(Class Libraries Users Guide

Microsoft

Microsoft. C/C++

Version 7.0

Class Libraries
User’s Guide

For MS-D0Se and Windows™ Operating Systems

Microsoft Corporation

Information in this document is subject to change without notice and does not represent a commit-
ment on the part of Microsoft Corporation. The software and/or databases described in this document
are furnished under a license agreement or nondisclosure agreement. The software and/or databases
may be used or copied only in accordance with the terms of the agreement. It is against the law to
copy the software on any medium except as specifically allowed in the license or nondisclosure agree-
ment. The licensee may make one copy of the software for backup purposes. No part of this manual
and/or databases may be reproduced or transmitted in any form or by any means, electronic or me-
chanical, including photocopying, recording, or information storage and retrieval systems, for any pur-
pose other than the licensee’s personal use, without the express written permission of Microsoft
Corporation.

©1991 Microsoft Corporation. All rights reserved.
Printed in the United States of America.

Microsoft, MS, MS-DOS, XENIX, CodeView, and QuickC are registered trademarks of Microsoft
Corporation.

U.S. Patent No. 4955066

Document No. LN28113-1191

10 9 87 65 43 21

Contents Overview

IMBPOAUCTION. ...ttt e XV

Part1 The Microsoft Foundation Class Library Tutorial

Chapter 1 Using the Microsoft Foundation Class Library Tutorial 5
Chapter 2 Creating a Data Model with the Microsoft Foundation

CIASSES ...ttt e 17
Chapter 3 Windows Programming with the Microsoft Foundation

ClLASSES ..ot 81
Chapter 4 Phone Book: A Simple Windows Databasecccceceeveeueenee. 117
Chapter 5 Phone Book: Dialog BOXES.......ccceceevieieeenienieicnienieneeicieeeeens 151
Chapter 6 Phone Book: Message Handlersccceeuveeieecieciienieeneennnnne. 197

Part2 The Microsoft Foundation Class Library Cookbook

Chapter 7 General-Purpose Classes.......oovvveererrieneeneeieeee e 251
Chapter 8 The CObJECt CLaSS ...couverueiruieieeiierieeieetere ettt 263
Chapter 9 COLECHIONS ...ttt et ettt 269
Chapter 10 Files and Serialization...........coceeiiiiiiieniienieeieeeeeeee e 277
Chapter 11 DIAGNOSHICS ..ottt 285
Chapter 12 EXCEPLIONS ...cuviiiiiiiieietesiesereeee ettt 297
Chapter 13 Application DEsigncccoererienieieniinieierie et 305
Chapter 14 Window Managementcco.eeereererenenenienieneenseseseseseens 311
Chapter 15 Dialogs and Control Windowscccceeeeeveieceerieneeneeneeneenne, 329
Chapter 16 GIAPRICS ...ttt 343
Chapter 17 USET INPUL...c.eenieiiiiiieie ettt 351

Part3 Microsoft iostream Class Library Tutorial

Chapter 18 The Fundamentals of iostream Programmingccccceceeuee.e. 363
Chapter 19 Advanced iostream Programmingcceceeeeeeenieneneneninene 395

Contents

INEFOAUCTION ..o XV
The Promise of C++: Reusable Class Libraries.........cccccoooeeiiiniiiiiinniieieeeee XV
C++ Class Libraries vs. C Function Librariesc.ccoeeeveeneereesveneeseennenne. XVi
How to Use @ Class Librarycccceoievererinieienineneniesceenienieereneeseeseeseenees XVvii
The Microsoft Foundation Class LibIaryccccoceeeeeveneneneneneeeenennenenecenes xviii
WiINAOWS CLASSES ..evveeieiieieeieeiteeieiteseesee e etesieesesse e seeseesseesseesseesseesseennes Xviii
General-Purpose Classes.........cevverirerierieniiiesesieriesesiesiersessesseestassessesseessaneas Xix
The Microsoft iostream Class Librarycoceveeverierineenineenieneeieeeeeeenn XX
How to Use the Class Library Documentation..........cocceceeeeriereesienieneeseeseennes XXxi
Document CONVENTIONSocververeeerierienterterteiteeienareseesseessasseesseessseseesssesnsennes XXii

Part1 The Microsoft Foundation Class Library Tutorial

Chapter 1

Using the Microsoft Foundation Class Library Tutorial 5
1.1 What's in the Tutorial.........ccccecerimiriniieieneieeeeieeeseere et 5
TOPICS .ttt ettt ettt et et sb bbbt et be e bt s beere bt beese e resbeebeenesbeeneenees 5
PIOGIAIMIS ..cuveiiiiieiiieee ettt sttt st st s e s s s s 6
1.2 How to Use the TUtorialc.cccvuiririeireneinniircneeeeeireeseeeeee e seeeeneenens 6
What You Need to0 KNOW.......coeeeeiiniininieineeeeineerenieiee e 6
Work Along with the TUtorialccceeiiiriieeiiirieeeieeeeeeeeeee e 7
Get Right to YOUr OWn COdecouevieiiniieiiiiieeeieteeeeciteeeeesiesieeeesee e eeeaee 7
1.3 How to Build Microsoft Foundation Programscccceceevveenneninecnne. 8
NECESSATY SELUP ...cveenieniiiiiierinitcetet ettt s st sae s 8
Makefiles and Build Dir€CtOriesceerveeriereinreineeeeirieteeree st 8
How to Build with PWBcocooiiiiiiiiiiiecceeeceeee e 9
How to Build with NMAKEccooiiiiiiiinetccenceeeeeseeeeene e 11
How to Switch from Release to Debug Builds.........ccccoeveeviievenniennenniennenienne 12
1.4 How to Run Your Programcceccoevirreiiniineninne et 13
How to Run Your DOS Program...........cccceeeeieniriieniieneenieneeseeseeseesseeseennes 13
How to Run Your Windows Programcc.cceceeveevverieniniennnsieeneeiecineenens 14

1.5 SUMIMATY.ccutiiiiriiinieiieriete sttt ettt ettt et sreestesbe e et e sseesseesmeesmeenseenne 14

vi Contents

Chapter2 Creating a Data Model with the Microsoft Foundation Classesc........ 17
2.1 IN ThiS ChapLer...coueevieiieiieieieriierte ettt ettt e e e s e seessessesseens 17
The Data Model Program............cceeeeiereerienenenieneniinieneesesiceteseeseee e sseseeneens 18
2.2 How to Write the DMTEST Programccccocceveveveneneneneneeneeccnnennes 21
2.3 Design the CPerson Data ObjJect...........ccecevueerinieierenineneneneneeneeeeennene 22
Create the Interface Filecccovuiririeiieniinereceeeeeeetee e 22
Create the Implementation File...........ccccoccevrvniiiiniinincnineneereneencee 24
Discussion: The CPerson Classc.cccceererieirenininieenieieeeee e seesie e seeneneens 28
2.4 Design the CPersonLiSt ObJECtcceevuevveriirierierierenienenieerieniceteseeereeennees 36
Discussion: The CPersonList Classcoceeveeieierieiereenienienieneeieneeeeeesreeeeneens 39
Summary of Collection USE..........ceerieruereninieiinieieieteete et 49
2.5 Testthe Data MOelccoeiiierirrieienienieieece ettt 49
Discussion: Testing the Data Model...........ccocouirieneriieeecineeieeeeieseeeee e 58
2.6 Build the Program...........ccccecieniirireeienenieisesteeeee e eae s seeae s 65
2.7 Summary of the DMTEST Programcceceeueeeeieeieieieneeeeeeeeeseeneens 65
2.8 File LISHNES c.veovirterieienieeiietenieettetete sttt ettt ettt sb e eieens 66
Chapter3 Windows Programming with the Microsoft Foundation Classes 81
3.1 TN ThiS Chapter...c.cccceieiirieriieiereeeitete sttt e et eseebeaes 82
The Hello Programi...........cccvivcieriiieciierieeeieesre et esreestve e aaeeseaeesnseeens 82
3.2 How to Write the Hello Programc.cccoevevieviicenenecieieeeeecceene 84
3.3 Create an Application ODJECEcceevuierrirniierierieeeeieeeeee e eee e 85
Discussion: Hello’s Application Classcceceeeerieerieneeneeieeeieeieeseeeeeeneens 87
34 Puta Window on the SCIeenccoeeriiriiriiniiirieerteeeee e 90
Discussion: Creating WindOWS..........ccevverererriririeieieteiereseeeseeseee e sveeeeneens 91
3.5 Arrange for Communication with Windows...........cccceceeviererrenieneenenenne. 94
Discussion: Communication with Windowsccceceeevinieceneeceenreeceeniennen. 95
3.6 Paint the WIndOWc.cocieiiiriirieieceiieieiereet ettt s e e seeeeas 101
Discussion: Painting TeXtceuecuererienienenienieeniniecete sttt eseeneens 101
3.7 Add an About Dialog BOX......cceeveveeieiiiniinienienieeeee sttt 105
Discussion: The About Dialog BOXccccoviviririnienninieiiienieetee e 105
Summary of the Hello Program’s Code.........cccceceruiviererienenienienresieeeesieneene 107
3.8 Prepare Supporting Filesc..coceveremeniniiiiniiceeieeteeee e 107
Discussion: The Supporting Filescoccevuerenereneninenienieieneieneeeceeenenn 108
3.9 Build the Program........c..cocceverieienenieienienenienenieeeeieeicet et seeseeenees 109
3.10 How Hello WOTKS....coueiuiiiiriiiiieiceeetesteneeteeceeei ettt 110
A GENETAL VIEW...cuiiiiiiiiiiiiieitirieeteetee et ettt ettt saeeeean 110

A More Detailed VIEWcoccveviriiiiiininieenesetseseseeeere e eeennns 111

Contents vii

3,11 SUIMIMIATY...eetieiieiietirieeteett et e steete st e saeesse et aeseaessesseesesneasstensessnesaeensnenses 113
312 File LASHNEZS cvevveeeeerieiieiiieeeeienieetetetet et ettt et e e sbe b 113
Chapter4 Phone Book: A Simple Windows Database 117
4.1 InThis Chapter......ccceviiiiiieieiiieteienie ettt ettt reaeaeas 117
The Phone Book Program...........cocceevireieiieiinininnieesenceceeeeeeereieee 118
4.2 How to Write the Phone Book Programcccccoceveeveennienenncnncncenne. 120
The Steps in Writing Phone Book with the Microsoft Foundation Classes... 120
4.3 Create a Simplified Data Interface...........cccecvevienervinieenenniinceceneniene 122
Discussion: Class CDataBasecceeeereneeinerieeienreniineresrenrenreseeseseenenne 134
4.4 Applications for Class CDataBase.........cc.cceeceereererierrierneenieneeceerieennene 140
4.5 WA’ S NEXL.uueouirieiriirierieritetritete e erte e st sbe bt e et ebte st e e saeseesbesbesaeenes 140
4.6 File LISHNES ...ooverriieiitiiiicieietc ettt ettt en et s seaens 140
Chapter5 Phone Book: Dialog Boxes 151
5.1 INThis Chapler.....ccooiirieciirieiiereeteeter ettt et eas 151
52 Work from a Templateccccccererereniniennieieneeeneseeseseneeseeseeeeeees 152
5.3 Add Dialog BOXES ...cceoueruiriiriiriiiiceeteieeteee ittt ene e 153
Discussion: Dialog BOXES......ccceoerierirenenineneeiesientenientenreeenreseeseenreseeveenens 162
54 WHhat' S NEXLu.iooeevieiiieietiiercretteest ettt s ta et s ese s 168
5.5 FAle LASHNZS c.veevirieiieiieieieeieteitetet ettt e ettt et ae e saesbenaeenas 168
Chapter6 Phone Book: Message Handlers 197
6.1 In ThiS Chapler....ccoceiiivieienierieriiniinente ettt ste e ere et et e eseeeessesaensens 197
6.2 Determine What Messages Will Be Handledccccoceeiniiniicncnene. 197
Discussion: Message-Handler FUnctions...........cccooevevevenenenieneneceneenienes 204
6.3 Add Message Handlers for File Menu Commands..........cccccveveruereennne. 205
Discussion: File Menu Message Handlers...........ccococovveiniiiiienninnennceinenne 213
6.4 Add Message Handlers for Person Menu Commands............ccceceevenncnn. 216
Discussion: Person Menu Message Handlers..........ccccevcervinneevcenvenncnneneenne. 219
6.5 Add Message Handlers for Help Menu Commands..........cccocevereeeennnne. 222
Discussion: Help Menu Message Handlersccoceecevvineeniencnreencnsennienne 223
6.6 Add Message Handlers for Creation and Sizing.........c..ccccoevveeveriiiirncnns 224
Discussion: Creation and Sizing Member Functionsc.ccccoeceeeniienncns 225
6.7 Add Scrolling Member FUNCHIONS........c.cceoveeeiierieeieeieieeeeneeeseeeseeeeesaeens 227
Discussion: Scrolling Message Handlersc.cocceeerinnenccncnecnenencenens 229
6.8 Add a Keyboard and Mouse Interfacec.ccovveevervenveenenneneenenneennee. 230
Discussion: Keyboard and Mouse Message Handlersc..cceovevieenieneennen. 234

viii Contents

6.9 Add a Member Function to Handle the WM_PAINT

IMESSAZE «.evenveenreeieeiie sttt ettt st beeeesbeetesaee s e enbesssee s e e saeesmeesreenee 235
Discussion: ONPaint.........cccoeoiiriiiiiiiieeeeietete ettt eeeeeesaeens 237
6.10 Add Utility Member FUNCtionscocccoceeveriniernienieceinieeseneeneeeene 238
6.11 Prepare Supporting Filesc..coocvveiviiniiiiiienenieiieenieree e 242
6.12 Build the Program.............cccccooeiiiiiiiininniiincccn e 243
6.13 SUMIMATY ..ttt ettt eeseesne b e sae e sae s esae e 243
6.14 FIle LISLINES ..eovevereeieeereeieieeieieeitenteienteteste e stestesre bbbt e reesaesaesaesnesaeone 244

Part2 The Microsoft Foundation Class Library Cookbook

Chapter7 General-Purpose Classes 251
7.1 Memory Managementcccceeuereerienernieneeieneeneeseneeesreesnesnnesnesnnes 251

Frame ALIOCAtION. ..c.ceeuiriieiieiiiieeit ettt sttt e e 251

Heap ALLOCALION ...ccuviiiieeieeeieiete et ettt ettt et et e s eareeene e e s enee 252

Memory Allocation on the Heap and on the Framec.ccoccoccevvrvecnicnnenne. 252

Resizable Memory BIOCKScocovuiriireeniiieieieiietcienceeseeseeeceenreeie e 255

7.2 Date and TIMEccoceevieeiiriierreseeneerit ettt ettt eeee e e neesreens 255

T3 SHINES c.vvieeteeeieeereeeeeesreeeereesteeesaeasbaeesseeaseesnsaessasessseaanbeaessaeesseesneesaseeans 256

Basic OPEIationsceeeeerieruerrereeieniiniesrenesiesieeie e st eeeseeeesinesressesaessseseees 257

CSrings Are VAIUES......cc.verteriereriieteterientceteete ettt eeereeseenneesaesne e sasenseanes 258

Operations Related to C-Style Stringsc.coceveveereenienenenenieeneeseesenieneenees 259

Chapter8 The CObject Class 263
8.1 How to Derive a Class from CODBjJECt........cceeereruenrivenerieerrienienncniieenn. 263

8.2 How to Access Run-Time Class Informationccceceeveeereerveenrceneenne. 265

Chapter9 Collections 269
9.1 How to Make a Type-Safe Collection..........ccccecereererserneennernenneeneennn 270

9.2 Accessing All Members of @ COlleCtioncc.ceceeveveiniierseeeneeneennennen. 272

How to Delete All Objects in a CObject Collection........c..coceeverveveenrernnnnnnne. 273

How to Create a Stack Collectioncocuervierierieennerniienniee e, 275

How to Create a Queue COLECUONvvivveriiiiierieeieeeiteeiee e 276

Chapter 10 Files and Serialization 271
JO1 FHIES. ittt ettt e s s s 277

10,2 SerialiZationc.cecueeeierieriieriteeee ettt st rae e s 279

How to Make a Serializable ClIassccoceeverveenerieniernennenreeeeeeneeereeeneenne 280

How to Serialize an Object hetrentesseserenteeresseentesaresnerseseneaeesieerresnes 282

Contents ix

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Diagnostics 285
11.1 Debugg@ing Features.coceeueierieiinienienieneniieteteteteteite et 285
Dumping ODbjJect CONENLScceriereiriieeiieienieie sttt ens 286
The TRACE MACTO....ccciiiiiiriiieieieesiceteee ettt 288
The ASSERT MACTOc.ooouiriiiiininiinieiceieeiteeteestcerete sttt 288
Overriding the AssertValid FUnCtion.............cccoocevciinicninininnicnencnineecennen 289
11.2 Detecting Memory Leakscocceierierieiiinienienienceieeeeseeeeee e 290
MemoOry DIagnoStiCScoueeueuirieirierieineieeeeierteeet ettt et neen 291
Detecting a Memory Leakcccoovieiiiiiiiiiniieeeeeeeeeeee e 292
Dumping Memory StatiStiCSceeerierieriereeieeeieierieeesieeeseeseesiesseesneneaaens 293
Dumping All OBJECESoiuiiiiiiiiiiiicccccc et 294
Interpreting an Object DUMPc.cocveiriiiiirenieeieeeeete e 294
11.3 Using DEBUG_NEW to Aid Debuggingcc.cececereeirenccenccnenreccnnennes 296
Exceptions 297
12.1 Microsoft Foundation Classes Exception Handlingcccceeveeeennenee. 297
122 Catching EXCEPHONSccuceveeeeiirrecieeieeie ettt sve et e e e ae e ae e e 298
12.3 Examining Exception CONENtS.c.cevvereriirerererinieeeieteieie s 299
12.4 Freeing Objects in EXCEPLONS....c..ccueverieririeiineniesicreeieeeete e 300
Handle the Exception Locally.........ccccoueiririenircneniiiniiiieeeeeececseeee e 301
Throw Exceptions After Destroying Objectsccceeevevvecveerierveneeneeeeennes 301
12.5 Throwing Exceptions from Your Own Functionscccccecevvencrnennene. 302
12.6 Exceptions in CONSLIUCLOTLS.ccueueverueuertruereerieaenireesetreeseeseeseseeneesseneenen 303
12.7 Frame Variables and EXCEPLONS......c.cevteruirriirieniiierieeieneeieeee e 303
CString: The Problem of Deallocating Heap Spacecccceevvvenieereeerneenene 304
Application Design 305
13.1 Using Microsoft Foundation Classes
to Write Windows ApPpliCations.........cocevveeveeieieeieiesienieneneeeeeeeeeneens 305
13.2 Deriving Classes from CWINAPDcoceverveceeerenieenceeeneeecneneeeneenee 307
Initializing YOour AppliCatioNccoevueruereirieieieieeeeeeeee et 307
Idle LOOP PrOCESSING.......coeeveuirieiiiieinienieeetnteste ettt 309
13.3 The Resource File........c.ccoiiiinieininiicinicieceeee et 310
Window Management 311
14.1 Creating a Frame Windowccccccceviirieniieiiieiiceeeeeee e 311
14.2 Constructors for Derived Window Classes..........coceeevevieireenrenienennenne. 312
14.3 Handling Window MeSSages.........cecerureuerieriereeiieieieieieniesiesiesaeseensenees 313
Menu-Command MESSAgES.........ccveerieieriereriineeteieieteeessesesseeseesseseessenees 314
Notification Messages from Child Windowscccooeeverieireniennenecnnenn 316

X Contents

Chapter 15

Chapter 16

Chapter 17

Other WindoW MESSAZESecvevuerreruerienieieieieniesieseatensesesseessensesensessensenes 318
14.4 Calling the Default Window Procedure
from a Message-Handler FuUnction..........c.cceeeveveeceenienenencnccnccncncne 319
14.5 Overriding Window Procedure for a Window Classc.cccceveruennennene. 320
14.6 SCIOIINE...c..coiiiirieieiineereetet ettt ettt s e st sae st b e esbesbatebeneens 322
14.7 Using MDI Window Classes.......c.ccccerurrieerrierenenrierieneseseseeseensesessenees 323
Deallocating Memory Used by MDI Child Windows..........cccceccevereniineennene 323
Accessing the MDI Parent Windowcccoceeeereniniennencntnenenecnecenenes 323
Changing Frame Window Menus to Match MDI Child Windows................. 324
14.8 Using the AfxRegisterWndClass Functionc.ccecceeveeceeineniencnencnncae 324
149 Simple Way to Change a Window Iconccoceevierrireenieenenniencenenne 326
14.10 Using Member Variables Instead of coWndExtra Bytes.........c..ccecue... 327
Dialogs and Control Windows 329
15.1 DiAlOZ BOXES ...overvieneeieieieeiieeeieeiieseete sttt eteesteste st stessestesae st e senaesseneenes 329
Modal DIalog BOXESccueeveeuieeeiinrinientenieienteneesiesitett e st eeessesnesveene st eneeves 329
Deriving from CDIalogcveeuevvererenenenentenie ettt s 332
Using a Dialog Box as a Main Windowccccecevererceinerienensieneneneneennens 334
15.2 Using Microsoft Foundation Control Classes.........ccocevvereeeerrerercenvennenn 335
15.3 Deriving Controls from a Standard Controlc.ccceeeeeieeeieecceennnns 337
Using a Derived Control in @ Dialogcccocevevuerireneniennincneieceeneecnneeene 340
Graphics 343
16.1 Handling the Paint MESSAZEcceevurerrererrenierieereeiesiesresssessessessesseseenes 343
16.2 Getting the Device Context from a CWnd Window...........ceceeveevvereeeenee. 345
16.3 GIaphiC ODJECLSeoueriiieierieeiiriieteetieieeiestesteete e etesesee st ebeseesesaeseenes 346
Creating and Deleting Graphic ObjJectS..........ceceerverierieneerieneneerieneenesesennens 347
Selecting a Drawing Object into a Device CONteXtcccvvrereeerueerercerrerennens 348
User Input 351
17.1 Handling a Mouse Click in @ WindowWccccecevieveninneenenieeneeneneennenees 351
17.2 Tracking the Mouse in @ Windowcccoveeveeienieninnieneneneeneenieneeneenes 353
17.3 Keyboard EVENLS.......ccceviiiriieiinieientenesteeteete st eeeee s eetesseeebeenaesseennees 356

Part3 Microsoft iostream Class Library Tutorial

Chapter 18

The Fundamentals of iostream Programming 363

18.1 INITOAUCTION ..veeieeeiieieieeieieteeeeetee ettt e e e e et e e seaseeseennneeeesnaeessennesas 363
WHhat IS @ SrEAM?eveeiiieiiieieeeeeceee ettt et e eeenae s esaeesesaeeeenn 363

Contents Xi

Chapter 19

Microsoft C/C++ Input/Output AUEINativesc.ocoeeerreeeereecrenreeeenennens 364
The iostream Class Hierarchy........c.cccoeeeinincinencnnenncrcnecneneccenee 365
18.2 OULPUL SIIEAIMS ...eeutieiiieiteeieeet e et et e sttt esiee st ereese e enae e e emeeenmes 365
Constructing Output Stream ODJECTScevieruieriieiieieie ettt seee e 366
Using INSertion OPErators.........coceceeveiereererinieereeierenieerteesieeeereeneeseesaeseenes 367
Format COntrol.........cooiiiiiiiiiriiieeteee ettt e 368
Output File Stream Member FUnctionsc.ccoccocvvniiiiiiiiinciciienienee, 373
The Effects of BUFferingc..covvierenieiinecieceeeeee e 377
Binary Output FIIEscouivviiriiiiieeeeeeeee et 378
Overloading the << Operator for Your Own Classes.........ccccoceeeerereervercrcnnns 380
Writing Your Own Manipulators Without Parametersccocceveeeneenenne. 381
More CompleX Manipulators..........cceeeeeerueireniereeinieinreieeeeeeeseeeeeenaenees 382
18.3 INPUL SIICAIMNS . ..cuveveeierteritertteteerteeteste st seee e e eeesbe st st e bt e saeebeeseeemnes 382
Constructing Input Stream ODbBJECtS......cccocveiiveniniiiiniiicccecece 383
Using EXtraction OPEIatorscceceeereerieierieriesiessenseseaneessestensessessessensenens 384
Testing for EXtraction EITOTSccuvvieeieiieniiiieiieeseeee e 384
Input Stream Manipulatorsccoceoeririeeininiieninerereseere e 385
Input Stream Member FUNCtioNScccooeverieieniniieneieeeeeeene e 386
Overloading the >> Operator for Your Own Classes.........ccccoceeeeeirireecencennns 391
18.4 INpUt/OULPUL STIEAMS ...eouveruieeiiieieceite ettt et e siee e e ereeeereeanees 392
An Input/Output Stream EXamplecoccoeririeieniinenenceieerecneeeecneneee 392
Advanced iostream Programming 395
19.1 Custom Manipulators with Parameters............coceeeeeniiievcnencniiccnennen. 395
Output Stream Manipulators with One Parameter (int or long).......cc...c........ 395
Other One-Parameter Output Stream Manipulators..........coceeeeeeeerreeneerncennen. 396
Output Stream Manipulators with More Than One Parameter 397
Custom Manipulators for Input Streams and I/O Streamsccccevveeeeennen. 398
Using Manipulators with Derived Stream Classes..........ceceevevereeeeeenencenens 399
19.2 Deriving Your Own Stream Classescceeveerrirreereesreereenvesveseeseesneens 399
A Straightforward Stream Class Derivation..........cocccceeeeneceeencncennnncnenn. 400

Figures and Tables

Figures

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7

Figure 4.1
Figure 4.2
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5

Tables
Table 9.1

The Data Model and the User Interface..........cccccccccevirvennecnecnne 18
Object Class Hierarchies for Data Model Objects....................... 21
Steps in Serializing a Person Objectcccoovevveervcivcnneneennnnnee. 35
A Person List Object and the Data Objects It Contains 40
Steps in Serializing a List of Person Objects.......c..ccocceveeveernnenne. 44
Deletion and Removal of Data in a Listc..ccccecveveneneneneenenne. 48
How an Exception is Handled by a Calling Function 62
The Output Of HellOcovivieiieieiieieieeeeereee e 83
Object Class Hierarchies for Hello..........cccuevineniiniiennniincnnennne 88
WiIndow DISPIaycc.ceerieieiiiiinieinieeceeeree ettt 94
How Message Maps Route Messages to Handlers...................... 98
Sequence of Events in Hello’s OnPaint Function 103
Hello’s About Dialog BOXcc.cocviviieiieniesiiiieieeieeecereceieniene 106
Sequence of Events When a Foundation Windows

ApPplication RUNS......c.c.oocieniiiiiieieieiee e 111
The Output of Phone BoOOKccceevieiieiiiecieeceeccieeieeee e 119
Role of the CDataBase ObjJectcccerueverrreeeirnienenienenenine 135
Phone Book’s About Dialog BOXcccceeeeviiiieiiinienenncneenne. 158
Phone Book’s Find Dialog BOX.......cccecceveieiniieivenneeeieenenne 158
Phone Book’s Edit Dialog bOXcccceeeveiiniiiceninnieciieeeeeee 159
Phone Book’s "No Database" Help Dialog Boxc..ccceeuue... 160
Phone Book’s "No Name" Help Dialog BoX..........ccccccecueveenene 160
Phone Book’s "Enter Data" Help Dialog Box...........cccceceueeee. 161
Phone Book File Menucccoceevemiininicnienicnieeieeeeseeneeen 205
How Menu Commands Are Processed.........cccoccvveviivennnenncnnn 213
Phone Book Person Menu..........coccoueevecienenencniinenenicncnnenene 216
Phone Book Help Menu.........coccevuieieniieniiniineinieeeeeieneeeeeeen 222
A Selection in Phone BOOKcccccevevueneninreniinenenieceieecnnee 234

Shape FEaturescccceevierirnereineneeeeeete et 270

Introduction

This Class Libraries User’s Guide introduction discusses C++ class libraries in
general terms and then summarizes the the two class libraries that are included
with Microsofte C/C++ Version 7.0. These libraries include:

= The Microsoft Foundation Class Library

This library contains a full-featured set of C++ classes for Microsoft
Windows™. It includes not only Windows classes but also general-purpose
classes for collections, files, persistent storage, exceptions, diagnostics,
memory management, strings, and time.

= The Microsoft iostream Class Library

The iostream classes can be used for most input/output, but they are particularly
useful for text-mode output. These classes are popular because they have a pro-
gramming interface that is compatible with C++.

Following the class library summary is a section that tells you how to use the
library documention.

To start using this guide, you will need a basic knowledge of the C++ program-
ming language. To use the Windows Foundation classes, you should be familiar
with the C-language application programming interface to Microsoft Windows.

The Promise of C++: Reusable Class Libraries

C++ is a powerful language in its own right, but its real value lies in its ability to
be extended with class libraries. These already-written libraries of C++ classes ap-
pear as though they were part of the language.

As an example, consider the familiar C and C++ data type int:

int i = 5;

i+=3; //1=28

Now suppose you had a class library that included a “string” data type called
CString. You could write expressions such as:

CString s = "very";
s += " easy"; // s = "very easy"

Xvi

Class Libraries User’s Guide

Notice how the CString data type, called a “class,” appears to be part of the lan-
guage.

As another example, consider the cout object introduced in the C++ Tutorial. An
expression such as:

cout << "i = " KL § <KL "\n"y
depends on the Microsoft iostream Class Library because the << operator, nor-

mally used for shifting left, has been overloaded to insert values into the output
stream cout.

C++ Class Libraries vs. C Function Libraries

C function libraries have been available for years. Some, such as the standard run-
time libraries, are bundled with the compiler; others, such as database and user in-
terface libraries, are sold by independent software vendors.

This section compares C function libraries with C++ class libraries. The advan-
tages of the C++ language, such as inheritance and polymorphism, are discussed
in the C++ Tutorial.

Advantages of C++ Class Libraries
Class libraries have several advantages when compared with function libraries:

m (lasses encapsulate code and data.

Ordinary C libraries consist of one or more discrete program modules, which
manage data in nonsystematic ways. It is generally difficult to isolate and con-
trol a particular library’s data. By contrast, in C++ the data is made an integral
part of the class through “encapsulation.” The class designer can control access
to the data through the class’s member functions.

= New classes appear to be language extensions.

You can create objects of a library class the same way you create instances of
the C++ built-in types. Thus classes, with their special constructors and over-
loaded operators, provide a natural programming interface.

= Inheritance eliminates “code cloning.”

If you need a new C function that is “similar to but different from” a library C
function, you must copy the original (assuming you have the source) and then
change its name. A C++ class allows you to add functionality through deriva-
tion without disturbing the original code. Indeed, class derivation does not re-
quire you to have the base class source code.

Introduction xvii

m Variable and function name collisions are minimized.

If two classes have identical data member names or member function names,
there is no conflict. Classes must not have the same name, however, unless they
are nested.

= Tools such as class browsers enhance source code control.

C++ adds a level of structure not possible with C function libraries. The Source
Browser in the Microsoft Programmer’s WorkBench is a tool that allows you to
view your source code in the order of class hierarchy.

How to Use a Class Library

There are several ways to use a C++ class library:

= Construct objects directly from the classes provided
= Derive new classes

= Modify the class source code

Direct Use of Classes and Objects

Many class libraries provide classes that support the direct construction of useful
objects. Some even construct the objects for you prior to the execution of your
main program.

The iostream Class Library includes the predefined objects cout and cin. Many
developers use those objects directly, and others construct their own objects from
the classes such as ifstream and ostrstream.

In the Microsoft Foundation Class Library, some classes, such as those dealing
with strings, time, and some low-level Windows functions, are most often used
directly for the construction of objects.

Derivation of New Classes

Certain classes are designed for the purpose of derivation. CObject, the root class
for most Microsoft Foundation Classes, is an example of a class that is not meant
to be used directly. Likewise, the CWnd window class (for Microsoft Windows)
is generally used as a base class for customized windows. A CWnd object can dis-
play itself and handle basic messages, but it doesn’t show or accept data. A
derived class can provide the mouse and keyboard notification message functions
that make the window part of an application.

xviii Class Libraries User’s Guide

Other classes can be used directly or they can be derived from in order to add new
functionality. In the Microsoft Foundation Classes tutorial, you will see how a
special-purpose CPersonList class can be derived from the generic Microsoft
Foundation Library CObList class. The derived class adds new data members and
member functions.

Modification of Class Source Code

Sometimes you can’t achieve all your customization objectives by class deriva-
tion. You may, for example, need access to a private data member. If you have the
library source code, you can modify the class directly. Even if you don’t modify
the class, the source code is a useful learning and debugging resource.

The source code for the Microsoft Foundation Class Library is provided. The
source code for the Microsoft iostream Class Library is available separately.

The Microsoft Foundation Class Library

The Microsoft Foundation Class Library is a C++ class library primarily designed
for developing applications for the Microsoft Windows (version 3.x) graphical
user interface. The Foundation classes, together with all necessary libraries, are in-
cluded with Microsoft C/C++ Version 7.0.

In addition to special-purpose Windows classes, the Microsoft Foundation Class
Library contains general-purpose classes that are useful both inside and outside of
the Windows environment. These general-purpose classes use functions from
standard run-time libraries, but they do not depend on Windows functions.

Windows Classes

Both Windows and C++ are object oriented, and it is natural to use an object-
oriented language to interface with an object-oriented graphical user interface. The
Windows classes in the Microsoft Foundation Class Library provide the link.
These classes offer the following features:

= Close coupling to the C-language Windows library

The Microsoft Foundation Windows classes are really a direct C++ wrapping of
the familiar C functions for Windows. This feature provides maximum speed
and storage efficiency, and it offers total programming flexibility. The resulting
programs are as fast and small as C programs, and they can incorporate
C-language function calls (including Windows calls) anywhere.

Introduction Xix

= Significant reduction of programming “surface area” from C

C++ source programs for Windows are smaller and easier to understand be-
cause many complex functions are encapsulated in the classes. You derive your
own application classes from the library’s base classes. These derived classes
give you access to all the base class functionality without code duplication.

= Wide array of useful window classes

The library contains ready-made, derivable classes for ordinary frame windows,
Multiple Document Interface (MDI) frame and child windows, edit controls,
list boxes, combo boxes, buttons, and so forth.

= Efficient processing of Windows messages

The Microsoft Foundation Windows classes replace error-prone case state-
ments with C++ member functions. You specify, by means of a special syntax
called a “message map,” which Windows “notification” messages you expect;
then you write the necessary member functions. No space-consuming virtual
functions are necessary. C++ member functions are thus effectively reconciled
with Windows queued messages.

= Ability to derive “midlevel” window classes

If your application needs a feature, such as scrolling, repeated in many different
windows, you can write an abstract window class that contains this functional-
ity by deriving it from one of the Microsoft Foundation Classes. Then you can
further derive special-purpose classes that share the desired feature.

= Useful utility classes

There are useful classes for common Windows objects such as display contexts,
pens, brushes, menus, points, and rectangles. These classes permit you to maxi-
mize your use of the C++ language.

General-Purpose Classes

The general-purpose classes are useful both with and without Windows. All
classes are grouped in the same library because most of them share a common
base class, CObject. The general-purpose classes offer support for the following:

u Collections

The library provides efficient collection classes for ordered lists, indexed ar-
rays, and keyed maps (dictionaries). Sixteen collection variations accommodate
strings, void pointers, object pointers, bytes, words, and double words. A tem-
plate expansion tool, provided in the sample code, permits creation of cus-
tomized collection classes.

XX

Class Libraries User’s Guide

Strings

The CString class adds dynamically allocated strings to C++. These strings can
be manipulated with a Basic-like syntax that includes concatenation operators
and functions such as Mid, Left, and Right. They can be printed to diagnostic
output and written to (and read from) disk.

Time and date

A time class, together with a companion time-difference class, offers date-time
arithmetic and automatic formatting of binary time values into human-readable
dates and times.

Files

File classes offer a C++ interface to both the low-level and “stdio” input/output
files. In-memory files are also supported. The file class hierarchy allows all
three file types to be accessed polymorphically through the CFile base class.

Exception processing

Errors can be systematically trapped using a syntax that models the proposed
ANSI C++ exception processing standard. This feature eliminates the need for
error check logic after every function call.

Persistent objects

The object archiving feature allows objects of specified CObject-derived
classes to be stored to and loaded from a “persistent” storage medium such as a
disk. If a collection is archived, then all the members of the collection will, in
turn, be archived.

Debugging support and diagnostics

Individual objects of selected CObject-derived classes may be printed in
human-readable form. Memory allocation statistics are available, and it is
possible to print the contents of a range of memory. Such a memory dump will
display not only object information but also the line number and source module
name where each memory block was allocated. Special “guard bytes”, inserted
before and after allocated memory, allow corruption to be detected. All these di-
agnostic features are disabled in the Release versions of the library.

The Microsoft iostream Class Library

The iostream Class Library provided with the Microsoft C/C++ Compiler is based
on the AT&T C++ version 2.1 specification and thus conforms to the descriptions
in the more recent C++ textbooks. This library offers a complete input and output
capability for binary and text data and can operate in buffered or unbuffered mode.

The iostream classes are most useful for formatted text output. You are probably
familiar with the cout predefined output stream used mostly for debugging output.
The iostream classes are compatible with the Microsoft Foundation Classes.

Introduction xxi

The Microsoft iostream Class Library documentation emphasizes the following
points:

= Using the formatted stream output features

= Using stream member functions for file manipulation

= Using the input stream extractors

= Overloading << and >> operators for your own classes

® Writing custom “manipulators” for special formatting

= Deriving from the streambuf class for custom processing

How to Use the Class Library Documentation

This Class Library User’s Guide is divided into three parts:

Part 1 The Microsoft Foundation Class Library Tutorial
Part 2 The Microsoft Foundation Class Library Cookbook
Part 3 The Microsoft iostream Class Library Tutorial

The Class Library Reference is divided into two parts:

Part 1 Overview of the Microsoft Foundation Class Library
Part 2 The Microsoft Foundation Class Reference
Part 3 The Microsoft iostream Class Reference

If you want to learn about the Microsoft Foundation classes, read the overview
chapters in the Class Library Reference, Part 1. Then, after you have installed the
software, work through the examples in this Class Libraries User’s Guide tutorial.
After you are familiar with the Foundation class basics, you can study the Class
Libraries User’s Guide cookbook.

The alphabetical class reference and global function reference (Microsoft Class
Libraries Reference, Part 2) are useful during the software development process.
Remember that the reference material is also available in Help.

For input/output streams, read the Microsoft iostream Class Library tutorial in Part
3 of the Class Libraries User’s Guide, then refer to Part 3 of the Class Libraries
Reference.

XXii Class Libraries User’s Guide

Document Conventions

This book uses the following typographic conventions:

Example

Description

STDIO.H

char, _setcolor,
__far

expression

[option]|
#pragma pack {112}

#include <io.h>

CL [[option...]| file...

while()
{

Uppercase letters indicate filenames, segment names,
registers, and terms used at the operating-system
command level.

Bold type indicates C and C++ keywords, operators,
language-specific characters, and library routines.
Within discussions of syntax, bold type indicates that
the text must be entered exactly as shown.

Many functions and constants begin with either a
single or double underscore. These are part of the
name and are mandatory. For example, to have the
__cplusplus manifest constant be recognized by the
compiler, you must enter the leading double
underscore.

Words in italics indicate placeholders for information
you must supply, such as a filename.

Items inside double square brackets are optional.

Braces and a vertical bar indicate a choice among two
or more items. You must choose one of these items
unless double square brackets ([[]]) surround the
braces.

This font is used for examples, user input, program
output, and error messages in text. It is also used for
names of user-derived classes and members.

Three dots (an ellipsis) following an item indicate that
more items having the same form may appear.

A column or row of three dots tells you that part of an
example program has been intentionally omitted.

Introduction Xxiii

Example Description

CTRL+ENTER Small capital letters are used to indicate the names of
keys on the keyboard. When you see a plus sign (+)
between two key names, you should hold down the
first key while pressing the second.

The carriage-return key, sometimes marked as a bent
arrow on the keyboard, is called ENTER.

“argument” Quotation marks enclose a new term the first time it is
defined in text.

"C string” Some C constructs, such as strings, require quotation
marks. Quotation marks required by the language
have the form " " and ' ' rather than “” and *’.

Color Graphics The first time an acronym is used, it is usually spelled

Adapter (CGA) out.

Using the Microsoft Foundation e
Class Library Tutorial

%igha%r .

The first six chapters of this book (Part 1) make up the Microsoft Foundation
Class Library tutorial. Use these chapters to get a quick introduction to the
Microsoft Foundation Classes or to take a step-by-step tour through some of
their fundamentals.

1.1 What’s in the Tutorial

Topics

The tutorial uses several example programs to introduce you to programming with
the Microsoft Foundation Class Library. For additional information about how to
accomplish particular programming tasks, see the cookbook (Part 2) in Chapters 7
through 17. As you work through the tutorial and explore the cookbook, you can
look up the classes, functions, and other components of the Microsoft Foundation
Class Library in the Class Libraries Reference. This information is also available
in Help.

This tutorial shows you how to:

= Design with C++ and objects.

= Use collection classes.

= Design and implement persistent objects.

® Use the diagnostic facilities of the class library.

= Use objects in character-based programs.

= Use objects to program Microsoft Windows.

If you want to study a more specific topic, use the cookbook chapters. If you want

to learn to build complete object-oriented programs—both character-based and
Windows—follow the tutorial.

6 Class Libraries User’s Guide

Programs

The tutorial presents four sample programs to demonstrate many of the classes and
facilities of the Microsoft Foundation Class Library:

= DMTEST, Chapter 2

This simple, noninteractive DOS program demonstrates the use of collection
classes, object serialization, diagnostics, and other features of the Microsoft
Foundation Class Library.

= HELLO, Chapter 3

This simple Windows program demonstrates the fundamentals of writing a
Windows program with the Microsoft Foundation Classes.

= PHBOOK, Chapters 4 through 6

This more ambitious Windows program demonstrates more complicated dialog
boxes, standard Windows version 3.1 open, save, and print dialogs, Windows
menus and menu-handler functions, basic uses of the keyboard and the mouse,
and more.

= CMDBOOK, Chapter 4

This program parallels PHBOOK but without Windows. It presents a character-
based command interface to the data model developed in Chapter 1 and used in
PHBOOK. Because of its great similarity to PHBOOK, CMDBOOK is not pre-
sented in detail but is provided if you wish to pursue character-based program-
ming with the Microsoft Foundation Class Library and C/C++.

1.2 How to Use the Tutorial

There are two ways to use this tutorial. If you learn best by typing the code your-
self, you can follow along step by step through the example programs. On the
other hand, if you prefer, you can read the discussion sections in each chapter and
build the examples from the code files provided on the distribution disks.

What You Need to Know

To make effective use of this tutorial, you should have some experience program-
ming in C and some familiarity with Microsoft Windows programming. Because
the Microsoft Foundation Class Library uses C++, the more you know about the
C++ language the better.

You can improve your understanding of Windows programming with the
Microsoft Windows SDK documentation and with books like Programming
Windows, Version 3, second edition, by Charles Petzold, and Peter Norton’s
Windows 3.0 Power Programming Techniques, by Peter Norton and Paul Yao.

Using the Microsoft Foundation Class Library Tutorial 7

You can improve your understanding of C++ programming with the C++ tutorial
included in your Microsoft C/C++ package or with C++ Primer, second edition,
by Stanley B. Lippman.

Chapters 3 through 6 cover Windows programming with the Microsoft Foundation
Class Library. Chapter 2 and part of Chapter 4 cover non-Windows programming.

Work Along with the Tutorial

To work along with the tutorial, follow the steps presented in the next five chap-
ters. Each chapter instructs you in putting together the necessary code files. You’ll
add class declarations, member functions, and other pieces of code step by step.
Each chapter also includes complete listings of the code, which you can use to
check your work.

If you choose to follow the tutorial, make your own working directory for each ex-
ample. This keeps the files you create separate from files of the same names in the
example directories. Copy the appropriate makefile to your new directory (see
“Makefile Locations” on page 8).

At frequent intervals, you’ll find discussion sections that sum up the code you’ve
just added to your files and explain what that code is doing. If you wish, you can
skip past any of the discussion sections to continue creating your example code
files, but you’ll probably find the discussion sections worth pausing for.

Once you complete your files, you’ll find instructions for building the program.
Later sections of this chapter will show you how to build your program using the
Programmer’s WorkBench (PWB) or using the NMAKE utility.

Get Right to Your Own Code

If you prefer to skip the step-by-step tutorial, you should read the rest of this chap-
ter, then skim the remaining five chapters, focusing on the discussion sections. In
each chapter, you’ll probably want to read the introduction and the discussion sec-
tions and look at the complete code listings.

On your Microsoft C/C++ distribution disks you’ll find code files for all the tu-
torial examples, including makefiles for use with NMAKE and project files for use
with PWB. You can build the examples, modify them to try new techniques and
other classes, and then move on to your own programs.

8 Class Libraries User’s Guide

1.3 How to Build Microsoft Foundation Programs

This section explains how to build the example programs using either PWB or
NMAKE.

Necessary Setup

If you chose to install the Microsoft Foundation Class Library when you

installed Microsoft C/C++, you have all of the files and directories you need.
Your PATH, INCLUDE, and LIB environment variables should be set up to com-
pile programs that use the Microsoft Foundation Classes. The paths given below
are relative to where you installed Microsoft C/C++. If you installed Microsoft
C/C++ into the C700 directory, for example, the INCLUDE path given below is
C700\MFCAINCLUDE.

Your INCLUDE variable should include normal C 7.0 includes and the path to the
MFCANCLUDE directory, which contains Microsoft Foundation Class Library in-
clude files.

Your LIB variable should include normal C run-time libraries and the path to the
MFC\LIB directory, which contains Microsoft Foundation Class Library run-time
library files.

Your INCLUDE and LIB paths do not need to be in any particular order. If you
write your own makefile for NMAKE, be sure to list the “afx” library appropriate
to your chosen memory model first in the list of libraries you link with.

Makefiles and Build Directories

This section describes where to find the makefiles for the tutorial example pro-
grams and explains how those makefiles are set up.

Makefile Locations

The makefiles for the tutorial examples are in the TUTORIAL directory except
those for HELLO.EXE, which is in the HELLO directory.

Note All of the tutorial programs except HELLO are placed in one directory,
MFC\SAMPLES\TUTORIAL. Because of this, you can’t simply use the default
makefile as you can with HELLO. For these programs, you must give NMAKE a
specific makefile name.

The makefiles for building with PWB have the same base name as the example
program file, plus the . MAK extension. The makefiles for building with NMAKE
have the same base name as the example program file but no extension.

Using the Microsoft Foundation Class Library Tutorial 9

Makefiles for the DMTEST, CMDBOOK, and PHBOOK examples are in the
MFC\SAMPLES\TUTORIAL directory. Makefiles for the HELLO example are in
the MFC\SAMPLES\HELLO directory.

Makefile Defaults

By default, the tutorial makefiles all build release mode programs.

If you want to build debug mode, see “How to Switch from Release to Debug
Builds” on page 12. The paths listed here and throughout the chapter are relative
paths. You’ll probably want to write your own code in separate directories. In par-
ticular, if you follow the tutorial step by step and create your own code files to
match the code listings given in the chapters, you’ll need to write your versions in
your own directories to avoid naming clashes with the same files provided on the
distribution disks.

After a build, you’ll find the .EXE and .OBI files for the build in these directories.

How to Build with PWB

This section outlines the basic steps needed to build a program using PWB.
For further information about using PWB, see the PWB Tutorial in Environment
and Tools.

» To build your example program with PWB, do the following:

1. Run PWB.
= If you are running Windows, start PWB from the Program Manager.

= If you are running PWB from DOS or from a DOS command shell in
Windows, type PWB at the command line.

2. From the Project menu, choose the Open Project command.

This command displays a dialog box of the same name in which you can name
your project and select a makefile for the project.

10

Class Libraries User’s Guide

3. Select the .MAK file for your program and click the OK button.

Use the following makefiles for the tutorial examples:

» For DMTEST, Chapter 2, use DMTEST.MAK.

* For HELLO, Chapter 3, use HELLO.MAK.

= For PHBOOK, Chapters 4 through 6, use PHBOOK.MAK.

= For CMDBOOK, Chapter 4, use CMDBOOK.MAK.

For the locations of these makefiles, see “Makefile Locations” on page 8.

. From the Options menu, choose the Build Options command. The Build

Options dialog box appears. Confirm that “Use Release Options” is set. This is
the default provided in the tutorial’s makefiles.

Note The makefiles for the tutorial examples build release versions by default.
To see how this default setup looks in PWB, choose some of the options com-
mands in the PWB Options menu and examine the dialog boxes to see which
options are selected.

. To compile, from the Project menu, choose the Build command.

The Build command on the menu now includes your project name, for ex-
ample, “Build: DMTEST.exe.”

. When the build finishes, the Build Results dialog box will appear, showing how

many errors and warnings occurred. If there were no errors, click the Cancel
button in the dialog box.

If you’re compiling a DOS program and running PWB under DOS or Win-
dows, you can instead click the Run Program button in the dialog box. This ex-
ecutes the program from PWB. If you’re compiling for Windows, see “How to
Run Your Program” on page 13.

Using the Microsoft Foundation Class Library Tutorial 1"

7. If you get errors, do one of the following:

= After building a DOS program from the Build menu, choose Debug to locate
the source of the error. For more details, see your documentation for PWB in
Environment and Tools.

= After building a Windows program, switch to the Windows Program
Manager and run the Codeview debugger. See your Windows documentation
for more information.

How to Build with NMAKE

NMAKE is the command-line project-management facility provided with
Microsoft C/C++. This section explains how to build the tutorial programs from
the DOS command line with NMAKE. Although NMAKE isn’t required for the tu-
torial examples, if you are unfamiliar with NMAKE and would like more explana-
tion, see the documentation for NMAKE in Environment and Tools.

» To build your program with NMAKE, do the following:
1. At the DOS command line (or in a DOS command shell from Windows), type

NMAKE <makefile name>

This command is not case sensitive.

Use the appropriate makefile name for your program. The names for the tutorial
examples are shown below.

= For DMTEST, Chapter 2, use DMTEST

= For HELLO, Chapter 3, no makefile name is required (default of
MAKEFILE is used)

= For PHBOOK, Chapters 4 through 6, use PHBOOK
= For CMDBOOK, Chapter 4, use CMDBOOK
2. If you supply additional arguments to NMAKE, you must add the /F compiler
option:
NMAKE /F <makefile name> [[other arguments]]

The /F compiler option is not required when only one argument is given.

3. When the build completes, debug and rebuild the program if necessary. If you
make changes to your source files, NMAKE rebuilds the files that have
changed and any files that depend on them.

4. After a successful build, run the program to test it. For information about run-
ning your programs, see “How to Run Your Program” on page 13.

12

Class Libraries User’s Guide

How to Switch from Release to Debug Builds

If you want to build the examples, or your own programs, for debugging, follow
the instructions in this section. When you build for debugging, CodeView informa-
tion is generated to help you use the CodeView debugger. For more information
about CodeView, see Environment and Tools.

When you switch to debug mode, you set the _DEBUG flag so that the debugging
facilities built into the example programs are enabled. The ASSERT and TRACE
macros, explained in Chapter 2, will provide diagnostic information. Diagnostic
messages are displayed to the debugger.

Debug Mode for PWB

To switch from release builds to debugging builds with PWB:

1. Open the project file for the program.
2. From the Build menu, choose the Build Options command.
3. Select “Use Debug Options.”

You will need to change the “Build directory” field in the same dialog box to
specify the correct directory to build into.

4. Then build the program as explained in “How to Build with PWB” on page 9.

Debug Mode for NMAKE

To switch from release builds to debugging builds with NMAKE:

= Add the DEBUG=1 option to your NMAKE command line, as illustrated here for
the PHBOOK program:

NMAKE /F PHBOOK DEBUG=1

Note Case is significant for the DEBUG=1 option. It must be uppercase.

Using the Microsoft Foundation Class Library Tutorial 13

1.4 How to Run Your Program

This section explains how to run your tutorial example programs. The process
differs depending on whether the program was built as a DOS program or a
Windows program.

The makefiles for the tutorial programs are set up for DOS or Windows. The
DMTEST program in Chapter 2 and the CMDBOOK program discussed at the
end of Chapter 4 run under DOS. The other programs, HELLO and PHBOOK,
must be run under Windows.

How to Run Your DOS Program

If you build a DOS program with PWB and you run PWB under DOS, you can
run the program directly from PWB.

» To run a DOS program from PWB:

= When the PWB build-completion dialog box appears, click the Run Program
button.

If you build your DOS program with NMAKE, run the program from the DOS
command line.

» To run a DOS program from the command line:

= At the DOS command line, type the name of your program’s .EXE file and
press ENTER.

If necessary, supply a pathname to the .EXE file.
For example, to run the executable file for DMTEST, type the following at the
command line (assuming that DMTEST.EXE is in the \TUTORIAL directory):

DMTEST

Remember that the default makefiles for most of the tutorial programs build into
subdirectories of the MFC\SAMPLES\TUTORIAL directory, as explained in
“Makefile Locations” on page 8. Run the program from that directory, or supply a
path to that directory.

14 Class Libraries User’s Guide

How to Run Your Windows Program

The example programs for Chapters 3 through 6 are Windows programs. They
must be run from within the Microsoft Windows environment.

Note You cannot use the Run or Debug menu commands in PWB with a
Windows program. To run your Windows program, switch to the Windows
Program Manager. To debug a Windows program, switch to the Program Manager
and execute the CodeView debugger from there.

» To run your program in Windows:

1. From the Windows Program Manager File menu, choose the Run command.
The Run dialog box appears.

2. Type the path and program name just as you would from the DOS command
line.

For example, to run the HELLO program (assuming that HELLO.EXE is in the
C700\MFC\SAMPLES\HELLO directory), type

C:\C700\MFC\SAMPLES\HELLO\HELLO.EXE

If you prefer, you can use the New command from the Program Manager’s File
menu to assign an icon to your program and tell Windows where to locate the
executable file. Then you can run the program by double-clicking its icon. For
information on this process, see your Microsoft Windows documentation.

1.5 Summary

This chapter introduced the Microsoft Foundation Class Library tutorial, shows
you how to use it, and explained how to build and run the example programs.

The next chapter explores the Microsoft Foundation Class Library’s collection
classes and introduces the fundamentals of designing with objects. Even if you’re
anxious to get to the Windows chapters, this chapter is worth reading.

Chapter 3 demonstrates the fundamentals of Windows programming with the
Microsoft Foundation Class Library. You’ll build a simple Windows version of
the familiar “Hello, World!” program.

Chapters 4 through 6 take you deeper into Windows programming with the
Microsoft Foundation Class Library. You’ll build a small but complete Windows
application called PHBOOK, which uses the data model designed in Chapter 2 to
implement a simple personal phone list program.

Using the Microsoft Foundation Class Library Tutorial 15

Chapter 4 also briefly discusses the CMDBOOK program, which provides a
character-based parallel to PHBOOK.

In addition to the tutorial and its example programs, your distribution disks
contain many other examples that use the Microsoft Foundation Classes. For non-
Windows applications, see TEMPLDEF and RESTOOL. For Windows applica-
tions, see CHART, MULTIPAD, and SHOWFONT, among others. A README
file explains what these applications do and what programming techniques they
demonstrate.

Creating a Data Model with the
Microsoft Foundation Classes

The previous chapter introduced you to the steps necessary to build programs that
use the Microsoft Foundation Class Library. This chapter assumes that you have
successfully installed the Microsoft Foundation Class Library on your system and
have read the previous chapter.

In this and the rest of the tutorial chapters, you will learn how to use the com-
ponents of the library in the design of your programs. You will see how the built-
in functionality of the Microsoft Foundation Classes can reduce the code that you
have to write to realize the goals of your programs. This chapter emphasizes the
Microsoft Foundation Class Library’s “collection” classes in particular.

This chapter describes how to use Microsoft Foundation Classes to create a data
model for a simple name and phone number database program. The purpose of the
chapter is to demonstrate how the component classes from the Microsoft Founda-
tion Class Library can help you design at a high level of abstraction and greatly
simplify the implementation of your design.Use of the Microsoft Foundation Class
Library for Microsoft Windows programming is covered in the next four chapters.
This chapter explains the non-Windows classes of the Microsoft Foundation Class
Library.

2.1 In This Chapter

Follow this tutorial to write a simple program that uses an object-oriented
database. The database and the data objects stored in it are based on classes from
the Microsoft Foundation Class Library. The process can be summarized as
follows:

1. Design the data items.
2. Design a list to store the data.
3. Test the data model.

The rest of this section describes the example program.

18

Class Libraries User’s Guide

The Data Model Program

In this chapter, you will develop a data model and a simple program to test it. The
example is called DMTEST.

This section is an overview of what the program does and what you will be learn-
ing about the Microsoft Foundation Class Library.

What Is a Data Model?

A data model is an abstraction that represents the structure of the data that a pro-
gram manages. The data model for this chapter, for example, consists of person ob-
jects and a list object to contain them.

The data model is completely independent of the user interface. The data model
knows nothing about how the data will be displayed to the user, nor does it know
how the user will communicate with the program. The data model communicates
with the user interface of the program through a well-defined set of member func-
tions.

One way to think of this relationship is that the data model is a server, and the user
interface is a client. The user interface interacts with the user and translates user
input into requests that the interface sends to the data model. The data model re-
sponds to the requests and sends information back to the user interface, which the
user interface then displays to the user.

Figure 2.1 shows the relationship between the user, the user interface, and the data
model. You can see that the user never directly interacts with the data model.

User Data
User — Interface Model
Member
functions

Figure 2.1 The Data Model and the User Interface

The data model’s independence from the user interface is a very important concept
in the design of resusable programs. This independence enhances the reusability of
the data model. Thus, the data model for names and phone numbers developed in
this chapter can be used with a text-only interface or with a Microsoft Windows
interface without any changes to the data model. The next chapters show how to

Creating a Data Model with the Microsoft Foundation Classes 19

develop a Windows user interface that works with the data model to create a
complete interactive program.

What the Example Does

The purpose of the example program is to manage a list of names and phone num-
bers. Each data item represents a single person and contains that person’s name
and phone number. The user can add persons to the list, find all matches for a
specified name, and save and restore the data to and from a disk file. The C++
objects constituting the data model provide all of these capabilities.

The DMTEST program demonstrates these capabilities by:

= Creating a database and adding names to it.

® Serializing the database (writing it to disk).

= Deserializing the database (reading it from disk).
= Searching the database for a person.

= Disposing of the objects.

Code for the Data Model

To view the complete code for the DMTEST program, see Listings 1, 2, and 3 at
the end of the chapter.

The code shown is available on the distribution disks in files PERSON.H,
PERSON.CPP, and DMTEST.CPP.

Microsoft Foundation Classes Used in the Data Model

This chapter demonstrates the use of six classes from the Microsoft Foundation
Class Library:

= (Class CObject

Each record in the database is represented by an object of the class CPerson,
which is derived from the Microsoft Foundation Class CObject.The CPerson
class builds upon the functionality of CObject, adding member variables repre-
senting the name and phone number of a person. In addition, the CPerson class
overrides functions from CObject that are related to serialization so that the
name and phone number can be saved to and restored from disk.

m (Class CObList

Collection classes are designed to contain collections of similar objects. The
Microsoft Foundation Class Library provides three kinds of collections: lists,
arrays, and maps (or dictionaries). In the example, a list collection is used to
contain all the CPerson objects in the database. The Microsoft Foundation

20

Class Libraries User’s Guide

Classes include several useful list classes, but because we need some special-
ized list functionality, the list used in this chapter will be derived from the
Microsoft Foundation CObList class. The specialized list class makes use of
all of CObList’s capabilities, but also adds some new functions, including one
that can find all elements of the list that match a specified last name.

® (lass CString

CString objects represent the name and phone number member variables of a
CPerson object.

= Class CTime

A CTime object represents the last modification time and date of a CPerson
object.

m (Classes CFile and CArchive

A CFile object identifies and opens the file used to serialize the database. Serial-
ization in the Microsoft Foundation Class Library is done with a CArchive ob-
ject, which uses an opened CFile object to perform the serialization.

Other Capabilities Demonstrated

The following list describes other capabilities that your data objects can use. Some
are available because your objects are derived from class CObject and some
simply because you are using the Microsoft Foundation Class Library. These capa-
bilities are demonstrated in the DMTEST program.

m Serialization

Serialization is the act of saving an object to a disk file or reading it back in
(sometimes called “deserialization”). Objects of the class CPerson can serialize
themselves to and from a disk file. Likewise, the collection of CPerson objects
can serialize itself and all its elements. Because a collection can automatically
serialize all its elements, the act of serializing the database is reduced to a single
function call to serialize the collection. This cuts down the amount of code you
have to write.

® Exceptions

The Microsoft Foundation Class Library’s exception-handling mechanisms
“catch” exceptions that are “thrown” by the Microsoft Foundation Class Library
functions as those functions encounter errors. Exceptions provide a way for you
to respond to errors, especially by the file-handling classes. This, along with the
TRACE macro for printing messages, gives you a convenient, structured way to
process errors, both during development and in the finished program.

® Diagnostics

The TRACE macro is used throughout the code in this chapter to provide
diagnostic output to track program progress. The Microsoft Foundation Class
Library also provides an ability to dump the contents of objects to assist in

Creating a Data Model with the Microsoft Foundation Classes 21

debugging your program and facilities for testing the validity of your assump-
tions, such as whether a pointer points to a valid area of memory.

2.2 How to Write the DMTEST Program

This section gives an overview of the steps in writing the DMTEST program. As
you work through the steps, you will learn what files to prepare, where to put the
code in them, and how to compile the program.

To write the DMTEST program with the Microsoft Foundation Classes:

1.

Design the CPerson data object.

Derive the CPerson data class from the Microsoft Foundation Class CObject.
Figure 2.2 shows the class hierarchy for CPerson. For more about this step, see
“Design the CPerson Data Object” on page 22.

. Design the CPersonlList object.

Derive the CPersonList object from the Microsoft Foundation Class CObList.
Figure 2.2 shows the class hierarchy for CPersonList. For more about this step,
see “Design the CPersonList Object” on page 36.

. Test the data model.

Write a small test program to demonstrate the capabilities of the data model.
For more about this step, see “Test the Data Model” on page 49.

. Build the program.

Compile and link the data model test program. For more about this step, see
“Build the Program” on page 65.

CObiject

/N

CPerson CObList

A

CPersonList

Figure 2.2 Object Class Hierarchies for Data Model Objects

22 Class Libraries User’s Guide

2.3 Design the CPerson Data Object

This section explains the first step in writing the DMTEST program: design the
data and prepare two code files. You’ll create an interface file for the data model
called PERSON.H and an implementation file called PERSON.CPP. The process
will be described in two main steps with several substeps:

1. Create the interface file.
a. Create a file PERSON.H and add directives.
b. Add a class declaration.
c. Add an #endif directive.
2. Create the implementation file.
a. Create a file PERSON.CPP and add directives.
b. Add macro invocations.

¢. Add member function definitions.

Create the Interface File

PERSON.H contains a list of preprocessor directives and two C++ class declara-
tions. Class CPerson defines a class of “person objects.” Class CPersonList de-
fines a class of list objects capable of containing CPerson objects.

» To create the PERSON.H interface file:
1. Create a file called PERSON.H and add the following directives at the top of

the file:
Jifndef __PERSON_H__
define PERSON_H__

J#ifdef _DOS

#include <afx.h>
felse

#Finclude <afxwin.h>
f#endif
#include <afxcoll.h>

The directives above prevent any implementation code in PERSON.H from
being included twice, in case two files include PERSON.H and one of them
includes the other. This is a common safety measure used in all Microsoft Foun-
dation #include files. If the code were included twice, you’d get linker errors.

2. Add the following class declaration for CPerson to PERSON.H:
// class CPerson:

// Represents one person in the phone database. This class is
// derived from CObject (mostly to get access to the serialization

Creating a Data Model with the Microsoft Foundation Classes 23

// protocol).

//
class CPerson : public CObject
{

DECLARE_SERIAL(CPerson);
public:

//Construction

// For serializable classes, declare a constructor with no
arguments.

CPerson()

{ m_modTime = CTime::GetCurrentTime(); }

CPerson(const CPerson& a);

// For our convenience, also declare a constructor with arguments.
CPerson(const charx pszLastName,

const char* pszFirstName,

const char* pszPhoneNum);

//Attributes
// Member functions to modify the protected member variables.
void SetLastName(const char* pszName)
{ ASSERT_VALID(this);
ASSERT(pszName != NULL);
m_LastName = pszName;
m_modTime = CTime::GetCurrentTime(); }

const CString& GetLastName() const
{ ASSERT_VALID(this);
return m_LastName; }

void SetFirstName(const char* pszName)
{ ASSERT_VALID(this);
ASSERT(pszName != NULL);
m_FirstName = pszName;
m_modTime = CTime::GetCurrentTime(); }

const CString& GetFirstName() const
{ ASSERT_VALID(this);
return m_FirstName; }

void SetPhoneNumber(const char* pszNumber)
{ ASSERT_VALID(this);
ASSERT(pszNumber != NULL);
m_PhoneNumber = pszNumber;
m_modTime = CTime::GetCurrentTime(); }

const CString& GetPhoneNumber() const
{ ASSERT_VALID(this);
return m_PhoneNumber; }

const CTime GetModTime() const

24

Class Libraries User’s Guide

{ ASSERT_VALID(this);
return m_modTime; }

//0perations
CPerson& operator=(const CPerson& b);

//Implementation

protected:
// Member variables that hold data for person
CString m_LastName;
CString m_FirstName;
CString m_PhoneNumber;
CTime m_modTime;
public:

// QOverride the Serialize function
virtual void Serialize(CArchive& archive);

ffifdef _DEBUG
// Override Dump for debugging support
virtual void Dump(CDumpContext& dc) const;
virtual void AssertValid() const;

fendif

}s;

C++ techniques are used to derive class CPerson from the Microsoft Founda-
tion Class CObject. Notice that the class declares several constructors, an over-
loaded assignment operator, several member functions for getting and setting
the attributes of a person object, and several member variables for storing infor-
mation about a person. The class also takes advantage of CObject’s ability to
write an object’s contents to disk by invoking the DECLARE_SERIAL macro
and overriding the Serialize member function. In addition, it overrides several
of CObject’s member functions to provide diagnostics during program develop-
ment. The class is discussed in detail in “Discussion: The CPerson Class” on
page 28.

. Add the following directive as the last line of code in PERSON.H:

ffendif // __PERSON_H__

Later you’ll add the declaration for class CPersonList to PERSON.H. Be sure
to keep this #endif directive as the last line of code in the file.

Create the Implementation File

PERSON.CPP contains several preprocessor directives, two macro invocations to
support object serialization, and definitions for several of the member functions of
classes CPerson and CPersonlist. Some of the member functions were defined
inline as part of the class declarations in file PERSON.H, but the longer ones were
left for definition in PERSON.CPP.

Creating a Data Model with the Microsoft Foundation Classes 25

» To create the PERSON.CPP implementation file:

1. Create a file called PERSON.CPP and add the following directives at the top of
the file:

#include "person.h"
#include <string.h>

#ifdef _DEBUG

Jundef THIS_FILE

static char BASED_CODE THIS_FILE[] = __FILE _;
fendif

Besides #include directives, these directive lines provide support for debugging
when the _DEBUG flag is defined. The directives help identify which file an
error occurred in.

2. Add the following macro invocations to PERSON.CPP below the preprocessor
directives:

// Call 'IMPLEMENT_SERIAL' macro for all the
// classes declared in person.h

IMPLEMENT_SERIAL(CPerson, CObject, @)

This line adds code to support object serialization so that CPerson and
CPersonList objects can write themselves to a disk file and read themselves in
from a file. Serialization is discussed in detail in “How to Serialize a CPerson
Object” on page 33. Later you’ll add a similar line for the CPersonList class.

3. Add the following member function definitions for class CPerson:

// CPerson::CPerson
// Copy Constructor for CPerson class
1/
CPerson::CPerson(const CPerson& a)
{
ASSERT_VALID(this);
ASSERT_VALID(&a);
m_LastName = a.m_LastName;
m_FirstName = a.m_FirstName;
m_PhoneNumber = a.m_PhoneNumber;
m_modTime = a.m_modTime;

// CPerson::CPerson
// Memberwise Constructor for CPerson class
//
CPerson::CPerson(const char* pszLastName,
const char* pszFirstName,
const char* pszPhoneNum)

26

Class Libraries User’s Guide

ERT_VALID(this);

astName = pszlLastName;

irstName = pszFirstName;
honeNumber = pszPhoneNum;

odTime = CTime::GetCurrentTime();

son::operators=

// Overloaded operator= to perform assignments

CPerson& CPerson::operator=(const CPerson& b)

{
ASS
m_L
m_F
m_P
m.m

}

// CPer

//

{
ASS
ASS
m_L
m_F
m_P
m_m
ret

}

// CPer

// Writ

// diag

//

// The

//

ERT_VALID(this);
ERT_VALID(&b);

astName = b.m_LastName;
irstName = b.m_FirstName;

honeNumber = b.m_PhoneNumber;
odTime = b.m_modTime;

urn *this;

son::Dump

e the contents of the object to a
nostic context

overloaded '<<' operator does all the

fHifdef _DEBUG

void CP
{
ASS
//
COob

//
dc
<L
<L

<<

<L
}
void CP
{

COob
}

fendif

erson::Dump(CDumpContext& dc) const

ERT_VALID(this);
Call base class function first
ject::Dump(dc);

Now dump data for this class

<< "\n"

"Last Name: " << m_LastName << "\n"
"First Name: " << m_FirstName << "\n"
"Phone #: " << m_PhoneNumber << "\n"
"Modification date: " << m_modTime <<

erson::AssertValid() const

ject::AssertValid();

hard work

u\n";

Creating a Data Model with the Microsoft Foundation Classes 27

// CPerson::Serialize
// Read or write the contents of the object
// to an archive
//
void CPerson::Serialize(CArchive& archive)
{
ASSERT_VALID(this);
// Call base class function first
CObject::Serialize(archive);

// Now dump data for this class
if (archive.IsStoring())
{
TRACE("Serializing a CPerson out.\n");

archive << m_LastName << m_FirstName

<< m_PhoneNumber << m_modTime;
}
else

{
TRACE("Serializing a CPerson in.\n");
archive >> m_LastName >> m_FirstName
>> m_PhoneNumber >> m_modTime;
}

These definitions complete the member functions declared as part of the
CPerson class declaration. They define the following member functions:

= A copy constructor—to make copies of a CPerson object

= A constructor—to create new CPerson objects with initializing information
passed as parameters

= An overloaded assignment operator—to assign one CPerson object to
another

= A Dump member function— to dump diagnostic information about CPerson
objects

= An AssertValid member function—to test the validity of a CPerson
object

= A Serialize member function—to write a CPerson object’s data to a file
or read data from a file into a CPerson object

Later you’ll add member function definitions for class CPersonList to
PERSON.CPP.

At this point, you’ve added all of the code for class CPerson to both files.

To continue the tutorial, see “Design the CPersonList Object” on page 36. For
more information about the steps you just completed, see “Discussion: The
CPerson Class,” which follows.

28

Class Libraries User’s Guide

Discussion: The CPerson Class

This discussion does not instruct you to add any new code to your files. Code is
sometimes repeated to illustrate a point, but you do not need to add it.

A CPerson object is designed to manage the name and phone number of one per-
son. A CPerson object is constructed from the CPerson class. CPerson is derived
publicly from class CObject.

In effect, a CPerson object is created from a stock of existing components: a
string class, a time class, and a general object class (CObject, from which

CPerson is derived). The new CPerson class automatically inherits a great deal of
functionality from CObject and then adds to its inheritance. CPerson also relies
heavily on the built-in capabilities of CString and CTime. These component
classes encapsulate specialized kinds of data storage, control access to that data,
and cooperate in the ability of CPerson to serialize itself and to provide diagnostic
information.

The result of creating CPerson from library components is that you write less
code, and the code encapsulated by the component objects comes fully tested. This
leaves you more time to focus on high-level design issues and reduces debugging
and maintenance time and costs.

The CPerson class declaration given above requires some explanation. The discus-
sion that follows explains how to construct CPerson objects, how CPerson datais
stored and accessed, how to test a new object for validity, how to serialize a
CPerson object, and how to get a diagnostic dump of a CPerson object during
debugging.

Class CPerson Constructors

A CPerson object is constructed when one of its constructors is invoked. CPerson
has two constructors, one with parameters and one without. It also has a copy con-
structor and an overloaded assignment operator.

Constructor with Parameters You can use a constructor with parameters to con-
struct CPerson objects in your program. To initialize objects created this way, the
public constructor for CPerson takes initialization arguments, which you supply at
construction time.

Constructor Without Parameters The parameterless constructor of class
CPerson is used internally by the class to support serialization, but you must
supply it in your class declaration.

Creating a Data Model with the Microsoft Foundation Classes 29

For serializable
classes, you must
define a constructor
with no arguments.

How to Construct CPerson Objects You can constructa CPerson object in two
ways:

® You can constructa CPerson object on the frame of a function (as a local varia-
ble) as follows:

void ()
{
CPerson thePerson("Smith", "Mary", "435-8159");

// 0ther function code
}

® You can constructa CPerson object dynamically on the heap, using the C++
new operator, as follows:

CPerson* pPerson = new CPerson("Smith", "Mary", "435-8159");

The Copy Constructor The copy constructor is a special constructor that takes a
C++ reference to a CPerson object as its argument. The copy constructor copies
the data members of the person object whose copy constructor has been invoked
into the object passed as an argument. This allows you to make duplicates of
CPerson objects if you need to. For an important discussion, see the shaded box
“Copy Constructors” on page 30.

The Overloaded Assignment Operator Class cPerson overloads the C++
assignment operator (=) to provide correct assignment of one person object to
another. For an important discussion, see the shaded box “Copy Constructors” on
page 30.

About the Constructors For any class derived from CObject that will be serial-
ized, the Microsoft Foundation Class Library requires that you define a construc-
tor with no arguments. This constructor must at least put the object into a valid
state so that it can be safely deleted. Usually this means setting all the member
variables to some default null state. If you forget to define a constructor with no ar-
guments for a serializable class, you will get a compiler error at the line that con-
tains the IMPLEMENT_SERIAL macro.

The constructor with no arguments is used only internally for serialization. The
declaration inside class CPerson looks like this:

CPerson();

30 Class Libraries User’s Guide

In addition to the required constructor with no arguments, you may also declare a
constructor that takes arguments to initialize the member variables of the object, as
in CPerson:

CPerson(const char* pszLastName,
const char* pszFirstName,
const char* pszPhoneNum);

This practice of defining several variations on the constructor is common in C++
programming. You must declare at least one public constructor.

Objects constructed on the frame of a function are allocated when the function is
called. At the time of allocation, the constructor is invoked and the object initial-
ized. When the function completes, the destructors of any objects allocated on the
frame are invoked automatically to destroy the objects.

Creating a Data Model with the Microsoft Foundation Classes 31

You can construct objects dynamically on the heap at any time. Use the new opera-
tor to allocate the space. When you call new, the object’s constructor is invoked
automatically and the object is initialized. The new operator returns a pointer to

the object. However, unlike allocation on the frame, allocation on the heap re-
quires that the programmer explicitly deallocate the object with the C++ delete
operator.

In the case of classes such as CPerson, it is good practice for created objects to
live beyond the scope of the function where they are created, so objects are most
often created with the new operator.

How CPerson Data Is Stored and Accessed

CPerson uses two Microsoft Foundation Classes to store its data in member varia-
bles. This section explains the use of classes CString and CTime.

Class CString CString is used to store the first and last names and the phone
number. The declarations of these member variables looks like this:

CString m_pszlastName;
CString m_pszFirstName;
CString m_pszPhoneNumber;

CPerson uses the Microsoft Foundation Class CString to store its data in the
m_pszlLastName, m_pszFirstName, and m_pszPhoneNumber member variables. The
names of these variables follow the Microsoft Foundation Class Library conven-
tion of prefixing member variable names with “m_"".

The CString class is used because CString objects are dynamic. A CString ob-
ject encapsulates a string that can automatically grow up to approximately 32,000
characters. CStrings also have the ability to serialize themselves, so when it is
time to serialize a CPerson object, you can simply rely upon each CString in the
object to serialize itself without needing to know about the internal structure of the
CString. This is a considerable advantage.

Class CTime CTime is used to store date and time information. The modifica-
tion time variable in CPerson is declared like this:

CTime m_modTime;

The CPerson class also uses a CTime member variable to represent the date and
time of the last modification of each CPerson object. The time and date are set

32

Class Libraries User’s Guide

when the object is created, and modified whenever any of the other member varia-
bles are changed. For example, the SetLastName member function looks like this:

void CPerson::SetlLastName(const char* pszName)
{

m_pszLastName = pszName;

m_modTime = CTime::GetCurrentTime();
}

In the body of this function, the first line sets the last name value. The second line
sets the modification time. This operation is transparent to the user of the class. It
demonstrates one of the virtues of providing a controlled interface to a class, as
discussed in the next section.

Like the name and phone number information, the modification date is serialized
with the CPerson object.

How to Access CPerson Data

Given a CPerson object, how do you examine and update its data? The class pro-
vides four pairs of member functions to set and get the values of a CPerson ob-
ject’s member variables. For example, use the SetLastName member function to
set a new value for a person object’s last name member. Typically, the values are
set all at once by the public constructor, which takes arguments and loads them
into the member variables. But you can also modify the object’s data at any time
with the “Set” and “Get” member functions.

It’s common in object-oriented programming to define such data-access functions.
Notice that the member functions are defined as public to invite use, while the
member variables are defined as protected to prevent outside use. Such controlled
access to protected member variables helps to ensure the data’s integrity.

For example, in the CPerson class, all the member functions that set the member
variables also set the modification-date member variable to reflect the time of the
change. If it were possible to access member variables directly from outside the ob-
ject, a person object could be updated without updating its modification date. The
data could become invalid without this kind of secure encapsulation.

Validity Testing for Objects

Class CPerson demonstrates some of the facilities provided by the Microsoft
Foundation Classes for testing the validity of objects. The class uses the
ASSERT_VALID macro and overrides the AssertValid member function of
class CObject.

Along with the ASSERT macro, which is discussed in Chapter 4, these facilites
allow you to test your assumptions. Before you use an object, it’s wise to test the

Creating a Data Model with the Microsoft Foundation Classes 33

validity of its internal state. For example, if you have an object that represents a
stack data structure, you can confirm that the top and bottom of the stack are in a
valid relationship: the top is either “above” the bottom or equal to it (in the case of
an empty stack). Similarly, a pointer to an object must point to a valid area of
memory.

During debugging, you can use these assumption-testing facilities freely. If an
assumption fails the test, the program asserts, prints a diagnostic message, and
halts. When you build the program for release, the assumption testing code is not
compiled.

CPerson demonstrates the form of these facilities, but you’ll need to wait until
Chapter 4 for a more meaningful example. In CPerson, the ASSERT_VALID
macro typically tests whether the this pointer is NULL within a member function.
The override of the AssertValid member function simply calls its base class.

In class CDataBase in Chapter 4, you’ll see some more serious testing of
assumptions.

For more information about assumption testing, see Chapter 11 of the cookbook.

How to Serialize a CPerson Object

The ability to serialize data to and from the disk is probably the most

important attribute of the CPerson class. To enable serialization, you can derive
your class from the CObject class, use the DECLARE_SERIAL and
IMPLEMENT_SERIAL macros, and override the virtual Serialize member
function. The version of Serialize that is defined for CObject can work with data
in the CObject class only. When you override Serialize for your class, you extend
the capability of the function so that it can handle the data in your class as well as
the data in CObject.

The Archive Object The Serialize function takes a CArchive object as its argu-
ment. CArchive is a Microsoft Foundation Class that provides a context for read-
ing and writing object data to and from a disk file. An archive uses a class’s
overloaded insertion and extraction operators (<< and >>) to write and read object
data to and from the storage media. Notice that even though an archive uses the
same overloaded operators as the general-purpose I/O stream objects (such as cin
and cout) provided with Microsoft C, a CArchive object is different from an I/O
stream:

= A CArchive object handles data in binary form, which the computer can
process efficiently.

= General-purpose I/O streams handle data in textual form, which makes it easy
for humans to interpret.

34

Class Libraries User’s Guide

An individual CArchive object can be created for reading or for writing, but not
for both at the same time. Thus, each CArchive object maintains internal status in-
formation that indicates whether it is for loading (reading) or for storing (writing)
data. The Serialize function checks that status in the CArchive object passed to it
as an argument to determine whether to read or write the object data.

The TRACE Macro The code for the Serialize member function in CPerson
was shown on page 27. Notice that it uses the TRACE macro to print out a debug-
ging message indicating that the function has been called. The TRACE macro is
designed so that it is activated when you build a debug version of your program,
but deactivated when you build a release version. Thus, you can sprinkle TRACE
messages liberally throughout your code to monitor program execution during
development, and they will be deactivated automatically when you build a version
of your program to ship. This means that you don’t have to go back and comment
the messages out or bracket them with #ifdef _DEBUG and #endif statements.

What Serialize Does When a CPerson object is serialized, the following ac-
tions occur:

1. The CPerson object’s Serialize member function is called.

In the example program in this chapter, the CPersonList object that contains a
database of CPerson objects calls Serialize for each object in the list.

2. The Serialize member function immediately calls Serialize for its base class,
which in this example is CObject. The base class’s data is thus written to disk.

By calling the base class version of Serialize first, you ensure that all the con-
tents of the base class portion of your object are correctly serialized. If the
base class is itself a derived class, the Serialize function for the base class of
CPerson is also called. Thus Serialize is called for all classes in the hierarchy
above your class. Figure 2.3 shows this sequence for CPerson.

3. The CPerson object’s Serialize member next writes its own data to disk.

To prepare, the Serialize function calls the IsStoring member function for
the CArchive object. If the archive is for storing data, then each member varia-
ble of the CPerson object is written with the << insertion operator. If, on the
other hand, the archive is for reading, the >> extraction operator is used to read
each member variable. The insertion and extraction operators perform all the
operations necessary to make sure that the member variables are correctly writ-
ten or read.

Notice that the member variables are extracted in the same order that they were
inserted. This ensures that each member variable is matched with the correct
data.

Any serializable object can be written to disk with a single line of code. As you’ll
see later, a collection or list of serializable objects can also be serialized simply

Creating a Data Model with the Microsoft Foundation Classes 35

and with minimal code. Figure 2.3 shows the steps taken as a CPerson object is
serialized.

CObject 3. Base class is written to disk
A
2. Serialize
A
1. Serialize .) .)
—_— CPerson 4. Derived class is written to disk

Figure 2.3 Steps in Serializing a Person Object

How to Dump a CPerson Object’s Data

The previous section described how to override the Serialize member function to
read and write object contents to and from a CArchive object. The Dump member
function performs a similar function, but instead of writing out binary data to a
CArchive object, Dump writes a textual representation of the object data to a
CDumpContext object. A CDumpContext object is typically used for debugging
output during program development. It is similar to the general I/O streams in that
it is often directed to the screen or a log file, but a CDumpContext object can be
used only for output, not for input. A CDumpContext object’s output cannot be
formatted.

The Dump function writes the contents of an object, including descriptive labels,
to a diagnostic context. If you compare it to the Serialize function, you will see
three main differences:

® Serialize operates on a CArchive object and Dump uses a CDumpContext
object.

= Dump writes out descriptive text labels along with the textual representation of
the value of each member variable, while Serialize reads and writes only the
binary value of the member variables.

= Dump is a write-only operation.

The code for the Dump member function of CPerson is shown on page 26. Notice
that it is bracketed with an #ifdef _DEBUG/#endif block so that it will not be in-
cluded in a release version of your program.

Notice also that, like Serialize, the first statement of Dump calls the base class’s
version of the function. This ensures that the contents of the base class portion of
the object get dumped first. (That is, if the base class has any member variables,
they’re written out before member variables of the derived class.) Then the rest of

36 Class Libraries User’s Guide

the Dump function uses the insertion operator to send descriptive labels and the
contents of each member variable of the CPerson class. Once again, the insertion
operator does all the hard work.

The Microsoft Foundation Class Library provides a predefined CDumpContext
object named afxDump. You can use this object as the argument to the Dump func-
tion. The afxDump dump context object writes the dump information to standard
output. For a Windows program, afxDump uses the Windows function
OutputDebugString to route the dump information to the debugger if present, or
to the auxiliary (AUX) device if not. This occurs only if tracing is enabled. For
more information, see Technical Note 7 in file TNOO7.TXT in your distribution
disks. The afxDump object is available only in debug mode, but class
CDumpContext can be used for programs in release mode.

For example, if you had a CPerson object, you could dump it to the predefined
dump context with the following code. The DMTEST code also calls the
SetDepth member function of class CDumpContext to specify that all data of all
objects is to be dumped. This call is discussed again in step 1 of “Test the Data
Model” on page 49 and “How FindPerson Is Tested” on page 58.

CPerson myPerson("Smith", "Mary", "223-9175");
myPerson.AssertValid(); // See if object contains valid data
myPerson.Dump(afxDump);

The output looks like this:

Last Name: Smith
First Name: Mary
Phone #: 223-9175
Modification date: Fri Jul 19 13:36:30 1999

2.4 Design the CPersonList Object

This section explains the second step in writing the DMTEST program: design a
collection object to hold the CPerson data. You’ll be adding more code to your
PERSON.H and PERSON.CPP files. This process will be described in two main
steps:

1. Add aclass declaration to file PERSON.H.
2. Add code to PERSON.CPP.

a. Add a macro invocation.

b. Add code for member functions.

Each CPerson object represents one person in the database of names and phone
numbers that you’re building. You can use one of the collection classes from

Creating a Data Model with the Microsoft Foundation Classes 37

the Microsoft Foundation Class Library to derive your own list class to manage a
list of CPerson objects. The list class designed in this section is called
CPersonList.

To add the CPersonList object code to PERSON.H:

Add the following class declaration for CPersonList to file PERSON.H after the
‘CPerson declaration:

// class CPersonlist:

// This represents a 1ist of all persons in a phone database. This
// class is derived from CObList, a list of pointers to CObject-type
// objects.

class CPersonlList : public CObList
{
DECLARE_SERIAL(CPersonlList)

public:
//Construction

CPersonList()
{ m_bIsDirty = FALSE; }

// Add new functions
CPersonlList* FindPerson(const char * szTarget);

// SetDirty/GetDirty
// Mark the person list as "dirty" (meaning "modified"). This
// flag can be checked later to see if the database
// needs to be saved.
//
void SetDirty(BOOL bDirty)
{ ASSERT_VALID(this);
m_bIsDirty = bDirty; }

BOOL GetDirty()
{ ASSERT_VALID(this);
return m_bIsDirty; }

// Delete A11 will delete the Person objects as well as the
// pointers.
void DeleteAll();

protected:
BOOL m_bIsDirty;
};

C++ techniques are used to derive class CPersonList from the Microsoft Founda-
tion Class CObList. The class declares a constructor, a member function for
searching the list, member functions for flagging changes to the list and for testing

38

Class Libraries User’s Guide

that flag, and a member function for deleting the list. The class also invokes the
DECLARE_SERIAL macro to do its part in serializing the data to and
from the disk.

Note that CPersonlList requires only a single constructor with no arguments. This
constructor is defined inline, so you don’t have to add a function definition for it to
your PERSON.CPP file. The definition is taken care of as part of the declaration.
For more information about the CPersonList constructor, see “Discussion: The
CPersonList Class” on page 39.

This completes your PERSON.H file.

» To add the CPersonList object code to PERSON.CPP:

1. Add the following macro invocation to PERSON.CPP just below the similar
IMPLEMENT_SERIAL macro for CPerson:

IMPLEMENT_SERIAL(CPersonList, CObList, @)

2. Add code for the member functions of each CPersonList at the end of

PERSON.CPP:

// CPersonList::FindPerson

//

CPersonlList* CPersonList::FindPerson(const char * szTarget)
{

ASSERT_VALID(this);

CPersonlList* pNewlList = new CPersonlList;
CPerson* pNext = NULL;

// Start at front of Tist
POSITION pos = GetHeadPosition();

// lterate over whole 1ist

while(pos != NULL)

{
// Get next element (note cast)
pNext = (CPerson*)GetNext(pos);

// Add current element to new list if it matches
if (_strnicmp(pNext -> GetlLastName(), szTarget,
strlen(szTarget)) == 0)
pNewList -> AddTail(pNext);

if (pNewlList -> IsEmpty())
{

delete pNewlist;
pNewlList = NULL;

Creating a Data Model with the Microsoft Foundation Classes 39

return pNewlList;

// CPersonList::DeleteAll
// This will delete the objects in the 1ist as the pointers.

Cgid CPersonList::DeleteAl1()

‘ ASSERT_VALID(this);
POSITION pos = GetHeadPosition();
while(pos != NULL)
‘ delete GetNext(pos);

) éemoveA11();

CPersonList declares four member functions to manipulate the data stored in
the list and in the member variable of CPersonList. The four member functions
are FindPerson, SetDirty, GetDirty, and DeleteAll. SetDirty and GetDirty
are declared inline, so you’ve already added their definitions with the class dec-
laration in PERSON.H.

This completes your PERSON.CPP file.

At this point, your PERSON.H and PERSON.CPP files are complete. Check to be
sure that you have added all the #include and other compiler directives. Compare
your code to the full code listings presented in Listings 1 and 2 on page 66 and 69.
In the continuation of the tutorial, you will create a third file containing a main pro-
gram to test the data model.

To continue the tutorial, see “Test the Data Model” on page 49. For more informa-
tion about the steps you just completed, see “Discussion: The CPersonList Class, ”
which follows.

Discussion: The CPersonList Class

This discussion does not instruct you to add any new code to your files. Code is
sometimes repeated to illustrate a point, but you do not need to add it.

A CPersonlList objectis a “collection” of CPerson objects. You construct a
CPersonlList object from the CPersonList class declared above. CPersonList is
derived publicly from the Microsoft Foundation Class CObList.

40 Class Libraries User’s Guide

Figure 2.4 shows a collection schematically.

CPersonList Object

CPerson Objects

Figure 2.4 A Person List Object and the Data Objects It Contains

The discussion that follows explains how to construct a CPersonlList object, how
to add person objects to it, how to serialize the whole list, and how to search the
list for all persons with a given last name.

Creating a Data Model with the Microsoft Foundation Classes 11

How to Construct a CPersonList Object

The constructor for this class is declared publicly because you must be able to in-
voke it from outside the class. A list requires no initialization values, so you don’t
need a second constructor that takes arguments. The constructor of CPersonlList
simply initializes the list’s m_bIsDirty member variable to FALSE, signifying
that the list currently has no unsaved changes.

» To constructa CPersonlList:

Use one of the two ways you construct a CPerson object:

= On the frame of a function

‘When a function executes, a list declared as a local variable is constructed.
When the function returns, the list’s destructor is called to destroy the list. For
example, to construct a local list in a function:

void AFunction()

{
CPersonList myList; // List is constructed
// Operations on the list
// List is destroyed as function exits

}

= [n the heap

A list constructed dynamically with the C++ new operator exists until
you explicitly destroy it by invoking the C++ delete operator. To create a new
CPersonList in the heap:

CPersonList* pMyList = new CPersonlList;

This invokes the CPersonList constructor for pMyList.

How to Add Persons to the List

This section shows how to create and add person objects to a list object. You do
not need to add this code to your files.

» To add a person object to the list:
1. Create a person object:

CPerson* pNewPerson = new CPerson("Smith",
"Maryll)
"435-8159");

42

Class Libraries User’s Guide

2. Add the person to the list:

pMyList -> AddHead(pNewPerson);

This code calls the AddHead member function of CPersonList, which the
class inherits from CObList without overriding. Because the list was created as
a pointer to a CPersonList object, the —=> operator is used to access the mem-
ber function.

How to Serialize the List

This section explains how to serialize the CPerson database; that is, to write the
data members of all CPerson objects in the list to disk. It also explains the reverse
process: deserializing (reading) the database back from disk. In both cases, seriali-
zation uses a CFile object and a CArchive object. These objects are discussed in
the next section below.

The process also optionally uses a CFileException object. The CFileException
object is used to return information about any file errors that may have occurred
during the attempt to open the file. For more information about serialization, see
“More on Serialization” on page 60. For more information about exceptions, see
“Exception Handling” on page 61.

To serialize a CPersonList:

1. Create a CFile object and call its Open member function.

In the call to Open, specify the open permissions. Because the permissions are
defined inside class CFile, you need to qualify their identifiers with the CFile
class name:

theFile.Open(pszFileName, CFile::modeCreate | CFile::modeWrite)

The arguments to Open specify the filename, the access mode
(CFile::modeRead or CFile::modeWrite), and, optionally, a preconstructed
CFileException object (not used here).

Note The filename argument is a C++ reference to a CString object. You can
pass an ordinary null-terminated C-language string in a CString argument, as is
done with the szFileName string in DMTEST.CPP. For more information
about CString, see the Class Libraries Reference and Chapter 7.

2. Use the CFile object to create a CArchive object:

CArchive theQutArchive(&theOutFile, CArchive::store);

Creating a Data Model with the Microsoft Foundation Classes 43

This example shows an archive created for writing. The second argument speci-
fies whether the archive is for loading (reading) or storing (writing). For more
details, see “More on Serialization” on page 60.

3. Use the CArchive object as you would a C++ iostream, such as cin or cout:

theQutArchive << plList;

You use the overloaded insertion (<<) or extraction (>>) operator to pass data
through the archive object. The one you use depends on whether you are writ-
ing or reading the list.

4. Close the archive object and then the file object, in that order:

theOutArchive.Close();
theOutFile.Close();

If you close them out of order, an exception is thrown.

The default serialization behavior of a collection is to serialize all its elements.
Because all the elements of a CPersonList are CPerson objects, and

because CPerson objects know how to serialize themselves, you can rely on the
default behavior for a correctly serialized list. This means that you can serialize a
CPersonList and all its elements to or from a CArchive with a single statement.
The code fragments below show how easily this can be done (don’t add this code
to your files):

CPersonlList* pList = new CPersonlist;

// Add CPerson elements

// To serialize the collection out to disk

// Create a file object

CFile theOutFile;

// Open the file

if(ltheOutFile.Open(pszFileName, CFile::modeCreate ||
CFile::modeWrite), NULL)

{
// Error handling
TRACE("Unable to open a file for serialization\n");
return FALSE;

}

// Create an archive object from the file object
CArchive theQutArchive(&theQutFile, CArchive::store);

// Serialize
theQutArchive << plList;

44 Class Libraries User’s Guide

// Close the archive and the file, in that order
theOutArchive.Close();
theOutFile.Close();

And to deserialize the collection back in from disk:

CPersonList* pOtherList = NULL;
CFile thelInFile;
if(!theInFile.Open(pszFileName, CFile::modeRead))
{
// Error handling

}

// Create an archive object for reading
CArchive thelnArchive(&theInFile, CArchive::load);

// Deserialize
theInArchive >> pOtherList;
// Close the archive and the file, in that order

As the code shows, a single insertion or extraction statement is sufficient to
completely serialize the entire collection. Type-safety is maintained during the seri-
alization operation. Thus, the serialization mechanism checks the type of each ob-
ject in the file before it is added to the list and throws an exception if it encounters
an incorrect object type. Figure 2.5 shows the steps in serializing a list of objects.

CPersonList Object

1. Serialize 2. Serialize

3. Objects serialize themselves

CPerson Objects

Figure 2.5 Steps in Serializing a List of Person Objects

Note You must use the DECLARE_SERIAL macro in the declaration
of a class for the class to be serializable. Look at the declarations of
CPerson and CPersonlist discussed previously. You must also use the
IMPLEMENT_SERIAL macro in the .CPP file that defines the member
functions declared in your .H file.

Creating a Data Model with the Microsoft Foundation Classes 45

The Microsoft Foundation Class Library provides class CFile and class CArchive
for working with disk files. You can still use standard C I/O routines, but these
classes are a good alternative because they encapsulate file handling in objects.
For more information about CFile, CArchive, and serialization, see “More on
Serialization” on page 60.

How to Search the List

This section explains how to search the CPersonList for a particular person. In
the example program, the last name is used as the key for the search. The steps are
described below:

To search a CPersonList:
1. Call the target list’s FindPerson member function:

CPersonList* pFound = pDataBase -> FindPerson(szlLastName);

FindPerson takes an argument of type CString. You can pass an initialized
CString object or a null-terminated string containing the last name to find. For
more information on the properties of a CString object, see Chapter 7.

FindPerson returns anew CPersonList object, pFound. If there were any
finds, pFound contains pointers to the objects found in the target list,
pDataBase.

Note The pointers in the new list point to the original objects, which are still in
the original target list.

2. Examine the returned list to see if it contains objects:

if(!pFound -> IsEmpty())
{

// Do something with the found list
}

CPersonList inherits an ISEmpty member function from COBbList. It returns
TRUE if the list is empty.

46

Class Libraries User’s Guide

3. Delete the found list when you finish with it:

delete pFound;

The found list is allocated dynamically by FindPerson, which returns a pointer
to the found list. Because pFound is allocated in the heap, you must deallocate
its storage with the delete operator.

Remember that the found list’s elements are pointers to CPerson objects still
in the original target list. Don’t call the DeleteAll member function of
pFound. That would destroy the objects in the target list. All you want to do is
delete the found list, which leaves the target list intact.

In the code for FindPerson, you can see a number of objects and their member
functions in use. To iterate over the list in search of the key last name,
FindPerson uses the GetHeadPosition and GetNext member functions that
CPersonList inherits from CObList.

GetHeadPosition is used to start at the beginning of the list, and GetNext is used
to get access to successive elements of the list. To compare the key string with the
last name member variable of each CPerson object in the list, FindPerson calls
the _strnicmp run-time function and passes it the last name of the next person in
the list.

CString has several member functions for string comparison—these are com-
parable to the C run-time library functions for string comparison. To obtain the
last name of the next person in the list, FindPerson calls the person object’s
GetLastName member function, which you wrote as part of class CPerson.

If matching last names are found, FindPerson returns a list containing pointers
to all found objects. The returned list can be useful in its own right, since it is a
CPersonList object with all the capabilities of the original list from which it
was built. You can display the found list, operate on it, add to it, delete from it,
and so on.

Creating a Data Model with the Microsoft Foundation Classes 47

How to Delete the Entire Database

This section explains how to delete the database and its contents after you finish
using it.

To delete the entire database:

1. Call the CPersonList object’s DeleteAll member function to delete the
contents:

pDataBase -> DeleteAl1();

The DeleteAll member function, which you added to CPersonList, performs
two operations. First, it iterates through the list and invokes the delete operator
for each contained object in turn. Then it calls the CObList member function
RemoveAl1, which frees underlying storage and marks the list as empty. After
the RemoveAll operation, the list contains no pointers to any objects.

2. Invoke the C++ delete operator to delete the list object:

delete pDataBase;

The reason you added a DeleteAll member function to CPersonList is that delet-
ing objects from the list and removing them from the list are not the same thing. If
you delete an object from the list, the list still has a pointer to the object, but this
pointer is now invalid because the object it formerly pointed to no longer exists.

On the other hand, if you remove an object from the list, you remove the list’s
pointer to the object, but the object itself still exists. Thus, if you want to keep a
list but empty it without destroying the objects it contained, use RemoveAll. If
you want to destroy the contents of a list without destroying the list itself, use
DeleteAll. If you want to destroy both the list and its contents, first call
DeleteAll, then invoke delete on the list object. Figure 2.6 summarizes these
deletion processes.

48 Class Libraries User’s Guide

List object with pointers
to CPerson objects

1. Invoke delete on each element

List after deleting contents
(pointers point to nothing)

2. Call RemoveAll

List after removing pointers
(list still exists but is how empty;
however, data objects still exist)

3. Call DeleteAll

List after deleting and
removing elements

(list is now empty,
data objects destroyed)

Figure 2.6 Deletion and Removal of Data in a List

The DeleteAll member function of class CPersonList uses two other useful
member functions inherited from class CObList. The GetHeadPosition function
returns a value of type POSITION, which provides access to the head element of
the list. The GetNext function returns the POSITION of the next element. You
can access the element with this POSITION value. To see these member

Creating a Data Model with the Microsoft Foundation Classes 49

functions in use, see the code for DeleteAll in file PERSON.CPP in Listing 2.
For more information about class CObList, see the Class Libraries Reference.

Summary of Collection Use

The first step in designing a data model is to declare the CPerson class. Each
CPerson object represents the name and phone number of an individual person.
Next, use one of the Microsoft Foundation Class Library’s list classes to derive a
custom list class to hold a collection of CPerson objects and to search for a person
matching a specified last name.

To customize the list class, you derive from CObList and add new functions as
necessary to add new functionality. For the most part, however, you can rely on
the inherited functionality of the Microsoft Foundation list class, including the abil-
ity to serialize the collection and all its elements with a single statement.

2.5 Test the Data Model

This section explains the third step in building the data model: testing it. This
process will be described in several steps:

1. Create a file called DMTEST.CPP.
. Create a person database.

. Serialize the list (write it to a file).
. Deserialize the stored data.

. Test the FindPerson function.

. Clean up and quit.

N O W

. Add the supporting functions.

» To create a file called DMTEST.CPP:
1. Add the following #include directive:

#include "person.h"

2. Add the following function prototypes below the #include line:

// Function prototypes.

CPersonlList* MakeDataBase();

CFilex OpenForReading(const CString& rFileName);

CFile* OpenForWriting(const CString& rFileName);
CPersonList* ReadDataBase(CFilex pFile);

BOOL WriteDataBase(CFile* pFile, CPersonList* pDataBase);

50

Class Libraries User’s Guide

void TestFindPerson(CPersonList* pDataBase);
void ListDataBase(CPersonListx db);

3. Add the beginnings of your program’s main function:

void main()

{
const char szFileName[] = "tutorial.dat";

#ifdef _DEBUG
// Prepare for display of search results
const int nDumpChildren = 1;
afxDump.SetDepth(nDumpChildren);
ffendif

The first line in the function declares a filename. The other lines prepare the
afxDump “dump context,” predefined by the Microsoft Foundation Class
Library. When results of the database search test are displayed later, all objects
in the list will dump their contents. The default “depth” of 0 dumps only infor-
mation about the list, not its contents. For more information about setting the
depth, see “How FindPerson Is Tested” on page 58.

» To create a person database:

Add the following lines to the main function:

printf("Create a person Tist and fill it with persons\n");
CPersonList* pDataBase = MakeDataBase();

These lines call a function to create and return a database with several person ob-
jects in it. You’ll add the MakeDataBase function later.

» To serialize the list (write it to a file):

Add the following lines of code to the main function below the lines added in the
previous step:

printf("Serialize the person list\n");
CFilex pFile; // Declare a file object

TRY

{
// Could throw a file exception if can't open file
pFile = OpenForWriting(szFileName);

Creating a Data Model with the Microsoft Foundation Classes 51

// Could throw an archive exception if can't create
WriteDataBase(pFile, pDataBase);

}
CATCH(CFileException, theException)
{
printf("Unable to open file for writing\n");
exit(-1);
}
AND_CATCH(CArchiveException, theException)
{
printf("Unable to save the database\n");
pFile -> Close(); // Close up
delete pFile;
exit(-1);
}
END_CATCH

// No exceptions, so close up
pFile -> Close();
delete pFile;

ListDataBase(pDataBase);

printf("Delete the 1list and all its elements\n");
pDataBase -> DeleteAll1();

ListDataBase(pDataBase);

delete pDataBase;

These lines create a file object, use it to create an archive object, use the archive
object to serialize the list, and clean up afterward. The same process was covered
briefly earlier in “How to Serialize the List” on page 42. For more information
about the roles of the CFile and CArchive objects, see “More on Serialization” on
page 60. Once the list has been serialized to disk, the list can be deleted.

Additionally, the code handles exceptions that may occur if a file can’t be opened
or an archive can’t be created successfully or fails while writing. The use of the
TRY, CATCH, AND_CATCH, and END_CATCH macros for exception hand-
ling is discussed in “Exception Handling” on page 61.

» To deserialize the stored data:

Add the following lines to the main function below those added in the previous
step:

printf("Deserialize the data from disk into a new Tist\n");
CPersonList* pDataBase2; // Create a new, empty list

TRY

{

// Could throw a file exception if can't open file
pFile = OpenForReading(szFileName);

52

Class Libraries User’s Guide

// Could throw an archive exception if can't create
pDataBase2 = ReadDataBase(pFile);

}

CATCH(CFileException, theException)

{
printf("Unable to open file for reading database\n");
exit(-1);

}

AND_CATCH(CArchiveException, theException)

{
printf("Unable to read the database\n");
pFile -> Close(); // Close up before exiting
delete pFile;
exit(-1);

}

END_CATCH

// No exceptions, so close up
pFile -> Close();
delete pFile;

ListDataBase(pDataBase2);

As in the previous step, these lines create a file object, then an archive object, and
use the archive object to deserialize the list. After it’s read in, the list is printed to
demonstrate success. Most of the real work of file object creation, file opening,
archive creation, and serialization takes place in the supporting functions
OpenForReading and ReadDataBase. You’ll add these functions in the last step.

It’s particularly interesting that deserialization recreates the person objects as it
reads in their data. As objects are created and reinitialized with the data from disk,
they are stored in the new, empty list, pDataBase2. Thus, the objects formerly seri-
alized are fully reconstructed by the process of deserialization. For more informa-
tion about deserialization, see “More on Serialization” on page 60.

» To test the FindPerson function:

Add the following lines to the main function below the lines added in the previous
step:

printf("Test the FindPerson function\n");
if (pDataBase2 != NULL)
TestFindPerson(pDataBase2);

If anything has been read into the new list, these lines call the TestFindPerson
function, passing it a pointer to the list. You’ll add TestFindPerson in the last
step. For more information about this testing, see “How FindPerson Is Tested” on
page 58.

Creating a Data Model with the Microsoft Foundation Classes 53

» To clean up and quit:

Add the following lines to the main function after the lines added in the previous

step:

}

printf("Delete the Tist and all its elements\n");
pDataBase2 -> DeleteAll();
delete pDataBase?2;

TRACE("End of program\n");

These lines first delete all elements of the list, then delete the list object. Deleting
dynamically constructed objects such as the list and file objects prevents memory
leaks. These lines conclude the code for the main function. Your main function
should now match the one in Listing 3 on page 73.

» To add the supporting functions:

1. Add the MakeDataBase function, which creates a new list object, fills it with

person objects, and returns the list:
// MakeDataBase - Create a database and add some persons

CPersonlList* MakeDataBase()

TRACE(" Make a new person 1ist on the heap\n");
CPersonList* pDataBase = new CPersonlList;

TRACE(" Add several new persons to the 1ist\n");
CPerson* pNewPersonl = new CPerson("Smith", "Mary", "435-8159");
pDataBase -> AddHead(pNewPersonl);

CPerson* pNewPerson2 = new CPerson("Smith", "A1", "435-4505");
pDataBase -> AddHead(pNewPerson2);

CPerson* pNewPerson3 = new CPerson("Jones", "Steve",
"344-9865");
pDataBase -> AddHead(pNewPerson3);

CPerson* pNewPerson4 = new CPerson("Hart", "Mary", "287-0987");
pDataBase -> AddHead(pNewPerson4);

CPerson* pNewPerson5 = new CPerson("Meyers", "Brian",
"236-1234");
pDataBase -> AddHead(pNewPerson5);

TRACE(C " Return the completed database to main\n");
return pDataBase;

54 Class Libraries User’s Guide

2. Add the OpenForReading function, which creates a file object and uses it to
open the file specified by rFileName for reading:

// OpenForReading - open a file for reading
//
CFile* OpenForReading(const CString& rFileName)
{
CFile* pFile = new CFile;
CFileException* theException = new CFileException;
if (!pFile -> Open(rFileName, CFile::modeRead, theException))
{
delete pFile;
TRACE(" Threw file exception in OpenForReading\n");
THROW(theException);
}

// Exit here if no exceptions
return pFile;
}

3. Add the OpenForWriting function, which creates a file object and uses it to
open the file specified by rFileName for writing:

// OpenForWriting - open a file for writing
//
CFilex OpenForWriting(const CString& rFileName)
{
CFile* pFile = new CFile;
CFileStatus status;
UINT nAccess = CFile::modeWrite;

// GetStatus will return TRUE if file exists,

// or FALSE if it doesn't exist

if (ICFile::GetStatus(rFileName, status))
nAccess |= CFile::modeCreate;

CFileException* theException = new CFileException;
if (!pFile -> Open(rFileName, nAccess, theException))

{
delete pFile;
TRACE(" Threw a file exception in OpenForWriting\n");
THROW(theException);

}

// Exit here if no errors or exceptions
TRACE(" Opened file for writing OK\n");
return pFile;

Creating a Data Model with the Microsoft Foundation Classes 55

4. Addthe ReadDataBase function, which creates an archive object and uses it to
deserialize data from the disk, creating a new list:

// ReadDataBase - read data into a person list
//
CPersonList* ReadDataBase(CFilex pFile)
{
CPersonList* pNewDataBase = NULL;

// Create an archive from pFile for reading
CArchive archive(pFile, CArchive::Toad);

TRY

{
// and deserialize the new database from the archive
archive >> pNewDataBase;

}

CATCH(CArchiveException, theException)

{
TRACE(" Caught an archive exception in ReadDataBase\n");

f#ifdef _DEBUG
theException -> Dump(afxDump);

f#endif
archive.Close();
// If we got part of the database then delete it so we don't
// have any Memory leaks
if (pNewDataBase != NULL)
{
pNewDataBase -> DeleteAl1();
delete pNewDataBase;
}
THROW_LAST();
}
END_CATCH

// Exit here if no errors or exceptions
archive.Close();
return pNewDataBase;

}

5. Add the WriteDataBase function, which creates an archive object and uses it to
serialize the list to disk:

// WriteDataBase - write data from a person list to disk
//
BOOL WriteDataBase(CFilex pFile, CPersonlList* pDataBase)
{

// Create an archive from pFile for writing

CArchive archive(pFile, CArchive::store);

TRY

56 Class Libraries User’s Guide

// and serialize the data base to the archive
archive << pDataBase;

}
CATCH(CArchiveException, theException)
{
TRACE(" Caught an archive exception in WriteDataBase\n");

#fifdef _DEBUG
theException -> Dump(afxDump);
#endif
archive.Close();
THROW_LAST();
}
END_CATCH

// Exit here if no errors or exceptions
archive.Close();
return TRUE;

}

6. Add the TestFindPerson function, which demonstrates successful and un-
successful searches of the list, using the list’s FindPerson function:

// TestFindPerson - test CPersonlist::FindPerson

//

void TestFindPerson(CPersonList* pDataBase)

{
printf(" Looking for the name Banipuli\n");
CPersonlList* pFound = pDataBase -> FindPerson("Banipuli");
if (pFound -> IsEmpty())

{
printf(" No matching persons\n");
}
else
{
printf(" Found matching persons\n");

#ifdef _DEBUG

pFound -> Dump(afxDump);
fendif

}

delete pFound;

printf(" Looking for the name Smith\n");
pFound = pDataBase -> FindPerson("Smith");
if (pFound -> IsEmpty())

{
printf(" No matching persons\n");
}
else
{
printf(" Found matching persons\n");

#ifdef _DEBUG

Creating a Data Model with the Microsoft Foundation Classes 57

pFound -> Dump(afxDump);
f#endif
}

// Don't DeleteAll the found Tist since it

// shares CPerson objects with database

delete pFound; // Deletes only the 1ist object
}

7. Add the ListDataBase member function, which writes out the contents of the
database:

void ListDataBase(CPersonList* db)

{
CPerson* pCurrent;
POSITION pos;
if (db -> GetCount() == 0)
printf(" List is Empty\n");
else
{
printf(" List contains:\n");
pos = db -> GetHeadPosition();
while (pos != NULL)
{
pCurrent = (CPersonx)db -> GetNext(pos);
printf("\t%s, %s\t%s\n", (const char*)pCurrent ->
GetLastName(),
(const char*)pCurrent -> GetFirstName(),
(const char*)pCurrent -> GetPhoneNumber());
}
}
}

Your code for the supporting functions should match that given in Listing 3 on
page 73.

Your DMTEST.CPP file is now complete. It contains one #include directive, six
function prototypes, the main function, and seven supporting functions.

To continue the tutorial and compile the program, see “Build the Program” on
page 65. For more information about the steps you just completed, see “Discus-
sion: Testing the Data Model,” which follows.

58

Class Libraries User’s Guide

Discussion: Testing the Data Model

This discussion does not instruct you to add any new code to your files. Code is
sometimes repeated to illustrate a point, but you do not need to add it.

The DMTEST program has no real user interface. The main function in file
DMTEST.CPP simply creates a database, fills it with person objects, and demon-
strates its capabilities. In a later chapter of the tutorial, the data model will be inte-
grated with a Microsoft Windows user interface. A sample program which
provides a character-based user interface to the database is also provided on your
distribution disks.

Previously, in the discussion of the CPersonList class, you saw briefly how to
add person objects to a list, how to search a list for a person, and how to delete the
list and its contents when you finished with it. The following discussion recaps
and adds to the previous discussion.

How the Database Is Created and Destroyed

MakeDataBase is interesting primarily for how it makes and returns a filled
database. It makes the database by constructing a CPersonList object dynami-
cally in the heap, using the new operator. After filling the list with CPerson ob-
jects, also constructed in the heap with new, MakeDataBase returns a pointer to the
list object. This lets the database object and the objects stored in it persist after the
function returns.

Because the database and its contents were created as dynamic objects in the heap,
you must explicitly destroy them when you finish. Thus the last two lines in the
main function call the CPersonlList member function DeleteAll to delete the
CPerson objects in the list and then use the delete operator to delete the list object
itself:

pDataBase2 -> DeleteAl1(); // Delete the contents
delete pDataBase2; // Delete the 1list object

How FindPerson Is Tested

The FindPerson member function of class CPersonList searches the list for a
given last name and builds a second list containing pointers to any found CPerson
objects. The function returns a pointer to the list of found objects.

The TestFindPerson function in DMTEST.CPP simply creates a new list and
searches it for two different last names.

Creating a Data Model with the Microsoft Foundation Classes 59

The first search looks for the name “Banipuli,” which is not in the database. When
FindPerson returns an empty list, TestFindPerson uses the CPersonlList mem-
ber function ISsEmpty, inherited from the base class of CPersontist, CObList, to
detect the list’s empty condition.

The second search looks for “Smith,” a name that is in the database several times.
This time FindPerson returns a list containing pointers to two CPerson objects.
These contain the names “Mary Smith” and “Al Smith.”

Because the search was successful, TestFindPerson uses the predefined “dump
context” afxDump to dump the contents of the found list to the standard output.
Recall that, at the beginning of the main function, the afxDump object’s
SetDepth member function was called to specify that not only the list object be
dumped but the list’s content objects as well.

The afxDump object is used here as a simple way to display the contents of the
found list.. Note that afxDump only works if the _DEBUG flag is defined, so you
only get the dump during debugging.

The output of this dump is shown with the full program output below (for a release
version of the program).

Create a person list and fill it with persons
Serialize the person list
List contains:

Meyers, Brian 236-1234

Hart, Mary 287-0987

Jones, Steve 344-9865

Smith, Al 435-4505

Smith, Mary 435-8159

Delete the Tist and all its elements
List is Empty
Deserialize the data from disk into a new list
List contains:
Hart, Mary 287-0987
Jones, Steve 344-9865
Smith, Al 435-4505
Smith, Mary 435-8159

Test the FindPerson function
Looking for the name Banipuli
No matching persons
Looking for the name Smith
Found matching persons

Delete the 1ist and all its elements
End of program

Class Libraries User’s Guide

More on Serialization

You’ve already seen the code to serialize the database to disk and to deserialize it
from disk in the steps on pages 42-44. (This topic was also discussed earlier, in
“How to Serialize the List” on page 42.) This section shows how to use CFile and
CArchive objects. The next section shows how to handle exceptions.

Recall that to serialize a CPersonList you:

1. Create a CFile object and call its Open member function.
2. Create a CArchive object, passing the CFile to it as an argument.

3. Use the overloaded insertion (<<) or extraction (>>) operator to pass data
through the archive object. The one you use depends on whether you are writ-
ing or reading the list.

4. When you finish, close the archive object and then the file object.

The objects used in this process are a CFile object, a CArchive object, and, option-
ally, a CFileException object. The CFileException object is used to return infor-
mation about any file errors that may have occurred during the attempt to open the
file. For more information on exceptions, see “Exception Handling” on page 61.

The CFile Object The Microsoft Foundation Class Library provides class CFile
and two derived classes, CStdioFile and CMemPFile. CFile is for binary files,
CStdioFile is for buffered text files as defined in STDIO.H, and CMemPFile is for
memory-based files. You can use these classes or your own classes derived from
them.

A file object, of any of these classes, handles file opening, closing, and other file
operations. The DMTEST program uses class CFile and its Open, Close, and
GetStatus member functions. For additional CFile capabilities, see the Class
Libraries Reference.

You can create a CFile object on the frame of a function or in the heap. The code
in DMTEST.CPP typically declares pointers to CFile objects and allocates the ob-
jects dynamically with new. See the OpenForReading function in step 2.

Before you open the CFile object, you can check that the file exists by calling the
CFile object’s GetStatus member function. Pass the filename and a precon-
structed CFileStatus object. CFileStatus is a Microsoft Foundation Class that
contains status information about the file when GetStatus returns. If the call to
GetStatus fails, it returns FALSE. You can examine the contents of the
CFileStatus object to see why. For more information about CFileStatus, see the
Class Libraries Reference.

Creating a Data Model with the Microsoft Foundation Classes 61

In DMTEST.CPP, if GetStatus returns FALSE, it means the file doesn’t
exist. The inclusive OR assignment operator, |=, is used to add the mode
CFile::modeCreate to the existing access parameter, nAccess, before calling
Open.

You need an opened CFile object to pass to the constructor of your CArchive ob-
ject, as in ReadDataBase. The arguments to the Open member function of class
CFile are a filename, the access mode, and an optional CFileException object.
The filename argument is a null-terminated string. The access mode argument is
one of the access modes defined in class CFile, such as CFile::modeRead or
CFile::modeWrite. The optional CFileException argument is an object that you
construct before you pass it to Open. When Open returns, this object contains in-
formation about any exception that is thrown. For more information on this argu-
ment, see “Exception Handling” on this page.

Be sure to close your CArchive object before you call CFile::Close.

The CArchive Object A CArchive object uses a CFile object to establish a con-
nection with a disk file. Once the connection is made, you can use the CArchive
object as a stream, much as you would use the standard C++ iostreams, cin and
cout.

Pass an already-opened CFile object to the CArchive constructor when your ar-
chive object is created. A CArchive object must be initialized for loading (read-
ing) or storing (writing). It can’t be used for both. To initialize the archive for
reading, pass TRUE as the second argument to the constructor. For writing, pass
FALSE. For example, in ReadDataBase, the archive object is constructed like this:

CArchive archive(pFile, TRUE);

Class CArchive overloads the insertion (<<) and extraction (>>) operators. To
write data with a CArchive opened for writing, do this:

archive << pDataBase;

The overloaded insertion operator causes the Serialize member functions of the
CPersonList object and its CPerson elements to write the appropriate data to the
file specified when the archive was opened.The serialization process could throw a
CArchiveException. For an explanation of exceptions and how they’re handled,
see the next section.

Exception Handling

This section explains the use of the Microsoft Foundation Class Library’s
exception-handling mechanism as used in DMTEST.CPP. For more information
about exception handling, see Chapter 12, and see the Class Libraries Reference
under class CException.

62

Class Libraries User’s Guide

Some of the code in the Microsoft Foundation Class Library generates exceptions
when errors occur. The Microsoft Foundation Classes provide a mechanism for
handling exceptions in an object-oriented fashion. Certain error-prone operations,
such as memory allocation, file processing, and archive processing, detect errors
and “throw” exceptions. When an exception is thrown, an exception object of the
appropriate class is constructed. To process exceptions, you set up “exception
frames” with a set of predefined macros. (For more information about how to

set up exception frames, see “The Exception Frames in the Main Function” on
page 63.)

You can then “catch” the exception at any level of the hierarchy of exception
frames in your program. For example, suppose that, in your program, function A
calls function B, which calls function C. Suppose further that you set up exception
frames in functions A and C. If an exception is thrown in function C, you can
choose to catch it in C, or you can catch it in A. To view this mechanism dia-
grammatically, see Figure 2.7.

You can also explicitly throw exceptions yourself, as a way of selecting the level
at which your program responds to an error.

A main Catches and handles exception

\

B OpenForReading Throws exception

'

C Open Call fails (perhaps file not found)

Figure 2.7 How an Exception is Handled by a Calling Function

The best guideline for handling exceptions is to catch them only if there is some-
thing useful to do about them. For example, if you can recover from the error that
generated an exception, or if you can at least clean up, by all means catch the ex-
ception. But if, for example, your program throws a memory-allocation exception
and there is no way you can free enough memory to make the allocation attempt
succeed if tried again, there is little point in catching the exception. Sometimes, as
in DMTEST.CPP, the only useful response to an exception is to alert the user
before the program terminates.

Creating a Data Model with the Microsoft Foundation Classes 63

The following sections explain how exception handling is used in DMTEST.CPP.

The Exception Frames in the Main Function To process an exception, set up
an “exception frame” around the code that can throw an exception. An exception
frame specifies a region of code in which you wish to catch exceptions. It also
specifies blocks of actions to take if an exception is caught. Use the TRY,
CATCH, AND_CATCH, and END_CATCH macros, provided by the
Microsoft Foundation Class Library.

Enclose the code that can throw an exception in a TRY block. For example, in
DMTEST.CPP, TRY blocks enclose the calls that open files and create archives.
The code that actually throws the exception could be deep in the function call
chain. For instance, main calls OpenForWriting, which calls the CFile member
function Open, which could throw an exception. Those calls, and any exceptions
they throw, are enclosed in the TRY block in main. For example, in
DMTEST.CPP:

TRY
{
pFile = OpenForWriting(szFileName);

WriteDataBase(pFile, pDataBase);
}

Enclose code to handle, or respond to, a particular exception type in a CATCH
block. In DMTEST.CPP, code to handle a file exception is enclosed like this:

CATCH(CFileException, theException)
{

// Code to handle the exception
}

The CATCH macro specifies two arguments:

= The exception type (in this case class CFileException)

= An exception object (e, the actual exception thrown)

For more information about the exception classes—CException, CFileException,
CArchiveException, and so on—see the exception classes in the Class Libraries
Reference and see Chapter 12.

If, as in DMTEST.CPP, a TRY block encloses code that could throw more than
one exception type, you can use the AND_CATCH macro to set up additional
CATCH blocks for the TRY block. In DMTEST.CPP, a CATCH block is used to
catch file exceptions and an AND_ CATCH block is used to catch archive excep-
tions. The AND_CATCH macro takes the same kinds of arguments as CATCH.

Be sure to end the TRY/CATCH exception frame with the END_CATCH macro.

64

Class Libraries User’s Guide

The main function in DMTEST.CPP uses two exception frames, one for serializa-
tion and one for deserialization.

The Exception Object Passed to CFile’s Open Member Function The code for
OpenForWriting and OpenForReading shows the Open member function of class
CFile being called. Open takes three arguments (although the third is optional).
The third argument is an exception object, created previously, used to pass back
exception information for the call. The exception object argument is a pointer to a
CFileException object, created dynamically in the heap with the call

CFileException* theException = new CFileException;

When Open returns, you can examine the member variables of object e. You can
access public member variables and member functions of class CFileException to
examine the cause of the exception or to convert it to a standard error code—for
example:

TRACE(" Cause: %d\n", theException -> m_cause);

The m_ cause member variable of a CFileException object contains a code identi-
fying the error type. These error types are defined in an enum declaration in class
CFileException. Open also returns a Boolean value that you can examine in the
usual way to test the results of the function call.

The THROW and THROW_LAST Macros 1In openForReading, the call to Open
looks like this:

if(!pFile -> Open(rFileName, CFile::modeRead, theException))
{
delete pFile;
TRACE(" Threw file exception in OpenForReading\n");
THROW(theException);
}

Note that the THROW macro is invoked here inside a nested scope, which is de-
lineated by the braces of the if block. The if block, executed if the Open call fails,
cleans up by deleting the CFile object, pFile. Otherwise, it defers further pro-
cessing of the error condition for handling by the caller of OpenForReading. How-
ever, because the code is in a nested scope, not the scope of OpenForReading, it’s
necessary to throw the exception out of that scope, where it can be available to
main when OpenForReading returns.

You can also use the THROW macro to throw your own exceptions. These
can be of predefined types, such as CFileException, or of types you derive from
CException or any of its derived classes.

Creating a Data Model with the Microsoft Foundation Classes 65

The THROW_LAST macro is used in ReadDataBase. In that function, a
TRY/CATCH exception frame does some local handling of archive exceptions,
then uses THROW_LAST to pass the exceptions on for further handling by
main.

If deserialization of the data fails in midstream, a partially complete person list
could be left over, which results in memory leakage. The local exception frame
catches the CArchiveException, deletes any partially completed data, and then in-
vokes the THROW_LAST macro to throw the same exception again so it can be
caught again later.

You can use the exception-handling mechanism provided by the Microsoft Foun-
dation Class Library to considerable advantage. For more information about excep-
tions, see Chapter 12.

Now that your files are complete, the next section shows you how to compile the
DMTEST program.

2.6 Build the Program

To build your program, follow the instructions given in Chapter 1 of the tutorial.
The required files are PERSON.H, PERSON.CPP, and DMTEST.CPP. All are
available in the \C7\MFC\SAMPLE\TUTORIAL directory.

The Programmer’s WorkBench (PWB) makefile for DMTEST is called
DMTEST.MAK. The NMAKE makefile is called DMTEST with no extension.

DMTEST builds as a DOS program, so you must run it from the DOS command
line.

2.7 Summary of the DMTEST Program

This chapter has introduced you to the Microsoft Foundation Class Library by
building a data model for a name and phone number program. You have seen how
to derive a data class from CObject and to override functions for serialization and
debugging output. You have also seen how to derive a collection class to manage a
list of CPerson objects.

This chapter also showed how to write a simple program to test the features of
the data model classes. This test program showed how to use the Microsoft
Foundation file and archive classes.

66 Class Libraries User’s Guide

Because CPerson and CPersonlist are data model classes, they cannot display
themselves or interact with the user. CPerson and CPersonList are designed to
be used by a user-interface class that can get input from a user and send output
back to the user. How this interaction is implemented depends on the target operat-
ing environment of the final program. For example, the user-interface implementa-
tions will be very different for a program designed to run in a text-only
environment versus a program designed to run under Microsoft Windows.

After a chapter devoted to the fundamentals of Windows programming with the
Microsoft Foundation Class Library, the tutorial continues with three chapters that
show you how to put a Windows user interface on the data model.

2.8 File Listings

The code shown in listings 1-3 is available on your distribution disks as
PERSON.H, PERSON.CPP, and DMTEST.CPP.

Creating a Data Model with the Microsoft Foundation Classes 67

publieaig

//Construction ‘
// For serializable classes, declare a constructor with no arguments.
CPerson()
{ m_modTime = CTime::GetCurrentTime(); }

CPerson(const CPerson& a);

// For our convenience, also declare a constructor with arguments.
CPerson(const char* pszlastName,
const char* pszFirstName,
const char* pszPhoneNum);

7/Attr1butes
// Member functions to modify the protected member var1ab1es
void SetlLastName(const char* pszName)
{ ASSERT_VALID(this);
ASSERT(pszName 1= NULL);
- pszName~*

”:”eﬂtTime()} }

st CStringd
SSERT_VALID(
return m_Fi

68 Class Libraries User’s Guide

Creating a Data Model with the Microsoft Foundation Classes

69

De]eteAnc
: protected

BOOL m_ bIsD1rty,
Y «
////////////////////////

~ ftendif // _ PERSON_H__

Lnstmg 2

te the Person objects as well as the pointers.

//)//

i ehaviors for C

oft Foundat1on
ft“Corporat1on

70 Class Libraries User’s Guide

Creating a Data Model with the Microsoft Foundation Classes 7

on::Dump(CDumpContext& dc) const

.

¢ Mg
/ vflj\,nuk i
Time <

a A

Class Libraries User’s Guide

72

Creating a Data Model with the Microsoft Foundation Classes 73

P

Copyr1ght (€) 1991 M1crnsoft C@rporation
A1l rights reserved.

This source code is on1y 1ntended as a supp1ement te the
M1crosoft Foundat1on C1asses Refereﬂce and M1crosoft

74 Class Libraries User’s Guide

Creating a Data Model with the Microsoft Foundation Classes 75

- // No exceptions, so close up
pFile -> Close();
delete pFile;

ListDataBase(pDataBase2);

printf("Test the FindPerson function\n");
if (pDataBase2 != NULL)
TestFindPerson(pDataBase2);

_printf("Delete the 1ist and all its elements\n");
‘ pDataBase2 -> DeleteAl1(); :
de]ete pﬂataBaseZ

 TRACE("End of program\n");
] , . e ,

Via database and add some pers

. // MakeDataBase - Crea

76 Class Libraries User’s Guide

17

Creating a Data Model with the Microsoft Foundation Classes

Class Libraries User’s Guide

78

Creating a Data Model with the Microsoft Foundation Classes 79

Windows Programming with the
Microsoft Foundation Classes

The previous chapter showed how to use the Microsoft Foundation Class Library
to create a data model: a cooperating set of C++ objects that implements a simple
database for storing CPerson objects.

This chapter shows how you can use the Microsoft Foundation Classes to create
the key elements of a Microsoft Windows user interface. In order to use this chap-
ter, and the next, you need to know something about Windows programming.
Good sources for becoming familiar with Windows programming include the
Programming Windows, Version 3.0, by Charles Petzold, and Microsoft Windows
SDK Guide to Programming.

The purpose of this chapter is to show you how to use the Windows classes of the
Microsoft Foundation Class Library to build applications that have a complete
Windows user interface. The Microsoft Foundation Classes help you in two
principal ways.

First, the Microsoft Foundation Class Library provides classes from which you
can make objects that already have much of the Windows functionality you need.
These classes include classes of windows, controls, dialogs, and graphics objects.
The Microsoft Class Library also supplies class CWinApp, which provides most
of the essential application-level processing your program needs. To create a Win-
dows application, you use C++ techniques to derive both your own application
class from class CWinApp and your own main window class from one of the
class library’s window classes.

Second, the Microsoft Foundation Class Library simplifies the message-handling
apparatus of Windows. To process messages, you add a member function to your
derived window class for each Windows message you want to handle. Then you
place an entry in a “message map” for each message-processing member function.

The chapter demonstrates these techniques by taking you step by step through the
development of a simple Windows application called Hello. As you go, you will
see how to write the necessary C++ classes and what they do. After the examples
have been developed, the chapter explains in greater detail how the Microsoft
Foundation Classes work with Windows and your objects.

82

Class Libraries User’s Guide

3.1 In This Chapter

Follow this tutorial to write a simple but complete Windows application using the
Microsoft Foundation Class Library. The resulting program appears smaller and
simpler than the equivalent traditional Windows program. The process of writing
the program is essentially this:

1. Write an application class that is derived from one of the Microsoft Foundation
Classes.

2. Write a window class that is also derived from a Microsoft Foundation class.

The rest of this section describes the example program.

The Hello Program

In the first part of this chapter, you will develop a simple Windows application
using the Microsoft Foundation Classes. The example is a “Hello, World” pro-
gram—the simple starter program familiar to all C programmers.

This section is an overview of what the program does and what you will be learn-
ing about the Microsoft Foundation Class Library.

What the Example Does

The example program displays the text “Hello, Windows!” centered in a window
on the screen. The window has a menu bar and a set of window controls. If you
choose the About command from the Help menu, a dialog box displays informa-
tion about the program. You can drag the window around the screen or resize the
window. If you resize the window, the text is recentered. You can minimize the
window to an icon on the Windows desktop or maximize it to fill most of the
screen.

Windows Programming with the Microsoft Foundation Classes

83

Figure 3.1 shows the screen as it appears when Hello runs.

don Bpplicaton.

Help

Hello, Windows!

Figure 3.1 The Output of Hello

Although the example program does very little, it has a considerable amount of
functionality with very little code. Furthermore, Hello makes a good template or
skeleton on which to build more capable applications.

The Code for Hello

To view the complete code for Hello, see Listings 1 and 2. The code shown in
these listings is available on the distribution disks in files HELLO.H and
HELLO.CPP.

Microsoft Foundation Classes Used in This Chapter

This chapter demonstrates the use of five classes from the Microsoft Foundation
Class Library.

CWinApp
You derive Hello’s application class from this class.

CFrameWnd
You derive Hello’s main window class from this class.

CRect
You pass a CRect object as an argument to a window-creation function. The
argument specifies the rectangle in which the window is to be displayed.

CPaintDC
You construct an object of this class to create a Windows device context.

CModalDialog
You construct an object of this class to put a dialog box on the screen.

84

Class Libraries User’s Guide

For more information about these classes, see the Class Libraries Reference and
the discussion in this chapter.

The sections that follow take you through the components of Hello and explain
how to write them, what they consist of, and in a general way how they work. A
more detailed explanation of how they all work together is described in “How
Hello Works” on page 110.

3.2 How to Write the Hello Program

This section gives an overview of the steps in writing Hello. As you work through
the steps, you will learn what files to prepare and how to compile the program.

To write Hello with the Microsoft Foundation Classes, you must:

1. Create an application object.

The application object represents your application and is responsible for appli-
cation-level initialization. Its most important task is to construct a main window
object. For more information on this step, see “Create an Application Object”
on page 85.

. Put a window on the screen.

It takes two steps to display a window with the Microsoft Foundation Classes.
First, construct a main window object. Second, during that construction, create
a window for display. For more information on this step, see “Put a Window on
the Screen” on page 90.

. Arrange for communication with Windows.

Once a window has been created, it must respond to pertinent Windows mes-
sages, such as WM_PAINT or WM_COMMAND. To arrange message pro-
cessing in your window object, add a “message map” and appropriate
“message-handler” functions. For more information on this step, see “Arrange
for Communication with Windows” on page 94.

. Paint the window.

With a window showing, paint the contents of its client area. For Hello, paint
the text “Hello, Windows!” For more information on this step, see ‘“Paint the
Window” on page 101.

. Add an About dialog box.

As a final touch, add a dialog box that displays information about the program.
The user activates this “About” dialog box by choosing the About command
from the Help menu. For more information on this step, see “Add an About
Dialog Box” on page 105. For more information on menus and other resources,
see the next step.

Windows Programming with the Microsoft Foundation Classes 85

6. Prepare supporting files.

Windows programs require some supporting files. Add a module-definition file,
aresource file, a resource include file, and a makefile. For more information on
this step, see “Prepare Supporting Files” on page 107.

7. Build the program.

Once you have prepared all the files, compile and link the program to produce
the executable file. Remember that you must run the program from Windows.
For more information on this step, see “Build the Program” on page 109.

You will also use these same steps as a foundation for writing your own Windows
programs with the Microsoft Foundation Classes.

The sections that follow break these steps into smaller steps. At each step, the re-
lated code is presented. After the steps, a Discussion section explains what the
code does and why it was done that way. Where appropriate, additional advanced
discussion in a special box elaborates upon the code and the basic discussion.

3.3 Create an Application Object

This section explains the first step in writing Hello: the creation of the application
object. You’ll create parts of two files in this section: HELLO.H and HELLO.CPP.

This process consists of two steps:

1. Derive an application class.

2. Write a Windows function.

» To derive an application class:

1. Create a HELLO.H interface file.
a. Add the following preprocessor directives:

Jifndef __HELLO_H__
#define __HELLO_H__

These directives are similar to the ones you used in PERSON.H in the pre-
vious chapter. They prevent multiple inclusion of any code in the HELLO.H
file.

b. Add the following class declaration to your HELLO.H file:

class CTheApp : public CWinApp

{

pubTic:
// An override of InitInstance
BOOL InitInstance();

}s

86

Class Libraries User’

s Guide

You derive Hello’s application class, CTheApp, from the Microsoft Founda-
tion class CWinApp. The name of the derived class is your choice. For
Hello, it’s called CTheApp.

Class CTheApp inherits member variables and member functions from its
base class but overrides the InitInstance member function of class
CWinApp. See the discussion under “Discussion: Hello’s Application
Class” on page 87.

Add the following preprocessor directive to the bottom of file HELLO.H:
ftendif // __HELLO_H__

As you add more declarations to the file later, keep this directive as the last
item in the file.

2. Create a HELLO.CPP implementation file.

a.

Add the following preprocessor directives at the top:

#include <afxwin.h>
#include "resource.h"
#include "hello.h"

When you program with the Microsoft Foundation Class Library, always in-
clude the file AFXWIN.H.

. Add the following variable declaration to HELLO.CPP below the #include

directives:
CTheApp theApp;

This declares a variable of type CTheApp in order to construct the program’s
one and only application object. A suitable name for this variable is theApp.

After the application object is constructed from this variable, its member
functions are called to initialize the application and to create a window
object. See the following discussion.

» To create a window object:

1. Write your overriding InitInstance member function, which is where you
create a main window object.

2. Add the following function definition for InitInstance to the end of your
HELLO.CPP file:

{

BOOL CTheApp::InitInstance()

// Construct a window object in the heap
m_pMainWnd = new CMainWindow();

// Show the window
m_pMainWnd -> ShowWindow(m_nCmdShow);

Windows Programming with the Microsoft Foundation Classes 87

// Paint the window
m_pMainWnd -> UpdateWindow();

return TRUE;
};

Since the HELLO.CPP file will eventually contain functions belonging to two
different classes, set up a section for each class.

InitInstance is an appropriate place to construct a main window object,
which will be responsible for putting a window on the screen. Note that
putting a window on the screen is a three-step process: construct the main
window object (which creates a window), call two of its member functions
to make the new window visible, and cause its client area to be painted. This
process is explained further in the following discussion and in “Paint the
Window” on page 101.

To continue with the tutorial, see “Put a Window on the Screen” on page 90. For
more information about the code you just added, see the following discussion.

Discussion: Hello’s Application Class

The primary purpose of Hello’s application object is to construct a main window
object. This section discusses that process further.

The Application Class and the Application Object

Under the Microsoft Foundation Classes, the application class is used to construct
an application object. Member functions of that object are called to perform initial-
ization tasks and to run the program’s Windows message loop. Typically, your ap-
plication object creates other objects, such as window objects, that do the
application’s specific work.

As a class derived publicly from the Microsoft Foundation class CWinApp, your
application object inherits the member variables and functions needed to do
application-level initialization and to run the message loop. Most of the functions
are called automatically when your program runs. You can override any of
CWinApp’s member functions to customize the program, including
InitApplication, ExitInstance, and InitInstance. Typically, however, you’ll
override only the InitInstance and perhaps ExitInstance member functions of
class CWinApp. In Hello, your overriding InitInstance is where you put the
code that creates and displays a window.

For more information about CWinApp, see the Class Libraries Reference and
Chapter 13 in this book. For more information about what the application object
does, see the following sections, especially “How Hello Works” on page 110.

88 Class Libraries User’s Guide

Figure 3.2 shows the class hierarchy for the application class.

CObject
CWinApp CWnd
\ \i
CTheApp CFrameWnd

The Application Class

CMainWindow

The Main Window Class

Figure 3.2 Object Class Hierarchies for Hello

Initinstance and the Window Object

When you override InitInstance for Hello, you use the C++ new operator to
allocate and initialize a main window object. When the constructor for this object
is invoked, it creates the window data structures that Windows needs to display a
window on the screen. InitInstance completes the window-creation task by
making the window visible and causing it to be painted.

After the CMainWindow constructor returns, InitInstance calls two member
functions of the window object:

ShowWindow.
Makes the new window visible.

UpdateWindow.
Causes Windows to send a WM_PAINT message to the window, whose
OnPaint member function then paints the contents of its client area. These calls
are discussed further in the discussion section following “Put a Window on the
Screen” on page 90.

Windows Programming with the Microsoft Foundation Classes 89

The m_pMainWnd identifier used in InitInstance is a member variable that
CTheApp inherits from the CWinApp classs. It stores a pointer to the application’s
main window object.

Its name reflects a convention of the Microsoft Foundation Class Library for
naming member variables. All member variables begin with the “m_" prefix. The
rest of the variable’s name reflects its purpose and its type, in familiar Windows

Hungarian variable-naming fashion. The “p” prefix in m_pMainWnd signifies a
pointer. When writing Microsoft Foundation programs, it’s useful to follow these

conventions.

Once the application is initialized, it must put a window on the screen and cause
its initial contents, if any, to be displayed. The following sections continue that
process.

More About the Application Object

It’s possible to create your window object in some other part of your
program, but InitInstance is a logical place to do it because each running
copy of your program (recall that Windows can run multiple copies at once)
calls InitInstance once to perform initialization for that copy. Your
application object is a global object, so like all C++ global objects, it is
constructed early in the program initialization process. By the time Windows
calls your application’s WinMain function, a fully initialized application
object exists and its member functions can be called. For more information
about this sequence of events, see “How Hello Works” on page 110.

Where is WinMain? Experienced Windows programmers are used to
writing this essential function themselves, but the Microsoft Foundation
Class Library provides a globally defined WinMain function for you. You
don’t have to use this version of WinMain, but you’ll find that it does what
you want most of the time and can be customized as well. For more
information about substituting your own version of WinMain or
customizing the Microsoft Foundation’s version, see “How You Can
Customize Your Windows Application” on page 112 and see the cookbook.

Notice that class CTheApp does not declare a constructor. Because there is
nothing to do in such a constructor, you can simply rely on the constructor
inherited from the base class, CWinApp, to construct your application
object. Of course, you could add a constructor to your program’s application
class if you had something for it to do.

Note that you can’t create any windows or make any Windows function calls
in the constructor because WinMain hasn’t been called yet.

90 Class Libraries User’s Guide

3.4 Put a Window on the Screen

This section explains the second step in writing Hello: create a window. In this sec-
tion you’ll add more code to the HELLO.H and HELLO.CPP files that you started
in the previous section, in order to create Hello’s main window class.

» To write Hello’s main window class:

1. Derive a main window class from the Microsoft Foundation class

CFrameWnd. Add the following declaration of class CMainWindow to your
HELLO.H file:

class CMainWindow : public CFrameWnd
{
public:

// Constructor

//

CMainWindow();

// Handler function for painting messages
//
afx_msg void OnPaint(); // For WM_PAINT message

// Handler function for About dialog
//
afx_msg void OnAbout();

// Macro to declare a message map

//

DECLARE_MESSAGE_MAP()
}s
Put this declaration just below the preprocessor directives at the top of the
file.

The afx_msg modifier is similar to the virtual keyword of C++. Member
functions prefixed with afx_msg are prototyped in class CWnd and can be
overridden in derived window classes. They tie into the message map as-
sociated with the Microsoft Foundation window class.

At this point, your HELLO.H file is complete. You can check it against
Listing 1.

. Add the following CMainWindow constructor definition to your HELLO.CPP

file:

CMainWindow: :CMainWindow()
{
LoadAccelTable("MainAccelTable");
Create(NULL,, "Hello Foundation Application",

Windows Programming with the Microsoft Foundation Classes 91

WS_OVERLAPPEDWINDOW, rectDefault,
NULL, "MainMenu");
}

Put the constructor in a section of the file for CMainWindow member
functions. Keep this section separate from the section that contains

the InitInstance definition. The HELLO.CPP file in Listing 2 puts all
CMainWindow code above all CTheApp code.

To continue the tutorial, see “Arrange for Communication with Windows” on
page 94. For more information about the code you just added, see the discussion
below.

Discussion: Creating Windows

The following sections explain how Hello puts a window on the screen.

Hello’s Main Window Class

Previously, you saw the process of constructing a main window object in the
InitInstance member function of the application object (“Create an Application
Object” on page 85). The next step is to have that window object create a window
on the screen—a window with a caption bar, a frame, and various Windows
controls.

Part of this work is done in the application object’s InitInstance function. After
creating the window object with new, InitInstance calls two of the window
object’s functions to display it. The rest of the work is done by the window object
itself.

The CMainWindow class is derived publicly from CFrameWnd. The Microsoft
Foundation Class Library provides several other window classes from which you
might choose to derive your own window classes, depending on your needs. For
information about the choices, see the Class Libraries Reference. CFrameWnd is
commonly chosen to represent an application’s main window. Figure 3.2, on page
88, shows the class hierarchy for Hello’s main window class.

CMainWindow has the following components:

= A constructor
= Two message-handler member functions

= A macro invocation

The CMainWindow Constructor When InitInstance constructs a main
window object, the CMainWindow constructor is invoked. You saw the code for the
constructor of CMainWindow above. There are many things you could do in your

92

Class Libraries User’s Guide

constructor. Hello uses the constructor to create a window for display. The win-
dow is created by a call to the Create member function that CMainWindow inherits
from its base class, CFrameWnd, and which CFrameWnd inherits in turn from
its own base class, CWnd.

The call to Create creates the window but doesn’t make it visible. Create takes
the following arguments:

= A window class name.

Hello’s first argument is NULL. If you pass NULL for this argument, the
Microsoft Foundation Classes select an appropriate window class and prepare
its data structures. Traditional Windows programmers are accustomed to
registering their own window classes with Windows. With the Microsoft
Foundation, you can still register classes if you need to, but the most commonly
used window classes are preregistered, and the Microsoft Foundation chooses
the most appropriate one. For more information about registering window
classes, see “How Hello Works.” Note that a “window class” in traditional
Windows is not the same thing as a C++ window class, such as CFrameWnd,
in the Microsoft Foundation Class Library.

® A string specifying caption text for the window.

Hello’s second argument is a null-terminated string containing the text to be dis-
played as a caption in the window’s title bar.

= A window style.

Hello’s third argument is a constant specifying the window style as
WS_OVERLAPPEDWINDOW. The WS_OVERLAPPEDWINDOW
style specifies an overlapping window with a caption, a thick-frame border, a
system menu, and minimize and maximize boxes. You’ll typically pass
WS_OVERLAPPEDWINDOW for a main program window, but you can
pass any value for this argument that you pass for the corresponding argument
in the Windows CreateWindow function. For more information about window
styles, see the Windows SDK Reference.

= A rectangle specifying where to display the window on the screen.

Hello’s fourth argument is rectDefault. If you pass this predefined value in-
stead of your own CRect object, the Microsoft Foundation Classes use a de-
fault rectangle specified by Windows. The default position and dimensions of
the window depend on the system and on how many other applications have
been started. Class CRect is a Microsoft Foundation class designed to represent
a two-dimensional rectangle similar to the Windows RECT data type. The
class provides member functions to manipulate rectangles in a variety of ways.
For more information about CRect, see the Class Libraries Reference.

= A pointer to the parent window (of type CWnd), if any.

Hello’s fifth argument is NULL. Because this is a main window, not a child
window, it has no parent window.

Windows Programming with the Microsoft Foundation Classes 93

= The name of the window’s menu resource.

Hello’s sixth argument is “MainMenu,” a string that specifies the menu tem-
plate name used in file HELLO.RC to define Hello’s menu.

The cMainWindow constructor also calls the LoadAccelTable member function of
class CWnd. Class CMainWindow inherits this member function from CWnd. The
call to LoadAccelTable loads a Windows accelerator table, which defines the
shortcut keys (also known as accelerator keys) that the program can respond to.
The Hello program defines one shortcut key: the F1 key calls up the About dialog
box. For more about resources such as accelerator tables, see the Windows SDK
Guide to Programming.

CMainWindow’s Member Functions and Message-Map Macro Besides its
constructor, class CMainWindow overrides two message-handler member functions,
OnAbout and OnPaint, and invokes the DECLARE_MESSAGE_MAP macro.
These functions and the macro are discussed further in “Arrange for Communica-
tion with Windows” on page 94, in “Paint the Window” on page 101, and in “Add
an About Dialog Box” on page 105.

How Initinstance Displays the Window

The main window constructor is invoked when Hello’s InitInstance member
function allocates a CMainWindow object with new. Once the constructor
completes, control returns to InitInstance. At this point, the window is ready
for display but still is not visible on the screen.

To display the window, InitInstance calls the newly created window object’s
ShowWindow member function. You’ll recall that class CMainWindow didn’t de-
clare a ShowWindow function. Instead, it inherits ShowWindow from
CFrameWnd.

ShowWindow makes the window visible, but nothing has yet been painted in the
new window’s client area. To accomplish that, InitInstance calls the main win-
dow object’s UpdateWindow member function. CMainWindow inherits this func-
tion, like ShowWindow, from CFrameWnd. UpdateWindow causes Windows
to send a WM_PAINT message to the window. When the window responds to
that message, it paints the text “Hello, Windows!” How the window responds to
WML_PAINT is explained in “Paint the Window” on page 101. Figure 3.3 shows
the process schematically.

After calling the ShowWindow and UpdateWindow member functions,
InitInstance is finished. At that point, Hello begins its message loop and is
ready to receive messages from Windows.

94 Class Libraries User’s Guide

the App Creates a CMainWindow object
l
main window Creates a window
|
the App Calls ShowWindow
|
the App Calls UpdateWindow
l
Windows Sends WM_PAINT message to window
l
main window Paints the window

Figure 3.3 Window Display

3.5 Arrange for Communication with Windows

This section explains the third step in writing Hello: set up the mechanism by
which Hello responds to Windows messages.

» To set up window message hooks for the main window:

1. Add the following message map for the new window class to your
HELLO.CPP file:

BEGIN_MESSAGE_MAP(CMainWindow, CFrameWnd)
ON_WM_PAINT()
ON_COMMAND(IDM_ABOUT, OnAbout)
END_MESSAGE_MAP()

You can put the message map with your code for the main window class. The
message map connects specific Windows messages with member functions of
your window class provided as message handlers. The message map is really a
part of your window class, so writing it is part of writing the class. It’s impor-
tant to put the message map in the HELLO.CPP file rather than the HELLO.H
file to ensure that the macros comprising the map are not invoked more than
once. The macros create code and therefore allocate memory. Thus they must
not be included in more than one module.

Windows Programming with the Microsoft Foundation Classes 95

You already added the DECLARE_MESSAGE_MAP macro to your
CMainWindow class declaration. Any window class you write requires this macro
as part of its declaration. The message map in HELLO.CPP is the implementa-
tion corresponding to the message-map declaration.

2. Add message-handler functions for the Windows messages you need to
process.

For Hello, you’ll add two message-handler member functions to the
CMainWindow class. The code for this step is given later in the tutorial, in “Paint
the Window” on page 101 and “Add an About Dialog Box™ on page 105.

The Microsoft Foundation Class Library provides default behavior for all
messages, but you must provide CMainWindow member functions to override
the default behavior and handle the menu command for the About dialog box
and to handle the WM_ PAINT message, which signals your window to paint
its contents.

To continue the tutorial, see “Paint the Window” on page 101. For more informa-
tion about the code you just added, see the following discussion.

Discussion: Communication with Windows

The Microsoft Foundation Class Library provides a communications mechanism
for connecting Windows messages to the message-handler member functions of
your windows classes. This section describes the mechanism, emphasizing the
message map.

This discussion does not instruct you to add any code to your files.

Message Maps

You write a Microsoft Foundation message map using macros from a set of prede-
fined macros. The following sections discuss the parts of a message map, where
the macros go, and how the message map connects your handlers to the Windows
messages they handle.

To write the message map, use the BEGIN_MESSAGE_MAP and
END_MESSAGE_MAP macros. Between them, add an entry for each Windows
message your main window (or dialog) will handle. The Microsoft Foundation
Class Library predefines a set of macros to use for the entries, as discussed in the
following sections.

You write the message-handler functions corresponding to your message map en-
tries. The Microsoft Foundation Class Library specifies some rules for naming
your message handlers and for specifying their argument signatures. The rules are
discussed in the following sections.

96

Class Libraries User’s Guide

What the Message Map Is For Windows programs are spoken of as “event
driven.” The user interacts with the windows, menus, and controls in the Windows
user interface of your program. User-generated events, such as mouse clicks and
keystrokes, place “messages,” each based on the MSG structure defined for
Windows, in your application’s message queue. Your application uses a message
loop to get messages from the queue and send the messages to the appropriate
window for handling.

A Windows program must have a mechanism for selecting the appropriate code to
respond to Windows messages, such as WM_CREATE, WM_PAINT, or
WM_COMMAND.

Traditional Windows programs define a window procedure for each registered
“window class.” The window procedure, often called WndProc, typically con-
tains a switch statement which uses the message information passed to the window
procedure to select appropriate code to respond to the message.

The Microsoft Foundation Classes provide a mechanism for the same purpose
called a message map. These message maps are similar to C++ “v-tables” but are
more space efficient. The message map defines linkages between particular
Windows messages and corresponding member functions of the window object.

‘ Message Map Macras

Hello uses a message map with two entries, as descn d prev
'ON_COMMAND, Wthh is used to respond fo com ,
- WM_ COMMAND messages, is only one of the macros vaﬂa
_associating messages with functions. The Microsoft EFm%ndatIogxl
Library provides many such macros, including, for e arﬁplc ,
ON_WM_PAINT, ON_WM_CREATE, and O
~ information about the macros associated with message map entries,
‘cookbook and the Class Libraries Reference. The O WM P
is dlscussed further 1h “Paint the Wlndow” on pag

Windows Programming with the Microsoft Foundation Classes 97

For instance, the example code for Hello defines a message map with an entry
providing a connection between the constant IDM_ABOUT and the 0nAbout
member function. IDM_ ABOUT represents the menu ID of the About menu

command, as defined in the resource file associated with Hello.

When a window procedure receives a WM_COMMAND message for a menu
command, the window procedure’s wParam parameter contains a menu ID to
identify which menu command was chosen. Hello’s message map uses the
ON_COMMAND macro to associate IDM_ABOUT with the 0OnAbout member
function.

Logically, the message map is part of the main window class, so a good place to
put it is with the CMainWindow code.

What Hello’s Message Map Does The macros create entries in a table. The
message-processing mechanisms in the Microsoft Foundation Classes use the
table to locate and call the function associated with a message. Figure 3.4 shows
the process of routing messages to handlers via message maps.

What happens if there is no entry in the message map of your window class for a
given message? Each window class in the class hierarchy (CWnd, CFrameWnd,
and CMainWindow in the example) has its own message map. The message pro-
cessing mechanism can move up the hierarchy of message maps in search of a
message-to-function mapping.

Because default handlers are declared in class CWnd, a default handler will be
found at the CWnd level of the hierarchy if nowhere else. If the default behavior
for a given handler has been overridden at some level, the mechanism finds a func-
tion to execute and calls it. Because of this structure, it’s a good idea to call the
base class’s version of your handler function, much as you call DefWindowProc
in traditional Windows programming.

98 Class Libraries User’s Guide

Base Class

No

Member Functions
If Class has a handler

for the message, call it.

Message
Map

A

If Derived Class can’t
handle message,
check the message
map of the base class.

No

Member Functions

If Class has a handler
for the message, call it.

Message
Map

Derived Class

Figure 3.4 How Message Maps Route Messages to Handlers

Rules for Message-Handler Functions If you use the message-handling appara-
tus of the Microsoft Foundation Classes in your Windows program, there are some
guidelines and requirements for the names and parameter signatures of your mes-
sage handler functions, such as OnAbout and OnPaint. There are three main cate-
gories of messages that a window receives:

= WM_COMMAND messages generated by user menu selections or menu-
accelerator keys.

= Notification messages from child windows, such as a message from a button to
its parent window indicating that the button has been clicked: BN_ CLICKED.

Windows Programming with the Microsoft Foundation Classes 99

A notification message is a WM_COMMAND message in which the wParam
parameter contains the control ID for the child window and the /Param parame-
ter contains a notification control code in the high-order word and the control
handle in the low-order word.

® Other WM_ XXX messages, such as WM_PAINT or WM_SIZE, generated
by the system or by user input.

Note You can always get to the raw Windows MSG structure by calling the
GetCurrentMsg function.

Your handler functions for menu messages and child window notification mes-
sages (the first two preceding categories) take no arguments and return no value.
No arguments are needed because your main window object stores the message in-
formation needed to process the message. The two categories of messages use the
information that Windows passes with the message differently, but the conven-
tions for naming your handler functions are the same.

Your handler functions for messages in the third category above, however, do re-
quire various arguments, depending on the message, and can return a value. Be-
cause the Windows messages are all standard, the names and argument signatures
required for these handler functions are predefined by the Microsoft Foundation
Classes.

For example, your handler for the WM_PAINT message must be named
OnPaint. It takes no arguments and returns no value.

Other message handlers do require arguments, and some return values. The
onSize handler function for a WM_SIZE message, for example, requires two ar-
guments, one of type UINT and one of type CPoint. 0nSize returns no value. An
OnEraseBkgnd handler for the WM_ERASEBKGND message requires one argu-
ment, a pointer to a device context class object, and returns a BOOL.

To determine the correct argument signature and return type for your message-
handler functions, see the Class Libraries Reference. The signatures are also listed
as function prototypes in the CWnd class declaration in file AFXWIN.H. Each
prototype is preceded by the afx_msg identifier. You should copy and paste these
prototypes into your own code as needed. See the additional information in the
box “Default Message Handlers” on page 100.

For more information about message maps, see the cookbook. For more examples,
see the next chapter.

100 Class Libraries User’s Guide

The next several sections examine how to write the message handler member func-
tions for Hello’s main window class. These functions correspond to the two entries
in Hello’s message map above. They handle:

= Responding to an application request to paint or repaint a window’s contents.

= Displaying an About dialog box.

Windows Programming with the Microsoft Foundation Classes 101

3.6 Paint the Window

This section explains the fourth step in writing Hello: paint text in the window.

» To paint text in Hello’s window:

1. Add the onPaint handler function for processing WM_PAINT messages to
HELLO.CPP:

void CMainWindow::0nPaint()

{
CString s = "Hello, Windows!";
CPaintDC dc(this);
CRect rect;

GetClientRect(rect);

dc.SetTextATlign(TA_BASELINE | TA_CENTER);

dc.SetBkMode(TRANSPARENT);

dc.TextOut(rect.right / 2, rect.bottom / 2, s, s.GetLength());
}

Put the OnPaint member function in your HELLO.CPP file with other
CMainWindow member functions.

2. You already added the ON_WM_PAINT macro to Hello’s message map. Its
line in the message map looks like this:

ON_WM_PAINT()

Requirements for naming the OnPaint member function and for the macro
name are discussed below.

To continue the tutorial, see “Add an About Dialog Box” on page 105. For more
information on the code you just added, see the following discussion.

Discussion: Painting Text

What happens inside your OnPaint member function? This discussion explains
the statements in the OnPaint member function and the requirements for naming
the function and for making its message map entry.

The OnPaint Name

OnPaint, as a message-handler function, is predefined in the Microsoft Founda-
tion class CWnd, where its prototype is given. OnPaint is designed to handle the
WM_PAINT message, and WM_PAINT is one of the messages requiring a

102 Class Libraries User’s Guide

specific parameter signature. The OnPaint function happens to take no arguments
and to return no value. Thus, its declaration in class CMainWindow looks like this:

afx_msg void OnPaint();

Its corresponding macro entry, ON_WM_PAINT, is also predefined.

Inside OnPaint

The code in Hello’s 0nPaint member function has three fundamental com-
ponents. To paint the text, you do these three things:

1. Create a device context.

onPaint constructs a CPaintDC object. The class name stands for class “Paint
Device Context.”

2. Determine the area in which to paint.

OnPaint uses the window object’s GetClientRect member function to get a rec-
tangle corresponding to the client area of the window. CMainWindow inherits
GetClientRect.

3. Paint the text.

OnPaint uses three CPaintDC member functions to align and paint the text.

In the Windows graphical user interface, it is common to speak of anything you
display in a window, even text, as being “drawn” or “painted.” In Hello, the text
“Hello, Windows!” is painted in the window, through the use of graphics func-
tions.

Your program is responsible for painting its window contents when requested by
Windows. Typically, a window is painted when the program starts, when the win-
dow is first displayed, and when the window changes size or is uncovered after
being covered by another window, when new drawing takes place. Windows
sends WM_PAINT when anything happens that requires updating the window.

The 0nPaint member function handles the WM_ PAINT message.

‘When the contents of your window’s client area change or when the client area
must be redrawn (“updated”), Windows sends a WM_PAINT message to the
window. What your OnPaint message-handler function does in response to that
message depends on your needs. No matter what your program displays in its
windows, the OnPaint handler is the place to do the drawing.

Windows Programming with the Microsoft Foundation Classes 103

What OnPaint Does

Except for its use of a “device context object,” the code for OnPaint is straightfor-
ward Windows programming. The syntax looks cleaner, but the calls made should
be familiar to Windows programmers. Figure 3.5 shows the sequence of steps in
Hello’s OnPaint member function.

window object Makes a device context object
/
device context object Calls BeginPaint (in constructor)
/
window object Gets client area rectangle
4
window object Asks device context to align text
y
device context object Sets text alignment (centered)
4
window object Asks device context to paint text
4
device context object Paints text
device context object Calls EndPaint (in destructor)

Figure 3.5 Sequence of Events in Hello’s OnPaint Function

The OnPaint member function of class CMainWindow uses three local variables:

= A CString object to contain the text to paint.
= A device context object of class CPaintDC.
= A CRect object.

104

Class Libraries User’s Guide

The device context object, dc, is the Microsoft Foundation Class Library way to
set up a Windows device context for painting on the screen. When the CPaintDC
object is constructed on the stack frame, it gets a pointer to the window object that
owns it, passed with the C++ this keyword. The CPaintDC object needs this infor-
mation to associate the device context with the window. During its initialization,
the CPaintDC object calls the Windows BeginPaint function. When the
CPaintDC object is destroyed as OnPaint exits, its destructor calls the Windows
EndPaint function.

OnPaint calls the main window object’s GetClientRect member function, in-
herited from CWnd through CFrameWnd. This function returns the coordinates
of the window’s client area in the rect argument.

Armed with the client area information, OnPaint then calls two member functions
of the device context object to align and paint the text. The call to the device con-
text’s SetTextAlign member function (of class CPaintDC) specifies that the
coordinates given are to be considered the center of the text. Because Hello’s
OnPaint member function gives the center of the window, the text is centered in
the window.

The call to the device context’s SetBkMode, with an argument of
TRANSPARENT, specifies that the window background remains as it is

rather than being filled with the current background color before painting. If you
compile and run the Hello program, you can see that if the window changes size,
the text is redrawn so it is always centered.

The call to the device context’s TextOut member function paints the text in the
window. To center the starting point of the text in the client area, the code divides
the right-side and bottom coordinates by 2, defining a point at the horizontal

and vertical center of the client area. The arguments passed previously to
SetTextAlign cause the output to use this point as the baseline for drawing,

and the text is also centered horizontally on the point.

All CWnd and CPaintDC member functions called in OnPaint closely parallel
functions of the same name in the Windows API. You could, of course, simply use
the Windows calls in your OnPaint member function, but using the Microsoft
Foundation Classes adds simplicity and flexibility.

The primary functionality of Hello is now in place. But Hello will have more of
the Windows look if you add an About box. The next section shows how.

Windows Programming with the Microsoft Foundation Classes 105

3.7 Add an About Dialog Box

This section explains the fifth step in writing Hello: add an About dialog box.

» To add an About dialog box:

1. Add the onAbout member function to handle WM_ COMMAND messages.
Put the following function definition in your HELLO.CPP file with other
CMainWindow member function definitions:

void CMainWindow::0nAbout()

{
CModalDialog about("AboutBox", this);
about.DoModal();

}

As a message handler, OnAbout is similar in most respects to the OnPaint
member function.

2. You already added the ON_COMMAND macro for the IDM_ABOUT menu
ID to the message map. Its line in the message map looks like this:

ON_COMMAND(IDM_ABOUT, OnAbout)

The dialog template for Hello’s About dialog box was created with a dialog edi-
tor. The template is in file HELLO.DLG, which is referenced in the program’s
resource script file, HELLO.RC, with a line like this:

rcinclude hello.dlg

This line points the resource compiler to the file containing the dialog template.
Note that in the dialog template created by the dialog editor the template name
“ABOUTBOX?” is uppercase. However, the name is not case sensitive, as the
code for OnAbout shows.

At this point, your HELLO.H and HELLO.CPP files are complete if you have
followed all of the directions in this tutorial. You can check them against
Listings 1 and 2, respectively.

Requirements for naming the handler function and the macro were discussed in
“Rules for Message-Handler Functions” on page 98. To continue the tutorial,
see “Prepare Supporting Files” on page 107.

Discussion: The About Dialog Box

A program’s About dialog box displays information about the program, usually in-
cluding the program’s name and a copyright notice.

106 Class Libraries User’s Guide

Figure 3.6 shows what Hello’s About dialog box looks like.

Aboat Hello

Microsoft Windows
Microsoft Foundation Classes
Hello, Windows!

Version 1.0

Figure 3.6 Hello’s About Dialog Box

To put a dialog box on the screen, OnAbout uses an object of the CModalDialog
class. CModalDialog is a Microsoft Foundation class that displays and operates a
modal dialog box that contains controls such as buttons and text fields.
CModalDialog provides a member function, DoModal, that operates the

dialog box. As long as DoModal has control, the user must deal with the dialog
box. The user can use any of the controls contained in the dialog box. The user can
either dismiss the dialog box, usually with a CANCEL button, or accept any
changes made, usually with an OK button. Hello’s dialog box has only one
control, an OK button.

What OnAbout Does

The OnAbout member function constructs a CModalDialog object called
“about.” The first argument to the constructor is a string that identifies a resource
in an associated resource file. The second argument is this, a C++ keyword that
contains a pointer to the current object. Because this code is inside a CMainWindow
member function, this refers to the CMainWindow object. Passing this pointer to
the dialog enables it to identify its parent window.

Windows Programming with the Microsoft Foundation Classes 107

Once the CModalDialog object has been constructed, OnAbout calls its
DoModal member function to display the dialog and interact with the user. In
Hello, the About dialog box closes when the user clicks the OK button.

Summary of the Hello Program’s Code

At this point, you have derived the two necessary classes from Microsoft
Foundation Classes. You have written the code for their member functions. And
you have written a message map to connect Windows messages to your main
window class’s handler functions.

After you set up some additional files common to Windows programming, as
detailed in the next section, you can compile Hello and then run it. If you prefer,
you can compile the version of the program already provided on the distribution
disks.

3.8 Prepare Supporting Files

Besides the two source code files, HELLO.H and HELLO.CPP, you will need
several additional files in order to compile Hello. The files will look like those
shown in Listings 3 - 5.

» To prepare these files, do the following:

1. Create a module-definition file, with the .DEF extension.

All Windows programs require a module-definition file, with the .DEF exten-
sion. The module definition file for Hello is shown in Listing 3 and is available
on the distribution disks as HELLO.DEF.

2. Create a resource file with an .RC extension.

If you use custom resources, such as icons, you need a resource script file,
with the .RC extension, to define the resources. The resource file for Hello is
shown in listing 4 and is available on the distribution disks as HELLO.RC. For
your own icons, you also need files created with a resource editor, such as
SDKPaint. The icon resource file HELLO.ICO is furnished on the distribution
disks also.

3. Create a resource include file with an .H extension.

Hello uses an .H file to define resource ID numbers for the resources listed in
its resource file. The resource include file for Hello is shown in Listing 4 and is
available on the distribution disks as RESOURCE.H.

108

Class Libraries User’s Guide

Discussion: The Supporting Files

The supporting files for Hello are given in Listings 3, 4, and 5. Listing 3 is the
module-definition file, required for all Windows programs. Listing 4 is the re-
source script file, required of Windows programs that define their own resources,
such as menus, dialogs, icons, and accelerators. Listing 5 is the resource include
file, used to declare ID numbers associated with the resources. These files are pro-
vided on the distribution disks for your use, or you can create your own files based
on the listings. The next sections explain each file.

The Module-Definition File

The module-definition file for Hello appears in Listing 3.

This file is typical for a Windows program. For more information on module-
definition files, see the Windows SDK Guide to Programming and the Windows
SDK Reference, Volume 2.

For programs that use the Microsoft Foundation Classes, always use FIXED for
the CODE and DATA segments. C++ code can’t be moved by the real-mode
memory manager, so you must specify FIXED. Under protected mode, the pro-
tected-mode page manager will automatically take care of swapping the FIXED
code in and out of memory.

You can simply use the HELLO.DEF file supplied on the distribution disks and
modify it as needed for future programs. The values specified here are fairly stan-
dard for Windows programs, but you can adjust the HEAPSIZE or STACKSIZE
values, for example, to suit your needs.

The Resource Script File

The resource script for Hello is shown in Listing 4.

This file specifies four resources: a custom icon, a menu, an accelerator table, and
a dialog resource file created with a dialog editor.

The icon entry specifies an ID number, AFX_IDI_STD_FRAME, with which
the icon resource can be loaded. The ID number is defined in the Microsoft Foun-
dation Class Library. The icon entry uses an ICON statement to associate the ID
number with a file that contains the icon data. If you supply an icon resource, you
also must supply the file that contains that resource: for example, HELLO.ICO.

The menu entry defines a pop-up-style menu labeled “Help” with one menu item,
labeled “About Hello...F1” The About menu command is associated with the ID
number IDM_ABOUT, defined in the RESOURCE.H file (see the next section).

Windows Programming with the Microsoft Foundation Classes 109

The accelerator table entry defines an accelerator table resource to associate keys
with menu items. For Hello, the F1 function key displays the About dialog box by
causing Windows to generate a WM_ COMMAND message for the menu item.
You saw previously how the OnAbout function handles that message.

The dialog resource file, which was created with a dialog editor, refers to a .DLG
file containing a resource template. The template defines a dialog box resource to
be used for the About dialog box. The dialog box has the caption, or window title,
“About Hello” and contains several lines of text identifying the program. Hello’s

About dialog template is in the file HELLO.DLG on the distribution disks.

You can simply use the resource script provided on the distribution disks in file
HELLO.RC. If you do not want to provide custom icons, you can remove the ap-
propriate lines from the resource script. You will also need to remove them from
the makefile.

The Resource Include File

Hello uses a file with the .H extension to define its application-specific resource
ID numbers. The file appears in Listing 5. Hello’s file defines only one resource
ID.

This definition is used to match the About dialog resource in the .RC file with the
CModalDialog object that uses the resource to create the dialog.

You can simply use RESOURCE.H on the distribution disks.

3.9 Build the Program

To build your program, follow the instructions given in Chapter 1 of the tutorial.
The required files are HELLO.H, HELLO.CPP, HELLO.DEF, HELLO.RC,
HELLO.ICO, HELLO.DLG, and RESOURCE.H. All are available in the
MFC\SAMPLE\HELLO directory in your Microsoft C/C++ installation.

The Programmer’s WorkBench (PWB) makefile for HELLO is called
HELLO.MAK. The NMAKE makefile is called MAKEFILE with no extension.

HELLO builds as a Windows application, so you must run it from Microsoft
Windows.

110

Class Libraries User’s Guide

3.10 How Hello Works

A General View

Without a visible function called “main,” as in C, or “WinMain,” as in Windows,
it is hard to see how Hello does anything. Where is its entry point? What is its
sequence of execution?

This section shows Hello’s sequence of execution at two levels. First, the
sequence is described at a general level to give you an overview. Second, the
sequence is described again at a more detailed level. You can skip either of these
sections, depending on your knowledge of C++ and Windows.

When Hello runs, the C++ code creates the theApp object, an object of your appli-
cation class, for example CTheApp.

After the application object is constructed, Windows calls the WinMain function.
WinMain performs some initialization chores. Then it calls your InitInstance.
Finally, it starts the message loop.

Typically, as in Hello, you’ll use the call to your application object’s over-
riding InitInstance member function to construct your main window. You
accomplish this by constructing a main window object of your main window
class, such as CMainWindow. Then you call three member functions of class
CWnd, such as CreateWindow, UpdateWindow, and ShowWindow.
CreateWindow is called from the constructor of your main window object. The
other functions are called from InitInstance.

The call to CreateWindow creates the Windows data structures for a window.
The call to UpdateWindow causes Windows to send a WM_PAINT message to
the window procedure associated with your window as soon as the message loop
starts. The call to ShowWindow causes the window to appear on the screen.

When the message loop starts, the window object’s message map is used to call its
OnPaint member function, which paints the string “Hello, Windows!” in the win-
dow. Then the message loop continues until a WM_ QUIT message causes the
loop to end and the program to terminate.

Windows Programming with the Microsoft Foundation Classes m

Figure 3.7 shows the sequence of events when a Microsoft Foundation Windows
application runs.

C++ Constructs global application object

l

Windows Calls WinMain

l

WinMain Calls application object’s Initinstance

l

application object Creates main window object

|

application object Displays main window object

l

WinMain Calls application object’s Run

|

application object Runs message loop

l

main window object Processes messages

Figure 3.7 Sequence of Events When a Foundation Windows Application Runs

A More Detailed View

When Hello executes, two key actions occur. First, C++ static and global objects,
such as Hello’s theApp global application object, are constructed. A global
variable in the class library is set to point to the application object. Second,

when Windows initialization completes, Windows calls the WinMain function.
The Microsoft Foundation Classes supply a WinMain function that does the
traditional tasks of any Windows WinMain function. The function is responsible
for application and instance initialization and for running the application’s
message loop.

112

Class Libraries User’s Guide

The WinMain Function

As part of its own initialization code, WinMain checks the hPrevinstance argu-
ment passed to it by Windows. If hPrevinstance is NULL, WinMain calls the ap-
plication object’s InitApplication member function to perform first-time
initialization.

Then, regardless of the value of APrevinstance, WinMain calls the application ob-
ject’s InitInstance member function to perform extra initialization for this par-
ticular program instance. In Hello, the version of InitInstance that WinMain
calls is the version defined in class CTheApp as an override of InitInstance.

After initialization, WinMain calls the application object’s Run member function
to begin the message loop. As Windows interacts with the user, it detects mouse
clicks, keystrokes, and other events. It places messages corresponding to these
events in an application message queue. The message loop retrieves messages
from the application’s message queue.

Window Class Registration

In a traditional Windows WinMain function, one important initialization task is to
register one or more “window classes.” Windows uses the registration information
when it creates specific windows to display on the screen.

Note that a window class in Windows is not a C++ object class, as are the window
classes derived from class CWnd in the Microsoft Foundation Classes.

A Windows application written with the Microsoft Foundation Classes registers
several standard window classes for you. You can then simply create windows
based on the registered classes. However, it is also possible to register your own
custom window classes if you need something special.

Hello works nicely with the default window class registrations supplied by the
Microsoft Foundation Class Library, so you do not need to do your own window
registration.

How You Can Customize Your Windows Application

As shown above, the Microsoft Foundation Classes supply a WinMain function
that provides several standard Windows actions for you:

= Windows application and instance initialization.
® Registration of several standard window classes.
= A message loop.

Windows Programming with the Microsoft Foundation Classes 113

The Microsoft Foundation Classes also supply several ways to customize or over-
ride the standard facilities and behavior. You can:

= Write your own WinMain function and substitute it at link time for the
WinMain provided by the Microsoft Foundation Classes.

= Call a global AfxRegister WndClass function to register your own window
classes.

= QOverride member functions such as InitApplication, InitInstance, Onldle,
Run, and ExitInstance in your derived application class.

= Make your program a Multiple Document Interface (MDI) application.
= Add dialog boxes, menus, and accelerators.

3.11 Summary

This chapter demonstrated the fundamental techniques for using the Microsoft
Foundation Class Library to write Microsoft Windows programs.

The class library helps you think about Windows programming in a more object-
oriented way. It also promotes more reusable code.

The next three chapters develop a larger Windows application, building on the
classes and techniques explored in this chapter.

3.12 File Listings

The code shown in listings 1-5 is available on your distribution disks as
HELLO.H, HELLO.CPP, HELLO.DEF, HELLO.RC, and RESOURCE.H.

Listing 1

// HELLO.H - Declares the class interfaces for the Hello application.

#ifndef HELLO H__
ffdefine . HELLO_H__
// CMainWindow:
// See hello.cpp for the code to the member functions
// and the message map.
1/
class CMainWindow : public CFrameWnd
{
public:
CMainWindow();

114 Class Libraries User’s Guide

Windows Programming with the Microsoft Foundation Classes

115

// OnPaint:

/1l

void CMainWindow::0nPaint()

{
CString s = "Hello, Windows!";
CPaintDC dc(this);
CRect rect;

GetClientRect(rect);
dc.SetTextAlign(TA_BASELINE | TA_CENTER);
dc.SetBkMode (TRANSPARENT);
dc.TextOut((rect.right / 2), (rect.bottom / 2),,
s, s.Getlength());
}

// OnAbout:

// '

void CMainWindow: :0nAbout()

{
CModalDialog about("AboutBox", this);
about.DoModal();

¥

// CMainWindow message map:
I
BEGIN_MESSAGE_MAP(CMainWindow, CFrameWnd)
ON_WM_PAINT()
ON_COMMAND(IDM ABOUT, OnAbout)
END_MESSAGE_MAP()

LLTELLL L L L LT T L P LB L L LA LBl L L LR L L]
// CTheApp

// InitlInstance:
L/
BOOL CTheApp::Initinstance()
!
TRACE("HELLO WORLD\n");

m_pMainWnd = new CMainWindow();
m_pMainWnd -> ShowWindow(m_nCmdShow);
m_pMainWnd -> UpdateWindow();

return TRUE;
}

116 Class Libraries User’s Guide

Phone Book: A Simple Windows
Database

Chapter 2 showed how to use the Microsoft Foundation Class Library to build a
data model for a simple name and phone number database. Chapter 3 showed how
to use the Microsoft Foundation Classes to build a simple Microsoft Windows
user interface.

This chapter and the two chapters following it show how to integrate the data
model from Chapter 2 and the Windows user interface from Chapter 3. In these
chapters, you’ll write a larger Windows application to put a Windows interface on
the name and phone number database. You’ll begin with the Hello program from
Chapter 3 as a template and build new functionality on top of it by adding more
menus, by creating more complicated dialog boxes, and by providing keyboard
and mouse interaction.

The three chapters cover the following topics:

= Chapter 4: How to use Hello as a template. How to create a simplified interface
to the CPerson data.

= Chapter 5: How to add dialog boxes for editing data and for file opening,
saving, and printing.

= Chapter 6: How to write the main window class and message map. How to add
message-handler functions, including handlers for menus, the keyboard, and the
mouse. How to prepare the supporting files. How to build the Phone Book
program.

4.1 In This Chapter

Follow the tutorial in this chapter to create a class of “database objects.” You can
use one of these objects to provide a clean interface to the actual data. The inter-
face can be used either in a character-based program or a Windows program. At
the end of the chapter, you’ll see how to use the interface for a non-Windows
database program.

118

Class Libraries User’s Guide

The Phone Book Program

The Phone Book program developed in the next three chapters is a simple name
and phone number database. It stores information about people: first name, last
name, and phone number. Using the Windows interface, you can create a new
database, fill it with information, and save it to a disk file. You can also open an
existing database from a file and add names, delete names, and edit information.
You can find all entries with the same last name and display the list of found en-
tries. And you can print your database files.

What the Program Does

The Phone Book program displays a window with a menu bar. The menu bar con-
tains three menus, one for file operations, one for database operations, and one for
Help.

If you create a new, empty database, the window title changes from ‘“Phone Book”
to “Phone Book—Untitled” and you can then add entries with the Add command in
the Person menu. When you choose the Save or Save As command from the File
menu, a dialog box prompts you to enter a filename, the database is serialized to
the file, and the new filename becomes the new window title.

If you open an existing database, you are first prompted to save the existing one if
it has unsaved changes. Then a standard Windows dialog box prompts you for a
filename, the persistent data stored in the file is deserialized into an automatically
created CPersonList object, and the new filename replaces the old one in the title
bar. The data is displayed in the window, one line per person. If there’s more data
than the window can display, scrollbars are added to the window, and you can use
them to scroll to data that isn’t currently displayed. You can also scroll with the
RIGHT ARROW, LEFT ARROW, PAGE UP, PAGE DOWN, HOME, and END keys.

To delete or edit a person’s information, you must first select the person’s line of
information in the window. You can choose a person in the database by selecting
the person’s line of information in the display, either with the mouse or with the up
ARROW and DOWN ARROW keys.

If you add, delete, or edit the information in a database, the database is flagged in-
ternally to indicate that it has unsaved changes. When you add, delete, or edit a
person’s information, the display changes to reflect the new information.

If you search the database for a name, a list of matching list elements is displayed
in the window, replacing the display of the full database. Changes to this list are re-
flected in the main list. To abandon the list of search results and display the full
database again, you choose the Find All command in the Person menu.

If you choose the Print command in the File menu, a standard Windows print
dialog box is displayed so you can select printing options.

Phone Book: A Simple Windows Database 119

If your file is unsaved and you choose the Save or Save As commands in the File
menu, a standard Windows Save dialog box is displayed so you can name the file
and select a directory for it. If the file has already been saved, you can choose the
Save command to save recent changes.

Figure 4.1 shows the screen as it appears with an open database on display.

Phane Hook - FRIENDS.PB

File Person Help
Adams, Thomas 878-6789 10715/91 [#]
Adams, Nina 789-5640 10415791 [_]
Brent, Zoe 876-4534 10415491
Burroughs, Edgar 767-4444 101591
Jones, Allen 887-9809 1041591
Keene, Carolyn 989-0900 1041591
Mannheim, William 989-7832 1011591
Monroe, Louise 767-9876 1011591
Smith, John 898-5439 101591
Smith, Jayne 989-1209 101159

Figure 4.1 The Output of Phone Book

This example program does considerably more than Hello and provides you with a
larger model on which to pattern your own Windows programs written with the
Microsoft Foundation Class Library.

The Code for Phone Book

To view the complete code for Phone Book, see Listings 1 and 2 in this chapter
and Listings 1 and 2 in Chapter 5. The listings in the current chapter give the code
in files DATABASE.H and DATABASE.CPP. The listings in Chapter 5 give the
code in files VIEW.H and VIEW.CPP. To review the code for the Data Model, see
Windows Listings 1 and 2 in Chapter 2.

The code shown in Listings 1 and 2 is available on the distribution disks in files
DATABASE.H and DATABASE.CPP.

Microsoft Foundation Classes Used in This Chapter

This chapter and the two following chapters use the classes employed in Chapters
2 and 3. Many of these classes are used in the same way, since Phone Book is built
from the foundations of Hello and the Data Model program. But one class in par-
ticular, CModalDialog, is used more extensively in Chapter 5, and the CMenu
class is also employed. CMenu provides access to the menus in the menu bar and
is used for updating menus to suit the context. Menu commands unavailable in the
current context are dimmed.

120 Class Libraries User’s Guide

The sections that follow take you through the components of Phone Book, explain-
ing how to write them, what they consist of, and how they work.

4.2 How to Write the Phone Book Program

This section gives an overview of the steps in writing Phone Book. As you work
through the steps, you will learn what files to prepare, where to put the code in
them, and how to compile the program. You’ll build Phone Book by using Hello
as a template.

The Steps in Writing Phone Book with the Microsoft Foundation Classes

You’ll write the Phone Book program with the Microsoft Foundation Classes in
14 steps, spread over three chapters of the tutorial. The 14 steps can be sum-
marized as follows:

1. Create a simplified data interface (Chapter 4).

Phone Book uses two CPersonList objects, one for the database and one for
any person objects found with its search facilities. The simplest way to manage
these lists and the mechanisms needed to use them is to encapsulate the lists
and mechanisms in another object. Class CDataBase lets the program access
data through a single clean interface, regardless of which of the two lists is cur-
rent. Add class CDataBase. For more information about this step, see “Create a
Simplified Data Interface” on page 122.

2. Copy and modify the Hello files (Chapter 5).

To use Hello as a template, you need to copy HELLO.H to VIEW.H and
HELLO.CPP to VIEW.CPP. Then you need to modify some of the items in the
new copies and add other items. For more information about this step, see
“Work from a Template” on page 152.

3. Add two kinds of dialog boxes (Chapter 5).

Phone Book needs two dialog boxes: one for entering a string, used as the name
to search for, and one for entering or editing the data for a person. Add classes
for these dialog boxes. For more information about this step, see “Add Dialog
Boxes” on page 153 in Chapter 5.

4. Determine what messages will be handled (Chapter 6).

Design the application’s menus and list the Windows messages your code
needs to handle. When the user chooses a command from the menu, a
WM_COMMAND message is sent to the appropriate window along with in-
formation identifying which menu command is being generated. The applica-
tion also needs to handle other Windows messages, such as WM_PAINT.

Phone Book: A Simple Windows Database 121

10.

Phone Book has more than a dozen menu commands and responds to almost as
many other Windows messages. For more information about this step, see
“Determine What Messages Will Be Handled” on page 197 in Chapter 6.

. Add message-handler functions for File menu commands (Chapter 6).

Phone Book has several File menu commands. Each command needs a handler
defined as a member function of class CMainWindow and a corresponding entry
in the message map of CMainWindow. Add these functions. For more informa-
tion about this step, see “Add Message Handlers for File Menu Commands” on
page 205 in Chapter 6.

. Add message-handler functions for Person menu commands (Chapter 6).

Phone Book has several Person menu commands. Each command needs a han-
dler defined as a member function of class CMainWindow and a corresponding
entry in the message map of CMainWindow. Add these functions. For more infor-
mation about this step, see “Add Message Handlers for Person Menu Com-
mands” on page 216 in Chapter 6.

. Add message-handler functions for Help menu commands (Chapter 6).

Phone Book has two Help menu commands. Each command needs a handler de-
fined as a member function of class CMainWindow and a corresponding entry in
the message map of CMainWindow. You already added the handler function for
the About menu command when you copied the Hello files to start Phone

Book. Now add a function for the Help menu command. For more information
about this step, see “Add Message Handlers for Help Menu Commands” on
page 222 in Chapter 6.

. Add message-handler functions for creation and sizing (Chapter 6).

Phone Book responds to a number of commonly handled Windows messages.
These include WM_PAINT, WM_CREATE, and WM_SIZE. Add message-
handler member functions to the CMainWindow class for these messages. For
more information about this step, see “Add Message Handlers for Creation and
Sizing” on page 224 in Chapter 6.

. Add scrolling member functions (Chapter 6).

Phone Book handles both vertical and horizontal scrolling so the user can scroll
through an entire database. For more information about this step, see “Add
Scrolling Member Functions” on page 227 in Chapter 6.

Add a keyboard and mouse interface (Chapter 6).

Phone Book uses certain keystrokes and mouse clicks to set or change the selec-
tion in the window. You can use the Up ARROW and DOWN ARROW keys or the
mouse to change the selection. You can also use the DELETE key to delete a
selected person or the ENTER key to edit a selected person. In addition, you can
click the mouse in the scroll bars to scroll the list of persons. These actions re-
quire handler functions as well. Add these handlers. For more information
about this step, see “Add a Keyboard and Mouse Interface” on page 230 in
Chapter 6.

122 Class Libraries User’s Guide

11. Add a member function to handle the WM_PAINT message (Chapter 6).

The window that displays the database responds to this message to repaint its
client area when it becomes invalid. For more information about this step, see
“Add a Member Function to Handle the WM_PAINT Message” on page 235 in
Chapter 6.

12. Add utility member functions (Chapter 6).

Phone Book uses several utility functions. These are main window member
functions called by the main window object’s message-handler functions. For
more information on this step, see “Add Utility Member Functions” on page
238 in Chapter 6.

13. Prepare supporting files (Chapter 6).

As a Windows program, Phone Book requires the same kinds of supporting
files as Hello. Add a module definition file, a resource script file, and a re-
source include file. For more information about this step, see “Prepare
Supporting Files” on page 242 in Chapter 6.

14. Build the program (Chapter 6).

With all the files prepared, compile and link the program. Remember that you
must run the program in Windows. For more information about this step, see
“Build the Program” on page 243 in Chapter 6.

The sections and chapters that follow detail the procedures involved in each of
these 14 steps. Any code related to a procedure is given within the text. Each sec-
tion (except the following one) concludes with a discussion of what the code does
and why it does it that way. Where appropriate, additional advanced discussion in
a special box elaborates on the code and the basic discussion.

4.3 Create a Simplified Data Interface

This section explains the first step in writing Phone Book: simplify the data inter-
face with a new class. This process will require several steps:

1. Create interface and implementation files for class CPerson.
2. Create an interface file for class CDataBase.

3. Design class CDatabase.

4. Create an implementation file for class CDataBase.

5. Write the member functions of class CDataBase.

Phone Book: A Simple Windows Database 123

» To create data object files:

= Copy the PERSON.H and PERSON.CPP files that you made when designing
the data object to your working directory for the Phone Book program.

The simplified data interface object that you’ll create uses these files to imple-
ment the database that it manages.

» To create an interface file for class CDataBase:
1. Create a file called DATABASE.H and add the following lines:

// database.h - Declares the interface for the CDataBase class.
//

f#ifndef __DATABASE_H__

f#fdefine __DATABASE_H__

#include "person.h"

// String const for untitled database
extern const char szUntitled[];

The #define statements ensure that the code in DATABASE.H is not included
more than once. The #include statement includes the PERSON.H file
developed in Chapter 2. PERSON.H declares classes CPerson and
CPersonList. These classes are used by class CDataBase. The string constant
declaration refers to a variable used by CDataBase and defined in the
VIEW.CPP file. You’ll create that file in Chapter 5.

2. At the bottom of the DATABASE.H file add the line:

ffendif // __DATABASE_H__

Always keep this line at the bottom of the file, after all other code.

» To design class CDataBase:

Class CDataBase encapsulates two CPersonlist objects and manages their use.
The interface to CDataBase provides member functions to aid in accessing the
data as Phone Book must do.

= Add the following class declaration for CDataBase to your DATABASE.H file
after the lines added previously:

class CDataBase: public CObject
{
public:
// constructor
CDataBase::CDataBase()

124 Class Libraries User’s Guide

{
m_pDatalList = NULL;
m_pFindList = NULL;
m_szFileName = "";
m_szFileTitle = "";
}

// Create/Destroy CPersonlLists
BOOL New();
void Terminate();

// File handling

BOOL DoOpen(const char* pszFileName);

BOOL DoSave(const char#* pszFileName = NULL);
BOOL DoFind(const char* pszLastName = NULL);

// Person Handling
void AddPerson(CPerson* pNewPerson);
void ReplacePerson(CPerson* pOldPerson,
const CPerson& rNewPerson);
void DeletePerson(int nIndex);
CPerson* GetPerson(int nIndex);

// Database Attributes
int GetCount()
{
ASSERT_VALID(this);
if (m_pFindList != NULL)
return m_pFindList -> GetCount();
if (m_pDatalist != NULL)
return m_pDatalist -> GetCount();
return 0;
}

BOOL IsDirty()
{ ASSERT_VALID(this);
return (m_pDatalist != NULL) ? m_pDatalist ->
GetDirty() : FALSE; }

BOOL IsNamed()
{ ASSERT_VALID(this);
return m_szFileName != szUntitled; }

const charx GetName()
{ ASSERT_VALID(this);
return m_szFileName; }

CString GetTitle()
{ ASSERT_VALID(this);
return "Phone Book - " + m_szFileTitle; }
void SetTitle(const char* pszTitle)
{ ASSERT_VALID(this);
m_szFileTitle = pszTitle; }

Phone Book: A Simple Windows Database 125

BOOL IsPresent()
{ ASSERT_VALID(this);
return m_pDatalist != NULL; }

protected:
CPersonList* m_pDatalist;
CPersonList* m_pFindList;
CString m_szFileName;
CString m_szFileTitle;

private:
CPersonList* ReadDataBase(CFilex pFile);
BOOL WriteDataBase(CFilex pFile);

J#ifdef _DEBUG
public:
void AssertValid() const;
fendif
1

» To create an implementation file for class CDataBase:
= Create a file called DATABASE.CPP and add the following lines to it:

// DATABASE.CPP - Definitions for class CDataBase
//

#include "database.h"

#include <string.h>

J#ifdef _DEBUG

fundef THIS_FILE

static char BASED_CODE THIS_FILE[] = __FILE__;
fendif

const char szUntitled[] = "Untitled";

The #include directives make the class declaration in DATABASE.H and the
declarations in STRING.H available to the code in the new file. The #ifdef
_DEBUG lines support diagnostic reporting if you build the program in debug
mode. The “Untitled” string is defined as a constant. This is the string referred
to earlier from DATABASE.H as an externally-defined variable. It’s used for
new databases that have not been named yet.

The member functions of CDataBase include a constructor and functions that
map fairly directly to some of Phone Book’s menu commands as well as utility
functions designed to make it easier to use the database. The constructor and
functions GetCount, IsDirty, IsNamed, GetName, and IsPresent are all de-
fined inline in the CDataBase class declaration. You will add function defini-
tions to your DATABASE.CPP file.

126 Class Libraries User’s Guide

» To write the member functions of CDataBase:
1. Add the New member function.

// CDataBase::New
// Initializes the database.
//
BOOL CDataBase::New()
{
ASSERT_VALID(this);

// Clean up any old data.
Terminate();

m_pDatalList = new CPersonlList;

return (m_pDatalist != NULL);
}

New creates a new, empty database, to which the user can add persons. In the
Windows program developed in the next two chapters, New supports the New
command in the File menu.

Note the use of the ASSERT_ VALID macro to test the assumption that there
is a valid database object for which a new CPersonList data member can be
created. For more information about the ASSERT_ VALID macro, see “The
AssertValid Member Function” on page 137.

2. Add the Terminate member function:

// CDataBase::Terminate
// Cleans up the database.
//
void CDataBase::Terminate()
{

ASSERT_VALID(this);

if (m_pDatalist != NULL)
m_pDatalist -> DeleteAl1();

delete m_pDatalist;
delete m_pFindList;

NULL;
NULL;

m_pDatalist
m_pFindList

m_szFileName = szUntitled;
m_szFileTitle = szUntitled;

Phone Book: A Simple Windows Database 127

Terminate cleans up when the user ends the program or opens a new database
file while an old one is still open. In the Windows version of Phone Book,
Terminate is used to support the Exit, New, and Open commands in the File
menu.

. Add the AddPerson member function:

// CDataBase::AddPerson
// Inserts a person in the appropriate position (alphabetically by
// last name) in the database.
//
void CDataBase::AddPerson(CPerson* pNewPerson)
{
ASSERT_VALID(this);
ASSERT_VALID(pNewPerson);
ASSERT(pNewPerson != NULL);
ASSERT(m_pDatalist != NULL)

POSITION pos = m_pDatalist -> GetHeadPosition();
while (pos != NULL &&
_stricmp(((CPerson*)m_pDatalList -> GetAt(pos)) ->
GetLastName(),
pNewPerson -> GetlLastName()) <= 0)
m_pDatalist -> GetNext(pos);

if (pos == NULL)
m_pDatalist -> AddTail(pNewPerson);
else
m_pDatalList -> InsertBefore(pos, pNewPerson);

m_pDatalList -> SetDirty(TRUE);
}

AddPerson adds a given new person object to the database. In the Windows ver-
sion of Phone Book, Add is used to support the Add command in the Person
menu.

Again note the use of the ASSERT_VALID macro to test assumptions about
the validity of the current database object and about the person object passed as
an argument. Also note the use of the related ASSERT macro. During debug-
ging, this macro asserts that the expression passed to it is TRUE; if not, the pro-
gram halts with a diagnostic message that tells where the error occurred.

AddPerson calls several member functions inherited by class CPersonlList
from its base class, CObList, to search the list for the place to add.

. Add the GetPerson member function:

// CDataBase::GetPerson

// Look up someone by index.

//

CPerson* CDataBase::GetPerson(int nIndex)

128 Class Libraries User’s Guide

{
ASSERT_VALID(this);
ASSERT(m_pDatalist != NULL);
if (m_pFindList != NULL)
return (CPerson*)m_pFindList -> GetAt(m_pFindList ->
FindIndex(nIndex));
else
return (CPerson*)m_pDatalist -> GetAt(m_pDatalList ->
FindIndex(nIndex));
}

GetPerson retrieves a person from the database by index. In the Windows pro-
gram, GetPerson is used to support several menu commands.

GetPerson calls inherited CObList member functions to find the specified
index. The code in effect requests the database object’s m_pFindList or its
m_pDatalist to use its GetAt member function to retrieve a CPerson object in
a CPersonList object. The specified index into the list is converted to a pointer
to the object at that index by a call to the list object’s FindIndex member
function.

5. Add the DeletePerson member function:

// CDatabase::DeletePerson
// Removes record of person from database.
//
void CDataBase::DeletePerson(int nIndex)
{

ASSERT_VALID(this);

ASSERT(m_pDatalist != NULL);

POSITION el = m_pDatalList -> FindIndex(nIndex);
delete m_pDatalist -> GetAt(el);

m_pDatalList -> RemoveAt(el);

m_pDatalist -> SetDirty(TRUE); }

DeletePerson deletes the person object at a specified index. In the Windows
program, DeletePerson is used to support the Delete command in the Person
menu.

The logic of this member function is similar to that of GetPerson above.
6. Add the ReplacePerson member function:
// CDatabase::ReplacePerson

// Replaces an object in the 1ist with the new object.
//

void CDataBase::ReplacePerson(CPerson* pOldPerson, const CPerson&
rNewPerson)

Phone Book: A Simple Windows Database 129

ASSERT_VALID(this);

ASSERT(pOldPerson != NULL);
ASSERT(m_pDatalist != NULL);

// Using the overloaded operator= for CPerson
*p01dPerson = rNewPerson;
m_pDatalList->SetDirty(TRUE);

}

ReplacePerson is a utility member function that replaces an existing person ob-
ject in the database with a newly edited person object. In the Windows pro-
gram, ReplacePerson is used to support the Edit command in the Person menu.
The code takes advantage of the overloaded assignment operator supplied with
the CPerson class.

. Add the DoFind member function:

// CDataBase::DoFind
// Does a FindPerson call, or clears the find data.
//
BOOL CDataBase::DoFind(const char* pszLastName /* = NULL =/)
{
ASSERT_VALID(this);
ASSERT(m_pDatalist != NULL);

if (pszLastName == NULL)

{
delete m_pFindList;
m_pFindList = NULL;
return FALSE;

}

ASSERT(m_pFindList == NULL);

return ((m_pFindList = m_pDatalist ->

FindPerson(pszLastName)) != NULL);
}

DoFind searches for all person objects in the database whose last name data
members match a search string. DoFind calls the CPersonList member func-
tion FindPerson, which returns a CPersonList object containing pointers to all
of the found person objects. In the Windows program, DoFind is used to sup-
port the Find command in the Person menu.

130 Class Libraries User’s Guide

8. Add the DoOpen member function:

// CDataBase::Do0Open
// Reads a database from the given filename.
//
BOOL CDataBase::DoOpen(const char* pszFileName)
{
ASSERT_VALID(this);
ASSERT(pszFileName != NULL);

CFile file(pszFileName, CFile::modeRead);

// read the object data from file
CPersonList* pNewDataBase = ReadDataBase(&file);

file.Close();

// get rid of current data base if new one is 0K
if (pNewDataBase != NULL)
{

Terminate();

m_pDatalist = pNewDataBase;

m_pDatalist -> SetDirty(FALSE);

m_szFileName = pszFileName;
return TRUE;

}

else

return FALSE;
}

DoOpen takes a filename as its argument, opens the file of that name, and calls
ReadDatabase (given later) to read its data into a CPersonList object for use as
the current database. In the Windows program, DoOpen is used to support the
Open command in the File menu.

Note that the existing database, if any, is only deleted after the new one is
successfully opened.

9. Add the DoSave member function:

// CDataBase::DoSave
// Saves the database to the given file.
//
BOOL CDataBase::DoSave(const char* pszFileName /* = NULL =/)
{
ASSERT_VALID(this);

// if we were given a name store it in the object.
if (pszFileName != NULL)
m_szFileName = pszFileName;

Phone Book: A Simple Windows Database 131

10.

}

CFileStatus status;
int nAccess = CFile::modeWrite;

// GetStatus will return TRUE if file exists, or FALSE

// if it doesn't.

if (ICFile::GetStatus(m_szFileName, status))
nAccess |= CFile::modeCreate;

CFile file(m_szFileName, nAccess);
// write the data base to a file

// mark it clean if write is successful
if (WriteDataBase(&file))

{
m_pDatalist -> SetDirty(FALSE);
file.Close();
return TRUE;
}
else
{
file.Close();
return FALSE;
}

DoSave calls WriteDatabase (given below) to serialize the current database to
a disk file. In the Windows program, DoSave is used to support the Save com-
mand in the File menu.

Add the ReadDataBase member function (you can copy it from the
DMTEST.CPP file in Chapter 2 if you like):

// CDataBase::ReadDataBase
// Serializes in the database.

/1

CPersonList* CDataBase::ReadDataBase(CFilex pFile)

{

ASSERT_VALID(this);
CPersonList* pNewDataBase = NULL;

// Create an archive from pFile for reading.
CArchive archive(pFile, CArchive::1oad);

// Deserialize the new data base from the archive, or catch the
// exception.
TRY
{
archive >> pNewDataBase;
}
CATCH(CArchiveException, e)

132

Class Libraries User’s Guide

11.

{
Jifdef _DEBUG
e -> Dump(afxDump);

ffendif
archive.Close();
// If we got part of the database, then delete it.
if (pNewDataBase != NULL)
{
pNewDataBase -> DeleteAl1();
delete pNewDataBase;
}
// We caught this exception, but we throw it again so our
// caller can also catch it.
THROW_LAST();
}
END_CATCH

// Exit here if no errors or exceptions.
archive.Close();
return pNewDataBase;

}

ReadDatabase serializes the current database to a disk file. In the Windows pro-
gram, ReadDatabase is used along with DoOpen to support the Open command
in the File menu.

Add the WriteDataBase member function (you can copy it from the
DMTEST.CPP file in Chapter 2 if you like—but delete the second parameter,
of type CPersonlList):

// CDataBase::WriteDataBase
// Serializes out the data into the given file.
//
BOOL CDataBase::WriteDataBase(CFile* pFile)
{
ASSERT_VALID(this);
ASSERT(m_pDatalList != NULL);

// Create an archive from theFile for writing
CArchive archive(pFile, CArchive::store);

// Archive out, or catch the exception.
TRY
{
archive << m_pDatalist;
}
CATCH(CArchiveException, e)

Phone Book: A Simple Windows Database 133

12.

{
J#ifdef _DEBUG
e -> Dump(afxDump);
ffendif
archive.Close();

// Throw this exception again for the benefit of our caller.
THROW_LAST();

}

END_CATCH

// Exit here if no errors or exceptions.
archive.Close();
return TRUE;

}

WriteDatabase deserializes a database from a disk file. In the Windows pro-
gram, WriteDatabase is used along with DoSave to support the Save and Save
As commands in the File menu.

If you copy WriteDatabase from Chapter 2