP 
WM_KILLFOCUS 
WM_SETFOCUS 
WM_SETHOTKEY 
WM_SYSDEADCHAR 
WM_SYSKEYDOWN 
WM_SYSKEYUP 

Menu Reference 246 
Menu Functions 246 

AppendMenu 
CheckMenultem 
CheckMenuRadioltem 
CreateMenu 
CreatePopupMenu 
DeleteMenu 
DestroyMenu 
DrawMenuBar 
EnableMenultem 
EndMenu 
GetMenu 
GetMenuBarlnfo 
GetMenuCheckMarkDimensions 



702 Volume 2 Microsoft Windows User Interface 

Menu Reference (continued) 
Menu Functions (continued) 

GetMen u Defaultltem 
GetMenulnfo 
GetMenultemCount 
GetMenultemlD 
GetMenultemlnfo 
GetMenultemRect 
GetMenuState 
GetMenuString 
GetSubMenu 
GetSystemMenu 
HiliteMenultem 
InsertMenu 
InsertMenultem 
IsMenu 
LoadMenu 
LoadMenulndirect 
MenultemFromPoint 
ModifyMenu 
RemoveMenu 
SetMenu 
SetMenuDefaultltem 
SetMenulnfo 
SetMenultemBitmaps 
SetMenultemlnfo 
TrackPopupMenu 
TrackPopupMenuEx 

Menu Structures 297 
MDINEXTMENU 
MENUBARINFO 
MENUEX_TEMPLATE_HEADER 
MENUEX_ TEMPLATE_ITEM 
MENUGETOBJECTINFO 
MENUINFO 
MENUITEMINFO 
MENUITEMTEMPLATE 
MENUITEMTEMPLATEHEADER 
TPMPARAMS 

Menu Messages 311 
WM_COMMAND 
WM_CONTEXTMENU 
WM_ENTERMENULOOP 
WM_EXITMENULOOP 
WM_MENUCOMMAND 
WM_MENUDRAG 
WM_MENUGETOBJECT 
WM_MENURBUTTONUP 
WM_NEXTMENU 
WM UNINITMENUPOPUP 

Message and Message Queue Reference 614 
Message and Message Queue Functions 614 

BroadcastSystemMessage 
DispatchMessage 

GetlnputState 
GetMessage 
GetMessageExtral nfo 
GetMessagePos 
GetMessageTime 
GetQueueStatus 
InSendMessage 
InSendMessageEx 
PeekMessage 
PostMessage 
PostQuitMessage 
PostThreadMessage 
RegisterWindowMessage 
ReplyMessage 
SendAsyncProc 
Send Message 
SendMessageCaliback 
SendMessageTimeout 
SendNotifyMessage 
SetMessageExtralnfo 
TranslateMessage 
WaitMessage 

Message and Message Queue Structures 645 
MSG 

Message and Message Queue Messages 646 
WM_APP 
WM_USER 

Mouse-Input Reference 372 
Mouse-Input Functions 372 

DragDetect 
GetCapture 
GetDoubleClickTime 
GetMouseMovePointsEx 
mouse_event 
ReleaseCapture 
SetCapture 
SetDoubleClickTime 
SwapMouseButton 
TrackMouseEvent 
_ TrackMouseEvent 

Mouse-Input Structures 385 
MOUSEMOVEPOINT 
TRACKMOUSEEVENT 

Mouse-Input Messages 387 
WM_APPCOMMAND 
WM_CAPTURECHANGED 
WM_LBUTTONDBLCLK 
WM_LBUTTONDOWN 
WM_LBUTTONUP 
WM_MBUTTONDBLCLK 
WM_MBUTTONDOWN 
WM_MBUTTONUP 
WM_MOUSEACTIVATE 
WM_MOUSEHOVER 



Appendix A Index A: Elements Grouped by Technology 703 

WM_MOUSELEAVE 
WM_MOUSEMOVE 
WM_MOUSEWHEEL 
WM_NCHITTEST 
WM_NCLBUTTONDBLCLK 
WM_NCLBUTTONDOWN 
WM_NCLBUTTONUP 
WM_NCMBUTTONDBLCLK 
WM_NCMBUTTONDOWN 
WM_NCMBUTTONUP 
WM_NCMOUSEHOVER 
WM_NCMOUSELEAVE 
WM_NCMOUSEMOVE 
WM_NCRBUTTONDBLCLK 
WM_NCRBUTTONDOWN 
WM_NCRBUTTONUP 
WM_NCXBUTTONDBLCLK 
WM_NCXBUTTONDOWN 
WM_NCXBUTTONUP 
WM_RBUTTONDBLCLK 
WM_RBUTTONDOWN 
WM_RBUTTONUP 
WM_XBUTTONDBLCLK 
WM_XBUTTONDOWN 
WM_XBUTTONUP 

Mouse-Input Macros 437 
GET _APPCOMMAND_LPARAM 
GET _DEVICE_LPARAM 
GET_KEYSTATE_LPARAM 
GET_KEYSTATE_WPARAM 
GET _NCHITTEST _WPARAM 
GET _XBUTTON_ WPARAM 
GET_WHEEL_DELTA_WPARAM 

Multiple Document Interface Reference 653 
Multiple Document Interface Functions 653 

CreateMDIWindow 
DefFrameProc 
DefMDIChildProc 
TranslateMDISysAccel 

Multiple Document Interface Structures 659 
MDICREATESTRUCT 

Multiple Document Interface Messages 661 
WM_MDIACTIVATE 
WM_MDICASCADE 
WM_MDICREATE 
WM_MDIDESTROY 
WM_MDIGETACTIVE 
WM_MDIICONARRANGE 
WM_MDIMAXIMIZE 
WM_MDINEXT 
WM_MDIREFRESHMENU 
WM_MDIRESTORE 
WM_MDISETMENU 
WM_MDITILE 

Scroll-Bar Reference 134 
Scroll-Bar Functions 134 

EnableScroliBar 
GetScroliBarlnfo 
GetScrolllnfo 
GetScroliPos 
GetScroliRange 
Scroll DC 
ScroliWindow 
ScroliWindowEx 
SetScroll1 nfo 
SetScroliPos 
SetScroliRange 
ShowScroliBar 

Scroll-Bar Structures 154 
SCROLLBARINFO 
SCROLLINFO 

Scroll-Bar Messages 157 
SBM_ENABLE_ARROWS 
SBM_GETPOS 
SBM_GETRANGE 
SBM_GETSCROLLINFO 
SBM_SETPOS 
SBM_SETRANGE 
SBM_SETRANGEREDRAW 
SBM_SETSCROLLINFO 
WM_CTLCOLORSCROLLBAR 
WM_HSCROLL 
WM_VSCROLL 

Static-Control Reference 173 
Static-Control Messages 173 

STM_GETICON 
STM_GETIMAGE 
STM_SETICON 
STM_SETIMAGE 
STN_CLlCKED 
STN_DBLCLK 
STN_DISABLE 
STN_ENABLE 
WM_CTLCOLORSTATIC 

String Reference 323 
String Functions 323 

CharLower 
CharLowerBuff 
CharNext 
CharNextExA 
CharPrev 
CharPrevExA 
CharToOem 
CharToOemBuff 
CharUpper 
CharUpperBuff 
CompareString 
FoldString 



704 Volume 2 Microsoft Windows User Interface 

String Reference (continued) 
String Functions (continued) 

GetStringTypeA 
GetStringTypeEx 
GetStringTypeW 
IsCharAlpha 
IsCharAlphaNumeric 
IsCharLower 
IsCharUpper 
LoadString 
Istrcat 
Istrcmp 
Istrcmpi 
Istrcpy 
Istrcpyn 
Istrlen 
OemToChar 
OemToCharBuff 
wsprintf 
wvsprintf 

Timer Reference 674 
Timer Functions 674 

KiliTimer 

QueryPerformanceCounter 
QueryPerformanceFrequency 
SetTimer 
TimerProc 

Timer Messages 679 
WM_TIMER 

Window Procedure Reference 682 
Window Procedure Functions 682 

CaliWindowProc 
DefWindowProc 
WindowProc 

Window Property Reference 687 
Window Property Functions 687 

EnumProps 
EnumPropsEx 
GetProp 
PropEnumProc 
PropEnumProcEx 
RemoveProp 
SetProp 



APPENDIX B 

Index B: Volume 1, Elements 
Listed Alphabetically 

A CreateloCompletionPort .............................. 502 
CreateJobObject ............................................ 81 

AbnormalTermination .................................. 750 CreateProcess ............................................... 82 
AddAtom ...................................................... 346 CreateProcessAsUser ................................... 92 
AddUsersToEncryptedFile .......................... 655 CreateProcessWithLogonW ........................ 100 
AliocateUserPhysicalPages ........................ 261 CreateRemoteThread .................................. 107 
AreFileApisANSI .......................................... 481 CreateThread ............................................... 110 
AssignProcessToJobObject .......................... 74 CWPRETSTRUCT '" .................................... 457 
AttachThreadlnput ......................................... 75 CWPSTRUCT .............................................. 458 

B D 
Beep ............................................................ 767 DEBUGHOOKI NFO ..................................... 459 
BindloCompletionCaliback ............................ 77 DebugProc ................................................... 429 
BY _HANDLE_FILE_INFORMATION .......... 606 DecryptFile ................................................... 658 

DefineDosDevice ......................................... 504 

c DeleteAtom .................................................. 347 
DeleteFiber .................................................. 112 

CaIlMsgFilter. ............................................... 420 
CaliNextHookEx .......................................... 421 

DeleteFile ..................................................... 506 
DeleteVolumeMountPoint ............................ 659 

CallWndProc ............................................... 422 DisableThreadLibraryCalis .......................... 217 

CallWndRetProc .......................................... 424 DISKQUOTA_USER_INFORMATION ........ 731 

Cancello ...................................................... 482 DIiMain ......................................................... 219 

CBT_CREATEWND .................................... 456 DuplicateHandle .......................................... 406 

CBT ACTIVATESTRUCT ............................. 456 
CBTProc ...................................................... 425 
ChangeClipboardChain ............................... 363 E 
CHARSETINFO ........................................... 810 EFS_CERTIFICATE_BLOB ......................... 732 
CloseClipboard ............................................ 364 EFS_HASH_BLOB ...................................... 733 
Close Handle ................................................ 404 EmptyClipboard ........................................... 365 
CommandLineToArgvW ................................ 78 EncryptFile ................................................... 660 
ConvertThreadToFiber .................................. 79 ENCRYPTION_ CERTI FICATE .................... 733 
COPYDATASTRUCT .................................. 343 ENCRYPTION_CERTIFICATE_HASH ....... 734 
CopyFile ...................................................... 483 ENCRYPTION_CERTIFICATE_HASH_ 
CopyFileEx .................................................. 485 LIST .......................................................... 735 
CopyMemory ............................................... 263 ENCRYPTION_ CERTIFICATE_LIST .......... 735 
CopyProgressRoutine ................................. 486 EncryptionDisable ........................................ 661 
CountClipboardFormats .............................. 364 EnumClipboardFormats ............................... 366 
CreateDirectory ........................................... 488 EVENTMSG ................................................. 460 
CreateDirectoryEx ....................................... 489 EXCEPTION_POINTERS ............................ 759 
Create Fiber .................................................... 80 EXCEPTION_RECORD .............................. 759 
CreateFile .................................................... 491 ExitProcess .................................................. 113 
CreateHardLink ........................................... 656 ExitThread .................................................... 115 

705 



706 Volume 1 Microsoft Windows Base Services 

F GetDiskFreeSpace ...................................... 523 
GetDiskFreeSpaceEx .................................. 525 

FataIAppExit ................................................ 768 GetDrive Type ............................................... 526 
FiberProc ..................................................... 116 GetEnvironmentStrings ................................ 122 
FILE_NOTIFY _INFORMATION .................. 609 GetEnvironmentVariable .............................. 123 
FileEncryptionStatus ................................... 662 GetExceptionCode ....................................... 751 
FilelOCompletionRoutine ............................ 507 GetExceptionlnformation ............................. 753 
Fill Memory ................................................... 264 GetExitCodeProcess ........................... ~ ....... 124 
FindAtom ..................................................... 348 GetExitCodeThread ..................................... 125 
FindClose .................................................... 509 GetFiberData ............................................... 207 
FindCloseChangeNotification ...................... 510 GetFileAttributes .......................................... 527 
FINDEX_INFO_LEVELS ............................. 617 GetFileAttributesEx ...................................... 530 
FINDEX_SEARCH_OPS ............................ 618 GetFilelnformationByHandle ........................ 531 
FindFirstChangeNotification ........................ 511 GetFileSize .................................................. 532 
FindFirstFile ................................................. 513 GetFileSizeEx .............................................. 533 
FindFirstFileEx ............................................ 514 GetFileType ................................................. 534 
FindFirstVolume .......................................... 663 GetFuliPathName ........................................ 535 
FindFirstVolumeMountPoint ........................ 665 GetGuiResources ........................................ 126 
FindNextChangeNotification ....................... 517 GetHandlelnformation .................................. 413 
FindNextFile ................................................ 518 GetLastError ................................................ 776 
FindNextVolume .......................................... 666 GetLogicalDrives ......................................... 536 
FindNextVolumeMountPoint ....................... 667 GetLogicalDriveStrings ................................ 537 
FindVolumeClose ........................................ 668 GetLongPathName ...................................... 538 
FindVolumeMountPointClose ...................... 669 GetModuleFileName .................................... 224 
FlashWindow ............................................... 769 GetModuleHandle ........................................ 225 
FlashWindowEx ........................................... 770 GetMsgProc ................................................. 433 
FLASHWINFO ............................................. 783 GetOpenClipboardWindow .......................... 371 
FlushFileBuffers .......................................... 519 GetPriorityClass ........................................... 127 
FONTSIGNATURE ...................................... 810 GetPriorityClipboardFormat ......................... 372 
ForegroundldleProc ..................................... 432 GetProcAddress .......................................... 226 
FormatMessage .......................................... 771 GetProcessAffinityMask ............................... 128 
FreeEncryptionCertificateHashList. ............. 670 GetProcessHeap ......................................... 266 
FreeEnvironmentStrings .............................. 117 GetProcessHeaps ........................................ 267 
FreeLibrary .................................................. 222 GetProcessloCounters ................................ 130 
FreeLibraryAndExitThread .......................... 223 GetProcessPriorityBoost. ............................. 130 
FreeUserPhysicaIPages .............................. 265 GetProcessShutdownParameters ............... 131 

GetProcessTimes ........................................ 132 

G GetProcessVersion ...................................... 134 
GetProcessWorkingSetSize : ....................... 135 

GET_FILEEX_INFO_LEVELS .................... 619 
GetAtomName ............................................. 349 

GetQueuedCompletionStatus ...................... 539 
GetShortPathName ..................................... 541 

GetBinaryType ............................................ 521 
GetClipboardData ........................................ 367 
GetClipboardFormatName .......................... 368 
GetClipboardOwner ..................................... 369 
GetClipboardSequenceNumber .................. 370 
GetClipboardViewer .................................... 371 
GetCommandLine ....................................... 117 

GetStartuplnfo .............................................. 136 
GetTempFileName ...................................... 543 
GetTempPath ............................................... 545 
GetTextCharset ........................................... 795 
GetTextCharsetinfo ..................................... 796 
GetThreadPriority ......................................... 137 
GetThreadPriorityBoost ............................... 138 

GetCompressedFileSize ............................. 670 
GetCurrentDirectory .................................... 522 
GetCurrentFiber .......................................... 207 

GetThreadTimes .......................................... 139 
GetVolumelnformation ................................. 672 
GetVolumeNameForVolumeMountPoint ..... 675 

GetCurrentProcess ...................................... 118 GetVolumePathName .................................. 676 

GetCurrentProcessld ................................... 119 GetWriteWatch ............................................. 268 

GetCurrentThread ....................................... 120 GlobalAddAtom ............................................ 350 

GetCurrentThreadld .................................... 121 GlobaIDeleteAtom ........................................ 352 



Appendix B Elements Listed Alphabetically 707 

GlobaIFindAtom ........................................... 353 GetQuotaUsedText ........................... 718 
GlobalGetAtomName .................................. 354 GetSid ............................................... 719 
GlobaIMemoryStatus ................................... 269 GetSidLength .................................... 720 

Invalidate ........................................... 721 

H 
SetQuotaLimit ................................... 721 
SetQuotaThreshold ........................... 722 

HeapAlioc .................................................... 271 
HeapCompact ............................................. 273 
HeapCreate ................................................. 275 
HeapDestroy ................................................ 277 
HeapFree ..................................................... 278 
HeapLock .................................................... 280 
HeapReAlioc ............................................... 281 
HeapSize ..................................................... 284 
HeapUnlock ................................................. 286 
HeapValidate ............................................... 287 
HeapWalk .................................................... 289 

IDiskQuotaUserBatch ................................... 723 
Add .................................................... 724 
Remove ............................................. 725 
RemoveAli ......................................... 726 
FlushToDisk ...................................... 726 

IEnumDiskQuotaUsers ................................. 727 
Clone ................................................. 728 
Next ................................................... 729 
Reset. ................................................ 730 
Skip ................................................... 730 

InitAtomTable ................................................ 355 
Int32x32To64 ................................................ 546 
Int64ShllMod32 ............................................. 547 
Int64ShraMod32 ........................................... 548 

IDiskQuotaControl ........................................ 683 
AddUserName .............................................. 684 

AddUserSid ...................................... 686 
CreateEnumUsers ............................ 688 
CreateUserBatch .............................. 690 
DeleteUser ........................................ 691 
FindUserName ................................. 692 
FindUserSid ...................................... 693 
GetDefaultQuotaLimit ....................... 694 
GetDefaultQuotaLimitText ................ 695 
GetDefaultQuotaThreshold .............. 696 
GetDefaultOuotaThresholdText ....... 697 
GetQuotaLogFlags ........................... 698 

Int64ShrIMod32 ............................................. 549 
IO_COUNTERS ............................................ 184 
IsBadCodePtr ................................................ 290 
IsBadReadPtr ................................................ 291 
IsBadStringPtr ............................................... 293 
ISBadWritePtr ................................................ 294 
IsClipboardFormatAvailable .......................... 373 
IsDBCSLeadByte .......................................... 798 
IsDBCSLeadByteEx ...................................... 799 
IsReparseTagHighLatency ........................... 736 
IsReparseTagMicrosoft ................................. 737 
IsReparseTagNameSurrogate ...................... 738 
IsTextUnicode ............................................... 800 

GetQuotaState .................................. 699 
GiveUserNameResolutionPriority .... 700 J 
Initialize ............................................. 701 
InvalidateSidNameCache ................. 702 
SetDefaultQuotaLimit ....................... 703 
SetDefaultQuotaThreshold ............... 704 
SetQuotaLogFlags ........................... 705 
SetQuotaState .................................. 706 
ShutdownNameResolution ............... 707 

JOBOBJECT _ASSOCIATE_COMPLETION 
PORT ........................................................ :::85 

JOBOBJECT _BASIC_ACCOUNTING 
INFORMATION ................................ ~ ........ 188 

JOBOBJECT _BASIC_AND_IO_ACCOUNTING 
INFORMATION .......................................... 190-

IDiskQuotaEvents ......................................... 708 
OnUserNameChanged ..................... 708 

I DiskQuotaUser ............................................ 709 
GetAccountStatus ............................ 710 
GetiD ................................................ 711 
GetName .......................................... 712 
GetQuotalnformation ........................ 713 
GetQuotaLimit .................................. 714 
GetQuotaLimitText ........................... 715 
GetQuotaThreshold .......................... 716 
GetQuotaThresholdText ................... 716 
GetQuotaUsed ................................. 717 

JOBOBJECT BASIC LIMIT 
INFORMATION ...... ~ ......... ~ ....................... 191 

JOBOBJECT _BASIC_PROCESS ID 
LIST .......................................... ::: ... ~ ......... 195 

JOBOBJECT BASIC UI 
RESTRICTiONS .... ~ ... ~ ............................. 196 

JOBOBJECT _END OF JOB TIME 
INFORMATION .. ~ ..... ::: ....... ~ ........ ~ ........... 197 

JOBOBJECT _EXTENDED LIMIT 
INFORMATION .............. ::: ......... ~ .............. 199 

JOBOBJECT _SECURITY LIMIT 
INFORMATION ............. ~ ......... ::: ............... 200 



708 Volume 1 Microsoft Windows Base Services 

JournaIPlaybackProc .................................... 434 
JournaIRecordProc ....................................... 437 

Q 
QueryDosDevice ........................................... 562 

K 
QuerylnformationJobObject .......................... 146 
QueryRecoveryAgentsOnEncryptedFile ....... 677 

KBDLLHOOKSTRUCT ................................. 460 QueryUsersOnEncryptedFile ........................ 678 

KeyboardProc ............................................... 439 QueueUserWorkltem .................................... 148 

L R 
LARGE_INTEGER ....................................... 610 
LoadLibrary ................................................... 228 
LoadLibraryEx .............................................. 230 
LOCALESIGNATURE .................................. 811 
LockFile ........................................................ 550 
LockFileEx .................................................... 551 

RaiseException ............................................. 754 
ReadDirectoryChangesW ............................. 563 
ReadFile ........................................................ 567 
ReadFileEx ................................................... 571 
ReadFileScatter ............................................ 574 
RegisterClipboardFormat. ............................. 375 

LowLevelKeyboardProc ............................... 441 
LowLevelMouseProc .................................... 442 

RemoveDirectory .......................................... 576 
RemoveUsersFromEncryptedFile ................ 679 
ReplaceFile ................................................... 577 
ResetWriteWatch .......................................... 299 

M ResumeThread ............................................. 150 

MAKEINTATOM ........................................... 356 
MapUserPhysicalPages ............................... 295 s 
MapUserPhysicaIPagesScatter .................... 297 
MEMORY _BASIC_INFORMATION ............. 328 
MEMORYSTATUS ....................................... 331 

Search Path ................................................... 580 
SetClipboardData ......................................... 376 

MessageBeep .............................................. 777 
MessageProc ............................................... 444 
METAFILEPICT ............................................ 378 

SetClipboardViewer ...................................... 377 
SetCurrentDirectory ...................................... 581 
SetEndOfFile ................................................. 582 

MOUSEHOOKSTRUCT ............................... 462 SetEnvironmentVariable ............................... 151 

MOUSEHOOKSTRUCTEX .......................... 463 SetErrorMode ................................................ 778 

MouseProc ................................................... 446 SetFileApisToANSI ....................................... 583 

MoveFile ....................................................... 553 
MoveFileEx ................................................... 554 

SetFileApisToOEM ....................................... 585 
SetFileAttributes ........................................... 586 

MoveFileWithProgress ................................. 557 
MoveMemory ................................................ 298 
MSLLHOOKSTRUCT ................................... 464 
MuIDiv ........................................................... 560 

SetFilePointer ............................................... 588 
SetFilePointerEx ........................................... 591 
SetHandlelnformation .................................. .414 
SetlnformationJobObject .............................. 152 

MultiByteToWideChar .................................. 802 SetLastError .................................................. 780 
SetLastErrorEx .............................................. 781 

o SetPriorityClass ............................................ 153 
SetProcessAffinityMask ................................ 155 

OFSTRUCT .................................................. 611 
OpenClipboard ............................................. 374 
OpenJobObject ............................................ 141 
OpenProcess ................................................ 142 
OpenThread ................................................. 144 

SetProcessPriorityBoost ............................... 156 
SetProcessShutdownParameters ................. 157 
SetProcessWorkingSetSize .......................... 159 
SetThreadAffinityMask .................................. 161 
SetThreadldealProcessor ............................. 162 
SetThreadPriority .......................................... 163 
SetThreadPriorityBoost... .............................. 165 

p SetUnhandledExceptionFilter ....................... 756 
SetUserFileEncryptionKey ............................ 680 

PostQueuedCompletionStatus ..................... 561 SetVolumeLabel ........................................... 593 
PROCESS_HEAP _ENTRY .......................... 333 SetVolumeMountPoint .................................. 681 
PROCESS_INFORMATION ........................ 202 SetWindowsHookEx ..................................... 447 



Appendix B Elements Listed Alphabetically 709 

SheliProc ...................................................... 451 VirtualFreeEx ................................................ 313 
Sleep ............................................................ 166 VirtualLock .................................................... 316 
SleepEx ........................................................ 167 VirtualProtect ................................................ 318 
STARTUPINFO ............................................ 202 VirtualProtectEx ............................................ 320 
SuspendThread ............................................ 169 VirtualQuery .................................................. 323 
SwitchToFiber .............................................. 170 VirtuaIQueryEx .............................................. 325 
SwitchToThread ........................................... 171 VirtuaIUnlock ................................................. 326 
SysMsgProc ................................................. 453 

T 
w 
WaitForlnputidle ........................................... 182 

TerminateJobObject ..................................... 172 WideCharToMultiByte ................................... 806 
TerminateProcess ........................................ 173 WIN32_FILE_ATIRIBUTE_DATA ............... 612 
TerminateThread .......................................... 174 WIN32_FIND_DATA ..................................... 614 
TEXT ............................................................ 812 WM_ASKCBFORMATNAME ........................ 380 
ThreadProc ................................................... 176 WM_CANCEWOURNAL ............................. .465 
TlsAlioc ......................................................... 176 WM_CHANGECBCHAIN .............................. 381 
TlsFree ......................................................... 178 WM_CLEAR .................................................. 382 
TlsGetValue .................................................. 179 WM_COPY ................................................... 383 
TlsSetValue .................................................. 180 WM_COPYDATA .......................................... 343 
TranslateCharsetl nfo .................................... 805 WM_CUT ...................................................... 383 

WM_DESTROYCLIPBOARD ....................... 384 

u WM_DRAWCLIPBOARD .............................. 385 
WM_HSCROLLCLIPBOARD ........................ 386 

U Int32x32To64 ............................................. 594 WM_PAINTCLIPBOARD .............................. 387 

ULARGE_INTEGER ..................................... 611 
UnhandledExceptionFilter ............................ 757 
UnhookWindowsHookEx .............................. 455 

WM_PASTE .................................................. 388 
WM_QUEUESYNC ...................................... .467 
WM_RENDERALLFORMATS ...................... 389 

UnlockFile ..................................................... 595 WM_RENDERFORMAT ............................... 390 

UnlockFileEx ................................................. 596 
UserHandleGrantAccess .............................. 181 

WM_SIZECLIPBOARD ................................. 391 
WM_ VSCROLLCLIPBOARD ........................ 392 
WriteFile ........................................................ 598 
WriteFileEx .................................................... 601 v WriteFileGather ............................................. 604 

VirtuaIAlloc .................................................... 301 
VirtualAllocEx ............................................... 306 z 
Virtual Free .................................................... 311 

ZeroMemory .................................................. 327 





APPENDIX B 

Index B: Volume 2, Elements Listed 
Alphabetically 

A CB_GETLOCALE ........................................ 1 01 
CB_GETTOPINDEX .................................... 102 

ACCEL ......................................................... 452 CB_INITSTORAGE ..................................... 103 
ActivateKeyboardLayout ............................. 467 CB_INSERTSTRING ................................... 104 
AppendMenu ............................................... 246 CB_L1MITTEXT ............................................ 105 

CB_RESETCONTENT ................................ 106 

B 
CB_SELECTSTRING .................................. 106 
CB_SETCURSEL ........................................ 108 

Blocklnpul... ................................................. 469 
BM_CLlCK ..................................................... 56 
BM_GETCHECK ........................................... 57 
BM_GETIMAGE ............................................ 58 
BM_GETSTATE ............................................ 59 
BM_SETCHECK ........................................... 60 
BM_SETIMAGE ............................................ 61 
BM_SETSTATE ............................................ 62 
BM_SETSTYLE ............................................. 63 
BN_CLlCKED ................................................ 64 
BN_DBLCLK ................................................. 65 
BN_DOUBLECLICKED ................................. 66 
BN_KILLFOCUS ........................................... 66 
BN_SETFOCUS ............................................ 67 
BroadcastSystemMessage .......................... 614 

CB_SETDROPPEDWIDTH ......................... 108 
CB_SETEDITSEL ........................................ 109 
CB_SETEXTENDEDUI. ............................... 11 0 
CB_SETHORIZONTALEXTENT ................. 111 
CB_SETITEMDATA ..................................... 112 
CB_SETITEMHEIGHT ................................. 113 
CB_SETLOCALE ......................................... 114 
CB_SETTOPINDEX .................................... 115 
CB_SHOWDROPDOWN ............................. 116 
CBN_CLOSEUP .......................................... 117 
CBN_DBLCLK ............................................. 118 
CBN_DROPDOWN ..................................... 119 
CBN_EDITCHANGE .................................... 120 
CBN_EDITUPDATE .................................... 120 
CBN_ERRSPACE ....................................... 121 
CBN_KILLFOCUS ....................................... 122 

c 
CBN_SELCHANGE ..................................... 123 
CBN_SELENDCANCEL .............................. 124 

CaliWindowProc .......................................... 682 
CB_ADDSTRING .......................................... 84 
CB_DELETESTRING .................................... 85 
CB_DIR ......................................................... 86 
CB_FINDSTRING ......................................... 88 
CB_FINDSTRINGEXACT ............................. 89 
CB_GETCOUNT ........................................... 90 
CB_GETCURSEL ......................................... 91 
CB_GETDROPPEDCONTROLRECT ........... 92 
CB_GETDROPPEDSTATE .......................... 93 
CB_GETDROPPEDWIDTH .......................... 93 
CB_GETEDITSEL ......................................... 94 
CB_GETEXTENDEDUI ................................. 95 
CB_GETHORIZONTALEXTENT .................. 96 
CB_GETITEMDATA ...................................... 97 
CB_GETITEMHEIGHT .................................. 98 
CB_GETLBTEXT .......................................... 99 
CB_GETLBTEXTLEN ................................. 100 

CBN_SELENDOK ........................................ 125 
CBN_SETFOCUS ........................................ 125 
CharLower ................................................... 323 
CharLowerBuff ............................................. 324 
CharNext ...................................................... 325 
CharNextExA ............................................... 326 
CharPrev ...................................................... 327 
CharPrevExA ............................................... 327 
CharToOem ................................................. 328 
CharToOemBuff ........................................... 329 
CharUpper ................................................... 330 
CharUpperBuff ............................................. 331 
CheckDlgButton ............................................. 53 
CheckMenultem ........................................... 249 
CheckMenuRadioltem ................................. 250 
CheckRadioButton ......................................... 54 
ClipCursor .................................................... 200 
COMBOBOXINFO ......................................... 77 

711 



712 Volume 2 Microsoft Windows User Interface 

COMPAREITEMSTRUCT ............................. 78 
CompareString ............................................ 332 E 
CopyAcceleratorTable ................................. 446 EnableMenultem .......................................... 256 
CopyCursor ................................................. 201 EnableScroliBar ........................................... 134 
Copylcon ..................................................... 218 EnableWindow ............................................. 470 
CreateAcceleratorTable .............................. 447 End Dialog .................................................... 555 
CreateCaret ................................................. 192 EndMenu ...................................................... 258 
CreateCursor ............................................... 202 EnumProps .................................................. 687 
CreateDialog ............................................... 537 EnumPropsEx .............................................. 688 
CreateDialoglndirecL .................................. 539 ExtractAssociatedlcon ................................. 229 
CreateDialoglndirectParam ......................... 541 Extractlcon ................................................... 231 
CreateDialogParam ..................................... 543 ExtractlconEx ............................................... 232 
Createlcon ................................................... 219 
CreatelconFromResource ........................... 221 
CreatelconFromResourceEx ....................... 222 F 
Createlconlndirect ....................................... 224 
CreateMDIWindow ...................................... 653 

FoldString ..................................................... 336 

CreateMenu ................................................. 251 
CreatePopupMenu ...................................... 252 G 
CURSORINFO ............................................ 216 

GET_APPCOMMAND_LPARAM ............... .437 
GET _DEVICE_LPARAM ............................ .438 

o GET _KEYST ATE_LPARAM ........................ 439 

DefDlgProc .................................................. 545 
DefFrameProc ............................................. 655 
DefMDIChildProc ......................................... 657 
DefWindowProc ........................................... 684 

GET _KEYST ATE_ WPARAM ...................... 440 
GET _NCHITTEST _WPARAM ..................... 440 
GET_WHEEL_DELTA_WPARAM ............... 441 
GET _XBUTTON_ WPARAM ....................... .441 
GetActiveWindow ........................................ 472 

DeleteMenu ................................................. 253 
DestroyAcceleratorTable ............................. 448 
DestroyCaret ............................................... 193 

GetAsyncKeyState ....................................... 472 
GetCapture .................................................. 373 
GetCaretBlinkTime ...................................... 194 

DestroyCursor ............................................. 203 GetCaretPos ................................................ 195 
Destroylcon ................................................. 225 
DestroyMenu ............................................... 254 

GetClipCursor .............................................. 204 
GetComboBoxlnfo ......................................... 76 

DialogBox .................................................... 546 GetCursor .................................................... 205 
DialogBoxlndirect ........................................ 547 GetCursorlnfo .............................................. 206 
DialogBoxlndirectParam .............................. 550 GetCursorPos .............................................. 207 
DialogBoxParam ......................................... 552 
DialogProc ................................................... 553 
Dispatch Message ........................................ 616 
DlgDirListComboBox ..................................... 73 
DlgDirSelectComboBoxEx ............................ 75 
DLGITEMTEMPLATE ................................. 582 

GetDialogBaseUnits .................................... 556 
GetDlgCtrll D ................................................. 557 
GetDlgltem ................................................... 558 
GetDlgltemlnt.. ............................................. 559 
GetDlgltemText ............................................ 561 
GetDoubleClickTime .................................... 373 

DLGITEMTEMPLA TEEX. ............................ 584 Get Focus ..................................................... 474 
DLGTEMPLATE .......................................... 586 Getlconlnfo .................................................. 233 
DLGTEMPLATEEX ..................................... 589 
DM_GETDEFID ........................................... 595 
DM_REPOSITION ....................................... 596 
DM_SETDEFID ........................................... 596 
DragDetect .................................................. 372 
Drawlcon ..................................................... 225 
DrawlconEx ................................................. 227 
DRAWITEMSTRUCT .................................... 80 
DrawMenuBar ............................................. 255 

GetlnputState ............................................... 617 
GetKeyboard Layout ..................................... 475 
GetKeyboardLayoutList ............................... 476 
GetKeyboardLayoutName ........................... 477 
GetKeyboardState ....................................... 478 
GetKeyNameText ........................................ 479 
GetKeyState ................................................. 480 
GetLastlnputlnfo .......................................... 482 
GetMenu ...................................................... 258 

Duplicatelcon ............................................... 229 GetMenuBarlnfo .......................................... 259 



APPENDIX B Index B: Volume 2, Elements Listed Alphabetically 713 

GetMenuCheckMarkDimensions ................ 260 KEYBDINPUT .............................................. 511 
GetMenuDefaultitem ................................... 261 KillTimer ....................................................... 674 
GetMenulnfo ................................................ 262 
GetMenultemCount ..................................... 263 
GetMenultemlD ........................................... 264 L 
GetMenultemlnfo ......................................... 264 LASTINPUTINFO ......................................... 513 
GetMenultemRect ....................................... 266 LoadAccelerators ......................................... 449 
GetMenuState ............................................. 267 LoadCursor .................................................. 208 
GetMenuString ............................................ 269 LoadCursorFromFile .................................... 209 
Get Message ................................................ 618 Loadlcon ...................................................... 235 
GetMessageExtralnfo .................................. 620 LoadKeyboardLayout. .................................. 485 
GetMessagePos .......................................... 621 LoadMenu .................................................... 278 
GetMessageTime ........................................ 622 LoadMenulndirect ........................................ 279 
GetMouseMovePointsEx ............................. 374 LoadString .................................................... 353 
GetNextDlgGroupltem ................................. 562 LookuplconldFromDirectory ........................ 236 
GetNextDlgTabltem ..................................... 563 LookuplconldFromDirectoryEx .................... 238 
GetProp ....................................................... 689 Istrcat ........................................................... 354 
GetQueueStatus .......................................... 622 Istrcmp ......................................................... 355 
GetScrollBarlnfo .......................................... 136 Istrcmpi ......................................................... 356 
GetScrolllnfo ................................................ 137 Istrcpy ........................................................... 358 
GetScrollPos ............................................... 139 Istrcpyn ......................................................... 359 
GetScroll Range ........................................... 140 Istrlen ........................................................... 360 
GetStringTypeA ........................................... 338 
GetStringTypeEx ......................................... 342 
GetStringTypeW .......................................... 346 M 
GetSubMenu ............................................... 270 MapDialogRect ............................................ 566 
GetSystemMenu .......................................... 271 MapVirtualKey .............................................. 487 

MapVirtualKeyEx ......................................... 489 

H MDICREATESTRUCT ................................. 659 
MDINEXTMENU .......................................... 297 

HARDWAREINPUT ..................................... 509 MEASUREITEMSTRUCT .............................. 82 
HideCaret .................................................... 195 MENUBARINFO .......................................... 297 
HiliteMenultem ............................................ 272 MENU EX_ TEMPLATE_HEADER ............... 298 

MENUEX_TEMPLATE_ITEM ...................... 299 
MENUGETOBJECTINFO ............................ 301 
MENUINFO .................................................. 302 

ICONINFO ................................................... 239 MenultemFromPoint .................................... 280 
ICONMETRICS ........................................... 240 MENUITEMINFO ......................................... 304 
INPUT .......................................................... 510 MENUITEMTEMPLATE ............................... 309 
InSendMessage .......................................... 624 MENUITEMTEMPLATEHEADER ............... 310 
InSendMessageEx ...................................... 625 MessageBox ................................................ 567 
InsertMenu ................................................... 273 MessageBoxEx ............................................ 572 
InsertMenultem ........................................... 276 MessageBoxlndirect .................................... 577 
IsCharAlpha ................................................. 350 ModifyMenu ................................................. 281 
IsCharAlphaNumeric ................................... 351 mouse_event ............................................... 376 
IsCharLower ................................................ 352 MOUSEINPUT ............................................. 514 
IsCharUpper ................................................ 352 MOUSEMOVEPOINT .................................. 385 
IsDialogMessage ......................................... 564 MSG ............................................................. 645 
IsDlgButtonChecked ...................................... 55 MSGBOXPARAMS ...................................... 593 
IsMenu ......................................................... 278 
IsWindowEnabled ........................................ 483 o 
K OemKeyScan ............................................... 491 

OemToChar ................................................. 361 
keybd_event ................................................ 483 Oem ToCharBuff ........................................... 361 



714 Volume 2 Microsoft Windows User Interface 

p SetDoubleCliekTime .................................... 381 
SetFoeus ...................................................... 496 

PeekMessage .............................................. 626 SetKeyboardState ........................................ 497 
PostMessage ............................................... 628 SetMenu ....................................................... 285 
PostQuitMessage ........................................ 630 SetMenuDefaultitem .................................... 286 
PostThreadMessage ................................... 631 SetMenulnfo ................................................. 287 
PropEnumProe ............................................ 690 SetMenultemBitmaps .................................. 288 
PropEnumProeEx ........................................ 691 SetMenultemlnfo ......................................... 290 

SetMessageExtralnfo .................................. 642 

Q SetProp ........................................................ 693 
SetSerolllnfo ................................................. 147 

QueryPerformaneeCounter ......................... 675 SetSerollPos ................................................ 149 
QueryPerformaneeFrequeney ..................... 676 SetSerollRange ............................................ 151 

SetSystemCursor ......................................... 213 

R SetTimer ...................................................... 677 
ShowCaret ................................................... 198 

RegisterHotKey ........................................... 492 ShowCursor ................................................. 215 
RegisterWindowMessage ........................... 632 ShowSerollBar ............................................. 152 
ReleaseCapture .......................................... 379 STM_GETICON ........................................... 173 
RemoveMenu .............................................. 284 STM_GETIMAGE ........................................ 174 
RemoveProp ............................................... 692 STM_SETICON ........................................... 175 
ReplyMessage ............................................. 633 STM_SETIMAGE ......................................... 176 

STN_CLlCKED ............................................ 177 

s STN_DBLCLK .............................................. 177 
STN_DISABLE ............................................ 178 

SBM_ENABLE_ARROWS .......................... 157 STN_ENABLE. ............................................. 179 
SBM_GETPOS ............................................ 158 SwapMouseButton ....................................... 382 
SBM_GETRANGE ...................................... 159 
SBM_GETSCROLLlNFO ............................ 159 
SBM_SETPOS ............................................ 161 T 
SBM_SETRANGE ....................................... 162 TimerProe .................................................... 678 
SBM_SETRANGEREDRAW ....................... 163 ToAseii ......................................................... 498 
SBM_SETSCROLLlNFO ............................. 164 ToAsciiEx ..................................................... 499 
SCROLLBARINFO ...................................... 154 ToUnieode .................................................... 501 
SerollDC ...................................................... 142 ToUnieodeEx ............................................... 503 
SCROLLINFO ............................................. 155 TPMPARAMS .............................................. 310 
SeroIlWindow ............................................... 143 TraekMouseEvent ........................................ 383 
SerollWindowEx ...... , ............. , ..................... 145 TRACKMOUSEEVENT ............................... 385 
SendAsyneProe ........................................... 634 TraekPopupMenu ........................................ 291 
SendDlgltemMessage ................................. 579 TraekPopupMenuEx .................................... 294 
Sendlnput .................................................... 494 TranslateAeeelerator .................................... 450 
Send Message ............................................. 636 TranslateMDISysAeeel ................................ 658 
SendMessageCalibaek ................................ 637 TranslateMessage ....................................... 642 
SendMessageTimeout ................................ 639 
SendNotifyMessage .................................... 640 
SetAetiveWindow ........................................ 495 u 
SetCapture .................................................. 380 UnloadKeyboardLayout ............................... 505 
SetCaretBlinkTime ...................................... 196 UnregisterHotKey ......................................... 506 
SetCaretPos ................................................ 197 
SetCursor .................................................... 211 
SetCursorPos .............................................. 212 v 
SetDlgltemlnt.. ............................................. 580 VkKeySean .................................................. 507 
SetDlgltemText ............................................ 581 VkKeySeanEx .............................................. 508 



APPENDIX B Index B: Volume 2, Elements Listed Alphabetically 715 

w WM_MENUCHAR ........................................ 456 
WM_MENUCOMMAND ............................... 316 

WaitMessage ............................................... 644 WM_MENUDRAG ....................................... 316 
WindowProc ................................................ 685 WM_MENUGETOBJECT ............................ 317 
WM_ACTIVATE .......................................... 517 WM_MENURBUnONUP ........................... 318 
WM_APP ..................................................... 646 WM_MENUSELECT .................................... 458 
WM_APPCOMMAND .................................. 387 WM_MOUSEACTIVATE .............................. 399 
WM_CAPTURECHANGED ......................... 390 WM_MOUSEHOVER .................................. 401 
WM_CHANGEUISTATE ............................. 453 WM_MOUSELEAVE .................................... 402 
WM_CHAR .................................................. 518 WM_MOUSEMOVE ..................................... 403 
WM_COMMAND ......................................... 311 WM_MOUSEWHEEL .................................. 404 
WM_COMPAREITEM ................................. 126 WM_NCHlnEST ........................................ 407 
WM_CONTEXTMENU ................................ 312 WM_NCLBUnONDBLCLK ........................ 409 
WM_CTLCOLORBTN ................................... 68 WM_NCLBUnONDOWN ........................... 410 
WM_CTLCOLORDLG ................................. 597 WM_NCLBUnONUP ................................ .411 
WM_CTLCOLORSCROLLBAR .................. 165 WM_NCMBUnONDBLCLK ....................... 412 
WM_CTLCOLORSTATIC ............................ 180 WM_NCMBUnONDOWN .......................... 414 
WM_DEADCHAR ........................................ 520 WM_NCMBUnONUP ................................ 415 
WM_DRAWITEM ........................................ 127 WM_NCMOUSEHOVER ............................ .416 
WM_ENTERIDLE ........................................ 599 WM_NCMOUSELEAVE .............................. 417 
WM_ENTERMENULOOP ........................... 314 WM_NCMOUSEMOVE ............................... 418 
WM_ERASEBKGND ................................... 241 WM_NCRBUnONDBLCLK ........................ 419 
WM_EXITMENULOOP ............................... 315 WM_NCRBUnONDOWN .......................... 420 
WM_GETDLGCODE ................................... 600 WM_NCRBUnONUP ................................. 421 
WM_GETFONT ............................................. 50 WM_NCXBUnONDBLCLK ........................ 423 
WM_GETHOTKEY ...................................... 522 WM_NCXBUnONDOWN ........................... 424 
WM_HOTKEY ............................................. 523 WM_NCXBUTTONUP ................................. 426 
WM_HSCROLL ........................................... 166 WM_NEXTDLGCTL ..................................... 602 
WM_ICONERASEBKGND .......................... 242 WM_NEXTMENU ........................................ 319 
WM_INITDIALOG ........................................ 601 WM_PAINTICON ......................................... 243 
WM_INITMENU ........................................... 455 WM_QUERYUISTATE ................................ 459 
WM_INITMENUPOPUP .............................. 456 WM_RBUnONDBLCLK ............................. 427 
WM_KEYDOWN ......................................... 524 WM_RBUnONDOWN ................................ 429 
WM_KEYUP ................................................ 526 WM_RBUnONUP ...................................... 430 
WM_KILLFOCUS ........................................ 527 WM_SETCURSOR ...................................... 217 
WM_LBUnONDBLCLK ............................. 391 WM_SETFOCUS ......................................... 528 
WM_LBUnONDOWN ................................ 392 WM_SETFONT .............................................. 51 
WM_LBUnONUP ...................................... 394 WM_SETHOTKEY ....................................... 529 
WM_MBUnONDBLCLK ............................ 395 WM_SYSCHAR ........................................... 460 
WM_MBUnONDOWN ............................... 397 WM_SYSCOMMAND .................................. 462 
WM_MBUnONUP ..................................... 398 WM_SYSDEADCHAR ................................. 530 
WM_MDIACTIVATE .................................... 661 WM_SYSKEYDOWN ................................... 532 
WM_MDICASCADE .................................... 662 WM_SYSKEYUP ......................................... 534 
WM_MDICREATE ....................................... 663 WM_ TIMER ................................................. 679 
WM_MDIDESTROY .................................... 665 WM_UNINITMENUPOPUP ......................... 320 
WM_MDIGETACTIVE ................................. 666 WM_UPDATEUISTATE ............................... 464 
WM_MDIICONARRANGE ........................... 667 WM_USER ................................................... 647 
WM_MDIMAXIMIZE .................................... 667 WM_ VSCROLL. ............................ '" ............ 168 
WM_MDINEXT ............................................ 668 WM_XBUnONDBLCLK ............................. 431 
WM_MDIREFRESHMENU .......................... 669 WM_XBUnONDOWN ................................ 433 
WM_MDIRESTORE .................................... 670 WM_XBUnONUP ...................................... 435 
WM_MDISETMENU .................................... 671 wsprintf ......................................................... 362 
WM_MDITILE .............................................. 672 wvsprintf ....................................................... 366 
WM_MEASUREITEM .................................. 128 





APPENDIX B 

Index B: Volume 3, Elements 
Listed Alphabetically 

A CreateDIBitmap ............................................. 76 
CreateDIBPatternBrushPt. ........................... 159 

AbortPath ..................................................... 586 CreateDIBSection .......................................... 78 
AlphaBlend .................................................... 66 CreateEnhMetaFile ...................................... 399 
AngleArc ...................................................... 371 CreateHalftonePalette ................................. 203 
AnimatePalette ............................................ 202 CreateHatchBrush ....................................... 160 
Arc ............................................................... 373 CreateIC ....................................................... 306 
ArcTo ........................................................... 375 CreatePalette ............................................... 204 

CreatePatternBrush ..................................... 162 

B 
Create Pen .................................................... 605 
CreatePenlndirect ........................................ 607 

BeginPaint ................................................... 512 CreateSolidBrush ......................................... 163 

BeginPath .................................................... 587 
BitBlt .............................................................. 69 
BITMAP ....................................................... 116 o 
BITMAPCOREHEADER. ............................. 118 DeleteDC ..................................................... 307 
BITMAPCOREINFO .................................... 119 DeleteEnhMetaFile ...................................... 401 
BITMAPFILEHEADER ................................ 121 DeleteObject ................................................ 308 
BITMAPINFO .............................................. 122 DIBSECTION ............................................... 145 
BITMAPINFOHEADER ............................... 123 DISPLAY_DEVICE ...................................... 344 
BITMAPV4HEADER .................................... 128 DPtoLP ......................................................... 254 
BITMAPV5HEADER .................................... 133 DrawAnimatedRects .................................... 513 
BLENDFUNCTION ...................................... 140 DrawCaption ................................................ 514 

DrawEdge .................................................... 516 

c DrawEscape ................................................. 309 
DrawFocusRect ........................................... 518 

Cancel DC .................................................... 295 DrawFrameControl ...................................... 519 

ChangeDisplaySettings ............................... 296 
ChangeDisplaySettingsEx ........................... 299 

DrawState .................................................... 522 
DrawStateProc ............................................. 525 

Chord ........................................................... 354 
ClientToScreen ............................................ 252 
CloseEnhMetaFile ....................................... 397 E 
Close Figure ................................................. 589 Ellipse .......................................................... 356 
COLORADJUSTMENT ............................... 142 EMR ............................................................. 421 
COLORREF ................................................. 223 EMRALPHABLEND ..................................... 423 
CombineTransform ...................................... 253 EMRANGLEARC ......................................... 425 
CopyEnhMetaFile ........................................ 398 EMRARC ..................................................... 426 
CopyRect ..................................................... 619 EMRARCTO ................................................ 426 
Create Bitmap ................................................ 71 EMRCHORD ................................................ 426 
CreateBitmaplndirect.. ................................... 73 EMRPIE ....................................................... 426 
CreateBrushlndirect .................................... 157 EMRBITBL T ................................................. 427 
CreateCompatibleBitmap .............................. 74 EMRCREATEBRUSHINDIRECT ............... .431 
CreateCompatibleDC .................................. 303 EMRCREATECOLORSPACE ..................... 432 
CreateDC ..................................................... 304 EMRCREATEDIBPATTERNBRUSHPT ...... 434 

717 



718 Volume 3 Microsoft Windows GOI 

EMRCREATEMONOBRUSH ...................... 435 EMRSCALEWINDOWEXTEX ..................... 468 
EMRCREATEPALETTE .............................. 436 EMRSELECTOBJECT ................................. 469 
EMRCREATEPEN ...................................... 437 EMRDELETEOBJECT ................................. 469 
EMRELLIPSE EMRSELECTPALETTE ............................... 470 
EMRRECTANGLE ...................................... 437 EMRSETARCDIRECTION .......................... 471 
EMREOF ..................................................... 438 EMRSETBKCOLOR .................................... 471 
EMREXCLUDECLIPRECT ......................... 439 EMRSETTEXTCOLOR ................................ 471 
EMRINTERSECTCLIPRECT ...................... 439 EMRSETCOLORADJUSTMENT ................. 472 
EMREXTCREATEFONTINDIRECTW ........ 439 EMRSETCOLORSPACE ............................. 469 
EMREXTCREATEPEN ............................... 440 EMRSELECTCOLORSPACE ...................... 469 
EMREXTFLOODFILL. ................................. 441 EMRDELETECOLORSPACE ...................... 469 
EMREXTSELECTCLlPRGN ....................... 442 EMRSETDIBITSTODEVICE ........................ 472 
EMREXTTEXTOUT A .................................. 443 EMRSETICMPROFI LE ................................ 474 
EMREXTTEXTOUTW ................................. 443 EMRSETMAPPERFLAGS ........................... 475 
EMRFILLPATH EMRSETMITERLIMIT ................................. 476 
EMRSTROKEANDFILLPATH ..................... 444 EMRSETPALETTEENTRIES ..................... .476 
EMRSTROKEPATH .................................... 444 EMRSETPIXELV ......................................... 477 
EMRFILLRGN ............................................. 444 EMRSETVIEWPORTEXTEX ....................... 478 
EMRFORMAT ............................................. 445 EMRSETWINDOWEXTEX .......................... 478 
EMRFRAMERGN ........................................ 446 EMRSETVIEWPORTORGEX ..................... 479 
EMRGDICOMMENT ................................... 447 EMRSETWINDOWORGEX ......................... 479 
EMRGLSBOUNDEDRECORD ................... 448 EMRSETBRUSHORGEX ............................ 479 
EMRGLSRECORD ...................................... 449 EMRSETWORLDTRANSFORM ................ .479 
EMRGRADIENTFILL. .................................. 450 EMRSTRETCHBL T .................................... .480 
EMRINVERTRGN ....................................... 451 EMRSTRETCHDIBITS ................................ 482 
EMRPAINTRGN .......................................... 451 EMRTEXT .................................................... 484 
EMRLlNETO ............................................... 452 EMRTRANSPARENTBL T .......................... .485 
EMRMOVETOEX ........................................ 452 EndPaint ...................................................... 526 
EMRMASKBL T ............................................ 452 EndPath ....................................................... 590 
EMRMODIFYWORLDTRANSFORM .......... 455 Enhanced Metafile Records with No 
EMROFFSETCLlPRGN .............................. 455 Parameters ............................................... 487 
EMRPIXELFORMAT ................................... 456 Enhanced Metafile Records with One 
EMRPLGBL T ............................................... 457 Parameter ................................................ 487 
EMRPOLYDRAW ........................................ 459 EnhMetaFileProc ......................................... 402 
EMRPOLYDRAW16 .................................... 460 ENHMETAHEADER .................................... 488 
EMRPOLYLlNE ........................................... 461 ENHMETARECORD .................................... 491 
EMRPOL YBEZIER ...................................... 461 EnumDisplayDevices ................................... 31 0 
EMRPOL YGON ........................................... 461 EnumDisplaySettings ................................... 311 
EMRPOL YBEZIERTO ................................. 461 EnumDisplaySettingsEx .............................. 313 
EMRPOL YLiNETO ...................................... 461 EnumEnhMetaFile ....................................... 403 
EMRPOL YLlNE16 ....................................... 462 EnumObjects ............................................... 316 
EMRPOL YBEZIER16 .................................. 462 EnumObjectsProc ........................................ 317 
EMRPOLYGON16 ....................................... 462 EqualRect .................................................... 619 
EMRPOL YBEZIERT016 ............................. 462 ExcludeClipRect .......................................... 177 
EMRPOLYLINET016 .................................. 462 ExcludeUpdateRgn ...................................... 526 
EMRPOL YPOL YLiNE ................................. 463 ExtCreatePen ............................................... 608 
EMRPOL YPOL YGON ................................. 463 ExtFloodFili .................................................... 80 
EMRPOL YPOL YLlNE16 ............................. 464 EXTLOGPEN ............................................... 611 
EMRPOLYPOLYGON16 ............................. 464 ExtSelectClipRgn ......................................... 178 
EMRPOL YTEXTOUTA ................................ 464 
EMRPOL YTEXTOUTW ............................... 464 
EMRRESIZEPALETTE ............................... 466 F 
EMRRESTOREDC ...................................... 466 FiliPath ......................................................... 591 
EMRROUNDRECT ..................................... 467 FillRect ......................................................... 357 
EMRSCALEVIEWPORTEXTEX ................. 468 FlattenPath ................................................... 592 



Appendix B Index B: Volume 3, Elements Listed Alphabetically 719 

FrameRect ................................................... 358 GetViewportOrgEx ....................................... 259 
GetWindowDC ............................................. 537 

G GetWindowExtEx ......................................... 260 
GetWindowOrgEx ........................................ 261 

GdiComment ............................................... 404 GetWindowRgn ............................................ 539 

GdiFlush ...................................................... 527 GetWinMetaFileBits ................................... ..413 

GdiGetBatchLimit ........................................ 529 
GdiSetBatchLimit.. ....................................... 530 

GetWorldTransform ..................................... 262 
GRADIENT _RECT ...................................... 146 

GetArcDirection ........................................... 376 
GetBitmapDimensionEx ................................ 82 
GetBkColor .................................................. 531 

GRADIENT_TRIANGLE .............................. 147 
GradientFiII ..................................................... 88 
GrayString .................................................... 540 

GetBkMode .................................................. 531 
GetBoundsRect ........................................... 532 
GetBrushOrgEx ........................................... 164 H 
GetBValue ................................................... 226 HANDLET ABLE ........................................... 491 
GetClipBox .................................................. 180 HTULColorAdjustment ................................ 211 
GetClipRgn .................................................. 181 
GetColorAdjustment .................................... 205 
GetCurrentObject ........................................ 318 
GetCurrentPositionEx .................................. 255 InfiateRect .................................................... 620 
GetDC .......................................................... 319 
GetDCBrushColor ....................................... 320 

IntersectClipRect... ....................................... 184 
IntersectRect ................................................ 621 

GetDCEx ..................................................... 321 InvalidateRect .............................................. 542 
GetDCOrgEx ............................................... 323 
GetDCPenColor .......................................... 324 

InvalidateRgn ............................................... 543 
InvertRect. .................................................... 359 

GetDeviceCaps ........................................... 325 
GetDIBColorTable ......................................... 83 

IsRectEmpty ................................................. 622 

GetD I Bits ....................................................... 84 
GetEnhMetaFile .......................................... 407 L 
GetEnhMetaFileBits .................................... 408 
GetEnhMetaFileHeader ............................... 411 
GetEnhMetaFilePaletteEntries .................... 412 
GetGraphicsMode ....................................... 256 
GetGValue ................................................... 226 
GetMapMode ............................................... 257 
GetMetaRgn ................................................ 182 
GetMiterLimit ............................................... 593 
GetNearestColor ......................................... 206 
GetNearestPalettelndex .............................. 207 
GetObject .................................................... 331 

LineDDA ....................................................... 377 
LineDDAProc ............................................... 378 
LineTo .......................................................... 379 
LoadBitmap .................................................... 90 
LockWindowUpdate ..................................... 544 
LOGBRUSH ................................................. 169 
LOGBRUSH32 ............................................. 172 
LOG PALETTE ............................................. 224 
LOGPEN ...................................................... 615 
LPtoDP ......................................................... 263 

GetObjectType ............................................ 333 
GetPaletteEntries ........................................ 208 
GetPath ....................................................... 594 

M 
GetPixel ......................................................... 87 MAKE POINTS ............................................. 631 
GetRandomRgn .......................................... 183 MAKEROP4 ................................................. 152 
GetROP2 ..................................................... 533 MapWindowPoints ....................................... 264 
GetRValue ............... , ................................... 227 MaskBlt .......................................................... 92 
GetStockObject ........................................... 334 ModifyWorldTransform ................................ 265 
GetStretchBltMode ........................................ 88 MoveToEx .................................................... 381 
GetSysColorBrush ....................................... 165 
GetSystemPaletteEntries ............................ 209 
GetSystemPaletteUse ................................. 210 o 
GetUpdateRect ............................................ 535 
GetUpdateRgn ............................................ 536 

OffsetClipRgn ............................................... 185 
OffsetRect .................................................... 623 

GetViewportExtEx ....................................... 258 



720 Volume 3 Microsoft Windows GOI 

OffsetViewportOrgEx ................................... 267 ScaleWindowExtEx ...................................... 270 
OffsetWindowOrgEx .................................... 268 ScreenToClient ............................................ 271 
OutputProc .................................................. 546 SelectClipPath ............................................. 188 

SelectClipRgn .............................................. 189 

p SelectObject. ................................................ 340 
Select Palette ................................................ 215 

PaintDesktop ............................................... 547 
PAINTSTRUCT ........................................... 561 

SetArcDirection ............................................ 389 
SetBitmapDimensionEx ................................. 97 

PALETTE ENTRY ........................................ 224 SetBkColor ................................................... 550 

PALETTEINDEX ......................................... 228 SetBkMode .................................................. 551 

PALETTERGB ............................................. 229 SetBoundsRect ............................................ 552 

PatBlt ........................................................... 166 SetBrushOrgEx ............................................ 168 

PathToRegion ............................................. 596 
Pie ............................................................... 360 
PlayEnhMetaFile ......................................... 415 
PlayEnhMetaFileRecord .............................. 417 
PlgBlt ............................................................. 95 
POINT .......................................................... 629 
POINTL. ....................................................... 492 

SetColorAdjustment ..................................... 216 
SetDCBrushColor ........................................ 342 
SetDCPenColor ........................................... 343 
SetDIBColorTable .......................................... 98 
SetDIBits ...................................................... 100 
SetDIBitsToDevice ....................................... 102 
SetEnhMetaFileBits ..................................... 418 

POINTS ....................................................... 629 SetGraphicsMode ........................................ 272 

POINTSTOPOINT ....................................... 631 
POINTTOPOINTS ....................................... 632 

SetMapMode ................................................ 274 
SetMetaRgn ................................................. 191 

PolyBezier ................................................... 382 
PolyBezierTo ............................................... 383 
PolyDraw ..................................................... 384 
Polygon ........................................................ 362 
Polyline ........................................................ 386 
PolylineTo .................................................... 387 
PolyPolygon ................................................. 363 
PolyPolyline ................................................. 388 
PtinRect ....................................................... 624 

SetMiterLimit ................................................ 597 
SetPaletteEntries ......................................... 217 
SetPixel ........................................................ 105 
SetPixelV ..................................................... 106 
SetRect ........................................................ 625 
SetRectEmpty .............................................. 626 
SetROP2 ...................................................... 554 
SetStretchBltMode ....................................... 107 
SetSystemPaletteUse .................................. 219 

PtVisible ....................................................... 186 SetViewportExtEx ........................................ 276 
SetViewportOrgEx ....................................... 278 
SetWindowExtEx ......................................... 279 

R SetWindowOrgEx ......................................... 280 

RealizePalette ............................................. 213 
RECT ........................................................... 630 
Rectangle .................................................... 364 
RECTL ......................................................... 493 
RectVisible .................................................. 187 
RedrawWindow ........................................... 547 
ReleaseDC .................................................. 336 
ResetDC ...................................................... 337 
ResizePalette .............................................. 214 

SetWindowRgn ............................................ 556 
SetWinMetaFileBits ..................................... 419 
SetWorldTransform ...................................... 282 
SiZE ............................................................. 150 
Stretch Bit ..................................................... 109 
StretchDIBits ................................................ 111 
StrokeAndFiliPath ........................................ 598 
Stroke Path ................................................... 599 
SubtractRect ................................................ 626 

RestoreDC ................................................... 338 
RGB ............................................................. 230 T 
RGBQUAD .................................................. 148 
RGBTRIPLE ................................................ 149 TransparentBlt ............................................. 114 

RoundRect. .................................................. 365 TRIVERTEX ................................................. 151 

s u 
SaveDC ....................................................... 339 UnionRect .................................................... 628 

Scale ViewportExtEx .................................... 269 UnrealizeObject ........................................... 221 



Appendix B Index B: Volume 3, Elements Listed Alphabetically 721 

UpdateColors .............................................. 222 WM_DISPLA YCHANGE .............................. 562 
UpdateWindow ............................................ 557 WM_NCPAINT ............................................. 563 

WM_PAINT .................................................. 564 

v WM_PALETTECHANGED .......................... 231 
WM_PALETTEISCHANGING ...................... 232 

ValidateRect ................................................ 558 
ValidateRgn ................................................. 559 
VIDEOPARAMETERS ................................ 345 

WM_PRINT .................................................. 566 
WM_PRINTCLIENT ..................................... 567 
WM_QUERYNEWPALETTE ....................... 233 
WM_SETREDRAW ..................................... 568 

w WM_SYNCPAINT ........................................ 569 
WM_SYSCOLORCHANGE ......................... 234 

Widen Path ................................................... 600 
WindowFromDC .......................................... 560 x 
WM_DEVMODECHANGE .......................... 350 

XFORM ........................................................ 284 





723 

APPENDIX 8 

Index B: Volume 4, Elements 
Listed Alphabetically 

A CreateStatusWindow ................................... 562 
CreateUpDownControl ................................. 735 

ACM_OPEN ................................................ 127 
ACM_PLA Y ................................................. 128 
ACM_STOP ................................................. 129 D 
ACN_START ............................................... 136 
ACN_STOP ................................................. 136 
AddPropSheetPageProc ............................. 435 
Animate_Close ............................................ 130 
Animate_Create .......................................... 130 
Animate_Open ............................................ 131 
Animate_OpenEx ........................................ 132 
Animate_Play .............................................. 133 
Animate_Seek ............................................. 134 
Animate_Stop .............................................. 135 

DateTime_GetMonthCal .............................. 205 
DateTime_GetMonthCalColor ..................... 205 
DateTime_GetMonthCaIFont ....................... 207 
DateTime_GetRange ................................... 207 
DateTime_GetSystemtime ........................... 208 
DateTime_SetFormat .................................. 209 
DateTime_SetMonthCalColor ...................... 21 0 
DateTime_SetMonthCalFont ....................... 211 
DateTime_SetRange ................................... 211 
DateTime_SetSystemtime ........................... 212 
DestroyPropertySheetPage ......................... 436 

c DL_BEGINDRAG ......................................... 228 
DL_CANCELDRAG ..................................... 229 

CBEM_DELETEITEM ................................. 145 DL_DRAGGING ........................................... 230 
CBEM_GETCOMBOCONTROL ................. 146 DL_DROPPED ............................................. 230 
CBEM_GETEDITCONTROL. ...................... 146 DRAGLISTINFO .......................................... 231 
CBEM_GETEXTENDEDSTYLE ................. 147 Drawlnsert .................................................... 226 
CBEM_GETIMAGELIST ............................. 147 DrawStatusText ........................................... 563 
CBEM_GETITEM ........................................ 148 DTM_GETMCCOLOR ................................. 197 
CBEM_GETUNICODEFORMAT ................. 149 DTM_GETMCFONT .................................... 198 
CBEM_HASEDITCHANGED ...................... 149 DTM_GETMONTHCAL ............................... 198 
CBEM_INSERTITEM .................................. 150 DTM_GETRANGE ....................................... 199 
CBEM_SETEXTENDEDSTYLE .................. 151 DTM_GETSYSTEMTIME ............................ 200 
CBEM_SETIMAGELlST .............................. 151 DTM_SETFORMAT ..................................... 200 
CBEM_SETITEM ........................................ 152 DTM_SETMCCOLOR .................................. 201 
CBEM_SETUNICODEFORMAT ................. 153 DTM_SETMCFONT ..................................... 202 
CBEN_BEGINEDIT ..................................... 154 DTM_SETRANGE ....................................... 203 
CBEN_DELETEITEM .................................. 154 DTM_SETSYSTEMTIME ............................. 204 
CBEN_DRAGBEGIN ................................... 155 DTN_CLOSEUP .......................................... 213 
CBEN_ENDEDIT ......................................... 155 DTN_DATETIMECHANGE .......................... 214 
CBEN_GETDISPINFO ................................ 156 DTN_DROPDOWN ...................................... 215 
CBEN_INSERTITEM ................................... 157 DTN_FORMAT ............................................ 216 
CCM_GETUNICODEFORMAT ..................... 86 DTN_FORMATQUERY ............................... 216 
CCM_GETVERSION ..................................... 87 DTN_USERSTRING .................................... 217 
CCM_SETUNICODEFORMAT ..................... 88 DTN_WMKEYDOWN .................................. 218 
CCM_SETVERSION ..................................... 89 
COLORSCHEME ........................................ 104 
COMBOBOXEXITEM .................................. 158 E 
CreatePropertySheetPage .......................... 435 ExtensionPropSheetPageProc .................... 437 



724 Volume 4 Microsoft Windows Common Controls 

F HDN_FILTERBTNCLlCK ............................. 294 
HDN_FIL TERCHANGE ............................... 295 

FIRST _IPADDRESS ................................... 325 HDN_GETDISPINFO ................................... 295 
FlatSB_EnableScroliBar .............................. 236 HDN_ITEMCHANGED ................................ 296 
FlatSB_GetScrolllnfo ................................... 237 HDN_ITEMCHANGING ............................... 297 
FlatSB_GetScroIiPos ................................... 238 HDN_ITEMCLlCK ........................................ 297 
FlatSB_GetScroliProp ................................. 239 HDN_ITEMDBLCLlCK ................................. 298 
FlatSB_GetScroliRange .............................. 241 HDN_ TRACK ............................................... 298 
FlatSB_SetScrollinfo ................................... 242 HDTEXTFILTER Structure .......................... 306 
FlatSB_SetScroliPos ................................... 243 HeadecClearFilter ...................................... 274 
FlatSB_SetScroIiProp .................................. 244 Header_CreateDraglmage .......................... 275 
FlatSB_SetScroIiRange ............................... 247 Header _Delete Item ...................................... 275 
FlatSB_ShowScroliBar ................................ 248 Header _EditFilter ......................................... 276 
FORWARD_WM_NOTIFY ............................ 92 Header _ GetBitmapMargin ........................... 277 
FOURTH_IPADDRESS ............................... 326 Header _GetlmageList. ................................. 278 

Header_Getltem .......................................... 278 

G Headec GetitemCount. ................................ 279 
Header _ GetltemRect ................................... 280 

GetEffectiveClientRect .................................. 81 Header_GetOrderArray ............................... 281 

GetMUILanguage .......................................... 82 Header_ GetUnicodeFormat.. ....................... 282 
HeadeUnsertltem ....................................... 282 

H 
Header_Layout ............................................ 283 
HeadecOrderTolndex ................................. 284 

HANDLE_WM_NOTIFY ................................ 93 
HDHITIESTINFO ........................................ 301 
HDITEM ....................................................... 303 
HDLA YOUT ................................................. 306 
HDM_CLEARFILTER .................................. 258 
HDM_CREATEDRAGIMAGE ..................... 259 
HDM_DELETEITEM .................................... 259 
HDM_EDITFIL TER ...................................... 260 
HDM_GETBITMAPMARGIN ....................... 261 
HDM_GETIMAGELlST ................................ 261 

Header_SetBitmapMargin ........................... 285 
Header_SetFilterChangeTimeout ................ 286 
Header _SetHotDivider ................................. 286 
Header_SetimageList .................................. 287 
Header _Setltem ........................................... 288 
Header _SetOrderArray ................................ 289 
Header_SetUnicodeFormat ......................... 290 
HKM_GETHOTKEY ..................................... 315 
HKM_SETHOTKEY ..................................... 316 
HKM_SETRULES ........................................ 317 

HDM_GETITEM .......................................... 262 
HDM_GETITEMCOUNT ............................. 262 
HDM_GETITEMRECT ................................ 263 
HDM_GETORDERARRAY ......................... 264 
HDM_GETUNICODEFORMAT ................... 265 
HDM_HITIEST ........................................... 265 
HDM_INSERTITEM .................................... 266 
HDM_LAYOUT ............................................ 266 
HDM_ORDERTOINDEX ............................. 267 
HDM_SETBITMAPMARGIN ....................... 268 
HDM_SETFIL TERCHANGETIMEOUT ....... 268 
HDM_SETHOTDIVIDER ............................. 269 
HDM_SETIMAGELIST ................................ 270 
HDM_SETITEM ........................................... 271 
HDM_SETORDERARRAY .......................... 271 
HDM_SETUNICODEFORMAT ................... 272 

IN DEXTOSTATEIMAG EMASK ..................... 94 
InitCommonControls ...................................... 83 
InitCommonControlsEx .................................. 83 
INITCOMMONCONTROLSEX .................... 104 
InitializeFlatSB ............................................. 235 
InitMUILanguage ........................................... 84 
IPM_CLEARADDRESS ............................... 320 
IPM_GETADDRESS .................................... 321 
IPM_ISBLANK ............................................. 322 
IPM_SETADDRESS .................................... 322 
IPM_SETFOCUS ......................................... 323 
IPM_SETRANGE ......................................... 323 
IPN_FIELDCHANGED ................................. 324 

HDN_BEGINDRAG ..................................... 291 
HDN_BEGINTRACK ................................... 292 
HDN_DIVIDERDBLCLICK .......................... 292 L 
HDN_ENDDRAG ......................................... 293 LBltemFromPt .............................................. 227 
HDN_ENDTRACK ....................................... 293 



APPENDIX B Index B: Volume 4, Elements Listed Alphabetically 725 

M MonthCal SetUnicodeFormat ..................... 378 
MONTHDAYSTATE ..................................... 385 

MakeDragList .............................................. 228 
MAKEIPADDRESS ..................................... 326 
MAKEIPRANGE .......................................... 327 N 
MCHITTESTINFO ....................................... 382 
MCM GETCOLOR ...................................... 339 
MCM - GETCURSEL. ................................... 340 
MCM - GETFIRSTDAYOFWEEK ................. 341 
MCM - GETMAXSELCOUNT ....................... 342 
MCM - GETMAXTODAYWIDTH .................. 342 
MCM - GETMINREORECT .......................... 343 
MCM - GETMONTHDELTA .......................... 344 
MCM - GETMONTHRANGE ........................ 345 
MCM - GETRANGE ...................................... 346 
MCM - GETSELRANGE ............................... 347 
MCM - GETTODAY ...................................... 347 
MCM - GETUNICODEFORMAT .................. 348 
MCM - HITTEST ........................................... 349 
MCM-SETCOLOR ...................................... 351 
MCM - SETCURSEL .................................... 352 
MCM - SETDAYSTATE ................................ 353 
MCM - SETFIRSTDAYOFWEEK ................. 354 
MCM - SETMAXSELCOUNT ....................... 354 
MCM - SETMONTHDELTA .......................... 355 
MCM - SETRANGE ...................................... 356 
MCM - SETSELRANGE ............................... 357 
MCM - SETTODAY ...................................... 358 
MCM - SETUNICODEFORMAT ................... 358 
MCN -GETDAYSTATE ................................ 379 
MCN-SELCHANGE .................................... 380 
MCN - SELECT ............................................ 380 
Menu-Help .................................................... 564 
MonthCal GetColor ..................................... 359 
MonthCal-GetCurSel .................................. 360 
MonthCal=GetFirstDayOfWeek ................... 361 
MonthCaLGetMaxSelCount ....................... 362 
MonthCaLGetMaxTodayWidth ................... 363 

NM CHAR ..................................................... 95 
NM-CLiCK ..................................................... 95 
NM=CLlCK (status bar) ............................... 578 
NM_CLlCK (tab) .......................................... 639 
NM CUSTOMDRAW ................................... 117 
NM=CUSTOMDRAW (header) .................... 299 
NM_CUSTOMDRAW (rebar) ....................... 535 
NM_CUSTOMDRAW (Tooltip) .................... 687 
NM_CUSTOMDRAW (trackbar) .................. 728 
NM DBLCLK ................................................. 96 
NM=DBLCLK (status bar) ............................ 579 
NM HOVER ................................................... 96 
NM - KEYDOWN ............................................. 97 
NM - KILLFOCUS ........................................... 98 
NM=KILLFOCUS (date time) ....................... 219 
NM NCHITTEST ........................................... 98 
NM=NCHITTEST (rebar) ............................. 536 
NM OUTOFMEMORY .................................. 99 
NM - RCLICK .................................................. 99 
NM=RCLICK (header) ................................. 300 
NM_RCLICK (status bar) ............................. 579 
NM_RCLICK (tab) ........................................ 639 
NM RDBLCLK ............................................. 100 
NM=RDBLCLK (status bar) ......................... 580 
NM RELEASEDCAPTURE ......................... 101 
NM=RELEASEDCAPTURE (header) .......... 301 
NM_RELEASEDCAPTURE (monthcal) ....... 381 
NM_RELEASEDCAPTURE (pager) ............ 408 
NM_RELEASEDCAPTURE (rebar) ............. 537 
NM_RELEASEDCAPTURE (tab) ................ 640 
NM_RELEASEDCAPTURE (trackbar) ........ 729 
NM_RELEASEDCAPTURE (up-down) ....... 746 
NM RETURN .............................................. 101 

MonthCaLGetMinReqRect ......................... 363 NM - SETCURSOR ....................................... 102 
MonthCal GetMonthDelta ........................... 364 
MonthCaCGetMonthRange ........................ 365 

NM=SETCURSOR (ComboBoxEx) ............. 157 
NM SETFOCUS .......................................... 102 

MonthCaLGetRange ................................... 366 
MonthCaLGetSelRange ............................. 367 

NM=SETFOCUS (date time) ....................... 219 
NM TOOL TIPSCREATED .......................... 103 

MonthCaLGetToday ................................... 368 NMCBEDRAGBEGIN .................................. 161 
MonthCal GetUnicodeFormat .................... 368 
MonthCal-HitTest. ....................................... 369 
MonthCal-SetColor ..................................... 370 
MonthCal-SetCurSel... ................................ 371 
MonthCal=SetDayState ............................... 372 

NMCBEENDEDIT ........................................ 160 
NMCHAR ..................................................... 105 
NMCOMBOBOXEX ..................................... 161 
NMCUSTOMDRAW ..................................... 119 
NMDATETIMECHANGE .............................. 220 

MonthCaLSetFirstDayOfWeek ................... 373 NMDATETIMEFORMAT .............................. 221 
MonthCal SetMaxSelCount ........................ 374 
MonthCal-SetMonthDelta ........................... 375 
MonthCal=SetRange ................................... 376 

NMDATETIMEFORMATOUERY ................. 222 
NMDATETIMESTRING ............................... 223 
NMDATETIMEWMKEYDOWN .................... 224 

MonthCal_SetSeIRange .............................. 377 NMDAYSTATE ............................................ 384 
MonthCaLSetToday .................................... 377 NMHDDISPINFO ......................................... 307 



726 Volume 4 Microsoft Windows Common Controls 

NMHDFIL TERBTNCLICK Structure ............ 308 PGM_SETBORDER .................................... 396 
NMHDR ....................................................... 106 PGM_SETBUTIONSIZE ............................. 396 
NMHEADER ................................................ 309 PGM_SETCHILD ......................................... 397 
NMIPADDRESS .......................................... 329 PGM_SETPOS ............................................ 398 
NMKEY ........................................................ 107 PGN_CALCSIZE ......................................... 409 
NMMOUSE .................................................. 107 PGN_SCROLL. ............................................ 409 
NMOBJECTNOTIFY ................................... 108 PropertySheet .............................................. 438 
NMPGCALCSIZE ........................................ 410 PropSheeCAddPage ................................... 461 
NMPGSCROLL ........................................... 411 PropSheeCApply ......................................... 461 
NMRBAUTOSIZE ........................................ 544 PropSheeCCancelToClose ......................... 462 
NMREBAR ................................................... 545 PropSheeCChanged ................................... 463 
NMREBARCHEVRON ................................ 546 PropSheeC GetCurrentPageHwnd .............. 464 
NMREBARCHILDSIZE ................................ 547 PropSheeCGetTabControl .......................... 465 
NMSELCHANGE ......................................... 384 PropSheeCHwndTolndex ............................ 465 
NMTCKEYDOWN ....................................... 644 PropSheeUdTolndex .................................. 466 
NMTOOLTIPSCREATED ............................ 109 PropSheeUndexToHwnd ............................ 467 
NMTTCUSTOMDRAW ................................ 691 PropSheeUndexTold .................................. 467 
NMTTDISPINFO ......................................... 691 PropSheeUndexToPage ............................ 468 
NMUPDOWN .............................................. 747 PropSheeUnsertPage ................................ 469 

PropSheeUsDialogMessage ...................... 470 

p PropSheeCPageTolndex ............................ 471 
PropSheeCPressButton .............................. 472 

Pager_ForwardMouse ................................. 399 
Pager_GetBkColor ...................................... 399 
PagecGetBorder ........................................ 400 
Pager_GetButtonSize .................................. 401 
Pager_GetButtonState ................................ 401 
PagecGetDropTarget ................................. 402 
Pager_GetPos ............................................. 403 
PagecRecalcSize ....................................... 403 
Pager_SetBkColor ....................................... 404 
Pager_SetBorder ......................................... 405 
PagecSetButtonSize .................................. 406 
Pager_SetChiid ........................................... 406 
Pager_SetPos ............................................. 407 
PBM_DEL TAPOS ....................................... 417 
PBM_GETPOS ............................................ 417 
PBM_GETRANGE ...................................... 418 
PBM_SETBARCOLOR ............................... 419 
PBM_SETBKCOLOR .................................. 419 
PBM_SETPOS ............................................ 420 
PBM_SETRANGE ....................................... 421 
PBM_SETRANGE32 ................................... 421 
PBM_SETSTEP .......................................... 422 
PBM_STEPIT .............................................. 423 
PBRANGE ................................................... 423 

PropSheeCOuerySiblings ........................... 473 
PropSheeCRebootSystem .......................... 474 
PropSheeCRemovePage ............................ 474 
PropSheeCRestartWindows ........................ 475 
PropSheeCSetCurSel ................................. 476 
PropSheeCSetCurSeIByID .......................... 477 
PropSheeCSetFinishText ............................ 477 
PropSheeCSetHeaderSubTitle ................... 478 
PropSheeCSetHeaderTitle .......................... 479 
PropSheeCSetTitle ...................................... 480 
PropSheeC SetWizButtons .......................... 481 
PropSheeCUnChanged ............................... 482 
PROPSHEETHEADER ................................ 493 
PROPSHEETPAGE ..................................... 499 
PropSheetPageProc .................................... 439 
PropSheetProc ............................................ 440 
PSHNOTIFY ................................................ 503 
PSM_ADDPAGE ......................................... 441 
PSM_APPL Y ................................................ 442 
PSM_CANCEL TOCLOSE ........................... 442 
PSM_CHANGED ......................................... 443 
PSM_GETCURRENTPAGEHWND ............. 444 
PSM_GETIABCONTROL ........................... 445 
PSM_HWNDTOINDEX ................................ 445 

PGM_FORWARDMOUSE .......................... 390 
PGM_GETBKCOLOR ................................. 391 
PGM_GETBORDER ................................... 391 
PGM_GETBUTTONSIZE ............................ 392 
PGM_GETBUTIONSTATE ........................ 392 
PGM_GETDROPTARGET .......................... 393 
PGM_GETPOS ........................................... 394 
PGM_RECALCSIZE. ................................... 395 
PGM_SETBKCOLOR. ................................. 395 

PSM_IDTOINDEX ....................................... 446 
PSM_INDEXTOHWND ................................ 446 
PSM_INDEXTOID ....................................... 447 
PSM_INDEXTOPAGE ................................. 447 
PSM_INSERTPAGE .................................... 448 
PSM_ISDIALOGMESSAGE ........................ 449 
PSM_PAGETOINDEX ................................. 450 
PSM_PRESSBUTTON ................................ 451 
PSM_OUERYSIBLlNGS .............................. 451 



APPENDIX B Index B: Volume 4, Elements Listed Alphabetically 727 

PSM_REBOOTSYSTEM ............................. 452 RB_SETCOLORSCHEME. .......................... 529 
PSM_REMOVEPAGE ................................. 453 RB_SETPALETTE ....................................... 529 
PSM_RESTARTWINDOWS ....................... 453 RB_SETPARENT ........................................ 530 
PSM_SETCURSEL ..................................... 454 RB_SETTEXTCOLOR ................................. 531 
PSM_SETCURSELID ................................. 455 RB_SETTOOLTIPS ..................................... 532 
PSM_SETFINISHTEXT ............................... 456 RB_SETUNICODEFORMAT ....................... 532 
PSM_SETHEADERSUBTITLE ................... 456 RB_SHOWBAND ......................................... 533 
PSM_SETHEADERTITLE ........................... 457 RB_SIZETORECT ....................................... 534 
PSM_SETTITLE .......................................... 458 RBHITTESTINFO ........................................ 548 
PSM_SETWIZBUTTONS ............................ 459 RBN_AUTOSIZE ......................................... 537 
PSM_UNCHANGED ................................... 460 RBN_BEGINDRAG ...................................... 538 
PSN_APPL Y ................................................ 483 RBN_CHEVRONPUSHED .......................... 539 
PSN_GETOBJECT ..................................... 484 RBN_CHILDSIZE ........................................ 539 
PSN_HELP .................................................. 484 RBN_DELETEDBAND ................................. 540 
PSN_KILLACTIVE ....................................... 485 RBN_DELETINGBAND ............................... 541 
PSN_OUERYCANCEL. ............................... 486 RBN_ENDDRAG ......................................... 541 
PSN_OUERYINITIALFOCUS ..................... 487 RBN_GETOBJECT ...................................... 542 
PSN_RESET ............................................... 488 RBN_HEIGHTCHANGE .............................. 543 
PSN_SET ACTIVE ....................................... 489 RBN_LA YOUTCHANGED ........................... 543 
PSN_ TRANSLATEACCELERATOR. .......... 489 REBARBANDINFO ...................................... 548 
PSN_WIZBACK ........................................... 490 REBARINFO ................................................ 552 
PSN_WIZFINISH ......................................... 491 
PSN_WIZNEXT ........................................... 492 S 
R SB_GETBORDERS ..................................... 565 

SB_GETICON .............................................. 566 
RB_BEGINDRAG ........................................ 510 SB_GETPARTS ........................................... 566 
RB_DELETEBAND ..................................... 511 SB_GETRECT ............................................. 567 
RB_DRAGMOVE ........................................ 511 SB_GETTEXT .............................................. 567 
RB_ENDDRAG ........................................... 512 SB_GETTEXTLENGTH ............................... 569 
RB_GETBANDBORDERS .......................... 512 SB_GETTIPTEXT ........................................ 570 
RB_GETBANDCOUNT ............................... 513 SB_GETUNICODEFORMAT ....................... 570 
RB_GETBANDINFO ................................... 514 SB_ISSIMPLE .............................................. 571 
RB_GETBARHEIGHT ................................. 515 SB_SETBKCOLOR ..................................... 572 
RB_GETBARINFO ...................................... 515 SB_SETICON .............................................. 572 
RB_GETBKCOLOR .................................... 516 SB_SETMINHEIGHT ................................... 573 
RB_GETCOLORSCHEME .......................... 516 SB_SETPARTS ........................................... 574 
RB_GETDROPTARGET ............................. 517 SB_SETTEXT .............................................. 574 
RB_GETPALETTE ...................................... 518 SB_SETTIPTEXT ........................................ 575 
RB_GETRECT ............................................ 518 SB_SETUNICODEFORMAT ....................... 576 
RB_GETROWCOUNT ................................ 519 SB_SIMPLE ................................................. 577 
RB_GETROWHEIGHT ................................ 519 SBN_SIMPLEMODECHANGE .................... 580 
RB_GETTEXTCOLOR ................................ 520 SECOND_IPADDRESS ............................... 328 
RB_GETTOOL TIPS .................................... 520 ShowHideMenuCtl ......................................... 85 
RB_GETUNICODEFORMAT ...................... 521 
RB_HITTEST .............................................. 522 
RB_IDTOINDEX .......................................... 522 T 
RB_INSERTBAND ...................................... 523 
RB_MAXIMIZEBAND .................................. 524 
RB_MINIMIZEBAND ................................... 524 
RB_MOVEBAND ......................................... 525 
RB_PUSHCHEVRON ................................. 526 
RB_SETBANDINFO .................................... 527 
RB_SETBARINFO ...................................... 527 
RB_SETBKCOLOR ..................................... 528 

TabCtrLAdjustRect ...................................... 619 
TabCtrLDeleteAliltems ................................ 620 
TabCtrLDeleteltem ...................................... 620 
TabCtrLDeselectAll ..................................... 621 
TabCtrL GetCurFocus .................................. 622 
TabCtrLGetCurSel ...................................... 622 
TabCtrL Get Extended Style .......................... 623 



728 Volume 4 Microsoft Windows Common Controls 

TabCtrLGetimageList ................................. 623 TCHITTESTINFO ........................................ 644 
TabCtrl_Getltem .......................................... 624 TCITEM ........................................................ 645 
TabCtrLGetltemCount ................................ 625 TCITEMHEADER ........................................ 647 
TabCtrl_GetltemRect .................................. 625 TCM_ADJUSTRECT ................................... 601 
TabCtrLGetRowCount ................................ 626 TCM_DELETEALLITEMS ............................ 601 
TabCtrLGetToolTips ................................... 627 TCM_DELETEITEM .................................... 602 
TabCtrLGetUnicodeFormat ........................ 627 TCM_DESELECT ALL. ................................. 602 
TabCtrLHighlightltem .................................. 628 TCM_GETCURFOCUS ............................... 603 
TabCtrLHitTest ........................................... 629 TCM_GETCURSEL ..................................... 604 
TabCtrUnsertltem ....................................... 629 TCM_GETEXTENDEDSTYLE .................... 604 
TabCtrLRemovelmage ............................... 630 TCM_GETIMAGELIST ................................ 605 
TabCtrLSetCurFocus .................................. 631 TCM_GETITEM ........................................... 605 
TabCtrl_SetCurSel ...................................... 632 TCM_ GETITEMCOUNT .............................. 606 
TabCtrLSetExtendedStyle .......................... 632 TCM_GETITEMRECT ................................. 606 
TabCtrLSetimageList.. ................................ 633 TCM_GETROWCOUNT .............................. 607 
TabCtrLSetitem .......................................... 634 TCM_GETTOOL TiPS .................................. 607 
TabCtrL Setltem Extra .................................. 634 TCM_GETUNICODEFORMAT .................... 608 
TabCtrLSetitemSize ................................... 635 TCM_HIGHLIGHTITEM ............................... 609 
TabCtrl_SetMinTabWidth ............................ 636 TCM_HITTEST ............................................ 609 
TabCtrLSetPadding .................................... 637 TCM_INSERTITEM ..................................... 610 
TabCtrLSetToolTips ................................... 637 TCM_REMOVEIMAGE ................................ 611 
TabCtrLSetUnicodeFormat ........................ 638 TCM_SETCURFOCUS ................................ 611 
TBM_CLEARSEL ........................................ 705 TCM_SETCURSEL ..................................... 612 
TBM_CLEARTICS ....................................... 706 TCM_SETEXTENDEDSTYLE ..................... 613 
TBM_GETBUDDY ....................................... 706 TCM_SETIMAGELIST ................................. 614 
TBM_GETCHANNELRECT ........................ 707 TCM_SETITEM ........................................... 614 
TBM_GETLINESIZE ................................... 708 TCM_SETITEMEXTRA ............................... 615 
TBM_GETNUMTICS ................................... 708 TCM_SETITEMSIZE ................................... 616 
TBM_GETPAGESIZE ................................. 709 TCM_SETMINTABWIDTH ........................... 616 
TBM_GETPOS ............................................ 710 TCM_SETPADDING .................................... 617 
TBM_GETPTICS ......................................... 710 TCM_SETTOOL TIPS .................................. 617 
TBM_GETRANGEMAX ............................... 711 TCM_SETUNICODEFORMAT .................... 618 
TBM_GETRANGEMIN ................................ 711 TCN_FOCUSCHANGE ............................... 640 
TBM_GETSELEND ..................................... 712 TCN_GETOBJECT ...................................... 641 
TBM_GETSELSTART ................................. 713 TCN_KEYDOWN ......................................... 642 
TBM_GETTHUMBLENGTH ........................ 713 TCN_SELCHANGE ..................................... 642 
TBM_GETTHUMBRECT ............................. 714 TCN_SELCHANGING ................................. 643 
TBM_GETTIC .............................................. 715 THIRD_IPADDRESS ................................... 329 
TBM_GETTICPOS ...................................... 715 TOOLlNFO ................................................... 693 
TBM_GETTOOLTIPS .................................. 716 TTHITTESTINFO ......................................... 695 
TBM_GETUNICODEFORMAT ................... 716 TTM_ACTIVATE .......................................... 666 

'TBM_SETBUDDY ....................................... 717 TTM_ADDTOOL .......................................... 666 
TBM_SETLINESIZE .................................... 718 TTM_ADJUSTRECT .................................... 667 
TBM_SETPAGESIZE .................................. 719 TTM_DEL TOOL. .......................................... 668 
TBM_SETPOS ............................................ 719 TTM_ENUMTOOLS ..................................... 669 
TBM_SETRANGE ....................................... 720 TTM_ GETBUBBLESIZE .............................. 669 
TBM_SETRANGEMAX ............................... 721 TTM_GETCURRENTTOOL ......................... 670 
TBM_SETRANGEMIN ................................ 722 TTM_GETDELAYTIME ................................ 671 
TBM_SETSEL ............................................. 722 TTM_GETMARGIN ...................................... 671 
TBM_SETSELEND ..................................... 723 TTM_GETMAXTIPWIDTH ........................... 672 
TBM_SETSELSTART ................................. 724 TTM_GETTEXT ........................................... 673 
TBM_SETTHUMBLENGTH ........................ 725 TTM_GETTIPBKCOLOR ............................. 674 
TBM_SETTIC .............................................. 725 TTM_GETTOOLCOUNT ............................. 674 
TBM_SETTIPSIDE ...................................... 726 TTM_GETTOOLlNFO .................................. 675 
TBM_SETTOOLTIPS .................................. 727 TTM_HITTEST ............................................ 675 



APPENDIX B Index B: Volume 4, Elements Listed Alphabetically 729 

TTM_NEWTOOLRECT ............................... 676 UDM_GETBUDDY ....................................... 738 
TTM_POP .................................................... 677 UDM_GETPOS ............................................ 738 
TTM_RELA YEVENT ................................... 677 UDM_GETRANGE ...................................... 739 
TTM_SETDELAYTIME ................................ 678 UDM_GETRANGE32 .................................. 740 
TTM_SETMARGIN ...................................... 679 UDM_GETUNICODEFORMAT ................... 740 
TTM_SETMAXTI PWI DTH ........................... 680 UDM_SETACCEL. ....................................... 741 
TTM_SETTI PBKCOLOR ............................. 681 UDM_SETBASE .......................................... 742 
TTM_SETTIPTEXTCOLOR ........................ 681 UDM_SETBUDDY ....................................... 742 
TTM_SETTITLE .......................................... 682 UDM_SETPOS ............................................ 743 
TTM_SETTOOLlNFO .................................. 683 UDM_SETRANGE ....................................... 743 
TTM_TRACKACTIVATE ............................. 683 UDM_SETRANGE32 ................................... 744 
TTM_ TRACKPOSITION .............................. 684 UDM_SETUNICODEFORMAT .................... 745 
TTM_UPDATE ............................................ 685 UDN_DEL T APOS ........................................ 746 
TTM_UPDATETIPTEXT .............................. 686 UninitializeFlatSB ......................................... 249 
TTM_WINDOWFROMPOINT ..................... 686 
TTN_GETDISPINFO ................................... 688 
TTN_POP .................................................... 689 w 
TTN_SHOW ................................................ 690 WM_NOTIFY ................................................. 90 

WM_NOTIFYFORMAT .................................. 91 

u 
UDACCEL ................................................... 748 
UDM_GETACCEL ....................................... 737 
UDM_GETBASE ......................................... 738 





731 

APPENDIX B 

Index B: Volume 5, Elements 
Listed Alphabetically 

A CPL_STOP .................................................. 736 
CPIApplet ..................................................... 409 

ABM_ACTIVATE ......................................... 721 
ABM_GETAUTOHIDEBAR ......................... 721 
ABM_GETSTATE ........................................ 722 D 
ABM_GETTASKBARPOS ........................... 723 DefScreenSaverProc .................................. .410 
ABM_NEW .................................................. 723 DIIGetVersion ............................................... 411 
ABM_QUERYPOS ...................................... 724 DLLGETVERSIONPROC ............................ 412 
ABM_REMOVE ........................................... 724 Dlilnstall ....................................................... 710 
ABM_SETAUTOHIDEBAR ......................... 725 DoEnvironmentSubst ................................... 413 
ABM_SETPOS ............................................ 726 
ABM_WINDOWPOSCHANGED ................. 726 
ABN_FULLSCREENAPP ............................ 727 
ABN_POSCHANGED ................................. 728 
ABN_STATECHANGE ................................ 728 

DragAcceptFiles ........................................... 414 
DragFinish .................................................... 415 
DragQueryFile .............................................. 416 
DragQueryPoint ........................................... 417 

ABN_WINDOWARRANGE ......................... 729 
AssocCreate ................................................ 670 F 
ASSOCDATA .............................................. 561 
ASSOCF ...................................................... 561 
ASSOCKEY ................................................. 563 
AssocQueryKey ........................................... 671 
AssocQueryString ....................................... 672 
AssocQueryStringByKey ............................. 674 
ASSOCSTR ................................................. 563 

FindEnvironmentString ................................ 418 
FindExecutable ............................................ 419 
FM_GETDRIVEINFO ................................... 736 
FM_GETFILESEL ........................................ 737 
FM_GETFILESELLFN ................................. 738 
FM_GETFOCUS .......................................... 739 
FM_GETSELCOUNT ................................... 739 
FM_GETSELCOUNTLFN ............................ 740 

B FM_REFRESH_WINDOWS ........................ 740 

BrowseCalibackProc ................................... 481 
FM_RELOAD _EXTENSiONS ...................... 741 
FMEVENT _HELPMENUITEM ..................... 742 
FMEVENT _HELPSTRING ........................... 742 

c FMEVENT_INITMENU ................................ 743 
FMEVENT _LOAD ........................................ 744 

ChrCmpl ...................................................... 575 FMEVENT_SELCHANGE ........................... 745 
ColorAdjustLuma ......................................... 707 FMEVENT _ TOOLBARLOAD ....................... 745 
ColorHLSToRGB ......................................... 708 FMEVENT _UNLOAD ................................... 746 
ColorRGBToHLS ......................................... 708 FMEVENT _USER_REFRESH .................... 746 
CPL_DBLCLK ............................................. 730 FMExtensionProc ........................................ 483 
CPL_EXIT .................................................... 730 FOLDERFLAGS ........................................... 564 
CPL_GETCOUNT ....................................... 731 FOLDERVIEWMODE .................................. 566 
CPL_INIT ..................................................... 732 
CPUNQUIRE ............................................ 732 
CPL_NEWINQUIRE .................................... 733 G 
CPL_STARTWPARMS ............................... 735 GetMenuContextHelpld ............................... 420 

GetWindowContextHelpld ........................... 420 



732 Volume 5 Microsoft Windows Shell 

H IContextMenu 
GetCommandString ......................... 183 

HashData ..................................................... 711 InvokeCommand .............................. 185 
QueryContextMenu .......................... 186 

IContextMenu2 
HandleMenuMsg .............................. 189 

IACList IContextMenu3 

Expand ............................................ 141 
lAC List2 

HandleMenuMsg2 ............................ 191 
ICopyHook 

GetOptions ...................................... 143 
SetOptions ....................................... 143 

IActiveDesktop 
AddDesktopltem Method ................. 145 
AddDesktopltemWithUI Method ...... 146 
AddUrl Method ................................ 148 

CopyCaliback ................................... 193 
ICurrentWorkingDirectory 

GetDirectory ..................................... 195 
SetDirectory ..................................... 196 

IDeskBand 
GetBandlnfo ..................................... 197 

ApplyChanges ................................. 149 
GenerateDesktopltemHtml .............. 150 
GetDesktopltem .............................. 150 
GetDesktopltemByID ....................... 151 
GetDesktopltemBySource ............... 152 
GetPattern ....................................... 153 

IDockingWindow 
CloseDW .......................................... 199 
ResizeBorderDW ............................. 199 
ShowDW .......................................... 201 

IDockingWindowFrame 
AddToolbar ...................................... 202 

GetDesktopltemCount ..................... 153 
GetDesktopltemOptions .................. 154 
GetWalipaper .................................. 154 
GetWalipaperOptions ...................... 155 
ModifyDesktopltem .......................... 156 
RemoveDesktopltem ....................... 157 
SetDesktopltemOptions .................. 157 
SetPattern ........................................ 158 

FindToolbar ...................................... 203 
RemoveToolbar ............................... 204 

IDockingWindowSite 
GetBorderDW .................................. 214 
RequestBorderSpaceDW ................ 215 
SetBorderSpaceDW ........................ 215 

IDragSourceHelper 
InitializeFromBitmap ........................ 206 

SetWalipaper ................................... 159 
SetWalipaperOptions ...................... 159 

IASyncOperation 
EndOperation .................................. 161 
GetAsyncMode ................................ 162 
InOperation ...................................... 163 
SetAsyncMode ................................ 163 
StartOperation ................................. 164 

IAutoComplete 
Enable ............................................. 167 

InitializeFromWindow ....................... 207 
IDropTargetHelper 

DragEnter ......................................... 209 
DragLeave ....................................... 21 0 
DragOver ......................................... 210 
Drop ................................................. 211 
Show ................................................ 212 

I EmptyVolumeCache 
Deactivate ........................................ 217 
GetSpaceUsed ................................. 218 

Init .................................................... 168 Initialize ............................................ 219 

IAutoComplete2 
GetOptions ...................................... 170 
SetOptions ....................................... 171 

IColumnProvider 

Purge ............................................... 221 
ShowProperties ................................ 222 

I EmptyVolumeCache2 
Initialize Ex ........................................ 224 

GetColumnlnfo ................................ 174 IEmptyVolumeCacheCallback 

GetltemData .................................... 175 PurgeProgress ................................. 227 

Initialize ............................................ 176 Scan Progress .................................. 228 

ICommDlgBrowser 
IncludeObject .................................. 177 
OnDefaultCommand ........................ 178 

I EnumExtraSearch 
Clone ................................................ 229 
Next. ................................................. 230 

OnStateChange ............................... 178 
ICommDIgBrowser2 

GetDefaultMenuText ....................... 180 

Reset ................................................ 231 
Skip .................................................. 231 

IEnumlDList 

GetViewFlags .................................. 181 
Notify ............................................... 182 

Clone ................................................ 233 
Next .................................................. 233 



APPENDIX B Index B: Volume 5, Elements Listed Alphabetically 733 

Reset ............................................... 235 
Skip .................................................. 235 

IExtracticon 
Extract ............................................. 237 
GeticonLocation .............................. 238 

IExtractlmage 
Extract ............................................. 241 
GetLocation ..................................... 241 

IExtractimage2 
GetDateStamp ................................. 244 

IFileViewer 
PrintTo ............................................. 245 
Show ................................................ 246 
Showlnitialize ................................... 247 

IFileViewerSite 
GetPinnedWindow ........................... 248 
SetPinnedWindow ........................... 249 

IInputObject 
HasFocusIO ..................................... 250 
TranslateAcceleratorlO ................... 251 
UIActivatelO .................................... 251 

IInputObjectSite 
OnFocusChangeIS .......................... 253 

InetlsOffline ................................................. 421 
INewShortcutHook 

GetExtension ................................... 254 
GetFolder ......................................... 255 
GetName ......................................... 256 
GetReferent ..................................... 256 
SetFolder ......................................... 257 
SetReferent ..................................... 258 

INotifyReplica 
YouAreAReplica .............................. 259 

IntiStrEqN .................................................... 576 
IntlStrEqNI ................................................... 577 
IntlStrEqWorker ........................................... 578 
IObjMgr 

Append ............................................ 260 
Remove ........................................... 261 

IPersistFileSystemFolder 
GetFolderTargetlnfo ........................ 265 
InitializeEx ....................................... 266 

I PersistFolder 
Initialize ............................................ 262 

I PersistFolder2 
GetCurFolder ................................... 263 

IProgressDialog 
HasUserCancelied .......................... 269 
SetAnimation ................................... 269 
SetCancelMsg ................................. 270 
SetLine ............................................ 271 
SetProgress ..................................... 272 
SetProgress64 ................................. 273 
SetTitle ............................................ 274 
StartProgressDialog ........................ 274 

Stop Progress Dialog ......................... 276 
Timer ................................................ 276 

IQueryAssociations 
GetData ............................................ 279 
GetEnum .......................................... 280 
GetKey ............................................. 280 
GetString .......................................... 281 
Init .................................................... 282 

IQuerylnfo 
GetlnfoFlags .................................... 284 
GetinfoTip ........................................ 285 

I ReconcilableObject 
GetProgressFeedbackMax 

Estimate ........................................ 286 
Reconcile ......................................... 287 

I Reconcilelnitiator 
SetAbortCaliback ............................. 292 
SetProgressFeedback ..................... 293 

IRemoteComputer 
Initialize ............................................ 294 

I ResolveSheliLink 
ResolveSheliLink ............................. 296 

I RunnableTask 
IsRunning ......................................... 298 
Kill .................................................... 299 
Resume ............................................ 299 
Run ................................................... 300 
Suspend ........................................... 300 

ISheliBrowser 
BrowseObject. .................................. 302 
EnableModelessSB ......................... 304 
GetControlWindow ........................... 304 
GetViewStateStream ....................... 306 
InsertMenusSB ................................ 307 
OnViewWindowActive ...................... 308 
QueryActiveSheIiView ..................... 309 
RemoveMenusSB ............................ 31 0 
SendControlMsg .............................. 311 
SetMenuSB ...................................... 312 
SetStatusTextSB .............................. 313 
SetToolbarltems ............................... 314 
TranslateAcceleratorSB ................... 315 

ISheliChangeNotify 
OnChange ........................................ 316 

ISheliDetails 
ColumnClick ..................................... 319 
GetDetailsOf .................................... 320 

IShellExecuteHook 
Execute ............................................ 323 

IShellExtlnit 
Initialize ............................................ 324 

ISheliFolder 
BindToObject ................................... 327 
BindToStorage ................................. 328 
CompareIDs ..................................... 329 



734 Volume 5 Microsoft Windows Shell 

CreateViewObject ........................... 331 DestroyViewWindow ........................ 387 
EnumObjects ................................... 332 EnableModeless .............................. 387 
GetAttributesOf ................................ 333 EnableModelessSV ......................... 388 
GetDisplayNameOf ......................... 335 GetCurrentlnfo ................................. 388 
GetUIObjectOf ................................. 337 GetltemObject .................................. 389 
ParseDisplayName .......................... 338 Refresh ............................................ 390 
SetNameOf ...................................... 342 Save ViewState ................................. 391 

ISheliFolder2 Selectltem ........................................ 392 
EnumSearches ................................ 344 TranslateAccelerator ........................ 393 
GetDefaultColumn ........................... 345 U IActivate ......................................... 394 
GetDefaultColumnState .................. 346 ISheliView2 
GetDefaultSearchGUID ................... 347 CreateViewWindow2 ....................... 396 
GetDetaiisEx .................................... 347 GetView ........................................... 397 
GetDetailsOf .................................... 348 HandleRename ................................ 397 
MapNameToSCID ........................... 349 SelectAndPosition Item ..................... 398 

IShellicon ITaskbarList 
GeticonOf ........................................ 351 Activate Tab ...................................... 400 

IShelilconOverlay AddTab ............................................ 400 
GetOverlaylconlndex ....................... 353 DeleteTab ........................................ 401 
GetOverlaylndex ............................. 354 Hrlnit ................................................ 402 

IShelllconOverlayldentifier SetActiveAIt. ..................................... 402 
GetOverlaylnfo ., .............................. 356 IUniformResourceLocator 
GetPriority ........................................ 357 GetURL ............................................ 403 
IsMemberOf ..................................... 358 InvokeCommand .............................. 405 

ISheliLink SetURL ............................................ 406 
GetArguments ................................. 360 IURL_SETURL_FLAGS ............................... 566 
GetDescription ................................. 361 IURL_SETURUNVOKECOMMAND_ 
GetHotkey ........................................ 361 FLAGS ...................................................... 567 
GeticonLocation .............................. 362 IURLSearchHook 
GetiDList. ......................................... 363 Translate .......................................... 407 
GetPath ........................................... 364 
GetShowCmd .................................. 365 
GetWorkingDirectory ....................... 366 M 
Resolve ............................................ 366 MAKEDLLVERULL ...................................... 571 
SetArguments .................................. 368 
SetDescription ................................. 369 
SetHotkey ........................................ 370 

MIMEAssociationDialog ............................... 421 
MLLoadLibrary ............................................. 579 

SetlconLocation ............................... 371 
SetiDList .......................................... 371 p 
SetPath ............................................ 372 
SetRelativePath ............................... 373 
SetShowCmd .................................. 374 
SetWorkingDirectory ....................... 375 

ISheliLinkDataList 
AddDataBlock .................................. 376 
CopyDataBlock ................................ 377 
GetFlags .......................................... 378 
RemoveDataBlock ........................... 379 
Set Flags .......................................... 379 

ISheliPropSheetExt 
AddPages ........................................ 381 
ReplacePage ................................... 382 

ISheliView 
AddPropertySheetPages ................. 384 
CreateViewWindow ......................... 385 

PathAddBackslash ....................................... 61 0 
PathAddExtension ....................................... 61 0 
PathAppend ................................................. 611 
PathBuildRoot .............................................. 612 
PathCanonicalize ......................................... 613 
Path Combine ............................................... 614 
PathCommonPrefix ...................................... 615 
PathCompactPath ........................................ 615 
PathCompactPathEx ................................... 616 
PathCreateFromUrl ...................................... 617 
PathFileExists .............................................. 618 
PathFindExtension ....................................... 619 
PathFind FileName ....................................... 620 
PathFindNextComponent ............................ 620 
PathFindOnPath .......................................... 621 



APPENDIX B Index B: Volume 5, Elements Listed Alphabetically 735 

PathFindSuffixArray .................................... 622 SHAppBarMessage ..................................... 429 
PathGetArgs ................................................ 623 SHAutoComplete ......................................... 712 
PathGetCharType ....................................... 623 SHBindToParent .......................................... 430 
PathGetDriveNumber .................................. 624 SHBrowseForFolder .................................... 431 
PathlsContentType ...................................... 625 SHChangeNotify .......................................... 432 
PathlsDirectory ............................................ 625 SHCONTF .................................................... 568 
PathlsDirectoryEmpty .................................. 626 SHCopyKey ................................................. 675 
PathlsFileSpec ............................................ 627 SHCreateDirectoryEx .................................. 437 
PathlsHTMLFile ........................................... 627 SHCreateProcessAsUser ............................ 438 
PathlsLFNFileSpec ..................................... 628 SHCreateSheIlPalette .................................. 709 
PathlsNetworkPath ...................................... 629 SHCreateStreamOnFile ............................... 714 
PathlsPrefix ................................................. 630 SHCreateThread .......................................... 714 
PathlsRelative ............................................. 630 SHDeleteEmptyKey ..................................... 676 
PathlsRoot ................................................... 631 SHDeleteKey ............................................... 677 
PathlsSameRoot ......................................... 632 SHDeleteValue ............................................ 678 
PathlsSystemFolder .................................... 632 ShelLNotifylcon ........................................... 439 
PathlsUNC ................................................... 633 SheIlAbout.. .................................................. 441 
PathlsUNCServer ........................................ 634 Shell Execute ................................................ 442 
PathlsUNCServerShare .............................. 634 SheIlExecuteEx ............................................ 445 
PathisURL ................................................... 635 SHEmptyRecycleBin .................................... 447 
Path Make Pretty ........................................... 636 SHEnumKeyEx ............................................ 679 
PathMakeSystemFolder .............................. 636 SHEnumValue ............................................. 680 
PathMatchSpec ........................................... 637 SHFileOperation .......................................... 448 
PathParselconLocation ............................... 638 SHFreeNameMappings ............................... 449 
PathOuoteSpaces ....................................... 639 SHGetDataFromlDList ................................. 450 
PathRelativePathTo .................................... 639 SHGetDesktopFolder ................................... 451 
PathRemoveArgs ........................................ 641 SHGetDiskFreeSpace ................................. 452 
PathRemoveBackslash ............................... 641 SHGetFilelnfo .............................................. 453 
PathRemoveBlanks ..................................... 642 SHGetFolderLocation .................................. 457 
PathRemoveExtension ................................ 642 SHGetFolderPath ........................................ 458 
PathRemoveFileSpec .................................. 643 SHGeticonOverlaylndex .............................. 461 
PathRenameExtension ................................ 644 SHGetinstanceExplorer ............................... 462 
PathSearchAndOualify ................................ 644 SHGetMalloc ................................................ 463 
PathSetDlgltemPath .................................... 645 SHGetNewLinklnfo ...................................... 464 
PathS kip Root .............................................. 646 SHGetPathFromlDList ................................. 466 
PathStripPath .............................................. 647 SHGetSettings ............................................. 466 
PathStripToRoot .......................................... 647 SHGetSpecialFolderLocation ...................... 468 
PathUndecorate .......................................... 648 SHGetSpeciaIFolderPath ............................. 469 
PathUnExpandEnvStrings ........................... 649 SHGetThreadRef ......................................... 716 
PathUnmakeSystemFolder ......................... 650 SHGetValue ................................................. 681 
PathUnquoteSpaces ................................... 651 SHGNO ........................................................ 569 

SHlnvokePrinterCommand .......................... 470 

R SHLoadlnProc .............................................. 472 
SHOpenRegStream ..................................... 717 

RegisterDialogClasses ................................ 423 
REGSAM ..................................................... 669 

SHOpenRegStream2 ................................... 718 
SHOuerylnfoKey .......................................... 683 
SHOueryRecycleBin .................................... 473 

s SHOueryValueEx ......................................... 684 
SHRegCloseUSKey ..................................... 685 

ScreenSaverConfigureDialog ...................... 424 
ScreenSaverProc ........................................ 425 
SetMenuContextHelpld ............................... 426 
SetWindowContextHelpld ........................... 427 
SHAddToRecentDocs ................................. 428 

SHRegCreateUSKey ................................... 686 
SHREGDEL_FLAGS ................................... 705 
SHRegDeleteEmptyUSKey ......................... 687 
SH Reg DeleteU SValue ................................. 688 
SHRegDuplicateHKey ................................. 689 
SHREGENUM_FLAGS ................................ 706 



736 Volume 5 Microsoft Windows Shell 

SHRegEnumUSKey .................................... 690 StrRStrl ........................................................ 602 
SHRegEnumUSValue ................................. 691 StrSpn .......................................................... 603 
SHRegGetBoolUSValue ............................. 692 StrStr ............................................................ 604 
SHRegGetPath ............................................ 693 StrStrl ........................................................... 604 
SHRegGetUSValue ..................................... 694 StrTolnt ........................................................ 605 
SHRegOpenUSKey ..................................... 696 StrTolntEx .................................................... 606 
SHRegQuerylnfoUSKey .............................. 697 StrTrim ......................................................... 607 
SHRegQueryUSValue ................................. 698 
SHRegSetPath ............................................ 700 
SHRegSetUSValue ..................................... 701 T 
SHRegWriteUSValue .................................. 702 
SHSetThreadRef ......................................... 719 
SHSetValue ................................................. 704 
SHStrDup .................................................... 580 

TranslateURL ............................................... 475 
TRANSLA TEURL_IN_FLAGS ..................... 570 

U 
SOANGLETENTHS ..................................... 573 
SoftwareUpdateMessageBox ...................... 473 
SOPALETTEINDEX .................................... 573 
SOPALETTERGB ....................................... 573 
SORGB ........................................................ 574 
SOSETRATIO ............................................. 574 
StrCat .......................................................... 581 
StrCatBuff .................................................... 581 
StrChr .......................................................... 582 
StrChrl ......................................................... 583 
StrCmp ........................................................ 584 
StrCmpl ....................................................... 585 
StrCmpN ...................................................... 585 
StrCmpNI ..................................................... 586 
StrCpy .......................................................... 587 
StrCpyN ....................................................... 588 
StrCSpn ....................................................... 589 
StrCSpnl ...................................................... 590 
StrDup ......................................................... 591 
StrFormatByteSize ...................................... 592 

Undelete File ................... , ............................. 484 
UrlApplyScheme .......................................... 651 
URLAssociationDialog ................................. 476 
URLASSOCIATIONDIALOG_IN_FLAGS .... 571 
UrICanonicalize ............................................ 653 
UrlCombine .................................................. 654 
UrICompare .................................................. 655 
UrlCreateFromPath ...................................... 656 
Uri Escape .................................................... 657 
UrlEscapeSpaces ........................................ 658 
UrlGetLocation ............................................. 659 
UrIGetPart .................................................... 660 
UrlHash ........................................................ 661 
Urlls .............................................................. 662 
UrlisFileUrl ................................................... 663 
UrlisNoHistory .............................................. 664 
UrllsOpaque ................................................. 665 
UrIUnEscape ................................................ 666 
UrIUnEscapelnPlace .................................... 667 

StrFormatByteSize64A ................................ 593 
StrFormatKBSize ......................................... 594 w 
StrFromTimelnterval .................................... 595 
StrlslntiEqual ............................................... 596 
StrNCat ........................................................ 597 
StrPBrk ........................................................ 598 
StrRChr ........................................................ 598 
StrRChrl ....................................................... 599 
StrRetToBuf ................................................. 600 
StrRetToStr .................................................. 601 

WinHelp ....................................................... 477 
WM_CPL_LAUNCH ..................................... 747 
WM_CPL_LAUNCHED ................................ 747 
WM_DROPFILES ........................................ 748 
WM_HELP ................................................... 749 
VVM TCARD ................................................ 749 
wnsprintf ....................................................... 608 
wvnsprintf ..................................................... 609 





Here they are in one place-

practical, 
detailed 

explanations 
of the Microsoft I. 

networking APls! 

U.S.A. $49.99 

Anthony Jones and 
JimOhlund 

U.K. £46.99 [VAT. included] 
Canada $74.99 
ISBN 0-7356-0560-2 

Microsoft Press® products are available worldwide wherever quality 
computer books are sold. For more information, contact your book or 
computer retailer, software reseller, or local Microsoft Sales Office, or visit 
our Web site at mspress.microsoft.com. To locate your nearest source for 
Microsoft Press products, or to order directly, call 1-800-MSPRESS in the 
U.S. (in Canada, call 1-800-268-2222). 

Prices and availability dates are subject to change. 

Microsoft has developed many exciting 
networking technologies, but until now no 
single source has describe<;l how to use 
them with older, and even some newer, 
application programming interfaces 
(APls). NETWORK PROGRAMMING FOR 
MICROSOFr® WINDOWS@ is the only book 
that provides definitive, hands-on cover­
age of how to use legacy networking APls, 
such as NetBIOS, on 32-bit platforms, plus 
recent networking APls such as Winsock 2 
and Remote Access Service (RAS). 

mspress.microsoft.com 



Petzold 
for the 

MFC programmer! 

---- IfIcIosaItPress 

Programming 

WincIcJMs 
withMFC 

Second Edition 

U.s.A. $59.99 

Jeff 
Prosise 
TIle premier 
_ulC$lo, 
objeet-orlented 
programming on 
32-b1t WIndows 
plal:lonns 

U.K. £56.99 [VAT. Included] 
Canada $89.99 
ISBN 1-57231-695-0 

Microsoft Press" products are available worldwide wherever quality 
computer books are sold. For more information, contact your book or 
computer retailer, software reseller, or local Microsoft'" Sales Office, or visit 
our Web site at mspress.microsoft.com. To locate your nearest source for 
Microsoft Press products, or to order directly, call1-800-MSPRESS in the 
U.S. (in Canada, call 1-800-268-2222). 

Prices and availability dates are subject to change. 

Expanding what's widely considered the 

definitive exposition of Microsoft's powerful 

C++ class library for the Windows API, PRO­

GRAMMING WINDOWS@ WITH MFC, Second 

Edition, fully updates the classic original with 

all-new coverage of COM, OLE, and ActiveX~ 

Author Jeff Prosise deftly builds your compre­

hension of underlying concepts and essential 

techniques for MFC programming with unpar­

alleled expertise-once again delivering the 

consummate resource for rapid, object­

oriented development on 32-bit Windows 

platforms. 

mspress.mlcrosoft.com 



Official 
Guidelines 

for User Interface 
Developers and Designers 

Official Guidelines for User Interface 
Developers and Designers 

U.s.A. $49.99 
U.K. £46.99 [V.A.T. Included] 
Canada $74.99 
ISBN 0-7356-0566-1 

Here are the revised, updated, official Microsoft 
guidelines for creating well-designed, visually and function­
ally consistent user interfaces for applications that run on 
the Microsoft Windows family of operating systems, 
including Windows 98 and Windows 2000. A revision of 
The Windows Interface Guidelines for Software Design, 
the standard resource for designing Windows interfaces, 
MICROSOFT WINDOWS USER EXPERIENCE is an essential 
handbook for all programmers and designers who work 
with the latest releases of Windows and Microsoft Internet 
Explorer, regardless of experience level or development 
tools used. It covers the basic principles of user-interface 
design and methodologies, and it specifies how you can 
apply data-centered concepts such as objects and proper­
ties to interface design. The book includes detailed 
information on mouse, keyboard, and other input-device 
interaction and on how to use the common interface 
elements supplied by the system. It also includes informa­
tion about supporting international and disabled users. 

Microsoft Press" products are available worldwide wherever quality 
computer books are sold. For more information, contact your book or 
computer retailer, software reseller, or local Microsoft" Sales Office, or visit 
our Web site at mspress microsoft.com. To locate your nearest source for 
Microsoft Press products, or to order directly, call 1-800-MSPRESS in the 
U.S. (in Canada, call 1-800-268-2222). 

mspress.microsoft.com 

Prices and availability dates are subject to change. 



Learn how 
CO + 

can simplify your 
development tasks 

AfictosoftPress 

Understanding 

COM+ 
The Architecture for Enterp ...... Development 
Using II'Ucrosofi' Technologies 

U.s.A. $24.99 
U.K. £22.99 
Canada $37.99 
ISBN 0-7356-0666-8 

DavidS-Plait 
Fort'lWOld by Greg Hope, 
L.eedArchIte<lt,COM+ 

Wouldn't it be great to have an enterprise 

application's infrastructure so that you could inherit 

what you need and spend your time writing your 

own business logic? COM+ is what you've been 

waiting for-an advanced development environment 

that provides prefabricated solutions to common 

enterprise application problems. UNDERSTANDING 

COM+ is a succinct, entertaining book that offers an 

overview of COM+ and key COM+ features, explains 

the role of COM+ in enterprise development, and 

describes the services it can provide for your com­

ponents and clients. You'll learn how COM+ can 

streamline application development to help you 

get enterprise applications up and running and 

out the door. 

Microsoft Presse products are available worldwide wherever quality 
computer books are sold. For more information, contact your book or 
computer retailer, software reseller, or local Microsoft Sales Office, or visit 
our Web site at mspress.microsoft.com. To locate your nearest source for 
Microsoft Press products, or to order directly, call1-800-MSPRESS in the 
u.s. (in Canada, call 1-800-268-2222). 

mspress.mlcrosoft.com 

Prices and availability dates are subject to change. 





Part No. 097-0002307 

Windows 
User Interface 

This essential Windows 2000 and Windows 98/ 
Windows 95 reference volume is part of the five-volume 
Microsoft Win32~ Developer's Reference Library. In its 
printed form, this material is portable, easy to use, and 
easy to browse-a highly condensed, completely indexed, 
intelligently organized complement to the information 
available on line and through the Microsoft Developer 
Network (MSDN). Each volume includes an overview of 
the five-volume library, two appendixes of programming 
elements, and tips on how and where to find other 
Microsoft developer reference resources you may need. 

Microsoft Windows UI 

This volume provides complete reference materials about 
Windows User Interface programming elements such as 
buttons, edit and static controls, combo and list boxes, 
and scroll bars. It also includes information about resources 
such as carets, cursors, icons, menus, and strings; user 
input via mouse and keyboard, keyboard accelerators, 
and the Common Dialog Box Library; and windowing dialog 
boxes, messages and message queues, the Multiple­
Document Interface, timers, window classes, procedures, 
properties, and more. 


