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Introduction

Orgamzatlon of the C Language Reference

Elements of C
e Program Structure
e Declarations and Types
o Expressions and Assignments
o Statements
e Functions
e (C Language Syntax Summary

e Implementation-Defined Behavior

Scope of this Manual

C is a flexible language that leaves many programming decisions up to you. In
keeping with this philosophy, C imposes few restrictions in matters such as type
conversion. Although this characteristic of the language can make your programming
job easier, you must know the language well to understand how programs will behave.
This book provides information on the C language components and the features of the
Microsoft implementation. The syntax for the C language is from ANSI X3.159-1989,
American National Standard for Information Systems — Programming Language — C
(hereinafter called the ANSI C standard), although it is not part of the ANSI C
standard. Appendix A, C Language Syntax Summary, provides the syntax and a
description of how to read and use the syntax definitions.

This book does not discuss programming with C++. See C++ Language Reference for
information about the C++ language.

Note For information on Microsoft product support, see the PSS.HLP file.

xi



Introduction

ANSI Conformance

Xii

Microsofte C conforms to the standard for the C language as set forth in the

'ANSI C standard. Microsoft extensions to the ANSI C standard are noted in

the text and syntax of this book as well as in the online reference. Because

* the extensions are not a part of the ANSI C standard, their use may restrict

portability of programs between systems. By default, the Microsoft extensions
are enabled. To disable the extensions, specify the /Za compiler option. With
/Za, all non-ANSI code generates errors or warnings.



CHAPTER 1

Elements of C

This chapter describes the elements of the C programming language, including the
names, numbers, and characters used to construct a C program. The ANSI C syntax
labels these components “tokens.” This chapter explains how to define tokens and
how the compiler evaluates them.

The following topics are discussed:

Tokens
Comments
Keywords
Identifiers
Constants
String literals

Punctuation and special characters

The chapter also includes reference tables for trigraphs, floating-point constants,
integer constants, and escape sequences.

“Operators” are symbols (both single characters and character combinations) that
specify how values are to be manipulated. Each symbol is interpreted as a single unit,
called a token. For more information, see “Operators” on page 99 in Chapter 4.

Tokens

In a C source program, the basic element recognized by the compiler is the “token.”
A token is source-program text that the compiler does not break down into
component elements.
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Syntax

token :
keyword
identifier
constant
string-literal
operator
punctuator

Note See the introduction to Appendix A, “C Language Syntax Summary,” for an explanation
of the ANSI syntax conventions.

The keywords, identifiers, constants, string literals, and operators described in this
chapter are examples of tokens. Punctuation characters such as brackets ([ ]), braces
({ D), parentheses ( () ), and commas (,) are also tokens.

White-Space Characters

Space, tab, linefeed, carriage-return, formfeed, vertical-tab, and newline characters are
called “white-space characters” because they serve the same purpose as the spaces
between words and lines on a printed page—they make reading easier. Tokens are
delimited (bounded) by white-space characters and by other tokens, such as operators
and punctuation. When parsing code, the C compiler ignores white-space characters
unless you use them as separators or as components of character constants or string
literals. Use white-space characters to make a program more readable. Note that the
compiler also treats comments as white space.

Comments

A “comment” is a sequence of characters beginning with a forward slash/asterisk
combination (/*) that is treated as a single white-space character by the compiler and
is otherwise ignored. A comment can include any combination of characters from the
representable character set, including newline characters, but excluding the “end
comment” delimiter (*/). Comments can occupy more than one line but cannot be
nested.

Comments can appear anywhere a white-space character is allowed. Since the
compiler treats a comment as a single white-space character, you cannot include
comments within tokens. The compiler ignores the characters in the comment.

Use comments to document your code. This example is a comment accepted by the
compiler:

/* Comments can contain keywords such as
for and while without generating errors. */

Comments can appear on the same line as a code statement:

printf( "Hello\n" ); /* Comments can go here */
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You can choose to precede functions or program modules with a descriptive
comment block:
/* MATHERR.C illustrates writing an error routine

* for math functions.
*/

Since comments cannot contain nested comments, this example causes an error:

/* Comment out this routine for testing

/* Open file */
fh = _open( "myfile.c", _O_RDONLY );

*/
The error occurs because the compiler recognizes the first */, after the words Open

file, as the end of the comment. It tries to process the remaining text and produces
an error when it finds the */ outside a comment.

While you can use comments to render certain lines of code inactive for test purposes,
the preprocessor directives #if and #endif and conditional compilation are a useful
alternative for this task. For more information, see “Preprocessor Directives” in the
Preprocessor Reference.

Microsoft Specific »

The Microsoft compiler also supports single-line comments preceded by two forward
slashes (/). If you compile with /Za (ANSI standard), these comments generate errors.
These comments cannot extend to a second line.

// This is a valid comment

Comments beginning with two forward slashes (/) are terminated by the next newline
character that is not preceded by an escape character. In the next example, the newline
character is preceded by a backslash (\), creating an “escape sequence.” This escape
sequence causes the compiler to treat the next line as part of the previous line. (For
more information, see “Escape Sequences” on page 16.)

// my comment \
i++;

Therefore, the i++; statement is commented out.

The default for Microsoft C is that the Microsoft extensions are enabled. Use /Za to
disable these extensions.

END Microsoft Specific
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Evaluation of Tokens

‘When the compiler interprets tokens, it includes as many characters as possible in

a single token before moving on to the next token. Because of this behavior, the
compiler may not interpret tokens as you intended if they are not properly separated
by white space. Consider the following expression:

Fot+

In this example, the compiler first makes the longest possible operator (++) from the
three plus signs, then processes the remaining plus sign as an addition operator (+).
Thus, the expression is interpreted as (i++) + (Jj),not (i) + (++j). In this and
similar cases, use white space and parentheses to avoid ambiguity and ensure proper
expression evaluation.

Microsoft Specific —

The C compiler treats a CTRL+Z character as an end-of-file indicator. It ignores any
text after CTRL+Z.

END Microsoft Specific

Keywords

“Keywords” are words that have special meaning to the C compiler. In translation
phases 7 and 8, an identifier cannot have the same spelling and case as a C keyword.
(See a description of “translation phases” in the Preprocessor Reference; for
information on identifiers, see “Identifiers” on page 5.) The C language uses the
following keywords:

auto double int struct
break else long switch
case enum register fypedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

You cannot redefine keywords. However, you can specify text to be substituted for
keywords before compilation by using C preprocessor directives.

Microsoft Specific —

The ANSI C standard allows identifiers with two leading underscores to be reserved
for compiler implementations. Therefore, the Microsoft convention is to precede
Microsoft-specific keyword names with double underscores. These words cannot be
used as identifier names. For a description of the ANSI rules for naming identifiers,
including the use of double underscores, see “Identifiers” on page 5.
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The following keywords and special identifiers are recognized by the Microsoft C

compiler:

__asm dllimport2 __int8 naked’
__based' __except __intl6 __stdcall
__cdecl __fastcall __int32 thread®
__declspec __finally __int64 __try
dllexport? __inline __leave

1 The __based keyword has limited uses for 32-bit target compilations.

2 These are special identifiers when used with __declspec; their use in other contexts is not restricted.

Microsoft extensions are enabled by default. To ensure that your programs are fully
portable, you can disable Microsoft extensions by specifying the /Za option (compile
for ANSI compatibility) during compilation. When you do this, Microsoft-specific
keywords are disabled.

When Microsoft extensions are enabled, you can use the keywords listed above in
your programs. For ANSI compliance, most of these keywords are prefaced by a
double underscore. The four exceptions, dllexport, dllimport, naked, and thread, are
used only with __declspec and therefore do not require a leading double underscore.
For backward compatibility, single-underscore versions of the rest of the keywords are
supported.

END Microsoft Specific

Identifiers

“Identifiers” or “symbols” are the names you supply for variables, types, functions,
and labels in your program. Identifier names must differ in spelling and case from any
keywords. You cannot use keywords (either C or Microsoft) as identifiers; they are
reserved for special use. You create an identifier by specifying it in the declaration of
a variable, type, or function. In this example, result is an identifier for an integer
variable, and main and printf are identifier names for functions.

void main()

{
int result;
if ( result !=0)
printf( "Bad file handle\n" );
}

Once declared, you can use the identifier in later program statements to refer to the
associated value.

A special kind of identifier, called a statement label, can be used in goto statements.
(Declarations are described in Chapter 3, “Declarations and Types.” Statement labels
are described in “The goto and Labeled Statements” on page 141 in Chapter 5.)
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Syntax

identifier :
nondigit
identifier nondigit
identifier digit

nondigit : one of
_abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
digit : one of
0123456789

The first character of an identifier name must be a nondigit (that is, the first character
must be an underscore or an uppercase or lowercase letter). ANSI allows six
significant characters in an external identifier’s name and 31 for names of internal
(within a function) identifiers. External identifiers (ones declared at global scope or
declared with storage class extern) may be subject to additional naming restrictions
because these identifiers have to be processed by other software such as linkers.

Microsoft Specific —

Although ANSI allows 6 significant characters in external identifier names and 31
for names of internal (within a function) identifiers, the Microsoft C compiler allows
247 characters in an internal or external identifier name. If you aren’t concerned with
ANSI compatibility, you can modify this default to a smaller or larger number using
the /H (restrict length of external names) option.

END Microsoft Specific

The C compiler considers uppercase and lowercase letters to be distinct characters.
This feature, called “case sensitivity,” enables you to create distinct identifiers that
have the same spelling but different cases for one or more of the letters. For example,
each of the following identifiers is unique:

add
ADD
Add
aDD

Microsoft Specific —

Do not select names for identifiers that begin with two underscores or with an
underscore followed by an uppercase letter. The ANSI C standard allows identifier
names that begin with these character combinations to be reserved for compiler use.
Identifiers with file-level scope should also not be named with an underscore and

a lowercase letter as the first two letters. Identifier names that begin with these
characters are also reserved. By convention, Microsoft uses an underscore and an
uppercase letter to begin macro names and double underscores for Microsoft-specific
keyword names. To avoid any naming conflicts, always select identifier names that
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do not begin with one or two underscores, or names that begin with an underscore
followed by an uppercase letter.

END Microsoft Specific

The following are examples of valid identifiers that conform to either ANSI or
Microsoft naming restrictions:

J

count

templ

top_of_page

skipl2

LastNum

Microsoft Specific »

Although identifiers in source files are case sensitive by default, symbols in object
files are not. Microsoft C treats identifiers within a compilation unit as case sensitive.

The Microsoft linker is case sensitive. You must specify all identifiers consistently
according to case.

The “source character set” is the set of legal characters that can appear in source
files. For Microsoft C, the source set is the standard ASCII character set. The source
character set and execution character set include the ASCII characters used as escape
sequences. See “Character Constants”on page 15 for information about the execution
character set.

END Microsoft Specific

An identifier has “scope,” which is the region of the program in which it is known,
and “linkage,” which determines whether the same name in another scope refers to
the same identifier. These topics are explained in “Lifetime, Scope, Visibility, and
Linkage” on page 32 in Chapter 2.

Multibyte and Wide Characters

A multibyte character is a character composed of sequences of one or more bytes.
Each byte sequence represents a single character in the extended character set.
Multibyte characters are used in character sets such as Kanji.

Wide characters are multilingual character codes that are always 16 bits wide. The
type for character constants is char; for wide characters, the type is wehar_t. Since
wide characters are always a fixed size, using wide characters simplifies programming
with international character sets.

The wide-character-string literal L"he110" becomes an array of six integers of type
wchar_t.

{L'h", L'e', L"1", L"1", L'0", 0}
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The Unicode specification is the specification for wide characters. The run-time
library routines for translating between multibyte and wide characters include
mbstowcs, mbtowe, westombs, and wetomb.

Trigraphs
The source character set of C source programs is contained within the 7-bit ASCII
character set but is a superset of the ISO 646-1983 Invariant Code Set. Trigraph
sequences allow C programs to be written using only the ISO (International Standards
Organization) Invariant Code Set. Trigraphs are sequences of three characters
(introduced by two consecutive question marks) that the compiler replaces with their
corresponding punctuation characters. You can use trigraphs in C source files with a
character set that does not contain convenient graphic representations for some
punctuation characters.

Table 1.1 shows the nine trigraph sequences. All occurrences in a source file of the
punctuation characters in the first column are replaced with the corresponding
character in the second column.

Table 1.1 Trigraph Sequences

Trigraph Punctuation Character Trigraph Punctuation Character
2= # < ¢
bl [ m |
7 \ 77> }
™M ] 27- ~
A

7

A trigraph is always treated as a single source character. The translation of trigraphs
takes place in the first translation phase, before the recognition of escape characters in
string literals and character constants. Only the nine trigraphs shown in Table 1.1 are
recognized. All other character sequences are left untranslated.

The character escape sequence, \2, prevents the misinterpretation of trigraph-like
character sequences. (For information about escape sequences, see “Escape Sequences”
on page 16.) For example, if you attempt to print the string What?? ! with this printf
statement

printf( "What??!\n" );

the string printed is What | because ?7?! is a trigraph sequence that is replaced with
the | character. Write the statement as follows to correctly print the string:
printf( "What?\?!\n" );

In this printf statement, a backslash escape character in front of the second question
mark prevents the misinterpretation of ??! as a trigraph.
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Constants

A “constant” is a number, character, or character string that can be used as a value in a
program. Use constants to represent floating-point, integer, enumeration, or character
values that cannot be modified.

Syntax

constant :
floating-point-constant
integer-constant
enumeration-constant
character-constant

Constants are characterized by having a value and a type. Floating-point, integer, and
character constants are discussed in the next three sections. Enumeration constants are
described in “Enumeration Declarations” on page 55 in Chapter 3.

Floating-Point Constants

A “floating-point constant” is a decimal number that represents a signed real number.
The representation of a signed real number includes an integer portion, a fractional
portion, and an exponent. Use floating-point constants to represent floating-point
values that cannot be changed.

Syntax

floating-point-constant :
fractional-constant exponent-part o floating-suffix oo
digit-sequence exponent-part floating-suffix o

fractional-constant :
digit-sequence o . digit-sequence
digit-sequence .
exponent-part :
e sign oy digit-sequence
E sign o digit-sequence
sign : one of
+ -
digit-sequence :
digit
digit-sequence digit
floating-suffix : one of
f1FL
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10

You can omit either the digits before the decimal point (the integer portion of the
value) or the digits after the decimal point (the fractional portion), but not both. You
can leave out the decimal point only if you include an exponent. No white-space
characters can separate the digits or characters of the constant. '

The following examples illustrate some forms of floating-point constants and
expressions:

15.75

1.575E1  /* = 15.75  */
1575e-2  /* = 15.75  */
-2.5e-3  /* = -0.0025 */
25E-4 /* = 0.0025 */

Floating-point constants are positive unless they are preceded by a minus sign (-).
In this case, the minus sign is treated as a unary arithmetic negation operator.
Floating-point constants have type float, double, long, or long double.

A floating-point constant without an f, F, 1, or L suffix has type double. If the letter £
or F is the suffix, the constant has type float. If suffixed by the letter 1 or L, it has type
long double. For example:

100L /* Has type long double */

100F /* Has type float */
100D /* Has type double */

Note that the Microsoft C compiler maps long double to type double. See “Storage of
Basic Types” on page 81 in Chapter 3 for information about type double, float, and long.

You can omit the integer portion of the floating-point constant, as shown in the
following examples. The number .75 can be expressed in many ways, including the
following:

.0075e2

0.075el

.075el
75e-2

Limits on Floating-Point Constants

Microsoft Specific —
Limits on the values of floating-point constants are given in Table 1.2. The header file
FLOAT.H contains this information. *

Table 1.2 Limits on Floating-Point Constants

Constant Meaning Value
FLT_DIG Number of digits, ¢, such that a 6
DBL_DIG floating-point number with g 15
LDBL_DIG decimal digits can be rounded into 15

a floating-point representation and
back without loss of precision.
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Constant

Meaning

Value

FLT_EPSILON
DBL_EPSILON
LDBL_EPSILON

FLT_GUARD

FLT_MANT_DIG
DBL_MANT_DIG
LDBL_MANT_DIG

FLT_MAX
DBL_MAX
LDBL_MAX

FLT_MAX_10_EXP
DBL_MAX_10_EXP
LDBL_MAX_10_EXP

FLT_MAX_EXP
DBL_MAX_EXP
LDBL_MAX_EXP

FLT_MIN
DBL_MIN
LDBL_MIN

FLT_MIN_10_EXP
DBL_MIN_10_EXP
LDBL_MIN_10_EXP

FLT_MIN_EXP
DBL_MIN_EXP
" LDBL_MIN_EXP

FLT_NORMALIZE

FLT_RADIX
_DBL_RADIX
_LDBL_RADIX

FLT_ROUNDS
_DBL_ROUNDS
_LDBL_ROUNDS

Smallest positive number x, such
that x + 1.0 is not equal to 1.0

Number of digits in the radix
specified by FLT_RADIX in the
floating-point significand. The
radix is 2; hence these values
specify bits.

Maximum representable
floating-point number.

Maximum integer such that 10
raised to that number is a
representable floating-point
number.

Maximum integer such that
FLT_RADIX raised to that
number is a representable
floating-point number.

Minimum positive value.

Minimum negative integer such
that 10 raised to that number is a
representable floating-point
number.

Minimum negative integer such
that FLT_RADIX raised to that
number is a representable
floating-point number.

Radix of exponent representation.

Rounding mode for floating-point
addition.

1.192092896e-07F
2.2204460492503131e-016
2.2204460492503131e-016

0

24
53
53

3.402823466¢+38F
1.7976931348623158¢+308
1.7976931348623158e+308

38
308
308

128
1024
1024

1.175494351e-38F
2.2250738585072014e-308
2.2250738585072014e-308
=37

=307

=307

-125
-1021
-1021

[ NS I (S I S R ]

1 (near)
1 (near)
1 (near)

Note that the information in Table 1.2 may differ in future implementations.

END Microsoft Specific

!
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Integer Constants

An “integer constant” is a decimal (base 10), octal (base 8), or hexadecimal (base 16)
number that represents an integral value. Use integer constants to represent integer
values that cannot be changed.

Syntax

integer-constant :
decimal-constant integer-suffix op
octal-constant integer-suffix o
hexadecimal-constant integer-suffix o

decimal-constant :
nonzero-digit
decimal-constant digit

octal-constant .
0
octal-constant octal-digit

hexadecimal-constant
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-constant hexadecimal-digit

nonzero-digit : one of
123456789

octal-digit . one of
01234567

hexadecimal-digit : one of
0123456789
abcdef
ABCDEF

integer-suffix :
unsigned-suffix long-suffix o
long-suffix unsigned-suffix o
unsigned-suffix : one of
ulU

long-suffix : one of
1L
64-bit integer-suffix:
i64
Integer constants are positive unless they are preceded by a minus sign (=). The minus

sign is interpreted as the unary arithmetic negation operator. (See “Unary Arithmetic
Operators” on page 110 in Chapter 4 for information about this operator.)

12
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If an integer constant begins with the letters 0x or 0X, it is hexadecimal. If it begins
with the digit 0, it is octal. Otherwise, it is assumed to be decimal.

The following lines are equivalent:

0x1C /* = Hexadecimal representation for decimal 28 */
034 /* = Octal representation for decimal 28 */

No white-space characters can separate the digits of an integer constant. These
examples show valid decimal, octal, and hexadecimal constants.

/* Decimal Constants */
10

132

32179

/* Octal Constants */
012

0204

076663

/* Hexadecimal Constants */
Oxa or OxA

0x84

0x7dB3 or 0X7DB3

Integer Types

Every integer constant is given a type based on its value and the way it is expressed.
You can force any integer constant to type long by appending the letter 1 or L to the

end of the constant; you can force it to be type unsigned by appending u or U to the
value. The lowercase letter 1 can be confused with the digit 1 and should be avoided.
Some forms of long integer constants follow:

/* Long decimal constants */
1oL
79L

/* Long octal constants */
012L
0115L

/* Long hexadecimal constants */
Oxal or OxAL
OX4fL or Ox4FL

/* Unsigned long decimal constant */

776745UL
778866LY

13
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The type you assign to a constant depends on the value the constant represents. A
constant’s value must be in the range of representable values for its type. A constant’s
type determines which conversions are performed when the constant is used in an
expression or when the minus sign (=) is applied. This list summarizes the conversion
rules for integer constants.

¢ The type for a decimal constant without a suffix is either int, long int, or unsigned
long int. The first of these three types in which the constant’s value can be
represented is the type assigned to the constant.

o The type assigned to octal and hexadecimal constants without suffixes is int,
unsigned int, long int, or unsigned long int depending on the size of the constant.

e The type assigned to constants with a u or U suffix is unsigned int or unsigned
long int depending on their size.

¢ The type assigned to constants with an I or L suffix is long int or unsigned long
int depending on their size.

¢ The type assigned to constants with a u or U and an 1 or L suffix is unsigned
long int.

Integer Limits

Microsoft Specific —

The limits for integer types are listed in Table 1.3. These limits are defined in the
standard header file LIMITS.H. Microsoft C also permits the declaration of sized
integer variables, which are integral types of size 8-, 16-, or 32-bits. For more
information on sized integers, see “Sized Integer Types” on page 82 in Chapter 3.

Table 1.3 Limits on Integer Constants

Constant Meaning Value
CHAR_BIT Number of bits in the smallest variable that 8
is not a bit field.
SCHAR_MIN Minimum value for a variable of type -128
signed char.
SCHAR_MAX Maximum value for a variable of type 127
signed char.
UCHAR_MAX Maximum value for a variable of type 255 (0xff)
unsigned char.
CHAR_MIN Minimum value for a variable of type char. ~ —128; 0 if /J option used
CHAR_MAX Maximum value for a variable of type char.  127; 255 if /J option
used
MB_LEN_MAX Maximum number of bytes in a 2
multicharacter constant.
SHRT_MIN Minimum value for a variable of type short.  -32768
SHRT_MAX Maximum value for a variable of type short. 32767
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Table 1.3 Limits on Integer Constants (continued)

Constant Meaning Value

USHRT_MAX Maximum value for a variable of type 65535 (Oxffff)
unsigned short.

INT_MIN Minimum value for a variable of type int. —2147483647-1

INT_MAX Maximum value for a variable of type int. 2147483647

UINT_MAX Maximum value for a variable of type 4294967295 (Oxfftfffff)
unsigned int.

LONG_MIN Minimum value for a variable of type long. —2147483647-1

LONG_MAX Maximum value for a variable of type long. 2147483647

ULONG_MAX Maximum value for a variable of type 4294967295 (OxfIffffff)

unsigned long.

If a value exceeds the largest integer representation, the Microsoft compiler generates
an error.

END Microsoft Specific

Character Constants

A ““character constant” is formed by enclosing a single character from the representable
character set within single quotation marks (' ). Character constants are used to
represent characters in the execution character set.

Syntax

character-constant :
'c-char-sequence’
L'c-char-sequence'

c-char-sequence :
c-char
c-char-sequence c-char

c-char :
Any member of the source character set except the single quotation mark ('),
backslash (\), or newline character
escape-sequence

escape-sequence :
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequence : one of
\a\b\f\n\r\ttv
LSRR\ WV,

15
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octal-escape-sequence :
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit

hexadecimal-escape-sequence :
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

Character Types

An integer character constant not preceded by the letter L has type int. The value of
an integer character constant containing a single character is the numerical value of
the character interpreted as an integer. For example, the numerical value of the
character a is 97 in decimal and 61 in hexadecimal.

Syntactically, a “wide-character constant” is a character constant prefixed by the
letter L. A wide-character constant has type wchar_t, an integer type defined in the
STDDEEFE.H header file. For example:

char schar = 'x'; /* A character constant */
wchar_t wchar = L'x’; /* A wide-character constant for
the same character */

Wide-character constants are 16 bits wide and specify members of the extended
execution character set. They allow you to express characters in alphabets that are too
large to be represented by type char. See “Multibyte and Wide Characters” on page 7
for more information about wide characters.

Execution Character Set

This book often refers to the “execution character set.” The execution character set is

. not necessarily the same as the source character set used for writing C programs. The

execution character set includes all characters in the source character set as well as
the null character, newline character, backspace, horizontal tab, vertical tab, carriage
return, and escape sequences. The source and execution character sets may differ in
other implementations.

Escape Sequences

Character combinations consisting of a backslash (\) followed by a letter or by a
combination of digits are called “escape sequences.” To represent a newline character,
single quotation mark, or certain other characters in a character constant, you must
use escape sequences. An escape sequence is regarded as a single character and is
therefore valid as a character constant.

Escape sequences are typically used to specify actions such as carriage returns and
tab movements on terminals and printers. They are also used to provide literal
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representations of nonprinting characters and characters that usually have special
meanings, such as the double quotation mark (''). Table 1.4 lists the ANSI escape
sequences and what they represent.

Note that the question mark preceded by a backslash (\?) specifies a literal question
mark in cases where the character sequence would be misinterpreted as a trigraph.
See “Trigraphs” for more information.

Table 1.4 Escape Sequences

Escape Sequence Represents
\a Bell (alert)
\b Backspace
\f Formfeed
\n New line
\r Carriage return
\t Horizontal tab
\v Vertical tab
\ Single quotation mark
\" Double quotation mark
\ Backslash
- \? Literal question mark
\ooo ASCII character in octal notation
\xhhh ASCII character in hexadecimal notation

Microsoft Specific —
If a backslash precedes a character that does not appear in Table 1.4, the compiler

handles the undefined character as the character itself. For example, \x is treated as an X.

END Microsoft Specific

Escape sequences allow you to send nongraphic control characters to a display device.
For example, the ESC character (\033) is often used as the first character of a control
command for a terminal or printer. Some escape sequences are device-specific. For
instance, the vertical-tab and formfeed escape sequences (\v and \f) do not affect
screen output, but they do perform appropriate printer operations.

You can also use the backslash (\) as a continuation character. When a newline
character (equivalent to pressing the RETURN key) immediately follows the backslash,
the compiler ignores the backslash and the newline character and treats the next line
as part of the previous line. This is useful primarily for preprocessor definitions longer
than a single line. For example:

fidefine assert(exp) \

( (exp) ? (void) @:_assert( f#exp, _FILE__, __LINE__ ) )

17
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Octal and Hexadecimal Character Specifications

The sequence \ooo means you can specify any character in the ASCII character
set as a three-digit octal character code. The numerical value of the octal integer
specifies the value of the desired character or wide character.

Similarly, the sequence \xhhh allows you to specify any ASCII character as a
hexadecimal character code. For example, you can give the ASCII backspace
character as the normal C escape sequence (\b), or you can code it as \010 (octal)
or \x008 (hexadecimal).

You can use only the digits O through 7 in an octal escape sequence. Octal escape
sequences can never be longer than three digits and are terminated by the first
character that is not an octal digit. Although you do not need to use all three digits,
you must use at least one. For example, the octal representation is \10 for the ASCII
backspace character and \101 for the letter A, as given in an ASCII chart.

Similarly, you must use at least one digit for a hexadecimal escape sequence, but you-
can omiit the second and third digits. Therefore you could specify the hexadecimal
escape sequence for the backspace character as either \x8, \x08, or \x(008.

The value of the octal or hexadecimal escape sequence must be in the range of
representable values for type unsigned char for a character constant and type
wchar_t for a wide-character constant. See “Multibyte and Wide Characters” on
page 7 for information on wide-character constants.

Unlike octal escape constants, the number of hexadecimal digits in an escape
sequence is unlimited. A hexadecimal escape sequence terminates at the first
character that is not a hexadecimal digit. Because hexadecimal digits include the
letters a through f, care must be exercised to make sure the escape sequence
terminates at the intended digit. To avoid confusion, you can place octal or
hexadecimal character definitions in a macro definition:

ftdefine Bell '\x07'
For hexadecimal values, you can break the string to show the correct value clearly:

"\xabc" /* one character */
"\xab" "c" /* two characters */

String Literals

18

A “string literal” is a sequence of characters from the source character set enclosed
in double quotation marks ("' '*). String literals are used to represent a sequence of
characters which, taken together, form a null-terminated string. You must always
prefix wide-string literals with the letter L.
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Syntax

string-literal :
"s-char-sequence "
L''s-char-sequence "

s-char-sequence :
s-char
s-char-sequence s-char

s-char:
any member of the source character set except the double quotation mark ("),
backslash (\), or newline character
escape-sequence

The example below is a simple string literal:
char amessage = "This is a string literal."”;

All escape codes listed in Table 1.4 are valid in string literals. To represent a double
quotation mark in a string literal, use the escape sequence \"'. The single quotation
mark (') can be represented without an escape sequence. The backslash (\) must

be followed with a second backslash (\\) when it appears within a string. When a
backslash appears at the end of a line, it is always interpreted as a line-continuation
character.

Type for String Literals

String literals have type array of char (that is, char[ 1). (Wide-character strings have
type array of wchar_t (that is, wehar_t[ ]).) This means that a string is an array with
elements of type char. The number of elements in the array is equal to the number of
characters in the string plus one for the terminating null character.

Storage of String Literals

The characters of a literal string are stored in order at contiguous memory locations.
An escape sequence (such as \\ or \'") within a string literal counts as a single
character. A null character (represented by the \0 escape sequence) is automatically
appended to, and marks the end of, each string literal. (This occurs during translation
phase 7. Note that the compiler may not store two identical strings at two different
addresses. The /Gf (Eliminate Duplicate Strings) compiler option forces the compiler
to place a single copy of identical strings into the executable file.

Microsoft Specific —

Strings have static storage duration. See “Storage Classes” on page 42 in Chapter 3
for information about storage duration.

END Microsoft Specific

19
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String Literal Concatenation

To form string literals that take up more than one line, you can concatenate the two
strings. To do this, type a backslash, then press the RETURN key. The backslash causes
the compiler to ignore the following newline character. For example, the string literal

"Long strings can be bro\
ken into two or more pieces.”

is identical to the string
"Long strings can be broken into two or more pieces.”

String concatenation can be used anywhere you might previously have used a
backslash followed by a newline character to enter strings longer than one line.

To force a new line within a string literal, enter the newline escape sequence (\n)
at the point in the string where you want the line broken, as follows:

"Enter a number between 1 and 1@0\nOr press Return"

Because strings can start in any column of the source code and long strings can be
continued in any column of a succeeding line, you can position strings to enhance
source-code readability. In either case, their on-screen representation when output
is unaffected. For example:

printf ( "This is the first half of the string, "
"this is the second half ") ;

As long as each part of the string is enclosed in double quotation marks, the parts
are concatenated and output as a single string. This concatenation occurs according
to the sequence of events during compilation specified by translation phases.

"This is the first half of the string, this is the second half"

A string pointer, initialized as two distinct string literals separated only by white
space, is stored as a single string (pointers are discussed in “Pointer Declarations”
on page 68 in Chapter 3). When properly referenced, as in the following example,
the result is identical to the previous example:

char *string = "This is the first half of the string, "
"this is the second half";

printf( "%s" , string ) ;

In translation phase 6, the multibyte-character sequences specified by any sequence
of adjacent string literals or adjacent wide-string literals are concatenated into a
single multibyte-character sequence. Therefore, do not design programs to allow -
modification of string literals during execution. The ANSI C standard specifies that
the result of modifying a string is undefined.

20
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Maximum String Length

Microsoft Specific —

ANSI compatibility requires a compiler to accept up to 509 characters in a string literal
after concatenation. The maximum length of a string literal allowed in Microsoft C is
approximately 2,048 bytes. However, if the string literal consists of parts enclosed in
double quotation marks, the preprocessor concatenates the parts into a single string,
and for each line concatenated, it adds an extra byte to the total number of bytes.

For example, suppose a string consists of 40 lines with 50 characters per line (2,000
characters), and one line with 7 characters, and each line is surrounded by double
quotation marks. This adds up to 2,007 bytes plus one byte for the terminating null
character, for a total of 2,008 bytes. On concatenation, an extra character is added
for each of the first 40 lines. This makes a total of 2,048 bytes. Note, however, that
if line continuations (\) are used instead of double quotation marks, the preprocessor
does not add an extra character for each line.

END Microsoft Specific

Punctuation and Special Characters

The punctuation and special characters in the C character set have various uses,
from organizing program text to defining the tasks that the compiler or the compiled
program carries out. They do not specify an operation to be performed. Some
punctuation symbols are also operators (see “Operators” on page 99 in Chapter 4).
The compiler determines their use from context.

Syntax
punctuator : one of

(1O} *,:=; #

These characters have special meanings in C. Their uses are described throughout
this book. The pound sign (#) can occur only in “preprocessing directives.”
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CHAPTER 2

Program Structure

This chapter gives an overview of C programs and program execution. Terms and
features important to understanding C programs and components are also introduced.
Topics discussed include:

e Source files and source programs

e The main function and program execution
e Parsing command-line arguments

e Lifetime, scope, visibility, and linkage

e Name spaces

Because this chapter is an overview, the topics discussed contain introductory material
only. See the cross-referenced information for more detailed explanations.

Source Files and Source Programs

A source program can be divided into one or more “source files,” or “translation
units.” The input to the compiler is called a “translation unit.”

Syntax

translation-unit
external-declaration
translation-unit external-declaration

external-declaration :
function-definition
declaration

“Overview of Declarations” on page 39 in Chapter 3 gives the syntax for the
declaration nonterminal, and the Preprocessor Reference explains how the translation
unit is processed.

Note See the introduction to Appendix A, “C Language Syntax Summary,” for an explanation
of the ANSI syntax conventions.
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The components of a translation unit are external declarations that include function
definitions and identifier declarations. These declarations and definitions can be in
source files, header files, libraries, and other files the program needs. You must
compile each translation unit and link the resulting object files to make a program.

A C “source program” is a collection of directives, pragmas, declarations, definitions,
statement blocks, and functions. To be valid components of a Microsoft C program,
each must have the syntax described in this book, although they can appear in any
order in the program (subject to the rules outlined throughout this book). However,
the location of these components in a program does affect how variables and functions
can be used in a program. (See “Lifetime, Scope, Visibility, and Linkage” on page 32
for more information.)

Source files need not contain executable statements. For example, you may find it
useful to place definitions of variables in one source file and then declare references
to these variables in other source files that use them. This technique makes the
definitions easy to find and update when necessary. For the same reason, constants
and macros are often organized into separate files called “include files” or “header
files” that can be referenced in source files as required. See the Preprocessor
Reference for information about macros and include files.

Directives to the Preprocessor

A “directive” instructs the C preprocessor to perform a specific action on the text
of the program before compilation. Preprocessor directives are fully described in
the Preprocessor Reference. This example uses the preprocessor directive #define:

ffdefine MAX 100

This statement tells the compiler to replace each occurrence of MAX by 100 before
compilation. The C compiler preprocessor directives are:

#define #endif #ifdef #line
#elif #error #ifndef #pragma
#else #if #include #Hundef
Pragmas

Microsoft Specific —

A “pragma” instructs the compiler to perform a particular action at compile time.
Pragmas vary from compiler to compiler. For example, you can use the optimize
pragma to set the optimizations to be performed on your program. The Microsoft C

pragmas are:

alloc_text data_seg inline_recursion setlocale
auto_inline function intrinsic warning
check_stack hdrstop message

code_seg include_alias optimize

comment inline_depth pack

24
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See Chapter 2, “Pragma Directives,” in the Preprocessor Reference for a description
of the Microsoft C compiler pragmas.

END Microsoft Specific

Declarations and Definitions

A “declaration” establishes an association between a particular variable, function, or
type and its attributes. “Overview of Declarations” on page 39 in Chapter 3 gives the
ANSI syntax for the declaration nonterminal. A declaration also specifies where and
when an identifier can be accessed (the “linkage” of an identifier). See “Lifetime,
Scope, Visibility, and Linkage” on page 32 for information about linkage.

A “definition” of a variable establishes the same associations as a declaration but also
causes storage to be allocated for the variable.

For example, the main, find, and count functions and the var and val variables are
defined in one source file, in this order:

void main()
{
}

int var = 0;
double val[MAXVAL];

char find( fileptr )
{
}

int count( double f )
{
}

The variables var and val can be used in the find and count functions; no further
declarations are needed. But these names are not visible (cannot be accessed) in main.

Function Declarations and Definitions

Function prototypes establish the name of the function, its return type, and the type
and number of its formal parameters. A function definition includes the function body.

Both function and variable declarations can appear inside or outside a function definition.
Any declaration within a function definition is said to appear at the “internal” or “local”
level. A declaration outside all function definitions is said to appear at the “external,”
“global,” or “file scope” level. Variable definitions, like declarations, can appear at the
internal level (within a function definition) or at the external level (outside all function
definitions). Function definitions always occur at the external level. Function definitions
are discussed further in “Function Definitions” on page 155 in Chapter 6. Function
prototypes are covered in “Function Prototypes” on page 169 in Chapter 6.
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Blocks

A sequence of declarations, definitions, and statements enclosed within curly
braces ({ }) is called a “block.” There are two types of blocks in C. The “compound
statement,” a statement composed of one or more statements (see “The Compound
Statement” on page 137 in Chapter 5), is one type of block. The other, the “function
definition,” consists of a compound statement (the body of the function) plus the
function’s associated “header” (the function name, return type, and formal
parameters). A block within other blocks is said to be “nested.”

Note that while all compound statements are enclosed within curly braces, not
everything enclosed within curly braces constitutes a compound statement. For
example, although the specifications of array, structure, or enumeration elements
can appear within curly braces, they are not compound statements.

Example Program

The following C source program consists of two source files. It gives an overview
of some of the various declarations and definitions possible in a C program. Later
sections in this book describe how to write these declarations, definitions, and
initializations, and how to use C keywords such as static and extern. The printf
function is declared in the C header file STDIO.H.

The main and max functions are assumed to be in separate files, and execution
of the program begins with the main function. No explicit user functions are
executed before main.

/*****************************************************************

FILE1.C - main function
*****************************************************************/

ffdefine ONE 1
ffdefine TWO 2
ffdefine THREE 3
#include <stdio.h>

int a =1; /* Defining declarations */
int b = 2; /* of external variables */
extern 1nt'max( int a, int b ); /* Function prototype */
int main() /* Function definition */
{ /* for main function */
int c; /* Definitions for */

int d; . /* two uninitialized */

/* local variables */

extern int u; /* Referencing declaration */

/* of external variable */

/* defined elsewhere */

static int v; /* Definition of variable */

/* with continuous lifetime */
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int w = ONE, x = TWO, y = THREE;
int z = 0;
z = max( X, y J); /* Executable statements */
w=max( z, w );
printf( "%d %d\n", z, w );
return 0;
}

[FxFxEERkkkkkhkkhkhkkkkhhkhhhhkhhhhhkdhhhhhdkhhhhkhkhhkhhkhkhrhhhkhhkrhhk

FILE2.C - definition of max function
****************************************************************/

int max( int a, int b ) /* Note formal parameters are */
/* included in function header */
{
if(a>b)
return( a );
else
return( b );
}

FILE1.C contains the prototype for the max function. This kind of declaration is
sometimes called a “forward declaration” because the function is declared before it
is used. The definition for the main function includes calls to max.

The lines beginning with #define are preprocessor directives. These directives tell
the preprocessor to replace the identifiers ONE, TWO, and THREE with the numbers

1, 2, and 3, respectively, throughout FILE1.C. However, the directives do not apply
to FILE2.C, which is compiled separately and then linked with FILE1.C. The line
beginning with ##inc1ude tells the compiler to include the file STDIO.H, which
contains the prototype for the printf function. Preprocessor directives are explained
in the Preprocessor Reference.

FILEL.C uses defining declarations to initialize the global variables a and b. The local
variables ¢ and d are declared but not initialized. Storage is allocated for all these
variables. The static and external variables, u and v, are automatically initialized to 0.
Therefore only a, b, u, and v contain meaningful values when declared because they
are initialized, either explicitly or implicitly. FILE2.C contains the function definition
for max. This definition satisfies the calls to max in FILE1.C. ’

The lifetime and visibility of identifiers are discussed in “Lifetime, Scope, Visibility, and
Linkage” on page 32. For more information on functions, see Chapter 6, “Functions.”

The main Function and Program Execution

Every C program has a primary (main) function that must be named main. If your
code adheres to the Unicode programming model, you can use the wide-character
version of main, wmain. The main function serves as the starting point for program
execution. It usually controls program execution by directing the calls to other
functions in the program. A program usually stops executing at the end of main,
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although it can terminate at other points in the program for a variety of reasons.
At times, perhaps when a certain error is detected, you may want to force the
termination of a program. To do so, use the exit function. See the Run-Time
Library Reference for information on and an example using the exit function.

Functions within the source program perform one or more specific tasks. The main
function can call these functions to perform their respective tasks. When main calls
another function, it passes execution control to the function, so that execution begins
at the first statement in the function. A function returns control to main when a
return statement is executed or when the end of the function is reached.

You can declare any function, including main, to have parameters. The term
“parameter” or “formal parameter” refers to the identifier that receives a value

passed to a function. See “Parameters” on page 167 in Chapter 6 for information on
passing arguments to parameters. When one function calls another, the called function
receives values for its parameters from the calling function. These values are called
“arguments.” You can declare formal parameters to main so that it can receive
arguments from the command line using this format:

main( int argc, char *argv[ ], char *envp[])

When you want to pass information to the main function, the parameters are
traditionally named argc and argv, although the C compiler does not require these
names. The types for argc and argv are defined by the C language. Traditionally, if
a third parameter is passed to main, that parameter is named envp. The type for the
envp parameter is mandated by ANSI, but the name is not. Examples later in this
chapter show how to use these three parameters to access command-line arguments.
The following sections explain these parameters.

-See “Using wmain” for a description of the wide-character version of main.

Using wmain

28
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In the Unicode programming model, you can define a wide-character version of the
main function. Use wmain instead of main if you want to write portable code that
adheres to the Unicode programming model.

You declare formal parameters to wmain using a similar format to main. You can
then pass wide-character arguments and, optionally, a wide-character environment
pointer to the program. The argv and envp parameters to wmain are of type wchar_t*,
For example:

wmain( int argc, wchar_t *argy[ ], wehar_t *envp[ 1)

If your program uses a main function, the multibyte-character environment is created
by the run-time library at program startup. A wide-character copy of the environment
is created only when needed (for example, by a call to the _wgetenv or _wputenv

functions). On the first call to _wputenv, or on the first call to _wgetenv if an MBCS
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environment already exists, a corresponding wide-character string environment is
created and is then pointed to by the _wenviron global variable, which is a wide-
character version of the _enviren global variable. At this point, two copies of the
environment (MBCS and Unicode) exist simultaneously and are maintained by the
operating system throughout the life of the program.

Similarly, if your program uses a wmain function, a wide-character environment is
created at program startup and is pointed to by the _wenviron global variable. An
MBCS (ASCII) environment is created on the first call to _putenv or getenv, and is
pointed to by the _environ global variable.

For more information on the MBCS environment, see “Internationalization” in the
Run-Time Library Reference.

END Microsoft Specific

Argument Description

The argc parameter in the main and wmain functions is an integer specifying
how many arguments are passed to the program from the command line. Since the
program name is considered an argument, the value of argc is at least one.

The argv parameter is an array of pointers to null-terminated strings representing
the program arguments. Each element of the array points to a string representation
of an argument passed to main (or wmain). (For information about arrays, see
“Array Declarations” on page 66 in Chapter 3.) The argv parameter can be declared
either as an array of pointers to type char (char *argv[]) or as a pointer to
pointers to type char (char **argv). For wmain, the argv parameter can be
declared either as an array of pointers to type wehar_t (wchar_t *argv[]) or
as a pointer to pointers to type wchar_t (wchar_t **argv). The first string
(argv[0@]) is the program name. The last pointer (argv[argc]) is NULL. (See
getenv in the Run-Time Library Reference for an alternative method for getting
environment variable information.)

The envp parameter is a pointer to an array of null-terminated strings that represent
the values set in the user’s environment variables. The envp parameter can be declared
as an array of pointers to char (char *envp[]) or as a pointer to pointers to char
(char **envp). In a wmain function, the envp parameter can be declared as an
array of pointers to wchar_t (wchar_t *envp[]) or as a pointer to pointers to
wchar_t (wchar_t **envp). The end of the array is indicated by a NULL *pointer.
Note that the environment block passed to main or wmain is a “frozen” copy of the
current environment. If you subsequently change the environment via a call to
_putenv or _wputenv, the current environment (as returned by getenv/_wgetenv and
the _environ or _wenviron variables) will change, but the block pointed to by envp
will not change. '
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Expanding Wildcard Arguments

Microsoft Specific —

When running a C program, you can use either of the two wildcards—the question
mark (?) and the asterisk (*)—to specify filename and path arguments on the
command line.

Command-line arguments are handled by a routine called _setargv (or _wsetargv
in the wide-character environment), which by default does not expand wildcards
into separate strings in the argv string array. You can replace the normal _setargyv
routine with a more powerful version of _setargv that does handle wildcards by
linking with the SETARGV.OBI file. If your program uses a wmain function, link
with WSETARGV.OBJ.

To link with SETARGV.OBJ or WSETARGV.OBJ, use the /link option. For example:
cl typeit.c /1ink setargv.obj

The wildcards are expanded in the same manner as operating system commands. (See
your operating system user’s guide if you are unfamiliar with wildcards.) Enclosing an
argument in double quotation marks (" '') suppresses the wildcard expansion. Within
quoted arguments, you can represent quotation marks literally by preceding the
double-quotation-mark character with a backslash (\). If no matches are found for

the wildcard argument, the argument is passed literally.

END Microsoft Specific

Parsing Command-Line Arguments

Microsoft Specific —»

Microsoft C startup code uses the following rules when interpreting arguments given
on the operating system command line:

¢ Arguments are delimited by white space, which is either a space or a tab.

¢ A string surrounded by double quotation marks is interpreted as a single argument,
regardless of white space contained within. A quoted string can be embedded in an
argument. Note that the caret (*) is not recognized as an escape character or
delimiter.

¢ A double quotation mark preceded by a backslash, \"", is interpreted as a literal
double quotation mark ("').

e Backslashes are interpreted literally, unless they immediately precede a double
quotation mark.
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e If an even number of backslashes is followed by a double quotation mark, then
one backslash (V) is placed in the argv array for every pair of backslashes (\\), and
the double quotation mark (") is interpreted as a string delimiter.

e If an odd number of backslashes is followed by a double quotation mark, then
one backslash (V) is placed in the argv array for every pair of backslashes (\\) and
the double quotation mark is interpreted as an escape sequence by the remaining
backslash, causing a literal double quotation mark (") to be placed in argv.

This list illustrates the rules above by showing. the interpreted result passed to argv
for several examples of command-line arguments. The output listed in the second,
third, and fourth columns is from the ARGS.C program that follows the list.

Command-Line Input argv[1] argv[2] argv[3]
"abc"de abec d e
"ab\"c" "\\" d ab"c \ d
a\\\b d"e f"g h a\\\b de fg h
a\\\"b ¢ d a\"b o d
a\\\\"b c" d e a\\b ¢ d e

/* ARGS.C illustrates the following variables used for accessing
* command-line arguments and environment variables:

* argc argv envp

*/

f#Finclude <stdio.h>

void main( int argc, /* Number of strings in array argv */

char *argv[], /* Array of command-line argument strings */
char **envp ) /* Array of environment variable strings */
{

int count;

/* Display each command-line argument. */
printf( "\nCommand-line arguments:\n" );
for( count = @; count < argc; count++ )
printf( " argv[%d] %s\n", count, argv[count] );

/* Display each environment variable. */
printf( "\nEnvironment variables:\n" );
while( *envp != NULL )

printf( " %s\n", *(envp++) );

return;
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One example of output from this program is:

Command-1line arguments:
argv[0] C:\MSC\TEST.EXE

Environment variables:
COMSPEC=C:\NT\SYSTEM32\CMD.EXE

PATH=c:\nt;c:\binb;c:\binr;c:\nt\system32;c:\word;c:\help;c:\msc;c:\;
PROMPT=[$p]

TEMP=c:\tmp

TMP=c:\tmp

EDITORS=c:\binr

WINDIR=c:\nt

END Microsoft Specific

Customizing Command-Line Processing

If your program does not take command-line arguments, you can save a small

amount of space by suppressing use of the library routine that performs command-line
processing. This routine is called _setargv (or _wsetargyv in the wide-character
environment), as described in “Expanding Wildcard Arguments” on page 30. To
suppress its use, define a routine that does nothing in the file containing the main
function and name it setargv (or _wsetargyv in the wide-character environment). The
call to _setargv or wsetargyv is then satisfied by your definition of _setargv or
_wsetargv , and the library version is not loaded.

Similarly, if you never access the environment table through the envp argument, you
can provide your own empty routine to be used in place of _setenvp (or _wsetenvp),
the environment-processing routine.

If your program makes calls to the _spawn or _exec family of routines in the C
run-time library, you should not suppress the environment-processing routine,
since this routine is used to pass an environment from the spawning process to the
new process.

Lifetime, Scope, Visibility, and Linkage
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To understand how a C program works, you must understand the rules that determine
how variables and functions can be used in the program. Several concepts are crucial
to understanding these rules:

o Lifetime
e Scope and visibility
e Linkage
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Lifetime

“Lifetime” is the period during execution of a program in which a variable or
function exists. The storage duration of the identifier determines its lifetime.

An identifier declared with the storage-class-specifier static has static storage
duration. Identifiers with static storage duration (also called “global”’) have
storage and a defined value for the duration of a program. Storage is reserved
and the identifier’s stored value is initialized only once, before program startup.
An identifier declared with external or internal linkage also has static storage
duration (see “Linkage” on page 36).

An identifier declared without the static storage-class specifier has automatic
storage duration if it is declared inside a function. An identifier with automatic
storage duration (a “local identifier”) has storage and a defined value only within
the block where the identifier is defined or declared. An automatic identifier is
allocated new storage each time the program enters that block, and it loses its
storage (and its value) when the program exits the block. Identifiers declared in
a function with no linkage also have automatic storage duration.

The following rules specify whether an identifier has global (static) or local
(automatic) lifetime:

o All functions have static lifetime. Therefore they exist at all times during
program execution. Identifiers declared at the external level (that is, outside all
blocks in the program at the same level of function definitions) always have
global (static) lifetimes.

o If a local variable has an initializer, the variable is initialized each time it is
created (unless it is declared as static). Function parameters also have local
lifetime. You can specify global lifetime for an identifier within a block by
including the static storage-class specifier in its declaration. Once declared
static, the variable retains its value from one entry of the block to the next.

Although an identifier with a global lifetime exists throughout the execution of the
source program (for example, an externally declared variable or a local variable
declared with the static keyword), it may not be visible in all parts of the program.
See “Scope and Visibility” on page 34 for information about visibility, and see
“Storage Classes” on page 42 in Chapter 3 for a discussion of the
storage-class-specifier nonterminal.

Memory can be allocated as needed (dynamic) if created through the use of special
library routines such as malloc. Since dynamic memory allocation uses library
routines, it is not considered part of the language. See the malloc function in the
Run-Time Library Reference.
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Scope and Visibility

An identifier’s “visibility” determines the portions of the program in which it can be
referenced—its “scope.” An identifier is visible (i.e., can be used) only in portions of
a program encompassed by its “scope,” which may be limited (in order of increasing
restrictiveness) to the file, function, block, or function prototype in which it appears.
The scope of an identifier is the part of the program in which the name can be used.
This is sometimes called “lexical scope.” There are four kinds of scope: function, file,
block, and function prototype.

All identifiers except labels have their scope determined by the level at which the
declaration occurs. The following rules for each kind of scope govern the visibility of
identifiers within a program:

File scope The declarator or type specifier for an identifier with file scope appears
outside any block or list of parameters and is accessible from any place in the
translation unit after its declaration. Identifier names with file scope are often
called “global” or “external.” The scope of a global identifier begins at the point
of its definition or declaration and terminates at the end of the translation unit.

Function scope A label is the only kind of identifier that has function scope. A label
is declared implicitly by its use in a statement. Label names must be unique within
a function. (For more information about labels and label names, see “The goto
and Labeled Statements” on page 141 in Chapter 5.)

Block scope The declarator or type specifier for an identifier with block scope
appears inside a block or within the list of formal parameter declarations in a
function definition. It is visible only from the point of its declaration or definition
to the end of the block containing its declaration or definition. Its scope is limited
to that block and to any blocks nested in that block and ends at the curly brace that
closes the associated block. Such identifiers are sometimes called “local variables.”

Function-prototype scope The declarator or type specifier for an identifier with
function-prototype scope appears within the list of parameter declarations in a
function prototype (not part of the function declaration). Its scope terminates at the
end of the function declarator.

The appropriate declarations for making variables visible in other source files are
described in “Storage Classes” on page 42 Chapter 3. However, variables and functions
declared at the external level with the static storage-class specifier are visible only
within the source file in which they are defined. All other functions are globally visible.

Summary of Lifetime and Visibility

34

Table 2.1 is a summary of lifetime and visibility characteristics for most identifiers. The
first three columns give the attributes that define lifetime and visibility. An identifier
with the attributes given by the first three columns has the lifetime and visibility shown
in the fourth and fifth columns. However, the table does not cover all possible cases.
Refer to “Storage Classes” on page 42 in Chapter 3 for more information.



Table 2.1 Summary of Lifetime and Visibility

Chapter 2 Program Structure

Attributes: Result:
Storage-Class

Level ltem Specifier Lifetime Visibility

File scope Variable Global Remainder of source
definition file in which it occurs
Variable Global Remainder of source
declaration file in which it occurs
Function Global Single source file
prototype or
definition
Function Global Remainder of source
prototype file

Block scope Variable Global Block
declaration
Variable Global Block
definition
Variable auto or register Local Block
definition

The following example illustrates blocks, nesting, and visibility of variables:

finclude <stdio.h>

int i = 1; /* i defined at external level */

int main() /* main function defined at external level */
{

printf( "%d\n", i ); /* Prints 1 (value of external level i) */

{ /* Begin first nested block */

inti=2, ] /* i and j defined at internal level */

printf( "%d %d\n", i, j ); /* Prints 2, 3 */

{ /* Begin second nested block */

int i = /* i is redefined */

printf( "%d %d\n", i, j ); /* Prints 0, 3 */

} /* End of second nested block */

printf( "%d\n", i /* Prints 2 (outer definition’ */

/* restored) */

} /* End of first nested block */

printf( "%d\n", i /* Prints 1 (external Tevel */

/* definition restored) */

return 0;
}

In this example, there are four levels of visibility: the external level and three block
levels. The values are printed to.the screen as noted in the comments following each

statement.
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Linkage
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Identifier names can refer to different identifiers in different scopes. An identifier
declared in different scopes or in the same scope more than once can be made to refer
to the same identifier or function by a process called “linkage.” Linkage determines
the portions of the program in which an identifier can be referenced (its “visibility”).
There are three kinds of linkage: internal, external, and no linkage.

Internal Linkage

If the declaration of a file-scope identifier for an object or a function contains the
storage-class-specifier static, the identifier has internal linkage. Otherwise, the
identifier has external linkage. See “Storage Classes” on page 42 in Chapter 3 for
a discussion of the storage-class-specifier nonterminal.

Within one translation unit, each instance of an identifier with internal linkage
denotes the same identifier or function. Internally linked identifiers are unique to
a translation unit.

External Linkage

If the first declaration at file-scope level for an identifier does not use the static
storage-class specifier, the object has external linkage.

If the declaration of an identifier for a function has no storage-class-specifier, its
linkage is determined exactly as if it were declared with the storage-class-specifier
extern. If the declaration of an identifier for an object has file scope and no
storage-class-specifier, its linkage is external.

An identifier’s name with external linkage designates the same function or data
object as does any other declaration for the same name with external linkage. The
two declarations can be in the same translation unit or in different translation units.
If the object or function also has global lifetime, the object or function is shared by
the entire program.

No Linkage

If a declaration for an identifier within a block does not include the extern
storage-class specifier, the identifier has no linkage and is unique to the function.

The following identifiers have no linkage:
¢ An identifier declared to be anything other than an object or a function
¢ An identifier declared to be a function parameter

® A block-scope identifier for an object declared without the extern storage-class
specifier

If an identifier has no linkage, declaring the same name again (in a declarator or type
specifier) in the same scope level generates a symbol redefinition error.
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Name Spaces

The compiler sets up “name spaces” to distinguish between the identifiers used
for different kinds of items. The names within each name space must be unique
to avoid conflict, but an identical name can appear in more than one name space.
This means that you can use the same identifier for two or more different items,
provided that the items are in different name spaces. The compiler can resolve
references based on the syntactic context of the identifier in the program.

Note Do not confuse the limited C notion of a name space with the C++ “namespace”
feature. See “Namespaces” in the C++ Language Reference for more information.

This list describes the name spaces used in C.

Statement labels Named statement labels are part of statements. Definitions
of statement labels are always followed by a colon but are not part of case
labels. Uses of statement labels always immediately follow the keyword goto.
Statement labels do not have to be distinct from other names or from label
names in other functions.

Structure, union, and enumeration tags These tags are part of structure, union,
and enumeration type specifiers and, if present, always immediately follow the
reserved words struct, union, or enum. The tag names must be distinct from
all other structure, enumeration, or union tags with the same visibility.

Members of structures or unions Member names are allocated in name spaces
associated with each structure and union type. That is, the same identifier can
be a component name in any number of structures or unions at the same time,
Definitions of component names always occur within structure or union type
specifiers. Uses of component names always immediately follow the member-
selection operators (=> and .). The name of a member must be unique within
the structure or union, but it does not have to be distinct from other names in
the program, including the names of members of different structures and
unions, or the name of the structure itself.

Ordinary identifiers All other names fall into a name space that includes variables,
functions (including formal parameters and local variables), and enumeration
constants. Identifier names have nested visibility, so you can redefine them
within blocks.

Typedef names Typedef names cannot be used as identifiers in the same scope.

For example, since structure tags, structure members, and variable names are in
three different name spaces, the three items named student in this example do not
conflict. The context of each item allows correct interpretation of each occurrence
of student in the program. (For information about structures, see “Structure
Declarations” on page 58 in Chapter 3.)
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struct student {

char student[20];

int class;

int id;

} student;
When student appears after the struct keyword, the compiler recognizes it as a
structure tag. When student appears after a member-selection operator (—> or .), the
name refers to the structure member. In other contexts, student refers to the structure

variable. However, overloading the tag name space is not recommended since it
obscures meaning.
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Declarations and Types

This chapter describes the declaration and initialization of variables, functions, and
types. The C language includes a standard set of basic data types. You can also add
your own data types, called “derived types,” by declaring new ones based on types
already defined. The following topics are discussed:

Overview of declarations

Storage classes

Type specifiers

Type qualifiers

Declarators and variable declarations
Interpreting more complex declarators
Initialization

Storage of basic types

Incomplete types

Typedef declarations

Extended storage-class attributes

Overview of Declarations

A “declaration” specifies the interpretation and attributes of a set of identifiers. A
declaration that also causes storage to be reserved for the object or function named by
the identifier is called a “definition.” C declarations for variables, functions, and types
have this syntax:

Syntax

declaration :

declaration-specifiers init-declarator-list oy ;
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declaration-specifiers : ‘
storage-class-specifier attribute-seq o declaration-specifiers oy
I* attribute-seq o is Microsoft specific */
type-specifier declaration-specifiers
type-qualifier declaration-specifiers

init-declarator-list :
init-declarator
init-declarator-list , init-declarator

init-declarator :
declarator
declarator = initializer

Note This syntax for declarationis not repeated in the following sections. Syntax in the
following sections usually begin with the declarator nonterminal.

The declarations in the init-declarator-list contain the identifiers being named; init

is an abbreviation for initializer. The init-declarator-list is a comma-separated
sequence of declarators, each of which can have additional type information, or an
initializer, or both. The declarator contains the identifiers, if any, being declared. The
declaration-specifiers nonterminal consists of a sequence of type and storage-class
specifiers that indicate the linkage, storage duration, and at least part of the type of the
entities that the declarators denote. Therefore, declarations are made up of some
combination of storage-class specifiers, type specifiers, type qualifiers, declarators,
and initializers.

Declarations can contain one or more of the optional attributes listed in attribute-seq;
seq is an abbreviation for sequence. These Microsoft-specific attributes perform a
variety of functions, which are discussed in detail throughout this book. For a list of
these attributes, see Appendix A, “C Language Syntax Summary.”

In the general form of a variable declaration, type-specifier gives the data type of the
variable. The type-specifier can be a compound, as when the type is modified by const
or volatile. The declarator gives the name of the variable, possibly modified to
declare an array or a pointer type. For example,

int const *fp;

declares a variable named fp as a pointer to a nonmodifiable (const) int value. You
can define more than one variable in a declaration by using multiple declarators,
separated by commas.

A declaration must have at least one declarator, or its type specifier must declare a
structure tag, union tag, or members of an enumeration. Declarators provide any

remaining information about an identifier. A declarator is an identifier that can be
modified with brackets ([ ]), asterisks (¥), or parentheses ( () ) to declare an array,
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pointer, or function type, respectively. When you declare simple variables (such as
character, integer, and floating-point items), or structures and unions of simple
variables, the declarator is just an identifier. For more information on declarators,
see “Declarators and Variable Declarations” on page 52.

All definitions are implicitly declarations, but not all declarations are definitions.
For example, variable declarations that begin with the extern storage-class specifier
are “referencing,” rather than “defining” declarations. If an external variable is to be
referred to before it is defined, or if it is defined in another source file from the one
where it is used, an extern declaration is necessary. Storage is not allocated by
“referencing” declarations, nor can variables be initialized in declarations.

A storage class or a type (or both) is required in variable declarations. Except for
__declspec, only one storage-class specifier is allowed in a declaration and not all
storage-class specifiers are permitted in every context. The __declspec storage class
is allowed with other storage-class specifiers, and it is allowed more than once. The
storage-class specifier of a declaration affects how the declared item is stored and
initialized, and which parts of a program can reference the item.

The storage-class-specifier terminals defined in C include auto, extern, register,
static, and typedef. In addition, Microsoft C includes the storage-class-specifier
terminal __declspec. All storage-class-specifier terminals except typedef and
__declspec are discussed in “Storage Classes” on page 42. See “Typedef Declarations”
on page 86 for information about typedef. See “Extended Storage-Class Attributes”

on page 88 for information about __declspec.

The location of the declaration within the source program and the presence or absence
of other declarations of the variable are important factors in determining the lifetime
of variables. There can be multiple redeclarations but only one definition. However,

a definition can appear in more than one translation unit. For objects with internal
linkage, this rule applies separately to each translation unit, because internally linked
objects are unique to a translation unit. For objects with external linkage, this rule
applies to the entire program. See “Lifetime, Scope, Visibility, and Linkage” on

page 32 in Chapter 2 for more information about visibility.

Type specifiers provide some information about the data types of identifiers. The .
default type specifier is int. For more information, see “Type Specifiers” on page 49.
Type specifiers can also define type tags, structure and union component names, and
enumeration constants. For more information see “Enumeration Declarations” on
page 55, “Structure Declarations” on page 58, and “Union Declarations” on page 63.

There are two type-qualifier terminals: const and volatile. These qualifiers specify
additional properties of types that are relevant only when accessing objects of that
type through l-values. For more information on const and volatile, see “Type
Qualifiers” on page 51. For a definition of 1-values, see “L-Value and R-Value
Expressions” on page 95 in Chapter 4.
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Storage Classes
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The “storage class” of a variable determines whether the item has a “global” or “local”
lifetime. C calls these two lifetimes “static” and “automatic.” An item with a global
lifetime exists and has a value throughout the execution of the program. All functions
have global lifetimes.

Automatic variables, or variables with local lifetimes, are allocated new storage each
time execution control passes to the block in which they are defined. When execution
returns, the variables no longer have meaningful values.

C provides the following storage-class specifiers:

Syntax
storage-class-specifier :
auto
register
static
extern
typedef
__declspec ( extended-decl-modifier-seq ) /* Microsoft Specific */

Except for __declspec, you can use only one storage-class-specifier in the
declaration-specifier in a declaration. If no storage-class specification is made,
declarations within a block create automatic objects.

Items declared with the auto or register specifier have local lifetimes. Items
declared with the static or extern specifier have global lifetimes.

Since typedef and __declspec are semantically different from the other four
storage-class-specifier terminals, they are discussed separately. For specific
information on typedef, see “Typedef Declarations” on page 86. For specific
information on __declspec, see “Extended Storage-Class Attributes” on page 88.

The placement of variable and function declarations within source files also affects
storage class and visibility. Declarations outside all function definitions are said to
appear at the “‘external level.” Declarations within function definitions appear at the
“internal level.”

The exact meaning of each storage-class specifier depends on two factors:

e Whether the declaration appears at the external or internal level
e Whether the item being declared is a variable or a function

“Storage-Class Specifiers for External-Level Declarations” on page 43 and
“Storage-Class Specifiers for Internal-Level Declarations” on page 45 describe the
storage-class-specifier terminals in each kind of declaration and explain the default
behavior when the storage-class-specifier is omitted from a variable. “Storage-Class
Specifiers with Function Declarations” on page 48 discusses storage-class specifiers
used with functions. ‘
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Storage-Class Specifiers for External-Level Declarations

External variables are variables at file scope. They are defined outside any
function, and they are potentially available to many functions. Functions can
only be defined at the external level and, therefore, cannot be nested. By default,
all references to external variables and functions of the same name are references
to the same object, which means they have “external linkage.” (You can use the
static keyword to override this. See information later in this section for more
details on static.) '

Variable declarations at the external level are either definitions of variables
(“defining declarations™), or references to variables defined elsewhere
(“referencing declarations”).

An external variable declaration that also initializes the variable (implicitly or
explicitly) is a defining declaration of the variable. A definition at the external
level can take several forms:

e A variable that you declare with the static storage-class specifier. You can
explicitly initialize the static variable with a constant expression, as described
in “Initialization.” If you omit the initializer, the variable is initialized to O by
default. For example, these two statements are both considered definitions of
the variable k.
static int k = 16;
static int k;

o A variable that you explicitly initialize at the external level. For example, int j =
3; is a definition of the variable j.

In variable declarations at the external level (that is, outside all functions), you can
use the static or extern storage-class specifier or omit the storage-class specifier
entirely. You cannot use the auto and register storage-class-specifier terminals at
the external level.

Once a variable is defined at the external level, it is visible throughout the rest of the
translation unit. The variable is not visible prior to its declaration in the same source
file. Also, it is not visible in other source files of the program, unless a referencing
declaration makes it visible, as described below.

The rules relating to static include:

e Variables declared outside all blocks without the static keyword always retain their
values throughout the program. To restrict their access to a particular translation
unit, you must use the static keyword. This gives them “internal linkage.” To make
them global to an entire program, omit the explicit storage class or use the keyword
extern (see the rules in the next list). This gives them “external linkage.” Internal
and external linkage are also discussed in “Linkage” on page 36 in Chapter 2.
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You can define a variable at the external level only once within a program. You
can define another variable with the same name and the static storage-class
specifier in a different translation unit. Since each static definition is visible only
within its own translation unit, no conflict occurs. This provides a useful way to
hide identifier names that must be shared among functions of a single translation
unit, but not visible to other translation units.

The static storage-class specifier can apply to functions as well. If you declare a
function static, its name is invisible outside of the file in which it is declared.

The rules for using extern are:

The extern storage-class specifier declares a reference to a variable defined
elsewhere. You can use an extern declaration to make a definition in another
source file visible, or to make a variable visible prior to its definition in the same
source file. Once you have declared a reference to the variable at the external level,
the variable is visible throughout the remainder of the translation unit in which the
declared reference occurs.

For an extern reference to be valid, the variable it refers to must be defined once,
and only once, at the external level. This definition (without the extern storage
class) can be in any of the translation units that make up the program.

Example

The example below illustrates external declarations:

/******************************************************************

SOURCE FILE ONE

*******************************************************************/

extern int 1i; /* Reference to i, defined below */
void next( void ); /* Function prototype */

void main()

{
i+
printf( "%d\n", 1 ); /* i equals 4 */
next();

}

int i = 3; /* Definition of i */

void next( void )

{

i++;
printf( "%d\n", 1 ); /* 1 equals 5 */
other();
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/******************************************************************

SOURCE FILE TWO

*******************************************************************/

extern int i; /* Reference to i in */
/* first source file */

void other( void )
{

itt;

printf( "%d\n", i ); /* i equals 6 */
}
The two source files in this example contain a total of three external declarations
of i. Only one declaration is a “defining declaration.” That declaration,

int i = 3;

defines the global variable 1 and initializes it with initial value 3. The “referencing”
declaration of i at the top of the first source file using extern makes the global
variable visible prior to its defining declaration in the file. The referencing declaration
of i in the second source file also makes the variable visible in that source file. If a
defining instance for a variable is not provided in the translation unit, the compiler
assumes there is an

extern int x;

referencing declaration and that a defining reference
int x = 0;

appears in another translation unit of the program.

All three functions, main, next, and other, perform the same task: they increase i
and print it. The values 4, 5, and 6 are printed.

If the variable i had not been initialized, it would have been set to 0 automatically.
In this case, the values 1, 2, and 3 would have been printed. See “Initialization” on
page 74 for information about variable initialization.

Storage-Class Specifiers for Internal-Level Declarations

You can use any of four storage-class-specifier terminals for variable declarations at
the internal level. When you omit the storage-class-specifier from such a declaration,
the default storage class is auto. Therefore, the keyword auto is rarely seen ina C
program.

The auto Storage-Class Specifier

The auto storage-class specifier declares an automatic variable, a variable with a
local lifetime. An auto variable is visible only in the block in which it is declared.
Declarations of auto variables can include initializers, as discussed in “Initialization”
on page 74.
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Since variables with auto storage class are not initialized automatically, you
should either explicitly initialize them when you declare them, or assign them
initial values in statements within the block. The values of uninitialized auto
variables are undefined. (A local variable of auto or register storage class is
initialized each time it comes in scope if an initializer is given.)

An internal static variable (a static variable with local or block scope) can
be initialized with the address of any external or static item, but not with the
address of another auto item, because the address of an aute item is not a
constant.

The register Storage-Class Specifier

Microsoft Specific —

The Microsoft C/C++ compiler does not honor user requests for register
variables. However, for portability all other semantics associated with the
register keyword are honored by the compiler. For example, you cannot
apply the unary address-of operator (&) to a register object nor can the
register keyword be used on arrays.

END Microsoft Specific

The static Storage-Class Specifier

A variable declared at the internal level with the static storage-class specifier
has a global lifetime but is visible only within the block in which it is declared.
For constant strings, using static is useful because it alleviates the overhead of
frequent initialization in often-called functions.

If you do not explicitly initialize a static variable, it is initialized to O by
default. Inside a function, static causes storage to be allocated and serves as
a definition. Internal static variables provide private, permanent storage visible

- to only a single function.

The extern Storage-Class Specifier

A variable declared with the extern storage-class specifier is a reference to a
variable with the same name defined at the external level in any of the source
files of the program. The internal extern declaration is used to make the
external-level variable definition visible within the block. Unless otherwise
declared at the external level, a variable declared with the extern keyword is
visible only in the block in which it is declared.
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Example

This example illustrates internal- and external-level declarations:

#include <stdio.h>
int i = 1;
void other( void );

void main()

{
/* Reference to i, defined above: */
extern int i;
/* Initial value is zero; a is visible only within main: */
static int a;
/* b is stored in a register, if possible: */
register int b = 0;
/* Default storage class is auto: */
int ¢ = 0;
/* Values printed are 1, 0, 0, 0: */
printf( "%d\n%d\n%d\n%d\n", i, a, b, c );
other();
return;
}
void other( void )
{
/* Address of global i assigned to pointer variable: */
static int *external_i = &i;
/* i is redefined; global i no longer visible: */
int i = 16;
/* This a is visible only within the other function: */
static int a = 2;
a +=2;
/* Values printed are 16, 4, and 1: */
printf( "%d\n%d\n%d\n", i, a, *external_i );
}

In this example, the variable i is defined at the external level with initial value 1.

An extern declaration in the main function is used to declare a reference to the
external-level i. The static variable a is initialized to 0 by default, since the
initializer is omitted. The call to printf prints the values 1, 0, 0, and 0.
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In the other function, the address of the global variable i is used to initialize the
static pointer variable external_i. This works because the global variable has static
lifetime, meaning its address does not change during program execution. Next, the
variable 1 is redefined as a local variable with initial value 16. This redefinition does
not affect the value of the external-level i, which is hidden by the use of its name for
the local variable. The value of the global i is now accessible only indirectly within
this block, through the pointer external_i. Attempting to assign the address of the
auto variable i to a pointer does not work, since it may be different each time the
block is entered. The variable a is declared as a static variable and initialized to 2.
This a does not conflict with the a in ma1in, since static variables at the internal level
are visible only within the block in which they are declared.

The variable a is increased by 2, giving 4 as the result. If the other function were
called again in the same program, the initial value of a would be 4. Internal static
variables keep their values when the program exits and then reenters the block in
which they are declared.

Storage-Class Specifiers with Function Declarations

You can use either the static or the extern storage-class specifier in function
declarations. Functions always have global lifetimes.

Microsoft Specific —

Function declarations at the internal level have the same meaning as function
declarations at the external level. This means that a function is visible from its point
of declaration throughout the rest of the translation unit even if it is declared at local
scope.

END Microsoft Specific

The visibility rules for functions vary slightly from the rules for variables, as follows:

e A function declared to be static is visible only within the source file in which it is
defined. Functions in the same source file can call the static function, but functions
in other source files cannot access it directly by name. You can declare another
static function with the same name in a different source file without conflict.

e Functions declared as extern are visible throughout all source files in the program
(unless you later redeclare such a function as static). Any function can call an
extern function.

¢ Function declarations that omit the storage-class specifier are extern by default.

Microsoft Specific —
Microsoft allows redefinition of an extern identifier as static.

END Microsoft Specific
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Type Specitiers
Type specifiers in declarations define the type of a variable or function declaration.

Syntax
type-specifier :
void
char
short
int
long
float
double
signed
unsigned
Sstruct-or-union-specifier
enum-specifier
typedef-name

The signed char, signed int, signed short int, and signed long int types, together with
their unsigned counterparts and enum, are called “integral” types. The float, double,
and long double type specifiers are referred to as “floating” or “floating-point” types.
You can use any integral or floating-point type specifier in a variable or function
declaration. If a type-specifier is not provided in a declaration, it is taken to be int.

The optional keywords signed and unsigned can precede or follow any of the integral
types, except enum, and can also be used alone as type specifiers, in which case they
are understood as signed int and unsigned int, respectively. When used alone, the
keyword int is assumed to be signed. When used alone, the keywords long and short
are understood as long int and short int.

Enumeration types are considered basic types. Type specifiers for enumeration types
are discussed in “Enumeration Declarations” on page 55.

The keyword void has three uses: to specify a function return type, to specify an
argument-type list for a function that takes no arguments, and to specify a pointer
to an unspecified type. You can use the void type to declare functions that return no
value or to declare a pointer to an unspecified type. See “Arguments” on page 173
in Chapter 6 for information on veid when it appears alone within the parentheses
following a function name.

Microsoft Specific —»

Type checking is now ANSI-compliant, which means that type short and type int are
distinct types. For example, this is a redefinition in the Microsoft C compiler that was
accepted by previous versions of the compiler.

int  myfunc();
short myfunc();
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This next example also generates a warning about indirection to different types:

int *pi;

short *ps;

ps = pi: /* Now generates warning */

The Microsoft C compiler also generates warnings for differences in sign. For example:
signed int *pi;

unsigned int *pu

pi = pu; /* Now generates warning */

Type void expressions are evaluated for side effects. You cannot use the (nonexistent)
value of an expression that has type void in any way, nor can you convert a void
expression (by implicit or explicit conversion) to any type except void. If you do use
an expression of any other type in a context where a void expression is required, its
value is discarded.

To conform to the ANSI specification, void** cannot be used as int**. Only void*
can be used as a pointer to an unspecified type.

END Microsoft Specific

You can create additional type specifiers with typedef declarations, as described in
“Typedef Declarations” on page 86. See “Storage of Basic Types” on page 81 for
information on the size of each type.

Data Type Specifiers and Equivalents

50

This book generally uses the forms of the type specifiers listed in Table 3.1 rather than
the long forms, and it assumes that the char type is signed by default. Therefore,
throughout this book, char is equivalent to signed char.

Table 3.1 Type Specifiers and Equivalents

Type Specifier Equivalent(s)
signed char' char

signed int signed, int
signed short int short, signed short
signed long int long, signed long
unsigned char —

unsigned int unsigned
unsigned short int unsigned short
unsigned long int unsigned long
float —

long double’ —

! When you make the char type unsigned by default (by specifying the /J compiler option), you cannot
abbreviate signed char as char.

2 In 32-bit operating systems, the Microsoft C compiler maps long double to type double.
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Microsoft Specific —

You can specify the /J compiler option to change the default char type from signed
to unsigned. When this option is in effect, char means the same as unsigned char,
and you must use the signed keyword to declare a signed character value. If a char
value is explicitly declared signed, the /J option does not affect it, and the value is
sign-extended when widened to an int type. The char type is zero-extended when
widened to int type.

END Microsoft Specific

Type qualifiers give one of two properties to an identifier. The const type qualifier
declares an object to be nonmodifiable. The volatile type qualifier declares an item

whose value can legitimately be changed by something beyond the control of the
program in which it appears, such as a concurrently executing thread.

The two type qualifiers, const and volatile, can appear only once in a declaration.
Type qualifiers can appear with any type specifier; however, they cannot appear
after the first comma in a multiple item declaration. For example, the following
declarations are legal:

typedef volatile int VI;
const int ci;

These declarations are not legal:

typedef int *i, volatile *vi;

float f, const cf;

Type qualifiers are relevant only when accessing identifiers as 1-values in expressions.
See “L-Value and R-Value Expressions” on page 95 in Chapter 4 for information
about l-values and expressions.

Syntax

type-qualifier :
const
volatile

The following are legal const and volatile declarations:

int const *p_ci; /* Pointer to constant int */
int const (*p_ci); /* Pointer to constant int */
int *const cp_i; /* Constant pointer to int */
int (*const cp_i); /* Constant pointer to int */
int volatile vint; /* Volatile integer */

If the specification of an array type includes type qualifiers, the element is qualified,
not the array type. If the specification of the function type includes qualifiers, the
behavior is undefined. Neither volatile nor const affects the range of values or
arithmetic properties of the object.
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This list describes how to use const and volatile.

o The const keyword can be used to modify any fundamental or aggregate type, or
a pointer to an object of any type, or a typedef. If an item is declared with only
the const type qualifier, its type is taken to be const int. A const variable can be
initialized or can be placed in a read-only region of storage. The const keyword is
useful for declaring pointers to const since this requires the function not to change
the pointer in any way. '

e The compiler assumes that, at any point in the program, a volatile variable can
be accessed by an unknown process that uses or modifies its value. Therefore,
regardless of the optimizations specified on the command line, the code for each
assignment to or reference of a volatile variable must be generated even if it
appears to have no effect.

If volatile is used alone, int is assumed. The volatile type specifier can be used to
provide reliable access to special memory locations. Use volatile with data objects
that may be accessed or altered by signal handlers, by concurrently executing
programs, or by special hardware such as memory-mapped I/O control registers.
You can declare a variable as volatile for its lifetime, or you can cast a single
reference to be volatile.

¢ An item can be both const and volatile, in which case the item could not be
" legitimately modified by its own program, but could be modified by some
asynchronous process.

Declarators and Variable Declarations

The rest of this chapter describes the form and meaning of declarations for variable
types summarized in this list. In particular, the remaining sections explain how to
declare the following:

Type of Variable Description

Simple variables Single-value variables with integral or floating-point type

Arrays Variables composed of a collection of elements with the same type

Pointers Variables that point to other variables and contain variable
locations (in the form of addresses) instead of values

Enumeration variables Simple variables with integral type that hold one value from a set
of named integer constants

Structures Variables composed of a collection of values that can have
different types

Unions Variables composed of several values of different types that occupy

the same storage space

A declarator is the part of a declaration that specifies the name that is to be introduced
into the program. It can include modifiers such as * (pointer-to) and any of the
Microsoft calling-convention keywords.
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Microsoft Specific —»
In the declarator

__declspec(thread) char *var;

char is the type specifier, __declspec(thread) and * are the modifiers, and var
is the identifier’s name. ‘

END Microsoft Specific

You use declarators to declare arrays of values, pointers to values, and functions
returning values of a specified type. Declarators appear in the array and pointer
declarations described later in this chapter.

Syntax
declarator :
pointer o direct-declarator

direct-declarator :
identifier
(declarator)
direct-declarator [ constant-expression oy ]
direct-declarator ( parameter-type-list )
direct-declarator ( identifier-list oy )

type-qualifier-list :pointer :
* type-qualifier-list op
* type-qualifier-list o, pointer

type-qualifier
type-qualifier-list type-qualifier

Note See the syntax for declaration in “Overview of Declarations” on page 39, or see
Appendix A, “C Language Syntax Summary,” for the syntax that references a declarator.

When a declarator consists of an unmodified identifier, the item being declared has
a base type. If an asterisk (*) appears to the left of an identifier, the type is modified
to a pointer type. If the identifier is followed by brackets ([ 1), the type is modified
to an array type. If the identifier is followed by parentheses, the type is modified

to a function type. For more information about interpreting precedence within
declarations, see “Interpreting More Complex Declarators” on page 72.

Each declarator declares at least one identifier. A declarator must include a type
specifier to be a complete declaration. The type specifier gives the type of the
elements of an array type, the type of object addressed by a pointer type, or the
return type of a function.
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Array and pointer declarations are discussed in more detail later in this chapter.
The following examples illustrate a few simple forms of declarators:

int 1ist{2@]; /* Declares an array of 20 int values named list */

char *cp; /* Declares a pointer to a char value */

double func( void ); /* Declares a function named func, with no
arguments, that returns a double value */

int *aptr[10] /* Declares an array of 10 pointers */

Microsoft Specific —
The Microsoft C compiler does not limit the number of declarators that can modify an
arithmetic, structure, or union type. The number is limited only by available memory.

END Microsoft Specific

Simple Variable Declarations

The declaration of a simple variable, the simplest form of a direct declarator,
specifies the variable’s name and type. It also specifies the variable’s storage class
and data type.

Storage classes or types (or both) are required on variable declarations. Untyped
variables (such as var;) generate warnings.

Syntax
declarator :
pointer o direct-declarator

direct-declarator :
identifier

identifier :
nondigit
identifier nondigit
identifier digit

For arithmetic, structure, union, enumerations, and void types, and for types
represented by typedef names, simple declarators can be used in a declaration since
the type specifier supplies all the typing information. Pointer, array, and function
types require more complicated declarators.

You can use a list of identifiers separated by commas (,) to specify several variables
in the same declaration. All variables defined in the declaration have the same base
type. For example:

int x, y; /* Declares two simple variables of type int */
int const z = 1; /* Declares a constant value of type int */

The variables x and y can hold any value in the set defined by the int type for a
particular implementation. The simple object z is initialized to the value 1 and is
not modifiable.
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If the declaration of z was for an uninitialized static variable or was at file scope, it
would receive an initial value of 0, and that value would be unmodifiable.

unsigned long reply, flag; /* Declares two variables
named reply and flag */

In this example, both the variables, reply and f1ag, have unsigned long type and
hold unsigned integral values.

Enumeration Declarations

An enumeration consists of a set of named integer constants. An enumeration type
declaration gives the name of the (optional) enumeration tag and defines the set of
named integer identifiers (called the “enumeration set,” “enumerator constants,”
“enumerators,” or “members”). A variable with enumeration type stores one of the
values of the enumeration set defined by that type.

Variables of enum type can be used in indexing expressions and as operands of all
arithmetic and relational operators. Enumerations provide an alternative to the #define
preprocessor directive with the advantages that the values can be generated for you
and obey normal scoping rules.

In ANSI C, the expressions that define the value of an enumerator constant always
have int type; thus, the storage associated with an enumeration variable is the storage
required for a single int value. An enumeration constant or a value of enumerated type
can be used anywhere the C language permits an integer expression.

Syntax

enum-specifier :
enum identifier o { enumerator-list }
enum identifier ‘

The optional identifier names the enumeration type defined by enumerator-list. This
identifier is often called the “tag” of the enumeration specified by the list. A type
specifier of the form

enum identifier { enumerator-list }

declares identifier to be the tag of the enumeration specified by the enumerator-list
nonterminal. The enumerator-list defines the “enumerator content.” The
enumerator-list is described in detail below.

If the declaration of a tag is visible, subsequent declarations that use the tag but omit
enumerator-list specify the previously declared enumerated type. The tag must refer to
a defined enumeration type, and that enumeration type must be in current scope. Since
the enumeration type is defined elsewhere, the enumerator-list does not appear in this
declaration. Declarations of types derived from enumerations and typedef declarations
for enumeration types can use the enumeration tag before the enumeration type is
defined.
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Syntax
enumerator-list :
enumerator
enumerator-list , enumerator

enumerator .
enumeration-constant
enumeration-constant = constant-expression

enumeration-constant
identifier

Each enumeration-constant in an enumeration-list names a value of the enumeration
set. By default, the first enumeration-constant is associated with the value 0. The next
enumeration-constant in the list is associated with the value of ( constant-expression +
1), unless you explicitly associate it with another value. The name of an
enumeration-constant is equivalent to its value.

You can use enumeration-constant = constant-expression to override the default
sequence of values. Thus, if enumeration-constant = constant-expression appears in
the enumerator-list, the enumeration-constant is associated with the value given by
constant-expression. The constant-expression must have int type and can be negative.

The following rules apply to the members of an enumeration set:

e An enumeration set can contain duplicate constant values. For example, you could
associate the value 0 with two different identifiers, perhaps named nul11 and zero,
in the same set.

o The identifiers in the enumeration list must be distinct from other identifiers in the
same scope with the same visibility, including ordinary variable names and
identifiers in other enumeration lists.

e Enumeration tags obey the normal scoping rules. They must be distinct from other
enumeration, structure, and union tags with the same visibility.

Examples

These examples illustrate enumeration declarations:

enum DAY /* Defines an enumeration type */

{
saturday, /* Names day and declares a */
sunday = 0, /* variable named workday with */
monday, /* that type */
tuesday,
wednesday, /* wednesday is associated with 3 */
thursday,
friday

} workday;
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The value 0 is associated with saturday by default. The identifier sunday is
explicitly set to 0. The remaining identifiers are given the values 1 through 5 by
default.

In this example, a value from the set DAY is assigned to the variable today.
enum DAY today = wednesday;

Note that the name of the enumeration constant is used to assign the value. Since
the DAY enumeration type was previously declared, only the enumeration tag DAY
is necessary.

To explicitly assign an integer value to a variable of an enumerated data type, use
a type cast:

workday = ( enum DAY ) ( day_value - 1 ):
This cast is recommended in C but is not required.

enum BOOLEAN /* Declares an enumeration data type called BOOLEAN */
{

false, /* false = 0, true =1 */

true
};

enum BOOLEAN end_flag, match_flag; /* Two variables of type BOOLEAN */
This declaration can also be specified és

enum BOOLEAN { false, true } end_flag, match_flag;\

or as

enum BOOLEAN { false, true } end_flag;
enum BOOLEAN match_flag;

An example that uses these variables might look like this:
if ( match_flag == false )
{
/* statement */
}
end_flag = true;

Unnamed enumerator data types can also be declared. The name of the data type
is omitted, but variables can be declared. The variable response is a variable of
the type defined:

enum { yes, no } response;
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Structure Declarations
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A “structure declaration” names a type and specifies a sequence of variable values
(called “members” or “fields” of the structure) that can have different types. An
optional identifier, called a “tag,” gives the name of the structure type and can be used
in subsequent references to the structure type. A variable of that structure type holds
the entire sequence defined by that type. Structures in C are similar to the types
known as “records” in other languages.

Syntax

struct-or-union-specifier
struct-or-union identifier o { struct-declaration-list }
struct-or-union identifier

Struct-or-union :
struct
union

struct-declaration-list
struct-declaration
struct-declaration-list struct-declaration

The structure content is defined to be

struct-declaration :
specifier-qualifier-list struct-declarator-list ;

specifier-qualifier-list .
type-specifier specifier-qualifier-list o
type-qualifier specifier-qualifier-list o

struct-declarator-list :
struct-declarator
struct-declarator-list , struct-declarator

struct-declarator :
declarator

The declaration of a structure type does not set aside space for a structure. It is only a
template for later declarations of structure variables.

A previously defined identifier (tag) can be used to refer to a structure type defined
elsewhere. In this case, struct-declaration-list cannot be repeated as long as the
definition is visible. Declarations of pointers to structures and typedefs for structure
types can use the structure tag before the structure type is defined. However, the
structure definition must be encountered prior to any actual use of the size of the
fields. This is an incomplete definition of the type and the type tag. For this definition
to be completed, a type definition must appear later in the same scope.
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The struct-declaration-list specifies the types and names of the structure members. A
struct-declaration-list argument contains one or more variable or bit-field declarations.

Each variable declared in struct-declaration-list is defined as a member of the structure
type. Variable declarations within struct-declaration-list have the same form as other
variable declarations discussed in this chapter, except that the declarations cannot
contain storage-class specifiers or initializers. The structure members can have any
variable types except type void, an incomplete type, or a function type.

A member cannot be declared to have the type of the structure in which it appears.
However, a member can be declared as a pointer to the structure type in which it
appears as long as the structure type has a tag. This allows you to create linked lists
of structures.

Structures follow the same scoping as other identifiers. Structure identifiers must be
distinct from other structure, union, and enumeration tags with the same visibility.

Each struct-declaration in a struct-declaration-list must be unique within the list.
However, identifier names in a struct-declaration-list do not have to be distinct from
ordinary variable names or from identifiers in other structure declaration lists.

Nested structures can also be accessed as though they were declared at the file-scope
level. For example, given this declaration:

struct a

{
int x;
struct b
{

int y;

} var2;

} varl;

these declarations are both legal:

struct a var3;
struct b varé4;

Examples

These examples illustrate structure declarations:

struct employee /* Defines a structure variable named temp */

{
char name[20];
int id;
long class;

} temp;

The employee structure has three members: name, id, and class. The name
member is a 20-element array, and id and c1ass are simple members with int and
long type, respectively. The identifier emp1oyee is the structure identifier.

struct employee student, faculty, staff;
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This example defines three structure variables: student, faculty, and staff. Each
structure has the same list of three members. The members are declared to have the
structure type emp1oyee, defined in the previous example.

struct /* Defines an anonymous struct and a */

{ /* structure variabie named complex */
float x, y;

} complex;

The compTex structure has two members with float type, x and y. The structure type
has no tag and is therefore unnamed or anonymous.

struct sample /* Defines a structure named x */

{

char c;

float *pf;

struct sample *next;
}x;

The first two members of the structure are a char variable and a pointer to a float
value. The third member, next, is declared as a pointer to the structure type being
defined (sample).

Anonymous structures can be useful when the tag named is not needed. This is the
case when one declaration defines all structure instances. For example:

struct
{
int x;
int y;
} mystruct;

Embedded structures are often anonymous.

struct somestruct
{
struct /* Anonymous structure */
{
int x, y;
} point;
int type;
}ow;

Microsoft Specific »

The compiler allows an unsized or zero-sized array as the last member of a structure.
This can be useful if the size of a constant array differs when used in various
situations. The declaration of such a structure looks like this:

struct identifier

{

set-of-declarations
type array-namel ];
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Unsized arrays can appear only as the last member of a structure. Structures
containing unsized array declarations can be nested within other structures as long
as no further members are declared in any enclosing structures. Arrays of such
structures are not allowed. The sizeof operator, when applied to a variable of this
type or to the type itself, assumes 0 for the size of the array.

Structure declarations can also be specified without a declarator when they are
members of another structure or union. The field names are promoted into the
enclosing structure. For example, a nameless structure looks like this:

struct s
{
float y:
struct
{
int a, b, c;
I
char str[10];
} *p_s:

p_s->b = 100; /* A reference to a field in the s structure */

See “Structure and Union Members” on page 106 in Chapter 4 for information about
structure references.

END Microsoft Specific

Bit Fields

In addition to declarators for members of a structure or union, a structure declarator
can also be a specified number of bits, called a “bit field.” Its length is set off from the
declarator for the field name by a colon. A bit field is interpreted as an integral type.

Syntax
struct-declarator :
declarator
type-specifier declarator .y : constant-expression

The constant-expression specifies the width of the field in bits. The type-specifier for
the declarator must be unsigned int, signed int, or int, and the constant-expression
must be a nonnegative integer value. If the value is zero, the declaration has no
declarator. Arrays of bit fields, pointers to bit fields, and functions returning bit fields
are not allowed. The optional declarator names the bit field. Bit fields can only be
declared as part of a structure. The address-of operator (&) cannot be applied to
bit-field components.

Unnamed bit fields cannot be referenced, and their contents at run time are
unpredictable. They can be used as “dummy” fields, for alignment purposes. An
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unnamed bit field whose width is specified as 0 guarantees that storage for the
member following it in the struct-declaration-list begins on an int boundary.

Bit fields must also be long enough to contain the bit pattern. For example, these
two statements are not legal:

short a:17; /* I1legall */
int long y:33; /* I1legal!l */

This example defines a two-dimensional array of structures named screen.

struct

{
unsigned short icon : 8;
unsigned short color : 4;
unsigned short underline : 1;
unsigned short blink : 1;

} screen[25][80];

The array contains 2,000 elements. Each element is an individual structure containing
four bit-field members: icon, color, undertine, and b11ink. The size of each
structure is two bytes.

Bit fields have the same semantics as the integer type. This means a bit field is used in
expressions in exactly the same way as a variable of the same base type would be
used, regardless of how many bits are in the bit field.

Microsoft Specific —

Bit fields defined as int are treated as signed. A Microsoft extension to the ANSI C
standard allows char and long types (both signed and unsigned) for bit fields.
Unnamed bit fields with base type long, short, or char (signed or unsigned) force
alignment to a boundary appropriate to the base type.

Bit fields are allocated within an integer from least-significant to most-significant bit.
In the following code

struct mybitfields

{
unsigned short a : 4;
unsigned short b : 5;
unsigned short ¢ : 7;
} test;
void main( void );
{
test.a = 2;
test.b = 31;
test.c = 0;
}

the bits would be arranged as follows:

00000001 11110010
cccececcchb bbbbaaaa
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Since the 8086 family of processors stores the low byte of integer values before the
high byte, the integer @x01F2 above would be stored in physical memory as 0xF2
followed by 0x01.

END Microsoft Specific

Storage and Alignment of Structures

Microsoft Specific —

Structure members are stored sequentially in the order in which they are declared: the
first member has the lowest memory address and the last member the highest.

Every data object has an alignment-requirement. For structures, the requirement is
the largest of its members. Every object is allocated an offset so that

offset % alignment-requirement ==

Adjacent bit fields are packed into the same 1-, 2-, or 4-byte allocation unit if the
integral types are the same size and if the next bit field fits into the current allocation
unit without crossing the boundary imposed by the common alignment requirements
of the bit fields. -

To conserve space or to conform to existing data structures, you may want to store
structures more or less compactly. The /Zp [r] compiler option and the #pragma pack
control how structure data is “packed” into memory. When you use the /Zp[r] option,
where n is 1, 2, 4, 8, or 16, each structure member after the first is stored on byte
boundaries that are either the alignment requirement of the field or the packing size
(n), whichever is smaller. Expressed as a formula, the byte boundaries are the

min( n, sizeof( item ) )

where n is the packing size expressed with the /Zp[n] option and ifem is the structure
member. The default packing size is /Zp8.

To use the pack pragma to specify packing other than the packing specified on the
command line for a particular structure, give the pack pragma, where the packing
sizeis 1,2, 4, 8, or 16, before the structure. To reinstate the packing given on the
command line, specify the pack pragma with no arguments.

Bit fields default to size long for the Microsoft C compiler. Structure members are
aligned on the size of the type or the /Zp[n] size, whichever is smaller. The default
size is 4.

END Microsoft Specific

Union Declarations

A “union declaration” specifies a set of variable values and, optionally, a tag naming
the union. The variable values are called “members” of the union and can have
different types. Unions are similar to “variant records” in other languages.
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Syntax

struct-or-union-specifier :
struct-or-union identifier o { struct-declaration-list }
struct-or-union identifier

struct-or-union .
struct
union

struct-declaration-list
struct-declaration
struct-declaration-list struct-declaration

The union gonient is defined to be

struct-declaration :

specifier-qualifier-list struct-declarator-list ;
specifier-qualifier-list :

type-specifier specifier-qualifier-list o

type-qualifier specifier-qualifier-list o
struct-declarator-list :

struct-declarator

struct-declarator-list , struct-declarator

A variable with union type stores one of the values defined by that type. The same
rules govern structure and union declarations. Unions can also have bit fields.

Members of unions cannot have an incomplete type, type void, or function type.
Therefore members cannot be an instance of the union but can be pointers to the
union type being declared.

A union type declaration is a template only. Memory is not reserved until the
variable is declared.

Note If a union of two types is declared and one value is stored, but the union is accessed
with the other type, the results are unreliable. For example, a union of float and int is declared.
A float value is stored, but the program later accesses the value as an int. In such a situation,
the value would depend on the internal storage of float values. The integer value would not

be reliable.

Examples

The following are examples of unions:

union sign /* A definition and a declaration */

{
int svar;
unsigned uvar;
} number;

This example defines a union variable with sign type and declares a variable named
number that has two members: svar, a signed integer, and uvar, an unsigned integer.
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This declaration allows the current value of number to be stored as either a signed or
an unsigned value. The tag associated with this union type is sign.

union /* Defines a two-dimensional */
{ /* array named screen */
struct
{

unsigned int icon : 8;
unsigned color : 4;
} windowl;
int screenval;
} screen[25][80];
The screen array contains 2,000 elements. Each element of the array is an individual
union with two members: windowl and screenval. The windowl member is a
structure with two bit-field members, icon and color. The screenval member is
an int. At any given time, each union element holds either the int represented by
screenval or the structure represented by windowl.

Microsoft Specific —

Nested unions can be declared anonymously when they are members of another
structure or union. This is an example of a nameless union:

struct str
{
int a, b;
union / * Unnamed union */
{
char c[4];
Tong 1;
float f;
}s
char c_array[10];
} my_str;
my_str.1 == @L; /* A reference to a field in the my_str union */

Unions are often nested within a structure that includes a field giving the type of data
contained in the union at any particular time. This is an example of a declaration for
such a union:

struct x
{
int type_tag;
union
{
int x;
float y;
}

}

See “Structure and Union Members” on page 106 in Chapter 4 for information about
referencing unions.

END Microsoft Specific
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Storage of Unions

The storage associated with a union variable is the storage required for the largest
member of the union. When a smaller member is stored, the union variable can
contain unused memory space. All members are stored in the same memory space
and start at the same address. The stored value-is overwritten each time a value is
assigned to a different member. For example:

union /* Defines a union named x */
{

char *a, b;

float f[20];
} x;

The members of the X union are, in order of their declaration, a pointer to a char
value, a char value, and an array of float values. The storage allocated for x is the
storage required for the 20-element array f, since f is the longest member of the
union. Because no tag is associated with the union, its type is unnamed or
“anonymous.”

Array Declarations
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An “array declaration” names the array and specifies the type of its elements. It can
also define the number of elements in the array. A variable with array type is
considered a pointer to the type of the array elements.

Syntax
declaration :
declaration-specifiers init-declarator-list oy 3

init-declarator-list :
init-declarator
init-declarator-list , init-declarator

init-declarator :
declarator
declarator = initializer

declarator .
pointer o direct-declarator

direct-declarator :
direct-declarator [ constant-expression gy ]

Because constant-expression is optional, the syntax has two forms:

o The first form defines an array variable. The constant-expression argument within
the brackets specifies the number of elements in the array. The constant-expression,
if present, must have integral type, and a value larger than zero. Each element has
the type given by type-specifier, which can be any type except void. An array
element cannot be a function type.



Chapter 3 Declarations and Types

o The second form declares a variable that has been defined elsewhere. It omits the
constant-expression argument in brackets, but not the brackets. You can use this
form only if you previously have initialized the array, declared it as a parameter, or
declared it as a reference to an array explicitly defined elsewhere in the program.

In both forms, direct-declarator names the variable and can modify the variable’s
~ type. The brackets ([ ]) following direct-declarator modify the declarator to an array

type.

Type qualifiers can appear in the declaration of an object of array type, but the
qualifiers apply to the elements rather than the array itself.

You can declare an array of arrays (a “multidimensional” array) by following the
array declarator with a list of bracketed constant expressions in this form:

type-specifier declarator [constant-expression] [constant-expression] ...

Each constant-expression in brackets defines the number of elements in a given
dimension: two-dimensional arrays have two bracketed expressions, three-dimensional
arrays have three, and so on. You can omit the first constant expression if you have
initialized the array, declared it as a parameter, or declared it as a reference to an array
explicitly defined elsewhere in the program.

You can define arrays of pointers to various types of objects by using complex
declarators, as described in “Interpreting More Complex Declarators” on page 72.

Arrays are stored by row. For example, the following array consists of two rows with
three columns each:

char A[2][3];

The three columns of the first row are stored first, followed by the three columns of
the second row. This means that the last subscript varies most quickly.

To refer to an individual element of an array, use a subscript expression, as described
in “Postfix Operators” on page 103 in Chapter 4.

Examples

These examples illustrate array declarations:
float matrix[10][15];
The two-dimensional array named matrix has 150 elements, each having float type.

struct {
float x, y;
} complex[100];

This is a declaration of an array of structures. This array has 100 elements; each
element is a structure containing two members.

extern char *name[];
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This statement declares the type and name of an array of pointers to char. The actual
definition of name occurs elsewhere.

Microsoft Specific —»

The type of integer required to hold the maximum size of an array is the size of size_t.
Defined in the header file STDDEF.H, size_t is an unsigned int with the range
0x00000000 to 0x7CFFFFFF.

END Microsoft Specific

Storage of Arrays

The storage associated with an array type is the storage required for all of its elements.
The elements of an array are stored in contiguous and increasing memory locations,
from the first element to the last.

Pointer Declarations

A “pointer declaration” names a pointer variable and specifies the type of the object to
which the variable points. A variable declared as a pointer holds a memory address.

Syntax
declarator :
pointer o direct-declarator

direct-declarator :
identifier
(declarator)
direct-declarator [ constant-expression o ]
direct-declarator ( parameter-type-list )
direct-declarator (identifier-list o )

pointer .
* type-qualifier-list o
* type-qualifier-list o pointer
type-qualifier-list :
type-qualifier
type-qualifier-list type-qualifier

The type-specifier gives the type of the object, which can be any basic, structure, or
union type. Pointer variables can also point to functions, arrays, and other pointers.
(For information on declaring and interpreting more complex pointer types, refer to
“Interpreting More Complex Declarators” on page 72.)

By making the type-specifier void, you can delay specification of the type to which
the pointer refers. Such an item is referred to as a “pointer to void” and is written as
void *. A variable declared as a pointer to veid can be used to point to an object
of any type. However, to perform most operations on the pointer or on the object to
which it points, the type to which it points must be explicitly specified for each
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operation. (Variables of type char * and type void * are assignment-compatible
without a type cast.) Such conversion can be accomplished with a type cast (see
“Type-Cast Conversions” on page 132 in Chapter 4 for more information).

The type-qualifier can be either const or velatile, or both. These specify, respectively,
that the pointer cannot be modified by the program itself (const), or that the pointer
can legitimately be modified by some process beyond the control of the program
(volatile). (See “Type Qualifiers” on page 51 for more information on const and
volatile.)

The declarator names the variable and can include a type modifier. For example, if
declarator represents an array, the type of the pointer is modified to be a pointer to
an array.

You can declare a pointer to a structure, union, or enumeration type before you
define the structure, union, or enumeration type. You declare the pointer by using the
structure or union tag as shown in the examples below. Such declarations are allowed
because the compiler does not need to know the size of the structure or union to
allocate space for the pointer variable.

Examples

The following examples illustrate pointer declarations.

char *message; /* Declares a pointer variable.named message */

The message pointer points to a variable with char type.

int *pointers[10]; /* Declares an array of pointers */

The pointers array has 10 elements; each element is a pointer to a variable with
int type.

int (*pointer)[10]; /* Declares a pointer to an array of 10 elements */

The pointer variable points to an array with 10 elements. Each element in this array
has int type.

int const *x; /* Declares a pointer variable, x,
to a constant value */

The pointer x can be modified to point to a different int value, but the value to which
it points cannot be modified.

const int some_object = 5 ;

int other_object = 37;

int *const y = &fixed_object;

const volatile *const z = &some_object;
int *const volatile w = &some_object;

The variable y in these declarations is declared as a constant pointer to an int value.
The value it points to can be modified, but the pointer itself must always point to the
same location: the address of fixed_object. Similarly, z is a constant pointer, but.
it is also declared to point to an int whose value cannot be modified by the program.
The additional specifier volatile indicates that although the value of the const int
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pointed to by z cannot be modified by the program, it could legitimately be modified
by a process running concurrently with the program. The declaration of w specifies
that the program cannot change the value pointed to and that the program cannot
modify the pointer.

struct 1ist *next, *previous; /* Uses the tag for 1ist */

This example declares two pointer variables, next and previous, that point to the
structure type 11ist. This declaration can appear before the definition of the 1ist
structure type (see the next example), as long as the 11 st type definition has the same
visibility as the declaration.

struct list

{

char *token;

int count;

struct Tist *next;
} line;

The variable 11ine has the structure type named 11st. The 11 st structure type has
three members: the first member is a pointer to a char value, the second is an int
value, and the third is a pointer to another 11 st structure.
struct id
{

unsigned int id_no;

struct name *pname;
} record;

The variable record has the structure type id. Note that pname is declared as a
pointer to another structure type named name. This declaration can appear before the
name type is defined.

Storage of Addresses

The amount of storage required for an address and the meaning of the address depend
on the implementation of the compiler. Pointers to different types are not guaranteed to
have the same length. Therefore, sizeof(char *) is not necessarily equal to sizeof(int *).
Microsoft Specific —

For the Microsoft C compiler, sizeof(char *) is equal to sizeof(int *).

END Microsoft Specific

Based Pointers
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For the Microsoft 32-bit C compiler, a based pointer is a 32-bit offset from a 32-bit
pointer base. Based addressing is useful for exercising control over sections where
objects are allocated, thereby decreasing the size of the executable file and increasing
execution speed. In general, the form for specifying a based pointer is

type __based( base ) declarator
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The “based on pointer” variant of based addressing enables specification of a pointer
as a base. The based pointer, then, is an offset into the memory section starting at the
beginning of the pointer on which it is based. Pointers based on pointer addresses
are the only form of the __based keyword valid in 32-bit compilations. In such
compilations, they are 32-bit displacements from a 32-bit base.

One use for pointers based on pointers is for persistent identifiers that contain
pointers. A linked list that consists of pointers based on a pointer can be saved to
disk, then reloaded to another place in memory, with the pointers remaining valid.

The following example shows a pointer based on a pointer.

void *vpBuffer;

struct 1list_t
{

void __based( vpBuffer ) *vpData;

struct 11ist_t __based( vpBuffer ). *11Next;
};

The pointer vpBuffer is assigned the address of memory allocated at some later point
in the program. The linked list is relocated relative to the value of vpBuffer.

END Microsoft Specific

Abstract Declarators

- An abstract declarator is a declarator without an identifier, consisting of one or more
pointer, array, or function modifiers. The pointer modifier (*) always precedes the
identifier in a declarator; array ([ ]) and function ( () ) modifiers follow the identifier.
Knowing this, you can determine where the identifier would appear in an abstract
declarator and interpret the declarator accordingly. See “Interpreting More Complex
Declarators” on page 72 for additional information and examples of complex
declarators. Generally typedef can be used to simplify declarators. See “Typedef
Declarations” on page 86.

Abstract declarators can be complex. Parentheses in a complex abstract declarator
specify a particular interpretation, just as they do for the complex declarators in
declarations.

These examples illustrate abstract declarators:

int * /* The type name for a pointer to type int: */
int *[3] /* An array of three pointers to int */
int (*) [5] /* A pointer to an array of five int */
int *() /* A function with no parameter specification */

/* returning a pointer to int */

YA DR
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/* A pointer to a function taking no arguments and
* returning an int
*/

int (*) ( void )

/* An array of an unspecified number of constant pointers to

* functions each with one parameter that has type unsigned int

* and an unspecified number of other parameters returning an int
*/

int (*const []) ( unsigned int, ... )

Note The abstract declarator consisting of a set of empty parentheses, (), is not allowed
because it is ambiguous. It is impossible to determine whether the implied identifier belongs
inside the parentheses (in which case it is an unmodified type) or before the parentheses
(in which case it is a function type).

Interpreting More Complex Declarators
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You can enclose any declarator in parentheses to specify a particular interpretation of
a “complex declarator.” A complex declarator is an identifier qualified by more than
one array, pointer, or function modifier. You can apply various combinations of array,
pointer, and function modifiers to a single identifier. Generally typedef may be used
to simplify declarations. See “Typedef Declarations” on page 86.

In interpreting complex declarators, brackets and parentheses (that is, modifiers to
the right of the identifier) take precedence over asterisks (that is, modifiers to the left
of the identifier). Brackets and parentheses have the same precedence and associate
from left to right. After the declarator has been fully interpreted, the type specifier is
applied as the last step. By using parentheses you can override the default association
order and force a particular interpretation. Never use parentheses, however, around
an identifier name by itself. This could be misinterpreted as a parameter list.

A simple way to interpret complex declarators is to read them “from the inside out,”
using the following four steps:

1. Start with the identifier and look directly to the right for brackets or parentheses
(if any).

2. Interpret these brackets or parentheses, then look to the left for asterisks.

3. If you encounter a right parenthesis at any stage, go back and apply rules 1 and 2
to everything within the parentheses.

4. Apply the type specifier.

char *( *(*var)() )[10];

A A A A

7 6 421 3 5
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In this example, the steps are numbered in order and can be interpreted as follows:

1. The identifier var is declared as

. a pointer to

. a function returning

. a pointer to

. an array of 10 elements, which are

. pointers to

N O L AW

. char values.

Examples

The following examples illustrate other complex declarations and show how
parentheses can affect the meaning of a declaration.

int *var[5]; /* Array of pointers to int values */

The array modifier has higher priority than the pointer modifier, so var is declared to
be an array. The pointer modifier applies to the type of the array elements; therefore,
the array elements are pointers to int values.

int (*var)[5]; /* Pointer to array of int values */

In this declaration for var, parentheses give the pointer modifier higher priority than
the array modifier, and var is declared to be a pointer to an array of five int values.

long *var( 16ng. long ); /* Function returning pointer to long */

Function modifiers also have higher priority than pointer modifiers, so this declaration
for var declares var to be a function returning a pointer to a long value. The function
is declared to take two long values as arguments.

lTong (*var)( long, long ); /* Pointer to function returning long */

This example is similar to the previous one. Parentheses give the pointer modifier
higher priority than the function modifier, and var is declared to be a pointer to a
function that returns a long value. Again, the function takes two long arguments.

struct both /* Array of pointers to functions */
{ /* returning structures */
int a;
char b;

} ¢ *var[5] )( struct both, struct both );

The elements of an array cannot be functions, but this declaration demonstrates how
to declare an array of pointers to functions instead. In this example, var is declared to
be an array of five pointers to functions that return structures with two members. The
arguments to the functions are declared to be two structures with the same structure
type, both. Note that the parentheses surrounding *var[5] are required. Without
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them, the declaration is an illegal attempt to declare an array of functions, as shown
below:

/* ILLEGAL */
struct both *var[5]( struct both, struct both );

The following statement declares an array of pointers.
unsigned int *(* const *name[5][10] ) ( void );

The name array has 50 elements organized in a multidimensional array. The elements
are pointers to a pointer that is a constant. This constant pointer points to a function
that has no parameters and returns a pointer to an unsigned type.

This next example is a function returning a pointer to an array of three double values.
double ( *var( double (*)[3] ) )[3]:

In this declaration, a function returns a pointer to an array, since functions returning
arrays are illegal. Here var is declared to be a function returning a pointer to an array
of three double values. The function var takes one argument. The argument, like the
return value, is a pointer to an array of three double values. The argument type is
given by a complex abstract-declarator. The parentheses around the asterisk in the
argument type are required; without them, the argument type would be an array of
three pointers to double values. For a discussion and examples of abstract declarators
see “Abstract Declarators” on page 71.

union sign /* Array of arrays of pointers */
{ /* to pointers to unions */
int x;
unsigned y;

} **var[5][5];

As the above example shows, a pointer can point to another pointer, and an array can
contain arrays as elements. Here var is an array of five elements. Each element is a
five-element array of pointers to pointers to unions with two members.

union sign *(*var[5])[5]; /* Array of pointers to arrays
of pointers to unions */

This example shows how the placement of parentheses changes the meaning of the
declaration. In this example, var is a five-element array of pointers to five-element
arrays of pointers to unions. For examples of how to use typedef to avoid complex
declarations, see “Typedef Declarations” on page 86.

Initialization

An “initializer” is a value or a sequence of values to be assigned to the variable being
declared. You can set a variable to an initial value by applying an initializer to the
declarator in the variable declaration. The value or values of the initializer are
assigned to the variable.
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The following sections describe how to initialize variables of scalar, aggregate, and
string types. “Scalar types” include all the arithmetic types, plus pointers. “Aggregate
types” include arrays, structures, and unions.

Initializing Scalar Types

When initializing scalar types, the value of the assignment-expression is assigned to
the variable. The conversion rules for assignment apply. (See “Type Conversions” on
page 126 in Chapter 4 for information on conversion rules.) =

Syntax
declaration :
declaration-specifiers init-declarator-list oy 5

declaration-specifiers :
storage-class-specifier declaration-specifiers oy
type-specifier declaration-specifiers oy
type-qualifier declaration-specifiers qp,

init-declarator-list :
init-declarator
init-declarator-list , init-declarator

init-declarator :

declarator

declarator = initializer  [* For scalar initialization */
initializer :

assignment-expression

You can initialize variables of any type, provided that you obey the following rules:

e Variables declared at the file-scope level can be initialized. If you do not explicitly
initialize a variable at the external level, it is initialized to O by default.

¢ A constant expression can be used to initialize any global variable declared with
the static storage-class-specifier. Variables declared to be static are initialized
when program execution begins. If you do not explicitly initialize a global static
variable, it is initialized to O by default, and every member that has pointer type is
assigned a null pointer.

e Variables declared with the auto or register storage-class specifier are initialized
each time execution control passes to the block in which they are declared. If you
omit an initializer from the declaration of an auto or register variable, the initial
value of the variable is undefined. For automatic and register values, the initializer
is not restricted to being a constant; it can be any expression involving previously
defined values, even function calls.

e The initial values for external variable declarations and for all static variables,
whether external or internal, must be constant expressions. (For more information,
see “Constant Expressions” on page 96 in Chapter 4.) Since the address of any
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externally declared or static variable is constant, it can be used to initialize an
internally declared static pointer variable. However, the address of an auto
variable cannot be used as a static initializer because it may be different for each
execution of the block. You can use either constant or variable values to initialize
auto and register variables.

o If the declaration of an identifier has block scope, and the identifier has external
linkage, the declaration cannot have an initialization.

Examples

The following examples illustrate initializations:

int x = 10;

The integer variable x is initialized to the constant expression 10.
register int *px = 0;

The pointer pX is initialized to 0, producing a “null” pointer.
const int ¢ = (3 * 1024); ‘

This example uses a constant expression (3 * 1024) to initialize c to a constant
value that cannot be modified because of the const keyword.

int *b = &x;
This statement initializes the pointer b with the address of another variable, x.
int *const a = &z;

The pointer a is initialized with the address of a variable named z. However, since it is
specified to be a const, the variable a can only be initialized, never modified. It
always points to the same location.

int GLOBAL ;
int function( void )
{
int LOCAL ;
static int *1p = &LOCAL; /* I1legal initialization */
static int *gp = &GLOBAL; /* Legal initialization */
register int *rp = &LOCAL; /* Legal initialization */
}

The global variable GLOBAL is declared at the external level, so it has global lifetime.
The local variable LOCAL has auto storage class and only has an address during the
execution of the function in which it is declared. Therefore, attempting to initialize the
static pointer variable 1p with the address of LOCAL is not permitted. The static
pointer variable gp can be initialized to the address of GLOBAL because that address is
always the same. Similarly, *rp can be initialized because rp is a local variable and
can have a nonconstant initializer. Each time the block is entered, LOCAL has a new
address, which is then assigned to rp.
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Initializing Aggregate Types
An “aggregate” type is a structure, union, or array type. If an aggregate type
contains members of aggregate types, the initialization rules apply recursively.

Syntax
initializer :
{ initializer-list } /* For aggregate initialization */
{ initializer-list , }
initializer-list :
initializer
initializer-list , initializer

The initializer-list is a list of initializers separated by commas. Each initializer in the
list is either a constant expression or an initializer list. Therefore, initializer lists can
be nested. This form is useful for initializing aggregate members of an aggregate type,
as shown in the examples in this section. However, if the initializer for an automatic
identifier is a single expression, it need not be a constant expression; it merely needs
to have appropriate type for assignment to the identifier.

For each initializer list, the values of the constant expressions are assigned, in order,
to the corresponding members of the aggregate variable.

If initializer-list has fewer values than an aggregate type, the remaining members

or elements of the aggregate type are initialized to O for external and static variables.
The initial value of an automatic identifier not explicitly initialized is undefined. If
initializer-list has more values than an aggregate type, an error results. These rules
apply to each embedded initializer list, as well as to the aggregate as a whole.

A structure’s initializer is either an expression of the same type, or a list of initializers
for its members enclosed in curly braces ({ }). Unnamed bit-field members are not
initialized.

When a union is initialized, initializer-list must be a single constant expression. The
value of the constant expression is assigned to the first member of the union.

If an array has unknown size, the number of initializers determines the size of the
array, and its type becomes complete. There is no way to specify repetition of an
initializer in C, or to initialize an element in the middle of an array without providing
all preceding values as well. If you need this operation in your program, write the
routine in assembly language.

Note that the number of initializers can set the size of the array:
intx{L1=(0,1, 2}

If you specify the size and give the wrong number of initializers, however, the
compiler generates an error.
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Microsoft Specific —

The maximum size for an array is defined by size_t. Defined in the header file
STDDEEH, size_t is an unsigned int with the range 0x00000000 to 0x7CFFFFFF.

END Microsoft Specific

Examples

This example shows initializers for an array.

int P[41[3] =
{

P R M M)

1
2,
3,
4,
}s

This statement declares P as a four-by-three array and initializes the elements of its
first row to 1, the elements of its second row to 2, and so on through the fourth row.
Note that the initializer list for the third and fourth rows contains commas after the last
constant expression. The last initializer list ({4, 4, 4,},)is also followed by a
comma. These extra commas are permitted but are not required; only commas that
separate constant expressions from one another, and those that separate one initializer
list from another, are required. '

If an aggregate member has no embedded initializer list, values are simply assigned,
in order, to each member of the subaggregate. Therefore, the initialization in the
previous example is equivalent to the following:

int P[4][3] =
{

1, 1,1, 2,2, 2, 3,3, 3, 4,4,4
1

Braces can also appear around individual initializers in the list and would help to
clarify the example above.

When you initialize an aggregate variable, you must be careful to use braces and
initializer lists properly. The following example illustrates the compiler’s
interpretation of braces in more detail:

typedef struct

{
~int nl, n2, n3;

} triplet;

triplet nlist[2]1[3] =

{
{{1,2,33,( 4,5,61, {( 7,8,9%}Y1}, /*Rowl?*/
{ {10,11,12 }, ( 13,14,15 }, { 16,17,18 } } /* Row 2 */

1
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In this example, n11ist is declared as a 2-by-3 array of structures, each structure
having three members. Row 1 of the initialization assigns values to the first row of
nlist, as follows:

1. The first left brace on row 1 signals the compiler that initialization of the first
aggregate member of nTist (thatis, n1ist[0]) is beginning.

2. The second left brace indicates that initialization of the first aggregate member of
n1ist[0] (thatis, the structure at n1ist[0][0]) is beginning.

3. The first right brace ends initialization of the structure n1ist[@]1[0]; the next left
brace starts initialization of n1ist[@][1].

4. The process continues until the end of the line, where the closing right brace ends
initialization of n1ist[@].

Row 2 assigns values to the second row of n11ist in a similar way. Note that the outer
sets of braces enclosing the initializers on rows 1 and 2 are required. The following
construction, which omits the outer braces, would cause an error:

triplet nlist[2]{3] = /* THIS CAUSES AN ERROR */
( ,
{ 1,2, 31.(
o

}. /* Line 1 */
{ 10,11,1 }

/* Line 2 */

}:

In this construction, the first left brace on line 1 starts the initialization of n1ist[ @1,
which is an array of three structures. The values 1, 2, and 3 are assigned to the three
members of the first structure. When the next right brace is encountered (after the
value 3), initialization of n1ist[@] is complete, and the two remaining structures in
the three-structure array are automatically initialized to 0. Similarly, { 4,5,6 }
initializes the first structure in the second row of n11ist. The remaining two structures
of n1ist[1] are set to 0. When the compiler encounters the next initializer list

({ 7,8,9 }),ittries to initialize n1ist[2]. Since n1ist has only two rows, this
attempt causes an error.

In this next example, the three int members of x are initialized to 1, 2, and 3,

respectively.
struct list
{
int i, j, k;
float m[2]1[3]1;
} x=(
]' ’
2,
3,
{4.0, 4.0, 4.0}
I

In the 11 st structure above, the three elements in the first row of m are initialized to
4.0; the elements of the remaining row of m are initialized to 0.0 by default.
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union
{
char x[2][3];
int i, j, k;
ry={{

}s
The union variable y, in this example, is initialized. The first element of the union is
an array, so the initializer is an aggregate initializer. The initializer list {*1'} assigns
values to the first row of the array. Since only one value appears in the list, the
element in the first column is initialized to the character 1, and the remaining two
elements in the row are initialized to the value 0 by default. Similarly, the first element
of the second row of x is initialized to the character 4, and the remaining two elements
in the row are initialized to the value 0.

Initializing Strings

80

You can initialize an array of characters (or wide characters) with a string literal (or
wide string literal). For example:

char code[ ] = "abc";

initializes code as a four-element array of characters. The fourth element is the null
character, which terminates all string literals.

An identifier list can only be as long as the number of identifiers to be initialized.
If you specify an array size that is shorter than the string, the extra characters are
ignored. For example, the following declaration initializes code as a three-element
character array: '

char code[3] = "abcd";
Only the first three characters of the initializer are assigned to code. The character d
and the string-terminating null character are discarded. Note that this creates an

unterminated string (that is, one without a 0 value to mark its end) and generates a
diagnostic message indicating this condition.

The declaration
char s[] = "abc", t[3] = "abc";
is identical to

char s[] = {'
t[3] =

If the string is shorter than the specified array size, the remaining elements of the
array are initialized to 0.

v' vbv' va, v\@v),
v’ 'bl' vcv }:

Microsoft Specific —»
In Microsoft C, string literals can be up to 2048 bytes in length.

END Microsoft Specific
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Storage of Basic Types

Table 3.2 summarizes the storage associated with each basic type.

Table 3.2 Sizes of Fundamental Types

Type Storage
char, unsigned char, signed char 1 byte

short, unsigned short 2 bytes
int, unsigned int 4 bytes
long, unsigned long 4 bytes
float 4 bytes
double 8 bytes
long double 8 bytes

The C data types fall into general categories. The “integral types” include char, int,
short, long, signed, unsigned, and enum. The “floating types” include float, double,
and long double. The “arithmetic types” include all floating and integral types.

Type char

The char type is used to store the integer value of a member of the representable
character set. That integer value is the ASCII code corresponding to the specified
character,

Microsoft Specific —

Character values of type unsigned char have a range from 0 to OxFF hexadecimal. A
signed char has range 0x80 to 0x7F. These ranges translate to 0 to 255 decimal, and
—128 to +127 decimal, respectively. The /J compiler optlon changes the default from
signed to unsigned.

END Microsoft Specific

Type int

The size of a signed or unsigned int item is the standard size of an integer on a
particular machine. For example, in 16-bit operating systems, the int type is usually
16 bits, or 2 bytes. In 32-bit operating systems, the int type is usually 32 bits, or 4
bytes. Thus, the int type is equivalent to either the short int or the long int type, and
the unsigned int type is equivalent to either the unsigned short or the unsigned long
type, depending on the target environment. The int types all represent signed values
unless specified otherwise.

The type specifiers int and unsigned int (or simply unsigned) define certain features
of the C language (for instance, the enum type). In these cases, the definitions of int
and unsigned int for a particular implementation determine the actual storage.

81



C Language Reference

82

Microsoft Specific —

Signed integers are represented in two’s-complement form. The most-significant bit
holds the sign: 1 for negative, O for positive and zero. The range of values is given in
Table 1.3, which is taken from the LIMITS.H header file.

END Microsoft Specific

Note The int and unsigned int type specifiers are widely used in C programs because they
allow a particular machine to handle integer values in the most efficient way for that machine.
However, since the sizes of the int and unsigned int types vary, programs that depend on

a specific int size may not be portable to other machines. To make programs more portable,
you can use expressions with the sizeof operator (as discussed in “The sizeof Operator” on
page 111 in Chapter 4) instead of hard-coded data sizes.

Sized Integer Types

Microsoft Specific —

Microsoft C features support for sized integer types. You can declare 8-, 16-, 32-, or
64-bit integer variables by using the __intn type specifier, where n is the size, in bits,
of the integer variable. The value of n can be 8, 16, 32, or 64. The following example
declares one variable of each of the four types of sized integers:

__int8 nSmall; // Declares 8-bit integer
__intl6 nMedium; // Declares 16-bit integer
__1int32 nlLarge; // Declares 32-bit integer
__int64 nHuge; // Declares 64-bit integer

The first three types of sized integers are synonyms for the ANSI types that have the
same size, and are useful for writing portable code that behaves identically across
multiple platforms. Note that the __int8 data type is synonymous with type char,
int16 is synonymous with type short, and __int32 is synonymous with type int.

The __int64 type has no equivalent ANSI counterpart.

END Microsoft Specific

Type float

Floating-point numbers use the IEEE (Institute of Electrical and Electronics
Engineers) format. Single-precision values with float type have 4 bytes, consisting
of a sign bit, an 8-bit excess-127 binary exponent, and a 23-bit mantissa. The
mantissa represents a number between 1.0 and 2.0. Since the high-order bit of the
mantissa is always 1, it is not stored in the number. This representation gives a
range of approximately 3.4E-38 to 3.4E+38 for type float.

You can declare variables as float or double, depending on the needs of your
application. The principal differences between the two types are the significance
they can represent, the storage they require, and their range. Table 3.3 shows the
relationship between significance and storage requirements.
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Table 3.3 Floating-Point Types

Type Significant digits Number of bytes
float 6-7 4
double 15-16 8

Floating-point variables are represented by a mantissa, which contains the value of the
number, and an exponent, which contains the order of magnitude of the number.

Table 3.4 shows the number of bits allocated to the mantissa and the exponent for
each floating-point type. The most significant bit of any float or double is always the
sign bit. If it is 1, the number is considered negative; otherwise, it is considered a
positive number.

Table 3.4 Lengths of Exponents and Mantissas

Type Exponent length Mantissa length
float 8 bits 23 bits
double 11 bits 52 bits

Because exponents are stored in an unsigned form, the exponent is biased by half
its possible value. For type float, the bias is 127; for type double, it is 1023. You
can compute the actual exponent value by subtracting the bias value from the
exponent value.

The mantissa is stored as a binary fraction greater than or equal to 1 and less than 2.
For types float and double, there is an implied leading 1 in the mantissa in the
most-significant bit position, so the mantissas are actually 24 and 53 bits long,
respectively, even though the most-significant bit is never stored in memory.

Instead of the storage method just described, the floating-point package can store
binary floating-point numbers as denormalized numbers. “Denormalized numbers”
are nonzero floating-point numbers with reserved exponent values in which the
most-significant bit of the mantissa is 0. By using the denormalized format, the range
of a floating-point number can be extended at the cost of precision. You cannot
control whether a floating-point number is represented in normalized or denormalized
form; the floating-point package determines the representation. The floating-point
package never uses a denormalized form unless the exponent becomes less than the
minimum that can be represented in a normalized form.

Table 3.5 shows the minimum and maximum values you can store in variables of
each floating-point type. The values listed in this table apply only to normalized
floating-point numbers; denormalized floating-point numbers have a smaller
minimum value. Note that numbers retained in 80x87 registers are always represented
in 80-bit normalized form; numbers can only be represented in denormalized form
when stored in 32-bit or 64-bit floating-point variables (variables of type float and

type long).
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Table 3.5 Range of Floating-Point Types

Type : Minimum value Maximum value
float 1.175494351 E - 38 3.402823466 E + 38
double 2.2250738585072014 E — 308 1.7976931348623158 E + 308

If precision is less of a concern than storage, consider using type float for floating-point
variables. Conversely, if precision is the most important criterion, use type double.

Floating-point variables can be promoted to a type of greater significance (from type
float to type double). Promotion often occurs when you perform arithmetic on
floating-point variables. This arithmetic is always done in as high a degree of
precision as the variable with the highest degree of precision. For example, consider
the following type declarations:

float f_short;

double f_long;
long double f_longer;

f_short = f_short * f_long;

In the preceding example, the variable f_short is promoted to type double and
multiplied by f_1ong; then the result is rounded to type float before being assigned
to f_short.

In the following example (which uses the declarations from the preceding example),
“the arithmetic is done in float (32-bit) precision on the variables; the result is then
promoted to type double:

f_longer = f_short * f_short;

Type double
Double precision values with double type have 8 bytes. The format is similar to the
float format except that it has an 11-bit excess-1023 exponent and a 52-bit mantissa,

plus the implied high-order 1 bit. This format gives a range of approximately
1.7E-308 to 1.7E+308 for type double.

Microsoft Specific —

The double type contains 64 bits: 1 for sign, 11 for the exponent, and 52 for the
mantissa. Its range is +/~1.7E308 with at least 15 digits of precision.

END Microsoft Specific

Type long double

The range of values for a variable is bounded by the minimum and maximum values
that can be represented internally in a given number of bits. However, because of C’s
conversion rules (discussed in detail in “Type Conversions” on page 126 in Chapter 4)
you cannot always use the maximum or minimum value for a constant of a particular
type in an expression.
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For example, the constant expression -32768 consists of the arithmetic negation
operator (-) applied to the constant value 32,768. Since 32,768 is too large to
represent as a short int, it is given the long type. Consequently, the constant
expression -32768 has long type. You can only represent —32,768 as a short int
by type-casting it to the short type. No information is lost in the type cast, since
—32,768 can be represented internally in 2 bytes.

The value 65,000 in decimal notation is considered a signed constant. It is given the
long type because 65,000 does not fit into a short. A value such as 65,000 can only be
represented as an unsigned short by type-casting the value to unsigned short type,
by giving the value in octal or hexadecimal notation, or by specifying it as 65000U.
You can cast this long value to the unsigned short type without loss of information,
since 65,000 can fit in 2 bytes when it is stored as an unsigned number.

Microsoft Specific —

The long double contains 80 bits: 1 for sign, 15 for exponent, and 64 for mantissa. Its
range is +/-1.2E4932 with at least 19 digits of precision. Although long double and
double are separate types, the representation of long double and double is identical.

END Microsoft Specific

Incomplete Types

An incomplete type is a type that describes an identifier but lacks information needed
to determine the size of the identifier. An “incomplete type” can be:

* A structure type whose members you have not yet specified.
e A union type whose members you have not yet specified.

o An array type whose dimension you have not yet specified.

The void type is an incomplete type that cannot be completed. To complete an
incomplete type, specify the missing information. The following examples show how
to create and complete the incomplete types.

o To create an incomplete structure type, declare a structure type without specifying
its members. In this example, the ps. pointer points to an incomplete structure type
called student.

struct student *ps;

¢ To complete an incomplete structure type, declare the same structure type later in
the same scope with its members specified, as in

struct student

{
int num;
1 /* student structure now completed */

85



C Language Reference

¢ To create an incomplete array type, declare an array type without specifying its
repetition count. For example:

char all: /* a has incomplete type */

¢ To complete an incomplete array type, declare the same name later in the same
scope with its repetition count specified, as in

char a[25]; /* a now has complete type */

Typedet Declarations

A typedef declaration is a declaration with typedef as the storage class. The declarator
becomes a new type. You can use typedef declarations to construct shorter or more
meaningful names for types already defined by C or for types that you have declared.
Typedef names allow you to encapsulate implementation details that may change.

A typedef declaration is interpreted in the same way as a variable or function
declaration, but the identifier, instead of assuming the type specified by the
declaration, becomes a synonym for the type.

Syntax
declaration :
declaration-specifiers init-declarator-list oy ;

declaration-specifiers :
storage-class-specifier declaration-specifiers o
type-specifier declaration-specifiers
type-qualifier declaration-specifiers o

storage-class-specifier :
typedef

type-specifier :
void
char
short
int
long
float
double
signed
unsigned
struct-or-union-specifier
enum-specifier
typedef-name

typedef-name :
identifier
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Note that a typedef declaration does not create types. It creates synonyms for existing
types, or names for types that could be specified in other ways. When a typedef name
is used as a type specifier, it can be combined with certain type specifiers, but not
others. Acceptable modifiers include const and volatile.

Typedef names share the name space with ordinary identifiers (see “Name Spaces” on
page 37 in Chapter 2 for more information). Therefore, a program can have a typedef
name and a local-scope identifier by the same name. For example:

typedef char FlagType:

int main()
{
}
int myproc( int )
{

int FlagType;
}

When declaring a local-scope identifier by the same name as a typedef, or when
declaring a member of a structure or union in the same scope or in an inner scope, the
type specifier must be specified. This example illustrates this constraint:

typedef char FlagType;
const FlagType Xx;

To reuse the F1agType name for an identifier, a structure member, or a union
member, the type must be provided:

const int FlagType: /* Type specifier required */
It is not sufficient to say
const FlagType; /* Incomplete specification */

because the F1agType is taken to be part of the type, not an identifier that is being
redeclared. This declaration is taken to be an illegal declaration like

int; /* Il1legal declaration */

You can declare any type with typedef, including pointer, function, and array types.
You can declare a typedef name for a pointer to a structure or union type before you
define the structure or union type, as long as the definition has the same visibility as
the declaration.

Typedef names can be used to improve code readability. All three of the following
declarations of signal specify exactly the same type, the first without making use of
any typedef names.

typedef void fv( int ), (*pfv)( int ); /* typedef declarations */
void ( *signal( int, void (*) (int)) ) ( int );

fv *signal( int, fv * ); /* Uses typedef type */

pfv signal( int, pfv ); /* Uses typedef type */
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Examples

The following examples illustrate typedef declarations:
typedef int WHOLE; /* Declares WHOLE to be a synonym for int */

Note that WHOLE could now be used in a variable declaration such as WHOLE 1i; or
const WHOLE i;.However, the declaration Tong WHOLE 1i; would be illegal.

typedef struct club
{
char name[30];
int size, year;
} GROUP;

This statement declares GROUP as a structure type with three members. Since a
structure tag, c1ub, is also specified, either the typedef name (GROUP) or the structure
tag can be used in declarations. You must use the struct keyword with the tag, and
you cannot use the struct keyword with the typedef name.

typedef GROUP *PG; /* Uses the previous typedef name
to declare a pointer */

The type PG is declared as a pointer to the GROUP type, which in turn is defined as a
structure type.

typedef void DRAWF( int, int );

This example provides the type DRAWF for a function returning no value and taking
two int arguments. This means, for example, that the declaration

DRAWF box;
is equivalent to the declaration

void box( int, int );

Extended Storage-Class Attributes
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Microsoft Specific —

Extended attribute syntax simplifies and standardizes the Microsoft-specific
extensions to the C language. The storage-class attributes that use extended attribute
syntax include thread, naked, dllimport, and dllexport.

The extended attribute syntax for specifying storage-class information uses the
__declspec keyword, which specifies that an instance of a given type is to be stored
with a Microsoft-specific storage-class attribute (thread, naked, dllimport, or
dllexport). Examples of other storage-class modifiers include the static and extern
keywords. However, these keywords are part of the ANSI C standard and as such are -
not covered by extended attribute syntax.
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Syntax
storage-class-specifier :
__declspec ( extended-decl-modifier-seq ) /* Microsoft Specific */

extended-decl-modifier-seq
extended-decl-modifier o
extended-decl-modifier-seq extended-decl-modifier

extended-decl-modifier :
thread
naked
dllimport
dllexport

White space separates the declaration modifiers. Note that extended-decl-modifier-seq
can be empty; in this case, __declspec has no effect.

The thread, naked, dllimport, and dllexport storage-class attributes are a property
only of the declaration of the data or function to which they are applied; they do not
redefine the type attributes of the function itself. The thread attribute affects data
only. The naked attribute affects functions only. The dllimport and dllexport
attributes affect functions and data.

END Microsoft Specific

DLL Import and Export

Microsoft Specific —

The dllimport and dllexport storage-class modifiers are Microsoft-specific
extensions to the C language. These modifiers define the DLL’s interface to its client
(the executable file or another DLL). For specific information about using these
modifiers, see “DLL Import and Export Functions” on page 158 in Chapter 6.

END Microsoft Specific

Naked

Microsoft Specific —

The naked storage-class attribute is a Microsoft-specific extension to the C language.
The compiler generates code without prolog and epilog code for functions declared
with the naked storage-class attribute. Naked functions are useful when you need to
write your own prolog/epilog code sequences using inline assembler code. Naked
functions are useful for writing virtual device drivers.

For specific information about using the naked attribute, see “Naked Functions’ on
page 162 in Chapter 6.

END Microsoft Specific
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Thread Local Storage

90

Microsoft Specific —

Thread Local Storage (TLS) is the mechanism by which each thread in a given
multithreaded process allocates storage for thread-specific data. In standard
multithreaded programs, data is shared among all threads of a given process, whereas
thread local storage is the mechanism for allocating per-thread data. For a complete
discussion of threads, see “Processes and Threads” in the Microsoft Win32e Software
Development Kit online documentation.

The Microsoft C language includes the extended storage-class attribute, thread,
which is used with the __declspec keyword to declare a thread local variable. For
example, the following code declares an integer thread local variable and initializes
it with a value:

__declspec( thread ) int tis_i = 1;.

These guidelines must be observed when you are declaring statically bound thread
local variables:

* You can apply the thread attribute only to data declarations and definitions. It
cannot be used on function declarations or definitions. For example, the following
code generates a compiler error:
f#define Thread __declspec( thread )

Thread void func(); /* Error */

¢ You can specify the thread attribute only on data items with static storage duration.
This includes global data (both static and extern) and local static data. You cannot
declare automatic data with the thread attribute. For example, the following code
generates compiler errors:

ffdefine Thread _ declspec( thread )
void funcl()

{
Thread int tls_i; /* Error */
}
int func2( Thread int tls_i ) /* Error */
{
return tls_i;
}

e You must use the thread attribute for the declaration and the definition of thread
local data, regardless of whether the declaration and definition occur in the same
file or separate files. For example, the following code generates an error:
fidefine Thread __declspec( thread )

extern int tls_i; /* This generates an error, because the */
int Thread t1s_i; /* declaration and the definition differ. */
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* You cannot use the thread attribute as a type modifier. For example, the following
code generates a compiler error:

char *ch __declspec( thread ); /* Error */

e The address of a thread local variable is not considered constant, and any expression
involving such an address is not considered a constant expression. This means that
you cannot use the address of a thread local variable as an initializer for a pointer.
For example, the compiler flags the following code as an error:
ffdefine Thread __declspec( thread )

Thread int tls_i;
int *p = &tis_i; /* Error */

o C permits initialization of a variable with an expression involving a reference to
itself, but only for objects of nonstatic extent. For example:
f#fdefine Thread __decispec( thread )

Thread int tls_i = tls_i; /* Error */

int j = j: /* Error */

Thread int tls_i = sizeof( tis_i ) /* Okay */

Note that a sizeof expression that includes the variable being initialized does not
constitute a reference to itself and is allowed.

For more information about using the thread attribute, see “Multithreading Topics”
in Visual C++ Programmer’s Guide online.

END Microsoft Specific
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CHAPTER 4

Expressions and Assignments

This chapter describes how to form expressions and to assign values in the C language.
Constants, identifiers, strings, and function calls are all operands that are manipulated in
expressions. The C language has all the usual language operators. This chapter covers
those operators as well as operators that are unique to C or Microsoft C. The topics
discussed include:

o [-value and r-value expressions
e Constant expressions

o Side effects

e Sequence points

o Operators

e Operator precedence

e Type conversions
¢ Type casts

Operands and Expressions

An “operand” is an entity on which an operator acts. An “expression” is a sequence
of operators and operands that performs any combination of these actions:

o Computes a value

e Designates an object or function

o Generates side effects

Operands in C include constants, identifiers, strings, function calls, subscript
expressions, member-selection expressions, and complex expressions formed by

combining operands with operators or by enclosing operands in parentheses. The
syntax for these operands is given in “Primary Expressions” on page 94.
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Primary Expressions

94

The operands in expressions are called “primary expressions.”

Syntax

primary-expression :
identifier
constant
string-literal
(expression)

expression :
assignment-expression
expression , assignment-expression

Identifiers in Primary Expressions

Identifiers can have integral, float, enum, struct, union, array, pointer, or function
type. An identifier is a primary expression provided it has been declared as
designating an object (in which case it is an 1-value) or as a function (in which case
it is a function designator). See “L-Value and R-Value Expressions” on page 95 for
a definition of 1-value.

The pointer value represented by an array identifier is not a variable, so an array
identifier cannot form the left-hand operand of an assignment operation and
therefore is not a modifiable 1-value.

An identifier declared as a function represents a pointer whose value is the address
of the function. The pointer addresses a function returning a value of a specified type.
Thus, function identifiers also cannot be l-values in assignment operations. For more
information, see “Identifiers” on page 5 in Chapter 1.

Constants in Primary Expressions

A constant operand has the value and type of the constant value it represents. A
character constant has int type. An integer constant has int, long, unsigned int, or
unsigned long type, depending on the integer’s size and on the way the value is
specified. See “Constants” on page 9 in Chapter 1 for more information.

String Literals in Primary Expressions

A “string literal” is a character, wide character, or sequence of adjacent characters
enclosed in double quotation marks. Since they are not variables, neither string literals
nor any of their elements can be the left-hand operand in an assignment operation.
The type of a string literal is an array of char (or an array of wchar_t for wide-string
literals). Arrays in expressions are converted to pointers. See “String Literals” on
page 18 in Chapter 1 for more information about strings.
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Expressions in Parentheses

You can enclose any operand in parentheses without changing the type or value of the
enclosed expression. For example, in the expression

(10+5)/5

the parentheses around 1@ + 5 mean that the value of 19 + 5 is evaluated first and it
becomes the left operand of the division (/) operator. The resultof ( 18 + 5 ) / 5
is 3. Without the parentheses, 10 + 5 / 5 would evaluate to 11.

Although parentheses affect the way operands are grouped in an expression, they
cannot guarantee a particular order of evaluation in all cases. For example, neither the
parentheses nor the left-to-right grouping of the following expression guarantees what
the value of i will be in either of the subexpressions:

i+ +1 ) * ( 2+ 1)
The compiler is free to evaluate the two sides of the multiplication in any order. If the

initial value of i is zero, the whole expression could be evaluated as either of these
two statements:

(0+1+1)*(2
(0+1+1)*(2

+ +

1)
o)

Exceptions resulting from side effects are discussed in “Side Effects” on page 97.

L-Value and R-Value Expressions

Expressions that refer to memory locations are called “l-value” expressions. An
l-value represents a storage region’s “locator” value, or a “left” value, implying that
it can appear on the left of the equal sign (=). L-values are often identifiers.

Expressions referring to modifiable locations are called “modifiable 1-values.” A
modifiable 1-value cannot have an array type, an incomplete type, or a type with the
const attribute. For structures and unions to be modifiable 1-values, they must not
have any members with the const attribute. The name of the identifier denotes a
storage location, while the value of the variable is the value stored at that location.

An identifier is a modifiable I-value if it refers to a memory location and if its type is
arithmetic, structure, union, or pointer. For example, if ptr is a pointer to a storage

. region, then *ptr is a modifiable I-value that designates the storage region to which
ptr points.

Any of the following C expressions can be I-value expressions:

o An identifier of integral, floating, pointer, structure, or union type
e A subscript ([ 1) expression that does not evaluate to an array
e A member-selection expression (—> or .)

e A unary-indirection (*) expression that does not refer to an array
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e An l-value expression in parentheses

¢ A const object (a nonmodifiable 1-value)

The term “r-value” is sometimes used to describe the value of an expression and to
distinguish it from an 1-value. All l-values are r-values but not all r-values are 1-values.

Microsoft Specific —

Microsoft C includes an extension to the ANSI C standard that allows casts of 1-values
to be used as 1-values, as long as the size of the object is not lengthened through the
cast. (See “Type-Cast Conversions” on page 132 for more information.) The following
example illustrates this feature:

char *p ;

short 1;

long 1;

(long *) p = &1 ; /* Legal cast  */
(Tong) i =1 ; /* I1legal cast */

The default for Microsoft C is that the Microsoft extensions are enabled. Use the /Za
compiler option to disable these extensions.

END Microsoft Specific

Constant Expressions

9

A constant expression is evaluated at compile time, not run time, and can be used
in any place that a constant can be used. The constant expression must evaluate to
a constant that is in the range of representable values for that type. The operands of
a constant expression can be integer constants, character constants, floating-point
constants, enumeration constants, type casts, sizeof expressions, and other constant
expressions.

Syntax
constant-expression :
conditional-expression

conditional-expression :

logical-OR-expression

logical-OR-expression ? expression : conditional-expression
expression :

assignment-expression
expression , assignment-expression

assignment-expression :
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator : one of
= ¥z [= Op= 4= —= <<= >>= &= "= |=
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The nonterminals for struct declarator, enumerator, direct declarator, direct-abstract
declarator, and labeled statement contain the constant-expression nonterminal.

An integral constant expression must be used to specify the size of a bit-field
member of a structure, the value of an enumeration constant, the size of an array,
or the value of a case constant.

Constant expressions used in preprocessor directives are subject to additional
restrictions. Consequently, they are known as “restricted constant expressions.”
Arestricted constant expression cannot contain sizeof expressions, enumeration
constants, type casts to any type, or floating-type constants. It can, however,
contain the special constant expression defined (identifier).

Expression Evaluation

Expressions involving assignment, unary increment, unary decrement, or calling a
function may have consequences incidental to their evaluation (side effects). When
a “sequence point” is reached, everything preceding the sequence point, including
any side effects, is guaranteed to have been evaluated before evaluation begins on
anything following the sequence point.

“Side effects” are changes caused by the evaluation of an expression. Side effects
occur whenever the value of a variable is changed by an expression evaluation. All
assignment operations have side effects. Function calls can also have side effects if
they change the value of an externally visible item, either by direct assignment or by
indirect assignment through a pointer.

Side Effects

The order of evaluation of expressions is defined by the specific implementation,
except when the language guarantees a particular order of evaluation (as outlined in
“Precedence and Order of Evaluation” on page 100). For example, side effects occur
in the following function calls:

add( i + 1, i =3 +2);
myproc( getc(), getc() );

The arguments of a function call can be evaluated in any order. The expression i + 1
may be evaluated before i = j + 2,ori = j + 2 may be evaluated before i + 1.
The result is different in each case. Likewise, it is not possible to guarantee what
characters are actually passed tp the myproc. Since unary increment and decrement
operations involve assignments, such operations can cause side effects, as shown in
the following example:

x[1] = i++;

In this example, the value of x that is modified is unpredictable. The value of the
subscript could be either the new or the old value of i. The result can vary under
different compilers or different optimization levels.
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Since C does not define the order of evaluation of side effects, both evaluation
methods discussed above are correct and either may be implemented. To make sure
that your code is portable and clear, avoid statements that depend on a particular order
of evaluation for side effects.

Sequence Points

Between consecutive “sequence points” an object’s value can be modified only once
by an expression. The C language defines the following sequence points:

o Left operand of the logical-AND operator (&&). The left operand of the
logical-AND operator is completely evaluated and all side effects complete before
continuing. If the left operand evaluates to false (0), the other operand is not
evaluated.

e Left operand of the logical-OR operator (). The left operand of the logical-OR
operator is completely evaluated and all side effects complete before continuing.
If the left operand evaluates to true (nonzero), the other operand is not evaluated.

o Left operand of the comma operator. The left operand of the comma operator is
completely evaluated and all side effects complete before continuing. Both
operands of the comma operator are always evaluated. Note that the comma
operator in a function call does not guarantee an order of evaluation.

¢ Function-call operator. All arguments to a function are evaluated and all side
effects complete before entry to the function. No order of evaluation among the
arguments is specified.

o First operand of the conditional operator. The first operand of the conditional
operator is completely evaluated and all side effects complete before continuing.

e The end of a full initialization expression (that is, an expression that is not part of
another expression such as the end of an initialization in a declaration statement).

o The expression in an expression statement. Expression statements consist of an
optional expression followed by a semicolon (;). The expression is evaluated for
its side effects and there is a sequence point following this evaluation.

e The controlling expression in a selection (if or switch) statement. The expression is
completely evaluated and all side effects complete before the code dependent on
the selection is executed.

e The controlling expression of a while or do statement. The expression is
completely evaluated and all side effects complete before any statements in the
next iteration of the while or do loop are executed.

e Each of the three expressions of a for statement. The expressions are completely
evaluated and all side effects complete before any statements in the next iteration
of the for loop are executed.

e The expression in a return statement. The expression is completely evaluated and
all side effects complete before control returns to the calling function.
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Operators

There are three types of operators. A unary expression consists of either a
unary operator prepended to an operand, or the sizeof keyword followed by
an expression. The expression can be either the name of a variable or a cast
expression. If the expression is a cast expression, it must be enclosed in
parentheses. A binary expression consists of two operands joined by a binary
operator. A ternary expression consists of three operands joined by the
conditional-expression operator.

C includes the following unary operators:

Symbol Name

-~ Negation and complement operators

* & Indirection and address-of operators
sizeof Size operator

+ Unary plus operator

++ —— Unary increment and decrement operators

Binary operators associate from left to right. C provides the following binary

operators:

Symbol Name

*1 % Multiplicative operators

+ - Additive operators

<< >> Shift operators

< > <= >= == I= Relational operators

& | A Bitwise operators

&& |l Logical operators

s Sequential-evaluation operator

The conditional-expression operator has lower precedence than binary expressions
and differs from them in being right associative.

Expressions with operators also include assignment expressions, which use

unary or binary assignment operators. The unary assignment operators are the
increment (++) and decrement (—-) operators; the binary assignment operators are
the simple-assignment operator (=) and the compound-assignment operators.
Each compound-assignment operator is a combination of another binary operator
with the simple-assignment operator. "
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Precedence and Order of Evaluation

The precedence and associativity of C operators affect the grouping and
evaluation of operands in expressions. An operator’s precedence is meaningful
only if other operators with higher or lower precedence are present. Expressions
with higher-precedence operators are evaluated first. Precedence can also be
described by the word “binding.” Operators with a higher precedence are said to
have tighter binding.

Table 4.1 summarizes the precedence and associativity (the order in which the
operands are evaluated) of C operators, listing them in order.of precedence from
highest to lowest. Where several operators appear together, they have equal
precedence and are evaluated according to their associativity. The operators in the
table are described in the sections beginning with “Postfix Operators” on page 103.
The rest of this section gives general information about precedence and associativity.

Table 4.1 Precedence and Associativity of C Operators

Symbol! Type of Operation Associativity
[1 () .—>postfix ++ and Expression Left to right
postfix ——
prefix ++ and prefix — Unary Right to left
sizeof & * + - ~ !
typecasts Unary Right to left
*/ % Multiplicative Left to right
+ - Additive Left to right
<< >> Bitwise shift - Left to right
< > <= >= Relational Left to right
== I= } Equality Left to right
Bitwise-AND Left to right
n Bitwise-exclusive-OR Left to right
| Bitwise-inclusive-OR Left to right
&& Logical-AND Left to right
Il _ Logical-OR Left to right
?: Conditional-expression Right to left
= *= |= Y= Simple and compound Right to left -
+= -z <<= >>= assignment’ :
&= "= I=
s Sequential evaluation Left to right

! Operators are listed in descending order of precedence. If several operators appear on the same line or in a
group, they have equal precedence.

% All simple and compound-assignment operators have equal precedence.
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An expression can contain several operators with equal precedence. When several
such operators appear at the same level in an expression, evaluation proceeds
according to the associativity of the operator, either from right to left or from left
to right. The direction of evaluation does not affect the results of expressions that
include more than one multiplication (*), addition (+), or binary-bitwise (& | *)
operator at the same level. Order of operations is not defined by the language. The
compiler is free to evaluate such expressions in any order, if the compiler can
guarantee a consistent result.

Only the sequential-evaluation (), logical-AND (& &), logical-OR (II),
conditional-expression (? :), and function-call operators constitute sequence

points and therefore guarantee a particular order of evaluation for their operands.
The function-call operator is the set of parentheses following the function identifier.
The sequential-evaluation operator (,) is guaranteed to evaluate its operands from
left to right. (Note that the comma operator in a function call is not the same as the
sequential-evaluation operator and does not provide any such guarantee.) For more
information, see “Sequence Points” on page 98.

Logical operators also guarantee evaluation of their operands from left to right.
However, they evaluate the smallest number of operands needed to determine the
result of the expression. This is called “short-circuit” evaluation. Thus, some
operands of the expression may not be evaluated. For example, in the expression

X && y++

the second operand, y++, is evaluated only if x is true (nonzero). Thus, y is not
incremented if x is false (0).

Examples

The following list shows how the compiler automatically binds several sample
expressions:

Expression Automatic Binding
a&b || c (a &b) || c
a=>b||c a=«(b || )
q&r || s-- (g & r) || s--

In the first expression, the bitwise-AND operator (&) has higher precedence than
the logical-OR operator (| |), so a & b forms the first operand of the logical-OR
operation,

In the second expression, the logical-OR operator (| |) has higher precedence than
the simple-assignment operator (=), sob || c is grouped as the right-hand
operand in the assignment. Note that the value assigned to a is either O or 1.

The third expression shows a correctly formed expression that may produce an
unexpected result. The logical-AND operator (&&) has higher precedence than the
logical-OR operator (| |), so q && r is grouped as an operand. Since the logical

101



_C Language Reference

operators guarantee evaluation of operands from left to right, ¢ && r is evaluated
before s--. However, if ¢ && r evaluates to a nonzero value, s-- is not evaluated,
and s is not decremented. If not decrementing s would cause a problem in your
program, s-- should appear as the first operand of the expression, or s should be
decremented in a separate operation.

The following expression is illegal and produces a diagnostic message at compile
time:

lllegal Expression Default Grouping

p==072p+=1:p+=2 (p==0?p+=1:p) +=2

In this expression, the equality operator (==) has the highest precedence, so p ==

is grouped as an operand. The conditional-expression operator (? :) has the
next-highest precedence. Its first operand is p == 0, and its second operand is p +=
1. However, the last operand of the conditional-expression operator is considered

to be p rather than p += 2, since this occurrence of p binds more closely to the
conditional-expression operator than it does to the compound-assignment operator.
A syntax error occurs because += 2 does not have a left-hand operand. You should
use parentheses to prevent errors of this kind and produce more readable code. For
example, you could use parentheses as shown below to correct and clarify the
preceding example:

(p==0)?(p+=1):(p-_l-=2)

Usual Arithmetic Conversions
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Most C operators perform type conversions to bring the operands of an expression

to a common type or to extend short values to the integer size used in machine
operations. The conversions performed by C operators depend on the specific operator
and the type of the operand or operands. However, many operators perform similar
conversions on operands of integral and floating types. These conversions are known
as “arithmetic conversions.” Conversion of an operand value to a compatible type
causes no change to its value.

The arithmetic conversions summarized below are called “usual arithmetic
conversions.” These steps are applied only for binary operators that expect arithmetic
type and only if the two operands do not have the same type. The purpose is to yield
a common type which is also the type of the result. To determine which conversions
actually take place, the éompiler applies the following algorithm to binary operations
in the expression. The steps below are not a precedence order.

1. If either operand is of type long double, the other operand is converted to type
long double.

2. If the above condition is not met and either operand is of type double, the other
operand is converted to type double.
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3. If the above two conditions are not met and either operand is of type float, the
other operand is converted to type float.

4. If the above three conditions are not met (none of the operands are of floating
types), then integral conversions are performed on the operands as follows:

If either operand is of type unsigned long, the other operand is converted to
type unsigned long.

If the above condition is not met and either operand is of type long and the other
of type unsigned int, both operands are converted to type unsigned long.

If the above two conditions are not met, and either operand is of type long, the
other operand is converted to type long.

If the above three conditions are not met, and either operand is of type unsigned
int, the other operand is converted to type unsigned int.

If none of the above conditions are met, both operands are converted to type int.

The following code illustrates these conversion rules:

float fVal;
double dVal;

int

ival;

unsigned long ulVal;

dval

dval

Postfix

iVal * ulVal; /* iVal converted to unsigned long
* Uses step 4.
* Result of multiplication converted to double
*/
ulVal + fVal; /* ulVal converted to float
* Uses step 3.
* Result of addition converted to double
*/

Operators

The postfix operators have the highest precedence (the tightest binding) in expression
evaluation.

Syntax
postfix-expression :

primary-expression

postfix-expression [ expression ]
postfix-expression ( argument-expression-list oy )
postfix-expression . identifier

postfix-expression —> identifier
postfix-expression ++

postfix-expression ——

Operators in this precedence level are the array subscripts, function calls, structure
and union members, and postfix increment and decrement operators.
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One-Dimensional Arrays

A postfix expression followed by an expression in square brackets ([ ]) is a
subscripted representation of an element of an array object. A subscript expression
represents the value at the address that is expression positions beyond
postfix-expression when expressed as

postfix-expression [ expression ]

Usually, the value represented by postfix-expression is a pointer value, such as an
array identifier, and expression is an integral value. However, all that is required
syntactically is that one of the expressions be of pointer type and the other be of
integral type. Thus the integral value could be in the postfix-expression position and
the pointer value could be in the brackets in the expression, or “subscript,” position.
For example, this code is legal:

int sum, *ptr, a[l0];

int main()
{

ptr = a;

sum = 4[ptrl;
}

Subscript expressions are generally used to refer to array elements, but you can apply
a subscript to any pointer. Whatever the order of values, expression must be enclosed
in brackets ([ ]).

The subscript expression is evaluated by adding the integral value to the pointer
value, then applying the indirection operator (*) to the result. (See “Indirection and
Address-of Operators” on page 109 for a discussion of the indirection operator.) In
effect, for a one-dimensional array, the following four expressions are equivalent,
assuming that a is a pointer and b is an integer:

afb]

*(a + b)

*(b + a)

blal

According to the conversion rules for the addition operator (given in “Additive
Operators” on page 114), the integral value is converted to an address offset by
multiplying it by the length of the type addressed by the pointer.

For example, suppose the identifier 11ine refers to an array of int values. The
following procedure is used to evaluate the subscript expression Tine[ i ]:

1. The integer value i is multiplied by the number of bytes defined as the length of
an int item. The converted value of i represents i int positions.

2. This converted value is added to the original pointer value (11ine) to yield an
address that is offset i int positions from 1ine. '
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3. The indirection operator is applied to the new address. The result is the value of the
array element at that position (intuitively, 1ine [ i 1).

The subscript expression 1ine[ 0] represents the value of the first element of line,
since the offset from the address represented by 11ine is 0. Similarly, an expression
such as Tine[5] refers to the element offset five positions from line, or the sixth
element of the array.

Multidimensional Arrays

A subscript expression can also have multiple subscripts, as follows:
expressionl [expression2] [expression3]...

Subscript expressions associate from left to right. The leftmost subscript expression,
expressionllexpression2], is evaluated first. The address that results from adding
expressionl and expression2 forms a pointer expression; then expression3 is added
to this pointer expression to form a new pointer expression, and so on until the last
subscript expression has been added. The indirection operator (*) is applied after the
last subscripted expression is evaluated, unless the final pointer value addresses an
array type (see examples below).

Expressions with multiple subscripts refer to elements of “multidimensional arrays.”
A multidimensional array is an array whose elements are arrays. For example, the
first element of a three-dimensional array is an array with two dimensions.

Examples

For the following examples, an array named prop is declared with three elements,
each of which is a 4-by-6 array of int values.

int prop(3]1[4]1[6];
int i, *ip, (*ipp)[61;

A reference to the prop array looks like this:
i = prop[0][01[1]; '

The example above shows how to refer to the second individual int element of prop.
Arrays are stored by row, so the last subscript varies most quickly; the expression
prop[@]1L@1[2] refers to the next (third) element of the array, and so on.

i = prop[2]1[11[31;

This statement is a more complex reference to an individual element of prop. The
expression is evaluated as follows:

1. The first subscript, 2, is multiplied by the size of a 4-by-6 int array and added to
the pointer value prop. The result points to the third 4-by-6 array of prop.

2. The second subscript, 1, is multiplied by the size of the 6-element int array and
added to the address represented by prop[2].
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3. Each element of the 6-element array is an int value, so the final subscript, 3,
is multiplied by the size of an int before it is added to prop[2][1]. The
resulting pointer addresses the fourth element of the 6-element array.

4. The indirection operator is applied to the pointer value. The result is the int
element at that address.

These next two examples show cases where the indirection operator is not applied.

ip = prop[2][1];

ipp = prop[2];

In the first of these statements, the expression prop[2][1] is a valid reference to the
three-dimensional array prop; it refers to a 6-element array (declared above). Since
the pointer value addresses an array, the indirection operator is not applied.

Similarly, the result of the expression prop[2] in the second statement ipp =
prop[2]; is a pointer value addressing a two-dimensional array.

Function Call

A “function call” is an expression that includes the name of the function being called
or the value of a function pointer and, optionally, the arguments being passed to the
function.

Syntax
postfix-expression :
postfix-expression ( argument-expression-list oy )

argument-expression-list :
assignment-expression
argument-expression-list , assignment-expression

The postfix-expression must evaluate to a function address (for example, a function
identifier or the value of a function pointer), and argument-expression-list is a list of
expressions (separated by commas) whose values (the “arguments™) are passed to the
function. The argument-expression-list argument can be empty.

A function-call expression has the value and type of the function’s return value. A
function cannot return an object of array type. If the function’s return type is void (that is,
the function has been declared never to return a value), the function-call expression also
has void type. (See “Function Calls” on page 171 in Chapter 6 for more information.)

Structure and Union Members

A “member-selection expression” refers to members of structures and unions. Such an
expression has the value and type of the selected member.

Syntax
postfix-expression . identifier
postfix-expression —> identifier
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This list describes the two forms of the member-selection expressions:

1. In the first form, postfix-expression represents a value of struct or union type, and
identifier names a member of the specified structure or union. The value of the
operation is that of identifier and is an 1-value if postfix-expression is an l-value.
See “L-Value and R-Value Expressions” on page 95 for more information.

2. In the second form, postfix-expression represents a pointer to a structure or union,
and identifier names a member of the specified structure or union. The value is that
of identifier and is an l-value.

The two forms of member-selection expressions have similar effects.

In fact, an expression involving the member-selection operator (—>) is a shorthand
version of an expression using the period (.) if the expression before the period
consists of the indirection operator (*) applied to a pointer value. Therefore,

expression —> identifier
is equivalent to
(*expression) . identifier

when expression is a pointer value.

Examples
The following examples refer to this structure declaration. For information about the
indirection operator (*) used in these examples, see “Indirection and Address-of
Operators” on page 109.
struct pair
{
int a;
int b;
struct pair *sp;
} item, 1list[l@];
A member-selection expression for the item structure looks like this:
item.sp = &item;

In the example above, the address of the item structure is assigned to the sp member
of the structure. This means that i tem contains a pointer to itself.

(item.sp)->a = 24;

In this example, the pointer expression item. sp is used with the member-selection
operator (—>) to assign a value to the member a.

1ist[8]1.b = 12;

This statement shows how to select an individual structure member from an array of
structures.
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Postfix Increment and Decrement Operators

Operands of the postfix increment and decrement operators are scalar types that are
modifiable 1-values.

Syntax

postfix-expression
postfix-expression ++
postfix-expression ——

The result of the postfix increment or decrement operation is the value of the operand.
After the result is obtained, the value of the operand is incremented (or decremented).
The following code illustrates the postfix increment operator.

if( var++ > 0 )
*pt+ = *Qt++;

In this example, the variable var is compared to 0, then incremented. If var was
positive before being incremented, the next statement is executed. First, the value of
the object pointed to by q is assigned to the object pointed to by p. Then, q and p are
incremented.

Unary Operators
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Unary operators appear before their operand and associate from right to left.

Syntax

unary-expression :
postfix-expression
++ unary-expression
—— unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof ( type-name )

unary-operator : one of
& * + - ~ !

Prefix Increment and Decrement Operators

The unary operators (++ and —-) are called “prefix” increment or decrement operators
when the increment or decrement operators appear before the operand. Postfix
increment and decrement has higher precedence than prefix increment and decrement.
The operand must have integral, floating, or pointer type and must be a modifiable
I-value expression (an expression without the const attribute). The result is an 1-value.

When the operator appears before its operand, the operand is incremented or
decremented and its new value is the result of the expression.
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An operand of integral or floating type is incremented or decremented by the integer
value 1. The type of the result is the same as the operand type. An operand of pointer
type is incremented or decremented by the size of the object it addresses. An
incremented pointer points to the next object; a decremented pointer points to the
previous object.

Example
This example illustrates the unary prefix decrement operator:
if( line[--i1 != '\n' )

return;

In this example, the variable i is decremented before it is used as a subscript to 11ine.

Indirection and Address-of Operators

The indirection operator (*) accesses a value indirectly, through a pointer. The
operand must be a pointer value. The result of the operation is the value addressed by
the operand; that is, the value at the address to which its operand points. The type of
the result is the type that the operand addresses.

If the operand points to a function, the result is a function designator. If it points to a
storage location, the result is an 1-value designating the storage location.

If the pointer value is invalid, the result is undefined. The following list includes some
of the most common conditions that invalidate a pointer value.

o The pointer is a null pointer.

o The pointer specifies the address of a local item that is not visible at the time of the
reference.

o The pointer specifies an address that is inappropriately aligned for the type of the
object pointed to.

o The pointer specifies an address not used by the executing program.

The address-of operator (&) gives the address of its operand. The operand of the
address-of operator can be either a function designator or an l-value that designates an
object that is not a bit field and is not declared with the register storage-class
specifier.

The result of the address operation is a pointer to the operand. The type addressed by
the pointer is the type of the operand.

The address-of operator can only be applied to variables with fundamental, structure,
or union types that are declared at the file-scope level, or to subscripted array
references. In these expressions, a constant expression that does not include the
address-of operator can be added to or subtracted from the address expression.
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Examples

The following examples use these declarations:

int *pa, x;
int a[20];
double d;

This statement uses the address-of operator:
pa = &a[5];

The address-of operator (&) takes the address of the sixth element of the array a.
The result is stored in the pointer variable pa.

X = *pa:

The indirection operator (*) is used in this example to access the int value at the
address stored in pa. The value is assigned to the integer variable x.

if( x == *&x )
printf( "True\n" );

This example prints the word True, demonstrating that the result of applying the
indirection operator to the address of x is the same as x.
int roundup( void ); /* Function declaration */

int *proundup = roundup;
int *pround = &roundup;

Once the function roundup is declared, two pointers to roundup are declared
and initialized. The first pointer, proundup, is initialized using only the name of
the function, while the second, pround, uses the address-of operator in the
initialization. The initializations are equivalent.

Unary Arithmetic Operators

The C unary plus, arithmetic-negation, complement, and logical-negation operators
are discussed in the following list:

Operator Description

+ The unary plus operator preceding an expression in parentheses forces the
grouping of the enclosed operations. It is used with expressions involving
more than one associative or commutative binary operator. The operand must
have arithmetic type. The result is the value of the operand. An integral
operand undergoes integral promotion. The type of the result is the type of
the promoted operand.

- The arithmetic-negation operator produces the negative (two’s complement)
of its operand. The operand must be an integral or floating value. This
operator performs the usual arithmetic conversions.
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(continued)

Operator Description

~ The bitwise-complement (or bitwise-NOT) operator produces the bitwise
complement of its operand. The operand must be of integral type. This
operator performs usual arithmetic conversions; the result has the type of the
operand after conversion.

Y

The logical-negation (logical-NOT) operator produces the value 0 if its
operand is true (nonzero) and the value 1 if its operand is false (0). The result
has int type. The operand must be an integral, floating, or pointer value.

Unary arithmetic operations on pointers are illegal.

Examples

The following examples illustrate the unary arithmetic operators:

short x = 987;
X = -X;

In the example above, the new value of X is the negative of 987, or —987.

unsigned short y = OxAAAA;
y =~y

In this example, the new value assigned to y is the one’s complement of the unsigned
value OxAAAA, or 0x5555.

if( l(x <y))

If x is greater than or equal to y, the result of the expression is 1 (true). If x is less
than y, the result is O (false).

The sizeof Operator

The sizeof operator gives the amount of storage, in bytes, required to store an object
of the type of the operand. This operator allows you to avoid specifying
machine-dependent data sizes in your programs.

Syntax
sizeof unary-expression

sizeof ( type-name)

The operand is either an identifier that is a unary-expression, or a type-cast
expression (that is, a type specifier enclosed in parentheses). The unary-expression
cannot represent a bit-field object, an incomplete type, or a function designator.
The result is an unsigned integral constant. The standard header STDDEF.H defines
this type as size_t.
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When you apply the sizeof operator to an array identifier, the result is the size of the
entire array rather than the size of the pointer represented by the array identifier.

When you apply the sizeof operator to a structure or union type name, or to an
identifier of structure or union type, the result is the number of bytes in the structure
or union, including internal and trailing padding. This size may include internal and
trailing padding used to align the members of the structure or union on memory
boundaries. Thus, the result may not correspond to the size calculated by adding up
the storage requirements of the individual members.

If an unsized array is the last element of a structure, the sizeof operator returns the size
of the structure without the array.

buffer = calloc(100, sizeof (int) );

This example uses the sizeof operator to pass the size of an int, which varies among
machines, as an argument to a run-time function named calloe. The value returned by
the function is stored in buffer.

static char *strings[] =(
"this is string one",
"this is string two",
"this is string three",
};
const int string_no = ( sizeof strings ) / ( sizeof strings[0] );

In this example, strings is an array of pointers to char. The number of pointers is
the number of elements in the array, but is not specified. It is easy to determine the
number of pointers by using the sizeof operator to calculate the number of elements in -

the array. The const integer value string_no is initialized to this number. Because it
is a const value, string_no cannot be modified.

Cast Operators
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A type cast provides a method for explicit conversion of the type of an object in a
specific situation.

Syntax
cast-expression :
unary-expression
( type-name ) cast-expression

The compiler treats cast-expression as type type-name after a type cast has been made.
Casts can be used to convert objects of any scalar type to or from any other scalar
type. Explicit type casts are constrained by the same rules that determine the effects of
implicit conversions, discussed in “Assignment Conversions” on page 126. Additional
restraints on casts may result from the actual sizes or representation of specific types.
See “Storage of Basic Types” on page 81 in Chapter 3 for information on actual sizes
of integral types. For more information on type casts, see “Type-Cast Conversions”

on page 132.
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Multiplicative Operators

The multiplicative operators perform multiplication (*), division (/), and remainder
(%) operations.

Syntax

multiplicative-expression :
cast-expression
multiplicative-expression * cast-expression
multiplicative-expression [ cast-expression
multiplicative-expression % cast-expression

The operands of the remainder operator (%) must be integral. The multiplication (*)
and division (/) operators can take integral- or floating-type operands; the types of the
operands can be different.

The multiplicative operators perform the usual arithmetic conversions on the
operands. The type of the result is the type of the operands after conversion.

Note Since the conversions performed by the multiplicative operators do not provide for
overflow or underflow conditions, information may be lost if the result of a multiplicative
operation cannot be represented in the type of the operands after conversion.

The C multiplicative operators are described below:

Operator Description
* The multiplication operator causes its two operands to be multiplied.
/ The division operator causes the first operand to be divided by the second. If

two integer operands are divided and the result is not an integer, it is
truncated according to the following rules:

® The result of division by 0 is undefined according to the ANSI C
standard. The Microsoft C compiler generates an error at compile time or
run time.

e If both operands are positive or unsigned, the result is truncated
toward 0.

e If either operand is negative, whether the result of the operation is the
largest integer less than or equal to the algebraic quotient or is the
smallest integer greater than or equal to the algebraic quotient is
implementation defined. (See the Microsoft Specific section below.)

% The result of the remainder operator is the remainder when the first operand
is divided by the second. When the division is inexact, the result is
determined by the following rules:

e If the right operand is zero, the result is undefined.
e If both operands are positive or unsigned, the result is positive.

e If either operand is negative and the result is inexact, the result is
implementation defined. (See the Microsoft Specific section below.)
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Microsoft Specific —

In division where either operand is negative, the direction of truncation is toward 0.

If either operation is negative in division with the remainder operator, the result has
the same sign as the dividend (the first operand in the expression).

END Microsoft Specific

Examples

The declarations shown below are used for the folloWing examples:

int i =10, j = 3, n;
double x = 2.0, y:

This statement uses the multiplication operator:

y =x*ij;

In this case, x is multiplied by i to give the value 20.0. The result has double type.
n=17/3; A

In this example, 10 is divided by 3. The result is truncated toward 0, yielding the
integer value 3.

n=11%3;

This statement assigns n the integer remainder, 1, when 10 is divided by 3.

Microsoft Specific —
The sign of the remainder is the same as the sign of the dividend. For example:

50 % -6 = 2
-50 % 6 = -2

In each case, 50 and 2 have the same sign.

END Microsoft Specific

Additive Operators

The additive operators perform addition (+) and subtraction (-).

Syntax

additive-expression :
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression — multiplicative-expression

Note Although the syntax for additive-expression includes multiplicative-expression, this

does not imply that expressions using multiplication are required. See the syntax in Appendix A,
“C Language Syntax Summary,” for multiplicative-expression, cast-expression, and
unary-expression.
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The operands can be integral or floating values. Some additive operations can also be
performed on pointer values, as outlined under the discussion of each operator.

The additive operators perform the usual arithmetic conversions on integral and
floating operands. The type of the result is the type of the operands after conversion.
Since the conversions performed by the additive operators do not provide for
overflow or underflow conditions, information may be lost if the result of an additive
operation cannot be represented in the type of the operands after conversion.

Addition (+)
The addition operator (+) causes its two operands to be added. Both operands can be

either integral or floating types, or one operand can be a pointer and the other an
integer.

When an integer is added to a pointer, the integer value (i) is converted by multiplying
it by the size of the value that the pointer addresses. After conversion, the integer
value represents i memory positions, where each position has the length specified by
the pointer type. When the converted integer value is added to the pointer value, the
result is a new pointer value representing the address i positions from the original
address. The new pointer value addresses a value of the same type as the original
pointer value and therefore is the same as array indexing (see “One-Dimensional
Arrays” on page 104 and “Multidimensional Arrays” on page 105). If the sum pointer
points outside the array, except at the first location beyond the high end, the result is
undefined. For more information, see “Pointer Arithmetic” on page 116.

Subtraction (-)

The subtraction operator (-) subtracts the second operand from the first. Both
operands can be either integral or floating types, or one operand can be a pointer
and the other an integer.

When two pointers are subtracted, the difference is converted to a signed integral
value by dividing the difference by the size of a value of the type that the pointers
address. The size of the integral value is defined by the type ptrdiff_t in the standard
include file STDDEF.H. The result represents the number of memory positions of that
type between the two addresses. The result is only guaranteed to be meaningful for
two elements of the same array, as discussed in “Pointer Arithmetic” on page 116.

When an integer value is subtracted from a pointer value, the subtraction operator
converts the integer value (i) by multiplying it by the size of the value that the pointer
addresses. After conversion, the integer value represents i memory positions, where
each position has the length specified by the pointer type. When the converted integer
value is subtracted from the pointer value, the result is the memory address i positions
before the original address. The new pointer points to a value of the type addressed by
the original pointer value.
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Using the Additive Operators

The following examples, which illustrate the addition and subtraction operators, use
these declarations:

int i =4, j;

float x[10];

float *px;

These statements are equivalent:

px = &x[4 + i];
px = &x[4] + i;

The value of i is multiplied by the length of a float and added to &x[4]. The resulting
pointer value is the address of x[8].

J = &x[i] - &x[i-2];

In this example, the address of the third element of x (given by x[1-21) is subtracted
from the address of the fifth element of x (given by x[1i]). The difference is divided
by the length of a float; the result is the integer value 2.

Pointer Arithmetic

Additive operations involving a pointer and an integer give meaningful results only
if the pointer operand addresses an array member and the integer value produces an
offset within the bounds of the same array. When the integer value is converted to an
address offset, the compiler assumes that only memory positions of the same size lie
between the original address and the address plus the offset.

This assumption is valid for array members. By definition, an array is a series of values
of the same type; its elements reside in contiguous memory locations. However, storage
for any types except array elements is not guaranteed to be filled by the same type of
identifiers. That is, blanks can appear between memory positions, even positions of the
same type. Therefore, the results of adding to or subtracting from the addresses of any
values but array elements are undefined.

Similarly, when two pointer values are subtracted, the conversion assumes that only
values of the same type, with no blanks, lie between the addresses given by the
operands.

Bitwise Shift Operators
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The shift operators shift their first operand left (<<) or right (>>) by the number of
positions the second operand specifies.

Syntax

shift-expression :
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression
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Both operands must be integral values. These operators perform the usual arithmetic

conversions; the type of the result is the type of the left operand after conversion.

For leftward shifts, the vacated right bits are set to 0. For rightward shifts, the vacated
left bits are filled based on the type of the first operand after conversion. If the type is
unsigned, they are set to 0. Otherwise, they are filled with copies of the sign bit. For
left-shift operators without overflow, the statement

exprl << expr2

is equivalent to multiplication by 2°*, For right-shift operators,

exprl >> expr2

is equivalent to division by 2°*? if expr1 is unsigned or has a nonnegative value.

The result of a shift operation is undefined if the second operand is negative, or if the
right operand is greater than or equal to the width in bits of the promoted left operand.

Since the conversions performed by the shift operators do not provide for overflow or
underflow conditions, information may be lost if the result of a shift operation cannot
be represented in the type of the first operand after conversion.

unsigned int x, y, z;

X = 0X00AA;
y = 0x5500;

I

z (X< 8)+ (y> 8);

In this example, x is shifted left eight positions and y is shifted right eight positions.
The shifted values are added, giving 0xAAS5S5, and assigned to z.

Shifting a negative value to the right yields half the absolute value, rounded down.
For example, —253 (binary 11111111 00000011) shifted right one bit produces —127
(binary 11111111 10000001). A positive 253 shifts right to produce +126.

Right shifts preserve the sign bit. When a signed integer shifts right, the
most-significant bit remains set. When an unsigned integer shifts right, the
most-significant bit is cleared.

If 0xF000 is unsigned, the result is 0x7800. If 0xF0000000 is signed, a right shift
produces 0xF8000000. Shifting a positive number right 32 times produces
0xF0000000. Shifting a negative number right 32 times produces OxFFFFFFFE.

Relational and Equality Operators

The binary relational and equality operators compare their first operand to their

second operand to test the validity of the specified relationship. The result of a

relational expression is 1 if the tested relationship is true and 0 if it is false. The
. type of the result is int.
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Syntax
relational-éxpression :

shift-expression

relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

equality-expression :

relational-expression
equality-expression == relational-expression
equality-expression = relational-expression

The relational and equality operators test the following relationships:

Operator Relationship Tested

First operand less than second operand

First operand greater than second operand

First operand less than or equal to second operand
First operand greater than or equal to second operand
First operand equal to second operand

First operand not equal to second operand

The first four operators in the list above have a higher precedence than the equality
operators (== and !=). See the precedence information in Table 4.1.

The operands can have integral, floating, or pointer type. The types of the operands
can be different. Relational operators perform the usual arithmetic conversions

on

integral and floating type operands. In addition, you can use the following

combinations of operand types with the relational and equality operators:

Both operands of any relational or equality operator can be pointers to the

same type. For the equality (==) and inequality (!=) operators, the result of the
comparison indicates whether the two pointers address the same memory location.
For the other relational operators (<, >, <=, and >=), the result of the comparison
indicates the relative position of the two memory addresses of the objects pointed
to. Relational operators compare only offsets.

Pointer comparison is defined only for parts of the same object. If the pointers
refer to members of an array, the comparison is equivalent to comparison of the
corresponding subscripts. The address of the first array element is “less than” the
address of the last element. In the case of structures, pointers to structure members
declared later are “greater than” pointers to members declared earlier in the
structure. Pointers to the members of the same union are equal.

A pointer value can be compared to the constant value 0 for equality (==) or
inequality (!=). A pointer with a value of 0 is called a “null” pointer; that is, it does
not point to a valid memory location.
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e The equality operators follow the same rules as the relational operators, but permit
additional possibilities: a pointer can be compared to a constant integral expression
with value 0, or to a pointer to void. If two pointers are both null pointers, they
compare as equal. Equality operators compare both segment and offset.

Examples

The examples below illustrate relational and equality operators.

int x =0, y = 0;
if (x<y)

Because x and y are equal, the expression in this example yields the value 0.
char array[10];
char *p;
for ( p = array; p < &array[1@]; p++ )
*p o= "\0'; v
The fragment in this example sets each element of array to a null character constant.

enum color { red, white, green } col;

if ( col == red )

These statements declare an enumeration variable named col with the tag color.
At any time, the variable may contain an integer value of 0, 1, or 2, which represents
one of the elements of the enumeration set color: the color red, white, or green,
respectively. If col contains O when the if statement is executed, any statements
depending on the if will be executed.

Bitwise Operators

The bitwise operators perform bitwise-AND (&), bitwise-exclusive-OR (#), and
bitwise-inclusive-OR (l) operations.

Syntax
AND-expression :
equality-expression
AND-expression & equality-expression

exclusive-OR-expression :
AND-expression
exclusive-OR-expression » AND-expression
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inclusive-OR-expression :
exclusive-OR-expression
inclusive-OR-expression | exclusive-OR-expression

The operands of bitwise operators must have integral types, but their types can be
different. These operators perform the usual arithmetic conversions; the type of the
result is the type of the operands after conversion.

The C bitwise operators are described below:

Operator  Description

& The bitwise-AND operator compares each bit of its first operand to the
corresponding bit of its second operand. If both bits are 1, the corresponding result
bit is set to 1. Otherwise, the corresponding result bit is set to 0.

A The bitwise-exclusive-OR operator compares each bit of its first operand to the
corresponding bit of its second operand. If one bit is 0 and the other bit is 1, the
corresponding result bit is set to 1. Otherwise, the corresponding result bit is set to 0.

| The bitwise-inclusive-OR operator compares each bit of its first operand to the
corresponding bit of its second operand. If either bit is 1, the corresponding result bit
is set to 1. Otherwise, the corresponding result bit is set to O.

Examples

These declarations are used for the following three examples:

short i = 0xAB0@;

short j = @xABCD;

short n;

n=1%&4J;

The result assigned to n in this first example is the same as i (0xAB0O hexadecimal).
n=1/1 J;

n=1r g

The bitwise-inclusive OR in the second example results in the value 0XABCD
(hexadecimal), while the bitwise-exclusive OR in the third example produces 0xCD
(hexadecimal).

Microsoft Specific —»

The results of bitwise operation on signed integers is implementation-defined
according to the ANSI C standard. For the Microsoft C compiler, bitwise operations
on signed integers work the same as bitwise operations on unsigned integers. For
example, -16 & 99 can be expressed in binary as

11111111 11110000
& 00000000 01100011

00000000 01100000

The result of the bitwise AND is 96 decimal.
END Microsoft Specific
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Logical Operators
The logical operators perform logical-AND (& &) and logical-OR ( Il) operations.

Syntax
logical-AND-expression :

inclusive-OR-expression

logical-AND-expression && inclusive-OR-expression
logical-OR-expression :

logical-AND-expression

logical-OR-expression l logical-AND-expression

Logical operators do not perform the usual arithmetic conversions. Instead, they
evaluate each operand in terms of its equivalence to 0. The result of a logical
operation is either O or 1. The result’s type is int.

The C logical operators are described below:
Operator Description

&& The logical-AND operator produces the value 1 if both operands have nonzero
values. If either operand is equal to 0, the result is 0. If the first operand of a
logical-AND operation is equal to 0, the second operand is not evaluated.

Il The logical-OR operator performs an inclusive-OR operation on its operands.
The result is O if both operands have O values. If either operand has a nonzero
value, the result is 1. If the first operand of a logical-OR operation has a
nonzero value, the second operand is not evaluated.

The operands of logical-AND and logical-OR expressions are evaluated from left

to right. If the value of the first operand is sufficient to determine the result of the
operation, the second operand is not evaluated. This is called “short-circuit evaluation.”
There is a sequence point after the first operand. See “Sequence Points” on page 98 for
more information.

Examples
The following examples illustrate the logical operators:
intw, x,y, z;

if (x<y&y<z)
printf( "x is less than z\n" );

In this example, the printf function is called to print a message if x is less than y
and y is less than z. If x is greater than y, the second operand (y < z)is not
evaluated and nothing is printed. Note that this could cause problems in cases where
the second operand has side effects that are being relied on for some other reason.
printf( "%d" , (x = w || x =y || x = 2) );

In this example, if X is equal to either w, y, or z, the second argument to the printf
function evaluates to true and the value 1 is printed. Otherwise, it evaluates to false
and the value 0 is printed. As soon as one of the conditions evaluates to true,
evaluation ceases.
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Conditional-Expression Operator
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C has one ternary operator: the conditional-expression operator (? :).

Syntax
conditional-expression :
logical-OR-expression
logical-OR-expression ? expression : conditional-expression

The logical-OR-expression must have integral, floating, or pointer type. It is evaluated
in terms of its equivalence to 0. A sequence point follows logical-OR-expression.
Evaluation of the operands proceeds as follows:

o If logical-OR-expression is not equal to 0, expression is evaluated. The result of
evaluating the expression is given by the nonterminal expression. (This means
expression is evaluated only if logical-OR-expression is true.)

o If logical-OR-expression equals 0, conditional-expression is evaluated. The result
of the expression is the value of conditional-expression. (This means
conditional-expression is evaluated only if logical-OR-expression is false.)

Note that either expression or conditional-expression is evaluated, but not both.

- The type of the result of a conditional operation depends on the type of the expression

or conditional-expression operand, as follows:

o If expression or conditional-expression has integral or floating type (their types can
be different), the operator performs the usual arithmetic conversions. The type of
the result is the type of the operands after conversion.

o If both expression and conditional-expression have the same structure, union, or
pointer type, the type of the result is the same structure, union, or pointer type.

e If both operands have type void, the result has type void.

o If either operand is a pointer to an object of any type, and the other operand is a
pointer to void, the pointer to the object is converted to a pointer to veid and the
result is a pointer to void.

o If either expression or conditional-expression is a pointer and the other operand is a
constant expression with the value 0, the type of the result is the pointer type.

In the type comparison for pointers, any type qualifiers (const or volatile) in the type
to which the pointer points are insignificant, but the result type inherits the qualifiers
from both components of the conditional.

Examples

The following examples show uses of the conditional operator:
J=Ci<0)?2 (-1): (i)
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This example assigns the absolute value of i to j. If i is less than O, -1 is assigned to
J.If i is greater than or equal to 0, i is assigned to j.

void f1( void );
void f2( void );
int x;
int y;

(x==y)?2(Cfl0) ) :  f20) );

In this example, two functions, f1 and f2, and two variables, x and y, are declared.
Later in the program, if the two variables have the same value, the function f1 is
called. Otherwise, T2 is called.

Assignment Operators

An assignment operation assigns the value of the right-hand operand to the storage
location named by the left-hand operand. Therefore, the left-hand operand of an
assignment operation must be a modifiable 1-value. After the assignment, an
assignment expression has the value of the left operand but is not an 1-value.

Syntax
assignment-expression :
conditional-expression
unary-expression assignment-operator assignment-expression .

assignment-operator : one of

. = #= /= %: = = <<= D>>= &: A= |=
The assignment operators in C can both transform and assign values in a single
operation. C provides the following assignment operators:

Operator Operation Performed

= Simple assignment

*= ‘ Multiplication assignment
/= Division assignment

0= Remainder assignment
+= Addition assignment

—= Subtraction assignment

<<= Left-shift assignment

>>= Right-shift assignment

&= Bitwise-AND assignment

A= Bitwise-exclusive-OR assignment

I= Bitwise-inclusive-OR assignment
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In assignment, the type of the right-hand value is converted to the type of the left-hand
value, and the value is stored in the left operand after the assignment has taken place.
The left operand must not be an array, a function, or a constant. The specific conversion
path, which depends on the two types, is outlined in detail in “Type Conversions” on
page 126.

Simple Assignment

The simple-assignment operator assigns its right operand to its left operand. The value
of the right operand is converted to the type of the assignment expression and replaces
the value stored in the object designated by the left operand. The conversion rules for
assignment apply (see “Assignment Conversions” on page 126).

double x;
int y;

X =y

In this example, the value of y is converted to type double and assigned to x.

Compound Assignment

The compound-assignment operators combine the simple-assignment operator with
another binary operator. Compound-assignment operators perform the operation
specified by the additional operator, then assign the result to the left operand. For
example, a compound-assignment expression such as

expressionl += expression2

can be understood as

expressionl = expressionl + expression2

However, the compound-assignment expression is not equivalent to the expanded
version because the compound-assignment expression evaluates expression! only
once, while the expanded version evaluates expressionl twice: in the addition
operation and in the assignment operation.

The operands of a compound-assignment operator must be of integral or floating type.
Each compound-assignment operator performs the conversions that the corresponding
binary operator performs and restricts the types of its operands accordingly. The
addition-assignment (+=) and subtraction-assignment (-=) operators can also have a
left operand of pointer type, in which case the right-hand operand must be of integral
type. The result of a compound-assignment operation has the value and type of the left
operand.

fidefine MASK 0xff00

n &= MASK;

In this example, a bitwise-inclusive-AND operation is performed on n and MASK, and
the result is assigned to n. The manifest constant MASK is defined with a #define
preprocessor directive.
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Sequentlal Evaluation Operator

The sequential-evaluation operator, also called the “comma operator,” evaluates its
two operands sequentially from left to right.

Syntax
expression :
assignment-expression
expression , assignment-expression

The left operand of the sequential-evaluation operator is evaluated as a void
expression. The result of the operation has the same value and type as the right
operand. Each operand can be of any type. The sequential-evaluation operator does
not perform type conversions between its operands, and it does not yield an 1-value.
There is a sequence point after the first operand, which means all side effects from
the evaluation of the left operand are completed before beginning evaluation of the
right operand. See “Sequence Points” on page 98 for more information.

The sequential-evaluation operator is typically used to evaluate two or more
expressions in contexts where only one expression is allowed.

Commas can be used as separators in some contexts. However, you must be careful
not to confuse the use of the comma as a separator with its use as an operator; the
two uses are completely different.

Example

This example illustrates the sequential-evaluation operator:
for (i=3=1;1+3<20; 1+ 1, j-- )3

In this example, each operand of the for statement’s third expression is évaluated
independently. The left operand i += 1 is evaluated first; then the right operand,
Jj--,is evaluated.

func_one( x, y + 2, z );
func_two( (x--, y + 2), z );

In the function call to func_one, three arguments, separated by commas, are
passed: x, y + 2, and z. In the function call to func_two, parentheses force the
compiler to interpret the first comma as the sequential-evaluation operator. This
function call passes two arguments to func_two. The first argument is the result
of the sequential-evaluation operation (x--, y + 2), which has the value and
type of the expression y + 2; the second argument is z.
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Type Conversions

Type conversions depend on the specified operator and the type of the operand
or operators. Type conversions are performed in the following cases:

¢ When a value of one type is assigned to a variable of a different type or an
operator converts the type of its operand or operands before performing an
operation

¢ When a value of one type is explicitly cast to a different type

e When a value is passed as an argument to a function or when a type is returned
from a function

A character, a short integer, or an integer bit field, all either signed or not, or an
object of enumeration type, can be used in an expression wherever an integer can
be used. If an int can represent all the values of the original type, then the value is
converted to int; otherwise, it is converted to unsigned int. This process is called
“integral promotion.” Integral promotions preserve value. That is, the value after
promotion is guaranteed to be the same as before the promotion. See “Usual
Arithmetic Conversions” on page 102 for more information.

Assignment Conversions

126

In assignment operations, the type of the value being assigned is converted to
the type of the variable that receives the assignment. C allows conversions by
assignment between integral and floating types, even if information is lost in the
conversion. The conversion method used depends on the types involved in the
assignment, as described in “Usual Arithmetic Conversions” on page 102 and in
the following sections.

Type qualifiers do not affect the allowability of the conversion although a const
l-value cannot be used on the left side of the assignment.

Conversions from Signed Integral Types

When a signed integer is converted to an unsigned integer with equal or greater
size and the value of the signed integer is not negative, the value is unchanged.
The conversion is made by sign-extending the signed integer. A signed integer is
converted to a shorter signed integer by truncating the high-order bits. The result
is interpreted as an unsigned value, as shown in this example.

int i = -3;

unsigned short u;

u=71;

printf( "%Zhu\n", u ); /* Prints 65533 */
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No information is lost when a signed integer is converted to a floating value, except
that some precision may be lost when a long int or unsigned long int value is

converted to a float value.

Table 4.2 summarizes conversions from signed integral types. This table assumes
that the char type is signed by default. If you use a compile-time option to change
the default for the char type to unsigned, the conversions given in Table 4.3 for the
unsigned char type apply instead of the conversions in Table 4.2.

Table 4.2 Conversions from Signed Integral Types

From To Method
char’ short Sign-extend
char long Sign-extend
char unsigned char Preserve pattern; high-order bit loses function as sign bit
char unsigned short Sign-extend to short; convert short to unsigned short
char unsigned long Sign-extend to long; convert long to unsigned long
char float Sign-extend to long; convert long to float
char double Sign-extend to long; convert long to double
char long double Sign-extend to long; convert long to double
short char Preserve low-order byte
short long Sign-extend
short unsigned char Preserve low-order byte
short unsigned short Preserve bit pattern; high-order bit loses function as sign bit
short unsigned long Sign-extend to long; convert long to unsigned long
short float Sign-extend to long; convert long to float
~ short double Sign-extend to long; convert long to double
short long double Sign-extend to long; convert long to double
long char Preserve low-order byte
long short Preserve low-order word
long unsigned char Preserve low-order byte
long unsigned short Preserve low-order word
long unsigned long Preserve bit pattern; high-order bit loses function as sign bit
long float Represent as float. If long cannot be represented exactly,
some precision is lost.
long double Represent as double. If long cannot be represented exactly
as a double, some precision is lost.
long long double Represent as double. If long cannot be represented exactly

as a double, some precision is lost.

' All char entries assume that the char type is signed by default.
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Microsoft Specific —

For the Microsoft 32-bit C compiler, an integer is equivalent to a long. Conversion of
an int value proceeds the same as for a long.

END Microsoft Specific

Conversions from Unsigned Integral Types

An unsigned integer is converted to a shorter unsigned or signed integer by truncating
the high-order bits, or to a longer unsigned or signed integer by zero-extending
(see Table 4.3).

When the value with integral type is demoted to a signed integer with smaller size,

or an unsigned integer is converted to its corresponding signed integer, the value is
unchanged if it can be represented in the new type. However, the value it represents
changes if the sign bit is set, as in the following example.

int j;

unsigned short k = 65533;

J=k; ’

printf( "%hd\n", j ); /* Prints -3 */

If it cannot be represented, the result is implementation-defined. See “Type-Cast
Conversions” on page 132 for information on the Microsoft C compiler’s handling of

demotion of integers. The same behavior results from integer conversion or from type
casting the integer.

Unsigned values are converted in a way that preserves their value and is not
representable directly in C. The only exception is a conversion from unsigned long

to float, which loses at most the low-order bits. Otherwise, value is preserved, signed
or unsigned. When a value of integral type is converted to floating, and the value is
outside the range representable, the result is undefined. (See “Storage of Basic Types”
on page 81 in Chapter 3 for information about the range for integral and floating-point

types.)

Table 4.3 summarizes conversions from unsigned integral types.

Table 4.3 Conversions from Unsigned Integral Types

From To Method

unsigned char char Preserve bit pattern; high-order bit becomes sign bit
unsighed char short Zero-extend

unsigned char long Zero-extend

unsigned char unsigned short Zero-extend

unsigned char unsigned long Zero-extend

unsigned char float Convert to long; convert long to float

unsigned char double Convert to long; convert long to double

unsigned char long double Convert to long; convert long to double
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Table 4.3 Conversions from Unsigned Integral Types (continued)

From To Method

unsigned short char Preserve low-order byte

unsigned short short Preserve bit pattern; high-order bit becomes sign bit
unsigned short long Zero-extend

unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long

unsigned char
unsigned long
float

double

long double
char

short

long

unsigned char
unsigned short
float

double

long double

Preserve low-order byte

Zero-extend

Convert to long; convert long to float
Convert to long; convert long to double
Convert to long; convert long to double
Preserve low-order byte

Preserve low-order word

Preserve bit pattern; high-order bit becomes sign bit
Preserve low-order byte

Preserve low-order word

Convert to long; convert long to float
Convert directly to double

Convert to long; convert long to double

Microsoft Specific —

For the Microsoft 32-bit C compiler, the unsigned int type is equivalent to the
unsigned long type. Conversion of an unsigned int value proceeds in the same way
as conversion of an unsigned long. Conversions from unsigned long values to float
are not accurate if the value being converted is larger than the maximum positive
signed long value.

END Microsoft Specific

Conversions from Floating-Point Types

A float value converted to a double or long double, or a double converted to a
long double, undergoes no change in value. A double value converted to a float
value is represented exactly, if possible. Precision may be lost if the value cannot
be represented exactly. If the result is out of range, the behavior is undefined. See
“Limits on Floating-Point Constants” on page 10 in Chapter 1 for the range of
floating-point types.

A floating value is converted to an integral value by first converting to a long, then
from the long value to the specific integral value, as described below in Table 4.4.
The decimal portion of the floating value is discarded in the conversion to a long.
If the result is still too large to fit into a long, the result of the conversion is
undefined.
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Microsoft Specific —

When converting a double or long double floating-point number to a smaller
floating-point number, the value of the floating-point variable is truncated toward
zero when an underflow occurs. An overflow causes a run-time error. Note that the
Microsoft C compiler maps long double to type double.

END Microsoft Specific

Table 4.4 summarizes conversions from floating types.

Table 44 Conversions from Floating-Point Types

From To Method

float char Convert to long; convert long to char

float short Convert to long; convert long to short

float long Truncate at decimal point. If result is too large to
be represented as long, result is undefined.

float unsigned short Convert to long; convert long to unsigned short

float unsigned long Convert to long; convert long to unsigned long

float double Change internal representation

float long double Change internal representation

double char Convert to float; convert float to char

double short Convert to float; convert float to short

double long Truncate at decimal point. If result is too large to
be represented as long, result is undefined.

double unsigned short Convert to long; convert long to unsigned short

double unsigned long Convert to long; convert long to unsigned long

double float Represent as a float. If double value cannot be
represented exactly as float, loss of precision
occurs. If value is too large to be represented as
float, the result is undefined.

long double char Convert to float; convert float to char

long double short Convert to float; convert float to short

long double ‘ long Truncate at decimal point. If result is too large to
be represented as long, result is undefined.

long double unsigned short Convert to long; convert long to unsigned short

long double unsigned long Convert to long; convert long to unsigned long

long double float Represent as a float. If double value cannot be
represented exactly as float, loss of precision
occurs. If value is too large to be represented as
float, the result is undefined.

long double double The long double value is treated as double.

Conversions from float, double, or long double values to unsigned long are not
accurate if the value being converted is larger than the maximum positive long value.
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Conversions to and from Pointer Types

A pointer to one type of value can be converted to a pointer to a different type.
However, the result may be undefined because of the alignment requirements and
sizes of different types in storage. A pointer to an object can be converted to a pointer
to an object whose type requires less or equally strict storage alignment, and back
again without change.

A pointer to void can be converted to or from a pointer to any type, without restriction
or loss of information. If the result is converted back to the original type, the original
pointer is recovered.

If a pointer is converted to another pointer with the same type but having different or
additional qualifiers, the new pointer is the same as the old except for restrictions
imposed by the new qualifier.

A pointer value can also be converted to an integral value. The conversion path
depends on the size of the pointer and the size of the integral type, according to the
following rules:

o If the size of the pointer is greater than or equal to the size of the integral type, the
pointer behaves like an unsigned value in the conversion, except that it cannot be
converted to a floating value.

o If the pointer is smaller than the integral type, the pointer is first converted to a
pointer with the same size as the integral type, then converted to the integral type.

Conversely, an integral type can be converted to a pointer type according to the
following rules:

o If the integral type is the same size as the pointer type, the conversion simply
causes the integral value to be treated as a pointer (an unsigned integer).

o If the size of the integral type is different from the size of the pointer type, the
integral type is first converted to the size of the pointer, using the conversion
paths given in Table 4.2 and Table 4.3. It is then treated as a pointer value.

An integral constant expression with value O or such an expression cast to type void *
can be converted by a type cast, by assignment, or by comparison to a pointer of any
type. This produces a null pointer that is equal to another null pointer of the same
type, but this null pointer is not equal to any pointer to a function or to an object.
Integers other than the constant O can be converted to pointer type, but the result is
not portable.

Conversions from Other Types

Since an enum value is an int value by definition, conversions to and from an enum
value are the same as those for the int type. For the Microsoft C compiler, an integer
is the same as a long.
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Microsoft Specific —
No conversions between structure or union types are allowed.
Any value can be converted to type void, but the result of such a conversion can

be used only in a context where an expression value is discarded, such as in an
expression statement.

The void type has no value, by definition. Therefore, it cannot be converted to any
other type, and other types cannot be converted to void by assignment. However, you
can explicitly cast a value to type void, as discussed in “Type-Cast Conversions.”

END Microsoft Specific

Type-Cast Conversions
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You can use type casts to explicitly convert types.

Syntax
cast-expression :
unary expression
( type-name ) cast-expression

type-name :
specifier-qualifier-list abstract-declarator

The type-name is a type and cast-expression is a value to be converted to that type.
An expression with a type cast is not an 1-value. The cast-expression is converted as
though it had been assigned to a variable of type type-name. The conversion rules for
assignments (outlined in “Assignment Conversions” on page 126) apply to type casts
as well. Table 4.5 shows the types that can be cast to any given type.

Table 4.5 Legal Type Casts

Destination Types Potential Sources

Integral types Any integer type or floating-point type, or pointer
to an object

Floating-point Any arithmetic type

A pointer to an object, or (void *) Any integer type, (void *), a pointer to an object,
or a function pointer

Function pointer Any integral type, a pointer to an object, or a
function pointer

‘A structure, union, or array None

Void type Any type

Any identifier can be cast to void type. However, if the type specified in a type-cast
expression is not void, then the identifier being cast to that type cannot be a void
expression. Any expression can be cast to void, but an expression of type void cannot
be cast to any other type. For example, a function with void return type cannot have
its return cast to another type.
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Note that a void * expression has a type pointer to veid, not type void. If an object is
cast to void type, the resulting expression cannot be assigned to any item. Similarly,
a type-cast object is not an acceptable 1-value, so no assignment can be made to a
type-cast object.

Microsoft Specific —

A type cast can be an l-value expression as long as the size of the identifier does not
change. For information on 1-value expressions, see “L-Value and R-Value
Expressions” on page 95.

END Microsoft Specific

You can convert an expression to type void with a cast, but the resulting ekpression
can be used only where a value is not required. An object pointer converted to void *
and back to the original type will return to its original value.

Function-Call Conversions

The type of conversion performed on the arguments in a function call depends on the
presence of a function prototype (forward declaration) with declared argument types
for the called function.

If a function prototype is present and includes declared argument types, the compiler
performs type checking (see Chapter 6, “Functions”).

If no function prototype is present, only the usual arithmetic conversions are
performed on the arguments in the function call. These conversions are performed
independently on each argument in the call. This means that a float value is converted
to a double; a char or short value is converted to an int; and an unsigned char or
unsigned short is converted to an unsigned int.
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CHAPTER 5§

Statements

The statements of a C program control the flow of program execution. In C, as in
other programming languages, several kinds of statements are available to perform
loops, to select other statements to be executed, and to transfer control. Following
a brief overview of statement syntax, this chapter describes the C statements in
alphabetical order:

break statement if statement
compound statement null statement
continue statement return statement
do-while statement switch statement
expression statement ’ try-except statement
for statement try-finally statement
goto and labeled statements while statement

Overview of Statements

C statements consist of tokens, expressions, and other statements. A statement
that forms a component of another statement is called the “body” of the enclosing
statement. Each statement type given by the following syntax is discussed in this
chapter.

Syntax
statement :
labeled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
Jjump-statement
try-except-statement /* Microsoft Specific */
try-finally-statement /* Microsoft Specific */
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Frequently the statement body is a “compound statement.” A compound statement
consists of other statements that can include keywords. The compound statement is
delimited by braces ({ }). All other C statements end with a semicolon (;). The
semicolon is a statement terminator.

The expression statement contains a C expression that can contain the arithmetic or
logical operators introduced in Chapter 4, “Expressions and Assignments.” The null
statement is an empty statement.

Any C statement can begin with an identifying label consisting of a name and a
colon. Since only the goto statement recognizes statement labels, statement labels are
discussed with goto. See “The goto and Labeled Statements” on page 141 for more
information.

The break Statement
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The break statement terminates the execution of the nearest enclosing do, for, switch,
or while statement in which it appears. Control passes to the statement that follows the
terminated statement.

Syntax
Jjump-statement :
break;

The break statement is frequently used to terminate the processing of a particular
case within a switch statement. Lack of an enclosing iterative or switch statement
generates an error.

Within nested statements, the break statement terminates only the do, for, switch, or
while statement that immediately encloses it. You can use a return or goto statement
to transfer control elsewhere out of the nested structure.

This example illustrates the break statement:

for (i =0; i < LENGTH; i++ ) /* Execution returns here when */
{ /* break statement is executed */
for ( J =0; j < WIDTH; j++)
( .
if ( 1lines[i][j] == '"\0' )
{
lengths[i] = j;
break;

}

The example processes an array of variable-length strings stored in 1ines. The break
statement causes an exit from the interior for loop after the terminating null character
("\0") of each string is found and its position is stored in Tengths[i].
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The variable j is not incremented when break causes the exit from the interior loop.
Control then returns to the outer for loop. The variable i is incremented and the
process is repeated until i is greater than or equal to LENGTH.

The Compound Statement

A compound statement (also called a “block™) typically appears as the body of
another statement, such as the if statement. Chapter 3, “Declarations and Types,”
describes the form and meaning of the declarations that can appear at the head of
a compound statement.

Syntax
compound-statement :
{ declaration-list . statement-list . }

declaration-list :
declaration
declaration-list declaration

statement-list .
Statement
statement-list statement

If there are declarations, they must come before any statements. The scope of
each identifier declared at the beginning of a compound statement extends from
its declaration point to the end of the block. It is visible throughout the block
unless a declaration of the same identifier exists in an inner block.

Identifiers in a compound statement are presumed auto unless explicitly declared
otherwise with register, static, or extern, except functions, which can only be
extern. You can leave off the extern specifier in function declarations and the
function will still be extern.

Storage is not allocated and initialization is not permitted if a variable or function
is declared in a compound statement with storage class extern. The declaration
refers to an external variable or function defined elsewhere.

Variables declared in a block with the auto or register keyword are reallocated
and, if necessary, initialized each time the compound statement is entered. These
variables are not defined after the compound statement is exited. If a variable
declared inside a block has the static attribute, the variable is initialized when
program execution begins and keeps its value throughout the program. See
“Storage Classes” on page 42 in Chapter 3 for information about static.
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This example illustrates a compound statement:

if (i>0)
{
Tine[i] = x;
X++;
i--3
}

In this example, if i is greater than 0, all statements inside the compound statement
are executed in order.

The continue Statement
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The continue statement passes control to the next iteration of the do, for, or while
statement in which it appears, bypassing any remaining statements in the do, for, or
while statement body. A typical use of the continue statement is to return to the start
of a loop from within a deeply nested loop.

Syntax
Jjump-statement :
continue;

The next iteration of a do, for, or while statement is determined as follows:

¢ Within a do or a while statement, the next iteration starts by reevaluating the
expression of the do or while statement.

¢ A continue statement in a for statement causes the first expression of the
for statement to be evaluated. Then the compiler reevaluates the conditional
expression and, depending on the result, either terminates or iterates the
statement body. See “The for Statement” on page 140 for more information
on the for statement and its nonterminals.

This is an example of the continue statement:

while ( i-- > 0 )

{
x=fC1i);
if (x==1)
continue;
y +=x* x;
}

In this example, the statement body is executed while i is greater than 0. First f (1)
is assigned to x; then, if x is equal to 1, the continue statement is executed. The rest
of the statements in the body are ignored, and execution resumes at the top of the
loop with the evaluation of the loop’s test.
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The do-while Statement

The do-while statement lets you repeat a statement or compound statement until a
specified expression becomes false.

Syntax
iteration-statement .
do statement while ( expression ) ;

The expression in a do-while statement is evaluated after the body of the loop is
executed. Therefore, the body of the loop is always executed at least once.

The expression must have arithmetic or pointer type. Execution proceeds as follows:

1. The statement body is executed.

2. Next, expression is evaluated. If expression is false, the do-while statement
terminates and control passes to the next statement in the program. If expression
is true (nonzero), the process is repeated, beginning with step 1.

The do-while statement can also terminate when a break, goto, or return statement
is executed within the statement body.

This is an example of the do-while statement:

do
{

y =f(x);

X--3
} while ( x > 0 );
In this do-while statement, the two statements y = f( x ); and x--; are executed,
regardless of the initial value of x. Then x > 0 is evaluated. If x is greater than O, the
statement body is executed again and x > @ is reevaluated. The statement body is
executed repeatedly as long as x remains greater than 0. Execution of the do-while
statement terminates when x becomes 0 or negative. The body of the loop is executed
at least once.

The Expression Statement

When an expression statement is executed, the expression is evaluated according to
the rules outlined in Chapter 4, “Expressions and Assignments.”

Syntax
expression-statement .
expression oy 3

All side effects from the expression evaluation are completed before the next
statement is executed. An empty expression statement is called a null statement.
See “The Null Statement” on page 143 for more information.
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These examples demonstrate expression statements.

x=(00y+3); /* x is assigned the value of y + 3 */
X++; /* x is incremented */
X=y=20: /* Both x and y are initialized to @ */
proc( argl, arg2 ); /* Function call returning void */
y=z=(f(x)+3); /* A function-call expression */

In the last statement, the function-call expression, the value of the expression, which
includes any value returned by the function, is increased by 3 and then assigned to
both the variables y and z.

The for Statement
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The for statement lets you repeat a statement or compound statement a specified
number of times. The body of a for statement is executed zero or more times until an
optional condition becomes false. You can use optional expressions within the for
statement to initialize and change values during the for statement’s execution.

Syntax
iteration-statement :
for (init-expression oy 3 cond-expression o 3 loop-expression o ) statement

Execution of a for statement proceeds as follows:

1. The init-expression, if any, is evaluated. This specifies the initialization for the
loop. There is no restriction on the type of init-expression.

2. The cond-expression, if any, is evaluated. This expression must have arithmetic or
pointer type. It is evaluated before each iteration. Three results are possible:

o If cond-expression is true (nonzero), statement is executed; then loop-expression,
if any, is evaluated. The loop-expression is evaluated after each iteration. There
is no restriction on its type. Side effects will execute in order. The process then
begins again with the evaluation of cond-expression.

o If cond-expression is omitted, cond-expression is considered true, and execution
proceeds exactly as described in the previous paragraph. A for statement
without a cond-expression argument terminates only when a break or return
statement within the statement body is executed, or when a goto (to a labeled
statement outside the for statement body) is executed.

o If cond-expression is false (0), execution of the for statement terminates and
control passes to the next statement in the program.

A for statement also terminates when a break, goto, or return statement within the
statement body is executed. A continue statement in a for loop causes loop-expression
to be evaluated. When a break statement is executed inside a for loop, loop-expression
is not evaluated or executed. This statement

for( ;: )
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is the customary way to produce an infinite loop which can only be exited with a
break, goto, or return statement.

This example illustrates the for statement:

for ( i = space = tab = 0; i < MAX; i++ )

{
if ( line[i] == "' ')
spacet++;
if ( 1ine[i] == "\t' )
{
tab++;
Tine(il ="' '";

}

This example counts space (* ') and tab (' \t ') characters in the array of characters
named 11ine and replaces each tab character with a space. First 1, space, and tab are
initialized to 0. Then i is compared with the constant MAX; if i is less than MAX, the
statement body is executed. Depending on the value of 1ine[1], the body of one or
neither of the if statements is executed. Then 1 is incremented and tested against MAX;
the statement body is executed repeatedly as long as 1 is less than MAX.

The goto and Labeled Statements

The goto statement transfers control to a label. The given label must reside in the
same function and can appear before only one statement in the same function.

Syntax

statement :
labeled-statement
Jjump-statement

Jjump-statement :
goto identifier ;

labeled-statement .
identifier : statement

A statement label is meaningful only to a goto statement; in any other context, a
labeled statement is executed without regard to the label.

A jump-statement must reside in the same function and can appear before only one
statement in the same function. The set of identifier names following a goto has its
own name space so the names do not interfere with other identifiers. Labels cannot be
redeclared. See “Name Spaces” on page 37 in Chapter 2 for more information.

It is good programming style to use the break, continue, and return statement in
preference to goto whenever possible. Since the break statement only exits from one
level of the loop, a goto may be necessary for exiting a loop from within a deeply
nested loop.
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This example demonstrates the goto statement:

void main()

{
int i, Jj;:
for (i =20; 1 <10; i++ )
{

printf( "Outer loop executing. i = %d\n", i );

for ( J =0; j < 3; j++ )

( .
printf( " Inner loop executing. j = %d\n", J );
if (1 =15

goto stop;
}
}
/* This message does not print: */
printf( "Loop exited. i = %d\n", i );
stop: printf( "Jumped to stop. i = %d\n", i );
1

In this example, a goto statement transfers control to the point labeled stop when
I equals 5.

The if Statement

The if statement controls conditional branching. The body of an if statement is executed
if the value of the expression is nonzero. The syntax for the if statement has two forms.

Syntax
selection-statement :
if ( expression ) statement
if ( expression ) statement else statement

In both forms of the if statement, the expressions, which can have any value except a
structure, are evaluated, including all side effects.

In the first form of the syntax, if expression is true (nonzero), statement is executed. If
expression is false, statement is ignored. In the second form of syntax, which uses
else, the second statement is executed if expression is false. With both forms, control
then passes from the if statement to the next statement in the program unless one of
the statements contains a break, continue, or goto.

The following are examples of the if statement:

if (1>0)
y=x/1i;

else

{
X = 1i;
y=FfCx);
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In this example, the statement y = x/1; is executed if i is greater than 0. If i is
less than or equal to 0, i is assigned to x and f( x ) is assigned to y. Note that
the statement forming the if clause ends with a semicolon.

When nesting if statements and else clauses, use braces to group the statements
and clauses into compound statements that clarify your intent. If no braces are
present, the compiler resolves ambiguities by associating each else with the
closest if that lacks an else.

if (i>0) /* Without braces */
if (jJ>1d)
X = J;
else
X = 1i;

The else clause is associated with the inner if statement in this example. If i is
less than or equal to 0, no value is assigned to Xx.

if (1 >0)
{ /* With braces */
if (j> i)
X =J;
}
else
X =13

The braces surrounding the inner if statement in this example make the else
clause part of the outer if statement. If i is less than or equal to 0, i is
assigned to x.

The Null Statement

A “null statement” is a statement containing only a semicolon; it can appear
wherever a statement is expected. Nothing happens when a null statement is
executed. The correct way to code a null statement is:

Syntax

]

Statements such as do, for, if, and while require that an executable statement
appear as the statement body. The null statement satisfies the syntax requirement
in cases that do not need a substantive statement body.

As with any other C statement, you can include a label before a null statement.
To label an item that is not a statement, such as the closing brace of a compound
statement, you can label a null statement and insert it immediately before the
item to get the same effect.
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This example illustrates the null statement:
for (i =0; 1 < 10; line[i++] =0 )
In this example, the loop expression of the for statement 1ine[i++] = 0 initializes

the first 10 elements of 11ine to 0. The statement body is a null statement, since no
further statements are necessary.

The return Statement
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The return statement terminates the execution of a function and returns control to the
calling function. Execution resumes in the calling function at the point immediately
following the call. A return statement can also return a value to the calling function.
See “Return Type” on page 166 in Chapter 6 for more information.

Syntax
Jjump-statement :
return expression oy ;

The value of expression, if present, is returned to the calling function. If expression is
omitted, the return value of the function is undefined. The expression, if present, is
converted to the type returned by the function. If the function was declared with return
type void, a return statement containing an expression generates a warning and the
expression is not evaluated.

If no return statement appears in a function definition, control automatically returns
to the calling function after the last statement of the called function is executed. In
this case, the return value of the called function is undefined. If a return value is not
required, declare the function to have void return type; otherwise, the default return
type is int.

Many programmers use parentheses to enclose the expression argument of the return
statement. However, C does not require the parentheses.

This example demonstrates the return statement:

void draw( int I, Tong L );
long sq( int s );

int main()

{
Tong y;
int x;
Yy =sq( x );
draw( x, y );
return();

}
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long sq( int s )

return{ s * s );
}

void draw( int I, long L )

{
/* Statements defining the draw function here */
return;

}

In this example, the main function calls two functions: sq and draw. The sq function
returns the value of x * X to main, where the return value is assigned to y. The draw
function is declared as a void function and does not return a value. An attempt to
assign the return value of draw would cause a diagnostic message to be issued.

The switch Statement

The switch and case statements help control complex conditional and branching
operations. The switch statement transfers control to a statement within its body.

Syntax
selection-statement :
switch ( expression ) statement

labeled-statement :
case constant-expression : statement
default : statement

Control passes to the statement whose case constant-expression matches the value of
switch ( expression ). The switch statement can include any number of case instances,
but no two case constants within the same switch statement can have the same value.
Execution of the statement body begins at the selected statement and proceeds until
the end of the body or until a break statement transfers control out of the body.

Use of the switch statement usually looks something like this:

switch ( expression )

{

declarations

case constant-expression :
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statements executed if the expression equals the
value of this constant-expression

break;

default :
statements executed if expression does not equal
any case constant-expression

}

You can use the break statement to end processing of a particular case within the
switch statement and to branch to the end of the switch statement. Without break, the
program continues to the next case, executing the statements until a break or the end
of the statement is reached. In some situations, this continuation may be desirable.

The default statement is executed if no case constant-expression is equal to the value
of switch ( expression ). If the default statement is omitted, and no case match is
found, none of the statements in the switch body are executed. There can be at most
one default statement. The default statement need not come at the end; it can appear
anywhere in the body of the switch statement. In fact it is often more efficient if it
appears at the beginning of the switch statement. A case or default label can only
appear inside a switch statement.

The type of switch expression and case constant-expression must be integral. The
value of each case constant-expression must be unique within the statement body.

The case and default labels of the switch statement body are significant only in
the initial test that determines where execution starts in the statement body. Switch
statements can be nested. Any static variables are initialized before executing into
any switch statements.

Note Declarations can appear at the head of the compound statement forming the switch
body, but initializations included in the declarations are not performed. The switch statement
transfers control directly to an executable statement within the body, bypassing the lines that
contain initializations. '

The following examples illustrate switch statements:

switch( ¢ )
{
case 'A':
capatt;
case 'a':
lettera++;
default :
total++;
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All three statements of the switch body in this example are executed if c is equal to
'A’ since a break statement does not appear before the following case. Execution
control is transferred to the first statement (capa++;) and continues in order through
the rest of the body. If c is equalto 'a’, Tettera and total are incremented. Only
total is incremented if c is notequalto 'A' or "a’.

switch( i)
{
case -1:
n++;
break;
case 0 :
Z++;
break;
case 1 :
pt+t+;
break;
1

In this example, a break statement follows each statement of the switch body.

The break statement forces an exit from the statement body after one statement is
executed. If 1 is equal to -1, only n is incremented. The break following the
statement n++; causes execution control to pass out of the statement body, bypassing
the remaining statements. Similarly, if i is equal to 0, only z is incremented; if i is
equal to 1, only p is incremented. The final break statement is not strictly necessary,
since control passes out of the body at the end of the compound statement, but it is
included for consistency.

A single statement can carry multiple case labels, as the following example shows:

case 'a'
case 'b'
case 'c'
case 'd'
case 'e'

case 'f' : hexcvt(c);
In this example, if constant-expression equals any letter between 'a’ and ' f', the
hexcvt function is called.

Microsoft Specific —»

Microsoft C does not limit the number of case values in a switch statement. The
number is limited only by the available memory. ANSI C requires at least 257 case
labels be allowed in a switch statement.

The default for Microsoft C is that the Microsoft extensions are enabled. Use the /Za
compiler option to disable these extensions.

END Microsoft Specific
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Microsoft Specific —

The try-except statement is a Microsoft extension to the C language that enables
applications to gain control of a program when events that normally terminate
execution occur. Such events are called exceptions, and the mechanism that deals
with exceptions is called structured exception handling.

Exceptions can be either hardware- or software-based. Even when applications
cannot completely recover from hardware or software exceptions, structured
exception handling makes it possible to display error information and trap the
internal state of the application to help diagnose the problem. This is especially
useful for intermittent problems that cannot be reproduced easily.

Syntax :
try-except-statement :
__try compound-statement
__except ( expression ) compound-statement

The compound statement after the __try clause is the guarded section. The compound
statement after the __except clause is the exception handler. The handler specifies a
set of actions to be taken if an exception is raised during execution of the guarded
section. Execution proceeds as follows:

1. The guarded section is executed.

2. If no exception occurs during execution of the guarded section, execution
continues at the statement after the __except clause.

3. If an exception occurs during execution of the guarded section or in any routine the
guarded section calls, the__except expression is evaluated and the value returned
determines how the exception is handled. There are three values:

EXCEPTION_CONTINUE_SEARCH Exception is not recognized. Continue
to search up the stack for a handler, first for containing try-except statements,
then for handlers with the next highest precedence.

EXCEPTION_CONTINUE_EXECUTION Exception is recognized but
dismissed. Continue execution at the point where the exception occurred.

EXCEPTION_EXECUTE_HANDLER Exception is recognized. Transfer
control to the exception handler by executing the __except compound statement,
then continue execution at the point the exception occurred.

Because the __except expression is evaluated as a C expression, it is limited to a

single value, the conditional-expression operator, or the comma operator. If more
extensive processing is required, the expression can call a routine that returns one
of the three values listed above.



Note Structured exception handling works with C and C++ source files. However, it
is not specifically designed for C++. You can ensure that your code is more portable
by using C++ exception handling. Also, the C++ exception handling mechanism is
much more flexible, in that it can handle exceptions of any type.

For C++ programs, C++ exception handling should be used instead of structured
exception handling. For more information, see “Exception Handling” in the C++
Language Reference.

Each routine in an application can have its own exception handler. The
__except expression executes in the scope of the __try body. This means it
has access to any local variables declared there.

The __leave keyword is valid within a try-except statement block. The effect
of __leave is to jump to the end of the try-except block. Execution resumes
after the end of the exception handler. Although a goto statement can be used
to accomplish the same result, a goto statement causes stack unwinding. The
__leave statement is more efficient because it does not involve stack
unwinding.

Exiting a try-except statement using the longjmp run-time function is
considered abnormal termination. It is illegal to jump into a __try statement,
but legal to jump out of one. The exception handler is not called if a process
is killed in the middle of executing a try-except statement.

Example

Following is an example of an exception handler and a termination handler.
See “The try-finally Statement” on page 150 for more information about
termination handlers.

puts("hello");
—try{
puts("in try");
_try{
puts(™in try");
RAISE_AN_EXCEPTION();
}__finally{
puts(™in finally");

}

}__except( puts("in filter"), EXCEPTION_EXECUTE_HANDLER ){
puts(™in except");

}

puts("world"”);

Chapter 5 Statements
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This is the output from the example, with commentary added on the right:

hello

in try /* fall into try */
in try /* fall into nested try */
in filter /* execute filter; returns 1 so accept */
in finally /* unwind nested finally */
in except /* transfer control to selected handler */
world /* flow out of handler */
END Microsoft Specific

The try-finally Statement

150

Microsoft Specific —

The try-finally statement is a Microsoft extension to the C language that enables
applications to guarantee execution of cleanup code when execution of a block of
code is interrupted. Cleanup consists of such tasks as deallocating memory, closing
files, and releasing file handles. The try-finally statement is especially useful for
routines that have several places where a check is made for an error that could cause
premature return from the routine.

Syntax

try-finally-statement :
__try compound-statement
__finally compound-statement

The compound statement after the __try clause is the guarded section. The compound
statement after the __finally clause is the termination handler. The handler specifies

a set of actions that execute when the guarded section is exited, whether the guarded
section is exited by an exception (abnormal termination) or by standard fall through
(normal termination).

Control reaches a __try statement by simple sequential execution (fall through).
When control enters the __try statement, its associated handler becomes active.
Execution proceeds as follows:

1. The guarded section is executed.
2. The termination handler is invoked.

3. When the termination handler completes, execution continues after the __finally
statement. Regardless of how the guarded section ends (for example, via a goto
statement out of the guarded body or via a return statement), the termination
handler is executed before the flow of control moves out of the guarded section.
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The __leave keyword is valid within a try-finally statement block. The effect of
__leave is to jump to the end of the try-finally block. The termination handler is
immediately executed. Although a goto statement can be used to accomplish the
same result, a goto statement causes stack unwinding. The __leave statement is
more efficient because it does not involve stack unwinding.

Exiting a try-finally statement using a return statement or the longjmp run-time
function is considered abnormal termination. It is illegal to jump into a __try
statement, but legal to jump out of one. All __finally statements that are active
between the point of departure and the destination must be run. This is called a
“local unwind.”

The termination handler is not called if a process is killed while executing a
try-finally statement.

Note Structured exception handling works with C and C++ source files. However, it is not
specifically designed for C++. You can ensure that your code is more portable by using C++
exception handling. Also, the C++ exception handling mechanism is much more flexible, in that
it can handle exceptions of any type.

For C++ programs, C++ exception handling should be used instead of structured exception
handling. For more information, see “Exception Handling” in the C++ Language Reference.
See the example for the “try-except statement” on page 149 to see how the try-finally
staternent works.

END Microsoft Specific

The while Statement

The while statement lets you repeat a statement until a specified expression becomes
false.

Syntax
iteration-statement :
while ( expression ) statement

The expression must have arithmetic or pointer type. Execution proceeds as follows:

1. The expression is evaluated.

2. If expression is initially false, the body of the while statement is never executed,
and control passes from the while statement to the next statement in the program.

If expression is true (nonzero), the body of the statement is executed and the
process is repeated beginning at step 1.
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The while statement can also terminate when a break, goto, or return within the
statement body is executed. Use the continue statement to terminate an iteration
without exiting the while loop. The continue statement passes control to the next
iteration of the while statement.

This is an example of the while statement:

while (i >=10 )
{

stringl[i] = string2[i];

i--3
}
This example copies characters from string2 to stringl. If i is greater than or
equalto 0, string2[i] is assigned to stringl[i] and i is decremented. When i
reaches or falls below 0, execution of the while statement terminates.



CHAPTER 6

Functions

The function is the fundamental modular unit in C. A function is usually designed
to perform a specific task, and its name often reflects that task. A function contains
declarations and statements. This chapter describes how to declare, define, and call
C functions. Other topics discussed are:

e Overview of functions

¢ Function attributes

¢ Specifying calling conventions

o Inline functions

¢ DLL export and import functions
o Naked functions

¢ Storage class

e Return type

e Arguments

e Parameters

Overview of Functions

Functions must have a definition and should have a declaration, although a definition
can serve as a declaration if the declaration appears before the function is called. The
function definition includes the function body—the code that executes when the
function is called.

A function declaration establishes the name, return type, and attributes of a function
that is defined elsewhere in the program. A function declaration must precede the
call to the function. This is why the header files containing the declarations for the

. run-time functions are included in your code before a call to a run-time function.
If the declaration has information about the types and number of parameters, the
declaration is a prototype. See “Function Prototypes” on page 169 for more
information.
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The compiler uses the prototype to compare the types of arguments in subsequent
calls to the function with the function’s parameters and to convert the types of the
arguments to the types of the parameters whenever necessary.

A function call passes execution control from the calling function to the called
function. The arguments, if any, are passed by value to the called function. Execution
of a return statement in the called function returns control and possibly a value to the
calling function.

Obsolete Forms of Function Declarati(_)ns
and Definitions

154

The old-style function declarations and definitions use slightly different rules for
declaring parameters than the syntax recommended by the ANSI C standard. First, the
old-style declarations don’t have a parameter list. Second, in the function definition,
the parameters are listed, but their types are not declared in the parameter list. The
type declarations precede the compound statement constituting the function body.

The old-style syntax is obsolete and should not be used in new code. Code using

the old-style syntax is still supported, however. This example illustrates the obsolete
forms of declarations and definitions:

double old_style(); /* 0Obsolete function declaration */

double alt_style( a , real ) /* Obsolete function definition */
double *real;
int a;

{
return ( *real + a ) ;

}

Functions returning an integer or pointer with the same size as an int are not required
to have a declaration although the declaration is recommended.

To comply with the ANSI C standard, old-style function declarations using an ellipsis
now generate an error when compiling with the /Za option and a level 4 warning when
compiling with /Ze. For example:

void functl( a, ... ) /* Generates a warning under /Ze or */
int a; /* an error when compiling with /Za */
{
}

You should rewrite this declaration as a prototype:

void functl( int a, ... )
{
1

Old-style function declarations also generate warnings if you subsequently declare or
define the same function with either an ellipsis or a parameter with a type that is not
the same as its promoted type.
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The next section, “Function Definitions,” shows the syntax for function definitions,
including the old-style syntax. The nonterminal for the list of parameters in the
old-style syntax is identifier-list.

Function Definitions

A function definition specifies the name of the function, the types and number of
parameters it expects to receive, and its return type. A function definition also
includes a function body with the declarations of its local variables, and the statements
that determine what the function does.

Syntax

translation-unit
external-declaration
translation-unit external-declaration

external-declaration : /* Allowed only at external (file) scope */
function-definition
declaration
function-definition : /* Declarator here is the function declarator */
declaration-specifiersqy, attribute-seqqy declarator declaration-listyy
compound-statement /* attribute-seq is Microsoft Specific */

Prototype parameters are:

declaration-specifiers :
storage-class-specifier declaration-specifiers oy
type-specifier declaration-specifiers oy
type-qualifier declaration-specifiers o

declaration-list
declaration
declaration-list declaration

declarator
pointer o direct-declarator

direct-declarator : /* A function declarator */
direct-declarator ( parameter-type-list) /* New-style declarator */
direct-declarator ( identifier-list o ) /* Obsolete-style declarator */

The parameter list in a definition uses this syntax:

parameter-type-list : /* The parameter list */
parameter-list
parameter-list , ..
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parameter-list :
parameter-declaration
parameter-list , parameter-declaration

parameter-declaration :
declaration-specifiers declarator
declaration-specifiers abstract-declarator o

The parameter list in an old-style function definition uses this syntax:

identifier-list: /* Used in obsolete-style function definitions and declarations */
identifier ‘
identifier-list , identifier

The syntax for the function body is:

compound-statement : /* The function body */
{ declaration-list o, statement-list o }

The only storage-class specifiers that can modify a function declaration are extern
and static. The extern specifier signifies that the function can be referenced from
other files; that is, the function name is exported to the linker. The static specifier
signifies that the function cannot be referenced from other files; that is, the name
is not exported by the linker. If no storage class appears in a function definition,
extern is assumed. In any case, the function is always visible from the definition
point to the end of the file.

The optional declaration-specifiers and mandatory declarator together specify
the function’s return type and name. The declarator is a combination of the
identifier that names the function and the parentheses following the function
name. The optional attribute-seq nonterminal is a Microsoft-specific feature
defined in “Function Attributes” on page 157.

The direct-declarator (in the declarator syntax) specifies the name of the function
being defined and the identifiers of its parameters. If the direct-declarator includes
a parameter-type-list, the list specifies the types of all the parameters. Such a
declarator also serves as a function prototype for later calls to the function.

A declaration in the declaration-list in function definitions cannot contain

a storage-class-specifier other than register. The type-specifier in the
declaration-specifiers syntax can be omitted only if the register storage class
is specified for a value of int type.

The compound-statement is the function body containing local variable declarations,
references to externally declared items, and statements.

The sections “Function Attributes,” “Storage Class,” “Return Type,” “Parameters,”
and “Function Body” on pages 157 through 169 describe the components of the
function definition in detail.
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Function Attributes

Microsoft Specific —

The optional attribute-seq nonterminal allows you to select a calling convention on
a per-function basis. You can also specify functions as __fastcall or __inline.

END Microsoft Specific

Specifying Calling Conventions
Microsoft Specific —

For information on calling conventions, see “Calling Conventions Topics” in
Visual C++ Programmer’s Guide online.

END Microsoft Specific

Inline Functions

Microsoft Specific —

The __inline keyword tells the compiler to substitute the code within the function
definition for every instance of a function call. However, substitution occurs only at
the compiler’s discretion. For example, the compiler does not inline a function if its
address is taken or if it is too large to inline.

For a function to be considered as a candidate for inlining, it must use the new-style
function definition.

Use this form to specify an inline function:
__inline type . function-definition;

The use of inline functions generates faster code and can sometimes generate
smaller code than the equivalent function call generates for the following reasons:

e [t saves the time required to execute function calls.

e Small inline functions, perhaps three lines or less, create less code than the
equivalent function call because the compiler doesn’t generate code to handle
arguments and a return value.

e Functions generated inline are subject to code optimizations not available to
normal functions because the compiler does not perform interprocedural
optimizations.

Functions using __inline should not be confused with inline assembler code.
See “Inline Assembler” on page 158 for more information.

END Microsoft Specific
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The Inline Assembler

Microsoft Specific —

The inline assembler lets you embed assembly-language instructions directly in your
C source programs without extra assembly and link steps. The inline assembler is built
into the compiler—you don’t need a separate assembler such as the Microsoft Macro
Assembler (MASM).

Because the inline assembler doesn’t require separate assembly and link steps, it

is more convenient than a separate assembler. Inline assembly code can use any

C variable or function name that is in scope, so it is easy to integrate it with your
program’s C code. And because the assembly code can be mixed with C statements,
it can do tasks that are cumbersome or impossible in C alone.

The __asm keyword invokes the inline assembler and can appear wherever a C
statement is legal. It cannot appear by itself. It must be followed by an assembly
instruction, a group of instructions enclosed in braces, or, at the very least, an empty
pair of braces. The term “__asm block” here refers to any instruction or group of

instructions, whether or not in braces.

The code below is a simple __asm block enclosed in braces. (The code is a custom
function prolog sequence.)

__asm
{

push ebp

mov ebp, esp

sub esp, __ LOCAL_SIZE
}

Alternatively, you can put __asm in front of each assembly instruction:

__asm push ebp
__asm mov ebp, esp
__asm sub esp, __LOCAL_SIZE

Since the __asm keyword is a statement separator, you can also put assembly
instructions on the same line:

__asm push ebp __asm mov ebp, esp __asm sub esp, __LOCAL_SIZE

END Microsoft Specific

DLL Import and Export Functions
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Microsoft Specific —

The dllimport and dllexport storage-class modifiers are Microsoft-specific
extensions to the C language. These modifiers explicitly define the DLL’s interface
to its client (the executable file or another DLL). Declaring functions as dllexport
eliminates the need for a module-definition (.DEF) file. You can also use the
dllimport and dllexport modifiers with data and objects.



The dllimport and dllexport storage-class modifiers must be used with the
extended attribute syntax keyword, __declspec, as shown in this example:

Y ——

#define D11Import __declspec( dllimport )
fidefine D11Export __declspec( dllexport )

D11Export void func();
D11Export int i = 10;
D11Export int j;
D11Export int n;

For specific information about the syntax for extended storage-class modifiers,
see “Extended Storage-Class Attributes” on page 88 in Chapter 3.

END Microsoft Specific

Definitions and Declarations

Microsoft Specific —

The DLL interface refers to all items (functions and data) that are known to be
exported by some program in the system; that is, all items that are declared as
dllimport or dllexport. All declarations included in the DLL interface must
specify either the dllimport or dllexport attribute. However, the definition
can specify only the dllexport attribute. For example, the following function
definition generates a compiler error:

fidefine D11Import __declspec( d1limport )
jfdefine D11Export __declspec( dllexport )

D11Import int func() /* Error; d1limport prohibited in */
/* definition. */
{
return 1;
1

This code also generates an error:

fidefine D11Import __declspec( d1limport )
Jidefine DI1T1Export __declispec( dllexport )

D11Import int i = 10; /* Error; this is a definition. */
However, this is correct syntax:

jidefine D11Import __declspec( dllimport )
fidefine D11Export __declspec( dllexport )

D11Export int i = 10; /* QOkay: this is an export definition. */

Chapter 6 Functions
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The use of dllexport implies a definition, while dllimport implies a declaration.
You must use the extern keyword with dllexport to force a declaration; otherwise,
a definition is implied. :

f##define D11Import __declspec( dllimport )
#define D1T1Export __declspec( dllexport )

extern D11Import int k; /* These are correct and imply */
D11import int j; /* a declaration. */

END Microsoft Specific

Defining Inline Functions with dllexport and dllimport

Microsoft Specific —

You can define as inline a function with the dllexport attribute. In this case, the
function is always instantiated and exported, whether or not any module in the
program references the function. The function is presumed to be imported by
another program.

You can also define as inline a function declared with the dllimport attribute. In

this case, the function can be expanded (subject to the /Ob (inline) compiler option
specification) but never instantiated. In particular, if the address of an inline imported
function is taken, the address of the function residing in the DLL is returned. This
behavior is the same as taking the address of a non-inline imported function.

Static local data and strings in inline functions maintain the same identities between
the DLL and client as they would in a single program (that is, an executable file
without a DLL interface).

Exercise care when providing imported inlin;a functions. For example, if you update
the DLL, don’t assume that the client will use the changed version of the DLL. To
ensure that you are loading the proper version of the DLL, rebuild the DLL’s client
as well.

END Microsoft Specific

Rules and Limitations for dllimport/dilexport

Microsoft Specific » -

o If you declare a function without the dllimport or dllexport attribute, the function
is not considered part of the DLL interface. Therefore, the definition of the
function must be present in that module or in another module of the same program.
To make the function part of the DLL interface, you must declare the definition of
the function in the other module as dllexport. Otherwise, a linker error is generated
when the client is built.

o If a single module in your program contains dllimport and dllexport declarations
for the same function, the dllexport attribute takes precedence over the dllimport
attribute. However, a compiler warning is generated. For example:
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fidefine D11Import __declspec( dllimport )
jtdefine D11Export __declspec( dllexport )

D11Import void funcl( void );
D11Export void funcl( void ); /* Warning; dllexport */
/* takes precedence. */

* You cannot initialize a static function pointer with the address of a function’
declared with the dllimport attribute, or initialize a static data pointer with the
address of a data object declared with the dllimport attribute. For example, the
following code generates errors:

fidefine D11Import __declspec( dl1limport )
fidefine D11Export __declspec{ dllexport )

D11Import void funcl( void );
D11Import int i;

int *pi = &i; . /* Error */
static void ( *pf )( void ) = &funcl; /* Error */
void func2()
{
static int *pi = &i; /* Error */
static void ( *pf )( void ) = &funcl; /* Error */
}

However, because a program that includes the dllexport attribute in the declaration
of an object must provide the definition for that object somewhere in the program,
you can initialize a global or local static function pointer with the address of a
dllexport function. Similarly, you can initialize a global or local static data pointer
with the address of a dllexport data object. For example, the following code does
not generate errors:

ftdefine D11Import __declispec( d1limport )
fidefine D11Export __declspec( dllexport )

D11Import void funcl( void );
D11Import int i;

D1T1Export void funcl( void );
D11Export int i;

int *pi = &i; /* Okay */

static void ( *pf )( void ) = &funcl; /* Qkay */
void func2()
{
static int /* Qkay */
static void ( *pf )( void ) = &funcl; /* Okay */
}
END Microsoft Specific
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Naked Functions
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Microsoft Specific —

The naked storage-class attribute is a Microsoft-specific extension to the C language.
For functions declared with the naked storage-class attribute, the compiler generates
code without prolog and epilog code. You can use this feature to write your own
prolog/epilog code sequences using inline assembler code. Naked functions are
particularly useful in writing virtual device drivers.

Because the naked attribute is only relevant to the definition of a function and is
not a type modifier, naked functions use the extended attribute syntax, described in
“Extended Storage-Class Attributes” on page 88 in Chapter 3.

The following example defines a function with the naked attribute:

__declispec( naked ) int func( formal_parameters )
{

/* Function body */
}

Or, alternatively:
f#define Naked __declspec( naked )

Naked int func( formal_parameters )
{

/* Function body */
}

The naked attribute affects only the nature of the compiler’s code generation for the
function’s prolog and epilog sequences. It does not affect the code that is generated
for calling such functions. Thus, the naked attribute is not considered part of the
function’s type, and function pointers cannot have the naked attribute. Furthermore,
the naked attribute cannot be applied to a data definition. For example, the following
code generates errors:

__declspec( naked ) int i; /* Error--naked attribute not */
/* permitted on data declarations. */

The naked attribute is relevant only to the definition of the function and cannot
be specified in the function’s prototype. The following declaration generates a
compiler error: '

__declspec( naked ) int func(); /* Error--naked attribute not */
/* permitted on function declarations. */

END Microsoft Specific
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Rules and Limitations for Using Naked Functions

Microsoft Specific —

e The return statement is not permitted in a naked function. However, you can
return an int by moving the return value into the EAX register before the RET
instruction.

e Structured exception handling constructs are not permitted in a naked function,
because the constructs must unwind across the stack frame.

e The setjmp run-time function is not permitted in a naked function, because it too
must unwind across the stack frame. However, the longjmp run-time function is
permitted.

e The _alloca function is not permitted in a naked function.

e To ensure that no initialization code for local variables appears before the prolog
sequence, initialized local variables are not permitted at function scope.

o Frame pointer optimization (the /Oy compiler option) is not recommended, but it
is automatically suppressed for a naked function.

END Microsoft Specific

Considerations when Writing Prolog/Epilog Code

Microsoft Specific —

Before writing your own prolog and epilog code sequences, it is important to
understand how the stack frame is laid out. It is also useful to know how to use the
__LOCAL_SIZE predefined constant.

Stack Frame Layout

This example shows the standard prolog code that might appear in a 32-bit function:

push ebp ; Save ebp

mov ebp, esp ; Set stack frame pointer
sub esp, localbytes ; Allocate space for locals
push <{registers> ; Save registers

The Tocalbytes variable represents the number of bytes needed on the stack for
local variables, and the registers variable is a placeholder that represents the list of
registers to be saved on the stack. After pushing the registers, you can place any other
appropriate data on the stack. The following is the corresponding epilog code:

pop <registers> ; Restore registers

mov esp, ebp ; Restore stack pointer
pop ebp ; Restore ebp

ret ; Return from function

The stack always grows down (from high to low memory addresses). The base pointer
(ebp) points to the pushed value of ebp. The local variables area begins at ebp-2. To
access local variables, calculate an offset from ebp by subtracting the appropriate
value from ebp.
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The __LOCAL_SIZE Constant

The compiler provides a constant, __LOCAL_SIZE, for use in the inline assembler

block of function prolog code. This constant is used to allocate space for local
variables on the stack frame in custom prolog code.

The compiler determines the value of __LOCAL_SIZE. The value is the total
number of bytes of all user-defined local variables and compiler-generated temporary
variables. __LOCAL_SIZE can be used only as an immediate operand; it cannot

be used in an expression. You must not change or redefine the value of this constant.
For example:

mov  eax, _ LOCAL_SIZE ;Immediate operand--Okay
mov  eax, [ebp - __LOCAL_SIZE] ;Error

The following example of a naked function containing custom prolog and epilog
sequences uses __LOCAL_SIZE in the prolog sequence:

__declspec ( naked ) func()

{
int 1;
int j;
__asm /* prolog */
{
push ebp
mov  ebp, esp
sub  esp, __LOCAL_SIZE
}
/* Function body */
__asm /* epilog */
{
mov esp, ebp
pop ebp
ret
}
}
END Microsoft Specific

Storage Class
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The storage-class specifier in a function definition gives the function either extern
or static storage class.

Syntax
Sfunction-definition :
declaration-specifiers oy attribute-seq o declarator declaration-list o
compound-statement [* attribute-seq is Microsoft Specific */



declaration-specifiers :
storage-class-specifier declaration-specifiers .y
type-specifier declaration-specifiers o
type-qualifier declaration-specifiers oy

storage-class-specifier :  [* For function definitions */
extern
static

If a function definition does not include a storage-class-specifier, the storage
class defaults to extern. You can explicitly declare a function as extern, but it is
not required.

If the declaration of a function contains the storage-class-specifier extern, the
identifier has the same linkage as any visible declaration of the identifier with file
scope. If there is no visible declaration with file scope, the identifier has external
linkage. If an identifier has file scope and no storage-class-specifier, the identifier
has external linkage. External linkage means that each instance of the identifier
denotes the same object or function. See “Lifetime, Scope, Visibility, and Linkage”
on page 32 in Chapter 2 for more information about linkage and file scope.

Block-scope function declarations with a storage-class specifier other than extern
generate errors.

A function with static storage class is visible only in the source file in which it is
defined. All other functions, whether they are given extern storage class explicitly
or implicitly, are visible throughout all source files in the program. If static storage
class is desired, it must be declared on the first occurrence of a declaration (if any)
of the function, and on the definition of the function.

Microsoft Specific — v
‘When the Microsoft extensions are enabled, a function originally declared without
a storage class (or with extern storage class) is given static storage class if the
function definition is in the same source file and if the definition explicitly specifies
static storage class.

‘When compiling with the /Ze compiler option, functions declared within a block
using the extern keyword have global visibility. This is not true when compiling
with /Za. This feature should not be relied upon if portability of source code is

a consideration. '

END Microsoft Specific
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The return type of a function establishes the size and type of the value returned by the
function and corresponds to the type-specifier in the syntax below:

Syntax
function-definition :
declaration-specifiers o attribute-seq oy declarator declaration-list o,
compound-statement /* attribute-seq is Microsoft Specific */

declaration-specifiers :
storage-class-specifier declaration-specifiers qp
type-specifier declaration-specifiers op
type-qualifier declaration-specifiers o
type-specifier :
void
char
short
int
long
float
double
signed
unsigned
struct-or-union-specifier
enum-specifier
typedef-name

The type-specifier can specify any fundamental, structure, or union type. If you
do not include type-specifier, the return type int is assumed.

The return type given in the function definition must match the return type in
declarations of the function elsewhere in the program. A function returns a value
when a return statement containing an expression is executed. The expression is
evaluated, converted to the return value type if necessary, and returned to the point
at which the function was called. If a function is declared with return type void, a
return statement containing an expression generates a warning and the expression
is not evaluated.

The following examples illustrate function return values.

typedef struct

{
char name[20];
int id;
Tong class;

} STUDENT;
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/* Return type is STUDENT: */

STUDENT sortstu( STUDENT a, STUDENT b )

{
return ( (a.id < b.id) ?2 a : b );
1

This example defines the STUDENT type with a typedef declaration and defines the
function sortstu to have STUDENT return type. The function selects and returns
one of its two structure arguments. In subsequent calls to the function, the compiler
checks to make sure the argument types are STUDENT.

Note Efficiency would be enhanced by passing pointers to the structure, rather than the

entire structure.
char *smallstr( char sl[], char s2[] )
{
int i1;
i=0;
while ( s1[i] != '\Q@' && s2[i] != "\0' )
i+t
if ( s1[i]l == '\0' )
return ( sl );
else
return ( s2 );
}

This example defines a function returning a pointer to an array of characters. The
function takes two character arrays (strings) as arguments and returns a pointer to the
shorter of the two strings. A pointer to an array points to the first of the array elements
and has its type; thus, the return type of the function is a pointer to type char.

You need not declare functions with int return type before you call them, although
prototypes are recommended so that correct type checking for arguments and return
values is enabled.

Parameters

Arguments are names of values passed to a function by a function call. Parameters are
the values the function expects to receive. In a function prototype, the parentheses
following the function name contain a complete list of the function’s parameters and
their types. Parameter declarations specify the types, sizes, and identifiers of values
stored in the parameters.

Syntax
Sfunction-definition :
declaration-specifiers q attribute-seq oy declarator declaration-list .y
compound-statement  [* attribute-seq is Microsoft Specific */
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declarator :
pointer o direct-declarator

direct-declarator : /* A function declarator */
direct-declarator ( parameter-type-list) /* New-style declarator */

parameter-type-list . /* A parameter list */
parameter-list '
parameter-list , ...

parameter-list :
parameter-declaration
parameter-list , parameter-declaration

parameter-declaration :
declaration-specifiers declarator
declaration-specifiers abstract-declarator oy

The parameter-type-list is a sequence of parameter declarations separated by
commas. The form of each parameter in a parameter list looks like this:

[register] type-specifier [declarator]

Function parameters declared with the auto attribute generate errors. The identifiers
of the parameters are used in the function body to refer to the values passed to the
function. You can name the parameters in a prototype, but the names go out of scope
at the end of the declaration. Therefore parameter names can be assigned the same
way or differently in the function definition. These identifiers cannot be redefined in
the outermost block of the function body, but they can be redefined in inner, nested
blocks as though the parameter list were an enclosing block.

Each identifier in parameter-type-list must be preceded by its appropriate type
specifier, as shown in this example:

void new( double x, double y, doubie z )
{

/* Function body here */
}

If at least one parameter occurs in the parameter list, the list can end with a comma
followed by three periods (, ...). This construction, called the “ellipsis notation,”
indicates a variable number of arguments to the function. (See “Calls with a Variable
Number of Arguments” on page 175 for more information.) However, a call to the
function must have at least as many arguments as there are parameters before the last
comma.

If no arguments are to be passed to the function, the list of parameters is replaced
by the keyword void. This use of veid is distinct from its use as a type specifier.

The order and type of parameters, including any use of the ellipsis notation,
must be the same in all the function declarations (if any) and in the function
definition. The types of the arguments after usual arithmetic conversions must
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be assignment-compatible with the types of the corresponding parameters.

(See “Usual Arithmetic Conversions” on page 102 in Chapter 4 for information
on arithmetic conversions.) Arguments following the ellipsis are not checked. A
parameter can have any fundamental, structure, union, pointer, or array type.

The compiler performs the usual arithmetic conversions independently on.each
parameter and on each argument, if necessary. After conversion, no parameter is
shorter than an int, and no parameter has float type unless the parameter type

is explicitly specified as float in the prototype. This means, for example, that
declaring a parameter as a char has the same effect as declaring it as an int.

Function Body

A “function body” is a compound statement containing the statements that specify
what the function does.

Syntax
Sfunction-definition :
declaration-specifiers o attribute-seq o declarator declaration-list oy
compound-statement [* attribute-seq is Microsoft Specific */

compound-statement : /* The function body */
{ declaration-list o statement-list o }

Variables declared in a function body, “local variables,” have auto storage class
unless otherwise specified. When the function is called, storage is created for the local
variables and local initializations are performed. Execution control passes to the first
statement in compound-statement and continues until a return statement is executed
or the end of the function body is encountered. Control then returns to the point at
which the function was called.

A return statement containing an expression must be executed if the function is to
return a value. The return value of a function is undefined if no return statement is
executed or if the return statement does not include an expression.

Function Prototypes

A function declaration precedes the function definition and specifies the name, return
type, storage class, and other attributes of a function. To be a prototype, the function
declaration must also establish types and identifiers for the function’s arguments.

Syntax
declaration :
declaration-specifiers attribute-seq . init-declarator-list oy ;
/* attribute-seqqy is Microsoft Specific */
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declaration-specifiers :
storage-class-specifier declaration-specifiers o
type-specifier declaration-specifiers o
type-qualifier declaration-specifiers o

init-declarator-list :
init-declarator
init-declarator-list , init-declarator

init-declarator :
declarator
declarator = initializer

declarator :
pointer o direct-declarator

direct-declarator : /* A function declarator */
direct-declarator ( parameter-type-list ) /* New-style declarator */
direct-declarator ( identifier-list o) /* Obsolete-style declarator */

The prototype has the same form as the function definition, except that it is
terminated by a semicolon immediately following the closing parenthesis and
therefore has no body. In either case, the return type must agree with the return
type specified in the function definition.

Function prototypes have the following important uses:

o They establish the return type for functions that return types other than int.
Although functions that return int values do not require prototypes, prototypes
are recommended.

¢ Without complete prototypes, standard conversions are made, but no attempt is
made to check the type or number of arguments with the number of parameters.

¢ Prototypes are used to initialize pointers to functions before those functions are
defined.

o The parameter list is used for checking the correspondence of arguments in the
function call with the parameters in the function definition.

The converted type of each parameter determines the interpretation of the arguments
that the function call places on the stack. A type mismatch between an argument and
a parameter may cause the arguments on the stack to be misinterpreted. For example,
on a 16-bit computer, if a 16-bit pointer is passed as an argument, then declared as a
long parameter, the first 32 bits on the stack are interpreted as a long parameter. This
error creates problems not only with the long parameter, but with any parameters that
follow it. You can detect errors of this kind by declaring complete function prototypes
for all functions.
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A prototype establishes the attributes of a function so that calls to the function that
precede its definition (or occur in other source files) can be checked for argument-type
and return-type mismatches. For example, if you specify the static storage-class
specifier in a prototype, you must also specify the static storage class in the function
definition.

Complete parameter declarations (1' nt ‘a) can be mixed with abstract declarators
(int) in the same declaration. For example, the following declaration is legal:

int add( int a, int );

The prototype can include both the type of, and an identifier for, each expression that
is passed as an argument. However, such identifiers have scope only until the end of
the declaration. The prototype can also reflect the fact that the number of arguments is
variable, or that no arguments are passed. Without such a list, mismatches may not be
revealed, so the compiler cannot generate diagnostic messages concerning them. See
“Arguments” on page 173 for more information on type checking.

Prototype scope in the Microsoft C compiler is now ANSI-compliant when compiling
with the /Za compiler option. This means that if you declare a struct or union tag
within a prototype, the tag is entered at that scope rather than at global scope. For
example, when compiling with /Za for ANSI compliance, you can never call this
function without getting a type mismatch error:

void funcl( struct S * );

To correct your code, define or declare the struct or union at global scope before the
function prototype:

struct S;
void funcl( struct S * );

Under /Ze, the tag is still entered at global scope.

Function Calls

A function call is an expression that passes control and arguments (if any) to a
function and has the form

expression ( expression-list oy )

where expression is a function name or evaluates to a function address and
expression-list is a list of expressions (separated by commas). The values of
these latter expressions are the arguments passed to the function. If the function
does not return a value, then you declare it to be a function that returns void.

If a declaration exists before the function call, but no information is given
concerning the parameters, any undeclared arguments simply undergo the usual
arithmetic conversions.

in
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Note The expressions in the function argument list can be evaluated in any order, so
arguments whose values may be changed by side effects from another argument have
undefined values. The sequence point defined by the function-call operator guarantees
only that all side effects in the argument list are evaluated before control passes to the
called function. (Note that the order in which arguments are pushed on the stack is a
separate matter.) See “Sequence Points” on page 98 in Chapter 4 for more information.

The only requirement in any function call is that the expression before the
parentheses must evaluate to a function address. This means that a function can
be called through any function-pointer expression.

Example

This example illustrates function calls called from a switch statement:

void main()
{
/* Function prototypes */

long 1ift( int ), step( int ), drop( int );
void work( int number, long (*function)(int i) );

int select, count;

select = 1;
switch( select )
{
case 1: work( count, Tift );
break;

case 2: work( count, step );
break;

case 3: work( count, drop );
/* Fall through to next case */
default:
break;
1

/* Function definition */

void work( int number, long (*function)(int i) )

{
int i;
Tong j;
for (i =Jj =0; i < number; i++ )
J 4= ( *function )( i );
}
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In this example, the function call in main,
work( count, 1ift );

passes an integer variable, count, and the address of the function 11 ft to the
function work. Note that the function address is passed simply by giving the function
identifier, since a function identifier evaluates to a pointer expression. To use a
function identifier in this way, the function must be declared or defined before the
identifier is used; otherwise, the identifier is not recognized. In this case, a prototype
for work is given at the beginning of the main function.

The parameter function in work is declared to be a pointer to a function taking one
int argument and returning a long value. The parentheses around the parameter name
are required; without them, the declaration would specify a function returning a
pointer to a long value.

The function work calls the selected function from inside the for loop by using the
following function call:

( *function )( i );

One argument, i, is passed to the called function.

Arguments

The arguments in a function call have this form:
expression (expression-list o, ) /* Function call */

In a function call, expression-list is a list of expressions (separated by commas).
The values of these latter expressions are the arguments passed to the function. If
the function takes no arguments, expression-list should contain the keyword void.

An argument can be any value with fundamental, structure, union, or pointer type. All
arguments are passed by value. This means a copy of the argument is assigned to the
corresponding parameter. The function does not know the actual memory location of
the argument passed. The function uses this copy without affecting the variable from
which it was originally derived.

Although you cannot pass arrays or functions as arguments, you can pass pointers
to these items. Pointers provide a way for a function to access a value by reference.
Since a pointer to a variable holds the address of the variable, the function can use
this address to access the value of the variable. Pointer arguments allow a function
to access arrays and functions, even though arrays and functions cannot be passed
as arguments.

The order in which arguments are evaluated can vary under different compilers
and different optimization levels. However, the arguments and any side effects are
completely evaluated before the function is entered. See “Side Effects” on page 97
in Chapter 4 for information on side effects. '
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The expression-list in a function call is evaluated and the usual arithmetic conversions
are performed on each argument in the function call. If a prototype is available, the
resulting argument type is compared to the prototype’s corresponding parameter. If
they do not match, either a conversion is performed, or a diagnostic message is issued.
The parameters also undergo the usual arithmetic conversions.

The number of expressions in expression-list must match the number of parameters,
unless the function’s prototype or definition explicitly specifies a variable number of
arguments. In this case, the compiler checks as many arguments as there are type
names in the list of parameters and converts them, if necessary, as described above.
See “Calls with a Variable Number of Arguments” on page 175 for more information.

If the prototype’s parameter list contains only the keyword veid, the compiler expects
zero arguments in the function call and zero parameters in the definition. A diagnostic
message is issued if it finds any arguments.

| Example

This example uses pointers as arguments:

void main()

{
/* Function prototype */
void swap( int *numl, int *num2 );
int x, y;
swap( &x, &y ); /* Function call */
}

/* Function definition */

void swap( int *numl, int *num2 )

{
int t;
t = *numl;
*numl = *num?2;
*num2 = t;

}

In this example, the swap function is declared in main to have two arguments,
represented respectively by identifiers numl and num2, both of which are pointers to
int values. The parameters numl and num2 in the prototype-style definition are also
declared as pointers to int type values.

In the function call

swap( &x, &y )
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the address of x is stored in num1 and the address of y is stored in num2. Now two
names, or “aliases,” exist for the same location. References to *numl and *num?2 in
swap are effectively references to x and y in main. The assignments within swap
actually exchange the contents of x and y. Therefore, no return statement is
necessary.

The compiler performs type checking on the arguments to swap because the prototype
of swap includes argument types for each parameter. The identifiers within the
parentheses of the prototype and definition can be the same or different. What is
important is that the types of the arguments match those of the parameter lists in both
the prototype and the definition.

Calls with a Variable Number of Arguments

A partial parameter list can be terminated by the ellipsis notation, a comma followed
by three periods (, ...), to indicate that there may be more arguments passed to the
function, but no more information is given about them. Type checking is not
performed on such arguments. At least one parameter must precede the ellipsis
notation and the ellipsis notation must be the last token in the parameter list. Without
the ellipsis notation, the behavior of a function is undefined if it receives parameters in
addition to those declared in the parameter list.

To call a function with a variable number of arguments, simply specify any numbet of
arguments in the function call. An example is the printf function from the C run-time
library. The function call must include one argument for each type name declared in
the parameter list or the list of argument types.

All the arguments specified in the function call are placed on the stack unless the
__fastcall calling convention is specified. The number of parameters declared for the
function determines how many of the arguments are taken from the stack and assigned
to the parameters. You are responsible for retrieving any additional arguments from
the stack and for determining how many arguments are present. The STDARGS.H file
contains ANSI-style macros for accessing arguments of functions which take a
variable number of arguments. Also, the XENIXe- style macros in VARARGS.H are
still supported.

This sample declaration is for a function that calls a variable number of arguments:
int average( int first, ...);

Microsoft Specific —

To maintain compatibility with previous versions of Microsoft C, a Microsoft
extension to the ANSI C standard allows a comma without trailing periods (,) at the
end of the list of parameters to indicate a variable number of arguments. However, it
is recommended that code be changed to incorporate the ellipsis notation.

END Microsoft Specific
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Any function in a C program can be called recursively; that is, it can call itself.

The number of recursive calls is limited to the size of the stack. See the “Stack
Allocations” (/STACK) linker option in the Visual C++ Programmer’s Guide

online for information about linker options that set stack size. Each time the function
is called, new storage is allocated for the parameters and for the auto and register
variables so that their values in previous, unfinished calls are not overwritten.
Parameters are only directly accessible to the instance of the function in which they
are created. Previous parameters are not directly accessible to ensuing instances of
the function.

Note that variables declared with static storage do not require new storage with each
recursive call. Their storage exists for the lifetime of the program. Each reference to
such a variable accesses the same storage area.

Example

This example illustrates recursive calls:

int factorial( int num ); /* Function prototype */

void main()

{

int result, number;

result = factorial( number );
}
int factorial( int num ) /* Function definition */
{

ifCCnum>0 ) || ( num <= 10 ) )

return( num * factorial( num - 1 ) );

}
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C Language Syntax Summary

This appendix gives the full description of the C language and the Microsoft-specific
C language features. You can use the syntax notation in this appendix to determine the
exact syntax for any language component. The explanation for the syntax appears in
the section of this manual where a topic is discussed.

Note This syntax summary is not part of the ANSI C standard, but is included for information
only. Microsoft-specific syntax is noted in comments following the syntax.

Definitions and Conventions

Terminals are endpoints in a syntax definition. No other resolution is possible.
Terminals include the set of reserved words and user-defined identifiers.

Nonterminals are placeholders in the syntax and are defined elsewhere in this syntax
summary. Definitions can be recursive.

An optional component is indicated by the subscripted .. For example,
{ expression o }
indicates an optional expression enclosed in curly braces.

The syntax conventions use different font attributes for different components of the
syntax. The symbols and fonts are as follows:

Attribute Description

nonterminal Italic type indicates nonterminals.

const Terminals in bold type are literal reserved words and symbols that must
be entered as shown. Characters in this context are always case sensitive.

opt Nonterminals followed by . are always optional.

default typeface Characters in the set described or listed in this typeface can be used as

terminals in C statements.

A colon (:) following a nonterminal introduces its definition. Alternative definitions
are listed on separate lines, except when prefaced with the words “one of.”
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Lexical Grammar

Tokens

token :
keyword
identifier
constant
string-literal
operator
punctuator
preprocessing-token :
header-name
identifier
pp-number
character-constant
string-literal
operator
punctuator
each nonwhite-space character that cannot be one of the above
header-name :
< path-spec >
"path spec"
path-spec :
Legal file path
pp-number :
digit
.digit
pp-number digit
pp-number nondigit
pp-number e sign
pp-number E sign
pp-number .

178



Keywords

keyword : one of

auto double int
break else long
case enum register
char extern return
const float short
continue for signed
default goto sizeof
do if static
Identifiers

identifier :

nondigit

identifier nondigit

identifier digit

nondigit : one of
_abcdefghijklm
nopqrstuvwxyz
ABCDEFGHIJKLM
NOPQRSTUVWXYZ

digit : one of
0123456789

Constants

constant :
floating-point-constant
integer-constant
enumeration-constant
character-constant
floating-point-constant :

fractional-constant exponent-part oy floating-suffix op
digit-sequence exponent-part floating-suffix op

fractional-constant :
digit-sequence oy . digit-sequence
digit-sequence .
exponent-part :
€ s5ign o digit-sequence
E sign o digit-sequence

Appendix A C Language Syntax Summary

struct
switch
typedef
union
unsigned
void
volatile

while
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sign : one of
+ -
digit-sequence :
digit
digit-sequence digit
floating-suffix : one of
fl1FL
integer-constant :
decimal-constant integer-suffix op
octal-constant integer-suffix op;
hexadecimal-constant integer-suffix o
decimal-constant
nonzero-digit
decimal-constant digit
octal-constant :
0
octal-constant octal-digit
hexadecimal-constant :
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-constant hexadecimal-digit
nonzero-digit . one of
" 123456789
octal-digit : one of
01234567
hexadecimal-digit : one of
0123456789
abcdef
ABCDEF
unsigned-suffix : one of
ulU
long-suffix : one of
IL
character-constant :
'c-char-sequence'
L'c-char-sequence'
integer-suffix :
unsigned-suffix long-suffix op
long-suffix unsigned-suffix o
c-char-sequence :
c-char
c-char-sequence c-char
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c-char :
Any member of the source character set except the single quotation mark ('),
backslash (\), or newline character
escape-sequence
escape-sequence :
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence
simple-escape-sequence  one of
\a\b \f\n\r\tl
V" NN
octal-escape-sequence :
\ octal-digit
\ octal-digit octal-digit
\ octal-digit octal-digit octal-digit
hexadecimal-escape-sequence :
\x hexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

String Literals

string-literal :
"'s-char-sequence o'
L"s-char-sequence oy
s-char-sequence :
s-char
s-char-sequence s-char
s-char:
any member of the source character set except the double-quotation mark (),
backslash (\), or newline character
escape-sequence

Operators

operator : one of
[1¢).~->
++ — & * + - ~ ! sizeof
| % << >> <> <= >= == = A | && !!
= ¥= [= Q= 4= —= <<= >>= &= M= |=
, # #H#

assignment-operator : one of
= *= /= %: = —_= L= DOO= &: A= |=
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Punctuators

punctuator : one of

(1O {}y*,:=;.#

Phrase Structure Grammar
Expressions

primary-expression :
identifier
constant
string-literal
( expression)
expression :
assignment-expression
expression , assignment-expression
constant-expression :
conditional-expression
conditional-expression :
logical-OR-expression
logical-OR-expression ? expression : conditional-expression
assignment-expression :
conditional-expression
unary-expression assignment-operator assignment-expression
postfix-expression :
primary-expression
postfix-expression [ expression ]
postfix-expression ( argument-expression-list o )
postfix-expression . identifier
postfix-expression —> identifier
postfix-expression ++
postfix-expression ——
argument-expression-list :
assignment-expression
argument-expression-list , assignment-expression
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unary-expression :

postfix-expression

++ unary-expression

— = unary-expression

unary-operator cast-expression

sizeof unary-expression

sizeof ( type-name )
unary-operator : one of

&* =~
cast-expression :

unary-expression

( type-name ) cast-expression
multiplicative-expression :

cast-expression

multiplicative-expression * cast-expression

multiplicative-expression | cast-expression

multiplicative-expression % cast-expression
additive-expression :

multiplicative-expression

additive-expression + multiplicative-expression

additive-expression — multiplicative-expression
shift-expression :

additive-expression

shift-expression << additive-expression

shift-expression >> additive-expression
relational-expression :

shift-expression

relational-expression < shift-expression

relational-expression > shift-expression

relational-expression <= shift-expression

relational-expression >= shift-expression
equality-expression :

relational-expression

equality-expression == relational-expression

equality-expression != relational-expression
AND-expression :

equality-expression

AND-expression & equality-expression
exclusive-OR-expression :

AND-expression

exclusive-OR-expression » AND-expression
inclusive-OR-expression :

exclusive-OR-expression

inclusive-OR-expression | exclusive-OR-expression

Appendix A C Language Syntax Summary
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logical-AND-expression :

inclusive-OR-expression

logical-AND-expression && inclusive-OR-expression
logical-OR-expression :

logical-AND-expression

logical-OR-expression |l logical-AND-expression

Declarations

184

declaration :
declaration-specifiers attribute-seq oy init-declarator-list o 3
/* attribute-seq is Microsoft Specific */
declaration-specifiers :
storage-class-specifier declaration-specifiers o
type-specifier declaration-specifiers o '
type-qualifier declaration-specifiers op

attribute-seq : /* attribute-seq is Microsoft Specific */
attribute attribute-seq qp
attribute : one of /* Microsoft Specific */

__asm __fastcall

__based __inline

__cdecl __stdcall

init-declarator-list :

init-declarator

init-declarator-list , init-declarator
init-declarator :

declarator

declarator = initializer ~ /* For scalar initialization */
storage-class-specifier :

auto

register

static

extern

typedef

__declspec ( extended-decl-modifier-seq ) 1* Microsoft Specific */
type-specifier :

void

char

short

int

__int8 /* Microsoft Specific */

__intl6 /* Microsoft Specific */

__int32 /* Microsoft Specific */
_int64 /* Microsoft Specific */
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long

float

double

signed

unsigned

struct-or-union-specifier

enum-specifier

typedef-name
type-qualifier :

const

volatile
declarator :

pointer o direct-declarator
direct-declarator :

identifier

( declarator)

direct-declarator [ constant-expression qy]

direct-declarator ( parameter-type-list ) /* New-style declarator */

direct-declarator ( identifier-list o ) /* Obsolete-style declarator */
pointer .

¥ type-qualifier-list o

* type-qualifier-list o pointer
parameter-type-list : ' /* The parameter list */

parameter-list

parameter-list , ...
parameter-list :

parameter-declaration

parameter-list , parameter-declaration
type-qualifier-list :

type-qualifier

type-qualifier-list type-qualifier
enum-specifier :

enum identifier . { enumerator-list }

enum identifier
enumerator-list

enumerator

enumerator-list , enumerator
enumerator :

enumeration-constant

enumeration-constant = constant-expression
enumeration-constant :

identifier
struct-or-union-specifier :

struct-or-union identifier o { struct-declaration-list }

struct-or-union identifier
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struct-or-union :

struct

union
struct-declaration-list :

struct-declaration

struct-declaration-list struct-declaration
struct-declaration :

specifier-qualifier-list struct-declarator-list ;
specifier-qualifier-list :

type-specifier specifier-qualifier-list o

type-qualifier specifier-qualifier-list o
struct-declarator-list :

struct-declarator

struct-declarator-list , struct-declarator
struct-declarator :

declarator

type-specifier declarator oy : constant-expression
parameter-declaration :

declaration-specifiers declarato r /* Named declarator */
_declaration-specifiers abstract-declarator o, /* Anonymous declarator */
identifier-list : /* For old-style declarator */
identifier
identifier-list , identifier
abstract-declarator : /* Used with anonymous declarators */
pointer

pointer o, direct-abstract-declarator
direct-abstract-declarator -
( abstract-declarator)
direct-abstract-declarator oy [ constant-expression qp |
direct-abstract-declarator o, ( parameter-type-list oy )
initializer :
assignment-expression
{ initializer-list } /* For aggregate initialization */
{ initializer-list , }
initializer-list :
initializer
initializer-list , initializer
type-name :
specifier-qualifier-list abstract-declarator oy
typedef-name :
identifier
extended-decl-modifier-seq:  [* Microsoft Specific */
extended-decl-modifier o
extended-decl-modifier-seq extended-decl-modifier
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extended-decl-modifier : /* Microsoft Specific */
thread
naked
dllimport
dllexport

Statements

statement :

labeled-statement

compound-statement

expression-statement

selection-statement .

iteration-statement

Jjump-statement

try-except-statement /* Microsoft Specific */

try-finally-statement /* Microsoft Specific */
jump-statement :

goto identifier ;

continue;

break;

return expression oy 3
compound-statement :

{ declaration-list . statement-list o }
declaration-list :

declaration

declaration-list declaration
statement-list :

Statement

statement-list statement
expression-statement :

expression qp
iteration-statement .

while ( expression ) statement

do statement while ( expression );

for ( expression . 3 expression o 3 expression oy ) statement
selection-statement :

if ( expression ) statement

if ( expression ) statement else statement

switch ( expression ) statement
labeled-statement :

identifier : statement

case constant-expression : statement

default : statement
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try-except-statement : /* Microsoft Specific */
__try compound-statement
__except ( expression ) compound-statement
try-finally-statement . /* Microsoft Specific */
__try compound-statement
__finally compound-statement

External Definitions

translation-unit :
external-declaration
translation-unit external-declaration

external-declaration : /* Allowed only at external (file) scope */
function-definition
declaration

function-definition : /* Declarator here is the function declarator */

declaration-specifiers .y declarator declaration-list o, compound-statement
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Implementation-Defined Behavior

ANSI X3.159-1989, American National Standard for Information Systems—
Programming Language—C, contains an appendix called “Portability Issues.”
The ANSI appendix lists areas of the C language that ANSI leaves open to each
particular implementation. This appendix describes how Microsoft C handles
these implementation-defined areas of the C language.

This appendix follows the same order as the ANSI appendix. Each item covered
includes references to the ANSI chapter and section that explains the
implementation-defined behavior.

Note This appendix describes the U.S. English-language version of the C compiler only.
Implementations of Microsoft C for other languages may differ slightly.

Translation: Diagnostics

ANSI 2.1.1.3 How a diagnostic is identified

Microsoft C produces error messages in the form:
filename( line-number ) : diagnostic Cnumber message

where filename is the name of the source file in which the error was encountered;
line-number is the line number at which the compiler detected the error; diagnostic
is either “error” or “warning”; number is a unique four-digit number (preceded by
a C, as noted in the syntax) that identifies the error or warning; message is an
explanatory message.
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Environment
Arguments to main

ANSI 2.1.2.2.1 The semantics of the arguments to main

In Microsoft C, the function called at program startup is called main. There is
no prototype declared for main, and it can be defined with zero, two, or three
parameters:

int main( void )
int main( int argc, char *argv[] )
int main( int argc, char *argv[], char *envp[] )

The third line above, where main accepts three parameters, is a Microsoft extension
to the ANSI C standard. The third parameter, envp, is an array of pointers to
environment variables. The envp array is terminated by a null pointer. See “The
main Function and Program Execution” on page 27 in Chapter 2 for more
information about main and envp.

The variable arge never holds a negative value.
The array of strings ends with argv[arge], which contains a null pointer.
All elements of the argv array are pointers to strings.

A program invoked with no command-line arguments will receive a value of one
for argc, as the name of the executable file is placed in argv[0]. In MS-DOS
versions prior to 3.0, the executable-file name is not available. The letter “C” is
placed in argv[0].) Strings pointed to by argv[1] through argv[argc — 1] represent
program parameters.

The parameters arge and argv are modifiable and retain their last-stored values
between program startup and program termination.

Interactive Devices
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ANSI 2.1.2.3 What constitutes an interactive device

Microsoft C defines the keyboard and the display as interactive devices.
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Identifiers
Significant Characters Without External Linkage

ANSI 3.1.2 The number of significant characters without external linkage

Identifiers are significant to 247 characters. The compiler does not restrict the
number of characters you can use in an identifier; it simply ignores any characters
beyond the limit.

Significant Characters with External Linkage

ANSI 3.1.2 The number of significant characters with external linkage

Identifiers declared extern in programs compiled with Microsoft C are significant
to 247 characters. You can modify this default to a smaller number using the /H
(restrict length of external names) option.

Uppercase and Lowercase

ANSI 3.1.2 Whether case distinctions are significant

Microsoft C treats identifiers within a compilation unit as case sensitive.

The Microsoft linker is case sensitive. You must specify all identifiers consistently
according to case. :

Characters
The ASCII Character Set

ANSI 2.2.1 Members of source and execution character sets

The source character set is the set of legal characters that can appear in source files.
For Microsoft C, the source character set is the standard ASCII character set.

Warning Because keyboard and console drivers can remap the character set, programs
intended for international distribution should check the country code.
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Multibyte Characters

ANSI 2.2.1.2 Shift states for multibyte characters

Multibyte characters are used by some implementations, including Microsoft C,

to represent foreign-language characters not represented in the base character set.
However, Microsoft C does not support any state-dependent encodings. Therefore,
there are no shift states. See “Multibyte and Wide Characters” on page 7 in Chapter 1
for more information.

Bits per Character

ANSI2.2.4.2.1 Number of bits in a character

The number of bits in a character is represented by the manifest constant
CHAR_BIT. The LIMITS.H file defines CHAR_BIT as 8.

Character Sets

ANSI 3.1.3.4 Mapping members of the source character set

The source character set and execution character set include the ASCII characters
listed in Table B.1. Escape sequences are also shown in the table.

Table B.1 Escape Sequences

Escape Sequence Character ASCII Value
\a Alert/bell 7
\b Backspace 8
\f Formfeed 12
\n Newline 10
\r Carriage return 13
\t Horizontal tab 9
\v Vertical tab 11
\ ‘Double quotation 34
\' Single quotation 39
A\ Backslash 92

Unrepresented Character Constants
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ANSI 3.1.3.4 The value of an integer character constant that contains a character or escape
sequence not represented in the basic execution character set or the extended character set
for a wide character constant

All character constants or escape sequences can be represented in the extended
character set.
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Wide Characters

ANSI 3.1.3.4 The value of an integer character constant that contains more than one
character or a wide character constant that contains more than one multibyte character

The regular character constant, “ab” has the integer value (int)0x6162. When
there is more than one byte, previously read bytes are shifted left by the value of
CHAR_BIT and the next byte is compared using the bitwise-OR operator with
the low CHAR_BIT bits. The number of bytes in the multibyte character constant
cannot exceed sizeof(int), which is 4 for 32-bit target code.

The multibyte character constant is read as above and this is converted to a
wide-character constant using the mbtowc run-time function. If the result is not a
valid wide-character constant, an error is issued. In any event, the number of bytes
examined by the mbtowe function is limited to the value of MB_CUR_MAX.

Converting Multibyte Characters

ANSI 3.1.3.4 The current locale used to convert multibyte characters into corresponding
wide characters (codes) for a wide character constant

The current locale is the “C” locale by default. It can be changed with the setlocale
library routine. The LC_CTYPE category of the current locale sets the current
working code page, which determines correspondence and conversion between the
multibyte and wide-character sets. The mbstowcs, westombs, mbtowe, and wetomb
library routines provide direct mappings between the multibyte and wide-character
sets. Also, many of the stream routines, such as the print, scan, get, and put families,
automatically provide mappings between these two character sets.

Range of char Values

ANSI 3.2.1.1 Whether a “plain” char has the same range of values as a signed char or an
unsigned char

All signed character values range from —128 to 127. All unsigned character values
range from O to 255.

The /J compiler option changes the default from signed to unsigned.
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Integers

‘Range of Integer Values

ANSI 3.1.2.5 The representations and sets of values of the various types of integers

Integers contain 32 bits (four bytes). Signed integers are represented in
two’s-complement form. The most-significant bit holds the sign: 1 for negative, 0
for positive and zero. The values are listed below:

Type Minimum and Maximum
unsigned short 0 to 65535

signed short -32768 to 32767

unsigned long 0 to 4294967295

signed long —2147483648 to 2147483647

Demotion of Integers

ANSI3.2.1.2 The result of converting an integer to a shorter signed integer, or the result of
converting an unsigned integer to a signed integer of equal length, if the value cannot be
represented

When a long integer is cast to a short, or a short is cast to a char, the least-significant
bytes are retained.

For example, this line

short x = (short)0x12345678L;

assigns the value 0x5678 to x, and this line

char y = (char)0x1234;

assigns the value 0x34 to y.

When signed variables are converted to unsigned and vice versa, the bit patterns
remain the same. For example, casting —2 (OxFE) to an unsigned value yields 254
(also OxFE).

Signed Bitwise Operations
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ANSI 3.3 The results of bitwise operations on signed integers

Bitwise operations on signed integers work the same as bitwise operations on
unsigned integers. For example, -16 & 99 can be expressed in binary as

11111111 11110000
& 00000000 01100011

00000000 01100000
The result of the bitwise AND is 96.
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Remainders

ANSI 3.3.5 The sign of the remainder on integer division

The sign of the remainder is the same as the sign of the dividend. For example,

50 / -6 == -8
50 % -6 == 2
-50 / 6 == -8
-50 % 6 == -2

Right Shifts

ANSI 3.3.7 The result of a right shift of a negative-value signed integral type

Shifting a negative value to the right yields half the absolute value, rounded down.
For example, —253 (binary 11111111 00000011) shifted right one bit produces —127
(binary 11111111 10000001). A positive 253 shifts right to produce +126.

Right shifts preserve the sign bit. When a signed integer shifts right, the
most-significant bit remains set. When an unsigned integer shifts right, the
most-significant bit is cleared.

If 0xFOO00 is unsigned, the result is 0x7800.

If 0xFO000000 is signed, a right shift produces 0xF8000000. Shifting a positive
number right 32 times produces 0xF0000000. Shifting a negative number right
32 times produces OxFFFFFFFE.

Floating-Point Math

Values

ANSI 3.1.2.5 The representations and sets of values of the various types of floating-point
numbers

The float type contains 32 bits: 1 for the sign, 8 for the exponent, and 23 for the
mantissa. Its range is +/— 3.4E38 with at least 7 digits of precision.

The double type contains 64 bits: 1 for the sign, 11 for the exponent, and 52 for the
mantissa. Its range is +/— 1.7E308 with at least 15 digits of precision.

The long double type contains 80 bits: 1 for the sign, 15 for the exponent, and 64
for the mantissa. Its range is +/— 1.2E4932 with at least 19 digits of precision. With
the Microsoft C compiler, the representation of type long double is identical to
type double.
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Casting Integers to Floating-Point Values

ANSI 3.2.1.3 The direction of truncation when an integral number is converted to a
floating-point number that cannot exactly represent the original value

‘When an integral number is cast to a floating-point value that cannot exactly
represent the value, the value is rounded (up or down) to the nearest suitable value.

For example, casting an unsigned long (with 32 bits of precision) to a float (whose
mantissa has 23 bits of precision) rounds the number to the nearest multiple of 256.
The long values 4,294,966,913 to 4,294,967,167 are all rounded to the float value
4,294,967,040.

Truncation of Floating-Point Values

ANSI3.2.1.4 The direction of truncation or rounding when a floating-point number is converted
to a narrower floating-point number

When an underflow occurs, the value of a floating-point variable is rounded down to
zero. An overflow may cause a run-time error or it may produce an unpredictable
value, depending on the optimizations specified.

Arrays and Pointers
Largest Array Size

ANSI 3.3.3.4,4.1.1 The type of integer required to hold the maximum size of an array—that is,
the size of size_t

The size_t typedef is an unsigned int with the range 0x00000000 to 0x7CFFFFFFE.

Pointer Subtraction

ANSI 3.3.6, 4.1.1 The type of integer required to hold the difference between two pointers to
elements of the same array, ptrdiff_t

A ptrdiff_t is a signed int in the range —4,294,967,296 to 4,294,967,295.

Registers: Availability of Registers

ANSI 3.5.1 The extent to which objects can actually be placed in registers by use of the
register storage-class specifier :

The 32-bit compiler does not honor user requests for register variables. Instead, it
makes it own choices when optimizing.
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Structures, Unions, Enumerations,
and Bit Fields

Improper Access to a Union

ANSI 3.3.2.3 A member of a union object is accessed using a member of a different type

If a union of two types is declared and one value is stored, but the union is accessed
with the other type, the results are unreliable.

For example, a union of float and int is declared. A float value is stored, but the
program later accesses the value as an int. In such a situation, the value would
depend on the internal storage of float values. The integer value would not be
reliable.

Padding and Alignment of Structure Members

ANSI 3.5.2.1 The padding and alignment of members of structures and whether a bit field
can straddle a storage-unit boundary

Structure members are stored sequentially in the order in which they are declared:
the first member has the lowest memory address and the last member the highest.

Every data object has an alignment-requirement. The alignment-requirement for
all data except structures, unions, and arrays is either the size of the object or the
current packing size (specified with either /Zp or the pack pragma, whichever is
less). For structures, unions, and arrays, the alignment-requirement is the largest
alignment-requirement of its members. Every object is allocated an offset so that

offset % alignment-requirement ==

Adjacent bit fields are packed into the same 1-, 2-, or 4-byte allocation unit if the
integral types are the same size and if the next bit field fits into the current allocation
unit without crossing the boundary imposed by the common alignment requirements
of the bit fields.

Sign of Bit Fields

ANSI 3.5.2.1 Whether a “plain” int field is treated as a signed int bit field or as an unsigned int
bit field

Bit fields can be signed or unsigned. Plain bit fields are treated as signed.
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Storage of Bit Fields

ANSI 3.5.2.1 The order of allocation of bit fields within an int

Bit fields are allocated within an integer from least-significant to most-significant bit.
In the following code

struct mybitfields
{
unsigned a : 4;
unsigned b : 5;
unsigned ¢ : 7;

} test;

void main( void )

{
test.a = 2;
test.b = 31;
test.c = 0;

}

the bits would be arranged as follows:

00000001 11110010
ccccececb bbbbaaaa

Since the 80x86 processors store the low byte of integer values before the high byte,
the integer 0x01F2 above would be stored in physical memory as 0xF2 followed
by 0x01.

The enum type
ANSI 3.5.2.2 The integer type chosen to represent the values of an enumeration type

A variable declared as enum is an int.

Qualifiers: Access to Volatile Objects

ANSI 3.5.5.3 What constitutes an access to an object that has volatile-qualified type

Any reference to a volatile-qualified type is an access.

Declarators: Maximum number

ANSI 3.5.4 The maximum number of declarators that can modify an arithmetic, structure,
or union type

Microsoft C does not limit the number of declarators. The number is limited only
by available memory.
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Statements: Limits on Switch Statements

ANSI 3.6.4.2 The maximum number of case values in a switch statement

Microsoft C does not limit the number of case values in a switch statement.
The number is limited only by available memory.

Preprocessing Directives
Character Constants and Conditional Inclusion

ANSI 3.8.1 Whether the value of a single-character character constant in a constant
expression that controls conditional inclusion matches the value of the same character constant
in the execution character set. Whether such a character constant can have a negative value

The character set used in preprocessor statements is the same as the execution
character set. The preprocessor recognizes negative character values.

Including Bracketed Filenames
ANSI 3.8.2 The method for locating includable source files

For file specifications enclosed in angle brackets, the preprocessor does not search
directories of the parent files. A “parent” file is the file that has the #include directive in
it. Instead, it begins by searching for the file in the directories specified on the compiler
command line following /I. If the /I option is not present or fails, the preprocessor uses
the INCLUDE environment variable to find any include files within angle brackets. The
INCLUDE environment variable can contain multiple paths separated by semicolons
(3). If more than one directory appears as part of the /I option or within the INCLUDE
environment variable, the preprocessor searches them in the order in which they appear.

Including Quoted Filenames

ANSI 3.8.2 The support for quoted names for includable source files

If you specify a complete, unambiguous path specification for the include file between
two sets of double quotation marks (*“ ), the preprocessor searches only that path
specification and ignores the standard directories.

For include files specified as #include “path-spec”, directory searching begins

with the directories of the parent file, then proceeds through the directories of any
grandparent files. Thus, searching begins relative to the directory containing the source
file currently being processed. If there is no grandparent file and the file has not been
found, the search continues as if the filename were enclosed in angle brackets.

199



C Language Reference

Character Sequences

ANSI 3.8.2 The mapping of source file character sequences

Preprocessor statements use the same character set as source file statements with the
exception that escape sequences are not supported.

Thus, to specify a path for an include file, use only one backslash:
fHinclude "pathl/path2/myfile"

Within source code, two backslashes are necessary:

fil = fopen( "pathl\\path2\\myfile", "rt" );

Pragmas

ANSI 3.8.6 The behavior on each recognized #pragma directive

The following pragmas are defined for the Microsoft C compiler:

alloc_text data_seg include_alias setlocale
auto_inline function intrinsic warning
check_stack hdrstop message

code_seg inline_depth optimize

comment ) inline_recursion pack

Default Date and Time

ANSI 3.8.8 The definitions for _DATE_ and _TIME_ when, respectively, the date and time of
translation are not available

When the operating system does not provide the date and time of translation, the
default values for _DATE_ and _TIME_ are May 03 1957 and 17:00:00".

Library Functions
NULL Macro

ANSI4.1.5 The null pointer constant to which the macro NULL expands

Several include files define the NULL macro as ((void *)0).
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Diagnostic Printed by the assert Function

ANSI 4.2 The diagnostic printed by and the termination behavior of the assert function

The assert function prints a diagnostic message and calls the abort routine if the
expression is false (0). The diagnostic message has the form

Assertion failed: expression, file filename, line linenumber

where filename is the name of the source file and linenumber is the line number of
the assertion that failed in the source file. No action is taken if expression is true
(nonzero).

Character Testing

ANSI 4.3.1 The sets of characters tested for by the isalnum, isalpha, iscntrl, islower,
isprint, and isupper functions

The following list describes these functions as they are implemented by the Microsoft

C compiler.
Function Tests For
isalnum Characters 0-9, A-Z, a-z
ASCII 48-57, 65-90, 97-122
isalpha Characters A-Z, a-z
ASCII 65-90, 97-122
iscntrl ASCII 0-31, 127
islower Characters a—z
ASCII 97-122
isprint Characters A-Z, a-z, 0-9, punctuation, space
ASCII 32-126
isupper Characters A-Z
ASCII 65-90

Domain Errors

ANSI 4.5.1 The values returned by the mathematics functions on domain errors
The ERRNO.H file defines the domain error constant EDOM as 33.

Underflow of Floating-Point Values

ANSI 4.5.1 Whether the mathematics functions set the integer expression errno to the value
of the macro ERANGE on underflow range errors

A floating-point underflow does not set the expression errno to ERANGE. When
a value approaches zero and eventually underflows, the value is set to zero.
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The fmod Function

ANSI 4.5.6.4 Whether a domain error occurs or zero is returned when the fmod function has
a second argument of zero

When the fmod function has a second argument of zero, the function returns zero.
The signal Function
ANSI 4.7.1.1 The set of signals for the signal function

The first argument passed to signal must be one of the symbolic constants described
in the Run-Time Library Reference for the signal function. The information in the
Run-Time Library Reference also lists the operating mode support for each signal.
The constants are also defined in SIGNAL.H.

Default Signals

ANSI 4.7.1.1 If the equivalent of signal (sig, SIG_DFL) is not executed prior to the call of a
signal handler, the blocking of the signal that is performed

Signals are set to their default status when a program begins running.
Terminating Newline Characters
ANSI4.9.2 Whether the last line of a text stream requires a terminating newline character

Stream functions recognize either new line or end of file as the terminating character
for a line.

Blank Lines

ANSI4,9.2 Whether space characters that are written out to a text stream immediately before
a newline character appear when read in

Space characters are preserved.

Null Characters

ANSI4.9.2 The number of null characters that can be appended to data written to a binary
stream

~ Any number of null characters can be appended to a binary stream.
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File Position in Append Mode

ANSI 4.9.3 Whether the file position indicator of an append mode stream is initially positioned
at the beginning or end of the file

When a file is opened in append mode, the file-position indicator initially points to the
end of the file.

Truncation of Text Files

ANSI 4.9.3 Whether a write on a text stream causes the associated file to be truncated beyond
that point

Writing to a text stream does not truncate the file beyond that point.
File Buffering
ANSI 4.9.3 The characteristics of file buffering

Disk files accessed through standard I/O functions are fully buffered. By default, the
buffer holds 512 bytes.

Zero-Length Files
ANSI 4.9.3 Whether a zero-length file actually exists
Files with a length of zero are permitted.
Filenames
ANSI 4.9.3 The rules for composing valid file names

A file specification can include an optional drive letter (always followed by a colon),
a series of optional directory names (separated by backslashes), and a filename.

Filenames and directory names can contain up to eight characters followed by a period
and a three-character extension. Case is ignored. The wildcards * and ? are not
permitted within the name or extension.

File Access Limits
ANSI4.9.3 Whether the same file can be open multiple times

Opening a file that is already open is not permitted.
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Deleting Open Files

ANSI 4.9.4.1 The effect of the remove function on an open file

The remove function deletes a file, even if the file is open.

Renaming with a Name That Exists

ANSI 4.9.4.2 The effect if a file with the new name exists prior to a call to the rename
function

If you attempt to rename a file using a name that exists, the rename function fails
and returns an error code.

Reading Pointer Values

ANSI 4,9.6.2 The input for %p conversion in the fscanf function

When the %p format character is specified, the fscanf function converts pointers
from hexadecimal ASCII values into the correct address.

Reading Ranges

ANSI 4.9.6.2 The interpretation of a dash (-) character that is neither the first nor the last
character in the scanlist for % [ conversion in the fscanf function

The following line

fscanf( fileptr, "%[A-Z1", strptr);

reads any number of characters in the range A—Z into the string to which strptr
points.

File Position Errors
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ANSI 4.9.9.1,4.9.9.4 The value to which the macro errno is set by the fgetpos or ftell
function on failure

When fgetpos or ftell fails, errno is set to the manifest constant EINVAL if the
position is invalid or EBADEF if the file number is bad. The constants are defined
in ERRNO.H.
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Messages Generated by the perror Function
ANSI4,9.10.4 The messages generated by the perror function

The perror function generates these messages:

Error 0

No such file or directory

Arg 1ist too long
Exec format error
Bad file number

WoOoONOTO PPWNHRFES

12 Not enough core
13 Permission denied

17 File exists
18 Cross-device 1link

22 Invalid argument

24 Too many open files

28 No space left on device

33 Math argument
34 Result too large

36. Resource deadlock would occur

Allocating Zero Memory

ANSI 4.10.3 The behavior of the calloc, malloc, or realloc function if the size requested
is zero

The calloc, malloc, and realloc functions accept zero as an argument. No actual

memory is allocated, but a valid pointer is returned and the memory block can be
modified later by realloc.
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‘The abort Function

ANSI 4.10.4.1 The behavior of the abort function with regard to open and temporary files

The abort function does not close files that are open or temporary. It does not flush
stream buffers.

The atexit Function
ANSI 4.10.4.3 The status returned by the atexit function if the value of the argument is other
than zero, EXIT_SUCCESS, or EXIT_FAILURE

The atexit function returns zero if successful, or a nonzero value if unsuccessful.

Environment Names
ANSI 4.10.4.4 The set of environment names and the method for altering the environment list
used by the getenv function

The set of environment names is unlimited.

To change environment variables from within a C program, call the _putenv
function. To change environment variables from the command line in Windows 95
or Windows NT, use the SET command (for example, SET LIB = D:\ LIBS).

Environment variables set from within a C program exist only as long as their
host copy of the operating system command shell is running (CMD.EXE in
Windows NT and COMMAND.COM in Windows 95). For example, the line

system( SET LIB = D:\LIBS );

would run a copy of the Windows NT command shell (CMD.EXE), set the
environment variable LIB, and return to the C program, exiting the secondary
copy of CMD.EXE. Exiting that copy of CMD.EXE removes the temporary
environment variable LIB.

This example also runs on the Windows 95 platform.

Likewise, changes made by the _putenv function last only until the program ends.
The system Function

ANSI4.10.4.5 The contents and mode of execution of the string by the system function

The system function executes an internal operating system command, or an .EXE,

.COM (.CMD in Windows NT) or .BAT file from within a C program rather than
from the command line.
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Appendix B Implementation-Defined Behavior

The system function finds the command interpreter, which is typically CMD.EXE
in the Windows NT operating system or COMMAND.COM in Windows 95. The
system function then passes the argument string to the command interpreter.

The strerror Function

ANES14.11.6.2 The contents of the error message strings retuned by the strerror function

The strerror function generates these messages:

Error 0

No such file or directory

Arg list too long
Exec format error
9 Bad file number

12 Not enough core
13 Permission denied

17 File exists
18 Cross-device link

22 Invalid argument

24 Too many open files

28 No space left on device

33 Math argument
34 Result too large

36 Resource deadlock would occur
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C Language Reference
The Time Zone
ANSI 4.12.1 The local time zone and Daylight Savings Time

The local time zone is Pacific Standard Time. Microsoft C supports Daylight
Savings Time. ‘

The clock Function
ANSI 4.12.2.1 The era for the clock function

The clock function’s era begins (with a value of 0) when the C program starts
to execute. It returns times measured in 1/CLOCKS_PER_SEC (which equals
1/1000 for Microsoft C).

208



- (arithmetic negation operator) 110
-- (decrement operator) 108
- (subtraction operator) 114-115
- > (member-selection operator) 107
! (logical negation operator) 110
" " (double quotation marks), usage in command-line
arguments 30
# (number sign), in preprocessing directives 21
% (remainder operator) 113
%= (remainder assignment operator) 123
& (address-of operator)
described 109
example 110
register objects 46
& (bitwise-AND operator) 120
&& (logical-AND operator)
described 121
sequence points 101
&= (bitwise-AND assignment operator) 123
() (parentheses)
enclosing expression arguments 144
in abstract declarators 71
in declarations 53
in function declarations 71
specifying evaluation order 95
* (asterisk), in declarations 53
* (indirection operator)
described 109
example 110
l-value expressions 95
* (multiplicative operator) 113
* (wildcard) in filenames and paths 30
*= (multiplication assignment operator) 123
, (comma)
in constant expressions 78
in initializer lists 78
sequential evaluations 101, 125
,... (ellipsis notation)
indicating variable number of arguments 168
terminating partial parameter list 175

Index

. (period), member-selection operator 107
/ (division operator) 113
/* */ (comment delimiters) 2
// (comment delimiters) 3
/= (division assignment operator) 123
: {colon) in bit-field declarations 61
:? (conditional-expression operator) 101, 122
; (semicolon)
null statement 143-144
statement terminator 136
? (wildcard) in filenames and paths 30
77" (trigraph) translates as # character 8
77- (trigraph) translates as ~ character 8
77! (trigraph) translates as | character 8
72( trigraph) translates as [ character 8
77) (trigraph) translates as ] character 8
7%/ (trigraph) translates as \\ character 8
77< (trigraph) translates as { character 8
77= (trigraph) translates as # character 8
77> (trigraph) translates as } character 8
[ ] (brackets)
in arrays 104
in declarations 53, 66, 71
\ (backslash), usage in command-line arguments 30
\ (backslash, line-continuation character) 17, 19
\" (escape sequence, double quotation mark) 30
\? (escape sequence, literal question mark) 17
\? (escape sequence, literal question mark) 8
\\\ (escape sequence, backslash) 17
\\’ (escape sequence, single quotation mark) 17
\” (escape sequence, double quotation mark) 17
A (bitwise-exclusive-OR operator) 119-120
A= (bitwise-exclusive-OR assignment operator) 123
__ (double underscore), identifier name prefix 4, 6
{ } (braces)
__asm block delimiters 158
compound statement delimiters 26, 136
in initializer lists 79
| (bitwise-inclusive-OR operator) 119-120
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Il (logical-OR operator)
described 121
sequence points 101

I= (bitwise-inclusive-OR assignment operator) 123

~ (bitwise-complement operator ) 110

+ (addition operator) 114-115

+ (unary plus operator) 110

++ (increment operator) 108

+= (addition assignment operator) 123
+= (compound assignment operator) 124
<< (bitwise left-shift operator) 116

<<= (left-shift assignment operator) 123
=-- (decrement operator) 108

= (simple assignment operator) 124

-= (subtraction assignment operator) 123
== (equality operator) 117-119

>> (bitwise right-shift operator) 116
>>= (right-shift assignment operator) 123

A

\a (escape sequence, bell) 17
abort function 206
Abstract declarators
described 71
example 71
in parameter declarations 171
Accessing files 203
Addition assignment operator (+=) 123
Addition operator (+) 114-116
Additive operators, syntax 114
Addresses
access with address-of operator (&) 109
l-values 95
storing 70
Address-of operator (&)
described 110
with register objects 46
Aggregate types, initializing 77-78, 80
Alarm See Bell character escape sequence
Alignment
bit fields 61
structure members 63
Allocating memory
dynamic 33
zero-sized 205
Anonymous structures 60
ANSI C standard 189, xi
ANSI conformance xii

Apostrophe () See Escape sequences
Append mode, files 203
argc parameter, passing information to main 29
Arguments
ANSI compatibility 190
command-line 28, 30, 32
defined 28, 167
function See Function arguments
to main 190
argv parameters, passing information to main 29
Arithmetic conversions
See also Usual arithmetic conversions
additive operators 115
binary operators, steps 102
example 103
logical operators 121
multiplicative operators 113
summary of 102
Arithmetic negation (-) operator 110
Arithmetic operators, unary (table) 110
Arithmetic types, defined 81
Array declarations
brackets ([])in 53, 67,71
elements 66
example 67-68
maximum size 68
multidimensional 67
specifying array size 66
syntax 66-67
Array type, incomplete 85
Arrays
as last member of structure 60
character, initializing 80
declaring 53, 67-68
defined 52
determining size of 61, 77
element types 19
errors 77
in expressions 94
in structures 112
initializing 77-78, 80
maximum size 196
multidimensional 67, 105-106
of pointers 67
one-dimensional 104
pointer arithmetic 115-116
pointer comparison 118
postfix expressions 104—105
size, maximum 68



Arrays (continued)
storing 67-68
subscript expressions 104
ASCII character sets 191
__asm keyword, invoking inline assembler 158
Assembler, inline See Inline assembler
assert function 201
Assignment conversions
See also Type conversions 124
compound assignment operator 124
described 126
floating-point types 130
operators 124
other types 132
pointer types 131
signed integral types 126
unsigned integral types 128
Assignment operations, side effects 97
Assignment operators
compound 99
expression evaluation 124
syntax 123
table 123
Associativity
C operators (table) 100
defined 100
operator types C 99
Asterisk (*)
in declarations 53
wildcard in filenames 30
atexit function 206
auto storage class
default 45
lifetime 34
local variables 169
visibility 34
auto storage class
local variables 45
Automatic identifiers, storage allocation for 33
Automatic variables
allocating 42
initializing 46, 75
visibility of 46

\b (escape sequence, backspace 17
Backslash (\\) escape sequence 17
Backslash (\\) escape sequence (\\) 17

Index

Backspace (\\b) escape sequence 17
Based addressing 70-71
__based keyword 70
Based pointers 70
Bell character (\a) escape sequence 17
Binary expressions 99
Binary numbers, floating point 83-84
Binary operators, defined 99
Binding

See also Precedence

defined 100

expressions 101
Bit fields

colon (:) in declarations 61

declaring 61

defined 61

example 62

signed 197

storage allocation 198

storing 62
Bitwise left-shift operator (<<) 116
Bitwise operators

described 116

example 120

listed 120

overflow conditions 117

signed integers 194

syntax 119

using 117
Bitwise right-shift operator (>>) 116
Bitwise shifts, integers 117
Bitwise-AND assignment operator (&=) 123
Bitwise-AND operator (&) 120
Bitwise-complement operator (~) 110
Bitwise-exclusive-OR assignment operator (*=) 123
Bitwise-exclusive-OR operator (*) 119-120
Bitwise-inclusive-OR assignment operator (I=) 123
Bitwise-inclusive-OR operator (I) 119-120
Block scope

identifiers 76

visibility 34
Blocks

See also Compound statements

defined 26

delimiters ( { } ) 26

nesting 35
Braces ({ })

block delimiters 26

compound statement delimiters 136
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Braces ({ }) (continued)
enclosing __asm blocks 158
in initializer lists 79
Brackets ([ ]) in array declarations 53, 66—67, 71
Branching operations See if statements; switch
statements
break statements
See also continue statemernts
example 136
in switch statements 145-146
syntax 136
terminating a for statement 140
Buffering files 203

C

“C” locale 193
Calling conventions, specifying 157
Calling functions 106
Calling variable number of arguments, example 175
Carriage-return escape sequence (\\r) 17
case labels in switch statements 145-146
Case sensitivity
defined 6
identifiers 191
specifying 7
case statements, maximum allowed 199
Casting integers to enumerations 57
Casts, type See Type casts
char type
changing default 51
conversion 127
storing integer value 81
Character arrays 80
Character constants, described 15
Character sets
compared 16
escape sequences 192
mapping 193
multibyte 192
preprocessing 199
source file 7,200
Character types, wchar_t 7
Characters
ASCII compatibility 191
backslash escape sequence (\\) 17 °
backspace escape sequence (\b) 17
bell escape sequence (\\a) 17
carriage-return escape sequence (\r) 17

Characters (continued)
double-quotation-mark escape sequence (\") 17
end-of-file indicator 4
escape sequences See Escape sequences
formfeed escape sequence (\\f) 17
hexadecimal 17-18
horizontal tab escape sequence (\\t) 17
international 7
line-continuation (\\) 17, 19
multibyte 7, 193
new line (\\n) 17, 202
nongraphic control 17
null 19, 202,
octal escape sequences 17-18
range of values 193 -
single-quotation-mark escape sequence (\\) 17
size in bits 192
spaces preserved 202
special 21
string literals 18
testing 201
types 16
vertical-tab escape sequence (\\v) 17
white-space 2, 17
wide 7,193

clock function 208

Colon (:), used in bitfield declarations 61

Comma (,)
in constant expressions 78
in initializer lists 78
operator See Sequential evaluation operator

Command-line arguments
ANSI requirements 29
interpreting 30
main function 28
parsing 30, 31, 32
_setargv function 30
syntax 28

Command-line processing, customizing 32

Comments 2-3

Compiler options
/H (restrict length of external names) 6
/1 (search directory for include files) 199
/J (change default character type) 51, 81, 193
/W4 (setting warning level 4) 6
/Za (enable Microsoft extensions) 3, 5, 29
/Ze (visibility of functions) 165
/Zp (pack structure members) 63, 197

Compiling translation units 24



Complex declarators, intrepreting 72-74
Compound assignment expressions, evaluation 124
Compound assignment operator (+=) 124
Compound statements
See also Blocks
defined 26, 136
example 138
function definitions 156
repeating 140
syntax 137
Concatenating string literals 20
Conditional branching See if statements; switch
statements
Conditional compilation, testing code 3
Conditional expressions, sequence points 122
Conditional-expression operator (?:) 122-123
const type qualifier
identifiers, nonmodifiable 1-values 95
pointers 52, 69
using 52
variables 51-52
Constant expressions 96-97
Constants
character 15,192
defined 9
described 16-18
enumeration 56
floating-point 9-11
integer 12—-13
integer, conversion rules 14
syntax 9, 179
types 94
continue statement 138
Conventions, syntax 177
Conversions
See also Type conversions
arithmetic 102
assignment 128, 130-132
char type 127
enumeration type 132
function call 133
integral types 129-130
pointer types 131-132
pointers 204
rules
arithmetic 102-103
floating-point types 130
integer constants 14
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Conversions (continued)
rules (continued)
type conversions 126
unsigned integral types 128
signed integral types 126, 128-129
type cast 132
Creating types 87
CTRL+Z character (end-of-file indicator) 4
Current locale See Locale

D

Data types See Types
__DATE__ predefined macro, default 200
Decimal
constants See Integer constants
defined 12
Declarations
arrays 66—68
automatic variables 46
bit fields 61
defined 25, 39-40
defining 41, 43, 45
‘enumerations 55-57
examples 46, 54
external See External
function prototypes 171
fun.tions See Function declarations
in declaration list 156
internal 42, 46
placement in source file 137
pointers 68—70
referencing 41, 43, 45
specifying types 49-50
structures 58-63
syntax 40, 184
typedef See typedef declarations
union 63-66
variables See Variable declarations
Declarators
See also Identifiers
abstract 71, 171
complex 72-74
function 156
initializing 74-80
interpreting 72-74
maximum allowed 198
restrictions on use 54
syntax 52
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Declaring
bit fields 61
const variables 52
pointers 69
thread-local variables, guidelines 90
variables See Variable declarations
Declaring functions 53
__declspec storage-class specifier 41, 88
decrement operator, prefix (--) 108
Default labels in switch statements 145
Defaults
bit fields 63
Microsoft C extensions enabled 96
type specifiers 41
#define preprocessor directive, enumerations as an
alternative 55
Defining declarations 41, 43
Definitions
See also Function definitions
defined 25, 39
external 43
serving as declarations 153
used as declarators 41
Deleting open files 204
Denormalized numbers 83-84
Derived types, defined 39
Diagnostic messages See Error messages
Displaying nongraphic control characters 17
Division assignment operator (/=) 123
Division operator (/) 113
Divisor, integer remainder 195
dllexport storage-class attribute
dynamic-link libraries (DLLs) 158
overview 89
used with extern keyword 160
used with inline functions 160
dllimport storage-class attribute
dynamic-link libraries (DLLs) 158
overview 89
used with inline functions 160
DLLs
exporting functions to Windows, using
dllexport 158
exporting, importing 89
Documenting code, writing comments 2
Domain errors, math functions 201

double type
floating-point constants 10
format and precision 82
range 84
Double underscore (__), identifer name prefix 7
do-while statements
continue statements in 138
example 139
expression evaluation 139
syntax 139
terminating 136, 139
Dynamic memory allocation 33
Dynamic-link libraries See DLLs

E

Ellipsis notation (,...)
indicating variable number of arguments 168
terminating partial parameter list 175
else clauses, nesting 143
Embedded structures 60
End-of-file indicator, CTRL+Z 4
Enumeration declarations
conversion 132
defined 55
example 56
types 49
Enumeration tags
name spaces 37
syntax 55
Enumerations
assigning values to members 56-57
casting 57
declarations See Enumeration declarations
declaring pointers to 69
defined 52
naming members 56
overriding default values 56
storing 55 :
syntax 55
types of 49,55, 198
unnamed 57
Environment variables
changing 206
COMSPEC 206
envp parameter 29, 32
Epilog code
naked functions 162
writing 89, 163



Equality operators
example 119
list of 117
syntax 118
Error messages
assert function 201
Microsoft C error format 189
strerror function 207
Errors
arrays 77
file position 204
integer constants 15
math functions 201
messages 189
symbol redefinition 36
Escape sequences
described 16
hexadecimal notation 17
in string literals 19
list with ASCII values 192
octal notation 17
table 17
Evaluating expressions See Expression evaluation
Evaluation order, effect of parentheses 95
Example programs See Sample programs
__except statements 148
Exception handling 148
_exec function 32
Execution character set, compared to source character
set 16
exit function, terminating programs 27
Expanding wildcard arguments 30
Exponents, floating-point variables 83
Export functions
module-definition (.DEF) files 158
specifying with dllexport and dilimport 158, 159
Exporting DLLs, dllexport 89
Expression evaluation
assignment operators 124
compound assignment expressions 124
conditional-expression operator 122
constants 96
example 102
function arguments 174
if statements 142
logical operators 101
order of operators 101
sequence points 97-98, 122
sequential evaluation operator (,) 125

Index

Expression evaluation (continued)
short circuit 101, 121
side effects 97, 140
statements 136
subscript expressions 104—-105
tokens 4
Expression statements 139-140
Expressions '
binary 99
binding 101
conditional, sequence points 122
constant
defined 96-97
restricted 97
syntax 51
defined 93
evaluating 4
floating-point 10
function calls 171
infinite loops 141
l-value 95
member-selection 95, 106—107
operands 99
parentheses used in 95
primary 93
subscript 104-105
syntax 182
ternary 99
unary 99
void 50
Extended attribute syntax, __declspec keyword 88
Extended storage-class attributes
dllexport 158
dllimport 158
naked 89
thread 90 .
Extended storage-class modifiers, dllexport and
dllimport 158
Extensions, Microsoft-specific See Microsoft-specific
extensions
extern keyword
See also extern storage class
used with dllexport storage-class attribute 160
extern storage class
declarations 48
function definitions 156, 164, 165
linkage 36
rules for using 44
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extern storage class (continued) Floating-point
syntax 43-44 constants
visibility 34 decimal point, using 10
External declarations IEEE format 82
described 36, 42—-45 naming 10
example 44-45 range limits 10-11
functions 25, 48 representation of 9
lifetime 34 syntax 9
placement of 42 types 10
storage-class specifiers 43 mantissas 84
using extern 44, 46 ‘ numbers, storing as denomalized 83
visibility of 43 numbers, storing as denormalized 83-84
External definitions range errors 201
defined 43 representation 195
syntax 188 truncation 196
External linkage 36, 41, 43, 165 types
External variables conversions 129-130
initializing 75 format and precision 82
static 43 listed 49
visibility 46 promoting 84
ranges 84
F table of conversions 130
variables, declaring as 83-84
\f (escape sequence, form feed 17 variables
File buffering 203 described 83
File scope 26, 34, 43,75, 165 promoting 84
Filenames fmod function 202
valid 203 for statement
 wildcards 30 continue statements in 138
Files example 141
access limits 203 expression evaluation 140
append mode 203 syntax 140

buffering 203

terminating 136
end-of-file indicator 4

Formal parameters See Parameters

file position errors 204 Formfeed escape sequence (\\f) 17
header See Header (.H) files fscanf function 204
include 24

Function arguments

naming restrictions 203 argument to parameter correspondence 170
object 24 arithmetic conversions 174
renaming 204 defined 167
source 200 example 174-175
zero-length 203 . expression evaluation 174
float type function calls 106, 154
floating-point constants 10 passed by value 173
format and precision 82 passing pointers 173
range 84 syntax 173
FLOAT.H header file, content of 10 type checking 171
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Function body Function definitions (continued)
See also Function definitions . return types 166-167
compound-statement 156 storage classes 156
defined 169 syntax 155-156, 169
Function calls used as declarations 153
arguments 106, 154 Function identifiers as addresses 94
arithmetic conversions 133 Function parameters
conversions 133 abstract declarators 171
example 173 argument to parameter correspondence 171
expression evaluation 174 arithmetic conversions 169
pointers to functions 172 ellipsis notation 168—169
postfix expressions 106 function-prototype scope 171
recursive 176 local lifetime 33
sequence points 171 parameter list 168
side effects 97 parameter types 168
syntax 106, 171 syntax 155, 167
variable number of arguments 175 type conversions 168
Function declarations void 49-50
See also Declarations Function prototypes
abstract declarators as parameters 171 See also Function declarations
ANSI compliant 154 ANSI compliant 171
defined 153 argument to parameter correspondence 170
dllexport attribute 158-159 defined 25
dllimport attribute 158-159 scope 34
example 26-27 scope of parameters 171
extern 48 syntax 155-156, 169
file scope 165 type conversion 133,170
inline 157 type-checking arguments 154, 171
naked attribute 162 Function return types
obsolete declaration forms 154 matching function call types 106
parentheses in 53, 71 void 144
parentheses in 71 Function return values, example 166
placement 42, 153 Function scope 34
specifying calling convention 157 Functions
static 48 abort 206
syntax 169 assert 201
type specifiers 49, 51 atexit 206
visibility 42 attributes See Function declarations
Function declarators 156 calling 106
Function definitions clock 208
compound statement block 26 declarators 156
contents of 25 declaring 53
described 155 definitions See Function definitions
dllexport attribute 159 dllexport 158
example 26-27 dllimport 158
file scope 26 _exec 32
local variables 169 exit 27
parameter list 155 exporting 158, 159
return statement 169 extern 48
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Functions (continued)
external declarations 25, 48
fmod 202
fscanf 204
headers 26
inline 42, 160
lifetime 33
linkage, external 165
main 190, 27, 29
malloc 33
naked 162
naming 44
nesting 43
perror 205
pointer 172
prototypes See Function prototypes
_putenv 206
recursive 176
return types

specifying 50
syntax 166
void 49
scope 34
_setargv 30, 32
_setenvp 32
signal 202
_spawn 32
specifying calling conventions 157
static 44,48
storage classes 156, 164
strerror 207
system 206
visibility 44, 48, 165

G

/Gd option, compiler 157
Generating faster code, inline functions 157
Global

declarations 26

identifiers 33

lifetime 33, 42

variables 48
goto statements

example 142

exiting loops with 141

syntax 141

terminating for statements 140

transferring control 136

H

/H option, compiler 6
Header (.H) files
defined 24
FLOAT.H 10
LIMITS.H 14, 82
STDARGS.H 175
«  VARARGS.H 175
" Hexadecimal
constants See Integer constants
defined 12
escape sequences 17-18
Horizontal-tab escape sequence (\\t) 17

/T option, compiler 199
Identifiers

See also Variables

arrays 94

attributes 34

block scope 34,76

case sensitivity 6-7, 191

const 51

declared as a function 94

defined 5

described 7

enumeration tags 55

enumerator lists 56

external 33,36

functions '
prototype scope 34
scope 34

global 33

hiding names of 43

in compound statements 137

initializing 33

internal linkage 36

lifetime 33

linkage 7,25, 36

local 33

l-values 95

name spaces 37

names
in different scopes 36
nested visibility 37

requiring __ (double underscore) prefix 6



Identifiers (continued)
naming
case sensitivity 7
floating-point constants 10
functions 44
integer constants 13
leading underscores 4, 6
restrictions on 5-6, 191
structure members 59
scope 7,34, 137
statement labels 141
storage class 33
storage duration 33
structure members 59
structure tags 58
syntax 6, 179
types 94
using 5
visibility 34
IEEE format, floating-point numbers 82
if statement 142-143
Implementation-defined behavior 189
Importing DLLs, dllimport 89
Include files
contents 24
search path 199
Incomplete types 85
Increment operator (++) 108
Indirection operator (*)
described 109
example 110
l-values 95
subscript expressions 105
Inequality operator (!=) 118
Initializations, example 76
Initializers
aggregate types 77
braces ({ } )in 79
defined 74
nesting 77
Initializing
aggregate types 77-78, 80
arrays 77-78, 80
block scope identifiers 76
declarators 74-80
local variables 33
scalar types 75-76
strings 80
structures 77

Index

Initializing (continued)
syntax 75
variables
aggregate 77
auto 75
example 78-79
external 75
file scope 75
global 76
internal static 46
register 75
rules for 75
scalar 74
static 46, 75
string 80
Inline assembler, using 158
Inline functions
reasons to use 157
syntax 157
used with dllexport storage-class attribute 160
used with dllimport storage-class attribute 160
using 157
Institute of Electrical and Electronics Engineers See
IEEE format
int type
signed 49
size of 81
Integer constants 12-14
Integer division, remainder 195
Integers
converting 126, 128
demotion 194
enumerations 55, 198
limits 14
range of values 194
shifting 195
size of 81
storing 63, 81
types 13
widening 51
Integral promotion 126
Integral types
conversions 126, 128-130
listed 49

TInteractive devices 190

Internal declarations 25, 42, 46
Internal linkage 36, 41, 43
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Internal variables
static 46
visibility 48
International characters 7
Interpreting command-line arguments 30
Interpreting complex declarators 72

J

/J option, compiler 51, 81, 193

K

Keywords 4-5

L

Labeled statements 141
Labels
in case statements 145
names spaces 37
scope 34
Leading underscores (__), identifier name prefix 4
__leave statements 149, 151
Left-shift assignment operator (<<=) 123
Left-shift operator (<<) 116
Lexical scope See Scope
Lifetime
automatic (local) 42
defined 33
determining 41
functions 42
global 33, 42,46
local 33,42, 46
static (global) 42, 48
table 34
Limits
floating-point constants 10-11
integers 14
LIMITS.H header file
limits for integer types 14
range of signed integer values 82
Line-continuation character (\\) 17
Linkage
defined 7, 25
effect on storage duration 33
external 36,41, 43
function identifiers 165
identifiers 25

Linkage (continued)
internal 36, 41, 43
types of 36
Linked lists 59
Linking
export functions 160
object files 24
with SETARGV.OBJ 30
Local declarations 25
Local scope 46
Local variables
declared in functions 169
initializing 33
storage allocated for 33
__LOCAL_SIZE predefined macro 163, 164
Locale “C” 193
Logical expressions, sequence points 121
Logical negation operator (!) 110
Logical operators
evaluation order 101
example 121
syntax 121
Logical-AND operator (&&)
described 121
sequence points 101
Logical-OR operator (Il) 121
long double type
conversion 130
floating-point constants 10
long type
conversion 127
floating-point constants 10
integer constants 13
usage 49
Loops, continue statements 138
L-values
accessing 51
assignment operations 123
casts of 1-values 96
defined 95
expressions 95
identifiers as 94
Microsoft C extension 96
modifiable 94-95, 108, 123
prefix increment and decrement operators 108
r-values, difference 96
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Macros

See also Predefined macros

defining 18

NULL 200
main function

command-line arguments 190, 29

described 27
malloc function 33
Mantissas, floating-point variables 83-84
Mapping character sets 193
Math functions, domain errors 201
mblen function 8
mbstowcs function 8
mbtowc function 8
Member-selection expressions

l-values 95

syntax 106-107
Member-selection operator (. ) 107
Member-selection operator (->) 107
Memory access, using volatile 52
Memory allocation

dynamic 33

static variables 46

zero-sized 205
Microsoft extensions

ANSI conformance xii

casts of I-values 96

disabling with /Za option 96

effect on storage classes 165
Microsoft product support xi
Modifiable 1-values 95
Module-definition (.DEF) files, exporting

functions 158

Multibyte characters 7, 192—-193
Multidimensional arrays

declaring 67

defined 105

postfix expressions 105-106

Multiplication assignment operator (*=) 123

Multiplicative operators, syntax 113

Multithreaded programs See Thread-local storage

N

\n (escape sequence, new-line character) 17, 202

Naked functions
described 162
rules and limitations for writing 163

Index

naked storage-class attribute 89
Name spaces 37
Names
files 203
typedef 37, 87
union members 37
Naming identifiers
case sensitivity 7
floating-point constants 10
functions 44
integer constants 13
leading underscores (__) 4,6
restrictions on 5, 6
structure members 59
Negation operators 110
Nested
else clauses 143
initializer lists 77
switch statements 146
Nested
if statements 143
structures 59
unions 65
Nesting comments 2-3
Newline character escape sequence (\n) 17, 202
Nonterminals, definition 177
Null characters 19, 202
NULL macro 200
Null pointers
invalid pointers 109
produced by conversions 131
Null statements
defined 139
described 143
empty 136
example 144
using 144
Number sign (#,) using in preprocessing directives 21

0

Object files, linking 24
Octal
character specifications 18
constants See Integer constants
defined 12
escape sequences 17
One-dimensional arrays, postfix expressions 104, 105
Open files, deleting 204
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Operands Operators (continued)
defined 93 postfix increment (++) 108
expressions 99 precedence 99

Operators precedence and associativity table 100
addition (+) 114 prefix decrement (--) 108
addition assignment (+=) 123 prefix increment (++) 108
additive 114-115 relational
address-of (&) 109 example 119
arithmetic negation (-) 110 listed 117
arithmetic, unary (list) 110 precedence 118
assignment 99, 123-124 remainder (%) 113
associativity 99 ‘ remainder assignment (%=) 123
associativity and precedence table 100 right-shift (>>) 113, 123
binary, list 99 sequence points 101
bitwise 119-120, 194 sequential expression (,) 125
bitwise complement ( ~) 110 simple assignment (=) 124
bitwise shift (<<, >>) 116-117 sizeof 84,111-112
bitwise-AND (&) 120 subtraction (-) 114-115
bitwise-complement (~) 110 subtraction assignment (-=) 123
bitwise-exclusive-OR (4) 120 syntax 181
bitwise-inclusive-OR (I) 120 unary
compound assignment (+=) 124 arithmetic 110
conditional-expression (?:) 122-123 list 99
defined 1 unary arithmetic negation
division (/) 113 floating-point constants 10
division assignment (/=) 123 integer constants 12
equality (==) 117-119 unary plus (+) operator 110
greater-than (>) 117 Order of evaluation See Precedence
greater-than-or-equal-to (>=) 118
increment (++) 108 P
indirection (*) 105
inequality (1=) 118 pack‘pragma 63, 197
left-shift assignment (<<=) 123 Packing
left-shift operator (<<) 123 data options 197
less-than (<) 117 structures 63
less-than-or-equal-to (<=) 117 Parameters
list of 99 arge 29
logical 121 argv 29
logical evaluation order 101 declarations, abstract declarators 171
logical negation (1) 110 defined 28, 167
logical-AND operator (&&) 121 envp 29, 32
logical-OR operator (ll) 121 ' function See Function parameters
member-selection operator (.) 107 Parentheses ()
member-selection operator (->) 107 determining evaluation order 95
multiplication assignment (*=) 123 enclosing expression arguments 144
multiplicative (*) 113 in complex abstract declarators 71
negation 110 in function declarations 53, 71
postfix 103-107 Parsing command-line arguments 30, 32
postfix decrement (--) 108 perror function 205

222



Phases, translation

identifier names 4
trigraphs 8

Plus operator (+) 110
Pointers

argv parameter 29
arithmetic 196, 115-116
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syntax 178
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return values 148
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flow of control 150

syntax 150
Type casts

conversions 128, 130-131

implementation 194

integers 128

l-values 96

227



Index

228

Type casts (continued)

restrictions 112
rounding of numbers 196
syntax 112, 132

table of legal 133

type conversions 126
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Type conversions

arithmetic conversions 102
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overview 126
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volatile 41, 198
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list of 49

overview 49
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typedef declarations

creating 87
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example 87

improving code readability with 87
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characters 16
checking 50
conversions 14, 102
creating 87
default 49
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double 10, 49, 84
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int 13,49, 126
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pointer 68-69
pointer conversions 131-132
scalar 75, 108
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size_t 111
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structures 58
typedef 86-88
union 64
unsigned 13
void 85
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wchar_t 7,94
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floating-point constants, used with 10
integer constants, used with 12
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address-of (&) 109
arithmetic 110
defined 99
prefix increment and decrement 108
sizeof operator 112
syntax 108

Underflow conditions, rounding of values 196

Unicode specification, wide characters 8
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accessing 197
aggregate types, initializing 77-78, 80
defined 63
described 66
example 65
incomplete types 85
member types 64
members 106
tags 63

Union members
name spaces 37
selecting 107

Union tags, name spaces 37

Unions
declaring pointers to 69
defined 52
example 64
nested 65
referencing 106
storing 64, 66

unsigned char type
integer constants 13
limits 13
range 81

Unsigned integers
converting 128
limits 14
shifting 117
size 81

Unsigned integral types, table of conversions 128

unsigned keyword, with integral types 49

Untyped variables 54

Usual arithmetic conversions
binary operators, steps 102
bitwise shift operators 117
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Usual arithmetic conversions (continued)
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example 103
function parameters 169
function prototype 133
list of 113
multiplicative operators 115
relational operators 118
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Values
characters 16
converting to void 132
integers 16
referring to with identifiers 5
shifting 117
VARARGS.H 175
Variable declarations
automatic 42
defined 25
example 55
external 43
floating-point types 83, 84
information in 54
lifetime 42
multiple 54
placement 42
storage classes 41
volatile variables 52
Variable definitions, defined 25
Variables
accessing 25
aggregate type, initializing 77-80
allocating storage for 25
array 66
automatic 42, 45-46, 137
constant 51
declarations, example 55
declaring floating-point types 83-84
determining lifetime 41
environment See Environment variables
external 43-45
file scope 43,75
floating-point described 83
global 33,48
initializing 33, 46, 74, 76-77, 79-80
internal 45-46, 48
lifetime 33, 42, 46
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local 34,42

read-only 52

register 46, 137

scalar type 75-76
shared 43

simple declarations 54
static, initializing 43, 75
storage classes 42-46, 48
storage in registers 46
storing 33

strings, initializing 80
type declarations 52

type specifiers 49, 51-52
untyped 54

values, undefined 45
visibility 35, 44, 46
volatile 52

void pointers
converting 131
uses of 49, 50
volatile type qualifier
accessing volatile types 198
pointers 69
using 52
variables 51

W

/W4 option, compiler 6
wchar_t character type 7
wcstombs function 8
wctomb function 8
while statements
continue statements in 138
example 152
expression evaluation 151

Variant records See Union declarations
Vertical tab escape sequence (\\v) 17 loop control 152
Visibility synta}x 1.5 1

See also Scope terminating 136

defined 34 White-space characters, defined 2

determining 34 Wide-char:acter constants 193
example 35 Widening integers 51

external variables 43-44, 46 Wildcards
function declarations 42 *,?7 30

functions 44, 48, 165 _setargv function 30
global 36 in filenames and paths 30

suppressing expansion of 30

identifiers in compound statements 137 : : ’
wmain function, described 27

internal variables 48
register variables 46
static definitions 43 Z
static identifiers 34
summary table 34
variables
declared with register storage class 46
determined by placement 42
prior to defining declaration 45
static 46

/Za option, compiler 3,5, 29
/Ze option, compiler 165
/Zp option, compiler 197, 63
Zero-extending 51
Zero-length files 203
Zero-sized allocation 205

void ‘
expressions
sequential evaluations 125
side effects 50
type, incomplete type 85
void keyword
function parameters 168
type specifier, used with pointers 68
uses 49
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Introduction

Scope of this Manual

C++, like C, is a language that is heavily reliant on a rich set of library functions to
provide the following:

¢ Portable operating-system interface (file and screen I/O)

e String and buffer manipulation

¢ Floating-point math transformations

e Other supporting functionality

For information about the run-time library functions, see the Run-Time Library
Reference. For information on the Microsoft Foundation classes or the iostream

classes, see the Class Library Reference or the iostream Class Library Reference,
respectively.

Organization

This manual is organized as follows:

Chapter 1, “Lexical Conventions,” introduces the fundamental elements of a C++
program as they are meaningful to the compiler. These elements, called “lexical
elements,” are used to construct statements, definitions, declarations, and so on,
which are used to construct complete programs.

Chapter 2, “Basic Concepts,” explains concepts such as scope, linkage, program
startup and termination, storage classes, and types. These concepts are key to
understanding C++. Terminology used in this book is also introduced.

Chapter 3, “Standard Conversions,” describes the type conversions the compiler
performs between built-in, or “fundamental,” types. It also explains how the compiler
performs conversions among pointer, reference, and pointer-to-member types.

XV
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Chapter 4, “Expressions,” describes C++ expressions —sequences of operators and
operands that are used for computing values, designating objects or functions, or
generating other side effects.

Chapter 5, “Statements,” explains the C++ program elements that control how and
in what order programs are executed. Among the statements covered are expression
statements, null statements, compound statements, selection statements, iteration
statements, jump statements, and declaration statements.

Chapter 6, “Declarations,” is one of three chapters devoted to how complete
declarations are used to form declaration statements. This chapter describes such
topics as storage-class specifiers, function definitions, initializations, enumerations,
class, struct, and union declarations, and typedef declarations. Related information
can be found in Chapter 7, “Declarators,” and Appendix B, “Microsoft-Specific
Modifiers.”

Chapter 7, “Declarators,” explains the portion of a declaration statement that names
an object, type, or function.

Chapter 8, “Classes,” introduces C++ classes. C++ treats an object declared with the
class, struct, or union keyword as a class type. This chapter explains how to use
these class types.

Chapter 9, “Derived Classes,” covers the details of inheritance—a process by which
you can define a new type as having all the attributes of an existing type, plus any new
attributes you add.

Chaptér 10, “Member-Access Control,” explains how you can control access to class
members. Use of access-control specifiers can help produce more robust code because
you can limit the number of ways an object’s state can be changed.

Chapter 11, “Special Member Functions,” describes special functions unique to class
types. These special functions perform initialization (constructor functions), cleanup
(destructor functions), and conversions. This chapter also describes the new and
delete operators, which are used for dynamic memory allocation.

Chapter 12, “Overloading,” explains a C++ feature that enables you to define a group
of functions with the same name but different arguments. Which function in the group
is called depends on the argument list in the actual function call. In addition, this
chapter covers overloaded operators, a mechanism for defining your own behavior
for C++ operators.

Appendix A, “Grammar Summary,” is a summary of the C++ grammar with the
Microsoft extensions. Portions of this grammar are shown throughout this manual in
“Syntax” sections.

Appendix B, “Microsoft-Specific Modifiers,” describes the modifiers specific to
Microsoft C++. These modifiers control memory addressing, calling conventions,
and so on.
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Appendix C, “Microsoft-Specific Compiler COM Support Classes,” is a reference to
four Microsoft-specific classes used to support some Component Object Model types.

Appendix D, “Charts,” contains the following charts: ASCII Character Codes, ASCII
Mutltilingual Codes, ANSI Character Codes, and Key Codes.

Note For information on Microsoft product support, see the technical support help file,
PSS.HLP.

Special Terminology in this Manual

In this manual, the term “argument” refers to the entity that is passed to a function.
In some cases, it is modified by “actual” or “formal,” which mean the argument
expression specified in the function call and the argument declaration specified in
the function definition, respectively. '

The term “variable” refers to a simple C-type data object. The term “object” refers
to both C++ objects and variables; it is an inclusive term.

For more information on terminology, see “Terms” on page 19 in Chapter 2.

xvii






CHAPTER 1

ILexical Conventions

This chapter introduces the fundamental elements of a C++ program. You use these
elements, called “lexical elements” or “tokens” to construct statements, definitions,
declarations, and so on, which are used to construct complete programs. The
following lexical elements are discussed in this chapter:

e Tokens

e Comments

e Identifiers

e C++ keywords

e Punctuators

¢ Operators

¢ Literals

This chapter also includes Table 1.1, which shows the precedence and associativity

of C++ operators (from highest to lowest precedence). For a complete discussion of
operators, see Chapter 4, “Expressions.”

Overview of File Translation

C++ programs, like C programs, consist of one or more files. Each of these files is
translated in the following conceptual order (the actual order follows the “as if” rule:
translation must occur as if these steps had been followed):

1. Lexical tokenizing. Character mapping and trigraph processing, line splicing, and
tokenizing are performed in this translation phase.

2. Preprocessing. This translation phase brings in ancillary source files referenced
by #include directives, handles “stringizing” and “charizing” directives, and
performs token pasting and macro expansion (see “Preprocessor Directives” in
the Preprocessor Reference for more information). The result of the preprocessing
phase is a sequence of tokens that, taken together, define a “translation unit.”
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Preprocessor directives always begin with the number-sign (#) character (that is,
the first nonwhite-space character on the line must be a number sign). Only one
preprocessor directive can appear on a given line.
For example:
ffinclude <iostream.h> // Include text of iostream.h in
// translation unit.
ffdefine NDEBUG // Define NDEBUG (NDEBUG contains empty
// text string).
3. Code generation. This translation phase uses the tokens generated in the
preprocessing phase to generate object code.

During this phase, syntactic and semantic checking of the source code is
performed.

See “Phases of Translation” in the Preprocessor Reference for more
information.

The C++ preprocessor is a strict superset of the ANSI C preprocessor, but the
C++ preprocessor differs in a few instances. The following list describes several
differences between the ANSI C and the C++ preprocessors:

¢ Single-line comments are supported. See “Comments” for more information.

¢ One predefined macro, __cplusplus, is defined only for C++. See “Predefined

Macros” in the Preprocessor Reference for more information.

e The C preprocessor does not recognize the C++ operators: .*, —>*; and ::.
See “Operators” on page 7 and Chapter 4, “Expressions,” for more information
about operators.

Tokens

A token is the smallest element of a C++ program that is meaningful to the compiler.
The C++ parser recognizes these kinds of tokens: identifiers, keywords, literals,
operators, punctuators, and other separators. A stream of these tokens makes up a
translation unit.

Tokens are usually separated by “white space.” White space can be one or more:
« Blanks |

¢ Horizontal or vertical tabs

e New lines

e Formfeeds

e Comments
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Syntax

token:
keyword
identifier
constant
operator
punctuator

preprocessing-token:
header-name
identifier
pp-number
character-constant
string-literal
operator
punctuator
each nonwhite-space character that cannot be one of the above

The parser separates tokens from the input stream by creating the longest token
possible using the input characters in a left-to-right scan. Consider this code fragment:
a = i+++j;

The programmer who wrote the code might have intended either of these two
statements:

]

a =1+ (+j)

a (i++) +

Because the parser creates the longest token possible from the input stream, it chooses
the second interpretation, making the tokens i++, +, and J.

Comments

A comment is text that the compiler ignores but that is useful for programmers.
Comments are normally used to annotate code for future reference. The compiler
treats them as white space. You can use comments in testing to make certain lines of
code inactive; however, #if/#endif preprocessor directives work better for this because
you can surround code that contains comments but you cannot nest comments.

A C++ comment is written in one of the following ways:

e The /* (slash, asterisk) characters, followed by any sequence of characters

(including new lines), followed by the */ characters. This syntax is the same as
ANSIC.

e The // (two slashes) characters, followed by any sequence of characters. A new
line not immediately preceded by a backslash terminates this form of comment.
Therefore, it is commonly called a “single-line comment.”
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The comment characters (/*, */, and //) have no special meaning within a character
constant, string literal, or comment. Comments using the first syntax, therefore, cannot
be nested. Consider this example:

/* Intent: Comment out this block of code.

Problem: Nested comments on each line of code are illegal.
FileName = String( "hello.dat" ); /* Initialize file string */
cout << "File: " << FileName << "\n"; /* Print status message */
*/

The preceding code will not compile because the compiler scans the input stream from
the first /* to the first */ and considers it a comment. In this case, the first */ occurs
atthe end of the Initialize file string comment. The last */, then, is no
longer paired with an opening /*. v

Note that the single-line form (//) of a comment followed by the line-continuation
token (\) can have surprising effects. Consider this code:

fHinclude <stdio.h>

void main()
{
printf( "This is a number %d", // \
5
}

After preprocessing, the preceding code contains errors and appears as follows:
fHinclude <stdio.h>

void main()
{

printf( "This is a number %d",
}

Identifiers

An identifier is a sequence of characters used to denote one of the following:

¢ Object or variable name

o (lass, structure, or union name

¢ Enumerated type name

e Member of a class, structure, union, or enumeration
¢ Function or class-member function

¢ typedef name

e Label name

e Macro name

e Macro parameter
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Syntax

identifier:
nondigit
identifier nondigit
identifier digit

nondigit. one of
_abcdefghijklm
nopqrstuvwxyz
ABCDEFGHIJKLM
NOPQRSTUVWXYZ

digit. one of
0123456789

Microsoft Specific —

Only the first 247 characters of Microsoft C-++ identifiers are significant. This
restriction is complicated by the fact that names for user-defined types are “‘decorated”
by the compiler to preserve type information. The resultant name, including the type
information, cannot be longer than 247 characters. (See “Decorated Names” in the
Visual C++ Programmer’s Guide online for more information.) Factors that can
influence the length of a decorated identifier are:

e Whether the identifier denotes an object of user-defined type or a type derived
from a user-defined type.

e Whether the identifier denotes a function or a type derived from a function.

e The number of arguments to a function.
END Microsoft Specific

The first character of an identifier must be an alphabetic character, either uppercase
or lowercase, or an underscore (_). Because C++ identifiers are case sensitive,
fileName is different from FileName.

Identifiers cannot be exactly the same spelling and case as keywords. Identifiers that
contain keywords are legal. For example, Pint is a legal identifier, even though it
contains int, which is a keyword.

Use of two sequential underscore characters (__) at the beginning of an identifier,
or a single leading underscore followed by a capital letter, is reserved for C++
implementations in all scopes. You should avoid using one leading underscore
followed by a lowercase letter for names with file scope because of possible
conflicts with current or future reserved identifiers.
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Keywords

Keywords are predefined reserved identifiers that have special meanings. They cannot
be used as identifiers in your program. The following keywords are reserved for C++:

Syntax

keyword: one of

asm’ auto bad_cast bad_typeid
bool break case catch
char class const const_cast
continue default delete do

double dynamic_cast else enum
except explicit extern false
finally float for friend
goto if inline int

long mutable namespace new
operator private protected public
register reinterpret_cast return short
signed sizeof static static_cast
struct switch template this

throw true try type_info
typedef typeid typename union
unsigned using virtual void
volatile while xalloc

! Reserved for compatibility with other C++ implementations, but not implemented. Use __asm.

Microsoft Specific —

In Microsoft C++, identifiers with two leading underscores are reserved for compiler
implementations. Therefore, the Microsoft convention is to precede Microsoft-specific
keywords with double underscores. These words cannot be used as identifier names.

allocate’ __except __int64 __single_inheritance
__asm' __fastcall __leave __stdcall

__based” __finally __multiple_inheritance thread®

__cdecl __inline naked’ __try

__declspec __int8 nothrow’ unid®

dllexport’ __int16 property’ __uuidof

dilimport® __int32 selectany’ __virtual_inheritance

! Replaces C++ asm syntax.

2 The __based keyword has limited uses for 32-bit target compilations.

3 These are special identifiers when used with __declspec; their use in other contexts is not restricted.
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Microsoft extensions are enabled by default. To ensure that your programs
are fully portable, you can disable Microsoft extensions by specifying the
ANSI-compatible /Za command-line option (compile for ANSI compatibility)
during compilation. When you do this, Microsoft-specific keywords are
disabled.

‘When Microsoft extensions are enabled, you can use the previously-listed keywords
in your programs. For ANSI compliance, these keywords are prefaced by a double
underscore. For backward compatibility, single-underscore versions of all the
keywords except __except, __finally, __leave, and __try are supported. In addition,

Y —— —_—

__cdecl is available with no leading underscore.

END Microsoft Specific

Punctuators

Punctuators in C++ have syntactic and semantic meaning to the compiler but do not,
of themselves, specify an operation that yields a value. Some punctuators, either alone
or in combination, can also be C++ operators or be significant to the preprocessor.

Syntax

punctuator: one of
' % " & *()-+={}I~
[IV; ' "<>?,./#

The punctuators [ ], (), and { } must appear in pairs after translation phase 4.

Operators

Operators specify an evaluation to be performed on one of the following:

¢ One operand (unary operator)
e Two operands (binary operator)

e Three operands (ternary operator)

The C++ language includes all C operators and adds several new operators. Table 1.1
lists the operators available in Microsoft C++.

Operators follow a strict precedence which defines the evaluation order of
expressions containing these operators. Operators associate with either the

expression on their left or the expression on their right; this is called “associativity.”
Operators in the same group have equal precedence and are evaluated left

to right in an expression unless explicitly forced by a pair of parentheses, ( ). Table 1.1
shows the precedence and associativity of C++ operators (from highest to lowest
precedence).
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Table 1.1 C++ Operator Precedence and Associativity

Operator Name or Meaning Associativity

HH Scope resolution None

H Global None

[1 Array subscript Left to right

() Function call Left to right

() Conversion None

. Member selection (object) Left to right

- Member selection (pointer) Left to right

++ Postfix increment None

-- Postfix decrement None

new Allocate object None

delete Deallocate object None

delete[ ] Deallocate object None

++ Prefix increment None

- Prefix decrement None

* Dereference None

& Address-of None

+ Unary plus None

- Arithmetic negation (unary) None

! Logical NOT None
Bitwise complement None

sizeof Size of object None

sizeof () Size of type None

typeid() type name None

(type) Type cast (conversion) Right to left

const_cast Type cast (conversion) None

dynamic_cast Type cast (conversion) None

reinterpret_cast Type cast (conversion) None

static_cast Type cast (conversion) None

F Apply pointer to class member (objects) Left to right

—>* Dereference pointer to class member Left to right

* Multiplication Left to right

/ Division Left to right

% Remainder (modulus) Left to right

+ Addition Left to right

- Subtraction Left to right

<< Left shift Left to right
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Table 1.1 C++ Operator Precedence and Associativity (continued)

Operator Name or Meaning Associativity
>> Right shift Left to right
< Less than Left to right
> Greater than Left to right
<= Less than or equal to Left to right
>= Greater than or equal to Left to right
== Equality Left to right
= Inequality Left to right

Bitwise AND Left to right
A Bitwise exclusive OR Left to right
| Bitwise OR Left to right
&& Logical AND Left to right
I Logical OR Left to right
el?e2:e3 Conditional Right to left
= Assignment Right to left
*= Multiplication assignment Right to left
/= Division assignment Right to left
Yo= Modulus assignment Right to left
+= Addition assignment Right to left
-= Subtraction assignment Right to left
<<= Left-shift assignment Right to left
>>= Right-shift assignment Right to left
&= Bitwise AND assignment Right to left
I= Bitwise inclusive OR assignment Right to left
A= Bitwise exclusive OR assignment Right to left
, Comma Left to right

Literals

Invariant program elements are called “literals” or “constants.” The terms “literal” and
“constant” are used interchangeably here. Literals fall into four major categories:
integer, character, floating-point, and string literals.

Syntax

literal:
integer-constant
character-constant
floating-constant
string-literal
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Integer Constants

Integer constants are constant data elements that have no fractional parts or
exponents. They always begin with a digit. You can specify integer constants in
decimal, octal, or hexadecimal form. They can specify signed or unsigned types
and long or short types.

Syntax

integer-constant:
decimal-constant integer-suffixop,
octal-constant integer-suffixop
hexadecimal-constant integer-suffixop
'c-char-sequence’

decimal-constant:
nonzero-digit
decimal-constant digit

octal-constant:
0
octal-constant octal-digit

hexadecimal-constant:
0x hexadecimal-digit
0X hexadecimal-digit
hexadecimal-constant hexadecimal-digit

nonzero-digit: one of
123456789

octal-digit: one of

01234567

hexadecimal-digit: one of
0123456789
abcdef
ABCDEF

integer-suffix:
unsigned-suffix long-suffixoy
long-suffix unsigned-suffix,y
unsigned-suffix: one of
ulU
long-suffix: one of
IL
64-bit integer-suffix:
i64

10
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To specify integer constants using octal or hexadecimal notation, use a prefix that
denotes the base. To specify an integer constant of a given integral type, use a suffix
that denotes the type.

To specify a decimal constant, begin the specification with a nonzero digit. For

example:

int i = 157; // Decimal constant

int j = 0198; // Not a decimal number; erroneous octal constant

int k = 0365; // Leading zero specifies octal constant, not decimal

To specify an octal constant, begin the specification with 0, followed by a sequence
of digits in the range O through 7. The digits 8 and 9 are errors in specifying an octal
constant. For example:

int i = 0377; // Octal constant
int j = 0397; // Error: 9 is not an octal digit

To specify a hexadecimal constant, begin the specification with @x or 0X (the case of
the “x” does not matter), followed by a sequence of digits in the range @ through 9
and a (or A) through f (or F). Hexadecimal digits a (or A) through f (or F) represent
values in the range 10 through 15. For example:

int 1 = Ox3fff; // Hexadecimal constant
int j = OX3FFF; // Equal to i

To specify an unsigned type, use either the u or U suffix. To specify a long type, use
either the 1 or L suffix. For example:

unsigned uVal = 328u; // Unsigned value

lTong 1Val = Ox7FFFFFL; // Long value specified
// as hex constant

unsigned long ulVal = @776745ul; // Unsigned long value

Character Constants

Character constants are one or more members of the “source character set,” the
character set in which a program is written, surrounded by single quotation marks (").
They are used to represent characters in the “execution character set,” the character set
on the machine where the program executes.

Microsoft Specific —
For Microsoft C++, the source and execution character sets are both ASCII.

END Microsoft Specific

There are three kinds of character constants:
¢ Normal character constants

e Multicharacter constants

o Wide-character constants

11
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Note Use wide-character constants in place of multicharacter constants to ensure portability.
Character constants are specified as one or more characters enclosed in single
quotation marks. For example:

char ch = "x"'; // Specify normal character constant.
int mbch = 'ab'; // Specify system-dependent

// multicharacter constant.
wchar_t wcch = L'ab"'; // Specify wide-character constant.

Note that mbch is of type int. If it were declared as type char, the second byte would
not be retained. A multicharacter constant has four meaningful characters; specifying
more than four generates an error message.

Syntax

character-constant:
'c-char-sequence'
L'c-char-sequence'

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
any member of the source character set except the single quotation mark ('),
backslash (\), or newline character
escape-sequence

escape-sequence:
simple-escape-sequence
octal-escape-sequence
hexadecimal-escape-sequence

simple-escape-sequence: one of
VA AZ N
\a\b\f\n\r\t\lv
octal-escape-sequence:
\octal-digit
\octal-digit octal-digit
\octal-digit octal-digit octal-digit

hexadecimal-escape-sequence:
\xhexadecimal-digit
hexadecimal-escape-sequence hexadecimal-digit

Microsoft C++ supports normal, multicharacter, and wide-character constants. Use
wide-character constants to specify members of the extended execution character set
(for example, to support an international application). Normal character constants
have type char, multicharacter constants have type int, and wide-character constants
have type wchar_t. (The type wchar_t is defined in the standard include files
STDDEFE.H, STDLIB.H, and STRING.H. The wide-character functions, however, are
prototyped only in STDLIB.H.)
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The only difference in specification between normal and wide-character constants is
that wide-character constants are preceded by the letter L. For example:

char schar = 'x'; // Normal character constant
wchar_t wchar = L'\x81\x19"; // Wide-character constant

Table 1.2 shows reserved or nongraphic characters that are system dependent or not
allowed within character constants. These characters should be represented with
escape sequences.

Table 1.2 C++ Reserved or Nongraphic Characters

Character ASCII Representation ASCII Value Escape Sequence
Newline NL (LF) 10 or 0x0a \n
Horizontal tab HT 9 \t
Vertical tab VT 11 or 0x0b \v
Backspace BS 8 \b
Carriage return CR 13 or 0x0d \r
Formfeed FF 12 or 0x0c \f
Alert BEL 7 \a
Backslash \ 92 or 0x5¢ \
Question mark ? 63 or 0x3f \?
Single quotation mark ! 39 or 0x27 \
Double quotation mark ! 34 or 0x22 \'
Octal number 000 — \ooo
Hexadecimal number hhh — \xhhh
Null character NUL 0 \0

If the character following the backslash does not specify a legal escape sequence,
the result is implementation defined. In Microsoft C++, the character following the
backslash is taken literally, as though the escape were not present, and a level 1
warning (“unrecognized character escape sequence”) is issued.

Octal escape sequences, specified in the form \ooo, consist of a backslash and one,
two, or three octal characters. Hexadecimal escape sequences, specified in the form
\xhhh, consist of the characters \x followed by a sequence of hexadecimal digits.
Unlike octal escape constants, there is no limit on the number of hexadecimal digits
in an escape sequence.

Octal escape sequences are terminated by the first character that is not an octal digit,
or when three characters are seen. For example:

wchar_t och = L'\076a'; // Sequence terminates at a
char ch = "\233"; // Sequence terminates after 3 characters

Similarly, hexadecimal escape sequences terminate at the first character that is not
a hexadecimal digit. Because hexadecimal digits include the letters a through f (and
A through F), make sure the escape sequence terminates at the intended digit.

13
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Because the single quotation mark (') encloses character constants, use the escape
sequence \ ' to represent enclosed single quotation marks. The double quotation mark
(") can be represented without an escape sequence. The backslash character (\) is a
line-continuation character when placed at the end of a line. If you want a backslash
character to appear within a character constant, you must type two backslashes in a
row (\\). (See “Phases of Translation” in the Preprocessor Reference for more
information about line continuation.)

Floating-Point Constants

14

Floating-point constants specify values that must have a fractional part. These values
contain decimal points (.) and can contain exponents.

Syntax

floating-constant:
fractional-constant exponent-partyy floating-suffixop
digit-sequence exponent-part floating-suffix.p:

fractional-constant:
digit-sequence,y . digit-sequence
digit-sequence .

exponent-part:
e signqy digit-sequence
E signoy digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit
floating-suffix: one of
flIFL

Floating-point constants have a “mantissa,” which specifies the value of the number,
an “exponent,” which specifies the magnitude of the number, and an optional suffix
that specifies the constant’s type. The mantissa is specified as a sequence of digits
followed by a period, followed by an optional sequence of digits representing the
fractional part of the number. For example:

18.46
38.

The exponent, if present, specifies the magnitude of the number as a power of 10, as
shown in the following example:

18.46e0 // 18.46
18.46el // 184.6
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If an exponent is present, the trailing decimal point is unnecessary in whole numbers
such as 18EQ.

Floating-point constants default to type double. By using the suffixes f or 1 (or F or
L—the suffix is not case sensitive), the constant can be specified as float or long
double, respectively.

Although long double and double have the same representation, they are not the same
type. For example, you can have overloaded functions like

void func( double );
and

void func( long double );

String Literals

A string literal consists of zero or more characters from the source character set
surrounded by double quotation marks ("). A string literal represents a sequence of
characters that, taken together, form a null-terminated string.

Syntax
string-literal.
""s-char-sequenceqy"
L's-char-sequenceqy"
s-char-sequence:
s-char
s-char-sequence s-char

s-char:
any member of the source character set except the double quotation mark ("),
backslash (\), or newline character
escape-sequence

C++ strings have these types:

e Array of char[n], where n is the length of the string (in characters) plus 1 for the
terminating "\O' that marks the end of the string

e Array of wchar_t, for wide-character strings

The result of modifying a string constant is undefined. For example:

char *szStr = "1234";
szStr[2] = 'A'; // Results undefined

15
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Microsoft Specific —»

In some cases, identical string literals can be “pooled” to save space in the executable
file. In string-literal pooling, the compiler causes all references to a particular string
literal to point to the same location in memory, instead of having each reference point
to a separate instance of the string literal. The /Gf compiler option enables string
pooling.

END Microsoft Speéiﬁc

When specifying string literals, adjacent strings are concatenated. Therefore, this
declaration:

char szStr[] = "12" "34";

is identical to this declaration:

char szStr[] = "1234";

This concatenation of adjacent strings makes it easy to specify long strings across
multiple lines:

cout << "Four score and seven years "
"ago, our forefathers brought forth "
"upon this continent a new nation.";

In the preceding example, the entire string Four score and seven years ago,
our forefathers brought forth upon this continent a new nation.
is spliced together. This string can also be specified using line splicing as follows:

cout << "Four score and seven years \
ago, our forefathers brought forth \
upon this continent a new nation.";

After all adjacent strings in the constant have been concatenated, the NULL character,
"\0", is appended to provide an end-of-string marker for C string-handling functions.

When the first string contains an escape character, string concatenation can yield
surprising results. Consider the following two declarations:

char szStrl[] = "\0@1" "23";
char szStr2[] = "\0123";

Although it is natural to assume that szStr1l and szStr2 contain the same values, the
values they actually contain are shown in Figure 1.1.

Figure 1.1 Escapes and String Concatenation
"\01" |123" 3 B

"\@123"
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Microsoft Specitic —

The maximum length of a string literal is approximately 2,048 bytes. This limit
applies to strings of type char[] and wchar_t[]. If a string literal consists of parts
enclosed in double quotation marks, the preprocessor concatenates the parts into a
single string, and for each line concatenated, it adds an extra byte to the total number
of bytes.

For example, suppose a string consists of 40 lines with 50 characters per line (2,000
characters), and one line with 7 characters, and each line is surrounded by double
quotation marks. This adds up to 2,007 bytes plus one byte for the terminating null
character, for a total of 2,008 bytes. On concatenation, an extra character is added to
the total number of bytes for each of the first 40 lines. This makes a total of 2,048
bytes. (The extra characters are not actually written to the string.) Note, however, that
if line continuations (\) are used instead of double quotation marks, the preprocessor
does not add an extra character for each line.

END Microsoft Specific

Determine the size of string objects by counting the number of characters and adding
1 for the terminating '\@" or 2 for type wchar_t.

Because the double quotation mark (") encloses strings, use the escape sequence (\")
to represent enclosed double quotation marks. The single quotation mark (') can

be represented without an escape sequence. The backslash character (\) is a line-
continuation character when placed at the end of a line. If you want a backslash
character to appear within a string, you must type two backslashes (\\). (See

“Phases of Translation” in the Preprocessor Reference for more information

about line continuation.)

To specify a string of type wide-character (wchar_t[]), precede the opening
double quotation mark with the character L. For example:

wchar_t wszStr[] = L"lalg";

All normal escape codes listed in “Character Constants” on page 11 are valid in string
constants. For example:

cout << "First Tine\nSecond Tine";
cout << "Error! Take corrective action\a”;

Because the escape code terminates at the first character that is not a hexadecimal
digit, specification of string constants with embedded hexadecimal escape codes can
cause unexpected results. The following example is intended to create a string literal
containing ASCII 5, followed by the characters five:

\x05five"

The actual result is a hexadecimal 5F, which is the ASCII code for an underscore,
followed by the characters ive. The following example produces the desired results:

"\Q05five" // Use octal constant.
"\x@5" "five" // Use string splicing.
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CHAPTER 2

Basic Concepts

This chapter explains concepts that are critical to understanding C++. C programmers
will be familiar with many of these concepts, but there are some subtle differences that
can cause unexpected program results. The following topics are included:

e Terms

e Declarations and definitions

e Scope of a C++ object or function

e Program definition and linkage rules
e Startup and termination

e Storage classes
* Types

Additional topics include I-values, r-values, and numerical limits.

Terms

C++ terms used in this book are defined in Table 2.1:

Table 2.1 C++ Terminology

Term Meaning

Declaration A declaration introduces names and their types into a program without
necessarily defining an associated object or function. However, many
declarations serve as definitions.

Definition A definition provides information that allows the compiler to allocate
memory for objects or generate code for functions.

Lifetime The lifetime of an object is the period during which an object exists,
including its creation and destruction.

(continued)
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Table 2.1 C++ Terminology (continued)

Term

Meaning

Linkage

Name

Object

Scope
‘Storage class
Type

Variable

Names can have external linkage, internal linkage, or no linkage. Within a
program (a set of translation units), only names with external linkage denote
the same object or function. Within a translation unit, names with either
internal or external linkage denote the same object or function (except when
functions are overloaded). (For more information on translation units, see
“Phases of Translation”, in the Preprocessor Reference.) Names with no
linkage denote unique objects or functions.

A name denotes an object, function, set of overloaded functions, enumerator,
type, class member, template, value, or label. C++ programs use names to
refer to their associated language element. Names can be type names or
identifiers.

An object is an instance (a data item) of a user-defined type (a class type).
The difference between an object and a variable is that variables retain state
information, whereas objects can also have behavior.

This manual draws a distinction between objects and variables: “object”
means instance of a user-defined type, whereas “variable” means instance of
a fundamental type.

In cases where either object or variable is applicable, the term “object” is
used as the inclusive term, meaning “object or variable.”

Names can be used only within specific regions of program text. These
regions are called the scope of the name.

The storage class of a named object determines its lifetime, initialization,
and, in certain cases, its linkage.

Names have associated types that determine the meaning of the value or
values stored in an object or returned by a function.

A variable is a data item of a fundamental type (for example, int, float, or
double). Variables store state information but define no behavior for how that
information is handled. See the preceding list item “Object” for information
about how the terms “variable” and “‘object” are used in this documentation.

Declarations and Definitions

Declarations tell the compiler that a program element or name exists. Definitions
specify what code or data the name describes. A name must be declared before it

can be used.

Declarations

A declaration introduces one or more names into a program. Declarations can occur
more than once in a program. Therefore, classes, structures, enumerated types, and
other user-defined types can be declared for each compilation unit. The constraint

20



Chapter 2 Basic Concepts

on this multiple declaration is that all declarations must be identical. Declarations
also serve as definitions, except when the declaration:

o Is a function prototype (a function declaration with no function body).

e Contains the extern specifier but no initializer (objects and variables) or function
body (functions). This signifies that the definition is not necessarily in the current
translation unit and gives the name external linkage.

e s of a static data member inside a class declaration.

Because static class data members are discrete variables shared by all objects of the
class, they must be defined and initialized outside the class declaration. (For more
information about classes and class members, see Chapter 8, “Classes.”)

¢ Is aclass name declaration with no following definition, such as class T;.

e Is a typedef statement.

Examples of declarations that are also definitions are:

// Declare and define int variables i and j.

int 1i;

int j = 10;

// Declare enumeration suits.

enum suits { Spades = 1, Clubs, Hearts, Diamonds };

// Declare class CheckBox.
class CheckBox : public Control

{
public:
Boolean IsChecked();
virtual int ChangeState() = 0;
1;

Some declarations that are not definitions are:

extern int i;
char *strchr( const char *Str, const char Target );

Definitions

A definition is a unique specification of an object or variable, function, class, or
enumerator. Because definitions must be unique, a program can contain only one
definition for a given program element.

There can be a many-to-one correspondence between declarations and definitions.
There are two cases in which a program element can be declared and not defined:

e A function is declared but never referenced with a function call or with an
expression that takes the function’s address.
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e A class is used only in a way that does not require its definition be known.
However, the class must be declared. The following code illustrates such a case:

class WindowCounter; // Forward reference; no definition

class Window
{
static WindowCounter windowCounter; // Definition of
// WindowCounter
// not required.
}s

Scope

22

C++ names can be used only in certain regions of a program. This area is called the
“scope” of the name. Scope determines the “lifetime” of a name that does not denote
an object of static extent. Scope also determines the visibility of a name, when class
constructors and destructors are called, and when variables local to the scope are
initialized. (For more information, see “Constructors” and “Destructors” on pages 292
and 297 in Chapter 11.) There are five kinds of scope:

¢ Local scope. A name declared within a block is accessible only within that block

and blocks enclosed by it, and only after the point of declaration. The names of
formal arguments to a function in the scope of the outermost block of the function
have local scope, as if they had been declared inside the block enclosing the
function body. Consider the following code fragment:

{
. int i;

}

Because the declaration of i is in a block enclosed by curly braces, i has local
scope and is never accessible because no code accesses it before the closing curly
brace. '

e Function scope. Labels are the only names that have function scope. They can be
used anywhere within a function but are not accessible outside that function.

¢ File scope. Any name declared outside all blocks or classes has file scope. It is
accessible anywhere in the translation unit after its declaration. Names with file
scope that do not declare static objects are often called “global” names.

e Class scope. Names of class members have class scope. Class member functions
can be accessed only by using the member-selection operators (. or =>) or
pointer-to-member operators (.* or —=>*) on an object or pointer to an object of
that class; nonstatic class member data is considered local to the object of that
class. Consider the following class declaration:

class Point
{
int x;
int y;
1;
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The class members x and y are considered to be in the scope of class Point.

e Prototype scope. Names declared in a function prototype are visible only until the
end of the prototype. The following prototype declares two names (szDest,
szSource); these names go out of scope at the end of the prototype:

char *strcpy( char *szDest, const char *szSource );

Point of Declaration

A name is considered to be declared immediately after its declarator but before its
(optional) initializer. (For more information on declarators, see Chapter 7,
“Declarators.”) An enumerator is considered to be declared immediately after the
identifier that names it but before its (optional) initializer.

Consider this example:

double dVar = 7.0;

void main()

{
double dVar = dVar;

}

If the point of declaration were after the initialization, then the local dVar would be
initialized to 7.0, the value of the global variable dVar. However, since that is not the
case, dVar is initialized to an undefined value.

Enumerators follow the same rule. However, enumerators are exported to the
enclosing scope of the enumeration. In the following example, the enumerators
Spades, Clubs, Hearts, and Diamonds are declared. Because the enumerators are
exported to the enclosing scope, they are considered to have global scope. The
identifiers in the example are already defined in global scope.

Consider the following code:

const int Spades = 1, Clubs = 2, Hearts = 3, Diamonds = 4;

enum Suits

{ .
Spades = Spades, // error
Clubs, // error
Hearts, // error
Diamonds // error

};

Because the identifiers in the preceding code are already defined in global scope, an
error message is generated.

Note Using the same name to refer to more than one program element—for example, an
enumerator and an object—is considered poor programming practice and should be avoided.
In the preceding example, this practice causes an error.
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Hiding Names

24

You can hide a name by declaring it in an enclosed block. In Figure 2.1, i is
redeclared within the inner block, thereby hiding the variable associated with i
in the outer block scope.

Figure 2.1 Block Scope and Name Hiding

Sample::Func(
1 int 1 =10 L1
Lcout << i =" << <<t ]

int i=7,3=09; )
_ Outer block contains

cout << "1 " KK << "\n" Lo
<M o= " << § <K n" | local-scope object i
e e || and format parameter
szWhat.

cout << "i =" KK i KL "\n" } |

Inner block contains local-scope
objects 1 and j.

The output from the program shown in Figure 2.1 is:
=0

[l

7
=9
=0

R S
I

Note The argument szWhat is considered to be in the scope of the function. Therefore, it is
treated as if it had been declared in the outermost block of the function.

Hiding Names with File Scope

You can hide names with file scope by explicitly declaring the same name in block
scope. However, file-scope names can be accessed using the scope-resolution operator
(:2). For example:

fHinclude <iostream.h>

int i =7; // 1 has file scope--declared
// outside all blocks

void main( int argc, char *argv[] )
{
int i = 5; // i has block scope--hides
// the i with file scope



Chapter 2 Basic Concepts

cout << "Block-scoped i has the value: " << i << "\n";
cout << "File-scoped i has the value: " << ::1 << "\n";
}

The result of the preceding code is:

Block-scoped i has the value: 5
File-scoped i has the value: 7

Hiding Class Names

You can hide class names by declaring a function, object or variable, or enumerator in
the same scope. However, the class name can still be accessed when prefixed by the
keyword class.

// Declare class Account at file scope.
class Account
{
public:
Account( double InitialBalance )
{ balance = InitialBalance; }
double GetBalance()
{ return balance; }
private:
double balance;
1

double Account = 15.37; // Hides class name Account

void main()

{
class Account Checking( Account ); // Qualifies Account as
// class name
cout << "Opening account with balance of: "
<< Checking.GetBalance() << "\n";
}

Note that any place the class name (Account) is called for, the keyword class must be
used to differentiate it from the file-scoped variable Account. This rule does not
apply when the class name occurs on the left side of the scope-resolution operator (::).
Names on the left side of the scope-resolution operator are always considered class
names. The following example demonstrates how to declare a pointer to an object of
type Account using the class keyword:

class Account *Checking = new class Account( Account );

The Account in the initializer (in parentheses) in the preceding statement has file
scope; it is of type double.

Note The reuse of identifier names as shown in this example is considered poor
programming style.
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For more information about pointers, see “Derived Types” on page 44. For
information about declaration and initialization of class objects, see Chapter 8§,
“Classes.” For information about using the new and delete free-store operators,
see Chapter 11, “Special Member Functions.”

Scope of Formal Arguments to Functions

Formal arguments (arguments specified in function definitions) to functions are
considered to be in the scope of the outermost block of the function body.

Program and Linkage

A program consists of one or more translation units linked together. Execution
(conceptually) begins in the translation unit that contains the function main.
(For more information on translation units, see “Phases of Translation,” in the
Preprocessor Reference.) For more information about the main function, see
“Program Startup: the main Function.”)

Types of Linkage

The way the names of objects and functions are shared between translation units is
called “linkage.” These names can have:

¢ Internal linkage, in which case they refer only to program elements inside their
own translation units; they are not shared with other translation units.

The same name in another translation unit may refer to a different object or a
different class. Names with internal linkage are sometimes referred to as being
“local” to their translation units.

An example declaration of a name with internal linkage is:
static int 1; // The static keyword ensures internal Tlinkage.

¢ External linkage, in which case they can refer to program elements in any
translation unit in the program—the program element is shared among the
translation units.

The same name in another translation unit is guaranteed to refer to the same object
or class. Names with external linkage are sometimes referred to as being “global.”
An example declaration of a name with external linkage is:

extern int i;

¢ No linkage, in which case they refer to unique entities. The same name in another
scope may not refer to the same object. An example is an enumeration. (Note,
however, that you can pass a pointer to an object with no linkage. This makes the
object accessible in other translation units.)
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Linkage in Names with File Scope

The following linkage rules apply to names (other than typedef and enumerator
names) with file scope:

o If a name is explicitly declared as static, it has internal linkage and identifies a
program element inside its own translation unit.

e Enumerator names and typedef names have no linkage.
e All other names with file scope have external linkage.

Microsoft Specific —

o If a function name with file scope is explicitly declared as inline, it has external
linkage if it is instantiated or its address is referenced. Therefore, it is possible for
a function with file scope to have either internal or external linkage.

END Microsoft Specific

A class has internal linkage if it:

o Uses no C++ functionality (for example, member-access control, member
functions, constructors, destructors, and so on).

o Is not used in the declaration of another name that has external linkage. This
constraint means that objects of class type that are passed to functions with
external linkage cause the class to have external linkage.

Linkage in Names with Class Scope

The following linkage rules apply to names with class scope:
o Static class members have external linkage.

¢ (Class member functions have external linkage.

e Enumerators and typedef names have no linkage.

Microsoft Specific —

o Functions declared as friend functions must have external linkage. Declaring
a static function as a friend generates an error.

END Microsoft Specific

Linkage in Names with Block Scope

~ The following linkage rules apply to names with block scope (local names):

e Names declared as extern have external linkage unless they were previously
declared as static.

e All other names with block scope have no linkage.
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Names with No Linkage

28

The only names that have no linkage are:

e Function parameters.

¢ Block-scoped names not declared as extern or static.

¢ Enumerators.

e Names declared in a typedef statement. An exception is when the typedef
statement is used to provide a name for an unnamed class type. The name may

then have external linkage if the class has external linkage. The following
example shows a situation in which a typedef name has external linkage:

typedef struct

{
short x;
short y;
} POINT;

extern int MoveTo( POINT pt );
The typedef name, POINT, becomes the class name for the unnamed structure.
It is then used to declare a function with external linkage.

Because typedef names have no linkage, their definitions can differ between
translation units. Because the compilations take place discretely, there is no way
for the compiler to detect these differences. As a result, errors of this kind are not
detected until link time. Consider the following case:

// Translation unit 1
typedef int INT

INT mylInt;
// Translation unit 2
typedef short INT

extern INT mylInt;

The preceding code generates an “unresolved external” error at link time.

C++ functions can be defined only in file or class scope. The following example
illustrates how to define functions and shows an erroneous function definition:

#include <iostream.h>

void ShowChar( char ch ); // Declare function ShowChar.

void ShowChar( char ch ) // Define function ShowChar.

{ // Function has file scope.
cout << ch;

}
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struct Char // Define class Char.

{
char Show(): // Declare Show function.
char Get(); // Declare Get function.
char ch;

3

char Char::Show() " // Define Show function

{ // with class scope.
cout << ch;
return ch;

}

void GoodFuncDef( char ch ) // Define GoodFuncDef

{ : // with file scope.

int BadFuncDef( int i ) // Erroneous attempt to

{ // nest functions.
return i * 7;

}

for( int i = @; i < BadFuncDef( 2 ); ++i )
cout << ch;

cout << "\n";

}

Linkage to Non-C++ Functions

C functions and data can be accessed only if they are previously‘ declared as having
C linkage. However, they must be defined in a separately compiled translation unit.

Syntax

linkage-specification:
extern string-literal { declaration-list,y }
extern string-literal declaration '

declaration-list.
declaration
declaration-list declaration

Microsoft C++ supports the strings '""C" and ""C++" in the string-literal field. The
following example shows alternative ways to declare names that have C linkage:

// Declare printf with C Tinkage.
extern "C" int printf( const char *fmt, ... );

// Cause everything in the header file "cinclude.h"
// to have C linkage.

extern "C"

{

#include <cinclude.h>

}
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// Declare the two functions ShowChar and GetChar
//  with C linkage.
extern "C"
{
char ShowChar( char ch );
char GetChar( void );
}

// Define the two functions ShowChar and GetChar
// with C Tinkage.
extern "C" char ShowChar( char ch )

{
putchar( ch );
return ch;
}
extern "C" char GetChar( void )
{
char ch;

ch = getchar();
return ch;
}

// Declare a global variable, errno, with C linkage.
extern "C" int errno;

Startup and Termination

Program startup and termination is facilitated by using two functions: main and exit.
Other startup and termination code may be executed.

Program Startup: the main Function

30

A special function called main is the entry point to all C++ programs. This function is
not predefined by the compiler; rather, it must be supplied in the program text. If you
are writing code that adheres to the Unicode programming model, you can use the
wide-character version of main, wmain. The declaration syntax for main is:

int main( );

or, optionally:

int main( int argc| , char *argv[ ] [, char *envp[ 111 );
The declaration syntax for wmain is as follows:

int wmain( );

or, optionally:

int wmain( int argc[ , wchar_t *argv[ ] [, wchar_t *envp[ 111 );
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Alternatively, the main and wmain functions can be declared as returning void (no
return value). If you declare main or wmain as returning veid, you cannot return
an exit code to the parent process or operating system using a return statement; to
return an exit code when main or wmain are declared as void, you must use the
exit function.

Using wmain Instead of main

In the Unicode programming model, you can define a wide-character version of the
main function. Use wmain instead of main if you want to write portable code that
adheres to the Unicode specification.

You declare formal parameters to wmain using a similar format to main. You can then
pass wide-character arguments and, optionally, a wide-character environment pointer
to the program. The argv and envp parameters to wmain are of type wchar_t*.

If your program uses a main function, the multibyte-character environment is created
by the operating system at program startup. A wide-character copy of the environment
is created only when needed (for example, by a call to the _wgetenv or _wputenv
functions). On the first call to _wputenv, or on the first call to _wgetenv if an MBCS
environment already exists, a corresponding wide-character string environment is
created and is then pointed to by the _wenviron global variable, which is a wide-
character version of the _environ global variable. At this point, two copies of the
environment (MBCS and Unicode) exist simultaneously and are maintained by the
operating system throughout the life of the program.

Similarly,'if your program uses a wmain function, an MBCS (ASCII) environment
is created on the first call to _putenv or getenv, and is pomted to by the _environ
global variable.

For more information on the MBCS environment, see “Single-byte and Multibyte
Character Sets” in Chapter 1 of the Run-Time Library Reference.

Argument Definitions

The arguments in the prototype

int main( int argc[ , char *argv[ ] [, char *envp[]1]]);

or »
int wmain( int argc[ , wchar_t *argv[ ] [, wchar_t *envp[ 111 );

allow convenient command-line parsing of arguments and, optionally, access to
environment variables. The argument definitions are as follows:

argc An integer that contains the count of arguments that follow in argv. The argc
parameter is always greater than or equal to 1.
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argv An array of null-terminated strings representing command-line arguments entered
by the user of the program. By convention, argv[0] is the command with which the
program is invoked, argv[1] is the first command-line argument, and so on, until
argvlargc], which is always NULL. See “Customizing Command Line Processing”
on page 34 for information on suppressing command-line processing.

The first command-line argument is always argv[1] and the last one is
argvlargc - 1].

Microsoft Specific —

envp The envp array, which is a common extension in many UNIXe systems, is
used in Microsoft C++. It is an array of strings representing the variables set in the
user’s environment. This array is terminated by a NULL entry. See “Customizing
Command Line Processing” on page 34 for information on suppressing
environment processing.

END Microsoft Specific
The following example shows how to use the argc, argv, and envp arguments to
main:

#include <iostream.h>
#include <string.h>

void main( int argc, char *argv[], char *envp[] )

{
int iNumberlLines = 0; // Default is no line numbers.
// If more than .EXE filename supplied, and if the
// /n command-Tine option is specified, the listing
// of environment variables is line-numbered.
if( argc == 2 && stricmp( argv[l], "/n" ) == 0 )
iNumberLines = 1;
// Walk through 1ist of strings until a NULL is encountered.
for( int i = 0; envp[i] != NULL; ++i )
{
if( iNumberLines )
cout << 1 << " " <L envp[i] << "\n";
}
}

Wildcard Expanslon

Microsoft Specific —»
You can use wildcards—the question mark (?) and asterisk (*)—to spe01fy filename
and path arguments on the command line.

Command-line arguments are handled by a routine called _setargv. By default,
_setargv expands wildcards into separate strings in the argv string array. If no
matches are found for the wildcard argument, the argument is passed literally.

END Microsoft Specific
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Parsing Command-Line Arguments

Microsoft Specific —

Microsoft C/C++ startup code uses the following rules when interpreting arguments
given on the operating system command line:

Arguments are delimited by white space, which is either a space or a tab.

The caret character (%) is not recognized as an escape character or delimiter.
The character is handled completely by the command-line parser in the operatlng
system before being passed to the argv array in the program.

A string surrounded by double quotation marks ("string") is interpreted as a single
argument, regardless of white space contained within. A quoted string can be
embedded in an argument.

A double quotation mark preceded by a backslash (\") is interpreted as a literal
double quotation mark character (").

Backslashes are interpreted literally, unless they immediately precede a double
quotation mark.

If an even number of backslashes is followed by a double quotation mark, one
backslash is placed in the argv array for every pair of backslashes, and the double
quotation mark is interpreted as a string delimiter.

If an odd number of backslashes is followed by a double quotation mark, one
backslash is placed in the argv array for every pair of backslashes, and the double
quotation mark is “escaped” by the remaining backslash, causing a literal double
quotation mark (") to be placed in argv.

The following program demonstrates how command-line arguments are passed:

include <iostream.h>

void main( int argc, // Number of strings in array argv

char *argv[], // Array of command-line argument strings
char *envp[] ) // Array of environment variable strings

int count;

// Display each command-line argument.
cout << "\nCommand-line arguments:\n";:
for( count = @; count < argc; count++ )
cout << " argv[" << count << "] "
<< argv[count] << "\n";
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Table 2.2 shows example input and expected output, demonstrating the rules in the
preceding list.

Table 2.2 Results of Parsing Command Lines

Command-Line Input argv[1] argv[2] argv[3]
"abc" d e abc d e
a\\\b d"e f"g h a\\\b de fg h
a\\\"b ¢ d a\"b c d
a\\\\"b ¢c" d e a\\b ¢ d e

END Microsoft Specific

Customizing Command-Line Processing

Microsoft Specific —

If your program does not take command-line arguments, you can save a small

amount of space by suppressing use of the library routine that performs command-line
processing. This routine is called _setargv and is described in “Wildcard Expansion”
on page 32. To suppress its use, define a routine that does nothing in the file
containing the main function, and name it _setargv. The call to _setargv is then
satisfied by your definition of _setargv, and the library version is not loaded.

Similarly, if you never access the environment table through the envp argument,
you can provide your own empty routine to be used in place of _setenvp, the
environment-processing routine. Just as with the _setargv function, _setenvp
must be declared as extern ""C"".

Your program might make calls to the spawn or exec family of routines in the

C run-time library. If this is the case, you should not suppress the environment-
processing routine, since this routine is used to pass an environment from the parent
process to the child process.

END Microsoft Specific

main Function Restrictions

Several restrictions apply to the main function that do not apply to any other C++
functions. The main function:

e Cannot be overloaded (see Chapter 12, “Overloading”).
e Cannot be declared as inline.

o Cannot be declared as static.

e Cannot have its address taken.

e Cannot be called.
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Program Termination

In C++, there are several ways to exit a program:

o (Call the exit function.
o Call the abort function.

o Execute a return statement from main.

exit Function
The exit function, declared in the standard include file STDLIB.H, terminates a
C++ program.

The value supplied as an argument to exit is returned to the operating system as the
program’s return code or exit code. By convention, a return code of zero means that
the program completed successfully.

Note You can use the constants EXIT_FAILURE and EXIT_SUCCESS, defined in STDLIB.H,
to indicate success or failure of your program.

Issuing a return statement from the main function is equivalent to calling the exit
function with the return value as its argument.

For more information, see “exit” in the Run-Time Library Reference.

abort Function

The abort function, also declared in the standard include file STDLIB.H, terminates

a C++ program. The difference between exit and abort is that exit allows the C++
run-time termination processing to take place (global object destructors will be
called), whereas abort terminates the program immediately. For more information, see
abort in the Run-Time Library Reference.

return Statement

Issuing a return statement from main is functionally equivalent to calling the exit
function. Consider the following example:

int main()
{
exit( 3 );
return 3;
1

The exit and return statements in the preceding example are functionally identical.
However, C++ requires that functions that have return types other than void return a
value. The return statement allows you to return a value from main.
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Additional Startup Considerations

In C++, object construction and destruction can involve executing user code.
Therefore, it is important to understand which initializations happen before entry
to main and which destructors are invoked after exit from main. (For detailed
information about construction and destruction of objects, see “Constructors”
and “Destructors” on pages 292 and 297 in Chapter 11.)

The following initializations take place prior to entry to main:

e Default initialization of static data to zero. All static data without explicit »
initializers are set to zero prior to executing any other code, including run-time
initialization. Static data members must still be explicitly defined.

e Initialization of global static objects in a translation unit. This may occur either
before entry to main or before the first use of any function or object in the
object’s translation unit.

Microsoft Specific —

In Microsoft C++, global static objects are initialized before entry to main.

END Microsoft Specific

Global static objects that are mutually interdependent but in different translation
units may cause incorrect behavior.

Additional Termination Considerations
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You can terminate a C++ program by using exit, return, or abort. You can add exit
processing using the atexit function. These are discussed in the following sections.

Using exit or return

When you call exit or execute a return statement from main, static objects are
destroyed in the reverse order of their initialization. This example shows how such
initialization and cleanup works:

f#include <stdio.h>

class ShowData
{
public:
// Constructor opens a file.
ShowData( const char *szDev )
{
QutputDev = fopen( szDev, "w" );
}

// Destructor closes the file.
~ShowData() { fclose( OutputDev ); }
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// Disp function shows a string on the output device.
void Disp( char *szData ) )

{
fputs( szData, OutputDev );
}
private:

FILE *OutputDev;
}:

// Define a static object of type ShowData. The output device
//  selected is "CON" -- the standard output device.

ShowData sdl = "CON";

// Define another static object of type ShowData. The output
// is directed to a file called "HELLO.DAT"

ShowData sd2 = "hello.dat";

int main()

{
sdl.Disp( "hello to default device\n" );
sd2.Disp( "hello to file hello.dat\n" );

return 0;
}

In the preceding example, the static objects sd1 and sd2 are created and initialized
before entry to main. After this program terminates using the return statement, first
sd2 is destroyed and then sd1. The destructor for the ShowData class closes the files
associated with these static objects. (For more information about initialization,
constructors, and destructors, see Chapter 11, “Special Member Functions.”)

Another way to write this code is to declare the ShowData objects with block scope,
allowing them to be destroyed when they go out of scope:

int main()

{
ShowData sdl, sd2( "hello.dat" );

sd1.Disp( "hello to default device\n" );
sd2.Disp( "hello to file hello.dat\n" );

return 0;

}

Using atexit

With the atexit function, you can specify an exit-processing function that executes
prior to program termination. No global static objects initialized prior to the call to
atexit are destroyed prior to execution of the exit-processing function.
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Using abort

Calling the abort function causes immediate termination. It bypasses the normal

_destruction process for initialized global static objects. It also bypasses any spe01a1

processing that was specified using the atexit function.

Storage Classes

Storage classes govern the lifetime, linkage, and treatment of objects and variables in
C++. A given object can have only one storage class. This section dlscusses the C++
storage classes for data:

¢ Automatic
e Static
e Register

e External

Automatic

Objects and variables with automatic storage are local to a given instance of a block.
In recursive or multithreaded code, automatic objects and variables are guaranteed to
have different storage in different instances of a block. Microsoft C++ stores
automatic objects and variables on the program’s stack.

Objects and variables defined within a block have auto storage unless otherwise
specified using the extern or static keyword. Automatic objects and variables can be
specified using the auto keyword, but explicit use of auto is unnecessary. Automatic
objects and variables have no linkage.

Automatic objects and variables persist only until the end of the block in which they
are declared.

Static

38

Objects and variables declared as static retain their values for the duration of the
program’s execution. In recursive code, a static object or variable is guaranteed to
have the same state in different instances of a block of code.

Objects and variables defined outside all blocks have static lifetime and external -
linkage by default. A global object or variable that is explicitly declared as static
has internal linkage.

Static objects and variables persist for the duration of the program’s execution.
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Register

Only function arguments and local variables can be declared with the register storage
class.

Like automatic variables, register variables persist only until the end of the block in
which they are declared.

The compiler does not honor user requests for register variables; instead, it makes its
own register choices when global optimizations are on. However, all other semantics
associated with the register keyword are honored by the compiler.

External

Objects and variables declared as extern declare an object that is defined in another
translation unit or in an enclosing scope as having external linkage.

Declaration of const variables with the extern storage class forces the variable to
have external linkage. An initialization of an extern const variable is allowed in the
defining translation unit. Initializations in translation units other than the defining
translation unit produce undefined results.

The following code shows two extern declarations, DefinedElsewhere (which
refers to a name defined in a different translation unit) and DefinedHere (which
refers to a name defined in an enclosing scope):

extern int DefinedElsewhere; // Defined in another translation
// unit.
void main()
{
int DefinedHere;
{
extern int DefinedHere; // Refers to DefinedHere in
// the enclosing scope..
} .
}

Initialization of Objects

A local automatic object or variable is initialized every time the flow of control
reaches its definition. A local static object or variable is initialized the first time the
flow of control reaches its definition. Consider the following example, which defines
a class that logs initialization and destruction of objects and then defines three objects,
I1,12,and I3:

f#include <iostream.h>
#include <string.h>

// Define a class that logs initializations and destructions.
class InitDemo : .
{
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public:
InitDemo( const char *szWhat );
~InitDemo();

private:
char *szObjName;

};

// Constructor for cltass InitDemo
InitDemo::InitDemo( const char *szWhat )

{
if( szWhat != 0 && strlen( szWhat ) > @ )
{
// Allocate storage for szObjName, then copy
// initializer szWhat into szObjName.
szObjName = new char[ strlen( szWhat ) + 1 J;
strcpy( szObjName, szWhat );
cout << "Initializing: " << szObjName << "\n";
}
else
szObjName = 0;
}

// Destructor for InitDemo
InitDemo: :~InitDemo()

{
if( szObjName != 0 )
{
“cout << "Destroying: " << szObjName << "\n";
delete szObjName;
1
}

// Enter main function
void main()

{
InitDemo I1( "Auto I1" );
{ .
cout << "In block.\n":
InitDemo I2( "Auto I2" );
static InitDemo I3( "Static I3" );
1
cout << "Exited block.\n";
}

The preceding code demonstrates how and when the objects 11, 12, and 13 are
initialized and when they are destroyed. The output from the program is:

Initializing: Auto Il
In block.

Initializing: Auto I2
Initializing: Static I3
Destroying: Auto I2
Exited block.
Destroying: Auto I1
Destroying: Static I3
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There are several points to note about the program.

First, I1 and 12 are automatically destroyed when the flow of control exits the block
in which they are defined.

Second, in C++, it is not necessary to declare objects or variables at the beginning of a
block. Furthermore, these objects are initialized only when the flow of control reaches
their definitions. (12 and I3 are examples of such definitions.) The output shows
exactly when they are initialized.

Finally, static local variables such as I3 retain their values for the duration of the
program but are destroyed as the program terminates.

Types
C++ supports three kinds of object types:

o Fundamental types are built into the language (such as int, float, or double).
Instances of these fundamental types are often called “variables.”

o Derived types are new types derived from built-in types. See page 44.

e Class types are new types created by combining existing types. These are
discussed in Chapter 8, “Classes.”

Fundamental Types

Fundamental types in C++ are divided into three categories: “integral,” “ﬂoéting,”
and “void.” Integral types are capable of handling whole numbers. Floating types
are capable of specifying values that may have fractional parts.

The void type describes an empty set of values. No variable of type void can be
specified—it is used primarily to declare functions that return no values or to declare
“generic” pointers to untyped or arbitrarily typed data. Any expression can be
explicitly converted or cast to type void. However, such expressions are restricted

to the following uses:

¢ An expression statement. (See Chapter 4, “Expressions,” for more information.)

o The left operand of the comma operator. (See “Comma Operator” on page 101 in
Chapter 4 for more information.)

¢ The second or third operand of the conditional operator (? :). (See “Expressions
with the Conditional Operator” on page 102 in Chapter 4 for more information.)
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Table 2.3 explains the restrictions on type sizes. These restrictions are independent

of the Microsoft implementation.

Table 2.3 Fundamental Types of the C++ Language

Category Type

Contents

Integral char

short

int

__intn

long

Floating float

double

long double'

Type char is an integral type that usually contains
members of the execution character set—in
Microsoft C++, this is ASCIL.

The C++ compiler treats variables of type char,
signed char, and unsigned char as having different
types. Variables of type char are promoted to int as
if they are type signed char by default, unless the /J
compilation option is used. In this case they are
treated as type unsigned char and are promoted to
int without sign extension.

Type short int (or simply short) is an integral type
that is larger than or equal to the size of type char,
and shorter than or equal to the size of type int.

Objects of type short can be declared as signed
short or unsigned short. Signed short is a synonym
for short.

Type int is an integral type that is larger than or
equal to the size of type short int, and shorter than
or equal to the size of type long.

Objects of type int can be declared as signed int or
unsigned int. Signed int is a synonym for int.

Sized integer, where n is the size, in bits, of the
integer variable. The value of n can be 8, 16, 32,
or 64.

Type long (or long int) is an integral type that is
larger than or equal to the size of type int.

Objects of type long can be declared as signed long
or unsigned long. Signed long is a synonym for
long.

Type float is the smallest floating type.

Type double is a floating type that is larger than or
equal to type float, but shorter than or equal to the
size of type long double.'

Type long double is a floating type that is equal to
type double.

! The representation of long double and double is identical. However, long double and double are separate

types.
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Microsoft Specific —
Table 2.4 lists the amount of storage required for fundamental types in Microsoft C-++.

Table 2.4 Sizes of Fundamental Types

Type Size
char, unsigned char, signed char 1 byte
short, unsigned short 2 bytes
int, unsigned int 4 bytes
long, unsigned long 4 bytes
float 4 bytes
double 8 bytes
long double! 8 bytes

! The representation of long double and double is identical. However, long double and double are
separate types.

For more information about type conversion, see Chapter 3, “Standard Conversions.”

END Microsoft Specific

Sized Integer Types

Microsoft C++ also supports sized integer types. You can declare 8-, 16-, 32-, or
64-bit integer variables by using the __intn type specifier, where » is the size, in bits,
of the integer variable. The value of 1 can be 8, 16, 32, or 64. The following example
declares one variable for each of these types of sized integers:

_ int8 nSmall; // Declares 8-bit integer

__intl16 nMedium; // Declares 16-bit integer

__int32 nlLarge; // Declares 32-bit integer
__int64 nHuge; // Declares 64-bit integer

The types __int8, __int16, and __int32, are synonyms for the ANSI types that have
the same size, and are useful for writing portable code that behaves identically across
multiple platforms. Note that the __int8 data type is synonymous with type char,
__int16 is synonymous with type short, and __int32 is synonymous with type int.

The __int64 data type has no ANSI equivalent.

Since __int8, __|
should be taken when using these types as arguments to overloaded function calls.
For example, the following C++ code will generate a compiler error:

void MyFunc( __int8 ) (}
void MyFunc( char ) {}

intl6, and __int32 are considered synonyms by the compiler, care

void main()

{
__int8 newVal;
char MyChar;
MyFunc( MyChar ); // Ambiguous function calls; _
MyFunc( newVal ); // char is synonymous with __int8.
}

43



C++ Language Reference

Derived Types
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Derived types are new types that can be used in a program, and can include directly
derived types and composed derivative types.

Directly Derived Types

New types derived directly from existing types are types that point to, refer to, or
(in the case of functions) transform type data to return a new type.

¢ Arrays of Variables or Objects
¢ Functions

¢ Pointers of a Given Type

¢ References to Objects

o Constants

o Pointers to Class Members

Arrays of Variables or Objects

Arrays of variables or objects can contain a specified number of a particular type. For
example, an array derived from integers is an array of type int. The following code
sample declares and defines an array of 10 int variables and an array of 5 objects of
class SampleClass:

int ArrayOfInt[10];
SampleClass aSampleClass[5];

Functions
Functions take zero or more arguments of given types and return objects of a specified
type (or return nothing, if the function has a void return type).

Pointers of a Given Type

Pointers to variables or objects select an object in memory. The object can be global,
local (or stack-frame), or dynamically allocated. Pointers to functions of a given type
allow a program to defer selection of the function used on a particular object or
objects until run time. The following example shows a definition of a pointer to a
variable of type char:

char *szPathStr;

References to Objects

References to objects provide a convenient way to access objects by reference but
use the same syntax required to access objects by value. The following example
demonstrates how to use references as arguments to functions and as return types
of functions:
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BigClassType &func( BigClassType &cbjname )

(
objname.DoSomething(); // Note that member-of operator(.)
// is used.
objname.SomeData = 7; // Data passed by non-const
// reference is modifiable.
return objname;
}

The important points about passing objects to a function by reference are:

o The syntax for accessing members of class, struct, and union obje_cts is the same
as if they were passed by value: the member-of operator (.).

o The objects are not copied prior to the function call; their addresses are passed.
This can reduce the overhead of the function call.

Additionally, functions that return a reference need only accept the address of the
object to which they refer, instead of a copy of the whole object.

Although the preceding example describes references only in the context of
communication with functions, references are not constrained to this use. Consider,
for example, a case where a function needs to be an 1-value—a common requirement
for overloaded operators:

class Vector

{
public:
Point &operator[]( int nSubscript ); // Function returns a
/! reference type
1

The preceding declaration specifies a user-defined subscript operator for class
Vector. In an assignment statement, two possible conditions occur:

Vector vl1;

int is

Point p; .
vli[7] = p; // Vector used as an 1-value
p = v1[7]; // Vector used as an r-value

The latter case, where v1[7] is used as an r-value, can be implemented without use of
references. However, the former case, where v1[7] is used as an l-value, cannot be
implemented easily without functions that are of reference type. Conceptually, the last
two statements in the preceding example translate to the following code:

vl.operator[]( 7 ) = 3; // Vector used as an T-value
i = vl.operator[1( 7 ); // Vector used as an r-value

When viewed in this way, it is easier to see that the first statement must be an l-value
to be semantically correct on the left side of the assignment statement.

For more information about overloading, and about overloaded operators in particular,
see “Overloaded Operators” on page 336 in Chapter 12.
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You can also use references to declare a const reference to a variable or object. A
reference declared as const retains the efficiency of passing an argument by reference,
while preventing the called function from modifying the original object. Consider the
following code:

// IntValue is a const reference.
void PrintInt( const int &IntValue )
{

printf( "%d\n", IntValue );
}

Reference initialization is different from assignment to a variable of reference type.
Consider the following code:

int i =17;

int j = 5;

// Reference initialization
int &ri = 1; // Initialize ri to refer to i.
int &rj = j; // Initialize rj to refer to j.

// Assignment

ri = 3; // i now equal to 3.
rj =12; // j now equal to 12.
ri =rj; // i now equals j (12).
Constants

See “Literals” in Chapter 1 for more information about the various kinds of constants
allowed in C++.

Pointers to Class Members

These pointers define a type that points to a class member of a particular type. Such a
pointer can be used by any object of the class type or any object of a type derived
from the class type. :

Use of pointers to class members enhances the type safety of the C++ language. Three
new operators and constructs are used with pointers to members, as shown in Table 2.5.

Table 2.5 Operators and Constructs Used with Pointers to Members

Operator or

Construct Syntax Use

Hia type::¥*ptr-name Declaration of pointer to member. The type
specifies the class name, and ptr-name specifies
the name of the pointer to member. Pointers to
members can be initialized. For example:
MyType: :*pMyType = &MyType::i;

* obj-name.*ptr-name Dereference a pointer to a member using an

object or object reference. For example:
~int j = Object.*pMyType;
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Table 2.5 Operators and Constructs Used with Pointers to Members (continued)

Operator or
Construct Syntax Use
—>* obj-ptr->*ptr-name Dereference a pointer to a member using a

pointer to an object. For example:
int j = pObject->*pMyType;

Consider this example that defines a class AClass and the derived type pDAT,
which points to the member I1:

#include <iostream.h>

// Define class AClass.
class AClass

{
public:

int I1;

Show() { cout << I1 << "\n"; }
};

// Define a derived type pDAT that points to I1 members of
// objects of type AClass.
int AClass::*pDAT = &AClass::I1;

void main()

{
AClass aClass; // Define an object of type AClass.
AClass *paClass = &aClass; // Define a pointer to that object.
int 1i;
aClass.*pDAT = 7777; // Assign to aClass::Il1 using .* operator.
aClass.Show();
i = paClass->*pDAT; // Dereference a pointer using ->* operator.
cout << i << "\n";
}

The pointer to member pDAT is a new type derived from class ACTass. It is more
strongly typed than a “plain” pointer to int because it points only to int members of
class AC1ass (in this case, [1). Pointers to static members are plain pointers rather
than pointers to class members. Consider the following example:

class HasStaticMember

{
public:

static int SMember;
1

int HasStaticMember::SMember = 0;

int *pSMember = &HasStaticMember::SMember;

Note that the type of the pointer is “pointer to int,” not “pointer to
HasStaticMember::int.”
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Pointers to members can refer to member functions as well as member data.
Consider the following code:

jHinclude <stdio.h>

// Declare a base class, A, with a virtual function, Identify.
// (Note that in this context, struct is the same as class.)
struct A
{

virtual void Identify() = @; // No definition for class A.
}:

// Declare a pointer to the Identify member function.
void (A::*pldentify)() = &A::Identify;

// Declare class B derived from class A.
struct B : public A
{
void Identify();
};

// Define Identify functions for classe B
void B::Identify()

{
printf( "Identification is B::Identify\n" );
}
void main()
{
B BObject; // Declare objects of type B
A *pA; // Declare pointer to type A.
pA = &BObject; // Make pA point to an object of type B.
(pA->*pldentify)(); // Call Identify function through pointer
// to member pldentify.
}

The outplit from this program is:
Identification is B::Identify

The function is called through a pointer to type A. However, because the function is
a virtual function, the correct function for the object to which pA refers is called.

Composéd Derivative Types

This section describes the following composed derivative types:

¢ (Classes
¢ Structures

e Unions

Information about aggregate types and initialization of aggregate types can be found
in “Initializing Aggregates” on page 224 in Chapter 7.
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Classes

Classes are a composite group of member objects, functions to manipulate these
members, and (optionally) access-control specifications to member objects and
functions.

By grouping composite groups of objects and functions in classes, C++ enables
programmers to create derivative types that define not only data but also the
behavior of objects.

Class members default to private access and private inheritance. Classes are covered
in Chapter 8, “Classes,” access control is covered in Chapter 10, “Member-Access
Control.”

Structures

C++ structures are the same as classes, except that all member data and functions
default to public access, and inheritance defaults to public inheritance.

For more information about access control, see Chapter 10, “Member-Access
Control.”

Unions

Unions enable programmers to define types capable of containing different kinds of
variables in the same memory space. The following code shows how you can use a
union to store several different types of variables:

// Declare a union that can hold data of types char, int,

/1 or char *,
union ToPrint

{
char chVar;
int iVar;
char *szVar;
};

// Declare an enumerated type that describes what type to print.
enum PrintType { CHAR_T, INT_T, STRING_T };

void Print( ToPrint Var, PrintType Type )
{
switch( Type )
{
case CHAR_T:
printf( "%c", Var.chVar );
break;
case INT_T:
printf( "%d", Var.iVar );
break;
case STRING_T:
printf( "%s", Var.szVar );
break;
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Type Names

Synonyms for both fundamental and derived types can be defined using the typedef
keyword. The following code illustrates the use of typedef:

typedef unsigned char BYTE; // 8-bit unsigned entity.

typedef BYTE * PBYTE; // Pointer to BYTE.
BYTE Ch; // Declare a variable of type BYTE.
PBYTE pbCh; // Declare a pointer to a BYTE

// variable.

The preceding example shows uniform declaration syntax for the fundamental type
unsigned char and its derivative type unsigned char *. The typedef construct is also
helpful in simplifying declarations. A typedef declaration defines a synonym, not a
new independent type. The following example declares a type name (PVFN)
representing a pointer to a function that returns type void. The advantage of this
declaration is that, later in the program, an array of these pointers is declared very
simply.

// Prototype two functions.

void funcl();
void func2();

// Define PVFN to represent a pointer to a function that
// returns type void.
typedef void (*PVFN)();

// Declare an array of pointers to functions.
PVFN pvfn[]l = { funcl, func2 };

// Invoke one of the functions.
(*pvfn[11)();

L-Values and R-Values
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Expressions in C++ can evaluate to “l-values” or “r-values.” L-values are
expressions that evaluate to a type other than veid and that designate a variable.

L-values appear on the left side of an assignment statement (hence the “I” in 1-value).
Variables that would normally be 1-values can be made nonmodifiable by using the
const keyword; these cannot appear on the left of an assignment statement. Reference
types are always l-values.

The term r-value is sometimes used to describe the value of an expression and
to distinguish it from an 1-value. All 1-values are r-values but not all r-values are
I-values.



Chapter 2 Basic Concepts

Some examples of correct and incorrect usages are:

i=17; // Correct. A variable name, i, is an 1-value.

7 =1; // Error. A constant, 7, is an r-value.
i*4=17; // Error. The expression jJ * 4 yields an r-value.
*p o= 1; // Correct. A dereferenced pointer is an 1-value.
const int c¢i = 7; // Declare a const variable.

ci =9; // ci is a nonmodifiable 1-value, so the

// assignment causes an error message to
// be generated.

((i <3)7?24 :3)=17; // Correct. Conditional operator (? :)
// returns an 1-value.

Note The examples in this section illustrate correct and incorrect usage when operators are

not overloaded. By overloading operators, you can make an expression suchas j * 4 an
I-value.

Numerical Limits

The two standard include files, LIMITS.H and FLOAT.H, define the “numerical
limits,” or minimum and maximum values that a variable of a given type can hold.
These minimums and maximums are guaranteed to be portable to any C++ compiler
that uses the same data representation as ANSI C. The LIMITS.H include file defines
the numerical limits for integral types, and FLOAT.H defines the numerical limits for
floating types.

Integer Limits

Microsoft Specific —

The limits for integer types are listed in Table 2.6. These limits are also defined in the
standard header file LIMITS.H.

Table 2.6 Limits on Integer Constants

Constant Meaning Value

CHAR_BIT Number of bits in the smallest variable that 8
is not a bit field.

SCHAR_MIN Minimum value for a variable of type signed -128

char.
SCHAR_MAX Maximum value for a variable of type 127
signed char.
UCHAR_MAX Maximum value for a variable of type 255 (0xff)
unsigned char.
CHAR_MIN Minimum value for a variable of type char. —128; 0 if /J option used
CHAR_MAX Maximum value for a variable of type char. 127; 255 if /J option used

(continued)
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Table 2.6 Limits on Integer Constants (continued)

Constant Meaning Value

MB_LEN_MAX Maximum number of bytes in a 2
multicharacter constant.

SHRT_MIN Minimum value for a variable of type short.  —32768

SHRT_MAX Maximum value for a variable of type short. 32767

- USHRT_MAX Maximum value for a variable of type 65535 (0xffff)

unsigned short.

INT_MIN Minimum value for a variable of type int. —2147483647-1

INT_MAX Maximum value for a variable of type int. 2147483647

UINT_MAX Maximum value for a variable of type 4294967295 (Oxffffffff)
unsigned int.

LONG_MIN - Minimum value for a variable of type long. —2147483647-1

LONG_MAX Maximum value for a variable of type long. 2147483647

ULONG_MAX  Maximum value for a variable of type 4294967295 (OxfIfffftr)

unsigned long.

If a value exceeds the largest infeger representation, the Microsoft compiler generates

an error.

END Microsoft Specific

Floating Limits

Microsoft Specific —

Table 2.7 lists the limits on the values of ﬂoating-point constants. These limits are also
defined in the standard header file FLOAT.H.

Table 2.7 Limits on Floating-Point Constants

Constant Meaning Value
FLT_DIG Number of digits, q, such that 6
DBL_DIG a floating-point number with q 15
LDBL_DIG decimal digits can be rounded into 15
a floating-point representation and
back without loss of precision.
FLT_EPSILON Smallest positive number x, such 1.192092896e-07F

DBL_EPSILON
LDBL_EPSILON

FLT_GUARD

FLT_MANT_DIG
DBL_MANT_DIG
LDBL_MANT_DIG
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that x + 1.0 is not equal to 1.0.

Number of digits in the radix
specified by FLT_RADIX in the
floating-point significand. The
radix is 2; hence these values
specify bits.

2.2204460492503131e-016

.2.2204460492503131e-016

0

24
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Table 2.7 Limits on Floating-Point Constants (continued)

Chapter 2 Basic Concepts

Constant Meaning Value

FLT_MAX Maximum representable 3.402823466e+38F
DBL_MAX floating-point number. 1.7976931348623158e+308
LDBL_MAX 1.7976931348623158e+308

FLT_MAX_10_EXP
DBL_MAX_10_EXP
LDBL_MAX_10_EXP

FLT_MAX_EXP
DBL_MAX_EXP
" LDBL_MAX_EXP

FLT_MIN

DBL_MIN
LDBL_MIN
FLT_MIN_10_EXP
DBL_MIN_10_EXP
LDBL_MIN_10_EXP

FLT_MIN_EXP
DBL_MIN_EXP
LDBL_MIN_EXP

FLT_NORMALIZE

FLT_RADIX
_DBL_RADIX
_LDBL_RADIX
FLT_ROUNDS

_DBL_ROUNDS
_LDBL_ROUNDS

Maximum integer such that 10
raised to that number is a
representable floating-point
number.

Maximum integer such that

FLT_RADIX raised to that number

is a representable floating-point
number.

Minimum positive value.

Minimum negative integer such
that 10 raised to that number is
a representable floating-point
number.

Minimum negative integer such
that FLT_RADIX raised to

that number is a representable
floating-point number.

Radix of exponent
representation.

Rounding mode for
floating-point addition.

38
308
308

128
1024
1024

1.175494351e-38F
2.2250738585072014e-308
2.2250738585072014e-308
=37

=307

=307

-125
-1021
-1021

(near)
(near)
(

0
2
2
2
1
1
1 (near)

Note that the information in Table 2.7 may differ in future versions of the product.

END Microsoft Specific
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CHAPTER 3

Standard Conversions

The C++ language defines conversions between its fundamental types. It also
defines conversions for pointer, reference, and pointer-to-member derived types.
These conversions are called “standard conversions.” (For more information about
types, standard types, and derived types, see “Types” on page 41 in Chapter 2.) -

This chapter discusses the following standard conversions:

¢ Integral promotions

e Integral conversions

¢ Floating conversions

e Floating and integral conversions

o Arithmetic conversions

e Pointer conversions

e Reference conversions

e Pointer-to-member conversions

Note User-defined types can specify their own conversions. Conversion of user-defined types
is covered in “Constructors” and “Conversions” on pages 292 and 302 in Chapter 11.
The following code causes conversions (in this example, integral promotions):
long Tnuml, Tnum2;

int  inum;

// inum promoted to type long prior to assignment.
Tnuml = inum; :

// inum promoted to type long prior to multiplication.
Tnum2 = inum * Tnum2;
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Note The result of a conversion is an I-value only if it produces a reference type. For example,
a user-defined conversion declared as

operator int&()
returns a reference and is an |-value. However, a conversion declared as
operator int()

returns an object and is not an |-value.

Integral Promotions
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Objects of an integral type can be converted to another wider integral type (that is,
a type that can represent a larger set of values). This widening type of conversion is
called “integral promotion.” With integral promotion, you can use the following in
an expression wherever another integral type can be used:

¢ Objects, literals, and constants of type char and short int
¢ Enumeration types
o int bit fields

¢ Enumerators

C++ promotions are “value-preserving.” That is, the value after the promotion is
guaranteed to be the same as the value before the promotion. In value-preserving
promotions, objects of shorter integral types (such as bit fields or objects of type
char) are promoted to type int if int can represent the full range of the original type.
If int cannot represent the full range of values, then the object is promoted to type
unsigned int. Although this strategy is the same as that used by ANSI C,
value-preserving conversions do not preserve the “signedness” of the object.

Value-preserving promotions and promotions that preserve signedness normally
produce the same results. However, they can produce different results if the promoted
object is one of the following:

e Anoperand of /, %, /=, %=, <, <=, >, or >=

These operators rely on sign for determining the result. Therefore, value-preserving and
sign-preserving promotions produce different results when applied to these operands.

o The left operand of >>or >>=

These operators treat signed and unsigned quantities differently when performing a
shift operation. For signed quantities, shifting a quantity right causes the sign bit to
be propagated into the vacated bit positions. For unsigned quantities, the vacated
bit positions are zero-filled.

e An argument to an overloaded function or operand of an overloaded operator that
depends on the signedness of the type of that operand for argument matching. (See
“Overloaded Operators” on page 336 in Chapter 12 for more about defining
overloaded operators.)
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Integral Conversions

Integral conversions are performed between integral types. The integral types are
char, int, and long (and the short, signed, and unsigned versions of these types).

This section describes the following types of integral conversions:

¢ Converting signed to unsigned
¢ Converting unsigned to signed

e Standard conversion

Converting Signed to Unsigned

Objects of signed integral types can be converted to corresponding unsigned types.
When these conversions occur, the actual bit pattern does not change; however, the
interpretation of the data changes. Consider this code:

f#include <iostream.h>

void main()

{
short i = -3;
unsigned short u;

cout << (u = 1) << "\n";
}

The following output results:
65533
In the preceding example, a signed short, i, is defined and initialized to a negative

number. The expression (u = 1) causes i to be converted to an unsigned short prior
to the assignment to u.

Converting Unsigned to Signed

Objects of unsigned integral types can be converted to corresponding signed types.
However, such a conversion can cause misinterpretation of data if the value of the
unsigned object is outside the range representable by the signed type, as demonstrated
in the following example:

#include <iostream.h>
void main()
{

short i;
unsigned short u = 65533;

cout << (i = u) << "\n";
}
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The following output results:
-3

In the preceding example, u is an unsigned short integral object that must be
converted to a signed quantity to evaluate the expression (i = u). Because its
value cannot be properly represented in a signed short, the data is misinterpreted
as shown.

Standard Conversion

Objects of integral types can be converted to shorter signed or unsigned integral
types. Such a conversion is called “standard conversion.” It can result in loss of
data if the value of the original object is outside the range representable by the
shorter. type.

Note The compiler issues a high-level warning when a conversion to a shorter type
takes place.

Floating Conversions

An object of a floating type can be safely converted to a more precise floating
type—that is, the conversion causes no loss of significance. For example,
conversions from float to double or from double to long double are safe, and
the value is unchanged.

An object of a floating type can also be converted to a less precise type, if itisin a
range representable by that type. (See “Floating Limits” on page 52 in Chapter 2 for
the ranges of floating types.) If the original value cannot be represented precisely, it
can be converted to either the next higher or the next lower representable value.

If no such value exists, the result is undefined. Consider the following example:

cout << (float)1E300 << endl;

The maximum value representable by type float is 3.402823466E38—a much
smaller number than 1E300. Therefore, the number is converted to infinity, and
the result is 1.#INF.

Floating and Integral Conversions
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Certain expressions can cause objects of floating type to be converted to integral
types, or vice versa.

This section describes the following types of floating and integral conversions:

¢ Floating to integral

o Integral to floating



Floating to Integral
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When an object of floating type is converted to an integral type, the fractional part is
truncated. No rounding takes place in the conversion process. Truncation means that a
number like 1.3 is converted to 1, and —1.3 is converted to —1.

Integral to Floating

When an object of integral type is converted to a floating type and the original value
cannot be represented exactly, the result is either the next higher or the next lower

representable value.

Arithmetic Conversions

Many binary operators (discussed in “Expressions with Binary Operators” on page 88
in Chapter 4) cause conversions of operands and yield results the same way. The way

these operators cause conversions is called “usual arithmetic conversions.” Arithmetic
conversions of operands of different types are performed as shown in Table 3.1.

Table 3.1 Conditions for Type Conversion

Conditions Met

Conversion

Either operand is of type long
double.

Preceding condition not met
and either operand is of type
double.

Preceding conditions not met
and either operand is of type
float.

Preceding conditions not met
(none of the operands are of
floating types).

Other operand is converted to type long double.

Other operand is converted to type double.

Other operand is converted to type float.

Integral promotions are performed on the operands as
follows:

If either operand is of type unsigned long, the other
operand is converted to type unsigned long.

If preceding condition not met, and if either operand is
of type long and the other of type unsigned int, both
operands are converted to type unsigned long.

If the preceding two conditions are not met, and if either
operand is of type long, the other operand is converted
to type long.

If the preceding three conditions are not met, and if
either operand is of type unsigned int, the other operand
is converted to type unsigned int.

If none of the preceding conditions are met, both
operands are converted to type int.
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The following code illustrates the conversion rules described in Table 3.1:

float fVal;
double dVal;
int ival;

unsigned long ulVal;

dval = iVal * ulVal; // ivVal converted to unsigned long;
// result of multiplication converted to double.
dval = ulval + fval; // ulVal converted to float;

// result of addition converted to double.

The first statement in the preceding example shows multiplication of two integral
types, iVal and u1Val. The condition met is that neither operand is of floating type
and one operand is of type unsigned int. Therefore, the other operand, iVal, is
converted to type unsigned int. The result is assigned to dVal. The condition met
is that one operand is of type double; therefore, the unsigned int result of the
multiplication is converted to type double.

The second statement in the preceding example shows addition of a float and an
integral type, fVal and ulVal. The uiVal variable is converted to type float
(third condition in Table 3.1). The result of the addition is converted to type double
(second condition in Table 3.1) and assigned to dVa1l.

- Pointer Conversions

Pointers can be converted during assignment, initialization, comparison, and other
expressions. This section describes the following pointer conversion:

¢ Null pointers

¢ Pointers to type void
¢ Pointers to objects

¢ Pointers to functions
e Pointers to classes

e Expressions

- o Pointers modified by const or volatile

Null Pointers
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An integral constant expression that evaluates to zero, or such an expression cast
to type void *, is converted to a pointer called the “null pointer.” This pointer is
guaranteed to compare unequal to a pointer to any valid object or function (except
for pointers to based objects, which can have the same offset and still point to
different objects).
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Pointers to Type void

Pointers to type void can be converted to pointers to any other type, but only with an
explicit type cast (unlike in C). (See “Expressions with Explicit Type Conversions” on
page 103 in Chapter 4 for more information about type casts.) A pointer to any type
can be converted implicitly to a pointer to type void.

A pointer to an incomplete object of a type can be converted to a pointer to void
(implicitly) and back (explicitly). The result of such a conversion is equal to the value
of the original pointer. An object is considered incomplete if it is declared, but there is
insufficient information available to determine its size or base class.

Pointers to Objects

A pointer to any object that is not const or volatile can be implicitly converted to a
pointer of type void *.

Pointers to Functions

A pointer to a function can be converted to type void *, if type void * is large enough
to hold that pointer.

Pointers to Classes

There are two cases in which a pointer to a class can be converted to a pointer to a
base class.

The first case is when the specified base class is accessible and the conversion is
unambiguous. (See “Multiple Base Classes” on page 264 in Chapter 9 for more
information about ambiguous base-class references.)

Whether a base class is accessible depends on the kind of inheritance used in
derivation. Consider the inheritance illustrated in Figure 3.1. '

Figure 3.1 [Inheritance Graph for lllustration of Base-Class Accessibility

:C{aSSA:‘ o

‘classBrA L F
i
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Kl i

61



C++ Language Reference

Table 3.2 shows the base-class accessibility for the situation illustrated in Figure 3.1.
Table 3.2 Base-Class Accessibility

Conversion from

Type of Function Derivation B* to A* Legal?
External (not class-scoped) function Private No

Protected No

Public Yes
B member function (in B scope) Private Yes

Protected Yes

Public Yes
C member function (in C scope) Private No

Protected Yes

Public Yes

The second case in which a pointer to a class can be converted to a pointer to a base
class is when you use an explicit type conversion. (See “Expressions with Explicit
Type Conversions” on page 103 in Chapter 4 for more information about explicit
type conversions.)

The result of such a conversion is a pointer to the “subobject,” the portion of the
object that is completely described by the base class.

The following code defines two classes, A and B, where B is derived from A. (For
more information on inheritance, see Chapter 9, “Derived Classes.”) It then defines
bObject, an object of type B, and two pointers (pA and pB) that point to the object.

class A
{
pubtic:
int AComponent;
int AMemberFunc();
};

class B : public A

{

public:
int BComponent;
int BMemberFunc();

I

B bObject;

A *pA = &bObject;

B *pB = &bObject;

pA->AMemberFunc(); // 0K in class A

pB->AMemberFunc(); // OK: inherited from class A
pA->BMemberFunc(); // Error: not in class A
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The pointer pA is of type A *, which can be interpreted as meaning “pointer to an
object of type A.” Members of bObject (such as BComponent and BMemberFunc)
are unique to type B and are therefore inaccessible through pA. The pA pointer allows
access only to those characteristics (member functions and data) of the object that are
defined in class A.

Pointer Expressions

Any expression with an array type can be converted to a pointer of the same type. The
result of the conversion is a pointer to the first array element. The following example
demonstrates such a conversion:

char szPath[_MAX_PATHI; // Array of type char.
char *pszPath = szPath; // Equals &szPath[Q].

An expression that results in a function returning a particular type is converted to a
pointer to a function returning that type, except when:

o The expression is used as an operand to the address-of operator (&).

e The expression is used as an operand to the function-call operator.

Pointers Modified by const or volatile

C++ does not supply a standard conversion from a const or volatile type to a type that
is not const or volatile. However, any sort of conversion can be specified using
explicit type casts (including conversions that are unsafe).

Note C++ pointers to members, except pointers to static members, are different from normal
pointers and do not have the same standard conversions. Pointers to static members are
normal pointers and have the same conversions as normal pointers. {See “Pointers to Class
Members” page 46 in Chapter 2 for more information.)

Reference Conversions

A reference to a class can be converted to a reference to a base class in the following
cases:

¢ The specified base class is accessible (as defined in “Pointers to Classes” on page 61).

o The conversion is unambiguous. (See “Multiple Base Classes” on page 264 in
Chapter 9 for more information about ambiguous base-class references.)

The result of the conversion is a pointer to the subobject that represents the base class.

For more information about references, see “References to Objects” on page 44 in
Chapter 2.
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Pointer-to-Member Conversions

Pointers to class members can be converted during assignment, initialization,
comparison, and other expressions. This section describes the following
pointer-to-member conversions:

o Integral constant expressions

e Pointers to base-class members

Integral Constant Expressions

An integral constant expression that evaluates to zero is converted to a pointer called
the “null pointer.” This pointer is guaranteed to compare unequal to a pointer to any
valid object or function (except for pointers to based objects, which can have the same
offset and still point to different objects).

The following code illustrates the definition of a pointer to member i in class A.
The pointer, pai, is initialized to 0, which is the null pointer.

class A
{
public:
int 1;
};

int A::*pai = 0;

Pointers to Base-Class Members

A pointer to a member of a base class can be converted to a pointer to a member of a
class derived from it, when the following conditions are met:

¢ The inverse conversion, from pointer to derived class to base-class pointer, is
accessible. :

e The derived class does not inherit virtually from the base class.
‘When the left operand is a pointer to member, the right operand must be of

pointer-to-member type or be a constant expression that evaluates to 0. This
assignment is valid only in the following cases:

o The right operand is a pointer to a member of the same class as the left operand.

¢ The left operand is a pointer to a member of a class derived publicly and
unambiguously from the class of the right operand.
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Expressions

This chapter describes C++ expressions. Expressions are sequences of operators
and operands that are used for one or more of these purposes:

e Computing a value from the operands.

o Designating objects or functions.

o Generating “side effects.” (Side effects are any actions other than the evaluation
of the expression— for example, modifying the value of an object.)

In C++, operators can be overloaded and their meanings can be user-defined.
However, their precedence and the number of operands they take cannot be modified.
This chapter describes the syntax and semantics of operators as they are supplied
with the language, not overloaded. The following topics are included:

o Types of expressions
¢ Semantics of expressions

(For more information about overloaded operators, see “Overloaded Operators” on
page 336 in Chapter 12.) '

Note Operators for built-in types cannot be overloaded; their behavior is predefined.

Types of Expressions

C++ expressions are divided into several categories:

e Primary expressions. These are the building blocks from which all other
expressions are formed.

o Postfix expressions. These are primary expressions followed by an operator — for
example, the array subscript or postfix increment operator.

o Expressions formed with unary operators. Unary operators act on only one operand
in an expression.

¢ Expressions formed with binary operators. Binary operators act on two operands in
an expression.
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o Expressions with the conditional operator. The conditional operator is a ternary
operator — the only such operator in the C++ language — and takes three operands.

¢ Constant expressions. Constant expressions are formed entirely of constant data.

o Expressions with explicit type conversions. Explicit type conversions, or “casts,”
can be used in expressions.

o Expressions with pointer-to-member operators.
o Casting. Type-safe “casts” can be used in expressions.

¢ Run-Time Type Information. Determine the type of an object during program
execution.

Primary Expressions
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Primary expressions are the building blocks of more complex expressions. They are
literals, names, and names qualified by the scope-resolution operator (::).

Syntax
primary-expression.
literal
this
"2 identifier
: operator-function-name
: qualified-name
( expression )
name

A literal is a constant primary expression. Its type depends on the form of its
specification. See “Literals” on page 9 in Chapter 1 for complete information about
specifying literals.

The this keyword is a pointer to a class object. It is available within nonstatic member
functions and points to the instance of the class for which the function was invoked.
The this keyword cannot be used outside the body of a class-member function.

The type of the this pointer is type *const (where type is the class name) within
functions not specifically modifying the this pointer. The following example shows
member function declarations and the types of this:

class Example
{

pubiic:
void Func(); // * const this
void Func() const; // const * const this

void Func() volatile; // volatile * const this
I

See “Type of this Pointer” on page 245 in Chapter 8 for more information about
modifying the type of the this pointer.
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The scope-resolution operator (::) followed by an identifier, operator-function-name, or
qualified-name constitutes a primary expression. The type of this expression is determined
by the declaration of the identifier, operator-function-name, or name. It is an l-value if the
declaring name is an l-value. The scope-resolution operator allows a global name to be
referred to, even if that name is hidden in the current scope. See “Scope” on page 22 in
Chapter 2 for an example of how to use the scope-resolution operator.

An expression enclosed in parentheses is a primary expression whose type and value
are identical to those of the unparenthesized expression. It is an l-value if the ‘
unparenthesized expression is an l-value.

Names

In the C++ syntax for primary-expression, a name is a primary expression that can appear
only after the member-selection operators (. or =>), and names the member of a class.

Syntax
name:
© identifier
operator-function-name
conversion-function-name
~ class-name
qualified-name

Any identifier that has been declared is a name.
An operator-function-name is a name that is declared in the form

operator operator-name( argumentl [ , argument2]);

See “Overloaded Operators” on page 336 in Chapter 12 for more information about
declaration of operator-function-name.

A conversion-function-name is a name that is declared in the form

operator type-name( )

Note You can supply a derivative type name such as char * in place of the type-name when
declaring a conversion function.

Conversion functions supply conversions to and from user-defined types. For more
information about user-supplied conversions, see “Conversion Functions” on
page 305 in Chapter 11.

A name declared as ~ class-name is taken as the “destructor” for objects of a class
type. Destructors typically perform cleanup operations at the end of an object’s lifetime.
For information on destructors, see “Destructors” on page 297 in Chapter 11.
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Qualified Names

Syntax
qualified-name:

qualified-class-name :: name
If a qualified-class-name is followed by the scope-resolution operator (::) and then the
name of a member of either that class or a base of that class, then the scope-resolution
operator is considered a qualified-name. The type of a qualified-name is the same as
the type of the member, and the result of a qualified-name expression is the member.
If the member is an 1-value, then the qualified-name is also an 1-value. For information
about declaring qualified-class-name, see “Type Specifiers” on page 162 in Chapter 6
or “Class Names” on page 236 in Chapter 8.

The class-name part of a qualified-class-name can be hidden by redeclaration of the
same name in the current or enclosing scope; the class-name is still found and used. See
“Scope” on page 22 in Chapter 2 for an example of how to use a qualified-class-name
to access a hidden class-name.

Note Class constructors and destructors of the form class-name :: class-name and
class-name :: ~ class-name, respectively, must refer to the same class-name.

A name with more than one qualification, such as the following, designates a member
of a nested class:

class-name :: class-name :: name

Postfix Expressions

Postfix expressions consist of primary expressions or expressions in which postfix
operators follow a primary expression. The postfix operators are listed in Table 4.1.

Table 4.1 Postfix Operators

Operator Name Operator Notation
*Subscript operator []1

Function-call operator O

Explicit type conversion operator type-name()
Member-selection operator .or—>

Postfix increment operator ++

Postfix decrement operator --

Syntax

postfix-expression:
primary-expression
postfix-expression [ expression ]
postfix-expression ( expression-list,y )
simple-type-name ( expression-listyy )
postfix-expression . name
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postfix-expression => name
postfix-expression ++
postfix-expression —

expression-list.
assignment-expression
expression-list , assignment-expression

Subscript Operator

A postfix-expression followed by the subscript operator, [ ], specifies array
indexing. One of the expressions must be of pointer or array type — that is, it must
have been declared as type* or type[ ]. The other expression must be of an integral
type (including enumerated types). In common usage, the expression enclosed in
the brackets is the one of integral type, but that is not strictly required. Consider
the following example:

MyType m[10]; // Declare an array of a user-defined type.

MyType nl = m[2]; // Select third element of array.
MyType n2 = 2[m]; // Select third element of array.

In the preceding example, the expression m[ 2] is identical to 2[m]. Although m is not
of an integral type, the effect is the same. The reason that m[2] is equivalent to 2[m]
is that the result of a subscript expression e[ 2 ] is given by:

#((e2) + (el))

The address yielded by the expression is not e2 bytes from the address el. Rather, the
address is scaled to yield the next object in the array e2. For example:

double aDb1[2];

The addresses of aDb[@] and aDb[1] are 8 bytes apart—the size of an object of
type double. This scaling according to object type is done automatically by the

C++ language and is defined in “Additive Operators” on page 90 where addition and
subtraction of operands of pointer type is discussed.

Positive and Negative Subscripts

The first element of an array is element 0. The range of a C++ array is from array[0]
to array[size — 1]. However, C++ supports positive and negative subscripts. Negative
subscripts must fall within array boundaries or results are unpredictable. The
following code illustrates this concept:

#include <iostream.h>

void main()

{
int iNumberArray[1024];
int *iNumberlLine = &iNumberArray[512];
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cout << iNumberArray[-256] << "\n"; // Unpredictable
cout << iNumberLine[-256] << "\n"; // 0K
}

The negative subscript in iNumberArray can produce a run-time error because it
yields an address 256 bytes lower in memory than the origin of the array. The object
iNumberLine is initialized to the middle of iNumberArray; it is therefore possible
to use both positive and negative array indexes on it. Array subscript errors do not
generate compile-time errors, but they yield unpredictable results.

The subscript operator is commutative. Therefore, the expressions array[index] and
index[array] are guaranteed to be equivalent as long as the subscript operator is not
overloaded (see “Overloaded Operators” on page 336 in Chapter 12). The first form
is the most common coding practice, but either works.

Function-Call Operator

A postfix-expression followed by the function-call operator, ( ), specifies a function
call. The arguments to the function-call operator are zero or more expressions
separated by commas — the actual arguments to the function.

The postfix-expression must be of one of these types:

¢ Function returning type T. An example declaration is
T func( int i)

¢ Pointer to a function returning type T. An example declaration is
T (*func)( int i)

¢ Reference to a function returning type T. An example declaration is
T (&func)(int i)

o Pointer-to-member function dereference returning type T. Example function calls
are

(pObject->*pmf)();
(Object.*pmf)();

Formal and Actual Arguments

Calling programs pass information to called functions in “actual arguments.” The
called functions access the information using corresponding “formal arguments.”

When a function is called, the following tasks are performed:

» All actual arguments (those supplied by the caller) are evaluated. There is no
- implied order in which these arguments are evaluated, but all arguments are
evaluated and all side effects completed prior to entry to the function.

¢ FEach formal argument is initialized with its corresponding actual argument in
the expression list. (A formal argument is an argument that is declared in the
function header and used in the body of a function.) Conversions are done as if
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by initialization —both standard and user-defined conversions are performed
in converting an actual argument to the correct type. The initialization performed
is illustrated conceptually by the following code:

void Func( int i ); // Function prototype

Func( 7 ); // Execute function call
The conceptual initializations prior to the call are:
int Temp_i = 7; '

Func( Temp_i );

Note that the initialization is performed as if using the equal-sign syntax instead
of the parentheses syntax. A copy of i is made prior to passing the value to the
function. (For more information, see “Initializers” on page 223 in Chapter 7, and
“Conversions,” “Initialization Using Special Member Functions,” and “Explicit
Initialization” in Chapter 11 on pages 302, 314, and 315, respectively.

Therefore, if the function prototype (declaration) calls for an argument of type
long, and if the calling program supplies an actual argument of type int, the actual
argument is promoted using a standard type conversion to type long (see Chapter 3,
“Standard Conversions”).

It is an error to supply an actual argument for which there is no standard or
user-defined conversion to the type of the formal argument.

For actual arguments of class type, the formal argument is initialized by calling
the class’s constructor. (See “Constructors” on page 292 in Chapter 11 for more
about these special class member functions.)

¢ The function call is executed.
The following program fragment demonstrates a function call:

void func( long paraml, double param2 );

void main()

{
int 1, Jj;
// Call func with actual arguments i and j.
func( i, § );

}

// Define func with formal parameters paraml and param2.
void func( long paraml, double param2 )
{

}

When func is called from main, the formal parameter paraml is initialized with
the value of 1 (i is converted to type long to correspond to the correct type using a
standard conversion), and the formal parameter param2 is initialized with the value
of j (j is converted to type double using a standard conversion).
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Treatment of Argument Types

Formal arguments declared as const types cannot be changed within the body of a
function. Functions can change any argument that is not of type const. However, the
change is local to the function and does not affect the actual argument’s value unless
the actual argument was a reference to an object not of type const.

The following functions illustrate some of these concepts:

int funcl( const int i, int j, char *c )

{
i=1; // Error: i is const.
j=1; // 0K, but value of j is
‘ // lost at return.
*c = 'a' + j; // OK: changes value of ¢
// in calling function.
return i;
}
double& func2( double& d, const char *c )
{
d = 14.387; // 0K: changes value of d
// in calling function.
*¢ ="'a'; // Error: ¢ is a pointer to
// a const object.
return d;
}

Ellipses and Default Arguments

Functions can be declared to accept fewer arguments than specified in the function
definition, using one of two methods: ellipsis (. . .) or default arguments.

Ellipses denote that arguments may be required but that the number and types are
not specified in the declaration. This is normally poor C++ programming practice
because it defeats one of the benefits of C++: type safety. Different conversions are
applied to functions declared with ellipses than to those functions for which the
formal and actual argument types are known:

o If the actual argument is of type float, it is promoted to type double prior to the
function call.

e Any signed or unsigned char, short, enumerated type, or bit field is converted
to either a signed or an unsigned int using integral promotion.

e Any argument of class type is passed by value as a data structure; the copy is
created by binary copying instead of by invoking the class’s copy constructor
(if one exists).
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Ellipses, if used, must be declared last in the argument list. For more information
about passing a variable number of arguments, see the discussion of va_arg, va_start,
and va_list in the Run-Time Library Reference.

Default arguments enable you to specify the value an argument should assume if none
is supplied in the function call. The following code fragment shows how default
arguments work. For more information about restrictions on specifying default
arguments, see “Default Arguments” on page 218 in Chapter 7.

f#Hinclude <iostream.hd>

// Declare the function print that prints a string,
// then a terminator.
void print( const char *string,

const char *terminator = "\n" );

void main()

{
print( "hello," );
print( "world!™ );
print( "good morning", ", " );
print( "sunshine.™ );
}

// Define print.
void print( char *string, char *terminator )

{
if( string != NULL )
cout << string;
if( terminator != NULL )
cout << terminator;
}

The preceding program declares a function, print, that takes two arguments.
However, the second argument, terminator, has a default value, "\n". In main, the
first two calls to print allow the default second argument to supply a new line to
terminate the printed string. The third call specifies an explicit value for the second
argument. The output from the program is

hello,

world!
good morning, sunshine.

Function-Call Results

A function call evaluates to an r-value unless the function is declared as a reference
type. Functions with reference return type evaluate to l-values, and can be used on the
left side of an assignment statement as follows:

#Hinclude <iostream.h>

class Point
{
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public:
// Define "accessor" functions as
// reference types.
unsigned& x() { return _x; }
unsignedd y() { return _y; }
private:
unsigned _x;
unsigned _y;

1
void main()
{
Point ThePoint;
ThePoint.x() = 7; // Use x() as an 1-value.
unsigned y = ThePoint.y(); // Use y{() as an r-value.
// Use x{() and y() as r-values.
cout << "x = " << ThePoint.x() << "\n"
<< "y =" <L ThePoint.y() << "\n";
} K
000000

The preceding code defines a class called Point, which contains private data objects
that represent x and y coordinates. These data objects must be modified and their
values retrieved. This program is only one of several designs for such a class; use of
the GetX and SetX or GetY and SetY functions is another possible design.

Functions that return class types, pointers to class types, or references to class types
can be used as the left operand to member-selection operators. Therefore, the
following code is legal:

class A

{

public:
int SetA( int i ) { return (I = 1); }
int GetA() { return I; 1}

private:
int I;
}s

// Declare three functions:

//  funcl, which returns type A

//  func2, which returns a pointer to type A
//  func3, which returns a reference to type A
A funcl();

A* func2();

A& func3():;

int iResult = funcl().GetA();
func2()->SetA( 3 );
func3().SetA( 7 );
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Functions can be called recursively. For more information about function declarations,
see “Function Specifiers” and “Member Functions.” Related material is in “Program
and Linkage.”

Member-Selection Operator

A postfix-expression followed by the member-selection operator (.) and a name is
another example of a postfix-expression. The first operand of the member-selection
operator must have class or class reference type, and the second operand must identify
a member of that class.

The result of the expression is the value of the member, and it is an 1-value if the
named member is an l-value.

A postfix-expression followed by the member-selection operator (=>) and a name is a
postfix-expression. The first operand of the member-selection operator must have type
pointer to a class object (an object declared as class, struct, or union type), and the
second operand must identify a member of that class.

The result of the expression is the value of the member, and it is an 1-value if the
named member is an 1-value. The —> operator dereferences the pointer. Therefore, the
expressions e->member and (*e).member (where e represents an expression) yield
identical results (except when the operators —> or * are overloaded).

When a value is stored through one member of a union but retrieved through another
member, no conversion is performed. The following program stores data into the
object U as int but retrieves the data as two separate bytes of type char:

#include <iostream.h>

void main()
{
struct ch
{
char bl;
char b2;
1
union u
{
struct ch uch;
short 1;
}s

u U;

U.i = 0x6361; // Bit pattern for "ac"
cout << U.uch.bl << U.uch.b2 << "\n";
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Postfix Increment and Decrement Operators

C++ provides prefix and postfix increment and decrement operators; this section
describes only the postfix increment and decrement operators. (For more information,
see “Increment and Decrement Operators.” The difference between the two is that in
the postfix notation, the operator appears after postfix-expression, whereas in the
prefix notation, the operator appears before expression. The following example shows
a postfix-increment operator:

i++

The effect of applying the postfix increment, or “postincrement,” operator (++) is that
the operand’s value is increased by one unit of the appropriate type. Similarly, the
effect of applying the postfix decrement, or “postdecrement,” operator (- —) is that the
operand’s value is decreased by one unit of the appropriate type.

For example, applying the postincrement operator to a pointer to an array of objects of
type long actually adds four to the internal representation of the pointer. This behavior
causes the pointer, which previously referred to the nth element of the array, to refer to
the (n+1)th element.

The operands to postincrement and postdecrement operators must be modifiable (not
const) I-values of arithmetic or pointer type. The result of the postincrement or
postdecrement expression is the value of the postfix-expression prior to application
of the increment operator. The type of the result is the same as that of the
postfix-expression, but it is no longer an 1-value.

The following code illustrates the postfix increment operator.

if( var++ > 0 )
*p++ = *qtt;

In this example, the variable var is compared to 0, then incremented. If var was
positive before being incremented, the next statement is executed. First, the value
of the object pointed to by q is assigned to the object pointed to by p. Then, q and p
are incremented.

Postincrement and postdecrement, when used on enumerated types, yield integral
values. Therefore, the following code is illegal:

enum Days {
Sunday =1,
Monday,
Tuesday,
Wednesday,
Thursday,
Friday,
Saturday
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void main()

{

Days Today = Tuesday;

Days SaveToday;

SaveToday = Today++; // error
}

The intent of this code is to save today’s day and then move to tomorrow. However,
the result is that the expression Today++ yields an int—an error when assigned to an
object of the enumerated type Days.

Expressions with Unary Operators

Unary operators act on only one operand in an expression. The unary operators are:

e Indirection operator (¥)

e Address-of operator (&)

e Unary plus operator (+)

e Unary negation operator (-)

e Logical NOT operator (!)

e One’s complement operator

e Prefix increment operator (++)
e Prefix decrement operator (——)
o sizeof operator

e new operator

o delete operator
These operators have right-to-left associativity.

Syntax

unary-expression:
postfix-expression
++unary-expression
— —unary-expression
unary-operator cast-expression
sizeof .unary-expression
sizeof ( type-name )
allocation-expression
deallocation-expression

unary-operator: one of
*& 41~
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Indirection Operator (*)

The unary indirection operator (*) “dereferences” a pointer; that is, it converts a
pointer value to an l-value. The operand of the indirection operator must be a pointer
to a type. The result of the indirection expression is the type from which the pointer
type is derived. The use of the * operator in this context is different from its meaning
as a binary operator, which is multiplication.

If the operand points to a function, the result is a function designator. If it points to a
storage location, the result is an l-value designating the storage location.

If the pointer value is invalid, the result is undefined. The following list includes some
of the most common conditions that invalidate a pointer value.

o The pointer is a null pointer.

e The pointer specifies the address of a local item that is not visible at the time of
the reference.

e The pointer specifies an address that is inappropriately aligned for the type of the
object pointed to.

e The pointer specifies an address not used by the executing program.

Address-Of Operator (&)

The unary address-of operator (&) takes the address of its operand. The address-of
operator can be applied only to the following:

o Functions (although its use for taking the address of a function is unnecessary)
e L-values
e Qualified names

In the first two cases listed above, the result of the expression is a pointer type (an
r-value) derived from the type of the operand. For example, if the operand is of type
char, the result of the expression is of type pointer to char. The address-of operator,
applied to const or volatile objects, evaluates to const type * or volatile type *, where
type is the type of the original object.

The result produced by the third case, applying the address-of operator to a
qualified-name, depends on whether the qualified-name specifies a static member.
If so, the result is a pointer to the type specified in the declaration of the member.

If the member is not static, the result is a pointer to the member name of the class
indicated by qualified-class-name. (See “Primary Expressions” on page 66 for more
about qualified-class-name.) The following code fragment shows how the result
differs, depending on whether the member is static:

class PTM
{
public:
int iValue;
static float fValue;
};
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&PTM::iValue; // OK: non-static
&PTM::fValue; // Error: static
&PTM::fValue; // OK

int PTM::*piValue
float PTM::*pfValue
float *spfValue

I

In this example, the expression &PTM: : fValue yields type fl1oat * instead of type
float PTM::* because fValue is a static member.

The address of an overloaded function can be taken only when it is clear which
version of the function is being referenced. See “Address of Overloaded Functions”
on page 335 in Chapter 12 for information about how to obtain the address of a
particular overloaded function.

Applying the address-of operator to a reference type gives the same result as applying
the operator to the object to which the reference is bound. The following program
demonstrates this concept:

#include <iostream.h>

void main()

{
double d: // Define an object of type double.

double& rd = d; // Define a reference to the object.

// Compare the address of the object to the address
// of the reference to the object.
if( & == &rd )
cout << "&d equals &rd" << "\n";
else
cout << "&d is not equal to &rd" << "\n";
}

The output from the program is always &d equals &rd.

Unary Plus Operator (+)

The result of the unary plus operator (+) is the value of its operand. The operand to
the unary plus operator must be of an arithmetic type.

Integral promotion is performed on integral operands. The resultant type is the type to
which the operand is promoted. Thus, the expression +ch, where ch is of type char,
results in type int; the value is unmodified. See “Integral Promotions” on page 56 in
Chapter 3 for more information about how the promotion is done.

Unary Negation Operator (-)

The unary negation operator (=) produces the negative of its operand. The operand
to the unary negation operator must be an arithmetic type.

Integral promotion is performed on integral operands, and the resultant type is the
type to which the operand is promoted. See “Integral Promotions” on page 56 in
Chapter 3 for more information on how the promotion is done.
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Microsoft Specific —

Unary negation of unsigned quantities is performed by subtracting the value of the
operand from 2", where n is the number of bits in an object of the given unsigned
type. (Microsoft C-++ runs on processors that utilize two’s-complement arithmetic.
On other processors, the algorithm for negation can differ.)

END Microsoft Specific

Logical NOT Operator (!)
The result of the logical NOT operator (!) is 0 if its operand evaluates to a nonzero

value; the result is 1 only if the operand is equal to 0. The operand must be of
arithmetic or pointer type. The result is of type int.

For an expression e, the unary expression !e is equivalent to the expression
(e == 0), except where overloaded operators are involved.

The following example illustrates the logical NOT operator (1):
if( 1x <y))

If x is greater than or equal to y, the result of the expression is 1 (true). If x is less
than y, the result is O (false).

Unary arithmetic operations on pointers are illegal.

One’s Complement Operator (~)

The one’s complement operator (~), sometimes called the “bitwise complement”
operator, yields a bitwise one’s complement of its operand. That is, every bit that is set
in the operand is O in the result. Conversely, every bit that is O in the operand is set in
the result. The operand to the one’s complement operator must be an integral type.

unsigned short y = 0xAAAA;

y =~y
In this example, the new value assigned to y is the one’s complement of the unsigned
value OxAAAA, or 0x5555.

Integral promotion is performed on integral operands, and the resultant type is the
type to which the operand is promoted. See “Integral Promotions” on page 56 in
Chapter 3 for more information on how the promotion is done.

Increment and Decrement Operators (++, --)

The prefix increment operator (++), also called the “preincrement” operator, adds
one to its operand; this incremented value is the result of the expression. The operand
must be an 1-value not of type const. The result is an 1-value of the same type as the
operand.
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The prefix decrement operator (--), also called the “predecrement” operator, is
analogous to the preincrement operator, except that the operand is decremented by
one and the result is this decremented value.

Both the prefix and postfix increment and decrement operators affect their operands.
The key difference between them is when the increment or decrement takes place in
the evaluation of an expression. (For more information, see “Postfix Increment and
Decrement Operators” on page 76.) In the prefix form, the increment or decrement
takes place before the value is used in expression evaluation, so the value of the
expression is different from the value of the operand. In the postfix form, the
increment or decrement takes place after the value is used in expression evaluation,
so the value of the expression is the same as the value of the operand.

An operand of integral or floating type is incremented or decremented by the integer
value 1. The type of the result is the same as the operand type. An operand of pointer
type is incremented or decremented by the size of the object it addresses. An
incremented pointer points to the next object; a decremented pointer points to the
previous object.

This example illustrates the unary decrement operator:

if( line[--i] != "\n' )
return;

In this example, the variable i is decremented before it is used as a subscript to 1ine.

Because increment and decrement operators have side effects, using expressions
with increment or decrement operators in a macro can have undesirable results
(see “Macros” in the Preprocessor Reference for more information about macros).
Consider this example:

ftdefine max(a,b) ((a)<(b))?(b):(a)

int 1, j, k;

k = max( ++i, j );

The macro expands to:

K = ((H)<(3))2(3) : (++1) 5

If i is greater than or equal to j, it will be incremented twice.

Note C++ inline functions are preferable to macros in many cases because they eliminate
side effects such as those described here, and allow the language to perform more complete
type checking.
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sizeof Operator

The sizeof operator yields the size of its operand with respect to the size of type char.
The result of the sizeof operator is of type size_t, an integral type defined in the
include file STDDEF.H. The operand to sizeof can be one of the following:

o A type name. To use sizeof with a type name, the name must be enclosed in
parentheses.

e An expression. When used with an expression, sizeof can be specified with or
without the parentheses. The expression is not evaluated.

When the sizeof operator is applied to an object of type char, it yields 1. When the
sizeof operator is applied to an array, it yields the total number of bytes in that array.
For example:

#include <jostream.h>

void main()
{

char szHello[] = "Hello, world!";

cout << "The size of the type of " << szHello <K " js: "
<< sizeof( char ) << "\n";
cout << "The length of " << szHello << " is: "
<< sizeof szHello << "\n";
}

The program output is:

The size of the type of Hello, world! is: 1
The length of Hello, world! is: 14

When the sizeof operator is applied to a class, struct, or union type, the result is the
number of bytes in an object of that class, struct, or union type, plus any padding
added to align members on word boundaries. (The /Zp [pack structure members]
compiler option and the pack pragma affect alignment boundaries for members.)
The sizeof operator never yields 0, even for an empty class.

The sizeof operator cannot be used with the following operands:

e Functions. (However, sizeof can be applied to pointers to functions.)
¢ Bit fields.

e Undefined classes.

o The type void.

e Incomplete types.

e Parenthesized names of incomplete types.

When the sizeof operator is applied to a reference, the result is the same as if sizeof
had been applied to the object itself.
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The sizeof operator is often used to calculate the number of elements in an array using
an expression of the form:

sizeof array / sizeof array[0]

new Operator

The new operator attempts to dynamically allocate (at run time) one or more objects
of type-name. The new operator cannot be used to allocate a function; however, it can
be used to allocate a pointer to a function. '

Syntax

allocation-expression:
siopt NEW nmodel,y,, placementyy, new-type-name new-initializeroy
tiope N€W nmodelyy placementyy (type-name ) new-initializerqy

placement:
( expression-list)

new-type-name:
type-specifier-list new-declaratorqy

The new operator is used to allocate objects and arrays of objects. The new operator
allocates from a program memory area called the “free store.” In C, the free store is
often referred to as the “heap.”

When new is used to allocate a single object, it yields a pointer to that object; the
resultant type is new-type-name * or type-name *. When new is used to allocate a
singly dimensioned array of objects, it yields a pointer to the first element of the array,
and the resultant type is new-type-name * or type-name *. When new is used to
allocate a multidimensional array of objects, it yields a pointer to the first element

of the array, and the resultant type preserves the size of all but the leftmost array
dimension. For example:

new float[10]1[25]1[10]

yields type float (*)[25]1[1@]. Therefore, the following code will not work
because it attempts to assign a pointer to an array of f1oat with the dimensions .
[25][10] to a pointer to type f1oat:

float *fp;
fp = new float[101[25]1[10];

The correct expression is:

float (*cp)[25]1[1@]3;
cp = new float[10][25][10];

The definition of cp allocates a pointer to an array of type f1o0at with dimensions
[25]1[10] —it does not allocate an array of pointers.
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All but the leftmost array dimensions must be constant expressions that evaluate to
positive values; the leftmost array dimension can be any expression that evaluates to
a positive value. When allocating an array using the new operator, the first dimension
can be zero— the new operator returns a unique pointer.

The type-specifier-list cannot contain const, volatile, class declarations, or
enumeration declarations. Therefore, the following expression is illegal:

volatile char *vch = new volatile char[20];
The new operator does not allocate reference types because they are not objects.

If there is insufficient memory for the allocation request, by default operator new returns
NULL. You can change this default behavior by writing a custom exception-handling
routine and calling the _set_new_handler run-time library function with your function
name as its argument. Alternately, you can choose to have new throw a C++ exception
(of type xalloc) in the event of a memory allocation failure. For more details on these
two recovery schemes, see “The operator new Function” on page 307 in Chapter 11.

Lifetime of Objects Allocated with new

Objects allocated with the new operator are not destroyed when the scope in which
they are defined is exited. Because the new operator returns a pointer to the objects it
allocates, the program must define a pointer with suitable scope to access those
objects. For example:

void main()

{
// Use new operator to allocate an array of 20 characters.
char *AnArray = new char[20];

for( int i = 0; i < 20; ++i )
{
// On the first iteration of the loop, allocate
// another array of 2@ characters.
if(i==20)
{
char *AnotherArray = new char[20];
}

}
delete AnotherArray; // Error: pointer out of scope.

delete AnArray; // OK: pointer still in scope.
}

Once the pointer AnotherArray goes out of scope in the example, the object can no
longer be deleted.
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Initializing Objects Allocated with new

An optional new-initializer field is included in the syntax for the new operator. This
allows new objects to be initialized with user-defined constructors. For more information
about how initialization is done, see “Initializers” on page 223 in Chapter 7.

The following example illustrates how to use an initialization expression with the
new operator:

#include <iostream.h>

class Acct
{
public:
// Define default constructor and a constructor that accepts
// an initial balance.
Acct() { balance = 0.0; }
Acct( double init_balance ) { balance = init_balance; }
private:
double balance;
b

void main()

{
Acct *CheckingAcct = new Acct;
Acct *SavingsAcct = new Acct ( 34.98 );
double *HowMuch = new double ( 43.0 );

}

In this example, the object CheckingAcct is allocated using the new operator,
but no default initialization is specified. Therefore, the default constructor for the
class, Acct (), is called. Then the object SavingsAcct is allocated the same way,
except that it is explicitly initialized to 34.98. Because 34.98 is of type double, the
constructor that takes an argument of that type is called to handle the initialization.
Finally, the nonclass type HowMuch is initialized to 43.0.

If an object is of a class type and that class has constructors (as in the preceding
example), the object can be initialized by the new operator only if one of these
conditions is met:

e The arguments provided in the initializer agree with those of a constructor.

e The class has a default constructor (a constructor that can be called with no
arguments).

Access control and ambiguity control are performed on operator new and on the
constructors according to the rules set forth in “Ambiguity” on page 276 in Chapter 9
and “Initialization Using Special Member Functions” on page 314 in Chapter 11.

No explicit per-element initialization can be done when allocating arrays using
the new operator; only the default constructor, if present, is called. See “Default
Arguments” on page 218 in Chapter 7 for more information.
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~ If the memory allocation fails (operator new returns a value of 0), no initialization

is performed. This protects against attempts to initialize data that does not exist.

As with function calls, the order in which initialized expressions are evaluated is not
defined. Furthermore, you should not rely on these expressions being completely
evaluated before the memory allocation is performed. If the memory allocation fails
and the new operator returns zero, some expressions in the initializer may not be
completely evaluated.

How new Works

The allocation-expression— the expression containing the new operator —does
three things:

o Locates and reserves storage for the object or objects to be allocated. When this
stage is complete, the correct amount of storage is allocated, but it is not yet an
object.

o Initializes the object(s). Once initialization is complete, enough information is
present for the allocated storage to be an object.

¢ Returns a pointer to the object(s) of a pointer type derived from new-type-name
or type-name. The program uses this pointer to access the newly allocated object.

The new operator invokes the function operator new. For arrays of any type, and for
objects that are not of class, struct, or union types, a global function, ::operator
new, is called to allocate storage. Class-type objects can define their own operator
new static member function on a per-class basis.

When the compiler encounters the new operator to allocate an object of type type, it
issues a call to type::operator new( sizeof( type ) ) or, if no user-defined operator
new is defined, ::operator new( sizeof( type ) ). Therefore, the new operator can
allocate the correct amount of memory for the object.

Note The argument to operator new is of type size_t. This type is defined in DIRECT.H,
MALLOC.H, MEMORY.H, SEARCH.H, STDDEF.H, STDIO.H, STDLIB.H, STRING.H, and
TIME.H.

An option in the syntax allows specification of placement (see Syntax for
“new Operator” on page 83). The placement parameters can be used only for
user-defined implementations of operator new; it allows extra information to
be passed to operator new. An expression with a placement field such as

T *TObject = new ( 0x0040 ) T;
is translated to

T *TObject = T::operator new( sizeof( T ), 0x0040 );



The original intention of the placement field was to allow hardware-dependent
objects to be allocated at user-specified addresses.

Note Although the preceding example shows only one argument in the placement field,
there is no restriction on how many extra arguments can be passed to operator new
this way.

Even when operator new has been defined for a class iype, the global operator
can be used by using the form of this example:

T *TObject =::new TObject;

The scope-resolution operator (::) forces use of the global new operator.

delete Operator

The delete operator deallocates an object created with the new operator. The
delete operator has a result of type void and therefore does not return a value.
The operand to delete must be a pointer returned by the new operator.

Using delete on a pointer to an object not allocated with new gives unpredictable
results. You can, however, use delete on a pointer with the value 0. This provision
means that, because new always returns 0 on failure, deleting the result of a failed
new operation is harmless.

Syntax

deallocation-expression:
tiope delete cast-expression
tiopt delete [ ] cast-expression

Using the delete operator on an object deallocates its memory. A program that -
dereferences a pointer after the object is deleted can have unpredictable results
or crash.

If the operand to the delete operator is a modifiable 1-value, its value is
undefined after the object is deleted.

Pointers to const objects cannot be deallocated with the delete operator.

How delete Works

The delete operator invokes the function operator delete. For objects of class
types (class, struct, and union), the delete operator invokes the destructor for an
object prior to deallocating memory (if the pointer is not null). For objects not of
class type, the global delete operator is invoked. For objects of class type, the
delete operator can be defined on a per-class basis; if there is no such definition
for a given class, the global operator is invoked.

Chapter 4 Expressions
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Using delete

There are two syntactic variants for the delete operator: one for single objects and
the other for arrays of objects. The following code fragment shows how these differ:

void main()
{
// Allocate a user-defined object, UDObject, and an object
// of type double on the free store using the
// new operator.
UDType *UDObject = new UDType;
double *dObject = new double;

// Delete the two objects.
delete UDObject;
delete dObject;

// Allocate an array of user-defined objects on the
// free store using the new operator.
UDType (*UDArr)[7]1 = new UDType[5]1[71;

// Use the array syntax to delete the array of objects.
delete [] UDArr;
}

These two cases produce undefined results: using the array form of delete (delete [ ])
on an object and using the nonarray form of delete on an array.

Expressions with Binary Operators

Binary operators act on two operands in an expression. The binary operators are:
e Multiplicative operators
o Multiplication (*)
e Division (/)
e Modulus (%)
e Additive operators
e Addition (+)
e Subtraction (=)
o Shift operators
¢ Right shift (>>)
o Left shift (<<)
e Relational and equality operators
e Less than (<)
o Greater than (>)
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Less than or equal to (<=)

Greater than or equal to (>=)

Equal to (==
Not equal to (}=)

¢ Bitwise operators
e Bitwise AND (&)

Bitwise exclusive OR (*)

Bitwise inclusive OR (l)
Logical AND (&&)
Logical OR (ll)

Multiplicative Operators

The multiplicative operators are:
e Multiplication (*)
e Division (/)

¢ Modulus or “remainder from division” (%)
These binary operators have left-to-right associativity.

Syntax

multiplicative-expression:
pmi-expression
multiplicative-expression * pm-expression
multiplicative-expression [ pm-expression
multiplicative-expression % pm-expression

The multiplicative operators take operands of arithmetic types. The modulus
operator (%) has a stricter requirement in that its operands must be of integral type.
(To get the remainder of a floating-point division, use the run-time function, fimed.)
The conversions covered in “Arithmetic Conversions” on page 59 in Chapter 3 are
applied to the operands, and the result is of the converted type.

The multiplication operator yields the result of multiplying the first operand by the
second.

The division operator yields the result of dividing the first operand by the second. -

The modulus operator yields the remainder given by the following expression, where
el is the first operand and e2 is the second: el — (el / e2) * ¢2, where both operands
are of integral types.
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Division by 0 in either a division or a modulus expression is undefined and causes a
run-time error. Therefore, the following expressions generate undefined, erroneous
results:

i%0

f /0.0

If both operands to a multiplication, division, or modulus expression have the same

sign, the result is positive. Otherwise, the result is negative. The result of a modulus
operation’s sign is implementation-defined.

Microsoft Specific —

In Microsoft C++, the result of a modulus expression is always the same as the sign
of the first operand.

END Microsoft Specific

If the computed division of two integers is inexact and only one operand is negative,
the result is the largest integer (in magnitude, disregarding the sign) that is less than
the exact value the division operation would yield. For example, the computed value
of —11 /3 is —=3.666666666. The result of that integral division is -3.

The relationship between the multiplicative operators is given by the identity
(el/e2)*e2 +el % e2 ==el.

Additive Operators

The additive operators are:
e Addition (+)
e Subtraction (-)

These binary operators have left-to-right associativity.

Syntax

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression — multiplicative-expression

The additive operators take operands of arithmetic or pointer types. The result of
the addition (+) operator is the sum of the operands. The result of the subtraction (-)
operator is the difference between the operands. If one or both of the operands are
pointers, they must be pointers to objects, not to functions.

Additive operators take operands of arithmetic, integral, and scalar types. These are
defined in Table 4.2.
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Table 4.2 Types Used with Additive Operators

Type Meaning
arithmetic Integral and floating types are collectively called “arithmetic” types.
integral Types char and int of all sizes (long, short) and enumerations are

“integral” types. _
scalar Scalar operands are operands of either arithmetic or pointer type.

The legal combinations for these operators are:

arithmetic + arithmetic
scalar + integral
integral + scalar
arithmetic — arithmetic
scalar — scalar

Note that addition and subtraction are not equivalent operations.

If both operands are of arithmetic type, the conversions covered in “Arithmetic
Conversions” on page 59 in Chapter 3 are applied to the operands, and the result is
of the converted type.

Addition of Pointer Types

If one of the operands in an addition operation is a pointer to an array of objects, the
other must be of integral type. The result is a pointer that is of the same type as the
original pointer and that points to another array element. The following code fragment
illustrates this concept:

short IntArray[10]; // Objects of type short occupy 2 bytes
short *pIntArray = IntArray;

for( int i = 0; i < 10; ++i )
{

*pIntArray = i;

cout << *pIntArray << "\n";

pIntArray = pIntArray + 1;
}

Although the integral value 1 is added to pIntArray, it does not mean “add 1 to the
address”; rather it means “adjust the pointer to point to the next object in the array”
that happens to be 2 bytes (or sizeof( int ))away.

Note Code of the form pIntArray = pIntArray + 1israrely found in C++ programs;
to perform an increment, these forms are preferable: pIntArray++orpIntArray += 1.

Subtraction of Pointer Types

If both operands are pointers, the result of subtraction is the difference (in array
elements) between the operands. The subtraction expression yields a signed integral
result of type ptrdiff_t (defined in the standard include file STDDEF.H).
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One of the operands can be of integral type, as long as it is the second operand. The
result of the subtraction is of the same type as the original pointer. The value of the
subtraction is a pointer to the (n — i)th array element, where 7 is the element pointed to
by the original pointer and i is the integral value of the second operand.

Shift Operators

The bitwise shift operators are:
o Right shift (>>)
o Left shift (<<)

These binary operators have left-to-right associativity.

Syntax
shift-expression:
" additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

Both operands of the shift operators must be of integral types. Integral promotions

are performed according to the rules described in “Integral Promotions” on page 56 in
Chapter 3. The type of the result is the same as the type of the left operand. The value
of a right-shift expression el >> e2 is el / 2%, and the value of a left-shift expression
el <<e2isel *2%.

The results are undefined if the right operand of a shift expression is negative or if
the right operand is greater than or equal to the number of bits in the (promoted) left
operand.

The left-shift operator causes the bit pattern in the first operand to be shifted left the
number of bits specified by the second operand. Bits vacated by the shift operation are
zero-filled. This is a logical shift, as opposed to a shift-and-rotate operation.

The right-shift operator causes the bit pattern in the first operand to be shifted right
the number of bits specified by the second operand. Bits vacated by the shift operation
are zero-filled for unsigned quantities. For signed quantities, the sign bit is propagated
into the vacated bit positions. The shift is a logical shift if the left operand is an
unsigned quantity; otherwise, it is an arithmetic shift.

Microsoft Specific —

The result of a right shift of a signed negative quantity is implementation dependent.
Although Microsoft C++ propagates the most-significant bit to fill vacated bit
positions, there is no guarantee that other implementations will do likewise.

END Microsoft Specific



Chapter 4 Expressions

Relational and Equality Operators

The relational and equality operators determine equality, inequality, or relative values
of their operands. The relational operators are shown in Table 4.3.

Table 4.3 Relational and Equality Operators

Operator Meaning

== Equal to

= Not equal to
< Less than

Greater than

<= Less than or equal to
- >= Greater than or equal to
Relational Operators

The binary relational operators determine the following relationships:

o Less than

e Greater than

Less than or equal to

e Greater than or equal to

Syntax

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

The relational operators have left-to-right associativity. Both operands of relational
operators must be of arithmetic or pointer type. They yield values of type int. The
value returned is 0 if the relationship in the expression is false; otherwise, it is 1.
Consider the following code, which demonstrates several relational expressions:

#include <iostream.h>

void main()

{
cout << "The true expression 3 > 2 yields: "
<< (3 > 2) <K "\n";
cout << "The false expression 20 < 10 yields: "
<< (20 < 10) << "\n";
cout << "The expression 10 < 20 < 5 yields: "
<< (10 < 20 < 5) << "\n";
}
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The output from this program is:

The true expression 3 > 2 yields 1
The false expression 20 < 10 yields @
The expression 10 < 20 < 5 yields 1

The expressions in the preceding example must be enclosed in parentheses because
the insertion operator (<<) has higher precedence than the relational operators.
Therefore, the first expression without the parentheses would be evaluated as:

(cout << "The true expression 3 > 2 yields: " << 3) < (2 << "\n");

Note that the third expression evaluates to 1 —because of the left-to-ﬁght
associativity of relational operators, the explicit grouping of the expression
10 < 20 < 5is:

(16 < 20) < 5

Therefore, the test performed is:
1 <5

and the result is 1 (or true).

The usual arithmetic conversions covered in “Arithmetic Conversions” on page 59
in Chapter 3 are applied to operands of arithmetic types.

Comparing Pointers Using Relational Operators

When two pointers to objects of the same type are compared, the result is determined
by the location of the objects pointed to in the program’s address space. Pointers can
also be compared to a constant expression that evaluates to 0 or to a pointer of type
void *. If a pointer comparison is made against a pointer of type void *, the other
pointer is implicitly converted to type void *. Then the comparison is made.

Two pointers of different types cannot be compared unless:

¢ One type is a class type derived from the other type.

e At least one of the pointers is explicitly converted (cast) to type void *. (The other
pointer is implicitly converted to type void * for the conversion.)

Two pointers of the same type that point to the same object are guaranteed to compare
equal. If two pointers to nonstatic members of an object are compared, the following
rules apply:

o If the class type is not a union, and if the two members are not separated by an
access-specifier, such as public, protected, or private, the pointer to the member
declared last will compare greater than the pointer to the member declared earlier.
(For information on access-specifier, see the Syntax section in “Access Specifiers”
on page 280 in Chapter 10.)

o If the two members are separated by an access-specifier, the results are undefined.

o If the class type is a union, pointers to different data members in that union
compare equal.
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If two pointers point to elements of the same array or to the element one beyond the
end of the array, the pointer to the object with the higher subscript compares higher.
Comparison of pointers is guaranteed valid only when the pointers refer to objects in
the same array or to the location one past the end of the array.

Equality Operators

The binary equality operators compare their operands for strict equality or inequality.

Syntax

equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression = relational-expression

The equality operators, equal to (==) and not equal to (!=), have lower precedence
than the relational operators, but they behave similarly.

The equal-to operator (==) returns true if both operands have the same value;
otherwise, it returns false. The not-equal-to operator (!=) returns true if the operands
do not have the same value; otherwise, it returns false.

Equality operators can compare pointers to members of the same type. In such a
comparison, pointer-to-member conversions, as discussed in “Pointer-to-Member
Conversions” on page 64 in Chapter 3 are performed. Pointers to members can also
be compared to a constant expression that evaluates to 0.

Bitwise Operators
The bitwise operators are:

e Bitwise AND (&)

e Bitwise exclusive OR ()

¢ Bitwise inclusive OR (I)

These operators return bitwise combinations of their operands.

Bitwise AND Operator

The bitwise AND operator (&) returns the bitwise AND of the two operands. All bits
that are on (1) in both the left and right operand are on in the result; bits that are off
(0) in either the left or the right operand are off in the result.

Syntax
and-expression:
relational-expression
and-expression & equality-expression
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Both operands to the bitwise AND operator must be of integral types. The usual
arithmetic conversions covered in “Arithmetic Conversions” on page 59 in Chapter 3,
are applied to the operands.

Bitwise Exclusive OR Operator

The bitwise exclusive OR operator (*) returns the bitwise exclusive OR of the two
operands. All bits that are on (1) in either the left or right operand, but not both, are
on in the result. Bits that are the same (either on or off) in both operands are off in
the result. '

Syntax
exclusive-or-expression:
and-expression
exclusive-or-expression » and-expression

Both operands to the bitwise exclusive OR operator must be of integral types. The
usual arithmetic conversions covered in “Arithmetic Conversions” on page 59 in
Chapter 3 are applied to the operands.

Bitwise Inclusive OR Operator

The bitwise inclusive OR operator (I) returns the bitwise inclusive OR of the two
operands. All bits that are on (1) in either the left or right operand are on in the result.
Bits that are off (0) in both operands are off in the result. ‘

Syntax

inclusive-or-expression:
exclisive-or-expression .
inclusive-or-expression | exclusive-or-expression

Both operands to the bitwise inclusive OR operator must be of integral types. The
usual arithmetic conversions covered in “Arithmetic Conversions” on page 59 in
Chapter 3 are applied to the operands.

Logical Operators

The logical operators, logical AND (&&) and logical OR (ll), are used to combine
multiple conditions formed using relational or equality expressions.

Logical AND Operator

The logical AND operator (& &) returns the integral value 1 if both operands are
nonzero; otherwise, it returns 0. Logical AND has left-to-right associativity.

Syntax
logical-and-expression:
inclusive-or-expression
logical-and-expression && inclusive-or-expression



The operands to the logical AND operator need not be of the same type, but they
must be of integral or pointer type. The operands are commonly relational or
equality expressions. '

The first operand is completely evaluated and all side effects are completed before
continuing evaluation of the logical AND expression.
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The second operand is evaluated only if the first operand evaluates to true (nonzero).

This evaluation eliminates needless evaluation of the second operand when the
logical AND expression is false. You can use this short-circuit evaluation to
prevent null-pointer dereferencing, as shown in the following example:

char *pch = 0;
(pch) && (*pch = 'a');

If pch is null (0), the right side of the expression is never evaluated. Therefore, the
assignment through a null pointer is impossible.

Logical OR Operator

The logical OR operator (Il) returns the integral value 1 if either operand is nonzero;
otherwise, it returns 0. Logical OR has left-to-right associativity.

Syntax
logical-or-expression:
logical-and-expression
logical-or-expression |l logical-and-expression

The operands to the logical OR operator need not be of the same type, but they
must be of integral or pointer type. The operands are commonly relational or
equality expressions.

The first operand is completely evaluated and all side effects are completed
before continuing evaluation of the logical OR expression.

The second operand is evaluated only if the first operand evaluates to false (0).
This eliminates needless evaluation of the second operand when the logical OR
expression is true.

printf( "%d" , (X ==w || x ==y || x == 2) );

In this example, if x is equal to either w, y, or z, the second argument to the printf
function evaluates to true and the value 1 is printed. Otherwise, it evaluates to false
and the value 0 is printed. As soon as one of the conditions evaluates to true,
evaluation ceases. '
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Assignment Operators

Assignment operators store a value in the object designated by the left operand.
There are two kinds of assignment operations: “simple assignment,” in which the
value of the second operand is stored in the object specified by the first operand,
and “compound assignment,” in which an arithmetic, shift, or bitwise operation is
performed prior to storing the result. All assignment operators in Table 4.4 except
the = operator are compound assignment operators.

Table 4.4 Assignment Operators

Operator

Meaning

<<=

>>=

Syntax

Store the value of the second operand in the object specified by the first
operand (“simple assignment”).

Multiply the value of the first operand by the value of the second operand;
store the result in the object specified by the first operand.

Divide the value of the first operand by the value of the second operand;
store the result in the object specified by the first operand.

Take modulus of the first operand specified by the value of the second
operand; store the result in the object specified by the first operand.

Add the value of the second operand to the value of the first operand; store
the result in the object specified by the first operand.

Subtract the value of the second operand from the value of the first operand;
store the result in the object specified by the first operand.

Shift the value of the first operand left the number of bits specified by the
value of the second operand; store the result in the object specified by the
first operand.

Shift the value of the first operand right the number of bits specified by the
value of the second operand; store the result in the object specified by the
first operand.

Obtain the bitwise AND of the first and second operands; store the result in
the object specified by the first operand.

Obtain the bitwise exclusive OR of the first and second operands; store the
result in the object specified by the first operand.

Obtain the bitwise inclusive OR of the first and second operands; store the
result in the object specified by the first operand.

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of

¥= [= Po= 4= -= <<= >>= &= = I=
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Result of Assignment Operators

The assignment operators return the value of the object specified by the left operand
after the assignment. The resultant type is the type of the left operand. The result of
an assignment expression is always an l-value. These operators have right-to-left
associativity. The left operand must be a modifiable 1-value.

Note InANSI C, the result of an assignment expression is not an I-value. Therefore, the
legal C++ expression (a += b) += cisillegalin C.

Simple Assignment

The simple assignment operator (=) causes the value of the second operand to be
stored in the object specified by the first operand. If both objects are of arithmetic
types, the right operand is converted to the type of the left, prior to storing the value.

Objects of const and volatile types can be assigned to l-values of types that are just
volatile or that are neither const nor volatile.

Assignment to objects of class type (struct, union, and class types) is performed by
a function named operator=. The default behavior of this operator function is to
perform a bitwise copy; however, this behavior can be modified using overloaded
operators. (See “Overloaded Operators” on page 336 in Chapter 12 for more
information.)

An object of any unambiguously derived class from a given base class can be assigned
to an object of the base class. The reverse is not true because there is an implicit
conversion from derived class to base class but not from base class to derived class.
For example:

f#finclude <iostream.h>

class ABase

{
public:
ABase() { cout << "constructing ABase\n"; }
};
class ADerived : public ABase
{
public:
ADerived() { cout << "constructing ADerived\n"; }
}s
void main()
{
ABase aBase;
ADerived aDerived;
aBase = aDerived; // 0K
aDerived = aBase; // Error
}
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Assignments to reference types behave as if the assignment were being made to the
object to which the reference points.

For class-type objects, assignment is different from initialization. To illustrate how
different assignment and initialization can be, consider the code

UserTypel A;
UserType2 B = A;

The preceding code shows an initializer; it calls the constructor for UserTypel that
takes an argument of type UserTypel. Given the code

UserTypel A;
UserType2 B;

B =A;

the assignment statement

B = A;

can have one of the following effects:

o Call the function operator= for UserType2, provided operator= is provided with
aUserTypel argument. '

e Call the explicit conversion function UserTypel: :operator UserType2,if
such a function exists.

o Call a constructor UserType2: :UserType2, provided such a constructor exists,
that takes a UserTypel argument and copies the result.

Compound Assignment

The compound assignment operators, shown in Table 4.4, are specified in the form
el op= e2, where el is a modifiable 1-value not of const type and e2 is one of the
following: '

e An arithmetic type
e A pointer, if op is + or —
The el op= e2 form behaves as el = el op e2, but el is evaluated only once.

Compound assignment to an enumerated type generates an error message. If the left
operand is of a pointer type, the right operand must be of a pointer type or it must be

a constant expression that evaluates to 0. If the left operand is of an integral type, the
right operand must not be of a pointer type.
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Comma Operator

The comma operator allows grouping two statements where one is expected.

Syntax
expression:
assignment-expression
expression , assignment-expression

The comma operator has left-to-right associativity. Two expressions separated by a
comma are evaluated left to right. The left operand is always evaluated, and all side
effects are completed before the right operand is evaluated.

Consider the expression
el ,e2

The type and value of the expression are the type and value of e2; the result
of evaluating e/ is discarded. The result is an 1-value if the right operand is an
l-value.

Where the comma has special meaning (for example in actual arguments to functions
or aggregate initializers), the comma operator and its operands must be enclosed in
parentheses. Therefore, the following function calls are not equivalent:

// Declare functions:
void Func( int, int );
void Func( int );

Func( argl, arg2 ); // Call Func( int, int )
Func( (argl, arg2) ); // Call Func( int )

This example illustrates the comma operator:
for (1 =3 =1; 1 +J<20;1+=1, j-- );

In this example, each operand of the for statement’s third expression is evaluated
independently. The left operand i += 1 is evaluated first; then the right operand,
j=-,1is evaluated.

func_one( x, y + 2, z );
func_two( (x--, y + 2), z );

In the function call to func_one, three arguments, separated by commas, are passed:
X,y + 2,and z. In the function call to func_two, parentheses force the compiler

to interpret the first comma as the sequential-evaluation operator. This function

call passes two arguments to func_two. The first argument is the result of the
sequential-evaluation operation (x--, y + 2), which has the value and type of
the expression y + 2; the second argument is z.
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The conditional operator (? :) is a ternary operator (it takes three operands).
The conditional operator works as follows:

o The first operand is evaluated and all side effects are completed before continuing.

o If the first operand evaluates to true (a nonzero value), the second operand is
evaluated.

o If the first operand evaluates to false (0), the third operand is evaluated.
The result of the conditional operator is the result of whichever operand is evaluated

—the second or the third. Only one of the last two operands is evaluated in a
conditional expression.

Syntax
conditional-expression:
logical-or-expression
logical-or-expression ? expression : conditional-expression
Conditional expressions have no associativity. The first operand must be of integral
or pointer type. The following rules apply to the second and third expressions:

o If both expressions are of the same type, the result is of that type.

o If both expressions are of arithmetic types, usual arithmetic conversions (covered
in “Arithmetic Conversions” on page 59 in Chapter 3) are performed to convert
them to a common type.

o If both expressions are of pointer types or if one is a pointer type and the other is
a constant expression that evaluates to 0, pointer conversions are performed to
convert them to a common type.

o If both expressions are of reference types, reference conversions are performed to
convert them to a common type.

o If both expressions are of type void, the common type is type void.
o If both expressions are of a given class type, the common type is that class type.
Any combinations of second and third operands not in the preceding list are illegal.

The type of the result is the common type, and it is an 1-value if both the second
and third operands are of the same type and both are 1-values.

For example:
(val >=0) ? val : -val

If the condition is true, the expression evaluates to val. If not, the expression
equals -val.
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Constant Expressions

- C++ requires constant expressions — expressions that evaluate to a constant—
for declarations of:

e Array bounds

e Selectors in case statements
¢ Bit-field length specification
¢ Enumeration initializers
Syntax

constant-expression:
conditional-expression

The only operands that are legal in constant expressions are:

o Literals

¢ Enumeration constants

e Values declared as const that are initialized with constant expressions

o sizeof expressions

Nonintegral constants must be converted (either explicitly or implicitly) to integral
types to be legal in a constant expression. Therefore, the following code is legal:

const double Size = 11.0;

char chArray[(int)Sizel;

Explicit conversions to integral types are legal in constant expressions; all other types
and derived types are illegal except when used as operands to the sizeof operator.

The comma operator and assignment operators cannot be used in constant
expressions.

Expressions with Explicit Type Conversions

C++ provides implicit type conversion, as described in Chapter 3, “Standard
Conversions.” You can also specify explicit type conversions when you need more
precise control of the conversions applied.

Explicit Type Conversion Operator

C++ allows explicit type conversion using a syntax similar to the function-call syntax.
A simple-type-name followed by an expression-list enclosed in parentheses constructs
an object of the specified type using the specified expressions. The following example
shows an explicit type conversion to type int:

int 1 =int( d );
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The following example uses a modified version of the Point class defined in
“Function-Call Results.”

#include <iostream.h>

class Point
{
public:
// Define default constructor.
Point() { x=_y =0; )}
// Define another constructor.
Point( int X, int Y ) { x=X; _y=Y; }

// Define "accessor" functions as

// reference types.

unsigned& x() { return _x; }

unsigned& y() { return _y; }

void Show() {cout <K "x ="K _x«", "

KK "y =" <KL _y << "\n"; }

private:

unsigned _x;

unsigned _y;
};

void main()
{
Point Pointl, Point2;

// Assign Pointl the explicit conversion
// of (1@, 10 ).
Pointl = Point( 10, 10 );

// Use x() as an 1-value by assigning an explicit
// conversion of 2@ to type unsigned.

Pointl.x() = unsigned( 20 );

Pointl.Show();

// Assign Point2 the default Point object.
Point2 = Point();
Point2.Show();

}

The output from this program is:

X =20,y =10
X=0,y=280

Although the preceding example demonstrates explicit type conversion using
constants, the same technique works to perform these conversions on objects.
The following code fragment demonstrates this:

int i =7;

float d;

d = float( i );
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Explicit type conversions can also be specified using the “cast” syntax. The previous
example, rewritten using the cast syntax, is:

d = (float)i;

Both cast and function-style conversions have the same results when converting
from single values. However, in the function-style syntax, you can specify more than
one argument for conversion. This difference is important for user-defined types.
Consider a Point class and its conversions:

struct Point

{
Point( short x, shorty ) { _x =Xx; _y =y;: }

short _x, _y;
1

Point pt = Point( 3, 10 );

The preceding example, which uses function-style conversion, shows how to convert
two values (one for x and one for y) to the user-defined type Point.

Important Use the explicit type conversions with care, since they override the C++ compiler's
built-in type checking.

Syntax
cast-expression.
unary-expression
( type-name ) cast-expression

The cast notation must be used for conversions to types that do not have a
simple-type-name (pointer or reference types, for example). Conversion to types
that can be expressed with a simple-rype-name can be written in either form. See
“Type Specifiers” on page 162 in Chapter 6 for more information about what
constitutes a simple-type-name.

Type definition within casts is illegal.

Legal Conversions

You can do explicit conversions from a given type to another type if the conversion
can be done using standard conversions. The results are the same. The conversions
described in this section are legal; any other conversions not explicitly defined by
the user (for a class type) are illegal.

A value of integral type can be explicitly converted to a pointer if the pointer is large
enough to hold the integral value. A pointer that is converted to an integral value can
be converted back to a pointer; its value is the same. This identity is given by the
following (where p represents a pointer of any type):

p == (type *) integral-conversion(p)
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With explicit conversions, the compiler does not check whether the converted value
fits in the new type except when converting from pointer to integral type or vice versa.

This section describes the following conversions:
e Converting pointer types

¢ Converting the null pointer

e Converting to a forward reference class type

e Converting to reference types

¢ Converting among pointer to member types

Converting Pointer Types

A pointer to one object type can be explicitly converted to a pointer of another object
type. A pointer declared as void * is considered a pointer to any object type.

A pointer to a base class can be explicitly converted to a pointer to a derived class as
long as these conditions are met:

o There is an unambiguous conversion.

e The base class is not declared as virtual at any point.

Because conversion to type void * can change the representation of an object, there is
no guarantee that the conversion typel* void * rype2* is equivalent to the conversion
typel* type2* (which is a change in value only).

When such a conversion is performed, the result is a pointer to the subobject of the
original object representing the base class.

See Chapter 9, “Derived Classes,” for more information about ambiguity and virtual
base classes.

C++ allows explicit conversions of pointers to objects or functions to type void *.

Pointers to object types can be explicitly converted to pointers to functions if the
function pointer type has enough bits to accommodate the pointer to object type.

A pointer to a const object can be explicitly converted to a pointer not of const type.
The result of this conversion points to the original object. An object of const type,
or a reference to an object of const type, can be cast to a reference to a type that is

_ not const. The result is a reference to the original object. The original object was

probably declared as const because it was to remain constant across the duration
of the program. Therefore, an explicit conversion defeats this safeguard, allowing
modification of such objects. The behavior in such cases is undefined.

A pointer to an object of volatile type can be cast to a pointer to a type that is not
volatile. The result of this conversion refers to the original object. Similarly, an
object of volatile type can be cast to a reference to a type that is not volatile.
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Converting the Null Pointer

The null pointer (0) is converted into itself.

Converting to a Forward-Reference Class Type

A class that has been declared but not yet defined (a forward reference) can be used
in a pointer cast. In this case, the compiler returns a pointer to the original object,
not to a subobject as it might if the class’s relationships were known.

Converting to Reference Types

Any object whose address can be converted to a given pointer type can also be
converted to the analogous reference type. For example, any object whose address can
be converted to type char * can also be converted to type char &. No constructors or
class conversion functions are called to make a conversion to a reference type.

Objects or values can be converted to class-type objects only if a constructor or
conversion operator has been provided specifically for this purpose. For more
information about these user-defined functions, see “Conversion Constructors”
on page 303 in Chapter 11.

Conversion of a reference to a base class, to a reference to a derived class (and
vice versa) is done the same way as for pointers.

A cast to a reference type results in an l-value. The results of casts to other types
are not 1-values. Operations performed on the result of a pointer or reference cast
are still performed on the original object.

Converting Among Pointer-to-Member Types

A pointer to a member can be converted to a different pointer-to-member type
subject to these rules: Either the pointers must both be pointers to members in the
same class or they must be pointers to members of classes, one of which is derived
unambiguously from the other. When converting pointer-to-member functions,

the return and argument types must match.

Expressions with Pointer-to-Member Operators

The pointer-to-member operators, .* and —>*, return the value of a specific class
member for the object specified on the left side of the expression. The following
example shows how to use these operators:

f#include <iostream.h>

class Window

{

public:
void Paint(); // Causes window to repaint.
int Windowld;

}:
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// Define derived types pmfnPaint and pmWindowld.
// These types are pointers to members Paint() and
// WindowId, respectively.

void (Window::*pmfnPaint)() = &Window::Paint;

int Window::*pmWindowId = &Window::Windowld;

void main()
{
Window AWindow;
Window *pWindow = new Window;
// Invoke the Paint function normally, then use pointer to member.
AWindow.Paint();
- (AWindow.*pmfnPaint)();

pWindow->Paint();
(pWindow->*pmfnPaint)(); // Parentheses required since * binds
// less tightly than the function call.

int Id;

// Retrieve window id.

Id = AWindow.*pmWindowld;

Id = pWindow->*pmWindowld;
3 |
In the preceding example, a pointer.to a member, pmfnPaint, is used to invoke
the member function Paint. Another pointer to a member, pmWindowld, is used
to access the WindowId member.

Syntax

pm-expression:
cast-expression
pm-expression J* cast-expression
pm-expression —>* cast-expression

The binary operator .* combines its first operand, which must be an object of class
type, with its second operand, which must be a pointer-to-member type.

The binary operator —>* combines its first operand, which must be a pointer to
an object of class type, with its second operand, which must be a pointer-to-member

type.

In an expression containing the .* operator, the first operand must be of the
class type of, and be accessible to, the pointer to member specified in the second
operand or of an accessible type unambiguously derived from and accessible to
that class.

In an expression containing the —>* operator, the first operand must be of the type
“pointer to the class type” of the type specified in the second operand, or it must be
of a type unambiguously derived from that class.

Consider the following classes and program fragment:
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class BaseClass

{

public:
BaseClass(); // Base class constructor.
void Funcl();

};

// Declare a pointer to member function Funcl.
void (BaseClass::*pmfnFuncl)() = &BaseClass::Funcl;

class Derived : public BaseClass

{

public:
Derived(); // Derived class constructor.
void Func2();

};

// Declare a pointer to member function Func2.
void (Derived::*pmfnFunc2)() = &Derived::Func2;

void main()

{
BaseClass ABase;
Derived ADerived;

(ABase.*pmfnFuncl)(); // OK: defined for BaseClass.

(ABase.*pmfnFunc2)(); // Error: cannot use base class to
// access pointers to members of
// derived classes.

(ADerived.*pmfnFuncl)(); // OK: Derived is unambiguously .
// derived from BaseClass.

(ADerived.*pmfnFunc2)(); // OK: defined for Derived.

}

The result of the .* or —>* pointer-to-member operators is an object or function of
the type specified in the declaration of the pointer to member. So, in the preceding
example, the result of the expression ADerived.*pmfnFuncl() is a pointer to

a function that returns veid. This result is an 1-value if the second operand is

an l-value.

Note If the result of one of the pointer-to-member operators is a function, then the result
can be used only as an operand to the function call operator.

Semantics of Expressions

This section explains when, and in what order, expressions are evaluated. It
includes descriptions of certain expression that are ambiguous in their meaning,
and compatible types that can be used in expressions. In addition, it describes
certain expressions that are ambiguous in their meaning and compatible types
that can be used in expressions.
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The following topics are included:

Order of evaluation

e Sequence points

Ambiguous expressions

Notation in expressions

Order of Evaluation

110

This section discusses the order in which expressions are evaluated but does not
explain the syntax or the semantics of the operators in these expressions. The earlier
sections in this chapter provide a complete reference for each of these operators.

Expressions are evaluated according to the precedence and grouping of their
operators. (Table 1.1 in Chapter 1, “Lexical Conventions,” shows the relationships
the C++ operators impose on expressions.) Consider this example:

{Hinclude <iostream.h>

void main()
{
inta=2,b=4,c=9;

cout << a + b * ¢ << "\n";

cout << a + (b * c) << "\n";

cout << (a + b) * ¢ << "\n";
}

The output from the preceding code is:

38
38
54

Figure 4.1 Expression-Evaluation Order

The order in which the expression shown in Figure 4.1 is evaluated is determined
by the precedence and associativity of the operators:

1. Multiplication (*) has the highest precedence in this expression; hence the
subexpression b * c is evaluated first.

2. Addition (+) has the next highest precedence, so a is added to the product of
b and c.
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3. Left shift (<<) has the lowest precedence in the expression, but there are two
occurrences. Because the left-shift operator groups left-to-right, the left
subexpression is evaluated first and then the right one.

When parentheses are used to group the subexpressions, they alter the precedence
and also the order in which the expression is evaluated, as shown in Figure 4.2.

Figure 4.2 Expression-Evaluation Order with Parentheses

[cout << (a + b) * ¢ << "\n"; H

I 1

L,
|

<K

Expressions such as those in Figure 4.2 are evaluated purely for their side effects —
in this case, to transfer information to the standard output device.

Note The left-shift operator is used to insert an object in an object of class ostream. It is
sometimes called the “insertion” operator when used with iostream. For more about the
jostream library, see the jostream Class Library Reference.

Sequence Points

An expression can modify an object’s value only once between consecutive “sequence
points.”

Microsoft Specific —

The C++ language definition does not currently specify sequence points. Microsoft
C++ uses the same sequence points as ANSI C for any expression involving C
operators and not involving overloaded operators. When operators are overloaded,
the semantics change from operator sequencing to function-call sequencing.
Microsoft C++ uses the following sequence points:

e Left operand of the logical AND operator (&&). The left operand of the logical
AND operator is completely evaluated and all side effects completed before
continuing. There is no guarantee that the right operand of the logical AND
operator will be evaluated.

e Left operand of the logical OR operator (ll). The left operand of the logical OR
operator is completely evaluated and all side effects completed before continuing.
There is no guarantee that the right operand of the logical OR operator will be
evaluated.

e Left operand of the comma operator. The left operand of the comma operator is
completely evaluated and all side effects completed before continuing. Both
operands of the comma operator are always evaluated.
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e Function-call operator. The function-call expression and all arguments to a
function, including default arguments, are evaluated and all side effects completed
prior to entry to the function. There is no specified order of evaluation among the
arguments or the function-call expression.

o First operand of the conditional operator. The first operand of the conditional
operator is completely evaluated and all side effects completed before continuing.

o The end of a full initialization expression, such as the end of an initialization in a
declaration statement.

e The expression in an expression statement. Expression statements consist of an
optional expression followed by a semicolon (;). The expression is completely
evaluated for its side effects.

e The controlling expression in a selection (if or switch) statement. The expression
is completely evaluated and all side effects completed before the code dependent
on the selection is executed.

e The controlling expression of a while or do statement. The expression is
completely evaluated and all side effects completed before any statements in the
next iteration of the while or do loop are executed.

» Each of the three expressions of a for statement. Each expression is completely
evaluated and all side effects completed before moving to the next expression.

e The expression in a return statement. The expression is eompletely evaluated and
all side effects completed before control returns to the calling function.

END Microsoft Specific

Ambiguous Expressions

Certain expressions are ambiguous in their meaning. These expressions occur most
frequently when an object’s value is modified more than once in the same expression.
These expressions rely on a particular order of evaluation where the language does
not define one. Consider the following example:

int i =7;

func( i, +i );

The C++ language does not guarantee the order in which arguments to a function
call are evaluated. Therefore, in the preceding example, func could receive the

values 7 and 8, or 8 and 8 for its parameters, depending on whether the parameters
are evaluated from left to right or from right to left.

Notation in Expressions

~ The C++ language specifies certain compatibilities when specifying operands.
Table 4.5 shows the types of operands acceptable to operators that require operands

of type type.
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Type Expected Types Allowed

type const fype
volatile rype

fype&
const type&

volatile type&

volatile const rype

volatile const type&
type* : . type* const

type* volatile

type* volatile const
const rype type

const type

const type&
volatile rype type

volatile type

volatile type&

Because the preceding rules can always be used in combination, a const pointer to a
volatile object can be supplied where a pointer is expected.

Casting

The C++ language provides that if a class is derived from a base class containing
virtual functions, a pointer to that base class type can be used to call the
implementations of the virtual functions residing in the derived class object. A
class containing virtual functions is sometimes called a “polymorphic class.”

Since a derived class completely contains the definitions of all the base classes from
which it is derived, it is safe to cast a pointer up the class hierarchy to any of these

base classes. Given a pointer to a base class, it might be safe to cast the pointer down
the hierarchy. It is safe if the object being pointed to is actually of a type derived from

the base class. In this case, the actual object is said to be the “complete object.” The
pointer to the base class is said to point to a “subobject” of the complete object.
For example, consider the class hierarchy shown in Figure 4.3:

Figure 4.3 Class Hierarchy
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An object of type C could be visualized as shown in Figure 4.4:

Figure 44 Class C with B Subobject and A Subobject

Given an instance of class C, there is a B subobject and an A subobject. Thé instance
of C, including the A and B subobjects, is the “complete object.”

Using run-time type information, it is possible to check whether a pointer actually
points to a complete object and can be safely cast to point to another object in its
hierarchy. The dynamic_cast operator can be used to make these types of casts.
It also performs the run-time check necessary to make the operation safe.

Casting Operators
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There are several casting operators specific to the C++ language. These operators are
intended to remove some of the ambiguity and danger inherent in old style C language
casts. These operators are:

¢ dynamic_cast Used for conversion of polymorphic types.

o static_cast Used for conversion of nonpolymorphic types.

¢ const_cast Used to remove the const, volatile, and __unaligned attributes.

¢ reinterpret_cast Used for simple reinterpretation of bits.

Use const_cast and reinterpret_cast as a last resort, since these operators present

the same dangers as old style casts. However, they are still necessary in order to
completely replace old style casts.

‘dynamic_cast Operator

The expression dynamic_cast<type-id>( expression ) converts the operand
expression to an object of type type-id. The type-id must be a pointer or a
reference to a previously defined class type or a “pointer to void”. The type of
expression must be a pointer if fype-id is a pointer, or an l-value if type-id is

a reference. '

Syntax
dynamic_cast < type-id > ( expression )

If type-id is a pointer to an unambiguous accessible direct or indirect base class
of expression, a pointer to the unique subobject of type type-id is the result.
For example:
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class B { ... };
class C : public B { ... };
class D : public C { ... };

void f(D* pd)
{

C* pc = dynamic_cast<C*>(pd); // ok: C is a direct base class
// pc points to C subobject of pd

* B* pb = dynamic_cast<B*>(pd); // ok: B is an indirect base class
: // pb points to B subobject of pd

}

This type of conversion is called an “upcast” because it moves a pointer up a class
hierarchy, from a derived class to a class it is derived from. An upcast is an implicit
conversion.

If type-id is void*, a run-time check is made to determine the actual type of
expression. The result is a pointer to the complete object pointed to by expression.
For example:

class A { ... };
class B { ... };
void f()

{

A* pa = new A:

B* pb = new B;

void* pv = dynamic_cast<void*>(pa);

// pv now points to an object of type A

pv = dynamic_cast<void*>(pb);

// pv now points to an object of type B
}
If type-id is not veid*, a run-time check is made to see if the object pointed to by
expression can be converted to the type pointed to by type-id.

If the type of expression is a base class of the type of type-id, a run-time check is made
to see if expression actually points to a complete object of the type of type-id. If this is
true, the result is a pointer to a complete object of the type of type-id. For example:

class B { ... };
class D : public B { ... };

void f()

{
B* pb = new D; . // unclear but ok
B* pb2 = new B;

D* pd = dynamic_cast<D*>(pb); // ok: pb actually points to a D

D* pd2 = dynamic_cast<D*>(pb2); //error: pb2 points to a B, not a D
// pd2 == NULL
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This type of conversion is called a “downcast” because it moves a pointer down a
class hierarchy, from a given class to a class derived from it.

In cases of multiple inheritance, possibilities for ambiguity are introduced. Consider
the class hierarchy shown in Figure 4.5:

Figure 4.5 Class Hierarchy Showing Multiple Inheritance

A pointer to an object of type D can be safely cast to B or C. However, if D is cast
to point to an A object, which instance of A would result? This would result in
an ambiguous casting error. To get around this problem, you can perform two
unambiguous casts. For example:

void f()

{
D* pd = new D;
A* pa = dynamic_cast<A*>(pd); // error: ambiguous
B* pb = dynamic_cast<B*>(pd); // first cast to B
A* pa2 = dynamic_cast<A*>(pb); // ok: unambiguous

}

Further ambiguities can be introduced when you use virtual base classes. Consider
the class hierarchy shown in Figure 4.6:

Figure 4.6 Class Hierarchy Showing Virtual Base Classes

In this hierarchy, A is a virtual base class. See “Virtual Base Classes” on page 265 in
Chapter 9 for the definition of a virtual base class. Given an instance of class E and a
pointer to the A subobject, a dynamic_cast to a pointer to B will fail due to ambiguity.
You must first cast back to the complete E object, then work your way back up the
hierarchy, in an unambiguous manner, to reach the correct B object.
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Consider the class hierarchy shown in Figure 4.7: -

Figure 4.7 Class Hierarchy Showing Duplicate Base Classes

A ]

B B

j 1o I

1
| |

Given an object of type E and a pointer to the D subobject, to navigate from the
D subobject to the left-most A subobject, three conversions can be made. You
can perform a dynamic_cast conversion from the D pointer to an E pointer, then
a conversion (either dynamic_cast or an implicit conversion) from E to B, and
finally an implicit conversion from B to A. For example:

void f(D* pd)

{
E* pe = dynamic_cast<E*>(pd);
B* pb = pe; // upcast, implicit conversion
A* pa = pb; // upcast, implicit conversion
}

The dynamic_cast operator can also be used to perform a “cross cast.” Using the
same class hierarchy, it is possible to cast a pointer, for example, from the B subobject
to the D subobject, as long as the complete object is of type E.

Considering cross casts, it is actually possible to do the conversion from a pointer to
D to a pointer to the left-most A subobject in just two steps. You can perform a cross
cast from D to B, then an implicit conversion from B to A. For example:

void f(D* pd)
{

B* pb = dynamic_cast<B*>(pd); // cross cast

A* pa = pb; // upcast, implicit conversion
}

A null pointer value is converted to the null pointer value of the destination type
by dynamic_cast.

When you use dynamic_cast < type-id > ( expression ), if expression cannot
be safely converted to type fype-id, the run-time check causes the cast to fail.

For example:
class A { ... };
class B { ... };
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void f()
{
A* pa = new A;
B* pb = dynamic_cast<B*>(pa); // fails, not safe;
// B not derived from A
}

The value of a failed cast to pointer type is the null pointer. A failed cast to reference
type throws a bad_cast exception.

bad_cast Exception

The dynamic_cast operator throws a bad_cast exception as the result of a failed cast
to a reference type. The interface for bad_cast is:
class bad_cast : public logic {
public:
~bad_cast(const __exString& what_arg) : logic(what_arg) {}
void raise() { handle_raise(); throw *this; }

// virtual __exString what() const; //inherited
}; )

static_cast Operator

The expression static_cast < type-id > ( expression ) converts expression to the type
of type-id based solely on the types present in the expression. No run-time type check
is made to ensure the safety of the conversion. :

Syntax
static_cast < type-id > ( expression )

The static_cast operator can be used for operations such as converting a pointer to a
base class to a pointer to a derived class. Such conversions are not always safe. For
example:

class B { ... };
class D : public B { ... }; -

void f(B* pb, D* pd)

{
D* pd2 = static_cast<D*>(pb); // not safe, pb may
// point to just B
B* pb2 = static_cast<B*>(pd); // safe conversion
}

In contrast to dynamic_cast, no run-time check is made on the static_cast conversion
of pb. The object pointed to by pb may not be an object of type D, in which case the
use of *pd2 could be disastrous. For instance, calling a function that is a member of
the D class, but not the B class, could result in an access violation.



Chapter 4 Expressions

The dynamic_cast and static_cast operators move a pointer throughout a class
hierarchy. However, static_cast relies exclusively on the information provided in
the cast statement and can therefore be unsafe. For example:

class B { ... };
class D : public B { ... };

void f(B* pb)
{
D* pdl = dynamic_cast<D*>(pb);
D* pd2 = static_cast<D*>(pb);
}

If pb really points to an 6bject of type D, then pd1 and pd2 will get the same value.
They will also get the same value if pb == 0.

If pb points to an object of type B and not to the complete D class, then dynamic_cast
will know enough to return zero. However, static_cast relies on the programmer’s
assertion that pb points to an object of type D and simply returns a pointer to that
supposed D object.

Consequently, static_cast can do the inverse of implicit conversions, in which case
the results are undefined. It is left to the programmer to ensure that the results of a
static_cast conversion are safe.

This behavior also applies to types other than class types. For instance, static_cast

can be used to convert from an int to a char. However, the resulting char may not

have enough bits to hold the entire int value. Again, it is left to the programmer to
. ensure that the results of a static_cast conversion are safe.

The static_cast operator can also be used to perform any implicit conversion,
including standard conversions and user-defined conversions. For example:

typedef unsigned char BYTE

void f()

{
char ch;
int i = 65;

float f = 2.5;
double dbl;

ch = static_cast<char>(i); // int to char
dbl = static_cast<double>(f); // float to double

i = static_cast<BYTE>(ch);

}

The static_cast operator can explicitly convert an integral value to an enumeration
type. If the value of the integral type does not fall within the range of enumeration
values, the resulting enumeration value is undefined.
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The static_cast operator converts a null pointer value to the null pointer value of the
destination type.

Any expression can be explicitly converted to type void by the static_cast operator.
The destination void type can optionally include the const, volatile, or __unaligned
attribute.

The static_cast operator cannot cast away the const, volatile, or __unaligned
attributes. See “const_cast Operator” for information on removing these attributes.

const_cast Operator

The const_cast operator can be used to remove the const, volatile, and __unaligned
attribute(s) from a class.

Syntax
const_cast < type-id > ( expression )

A pointer to any object type or a pointer to a data member can be explicitly converted
to a type that is identical except for the const, volatile, and __unaligned qualifiers.
For pointers and references, the result will refer to the original object. For pointers to
data members, the result will refer to the same member as the original (uncast) pointer
to data member. Depending on the type of the referenced object, a write operation
through the resulting pointer, reference, or pointer to data member might produce
undefined behavior.

The const_cast operator converts a null pointer value to the null pointer value of
the destination type.

reinterpret_cast Operator

The reinterpret_cast operator allows any pointer to be converted into any other
pointer type. It also allows any integral type to be converted into any pointer type
and vice versa. Misuse of the reinterpret_cast operator can easily be unsafe. Unless
the desired conversion is inherently low-level, you should use one of the other cast
operators.

Syntax
reinterpret_cast < type-id > ( expression )

The reinterpret_cast operator can be used for conversions such as char* to int*,
or One_class*to Unrelated_class*, which are inherently unsafe.

The result of a reinterpret_cast cannot safely be used for anything other than being
cast back to its original type. Other uses are, at best, nonportable.

The reinterpret_cast operator cannot cast away the const, volatile, or __unaligned
attributes. See “const_cast Operator” for information on removing these attributes.

The reinterpret_cast operator converts a null pointer value to the null pointer value
of the destination type.
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Run-Time Type Information

Run-time type information (RTTI) is a mechanism that allows the type of an
object to be determined during program execution. RTTI was added to the

C++ language because many vendors of class libraries were implementing this
functionality themselves. This caused incompatibilities between libraries. Thus,
it became obvious that support for run-time type information was needed at

the language level.

For the sake of clarity, this discussion of RTTI is almost completely restricted
to pointers. However, the concepts discussed also apply to references.

There are three main C++ language elements to run-time type information:

e The dynamic_cast operator.
Used for conversion of polymorphic types. See “dynamic_cast Operator” on
page 114 for more information.

e The typeid operator.
Used for identifying the exact type of an object.

e The type_info class.
Used to hold the type information returned by the typeid operator.

typeid Operator

The typeid operator allows the type of an object to be determined at run time.

Syntax

typeid( type-id )

typeid( expression )

The result of a typeid expression is a const type_info&. The value is a reference to
a type_info object that represents either the type-id or the type of the expression,

depending on which form of typeid is used. See “type_info Class” on page 122 for
more information.

The typeid operator does a run-time check when applied to an I-value of a
polymorphic class type, where the true type of the object cannot be determined
by the static information provided. Such cases are:

e A reference to a class
¢ A pointer, dereferenced with *

o A subscripted pointer (i.e. [ ]). (Note that it is generally not safe to use a subscript
with a pointer to a polymorphic type.) '
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If the expression points to a base class type, yet the object is actually of a type derived
from that base class, a type_info reference for the derived class is the result. The
expression must point to a polymorphic type, that is, a class with virtual functions.
Otherwise, the result is the type_info for the static class referred to in the expression.
Further, the pointer must be dereferenced so that the object it points to is used.
Without dereferencing the pointer, the result will be the type_info for the pointer,

not what it points to. For example:

class Base { ... }:

class Derived : public Base { ... };
void f()

{

Derived* pd = new Derived;
Base* pb = pd;

const type_info& t = typeid(pb); // t holds pointer type_info
const type_info& tl = typeid(*pb); // tl holds Derived info

}

If the expression is dereferencing a pointer, and that pointer’s value is zero, typeid
throws a bad_typeid exception. If the pointer does not point to a valid object, a
__non_rtti_object exception is thrown.

If the expression is neither a pointer nor a reference to a base class of the object,
the result is a type_info reference representing the static type of the expression.

bad_typeid Exception
Under some circumstances, the typeid operator throws a bad_typeid exception.
The interface for bad_typeid is:

class bad_typeid : public logic {

public:
bad_typeid(const char * what_arg) : logic(what_arg) {}
void raise() { handle_raise(); throw *this; }
// virtual __exString what() const; //inherited

};

See “typeid Operator” on page 121 for more information.

type_info Class

The type_info class describes type information generated within the program by
the compiler. Objects of this class effectively store a pointer to a name for the type.
The type_info class also stores an encoded value suitable for comparing two types
for equality or collating order. The encoding rules and collating sequence for types
are unspecified and may differ between programs.
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The typeinfo.h header file must be included in order to use the type_info class.

class type_info {

public:
virtual ~type_info();
int operator==(const type_info& rhs) const;
int operator!=(const type_info& rhs) const;
int before(const type_info& rhs) const;
const char* name() const;
const char* raw_name() const;

private:

};

The operators == and != can be used to compare for equality and inequality with
other type_info objects, respectively.

There is no link between the collating order of types and inheritance relationships.
Use the type_info::before member function to determine the collating sequence
of types. There is no guarantee that type_info::before will yield the same result in
different programs or even different runs of the same program. In this manner,
type_info::before is similar to the address-of (&) operator.

The type_info::name member function returns a const char* to a null-terminated
string representing the human-readable name of the type. The memory pointed to
is cached and should never be directly deallocated.

The type_info::raw_name member function returns a const char* to a null-
terminated string representing the decorated name of the object type. The name

is actually stored in its decorated form to save space. Consequently, this function
is faster than type_info::name because it doesn’t need to undecorate the name.
The string returned by the type_info::raw_name function is useful in comparison
operations but is not readable. If you need a human-readable string, use the
type_info::name function instead.

Type information is generated for polymorphic classes only if the /GR (Enable
Run-Time Type Information) compiler option is specified.

Chapter 4 Expressions
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CHAPTER 5

Statements

C++ statements are the program elements that control how and in what order objects
are manipulated. This chapter includes:

¢ Overview

e Labeled Statements

e Categories of Statements

Expression statements. These statements evaluate an expression for its side
effects or for its return value.

Null statements. These statements can be provided where a statement is required
by the C++ syntax but where no action is to be taken.

Compound statements. These statements are groups of statements enclosed in
curly braces ({ }). They can be used wherever the grammar calls for a single
statement.

Selection statements. These statements perform a test; they then execute one
section of code if the test evaluates to true (nonzero). They may execute another
section of code if the test evaluates to false.

Iteration statements. These statements provide for repeated execution of a block
of code until a specified termination criterion is met.

Jump statements. These statements either transfer control immediately to
another location in the function or return control from the function.

Declaration statements. Declarations introduce a name into a program. (Chapter 6,
“Declarations,” provides more detailed information about declarations.)

Exception handling statements, which include C++ exception handling (try, throw,
catch) and structured exception handling (__try/__except, __try/__finally). The
try-except statement provides a method to gain control of a program when events
that normally terminate execution occur. The try-finally and leave statements
provide a method to guarantee execution of cleanup code when execution of a
block of code is interrupted.
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Overview of Statements

C++ statements are executed sequentially, except when an expression statement, a
selection statement, an iteration statement, or a jump statement specifically modifies
that sequence.

Syntax

statement:
labeled-statement
expression-statement
compound-statement
selection-statement
iteration-statement
jump-statement
declaration-statement
try-throw-catch

In most cases, the C++ statement syntax is identical to that of ANSI C. The primary
difference between the two is that in C, declarations are allowed only at the start of a
block; C++ adds the declaration-statement, which effectively removes this restriction.
This enables you to introduce variables at a point in the program where a precomputed
initialization value can be calculated.

Declaring variables inside blocks also allows you to exercise precise control over the
scope and lifetime of those variables.

Labeled Statements

To transfer program control directly to a given statement, the statement must be
labeled.

Syntax

labeled-statement.
identifier : statement
case constant-expression : statement
default : statement

Using Labels with the goto Statement

The appearance of an identifier label in the source program declares a label. Only
a goto statement can transfer control to an identifier label. The following code
fragment illustrates use of the goto statement and an identifier label to escape a
tightly nested loop:
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for( p = 0; p < NUM_PATHS; ++p )

{
NumFiles = FillArray( pFileArray, pszFNames )
for( i = 0; i < NumFiles; ++i )
{
if( (pFileArray[i] = fopen( pszFNames[i], "r" )) == NULL )
goto FileOpenError;
// Process the files that were opened.
}
}

FileOpenkError: -
cerr << "Fatal file open error. Processing interrupted.\n" );

In the preceding example, the goto statement transfers control directly to the
statement that prints an error message if an unknown file-open error occurs.

A label cannot appear by itself but must always be attached to a statement. If a
label is needed by itself, place a null statement after the label.

The label has function scope and cannot be redeclared within the function.
However, the same name can be used as a label in different functions.

Using Labels in the case Statement

Labels that appear after the case keyword cannot also appear outside a switch
statement. (This restriction also applies to the default keyword.) The following
code fragment shows the correct use of case labels:

// Sample Microsoft Windows message processing loop.
switch( msg )
{
case WM_TIMER: // Process timer event.
SetClassWord( hWnd, GCW_HICON, ahIcon[nlIcon++] );
ShowWindow( hWnd, SW_SHOWNA );
nlcon %= 14;
Yield();
break;

case WM_PAINT:
// Obtain a handle to the device context.
// BeginPaint will send WM_ERASEBKGND if appropriate.

memset( &ps, 0x00, sizeof (PAINTSTRUCT) );
hDC = BeginPaint( hWnd, &ps );

// Inform Windows that painting is complete.

EndPaint( hWnd, &ps );
break;

case WM_CLOSE:
// Close this window and all child windows.
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Kil1Timer( hWnd, TIMER1 );
DestroyWindow( hWnd );
if( hWnd == hWndMain )
PostQuitMessage( @ ); // Quit the application.
break;

default:
// This choice is taken for all messages not specifically
// covered by a case statement.

return DefWindowProc( hWnd, Message, wParam, 1Param );
break;

Expression Statement

Expression statements cause expressions to be evaluated. No transfer of control or
iteration takes place as a result of an expression statement.

Syntax
expression-statement:
expressiongy ;

All expressions in an expression statement are evaluated and all side effects are
completed before the next statement is executed. The most common expression
statements are assignments and function calls. C++ also provides a null statement.

The Null Statement
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The “null statement” is an expression statement with the expression missing. It is
useful when the syntax of the language calls for a statement but no expression
evaluation. It consists of a semicolon.

Null statements are commonly used as placeholders in iteration statements or as
statements on which to place labels at the end of compound statements or functions.

The following code fragment shows how to copy one string to another and
incorporates the null statement:

char *strcpy( char *Dest, const char *Source )

{
char *DestStart = Dest;

// Assign value pointed to by Source to
// Dest until the end-of-string @ is
// encountered.
while( *Dest++ = *Source++ )

H // Null statement.

return DestStart; '
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Compound Statements (Blocks)

A compound statement consists of zero or more statements enclosed in curly braces
{ }. A compound statement can be used anywhere a statement is expected.
Compound statements are commonly called “blocks.”

Syntax
compound-statement:
{ statement-list,y }

statement-list:
' statement
statement-list statement

The following example uses a compound statement as the statement part of the if
statement (see “The if Statement” on page 129 for details about the syntax):

if( Amount > 100 )

{
cout << "Amount was too large to handle\n";
Alert();

}

else
Balance == Amount;

Note Because a declaration is a statement, a declaration can be one of the statements in the
statement-list. As a result, names declared inside a compound statement, but not explicitly
declared as static, have local scope and (for objects) lifetime. See “Scope” on page 22 in
Chapter 2 for details about treatment of names with local scope.

Selection Statements

The C++ selection statements, if and switch, provide a means to conditionally execute
sections of code.

Syntax

selection-statement:.
if ( expression ) statement
if ( expression ) statement else statement
switch ( expression ) statement

The if Statement

The if statement evaluates the expression enclosed in parentheses. The expression
must be of arithmetic or pointer type, or it must be of a class type that defines an
unambiguous conversion to an arithmetic or pointer type. (For information about
conversions, see Chapter 3, “Standard Conversions.”)
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In both forms of the if syntax, if the expression evaluates to a nonzero value (true),
the statement dependent on the evaluation is executed; otherwise, it is skipped.

In the if...else syntax, the second statement is executed if the result of evaluating the
expression is zero.

The else clause of an if...else statement is associated with the closest previous if
statement that does not have a corresponding else statement. The following code
fragment demonstrates how this works:

if( conditionl == true )
if( condition2 == true )
cout << "conditionl true; condition2 true\n";
else
cout << "conditionl true; condition2 false\n";
else
cout << "condition 1 false\n";

Many programmers use curly braces ({ }) to expiicitly clarify the pairing of
complicated if and else clauses, such as in the following example:

if( conditionl == true )

{
if( conditionl == true )
cout << "conditionl true; condition2 true\n";
else
cout << "conditionl true; condition2 false\n";
}
else

cout << "condition 1 false\n";

Although the braces are not strictly necessary, they clarify the pairing between if and
else statements.

The switch Statement

The C++ switch statement allows selection among multiple sections of code,
depending on the value of an expression. The expression enclosed in parentheses,
the “controlling expression,” must be of an integral type or of a class type for which
there is an unambiguous conversion to integral type. Integral promotion is performed
as described in “Integral Promotions” on page 56 in Chapter 3.

The switch statement causes an unconditional jump to, into, or past the statement

that is the “switch body,” depending on the value of the controlling expression, the
values of the case labels, and the presence or absence of a default label. The switch
body is normally a compound statement (although this is not a syntactic requirement).
Usually, some of the statements in the switch body are labeled with case labels or with
the default label. Labeled statements are not syntactic requirements, but the switch
statement is meaningless without them. The default label can appear only once.
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Syntax
case constant-expression : Statement

default : statement
The constant-expression in the case label is converted to the type of the controlling
expression and is then compared for equality. In a given switch statement, no two

constant expressions in case statements can evaluate to the same value. The behavior
is shown in Table 5.1.

Table 5.1 Switch Statement Behavior

Chapter 5 Statements

Condition v Action

Converted value matches that of the promoted  Control is transferred to the statement
controlling expression. following that label.

None of the constants match the constants in Control is transferred to the default label.
the case labels; default label is present.

None of the constants match the constants in Control is transferred to the statement after
the case labels; default label is not present. the switch statement.

An inner block of a switch statement can contain definitions with initializations as
long as they are reachable — that is, not bypassed by all possible execution paths.
Names introduced using these declarations have local scope. The following code
fragment shows how the switch statement works:

switch( tolower( *argv[1] ) )

{
// Error. Unreachable declaration.
char szChEntered[] = "Character entered was: ";
case 'a'
{
// Declaration of szChEntered OK. Local scope.
char szChkntered[] = "Character entered was: ";
cout << szChEntered << "a\n";
}
break;
case 'b'
// Value of szChEntered undefined.
cout << szChEntered << "b\n";
break;
default:
// Value of szChEntered undefined.
cout << szChEntered << "neither a nor b\n";
break;
}
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A switch statement can be nested. In such cases, case or default labels associate with
the most deeply nested switch statements that enclose them. For example:

switch( msg )

{

case WM_COMMAND: // Windows command. Find out more.
switch( wParam )
{
case IDM_F_NEW: // File New menu command.

delete wfile;
wfile = new WinAppFile;
break;
case IDM_F_OPEN: // File Open menu command.
wfile->FileOpenDig();
break;

}
case WM_CREATE: // Create window.

break;

case WM_PAINT: // Window needs repainting.
break;

default:

return DefWindowProc( hWnd, Message, wParam, 1Param );
}

The preceding code fragment from a Microsoft Windowse message loop shows how
switch statements can be nested. The switch statement that selects on the value of
wParamis executed only if msgis WM_COMMAND. The case labels for menu
selections, IDM_F_NEW and IDM_F_OPEN, associate with the inner switch statement.

Control is not impeded by case or default labels. To stop execution at the end of a
part of the compound statement, insert a break statement. This transfers control to the
statement after the switch statement. This example demonstrates how control “drops
through” unless a break statement is used:

BOOL fClosing = FALSE;

switch( wParam )

{
case IDM_F_CLOSE: // File close command.
fClosing = TRUE;
// fall through
case IDM_F_SAVE: // File save command.
if( document->IsDirty() )
if( document->Name() == "UNTITLED" )
FileSaveAs( document );
else

FileSave( document );
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if( fClosing )
document->Close();

break;
}

The preceding code shows how to take advantage of the fact that case labels do not
impede the flow of control. If the switch statement transfers control to IDM_F_SAVE,
fClosing is FALSE. Therefore, after the file is saved, the document is not closed.
However, if the switch statement transfers control to IDM_F_CLOSE, fClosing is

set to TRUE, and the code to save a file is executed.

Iteration Statements

Iteration statements cause statements (or compound statements) to be executed zero
or more times, subject to some loop-termination criteria. When these statements

are compound statements, they are executed in order, except when either the break
statement or the continue statement is encountered. (For a description of these
statements, see “The break Statement” and “The continue Statement” on page 137.)

C++ provides three iteration statements — while, do, and for. Each of these iterates
until its termination expression evaluates to zero (false), or until loop termination is
forced with a break statement. Table 5.2 summarizes these statements and their
actions; each is discussed in detail in the sections that follow.

Table 5.2 C++ Iteration Statements

Statement Evaluated At Initialization Increment
while Top of loop No No

do Bottom of loop No No

for Top of loop Yes Yes
Syntax

iteration-statement:
while ( expression ) statement
do statement while ( expression ) ;
for ( for-init-statement expressionyy, ; expressionyy ) statement

for-init-statement:
expression-statement
declaration-statement

The statement part of an iteration statement cannot be a declaration. However, it can
be a compound statement containing a declaration.
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The while Statemént

The while statement executes a statement repeatedly until the termination condition
(the expression) specified evaluates to zero. The test of the termination condition takes
place before each execution of the loop; therefore, a while loop executes zero or more
times, depending on the value of the termination expression. The following code uses
a while loop to trim trailing spaces from a string:

char *trim( char *szSource )

{
char *pszE0S;
// Set pointer to end of string to point to the character just
// before the 0 at the end of the string.
pszEOS = szSource + strlen( szSource ) - 1;
while( pszEOS >= szSource && *pszEQS == ' ' )
*pszEQS-- = '\0"';
return szSource;
}

The termination condition is evaluated at the top of the loop. If there are no trailing
spaces, the loop never executes.

The expression must be of an integral type, a pointer type, or a class type with an
unambiguous conversion to an integral or pointer type.

The do Statement

The do statement executes a statement repeatedly until the specified termination
condition (the expression) evaluates to zero. The test of the termination condition is
made after each execution of the loop; therefore, a do loop executes one or more
times, depending on the value of the termination expression. The following function
uses the do statement to wait for the user to press a specific key:

void WaitKey( char ASCIICode )

{

char chTemp;

do

{

chTemp = _getch();

1

while( chTemp != ASCIICode );
}

A do loop rather than a while loop is used in the preceding code — with the do loop,
the _getch function is called to get a keystroke before the termination condition is
evaluated. This function can be written using a while loop, but not as concisely:
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void WaitKey( char ASCIICode )

{
char chTemp;
chTemp = _getch();
while( chTemp != ASCIICode )
{
chTemp = _getch();
}
}

The expression must be of an integral type, a pointer type, or a class type with an
unambiguous conversion to an integral or pointer type.

The for Statement

The for statement can be divided into three separate parts, as shown in Table 5.3.
Table 5.3 for Loop Elements

Syntax Name When Executed Contents

Sor-init-statement Before any other element of Often used to initialize loop indices.
the for statement or the It can contain expressions or
substatement. declarations.

expressionl Before execution of a given An expression that evaluates to an
iteration of the loop, including integral type or a class type that has
the first iteration. an unambiguous conversion to an

integral type.

expression2 At the end of each iteration of Normally used to increment loop

the loop; expressionl is tested indices.

after expression2 is evaluated.

The for-init-statement is commonly used to declare and initialize loop-index variables.
The expressionl is often used to test for loop-termination criteria. The expression2 is
commonly used to increment loop indices.

The for statement exccutes the statement repeatedly until expressionl evaluates to
zero. The for-init-statement, expressionl, and expression?2 fields are all optional.

The following for loop:

for( for-init-statement; expressionl; expression2 )
// Statements

) A

is equivalent to the following while loop:

for-init-statement;
while( expressionl )
{
// Statements
expression2;

}
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A convenient way to specify an infinite loop using the for statement is:

for( ; ;)
{
// Statements to be executed.
}
This is equivalent to:
while( 1)
{

// Statements to be executed.
}

The initialization part of the for loop can be a declaration statement or an
expression statement, including the null statement. The initializations can include
any sequence of expressions and declarations, separated by commas. Any object
declared inside a for-init-statement has local scope, as if it had been declared
immediately prior to the for statement. Although the name of the object can be
used in more than one for loop in the same scope, the declaration can appear
only once. For example:

JHinclude <iostream.h>

void main()

{
for( int i = 0; 1 < 100; ++i )
cout << i << "\n";
// The loop index, i, cannot be declared in the
// for-init-statement here because it is still in scope.
for( i = 100; 1 >= 0; --i )
cout << i << "\n";
}

Although the three fields of the for statement are normally used for initialization,
testing for termination, and incrementing, they are not restricted to these uses. For
example, the following code prints the numbers 1 to 100. The substatement is the
null statement: ‘

JHinclude <iostream.h>
void main()

{
for( int i = 0; i < 100; cout << ++i << endl )

»
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Jump Statements

The C++ jump statements perform an immediate local transfer of control.

Syntax
Jjump-statement:.
break ;
continue ;
return expressiongy ;
goto identifier ;

The break Statement

The break statement is used to exit an iteration or switch statement. It transfers
control to the statement immediately following the iteration substatement or
switch statement.

The break statement terminates only the most tightly enclosing loop or switch
statement. In loops, break is used to terminate before the termination criteria
evaluate to 0. In the switch statement, break is used to terminate sections of
code —normally before a case label. The following example illustrates the use
of the break statement in a for loop:

for( ; ;) // No termination condition.
{
if( List->AtEnd() )
break;

List->Next();
}

cout << "Control transfers to here.\n";

Note There are other simple ways to escape a loop. It is best to use the break statement
in more complex loops, where it can be difficult to tell whether the loop should be terminated
before several statements have been executed.

-For an example of using the break statement within the body of a switch statement,
see “The switch Statement” on page 130.

The continue Statement

The continue statement forces immediate transfer of control to the loop-continuation
statement of the smallest enclosing loop. (The “loop-continuation” is the statement
that contains the controlling expression for the loop.) Therefore, the continue
statement can appear only in the dependent statement of an iteration statement
(although it may be the sole statement in that statement). In a for loop, execution of
a continue statement causes evaluation of expression2 and then expressionl.
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The following example shows how the continue statement can be used to bypass
sections of code and skip to the next iteration of a loop:

fFinclude <conio.h>

// Get a character that is a member of the zero-terminated
// string, szlegalString. Return the index of the character
// entered.

int GetlLegalChar( char *szlLegalString )

{
char *pch;
do
{
char ch = _getch();
// Use strchr library function to determine if the
// character read is in the string. If not, use the
// continue statement to bypass the rest of the
// statements in the loop.
if( (pch = strchr( szLegalString, ch )) == NULL )
continue;
// A character that was in the string szlLegalString
// was entered. Return its index.
return (pch - szlLegalString);
// The continue statement transfers control to here.
} while( 1 );
return 0;
}

The return Statement
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The return statement allows a function to immediately transfer control back to the
calling function (or, in the case of the main function, transfer control back to the
operating system). The return statement accepts an expression, which is the value
passed back to the calling function. Functions of type void, constructors, and
destructors cannot specify expressions in the return statement; functions of all
other types must specify an expression in the return statement.

The expression, if specified, is converted to the type specified in the function
declaration, as if an initialization were being performed. Conversion from the type

of the expression to the return type of the function can cause temporary objects to be
created. See ‘“Temporary Objects” on page 301 in Chapter 11 for more information
about how and when temporaries are created.

‘When the flow of control exits the block enclosing the function definition, the result
is the same as it would be if a return statement with no expression had been executed.
This is illegal for functions that are declared as returning a value.

A function can have any number of return statements.
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The goto Statement

The goto statement performs an unconditional transfer of control to the named label.
The label must be in the current function.

For more information about labels and the goto statement, see “Labeled Statements”
and “Using Labels with the goto Statement” on page 126.

Declaration Statements

Declaration statements introduce new names into the current scope. These names
can be:

e Type names (class, struct, union, enum, typedef, and pointer-to-member).
¢ Object names.

¢ Function names.

Syntax
declaration-statement:.
declaration

If a declaration within a block introduces a name that is already declared outside
the block, the previous declaration is hidden for the duration of the block. After
termination of the block, the previous declaration is again visible.

Multiple declarations of the same name in the same block are illegal.

For more information about declarations and name hiding, see “Declarations and
Definitions” and “Scope” in Chapter 2 on pages 20 and 22, respectively.

Declaration of Automatic Objects

In C++, objects can be declared with automatic storage class using the auto or
register keyword. If no storage-class keyword is used for a local object (an object
declared inside a function), auto is assumed. C++ initializes and declares these
objects differently than objects declared with static storage classes.

Initialization of Automatic Objects

Each time declaration statements for objects of storage class auto or register are
executed, initialization takes place. The following example, from The continue
Statement, shows initialization of the automatic object ch inside the do loop.

f#include <conio.h>

// Get a character that is a member of the zero-terminated string,
// szlLegalString. Return the index of the character entered.
int GetLegalChar( char *szlegalString )
{
char *pch;
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do

{
// This declaration statement is executed once for each
// execution of the loop.
char ch = _getch();

if( (pch = strchr( szlLegalString, ch )) == NULL )
continue; :

// A character that was in the string szlegalString
// was entered. Return its index.
return (pch - szlLegalString):
} while( 1 );
}

For each iteration of the loop (each time the declaration is encountered), the macro
_getchis evaluated and ch is initialized with the results. When control is transferred
outside the block using the return statement, ch is destroyed (in this case, the
storage is deallocated).

See “Storage Classes” on page 38 in Chapter 2 for another example of initialization.

Destruction of Automatic Objects

Objects defined in a loop are destroyed once per iteration of the loop, on exit from the
block, or when control transfers to a point prior to the declaration. Objects declared in
a block that is not a loop are destroyed on exit from the block or when control transfers
to a point prior to the declaration.

Note Destruction can mean simply deallocating the object or, for class-type objects, invoking
the object’s destructor.

When a jump statement transfers control out of a loop or block, objects declared in
the block transferred from are destroyed; objects in the block transferred to are not
destroyed.

‘When control is transferred to a point prior to a declaration, the object is destroyed.

Transfers of Control

You can use the goto statement or a case label in a switch statement to specify a
program that branches past an initializer. Such code is illegal unless the declaration
that contains the initializer is in a block enclosed by the block in which the jump
statement occurs.

The following example shows a loop that declares and initializes the objects total,
ch, and i. There is also an erroneous goto statement that transfers control past an
initializer.
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// Read input until-a nonnumeric character is entered.
while( 1) ’
{

int total = 0;

char ch = _getch();

if( ch >= '0' || ch <= "'9"' )
{
goto Labell; // Error: transfers past initialization
// of 1.
int i =ch - '0';
Labell:
total += i;

} // i would be destroyed here if the
// goto error were not present.
else
// Break statement transfers control out of loop,
// destroying total and ch.
break;
}

In the preceding example, the goto statement tries to transfer control past the initialization
of i. However, if 1 were declared but not initialized, the transfer would be legal.

The objects total and ch, declared in the block that serves as the statement of the
while statement, are destroyed when that block is exited using the break statement.

Declaration of Static Objects

An object can be declared with static storage class using the static or extern keyword.
Local objects must be explicitly declared as static or extern to have static storage
class. All global objects (objects declared outside all functions) have static storage
class. You cannot declare static instances in a tiny-model program.

Initialization of Static Objects

Global objects are initialized at program startup. (For more information about construction
and destruction of global objects, see “Additional Startup Considerations” and “Additional
Termination Considerations” on page 36 in Chapter 2.)

Local objects declared as static are initialized the first time their declarations are
encountered in the program flow. The following class, introduced in Chapter 2, “Basic
Concepts”, shows how this works:

f#include <iostream.h>
#include <string.h>

// Define a class that logs initializations and destructions.

class InitDemo

{
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public:
InitDemo( char *szWhat );
~InitDemo();

private:
char *szObjName;

};

// Constructor for class InitDemo.
InitDemo::InitDemo( char *szWhat )

{
if( szWhat != 0 && strlen( szWhat ) > 0 )
{
sz0ObjName = new char[ strlen( szWhat ) + 1 1;
strcpy( szObjName, szWhat );
1
else
sz0bjName = 0;
clog << "Initializing: " << szObjName << "\n";
}

// Destructor for InitDemo.
InitDemo: :~InitDemo()

{
if( szObjName != 0 )
{
clog << "Destroying: " << szObjName << "\n";
delete szObjName;
}
}

// Main function.
void main( int argc, char *argv[] )

{
if( arge < 2 )
{
cerr << "Supply a one-letter argument.\n";
return -1;
}
if( *argv[1l] == 'a' )
{
cout << "*argv[l] was an 'a'\n";
// Decltare static local object.
static InitDemo I1( "static I1" );
}
else
cout << "*argv[l] was not an 'a'\n";
}

If the command-line argument supplied to this program starts with the lowercase letter
“a,” the declaration of 11 is executed, the initialization takes place, and the result is:
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*argv[1l] was an 'a’
Initializing: static Il
Destroying: static I1

Otherwise, the flow of control bypasses the declaration of I1 and the result is:
*argv[1l] was not an 'a’'

When a static local object is declared with an initializer that does not evaluate to
a constant expression, the object is given the value 0 (converted to the appropriate
type) at the point before execution enters the block for the first time. However,
the object is not visible and no constructors are called until the actual point of
declaration.

At the point of declaration, the object’s constructor (if the object is of a class type)
is called as expected. (Static local objects are only initialized the first time they
are seen.)

Destruction of Static Objects

Local static objects are destroyed during termination specified by atexit.

If a static object was not constructed because the program’s flow of control
bypassed its declaration, no attempt is made to destroy that object.

Exception Handling

Microsoft C++ supports two kinds of exception handling, C++ exception
handling (try, throw, catch) and structured exception handling (__try/__except,
__try/__finally). If possible, you should use C++ exception handling rather than
structured exception handling.

Note In this section, the terms “structured exception handling” and “structured exception”
(or “C exception”) refer exclusively to the structured exception handling mechanism provided
by Win32e. All other references to exception handling (or “C++ exception”) refer to the C++
exception handling mechanism.

Although structured exception handling works with C and C++ source files, it is not
specifically designed for C++. For C++ programs, you should use C++ exception
handling.

The try, catch, and throw Statements

The C++ language provides built-in support for handling anomalous situations, known
as “exceptions,” which may occur during the execution of your program. The try, throw,
and catch statements have been added to the C++ language to implement exception
handling. With C++ exception handling, your program can communicate unexpected
events to a higher execution context that is better able to recover from such abnormat
events. These exceptions are handled by code which is outside the normal
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flow of control. The Microsoft C++ compiler implements the C++ exception handling
model based on the ISO WG21/ANSI X3J16 working papers towards the evolving
standard for C++.

Syntax
try-block :
try compound-statement handler-list

handler-list
handler handler-listqy

handler :
catch ( exception-declaration ) compound-statement

exception-declaration :
type-specifier-list declarator
type-specifier-list abstract-declarator

type-specifier-list

throw-expression : .
throw assignment-expressionqy

The compound-statement after the try clause is the guarded section of code. The
throw-expression “throws” (raises) an exception. The compound-statement after the
catch clause is the exception handler, and “catches” (handles) the exception thrown
by the throw-expression. The exception-declaration statement indicates the type of
exception the clause handles. The type can be any valid data type, including a C++
class. If the exception-declaration statement is an ellipsis (...), the catch clause
handles any type of exception, including a C exception. Such a handler must be the
last handler for its try block.

The operand of throw is syntactically similar to the operand of a return statement.

Note Microsoft C++ does not support the function throw signature mechanism, as described
in section 15.5 of the ANSI C++ draft.

Execution proceeds as follows:

1. Control reaches the try statement by normal sequential execution. The guarded
section (within the try block) is executed.

2. If no exception is thrown during execution of the guarded section, the catch
clauses that follow the try block are not executed. Execution continues at the
statement after the last catch clause following the try block in which the exception
was thrown.

3. If an exception is thrown during execution of the guarded section or in any routine
the guarded section calls (either directly or indirectly), an exception object is
created from the object created by the throw operand. (This implies that a copy
constructor may be involved.) At this point, the compiler looks for a catch clause
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in a higher execution context that can handle an exception of the type thrown (or
a catch handler that can handle any type of exception). The catch handlers are
examined in order of their appearance following the try block. If no appropriate
handler is found, the next dynamically enclosing try block is examined. This
process continues until the outermost enclosing try block is examined.

4. If a matching handler is still not found, or if an exception occurs while unwinding,
but before the handler gets control, the predefined run-time function terminate is
called. If an exception occurs after throwing the exception, but before the unwind
begins, terminate is called.

5. If a matching catch handler is found, and it catches by value, its formal parameter
is initialized by copying the exception object. If it catches by reference, the
parameter is initialized to refer to the exception object. After the formal parameter
is initialized, the process of “unwinding the stack” begins. This involves the
destruction of all automatic objects that were constructed (but not yet destructed)
between the beginning of the try block associated with the catch handler and the
exception’s throw site. Destruction occurs in reverse order of construction. The
catch handler is executed and the program resumes execution following the last
handler (that is, the first statement or construct which is not a catch handler).
Control can only enter a catch handler through a thrown exception; never via a
goto statement or a case label in a switch statement.

The following is a simple example of a try block and its associated catch handler.
This example detects failure of a memory allocation operation using the new operator.
If new is successful, the catch handler is never executed:

#include <iostream.h>

int main()

{
char *buf;
try
{

buf = new char[512];
if( buf == 0 )
throw "Memory allocation failure!";

}
catch( char * str )
{
cout << "Exception raised: " << str << '\n’;
}
/! ...
return 0;

}

The operand of the throw expression specifies that an exception of type char * is
being thrown. It is handled by a catch handler that expresses the ability to catch an
exception of type char *. In the event of a memory allocation failure, this is the
output from the preceding example:

Exception raised: Memory allocation failure!
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The real power of C++ exception handling lies not only in its ability to deal with
exceptions of varying types, but also in its ability to automatically call destructor
functions during stack unwinding, for all local objects constructed before the
exception was thrown.

The following example demonstrates C++ exception handling using classes with
destructor semantics:

J#include <iostream.h>
void MyFunc( void );

class CTest

{
public:
CTest(){};
~CTest(){};
const char *ShowReason() const { return "Exception in CTest class.™; }
1
class CDtorDemo
{
public:
CDtorDemo();
~CDtorDemo();
1
CDtorDemo::CDtorDemo()
{
cout << "Constructing CDtorDemo.\n";
}
CDtorDemo: :~CDtorDemo()
{
cout << "Destructing CDtorDemo.\n";
}
void MyFunc()
{
CDtorDemo D;
cout<< "In MyFunc(). Throwing CTest exception.\n";
throw CTest();
}
int main()
{
cout << "In main.\n";
try
{
cout << "In try block, calling MyFunc().\n";
MyFunc();
}
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catch( CTest E )

{
cout << "In catch handler.\n";
cout << "Caught CTest exception type: ";
cout << E.ShowReason{) << "\n";
}
catch( char *str )
{
cout << "Caught some other exception: " << str << "\n";
}
cout << "Back in main. Execution resumes here.\n";
return 0;

}
This is the output from the preceding example:

In main.

In try block, calling MyFunc().

Constructing CDtorDemo.

In MyFunc(). Throwing CTest exception.

Destructing CDtorDemo.

In catch handler.

Caught CTest exception type: Exception in CTest class.
Back in main. Execution resumes here.

Note that in this example, the exception parameter (the argument to the catch clause)
is declared in both catch handlers:

catch( CTest E )
/! ...

catch( char *str )
/! ...

You do not need to declare this parameter; in many cases it may be sufficient to notify
the handler that a particular type of exception has occurred. However, if you do not
declare an exception object in the exception-declaration, you will not have access to
that object in the catch handler clause.

A throw-expression with no operand re-throws the exception currently being handled.

Such an expression should appear only in a catch handler or in a function called from

within a catch handler. The re-thrown exception object is the original exception object
(not a copy). For example:

try
{
throw CSomeOtherException();
}
catch(...) // Handle all exceptions
{
// Respond (perhaps only partially) to exception
/...
throw; // Pass exception to some other handler
}
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Unhandled Exceptions

If a matching handler (or ellipsis catch handler) cannot be found for the current
exception, the predefined terminate function is called. (You can also explicitly
call terminate in any of your handlers.) The default action of terminate is to
call abort. If you want terminate to call some other function in your program
before exiting the application, call the set_terminate function with the name of
the function to be called as its single argument. You can call set_terminate at
any point in your program. The terminate routine always calls the last function
given as an argument to set_terminate. For example:

#include <eh.h> // For function prototypes
/... i
void term_func() { // ...}
int main() :
{
try
{
/7 ...
set_terminate( term_func );
/1.
throw "Out of memory!"™; // No catch handler for this exception
1
catch( int )
{
cout << "Integer exception raised.";
}
return 0;
}

The term_func function should terminate the program or current thread, ideally by
calling exit. If it doesn’t, and instead returns to its caller, abort is called.

For more information about C++ exception handling, see the C++ Annotated
Reference Manual by Margaret Ellis and Bjarne Stroustrup.

Structured Exception Handling

The __try/__except and __try/__finally statements are a Microsoft extension to the
C language that enables apphcatlons to gain control of a program after events that
would normally terminate execution.

Note Structured exception handling works with C and C++ source files. However, it is not
specifically designed for C++. Although destructors for local objects will be called if you use
structured exception handling in a C++ program (if you use the /GX compiler option), you can
ensure that your code is more portable by using C++ exception handling. The C++ exception
handling mechanism is more flexible, in that it can handle exceptions of any type.

For more information, see “The try-except Statement” and “The try-finally Statement” in the
C Language Reference.



Syntax
try-except-statement .
__try compound-statement
__except ( expression ) compound-statement

try-finally-statement :
__try compound-statement
__finally compound-statement

If you have C modules that use structured exception handling, they can be mixed
with C++ modules that use C++ exception handling. When a C (structured) exception
is raised, it can be handled by the C handler, or it can be caught by a C++ catch
handler, whichever is dynamically closest to the exception context. One of the major
differences between the two models is that when a C exception is raised, it is always
of type unsigned int, whereas a C++ exception can be of any type. That is, C
exceptions are identified by an unsigned integer value, whereas C++ exceptions are
identified by data type. However, while a C++ catch handler can catch a C exception
(for example, via an “ellipsis” catch handler), a C exception can also be handled as a
typed exception by using a C exception wrapper class. By deriving from this class,
each C exception can be attributed a specific derived class.

To use a C exception wrapper class, you install a custom C exception translator
function which is called by the internal exception handling mechanism each time
a C exception is thrown. Within your translator function, you can throw any typed
exception, which can be caught by an appropriate matching C++ catch handler.
To specify a custom translation function, call the _set_se_translator function
with the name of your translation function as its single argument.
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CHAPTER 6

Declarations

Declarations introduce new names into a program. Topics covered in this chapter
include the following uses for declarations:

e Specify storage class, type, and linkage for an object.

e Specify storage class, type, and linkage for a function.

e Define a function.

* Provide an initial value for an object.

¢ Associate a name with a constant (enumerated type declaratioﬁ),

e Declare a new type (class, struct, or union declaration).

e Specify a synonym for a type (typedef declaration).

¢ Specify a family of classes or functions (template declaration).

e Specify a namespace.

In addition to introducing a new name, a declaration specifies how an identifier is to

be interpreted by the compiler. Declarations do not automatically reserve storage
associated with the identifier—reserving storage is done by definitions.

Note Most declarations are also definitions.

Syntax

declaration:
decl-specifiersyy, declarator-listyy, ;
function-definition
‘linkage-specification
template-specification

The declarators in declarator-list contain the names being declared. Although the
declarator-list is shown as optional, it can be omitted only in declarations or
definitions of a function.

Note The declaration of a function is often called a “prototype.” This declaration provides
type information about arguments and the function’s return type that allows the compiler to
perform correct conversions and to ensure type safety.
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The decl-specifiers part of a declaration is also shown as optional; however, it can be
omitted only in declarations of class types or enumerations.

Declarations occur in a scope. This controls the visibility of the name declared and the
duration of the object defined (if any). For more information about how scope rules
interact with declarations, see “Scope” on page 22 in Chapter 2.

An object declaration is also a definition unless it contains the extern storage-class
specifier described in “Storage-Class Specifiers” on page 153. A function declaration
is also a definition unless it is a prototype—a function header with no defining
function body. An object’s definition causes allocation of storage and appropriate
initializations for that object.

Specifiers
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This section explains the decl-specifiers portion of declarations. (The syntax for
declarations is given at the beginning of this chapter.)

Syntax
decl-specifiers:
decl-specifiersqy decl-specifier

decl-specifier:
storage-class-specifier
type-specifier
fet-specifier
friend
typedef »
__declspec ( extended-decl-modifier-seq )

The Microsoft-specific keyword, __declspec, is discussed in “Extended Attribute

Syntax” on page 367 in Appendix B.

The decl-specifiers portion of a declaration is the longest sequence of decl-specifiers
that can be construed to be a type name. The remainder of the declaration is the name
or names introduced. The examples in the following list illustrates this concept:

Declaration decl-specifiers name

char *1pszAppName; char * TpszAppName
typedef char * LPSTR; char * LPSTR
LPSTR strcpy( LPSTR, LPSTR ); LPSTR strepy
volatile void *pvv0Obj: volatile void * pvvObj

Because signed, unsigned, long, and short all imply int, a typedef name following one
of these keywords is taken to be a member of declarator-list, not of decl-specifiers.

Note Because a name can be redeclared, its interpretation is subject to the most recent
declaration in the current scope. Redeclaration can affect how names are interpreted by the
compiler, particularly typedef names.
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Storage-Class Specifiers

The C++ storage-class specifiers tell the compiler the duration and visibility of the
object or function they declare, as well as where an object should be stored.

Syntax
storage-class-specifier:
auto
register
static
extern

Automatic Storage-Class Specifiers

The auto and register storage-class specifiers can be used only to declare names used
in blocks or to declare formal arguments to functions. The term “auto” comes from the
fact that storage for these objects is automatically allocated at run time (normally on
the program’s stack).

The auto Keyword

Few programmers use the auto keyword in declarations because all block-scoped
objects not explicitly declared with another storage class are implicitly automatic.
Therefore, the following two declarations are equivalent:

{

auto int i; // Explicitly declared as auto.
int N // Implicitly auto.

}

The register Keyword

Microsoft Specific —

The compiler does not accept user requests for register variables; instead, it makes its
own register choices when global register-allocation optimization (/Oe option) is on.
However, all other semantics associated with the register keyword are honored.

END Microsoft Specific

ANSI C does not allow for taking the address of a register object; this restriction does
not apply to C++. However, if the address-of operator (&) is used on an object, the
compiler must put the object in a location for which an address can be represented—
in practice, this means in memory instead of in a register.

Static Storage-Class Specifiers

The static storage-class specifiers, static and extern, can be applied to objects and
functions. Table 6.1 shows where the keywords static and extern can and cannot
be used.
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Table 6.1 Use of static and extern

Can static Can extern

Construct be Used? be Used?
Function declarations within a block No Yes
Formal arguments to a function No No
Objects in a block Yes Yes
Objects outside a block Yes Yes
Functions Yes Yes

Class member functions Yes No

Class member data Yes No
typedef names No No

A name specified using the static keyword has internal linkage except for the static
members of a class that have external linkage. That is, it is not visible outside the
current translation unit. A name specified using the extern keyword has external
linkage unless previously defined as having internal linkage. For more information
about the visibility of names, see “Scope” and “Program and Linkage” in Chapter 2,
on pages 22 and 26, respectively.

Note Functions that are declared as inline and that are not class member functions are
given the same linkage characteristics as functions declared as static.

A class name whose declaration has not yet been encountered by the compiler can be
used in an extern declaration. The name introduced with such a declaration cannot
be used until the class declaration has been encountered.

Names Without Storage-Class Specifiers

File-scope names with no explicit storage-class specifiers have external linkage unless
they are:

e Declared using the const keyword.

e Previously declared with internal linkage.

Function Specifiers
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You can use the inline and virtual keywords as specifiers in function declarations.
This use of virtual differs from its use in the base-class specifier of a class definition.

inline Specifier

The inline specifier instructs the compiler to replace function calls with the code of
the function body. This substitution is “inline expansion” (sometimes called
“inlining”). Inline expansion alleviates the function-call overhead at the potential cost
of larger code size.
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The inline keyword tells the compiler that inline expansion is preferred. However,
the compiler can create a separate instance of the function (instantiate) and create
standard calling linkages instead of inserting the code inline. Two cases where
this can happen are:

e Recursive functions.

o Functions that are referred to through a pointer elsewhere in the translation
unit.

Note that for a function to be considered as a candidate for inlining, it must
use the new-style function definition. Functions that are declared as inline

and that are not class member functions have internal linkage unless otherwise
specified.

Microsoft Specific —
The __inline keyword is equivalent to inline.

END Microsoft Specific

As with normal functions, there is no defined order of evaluation of the arguments
to an inline function. In fact, it could be different from the order in which the
arguments are evaluated when passed using normal function call protocol.

Microsoft Specific »>

Recursive functions can be substituted inline to a depth specified by the inline_depth
pragma. After that depth, recursive function calls are treated as calls to an instance

of the function. The inline_recursion pragma controls the inline expansion of a
function currently under expansion.

END Microsoft Specific

Inline Class Member Functions

A function defined in the body of a class declaration is an inline function. Consider
the following class declaration:

class Account
{
public:
Account(double initial_balance) { balance = initial_balance; }
double GetBalance();
double Deposit( double Amount );
double Withdraw( double Amount );
private:
double balance;
};
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The Account constructor is an inline function. The member functions GetBalance,
Deposit, and Withdraw are not specified as inline but can be implemented as inline
functions using code such as the following:

inline double Account::GetBalance()

{
return balance;
}
inline double Account::Deposit( double Amount )
{
return ( balance += Amount );
}
inline double Account::Withdraw( double Amount )
{
return ( balance -= Amount );
}

Note Inthe class declaration, the functions were declared without the inline keyword.
The inline keyword can be specified in the class declaration; the result is the same.

A given inline member function must be declared the same way in every compilation
unit. This constraint causes inline functions to behave as if they were instantiated
functions. Additionally, there must be exactly one definition of an inline function.

A class member function defaults to external linkage unless a definition for that
function contains the inline specifier. The preceding example shows that these
functions need not be explicitly declared with the inline specifier; using inline in
the function definition causes it to be an inline function. However, it is illegal to
redeclare a function as inline after a call to that function.

Inline Functions versus Macros

Although inline functions are similar to macros (because the function code is
expanded at the point of the call at compile time), inline functions are parsed by
the compiler, whereas macros are expanded by the preprocessor. As a result, there
are several important differences:

¢ Inline functions follow all the protocols of type safety enforced on normal
functions.

e Inline functions are specified using the same syntax as any other function except
that they include the inline keyword in the function declaration.

» Expressions passed as arguments to inline functions are evaluated once. In some
cases, expressions passed as arguments to macros can be evaluated more than
once. The following example shows a macro that converts lowercase letters
to uppercase:
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#include <stdio.h>
#include <conio.h>

f#define toupper(a) ((a) >= 'a' && ((a) <= 'z') ? ((a)-('a'-'A")):(a))

void main()
{
char ch = toupper( _getch() );
printf( “%c”, ch );
}
The intent of the expression toupper( _getch() ) is that a character should
be read from the console device (stdin) and, if necessary, converted to uppercase.

Because of the implementation, _getch is executed once to determine whether the
character is greater than or equal to “a,” and once to determine whether it is less
than or equal to “z.” If it is in that range, _getch is executed again to convert the
character to uppercase. This means the program waits for two or three characters
when, ideally, it should wait for only one.

Inline functions remedy this problem:

#include <stdio.h>
f#finclude <conio.h>

inline char toupper( char a )

{
return ((a >= 'a' &% a <= '2') ? a-('a'-'A') : a )
}
void main()
{
char ch = toupper( _getch() );
printf( "%c", ch );
}

When to Use Inline Functions

Inline functions are best used for small functions such as accessing private data
members. The main purpose of these one- or two-line “accessor” functions is
to return state information about objects; short functions are sensitive to the
overhead of function calls. Longer functions spend proportionately less time

in the calling/returning sequence and benefit less from inlining.

The Point class, introduced in *“Function-Call Results” on page 73 in Chapter 4
can be optimized as follows:

class Point
{
public:
// Define "accessor” functions as
// reference types.
unsigned& x();
unsigned& y();
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private:
unsigned _x;
unsigned _y;

};
inline unsigned& Point::x()
{
return _x;
}
inline unsigned& Point::y()
{
return _y;
}

Assuming coordinate manipulation is a relatively common operation in a client of
such a class, specifying the two accessor functions (x and y in the preceding example)
as inline typically saves the overhead on:

e Function calls (including parameter passing and placing the object’s address on
the stack)

e Preservation of caller’s stack frame
e New stack-frame setup

e Return-value communication

e 0lId stack-frame restore

e Return

virtual Specifier

The virtual keyword can be applied only to nonstatic class member functions. It
signifies that binding of calls to the function is deferred until run time. For more
information, see “Virtual Functions” on page 270 in Chapter 9.

typedef Specifier
The typedef specifier defines a name that can be used as a synonym for a type or
derived type. You cannot use the typedef specifier inside a function definition.

Syntax
typedef-name:
identifier

A typedef declaration introduces a name that, within its scope, becomes a synonym
for the type given by the decl-specifiers portion of the declaration. In contrast to the
class, struct, union, and enum declarations, typedef declarations do not introduce
new types—they introduce new names for existing types.

One use of typedef declarations is to make declarations more uniform and compact.
For example:
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typedef char CHAR; // Character type.
typedef CHAR * PSTR; // Pointer to a string (char *).

LPSTR strchr( LPSTR source, CHAR target );

The names introduced by the preceding declarations are synonyms for:

Name Synonymous Type
CHAR char
PSTR char *

The preceding example code declares a type name, CHAR, which is then used to define
the derived type name PSTR (a pointer to a string). Finally, the names are used in
declaring the function strchr. To see how the typedef keyword can be used to clarify
declarations, contrast the preceding declaration of strchr with the following
declaration:

char * strchr( char * source, char target );

To use typedef to specify fundamental and derived types in the same declaration, you
can separate declarators with commas. For example:

typedef char CHAR, *PSTR;

A particularly complicated use of typedef is to define a synonym for a “pointer to a
function that returns type 7.” For example, a typedef declaration that means “pointer
to a function that takes no arguments and returns type void” uses this code:

typedef void (*PVFN)();

The synonym can be handy in declaring arrays of functions that are to be invoked
through a pointer: ‘

f#include <iostream.h>
#include <stdlib.h>

extern void funcl(); // Declare 4 functions.
extern void func2(); /7 These functions are assumed to be
extern void func3(); // defined elsewhere.

extern void func4();
// Declare synonym for pointer to
typedef void (*PVFN)(); // function that takes no arguments
// and returns type void.

void main( int argc, char * argv[] )

{
// Declare an array of pointers to functions.
PVFN pvfnl[] = { funcl, func2, func3, func4 };
// Invoke the function specified on the command 1ine.
if( argc > 0 && *argv[1] > '0' && *argv[l] <= '4' )
(*pvfnlfatoi( argv[1] ) - 11D();

1
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Redeclaration of typedef Names
The typedef declaration can be used to redeclare the same name to refer to the same
type. For example:

// FILEL.H
typedef char CHAR;

// FILE2.H
typedef char CHAR;

// PROG.CPP
#include "filel.h"
#include "file2.h" // 0K

The program PROG.CPP includes two header files, both of which contain typedef
declarations for the name CHAR. As long as both declarations refer to the same type,
such redeclaration is acceptable.

A typedef cannot redefine a name that was previously declared as a different type.
Therefore, if FILE2.H contains

// FILE2.H .
typedef int CHAR; // Error

the compiler issues an error because of the attempt to redeclare the name CHAR to
refer to a different type. This extends to constructs such as:

typedef char CHAR;

typedef CHAR CHAR; // OK: redeclared as same type
typedef union REGS // OK: name REGS redeclared
{ // by typedef name with the
struct wordregs x; // same meaning.
struct byteregs h;
} REGS;

Use of typedef with Class Types

Use of the typedef specifier with class types is supported largely because of the ANSI
C practice of declaring unnamed structures in typedef declarations. For example,
many C programmers use the following:

typedef struct // Declare an unnamed structure and give it
{ // the typedef name POINT.

unsigned x;

unsigned y;
} POINT;

The advantage of such a declaration is that it enables declarations like:

POINT ptOrigin;

160



instead of:
struct point_t ptOrigin;

In C++, the difference between typedef names and real types (declared with the
class, struct, union, and enum keywords) is more distinct. Although the C practice
of declaring a nameless structure in a typedef statement still works, it provides no
notational benefits as it does in C.

In the following code, the POINT function is not a type constructor. It is interpreted
as a function declarator with an int return type.

typedef struct

{
POINT(); // Not a constructor.
unsigned x;
unsigned y;

} POINT;

The preceding example declares a class named POINT using the unnamed class
typedef syntax. POINT is treated as a class name; however, the following
restrictions apply to names introduced this way:

e The name (the synonym) cannot appear after a class, struct, or union prefix.

e The name cannot be used as constructor or destructor names within a class
declaration.

In summary, this syntax does not provide any mechanism for inheritance,
construction, or destruction.

Name Space of typedef Names

Names declared using typedef occupy the same name space as other identifiers
(except statement labels). Therefore, they cannot use the same identifier as a
previously declared name, except in a class-type declaration. Consider the
following example:

typedef unsigned long UL; // Declare a typedef name, UL.
int UL; // Error: redefined.

The name-hiding rules that pertain to other identifiers also govern the visibility
of names declared using typedef. Therefore, the following example is legal
in C++:

typedef unsigned long UL; // Declare a typedef name, UL.

long Beep
{

unsigned int UL; // Redeclaration hides typedef name.
}

// typedef name "unhidden™ here.

Chapter 6 Declarations
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friend Specifier

The friend specifier is used to designate functions or classes that have the same
access privileges as class member functions. Friend functions and classes are
covered in detail in “Friends” on page 283 in Chapter 10.

Type Specifiers
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Type specifiers determine the type of the name being declared.

Syntax

- type-specifier:

simple-type-name
class-specifier
enum-specifier
elaborated-type-specifier
2 class-name

const

volatile

The following sections discuss simple type names, elaborated type specifiers,
and nested type names. '

Simple Type Names

A simple type name is the name of a complete type.

Syntax
simple-type-name:
complete-class-name
qualified-type-name
char
short
int
long
signed
unsigned
float
double
void

Table 6.2 shows how the simple type names can be used together.

Table 6.2 Type Name Combinations

Type Can Appear With Comments
int long or short, but not both 'Type int implies type long int.
long . int or double Type long implies type long int.
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Table 6.2 Type Name Combinations (continued)

Type Can Appear With Comments
short int Type short implies type short int.
signed char, short, int, or long Type signed implies signed int. The most-

significant bit of objects of type signed
char and bit fields of signed integral types
is taken to be the sign bit.

unsigned char, short, int, or long Type unsigned implies unsigned int. The
most-significant bit of objects of type
unsigned char and bit fields of unsigned
integral types is not treated as the sign bit.

Elaborated Type Specifiers

Elaborated type specifiers are used to declare user-defined types. These can be either
class- or enumerated-types.

Syntax

elaborated-type-specifier:
class-key class-name
class-key identifier
enum enum-name

class-key:
class
struct
union

If identifier is specified, it is taken to be a class name. For example:

class Window;

This statement declares the Window identifier as a class name. This syntax is used for
forward declaration of classes. For more information about class names, see “Class
Names” on page 236 in Chapter 8.

If a name is declared using the union keyword, it must also be defined using the union
keyword. Names that are defined using the class keyword can be declared using the
struct keyword (and vice versa). Therefore, the following code samples are legal:

// Legal example 1

struct A;  // Forward declaration of A.
class A // Define A.
{
public:
int i;
};
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// Legal example 2
class A; // Forward declaration of A.

struct A // Define A.

{
private:
int i;
}:
// Legal example 3
union A; // Forward declaration of A.
union A // Define A.
{
int 1;
char ch[2];
};

These examples, however, are illegal:

// I11egal example 1
union A; // Forward declaration of A.

struct A // Define A.
{
int i;
1
// I1legal example 2
union A; // Forward declaration of A.

class A // Define A.
{
pubtic:
int i;
};
// I1legal example 3
struct A; // Forward declaration of A.

union A // Define A.
{

int 1i;

char ch[2];
};

Nested Type Names

Microsoft C++ supports declaration of nested types —both named and anonymous.

Syntax
qualified-type-name:
typedef-name
class-name :: qualified-type-name

complete-class-name:
qualified-class-name
st qualified-class-name
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qualified-class-name:
class-name
class-name :: qualified-class-name

In some programming situations, it makes sense to define nested types. These types
are visible only to member functions of the class type in which they are defined.
They can also be made visible by constructing a qualified type name using the
scope-resolution operator (::).

Note One commonly used class hierarchy that employs nested types is iostream. In the
iostream header files, the definition of class ios includes a series of enumerated types,
which are packaged for use only with the iostream library.

The following example defines nested classes:

class WinSystem

{
pubtic:
class Window
{
public:
~ Window(); // Default constructor.
~Window(); // Destructor.
int NumberOf(); // Number of objects of class.
int Count(); // Count number of objects of class.
private:
static int CCount;
};
class CommPort
{
public:
CommPort(); // Default constructor.
~CommPort(); // Destructor.
int NumberOf(); // Number of objects of class.
int Count(); // Count number of objects of class.
private:
static int CCount;
I
1

// Initialize WinSystem static members.
int WinSystem::Window::CCount = 0;
int WinSystem::CommPort::CCount = 0;

To access a name defined in a nested class, use the scope-resolution operator (::) to
construct a complete class name. Use of this operator is shown in the initializations of
the static members in the preceding example. To use a nested class in your program,
use code such as:

WinSystem::Window Desktop;
WinSystem: :Window AppWindow;

cout << "Number of active windows: " << Desktop.Count() << "\n";
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Nested anonymous classes or structures can be defined as:

class Ledger

{
class
{
public:
double PayableAmt;
unsigned PayableDays;
} Payables;
class
(
public:
double RecvableAmt;
unsigned RecvableDays;
} Receivables;
};

An anonymous class must be an aggregate that has no member functions and no
static members.

Note Although an enumerated type can be defined inside a class declaration, the reverse
is not true; class types cannot be defined inside enumeration declarations.

Enumeration Declarations

An enumeration is a distinct integral type that defines named constants.
Enumerations are declared using the enum keyword.

Syntax
enum-name:.
identifier

enum-specifier:
enum identifieryy, { enum-listyy }
enum-list:

enumerator
enum-list , enumerator

enumerator:
identifier .
identifier = constant-expression

Enumerated types are valuable when an object can assume a known and
reasonably limited set of values. Consider the example of the suits from a
deck of cards:
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class Card
{
public:
enum Suit
{
Diamonds,
Hearts,
Clubs,
Spades
}.

// Declare two constructors: a default constructor,
// and a constructor that sets the cardinal and

// suit value of the new card.

Card();

Card( int CardInit, Suit SuitInit );

// Get and Set functions.

Chapter 6 Declarations

int  GetCardinal(); // Get cardinal value of card.

int ~ SetCardinal(); // Set cardinal value of card.

Suit GetSuit():; // Get suit of card.

void SetSuit(Suit new_suit); // Set suit of card.

char *NameOf(); // Get string representation of card.
private:

Suit suit;
int cardinalValue;
1

// Define a postfix increment operator for Suit.
inline Card::Suit operator++( Card::Suit &rs, int )

{
return rs = (Card::Suit)(rs + 1);

}

The preceding example defines a class, Card, that contains a nested enumerated
type, Suit. To create a pack of cards in a program, use code such as:

Card *Deck[52];
int j=10;

for( Card::Suit curSuit = Card::Diamonds; curSuit <= Card::Spades;
curSuit++ )
for( int i =1; 1 <= 13; ++i )
Deck[j++] = new Card( i, curSuit );
In the preceding example, the type Suit is nested; therefore, the class name
(Card) must be used explicitly in public references. In member functions, however,
the class name can be omitted.

In the first segment of code, the postfix increment operator for Card: :Suit is
defined. Without a user-defined increment operator, curSuit could not be
incremented. For more information about user-defined operators, see
“Overloaded Operators” on page 336 in Chapter 12.
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Consider the code for the NameOf member function (a better implementation is
presented later):

char* Card::NameOf() // Get the name of a card.

{
static char szName[20];
static char *Numbers[] =
[ IVlI!’ IV2", "3". 1|4"' "5"’ 'l6"' "7"' IVBN' ll9'l’
"1011’ "Jack", noueenn. "K.ingn
};
static char *Suits[] =
{ "Diamonds™, "Hearts", "Clubs", "Spades" };
if( GetCardinal() < 13)
strcpy( szName, Numbers[GetCardinal()] );
strcat( szName, " of " );
switch( GetSuit() )
( .
// Diamonds, Hearts, Clubs, and Spades do not need explicit
// class qualifier.
case Diamonds: strcat( szName, "Diamonds" ); break;
case Hearts: strcat( szName, "Hearts" ); break;
case Clubs: strcat( szName, "Clubs" ); break;
case Spades: strcat( szName, "Spades™ ); break;
1
return szName;
}

An enumerated type is an integral type. The identifiers introduced with the enum
declaration can be used wherever constants appear. Normally, the first identifier’s
value is 0 (Diamonds, in the preceding example), and the values increase by one
for each succeeding identifier. Therefore, the value of Spades is 3.

Any enumerator in the list, including the first one, can be initialized to-a value other
than its default value. Suppose the declaration of Suit had been the following:

enum Suit

{
Diamonds = 5,
Hearts,
Clubs = 4,
Spades

};

Then the values of Diamonds, Hearts, Clubs, and Spades would have been
5, 6, 4, and 5, respectively. Note that 5 is used more than once.

The default values for these enumerators simplify implementation of the NameOf
function:
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char* Card::NameOf() // Get the name of a card.

{
static char szName[20];
static char *Numbers[] =
{ "1", “2m, m3v, wgn, wgw, mgw wgw wge uge
"10". lIJaCk"' "Oueen", 1|K.ing"
I
static char *Suits[] =
{ "Diamonds"™, "Hearts", "Clubs", "Spades"};
if( GetCardinal() < 13)
strcpy( szName, Numbers[GetCardinal()] );
strcat( szName, " of " );
strcat( szName, Suits[GetSuit()] );
return szName;
1

The accessor function GetSuit returns type Suit, an enumerated type.
Because enumerated types are integral types, they can be used as arguments to
the array subscript operator. (For more information, see “Subscript Operator”
on page 69 in Chapter 4.)

Enumerator Names

The names of enumerators must be different from any other enumerator or
variable in the same scope. However, the values can be duplicated.

Definition of Enumerator Constants

Enumerators are considered defined immediately after their initializers; therefore,
they can be used to initialize succeeding enumerators. The following example
defines an enumerated type that ensures that any two enumerators can be
combined with the OR operator:

enum FileOpenFlags

{
OpenReadOnly - =1,
OpenReadWrite = OpenReadOnly << 1,
OpenBinary = OpenReadWrite << 1,
OpenText = OpenBinary 1,
OpenShareable = OpenText K1
}:
In this example, the preceding enumerator initializes each succeeding
enumerator.

169



C++ Language Reference

Conversions and Enumerated Types

Because enumerated types are integral types, any enumerator can be converted to
another integral type by integral promotion. Consider this example:

enum Days

{
Sunday,
Monday,
Tuesday,
‘Wednesday,
Thursday,
Friday,
Saturday

};

int i;

Days d = Thursday:

i=d; // Converted by integral promotion.
cout << "i =" <KL i <K "\n";

However, there is no implicit conversion from any integral type to an enumerated type.
Therefore (continuing with the preceding example), the following statement is in error:

d = 6; // Erroneous attempt to set d to Saturday.

Assignments such as this, where no implicit conversion exists, must use a cast to
perform the conversion:

d = (Days)6; // Explicit cast-style conversion to type Days.
d = Days( 4 ); // Explicit function-style conversion to type Days.

The preceding example shows conversions of values that coincide with the
enumerators. There is no mechanism that protects you from converting a value that
does not coincide with one of the enumerators. For example:

d = Days( 967 );

Some such conversions may work. However, there is no guarantee that the resultant
value will be one of the enumerators. Additionally, if the size of the enumerator is too
small to hold the value being converted, the value stored may not be what you expect.

Linkage Specifications

170

The term “linkage specification” refers to the protocol for liﬁking functions (or
procedures) written in different languages. The following calling conventions
are affected:

¢ Case sensitivity of names.

¢ Decoration of names. In C, the compiler prefixes names with an underscore. This
is often called “decoration.” In C++, name decoration is used to retain type
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information through the linkage phase. (See “Decorated Names” in Visual C++
Programmer’s Guide online.)

e Order in which arguments are expected on the stack.

e Responsibility for adjusting the stack on function return. Either the called function
or the calling function is responsible.

. Pdssing of hidden arguments (whether any hidden arguments are passed).

Syntax

linkage-specification:
extern string-literal { declaration-list,y }
extern string-literal declaration

declaration-list:
declaration
declaration-list

Linkage specification facilitates gradually porting C code to C++ by allowing the
use of existing code.

Microsoft Specific —

The only linkage specifications currently supported by Microsoft C++ are ""C"
and "C++".

END Microsoft Specific

The following example declares the functions atoi and atol with C linkage:

extern "C"
{
int atoi( char *string ):
Tong atol( char *string );
}

Calls to these functions are made using C linkage. The same result could be achieved
with these two declarations:

extern "C" int atoi( char *string );
extern "C" long atol( char *string );

Microsoft Specific —

All Microsoft C standard include files use conditional compilation directives to detect
C++ compilation. When a C++ compilation is detected, the prototypes are enclosed in
an extern ''C" directive as follows:

// Sample.h

#if defined(__cplusplus)
extern "C"

{

ffendif
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// Function declarations

#Hif defined(__cplusplus)
}
ffendif

END Microsoft Specific

You do not need to declare the functions in the standard include files as
extern "'C"".

If a function is overloaded, no more than one of the functions of the same name
can have a linkage specifier. (For more information, see “Function Overloading”
on page 214 in Chapter 7.)

Table 6.3 shows how various linkage specifications work.

Table 6.3 Effects of Linkage Specifications

Specification Effect
On an object Affects linkage of that object only
On a function . Affects linkage of that function and all functions or objects

declared within it

On a class Affects linkage of all nonmember functions and objects declared
within the class

If a function has more than one linkage specification, they must agree; it is an
error to declare functions as having both C and C++ linkage. Furthermore, if two
declarations for a function occur in a program—one with a linkage specification
and one without—the declaration with the linkage specification must be first.
Any redundant declarations of functions that already have linkage specification
are given the linkage specified in the first declaration. For example:

extern "C" int CFuncl();

int CFuncl(); ‘ // Redeclaration is benign; C linkage is
// retained.

int CFunc2();

extern "C" int CFunc2(); // Error: not the first declaration of
// CFunc2; cannot contain linkage
// specifier.

Functions and objects explicitly declared as static within the body of a compound
linkage specifier ({ }) are treated as static functions or objects; the linkage specifier
is ignored. Other functions and objects behave as if declared using the extern
keyword. (See “Storage-Class Specifiers” on page 153 for details about the

extern keyword.)
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Template Specifications

The template declaration specifies a set of parameterized classes or functions.

Note For more information, see “Template Topics” in Visual C++ Programmer’s.Guide
online.

Syntax
template-declaration:
template < template-argument-list > declaration

template-argument-list:
template-argument
template-argument-list , template-argument

template-argument:
type-argument
argument-declaration

type-argument:
class identifier
typename identifier

The declaration declares a function or a class. With function templates, each
template-argument must appear at least once in the template-argument-list
of the function being declared.

The template-argument-list is a list of arguments used by the template
function that specifies which parts of the following code will vary.
For example:

template< class T, int i > class MyStack...

In this case the template can receive a type (class T) and a constant
parameter (int I). The template will use type T and the constant integer 1
upon construction. Within the body of the MyStack declaration, you must
refer to the T identifier.

The typename keyword can be used in the template-argument-list. The
following template declarations are identical:

template< class T1, class T2 > class X...
template< typename T1, typename T2 > class X...

Template arguments of the following form are allowed:

template<typename Type> class allocator (};
template<typename Type,

typename Allocator = allocator<Type> > class stack {};
stack<int> MyStack;
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Visual C++ 5.0 now supports the reuse of template parameters in the template
parameter list. For example, the following code is now legal:

class Y {...}:
template<class T, T* pT> class X1 {...};
template<class Tl, class T2 = T1> class X2 {...};

Y aY;

X1<Y, &a¥Y> x1;
X2<int> x2;

A template declaration itself does not generate code; it specifies a family of
classes or functions, one or more of which will be generated when referenced
by other code.

Template declarations have global or namespace scope.

Visual C++ 5.0 now performs syntax checking of template definitions. This
version of Visual C++ can detect errors that previous versions cannot. The
compiler can now detect syntax errors of templates that are defined but never
instantiated.

Here is a list of common errors which could compile with the Visual C++ 4.0
compiler, but not the Visual C++ 5.0 compiler:

e A user-defined type is used in a template declaration before it is declared,
but it is declared before the first instantiation or use of the template.
For example:
template<class T> class X {\
/...

Data m_data; //Error Visual C++ 5.0, Data not defined
}s

class Data {...}:

void g() { X<int> x1; }
¢ Move the declaration of Data before the class template X to fix this problem.

¢ A member function is declared outside a class template, whereas it is never
declared inside the class. For example:

template<class T> class X {
//no mf declared here
1;

// This definition did not cause an error with Visual
// C++ 4.0, but it will cause an error with Visual
// C+ 5.0

//

template<class T> void X<T>::mf() {...};
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e A class identifier is considered to be a normal class unless declared to be
a class template. For example, the following code generates an error with
Visual C++ 5.0 but not with Visual C++ 4.0:

template<class T> class X {
friend class Y<T>; // Parsed as Y 'less-than'
// T ‘greater-than’;
IKT> mf( ) // Parsed as Z 'less-than'
// T 'greater-than';
}:

template<class T> class Y {...};
template<class T> class Z {...};

X<int> x;

To fix the problem, forward declare Y and Z before the definition of X.

template<class T> class Y {...};
template<class T> class Z {...};

template<class T> class X {...};

Referencing a Template

To reference a template class or function use the following syntax:

Syntax
template-class-name:
template-name < template-arg-list >

template-arg-list:
template-arg
template-arg-list , template-arg

template-arg:
expression
type-name

All template-arg arguments must be constant expressions. The compiler creates
a new instance (called an instantiation) of the templated class or function if there
is no exact match to a previously generated template. For example:

MyStack< unsigned long, 5 > stackl; // creates a stack of
// unsigned longs

MyStack< DWORD, 5 > stack2; // uses code created above
MyStack< char, 6 > stack3; // generates new code
MyStack< MyClass, 6 > stack4; // generates stack of

// MyClass objects

Each generated template function creates its own static variables and members.
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Function Templates

Class templates define a family of related classes that are based on the parameters
passed to the class upon instantiation. Function templates are similar to class
templates, but define a family of functions. Here is a function template that swaps

two items:
template< class T > void MySwap( T& a, T& b )
{ R

T ¢;

c=a; a=>b; b=c;

}

Although this function could be performed by a nontemplated function, using void
pointers, the template version is type-safe. Consider the following calls:

int j = 10;

int k = 18;

CString Hello = "Hello, Windows!";
MySwap( j. k ); //0K
MySwap( j, Hello ); //error

The second My Swap call triggers a compile-time error, since the compile cannot
generate a MySwap function with parameters of different types. If void pointers were
used, both function calls would compile correctly, but the function would not work
properly at run time.

Explicit specification of the template arguments for a function template is allowed.
For example:

template<class T> void f(T) {...}

void g(char j) {

f<int>(j); //generate the specialization f(int)
} .

When the template argument is explicitly specified, normal implicit conversions are done
to convert the function argument to the type of the corresponding function template
parameters. In the above example, the compiler will convert (char j) to type int.

Member Function Templates

After declaring a templated class, define member functions as function templates.
For example:

template<class T, int i> class MyStack
{

T* pStack;

T StackBuffer[i];

int cltems = i * sizeof(T);
public:

MyStack( void );

void push( const T item );

T& pop( void );
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template< class T, int i > MyStack< T, i >::MyStack( void )

...}

template< class T, int i > void MyStack< T, i >::push( const T item )
...}

template< class T, int i > T& MyStack< T, i >::pop( void )

{ ...}

Note that the definition of the constructor function does not include the template
argument list twice.

Explicit Instantiation

Explicit instantiation lets you create an instantiation of a templated class or function
without actually using it in your code. Since this is useful when you are creating
library (.LIB) files that use templates for distribution, uninstantiated template
definitions are not put into object (.OBJ) files.

The following explicitly instantiates MyStack for int variables and six items:
template class MyStack<int, 6>;

This statement creates an instantiation of MyStack without reserving any storage
for an object; code is generated for all members.

The following explicitly instantiates only the constructor member function:
template MyStack<int, 6>::MyStack( void );

Visual C++ 5.0 now supports explicit instantiation of function templates. Previous
versions only supported the explicit instantiation of class templates. For example,
the following code is now legal:

template<class T> void f(T) (...}

//Instantiate f with the explicitly specified template
//argument 'int'

/1

template void f<int> (int);

//Instantiate f with the deduced template argument 'char'
1/
template void f(char);

Microsoft Specific —

You can use the extern keyword to prevent the automatic instantiation of members.
For example:

extern template class MyStack<int, 6>;
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Similarly, you can mark specific members as being external and not instantiated as
follows:

extern template MyStack<int, 6>::MyStack( void );

Note The extern keyword in the specialization only applies to member functions defined
outside of the body of the class. Functions defined inside the class declaration are considered
inline functions and are always instantiated.

END Microsoft Specific

Differences from Other Implementations

Microsoft Specific —

Templates are not officially standardized and, as a result, different C++ compiler
vendors have implemented them differently. The following list shows some
differences between this version of Visual C++ and other compilers. Note that this list
will change in future versions of the compiler.

e The compiler cannot instantiate a template outside of the module in which it is
defined.

e Templates cannot be used with functions declared with __declspec (dllimport) or
__declspec (dllexport).

¢ All template arguments must be of an unambiguous type that exactly matches that
of the template parameter list. For example:
template< class T > T check( T );
template< class S > void watch( int (*)(S) );
watch( check ); /lerror
The compiler should instantiate the check templated function in the form int
check( int ), but the inference can not be followed.

¢ Friend functions must be declared before they are used in a templated class. You
cannot have a friend function defined within a class definition. This is because the
friend function could be a templated function, which would cause an illegal nested
template definition.

END Microsoft Specific

Namespaces
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The C++ language provides a single global namespace. This can cause problems with
global name clashes. For instance, consider these two C++ header files:

// one.h
char func(char);
class String { ... };

// somelib.h
class String { ... };
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With these definitions, it is impossible to use both header files in a single program;
the String classes will clash.

A namespace is a declarative region that attaches an additional identifier to any
names declared inside it. The additional identifier makes it less likely that a name
will conflict with names declared elsewhere in the program. It is possible to use the
same name in separate namespaces without conflict even if the names appear in the
same translation unit. As long as they appear in separate namespaces, each name
will be unique because of the addition of the namespace identifier. For example:

// one.h
namespace one
{
char func(char);
class String { ... };
}

// somelib.h
namespace SomelLib
{
class String { ... };
}

Now the class names will not clash because they become one::String and
Somelib::String, respectively.

Declarations in the file scope of a translation unit, outside all namespaces, are still
members of the global namespace.

namespace Declaration

A namespace declaration identifies and assigns a name to a declarative region.

Syntax
original-namespace-name :
identifier

namespace-definition :
original-namespace-definition
extension-namespace-definition
unnamed-namespace-definition
original-namespace-definition :
namespace identifier { namespace-body }
extension-namespace-definition :
namespace original-namespace-name { namespace-body }

unnamed-namespace-definition : ,
namespace { namespace-body }

namespace-body :
declaration-seqoy

179



C++ Language Reference

180

The identifier in an original-namespace-definition must be unique in the
declarative region in which it is used. The identifier is the name of the namespace
and is used to reference its members. Subsequently, in that declarative region, it
is treated as an original-namespace-name.

The declarative region of a namespace-definition is its namespace-body.

A namespace can contain data and function declarations. The declaration-seq is
a list of these declarations which are said to be members of the namespace.

Unnamed namespaces

An unnamed-namespace-definition behaves as if it were replaced by:

namespace unique { namespace-body }
using namespace unique;

Each unnamed namespace has an identifier, represented by unigue, that differs
from all other identifiers in the entire program. For example:

namespace { int i; } // unique::i
void f() { i+t+; } // unique::i++

namespace A {
namespace {
int I; // A::unique::i
int j: // A::unique::j
}

using namespace A;

void h()

{
I++; // error: unique::i or A::unique::i
A:iitt; // error: A::i undefined
J++; // A::unique::j+t+

}

Unnamed namespaces are a superior replacement for the static declaration of
variables. They allow variables and functions to be visible within an entire
translation unit, yet not visible externally. Although entities in an unnamed
namespace might have external linkage, they are effectively qualified by a
name unique to their translation unit and therefore can never be seen from
any other translation unit.
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namespace Definition

A namespace-definition can be nested within another namespace-definition.
Every namespace-definition must appear either at file scope or immediately
within another namespace-definition.

For example:

namespace A {
int j = 3;
int f(int k);
}

namespace Outer {
int n = 6;
int func(int num);

namespace Inner {
float f = 9.993;

}
}
void main()
{
namespace local { ... } // error: not at global scope
}

Unlike other declarative regions, the definition of a namespace can be split over
several parts of a single translation unit.

namespace A {
// declare namespace A variables
int i;
int j;

}

namespace B {

}

namespace A {
// declare namespace A functions
void func(void);
int int_func(int 1);

1

‘When a namespace is continued in this manner, after its initial definition, the
continuation is called an extension-namespace-definition.
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Defining namespace Members

‘Members of a namespace may be defined within that namespace. For example:
namespace X { void f() { } }

Members of a named namespace can be defined outside the namespace in which
they are declared by explicit qualification of the name being defined. However,
the entity being defined must already be declared in the namespace. In addition,
the definition must appear after the point of declaration in a namespace that
encloses the declaration’s namespace. For example:

namespace Q {
namespace V {

void f();
}
void V::f() { } // ok
void V::g() { } // error, g() is not yet a member of V

namespace V {
void g();
}
}

Namespace Alias

A namespace-alias is an alternative name for a namespace.

Syntax
namespace-alias :
identifier

namespace-alias-definition :
namespace identifier = qualified-namespace-specifier;

qualified-namespace-specifier :
iopt Nested-name-specifieropt class-or-namespace-name

A namespace-alias-definition declares an alternate name for a namespace. The
identifier is a synonym for the qualified-namespace-specifier and becomes a
namespace-alias. For example:

namespace a_very_long_namespace_name { ... }
namespace AVLNN = a_very_long_namespace_name;
// AVLNN is now a namespace-alias for a_very_long_namespace_name.

A namespace-name cannot be identical to any other entity in the same declarative
region. In addition, a global namespace-name cannot be the same as any other
global entity name in a given program.
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using Declaration

The using declaration introduces a name into the declarative region in which the
using declaration appears. The name becomes a synonym for an entity declared
elsewhere. It allows an individual name from a specific namespace to be used
without explicit qualification. This is in contrast to the using directive, which
allows all the names in a namespace to be used without qualification. See

“using Directive” on page 187 for more information.

Syntax

using-declaration :
using ::., nested-name-specifier unqualified-id
using :: unqualified-id

A using-declaration can be used in a class definition. For example:

class B

{
void f(char);
void g(char);

1;
class D : B
{
using B::f;
void f(int) { f('c'); } // calls B::f(char)
void g(int) { g('c"); } // recursively calls D::g(int)
// only B::f is being used
1;

When used to declare a member, a using-declaration must refer to a member of
a base class. For example:

class C
{ .
int g();
};
class D2 : public B
{
using B::f; // ok: B is a base of D2
using C::g; // error: C isn't a base of D2
1

Members declared with a using-declaration can be referenced using explicit
qualification. The :: prefix refers to the global namespace. For example:

void f();

namespace A
{

void g();
}
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namespace X

{
using ::f; // global f
using A::g; // A's g
}
void h()
{
Xe:ef(); // calls ::f
X:e:g()s // calls A::g
}

Just as with any declaration, a using-declaration can be used repeatedly only where
multiple declarations are allowed. For example:

namespace A
{

int i;
}

void f()
{

using A::i;

using A::1; // ok: double declaration
}

class B

{

protected:
int i;

};

class X : public B
{
public:
using B::1;
using B::i; // error: class members cannot be multipally declared
}s '

When a using-declaration is made, the synonym created by the declaration refers only
to definitions that are valid at the point of the using-declaration. Definitions added to
a namespace after the using-declaration are not valid synonyms. For example:

namespace A

{ void f(int);

}

using A::f; // f is a synonym for A::f(int) only
namespace A

I void f(char);
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void f()
{

f('a'); // refers to A::f(int), even though A::f(char) exists
}

void b()

{
using A::f; // refers to A::f(int) AND A::f(char)
f('a'); // calls A::f(char);

}

A name defined by a using-declaration is an alias for its original name. It does not
affect the type, linkage or other attributes of the original declaration.

If a set of local declarations and using-declarations for a single name are given in a
declarative region, they must all refer to the same entity, or they must all refer to
functions. For example:

namespace B

{
int i;
void f(int);
void f(double);
}
void g()
{
int i;
using B::i; // error: i declared twice
void f(char);
using B::f; // ok: each f is a function
}

In the example above, the using B::7 statement causes a second int i to be
declared in the g() function. The using B: :f statement does not conflict with the
f(char) function because the function names introduced by B: : f have different
parameter types. :

A local function declaration cannot have the same name and type as a function
introduced by a using-declaration. For example: '

namespace B

{
void f(int);
void f(double);

}

namespace C

{
void f(int);
void f(double);
void f(char);

1
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void h()

{
using B::f; //
using C::f; //
f('h'); //
f(l); //
void f(int); //

}

introduces B::f(int) and B::f(double)
C::f(int),
calls C::f(char)

error: ambiguous: B::f(int) or C::f(int)?

error:

C::f(double), and C::f(char)

conflicts with B::f(int) and C::f(int)

When a using-declaration introduces a name from a base class into a derived class
scope, member functions in the derived class override virtual member functions with
the same name and argument types in the base class. For example:

struct B
{

virtual void f(int);

virtual void f(char);

void g(int);
void h(int);

};

struct D : B

{
using B::f;
void f(int);
using B::g;
void g(char);
using B::h;
void h(int);

};

void f(D* pd)

{
pd->f(1);
pd->f('a');
pd->g(1);
pd->g('a');

}

/7

//

//
//

ok: D::f(int) overrides B::f(int)

ok: there is no B::g(char)

error:

D::h(int) conflicts with B::h(int)

B::h(int) is not virtual

calls
calls
calls
calls

oW wo

:f(int)
::f(char)
::g(int)
:g(char)

All instances of a name mentioned in a using-declaration must be accessible. In
particular, if a derived class uses a using-declaration to access a member of a base
class, the member name must be accessible. If the name is that of an overloaded
member function, then all functions named must be accessible. For example:

class A
{
private:

void f(char);
public:

void f(int);
protected:

void g();
1
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class B : public A

{

using A::f; // error: A::f(char) is inaccessible
public:

using A::g; // B::g is a public synonym for A::g
}:

See Chapter 10, “Member-Access Control” for more information on accessibility
of members.

using Directive

The using-directive allows the names in a namespace to be used without the
namespace-name as an explicit qualifier. In contrast to a using declaration, which
allows an individual name to be used without qualification, the using directive
allows all the names in a namespace to be used without qualification. See “using
Declaration” on page 183 for more information.

Syntax
using-directive :
using namespace ::o, hested-name-specifieroy, namespace-name

The intent of the using-directive is to allow unique, descriptive names to be used
when declaring functions and variables, without requiring the complete name every
time access to the functions or variables is needed. Of course, the complete, qualified
name can still be used to retain clarity.

The unqualified names can be used from the point of the using directive on. If a
namespace is extended after a using-directive is given, the additional members of
the namespace can be used, without qualification, after the extended-namespace-
definition. For example:

namespace M
{

int i;
}

using namespace M;

namespace N

{
int j;
double f() { return M::d; } // error: M::d does not yet exist
}
namespace M // namespace extension
{
double d;
}

// now M::d can be used
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It is possible for a using-directive to introduce conflicting names when used in another
namespace. For example: '

namespace M

{
int i;
1
namespace N
{
int i; .
using namespace M; // no error here
} .
void f()
{
using namespace N;
i =7; " // error: ambiguous: M::i or N::i?
1

In this example, bringing M: : i into namespace N does not hide the declaration
of N: : 1, but instead creates an ambiguity when N: : i is used. In this manner,
the using-directive can easily introduce unintended ambiguities. Consider the
following code fragment:

namespace D

{
int dl;
void f(int);
void f(char);
}

using namespace D;

int dl; // no conflict with D::dl
namespace- E
{
int e;
void f(int);
1
namespace D - // namespace extension
{
int d2;
using namespace E;
void f(int);
}
void f()
{
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dl++; * // error: ambiguous: ::dl or D::d1?

cdl++; // ok

D::dl++; // ok

d2++; // ok: D::d2

e++; // ok: E::e

f(1l); // error: ambiguous: D::f(int) or E::f(int)?
f('a'); // ok D::f(char)

}

When a variable is referenced after a using-directive, the local variable of the same name
takes precedence over the one declared in the specified namespace. For example:

namespace N {
int data = 4;
}

void f(bool flag) {
int data = 0;

if (flag) {
using namespace N;

prinf(“data=%d\n”, data);
}
}

void main() {
f(true);
}

In the above code, the variable data referenced in the printf statement is the local

variable initialized to 0, instead of the variable initialized in namespace N. The output
is data=0 instead of data=4.

~ In the presence of namespace using-directives, the way qualified names are looked up
is shown in the following example:

namespace A {
int flat = 0;
}

namespace B {
using namespace A;
}

namespace C {
using namespace A;
using namespace B;
}

void main() {
printf(“C::flag = %d\n”, C::flag);
}
The qualified name (C: : f1ag) is resolved to (A: : f1ag) due to the namespace
using-directives in namespace C.
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A name in a class or namespace can be accessed using an explicit qualifier.

Syntax

id-expression :
unqualified-id
qualified-id

nested-name-specifier :
class-or-namespace-name :: nested-name-specifier oy

class-or-namespace-name :
class-name
namespace-name

namespace-name .
original-namespace-name
namespace-alias

This is very similar to using the scope operator to resolve access to a member of
a class. For more information, see “Qualified Names” on page 68 in Chapter 4.



CHAPTER 7

Declarators

A “declarator” is the part of a declaration that names an object, type, or function.
Declarators appear in a declaration as one or more names separated by commas;
each name can have an associated initializer.

Syntax
declarator-list:

init-declarator

declarator-list , init-declarator
init-declarator:

declarator initializer oy

This chapter includes the following topics:

¢ Overview

¢ Type names

o Abstract declarators
e Function definitions

e Initializers

Overview of Declarators

Declarators are the components of a declaration that specify names. Declarators
can also modify basic type information to cause names to be functions or
pointers to objects or functions. (Specifiers, discussed on page 152 in Chapter 6,
“Declarations,” convey properties such as type and storage class. Modifiers,
discussed in this chapter and in Appendix B, “Microsoft-Specific Modifiers,”
modify declarators.) Figure 7.1 shows a complete declaration of two names,
szBuf and strcpy, and calls out the components of the declaration.
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Figure 7.1 Specifiers, Modifiers, and Declarators

specifiers declaratort declarator2
/7 i I— \ 7 i r i \/ r

far, *, and () modifiers il

Microsoft Specific —

Most Microsoft extended keywords can be used as modifiers to form derived types;
they are not specifiers or declarators. (See Appendix B, “Microsoft-Specific
Modifiers.”)

END Microsoft Specific

Syntax
declarator:
dname ‘
ptr-operator declarator
declarator ( argument-declaration-list ) cv-mod-list
declarator [ constant-expressiongy ]
( declarator )
ptr-operator:
* cv-qualifier-listyy
& cv-qualifier-listqy
complete-class-name :: * cv-qualifier-list,y
cv-qualifier-list:
cv-qualifier cv-qualifier-listoy
cv-qualifier:
const
volatile
cv-mod-list.
cv-qualifier cv-mod-list,y
pmodel cv-mod-list g
dname:
name
class-name
~ class-name
typedef-name
qualified-type-name

Declarators appear in the declaration syntax after an optional list of specifiers
(decl-specifiers). These specifiers are discussed in Chapter 6, “Declarations.”
A declaration can contain more than one declarator, but each declarator declares
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only one name. The following sample declaration shows how specifiers and
declarators are combined to form a complete declaration:
const char *pch, ch;

In this preceding declaration, the keywords const and char make up the list of
specifiers. Two declarators are listed: *pch and ch. The simplified syntax of a
declaration, then, is the following, where const char is the type and *pch
and ch are the declarators:

type declarator\[, declarator,|...,declarator,]] ;

When the binding of elements in a declarator list does not yield the desired result,
you can use parentheses for clarification. A better technique, however, is to use

a typedef or a combination of parentheses and the typedef keyword. Consider
declaring an array of pointers to functions. Each function must obey the same
protocol so that the arguments and return values are known:

// Function returning type int that takes one
/1 argument of type char *.
typedef int (*PIFN)( char * );

// Declare an array of 7 pointers to functions

// - returning int and taking one argument of type
// char *,

PIFN pifnDispatchArray[7];

The equivalent declaration can be written without the typedef declaration, but it is
so complicated that the potential for error exceeds any benefits:

int ( *pifnDispatchArray[7] )( char * );

Type Names

Type names are used in some declarators in the following ways:
¢ In explicit conversions

* As arguments to the sizeof operator

¢ As arguments to the new operator

¢ In function prototypes

¢ In typedef statements

A type name consists of type specifiers, as described in Chapter 6, “Declarations,”
and the next section, “Abstract Declarators.”

In the following example, the arguments to the function strepy are supplied using
their type names. In the case of the source argument, const char is the specifier
and * is the abstract declarator:

static char *szBuf, *strcpy( char *dest, const char *source )i
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Syntax
type-name:
type-specifier-list abstract-declaratory
type-specifier-list:
type-specifier type-specifier-listoy
abstract-declarator:
pir-operator abstract-declaratore,
abstract-declaratoryy ( argument-declaration-list ) cv-qualifier-listqy
abstract-declaratorqy [ constant-expressiongy |
( abstract-declarator )

Abstract Declarators
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An abstract declarator is a declarator in which the identifier is omitted. (For related
information, see the previous section, “Type Names.”)

The following abstract declarators are discussed in this section:

e Pointers

e References

o Pointers to members

e Arrays

¢ Functions

¢ Default arguments

An abstract declarator is a declarator that does not declare a name— the identifier
is left out. For example,

char *

declares the type “pointer to type char.” This abstract declarator can be used in a
function prototype as follows:

char *strcmp( char *, char * );

In this prototype (declaration), the function’s arguments are specified as abstract
declarators. The following is a more complicated abstract declarator that declares
the type “pointer to a function that takes two arguments, both of type char *,” and
returns type char *:

char * (*)( char *, char * )

Since abstract declarators completely declare a type, it is legal to form expressions
of the form: ’

// Get the size of array of 1@ pointers to type char.
size_t nSize = sizeof( char *[10] );
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// Allocate a pointer to a function that has no
// return value and takes no arguments.
typedef void (PVFN *)();

PVFN *pvfn = new PVFN;

// Allocate an array of pointers to functions that
// return type WinStatus, and take one argument of
// type WinHandle.

typedef WinStatus (PWSWHFN *)( WinHandle ):

PWSWHFN pwswhfnArray[] = new PWSWHFN[101];

Ambiguity Resolution

To perform explicit conversions from one type to another, you must use casts,
specifying the desired type name. Some type casts result in syntactic ambiguity.
The following function-style type cast is ambiguous:

char *aName( String( s ) );

It is unclear whether it is a function declaration or an object declaration with a
function-style cast as the initializer: It could declare a function returning type char *
that takes one argument of type String, or it could declare the object aName and
initialize it with the value of s cast to type String.

If a declaration can be considered a valid function declaration, it is treated as such.
Only if it cannot possibly be a function declaration —that is, if it would be
syntactically incorrect—is a statement examined to see if it is a function-style type
cast. Therefore, the compiler considers the statement to be a declaration of a function
and ignores the parentheses around the identifier s. On the other hand, the statements:

char *aName( (String)s );
and
char *aName = String( s );

are clearly declarations of objects, and a user-defined conversion from type String
to type char * is invoked to perform the initialization of aName.

Pointers

Pointers are declared using the declarator syntax:

* cv-qualifier-list,, dname

A pointer holds the address of an object. The full declaration, then, is:
decl-specifiers * cv-qualifier-list,, dname ;

A simple example of such a declaration is:

char *pch;

The preceding declaration specifies that pch points to an object of type char.
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const and volatile Pointers

The const and volatile keywords change how pointers are treated. The const keyword
specifies that the pointer cannot be modified after initialization; the pointer is
protected from modification thereafter.

The volatile keyword specifies that the value associated with the name that follows
can be modified by actions other than those in the user application. Therefore, the
volatile keyword is useful for declaring objects in shared memory that can be
accessed by multiple processes or global data areas used for communication with
interrupt service routines.

When a name is declared as volatile, the compiler reloads the value from memory
each time it is accessed by the program. This dramatically reduces the possible
optimizations. However, when the state of an object can change unexpectedly, it is
the only way to ensure predictable program performance.

To declare the object pointed to by the pointer as const or volatile, use a declaration
of the form:

const char *cpch;
volatile char *vpch;

To declare the value of the pointer —that is, the actual address stored in the pointer —
as const or volatile, use a declaration of the form:

char * const pchc;
char * volatile pchv; -

The C++ language prevents assignments that would allow modification of an object

“or pointer declared as const. Such assignments would remove the information that

the object or pointer was declared with, thereby violating the intent of the original
declaration. Consider the following declarations:

const char cch = "A';
char ch = 'B';

Given the preceding declarations of two objects (cch, of type const char, and ch,
of type char), the following declaration/initializations are valid:

const char ~ *pchl = &cch;
const char *const pch4 = &cch;
const char *pch5 = &ch;
char *pché = &ch;
char *const pch7 = &ch;
const char *const pch8 = &ch;

The following declaration/initializations are erroneous.

char *pch2 = &cch; // Error
char *const pch3 = &cch; // Error



The declaration of pch2 declares a pointer through which a constant object might
be modified and is therefore disallowed. The declaration of pch3 specifies that the
pointer is constant, not the object; the declaration is disallowed for the same reason
the pch2 declaration is disallowed.

The following eight assignments show assigning through pointer and changing of
pointer value for the preceding declarations; for now, assume that the initialization
was correct for pchl through pch8.

*pchl = *A'; // Error: object declared const
pchl = &ch; // OK: pointer not declared const
*pch2 = "A'; // OK: normal pointer

pch2 = &ch; // OK: normal pointer

*pch3 = 'A'; // OK: object not declared const

pch3 = &ch; // Error: pointer declared const
*pch4 = *A'; // Error: object declared const
pch4 = &ch; // Error: pointer declared const

Pointers declared as volatile or as a mixture of const and volatile obey the
same rules.

Pointers to const objects are often used in function declarations as follows:

char *strcpy( char *szTarget, const char *szSource );

The preceding statement declares a function, strepy, that takes two arguments of
type “pointer to char” and returns a pointer to type char. Because the arguments
are passed by reference and not by value, the function would be free to modify both
szTarget and szSource if szSource were not declared as const. The declaration
of szSource as const assures the caller that szSource cannot be changed by the
called function.

Note Because there is a standard conversion from fypename * to const typename *,
it is legal to pass an argument of type char * to strcpy. However, the reverse is not true;
no implicit conversion exists to remove the const attribute from an object or pointer.

A const pointer of a given type can be assigned to a pointer of the same type.
However, a pointer that is not const cannot be assigned to a const pointer. The
following code shows correct and incorrect assignments:

int *const cpObject = 0;
int *pObject;

void main()

{
pObject = cpObject; // OK
cpObject = pObject; // Error

Chapter 7 Declarators

197



C++ Language Reference

References

198

References are declared using the declarator syntax:

Syntax
& cv-qualifier-listyy, dname

A reference holds the address of an object but behaves syntactically like an object.
A reference declaration consists of an (optional) list of specifiers followed by a -
reference declarator.

Syntax

decl-specifiers & cv-qualifier-listo, dname ;
Consider the user-defined type Date:
struct Date

{
short DayOfWeek;
short Month;
short Day;
short Year;

};

The following statements declare an object of type Date and a reference to
that object:

Date Today; // Declare the object.
Date& TodayRef = Today: // Declare the reference.

The name of the object, Today, and the reference to the objéct, TodayRef,
can be used identically in programs: )

Today.DayOfWeek = 3; // Tuesday
TodayRef.Month 7; // July

Reference-Type Function Arguments

It is often more efficient to pass references, rather than functions, to large objects.
This allows the compiler to pass the address of the object while maintaining the
syntax that would have been used to access the object. Consider the following
example that uses the Date structure:

// Create a Julian date of the form DDDYYYY
// from a Gregorian date.
long JulianFromGregorian( Date& GDate )
{
static int cDaysInMonth{] = {
31, 28, 31, 3@, 31, 30, 31, 31, 30, 31, 30, 31
}s
Tong JDate;



// Add in days for months already elapsed.
for( int i = @; i < GDate.Month - 1; ++i )
JDate += cDaysInMonth[il;

// Add in days for this month.
JDate += GDate.Day;

// Check for leap year.
if( GDate.Year % 100 != 0 && GDate.Year % 4 == 0 )
JDate++;

// Add in year.
JDate *= 10000;
JDate += GDate.Year;

return JDate;
}

The preceding code shows that members of a structure passed by reference are
accessed using the member-selection operator (.) instead of the pointer
member-selection operator (—>).

Although arguments passed as reference types observe the syntax of nonpointer
types, they retain one important characteristic of pointer types: they are modifiable
unless declared as const. Because the intent of the preceding code is not to modify
the object GDate, a more appropriate function prototype is:

long JulianFromGregorian( const Date& GDate );

This prototype guarantees that the function JulianFromGregorian will not
change its argument.

Any function prototyped as taking a reference type can accept an object of the
same type in its place because there is a standard conversion from typename
to typename&.

Reference-Type Function Returns

Functions can be declared to return a reference type. There are two reasons to
make such a declaration:

o The information being returned is a large enough object that returning a
reference is more efficient than returning a copy.

o The type of the function must be an l-value.

Just as it can be more efficient to pass large objects fo functions by reference, it
also can be more efficient to return large objects from functions by reference.
Reference-return protocol eliminates the necessity of copying the object to a
temporary location prior to returning.

Chapter 7 Declarators
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Reference-return types can also be useful when the function must evaluate to an
I-value. Most overloaded operators fall into this category, particularly the assignment
operator. Overloaded operators are covered in “Overloaded Operators” on page 336

in Chapter 12. Consider the Point example from Chapter 4:

class Point
{
pubtic:
// Define "accessor" functions as
// reference types.
unsigned& x();
unsigned& y();
private:
unsigned obj_x;
unsigned obj_y:;

};

unsigned& Point :: x()
{ return obj_x;
insigned& Point :: y()
I return obj_y;

void main()
{
Point ThePoint;

// Use x() and y() as 1-values.
ThePoint.x() = 7;
ThePoint.y() = 9;

// Use x() and y() as r-values.
cout << "x = " << ThePoint.x() << "\n"
<< "y = " << ThePoint.y() << "\n";
}

Notice that the functions x and y are declared as returning reference types. These

functions can be used on either side of an assignment statement.

Declarations of reference types must contain initializers except in the following

cases:

o Explicit extern declaration

e Declaration of a class member
e Declaration within a class

e Declaration of an argument to a function or the return type for
a function
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References to Pointers

References to pointers can be declared in much the same way as references to
objects. Declaring a reference to a pointer yields a modifiable value that is used
like a normal pointer. The following code samples illustrate the difference between
using a pointer to a pointer and a reference to a pointer:

f#Hinclude <iostream.h>
#include <string.h>

// Define a binary tree structure.
struct BTree
{
char *szText;
BTree *Left;
BTree *Right;
};
// Define a pointer to the root of the tree.
BTree *btRoot = 0;

int Addl( BTree **Root, char *szToAdd ):
int Add2( BTree*& Root, char *szToAdd );
void PrintTree( BTree* btRoot );

int main( int argc, char *argv[] )

{

if( argc < 2 )

{
cerr << "Usage: Refptr [1 | 2]" << "\n";
cerr << "\n\twhere:\n";
cerr << "\tl uses double indirection\n";
cerr << "\t2 uses a reference to a pointer.\n";
cerr << "\n\tInput is from stdin.\n";
return 1;

}

char *szBuf = new char[132];

// Read a text file from the standard input device and
// build a binary tree.
while( lcin.eof() )
{

cin.get( szBuf, 132, '"\n' );

cin.get();

if( strlen( szBuf ) )

switch( *argv[1] )

{
// Method 1: Use double indirection.
case 'l1':

Addl( &btRoot, szBuf );

break;
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}

// Method 2: Use reference to a pointer.
case '2':
Add2( btRoot, szBuf );
break;
default: .
cerr << "IT1legal value '" << *argv[l]
<< "' supplied for add method.\n"
<< "Choose 1 or 2.\n";
return -1;
1
1

// Display the sorted 1list.
PrintTree( btRoot );
return 9;

// PrintTree: Display the binary tree in order.
void PrintTree( BTree* btRoot )

!

}

// Traverse the left branch of the tree recursively.
if( btRoot->Left )
PrintTree( btRoot->Left );

// Print the current node.
cout << btRoot->szText << "\n";

// Traverse the right branch of the tree recursively.
if( btRoot->Right )
PrintTree( btRoot->Right );

// Addl: Add a node to the binary tree.
//

Uses double indirection.

int Addl( BTree **Root, char *szToAdd )

{

if( (*¥Root) == 0 )
{
(*Root) = new BTree;
(*Root)->Left = 0;
(*Root)->Right = 0;
(*Root)->szText = new char[strlen( szToAdd ) + 1];
strepy( (*Root)->szText, szToAdd );
return 1;
1
else if( stremp( (*Root)->szText, szToAdd ) > 0 )
return Addl( &((*Root)->Left), szToAdd );
else
return Add1( &((*Root)->Right), szToAdd ):
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// Add2: Add a node to the binary tree.

17/ Uses reference to pointer
int Add2( BTree*& Root, char *szToAdd )
{
if( Root == 0 )
{
Root = new BTree;
Root->Left = 0;
Root->Right = 0;
Root->szText = new char[strlen( szToAdd ) + 11];
strcpy( Root->szText, szToAdd );
return 1;
}

else if( strcmp( Root->szText, szToAdd ) > 0 )
return Add2( Root->Left, szToAdd );
else
return Add2( Root->Right, szToAdd );
1

In the preceding program, functions Add1 and Add2 are functionally equivalent
(although they are not called the same way). The difference is that Add1 uses double
indirection whereas Add2 uses the convenience of a reference to a pointer.

Pointers to Members

Declarations of pointers to members are special cases of pointer declarations.

Syntax ‘
decl-specifiers class-name :: * cv-qualifier-list,, dname ;

A pointer to a member of a class differs from a normal pointer because it has

type information for the type of the member and for the class to which the member
belongs. A normal pointer identifies (has the address of) only a single object in
memory. A pointer to a member of a class identifies that member in any instance
of the class. The following example declares a class, Window, and some pointers
to member data.

ciass Window

{

public:
Window(); // Default constructor.
Window( int x1, int yl, // Constructor specifying

int x2, int y2 ); // window size.

BOOL SetCaption( const char *szTitle ); // Set window caption.
const char *GetCaption(); // Get window caption.
char *szWinCaption; // Window caption.

1;

// Declare a pointer to the data member szWinCaption.
char * Window::* pwCaption = &Window::szWinCaption;
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In the preceding example, pwCaption is a pointer to any member of class Window
that has type char*. The type of pwCaptionis char * Window: :*. The next code
fragment declares pointers to the SetCaption and GetCaption member functions.

cons‘t char * (Window::*pfnwGC)() = &Window::GetCaption; ‘
BOOL (Window::*pfnwSC)( const char * ) = &Window::SetCaption;

The pointers pfnwGC and pfnwSC point to GetCaption and SetCaption of the
Window class, respectively. The code copies information to the window caption
directly using the pointer to member pwCaption:

Window wMainWindow;

Window *pwChildWindow = new Window;

char  *szUntitled "Untitled - ";

int cUntitiedlLen strlen( szUntitled );

strcpy( wMainWindow.*pwCaption, szUntitled );
(wMainWindow.*pwCaption)[cUntitledLen - 1] = "1'; //same as
//wMainWindow.SzWinCaption [ 1 = '1";

strcpy( pwChildWindow->*pwCaption, szUntitled );
(pwChildWindow->*pwCaption)[szUntitledLen - 1] = '2'; //same as
//pwChildWindow->szWinCaption[ ] = '2°";

The difference between the .* and —>* operators (the pointer-to-member operators)
is that the .* operator selects members given an object or object reference, while the
—>* operator selects members through a pointer. (For more about these operators,
see “Expressions with Pointer-to-Member Operators” on page 107 in Chapter 4.)

The result of the pointer-to-member operators is the type of the member—in this
case, char *.

The following code fragment invokes the member functions GetCaption and
SetCaption using pointers to members:

// Allocate a buffer.
char szCaptionBase[100];

// Copy the main window caption into the buffer
// and append " [View 1]1".

strepy( szCaptionBase, (wMainWindow.*pfnwGC)() );
strcat( szCaptionBase, " [View 11" );

// Set the child window's caption.
(pwChildWindow->*pfnwSC)( szCaptionBase );

Restrictions on Pointers to Members

The address of a static member is not a pointer to member. It is a regular pointer to
the one instance of the static member. Because only one instance of a static member
exists for all objects of a given class, the ordinary address-of (&) and dereference (*)
operators can be used.
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Pointers to Members and Virtual Functions

Invoking a virtual function through a pointer-to-member function works as if the
function had been called directly: the correct function is looked up in the v-table and
invoked. The following code shows how this is done:

class Base
{
public:
virtual void Print();
};
void (Base ::* bfnPrint)() = &Base :: Print;
void Base :: Print()
{
cout << "Print function for class 'Base’\n";
}
class Derived : public Base
{
public: .
void Print(); // Print is still a virtual function.
};
void Derived :: Print()
{
cout << "Print function for class 'Derived’'\n";
}
void main()
{
Base *bPtr;
Base bObject;
Derived dObject;
bPtr = &b0Object: // Set pointer to address of bObject.
(bPtr->*bfnPrint)();
bPtr = &d0Object; // Set pointer to address of dObject.
(bPtr->*bfnPrint)();
}

The output from this program is:

Print function for class 'Base’
Print function for class 'Derived’

The key to virtual functions working, as always, is invoking them through a pointer
to a base class. (For more information about virtual functions, see “Virtual Functions”
on page 270 in Chapter 9.)
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Representing Pointers to Members of Classes Using
Inheritance

Declaring a pointer to a member of a class prior to the class definition impacts the size
and speed of the resulting executable file. The number of bytes required to represent

a pointer to a member of a class and the code required to interpret the representation
may depend on whether the class is defined with no, single, multiple, or virtual
inheritance.

In general, the more complex the inheritance used by a class, the greater the number
of bytes required to represent a pointer to a member of the class and the larger the
code required to interpret the pointer.

If you need to declare a pointer to a member of a class prior to defining the class, you
must use either the /vmg command-line option or the related pointers_to_members
pragma. Or you can specify the inheritance used in the class declaration using the
__single_inheritance, __multiple_inheritance, or __virtual_inheritance keywords,

thus allowing control of the code generated on a per-class basis. These options are
explained in the following.

Note If you always declare a pointer to a member of a class after defining the class, you don’t
need to use any of these options.

Microsoft attempts to optimize the representation and code generated for pointers to
members by selecting the most compact representation possible. This requires
defining the class the pointer to member is based upon at the point where the pointer
to member is declared. The pointers_to_members pragma allows you to relax this
restriction and to control the pointer size and the code required to interpret the pointer.

Syntax
#pragma pointers_to_members( pointer-declaration, [most-general-
representation] )

The pointer-declaration argument specifies whether you have declared a pointer to a
member before or after the associated function definition. The pointer-declaration
argument can be either full_generality or best_case.

The most-general-representation argument specifies the smallest pointer
representation that the compiler can safely use to reference any pointer to a member
of a class in a translation unit. This argument can be single_inheritance,
multiple_inheritance, or virtual_inheritance.

The pointers_to_members pragma with the best_case argument is the compiler
default. You can use this default if you always define a class before declaring a pointer
to a member of the class. When the compiler encounters the declaration of a pointer

to a member of a class, it already has knowledge of the kind of inheritance used



by the class. Thus, the compiler can use the smallest possible representation of a
pointer and generate the smallest amount of code required to operate on the pointer
for each kind of inheritance. This is equivalent to using /vmb on the command-line
to specify best-case representation for all classes in the compilation unit.

Use the pointers_to_members pragma with the full_generality argument if

you need to declare a pointer to a member of a class before defining the class.
(This need can arise if you define members in two different classes that reference
each other using pointers to members. For such mutually referencing classes,
one class must be referenced before it is defined.) The compiler uses the most
general representation for the pointer to the member. This is equivalent to the
/ving compiler option. If you specify full-generality, you must also specify
single-inheritance, multiple-inheritance, or virtual-inheritance. This

is equivalent to using the /vmg compiler option with the /vms, /vmm, or

/vmv option.

The pointers_to_members pragma with the full_generality, single_inheritance
arguments (/vims option with the /vmg option) specifies that the most general
representation of a pointer to a member of a class is one that uses no inheritance
or single inheritance. This is the smallest possible representation of a pointer to

a member of a class. The compiler generates an error if the inheritance model

of a class definition for which a pointer to a member is declared is multiple or
virtual. For example, placing this statement

f#ipragma pointers_to_members(full_generality, singl e_inheritance)

before a class definition declares that all class definitions that follow use only single
inheritance. Once specified, the option specified with the pointers_to_members
pragma cannot be changed.

The pointers_to_members pragma with the full_generality, multiple_inheritance
arguments (/vmm option with the /ving option) specifies that the most general
representation of a pointer to a member of a class is one that uses multiple
inheritance. This representation is larger than that required for single inheritance.
The compiler generates an error if the inheritance model of a class definition for
which a pointer to a member is declared is virtual.

The pointers_to_members pragma with the full_generality, virtual_inheritance
arguments (/vmv option with the /vmg option) specifies that the most general
representation of a pointer to a member of a class is one that uses virtual
inheritance. In terms of pointer size and the code required to interpret the

pointer, this is the most expensive option. However, this option never

causes an error and is the default when the full_generality argument to the
pointers_to_members pragma is specified or when the /vmg command-line
option is used.
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Syntax .
The equivalent language construction uses this syntax:

class-declaration:
class inheritance-typeqy class-name;
inheritance-type:
__single_inheritance
__multiple_inheritance
__virtual_inheritance

As shown in this example,

class __single_inheritance S;

int S::p;

regardless of compiler options or pragmas, pointers to members of class S will use
the smallest possible representation.

You can also explicitly give a forward declaration to the pointer-to-member
representation of a class that has a forward declaration.

Note The same forward declaration of a class pointer-to-member representation should
occur in every translation unit that declares pointers to members of that class, and the
declaration should occur before the pointers to members are declared.

Array .

An array is a collection of like objects. The simplest case of an array is a vector.
C++ provides a convenient syntax for declaration of fixed-size arrays:

Syntax
decl-specifiers dname [ constant-expressiongy, 1 ;

The number of elements in the array is given by the constant-expression. The first
element in the array is the Oth element, and the last element is the (n-1th) element,
where 7 is the size of the array. The constant-expression must be of an integral type
and must be greater than 0. A zero-sized array is legal only when the array is the last
field in a struct or union and when the Microsoft extensions (/Ze) are enabled.

Arrays are derived types and can therefore be constructed from any other derived or
fundamental type except functions, references, and void.

Arrays constructed from other arrays are multidimensional arrays. These
multidimensional arrays are specified by placing multiple [ constant-expression |
specifications in sequence. For example, consider this declaration:

int 12051071;

It specifies an array of type int, conceptually arranged in a two-dimensional matrix
of five rows and seven columns, as shown in Figure 7.2.
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Figure 7.2 Conceptual Layout of Multidimensional Array

0, 010, 110, 2
1, 01, 111, 2
2, 012,112, 2
3, 8]3, 1[3, 2
4, 014, 114, 2

In declarations of multidimensioned arrays that have an initializer-list (as described
in “Initializers” on page 223), the constant-expression that specifies the bounds for
the first dimension can be omitted. For example:

const int cMarkets = 4;

// Declare a float that represents the transportation costs.
double TransportCosts[][cMarkets] =
{ { 32.19, 47.29, 31.99, 19.11 },

{ 11.29, 22.49, 33.47, 17.29 },

{ 41.97, 22.09, 9.76, 22.55 1} 1};

The preceding declaration defines an array that is three rows by four columns. The
rows represent factories and the columns represent markets to which the factories
ship. The values are the transportation costs from the factories to the markets. The
first dimension of the array is left out, but the compiler fills it in by examining

the initializer.

The technique of omitting the bounds specification for the first dimension of a
multidimensioned array can also be used in function declarations as follows:

#include <float.h> // Includes DBL_MAX.
#include <iostream.h>

const int cMkts = 4;

// Declare a float that represents the transportation costs.
double TransportCosts[][cMkts] =
{ ( 32.19, 47.29, 31.99, 19.11 },
{ 11.29, 22.49, 33.47, 17.29 1},
{ 41.97, 22.09, 9.76, 22.55} 1};
// Calculate size of unspecified dimension.
const int cFactories = sizeof TransportCosts / sizeof( double[cMkts] ):

double FindMinToMkt( int Mkt, double TransportCosts[][cMkts],
int cFacts );

void main( int argc, char *argv[] )

{
double MinCost;
MinCost = FindMinToMkt( *argv[1] - '0', TransportCosts, cFacts );
cout << "The minimum cost to Market " << argv[1l] << "™ dis: "
<< MinCost << "\n";
}

Chapter 7 Declarators

209



C++ Language Reference

210

double FindMinToMkt( int Mkt, double TransportCosts[][cMkts],
int cFacts )
{
double MinCost = DBL_MAX;
for( int i = 0; i < cFacts; ++i )
MinCost = (MinCost < TransportCosts[i]1[Mkt]) ?
MinCost : TransportCosts[i]l[Mkt];
return MinCost;
}

The function FindMinToMkt is written such that adding new factories does not
require any code changes, just a recompilation.

Using Arrays

Individual elements of arrays are accessed using the array subscript operator ([ ]).
If a singly dimensioned array is used in an expression with no subscript, the array
name evaluates to a pointer to the first element in the array. For example:

char chArray[10];

char *pch = chArray; // Pointer to first element.
char ch = chArray[0]; // Value of first element.
ch = chArray[3]; // Value of fourth element.

‘When using multidimensioned arrays, various combinations are accéptable in
expressions. The following example illustrates this:

double multi[4]1[4]1[3]; // Declare the array.

double (*p2multi)[3];
double (*plmulti);

cout << multif31L2]L[3] << "\n"; // Use three subscripts.

p2multi = multi[3]; - // Make p2multi point to
// fourth "plane" of multi.
plmulti = multi[31[2]: // Make plmuiti point to fourth

// plane, second row of multi.

In the preceding code, multi is a three-dimensional array of type double. The
p2multi pointer points to an array of type double of size three. The array is used
with one, two, and three subscripts in this example. Although it is more common to
specify all the subscripts, as in the cout statement, it is sometimes useful to select a
specific subset of array elements as shown in the succeeding statements.

Arrays in Expressions

‘When an identifier of an array type appears in an expression other than sizeof,
address-of (&), or initialization of a reference, it is converted to a pointer to the -
first array element. For example:

char szErrorl[] = "Error: Disk drive not ready.”;
char *psz = szErrorl; .
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The pointer psz points to the first element of the array szErrorl. Note that arrays,
unlike pointers, are not modifiable 1-values. Therefore, the following assignment is
illegal:

szErrorl = psz;

Interpretation of Subscript Operator

Like other operators, the subscript operator ([ ]) can be redefined by the user. The
default behavior of the subscript operator, if not overloaded, is to combine the array
name and the subscript using the following method:

*((array-name) + (subscript))

As in all addition that involves pointer types, scaling is performed automatically to
adjust for the size of the type. Therefore, the resultant value is not subscript bytes from
the origin of array-name; rather, it is the subscriprth element of the array. (For more
information about this conversion, see “Additive Operators” on page 90 in Chapter 4.)

Similarly, for multidimensional arrays, the address is derived using the following
method:

*((array-name) + (subscript;* max, * maxs...max,)
+ subscript, ¥ maxs...max,)
... + subscript,))

Indirection on Array Types

Use of the indirection operator (*) on an n-dimensional array type yields an n—1
dimensional array. If n is 1, a scalar (or array element) is yielded.

Ordering of C++ Arrays

C++ arrays are stored in row-major order. Row-major order means the last subscript
varies the fastest.

Function Declarations

This section includes the following topics:
o Function declaration syntax
e Variable argument lists
e Declaring functions that take no arguments
o Function overloading
e Restrictions on functions
¢ The argument declaration list
o Argument lists in function prototypes (nondefining declaration)

e Argument lists in function definitions
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e Default arguments
o Default argument expressions

e Other considerations

Function definition is covered in “Function Definitions” on page 220.

Function Declaration Syntax

Syntax
decl-specifiers dname ( argument-declaration-list ) cv-mod-list,y
argument-declaration-list:
arg-declaration-list , ...
arg-declaration-list:
argument-declaration
arg-declaration-list , argument-declaration
argument-declaration:
decl-specifiers declarator
decl-specifiers declarator = expression
decl-specifiers abstract-declaratoryy,
decl-specifiers abstract-declaratorsy = expression

The identifier given by dname has the type “cv-mod-list function, taking
argument-declaration-list, and returning type decl-specifiers.”

Note that const, volatile, and many of the Microsoft-specific keywords can appear in
cv-mod-list and in the declaration of the name. The following example shows two
simple function declarations:

char *strchr( char *dest, char *src );
static int atoi( const char *ascnum ) const;

The following syntax explains the details of a function declaration:

Syntax
argument-declaration-list:
arg-declaration-listoy «opt
arg-declaration-list , ...
arg-declaration-list:
argument-declaration
arg-declaration-list , argument-declaration
argument-declaration:
decl-specifiers declarator
decl-specifiers declarator , expression
decl-specifiers abstract-declaratorgy
decl-specifiers abstract-declaratory, , expression
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Variable Argument Lists

Function declarations in which the last member of argument-declaration-list is the
ellipsis (...) can take a variable number of arguments. In these cases, C++ provides
type checking only for the explicitly declared arguments. You can use variable
argument lists when you need to make a function so general that even the number
and types of arguments can vary. The printf family of functions is an example of
functions that use variable argument lists.

To access arguments after those declared, use the macros contained in the standard
include file STDARG.H as described in “Functions with Variable Argument Lists”
on page 221.

Microsoft Specific —

Microsoft C++ allows the ellipsis to be specified as an argument if the ellipsis is the
first argument and the ellipsis is preceded by a comma. Therefore, the declaration
int Func( int 1, ... );islegal,butint Func( int i ... );isnot.

END Microsoft Specific

Declaration of a function that takes a variable number of arguments requires at least
one “placeholder” argument, even if it is not used. If this place-holder argument is not
supplied, there is no way to access the remaining arguments.

When arguments of type char are passed as variable arguments, they are converted
to type int. Similarly, when arguments of type float are passed as variable arguments,
they are converted to type double. Arguments of other types are subject to the usual
integral and floating-point promotions. See “Integral Promotions” on page 56 in
Chapter 3 for more information.

Declaring Functions That Take No Arguments

A function declared with the single keyword void in argument-declaration-list
takes no arguments, as long as the keyword void is the first and only member of
argument-declaration list. Arguments of type void elsewhere in
argument-declaration-list produce errors. For example:

Tong GetTickCount( void ); // OK
long GetTickCount( int Reset, void ); // Error
Tong GetTickCount( void, int Reset ); // Error

In C++, explicitly specifying that a function requires no arguments is the same as
declaring a function with no argument-declaration-list. Therefore, the following two
statements are identical:

long GetTickCount();
long GetTickCount( void );

Note that, while it is illegal to specify a veid argument except as outlined here, types
derived from type void (such as pointers to void and arrays of void) can appear
anywhere in argument-declaration-list.
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Function Overloading

C++ allows specification of more than one function of the same name in the same
scope. These are called “overloaded functions” and are described in detail in
Chapter 12, “Overloading.” Overloaded functions enable programmers to supply
different semantics for a function, depending on the types and number of arguments.

For example, a print function that takes a string (or char *) argument performs very
different tasks than one that takes an argument of type double. Overloading permits
uniform naming and prevents programmers from having to invent names such as
print_sz or print_d. Table 7.1 shows what parts of a function declaration C++
uses to differentiate between groups of functions with the same name in the same
scope.

Table 7.1 Overloading Considerations

Function Declaration Element Used for Overloading?
Function return type No

Number of arguments Yes

Type of arguments Yes

Presence or absence of ellipsis Yes

Use of typedef names No

Unspecified array bounds No

const or volatile (in cv-mod-list) Yes

Although functions can be distinguished on the basis of return type, they cannot be
overloaded on this basis.

The following example illustrates how overloading can be used. Another way to solve
the same problem is presented in “Default Arguments” on page 218.

JHinclude <iostream.h>
fHinclude <math.h>
#include <stdlib.h>

// Prototype three print functions.
int print( char *s ); // Print a string.
int print( double dvalue ); " // Print a double.
int print( double dvalue, int prec ); // Print a double with a
// given precision.
void main( int argc, char *argv[] )
{
const double d = 893094.2987;

if( argc < 2 )

{
// These calls to print invoke print( char *s ).
print( "This program requires one argument.”™ );
print( "The argument specifies the number of" );
print( "digits precision for the second number" );
print( "printed." );

}



}

1/

// Invoke print( double dvalue ).
print( d );

// Invoke print( double dvaiue, int prec ).
print( d, atoi( argv[1l] ) );

Print a string.

int print( char *s )

{

}

1/

cout << s << endl;
return cout.good();

Print a double in default precision.

int print( double dvalue )

{

cout << dvalue << endl;
return cout.good();

Print a double in specified precision.

Positive numbers for precision indicate how many digits'
precision after the decimal point to show. Negative
numbers for precision indicate where to round the number
to the left of the decimal point.

int print( double dvalue, int prec )

{

}

// Use table-lookup for rounding/truncation.

static const double rgPowl@[] = {
10E-7, 10E-6, 10QE-5, 10E-4, 10E-3, 10E-2, 1QE-1, 10E0,
10E1, 1@0E2, 1QE3, 1@E4, 10E5, 1@E6

}:

const int iPowZero = 6;

// If precision out of range, just print the number.
if( prec < -6 || prec > 7))
return print( dvalue );

// Scale, truncate, then rescale.
dvalue = floor( dvalue / rgPowl@[iPowZero - prec] ) *
rgPowl@[iPowZero - precl;

cout << dvalue << endl;
return cout.good();

The preceding code shows overloading of the print function in file scope.

For restrictions on overloading and information on how overloading affects other
elements of C++, see Chapter 12, “Overloading.”
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Restrictions on Functions

Functions cannot return arrays or functions. They can, however, return references
or pointers to arrays or functions. Another way to return an array is to declare a
structure with only that array as a member:

struct Address
{ char szAddress[31]; };

Address GetAddress();

It is illegal to define a type in either the return-type portion of a function declaration
or in the declaration of any argument to a function. The following legal C code is
illegal in C++:

enum Weather { Cloudy, Rainy, Sunny } GetWeather( Date Today )

The preceding code is disallowed because the type Weather has function scope
local to GetWeather and the return value cannot be properly used. Because
arguments to functions have function scope, declarations made within the argument
list would have the same problem if not allowed.

C++ does not support arrays of functions. However, arrays of pointers to functions
can be useful. In parsing a Pascal-like language, the code is often separated into a
lexical analyzer that parses tokens and a parser that attaches semantics to the tokens.
If the analyzer returns a particular ordinal value for each token, code can be written
to perform appropriate processing as shown in this example:

int ProcessFORToken( char *szText );

int ProcessWHILEToken( char *szText ):

int ProcessBEGINToken( char *szText );

int ProcessENDToken( char *szText );

int ProcessIFToken( char *szText );

int ProcessTHENToken( char *szText );

int ProcessELSEToken( char *szText );

int (*ProcessToken[])( char * ) = {
ProcessFORToken, ProcessWHILEToken, ProcessBEGINToken,
ProcessENDToken, ProcessIFToken, ProcessTHENToken,
ProcessELSEToken };

const int MaxTokenID = sizeof ProcessToken / sizeof( int (*)() );

int DoProcessToken( int TokenlID, char *szText )
{
if( TokenID < MaxTokenID )
return (*ProcessToken[TokenID])( szText );
else
return Error( szText );



The Argument Declaration List

The argument-declaration-list portion of a function declaration:

e Allows the compiler to check type consistency among the arguments the function
requires and the arguments supplied in the call.

¢ Enables conversions, either implicit or user-defined, to be performed from the
supplied argument type to the required argument type.

e Checks initializations of, or assignments to, pointers to functions.

o Checks initializations of, or assignments to, references to functions.

Argument Lists in Function Prototypes
(Nondefining Declaration)

The form argument-declaration-list is a list of the type names of the arguments.
Consider an argument-declaration-list for a function, func, that takes these three
arguments: pointer to type char, char, and int.

The code for such an argument-declaration-list can be written:
char *, char, int

The function declaration (the prototype) might therefore be written:
void func( char *, char, int );

Although the preceding declaration contains enough information for the compiler
to perform type checking and conversions, it does not provide much information
about what the arguments are. A good way to document function declarations is
to include identifiers as they would appear in the function definition, as in the
following:

void func( char *szTarget, char chSearchChar, int nStartAt );

These identifiers in prototypes are useful only for default arguments, because
they go out of scope immediately. However, they provide meaningful program
documentation.

Argument Lists in Function Definitions

The argument list in a function d