
Microsoft® C Compiler

for the MS-DOS® Operating System

Run-Time library Reference

Microsoft Corporation

Information in this document is subject to change without notice and does not
represent a commitment on the part of Microsoft Corporation. The software de­
scribed in this document is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance with the terms
of the agreement. It is against the law to copy this software on magnetic tape, disk,
or any other medium for any purpose other than the purchaser's personal use.

© Copyright Microsoft Corporation, 1984, 1985, 1986

If you have comments about the software, complete the Software Problem Report at
the back of this manual and return it to Microsoft Corporation.

If you have comments about the software documentation, complete the Documen­
tation Feedback reply card at the back of this manual and return it to Microsoft
Corporation.

Microsoft, the Microsoft logo, MS, MS-DOS, and XENIX are registered trademarks of
Microsoft Corporation. CodeView and The High Performance Software are trademarks
of Microsoft Corporation.

UNIX is a trademark of AT&T Bell Laboratories.

Document Number 410840017-400-R01-0486
Part Number 048-014-040

Contents

Part 1 Overview 1

1 Introduction 3

1.1 About the C Library 5
1.2 About This Manual 6
1.3 Notational Conventions 8

2 Using C Library Routines 11

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11

Introduction 13
Identifying Functions and Macros
Including Files 15
Declaring Functions 16
Argument Type Checking 17
Error Handling 19
File Names and Path Names 20
Binary and Text Modes 23
MS-DOS Considerations 24
Floating-Point Support 26
Using Huge Arrays

with Library Functions 27

13

3 Global Variables and Standard Types 29

3.1 Introduction 31
3.2 _ amblksiz 31
3.3 daylight, timezone, tzname 32
3.4 _ doserrno, errno, sys_ errlist, sys_ nerr 33
3.5 _ fmode 34
3.6 _osmajor, _osminor 34
3.7 environ,_psp 35
3.8 Standard Types 36

iii

Contents

4 Run-Time Routines by Category 39

4.1 In trod uction 41
4.2 Buffer Manipulation 41
4.3 Character Classification and Conversion 42
4.4 Data Conversion 44
4.5 Directory Control 44
4.6 File Handling 45
4.7 Input and Output 46
4.8 Math 58
4.9 Memory Allocation 60
4.10 MS-DOS Interface 63
4.11 Process Control 64
4.12 Searching and Sorting 67
4.13 String Manipulation 68
4.14 Time 70
4.15 Variable-Length Argument Lists 71
4.16 Miscellaneous 71

5 Include Files 73

5.1 Introduction 75
5.2 assert.h 76
5.3 conio.h 76
5.4 ctype.h 76
5.5 direct.h 77
5.6 dos.h 77
5.7 errno.h 78
5.8 fcntl.h 79
5.9 float.h 79
5.10 io.h 79
5.11 limits.h 80
5.12 malloc.h 80
5.13 math.h 80
5.14 memory.h 81
5.15 process.h 81
5.16 search.h 82
5.17 setjmp.h 82
5.18 share.h 82
5.19 signal.h 82
5.20 stdarg.h 83
5.21 stddef.h 83
5.22 stdio.h 83
5.23 stdlib.h 85
5.24 string.h 85

iv

Contents

5.25 sys \ locking.h 86
5.26 sys\stat.h 86
5.27 sys\timeb.h 86
5.28 sys\types.h 86
5.29 sys\utime.h 87
5.30 time.h 87
5.31 varargs.h 87
5.32 v2tov3.h 87

Part 2 Reference 89

Appendixes 429

A Error Messages 431

A.I Introduction 433
A.2 errno Values 433
A.3 Math Errors 436

B A Common Library for XENIX and MS-DOS 437

B.1 Introduction 439
B.2 Common Run-Time Routines 439
B.3 Common Global Variables 442
BA Common Include Files 443
B.5 Differences Between Common Routines 444

Index 455

v

Tables

Table 4.1

Table R.1

Table R.2

Table R.3

Table R.4

Table A.1

vi

Forms of the spawn and exec Routines

printf Type Characters 308

printf Flag Characters 309

How printf Precision Values Affect Type

scanf Type· Characters 338

errno Values and Their Meanings 434

67

311

Part 1
Overview

1 Introduction 3
2 Using C Library Routines 11
3 Global Variables and Standard Types
4 Run-Time Routines by Category 39
5 Include Files 73

29

1

Chapter 1

Introduction

1.1 About the C Library 5
1.2 About This :Manual 6
1.3 Notational Conventions 8

3

Introduction

1.1 About the C Library

The Microsoft® C Run-Time Library is a set of more than 200 predefined
functions and macros designed for use in C programs. The run-time library
makes programming easier by providing the following:

1. An interface to operating-system functions (such as opening and
closing files)

2. Fast and efficient functions to perform common programming tasks
(such as string manipulation), sparing the programmer the time and
effort needed to write such functions

The run-time library is especially important in C programming because C
programmers rely on the library for basic functions not provided by the
language. These functions include, among others, input and output, storage
allocation, and process control.

The functions in the Microsoft C Run-Time Library have been designed to
maintain maximum compatibility between MS-DOS® and XENIX® or
UNIXTM systems. Throughout this manual, references to XENIX systems are
intended to encompass UNIX and UNIX-like systems as well.

Most of the functions in the C run-time library for MS-DOS operate com­
patibly with functions having the same names in the C run-time library for
XENIX operating systems. If you are interested in portability, see Appen­
dix B, "A Common Library for XENIX and MS-DOS." This appendix lists
the functions of the run-time library that are specific to MS-DOS and
describes differences (if any) between the operation of functions with the
same names on XENIX and MS-DOS.

For additional compatibility, the math functions of the Microsoft C Run­
Time Library have been extended to provide exception handling in the same
manner as UNIX System V math functions.

For programmers interested in taking advantage of the specific features of
MS-DOS, the library includes MS-DOS interface functions. These functions
allow MS-DOS system calls and interrupts to be invoked from a C program.
The library also contains console input and output functions to allow
efficient reading and writing from the user's console.

To take advantage of the Microsoft C Compiler's type-checking capabili­
ties, the include files that accompany the run-time library have been
expanded. In addition to the definitions and declarations required by
library functions and macros, the include files now contain function

5

Mierosoft C Compiler Run-Time Library Referenee

declarations with argument-type lists. The argument-type lists enable type
checking for calls to library functions. This feature can be extremely help­
ful in detecting subtle program errors resulting from type mismatches
between actual and formal arguments to a function, and its use is highly
recommended. However, you are not required to use argument type check­
ing. The function declarations in the include files are enclosed in preproces­
sor # if defined() blocks, and are enabled only when you define the
identifier LINT_ARGS.

To provide argument-type lists for all run-time functions, several new
include files have been added to the list of standard include files for the C
run-time library. The names of the new include files have been chosen to
maintain as much compatibility as possible with the proposed ANSI (Amer­
ican National Standards Institute) standard for C and with XENIX and
UNIX names.

1.2 About This Manual

The Microsoft C Compiler Run- Time Library Reference describes the con­
tents of the Microsoft C Run-Time Library. The manual assumes that you
are familiar with the C language and with MS-DOS. It also assumes that
you know how to compile and link C programs on your MS-DOS system
and that you can set up a compiler and linker environment using environ­
ment variables. If you have questions about compiling, linking, or setting
up an environment, see the Microsoft C Compiler User's Guide, which covers
these topics. If you have questions about the C language, see the Microsoft
C Compiler Language Reference.

The Microsoft C Compiler Run- Time Library Reference has two major parts.
Part 1, "Overview," gives an introduction to the C run-time library. It
discusses general rules that apply to the run-time library as a whole and
summarizes the elements of the run-time library.

Part 2, "Reference," gives descriptions of the run-time routines in alphabet­
ical order for quick reference. Once you have familiarized yourself with the
library rules and procedures, you will probably use the second part of the
manual most often.

6

Introduction

The remaining chapters of Part 1 are as follows:

Chapter 2, "Using C Library Routines," gives general rules for understand­
ing and using C library routines and mentions special considerations that
apply to certain routines. It is recommended that you read this chapter
before using the run-time library; you may also want to turn to Chapter 2
when you have questions about library procedures.

Chapter 3, "Global Variables and Standard Types," describes variables and
types that are defined in the run-time library and used by run-time library
routines. This chapter also provides a cross-reference to the include file
that defines or declares each variable or type. You may find these variables
and types useful in your own routines. The variables and types are also
described on the reference pages for the routines that use them in Part 2,
"Reference."

Chapter 4, "Run-Time Routines by Category," breaks down the run-time
library routines by category, lists the routines that fall into each category,
and discusses considerations that apply to each category as a whole. The
chapter is intended to complement Part 2, "Reference," making it easy to
locate routines by task. Once you have located the names of the routines
you want, you will need to turn to the appropriate page in Part 2, "Refer­
ence," for a detailed description.

Chapter 5, "Include Files," summarizes the contents of each include file
provided with the run-time library.

The appendixes, which follow Part 2, provide more detailed information
about error messages and about XENIX-compatible routines. Appendix A,
"Error Messages," describes the error values and messages that can appear
when using library routines. Appendix B, "A Common Library for XENIX
and MS-DOS," lists routines of the MS-DOS C library that operate compat­
ibly with routines of the same name on XENIX (and UNIX) systems. Appen­
dix B also describes any differences between the MS-DOS and XENIX ver­
sions of the routines. Common global variables and include files are also
discussed in this appendix.

The remainder of this chapter describes the notational conventions used
throughout the manual.

7

Microsoft C Compiler Run-Time Library Reference

1.3 Notational Conventions

The following notational conventions are used throughout this manual:

8

Convention

Bold

BOLD
CAPITALS

Italics

Meaning

C keywords, such as double and char, are set in
bold type to distinguish them from ordinary
identifiers and text. Within discussions of syn­
tax, bold type indicates that the text must be
entered exactly as shown.

The names of run-time library routines, include
files, global variables, standard types, constants,
and identifiers used by the C library are also set
in this font to emphasize that these names are
reserved by the run-time library. For example,
the routine name strcpy appears in this font; so
does the include file stdio.h.

Bold capital letters are used for the names of
environment variables (such as TZ and PATH)
and MS-DOS commands (such as SET and
PATH). However, on MS-DOS, you are not
required to use capital letters for these variables
and commands.

Italics are used for the names of arguments to
library routines. In an actual program, a specific
name or value replaces the italicized argument
name. For example, in

double atof(string);

the argument string is italicized to indicate that
this is the general form for the atof routine. In
an actual program, the user supplies a particular
argument for the placeholder string.

Occasionally, italics are used to emphasize par­
ticular words in the text.

Examples

User input

Ellipsis dots

[Double bracketsll

Introduction

Programming examples are displayed in a special
typeface to resemble the output on your screen
or the output of commonly used computer
printers. Program fragments and variables
quoted within regular text also appear in this
format, as do error messages.

Some examples show both program output and
user input; in these cases, input is shown in a
darker font. In the following example, .5 is
entered by the user in response to the prompt
Cosine val ue =:

Cosine value = .5
Arc cosine of 0.500000 = 1.047198

Vertical ellipsis dots are used in program ex­
amples to indicate that a portion of the program
is omitted. For instance, in the following ex­
cerpt, the ellipsis dots between the two state­
ments indicate that intervening program lines
occur but are not shown:

int x, y;

y = abs(x);

Horizontal ellipsis dots following an item indi­
cate that more items having the same form may
appear. For instance,

={ expression [, expression] ... }

indicates that one or more expressions separated
by commas may appear between the braces (' }).

Double brackets enclose optional arguments in
the specification for each library routine. For
example, in

int open(pathname, oflag[, pmode]);

the double brackets around pmode indicate that
this argument is optional and that, when given,
pmode must be separated from the previous
argument by a comma.

9

Microsoft C Compiler Run-Time Library Reference

10

"Quotation
marks"

SMALL CAPITALS

Since the C language also uses brackets for array
declarations and subscript expressions, these
appear as single brackets in syntax discussions
and examples containing arrays and subscript
expressions. To illustrate,

char *args[4J;

is an example showing the declaration of a four­
element array; the brackets around 4 are a
required part of the C language.

Quotation marks set off terms defined in the
text. For example, the term "token" appears in
quotation marks when it is defined.

Some C constructs, such as strings, require quo­
tation marks. Quotation marks required by the
language have the form " "rather than" " .
For example,

"abc"

is a C string.

Small capital letters are used for the names of
keys and key sequences such as CONTROL-C.

Chapter 2

Using C Library Routines

2.1 Introduction 13
2.2 Identifying Functions and Macros 13
2.3 Incl uding Files 15
2.4 Declaring Functions 16
2.5 Argument Type Checking 17
2.6 Error Handling 19
2.7 File Names and Path Names 20
2.8 Binary and Text Modes 23
2.9 MS-DOS Considerations 24
2.10 Floating-Point Support 26
2.11 Using Huge Arrays with Library Functions 27

11

Using C Library Routines

2.1 Introduction

To use a C library routine, simply call it in your program, just as if the rou­
tine were defined in your program. The C library functions are stored in
compiled form in the library files that accompany your C compiler software.

At link time, your program must be linked with the appropriate C library
file or files to resolve the references to the library functions and provide the
code for the called library functions. The procedures for linking with the C
library are discussed in detail in the Microsoft C Compiler User's Guide.

In most cases you must prepare for the call to the run-time library function
by performing one or both of the following steps:

1. Include a given file in your program. Many routines require
definitions and declarations that are provided by an include file.

2. Provide declarations for library functions that return values of any
type but into The compiler expects all functions to have int return
type unless declared otherwise. You can provide these declarations
by including the C library file containing the declarations or by ex­
plicitly declaring the functions within your program.

These are the minimum steps required; you may also want to take other
steps, such as enabling type checking for the arguments in function calls.

The remainder of this chapter discusses the preparation procedures for us­
ing run-time library routines and special rules (such as file-name and path­
name conventions) that may apply to some routines.

2.2 Identifying Functions and Macros

The words "function" and "routine" are used interchangeably throughout
this manual, and in fact most of the routines in the C run-time library are
C functions; that is, they consist of compiled C statements. However, some
routines are implemented as "macros." A macro is an identifier defined with
the C preprocessor directive # define to represent a value or expression.
Like a function, a macro can be defined to take zero or more arguments,
which replace formal parameters in the macro definition. Defining and us­
ing macros are discussed in detail in the Microsoft C Compiler Language
Reference.

13

Microsoft C Compiler Run-Time Library Reference

The macros defined in the C run-time library behave like functions: they
take arguments and return values, and they are invoked in a similar
manner. The major advantage of using macros is faster execution time;
their definitions are expanded in the preprocessing stage, eliminating the
overhead required for a function call. However, because macros are expand­
ed (replaced by their definitions) before compilation, they can increase the
size of a program, particularly when there are multiple occurrences of the
macro in the program. Unlike a function, which is defined only once regard­
less of how many times it is called, each occurrence of a macro is expanded.
Functions and macros thus offer a trade-off between speed and size. In
several cases, the C library provides both macro and function versions of
the same library routine to allow you this choice.

Some important differences between functions and macros are described in
the following list:

1. Some macros may treat arguments with side effects incorrectly
when the macro is defined so that arguments are evaluated more
than once. See the example that follows this list.

2. A macro identifier does not have the same properties as a function
identifier. In particular, a macro identifier does not evaluate to an
address, as a function identifier does. You cannot, therefore, use a
macro identifier in contexts requiring a pointer. For instance, if you
give a macro identifier as an argument in a function call, the value
represented by the macro is passed; if you give a function identifier
as an argument in a function call, the address of the fUIlction is
passed.

3. Since macros are not functiofis, they cannot be declared, nor can
pointers to macro identifiers be declared. Thus, type checking can­
not be performed on macro arguments. The compiler does, how­
ever, detect cases where the wrong number of arguments is specified
for the macro.

4. The library routines implemented as macros are defined through
preprocessor directi-'ves in the library include files. To use a library
macro, you must include the appropriate file, or the macro will be
undefined.

The routines that are implemented as macros are marked with a note in
Part 2, "Reference," of this manual. You can examine a particular macro
definition in the corresponding include file to determine whether arguments
with side effects will cause problems.

14

Using C Library Routines

Example

#include <ctype.h>

int a = 'm';
a = toupper(a++);

This example uses the toupper routine from the standard C library. The
to upper routine is implemented as a macro; its definition in ctype.h is as
follows:

#define toupper(c) ((islower (c)) ? _toupper (c) : (c))

The definition uses the conditional operator (! :). In the conditional expres­
sion, the argument c is evaluated twice: once to determine whether or not
it is lowercase, and once to return the appropriate result. This causes the
argument a + + to be evaluated twice, thus increasing a twice rather than
once. As a result, the value operated on by islower differs from the value
operated on by _ toupper.

Not all macros have this effect; you can determine whether a macro will
handle side effects properly by examining the macro definition before
using it.

2.3 Including Files

Many run-time routines use macros, constants, and types that are defined
in separate include files. To use these routines, you must incorporate the
specified file (using the preprocessor directive # include) in to the source file
being compiled.

The contents of each include file are different, depending on the needs of
specific run-time routines. However, in general, include files contain combi­
nations of the following:

• Definitions of manifest constants

For example, the constant BUFSIZ, which determines the size of
buffers for buffered input and output operations, is defined in
stdio.h.

15

Microsoft C Compiler Run-Time Library Reference

• Definitions of types

Some run-time routines take data structures as arguments or return
values with structure types. Include files set up the required struc­
ture type definitions. For example, most stream input and output
operations use pointers to a structure of type FILE, defined in
stdio.h.

• Two sets of function declarations

The first set of declarations gives return types and argument-type
lists for run-time functions, while the second set declares only the
return type. Declaring the return type is required for any function
that returns a value with type other than into (See Section 2.4,
"Declaring Functions.") The presence of an argument-type list
enables type checking for the arguments in a function call; see Sec­
tion 2.5, "Argument Type Checking," for a discussion of this
option.

• Macro definitions

Some routines in the run-time library are implemented as macros.
The definitions for these macros are contained in the include files.
To use one of these macros, you must include the appropriate file.

The reference page for each library routine lists the include file or files
needed by the routine.

2.4 Declaring Functions

Whenever you use a library function that returns any type of value but an
int, you should make sure that the function is declared before it is called.
The easiest way to do this is to include the file containing declarations for
that function, causing the appropriate declarations to be placed in your
program.

Two sets of function declarations are provided in each include file. The
first set declares both the return type and the argument-type list for the
function. This set is included only when you enable argument type check­
ing, as described in Section 2.5. Use of the argument-type-checking feature
is highly recommended, since mismatches between actual and formal argu­
ments to a function can cause serious and possibly hard-to-detect errors.

16

Using C Library Routines

The second set of function declarations declares only the return type. This
set is included when argument type checking is not enabled.

Your program can contain more than one declaration of the same function,
as long as the declarations are compatible. This is an important feature to
remember if you have older programs whose function declarations do not
contain argument-type lists. For instance, if your program contains the
declaration

char *calloc();

you can also include the following declaration:

char *calloc(unsigned, unsigned);

Although the two declarations are not identical, they are compatible, so no
conflict occurs.

You may provide your own function declarations instead of using the
declarations in the library include files if you wish. It is recommended, how­
ever, that you consult the declarations in the include files to make sure that
your declarations are correct.

2.5 Argument Type Checking

The Microsoft C Compiler offers a type-checking feature for the arguments
in a function call. Type checking is performed whenever an argument-type
list is present in a function declaration and the declaration appears before
the definition or use of the function in a program. The form of the
argument-type list and the type-checking method are discussed in full in
the Microsoft C Compiler Language Reference.

For functions that you write yourself, you are responsible for setting up
argument-type lists to invoke type checking. You can also use the /Zg
command-line option to cause the compiler to generate a list of function
declarations for all functions defined in a particular source file; the list can
then be incorporated into your program. See Chapter 3, "Compiling," of
the Microsoft C Compiler User's Guide for details on using the /Zg option.

For functions in the C run-time library, you can use the procedures
outlined in this section to perform type checking on arguments. Every
function in the C run-time library is declared in one or more of the library
include files. Two declarations are given for each function: one with and

17

Microsoft C Compiler Run-Time Library Reference

one without an argument-type list. The function declarations are enclosed
in an # if defined() preprocessor block. If you define an identifier named
LINT _ ARGS, the declarations containing argument-type lists are pro­
cessed and compiled, thus enabling argument type checking. If the
LINT _ ARGS identifier is not defined, the declarations without
argument-type lists are included, and argument type checking will not be
performed.

By default, LINT_ARGS is undefined, so no type checking is performed
for library function arguments. You can define LINT_ARGS in one of
two ways:

1. Use the /D command-line option to define LINT _ ARGS at com­
pile time.

2. Define LINT_ARGS with a # define directive in your source file.
For the given file to be effective, the # define directive must occur
before the # include directive.

The value of LINT_ARGS is not significant; you can define it to any
value, including an empty value.

Note that the LINT_ARGS definition applies only to the library function
declarations given in the include files. The function declarations in your
source program or in your own include files are not affected. You can make
the inclusion of your own declarations dependent on the LINT_ARGS
identifier by using an # if or # if defined() directive. Refer to the library
include files for a model.

Only limited type checking can be performed on functions that take a vari­
able number of arguments. The following run-time functions are affected
by this limitation:

18

• In calls to cprintf, cscanf, printf, and scanf, type checking is per­
formed only on the first argument: the format string.

• In calls to fprintf, fscanf, sprintf, and sscanf, type checking is
performed on the first two arguments: the file or buffer and the for­
mat string.

• In calls to open, only the first two arguments are type checked: the
path name and open flag.

• In calls to sopen, the first three arguments are type checked: the
path name, open flag, and sharing mode.

Using C Library Routines

• In calls to exeel, exeele, exeelp, and exeelpe, type checking is per­
formed on the first two arguments: the path name and the first
argumen t pointer.

• In calls to spawnl, spawnle, spawnlp, and spawnlpe, type check­
ing is performed on the first three arguments: the mode flag, the
path name, and the first argument pointer.

2.6 Error Handling

When calling a function, it is a good idea to provide for detection and han­
dling of error returns, if any. Otherwise, your program may produce unex­
pected results.

For run-time library functions, you can determine the expected return value
from the return-value discussion on each library page. In some cases no
established error return exists for a function. This usually occurs when the
range of legal return values makes it impossible to return a unique error
value.

The discussion of some functions indicates that when an error occurs, a
global variable named errno is set to a value indicating the type of error.
Note that you cannot depend upon errno being set unless the description
of the function explicitly mentions the errno variable.

When using functions that set errno, you can test the errno values against
the error values defined in errno.h, or you can use the perror or strerror
functions. If you want to print the system error message to standard error
(stderr), use perror; if you want to store the error message in a string for
later use in your program, use strerror. For a listing of errno values and
the associated error messages, see Appendix A, "Error Messages."

When you use errno, perror, and strerror, remember that the value of
errno reflects the error value for the last call that set errno. To prevent
misleading results, before you access errno you should always test the
return value to verify that an error actually occurred. Once you determine
that an error occurred, you should use errno or perror immediately. Oth­
erwise, the value of errno may be changed by intervening calls.

The math functions set errno upon error in the manner described on the
reference page for each math function in Part 2 of this manual. Math func­
tions handle errors by invoking a function named rnatherr . You can
choose to handle math errors differently by writing your own error function

19

Microsoft C Compiler Run-Time Library Reference

and naming it matherr. When you provide your own matherr function,
that function is used in place of the run-time library version. You must fol­
low certain rules when writing your own matherr function, as outlined on
the matherr reference page in Part 2 of this manual.

You can check for errors in stream operations by calling the ferror func­
tion. The ferror function detects whether the error indicator has been set
for a given stream. The error indicator is cleared automatically when the
stream is closed or rewound, or the clearerr function can be called to reset
the error indicator.

Errors in low-level input and output operations cause errno to be set.

The feof function tests for end-of-file on a given stream. An end-of-file con­
dition in low-level input and output can be detected with the eof function
or when a read operation returns 0 as the number of bytes read.

2.7 File Names and Path Names

Many functions in the run-time library accept strings representing path
names and file names as arguments. The functions process the arguments
and pass them to the operating system, which is ultimately responsible for
creating and maintaining files and directories. Thus, it is important to
keep in mind not only the C conventions for strings, but also the operating­
system rules for file names and path names and the differences between
MS-DOS and XENIX rules. There are several considerations:

1. Case sensitivity

2. Subdirectory conventions

3. Delimiters for path-name components

The C language is case sensitive, meaning that it distinguishes between
uppercase and lowercase letters. The MS-DOS operating system is not case
sensitive. When accessing files and directories on MS-DOS, you cannot use
case differences to distinguish between identical names. For example, the
names "FILEA" and "fileA" are equivalent and refer to the same file.

Portability considerations may also affect how you choose file names and
path names. For instance, if you plan to port your code to a XENIX system,
you should take the XENIX naming conventions into account. Unlike MS­
DOS, XENIX is case sensitive. Thus, the following two directives are
equivalent on MS-DOS but not on XENIX:

20

#include <STDIO.H>
#include <stdio.h>

Using C Library Routines

To produce portable code, you should use the name that works correctly on
XENIX, since either case works on MS-DOS.

The convention of storing some include files in a subdirectory named "sys"
is also a XENIX convention. The convention is adopted in this manual,
which includes the "sys" subdirectory in the specification for the appropri­
ate include files. If you're not concerned with portability, you can disregard
this convention and set up your include files accordingly. If you are con­
cerned with portability, using the "sys" subdirectory can make portability
between XENIX and MS-DOS easier.

The MS-DOS and XENIX operating systems differ in the handling of path­
name delimiters. XENIX uses the forward slash (I) to delimit the com­
ponents of path names, while MS-DOS ordinarily uses the backslash (\).
However, MS-DOS is able to recognize the forward slash (I) as a delimiter
internally in situations where a path name is expected. Thus, you can use
either a backslash or a forward slash in MS-DOS path names within C pro­
grams, as long as the context is unambiguous and a path name is clearly
expected.

Note

In C strings, the backslash is an escape character. It signals that a spe­
cial escape sequence follows. If an ordinary character follows the
backslash, the backslash is disregarded and the character is printed.
Thus, the sequence "\ \" is required to produce a single backslash in a
C string. (See your Microsoft C Compiler Language Reference for a full
discussion of escape sequences.)

The above rule applies to most of the functions in the run-time library:
wherever a path-name argument is required, you can use either a forward
slash or a backslash as a delimiter. If you are concerned with portability to
XENIX, you should use the forward slash.

However, the exceptions to the rule are important. The following functions
accept string arguments that are not known in advance to be path names
(they may be path names, but are not required to be). In these cases, the
arguments are treated as C strings, and special rules apply:

21

Microsoft C Compiler Run-Time Library Reference

• In the exec and spawn families of functions, you pass the name of
a program to be executed as a child process and then pass strings
representing arguments to the child process. The path name of the
program to be executed as the child process can use either forward
slashes or backslashes as delimiters, since a path-name argument is
expected. However, it is recommended that you use backslashes in
any path-name arguments to the child process, since the program
being executed as the child process may simply expect a string argu­
ment that is not necessarily a path name.

• In the system call, you pass a command to be executed by MS­
DOS; this command mayor may not include a path name.

In these cases, only the backslash (\) separator should be used as a path­
name delimiter. The forward slash (I) will not be recognized.

When you want to pass a path-name argument to the child process in an
exec or spawn call, or when you use a path name in a system call, you
must use the double-backslash sequence (\ \) to represent a single path­
name delimiter.

Examples

/************************* Example 1 ************************/

result = system("DIR B:\\TOP\\DOWN");

/************************* Example 2 ************************/

spawnl(P_WAIT, "bin/show", "show", "sub", "bin\\tell", NULL);

In the first example, double backslashes must be used in the call to system
to represent the path name "B:\ TOP\DOWN". Note that not all calls to
system use a path name; for example,

result = system ("DIR") ;

does not contain a path name.

In the second example, the spawn} function is used to execute the file
named SHOW. EXE in the BIN subdirectory. Since a path name is expected
as the second argument, the forward slash can be used. (A double backslash
would also be acceptable.) The first two arguments passed to SHOW. EXE
are the strings show and sub. The third argument is a string representing

22

Using C Library Routines

a path name. Since this argument does not require a path name, the
sequence \ \ must be used to represent a single backslash between bin and
tell.

2.8 Binary and Text Modes

Most C programs use one or more data files for input and output. Under
MS-DOS, data files are ordinarily processed in "text" mode. In text mode,
carriage-return-line-feed combinations (CR-LF) are translated into a single
line-feed (LF) character on input. Line-feed characters are translated to
carriage-return-line-feed combinations on output.

In some cases you may want to process files without making these transla­
tions. In binary mode, carriage-return-line-feed translations are suppressed.

You can control the translation mode for program files in the following
ways:

• To process a few selected files in binary mode, while retaining the
default text mode for most files, you can specify binary mode when
you open the selected files. The fopen function opens a file in
binary mode when the letter "b" is specified in the access type
string for the file. If you use the open function, you can specify the
0_ BINARY flag in the oftag argument to cause the file to be
opened in binary mode. For more information, see the reference
pages for these functions in Part 2 of this manual.

• To process most or all files in binary mode, you can change the
default mode to binary. The global variable _ fmode controls the
default translation mode. When _ fmode is set to 0_ BINARY,
the default mode is binary; otherwise, the default mode is text,
except for stdaux and stdprn, which are opened in binary mode by
default. The initial setting of _ fmode is text, by default.

You can change the value of _ fmode in one of two ways. First, you
can link with the file BINMODE.OBJ (supplied with your com­
piler software). Linking with BINMODE.OBJ changes the initial
setting of _ fmode to 0_ BINARY, causing all files except stdin,
stdout, and stderr to be opened in binary mode. This option is
described in the Microsoft C Compiler User's Guide.

Second, you can change the value of _ fmode directly, by setting it
to 0_ BINARY in your program. This has the same effect as link­
ing with BINMODE.OBJ.

23

Microsoft C Compiler Run-Time Library Reference

You can still override the default mode (now binary) for particular
files by opening them in text mode. The fopen function opens a file
in text mode when the letter "t" is specified in the access type string
for the file. If you use the open function, you can specify the
0_ TEXT flag in the oflag argument to cause the file to be opened
in text mode. For more information, see the reference pages for
these functions.

• The stdin, stdout, and stderr streams are opened in text mode by
default; stdaux and stdprn are opened in binary mode. To process
stdin, stdout, or stderr in binary mode instead, or to process
stdaux or stdprn in text mode, use the setmode function. This
function can also be used to change the mode of a file after it has
been opened. The setmode function takes two arguments, a file
handle and a translation-mode argument, and sets the mode of the
file accordingly.

2.9 MS-DOS Considerations

The use of some functions in the run-time library is affected by the version
of MS-DOS you are using. These functions are listed and described below:

Function

dosexterr, locking, sopen

dup,dup2

24

Description

These three functions are effective
only on MS-DOS versions 3.0 and
later. The sopen function opens a file
with file-sharing attributes; this func­
tion should be used in place of open
when you want a file to have such
attributes. The locking function
locks all or part of a file from access by
other users. The dosexterr function
provides error handling for system call
59H in MS-DOS versions 3.0 and later.

In certain cases, using the dup and
dup2 functions on versions of MS­
DOS earlier than 3.0 may cause unex­
pected results. When you use dup or
dup2 to create a duplicate file handle
for stdin, stdout, stderr, stdaux, or
stdprn under versions of MS-DOS

exec, spawn

Using C Library Routines

earlier than 3.0, calling the close func­
tion with either handle causes errors in
later 110 operations using the other
handle. Under MS-DOS versions 3.0
and later, the close is handled
correctly and does not cause later
errors.

When using the exec and spawn fami­
lies of functions under versions of MS­
DOS earlier than 3.0, the value of the
argO or argv[O] argument is not avail­
able to the user; a null string is stored
in that position. Under MS-DOS ver­
sions 3.0 and later, the value of argO or
argv[O] is available to the user.

To write programs that will run on all versions of MS-DOS, you can use the
_ osmajor and _ osminor variables (discussed in Section 3.5 of Chapter 3,
"Global Variables and Standard Types") to test the current operating­
system version number and take the appropriate action based on the result
of the test.

Example

In the following example, the global variable _ osmajor is tested to deter­
mine whether the file TEST.DAT should be opened using the open function
(under versions of MS-DOS earlier than 3.0) or the sopen function (MS­
DOS versions 3.0 and later):

unsigned char _osmajor;

if (_osmajor < 3)
open ("TEST. DAT" , O_RDWR);

else
sopen("TEST.DAT", O_RDWR, SH_DENYWR);

26

Microsoft C Compiler Run-Time Library Reference

2.10 Floating-Point Support

The math functions supplied in the C run-time library require floating­
point support to perform calculations with real numbers. This support can
be provided by the floating-point libraries that accompany your compiler
software or by an 8087 or 80287 coprocessor. (For information on selecting
and using a floating-point library with your program, see the Microsoft C
Compiler User's Guide.) The names of the functions that require floating­
point support are listed below:

acos _clear87* exp frexp sin
asin _controI87* fabs gcvt sinh
atan cos fcvt hypot sqrt
atan2 cosh fieeetoms bin ldexp _status87":
atof dieeetoms bin floor log strtod
besseli" difftime fmod loglO tan
cabs dms bintoieee fms bintoieee modf tanh
ceil ecvt _fpreset pow

* Not available with the /FPa compiler option

·r The bessel function does not correspond to a single function, but to six functions named
jO, jl, jn, yO, yl, and yn.

In addition, the printf family of functions (cprintf, fprintf, printf,
sprintf, vfprintf, vprintf, and vsprintf) requires support for floating­
point input and output if used to print floating-point values.

The C compiler tries to detect whether floating-point values are used in a
program so that supporting functions are loaded only if required. This
behavior provides a considerable space savings for programs that do not
require floating-point support.

When you use a floating-point type character in the format string for the
printf or scanf functions (cprintf, fprintf, printf, sprintf, vfprintf,
vprintf, vsprintf, cscanf, fscanf, scanf, or sscanf), make sure that you
specify floating-point values or pointers to floating-point values in the argu­
ment list to correspond to any floating-point type characters in the format
string. The presence of floating-point arguments allows the compiler to
detect the use of floating-point values. If a floating-point type character is
used to print, for example, an integer argument, the use of floating-point
values will not be detected because the compiler does not actually read the
format string used in the printf and scanf functions. For instance, the fol­
lowing program produces an error at run time:

26

Using C Library Routines

main () /* THIS EXAMPLE PRODUCES AN ERROR */
{
long f = lOL;
printf ("%f" I f);
}

In the preceding example, the functions for floating-point I/O are not
loaded for the following reasons:

• No floating-point arguments are given in the call to printf.

• No floating-point values are used anywhere else in the program.

As a result, the following error occurs:

Floating point not loaded

The following is a corrected version of the above call to printf:

This version corrects the error by casting the long integer value to
double type.

2.11 Using Huge Arrays
with Library Functions

In programs that use the small, compact, medium, and large memory
models, Microsoft C allows you to use arrays exceeding the 64K limit of
physical memory in these models by explicitly declaring the arrays as huge.
(See Chapter 8 of the Microsoft C Compiler User's Guide, "Working with
Memory Models," for a complete discussion of memory models and the
near, far, and huge keywords.) However, you cannot generally pass huge
data items as arguments to C library functions. In the case of small and
medium models, where the default size of a data pointer is near (16 bits),
the only routines that accept huge pointers are halloc and hfree. In the
compact-model library used by compact-model programs, and in the large­
model library used by both large-model and huge-model programs, only the
functions listed below use argument arithmetic that works with huge items:

bsearch
fread
fwrite

halloc
hfree
Hind

lsearch
memccpy
memchr

memcmp
memcpy
memicmp

memset
qsort

27

Microsoft C Compiler Run-Time Library Reference

With this set of functions, you can read from, write to, search, sort, copy,
initialize, compare, or dynamically allocate and free huge arrays; any of
these functions can be passed a huge pointer in a compact-, large-, or
huge-model program without difficulty.

28

Chapter 3
Global Variables
and Standard Types

3.1 Introduction 31
3.2 _amblksiz 31
3.3 daylight, timezone, tzname 32
3.4 _ doserrno, errno, sys_ errlist, sys_ nerr
3.5 _fmode 34
3.6 . . 34 -osmaJor, _osrrnnor
3.7 enVIron, _ psp 35
3.8 Standard Types 36

33

29

Global Variables and Standard Types

3.1 Introduction

The C run-time library contains definitions for a number of variables and
types used by library routines. You can access these variables and types by
including the files in which they are declared or by giving appropriate dec­
larations in your program, as shown in the following sections.

3.2 _ amblksiz

int _ amblksiz;

The _ amblksiz variable can be used to control the amount of memory
space in the heap that is used by C for dynamic memory allocation. This
variable is declared in the include file malloc.h.

The first time your program calls one of the dynamic memory allocation
functions such as calloc or malloc, it asks the operating system for an ini­
tial amount of heap space that is typically much larger than the amount of
memory requested by calloc or malloc. This amount is indicated by
_ amblksiz, whose default value is 8K. Subsequent memory allocations are
allotted from this 8K of memory, resulting in fewer calls to the operating
system when many relatively small items are being allocated. C calls the
operating system again only if the amount of memory used by dynamic
memory allocations exceeds the currently allocated space.

If the requested size in your C program is greater than _ amblksiz, mul­
tiple blocks, each of size _ amblksiz, are allocated until the request is
satisfied; since the amount of heap space allocated is more than the amount
requested, subsequent allocations can cause fragmentation of heap space.
You can control this fragmentation by using _ amblksiz to change the
default "memory chunk" to whatever value you like, as in the following
example:

_amblksiz = 2000;

Since the heap allocator always rounds the DOS request to the near-
est power of two greater than or equal to _ amblksiz, the preceding state­
ment causes the heap allocator to reserve memory in the heap in multiples
of2K.

31

Microsoft C Compiler Run-Time Library Reference

3.3 daylight, timezone, tzname

int daylight;
long timezone·
char *tzname[2];

The daylight, timezone, and tzname variables are used by several of the
time and date functions to make local-time adjustments and are declared in
the include file time.h. The values of the variables are determined by the
setting of an environment variable named TZ.

You can control local-time adjustments by setting the TZ environment
variable. The value of the environment variable TZ must be a three-letter
time zone, followed by a possibly signed number giving the difference in
hours between Greenwich mean time and local time. The number is positive
moving west from Greenwich, negative moving east. The number may be
followed by a three-letter daylight saving time zone. For example, the com­
mand

SET TZ=EST5EDT

specifies that the local-time zone is EST (Eastern standard time), that local
time is five hours earlier than Greenwich mean time, and that daylight sav­
ing time (EDT) is in effect. Omitting the daylight saving time zone, as
shown below, means that no corrections will be made for daylight saving
time:

SET TZ=EST5

When you call the ftime or localtime function, the values of the three
variables daylight, timezone, and tzname are determined from the TZ
setting. The daylight variable is given a nonzero value if a daylight saving
time zone is present in the TZ setting; otherwise, daylight is O. The
time zone variable is assigned the difference in seconds (calculated by con­
verting the hours given in the TZ setting) between Greenwich mean time
and local time. The first element of the tzname variable is the string value
of the three-letter time zone from the TZ setting; the second element is the
string value of the daylight saving time zone. If the daylight saving time
zone is omitted from the TZ setting, tzname[l] is an empty string.

If you do not explicitly assign a value to TZ before calling fthne or
localtime, the following default setting is used:

PST8PDT

32

Global Variables and Standard Types

The ftime and localtime functions call another function, tzset, to assign
values to the three global variables from the TZ setting. You can also call
tzset directly if you like; see the tzset reference page in Part 2 of this
manual for details.

3.4 _ doserrno, errno, sys_ errlist, sys_ nerr

int _ doserrno;
int errno;
char *sys_ err list [];
int sys_ nerr;

The errno, sys_ errlist, and sys_ nerr variables are used by the perror
function to print error information and are declared in the include file
stdlib.h. When an error occurs in a system-level call, the errno variable
is set to an integer value to reflect the type of error. The perror function
uses the errno value to look up (index) the corresponding error message in
the sys_ errlist table. The value of the sys_ nerr variable is defined as the
number of elements in the sys_ errlist array. For a listing of the errno
values and the corresponding error messages, see Appendix A, "Error
Messages."

The errno values on MS-DOS are a subset of the values for errno on
XENIX systems. Therefore, the value assigned to errno in case of error
does not necessarily correspond to the actual error code returned by an
MS-DOS system call. Instead, the actual MS-DOS error codes are mapped
onto the perror values. If you want to access the actual MS-DOS error
code, use the _ doserrno variable. When an error occurs in a system call,
the _ doserrno variable is assigned the actual error code returned by the
corresponding MS-DOS system call. (See the Microsoft MS-DOS
Programmer's Reference Manual for details on MS-DOS error returns.)

In general, you should use _ doserrno only for error detection in operations
involving input and output, since the errno values for input and output
errors have MS-DOS error-code equivalents. Not all of the error values
available for errno have exact MS-DOS error-code equivalents, and some
may have no equivalents, causing the value of _ doserrno to be undefined.

33

Microsoft C Compiler Run-Time Library Reference

3.5 _fmode

int _fmode;

The _ fmode variable controls the default file-translation mode. It is
declared in stdlib.h. By default, the value of _ fmode is 0, causing files to
be translated in text mode (unless specifically opened or set to binary
mode). When _fmode is set to O_BINARY, the default mode is binary.
You can set _ fmode to 0_ BINARY by linking with BINMODE.OBJ or
by assigning it the value 0_ BINARY. See Section 2.8, "Binary and Text
Modes," in Chapter 2, "Using C Library Routines," for a discussion of file­
translation modes and the use of the _ fmode variable.

3.6 . .
- osmaJor, _ osmlnor

unsigned char _ osmajor;
unsigned char _ osminor;

The _ osmajor and _ osminor variables provide information about the
version number of MS-DOS currently in use. They are declared in stdlib.h.
The _ osmajor variable holds the "major" version number. For example,
under MS-DOS Version 2.0, _ osmajor is equal to 2, while under MS-DOS
Version 3.0, _osmajor is 3.

The _ osrninor variable stores the "minor" version number. For example,
under MS-DOS Version 2.0, _osminor is ° (zero), while under MS-DOS
Version 2.1, _ osminor is 1.

These variables can be useful when you want to write code to run on
different versions of MS-DOS. For example, you can test the _ osrnajor
variable before making a call to sopen; if the major version number is ear­
lier (less) than 3, open should be used instead of sopen.

34

Global Variables and Standard Types

3.7 . enVIron, _ psp

char *environ [];
unsigned int _ psp;

The environ and _ psp variables provide access to memory areas contain­
ing process-specific information. Both variables are declared in the include
file stdlib.h.

The environ variable is an array of pointers to the strings that constitute
the process environment. The environment consists of one or more entries
of the form

name=string

where name is the name of an environment variable and string is the value
of that variable. The string may be empty. The initial environment set­
tings are taken from the MS-DOS environment at the time of the program's
execution.

The getenv and putenv routines use the environ variable to access and
modify the environment table. When putenv is called to add or delete
environment settings, the environment table changes in size, and its loca­
tion in memory may also change, depending on the program's memory
requirements. The environ variable is adjusted in these cases and will
always point to the correct table location.

The _ ~sp variable contains the segment address of the program segment
prefix tPSP) for the process. The PSP contains execution information
about the process, such as a copy of the command line that invoked the
process and the return address for process terminate or interrupt. (See
your Microsoft MS-DOS Programmer's Reference Manual for details.) The
_ psp variable can be used to form a long pointer to the PSP, where _ psp
is the segment value and 0 is the offset value.

36

Microsoft C Compiler Run-Time Library Reference

3.8 Standard Types

A number of run-time library routines use structure values whose types are
defined in include files. These types are listed and described as follows, and
the include file that defines each type is given. For a listing of the actual
structure definitions, see the description of the appropriate include file in
Chapter 5, "Include Files."

Standard Type

complex

DOSERROR

exception

FILE

jmp_buf

REGS

SREGS

36

Description

The complex structure, defined in math.h,
stores the real and imaginary parts of a complex
number and is used by the cabs function.

The DOSERROR structure, defined in dos.h,
stores values returned by the MS-DOS system
call 59H (available under MS-DOS versions 3.0
and later).

The exception structure, defined in math.h,
stores error information for math routines and is
used by the rnatherr routine.

The FILE structure, defined in stdio.h, is the
structure used in all stream input and output
operations. The fields of the FILE structure
store information about the current state of the
stream.

The jrnp_ buf type, declared in setjrnp.h, is an
array type rather than a structure type. It
defines the buffer used by the setjrnp and
longjrnp routines to save and restore the pro­
gram environment.

The REGS union, defined in dos.h, stores byte
and word register values to be passed to and
returned from calls to the MS-DOS interface
functions.

The SREGS structure, defined in dos.h, stores
the values of the ES, OS, SS, and DS registers.
This structure is used by the MS-DOS interface
functions that require segment register values
(intS6x, intdosx, and segread).

stat

timeb

tm

utimbuf

Global Variables and Standard Types

The stat structure, defined in sys\stat.h, con­
tains file-status information returned by the stat
and fstat routines.

The timeb structure, defined in sys \ timeb.h, is
used by the ftime routine to store the current
system time in a broken-down format.

The tm structure, defined in time.h, is used by
the asctime, gmtime, and localtime functions
to store and retrieve time information.

The utimbuf structure, defined in sys \ utime.h,
stores file access and modification times used by
the utime function to change file-modification
dates.

37

Chapter 4
Run-Time Routines by Category

4.1 Introduction 41
4.2 Buffer Manipulation 41
4.3 Character Classification and Conversion 42
4.4 Data Conversion 44
4.5 Directory Control 44
4.6 File Handling 45
4.7 Input and Output 46
4.7.1 Stream Routines 47
4.7.1.1 Opening a Stream 49
4.7.1.2 Predefined Stream Pointers:

stdin, stdout, stderr, stdaux, stdprn 50
4.7.1.3 Controlling Stream Buffering 51
4.7.1.4 Closing Streams 52
4.7.1.5 Reading and Writing Data 52
4.7.1.6 Detecting Errors 53
4.7.2 Low-Level Routines 53
4.7.2.1 Opening a File 54
4.7.2.2 Predefined Handles 54
4.7.2.3 Reading and Writing Data 56
4.7.2.4 Closing Files 56
4.7.3 Console and Port 110 Routines 56
4.8 Math 58
4.9 Memory Allocation 60
4.10 MS-DOS Interface 63

39

4.11 Process Control 64
4.12 Searching and Sorting 67
4.13 String Manipulation 68
4.14 Time 70
4.15 Variable-Length Argument Lists 71
4.16 Miscellaneous 71

40

Run-Time Routines by Category

4.1 Introduction

This chapter describes the major categories of routines included in the C
run-time libraries. The discussions of these categories are intended to give
a brief overview of the capabilities of the run-time library. For a complete
description of the syntax and use of each routine, see Part 2, "Reference,"
of this manual.

4.2 Buffer Manipulation

Routine

memccpy

memchr

memcmp

memicmp

memcpy

memset

movedata

Use

Copies characters from one buffer to another, until
a given character or a given number of characters
has been copied

Returns a pointer to the first occurrence, within a
specified number of characters, of a given character
in the buffer

Compares a specified number of characters from
two buffers

Compares a specified number of characters from
two buffers without regard to the case of the letters
(uppercase and lowercase treated as equivalent)

Copies a specified number of characters from one
buffer to another

Uses a given character to initialize a specified
number of bytes in the buffer

Copies a specified number of characters from one
buffer to another, even when buffers are in different
segments

The buffer-manipulation routines are useful for working with areas of
memory on a character-by-character basis. Buffers are arrays of characters
(bytes). However, unlike strings, they are not usually terminated with a
null character ('\ 0'). Therefore, the buffer-manipulation routines always
take a length or count argument.

41

Microsoft C Compiler Run-Time Library Reference

Function declarations for the buffer-manipulation routines are given in the
include files memory.h and string.h.

4.3 Character Classification and Conversion

Routine

isalnum

isalpha

isascii

iscntrl

isdigit

isgraph

islower

isprint

ispunct

isspace

isupper

isxdigit

toascii

tolower

toupper

_ tolower

_ toupper

Use

Tests for alphanumeric character

Tests for alphabetic character

Tests for ASCII character

Tests for control character

Tests for decimal digit

Tests for printable character except space

Tests for lowercase character

Tests for printable character

Tests for punctuation character

Tests for white-space character

Tests for uppercase character

Tests for hexadecimal digit

Converts character to ASCII code

Tests character and converts to lowercase if
uppercase

Tests character and converts to uppercase if
lowercase

Converts character to lowercase (unconditional)

Converts character to uppercase (unconditional)

The character-classification and conversion routines let you test individual
characters in a variety of ways, and convert between uppercase and lower­
case characters. The classification routines identify a character by finding it
in a table of classification codes; using these routines to classify a character
is generally faster than writing a test expression such as the following:

if ((c >= 0) II c <= Ox7f))

42

Run-Time Routines by Category

The tolower and toupper routines are implemented both as functions and
as macros; the remainder of the routines in this category are implemented
only as macros. All of the macros are defined in ctype.h, and this file must
be included or the macros will be undefined.

The to upper and tolower macros evaluate their argument twice and
therefore cause arguments with side effects to give incorrect results. For
this reason, you may want to use the function versions of these routines
instead.

The macro versions of tolower and toupper are used by default when
you include ctype.h. To use the function versions instead, you must give
undef preprocessor directives for tolower and to upper after the
include directive for ctype.h but before you call the routines. This pro­
cedure removes the macro definitions and causes occurrences of tolower
and toupper to be treated as function calls to the tolower and toupper
library functions.

If you want to use the function versions of toupper and tolower and you
do not use any of the other character-classification macros in your program,
you can simply omit the ctype.h include file. In this case no macro defi­
nitions are present for tolower and toupper, so the function versions will
be used.

Function declarations for the tolower and toupper functions are given in
the include file stdlib.h instead of ctype.h to avoid conflict with the macro
definitions. When you want to use tolower and toupper as functions and
include the declarations from stdlib.h, you must follow this sequence:

1. Include ctype.h if required for other macro definitions.

2. If ctype.h was included, give # undef directives for tolower and
toupper.

3. Include stdlib.h.

The declarations of tolower and toupper in stdlib.h are enclosed in an
ifndef block and are processed only if the corresponding identifier
(toupper or tolower) is not defined.

43

Microsoft C Compiler Run-Time Library Reference

4.4 Data Conversion

Routine

atof

atoi

atol

ecvt

fcvt

gcvt

itoa

Itoa

strtod

strtol

ultoa

Use

Converts string to float

Converts string to int

Con verts string to long

Converts double to string

Converts double to string

Converts double to string

Converts int to string

Converts long to string

Converts string to double

Converts string to a long decimal integer that is
equal to a number with the specified radix

Converts unsigned long to string

The data-conversion routines convert numbers to strings of ASCII charac­
ters and vice versa. These routines are implemented as functions, and all
are declared in the include file stdlib.h. The atof function, which converts
a string to a floating-point value, is also declared in math.h.

4.5 Directory Control

Routine

chdir

getcwd

mkdir

rrndir

Use

Changes current working directory

Gets current working directory

Makes a new directory

Removes a directory

The directory-control routines let you access, modify, and obtain infor­
mation about the directory structure from within your program. You can
get the current working directory, change directories, and add or remove
directories.

44

Run-Time Routines by Category

The directory routines are functions and are declared in the include file
direct.h.

4.6 File Handling

Routine

access

chmod

chsize

Use

Checks file-permission setting

Changes file-permission setting

Changes file size

Checks file length

Gets file-status information on handle

Checks for character device

file length

fstat

isatty

locking Locks areas of file (available with MS-DOS versions
3.0 and later)

mktemp

remove

rename

setmode

stat

umask

unlink

Creates unique file name

Deletes file

Renames file

Sets file-translation mode

Gets file-status information on named file

Sets default-permission mask

Deletes file

The file-handling routines work on a file designated by a path name or file
handle. They modify or give information about the designated file. All of
these routines except fstat and stat are declared in the include file io.h.
The fstat and stat functions are declared in sys \ stat.h. The remove and
rename functions are also declared in stdio.h.

The access, chmod, remove, rename, stat, and unlink routines operate
on files specified by a path name or file name.

The chsize, filelength, isatty, locking, setmode, and fstat routines
work with files designated by a file handle. The locking routine works only
under MS-DOS versions 3.0 and later; it locks a region of a file against
access by other users.

46

Microsoft C Compiler Run-Time Library Reference

The mktemp and umask routines have slightly different functions than
the above routines. The mktemp routine creates a unique file name. Pro­
grams can use mktemp to create unique file names that do not conflict
with the names of existing files. The umask routine sets the default per­
mission mask for any new files created in a program. The mask may over­
ride the permission setting given in the open or creat call for the new file.

4.7 Input a11d Output

The input and output routines of the standard C library allow you to read
and write data to and from files and devices. In C, there are no predefined
file structures; all data are treated as sequences of bytes. The following
three types of input and output (I/O) functions are available:

1. Stream I/O

2. Low-level I/O

3. Console and port I/O

The "stream" functions treat a data file or data item as a stream of indivi­
dual characters. By choosing among the many stream functions available,
you can process data in different sizes and formats, from single characters
to large data structures.

When a file is opened for I/O using the stream functions, the opened file is
associated with a structure of type FILE (defined in stdio.h) containing
basic information about the file. A pointer to the FILE structure is
returned when the stream is opened. This pointer (also called the stream
pointer, or just stream) is used in subsequent operations to refer to the file.

The stream functions provide for (optionally) buffered, formatted, or unfor­
matted input and output. When a stream is buffered, data that is read
from or written to the stream is collected in an intermediate storage loca­
tion called a buffer. When writing, the output buffer's contents are written
to the appropriate final location when the buffer is full, the stream is
closed, or the program terminates normally. The buffer is said to be
"flushed" when this occurs. When reading, a block of data is placed in the
input buffer and data are read from the buffer; when the input buffer is
empty, the next block of data is transferred into the buffer.

46

Run-Time Routines by Category

Buffering produces efficient I/O because the system can transfer a large
block of data in a single operation rather than performing an I/O operation
each time a data item is read from or written to a stream. However, if a
program terminates abnormally, output buffers may not be flushed, result­
ing in loss of data.

The console and port I/O routines can be considered an extension of the
stream routines. They allow you to read or write to a console (terminal) or
an input/output port (such as a printer port). The port I/0 routines SIm­
ply read and write data in bytes. Some additional options are available
with console I/0 routines. For example, you can detect whether a character
has been typed at the console. You can also choose between echoing char­
acters to the screen as they are read, or reading characters without echoing.

The "low-level" input and output routines do not perform buffering and
formatting; they may be considered as invoking the operating system's
input and output capabilities directly. These routines let you access files
and peripheral devices at a more basic level than the stream functions.

When a file is opened with a low-level routine, a file handle is associated
with the opened file. This handle is an integer value that is used to refer to
the file in subsequent operations.

Warning

Stream routines and low-level routines are generally incompatible, so
either stream or low-level functions should be used consistently on a
given file. Since stream functions are buffered and low-level functions
are not, attempting to access the same file or device by two different
methods causes confusion and may result in the loss of data in buffers.

4.7.1 Stream Routines

Routine

clearerr

fclose

fcloseall

Use

Clears the error indicator for a stream

Closes a stream

Closes all open streams

47

Microsoft C Compiler Run-Time Library Reference

48

fdopen

feof

ferror

mush

fgetc.

fgetc.har

fgets

fileno

ftushall

fopen

fprintf

fputc.

fputc.har

fputs

fread

freopen

fsc.anf

fseek

ftell

fwrite

getc.

getc.har

gets

getw

printf

putc.

putc.har

puts

putw

Opens a stream using a handle

Tests for end-of-file on a stream

Tests for error on a stream

Flushes a stream

Reads a character from stream (function version)

Reads a character from stdin (function version)

Reads a string from stream

Gets file handle associated with stream

Flushes all streams

Opens a stream

Writes formatted data to stream

Writes a character to stream (function version)

Writes a character to stdout (function version)

Writes a string to stream

Reads unformatted data from stream

Reassigns a FILE pointer

Reads formatted data from stream

Repositions file pointer to given location

Gets current file-pointer position

Writes unformatted data items to stream

Reads a character from stream (macro version)

Reads a character from stdin (macro version)

Reads a line from stdin

Reads a binary int from stream

Writes formatted data to stdout

Writes a character to stream (macro version)

Writes a character to stdout (macro version)

Writes a line to stream

Writes a binary int to stream

rewind

rm.tm.p

scanf

setbuf

setvbuf

sprintf

sscanf

tem.pnam.

tm.pfile

tm.pnam.

ungetc

vfprintf

vprintf

vsprintf

Run-Time Routines by Category

Repositions file pointer to beginning of stream

Removes temporary files created by tm.pfile

Reads formatted data from stdin

Controls stream buffering

Controls stream buffering and buffer size

Writes formatted data to string

Reads formatted data from string

Generates a temporary file name in given directory

Creates a temporary file

Generates a temporary file name

Places a character in the buffer

Writes formatted data to stream

Writes formatted data to stdout

Writes formatted data to a string

To use the stream functions you must include the file stdio.h in your pro­
gram. This file defines constants, types, and structures used in the stream
functions, and contains function declarations and macro definitions for the
stream routines.

Some of the constants defined in stdio.h may be useful in your program.
The manifest constant EOF is defined to be the value returned at end-of­
file. NULL is the null pointer. F~E is the structure that maintains infor­
mation about a stream. BUFSIZ defines the default size of stream buffers,
in bytes.

4.7.1.1 Opening a Stream.

A stream must be opened using the fdopen, fopen, or freopen function
before input and output can be performed on that stream. When opening a
stream, the named stream can be opened for reading, writing, or both, and
can be opened either in text or in binary mode.

The fdopen, fopen, and freopen functions return a F~E pointer, which
is used to refer to the stream. When you call one of these functions, assign

49

Mierosoft C Compiler Run-Time Library Referenee

the return value to a FILE pointer variable and use that variable to refer
to the opened stream. For example, if your program contains the line

infile = fopen ("test.dat", "r");

you can use the FILE pointer variable infile to refer to the stream.

4.7.1.2 Predefined Stream Pointers:
stdin,stdout,stderr,stdaux,stdprn

When a program begins execution, five streams are automatically opened.
These streams are the standard input, standard output, standard error,
standard auxiliary, and standard print. By default, the standard input,
standard output, and standard error refer to the user's console. This means
that whenever a program expects input from the "standard input," it
receives that input from the console. Similarly, a program that writes to
the "standard output" prints its data to the console. Error messages gen­
erated by the library routines are sent to the "standard error," meaning
that error messages appear on the user's console.

The assignment of the "standard auxiliary" and "standard print" streams
depends on the machine configuration; these streams usually refer to an
auxiliary port and a printer, respectively, but they might not be set up on a
particular system. Be sure to check your machine configuration before using
these streams.

When you use the stream functions, you can refer to the standard input,
standard output, standard error, standard auxiliary, and standard print by
using the following predefined FILE pointers:

Stream Device

stdin Standard input

stdout Standard output

stderr Standard error

stdaux Standard auxiliary

stdprn Standard print

You can use these pointers in any function that requires a stream pointer as
an argument. Some functions, such as getchar and putchar, are designed

60

Run-Time Routines by Category

to use stdin or stdout automatically. The pointers stdin, stdout, stderr,
stdaux, and stdprn are constants, not variables; do not try to assign them
a new stream pointer value.

You can use the MS-DOS redirection symbols (<, >, or > >) or the
pipe symbol (I) to redefine the standard input and standard output for a
particular program. (See your 0rerating-system manual for a complete dis­
cussion of redirection and pipes. For example, if you execute a program
and redirect its output to a file named results, the program writes to the
results file each time the standard output is specified in a write operation.
Note that you don't change the program when you redirect the output. You
simply change the file associated with stdout for a single execution of the
program.

You can redefine stdin, stdout, stderr, stdaux, or stdprn so that it
refers to a disk file or to a device. The freopen routine is used for this pur­
pose. See the freopen reference page in Part 2 of this manual for a descrip­
tion of this option.

Important

At the MS-DOS command level, stderr (standard error) cannot be
redirected.

4.7.1.3 Controlling Stream Buffering

Files opened using the stream functions are buffered by default, except for
the preopened streams stdin, stdout, stderr, stdaux, and stdprn. The
stderr and stdaux streams are unbuffered by default, unless they are being
used in one of the printf or scanf family of functions, in which case they
are assigned a temporary buffer. These two streams can also be buffered
with setbuf or setvbuf. The stdin, stdout, and stdprn streams are
buffered; this buffer is flushed whenever it is full, or whenever the function
causing 110 terminates.

By using the setbuf or setvbuf functions, you can cause a stream to be
unbuffered, or you can associate a buffer with an unbuffered stream. Buffers
allocated by the system are not accessible to the useT, but buffers allocated
with setbuf or setvbuf are named by the user and can be manipulated as if
they were variables. Buffers can be any size: if you use setbuf, this size is

61

Microsoft C Compiler Run-Time Library Reference

set by the manifest constant BUFSIZ in stdio.h; if you use setvbuf, you
can set the size of the buffer yourself. (See setbuf and setvbuf in the refer­
ence section of this manual.)

Buffers are automatically flushed when they are full, when the associated
file is closed, or when a program terminates normally. You can flush buffers
at other times by using the mush and flushall routines. The mush rou­
tine flushes a single specified stream, while flushall flushes all streams that
are open and buffered.

4.7.1.4 Closing Streams

The fclose and fcloseall functions close a stream or streams. The fclose
routine closes a single specified stream; fcloseall closes all open streams
except stdin, stdout, stderr, stdaux, and stdprn. If your program does
not explicitly close a stream, the stream is automatically closed when the
program terminates. However, it is good practice to close a stream when
finished with it, as the number of streams that can be open at a given time
is limited.

4.7.1.5 Reading and Writing Data

The stream functions allow you to transfer data in a variety of ways. You
can read and write binary data (a sequence of bytes), or specify reading and
writing by characters, lines, or more complicated formats. The stream
functions for reading and writing data are summarized at the beginning of
this section; for a full description of each function, see Part 2, "Reference,"
of this manual.

Reading and writing operations on streams always begin at the current
position of the stream, known as the "file pointer" for the stream. The file
pointer is changed to reflect the new position after a read or write opera­
tion takes place. For example, if you read a single character from a stream,
the file pointer is increased by 1 byte so that the next operation begins with
the first unread character. If a stream is opened for appending, the file
pointer is automatically positioned at the end of the file before each write
operation.

The feof macro detects an end-of-file condition on a stream. Once the
end-of-file indicator is set, it remains set until the file is closed, or until
clearerr or rewind is called.

62

Run-Time Routines by Category

You can position the file pointer anywhere in a file by using the fseek func­
tion. The next operation occurs at the position you specified. The rewind
function positions the file pointer at the beginning of the file. Use the ftell
function to determine the current position of the file pointer.

Streams associated with a device (such as a console) do not have file
pointers. Data coming from or going to a console cannot be accessed ran­
domly. Routines that set or get the file pointer position (such as fseek,
ftell, or rewind) will have undefined results if used on a stream associated
with a device.

4.7.1.6 Detecting Errors

When an error occurs in a stream operation, an error indicator for the
stream is set. You can use the ferror macro to test the error indicator and
determine whether an error has occurred. Once an error has occurred, the
error indicator for the stream remains set until the stream is closed, or
until you explicitly clear the error indicator by calling clearerr or rewind.

4.7.2 Low-Level Routines

Routine

close

creat

dup

dup2

eof

lseek

open

read

sopen

tell

write

Use

Closes a file

Creates a file

Creates a second handle for a file

Reassigns a file handle

Tests for end-of-file

Repositions file pointer to a given location

Opens a file

Reads data from a file

Opens a file for file sharing

Gets current file pointer position

Writes data to a file

63

Microsoft C Compiler Run-Time Library Reference

Low-level input and output calls do not buffer or format data. Files opened
by low-level calls are referenced by a file handle, an integer value used by
the operating system to refer to the file. The open function is used to open
files; on MS-DOS versions 3.0 and later, sop en may be used to open a file
with file-sharing attributes.

Low-level functions, unlike the stream functions, do not require the include
file stdio.h. However, some common constants are defined in stdio.h; for
example, the end-of-file indicator, EOF, may be useful. If your program
requires these constants, you must include stdio.h.

Declarations for the low-level functions are given in the include file io.h.

4.7.2.1 Opening a File

A file must be opened with the open, sopen, or creat function before input
and output with the low-level functions can be performed on that file. The
file can be opened for reading, writing, or both, and opened in either text or
binary mode. The include file fcntl.h must be included when opening a file,
as it contains definitions for flags used in open. In some cases the files
sys\ types.h and sys\stat.h must also be included; for more information
see the reference page for open in Part 2 of this manual.

These functions return a file handle, to be used to refer to the file in later
operations. When you call one of these functions, assign the return value
to an integer variable and use that variable to refer to the opened file.

4.7.2.2 Predefined Handles

When a program begins execution, five file handles, corresponding to the
standard input, standard output, standard error, standard auxiliary, and
standard print, are already assigned. By using the following predefined
handles, a program can call low-level functions to access the standard
input, standard output, standard error, standard auxiliary, and standard
print streams (described with the stream functions in Section 4.7.1.2).

64

Run-Time Routines by Category

Stream Handle

stdin 0

stdout 1

stderr 2

stdaux 3

stdprn 4

You can use these file handles in your program without previously opening
the associated files. They are automatically opened when the program
begins, as shown by the output from the following short program, which
uses the file no function to print the file handle values assigned to the stan­
dard input, standard output, standard error, standard auxiliary, and stan­
dard print streams:

#include <stdio.h>

main ()

Output:

{
printf ("stdin:
pr int f (" stdout:
pr int f (" stderr :
pr int f (" stdaux:
pr int f (" stdprn:
}

stdin: 0
stdout: 1
stderr: 2
stdaux: 3
stdprn: 4

%d\n",fileno(stdin));
%d\n",fileno(stdout));
%d\n",fileno(stderr)) ;
%d\n",fileno(stdaux));
%d\n" , fileno (stdprn)) ;

As with the stream functions, you can use redirection and pipe symbols
when you execute your program to redirect the standard input and stan­
dard output. The dup and dup2 functions allow you to assign multiple
handles for the same file; these functions are typically used to associate the
predefined file handles with different files.

55

Microsoft C Compiler Run-Time Library Reference

Important

At the MS-DOS command level, stderr (standard error) cannot be
redirected.

4.7.2.3 Reading and Writing Data

Two basic functions, read and write, perform input and output. As with
the stream functions, reading and writing operations always begin at the
current position in the file. The current position is updated each time a
read or write operation occurs.

The eof routine can be used to test for an end-of-file condition. Low-level
I/O routines set the errno variable when an error occurs. This means that
you can use the perror function to print information about I/0 errors, or
the strerror function to store this error information in a string.

You can position the file pointer anywhere in a file by using the lseek func­
tion; the next operation occurs at the position you specified. Use the tell
function to determine the current position of the file pointer.

Devices (such as the console) do not have file pointers. The lseek and tell
routines have undefined results if used on a handle associated with a device.

4.7.2.4 Closing Files

The close function closes an open file. Open files are automatically closed
when a program terminates. However, it is a good practice to close a file
when finished with it, as the number of files that can be open at a given
time is limited.

4.7.3 Console and Port 110 Routines

66

Routine

cgets

cprintf

Use

Reads a string from the console

Writes formatted data to the console

cputs

cscanf

getch

getche

inp

kbhit

outp

putch

ungetch

Run-Time Routines by Category

Writes a string to the console

Reads formatted data from the console

Reads a character from the console

Reads a character from the console and echoes it

Reads specified I/O port

Checks for a keystroke at the console

Writes to specified I/O port

Writes a character to the console

"Ungets" the last character read from the console
so that it becomes the next character read

The console and port I/O routines are implemented as functions and are
declared in the include file conio.h. These functions perform reading and
writing operations on your console or on the specified port. The cgets,
cscanf, getch, getche, and kbhit routines take input from the console,
while cprintf, cputs, putch, and ungetch write to the console. Redirect­
ing the standard input or standard output from the command line causes
the input or output of these functions to be redirected.

The console or port does not have to be opened or closed before 110 is per­
formed, so there are no open or close routines in this category. The port
I/O routines (inp and outp) read or write 1 byte at a time from the
specified port. The console I/O routines allow reading and writing of
strings (cgets and cputs), formatted data (cscanf and cpri:ltf), and char­
acters. Several options are available when reading and writing characters.

The putch routine writes a character to the console. The getch and
getche routines read a character from the console; getche echoes the char­
acter back to the console, while getch does not. The ungetch routine
"ungets" the last character read; the next read operation on the console
begins with the "ungotten" character.

The kbhit routine determines whether a key has been struck at the console.
This routine allows you to test for keyboard input before you attempt to
read from the console.

67

Microsoft C Compiler Run-Time Library Reference

Notes

The console I/0 routines use the corresponding low-numbered MS-DOS
system calls to read and write characters. See your Microsoft MS-DOS
Programmer's Reference Manual for details on the system calls.

These console routines are not compatible with stream or low-level
library routines, and should not be used with them.

4.8 Math

68

Routine

acos(x)

asin(x)
atan(x)

atan2(y,x)

bessel*

cabs(z)

ceil(x)

- clear87()t
_ control87(new, maskh

cos(x)

cosh(x)

dieeetoms bin(&x, &y)

dmsbintoieee(&x,&y)

exp(x)

fabs(x)

Use

Calculates arc cosine of x

Calculates arc sine of x

Calculates arc tangent of x

Calculates arc tangent of y/ x

Calculates Bessel functions

Finds absolute value of complex number z

Finds integer ceiling of x

Gets and clears floating-point status word

Gets old floating-point control word, and
sets new control-word value

Calculates cosine of x

Calculates hyperbolic cosine of x

Converts IEEE double-precision number (x)
to Microsoft binary format (y)
Converts Microsoft binary double-precision
number (x) to IEEE format (y)
Calculates exponential function of x

Finds absolute value of x

fieeetomsbin(&x,&y)

floor(x)

fmod(x,y)

fms bintoieee(&x, &y)

_fpreset()

frexp(x,&n)

hypot(x,y)

Idexp(x, exp)

log(x)

loglO(x)

matherr(x)

modf(x,&n)

pow(x,y)

sin(x)

sinh(x)

sqrt(x)

- status87(h
tan(x)

tanh(x)

Run-Time Routines by Category

Converts IEEE single-precision number (x)
to Microsoft binary format (y)
Finds largest integer less than or equal to x

Finds floating-point remainder of xl y

Converts Microsoft binary single-precision
number (x) to IEEE format (y)
Reinitializes the floating-point math
package

Shows x as product of mantissa (the value
returned by frexp) and 2n

Calculates hypotenuse of right triangle with
sides x and y

Calculates x times 2 exp

Calculates natural logarithm of x

Calculates base 10 logarithm of x

Handles math errors

Breaks down x into integer (the value
returned by modf) and fractional (n) parts

Calculates xY

Calculates sine of x

Calculates hyperbolic sine of x

Finds square root of x

Gets the floating-point status word

Calculates tangent of x

Calculates hyperbolic tangent of x

* The bessel routine does not correspond to a single function, but to six functions named jO,
jl, jn, yO, yl, and yn.

t Not available with the /FPa compiler option

The math routines allow you to perform common mathematical calcula­
tions. All math routines work with floating-point values, and therefore
require floating-point support (see Section 2.10, "Floating-Point Support,"
in Chapter 2, "Using C Library Routines"). Function declarations for the

69

Mierosoft C Compiler Run-Time Library Reference

math routines are given in the include file math.h, with the exception of
_ elear87, _ eontro187, _ fpreset, and _ status87, whose definitions are
given in the float.h include file.

The matherr routine is invoked by the math functions when errors occur.
This routine is defined in the library, but can be redefined by the user if
different error-handling procedures are desired. The user-defined matherr
function, if given, must conform to the specifications given on the matherr
reference page in Part 2 of this manual.

You are not required to supply a definition for matherr. If no definition is
present, the default error returns for each routine are used. See the refer­
ence page for each routine in Part 2 of this manual for a description of that
routine's error returns.

4. 9 Memory Allocation

60

Routine

alloea

ealloe

_expand

_ffree

_fmalloe

free

_freeet

_fmsize

halloe

hfree

Use

Allocates a block of memory from the program's
stack

Allocates storage for array

Reallocates block of memory without moving its
location

Frees a block allocated by _ fmalloe

Allocates a block of memory outside the default
data segment, returns a far pointer

Frees a block allocated with ealloe, malloc, or
realloe

Returns approximate number of items of given size
that could be allocated

Returns size of memory block pointed to by far
pointer

Allocates storage for huge array

Frees a block allocated by halloe

malloc

_memavl

_msize

_nfree

_nmalloc

_nmsize

realloc

sbrk

stackavail

Run-Time Routines hy Category

Allocates a block

Returns approximate number of bytes available in
memory for allocation

Returns size of block allocated by calloc, malloc,
or realloc

Frees a block allocated by _ nmalloc

Allocates a block of memory in default data seg­
ment, returns a near pointer

Returns size of memory block pointed to by near
pointer

Reallocates a block

Resets break value

Returns size of stack space available for allocation
with alloca

The memory-allocation routines allow you to allocate, free, and reallocate
blocks of memory. They are declared in the include file malloc.h.

The calloc and malloc routines allocate memory blocks. The malloc
routine allocates a given number of bytes, while calloc allocates and initial­
izes to 0 an array with elements of a given size. The routines _ fmalloc
and _ nmalloc are similar to malloc, except that _ fmalloc and _ nmalloc
allow you to allocate a block of bytes while overcoming the addressing limi­
tations of the current memory model. The halloc routine performs essen­
tially the same function as calloc, with the difference that halloc allocates
space for huge arrays (those exceeding 64K in size). Arrays allocated with
halloc must satisfy the requirements for huge arrays discussed in Section
8.2.5 of the Microsoft C Compiler User's Guide, "Creating Huge-Model
Programs."

The realloc and _ expand routines change the size of an allocated block.
The _ expand function always attempts to change the size of an allocated
block without moving its heap location; it expands the size of the block to
the size requested, or as much as the current location will allow, whichever
is smaller. In contrast, realloc changes the location in the heap if there is
not enough room.

The halloc routine returns a huge pointer to a char, _ fmalloc returns a
far pointer to a char, and _ nmalloc returns a near pointer to a char; all
the rest of the allocation routines return a char pointer. The space to

61

Mic.rosoft C Compiler Run-Time Library Referenc.e

which these routines point satisfies the alignment requirements of any type
of object. When allocating items of types other than char, use a type cast
on the return value.

The free routine (for ealloe, malloe, and realloe), the _ ffree routine (for
_fmalloe), the _nfree routine (for _nmalloe), and the hfree routine (for
haIloe) ali deallocate memory that was previously allocated, making it
available for subsequent allocation requests.

The _ freeet and _ memavl routines tell you how much memory is avail­
able for dynamic memory allocation in the default data segment; _ freeet
returns the approximate number of items of a given size that can be allo­
cated, while _ memavl returns the total number of bytes available for allo­
cation requests.

The _ msize function returns the size of a memory block allocated by a call
to ealloe, _ expand, malloe, or realloe. The _ fmsize and _ nmsize
functions return the size of a memory block allocated by a call to _ fmalloe
or _nmalloe, respectively.

The sbrk routine is a lower-level memory-allocation routine. It increases
the program's break value, allowing the program to take advantage of
available unallocated memory.

Warning

In general, a program that uses the sbrk routine should not use the
other memory-allocation routines, although their use is not prohibited.
In particular, using sbrk to decrease the break value may cause
unpredictable results from calls to the other subsequent memory­
allocation routines.

The preceding routines all allocate memory dynamically from the heap.
Microsoft C also provides two memory functions, alloea and staekavail,
for allocating space from the stack and determining the amount of avail­
able stack space. The alloea routine allocates the requested number of
bytes from the stack, which are freed when control returns from the func­
tion calling alloea. The staekavail routine lets your program know how
much memory (in bytes) is available on the stack.

62

Run-Time Routines by Category

4.10 MS-DOS Interface

Routine

bdos

dosexterr

FP_OFF

FP_SEG

int86

int86x

intdos

intdosx

segread

Use

Invokes MS-DOS system call; uses only DX and AL
registers

Obtains register values from MS-DOS system call
59H

Returns offset portion of a far pointer

Returns segment portion of a far pointer

Invokes MS-DOS interrupts

Invokes MS-DOS interrupts

Invokes MS-DOS system call; uses registers other
than DX and AL

Invokes MS-DOS system call; uses registers other
than DX and AL

Returns current values of segment registers

These routines provide access to MS-DOS system calls and interrupts. See
your Microsoft MS-DOS Programmer's Reference Manual for information on
system calls and interrupts.

The FP _ OFF and FP _ SEG routines are provided to allow the user easy
access to the segment and offset portions of a far pointer value. FP _ OFF
and FP _ SEG are implemented as macros and defined in dos.h. The
remaining routines are implemented as functions and declared in dos.h.

The dosexterr function obtains and stores the register values returned by
MS-DOS system call 59H (extended error handling). This function is pro­
vided for use with MS-DOS versions 3.0 and later.

The bdos routine is useful for invoking MS-DOS calls that use either or
both of the DX (DH/DL) and AL registers for arguments. However, bdos
should not be used to invoke system calls that return an error code in AX if
the carry flag is set; the program cannot detect whether the carry flag is
set, making it impossible to determine whether the value in AX is a legiti­
mate value or an error value. In this case, the intdos routine should be
used instead, since it allows the program to detect whether the carry flag is
set. The intdos routine can also be used to invoke MS-DOS calls that use
registers other than DX and AL.

63

Mierosoft C Compiler Run-Time Library Referenee

The intdosx routine is similar to the intdos routine, but is used when
ES is required by the system call, when DS must contain a value other
than the default data segment (for instance, when a far pointer is used), or
when making the system call in a large-model program. When calling
intdosx, give an argument that specifies the segment values to be used in
the call.

The int86 routine can be used to invoke MS-DOS interrupts. The int86x
routine is similar, but, like the intdosx routine, is designed to work with
large-model programs and far items, as described in the preceding para­
graph for intdosx.

The segread routine returns the current values of the segment registers.
This routine is typically used with the intdosx and int86x routines to
obtain the correct segment values.

4.11 Process Control

64

Routine

abort

execl

execle

execlp

exeelpe

execv

execve

execvp

execvpe

exit

Use

Aborts a process

Executes child process with argument list

Executes child process with argument list and given
environment

Executes child process using PATH variable and
argument list

Executes child process using PATH variable, given
environment, and argument list

Executes child process with argument array

Executes child process with argument array and
given environment

Executes child process using PATH variable and
argument array

Executes child process using PATH variable, given
environment, and argument array

Tenninates process

_exit

getpid

onexit

signal

spawnl

spawnle

spawnlp

spawnlpe

spawnv

spawnve

spawnvp

spawnvpe

systeID

Run-Time Routines by Category

Terminates process without flushing buffers

Gets process ID number

Executes functions at program termination

Handles an interrupt signal

Executes child process with argument list

Executes child process with argument list and given
environment

Executes child process using PATH variable and
argument list

Executes child process using PATH variable, given
environment, and argument list

Executes child process with argument array

Executes child process with argument array and
given environment

Executes child process using PATH variable and
argument array

Executes child process using PATH variable, given
environment, and argument array

Executes an MS-DOS command

The term "process" refers to a program being executed by the operating
system. A process consists of the program's code and data, plus information
pertaining to the status of the process, such as the number of open files.
Whenever you execute a program at the MS-DOS level, you start a process.
In addition, you can start, stop, and manage processes from within a pro­
gram by using the process-control routines.

The process-control routines allow you to do the following:

1. Identify a process by a unique number (getpid)

2. Terminate a process (abort, exit, and _ exit)

3. Handle an interrupt signal (signal)

4. Start a new process (the exec and spawn families of routines, plus
the systeID routine)

66

Microsoft C Compiler Run-Time Library Reference

All process-control functions except signal are declared in the include file
process.h. The signal function is declared in signal.h. The abort, exit,
and system functions are also declared in the stdlib.h include file.

The abort and _ exit functions perform an immediate exit without flushing
stream buffers. The exit call performs an exit after flushing stream buffers.

The system call executes a given MS-DOS command. The exec and
spawn routines start a new process, called the "child" process. The
difference between the exec and spawn routines is that the spawn rou­
tines are capable of returning control from the child process to its caller
(the "parent" process). Both the parent process and the child process are
present in memory (unless P _ OVERLAY is specified).

In the exec routines, the child process overlays the parent process, so
returning control to the parent process is impossible (unless an error occurs
when attempting to start execution of the child process).

There are eight forms each of the spawn and exec routines. The differences
between the forms are summarized in Table 4.1. The function names are
given in the first column. The second column specifies whether the current
PATH setting is used to locate the file to be executed as the child process.

The third column describes the method for passing arguments to the child
process. Passing an argument list means that the arguments to the child
process are listed as separate arguments in the exec or spawn call; passing
an argument array means that the arguments are stored in an array, and a
pointer to the array is passed to the child process. The argument-list
method is typically used when the number of arguments is constant or is
known at compile time, while the argument-array method is useful when
the number of arguments must be determined at run time.

The last column specifies if the child process inherits the environment set­
tings of its parent or if a table of environment settings can be passed to set
up a different environment for the child process.

66

Run-Time Routines by Oategory

Table 4.1

Forms of the spawn and exec Routines

Use of Argument-Passing
Routines PATH Setting Convention Environment

exeel, Do not use Argumen t list Inherited from parent
spawnl PATH
exeele, Do not use Argument list Pointer to
spawnle PATH environment table for

child process passed
as last argument

exeelp, Use PATH Argumen t list Inherited from parent
spawnlp
exeelpe, Use PATH Argument list Pointer to
spawnlpe environment table for

child process passed
as last argument

execv, Do not use Argumen t array Inherited from parent
spawnv PATH
execve, Do not use Argumen t array Pointer to
spawnve PATH environment table for

child process passed
as last argument

execvp, Use PATH Argumen t array Inherited from parent
spawnvp
execvpe, Use PATH Argument array Pointer to
spawnvpe environment table for

child process passed
as last argument

4.12 Searching and Sorting

Routine

bsearch

Hind

Use

Performs binary search

Performs linear search for given value

67

Microsoft C Compiler Run-Time Library Reference

lsearch

qsort

Performs linear search for given value, which is
added to array if not found

Performs quick sort

The bsearch, Hind, lsearch, and qsort functions provide helpful binary­
search, linear-search and quick-sort utilities. They are declared in the
include file search.h.

4.13 String Manipulation

68

Routine

strcat

strchr

strcmp

strcmpi

strcpy

strcspn

strdup

strerror

stricmp

strlen

strlwr

strncat

strncmp

strncpy

strnicmp

Use

Appends a string

Finds first occurrence of a given character in string

Compares two strings

Compares two strings without regard to case ("i"
indicates that this function is "case insensitive")

Copies one string to another

Finds first occurrence of a character from given
character set in string

Duplicates string

Saves system error message and optional user-error
message in string

Compares two strings without regard to case
(identical to strcmpi)

Finds length of string

Converts string to lowercase

Appends n characters of string

Compares n characters of two strings

Copies n characters of one string to another

Compares n characters of two strings without
regard to case ("i" indicates that this function is
"case insensitive")

Run-Time Routines by Category

strnset

strpbrk

Sets n characters of string to given character

Finds first occurrence of character from one string
in another

strrchr

strrev

strset

strspn

strstr

strtok

strupr

Finds last occurrence of given character in string

Reverses string

Sets all characters of string to given character

Finds first substring from given character set in
string

Finds first occurrence of given string in another
string

Finds next token in string

Converts string to uppercase

The string functions are declared in the include file string.h. A wide
variety of string functions is available in the run-time library. With these
functions, you can do the following:

• Perform string comparisons

• Search for strings, individual characters, or characters from a
given set

• Copy strings

• Convert strings to a different case

• Set characters of the string to a given character

• Reverse the characters of strings

• Break strings into tokens

• Store error messages in a string

All string functions work on null-terminated character strings. When work­
ing with character arrays that do not end with a null character, you can use
the buffer-manipulation routines, described earlier in this chapter.

69

Microsoft C Compiler Run-Time Library Reference

4.14 Time

Routine

asctime

ctime

difftime

ftime

gmtime

localtime

time

tzset

utime

Use

Converts time from structure to character string

Converts time from long integer to character string

Computes the difference between two times

Gets current system time as structure

Converts time from integer to structure

Converts time from integer to structure with local
correction

Gets current system time as long integer

Sets external time variables from environment time
variable

Sets file-modification time

The time functions allow you to obtain the current time, then convert and
store it according to your particular needs. The current time is always
taken from the system time. The time and ftime functions return the
current time as the number of seconds elapsed since Greenwich mean time,
January 1, 1970. This value can be converted, adjusted, and stored in a
variety of ways, using the asctime, ctime, gmtime, and localtime func­
tions. The utime function sets the modification time for a specified file,
using either the current time or a time value stored in a structure.

The ftime function requires two include files: sys \ types.h and
sys\ timeb.h. The ftime function is declared in sys\ timeb.h. The utime
function also requires two include files: sys \ types.h and sys \ utime.h.
The utime function is declared in sys \ utime.h. The remainder of the
time functions are declared in the include file time.h.

When you want to use ftime or localtime to make adjustments for local
time, you must define an environment variable named TZ. See Section 3.2
on the global variables daylight, timezone, and tzname for a discussion
of the TZ variable; TZ is also described on the tzset reference page in Part
2 of this manual.

70

Run-Time Routines by Category

4.15 Variable-Length Argument Lists

Routine

va_arg

va_end

va_start

Use

Retrieves argument from list

Resets pointer

Sets pointer to beginning of argument list

The va_ arg, va_ end, and va_ start routines are macros that provide a
portable way to access the arguments to a function when the function takes
a variable number of arguments. Two versions of the macros are available:
the macros defined in the vararg.h include file, which are compatible with
the UNIX System V definition, and the macros defined in stdarg.h, which
conform to the proposed ANSI C standard.

For more information on the differences between the two versions and for
an explanation of using the macros, see the appropriate reference pages in
Part 2 of this manual.

4.16 Miscellaneous

Routine

abs

assert

getenv

labs

longjrnp

perror

putenv

rand

setjrnp

srand

swab

Use

Finds absolute value of integer value

Tests for logic error

Gets value of environment variable

Finds absolute value of long integer value

Restores a saved stack environment

Prints error message

Adds or modifies value of environment variable

Gets a pseudorandom number

Saves a stack environment

Initializes pseudorandom series

Swaps bytes of data

71

Microsoft C Compiler Run-Time Library Reference

The "miscellaneous" category covers a number of commonly used routines
that do not fit easily into any of the other categories. All routines except
assert, longjIIlP, and setjIIlp are declared in stdlib.h. The assert rou­
tine is a macro and is defined in assert.h. The setjIIlp.h and longjIIlp.h
functions are declared in setjIIlp.h.

The abs and labs functions return the absolute value of an int and a long
value, respectively. These two functions are defined in both the IIlsth.h
and stdlib.h include files. (A macro named abs is also available in the
include file v2tov3.h; the macro gives the absolute value for any type.)

The assert macro is typically used to test for program logic errors; it prints
a message when a given "assertion" fails to hold true. Defining the identifier
NDEBUG to any value causes occurrences of assert to be removed from
the source file, thus allowing you to turn off assertion checking without
modifying the source file.

The getenv and putenv routines provide access to the environment table.
The global variable environ also points to the environment table, but it is
recommended that you use the getenv and putenv routines to access and
modify environment settings rather than accessing the environment table
directly.

The perror routine prints the system error message, along with an optional
user-supplied message, for the last system-level call that produced an error.
The perror routine is declared in the include files stdlib.h and stdio.h.
The error number is obtained from the errno variable. The system message
is taken from the sys_ errlist array. The errno variable is only guaranteed
to be set upon error for those routines that explicitly mention the errno
variable in the "Return Value" section of the reference pages in Part 2 of
this manual.

The rand and srand functions initialize and generate a pseudorandom
sequence of integers.

The setjIIlp and longjIIlp functions save and restore a stack environment.
These routines let you execute a nonlocal goto.

The swab routine (also declared in stdlib.h) swaps bytes of binary data. It
is typically used to prepare data for transfer to a machine that uses a
different byte order.

72

Chapter 5

Include Files

5.1 Introduction 75
5.2 assert.h 76
5.3 conio.h 76
5.4 ctype.h 76
5.5 direct.h 77
5.6 dos.h 77
5.7 errno.h 78
5.8 fcntl.h 79
5.9 float.h 79
5.10 io.h 79
5.11 limits.h 80
5.12 malloc.h 80
5.13 math.h 80
5.14 memory.h 81
5.15 process.h 81
5.16 search.h 82
5.17 setjmp.h 82
5.18 share.h 82
5.19 signal.h 82
5.20 stdarg.h 83
5.21 stddef.h 83
5.22 stdio.h 83
5.23 stdlib.h 85
5.24 string.h 85

73

5.25 sys \ locking.h 86
5.26 sys\stat.h 86
5.27 sys \ timeb.h 86
5.28 sys\ types.h 86
5.29 sys\ utime.h 87
5.30 time.h 87
5.31 varargs.h 87
5.32 v2tov3.h 87

74

Include Files

5.1 Introduction

The include files provided with the run-time library contain macro and con­
stant definitions, type definitions, and function declarations. Some routines
require definitions and declarations from include files to work properly; for
other routines, the inclusion of a file is optional. The description of each in­
clude file in this chapter explains the contents of each include file and lists
the routines that use it.

A number of routines are declared in more than one include file. For ex­
ample, the buffer-manipulation functions memccpy, memchr, memcmp,
memcpy, memicmp, memset, and movedata are declared in both
memory.h and string.h. These multiple declarations ensure agreement
with the names of XENIX and UNIX include files, as well as the names of
include files under the proposed ANSI standard for C. This preserves com­
patibility with programs written in earlier versions of C, and further
increases the portability of the programs you write in Microsoft C.

Two sets of function declarations are provided in each include file. The
first set declares both the return type and the argument-type list for the
function. This set is included only when you enable argument type checking
by defining LINT_ARGS, as described in Section 2.5, "Argument Type
Checking," of Chapter 2, "Using C Library Routines." The second set of
declarations declares only the return type. This set is included when argu­
ment type checking is not enabled.

The include files were named and organized to meet the following
objectives:

• To maintain compatibility with the names of include files on XENIX
and UNIX systems, and with the developing ANSI standard for C

• To reflect the logical categories of run-time routines (for example,
placing declarations for all memory-allocation functions in one file,
malloc.h)

• To require the inclusion of the minimum number of files to use a
given routine

Occasionally these goals conflict. For example, the ftime function
uses Lhe sLrucLure Lypethneb. The tiIIleb sLrucLure Lype 1s defined in
the include file sys \ timeb.h on XENIX systems; to maintain compatibility,
the same include file is used on MS-DOS. To minimize the number of
required include files when using ftime, the ftime function is declared in
sys \ timeb.h, even though most of the other time functions are declared in
time.h.

76

Microsoft C Compiler Run-Time Library Reference

5.2 assert.h

The include file assert.h defines the assert macro. The assert.h file must
be included when assert is used.

The definition of assert is enclosed in an # ifndef preprocessor block. If
the identifier NDEBUG has not been defined (through a # define directive
or on the compiler command linel' the assert macro is defined to test a
given expression (the "assertion" ; if the assertion is false, a message is
printed and the program is terminated.

If NDEBUG is defined, however, assert is defined as empty text. This
disables all program assertions by removing all occurrences of assert from
the source file. Therefore, you can suppress program assertions by defining
NDEBUG.

5.3 conio.h

The conio.h include file contains function declarations for all of the console
and port I/O routines, as listed below:

cgets
cprintf
cputs

cscanf
getch
getche

5.4 ctype.h

inp
kbhit
outp

putch
ungetch

The ctype.h include file defines macros and constants and declares a global
array used in character classification. The macros defined in ctype.h are
listed below:

isalnum
isalpha
isascii

76

iscntrl
is digit
isgraph

islower
isprint
ispunct

isspace
isupper
isxdigit

toascii
tolower
to upper

_ tolower
_toupper

Inelude Files

You must include ctype.h when using these macros or the macros will be
undefined.

The toupper and tolower macros are defined as conditional operations.
These macros evaluate their argument twice, and so produce unexpected
results for arguments with side effects. To overcome this problem, you can
remove the macro definitions of to upper and tolower and use the func­
tions by the same names; see Section 4.3, "Character Classification and
Conversion," in Chapter 4, "Run-Time Routines by Category," for details.
Declarations for the function versions of tolower and toupper are given in
stdlib.h.

In addition to macro definitions, the ctype.h include file contains the
following:

1. A set of manifest constants defined as bit masks. The bit masks
correspond to specific classification tests. For example, the con­
stants _ UPPER and _ LOWER are defined to test for an upper­
case or lowercase letter, respectively.

2. A declaration of a global array, _ ctype. The _ ctype array is a
table of character-classification codes based on ASCII character
codes.

5.5 direct.h

The direct.h include file contains function declarations for the four direc­
tory control functions (chdir, getcwd, mkdir, and rmdir).

5.6 dos.h

The dos.h include file contains macro definitions, function declarations,
and type definitions for the MS-DOS interface functions.

The FP - SEG and FP _ OFF macros are defined to get or set the segment
and offset portions of a far pointer. You must include dos.h when using
these macros or they will be undefined.

77

Microsoft C Compiler Run-Time Library Reference

The following functions are declared in dos.h:

bdos
dosexterr
int86
int86x
intdos
intdosx
segread

The dos.h file also defines the WORDREGS and BYTEREGS structure
types, used to define sets of word registers and byte registers, respectively.
These structure types are combined in the REGS union type. The REGS
union serves as a general-purpose register type, holding both register struc­
tures at one time. The SREGS structure type defines four members to hold
the ES, OS, SS, and DS segment register values.

The DOSERROR structure is defined to hold error values returned by
MS-DOS system call 59H (available under MS-DOS versions 3.0 and later).

Note that WORD REGS, BYTEREGS, REGS, SREGS, and
DOSERROR are tags, not typedef names. (See the Microsoft C Compiler
Language Reference for a discussion of type definitions, tags, and typedef
names.)

5.7 errno.h

The errno.h include file defines the values used by system-level calls
to set the errno variable. The constants defined in errno.h are used by the
perror function to index the corresponding error message in the global
variable sys_ errlist.

The constants defined in errno.h are listed with the corresponding error
messages in Appendix A, "Error Messages."

78

Include Files

5.8 fcntl.h

The include file fcntl.h defines flags used in the open and sopen calls to
specify the type of operations for which the file is opened and to control
whether the file is interpreted in text or binary mode. This file should
always be included when open or sopen is used.

The function declarations for open and sopen are not in fcntl.h; instead,
they are given in the include file io.h.

5.9 float.h

The include file float.h contains definitions of constants that specify the
ranges of floating-point data types; for example, the maximum number of
digits for objects of type double (DBL_ DIG = 15), or the minimum
exponent for objects of type float (FLT_ MIN_ EXP = -38).

The float.h file also contains function declarations for the math functions
_ clear87, _ control87, _ fpreset, and _ status87, as well as definitions of
constants used by these functions.

In addition, float.h defines floating-point-exception sub codes used with
SIGFPE to trap floating-point errors (see signal.h in Part 2, "Reference").

5.10 io.h

The include file io.h contains function declarations for most of the file­
handling and low-level-I/O functions, as listed below:

access dup2 mktemp tell
chmod eof open umask
chsize filelength read unlink
close isatty rename write
creat locking setmode
dup lseek sopen

The exceptions are fstat and stat, which are declared in sys \ stat.h.

79

Microsoft C Compiler Run-Time Library Reference

5.11 limits.h

The include file limits.h contains definitions of constants that specify the
ranges of integer and character data types; for example\ the maximum
value for an object of type char (CHAR_MAX = 127).

5.12 malloc.h

The include file malloc.h contains function declarations for the memory­
allocation functions listed below:

aHoca
caHoc
_expand
_ffree

_fmaHoc
_fmsize
free
_freect

5.13 math.h

haHoc
hfree
maHoc
_memavl

_msize
_nfree
_nmalloc
_nmsize

reaHoc
sbrk
stackavail

The include file math.h contains function declarations for all floating-point
math routines, plus the atof routine, as listed below:

abs bessel* fabs ldexp sin
acos cabs floor log sinh
asin ceil fmod loglO sqrt
atan cos frexp matherr tan
atan2 cosh hypot modf tanh
atof exp labs pow

* The bessel routine does not correspond to a single function but to six functions named jO,
jl, jn, yO, yl, and yn.

The math.h include file also defines two structures, exception and
complex. The exception structure is used with the matherr function,
and the complex structure is used to declare the argument to the cabs
function.

80

Include Files

The HUGE value and HUGE_ VAL, its equivalent in the ANSI C stan­
dard, which are returned on error from some math routines, are both
defined in math.h. HUGE and HUGE_ VAL can be implemented either
as manifest constants or as global variables with double type, and can be
used interchangeably. The value of HUGE or HUGE- VAL must not be
changed in a # define directive. Throughout Part 2, "Reference," refer­
ences to HUGE are understood to mean either HUGE or HUGE_ VAL.

The math.h file also defines manifest constants passed in the exception
structure when a math routine generates an error (for example, DOMAIN,
SING, EDOM, and ERANGE). -

5.14 memory.h

The include file memory.h contains function declarations for the seven
buffer-manipulation routines listed below:

memccpy
memchr
memcmp
rnerncpy
rnemicrnp
rnernset
rnovedata

5.15 process.h

The include file process.h declares all process-control functions (listed
below) except for the signal function, which is declared in signal.h:

abort execvp spawnlp
execl execvpe spawnlpe
execle exit spawnv
execlp _exit spawnve
execlpe getpid spawnvp
execv spawnl spawnvpe
execve spawnle sytem

81

Microsoft C Compiler Run-Time Library Reference

The process.h include file also defines flags used in calls to spawn func­
tions to control execution of the child process. Whenever you use one of
the eight spawn functions, you must include process.h so the flags are
defined.

5.16 search.h

The include file search.h declares the functions bsearch, lsearch, lfind,
and qsort.

5.17 setjrnp.h

The include file setjrnp.h contains function declarations for the setjrnp
and longjrnp functions. It also defines the machine-dependent buffer,
jrnp_ buf, used by the setjrnp and longjrnp functions to save and restore
the program state.

5.18 share.h

The include file share.h defines flags used in the sopen function to set the
sharing mode of a file. This file should be included whenever sopen is used.
The function declaration for sopen is given in the file io.h. Note that the
sop en function should only be used under MS-DOS version 3.0 and later.

5.19 signal.h

The include file signal.h defines the values for signals. Only the SIGINT
SIGFPE (floating-point exceptions) signals are recognized on MS-DOS.
The signal function is also declared in signal.h.

82

Include Files

5.20 stdarg.h

The include file stdarg.h defines macros that allow you to access argu­
ments in functions with variable-length argument lists, such as vprintf.
These macros are defined to be machine independent, portable, and com­
patible with the developing ANSI standard for O. (See also varargs.h.)

5.21 stddef.h

The include file stddef.h contains definitions of the commonly used vari­
ables and types listed below:

Item Description

NULL The null pointer (also defined in stdio.h)

err no A global variable containing an error message
number (also defined in errno.h)

ptrdiff_ t

size_ t

5.22 stdio.h

Synonym for the type (int) of the difference of
two pointers

Synonym for the type (int) of the value
returned by sizeof

The include file stdio.h contains definitions of constants, macros, and
types, along with function declarations for stream I/O functions. The
stream I/O functions are listed below:

clearerr file no * fseek put char * sprintf
fclose flushall ftell puts sscanf
fcloseall fopen fwrite putw tempnam
fdopen fprintf getc* remove tmpfile
feor fputc get char * rename tmpnam
ferror * fputchar gets rewind ungetc
mush fputs getw rmtmp vfprintf

83

Microsoft C Compiler Run-Time Library Reference

fgetc
fgetchar
fgets

fread
freopen
fscanf

perror
printf
putc*

scanf
setbuf
setvbuf

vprintf
vsprintf

* Implemented as a macro

The stdio.h file defines a number of constants; some of the more common
ones are listed below:

Item

BUFSIZ

_NFILE

EOF

NULL

Description

Buffers used in stream I/O are required to have a con­
stant size, which is defined by the BUFSIZ constant.
This value is used to establish the size of system­
allocated buffers, and must also be used when calling
setbuf to allocate your own buffers.

The _ NFILE constant defines the number of open files
allowed at one time. The five files stdin, stdout,
stderr, stdaux, and stdprn are always open, so you
should include them when calculating the number of files
your program opens.

The EOF value is defined to be the value returned by an
I/O routine when the end of the file (or in some cases, an
error) is encountered.

The NULL value is the null-pointer value. It is defined
as 0 in small- and medium-model programs and as OL in
large-model programs.

You can use the above constants in your programs, but you should not
alter their values.

The stdio.h file also defines a number of flags used internally to control
stream operations.

The FILE structure type is defined in stdio.h. Stream routines use a
pointer to the FILE type to access a given stream. The system uses the
information in the FILE structure to maintain the stream.

The FILE structures are stored as an array called _ iob, with one entry per
file. Therefore, each element of _ iob is a FILE structure corresponding to
a stream. When a stream is opened, it is assigned the address of an entry in
the _iob array (a FILE pointer). Thereafter, the pointer is used for refer­
ences to the stream.

84

Include Files

5.23 stdlib.h

The stdlib.h include file contains function declarations for the following
functions:

abort ecvt itoa putenv swab
abs exit labs rand system
atof fcvt ltoa realloc tolower
atoi free malloc srand toupper
atol gcvt onexit strtod ultoa
calloc getenv perror strtol

The tolower and toupper routines are functions in the run-time library,
but they are also implemented as macros in the include file ctype.h. The
declarations for tolower and toupper are enclosed in an #ifndef block;
they take effect only if the corresponding macro definitions in ctype.h have
been suppressed by removing the definitions of tolower and toupper. For
instructions on using these routines as macros or as functions, see Section
4.3, "Character Classification and Conversion," in Chapter 4, "Run-Time
Routines by Category."

The stdlib.h file also includes the definition of the type onexit_ t, as well
as declarations of the following global variables:

_doserrno
environ
errno

_fmode
_osmajor
_osminor

5.24 string.h

_psp
sys_ err list
sys_nerr

The string.h include file declares the string manipulation functions, as
listed below:

memccpy strcat strerror strnicmp strstr
memchr strchr stricmp strnset strtok
memcmp strcmp strlen strpbrk strupr
memcpy strcmpi strlwr strrchr
memicmp strcpy strncat strrev
memset strcspn strncmp strset
move data strdup strncpy strspn

85

Microsoft C Compiler Run-Time Library Reference

5.25 sys\locking.h

The locking.h include file (conventionally stored in a subdirectory named
SYS) contains definitions ot flags used in calls to locking. Whenever you
use the locking routine, you must include this file so that the locking flags
are defined.

The function declaration for locking is given in the file io.h. Note that the
locking function should be used only under MS-DOS versions 3.0 and later.

5.26 sys\stat.h

The stat.h include file (conventionally stored in a subdirectory named SYS)
defines the structure type returned by the fstat and stat functions and
defines flags used to maintain file-status information. It also contains func­
tion declarations for the fstat and stat functions. Whenever you use the
fstat or stat functions, you must include this file so that the appropriate
structure type (named stat) is defined.

5.27 sys\ timeb.h

The include file timeb.h (conventionally stored in a subdirectory named
SYS) defines the timeb structure type and declares the ftime function,
which uses the timeb structure type. Whenever you use the ftime function
you must include timeb.h so that the structure type is defined.

5.28 sys\ types.h

The include file types.h (conventionally stored in a subdirectory named
SYS) defines types used by system-level calls to return file-status and time
information. You must include this file whenever the sys \stat.h,
sys \ utime.h, or sys \ timeb.h file is included.

86

Include Files

5.29 sys\ utime.h

The include file utime.h (conventionally stored in a subdirectory named
SYS) defines the utimbut structure type and declares the utime function,
which uses the utimbuf type. Whenever you use the utime function you
must include utime.h so that the structure type is defined.

5.30 time.h

The time.h include file declares the time functions asctime, ctime,
difftime, gmtime, localtime, time, and tzset. (The ftime and utime
functions are declared in sys \ timeb.h and sys \ utime.h, respectively.)

The time.h file also defines both the tm structure, used by the asctime,
gmtime, and localtime functions, and the time_ t type, used by the
difftime function.

5.31 varargs.h

The include file varargs.h defines macros for accessing arguments in func­
tions with variable-length argument lists, such as vprintf. These macros
are defined to be machine independent, portable, and compatible with
UNIX System V. (See also stdarg.h.)

5.32 v2tov3.h

The include file v2tov3.h is provided for users who are converting from
versions 2.03 and earlier of the Microsoft C Compiler. Some of the routines
provided in the Version 2.03 run-time library are supported in a slightly
different form under Version 3.0 of the compiler. Including v2tov3.h
allows those routines to be used in their original form without altering the
source code.

87

Microsoft C Compiler Run-Time Library Reference

The v2tov3.h file, as well as other differences between Version 3.0 of the
Microsoft C Compiler and other versions, is discussed in detail in Appendix
F, "Converting from Previous Versions of the Compiler," in the Microsoft C
Compiler User's Guide.

The v2tov3.h file contains three macro definitions that can be useful. The
abs macro produces the absolute value of its argument. The min and max
macros calculate the minimum and maximum, respectively, of two num­
bers. See the v2tov3.h include file for details.

88

Part 2
Reference

89

abort

• Summary

include <process.h>
include <stdlib.h>

void abort();

• Description

Required only for function declarations
Use either process.h or stdlib.h

The abort function prints the message

Abnormal program termination

to stderr, then terminates the calling process, returning control to the pro­
cess that initiated the calling process (usually the operating system). The
abort function does not flush stream buffers.

• Return Value

An exit status of 3 is returned to the parent process or operating system.

• See Also

execl, execle, execlp, execlpe, execv, execve, execvp, execvpe, exit,
_ exit, signal, spawnl, spawnle, spawnlp, spawnlpe, spawnv,
spawnve, spawnvp, spawnvpe

91

abort

• Example

#include <stdio.h>

main (argc , argv)
int argc;
char *argv[];
{
FILE *stream;
if ((stream = fopen (argv [argc-l] I "r"» == NULL) {

fprintf (stderr I

}

"%s couldn't open file %s\n"/argv[O],argv[argc-l]);
abort();
}
/* Note: the program name is stored in argv[O] only in
** MS-DOS versions 3.0 and later; in versions prior to
** 3.0, argv[O] contains the string "c"
*/

Sample command line:

update employ.dat

Output:

C:\BIN\UPDATE.EXE couldn't open file employ.dat

Abnormal program termination

92

abs

• Summary

include <stdlib.h>

int abs(n);
int n;

• Description

Required only for function declarations

Integer value

The abs function returns the absolute value of its integer argument n.

• Return Value

The abs function returns the absolute value of its argument. There is no
error return.

• See Also

cabs, fabs, labs

• Example

#include <stdlib.h>

int x = -4 1 y;

y = abs(x);
printf ("%d\t%d\n" I XI y) ;

Output:

-4 4

93

access

• Summary

include <io.h> Required only for function declarations

int access(pathname, mode);
char *pathname; File or directory path name

Permission setting int mode;

• Description

With files, the access function determines whether or not the specified file
exists and can be accessed in the given mode. The possible values for mode
and their meanings in the access call are as follows:

Value

06

04

02

00

Meaning

Check for read and write permission

Check for read permission

Check for write permission

Check for existence only

Under MS-DOS, all existing files have read access; thus the modes 00 and
04 produce the same result. Similarly, the modes 06 and 02 are equivalent,
since write access implies read access on MS-DOS.

With directories, access determines only whether or not the specified direc­
tory exists; under MS-DOS, all directories have read and write access.

• Return Value

The access function returns the value 0 if the file has the given mode. A
return value of -1 indicates that the named file does not exist or is not ac­
cessible in the given mode, and errno is set to one of the following values:

Value

EACCES

ENOENT

94

Meaning

Access denied: the file's permission setting does not
allow the specified access.

File or path name not found.

• See Also

chmod, fstat, open, stat

• Example

#include <io.h>
#include <fcntl.h>

int fh;

/* check for write permission */
if ((access("data",2)) == -1) {

perror("data file not writable");
exit(1);
}

else
fh = open("data",O_WRONLY);

access

96

acos

• Summary

indude <math.h>

double acos(x);
double X;

• Description

The acos function returns the arc cosine of x in the range 0 to 7r. The
value of x must be between -1 and 1.

• Return Value

The acos function returns the arc cosine result. If x is less than -lor
greater than 1, acos sets errno to EDaM, prints a DOMAIN error mes­
sage to stderr, and returns O.

Error handling can be modified by using the matherr routine.

• See Also

asin, atan, atan2, cos, matherr, sin, tan

96

acos

• Example

In the following example, the program continues prompting for input as
long as the value entered is not in the domain -1 to 1:

#include <math.h>

int errno;

main ()
{
float XI Y;

for (errno = EDOM; errno == EDOM; y acos(x» {
printf("Cosine = ");
scan f ("%f" I &x) ;
errno = 0;
}

printf ("Arc cosine of %f %f\n" I XI y) ;
}

Sample output:

Cosine = 3
acos: DOMAIN error
Cosine = -1.0
Arc cosine of -1.000000 3.141593

97

alloca

• Summary

include <malloe.h>

ehar *alloea(size};
unsigned size;

• Description

Required only for function declarations

Bytes to be allocated from stack

The alloca routine allocates size bytes from the program's stack. The allo­
cated space is automatically freed when the function that called alloca is
exited.

• Return Value

The alloca routine returns a char pointer to the allocated space. The
storage space pointed to by the return value is guaranteed to be suitably
aligned for storage of any type of object. To get a pointer to a type other
than char, use a type cast on the return value. The return value is NULL
if the space cannot be allocated.

• See Also

calloe, malloe, realloe

Warning

98

The pointer value returned by alloea should never be passed as an ar­
gument to free. Also, because alloca manipulates the stack, it should
be used only in simple assignment statements and never in an expres­
sion that is an argument to a function.

• Example

#include <malloc.h>

int *intarray;

/* Allocate space on the stack for 10 integers */

intarray = (int *)alloca(10*sizeof(int));

alloca

99

asctime

• Summary

include <time.h>

char *asctime(time};
struct tm *time;

• Description

Pointer to structure defined in time.h

The asctime function converts a time stored as a structure to a char­
acter string. The time value is usually obtained from a call to gmtime or
localtime, both of which return a pointer to a tm structure, defined in
time.h. (See gmtime for a description of the tm structure fields).

The string result produced by asctime contains exactly 26 characters and
has the form of the following example:

Man Jan 02 02:03:55 1980\n\0

A 24-hour clock is used. All fields have a constant width. The new-line
character ('\n') and the null character ('\ 0') occupy the last two positions
of the string.

• Return Value

The asctime function returns a pointer to the character string result.
There is no error return.

• See Also

ctime, ftime, gmtime, localtime, time, tzset

Note

The asctime and ctime functions use a single statically allocated
buffer to hold the return string. Each call to one of these routines de­
stroys the result of the previous call.

100

• Example

#include <time.h>
#include <stdio.h>

struct tm *newtime;
long ltime;

time(<ime);
newtime = localtime(<ime);

asctime

/* get time in seconds */
/* convert to struct tm */
/* print local time
** as string
*/

printf("the current date and time are %s\n",
asctime(newtime));

101

.
aSln

• Summary

include <rnath.h>

double asin(x);
double X;

• Description

The as in function calculates the arc sine of x in the range -If /2 to If /2.
The value of x must be between -1 and 1.

• Return Value

The asin function returns the arc sine result. If x is less than -lor greater
than 1, asin sets errno to EDOM, prints a DOMAIN error message to
stderr, and returns O.

Error handling can be modified by using the matherr routine.

• See Also

acos, atan, atan2, cos, matherr, sin, tan

102

• Example

#include <math.h>

int errno;

main ()
{
float x, y;

for (errno = EDOM; errno == EDOM; y asin(x» {
printf("Sine = ");
scanf("%f",&x);
errno = 0;
}

printf("Arc sine of %f = %f\n",x,y);
}

Output:

Sine = -1.001
asin: DOMAIN error
Sine = -1
Arc sine of -1.000000 -1.570796

.
aSID

103

assert

• Summary

include <assert.h>

void assert (expression);

• Description

The assert routine prints a diagnostic message and terminates the calling
process if expression is false (0). The diagnostic message has the form

Assertion failed: file filename, line linenumber

where filename is the name of the source file and linenumber is the line
number of the assertion that failed in the source file. No action is taken if
expression is true (nonzero).

The assert routine is typically used to identify program logic errors. The
given expression should be chosen so that it holds true only if the program
is operating as intended. After a program has been debugged, the special
"no debug" identifier NDEBUG can be used to remove assert calls from
the program. If NDEBUG is defined (by any value) with a /D command­
line option or with a # define directive, the C preprocessor removes all
assert calls from the program source.

• Return Value

There is no return value.

Note

The assert routine is implemented as a macro.

104

• Example

#include <stdio.h>
#include <assert.h>

analyze_string (string)
char *string;

{

assert

/* Test string before processing. */

assert(string != NULL);

assert(*string != '\0');

}

/* can't be NULL
** (there must
* * be a string)
*/

/* can't be empty */

106

atan - atan2

• Summary

include <math.h>

double atan(x);
double X;

Calculate arc tangent of X

double atan2(y, x);
double x;

Calculate arc tangent of y / x

double y;

• Description

The atan and atan2 functions calculate the arc tangent of x and y/ x,
respectively: atan returns a value in the range -iT /2 to iT /2; atan2 returns
a value in the range -iT to iT.

• Return Value

Both stan and atan2 return the arc tangent result. If both arguments of
atan2 are 0, the function sets err no to EDOM, prints a DOMAIN error
message to stderr, and returns O.

Error handling can be modified by using the matherr routine.

• See Also

acos, asin, cos, matherr, sin, tan

• Example

#include <math.h>

printf("%.7f\n",atan(1.0»;
printf("%.7f\n",atan2(-1.O,l.0);

Output:

0.7853982
-0.7853982

106

/* 71"/4 */
/* -71"/4 */

atof - atol

• Summary

include <math.h>
include <stdlib.h>

double atof(string);
char *string;

include <stdlib.h>

int atoi (string);
long atol(string);
char *string;

• Description

Use either math.h or stdlib.h

Convert string to double
String to be converted

Required only for function declarations

Convert string to int
Convert string to long
String to be converted

These functions convert a character string to a double-precision floatin~­
point value (atof), an integer value (atoi), or a long integer value (atol).
The input string is a sequence of characters that can be interpreted as a nu­
merical value of the specified type. The function stops reading the input
string at the first character it cannot recognize as part of a number (which
may be the null character terminating the string).

The atof function expects string to have the following form:

[whitespace] [sign] [digits] [.digits] [{ d: D: e: E} [sign] digits]

A whitespace consists of space and/or tab characters, which are ignored;
sign is either "+" or "-"; and digits are one or more decimal digits. If no di­
gits appear before the decimal point, at least one must appear after the
decimal point. The decimal digits may be followed by an exponent, which
consists of an introductory letter (d, D, e, or E) and an optionally signed
decimal integer.

The atoi and atol functions do not recognize decimal points or exponents.
The string argument for these functions has the form

[whitespace] [sign] digits

where whitespace, sign, and digits are exactly as described above for atof.

107

atof - atol

• Return Value

Each function returns the double, int, or long value produced by inter­
preting the input characters as a number. The return value is 0 (OL for
atol) if the input cannot be converted to a value of that type. The return
value is undefined in case of overflow.

• See Also

ecvt,fcvt, gcvt

• Example

The following examples show how numbers stored as strings can be con­
verted to numerical values using the atof, atoi, and atol functions:

#include <math.h>

extern long atol(\);
main(\)

Output:

{
char *s;
double x;
int i;
long 1;

s =" - 2 309 . 12E -15" ;
x = atof(s);
printf ("%e\t", x) ;

s = "7.8912654773d210";
x = atof(s);
printf("%e\t",x);

s =" -9885";
i = atoi(s);
printf("%d\t",i);

s = "98854 dollars";
1 = atol(s);
printf("%ld\n", 1) ;
}

-2.309120e-012 7.891265e+210

108

-9885 98854

bdos

• Summary

include < dos.h >

int bdos(dosfn, dosdx, dosal);
int dosfn;
unsigned int dosdx;
unsigned int dosal;

• Description

Function number
DX register value
AL register value

The bdos function invokes the MS-DOS system call specified by dosfn, after
placing the values specified by dosdx and dosal in the DX and AL registers,
respectively. The bdos function executes an INT 21H instruction to invoke
the system call. When the system call returns, bdos returns the content of
the AX register.

The bdos function is intended to be used to invoke DOS system calls that
either take no arguments or only take arguments in the DX (DH,DL)
and/or AL registers.

• Return V slue

The bdos function returns the value of the AX register after the system
call has completed.

• See Also

intdos, intdosx

Warning

This call should not be used to invoke system calls that indicate errors
by setting the carry flag. Since C programs do not have access to this
flag, the status of the return value cannot be determined. The intdos
function should be used in these cases.

109

bdos

• Example

The following example makes MS-DOS function call 9 (display string) to
display a prompt. Since the AL register value is not needed, 0 is used. This
example works correctly only in small- and medium-model programs.

#include <dos.h>

char *buffer = "Enter file name:$";

/* AL is not needed, so 0 is used */
bdos(9, (unsigned) buffer, 0) ;

110

bessel

• Summary

include <rnath.h>

double jO(x);

double j1(x);

double jn(n, x);

double yO(x);

double y1(x);

double yn(n, x);

double x;
int n;

• Description

Floating-point value
Integer order

The jO, jl, and jn routines return Bessel functions of the first kind of or­
ders-O, 1, and n, respectively.

The yO, yl, and yn routines return Bessel functions of the second kind of
orders-O, 1, and n, respectively. The argument x must be positive.

• Return Value

These functions return the result of a Bessel function of x.

For yO, yl, or yn, if x is negative, the routine sets errno to EDOM, prints
a DOMAIN error message to stderr, and returns the value negative
HUGE.

Error handling can be modified by using the matherr routine.

111

bessel

• See Also

matherr

• Example

#include <math.h>

double XI YI z;

Y jO{x);
z = yn{3/x);

112

bsearch

• Summary

include <search.h> Required only for function declarations

char *bsearch(key, base, nurn, width, compare);
char *key; Search key
char * base; Pointer to base of search data
unsigned nurn, width; Number and width of elements
int (*compare)(); Pointer to compare function

• Description

The bsearch function performs a binary search of a sorted array of num
elements, each of width bytes in size. Base is a pointer to the base of the ar­
ray to be searched, and key is the value being sought.

The compare argument is a pointer to a user-supplied routine that com­
pares two array elements and returns a value specifying their relationship.
The bsearch function will call the compare routine one or more times dur­
ing the search, passing pointers to two array elements on each call. The
routine must compare the elements, then return one of the following vaJues:

Value

Less than 0

o
Greater than 0

• Return Value

Meaning

eiementi less than eiement2

elementl identical to eiement2

elementl greater than element2

The bsearch function returns a pointer to the first occurrence of key in the
array pointed to by base. If key is not found, the function returns NULL.

• See Also

Hind, lsearch, qsort

113

bsearch

• Example

/* The bsearch function performs a binary search on a
** sorted array for a 'key' element and returns a pointer
** to the structure that matches the key, or NULL if
** there is no match.

#include <search.h>
#include <string.h>
#include <stdio.h>

int compare(); /* must declare as a function */

main (argc, argv)
int argc;
char **argv;
{

char **result;
char *key = "PATH";

/* The following statement finds the argument that
** starts with "PATH", assuming the arguments have been
** lexically sorted (see the example with the qsort
** reference entry for a way to sort them) .
*/

result = (char **)bsearch((char *)&key, (char *)argv,
argc, sizeof(char *) ,compare);

if (result)
printf("%s found\n",*result);

else
printf("PATH not found!\n");

}

int compare (argl, arg2)
char **argl, **arg2;

{
return(strncmp(*argl,*arg2,strlen(*argl))) ;
}

114

• Summary

include <rnath.h>

double cabs(z);
struct complex z;

• Description

cabs

Contains real and imaginary parts

The cabs function calculates the absolute value of a complex number. The
complex number must be a structure with type complex, defined in
math.h as follows:

struct complex {
double x/y;
};

A call to cabs is equivalent to the following:

sqrt(z.x*z.x + z.y*z.y)

• Return Value

The cabs function returns the absolute value as described above. On
overflow, the function calls the matherr routine, returns the value HUGE,
and sets errno to ERANGE.

• See Also

abs, fabs, labs

• Example

#include <math.h>

struct complex value;
double d;

value.x = 3.0;
value.y = 4.0;

d = cabs(value);

116

calloc

• Summary

include <malloc.h>

char *calloc(n, size};
unsigned n;
unsigned size;

• Description

Required only for function declarations

Number of elements
Length in bytes of each element

The calloc function allocates storage space for an array of n elements, each
of length size bytes. Each element is initialized to O.

• Return Value

The calloc function returns a char pointer to the allocated space. The
storage space pointed to by the return value is guaranteed to be suitably
aligned for storage of any type of object. To get a pointer to a type other
than char, use a type cast on the return value. The return value is NULL
if there is insufficient memory available.

• See Also

free, halloc, hfree, malloc, realloc

• Example

#include <malloc.h>

long *lalloc;

/* Allocate enough space for 40 long integers and
** initialize it to 0.
*/
lalloc = (long *)calloc(40,sizeof(long»;

116

• Summary

include <math.h>

double ceil(x};
double X;

• Description

ceil

Floating-point value

The ceil function returns a double value representing the smallest integer
that is greater than or equal to x.

• Return Value

The ceil function returns the double result. There is no error return.

• See Also

floor, fmod

• Example

#include <math.h>

double y;

y
y

ceil(1.05);
ceil(-1.05);

/* y
/* y

2.0 */
-1.0 */

117

cgets

• Summary

include <conio.h>

char *cgets(str);
char *str;

• Description

Required only for function declarations

Storage location for data

The cgets function reads a string of characters directly from the console
and stores the string and its length in the location pointed to by str. The
str must be a pointer to a character array. The first element of the array,
str[O], must contain the maximum length (in characters) of the string to be
read. The array must have enough elements to hold the string, a terminat­
ing null character ('\ 0'), and two additional bytes.

The cgets function continues to read characters until a carriage-return­
line-feed combination (CR-LF) is read, or the specified number of characters
have been read. The string is stored starting at str[2]. If a CR-LF combina­
tion is read, it is replaced with a null character ('\0') before being stored.
The cgets function then stores the actual length of the string in the second
array element, str[I].

• Return Value

The cgets function returns a pointer to the start of the string, which is at
str[2]. There is no error return.

• See Also

getch, getche

118

• Example

#include <conio.h>

char buffer[82J;
char *result;
int numread;

buffer 80; / maximum number of characters */
/* note that *buffer is equivalent
* * to *buffer [OJ
*/

/* The following statements input a string from the
** keyboard and find its length:
*/

result = cgets(buffer);
numread = buffer[lJ;

/* Result points to the string, and numread is its
** length (not counting the carriage return, which has
** been replaced by a null character).
*/

cgets

119

chdir

• Summary

inelude <direct.h>

int chdir(pathname);
char * pathname;

• Description

Required only for function declarations

Pathname of new working directory

The chdir function causes the current working directory to be changed to
the directory specified by pathname; pathname must refer to an existing
directory.

• Return Value

The chdir function returns a value of 0 if the working directory is success­
fully changed. A return value of -1 indicates an error; in this case errno is
set to ENOENT, indicating that the specified path name could not be
found. No error occurs if pathname specifies the current working directory.

• See Also

mkdir, rmdir, system

• Example

#include <direct.h>

/* The following statement changes the current working
** directory to the root directory:
*/

chdir{"/") ; /* Note: equivalent to chdir{"\\") */

120

chmod

• Summary

include <sys\ types.h>
include <sys\ stat.h>
include <io.h>

int ehrnod(pathname, pmode);
ehar ... pathname;
int pmode;

• Description

Required only for function declarations

Path name of existing file
Permission setting for file

The chmod function changes the permission setting of the file specified by
pathname. The permission setting controls read and write access to the file.
The constant expression pmode contains one or both of the manifest con­
stants S_IWRITE and S_IREAD, defined in sys\stat.h. Any other
values for pmode are ignored. When both constants are given, they are
joined with the bitwise OR operator (I). The meaning of the pmode argu­
ment is as follows:

Value

S_IWRITE

S_IREAD

S_ IREAD I S_ IWRITE

Meaning

Writing permitted

Reading permitted

Reading and writing permitted

If write permission is not given, the file is made read only. Under MS-DOS,
all files are readable; it is not possible to give write-only permission. Thus
the modes S_IWRITE and S_IREAD I S_IWRITE are equivalent.

• Return V slue

The chmod function returns the value 0 if the permission setting is suc­
cessfully changed. A return value of -1 indicates an error; in this case,
errno is set to ENOENT, indicating that the specified file could not be
found.

121

chmod

• See Also

access, creat,fstat, open,stat

• Example

#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>

int result;

result = chmod("data",S_IREAD); /* make file read only */
if (result == -1)

perror("can't change file mode");

122

• Summary

include <io.h>

int chsize(handle, size);
int handle;
long size;

• Description

Required only for function declarations

Handle referring to open file
New length of file in bytes

chsize

The chsize function extends or truncates the file associated with handle to
the length specified by size. The file must be open in a mode that permits
writing. Null characters ('\ 0') are appended if the file is extended. If the
file is truncated, all data from the end of the shortened file to the original
length of the file are lost.

• Return Value

The chsize function returns the value 0 if the file size is successfully
changed. A return value of -1 indicates an error, and errno is set to one of
the following values:

Value

EACCES

EBADF
ENOSPC

• See Also

close, creat, open

Meaning

The specified file is read only. Under MS-DOS 3.0
and later, EACCES may indicate a locking viola­
tion (the specified file is locked against access).

Invalid file handle.

No space left on device.

123

chsize

• Example

#include <io.h>
#include <fcntl.h>
#include <sys\types.h>
#include <sys\stat.h>

#define MAXSIZE 32768L

int fh, result;

/* Make sure the file is no longer than 32K before
** closing it.
*/

if (lseek(fh / OL/2) > MAXSIZE)
result = chsize(fh/MAXSIZE);

124

_clear87

• Summary

include <f1oat.h>

unsigned int _ clear87(); Get and clear floating-point status word

• Description

The _ clear87 function gets and clears the floating-point status word. The
floating-point status word is a combination of the 8087/80287 status word
and other conditions detected by the 8087/80287 exception handler, such as
floating-point stack overflow and underflow.

• Return Value

The bits in the value returned indicate the floating-point status. See the
floa.t.h include file for a complete definition of the bits returned by
_clear87.

Note

Many of the math library functions modify the 8087/80287 status word,
with unpredictable results. Return values from _ clear87 and
_ status87 become more reliable as fewer floating-point operations are
performed between known states of the floating-point status word.

• See Also

_ control87, _ status87

125

_clear87

• Example

#include <stdio.h>
#include <float.h>

double a le-40,b;
float x,y;

main ()
{
printf("status
y = a;
printf("status
b = y;
printf ("status
}

126

= %.4x - clear\n",_clear87(»;
/* store into y is inexact and underflows */
= %.4x - inexact, underflow\n",_clear87(»;
/* y is denormal */
= %.4x - denormal\n",_clear87(»;

clearerr

• Summary

include <stdio.h>

void clearerr(stream);
FILE *stream;

• Description

Pointer to file structure

The clearerr function resets the error indicator and end-of-file indicator
for the specified stream to O. Error indicators are not automatically
cleared; once the error indicator for a specified stream is set, operations on
that stream continue to return an error value until clear err or rewind is
called.

• See Also

eo~feo~ ferror, perror

• Example

#include <stdio.h>
#include <stdlib.h>

FILE *stream;
int c;

/* The following statements output data to a
** stream and then check to make sure a write error has
** not occurred. The stream must have been previously
** opened for writing.
*/

if ((c=getc(stream)) == EOF) {

}

if (ferror(stream)) {
fprintf(stderr, "write error\n");
clearerr(stream) ;
}

127

close

• Summary

include <io.h>

int close(handle);
int handle;

• Description

Required only for function declarations

Handle referring to open file

The close function closes the file associated with handle.

• Return Value

The close function returns 0 if the file was successfully closed. A return
value of -1 indicates an error, and errno is set to EBADF, indicating an
invalid file-handle argument.

• See Also

chsize, creat, dup, dup2, open, unlink

• Example

#include <io.h>
#include <fcntl.h>

int fh;

fh = open ("data" I O_RDONLY) ;

close(fh) ;

128

• Summary

include <f1oat.h>

unsigned int _ control87(new, mask);
unsigned int new;
unsigned int mask;

• Description

_contro187

Get floating-point control word
New control-word bit values
Mask for new control-word bits to set

The _ control87 function gets and sets the floating-point control word.
The floating-point control word allows the program to change the precision,
rounding, and infinity modes in the floating-point math package. Floating­
point exceptions can also be masked or unmasked using the _ control87
function.

If the value for mask is equal to 0, then _ control87 gets the floating-point
control word. If mask is nonzero, then a new value for the control word is
set in the following manner: for any bit that is on (equal to 1) in mask, the
corresponding bit in new is used to update the control word. In other
words,

fpcntr 1 = ((fpcntr 1 & Nmask) I (new & mask))

where fpcntr 1 is the floating-point control word.

• Return Value

The bits in the value returned indicate the floating-point control state. See
the float.h include file for a complete definition of the bits returned by
_ control8 7.

• See Also

_ clear87, _status87

129

_control87

• Example

#include <stdio.h>
#include <float.h>

double a = .1;

main ()
{
/* get control word */
printf("control = %.4x\n", _contro187(O,O»;
printf("a*a = .01 = %.15e\n",a*a);

130

/* set precision to 24 bits */
_contro187(PC_24,MCW_PC);
printf("a*a = .01 (rounded to 24 bits)

/* restore to initial default */
_contro187(CW_DEFAULT,Oxffff);
printf("a*a = .01 = %.15e\n",a*a);
}

%.15e\n",a*a);

cos - cosh

• Summary

include <math.h>

double cos(x); Calculate cosine of x

double cosh(x); Calculate hyperbolic cosine of x

double x; Radians

• Description

The cos and cosh functions return the cosine and hyperbolic cosine of x,
respectively.

• Return Value

The cos function returns the cosine of x. If x is large, a partial loss of
significance in the result may occur. In such cases, cos generates a PLOSS
error, but no message is printed. If x is so large that a total loss of sig­
nificance results, cos prints a TLOSS error message to sdterr and returns
o. In both cases, errno is set to ERANGE.

The cosh function returns the hyperbolic cosine of x. If the result is too
large, cosh returns the value HUGE and sets errno to ERANGE. Error
handling can be modified by using the matherr routine.

• See Also

acos, asin, atan, atan2, matherr, sin, sinh, tan, tanh

• Example

#include <math.h>

double x, y;

y cos(x);
y cosh(x);

131

cprintf

• Summary

include < conio.h > Required only for function declarations

int cprintf(jormat-string[, argument ...]);
char * format-string; Format control string

• Description

The cprintf function formats and prints a series of characters and values
directly to the console, using the putch function to output characters.
Each argument (if any) is converted and output according to the
corresponding format specification in the format-string. The format-string
has the same form and function as the format-string argument for the
printf function; see the printf reference page for a description of the
format-string and arguments.

• Return Value

The cprintf function returns the number of characters printed.

• See Also

fprintf, printf, sprintf, vprintf

Note

Unlike the fprintf, printf, and sprintf functions, cprintf does not
translate line-feed (LF) characters into carriage-return-line-feed combi­
nations (CR-LF) on output.

132

cprintf

• Example

#include <conio.h>

int i = -16, j = 29;
unsigned int k = 511;

/* The following statement prints i=-16, j=Ox1d, k=511 */.
cprintf ("i=%d, j=%#x, k=%u\n", i, j, k) ;

133

cputs

• Summary

include <conio.h>

void cputs(str);
char *str;

• Description

Required only for function declarations

Pointer to output string

The cputs function writes the null-terminated string pointed to by str
directly to the console. Note that a carriage-return-line-feed combination
(CR-LF) is not automatically appended to the string after writing.

• Return Value

There is no return value.

• See Also

putch

• Example

#include <conio.h>

char *buffer = "Insert data disk in drive a: \r\n";

/* The following statement outputs a prompt to the
** console.
*/

cputs(buffer);

134

• Summary

include <sys\ types.h>
include <sys\ stat.h>
include <io.h>

int creat(pathname, pmode};
char * pathname;
int pmode;

• Description

Required only for function declarations

Path name of new file
Permission setting

creat

The creat function either creates a new file or opens and truncates an
existing file. If the file specified by pathname does not exist, a new file is
created with the given permission setting and opened for writing. If the file
already exists and its permission setting allows writing, creat truncates the
file to length 0, destroying the previous contents, and opens it for writing.

The permission setting, pmode, applies to newly created files only. The new
file receives the specified permission setting after it is closed for the first
time. The integer expression pmode contains one or both of the manifest
constants SJWRITE and SJREAD, defined in sys \stat.h. When both
constants are given, they are joined with the bitwise OR operator (I). The
meaning of the pmode argument is as follows:

Value

SJWRITE

SJREAD

SJREAD : SJWRITE

Meaning

W ri ting permitted

Reading permitted

Reading and writing permitted

If write permission is not given, the file is read only. Under MS-DOS it is
not possible to ~ive write-only permission. Thus, the modes SJWRITE
and SJREAD I SJWRITE are equivalent. Under MS-DOS Version 3.0
and later, files opened using creat are always opened in compatibility mode
(see sopen).

The creat function applies the current file-permission mask to pmode
before setting the permissions (see umask).

135

creat

• Return Value

The creat function returns a handle for the created file if the call is suc­
cessful. A return value of -1 indicates an error, and errno is set to one of
the following values:

Value

EACCES

EMFlLE

ENOENT

• See Also

Meaning

Path name specifies an existing read-only file or
specifies a directory instead of a file.

No more file handles available (too many open
files).

Path name not found.

chmod, chsize, close, dup, dup2, open, sopen, umask

Note

The creat routine is provided primarily for compatibility with previous
libraries. A call to open with the O_CREAT and O_TRUNC values
specified in the oflag argument is equivalent and is preferable for new
code .

• Example

#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>
#include <stdlib.h>

int fh;

fh = creat{"data",S_IREADIS_IWRITE);

if (fh == -1)
perror{"couldn't create data file");

136

cscanf

• Summary

include <conio.h> Required only for function declarations

int cscanf(Jormat-string[, argument ...]);
char * format-string; Format control string

• Description

The cscanf function reads data directly from the console into the locations
given by the arguments (if any), using the getche function to read charac­
ters. Each argument must be a pointer to a variable with a type that
corresponds to a type specifier in the format-string. The format-string con­
trols the interpretation of the input fields and has the same form and func­
tion as the format-string argument for the scanf function; see the scanf
reference page for a description of the format-string.

• Return Value

The cscanf function returns the number of fields that were successfully
converted and assigned. The return value does not include fields that were
read but not assigned.

The return value is EOF for an attempt to read at end-of-file. A return
value of 0 means that no fields were assigned.

• See Also

fscanf, scanf, sscanf

137

cscanf

• Example

#include <conio.h>

int result;
char buffer[20];

cprintf("Please enter file name: ");

/* The following statement stores string input
** from the keyboard:
*/

result = cscanf("%19s",buffer);

/* Result is the number of correctly matched input
** fields. It is 0 if none could be matched.
*/

138

• Summary

include <time.h>

char *ctime(time);
long *time;

• Description

ctime

Required only for function declarations

Poin ter to stored time

The ctime function converts a time stored as a long value to a character
string. The time value is usually obtained from a call to time, which
returns the number of seconds elapsed since 00:00:00 Greenwich mean time,
January 1, 1970.

The string result produced by ctime contains exactly 26 characters and has
the form of the following example:

Mon Jan 02 02:03:55 1980\n\0

A 24-hour clock is used. All fields have a constant width. The new-line
character ('\n') and the null character ('\0') occupy the last two positions
of the string.

Under MS-DOS, dates prior to 1980 are not understood. If time represents a
date before January 1, 1980, ctime returns the character string representa­
tion of 00:00:00 January 1, 1980.

• Return Value

The ctime function returns a pointer to the character string result. There
is no error return.

• See Also

asctime, ftime, gmtime, localtime, time

139

ctime

Note

The asctime and ctime functions use a single statically allocated
buffer for holding the return string. Each call to one of these routines
destroys the result of the previous call .

• Example

#include <time.h>
#include <stdio.h>

long Itime;

time (<ime) ;
printf("the time is %s\n",ctime(<ime));

140

dieeetomsbin - dmsbintoieee

• Summary

include <math.h>

int dieeetomsbin(srcB, dstB); IEEE double to MS binary double

int dmsbintoieee(src8, dstB); MS binary double to IEEE double

double *srcB, *dstB;

• Description

The dieeetomsbin routine converts a double-precision number in IEEE
format to Microsoft binary format. The dmsbintoieee routine converts a
double-precision number in Microsoft binary format to IEEE format.

These routines allow C programs (which store floating-point numbers in the
IEEE format) to use numeric data in random access data files created with
Microsoft BASIC (which stores floating-point numbers in the Microsoft
binary format), and vice versa.

The argument src8 is a pointer to the double value to be converted. The
result is stored at the location given by dst8.

• Return Value

These functions return 0 if the conversion is successful and 1 if the conver­
sion caused an overflow.

• See Also

fieeetomsbin, fmsbintoieee

Note

These routines do not handle IEEE NANs and infinities. IEEE denor­
mals are treated as 0 in the conversions.

141

difftirne

• Summary

include <tirne.h>

double difftime{ time2, timd};
tirne_ t time2;
time_ t timd;

• Description

Required only for function declarations

Type time_ t defined in time.h

The difftime function computes the difference time2 - time1.

• Return Value

The difftime function returns the elapsed time in seconds from timel to
time2 as a double-precision number.

• See Also

time

142

difftime

• Example

#include <time.h>

int mark[10000];

main ()
{
/* This is an example of a timing application using
** difftime. It calculates how long it takes to find
** the prime numbers from 3 to 10000. To print out
** the primes, delete the outermost loop and the comment
** delimiters around "printf("%d\t",n);"
*/

time t start, finish;
register int i, loop, n, num, step;

time(&start);
for (loop = 0; loop < 1000; ++loop)

for (num = O,n = 3; n < 10000; n += 2)
if (! mark [n]) {

/* printf ("%d\t", n); */
step = 2*n; .
for (i = 3*n; i < 10000; i += step)

mark [i] -1;
++num;
}

time(&finish);

/* Prints average of 1000 loops through "sieve": */

printf("\nProgram takes %f seconds to find %d primes.\n",
difftime(finish,start)/1000, num);

}

Output:

Program takes 0.482000 seconds to find 1228 primes.

143

dosexterr

• Summary

include < dos.h >

int dosexterr (buffer);
struct DOSERROR *buffer;

• Description

The dosexterr function obtains the register values returned by the MS­
DOS system call 59H and stores the values in the structure pointed to by
buffer. This function is useful when making system calls under MS-DOS
Version 3.0 or later, which offers extended error handling. See your
Microsoft MS-DOS Programmer's Reference Manual for details on MS-DOS
system calls.

The structure type DOSERROR is defined in dos.h as follows:

struct DOSERROR {
int exterror;
char class;
char action;
char locus;
};

Giving a NULL pointer argument causes dosexterr to return the value in
AX without filling in the structure fields.

• Return Value

The dosexterr function returns the value in the AX register (identical to
the value in the exterror structure field).

• See Also

perror

144

dosexterr

Note

The dosexterr function should be used only under MS-DOS Version 3.0
or later .

• Example

#include <dos.h>
#include <fcntl.h>
#include <stdio.h>

struct DOSERROR doserror;
int fd;

if ((fd = open ("test.dat", O_RDONLY» == -1) {
dosexterr(&doserror) ;
printf("error=%d, class=%d, action=%d, locus=%d\n" ,

doserror.exterror, doserror.class,
doserror.action, doserror.locus);

}

146

dup - dup2

• Summary

include <io.h>

int dup(handle};
int handle;

Required only for function declarations

Create second handle for open file
Handle referring to open file

int dup2(handle1, handle2}; Force handle2 to refer to handlel file

int handlel;
int handle2;

• Description

Handle referring to open file
Any handle value

The dup and dup2 functions cause a second file handle to be associated
with a currently open file. Operations on the file can be carried out using
either file handle, since all handles associated with a given file use the same
file pointer. The type of access allowed for the file is unaffected by the crea­
tion of a new handle.

The dup function returns the next available file handle for the given file.
The dup2 function forces the given handle, handle2, to refer to the same
file as handlel. If handle2 is associated with an open file at the time of the
call, that file is closed.

• Return Value

The dup function returns a new file handle. The dup2 function returns 0
to indicate success. Both functions return -1 if an error occurs, and set
errno to one of the following values:

Value

EBADF
EMFILE

146

Meaning

Invalid file handle

No more file handles available (too many open files)

dup - dup2

• See Also

close, creat, open

• Example

#include <io.h>
#include <stdlib.h>

int fh;

/* Get another file handle to refer to the same file as
** file handle 1 (stdout).
*/

fh = dup (1) ;

if (fh == -1)
perror ("dup (1) failure");

/* Now make file handle 3 refer to the same file as file
** handle 1 (stdout). If file handle 3 is already open,
** it is closed first.
*/

fh = dup2(l,3);

if (fh != 0)
perror ("dup2 (1, 3) failure");

147

ecvt

• Sum.m.ary

inelude <stdlib.h> Required only for function declarations

char *ecvt(value, ndigits, decptr, signptr);
double value; Number to be converted
int ndigits; Number of digits stored
int *decptr; Pointer to stored decimal point position
int *signptr; Pointer to stored sign indicator

• Description

The ecvt function converts a floating-point number to a character string.
The value is the floating-point number to be converted. Ecvt stores ndigits
digits of value as a string and appends a null character ('\ 0'). If the
number of digits in value exceeds ndigits, the low-order digit is rounded. If
there are fewer than ndigits digits, the string is padded with zeros.

Only digits are stored in the string. The position of the decimal point and
the sign of value may be obtained after the call from decptr and signptr.
The argument decptr points to an integer value giving the position of the
decimal point with respect to the beginning of the string. A 0 or negative
integer value indicates that the decimal point lies to the left of the first
digit. The argument signptr points to an integer indicating the sign of the
converted number. If the integer value is 0, the number is positive. Other­
wise, the number is negative.

• Return Value

The ecvt function returns a pointer to the string of digits. There is no error
return.

• See Also

at of, atoi, atol, fcvt, gcvt

148

ecvt

Note

The ecvt and fcvt functions use a single statically allocated buffer for
the conversion. Each call to one of these routines destroys the result of
the previous call .

• Example

#include <stdlib.h>

int decimal, sign;
char *buffer;
int precision = 10;

buffer = ecvt(3.1415926535, preClSlon, &decimal, &sign);
/* buffer contains "3141592654", decimal = I, sign = 0 */

149

eof

• Summary

inc.lude <io.h>

int eof(handle);
int handle;

• Description

Required only for function declarations

Handle referring to open file

The eof function determines whether end-of-file has been reached for the
file associated with handle.

• Return Value

The eof function returns the value 1 if the current position is end-of-file, 0
if it is not. A return value of -1 indicates an error; in this case, errno is set
to EBADF, indicating an invalid file handle.

• See Also

clearerr, feof, ferror, perror

• Example

#include <io.h>
#include <fcntl.h>

int fh, count;
char buf[10];

fh = open ("data",O_RDONLY) ;

/* The following statement tests for an end-of-file condition
** before reading. */

while (!eof(fh» {
count = read(fh, buf , 10);

}

160

execl - execvpe

• Summary

include <process.h> Required only for function declarations

int execl(pathname, argO, arg1. .. , argn, NULL);

int execle(pathname, argO, arg1. .. , argn, NULL, envp);

int execlp(pathname, argO, arg1. .. , argn, NULL);

int execlpe(pathname, argO, arg1 ... , argn, NULL, envp);

int execv(pathname, argv);

int execve(pathname, argv, envp);

int execvp(pathname, argv);

int execvpe(pathname, argv, envp);

char * pathname;
char * argO, * arg1, ... , * argn;
char * argv[];
char * envp[];

• Description

Path name of file to be executed
List of poin ters to arguments
Array of pointers to arguments
Array of pointers to environment
settings

The exec functions load and execute new child processes. When the call is
successful, the child process is placed in the memory previously occupied by
the calling process. Sufficient memory must be available for loading and
executing the child process.

The pathname argument specifies the file to be executed as the child pro­
cess. The pathname can specify a full path (from the root), a partial path
(from the current working directory), or just a file name. If pathname does
not have a file-name extension or does not end with a period (.), the exec
functions for the file; if unsuccessful, the extension .EXE is attempted. If
pathname has an extension, only that extension is used. If pathname ends
with a period, the exec calls search for pathname with no extension. The
execlp, execlpe, execvp, and execvpe routines search for pathname
(using the same procedures) in the directories specified by the PATH
environment variable.

161

execl - execvpe

Arguments are passed to the new process by giving one or more pointers to
character strings as arguments in the exec call. These character strings
form the argument list for the child process. The combined length of the
strings forming the argument list for the new process must not exceed 128
bytes. The terminating null character ('\ 0') for each string is not included
in the count, but space characters (automatically inserted to separate argu­
ments) are counted.

The argument pointers may be passed as separate arguments (execl,
execle, execlp, and execlpe) or as an array of pointers (execv, execve,
execvp, and execvpe). At least one argument, argO or argv[O]' must be
passed to the child process. By convention, this argument is a copy of the
pathname argument. (A different value will not produce an error.) Under
versions of MS-DOS earlier than 3.0, the passed value of argO or argv[O] is
not available for use in the child process. However, under MS-DOS 3.0 and
later, the pathname is available as argO or argv[O].

The execl, execle, execlp, and execlpe calls are typically used in cases
where the number of arguments is known in advance. The argument argO is
usually a pointer to pathname. The arguments argl through argn point to
the character strings forming the new argument list. A NULL pointer
must follow argn to mark the end of the argument list.

The execv, execve, execvp, and execvpe calls are useful when the
number of arguments to the new process is variable. Pointers to the argu­
ments are passed as an array, argv. The argument argv[O] is usually a
pointer to pathname. The arguments argv[l] through argv[n] point to the
character strings forming the new argument list. The argument argv[n+l]
must be a NULL pointer to mark the end of the argument list.

Files that are open when an exec call is made remain open in the new pro­
cess. In the execl, execlp, execv, and execvp calls, the child process inher­
its the environment of the parent. The execle, execlpe, execve, and
execvpe calls allow the user to alter the environment for the child process
by passing a list of environment settings through the envp argument. The
argument envp is an array of character pointers, each element of which
(except for the final element) points to a null-terminated string defining an
environment variable. Such a string usually has the form

NAME=value

where NAME is the name of an environment variable and value is the
string value to which that variable is set. (Notice that value is not enclosed
in double quotes.) The final element of the envp array should be NULL.
When envp itself is NULL, the child process inherits the environment set­
tings of the parent process.

162

execl - execvpe

• Return Value

The exec functions do not normally return to the calling process. If an
exec function returns, an error has occurred and the return value is -1. The
errno variable is set to one of the following values:

Value

E2BIG

EACCES

EMFlLE

ENOENT
ENOEXEC

ENOMEM

• See Also

Meaning

The argument list exceeds 128 bytes or the space
required for the environment information exceeds
32K.

Locking or sharing violation on the specified file
(MS-DOS Version 3.0 or later).

Too many files open (the specified file must be
opened to determine whether it is executable).

File or path name not found.

The specified file is not executable or has an invalid
executable file format.

Not enough memory is available to execute the
child process; or the available memory has been
corrupted; or an invalid block exists, indicating
that the parent process was not allocated properly.

abort, exit, _ exit, onexit, spawnl, spawnle, spawnlp, spawnlpe,
spawnv, spawnve, spawnvp, spawnvpe, system

Note

The exec calls do not preserve the translation modes of open files. If
the child process must use files inherited from the parent, the setmode
routine should be used to set the translation mode of these files to the
desired mode.

Signal settings are not preserved in child processes created by calls to
exec routines. The signal settings are reset to the default in the child
process.

163

exeel - exeevpe

• Example

#include <process.h>
#include <stdio.h>

extern char **environ;

char *args[4J;
int result;

args [OJ
args [lJ
args [2J
args [3J

"child" ;
"one";
"two";
NULL;

/* All of the following statements attempt to execute a
** process called "child.exe" and pass it three arguments.
*/

result
result

result
result
result
result

164

execl("child.exe","child","one","two"/NULL);
execle("child.exe", "child","one", "two"/NULL,

environ) ;
execlp("child.exe","child","one","two",NULL);
execv("child.exe",args);
execve("child.exe",args,environ);
execvp("child.exe",args) ;

exit - _exit

• Summary

include <process.h>
include <stdlib.h>

void exit(status);

void _ exit(status);

int status;

• Description

Required only for function declarations
Use either process.h or stdlib.h

Terminate after closing files

Terminate without flushing stream buffers

Exit status

The exit and _ exit functions terminate the calling process. The exit func­
tion flushes all buffers and closes all open files before terminating the pro­
cess. The _ exit function terminates the process without flushing stream
buffers. The status value is typically set to 0 to indicate a normal exit and
set to some other value to indicate an error.

Although the exit and _ exit calls do not return a value, the low-order byte
of status is made available to the waiting parent process, if there is one,
after the calling process exits. If there is no parent process waiting on the
exiting process, the status value is lost.

• Return Value

There is no return value.

• See Also

abort, execl, execle, execlp, execv, execve, execvp, onexit, spawnl,
spawnle, spawnlp, spawnv, spawnve, spawnvp, system

166

exit - _exit

• Example

#include <process.h>
#include <stdio.h>

FILE *stream;

/* The following statements cause the process to
** terminate, after flushing buffers and closing
** open files, if another file cannot be opened:
*/

if ((stream = fopen("data","r")) == NULL) {
fprintf(stderr, "couldn't open data file\n");
exit(l);
}

/* The following statements cause the process to
** terminate immediately if a file cannot be opened:
*/

if ((stream = fopen ("data" I "r")) == NULL) {
fprintf(stderr, "couldn't open data file\n");
_exit(l);
}

156

• Summary

include <math.h>

double exp(x);
double X;

• Description

Floating-point value

The exp function returns the exponential function of its floating-point
argument x.

• Return Value

exp

The exp function returns eX. On overflow, the function returns HUGE and
sets errno to ERANGE; on underflow, exp returns 0, but does not set
errno.

• See Also

log

• Example

#include <math.h>

double X, y;

y exp (x) ;

167

_expand

• SUInInary

include <rnalloc.h>

char *_ expand(ptr, size);
char *ptr;
unsigned size;

• Description

Required only for function declarations

Pointer to previously allocated memory block
New size in bytes

The _ expand function changes the size of a previously allocated memory
block by attempting to expand or contract the block without moving its
location in the heap. The ptr argument points to the beginning of the
block. The size argument gives the new size of the block, in bytes. The
c?ntents of the block are unchanged up to the shorter of the new and old
SIzes.

The ptr argument can also point to a block that has been freed, as long as
there has been no intervening call to calloc, _ expand, halloc, Inalloc, or
realloc since the block was freed. If ptr points to a freed block, the block
will remain free after the call to _ expand.

• Return Value

The _ expand function returns a char pointer to the reallocated memory
block. Unlike realloc, _ expand cannot move a block to change its size.
This means the ptr argument to _ expand is the same as the return value if
there is sufficient memory available to expand the block without moving it.

The return value is NULL if there is insufficient memory available to
expand the block to the given size without moving it. In this case, the item
pointed to by ptr will have been expanded as much as possible in its current
location.

The storage space pointed to by the return value is guaranteed to be suit­
ably aligned for storage of any type of object. The new size of the item can
be checked with the _ Insize function. To get a pointer to a type other than
char, use a type cast on the return value.

168

_expand

• See Also

calloc, free, halloc, malloc, _ msize, realloc

• Example

#include <stdio.h>
#include <malloc.h>

main ()

{
long *oldptr;
unsigned int newsize = 64000;

oldptr = (long *)malloc(10000*sizeof(long»;
printf("Size of memory block pointed to by oldptr

_msize(oldptr»;

if (_expand (oldptr,newsize) != NULL)

%u\n" ,

printf("expand was able to increase block to %u\n" ,
_msize(oldptr»;

else
printf("expand was able to increase block to only %u\n",

_msize(oldptr»;
}

Sample output:

Size of memory block pointed to by oldptr = 40000
expand was able to increase block to only 44718

169

fabs

• Summary

include <math.h>

double fabs(x);
double X;

• Description

Floating-point value

The fabs function returns the absolute value of its floating-point argument.

• Return Value

The fabs function returns the absolute value of its argument. There is no
error return.

• See Also

abs, cabs, labs

• Example

#include <math.h>

double X, y;

y fabs(x);

160

• Summary

include <stdio.h>

int fclose(stream);
FILE *stream;

int fcloseall();

• Description

fclose - fcloseall

Close an open stream
Pointer to file structure

Close all open streams

The fclose and fcloseall functions close a stream or streams. All buffers
associated with the stream(s) are flushed prior to closing. System-allocated
buffers are released when the stream is closed. Buffers assigned using
setbuf are not automatically released.

The fclose function closes the given stream. The fcloseall function closes
all open streams except stdin, stdout, stderr, stdaux, and stdprn.

• Return Value

The fclose function returns 0 if the stream is successfully closed. The
fcloseall function returns the total number of streams closed. Both func­
tions return EOF to indicate an error.

• See Also

close, fdopen, mush, fopen, freopen

161

fclose - fcloseall

• Example

#include <stdio.h>

FILE *stream;
int numclosed;

stream = fopen{"data","r");

/* The following statement closes the stream: */

fclose(stream) ;

/* The following statement closes all streams except
** stdin, stdout, stderr, stdaux, and stdprn:
*/

numclosed fcloseall();

162

fcvt

• Summary

include <stdlib.h> Required only for function declarations

char fcvt(value, ndec, decptr, signptr);
double value; Number to be converted
int ndec; Number of digits after decimal point
int *decptr; Pointer to stored decimal-point position
int *signptr; Pointer to stored sign indicator

• Description

The fcvt function converts a floating-point number to a character string.
The value is the floating-point number to be converted. The fcvt function
stores the digits of value as a string and appends a null character ('\ 0').
The argument ndec specifies the number of digits to be stored after the
decimal point.

If the number of digits after the decimal point in value exceeds ndec, the
correct digit is rounded according to the FORTRAN F format. If there are
fewer than ndec digits of precision, the string is padded with zeros.

Only digits are stored in the string. The position of the decimal point and
the sign of value may be obtained after the call from decptr and signptr.
The argument decptr points to an integer value giving the position of the
decimal point with respect to the beginning of the string. A 0 or negative
integer value indicates that the decimal point lies to the left of the first
digit. The argument signptr points to an integer indicating the sign of
value. The integer is set to 0 if value is positive, and is set to a nonzero
number if value is negative.

• Return Value

The fcvt function returns a pointer to the string of digits. There is no error
return.

• See Also

atof, atoi, atol,ecvt, gcvt

163

fcvt

Note

The ecvt and fcvt functions use a single statically allocated buffer for
the conversion. Each call to one of these routines destroys the result of
the previous call.

• Example

#include <stdlib.h>

int decimal, sign;
char *buffer;
int precision = 10;

buffer = fcvt(3.1415926535,precision,&decimal,&sign);

/* buffer = "31415926535", decimal = 1, sign = 0 */

164

fdopen

• Summary

include <stdio.h>

FILE *fdopen(handle, type);
int handle;
char *type;

• Description

Handle referring to open file
Type of access permitted

The fdopen function associates an input/output stream with the file
identified by handle, thus allowing a file opened for "low-level" I/O to be
buffered and formatted. (See Section 4.7, "Input and Output," in Chapter
4, "Run-Time Routines by Category," for an explanation of stream I/O
versus low-level I/O.) The type character string specifies the type of access
requested for the file, as follows:

Type

"r"

"w"

"a"

"r+"

"w+"

" a+"

Note

Description

Open for reading (the file must exist).

Open an empty file for writing; if the given file exists, its
contents are destroyed.

Open for writing at the end of the file (appending); create
the file first if it doesn't exist.

Open for both reading and writing (the file must exist).

Open an empty file for both reading and writing; if the
given file exists, its contents are destroyed.

Open for reading and appending; create the file first if it
doesn't exist.

Use the "w" and "w+" modes with care, as they can destroy existing
files.

166

fdopen

The specified type must be compatible with the access mode and/or sharing
modes with which the file was opened. It is the user's responsibility to
ensure that this compatibility is maintained.

When a file is opened with "a" or "a+" type, all write operations take
place at the end of the file. Although the file pointer can be repositioned
using fseek or rewind, the file pointer is always moved back to the end of
the file before any write operation is carried out. Thus, existing data can­
not be overwritten.

When the "r+", "w+", or "a+" type is specified, both reading and
writing are allowed (the file is said to be open for "update"). However, when
switching from reading to writing or vice versa, there must be an interven­
ing fseek or rewind operation. The current position can be specified for
the fseek operation, if desired.

In addition to the values listed above, one of the following characters may
be appended to the type string to specify the translation mode for new
lines.

Character

t

b

Meaning

Open in text (translated) mode; carriage-return­
line-feed combinations (CR-LF) are translated into a
single line feed (LF) on input; line-feed characters are
translated to carriage-return-line-feed combinations
on output.

Open in binary (untranslated) mode; the above trans­
lations are suppressed.

If t or b is not given in the type string, the translation mode is defined by
the default mode variable JIDode.

• Return Value

The fdopen function returns a pointer to the open stream. A NULL
pointer value indicates an error.

166

• See Also

dup, dup2, fclose, fcloseall, fopen, freopen, open

• Example

#include <stdio.h>
#include <fcntl.h>

FILE *stream;
int fh;

fh = open("data"IO_RDONLY);

/* The following statement associates a stream with the
** open file handle:
*/

stream fdopen (fhl "r") ;

fdopen

167

feof

• Summary

include <stdio.h>

int feof(stream);
FILE *stream;

• Description

Pointer to file structure

The feof function determines whether the end of the given stream has been
reached. Once end-of-file is reached, read operations return an end-of-file
indicator until the stream is closed or rewind is called.

• Return Value

The feof function returns a nonzero value when the current position is
end-of-file. The value 0 is returned if the current position is not end-of-file.
There is no error return.

• See Also

clearerr, eof, ferror, perror

Note

The feof function is implemented as a macro .

• Example

#include <stdio.h>

char string[lOO];
fILE *stream;

/* The following statements process lines of input
** until eof occurs:
*/

while (!feof(stream»

168

if (fscanf (stream I" %s ", str ing))
process (string) ;

ferror

• Summary

include <stdio.h>

int ferror(stream);
FILE *stream;

• Description

Pointer to file structure

The ferror function tests for a reading or writing error on the given
stream. If an error has occurred, the error indicator for the stream remains
set until the stream is closed or rewound or until clearerr is called.

• Return Value

The ferror function returns a nonzero value to indicate an error on the
given stream. The return value 0 means no error has occurred.

• See Also

clearerr, eof, feof, fopen, perror

Note

The ferror function is implemented as a macro.

169

ferror

• Example

#include <stdio.h>

FILE *stream;
char *string;

/* The following statements output data to a
** stream and then check to make sure a write error has
** not occurred. The stream must have been previously
** opened for writing.
*/

fprintf (stream, "%s\n", string) ;
if (ferror(stream» {

170

fprintf (stderr, "write error\n");
clearerr(stream);
}

mush

• Summary

include <stdio.h>

int ffiush(stream);
FILE *stream;

• Description

Pointer to file structure

If the specified stream is open for output, the fHush function causes the
contents of the buffer associated with the stream to be written to the asso­
ciated file. If the stream is open for input, the fHush function clears the
contents of the buffer.

The stream remains open after the call. The fHush function has no effect
on an unbuffered stream.

• Return Value

The fHush function returns the value 0 if the buffer was successfully
flushed. The value 0 is also returned in cases where the specified stream has
no buffer or is open for reading only. A return value of EOF indicates an
error.

• See Also

fclose, flushall, setbuf

Note

Buffers are automatically flushed when they are full, when the stream is
closed, or when a program terminates normally without closing the
stream.

171

fflush

• Example

#include <stdio.h>

FILE *stream;
char buffer[BUFSIZ];

/* The following two statements flush a stream's buffer and
** set up a new buffer for that stream: */

fflush(stream) ;
setbuf(stream,buffer);

172

• Summary

include <malloc.h>

void _ firee(ptr);
char far * ptr;

• Description

_ffree

Required only for function declarations

Pointer to allocated memory block

The _ fl'ree function deallocates a memory block outside the default data
segment. The argument ptr points to a memory block previously allocated
through a call to _ fmalloc. The number of bytes freed is the number of
bytes specified when the block was allocated. After the call, the freed block
is again available for allocation.

• Return Value

There is no return value.

• See Also

_fmalloc, free, malloc

Note

Attempting to free an invalid ptr (a pointer not allocated with
_ fmalloc) may affect subsequent allocation and cause errors.

173

_ffree

• Example

#include <malloc.h>
#include <stdio.h>

char far *alloc;

/* Allocate 100 bytes and then free them.
*/

if ((alloc = _fmalloc(100» NULL) /* test for
** valid pointer */

printf("unable to allocate memory\n"):
else {

_ffree(alloc) ;

}

174

/* free memory for
** the heap
*/

fgetc - fgetchar

• Summary

include <stdio.h>
int fgetc(stream);
FILE *stream;

int fgetchar();

• Description

Read a character from stream
Pointer to file structure

Read a character from stdin

The fgetc function reads a single character from the input stream at the
current position and increases the associated file pointer (if any) to point to
the next character. The fgetchar function is equivalent to fgetc(stdin).

• Return Value

The fgetc and fgetchar functions return the character read. A return
value of EOF may indicate an error or end-of-file; however, the EOF value
is also a legitimate integer value, so feof or ferror should be used to verify
an error or end-of-file condition.

• See Also

fputc,fputchar,getc, get char

Note

The fgetc and fgetchar routines are identical to getc and getchar,
but are functions, not macros.

176

fgetc - fgetchar

• Example

#include <stdio.h>

FILE *stream;
char buffer[81];
int i;
int ch;

/* The following statements gather a line of input from
** a stream:
*/

for (i = 0; (i < 80) && ((ch
(ch != '\n'); i++)
buffer[i] = ch;

buffer[i] = '\0';

fgetc(stream» != EOF) &&

/* "fgetchar()" could be used instead of "fgetc(stream)" in
** the for statement above to gather a line of input from
** stdin (equivalent to "fgetc(stdin)").
*/

176

fgets

• Summary

include <stdio.h>

char *fgets(string, n, stream);
char *string;
int n;
FILE *stream;

• Description

Read a string from stream
Storage location for data
Number of characters stored
Pointer to file structure

The fgets function reads a string from the input stream and stores it in
string. Characters are read from the current stream position up to and
including the first new-line character ('\n'), up to the end of the stream, or
until the number of characters read is equal to n -1, whichever comes first.
The result is stored in string, and a null character ('\ 0') is appended. The
new line, if read, is included in the string. If n is equal to 1, string is empty
(" ").

The fgets function is similar to the library function gets; however, gets
replaces the new-line character with the null character.

• Return Value

The fgets function returns string. A NULL return value indicates an error
or end-of-file condition. Use feof or ferror to determine whether the
NULL value represents an error or end-of-file.

• See Also

fputs, gets, puts

177

fgets

• Example

#include <stdio.h>

FILE *stream;
char line [lOOJ, *result;

/* The following statement gets a line of input from a stream.
** No more than 99 characters, or up to \n, are read. */

result = fgets(line,lOO,stream);

178

fieeetomsbin - fmsbintoieee

• Summary

include <rnath.h>

int fieeetornsbin(src4, dst4); IEEE floating-point to MS binary floating-point

int frnsbintoieee(src4, dst4); MS binary floating-point to IEEE floating-point

• Description

The fieeetomsbin routine converts a single-precision floating-point num­
ber in IEEE format to Microsoft binary format. The fmsbintoieee routine
converts a floating-point number in Microsoft binary format to IEEE
format.

These routines allow C programs (which store floating-point numbers in the
IEEE format) to use numeric data in random access data files created with
Microsoft BASIC (which store floating-point numbers in the Microsoft
binary format), and vice versa.

The argument src4 points to the float value to be converted. The result is
stored at the location given by dst4.

• Return Value

These functions return 0 if the conversion is successful, and 1 if the conver­
sion caused an overflow.

• See Also

dieeetoms bin, dms bintoieee

Note

These routines do not handle IEEE NANs and infinities. IEEE denor­
mals are treated as 0 in the conversions.

179

filelength

• Summary

inelude <io.h>

long filelength(handle);
int handle;

• Description

Required only for function declarations

Handle referring to open file

The filelength function returns the length, in bytes, of the file associated
with the given handle.

• Return Value

The filelength function returns the file length in bytes. A return value of
-lL indicates an error, and errno is set to EBADF to indicate an invalid
file handle.

• See Also

chsize, fileno, fstat, stat

• Example

#include <io.h>
#include <stdio.h>
#include <stdlib.h>

FILE *stream;
long length;

stream = fopen("data","r");

/* The following statements attempt to determine the
** length of a file associated with a stream:
*/

length = filelength(fileno(stream));

if (length == -lL)
perror("filelength failed");

180

fileno

• Summary

include <stdio.h>

int fileno(stream);
FILE * stream;

• Description

Pointer to file structure

The file no function returns the file handle currently associated with the
given stream. If more than one handle is associated with the stream, the
return value is the handle assigned when the stream was initially opened.

• Return Value

The fileno function returns the file handle. There is no error return. The
result is undefined if stream does not specify an open file.

• See Also

fdopen, filelength, fopen, freopen

Note

Fileno is implemented as a macro .

• Example

#include <stdio.h>

int result;

/* The following statement determines the file handle
** of the stderr stream:
*/

result fileno(stderr); /* result is 2 */

181

floor

• Summary

include <math.h>

double floor(x);
double x;

• Description

Floating-point value

The floor function returns a floating-point value representing the largest
integer that is less than or equal to x.

• Return Value

The floor function returns the floating-point result. There is no error
return.

• See Also

ceil, fmod

• Example

#include <math.h>

double y;

y
y

182

floor (2.8) ;
floor(-2.8);

/* y
/* y

2.0 */
-3.0 */

flushall

• Summary

include <stdio.h>

int flushall();

• Description

The flushall function causes the contents of all buffers associated with
open output streams to be written to the associated files. All buffers associ­
ated with open input streams are cleared of their current contents; the
next read operation (if there is one) then reads new data from the input
files into the buffers.

All streams remain open after the call to flushall.

• Return Value

The flushall function returns the number of open streams (input and out­
put). There is no error return.

• See Also

mush

Note

Buffers are automatically flushed when they are full, when streams are
closed, or when a program terminates normally without closing
streams.

183

flushall

• Example

#include <stdio.h>

int numopen;

/* The following statement resolves any pending I/O on
** all streams: */

numopen = flushall();

184

_fmalloc

• Summary

include <rnalloc.h> Required only for function declarations

char far *_ frnalloc(size);
unsigned size;

• Description

Bytes in allocated block

The _ fmalloc function allocates a memory block of at least size bytes out­
side the default data segment. (The block may be larger than size bytes,
due to space required for alignment.)

• Return Value

The _ fmalloc function returns a far pointer to a char. The storage space
pointed to by the return value is guaranteed to be suitably aligned for
storage of any type of object. To get a pointer to a type other than char,
use a type cast on the return value.

If sufficient memory is not available outside the default data segment, the
allocation will be retried using the default data segment. If there is still
insufficient memory available, the return value is NULL.

• See Also

_ ifree, _ fmsize, malloc, realloc

• Example

#include <malloc.h>

int *intarray;

/* Allocate space for 20 integers */

intarray = (int *)_fmalloc(20*sizeof(int));

185

fmod

• Summary

include <math.h>

double fmod(x, y);
double X;
double y;

• Description

Floating-point values

The fmod function calculates the floating-point remainder of xl y, such
that x = iy + J, where i is an integer, [has the same sign as x, and the abso­
lute value of x is less than the absolute value of y.

• Return Value

The fmod function returns the floating-point remainder. If y is 0, the func­
tion returns O.

• See Also

ceil, fabs, floor

• Example

#include <math.h>

double XI y, z;

X = -10.0;
Y 3.0;
z = fmod(x/Y);

186

/* z -1.0 */

_fmsize

• Summary

include <malloc.h>

unsigned _ fmsize(ptr);
char far * ptr;

• Description

Required only for function declarations

Pointer to memory block

The _ fmsize function returns the size in bytes of the memory block allo­
cated by a call to _ fmalloc.

• Return Value

The _ fmsize function returns the size in bytes as an unsigned integer.

• See Also

_ ffree, _ fmalloc, malloc, _ msize, _ nfree, _ nmalloc, _ nmsize

• Example

#include <malloc.h>
#include <stdio.h>

main ()
{
char far *stringarray;

stringarray = _fmalloc(200*sizeof(char));
if (stringarray != NULL)

printf("%u bytes allocated\n",_fmsize(stringarray));
else

printf("Allocation request failed.\n");
}

187

fopen

• Summary

include <stdio.h>

FILE *fopen(pathname, type);
char *pathname; Path name of file
char *type; Type of access permitted

• Description

The fop en function opens the file specified by pathname. The character
string type specifies the type of access requested for the file, as follows:

Type

"r"

"w"

"a"

"r+"

"w+"

"a+"

Note

Description

Open for reading (the file must exist).

Open an empty file for writing; if the given file exists, its
contents are destroyed.

Open for writing at the end of the file (appending); create
the file first if it doesn't exist.

Open for both reading and writing (the file must exist).

Open an empty file for both reading and writing; if the
given file exists, its contents are destroyed.

Open for reading and appending; create the file first if it
doesn't exist.

Use the "w" and "w+" modes with care, as they can destroy existing
files.

When a file is opened with the "a" or "a+" type, all write operations
occur at the end of the file. Although the file pointer can be repositioned
using fseek or rewind, the file pointer is always moved back to the end of
the file before any write operation is carried out. Thus, existing data can­
not be overwritten.

188

ropen

When the "r+", "w+", or "a+" type is specified, both reading and
writing are allowed (the file is said to be open for "update"). However, when
switching between reading and writing, there must be an intervening fseek
or rewind operation. The current position may be specified for the fseek
operation, if desired.

In addition to the values listed above, one of the following characters may
be appended to the type string to specify the translation mode for newlines:

Character

t

b

Meaning

Open in text (translated) mode; carriage-return­
line-feed combinations (CR-LF) are translated into a
single line feed (LF) on input; line-feed characters are
translated to carriage-return-line-feed combinations
on output.

Open in binary (untranslated) mode; the above trans­
lations are suppressed.

If t or b is not given in the type string, the translation mode is defined by
the default mode variable _fInode.

• Return Value

The fopen function returns a pointer to the open file. A NULL pointer
value indicates an error.

• See Also

fclose, feloseall, fdopen, ferror, fileno, freopen, open, setInode

189

fopen

• Example

#include <stdio.h>

main (argc , argv)
int argc;
char *argv[];

{
FILE *stream;

/* The following fopen attempts to open the file whose name
** is stored in the pointer argv[argc-l]; if it is not
** successful 1 the program prints an error message to stderr:
*/

if ((stream = fopen(argv[argc-l]/"r")) == NULL) {
fprintf (stderr 1

}

"%s couldn't open file %s\n"/argv[O]/argv[argc-l]);
exit(l);
}
/* Note: the program name is stored in argv[O] only in
** MS-DOS versions 3.0 and later; in versions prior to
** 3.0 1 argv[O] contains the string "c"
*/

Sample command line:

update employ.dat

Output:

C:\BIN\UPDATE.EXE couldn't open file employ.dat

190

FP_OFF-FP_SEG

• Summary

include <dos.h>

unsigned FP _ OFF(lonyptr);

unsigned FP _ SEG(lonyptr);

char far *longptr Long pointer to memory address

• Description

The FP _ OFF and FP _ SEG macros can be used to set or get the offset
and segment, respectively, of the long pointer longptr.

• Return Value

The FP _ OFF macro returns an unsigned integer value representing an
offset. The FP _ SEG macro returns an unsigned integer value representing
a segment address.

• See Also

segread

• Example

#include <dos.h>

char far *p;
unsigned int seg_val;
unsigned int off_val;

FP _SEC (p) ;
FP_OFF(p);

191

_fpreset

• Summary

inelude <f1oat.h>

void _ fpreset(); Reinitialize floating-point math package

• Description

The _ fpreset function reinitializes the floating-point math package. This
function is usually used in conjunction with signal, system, or the exec or
spawn family of routines.

If a program traps floating-point error signals (SIGFPE) with signal, it
can safely recover from floating-point errors by invoking _ fpreset and
doing a longjmp.

Note

On MS-DOS versions prior to 4.0, a child process executed by exec,
spawn, or system might affect the floating-point state of the parent
process if an 8087 or 80287 coprocessor is used. Therefore, if you are
using either an 8087 or an 80287, the following precautions are
recommended:

• exec, spawn, or system should not be called during the
evaluation of a floating-point expression.

• _ fpreset should be called after these routines if there is a possi­
bility of the child process performing any floating-point opera­
tions using an 8087 or 80287.

• Return Value

There is no return value.

192

_fpreset

• See Also

execl, execle, execlp, execlpe, execv, execve, execvp, execvpe, signal,
spawnl, spawnle, spawnlp, spawnlpe, spawnv, spawnve, spawnvp,
spawnvpe

• Example

#include <stdio.h>
#include <signal.h>
#include <setjmp.h>
#include <float.h>

int fphandler();
jmp_buf mark;
double a = 1.0, b

main ()
{
if (signal (SIGFPE, fphandler) (int (*) () -1)

abort ();
if (setjmp(mark) == 0) {

c = alb; /* generate f.p. error */
printf("Should never get here\n");
}

printf ("Recovered from floating-point error\n");
}

int fphandler(sig,num)
int sig,num;

{
printf("signal = %d subcode = %d\n",sig,num);
_fpreset(); /* reinitialize floating-point package */
longjmp(mark,-l);
}

193

fprintf

• Summary

include <stdio.h>

int fprintf(stream, format-string[, argument ...]);
FILE *stream; Pointer to file structure
char * format-string; Format control string

• Description

The fprintf function formats and prints a series of characters and values to
the output stream. Each argument (if any) is converted and output accord­
ing to the corresponding format specificatIOn in the format-string.

The format-string has the same form and function as the format-string argu­
ment for the printf function; see the printf reference page for a description
of the format-string and arguments.

• Return Value

The fprintf function returns the number of characters printed.

• See Also

cprintf, fscanf, printf, sprintf

194

• Example

#include <stdio.h>

FILE *stream;
int i = 10;
double fp = 1.5;
char *s = "this is a string";
char c '\n' ;

stream fopen("results", "w") ;

/* Format and print various data. */

fprintf (stream, "%s%c", s, c) ; /* prints "this is a
** followed by a new
*/

fprintf (stream, "%d\n", i) ; /* prints 10 followed
** a new line
*/

fprintf (stream, "%f", fp) ; /* prints 1.500000 */

fprintf

string"
line

by

196

fputc - fputchar

• Summary

include <stdio.h>

int fputc(c, stream);
int c;
FILE *stream;

int fputchar(c);
int c;

• Description

Write a character to stream
Character to be written
Pointer to file structure

Write a character to stdout
Character to be written

The fputc function writes the single character c to the output stream at
the current position. The fputchar function is equivalent to fputc(c,
stdout).

• Return Value

The fputc and fputchar functions return the character written. A return
value of EOF may indicate an error; however, since the EOF value is also
a legitimate integer value, use ferror to verify an error condition.

Note

The fputc and fputchar routines are identical to putc and putchar,
but are functions, not macros.

• See Also

fgetc, fgetchar, putc, putchar

196

fputc - fputchar

• Example

#include <stdio.h>

FILE *stream;
char buffer[81J;
int i;
int ch;

/* The following statements write the contents of a buffer to
** a stream. Note that the output occurs as a side effect
** within the for statement's second expression, so the
** statement body is null.
*/

for (i = 0; (i < 81) &&
((ch = fputc (buffer [iJ , stream)) ! = EOF); i + +)

/* "fputchar()" could be used instead of "fputc(stream) "
** in the for statement above to write the buffer to stdout
** (equivalent to "fputc(stdout)").
*/

197

fputs

• Summary

include <stdio.h>

int fputs(string, stream);
char *string;
FILE *stream;

• Description

Write a string to stream
String to be output
Pointer to file structure

The fputs function copies string to the output stream at the current posi­
tion. The terminating null character ('\ 0') is not copied.

• Return Value

The fputs function returns the last character output. If the input string is
empty, the return value is o. The return value EOF indicates an error.

• See Also

fgets, gets, puts

• Example

#include <stdio.h>

FILE *stream;
int result;

/* The following statement writes a string to a stream:
*/

result fputs("data files have been updated\n"/stream);

198

• Summary

include <stdio.h>

int fread(buffer, size, count, stream);
char * buffer;
int size;
int count;
FILE *stream;

• Description

Storage location for data
Item size in bytes

fread

Maximum number of items to be read
Pointer to file structure

The fread function reads as many as count items of length size from the
input stream and stores them in the given buffer. The file pointer associ­
ated with stream (if there is one) is increased by the number of bytes actu­
ally read.

If the given stream was opened in text mode, carriage-return-line-feed pairs
(CR-LF) are replaced with single line-feed characters (LF). The replacement
has no effect on the file pointer or the return value.

• Return Value

The fread function returns the number of full items actually read, which
may be less than count if an error occurs or the file end is encountered
before reaching count.

• See Also

fwrite, read

199

fread

• Example

#include <stdio.h>

FILE *stream;
long list[lOOJ;
int numread;

stream = fopen("data", "r+b");

/* The following statement reads 100 binary long integers
** from the stream:
*/

numread fread((char *)list,sizeof(long),lOO,stream);

200

• Summary

include <rnalloc.h>

void free(ptr);
char *ptr;

• Description

free

Required only for function declarations

Pointer to allocated memory block

The free function deallocates a memory block. The argument ptr points to
a memory block previously allocated through a call to calloe, malloe, or
realloc. The number of bytes freed is the number of bytes specified when
the block was allocated (or reallocated, in the case of realloe). After the
call, the freed block is available for allocation.

• Return Value

There is no return value.

• See Also

calloc, malloc, realloe

Note

Attempting to free an invalid ptr (a pointer not allocated with calloc,
malloe, or realloc) may affect subsequent allocation and cause errors.

201

free

• Example

#include <malloc.h>
#include <stdio.h>

char *alloc;

/* Allocate 100 bytes and then free them.
*/

if ((alloc malloc(lOO» NULL) /* test for valid
** pointer
*/

printf("unable to allocate memory\n");
else {

free(alloc);

}

202

/* free memory for
** the heap
*/

_freect

• Summary

include <IDalloe.h>

unsigned int _ freeet(size);
unsigned int size;

• Description

Required only for function declarations

Item size in bytes

The _ freect function tells you how much memory is availabJe for dynamic
memory allocation by returning the approximate number of times your pro­
gram can call malloc to allocate an item of a given size in the default data
segment.

• Return Value

The _ freect function returns the number of calls as an unsigned integer.

• See Also

calloc, _ expand, malloc, _ memavl, _ msize, realloc

203

_freect

• Example

main (

{
int i;

printf("Approximate # of times program can call malloc\n");
printf("to allocate a single integer %u\n\n",

_freect(sizeof(int»);

/* Now, call malloc 1000 times, allocating a single int
** each time:
*/

for (i = 0; i < 1000; ++i)
malloc(sizeof(int»;

printf("Approximate t~ of times program can call malloc\n");
printf (lito allocate a single integer %u\n" I

_freect(sizeof(int»);
}

Sample output:

Approximate # of times program can call malloc
to allocate a single integer = 15268

Approximate # of times program can call malloc
to allocate a single integer = 14266

204

freopen

• Summary

include <stdio.h>

FILE *freopen(pathname, type, stream);
char * pathname; Path name of new file

Type of access permitted
Pointer to file structure

char *type;
FILE *stream;

• Description

The freopen function closes the file currently associated with stream and
reassigns stream to the file specified by pathname. The freopen function is
typically used to redirect the preopened files stdin, stdout, stderr,
stdaux, and stdprn to files specified by the user. The new file associated
with stream is opened with the given type, which is a character string speci­
fying the type of access requested for the file, as follows:

Type

"r"

"w"

"a"

"r+ "

"w+ "

"a+"

Note

Description

Open for reading (the file must exist).

Open an empty file for writing; if the given file exists, its
contents are destroyed.

Open for writing at the end of the file (appending); create
the file first if it doesn't exist.

Open for both reading and writing (the file must exist).

Open an empty file for both reading and writing; if the
given file exists, its contents are destroyed.

Open for reading and appending; create the file first if it
doesn't exist.

Use the "w" and "w+" modes with care, as they can destroy existing
files.

205

freopen

When a file is opened with the "a" or "a+" types, all write operations
take place at the and of the file. Although the file pointer can be reposi­
tioned using fseek or rewind, the file pointer is always moved back to the
end of the file before any write operation is carried out. Thus, existing data
cannot be overwritten.

When the "r+", "w+", or "a+" types are specified, both reading and
writing are allowed (the file is said to be open for "update"). However, when
switching between reading and writing, there must be an intervening fseek
or rewind operation. The current position may be specified for the fseek
operation, if desired.

In addition to the values listed above, one of the following characters may
be appended to the type string to specify the translation mode for new
lines:

Character

t

b

Meaning

Open in text (translated) mode; carriage-return­
line-feed combinations (CR-LF) are translated into a
single line feed (LF) on input; line-feed characters are
translated to carriage-return-line-feed combinations
on output.

Open in binary (untranslated) mode; the above trans­
lations are suppressed.

If t or b is not given in the type string, the translation mode is defined by
the default mode variable _frnode.

• Return Value

The freopen function returns a pointer to the newly opened file. If an
error occurs, the original file is closed and the function returns a NULL
pointer value.

• See Also

fclose, fcloseall, fdopen, fileno, fopen, open, set.:.node

206

freopen

• Example

#include <stdio.h>

FILE *stream;

/* The following statement closes the stdout stream and
** reassigns its stream pointer: */

stream = freopen("data2","w+",stdout);

207

frexp

• Summary

inelude <math.h>

double frexp(x, expptr);
double X;
int '" expptr;

• Description

Floating-point value
Pointer to stored integer exponent

The frexp function breaks down the floating-point value x into a mantissa
m and an exponent n such that the absolute value of m is greater than or
equal to 0.5 and less than 1.0 and x = m",2 n

• The integer exponent n is
stored at the location pointed to by expptr.

• Return Value

The frexp function returns the mantissa m. If x is 0, the function returns 0
for both the mantissa and exponent. There is no error return.

• See Also

ldexp, modf

• Example

#include <math.h>

double x, y;
int n;

x = 16.4;
/* y will be .5125, n will be 5 */

y frexp(x,&n);

208

fscanf

• Summary

include <stdio.h>

int fscanf(stream, /ormat-string[, argument ...]);
FILE *stream; Pointer to file structure
char */ormat-string; Format-control string

• Description

The fscanf function reads data from the current position of the specified
stream into the locations given by arguments (if any). Each argument must
be a pointer to a variable with a type that corresponds to a type specifier in
the format-string. The format-string controls the interpretation of the input
fields and has the same form and function as the format-string argument for
the scanf function; see the scanf reference page for a description of the
format-string.

• Return Value

The fscanf function returns the number of fields that were successfully con­
verted and assigned. The return value does not include fields that were read
but not assigned.

The return value is EOF for an attempt to read at end-of-file. A return
value of 0 means that no fields were assigned.

• See Also

cscanf, fprintf, scanf, sscanf

209

fscanf

• Example

#include <stdio.h>

FILE *stream;
long 1;
float fp;
char s[81J;
char c;

stream fopen("data", "r") ;

/* Input various data. */

fscanf (stream, "%s" s)'
fscanf (stream, "%c'" &c) .
fscanf (stream, "%ld;' &1)'
fscanf (stream, "%f", &fp) ;

210

fseek

• Sum.m.ary

include <stdio.h>

int fseek(stream, offset, origin);
FILE *stream;
long offset;
int origin;

• Description

Pointer to file structure
Number of bytes from origin
Initial position

The fseek function moves the file pointer (if any) associated with stream to
a new location that is offset bytes from the origin. The next operation on
the stream takes place at the new location. On a stream open for update,
the next operation can be either a read or a write.

The argument origin must be one of the following constants defined in
stdio.h:

Origin

SEEK_SET

SEEK_CUR

SEEK_END

Definition

Beginning of file

Current position of file pointer

End of file

The fseek function can be used to reposition the pointer anywhere in a file.
The pointer can also be positioned beyond the end of the file. However, an
attempt to position the pointer in front of the beginning of the file causes
an error.

• Return Value

The fseek function returns the value 0 if the pointer was successfully
moved. A nonzero return value indicates an error. On devices incapable of
seeking (such as terminals and printers), the return value is undefined.

211

fseek

• See Also

ftell, lseek, rewind

Note

For streams opened in text mode, fseek has limited use because
carriage-return-line-feed translations can cause fseek to produce unex­
pected results. The only fseek operations guaranteed to work on
streams opened in text mode are the following:

• seeking with an offset of 0 relative to any of the origin values

• seeking from the beginning of the file with an offset value
returned from a call to ftell

• Example

#include <stdio.h>

FILE *stream;
int result;

stream = fopen("data","r");

/* The following statement returns the file pointer to the
** beginning of the file:
*/

result fseek(stream,OL,SEEK_SET) ;

212

fstat

• Summary

include <sys\ types.h>
include <sys\stat.h>

int fstat(handle, buffer);
int handle;
struct stat * buffer;

• Description

Handle referring to open file
Pointer to structure to store results

The fstat function obtains information about the open file associated with
the given handle and stores it in the structure pointed to by buffer. The
structure, whose type stat is defined in sys\stat.h, contains the following
fields:

Field

st_mode

st_dev

st_rdev

st_nlink

st_size

st_atime

st_mtime

st_ctime

Value

Bit mask for file-mode information. S_ IFCHR bit
set if handle refers to a device. S_ IFREG bit set if
handle refers to an ordinary file. User read/write
bits set according to the file's permission mode.

Either drive number of the disk containing the file,
or handle in the case of a device.

Either drive number of the disk containing the file,
or handle in the case of a device (same as st_ dey).

Always 1.

Size of the file in bytes.

Time of last modification of file.

Time of last modification of file (same as
st_atime).

Time of last modification of file (same as st_ atime
and st_ mtime).

There are three additional fields in the stat structure type that do not con­
tain meaningful values under MS-DOS.

213

fstat

• Return Value

The fstat function returns the value 0 if the file-status information is
obtained. A return value of --1 indicates an error; in this case, errno is set
to EBADF, indicating an invalid file handle.

• See Also

access, chmod, filelength, stat

Note

If the given handle refers to a device, the size and time fields in the stat
structure are not meaningful.

• Example

#include <fcntl.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <stdio.h>

struct stat buf;
int fh, result;

fh = open("tmp/data",O_RDONLY);

result = fstat(fh/&buf);

if (resul t == 0)
printf("file size is %ld\n"/buf.st_size);

214

• SUIDIDary

include <stdio.h>

long ftell(stream);
FILE *stream;

• Description

ftell

Pointer to file structure

The ftell function gets the current position of the file pointer (if any) asso­
ciated with stream. The position is expressed as an offset relative to the
beginning of the stream.

• Return Value

The ftell function returns the current position. A return value of -IL indi­
cates an error. On devices incapable of seeking (such as terminals and
printers), or when stream does not refer to an open file, the return value is
undefined.

• See Also

fseek, lseek, tell

Note

The value returned by ftell may not reflect the physical byte offset for
streams opened in text mode, since text mode causes carriage-return­
line-feed translation. Use ftell in conjunction with the fseek function
to remember and return to file locations correctly.

216

ftell

• Example

#include <stdio.h>

FILE *stream;
long position;

stream = fopen ("data" I "rb") ;

position ftell{stream) ;

216

ftime

• Summary

include <sys\ types.h >
include <sys\ tirneb.h >

void ftime(timeptr);
struct tirneb *timeptr;

• Description

Pointer to structure defined in sys\ tirneb.h

The ftime function gets the current time and stores it in the structure
pointed to by timeptr. The timeb structure is defined in sys\ timeb.h. It
contains four fields, time, millitm, timezone, and dstfiag, which have the
following values:

Field

time

millitm

time zone

dstflag

• Return Value

Value

The time in seconds since 00:00:00 Greenwich
mean time, January 1, 1970.

Fraction of a second in milliseconds.

The difference in minutes, moving westward,
between Greenwich mean time and local time.
The value of time zone is set from the value of
the global variable timezone (see tzset).

Nonzero if daylight saving time is currently in
effect for the local time zone, as determined from
the value of the global variable daylight (see
tzset).

The ftime function gives values to the fields in the structure pointed to by
timeptr. It does not return a value.

• See Also

asctime, ctime, gmtime, localtime, time, tzset

217

ftime

• Example

#include <sys/types.h>
#include <sys/timeb.h>
#include <stdio.h>
#include <time.h>

main ()
{
struct timeb timebuffer;
char *timeline;

ftime(&timebuffer) ;

timeline = ctime(&(timebuffer.time));

printf("The time is %.19s.%hu %s",
timeline, timebuffer.millitm, &timeline[20J);

}

Sample output:

The time is Wed Dec 04 17:58:29.420 1985

218

fwrite

• Summary

include <stdio.h>

int fwrite(buffer, size, count, stream);
char * buffer;
int size;

Pointer to data to be written
Item size in bytes

int count;
FILE *stream;

Maximum number of items to be written
Pointer to file structure

• Description

The fwrite function writes as many as count items of length size from
buffer to the output stream. The file pointer associated with stream (if
there is one) is incremented by the number of bytes actually written.

If the given stream was opened in text mode, each carriage return is
replaced with a carriage-return-line-feed pair. The replacement has no
effect on the return value.

• Return Value

The fwrite function returns the number of full items actually written,
which may be less than count if an error occurs.

• See Also

fread, write

219

fwrite

• Example

#include <stdio.h>

FILE *stream;
long list[lOO];
int numwritten;

stream = fopen{"data", "r+b");

/* The following statement writes 100 long integers to
** a stream in binary format:
*/

numwritten fwrite((char *)list,sizeof(long),lOO,stream);

220

gcvt

• Summary

include <stdlib.h>

char gcvt(value, ndec, bUffer);
double value;
int ndec;
char * buffer;

• Description

Required only for function declarations

Value to be converted
Number of significant digits stored
Storage location for result

The gcvt function converts a floating-point value to a character string and
stores the string in buffer. The buffer should be large enough to accommo­
date the converted value plus a terminating null character ('\ 0'), which is
automatically appended. There is no provision for overflow.

The gcvt function attempts to produce ndec significant digits in
FORTRAN F format. Failing that, it produces ndec significant digits in
FORTRAN E format. Trailing zeros may be suppressed in the conversion.

• Return Value

The gcvt function returns a pointer to the string of digits. There is no
error return.

• See Also

atof, atoi, atol, ecvt, fcvt

• Example

#include <stdlib.h>

char buffer[50J;
int precision = 7;

/* buffer contains "-314150.0" */
gcvt(-3.1415e5,precision,buffer);

221

getc - get char

• Summary

include <stdio.h>

int getc(stream);
FILE *stream;

int getchar();

• Description

Read a character from stream
Pointer to file structure

Read a character from stdin

The getc macro reads a single character from the current stream position
and increases the associated file pointer (if there is one) to point to the next
character. The getchar macro is identical to getc(stdin).

• Return Value

The getc and getchar macros return the character read. A return value of
EOF indicates an error or end-of-file condition. Use ferror or feof to
determine whether an error or end-of-file occurred.

• See Also

fgetc, fgetchar, getch, getche, putc, putchar, ungetc

Note

The getc and getchar routines are identical to fgetc and fgetchar,
but are macros, not functions.

222

getc - getchar

• Example

#include <stdio.h>

fILE *stream;
char buffer[81];
int i, ch;

/* The following statements gather a line of input from
** stdin:
*/

for (i = 0; (i < 80) && ((ch
(ch != '\n'); i++)
buffer[i] = ch;

buffer[i] = '\0';

getchar(» != EOF) &&

/* "getc(stdin)" could be used instead of "getchar()" in the
** for statement above to gather a line of input from stdin.
*/

223

getch

• Summary

inelude < conio.h > Required only for function declarations

int getch();

• Description

The getch function reads, without echoing, a single character directly from
the console. Characters typed are not echoed. If a is typed, the system exe­
cutes an INT 23H

• Return Value

The getch function returns the character read. There is no error return.

• See Also

cgets, getche, get char

• Example

#include <conio.h>
#include <ctype.h>

int ch;

/* This loop gets characters from the keyboard until a
** nonblank character is seen. Preceding blank
** characters are discarded.
*/

224

do {
ch = getch();
}

while (isspace(ch));

getche

• Summary

include < conio.h > Required only for function declarations

int getche();

• Description

The getche function reads a single character from the console and echoes
the character read. If a CONTROlrC is typed, the system executes an INT
23H (CONTROlrC exit).

• Return Value

The getche function returns the character read. There is no error return.

• See Also

cgets, getch,getchar

• Example

#include <conio.h>
#include <ctype.h>

int ch;

/* Get a character from the keyboard and echo it to the
** console. If it is an uppercase letter, convert it
** to lowercase and write over the old character.
*/

ch = getche();

if (isupper(ch))
cprintf("\b%c",_tolower(ch)) ;

225

getcwd

• Summary

include < direct.h > Required only for function declarations

char *getcwd(pathbuf, n);
char * pathbu/; Storage location for path name

Maximum length of path name int n;

• Description

The getcwd function gets the full path name of the current working direc­
tory and stores it at pathbuf. The integer argument n specifies the max­
imum length for the path name. An error occurs if the length of the path
name (including the terminating null character) exceeds n.

The pathbuf argument can be NULL; a buffer of size n will automatically
be allocated (with malloc) and used to store the path name. This buffer
can later be freed by using the getcwd return value (a pointer to the allo­
cated buffer) with the free function.

• Return Value

The getcwd function returns pathbuf. A NULL return value indicates an
error, and errno is set to one of the following values:

Value

ENOMEM

ERANGE

• See Also

chdir, mkdir, rmdir

226

Meaning

Insufficient memory to allocate n bytes (when
NULL argument given as pathbufJ

Path name longer than n characters

getcwd

• Example

#include <direct.h>
#include <stdlib.h>

char buffer[51];

/* The following statement stores the name of the current
** working directory (up to 50 characters long) in buffer:
*/

if (getcwd (buffer, 50) == NULL)
perror("getcwd error");

227

getenv

• Summary

include <stdlib.h>

char *getenv(varname);
char * varname;

• Description

Required only for function declarations

Name of environment variable

The getenv function searches the list of environment variables for an entry
corresponding to varname. Environment variables define the environment
in which a process executes (for example, the default search path for
libraries to be linked with a program).

• Return Value

The getenv function returns a pointer to the environment table entry con­
taining the current string value of varname. The return value is NULL if
the given variable is not currently defined.

• See Also

putenv

Note

Environment table entries must not be changed directly. If an entry
must be changed, use the putenv function. To modify the returned
value without affecting the environment table, use strdup or strcpy to
make a copy of the string.

The getenv and putenv functions use the global variable environ to
access the environment table. The putenv function may change the
value of environ, thus invalidating the "envll" argument to the "main"
function.

228

getenv

• Example

#include <stdlib.h>

char *pathvar;

/* The following statement gets the value of the PATH
** environment variable:
*/

pathvar = getenv{"PATH");

/* If an entry such as "PATH=A:\BIN;B:\BIN" is in the
** environment, pathvar will point to "A:\BIN;B:\BIN". If
** there is no PATH environment variable, pathvar will
** be NULL.
*/

229

getpid

• Summary

include <process.h> Required only for function declarations

int getpid();

• Description

The getpid function returns an integer, the process ID, that uniquely
identifies the calling process.

• Return Value

The getpid function returns the process ID. There is no error return.

• See Also

mktemp

• Example

#include <process.h>
#include <string.h>
#include <stdio.h>

char filename [9] , pid[5];

strcpy(filename, "FILE");
strcat(filename, itoa(getpid(),pid,lO));

/* prints "FILExxxxx", where xxxxx is the process id */
printf("File name is %s\n", filename);

230

gets

• Summary

include <stdio.h>

char *gets(buffer);
char * buffer;

• Description

Storage location for input string

The gets function reads a line from the standard input stream stdin and
stores it in buffer. The line consists of all characters up to and including
the first new-line character ('\n'). The gets function then replaces the
new-line character with a null character ('\ 0') before returning the line,
unlike fgets, which retains the new-line character.

• Return Value

The gets function returns its argument. A NULL pointer indicates an
error or end-of-file condition. Use ferror or feof to determine whether an
error or end-of-file occurred.

• See Also

fgets, fputs, puts

• Example

#include <stdio.h>

char line[lOOJ;
char *result;

/* The following statement gets a line of input from
** stdin:
*/

result gets (line) ;

23.1

getw

• Summary

include <stdio.h>

int getw(stream);
FILE *stream;

• Description

Pointer to file structure

The getw function reads the next binary value of type int from the
specified input stream and increases the associated file pointer (if there is
one) to point to the next unread character. The getw function does not
assume any special alignment of items in the stream.

• Return Value

The getw function returns the integer value read. A return value of EOF
may indicate an error or end-of-file; however, the EOF value is also a legi­
timate integer value, so feof or ferror should be used to verify an end-of­
file or error condition.

• See Also

putw

Note

The getw function is provided primarily for compatibility with previ­
ous libraries. Note that portability problems may occur with getw
since the size of an int and ordering of bytes within an int differ across
systems.

232

• Example

#include <stdio.h>
#include <stdlib.h>

FILE *stream;
int i;

/* The following statement reads a word from a stream
** and checks for an error:
*/

i = getw(stream);

if (ferror(stream» {
fprintf(stderr,"getw failed\n");
clearerr(stream);
}

getw

233

gmtime

• Summary

include <time.h>

struct tm *gmtime(time);
long *time; Pointer to stored time

• Description

The gmtime function converts a time stored as a long value to a struc­
ture. The long value time represents the seconds elapsed since 00:00:00,
January 1, 1970, Greenwich mean time; this value is usually obtained from
a call to time.

The gmtime function breaks down the time value and stores it in a struc­
ture of type tm, defined in time.h. The structure result reflects Greenwich
mean time, not local time.

The fields of the structure type tm store the following values:

Field

tID-sec

tID-min

tID-hour

tID-mday

tIlLmon

tIlL year

tIlLwday

tIlLyday

tIlLisdst

Value Stored

Seconds

Minutes

Hours (0-24)

Day of month (1-31)

Month (0-11; January = 0)

Year (current year minus 1900)

Day of week (0-6; Sunday = 0)

Day of year (0-365; January 1 = 0)

Nonzero if daylight saving time is in effect,
otherwise 0

Under MS-DOS, dates prior to 1980 are not understood. If time represents
a date before January 1, 1980, gmtime returns the structure representa­
tion of 00:00:00, January 1, 1980.

234

grntirne

• Return Value

The gmtime function returns a pointer to the structure result. There is no
error return.

• See Also

asetime, etime, ftime, loealtime, time

Note

The gmtime and loealtime functions use a single statically allocated
structure to hold the result. Each call to one of these routines destroys
the result of the previous call.

• Example

#include <time.h>

struct tm *newtime:
long ltime;

time (<ime) ;
newtime = gmtime(<ime):
printf("Greenwich mean time is %s\n",asctime(newtime»;

235

halloc

• Summary

include <malloc.h>

char huge *halloc(n, size);
long n;
unsigned size;

• Description

Required only for function declarations

Number of elements
Length in bytes of each element

The halloc function allocates storage space for a huge array of n elements,
each of length size bytes. Each element is initialized to o.

If the size of the array is greater than 128K, then the size of an array ele­
ment must be a power of 2.

• Return Value

The halloc function returns a char huge pointer to the allocated space.
The storage space pointed to by the return value is guaranteed to be suit­
ably aligned for storage of any type of object. To get a pointer to a type
other than char huge, use a type cast on the return value. The return
value is NULL if there is insufficient memory available.

• See Also

calloc, free, hfree, malloc, realloc

• Example

#include <malloc.h>

long huge *lalloc;

/* Allocate enough space for 80000 long integers and
** initialize it to o.
*/
lalloc = (long huge *)halloc(80000L,sizeof(long));

236

• Summary

include <malloc.h>

void hfree(ptr);
char huge *ptr;

• Description

hfree

Required only for function declarations

Pointer to allocated memory block

The hfree function deallocates a memory block. The ptr argument points
to a memory block previously allocated through a call to halloc. The
number of bytes freed is the number of bytes specified when the block was
allocated. After the call, the freed block is available for allocation.

• Return Value

There is no return value.

• See Also

halloc

Note

Attempting to free an invalid ptr (a pointer not allocated with halloc)
may affect subsequent allocation and cause errors.

237

hfree

• Example

#include <malloc.h>
#include <stdio.h>

char huge *alloc;

/* Allocate 80000 bytes and then free them.
*/

alloc halloc(80000L / sizeof(char» ;

if (alloc != NULL)
hfree(alloc) ;

238

/* test for valid pointer */
/* free memory for the heap */

hypot

• Summary

include <math.h>

double hypot(x,y);
double x, y;

• Description

Floating-point values

The hypot function calculates the length of the hypotenuse of a right tri­
angle, given the length of the two sides x and y. A call to hypot is
equivalent to the following:

• Return Value

The hypot function returns the length of the hypotenuse. If an overflow
results, hypot sets errno to ERANGE and returns the value HUGE.

• See Also

cabs

• Example

#include <math.h>

double x, y, z;

x = 3.0;
Y = 4.0;

z = hypot(x,y);
printf ("Hypotenuse

Output:

Hypotenuse 5.0

%2 • 1 f\n" , z) ;

239

.
lnp

• Summary

inelude < conio.h >

int inp(port);
unsigned port;

• Description

Required only for function declarations

Port number

The inp function reads 1 byte from the input port specified by port. The
port argument can be any unsigned integer number in the range 0 to 65535.

• Return Value

The inp function returns the byte read from port. There is no error return.

• See Also

outp

• Example

#include <conio.h>

unsigned port;
char result;

/* The following statement inputs a byte from the port
** that 'port' is currently set to:
*/

result inp (port) ;

240

• Summary

include <dos.h>

int intS6(intno, inregs, outregs);
int intno;
union REGS *inregs;
union REGS *outregs;

• Description

Interrupt number
Register values on call
Register values on return

int86

The int86 function executes the 8086 software interrupt specified by the
interrupt number intno. Before executing the interrupt, int86 copies the
contents of inregs to the corresponding registers. Mter the interrupt
returns, the function copies the current register values to outregs. It also
copies the status of the system carry flag to the eflag field in outregs. The
inregs and outregs arguments are unions of type REGS. The union type is
defined in the include file dos.h.

The int86 function is intended to be used to invoke DOS interrupts
directly.

• Return Value

The return value is the value in the AX register after the interrupt returns.
If the eflag field in outregs is nonzero, an error has occurred and the
_ doserrno variable is also set to the corresponding error code.

• See Also

bdos, intdos, intdosx, int86x

241

int86

• Example

#include <signal.h>
#include <dos.h>
#include <stdio.h>
#include <process.h>

/*
* (interrupt number Ox23) , which would be caught by the
* interrupt handling routine int_handler. Note that the
* values in the regs struct do not matter for this
* interrupt.
*/

#define CNTRL_C Ox23
int int_handler(int);
union REGS regs;

signal (SIGINT, int_handler);

int86 (CNTRL_C, ®s, ®s);

242

int86x

• Summary

include < dos.h >

int int86x(intno, inregs, outregs, segregs);
int intno; Interrupt number
union REGS *inregs; Register values on call
union REGS * outregs; Register values on return
struct SREGS *segregs; Segment-register values on call

• Description

The int86x function executes the 8086 software interrupt specified by the
interrupt number intno. Unlike the int86 function, int86x accepts
segment-register values in segregs, letting programs that use long-model
data segments or far pointers specify which segment or pointer should be
used during the system call.

Before executing the specified interrupt, int86x copies the contents of
inregs and segregs to the corresponding registers. Only the DS and ES
register values in segregs are used. After the interrupt returns, the function
copies the current register values to outregs and restores DS. It also copies
the status of the system carry flag to the cflag field in outregs. The inregs
and outregs arguments are unions of type REGS. The segregs argument
is a structure of type SREGS. These types are defined in the include
file dos.h.

The int86x function is intended to be used to directly invoke DOS inter­
rupts that take an argument in the ES register, or take a DS register value
that is different from the default data segment.

• Return Value

The return value is the value in the AX register after the interrupt returns.
If the flag field in outregs is nonzero, an error has occurred and the
doserrno variable is also set to the corresponding error code.

243

int86x

• See Also

bdos, intdos, intdosx, int86, segread, FP _ SEG

Note

Segment values for the segregs argument can be obtained by using
either the segread function or the FP _ SEG macro .

• Example

#include <signal.h>
#include <dos.h>
#include <stdio.h>
#include <process.h>

/*
* Use int86x routine to generate an interrupt Ox21 (system
* call), which invokes the DOS 'Change Attributes' system
* call. The int86x routine is used because the file name to
* be referenced may be in a segment other than the default
* data segment (it is referenced by a far pointer), so the
* DS register must be explicitly set with the SREGS struct.
*/

#define SYSCALL Ox21 /* INT 21H invokes system
calls */

#define CHANGE_ATTR Ox43 /* system call 43H - change
attributes */

char far *filename; /* file name in 'far' data
segment */

union REGS inregs, outregs;
struct SREGS segregs;
int result;

inregs.h.ah

inregs.h.al

inregs.x.dx

244

CHANGE_ATTR; /* AH is system call
number */

0; /* AL is function (get
attributes) */

fP_Off(filename); /* DS:DX points to file
name */

segregs.ds = FP_SEG(filename);
result = int86x(SYSCALL, &inregs, &outregs, &segregs);
if (outregs.x.cflag) {

int86x

printf("can't get attributes of file; error number %d\n",
result);

exit(l);
}

else {
printf("Attribs %#x\n", outregs.x.cx);
}

245

intdos

• Summary

include < dos.h >

int intdos(inregs, outregs);
union REGS *inregs;
union REGS *outregs;

• Description

Register values on call
Register values on return

The intdos function invokes the DOS system call specified by register
values defined in inregs and returns the effect of the system call in outregs.
The inregs and outregs arguments are unions of type REGS. The union
type is defined in the include file dos.h.

To invoke a system call, intdos executes an INT 21H instruction. Before
executing the instruction, the function copies the contents of inregs to the
corresponding registers. After the INT instruction returns, intdos copies
the current register values to outregs. It also copies the status of the sys­
tem carry flag to the cflag field in outregs. If this field is nonzero, the flag
was set by the system call and indicates an error condition.

The intdos function is intended to be used to invoke DOS system calls that
take arguments in registers other than DX (DH/DL) and AL, or to invoke
system calls that indicate errors by setting the carry flag.

• Return Value

The intdos function returns the value of the AX register after the system
call is completed. If the cflag field in outregs is nonzero, an error has
occurred and _ doserrno is also set to the corresponding error code.

• See Also

bdos, intdosx

246

• Example

#include <dos.h>
#include <stdio.h>

union REGS inregs, outregs;

/* The following statements get the current date using
** DOS function call 2a hex:
*/

inregs.h.ah = Ox2a;
intdos(&inregs,&outregs);
printf("date is %d/%d/%d\n",outregs.h.dh,outregs.h.dl,
outregs.x.cx);

intdos

247

intdosx

• Summary

include <dos.h>

int intdosx(inregs, outregs, segregs);
union REGS *inregs;
union REGS *outregs;
struct SREGS *segregs;

• Description

Register values on call
Register values on return
Segment-register values on call

The intdosx function invokes the DOS system call specified by register
values defined in inregs and returns the effect of the system call in outregs.
Unlike the intdos function, intdosx accepts segment-register values in
segregs, letting programs that use long-model data segments or far pointers
specify which segment or pointer should be used during the system call.
The inregs and outregs arguments are unions of type REGS. The segregs
argument is a structure of type SREGS. These types are defined in the
include file dos.h.

To invoke a system call, intdosx executes an INT 21H instruction. Before
executing the instruction, the function copies the contents of inregs and
segregs to the corresponding registers. Only the DS and ES register values
in segregs are used. After the INT instruction returns, intdosx copies the
current register values to outregs and restores DS. It also copies the status
of the system carry flag to the cflag field in outregs. If this field is nonzero,
the flag was set by the system call and indicates an error condition.

The intdosx function is intended to be used to invoke DOS system calls
that take an argument in the ES register, or that take a DS register value
that is different from the default data segment.

• Return Value

The intdosx function returns the value of the AX register after the system
call is completed. If the cflag field in outregs is nonzero, an error has
occurred and _ doserrno is also set to the corresponding error code.

248

intdosx

• See Also

bdos, intdos, segread, FP _ SEG

Note

Segment values for the segregs argument can be obtained by using
either the segread function or the FP _ SEG macro .

• Example

#include <dos.h>

union REGS inregs, outregs;
struct SREGS segregs;
char far *dir = "/test/bin";

/* The following statements change the current working
** directory with DOS function call 3b hex:
*/

inregs.h.ah = Ox3b;
inregs.x.dx = FP_OFF(dir);
segregs.ds = FP_SEG(dir);
intdosx(&inregs,&outregs,&segregs);

/* change directory */
/* file name offset */
/* file name segment */

249

isalnum - isascii

• Summary

include <ctype.h>

int isalnum(c); Test for alphanumeric ('A'-'Z', 'a'-'z', or '0'-'9')

int isalpha(c); Test for letter ('A'-'Z' or 'a'-'z')

int isascii(c); Test for ASCII character (OxOO-Ox7F)

int c; In teger to be tested

• Description

The ctype routines listed above test a given integer value, returning a
nonzero value if the integer satisfies the test condition and a 0 value if it
does not. An ASCII character set environment is assumed.

The isascii routine produces meaningful results for all integer values. How­
ever, the remaining routines produce a defined result only for integer values
corresponding to the ASCII character set (that is, only where isascii holds
true) or for the non-ASCII value EOF (defined in stdio.h).

• See Also

iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace, isupper,
isxdigit, toascii, tolower, toupper

Note

The ctype routines are implemented as macros.

260

isalnum - isascii

• Example

#include <stdio.h>
#include <ctype.h>

int ch;

/* The following statements analyze all characters
** between code OxO and code Ox7f, printing "A" for
** alphas, "AN" for alphanumerics, and "AS" for ASCIIs:
*/

for (ch = 0; ch <= Ox7f; ch++) {
printf ("%#04x", ch) ;
printf ("%3s", isalnum (ch)
printf ("%2s", isalpha (ch)
printf("%3s",isascii(ch)

pu tcha r (I \n I) ;

}

? "AN"
? "A"
? "AS"

" ") ;
" ") ;
" ") ;

261

isatty

• Summary

include <io.h>

int isatty(handle);
int handle;

• Description

Required only for function declarations

Handle referring to device to be tested

The isatty function determines whether the given handle is associated with
a character device (that is, a terminal, console, printer, or serial port).

• Return Value

The isatty function returns a nonzero value if the device is a character
device. Otherwise, the return value is O.

• Example

#include <io.h>

int fh;
long lac;

if (isatty(fh) == 0)
lac = tell(fh);

262

/* if not a device, get current
** position
*/

• Summary

include <ctype.h>

iscntrl(c);

isdigit(c);

isgraph(c);

islower(c);

isprint(c);

ispunct(c);

isspace(c);

isupper(e);

isxdigit(e);

int c;

• Description

iscntrl- isxdigit

Test for control character (OxOO-Oxlf or Ox7f)

Test for digit ('0'-'9')

Test for printable character not including the space
character (Ox21-0x7e)

Test for lowercase ('a'-'z')

Test for printable character (Ox20-0x7 e)

Test for punctuation character (isalnum(e),
iscntrl(e), and isspace(e) all false)

Test for white-space character (Ox09-0xOd or Ox20)

Test for uppercase ('A'-'Z')

Test for hexadecimal digit ('A'-'F','a'-'f',or '0'-'9')

Integer value to be tested

The ctype routines listed above test a given integer value, returning a
nonzero value if the integer satisfies the test condition, and 0 if it does not.
An ASCII character set environment is assumed.

These routines produce a defined result only for integer values correspond­
ing to the ASCII character set (that is, only where isascii holds true) or for
the non-ASCII value EOF (defined in stdio.h).

253

iscntrl - isxdigit

• See Also

isalnum, isalpha, isascii, toascii, tolower, toupper

Note

The ctype routines are implemented as macros.

• Example

#include <stdio.h>
#include <ctype.h>

int ch;

/* The following statements analyze all characters
** between code OxO and code Ox7f, printing "U" for
** uppercase letters, "L" for lowercase letters, "D"
** for digits, "X" for hex digits, "s" for spaces, "PU"
** for punctuations, "PR" for printables, "G" for graphics,
** and "C" for controls. If the code is printable, it is
** printed.
*/

for (ch = 0; ch <= Ox7f; ch++) {
printf ("%2s", iscntrl (ch) ? "c" " ") ;
printf ("%2s", isdigit (ch) ? "D" " ") ;
printf ("%2s", isgraph (ch) ? "G" " ") ;
printf("%2s",islower(ch) ? "L" " ") ;
printf(" %c",isprint(ch) ? ch '\0');
printf ("%3s", ispunct (ch) ? "PU" " ") ;
pr int f ("%2s" , isspace (ch) ? "s" " ") ;
printf("%3s", isprint (ch) ? "PR" " ") ;
printf("%2s",isupper(ch) ? "u" "") ;
printf ("%2s",isxdigit (ch) ? "X" " ") ;

putchar ('\n') ;
}

264

• Summary

include <stdlib.h>

char *itoa(value, string, radix);
int value;
char *string;
int radix;

• Description

Required only for function declarations

Number to be converted
String result
Base of value

itoa

The itoa function converts the digits of the given value to a null terminated
character string and stores the result in string. The radix argument
specifies the base of value; it must be in the range 2-36. If radix equals 10
and value is negative, the first character of the stored string is the minus
sign (-).

• Return Value

The itoa function returns a pointer to string. There is no error return.

• See Also

ltoa, ultoa

Note

The space allocated for string must be large enough to hold the
returned string. The function can return up to 17 bytes .

• Example

#include <stdlib.h>

int radix = 8;
char buffer [20] ;
char *p:

p = itoa(-3445,buffer,radix); /* p "171213" */

255

kbhit

• Summary

include < conio.h > Required only for function declarations

int kbhit();

• Description

The kbhit function checks the console for a recent keystroke.

• Return Value

The kbhit function returns a nonzero value if a key has been pressed. Oth­
erwise, it returns o.

• Example

#include <conio.h>

int result;

/* The following statement tests to see if a key has
** been pressed:
*/

result = kbhit();

/* If result is nonzero, a keystroke is waiting in the
** buffer. It can be fetched with getch or getche.
** If getch or getche were called without first checking
** kbhit, the program might pause while waiting for
** input.
*/

266

• Summary

inelude <stdlib.h>

long labs(n);
long n;

• Description

Required only for function declarations

Long integer value

The labs function produces the absolute value of its long-integer
argument n.

• Return Value

labs

The labs function returns the absolute value of its argument. There is no
error return.

• See Also

abs, cabs, fabs

• Example

#include <stdlib.h>

long X, y;

X -41567L;
y = labs(x); /* y 41567L */

257

ldexp

• Summary

include <math.h>

double ldexp(x, exp);
double X;
int exp;

• Description

Floating-poin t value
Integer exponent

The Idexp function calculates the value of x lie 2exp
•

• Return Value

The Idexp function returns x lie 2exp• If an overflow results, the function
returns ± HUGE (depending on the sign of x) and sets errno to
ERANGE.

• See Also

frexp, modf

• Example

#include <math.h>

double X, y;
int p;

X = 1.5;
P 5;
Y ldexp(x/p);

268

/* y 48.0 */

lfind - lsearch

• Summary

include <search.h> Required only for function declarations

char *Isearch(key, base, nurn, width, compare);

char *Ifind(key, base, nurn, width, compare);

char *key;
char *base;
unsigned *nurn, width;
int (*compare)();

• Description

Search key
Poin ter to base of search data
Number and width of elements
Pointer to compare function

The lsearch and Hind functions perform a linear search for the value key
in an array of num elements, each of width bytes in size. (Unlike bsearch,
lsearch and lfind do not require the array to be sorted.) The argument
base is a pointer to the base of the array to be searched.

If the key is not found, lsearch adds it to the end. The lfind function
does not.

The argument compare is a pointer to a user-supplied routine that com­
pares two array elements and returns a value specifying their relationship.
Both lsearch and lfind call the compare routine one or more times during
the search, passing pointers to two array elements on each call. This rou­
tine must compare the elements, then return one of the following values:

Value

Not equal to 0

o

• Return Value

Meaning

element1 and element2 different

element1 identical to element2

Both lsearch and lfind return a pointer to the first occurrence of key in the
array pointed to by base. If key is not found, these functions return NULL.

269

Hind - lsearch

• See Also

bsearch

• Example

/* The lsearch function performs a linear search on an array
** for a 'key' element; Isearch returns a pointer to the
** structure that matches the key, or NULL if there is no
** match.
*/

#include <search.h>
#include <string.h>
#include <stdio.h>

int compare (); /* must declare as a function */

main (argc, argv)
int argc;
char **argv;
{

char **result;
char *key = "PATH";

/* The following statement finds the argument that
** starts with "PATH":
*/

result = (char **)lsearch((char *)&key, (char *)argv,
&argc, sizeof(char *) ,compare);

if (result)
printf("%s found\n",*result);

else
printf("PATH not found!\n");

}

int compare (argl, arg2)
char **argl, **arg2;

{
return(strncmp(*argl,*arg2,strlen(*argl)));
}

260

localtime

• Summary

include <time.h>

struct tm *localtime(time);
long *time;

• Description,

Pointer to stored time

The localtime function converts a time stored as a long value to a struc­
ture. The long value time represents the seconds elapsed since 00:00:00,
January 1, 1970, Greenwich mean time; this value is usually obtained from
the time function.

The localtime function breaks down the time value, corrects for the local
time zone and daylight saving time if appropriate, and stores the corrected
time in a structure of type tm. (See gmtime for a description of the tm
structure fields.)

Under MS-DOS, dates prior to 1980 are not understood. If time represents
a date before January 1, 1980, localtime returns the structure representa­
tion of 00:00:00 January 1, 1980.

The localtime function makes corrections for the local time zone if the
user first sets the environment variable TZ. The value of TZ must be a
three-letter time zone name (such as PST), followed by a possibly signed
number giving the difference between Greenwich mean time and the lo-
cal time zone. The number may be followed by a three-letter daylight
saving time zone (such as PDT). The localtime function uses the
difference between Greenwich mean time and local time to adjust the
stored time value. If a daylight saving time zone is present in the TZ set­
ting, localtime also corrects for daylight saving time. If TZ currently has
no value, the default value PST8PDT is used.

When TZ is set, three other environment variables, timezone, daylight,
and tzname, are automatically set as well. See the tzset function for a
description of these variables.

261

localtime

• Return Value

The localtirne function returns a pointer to the structure result. There is
no error return.

• See Also

asctirne, ctirne, ftime, gmtime, time, tzset

Note

The grntirne and localtirne functions use a single statically allocated
buffer for the conversion. Each call to one of these routines destroys
the result of the previous call .

• Example

#include <stdio.h>
#include <time.h>

main ()
{
struct tm *newtime;
char *am_pm = "PM";
time_t long_time;

time (&long_time) ;
newtime = localtime(&long_time);

if (newtime->tm_hour < 12)
am_pm = "AM";

if (newtime->tm_hour > 12)
newtime->tm_hour -= 12;

printf("%.19s %s\n", asctime(newtime), am_pm);
}

Sample output:

Tue Dec 10 11:30:12 AM

262

• Summary

include <sys\ Iocking.h>
include <io.h>

int Iocking(handle, mode, nbyte);
int handle;
int mode;
long nbyte;

• Description

locking

Required only for function declarations

File handle
File locking mode
Number of bytes to lock

The locking function locks or unlocks nbyte bytes of the file specified by
handle. Locking bytes in a file prevents subsequent reading and writing of
those bytes by other processes. Unlocking a file permits other processes to
read or write to previously locked bytes. All locking or unlocking begins at
the current position of the file pointer and proceeds for the next nbyte
bytes, or to the end of the file.

The argument mode specifies the locking action to be performed. It must be
one of the following manifest constants:

Manifest Constant

LK_LOCK

LK_RLCK
LK_NBLCK

LK_NBRLCK
LK_UNLCK

Meaning

Lock the specified bytes. If the bytes cannot
be locked, try again after 1 second. If, after
10 attempts, the bytes cannot be locked,
return an error.

Same as LK_LOCK.
Lock the specified bytes. If bytes cannot be
locked, return an error.

Same as LK_ NBLCK.
Unlock the specified bytes. The bytes must
have been previously locked.

More than one region ,of a file can be locked, but no overlapping regions are
allowed. Furthermore, no more than one region can be unlocked at a time.

263

locking

When unlocking a file, the region of the file being unlocked must correspond
to a region that was previously locked. The locking function does not
coalesce adjacent regions, so if two locked regions are adjacent, each region
must be unlocked separately.

All locks should be removed before closing a file or exiting the program.

• Return Value

The locking function returns 0 if it is successful. A return value of -1 indi­
cates failure, and errno is set to one of the following values:

Value Meaning

EACCES Locking violation (file already locked or unlocked).

EBADF Invalid file handle.

EDEADLOCK Locking violation. This is returned when the
LK_LOCK or LK_RLCK flag is specified and
the file cannot be locked after 10 attempts.

EINVAL

• See Also

creat, open

Note

The locking function should be used only under MS-DOS 3.0 and later;
it has no effect under earlier versions of MS-DOS.

264

• Example

#include <io.h>
#include <sys\locking.h>
#include <stdlib.h>

extern unsigned char _osmajor;
int fh;
long pos;

/* Save the current file pointer position, then lock a
** region from the beginning of the file to the saved
** file pointer position:
*/

if (_osmajor >= 3) {
pas = tell(fh);
Iseek(fh, OL, 0);
if ((locking(fh, LK_NBLCK, pas» != -1) {

}

Iseek(fh, OL, 0);
locking(fh, LK_UNLCK, pos);
}

locking

266

log-loglO

• Summary

ine.lude <math.h>

double log(x); Calculate natural logarithm of x

double loglO(x); Calculate logarithm base 10 of x

double X; Floating-point value

• Description

The log and loglO functions calculate the natural logarithm and base 10
logarithm of x, respectively.

• Return Value

The log and loglO functions return the logarithm result. If x is negative,
both functions print a DOMAIN error message to stderr and return the
value negative HUGE. If x is 0, both functions print a SING error mes­
sage and return the value negative HUGE. In either case, errno is set to
EDOM.

Error handling can be modified by using the matherr routine.

• See Also

exp, matherr, pow

• Example

#include <math.h>

double x = 1000.0, y;

y = log(x); /* y = 6.907755 */

/* The 10g10 function calculates the base 10 logarithm of the
** given value.
*/
y = 10g10(x); /* y = 3.0 */

266

longjrnp

• Summary

include <setjrnp.h>

void longjrnp(env, value);
jrnp_ buf env;

int value;

• Description

Variable in which environment is stored
Value to be returned to setjrnp call

The longjmp function restores a stack environment previously saved in env
by setjmp. The setjmp and longjmp functions provide a way to execute
a nonlocal goto and are typically used to pass execution control to error­
handling or recovery code in a previously called routine without using the
normal calling or return conventions.

A call to setjrnp causes the current stack environment to be saved in env.
A subsequent call to longjrnp restores the saved environment and returns
control to the point immediately following the corresponding setjrnp call.
Execution resumes as if the given value had just been returned by the
setjrnp call. The values of all variables (except register variables) accessible
to the routine receiving control contain the values they had when longjrnp
was called. The values of register variables are unpredictable.

The longjrnp function must be called before the function that called
setjrnp returns. If longjrnp is called after the function calling setjrnp
returns, unpredictable program behavior will result.

The value returned by longjrnp must be nonzero. If a 0 argument is given
for value, the value 1 is substituted in the actual return.

• Return Value

There is no return value.

• See Also

setjrnp

267

longjmp

Warning

The values of register variables in the routine calling setjmp may not
be restored to the proper values after a longjmp is executed .

• Example

#include <stdio.h>
#include <setjmp.h>

main ()

p()

268

{
if (setjmp (mark) ! = 0) {

printf("longjmp has been called\n");
recover();
exit(l);
}

printf("setjmp has been called\n");

p() ;

}

{
int error 0;

if (error != 0)
longjmp(mark,-l):

}

longjrnp

recover ()
{
/* ensure that data files won't be corrupted by
** exiting the program */

}

269

lseek

• Summary

include <io.h> Required only for function declarations

long lseek(handle, offset, origin);
int handle; Handle referring to open file

Number of bytes from origin
Initial position

long offset;
int orig~'n;

• Description

The lseek function moves the file pointer (if Gi-ny) associated with handle to
a new location that is offset bytes from the origin. The next operation on
the file occurs at the new location. The origin must be one of the following
constants defined in stdio.h:

Origin

SEEK_SET

SEEK_CUR

SEEK_END

Definition

Beginning of file

Current position of file pointer

End of file

The lseek function can be used to reposition the pointer anywhere in a file.
The pointer can also be positioned beyond the end of the file. However, an
attempt to position the pointer before the beginning of the file causes an
error.

• Return Value

The lseek function returns the offset, in bytes, of the new position from the
beginning of the file. A return value of -1L indicates an error, and errno is
set to one of the following values:

Value

EBADF
EINVAL

Meaning

Invalid file handle

Invalid value for origin, or position specified by
offset is before the beginning of the file

On devices incapable of seeking (such as terminals and printers), the return
value is undefined.

270

• See Also

fseek, tell

• Example

#include <io.h>
#include <fcntl.h>
#include <stdlib.h>

int fh;
long position;

fh = open("data",O_RDONLY);

/* 0 offset from beginning */

position = lseek(fh,OL,SEEK_SET);
if (position == -lL)

perror("lseek to beginning failed");

/* find current position */
position = lseek(fh,OL,SEEK_CUR);
if (position == -lL)

perror("lseek to current position failed");

/* go to end of file */
position = lseek(fh,OL,SEEK_END);
if (position == -lL)

perror("lseek to end failed");

lseek

271

ltoa

• Summary

include <stdlib.h>

char ltoa(value, string, radix);
long value;
char *string;
int radix;

• Description

Required only for function declarations

Number to be converted
String result
Base of value

The ltoa function converts the digits of the given value to a null­
terminated character string and stores the result in string. The radix argu­
ment specifies the base of value; it must be in the range 2 - 36. If radix
equals 10 and value is negative, the first character of the stored string is the
minus sign (-).

• Return Value

The ltoa function returns a pointer to string. There is no error return.

• See Also

itoa, ultoa

Note

The space allocated for string must be large enough to hold the
returned string. The function can return up to 33 bytes.

• Example

#include <stdlib.h>

int radix = 10;
char buffer[20];
char *p;

p = ltoa(-344115L,buffer,radix);

272

/* p "-344115" */

malIoe

• Summary

include <malloc.h> Required only for function declarations

char *malloc(size);
unsigned size;

• Description

Bytes in allocated block

The malloc function allocates a memory block of at least size bytes. (The
block may be larger than size bytes, due to space required for alignment
and for maintenance information.)

• Return Value

The rnalloc function returns a char pointer to the allocated space. The
storage space pointed to by the return value is guaranteed to be suitably
aligned for storage of any type of object. To get a pointer to a type other
than char, use a type cast on the return value. The return value is NULL
if there is insufficient memory available.

• See Also

calloc, free, realloc

• Example

#include <malloc.h>

int *intarray;

/* Allocate space for 20 integers */

intarray = (int *)malloc(20*sizeof(int));

273

rnatherr

• Summary

include <math.h>

int matherr(x);
struct exception *x;

• Description

Math exception information

The matherr function processes errors generated by the functions of the
math library. The math functions call matherr whenever an error is
detected. The user can provide a different definition of the matherr func­
tion to carry out special error handling.

When an error occurs in a math routine, matherr is called with a pointer
to the following structure (defined in math.h) as an argument:

struct exception {
int type;
char *name;
double argl, arg2, retval;
};

The type specifies the type of math error. It will be one of the following
values, defined in math.h:

Value

DOMAIN

SING

OVERFLOW

UNDERFLOW

TLOSS

PLOSS

Meaning

Argument domain error

Argument singularity

Overflow range error

Underflow range error

Total loss of significance

Partial loss of significance

The structure member name is a pointer to a null-terminated string con­
taining the name of the function that caused the error. The structure
members argl and arg2 specify the values that caused the error. (If only
one argument is given, it is stored in argl.)

274

math err

The default return value for the given error is retval. You can change this
return value; keep in mind that the return value must specify whether or
not an error actually occurred. If matherr returns 0, an error message is
displayed and errno is set to an appropriate error value. If matherr
returns a nonzero value, no error message is displayed and errno remains
unchanged.

• Return Value

The matherr function should return 0 to indicate an error, and nonzero to
indicate successful corrective action.

• See Also

acos, asin, atan, atan2, bessel, cabs, cos, cosh, exp, hypot, log, pow,
sin, sinh, sqrt, tan

• Example

#include <math.h>
#include <string.h>

/* Catches errors in calls to the log or 10g10 routines. If
* the error is the result of a negative argument (DOMAIN
* error), the log or 10g10 of the absolute value of the
* argument is returned (rather than the default value, HUGE).
* The error message is suppressed. If the error is a 0
* argument, or the error was generated by some other routine,
* the default actions are taken. */

int matherr(x)
struct exception *x;

{
if (x->type == DOMAIN) {

if (strcmp(x->name, "log") == 0) {
x->retval = 10g(-(x->arg1));
return(l);
}

else if (strcmp(x->name, "10g10") == 0) {
x->retval = log10(-(x->argl»;
return(l);
}

}
return(O); /* use default actions */
}

276

_memavl

• Summary

inc.lude <rnalloc.h> Required only for function declarations

unsigned int _ rnernavl();

• Description

The _ memavl function returns the approximate size, in bytes, of the
memory available for dynamic memory allocation in the default data seg­
ment. This function can be used with ealloe, malloc, or realloc in the
small and medium memory models, and with _ nmalloc in all memory
models.

• Return Value

The _rnemavl function returns the size in bytes as an unsigned integer.

• See Also

calloe, rnalloc, _ freeet, realloe, staekavail

• Example

main ()

{
long *longptr;

printf("Memory available before malloc = %u\n", _memavl(»;
longptr = (long*)malloc(5000*sizeof(long»;
printf("Memory available after malloc = %u\n", _memavl(»;
}

Sample output:

Memory available before malloc = 61383
Memory available after malloc = 40959

276

memccpy

• Summary

include <memory.h>
include <string.h>

Required only for function declarations
Use either string.h or memory.h

char *memccpy(dest, src, c, cnt);
char *dest;
char *src;
int c;
unsigned cnt;

• Description

Pointer to destination
Pointer to source
Last character to copy
Number of characters

The memccpy function copies 0 or more bytes of src to dest, copying up to
and including the first occurrence of the character c or until cnt bytes have
been copied, whichever comes first.

• Return Value

If the character c is copied, memccpy returns a pointer to the byte in dest
that immediately follows the character. If c is not copied, memccpy
returns NULL.

• See Also

memchr, memcmp, nnemcpy, memset

• Example

#include <memory.h>

char buffer [100] I source[lOO];
char *result;

/* Copy bytes from source to buffer until '\n' is
** copied. but not more than 100 bytes:
*/

result memccpy(buffer.source. '\n' .100);

277

memchr

• Summary

include <memory.h>
include <string.h>

char *memchr(bu/, c, cnt);
char *bu/;
int C;
unsigned cnt;

• Description

Required only for function declarations
Use either string.h or memory.h

Pointer to buffer
Character to copy
Number of characters

The memchr function searches the first count bytes of buf for the first
occurrence of the character c. The search continues until c is found or cnt
bytes have been examined.

• Return Value

The memchr function returns a pointer to the location of c in but. It
returns NULL if c is not within the first cnt bytes of but.

• See Also

memccpy, memcmp, memcpy, memset

• Example

#include <memory.h>

char buffer [100] ;
char *result;

/* Find the first occurrence of 'a' in buffer. If 'a' is
** not in the first 100 bytes 1 return NULL.
*/

result memchr(buffer , 'a' 1100);

278

rnerncrnp

• Summary

include <memory.h>
include <string.h>

Required only for function declarations
Use either string.h or memory.h

int memcrnp (bufl, buf2, cnt);
char *bufl;
char *buf2;
unsigned cnt;

• Description

First buffer
Second buffer
Number of characters

The rnerncrnp function compares the first cnt bytes of bull and bul2 lexico­
graphically and returns a value indicating their relationship, as follows:

Value Meaning

Less than 0 bull less than bul2

0 bull identical to bul2

Greater than 0 bull greater than bul2

• Return Value

The merncmp function returns an integer value, as described above.

• See Also

rnemccpy, memchr, memcpy, memset

• Example

#include <memory.h>

char first [100] , second[100];
int result;

/* The following statement compares first[] and second[] to
** see which, if either, is greater. If they are the same in
** the first 100 bytes, they are considered equal. */

result = memcmp(first,second,lOO):

279

memcpy

• Surrunary

include <memory.h>
include <string.h>

char memcpy(dest, src, cnt);
char *dest;
char *src;
unsigned cnt;

• Description

Required only for function declarations
Use either string.h or memory.h

Pointer to destination
Pointer to source
Number of characters

The memcpy function copies cnt bytes of src to dest. If some regions of src
and dest overlap, memcpy ensures that the original src bytes in the over­
lapping region are copied before being overwritten.

• Return Value

The memcpy function returns a pointer to dest.

• See Also

memccpy, memchr, memcmp, memset

• Example

#include <memory.h>

char source [200] I destination[200];

/* Move 200 bytes from source to destination I and
** return a pointer to destination.
*/

memcpy(destination / source / 200);

280

rnerrncrnp

• Summary

include <memory.h>
include <string.h>

Required only for function declarations
Use either string.h or memory.h

int memicmp (bufl, buf2, cnt);
char *bufl;
char *buf2;
unsigned cnt;

• Description

First buffer
Second buffer
Number of characters

The memicmp function compares the first cnt bytes of bufl and buf2 lexi­
cographically, without regard to the case of letters in the two buffers; that
is, uppercase (capital) and lowercase letters are considered equivalent. The
memicmp function returns a value indicating the relationship of bufl and
buf2, as follows:

Value Meaning

Less than 0 bufl less than buf2

0 bufl identical to buf2

Greater than 0 bufl greater than buf2

• Return Value

The memicmp function returns an integer value, as described above.

• See Also

memccpy, memchr, memcmp, memcpy, memset

281

.
menncmp

• ExaInple

#include <memory.h>

char first [100] , second[lOO];
int result;

strcpy(first, "Those Who Will Not Learn from History");
strcpy(second,"THOSE WHO WILL NOT LEARN FROM their mistakes");
result = memicmp(first,second,29);
printf ("%d\n", resul t) ;

Output:

o

282

mernset

• Summary

include <memory.h>
include <string.h>

char *memset(dest, c, cnt);
char *dest;
int C;
unsigned cnt;

• Description

Required only for function declarations
Use either string.h or memory.h

Pointer to destination
Character to set
Number of characters

The memset function sets the first cnt bytes of dest to the character c.

• Return Value

The memset function returns a pointer to dest.

• See Also

memccpy, memchr,memcmp,memcpy

• Example

#include <memory.h>

char buffer[100J;

/* Set the first 100 bytes of buffer to zeros.
*/

memset(buffer, '\0',100);

283

mkdir

• Summary

include < direct.h >

int mkdir(pathname);
char * pathname;

• Description

Required only for function declarations

Path name for new directory

The mkdir function creates a new directory with the specified pathname.
Only one directory can be created at a time, so only the last component of
pathname can name a new directory.

• Return Value

The mkdir function returns the value 0 if the new directory was created.
A return value of -1 indicates an error, and errno is set to one of the fol­
lowing values:

Value

EACCES

ENOENT

• See Also

chdir, rmdir

• Example

#include <direct.h>

int result;

Meaning

Directory not created. The given name is the name
of an existing file, directory, or device.

Path name not found.

/* The following two statements create two new directories:
** one at the root on drive b:, and one in the "tmp"
** subdirectory of the current working directory. */

result mkdir{"b:/tmp"); /* "b:\\tmp" could also be used */

result mkdir{"tmp/sub"); /* "tmp\\sub" could also be used */

284

mktemp

• Summary

include <io.h>

char *mktemp(template);
char * template;

• Description

Required only for function declarations

File-name pattern

The mktemp function creates a unique file name by modifying the given
template. The template argument has the form

baseXXX:X:X:X:

where base is the part of the new file name supplied by the user and the XS
are placeholders for the part supplied by mktemp; mktemp preserves base
and replaces the six trailing XS with an alphanumeric character followed by
a five-digit value. The five-digit value is a unique number identifying the
calling process. The alphanumeric character is 0 ('0') the first time
mktemp is called with a given template.

In subsequent calls from the same process with the same template, mktemp
checks to see if previously returned names have been used to create files.
If no file exists for a given name, mktemp returns that name. If files exist
for all previously returned names, mktemp creates a new name by replac­
ing the alphanumeric character in the name with the next available lower­
case letter. For example, if the first name returned is t012345 and this
name is used to create a file, the next name returned will be ta12345.
When creating new names, mktemp uses, in order, '0' and the lowercase
letters 'a' to 'z'.

• Return Value

The mktemp function returns a pointer to the modified template. The
return value is NULL if the template argument is badly formed or no more
unique names can be created from the given template.

285

rnktemp

• See Also

fopen,getpid, open

Note

The mktemp function generates unique file names but does not create
or open files .

• Example

#include <io.h>

char *template = "fnXXXXXX";
char *result;

/* The following statement calls mktemp to generate a unique
** file name:
*/

result mktemp(template);

286

• Summary

include <rnath.h>

double rnodf(x, intptr);
double X;
double *intptr;

• Description

modf

Floating-point value
Pointer to stored integer portion

The modf function breaks down the floating-point value x into fractional
and integer parts. The signed fractional portion of x is returned. The
integer portion is stored as a floating-point value at intptr.

• Return Value

The modf function returns the signed fractional portion of x. There is no
error return.

• See Also

frexp,ldexp

• Example

#include <math.h>

double x, y, n;

x -14.87654321;
Y = modf(x,&n); /* y -0.87654321, n -14.0 */

287

rnovedata

• Summary

include <memory.h>
include <string.h>

Required only for function declarations
Use either string.h or memory.h

void movedata(srcseg, srco/f, destseg, desto/f, nbytes);
int srcseg; Segment address of source
int srco//; Segment offset of source
int destseg; Segment address of destination
int desto//; Segment offset of destination
unsigned nbytes; Number of bytes

• Description

The movedata function copies nbytes bytes from the source address
specified by srcseg:srcoffto the destination address specified by
destseg: destoff.

The movedata function is intended to be used to move far data in small­
or medium-model programs where segment addresses of data are not impli­
citly known. In large model programs, the memcpy function can be used
since segment addresses are implicitly known.

• Return Value

There is no return value.

• See Also

memcpy, segread, FP_SEG

288

movedata

Note

Segment values for the srcseg and destseg arguments can be obtained by
using either the segread function or the FP -:- SEG macro.

The movedata function does not handle all cases of overlapping moves
correctly (overlapping moves occur when part of the destination is the
same memory area as part of the source). Overlapping moves are han­
dled correctly in the memcpy function .

• Example

#include <memory.h>
#include <dos.h>

char far *src;
char far *dest;

/* The following statement moves 512 bytes of data from
** src to dest:
*/

movedata(FP_SEG(src) ,FP_OFF(src) ,FP_SEG(dest) ,
FP_OFF(dest) ,512);

289

.
_IllSIZe

• Summary

include <malloc.h>

unsigned _ msize(ptr);
char *ptr;

• Description

Required only for function declarations

Pointer to memory block

The _ msize function returns the size, in bytes, of the memory block allo­
cated by a call to calloc, malloc, or realloc.

• Return Value

The size in bytes is returned as an unsigned integer.

• See Also

calloc, _ expand, malloc, realloc

290

.
_IDSIZe

• Example

#include <stdio.h>
#include <malloc.h>

main (

{
long *oldptr;
unsigned int newsize = 64000;

oldptr = (long *)malloc(10000*sizeof(long»;
printf("Size of memory block pointed to by oldptr

_msize(oldptr»;

if (_expand (oldptr,newsize) != NULL)

%u\n" ,

printf("expand was able to increase block to %u\n",
_msize(oldptr»;

else
printf("expand was able to increase block to only %u\n",

_msize(oldptr»;
}

Sample output:

Size of memory block pointed to by oldptr = 40000
expand was able to increase block to only 44718

291

_nfree

• Summary

include <malloc.h>

void _ nfree(ptr);
char near *ptr;

• Deseription

Required only for function declarations

Pointer to allocated memory block

The _ nfree function deallocates a memory block. The argument Ptr
points to a memory block previously allocated through a call to _ nmalloe.
The number of bytes freed is the number of bytes specified when the block
was allocated. After the call, the freed block is again available for alloca­
tion.

• Return Value

There is no return value.

• See Also

_ nmalloe, free, malloe

Note

Attempting to free an invalid ptr (a pointer not allocated with
_ nmalloe) may affect subsequent allocation and cause errors.

292

• Example

#include <malloc.h>
#include <stdio.h>

char near *alloc;

/* Allocate 100 bytes and then free them.*/

/* Test for valid pointer:*/

if ((alloc = _nmalloc(lOO» == NULL)
printf("unable to allocate memory\n");

else {

/*free memory for the heap:*/
_nfree (alloc) ;
}

_nfree

293

_nmalloc

• Summary

inc.lude <malloc.h>

char near *_ nmalloc(size);
unsigned size;

• Description

Required only for function declarations

Bytes in allocated block

The _ nmalloc function allocates a memory block of at least size bytes
inside the default data segment. (The block may be larger than size bytes
due to space required for alignment.)

• Return Value

The _ nmalloc function returns a near pointer to a char. The storage
space pointed to by the return value is guaranteed to be suitably aligned
for storage of any type of object. To get a pointer to a type other than
char, use a type cast on the return value. The return value is NULL if
there is insufficient memory available.

• See Also

_ nfree, _ nmsize, malloc, realloc

• Example

#include <malloc.h>

int *intarray;

/* Allocate space for 20 integers */

intarray = (int *)_nmalloc(20*sizeof(int»;

294

_nmslze

• Summary

include <rnalloc.h>

unsigned _ nmsize(ptr);
char near ptr;

• Description

Required only for function declarations

Pointer to memory block

The _ nmsize function returns the size in bytes of the memory block allo­
cated by a call to _ nmalloc.

• Return Value

The _ nmsize function returns the size in bytes as an unsigned integer.

• See Also

_ fi'ree, _ fmalloc, _ fmsize, malloc, _ msize, _ nfree, _ nmalloc

• Example

#include <malloc.h>
#include <stdio.h>

main ()
{
char near *stringarray;

stringarray = _nmalloc(200*sizeof(char));
if (stringarray != NULL)

printf("%u bytes allocated\n",_nmsize(stringarray));
else

printf ("Allocation request failed. \n");
}

295

onexit

• Summary

inc.lude <stdIib.h>

onexit_ t onexit(Junc};
onexit_ t Junc;

• Description

Required only for function declarations

Pointer type onexit_ t defined in stdIib.h

The onexit function is passed the address of a function (June) to be called
when the program terminates normally. Successive calls to onexit create a
register of functions that are executed "last-in, first-out." No more than 32
functions can be registered with onexitj onexit returns the value NULL if
the number of functions exceeds 32. The functions passed to onexit cannot
take parameters.

• Return Value

The onexit function returns a pointer to the function if successful, and
returns NULL if there is no space left to store the function pointer.

• See Also

exit

296

• Example

#include <stdlib.h>

main ()
{
int fnl (), fn2 (), fn3 (), fn4 ();

onexit(fnl) ;
onexit(fn2) ;
onexit(fn3);
onexit(fn4) ;
printf("This is executed first.\n");
}

int fnl (
{
printf("next.\n");
}

int fn2 ()
{
printf("executed ");
}

int fn3 ()
{
printf("is ");
}

int fn4 ()
{

Output:

printf("This ");
}

This is executed first.
This is executed next.

onexit

297

open

• Summary

include <fcntl.h>
include <sys\ types.h>
include <sys\ stat.h>
include <io.h> Required only for function declarations

int open(pathname, oflay[, pmode]);
char * pathname; File path name
int ollay; Type of operations allowed
int pmode; Permission setting

• Description

The open function opens the file specified by pathname and prepares the
file for subsequent reading or writing, as defined by oflag. The argument
oflag is an integer expression formed by combining one or more of the
following manifest constants, defined in fcntl.h. When more than one
manifest constant is given, the constants are joined with the bitwise-OR
operator (D.

oflag

O_APPEND

O_CREAT

O_EXCL

O_RDONLY

O_TRUNC

298

Meaning

Reposition the file pointer to the end of the file
before every write operation.

Create and open a new file for writing; this has no
effect if the file specified by pathname exists.

Return an error value if the file specified by
pathname exists. Only applies when used with
O_CREAT.

Open file for reading only; if this flag is given,
n~ither 0_ RDWR nor 0_ WRONL Y may be
gIven.

Open file for both reading and writing; if this flag is
given, neither 0_ RDONL Y nor 0_ WRONL Y
may be given.

Open and truncate an existing file to 0 length; the
file must have write permission. The contents of
the file are destroyed.

O_WRONLY

O_BINARY

O_TEXT

Note

open

Open file for writing only; if this flag is given, nei­
ther 0_ RDONL Y nor 0_ RDWR may be given.

Open file in binary (untranslated) mode. (See
fopen for a description of binary mode.)

Open file in text (translated) mode. (See fopen for
a description of text mode.)

0_ TRUNC destroys the complete contents of an existing file. Use
with care.

The pmode argument is required only when 0_ CREAT is specified. If the
file exists, pmode is ignored. Otherwise, pmode specifies the file's permis­
sion settings, which are set when the new file is closed for the first time.
The pmode is an integer expression containing one or both of the manifest
constants S_IWRITE and S_IREAD, defined in sys\stat.h. When both
constants are given, they are joined with the bitwise-OR operator (D. The
meaning of the pmode argument is as follows:

Value

S_IWRITE

S_IREAD

S_ IREAD I S_ IWRITE

Meaning

Writing permitted

Reading permitted

Reading and writing permitted

If write permission is not given, the file is read only. Under MS-DOS, all
files are readable; it is not possible to give write-only permission. Thus the
modes S_IWRITE and S_IREAD I S_IWRITE are equivalent.

The open function applies the current file permission mask to pmode before
setting the permissions (see umask).

299

open

• Return Value

The open function returns a file handle for the opened file. A return value
of -1 indicates an error, and errno is set to one of the following values:

Value

EACCES

EEXIST

EMFILE

ENOENT

• See Also

Meaning

Given path name is a directory; or an attempt was
made to open a read-only file for writing; or a shar­
ing violation occurred (the file's sharing mode does
not allow the specified operations; MS-DOS Version
3.0 or later only).

The 0_ CREAT and 0_ EXCL flags are specified
but the named file already exists.

No more file handles available (too many open
files).

File or path name not found.

access, chmod, close, creat, dup, dup2, fopen, sopen, umask

300

• Example

#include <fcntl.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>
#include <stdlib.h>

main ()
{
int fhl, fh2;

fhl = open("datal",O_RDONLY);
if (fhl == -1)

perror("open failed on input file");

fh2 = open ("data2",O_WRONLY/O_TRUNC/O_CREAT,
S_IREAD/S_IWRITE) ;

if (fh2 == -1)
pen-or ("open failed on output file");

}

open

301

outp

• Summary

inelude <conio.h>

int outp(port, value};
unsigned port;
int value;

• Description

Required only for function declarations

Port number
Output value

The outp function writes the specified value to the output port specified by
port. The port argument can be any unsigned integer in the range a to
65535; value can be any integer in the range a to 255.

• Return Value

The outp function returns value. There is no error return.

• See Also

inp

• Example

#include <conio.h>

int port, byte_val;

/* The following statement outputs a byte to the port
** that 'port' is currently set to:
*/

outp(port,byte_val);

302

• Summary

include <stdlib.h>

void perror(string);
char *string;

int errno;
int sys_ nerr;
char sys_ errlist[sys_ nerr];

• Description

perror

Required only for function declarations

User-supplied message

Error number
Number of system messages
Array of error messages

The perror function prints an error message to stderr. The string argu­
ment is printed first, followed by a colon, the system error message for the
last library call that produced an error, and a new line.

The actual error number is stored in the variable errno, which should be
declared at the external level. The system error messages are accessed
through the variable sys_ errlist, which is an array of messages ordered by
error number. The perror function prints the appropriate error message
by using the errno value as an index to sys_ errlist. The value of the vari­
able sys_ nerr is defined as the maximum number of elements in the
sys_ errlist array.

To produce accurate results, perror should be called immediately after a
library routine returns with an error. Otherwise, the errno value may be
overwritten by subsequent calls.

• Return Value

The perror function returns no value.

• See Also

clearerr, ferror, strerror

303

perror

Note

Under MS-DOS, some of the errno values listed in errno.h are not
used. See Appendix A, "Error Messages," for a list of err no values
used on MS-DOS and the corresponding error messages. The perror
function prints an empty string for any errno value not used under
MS-DOS .

• Example

#include <fcntl.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>
#include <stdlib.h>

int fh1, fh2 ;

fh1 = open("data1",O_RDONLY);
if (fh1 == -1)

perror("open failed on input file");

fh2 = open ("data2",O_WRONLYIO_TRUNCIO_CREAT,S_IREADIS_IWRITE) ;
if (fh2 == -1)

perror("open failed on output file");

304

• Summary

include <math.h>

double pow(x, y);
double X;
double y;

• Description

Number to be raised
Power of X

The pow function computes x raised to the yth power.

• Return Value

pow

The pow function returns the value of xY• If y is 0, pow returns the value
1. If x is 0 and y is negative, pow sets errno to ERANGE, and returns
HUGE. If x is negative and y is not an integer, the function prints a
DOMAIN error message to stderr, sets errno to EDOM, and returns O.
If an overflow results, the function sets errno to ERANGE and returns
either positive or negative HUGE. No message is printed for overflow or
underflow conditions.

• See Also

exp, log, sqrt

• Example

#include <math.h>

double x = 2.0, Y 3.0, z;

z = pow(x,y); /* z 8.0 */

305

printf

• Summary

include <stdio.h>

int printf(jormat-string[, argument ••.]);
char * format-string;

• Description

Format control

The printf function formats and prints a series of characters and values to
the standard output stream, stdout. The format-string consists of ordinary
characters, escape sequences, and, if there are arguments following the
format-string, format specifications. Ordinary characters and escape
sequences are simply copied to stdout in order of their appearance. For
example, the line

printf("Line one\n\t\tLine two\n");

produces the output

Line one
Line two

(For more information on escape sequences, see Section 2.2.4, "Escape
Sequences," in the Microsoft C Compiler Language Reference.)

If there are arguments following the format-string, then the format-string
must contain format specifications that determine the output format for
these arguments. Format specifications always begin with a percent sign
(%), and are described in greater detail below.

The format-string is read left to right. When the first format specification
(if any) is encountered, the value of the first argument after the format­
string is converted and output according to the format specification. The
second format specification causes the second argument to be converted and
output, and this continues through the end of the format-string. If there
are more arguments than there are format specifications, the extra argu­
ments are ignored. The results are undefined if there are not enough argu­
ments for all the format specifications.

A format specification has the following form:

%[flags][width][.precision][{F: N: h: I}]type

306

printf

Each field of the format specification is a single character or a number sig­
nifying a particular format option. The type character, which appears after
the last optional format field, determines whether the associated argument
is interpreted as a character, a string, or a number (see Table R.1). The
simplest format specification contains only the percent sign and a type
character (for example, %s). The optional fields control other aspects of
the formatting, as follows:

Field

flags

width

preczswn

F,N

h, I

Description

Justification of output and printing of signs, blanks,
decimal points, octal and hexadecimal prefixes (see
Table R.2).

Minimum number of characters output.

Maximum number of characters printed for all or part
of the output field, or minimum number of digits
printed for integer values (see Table R.3).

Prefixes that allow user to override default addressing
conventions of memory model being used:

F Used in small model to print value that
has been declared far

N Used in medium, large and huge models
for near value

F and N should be used only with the sand p type
characters, since they are relevant only with argu­
ments that pass a pointer.

Size of argument expected:

h Used as a prefix with the integer types d,
i, 0, u, x, and X to specify that the argu­
men t is a short int

I Used as a prefix with d, i, 0, u, x, and X
types to specify that the argument is a
long inti also used as a prefix with e, E,
f, g, or G types to show that the argu­
ment is double, rather than float

If a percent sign (%) is followed by a character that has no meaning as a
format field, the character is simply copied to stdout. For example, to
print a percent-sign character, use %%.

307

printf

Table R.1

printf Type Characters

Character

d

u

0

x

X

f

e

E

g

G

c

s

308

Argument Type

Integer

Integer

Integer

Integer

Integer

Integer

Floating point

Floating point

Floating point

Floating point

Floating point

Character

String

Output Format

Signed decimal integer

Signed decimal integer

Unsigned decimal integer

Unsigned octal integer

Unsigned hexadecimal integer, using
"abcdef'

Unsigned hexadecimal integer, using
"ABCDEF"

Signed value having the form [-]dddd.dddd,
where dddd is one or more decimal digits.
The number of digits before the decimal
point depends on the magnitude of the
number, and the number of digits after the
decimal point depends on the requested
precision.

Signed value having the form
[-]d.dddd e [sign]ddd, where d is a single
decimal digIt, dddd is one or more decimal
digits, ddd is exactly three decimal digits,
and sign is + or -

Identical to the "e" format, except that "E"
introduces the exponent instead of "e"

Signed value printed in "f' or "e" format,
whichever is more compact for the given
value and precision (see below). The "e"
format is used only when the exponent of the
value is less than -4 or greater than
precision. Trailing zeros are truncated and
the decimal point appears only if one or more
digits follow it.

Identical to the "g" format, except that "E"
introduces the exponent (where appropriate)
instead of "e"

Single character

Characters printed up to the first null
character ('\ 0') or until precision is reached

printf

Table R.l (continued)

Character

n

p

Table R.2

Argument Type

Pointer to integer

Far pointer

Output Format

Number of characters successfully written so
far to the stream or buffer; this value is
stored in the integer whose address is given
as the argument

Prints the address pointed to by the
argument in the form xxxx:yyyy, where xxxx
is the segment and yyyy is the offset, and the
digits x and yare uppercase hexadecimal
digits; %Np prints o~ly the offset of the
address, yyyy. Since %p expects a pointer
to a far value, pointer arguments to p must
be cast to far in small-model programs.

printf Flag Characters

+

blank (' ')

Meaning

Left justify the result within the field
width

Prefix the output value with a sign (+
or -) if the output value is of a signed
type

Prefix the output value with a blank if
the output value is signed and positive;
the "+" Hag overrides the blank Hag if
both appear, and a positive signed
value will be output with a sign.

When used with the 0, x, or X
format, the "#" Hag prefixes
any nonzero output value with 0,
Ox, or OX, respectively

Default

Right justify

Sign appears only for
negative signed
values (-).

No blank

No prefix

309

printf

Table R.2 (continued)

Meaning

When used with the e, E, or f format,
the "#" flag forces the output value to
contain a decimal point in all cases

When used with the g or G format, the
"#" flag forces the output value to
contain a decimal point in all cases and
prevents the truncation of trailing
zeros

Ignored when used with c, d, i, u, or s

a More than one flag can appear in a format specification.

Default

Decimal point
appears only if digits
follow it

Decimal point
appears only if digits
follow it Trailing
zeros are truncated.

The width is a non-negative decimal integer controlling the minimum
number of characters printed. If the number of characters in the output
value is less than the specified width, blanks are added on the left or the
right (depending on whether the "-" flag is specified) until the minimum
width is reached. If width is prefixed with a 0, zeros are added until the
minimum width is reached (not useful for left-justified numbers).

The width specification never causes a value to be truncated; if the number
of characters in the output value is greater than the specified width, or
width is not given, all characters of the value are printed (subject to the
precision specification).

The width specification may be an asterisk (lie), in which case an argument
from the argument list supplies the value. The width argument must pre­
cede the value being formatted in the argument list.

The precision specification is a non-negative decimal integer preceded by a
period (.), which specifies the number of characters to be printed, or the
number of decimal places. Unlike the width specification, the precision can
cause truncation of the output value, or rounding in the case of a floating­
point value.

The precision specification may be an asterisk (lie), in which case an argu­
ment from the argument list supplies the value. The precision argument
must precede the value being formatted in the argument list.

310

printf

The interpretation of the precision value, and the default when precision is
omitted, depend on the type, as shown in Table R.3.

Table R.3

How printf Precision Values Affect Type

Type

d

u
o
x
X

e
E
f

g
G

c

s

Meaning

The precision specifies the minimum
number of digits to be printed. If the
number of digits in the argument is less
than precision, the output value is padded
on the left with zeros. The value is not
truncated when the number of digits
exceeds precision.

The precision specifies the number of
digits to be printed after the decimal
point. The last printed digit is rounded.

The precision specifies the maximum
number of significant digits printed.

No effect

The precision specifies the maximum
number of characters to be printed.
Characters in excess of precision are not
printed.

• Return Value

Default

If precision is 0 or
omitted entirely, or if the
period (.) appears
without a number
following it, the precision
is set to 1.

Default precision is six; if
precision is 0 or the
period (.) appears
without a number
following it, no decimal
point is printed.

All significant digits are
printed.

Character printed

Characters are printed
until a null character is
encountered.

The printf function returns the number of characters printed.

• See Also

fprintf, scanf, sprintf, vfprintf, vprintf, vsprintf

311

printf

• Example

main ()
{

/* Format and print various data. */

char ch =
int count
double fp

'h', *string = "computer";
234, *ptr, hex = Ox10, oct
251.7366;

printf ("%d %+d %06d %X %x
count, count, count, count, count,

010, dec

%o\n\n" ,
count) ;

10;

printf("1234567890123%n45678901234567890\n\n", &count);
printf ("Value of count should be 13; count = %d\n\n",

count) ;

printf ("%10c%5c\n\n", ch, ch) ;

printf("%25s\n%25.4s\n\n",string, string);

printf ("%f %.2f %e %E\n\n", fp, fp, fp, fp);

printf ("%i %i %i\n\n", hex, oct, dec);

ptr = &count;
printf ("%Np %p %Fp\n" ,

ptr I (int far *) ptr I (int far *) ptr);
}

Output:

234 +234 000234 EA ea 352

123456789012345678901234567890

Value of count should be 13; count 13

h h

computer
camp

251.736600 251.74 2.517366e+002

16 8 10

127A 1328:127A 1328:127A

312

2.517366E+002

putc - putchar

• Summary

include <stdio.h>

int putc(c, stream);
int c;
FILE *stream;

int putchar(c);
int c;

• Description

Write a character to stream
Character to be written
Pointer to file structure

Write a character to stdout
Character to be written

The putc routine writes the single character c to the output stream at the
current position. The putchar routine is identical to putc(c, stdout).

• Return Value

The putc and put char routines return the character written. A return
value of EOF indicates an error. Since the EOF value is a legitimate
integer value, the ferror function should be used to verify that an error
occurred.

• See Also

fputc,fputchar, getc, get char

Note

The putc and put char routines are identical to fputc and fputchar,
but are macros, not functions.

313

putc - putchar

• Example

#include <stdio.h>

FILE *stream;
char buffer[81J;
int i, ch;

/* The following statements write a buffer to
** a stream:
*/

for (i = 0; (i < 81) && ((ch
++i;

putc (buffer [iJ ,stream» ! = EOF);)

/* Note that the body of the for statement is null, since
** the write operation is carried out in the test expression.
*/

314

• Summary

include < conio.h >

void putch(c)
int c;

• Description

Required only for function declarations

Character to be output

The putch function writes the character c directly to the console.

• Return Value

There is no return value.

• See Also

cprintf, getch, getche

• Example

#include <conio.h>

/* The following example shows how the getche function
** could be defined using putch and getch:
*/

int getche (
{

}

int ch;

ch = getch();
putch(ch);
return(ch);

putch

316

putenv

• Summary

include <stdlib.h>

int putenv(envstring);
char * envstring;

• Description

Required only for function declarations

Environment string definition

The putenv function adds new environment variables or modifies the
values of existing environment variables. Environment variables define the
environment in which a process executes (for example, the default search
path for libraries to be linked with a program).

The envstring argument must be a pointer to a string with the form

varname =string

where varname is the name of the environment variable to be added or
modified and string is the variable's value. If varname is already part of the
environment, it is replaced by string; otherwise, the new string is added to
the environment. A variable can be set to an empty value by specifying an
empty string.

Do not free a pointer to an environment entry while the environment entry
is still in use, or the environment variable will point into freed space. A
similar problem can occur if you pass a pointer to a local variable to
putenv, then exit the function in which the variable is declared.

• Return Value

The putenv function returns 0 if it is successful. A return value of -1 indi­
cates an error.

• See Also

getenv

316

putenv

Note

The getenv and putenv functions use the global variable environ to
access the environment table. The putenv function may change the
value of environ, thus invalidating the "envp" argument to the "main"
function.

• Example

#include <stdlib.h>
#include <stdio.h>
#include <process.h>

/* Attempt to change an environment variable. */

if (putenv("PATH=a:\\bin;b:\\tmp ") == -1) {
printf("putenv failed -- out of memory");
exit(l) ;
}

317

puts

• Summary

include <stdio.h>

int puts(string);
char *string;

• Description

String to be output

The puts function writes the given string to the standard output stream
stdout, replacing the string's terminating null character ('\ 0') with a new­
line character ('\n') in the output stream.

• Return Value

The puts function returns the last character written, which is always the
new-line character ('\n'). A return value of EOF indicates an error.

• See Also

fputs, gets

• Example

#include <stdio.h>

int result;

/* The following statement writes a prompt to stdout: */

result = puts {"insert data disk and strike any key");

318

• Summary

include <stdio.h>

int putw(binint, stream);
int binint;
FILE *stream;

• Description

Binary integer to be output
Pointer to file structure

putw

The putw function writes a binary value of type int to the current position
of the specified stream. The putw function does not affect the alignment of
items in the stream, nor does it assume any special alignment.

• Return Value

The putw function returns the value written. A return value of EOF may
indicate an error. Since EOF is also a legitimate integer value, ferror
should be used to verify an error.

• See Also

getw

Note

The putw function is provided primarily for compatibility with previ­
ous libraries. Note that portability problems may occur with putw,
since the size of an int and ordering of bytes within an int differ across
systems.

319

putw

• Example

#include <stdio.h>
#include <stdlib.h>

FILE *stream;

/* The following statement writes a word to a stream
** and checks for an error:
*/

putw(0345 / stream);

if (ferror(stream)) {

320

fprintf (stderr I "putw failed\n");
clearerr(stream);
}

qsort

• Summary

include <search.h> Required only for function declarations

void qsort(base, num, width, compare);
char *base;
unsigned num, width;
int (*compare)();

• Description

The qsort function implements a quick-sort algorithm to sort an array of
num elements, each of width bytes in size. The argument base is a pointer to
the base of the array to be sorted. The qsort function overwrites this array
with the sorted elements.

The argument compare is a pointer to a user-supplied routine that com­
pares two array elements and returns a value specifying their relationship.
The qsort function will call the compare routine one or more times during
the sort, passing pointers to two array elements on each call. The routine
must compare the elements, then return one of the following values:

Value

Less than 0

o
Greater than 0

• Return Value

Meaning

elementl less than element2

element1 equivalent to element2

element1 greater than element2

There is no return value.

• See Also

bsearch, lsearch

321

qsort

• Example

#include <search.h>
#include <string.h>
#include <stdio.h>

int compare(); /* must declare as a function */

main (argc, argv)
int argc;
char **argv;

{

/* The following statement sorts the command line
** arguments in lexical order:
*/

qsort((char *)argv,argc,sizeof(char *),compare);
for (i = 0; i < argc; ++i)

printf("%s\n", argv[iJ);

}

int compare (argl, arg2)
char **argl, **arg2;

{
return(strcmp(*argl,*arg2));
}

322

rand

• Summary

include <stdlib.h> Required only for function declarations

int rand();

• Description

The rand function returns a pseudorandom integer in the range 0 to 32767.
The srand routine can be used before calling rand to set a random starting
point.

• Return Value

The rand function returns a pseudorandom number as described above.
There is no error return.

• See Also

srand

• Example

#include <stdlib.h>
#include <stdio.h>

int x;

/* Print the first 20 random numbers generated.
*/

for (x = 1; x <= 20; x++)
printf("iteration %d, rand=%d\n",x,rand());

323

read

• Summary

include <io.h> Required only for function declarations

int read(handle, buffer, count);
int handle; Handle referring to open file

Storage location for data
Maximum number of bytes

char * buffer;
unsigned int count;

• Description

The read function attempts to read count bytes from the file associated
with handle into buffer. The read operation begins at the current position
of the file pointer (if any) associated with the given file. After the read
operation, the file pointer points to the next unread character.

• Return Value

The read function returns the number of bytes actually read, which may be
less than count if there are fewer than count bytes left in the file or if the
file was opened in text mode (see below). The return value 0 indicates an
attempt to read at end-of-file. The return value -1 indicates an error, and
errno is set to the following value:

Value

EBADF

Meaning

The given handle is invalid; or the file is not open
for reading; or the file is locked (MS-DOS versions
3.0 or later only).

If you are reading more than 32K (the maximum size for type int) from a
file, the return value should be of type unsigned into (See the example
that follows.) However, the maximum number of bytes that can be read
from a file is 65534, since 65535 (or OxFFFF) is indistinguishable from -1,
and therefore would return an error.

If the file was opened in text mode, the return value may not correspond to
the number of bytes actually read. When text mode is in effect, each
carriage-return-line-feed pair (CR-LF) is replaced with a single line-feed
character (LF). Only the single line-feed character is counted in the return
value. The replacement does not affect the file pointer.

324

read

• See Also

creat, fread, open, write

Note

Under MS-DOS, when files are opened in text mode, a character is
treated as an end-or-file indicator. When the CONTROlrZ is encountered,
the read terminates, and the next read returns 0 bytes. The file must be
closed to clear the end-or-file indicator .

• Example

#include <io.h>
#include <stdio.h>
#include <fcntl.h>

char buffer[60000];

main ()
{
int fh;
unsigned int nbytes = 60000, bytesread;

if «fh = open ("c:/data/conf.dat",O_RDONLY» -1) {
perror("open failed on input file");
exit(l);
}

if «bytesread = read(fh,buffer,nbytes» == -1)
perror("");

else
printf("Read %u bytes from file\n", bytesread);

}

326

realloc

• Summary

include <maIloc.h>

char *realloc(ptr, size);
char *ptr;
unsigned size;

• Description

Required only for function declarations

Pointer to previously allocated memory block
New size in bytes

The realloc function changes the size of a previously allocated memory
block. The ptr argument points to the beginning of the block. The size
argument gives the new size of the block, in bytes. The contents of the
block are unchanged up to the shorter of the new and old sizes.

The ptr argument may also point to a block that has been freed, as long as
there has been no intervening call to calloc, halloc, malloc, or realloc
since the block was freed.

• Return Value

The realloc function returns a char pointer to the reallocated memory
block. The block may be moved when its size is changed; therefore, the ptr
argument to realloc is not necessarily the same as the return value.

The return value is NULL if there is insufficient memory available to
expand the block to the given size. The original block is freed when this
occurs.

The storage space pointed to by the return value is guaranteed to be suit­
ably aligned for storage of any type of object. To get a pointer to a type
other than char, use a type cast on the return value.

• See Also

calloe, free, halloc, malloc

326

• Example

#include <malloc.h>
#include <stdio.h>

char *alloc;

/* Get enough space for 50 characters.
*/

alloc = malloc(50*sizeof(char»;

/* Reallocate block to hold 100 characters */

if (alloc != NULL)
alloc = realloc(alloc,lOO*sizeof(char»;

realloc

327

remove

• Summary

include <io.h>
include <stdio.h>

int remove(pathname);
char * pathname;

• Description

Required only for function declarations
Use either io.h or stdio.h

Path name of file to be removed

The remove function deletes the file specified by pathname.

• Return Value

The remove function returns the value 0 if the file is successfully deleted.
A return value of -1 indicates an error, and errno is set to one of the fol­
lowing values:

Value

EACCES

ENOENT

• See Also

close, unlink

• Example

#include <io.h>
#include <stdlib.h>

int result;

Meaning

Path name specifies a directory or a read-only file.

File or path name not found.

result = remove("tmpfile");
if (result == -1)

perror("couldn't delete tmpfile");

328

• Summary

include <io.h>
include <stdio.h>

rename

Required only for function declarations
Use either io.h or stdio.h

int rename(otdname, newname};
char * oldname; Pointer to old name

Pointer to new name char * newname;

• Description

The rename function renames the file or directory specified by oldname to
the name given by newname. The oldname must specify the path name of
an existing file or directory. The newname must not specify the name of an
existing file or directory.

The rename function can be used to move a file from one directory to
another by giving a different path name in the newname argument. How­
ever, files cannot be moved from one device to another (for example, from
Drive A to Drive B). Directories can only be renamed, not moved.

• Return Value

The rename function returns 0 if it is successful. On an error, it returns a
nonzero value and sets errno to one of the following values:

Value

EACCES

ENOENT
EXDEV

Meaning

File or directory specified by newname already
exists or could not be created (invalid path); or
oldname is a directory and newname specifies a
different path.

File or path name specified by oldname not found.

Attempt to move a file to a different device.

329

rename

• See Also

creat,fopen, open

Note

Note that the order of the arguments in rename in Microsoft C 4.0 is
the opposite of their order in earlier versions. This change was made to
conform to the developing ANSI C standard.

• Example

#include <io.h>

int result;

/* The following statement changes the file "input" to
** have the name "data":
*/
result = rename("input","data");

330

rewind

• Summary

include <stdio.h>

void rewind{stream);
FILE *stream;

• Description

Pointer to file structure

The rewind function repositions the file pointer associated with stream to
the beginning of the file. A call to rewind is equivalent to

fseek{ stream, OL, SEEK_ SET);

except that rewind clears the end-of-file and error indicators for the
stream, and fseek does not; also, fseek returns a value that indicates
whether or not the pointer was successfully moved, but rewind does not
return any value.

• Return Value

There is no return value.

• See Also

fseek, ftell

• Example

#include <stdio.h>

FILE *stream;
int datal, data2;

fprintf(stream,"%d %d",datal,data2); /* Place data in file */

rewind(stream); /* Now read data file */
fscanf (stream, "%d" ,&datal) ;

331

rmdir

• Summary

include <direct.h>

int rmdir{pathname);
char *pathname;

• Description

Required only for function declarations

Path name of directory to be removed

The rmdir function deletes the directory specified by pathname. The direc­
tory must be empty, and it must not be the current working directory or
the root directory.

• Return Value

The rmdir function returns the value 0 if the directory is successfully
deleted. A return value of -1 indicates an error, and errno is set to one of
the following values:

Value

EACCES

ENOENT

• See Also

chdir, mkdir

• Example

#include <direct.h>

Meaning

The given path name is not a directory; or the
directory is not empty; or the directory is the
current working directory or root directory.

Path name not found.

int resultl, result2;

/* The following statements delete two directories:
** one at the root, and one in the current working
** directory. */
resultl rmdir("/datal");
result2 = rmdir{"data2");

332

rmtmp

• Summary

include < stdio.h >

int rmtmp();

• Description

The rmtmp function is used to clean up all the temporary files in the
current directory; rmtmp removes only those files created by tmpfile.

The rmtmp function should be used only in the same directory in which
the temporary files were created.

• Return Value

The rmtmp function returns the number of temporary files closed and
deleted.

• See Also

flushall, tmpfile, tmpnam

• Example

#include <stdio.h>

main ()
{
int numdeleted;

if ((stream = tmpfile()) == NULL)
perror("Couldn't open new temporary file");

numdeleted = rmtmp();
printf("Number of files closed and deleted in\
current directory = %d\n", numdeleted);
}

333

sbrk

• Summary

include <malloc.h>

char *sbrk(incr);
int incr;

• Description

Required only for function declarations

Number of bytes added or subtracted

The sbrk function resets the break value for the calling process. The break
value is the address of the first byte of unallocated memory. The sbrk
function adds incr bytes to the break value; the size of the process's allo­
cated memory is adjusted accordingly. Note that incr may be negative, in
which case the amount of allocated space is decreased by incr bytes.

• Return Value

The sbrk function returns the old break value. A return value of -1 indi­
cates an error, and errno is set to ENOMEM, indicating that insufficient
memory was available.

• See Also

calloc, free, malloc, realloc

Important

In compact-, large-, and huge-model programs, sbrk fails and returns
-1. Use malloc for allocation requests in large-model programs.

334

• Example

#include <malloc.h>
#include <stdio.h>

/* Allocate 100 bytes of memory.
*/

char *alloc;
alloc = sbrk(100);

/* Now reduce allocated memory to 60 bytes.
*/

if (alloc != (char)-l)
sbrk(-40);

sbrk

336

scanf

• Summary

include <stdio.h>

int scanf(Jormat-string[, argument. .. m;
char * format-string; Format control

• Description

The seanf function reads data from the standard input stream stdin
into the locations given by arguments. Each argument must be a pointer
to a variable with a type that corresponds to a type specifier in the
format-string. The format-string controls the interpretation of the input
fields. The format-string can contain one or more of the following:

•

•

•

White-space characters (blank (' '), tab ('\ t'), or new line ('\n')).
A white-space character causes seanf to read, but not store, all
consecutive white-space characters in the input up to the next
non-white-space character. One white-space character in the
format-string matches any number (including 0) and combination of
white-space characters in the input.

Non-white-space characters, except for the percent-sign character
(%). A non-white-space character causes seanf to read, but not
store, a matching non-white-space character. If the next character
in stdin does not match, seanf terminates.

Format specifications, introduced by the percent sign (%). A for­
mat specification causes seanf to read and convert characters in the
input into values of a specified type. The value is assigned to an
argument in the argument list.

The format-string is read frOlll left to right. Characters outside format
specifications are expected to match the sequence of characters in stdin;
the matched characters in stdin are scanned but not stored. If a character
in stdin conflicts with the format-string, seanf terminates. The conflicting
character is left in stdin as if it had not been read.

When the first format specification is encountered, the value of the first
input field is converted according to the format specification and stored in
the location specified by the first argument. The second format specifi­
cation causes the second input field to be converted and stored in the
second argument, and so on through the end of the format-string.

336

scanf

An input field is defined as all characters up to the first white-space charac­
ter (space, tab, or new line), or up to the first character that cannot be con­
verted according to the format specification, or until the field width, if
specified, is reached, whichever comes first. If there are too many argu­
ments for the given format specifications, the extra arguments are ignored.
The results are undefined if there are not enough arguments for the given
format specifications.

A format specification has the following form:

%[*][width][{F: N}][{h: I}]type

Each field of the format specification is a single character or a number sig­
nifying a particular format option. The type character, which appears after
the last optional format field, determines whether the input field is inter­
preted as a character, a string, or a number. The simplest format specifica­
tion contains only the percent sign and a type character (for example, %s).

Each field of the format specification is discussed in detail below. If a per­
cent sign (%) is followed by a character that has no meaning as a format­
control character, that character and the following characters (up to the
next percent sign) are treated as an ordinary sequence of characters - that
is, a sequence of characters that must match the input. For example, to
specify that a percent sign character is to be input, use %%.

An asterisk (*) following the percent sign suppresses assignment of the next
input field, which is interpreted as a field of the specified type. The field is
scanned but not stored.

The width is a positive decimal integer controlling the maximum number of
characters to be read from stdin. No more than width characters are con­
verted and stored at the corresponding argument. Fewer than width charac­
ters may be read if a white-space character (space, tab, or new line) or a
character that cannot be converted according to the given format occurs
before width is reached.

The optional F and N prefixes allow the user to override the default
addressing conventions of the memory model being used. F should be pre­
fixed to an argument pointing to a far object, while N should be prefixed to
an argument pointing to a near object.

The optional prefix I indicates that the long version of the following type is
to be used, while the prefix h indicates that the short version is to be used.
The corresponding argument should point to a long or double object (with
the I character) or a short object (with the h character). The I and h
modifiers can be used with the d, i, 0, x, and u type characters. The I

337

scanf

modifier can also be used with the e and f type characters. The I and h
modifiers are ignored if specified for any other type.

The type characters and their meanings are described in Table RA.

Table R.4

scanf Type Characters

Character Type of Input Expected

d Decimal integer

D Decimal integer

o Octal integer

o Octal integer

x Hexadecimal integer

X Hexadecimal integer

Decimal, hexadecimal or octal
integer

I Decimal, hexadecimal or octal
integer

u Unsigned decimal integer

U Unsigned decimal integer

e Floating-point value consisting of
f an optional sign (+ or -), a series

of one or more decimal digits
possibly containing a decimal
point, and an optional exponent
("e" or "E") followed by an
optionally signed integer value

c Character. White-space
characters that are ordinarily
skipped are read when c is
specified; to read the next non­
white-space character, use %ls.

s String

338

Type of Argument

Pointer to int

Pointer to long

Pointer to int

Pointer to long

Pointer to int

Pointer to long

Pointer to int

Pointer to long

Pointer to unsigned int

Pointer to unsigned long

Pointer to float

Pointer to char

Pointer to character array
large enough for input field
plus a terminating null
character ('\ 0'), which is
automatically appended

Table R.4 (continued)

Character

n

p

Type of Input Expected

No input read from stream or
buffer

Value in the form xxxx:yyyy,
where the digits x and yare
uppercase hexadecimal digits

scanf

Type of Argument

Pointer to int, into which is
stored the number of
characters successfully read
from the stream or buffer
up to that point in the
current call to scanf

Pointer to far data item

To read strings not delimited by space characters, a set of characters in
brackets (f]) can be substituted for the s (string) type character. The
corresponding input field is read up to the first character that does not
appear in the bracketed character set. If the first character in the set is a
caret C'), the effect is reversed: the input field is read up to the first charac­
ter that does appear in the rest of the character set.

To store a string without storing a terminating null character ('\ 0'), use
the specification %ne, where n is a decimal integer. In this case, the e type
character indicates that the argument is a pointer to a character array. The
next n characters are read from the input stream into the specified location,
and no null character ('\ 0') is appended.

The seanf function scans each input field, character by character. It may
stop reading a particular input field before it reaches a space character for
a variety of reasons: the specified width has been reached; the next charac­
ter cannot be converted as specified; the next character conflicts with a
character in the control string that it is supposed to match; or the next
character fails to appear (or does appear) in a given character set. When
this occurs, the next input field is considered to begin at the first unread
character. The conflicting character, if there was one, is considered unread
and is the first character of the next input field or the first character in sub­
sequent read operations on stdin.

339

scanf

• Return Value

The scanf function returns the number of fields that were successfully con­
verted and assigned. The return value does not include fields that were read
but not assigned.

The return value is EOF for an attempt to read at end-of-file. A return
value of 0 means that no fields were assigned.

• See Also

fscanf, printf, sscanf, vfprintf, vprintf, vsprintf

• Examples

/***************************Example 1************************/
#include <stdio.h>

int i;
float fp;
char c, s[81J;

scanf ("%d %f %c %s", &L &fp, &c, s); /* Input various data */

340

scanf

/***************************Example 2************************/
#include <stdio.h>

main ()

{

/* Convert hexadecimal or octal integer
** to a decimal integer

int numassigned, val;

printf("Enter hexadecimal or octal #, or 00 to quit:\n");
do {

printf("# = ");
numassigned = scanf("%i", &val);
printf("Decimal # = %i\n", val);
}

while (val && numassigned); /* Loop ends if input
** value is 00, or if
** scanf is unable to
* * assign field
*/

}

Sample output:

Enter hexadecimal or octal #, or 00 to quit:
= Oxf
Decimal # 15
= 0100
Decimal # 64
= 00
Decimal # 0

341

segread

• Summary

include < dos.h >

void segread(segregs);
struet SREGS *segregs;

• Description

Segment register values

The segread function fills the structure pointed to by segregs with the
current contents of the segment registers. This function is intended to be
used with the intdosx and int86x functions to retrieve segment register
values for later use.

• Return Value

There is no return value.

• See Also

intdosx, int86x, FP _ SEG

• Example

#include <dos.h>

struct SREGS segregs;
unsigned int cs, ds, es, ss;

/* The following statements get the current values of
** the segment registers:
*/

segread(&segregs);
cs segregs.cs;
ds segregs.ds;
es segregs.es;
ss segregs.ss;

342

setbuf

• Summary

include <stdio.h>

void sethuf(stream, buffer);
FILE *stream;
char *buffer;

• Description

Pointer to file structure
User-allocated buffer

The setbuf function allows the user to control buffering for the specified
stream. The argument stream must refer to an open file. If the buffer argu­
ment is NULL, the stream is unbuffered. If not, the buffer must point to a
character array of length BUFSIZ, where BUFSIZ is the buffer size as
defined in stdio.h. The user-specified buffer is used for 110 buffering
instead of the default system-allocated buffer for the given stream.

The stderr and stdaux streams are unbuffered by default but may be
assigned buffers with setbuf.

• Return Value

There is no return value.

• See Also

m.ush, fopen, fclose

II Example

#include <stdio.h>

char buf[BUFSIZ];
FILE *streaml, *stream2;

streaml = fopen("datal","r");
stream2 = fopen("data2","w");

setbuf(streaml,buf) ;
setbuf(stream2,NULL);

/* streaml uses user-assigned buffer */
/* stream2 is unbuffered */

343

setjrnp

• Summary

include <setjrnp.h>

int setjrnp(env);
jrnp_ bur env;

• Description

Variable in which environment is stored

The setjmp function saves a stack environment that can subsequently be
restored using longjmp. Setjmp and longjmp provide a way to execute a
nonlocal goto and are typically used to pass execution control to error­
handling or recovery code in a previously called routine without using the
normal calling or return conventions.

A call to setjmp causes the current stack environment to be saved in env.
A subsequent call to longjmp restores the saved environment and returns
control to the point just after the corresponding setjmp call. The values of
all variables (except register variables) accessible to the routine receiving
control contain the values they had when longjmp was called. The values
of register variables are unpredictable.

• Return Value

The setjmp function returns the value 0 after saving the stack environ­
ment. If setjmp returns as a result of a longjmp call, it returns the value
argument of longjmp. There is no error return.

• See Also

longjmp

Warning

The values of register variables in the routine calling setjmp may not
be restored to the proper values after a longjmp call is executed.

344

• Example

#include <stdio.h>
#include <setjmp.h>

jmp_buf mark;

main ()

p()

{
if (setjmp(mark) != 0) {

printf("longjmp has been called\n");
recover();
exit (1) ;
}

printf("setjmp has been called\n");

p() ;

}

{
int error 0;

if (error != 0)
longjmp(mark / -1) ;

}

recover ()
{
/* ensure that data files won't be corrupted by
** exiting the program.
*/

}

setjrnp

345

setmode

• Summary

include <fcntl.h>
include <io.h> Required only for function declarations

int setmode(handle, mode);
int handle; File handle
int mode; New translation mode

• Description

The setmode function sets the translation mode of the file given by handle
to mode. The mode must be one of the following manifest constants:

Manifest Constant Meaning

O_TEXT

O_BINARY

Set text (translated) mode. Carriage­
return-line-feed combinations (CR-LF) are
translated into a single line feed (LF) on
input. Line-feed characters are translated
into carriage-return-line-feed combinations
on output.

Set binary (untranslated) mode. The above
translations are suppressed.

The setmode function is typically used to modify the default translation
mode of stdin, stdout, stderr, stdaux, and stdprn, but can be used on
any file.

• Return Value

If successful, setmode returns the previous translation mode. A return
value of --1 indicates an error, and errno is set to one of the following
values:

Value

EBADF
EINVAL

346

Meaning

Invalid file handle

Invalid mode argument (neither 0_ TEXT nor
O_BINARY)

• See Also

creat,fopen, open

• Example

#include <stdio.h>
#include <fcntl.h>
#include <io.h>

int result;

/* The following statement sets stdin to be binary
** (initially it is text):
*/

result setmode(fileno(stdin),O_BINARY) ;

setmode

347

setvbuf

• Summary

include <stdio.h>

int setvbuf(stream, buf, type, size);
FILE *stream; Pointer to file structure

User-allocated buffer
Type of buffer:

char *bu/;
int type;

int size;

• Description

_IONBF (no buffer)
_ IOFBF (full buffering)
_ IOLBF (line buffering)

Size of buffer

The setvbuf function allows the user to control both buffering and buffer
size for the specified stream. The stream must refer to an open file. The
array that bufpoints to is used as the buffer, unless it is NULL, in which
case the stream is unbuffered. If the stream is buffered, the type specified by
type is used; the type must be either _IONBF, _IOFBF, or _IOLBF. If
type is _ IOFBF or _ IOLBF, then size is used as the size of the buffer. If
type is _ IONBF, then the stream is unbuffered, and size and buf are
ignored, as shown by the following:

Type Value

_IONBF

_IOFBF

_IOLBF

Meaning

No buffer is used, regardless of buf or size.

Full buffering (unless buf is NULL); that is,
use buf as the buffer and size as the size of the
buffer.

Same as _IOFBF.

The legal values for size are greater than 0 and less than the maximum
integer size.

• Return value

The return value for setvbuf is 0 if succesful, and nonzero if an illegal type
or buffer size is specified.

348

setvbuf

• See Also

setbuf, mush, fopen, fclose

• Example

#include <stdio.h>

char buf[1024];
FILE *stream1, *stream2;

main ()

{
stream1 = fopen("data1", "r");
stream2 = fopen("data2", "w");
/* Stream1 will use a user-assigned buffer of 1024 bytes,
** while stream2 will be unbuffered.
*/

if (setvbuf(stream1, buf, _IOFBF, sizeof(buf» != 0)
printf("Incorrect type or size of buffer1\n");

if (setvbuf(stream2, NULL, _IONBF, 0) != 0)
printf("Incorrect type or size of buffer2\n");

}

349

signal

• SUIIlIIlary

include <signal.h>

int (*signal(sig, lunc)();
int sig;
int (*Iunc)();

• Description

Signal value
Function to be executed

The signal function allows a process to choose one of three ways to handle
an interrupt signal from the operating system. The sig argument must be
one of the manifest constants SIGINT or SIGFPE defined in signal.h.
The SIGINT manifest constant corresponds to the MS-DOS interrupt sig­
nal, INT 23H SIGFPE corresponds to floating-point exceptions that are
not masked, such as overflow, division by zero, and invalid operation. The
June argument must be one of the manifest constants SIG_ DFL or
SIG_IGN (also defined in signal.h), or a function address. The action
taken when the interrupt signal is received depends on the value of June, as
follows:

Value

SIG_IGN

SIG_DFL

Function address

350

Meaning

The interrupt signal is ignored. This value
should never be given for SIGFPE, since the
floating-point state of the process is left
undefined.

The calling process is terminated and control
returns to the MS-DOS command level. All
files opened by the process are closed~ but
buffers are not flushed.

For SIGINT signals, the function pointed
to by June is passed the single argument
SIGINT and executed. If the function
returns, the calling process resumes execution
immediately following the point where it
received the interrupt signal. Before the
specified function is executed, the value of
June is set to SIG_ DFL; the next interrupt
signal is treated as described above for
SIG_ DFL, unless an intervening call to

• Return Value

signal

signal specifies otherwise. This allows the
user to reset signals in the called function if
desired.

For SIGFPE, the function pointed to by June
is passed two arguments, SIGFPE and an
integer error subcode, FPE_ xxx, then exe­
cuted. (See the include file float.h for
definitions of the FPE_ xxx subcodes.) The
value of June is not reset upon receiving the
signal; to recover from floating-point excep­
tions, use setjrnp in conjunction with
longjrnp. (See the example under _ fpreset
in this Reference.) If the function returns, the
calling process resumes execution with the
floating-point state of the process left in an
undefined state.

The signal function returns the previous value of June. A return value of
-1 indicates an error, and errno is set to EINV AL, indicating an invalid
sig value.

• See Also

abort, exit, _ exit, _ fpreset, spawnl, spawnle, spawnlp, spawnv,
spawnve, spawnvp

Note

Signal settings are not preserved in child processes created by calls to
exec or spawn routines. The signal settings are reset to the default in
the child process.

351

signal

• Ex 8Inp Ie

#include <stdio.h>
#include <signal.h>
#include <stdlib.h>
#include <process.h>

int handler ();

main ()
{
if (signal (SIGINT, handler) == (int (*) (» -1) {

fprintf(stderr, "couldn't set SIGINT\n");
abort ();
}

}

int handler (

362

{
char ch;

printf("terminate processing?
scanf("%lc",&ch) ;

") ;

if (ch == ' Y , I I ch == ' Y ,)
exit (0) ;

signal(SIGINT,handler);

}

/* signal called here so
** next interrupt signal
** sends control to
** handler (), not to OS

sin - sinh

• Summary

include <rnath.h>

double sin{x);
double sinh{x);
double X;

• Description

Calculate sine of X

Calculate hyperbolic sine of x

Radians

The sin and sinh functions return the sine and hyperbolic sine of x,
respectively.

• Return Value

The sin function returns the sine of x. If x is large, a partial loss of
significance in the result may occur. In such cases, sin generates a PLOSS
error, but no message is printed. If x is so large that a total loss of
significance results, sin prints a TLOSS error message to stderr and
returns o. In both cases, errno is set to ERANGE.

The sinh function returns the hyperbolic sine of x. If the result is too large,
sinh sets errno to ERANGE and returns the value HUGE (positive or
negative, depending on the value of x).

Error handling can be modified by using the matherr routine.

• See Also

acos, asin, atan, atan2, cos, cosh, tan, tanh

• Example

#include <math.h>

double pi = 3.1415926535, x, y;

x = pi/2;
Y sin(x);

y sinh(x);

/* y is 1.0 */

/* y is 2.3 */

353

sopen

• Summary

include <fcntl.h>
include <sys\ types.h>
include <sys\ stat.h>
include <share.h>
include <io.h> Required only for function declarations

int sopen(pathname, oflag, shflag[, pmode]);
char'" pathname; File path name
int of lag; Type of operations allowed
int shflag; Type of sharing allowed
int pmode; Permission setting

• Description

The sopen function opens the file specified by pathname and prepares the
file for subsequent shared reading or writing, as defined by oflag and shflag.
The integer expression oflag is formed by combining one or more of the fol­
lowing manifest constants, defined in fcntl.h. When more than one mani­
fest constant is given, the constants are joined with the OR operator (:).

oflag

O_APPEND

O_CREAT

O_EXCL

O_RDONLY

O_RDWR

O_TRUNC

364

Meaning

Reposition the file pointer to the end of the
file before every write operation.

Create and open a new file; this has no effect if
the file specified by pathname exists.

Return an error value if the file specified by
pathname exists; only applies when used with
O_CREAT.

Open file for reading only; if this flag is given,
neither 0_ RDWR nor 0_ WRONL Y may
be given.

Open file for both reading and writing; if this
flag is given, neither 0_ RDONL Y nor
0_ WRONL Y may be given.

Open and truncate an existing file to 0 bytes
in length; the file must have write permission;
the contents of the file are destroyed.

O_WRONLY

O_BINARY

O_TEXT

Note

sopen

Open file for writing only; if this flag is given,
neither 0_ RDONL Y nor 0_ RDWR may
be given.

Open file in binary (untranslated) mode. (See
fopen for a description of binary mode.)

Open file in text (translated) mode. (See
fopen for a description of text mode.)

0_ TRUNC destroys the entire contents of an existing file. Use with
care.

The argument shflag is a constant expression consisting of one of the fol­
lowing manifest constants, defined in share.h. See your MS-DOS documen­
tation for detailed information on sharing modes.

shflag

SH_COMPAT

SH_DENYRW

SH_DENYWR

SH_DENYRD

SH_DENYNO

Meaning

Set compatibility mode

Deny read and write access to file

Deny write access to file

Deny read access to file

Permit read and write access

The pmode argument is required only when 0_ CREAT is specified. If the
file does not exist, pmode specifies the file's permission settings, which are
set when the new file is closed for the first time. Otherwise, the pmode argu­
ment is ignored. The pmode argument is an integer expression con-
taining one or both of the manifest constants S_IWRITE and S_IREAD,
defined in sys \ stat.h. When both constants are given, they are joined
with the OR operator (I). The meaning of the pmode argument is
as follows:

355

sopen

Value

S_IWRITE

S_IREAD

Meaning

Writing permitted

Reading permitted

S_ IREAD : S_ IWRITE Reading and writing permitted

If write permission is not given, the file is read only. Under MS-DOS, all
files are readable; it is not possible to give write-only permission. Thus the
modes S_ IWRITE and S_ IREAD : S_ IWRITE are equivalent.

The sopen function applies the current file permission mask to pmode be­
fore setting the permissions (see umask).

• Return Value

The sopen function returns a file handle for the opened file. A return value
of -1 indicates an error, and errno is set to one of the following values:

Value

EACCES

EEXIST

EINVAL

EMFILE

ENOENT

• See Also

Meaning

Given path name is a directory; or the file is read
only but an open for writing was attempted; or a
sharing violation occurred (the file's sharing mode
does not allow the specified operations; MS-DOS
versions 3.0 or later only).

The 0_ CREAT and 0_ EXCL flags are
specified, but the named file already exists.

SHARE. COM not installed.

No more file handles available (too many open
files).

File or path name not found.

close, creat, fopen, open, umask

366

sopen

Note

The sopen function should be used only under MS-DOS Version 3.0 or
later. Under earlier versions of MS-DOS, the shfiag argument is
ignored.

File sharing modes will not work correctly for buffered files, so do not
use fdopen to associate a file opened for sharing (or locking) with a
stream.

• Example

#include <fcntl.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <share.h>
#include <io.h>

extern unsigned char _osmajor;
int fh;

/* The _osmajor variable is used to test
** the MS-DOS version number before
** calling sopen.
*/

if (_osmajor >= 3)
fh sopen("data", O_RDWR/O_BINARY, SH_DENYRW);

else
fh open ("data", O_RDWR/O_BINARY);

367

spawnl - spawnvpe

• Summary

include <stdio.h>
include <process.h>

int spawnl(mode/lag, pathname, argO, arg1. .. , argn,NULL);

int spawnle(mode/lag, pathname, argO, arg1. .. , argn,NULL, envp);

int spawnlp(mode/lag, pathname, argO, arg1. .. , argn,NULL);

int spawnlpe(mode/lag, pathname, argO, arg1. .. , argn,NULL, envp);

int spawnv(mode/lag, pathname, argv);

int spawnve(mode/lag, pathname, argv, envp);

int spawnvp(mode/lag, pathname, argv);

int spawnvpe(mode/lag, pathname, argv, envp);

int mode/lag;
char * pathname;
char *argO,*argl, ... ,*argn ;
char * argv[];

Execution mode for parent process
Path name of file to be executed
List of pointers to arguments
Array of pointers to arguments

char * envp[]; Array of pointers to environment settings

• Description

The spawn functions create and execute a new child process. Enough
memory must be available for loading and executing the child process. The
modeflag argument determines the action taken by the parent process
before and during the spawn. The following values for modeflag are
defined in process.h:

Value

P_WAIT

P_NOWAIT

358

Meaning

Suspend parent process until execution of child
process is complete

Continue to execute parent process concurrently
with child process

P_OVERLAY

spawnl - spawnvpe

Overlay parent process with child, destroying the
parent (same effect as exec calls)

Only the P _ WAIT and P _ OVERLAY modeflag values may currently be
used. The P _ NOW AIT value is reserved for possible future implementa­
tion. An error value is returned if P _ NOW AIT is used.

The pathname argument specifies the file to be executed as the child pro­
cess. The pathname can specify a full path (from the root), a partial path
(from the current working directory), or just a file name. If pathname does
not have a file-name extension or end with a period (.), search for the file; if
unsuccessful, the extension .EXE is attempted. If pathname has an exten­
sion, only that extension is used. If pathname ends with a period, the
spawn calls search for pathname with no extension. The spawnlp,
spawnlpe, spawnvp, and spawnvpe routines search for pathname (using
the same procedures) in the directories specified by the PATH environment
variable.

Arguments are passed to the child process by giving one or more pointers to
character strings as arguments in the spawn call. These character strings
form the argument list for the child process. The combined length of the
strings forming the argument list for the child process must not exceed 128
bytes. The terminating null character ('\ 0') for each string is not included
in the count, but space characters (automatically inserted to separate argu­
ments) are included.

The argument pointers may be passed as separate arguments (spawnl,
spawnle, spawnlp, and spawnlpe) or as an array of pointers (spawnv,
spawnve, spawnvp, and spawnvpe). At least one argument, argO or
argv[O], must be passed to the child process. By convention, this argument
is a copy of the pathname argument. (A different value will not produce an
error.) Under versions of MS-DOS earlier than 3.0, the passed value of argO
or arg[O] is not available for use in the child process. However, under MS­
DOS 3.0 and later, the pathname is available as argO or arg[O].

The spawnl, spawnle, spawnlp, and spawnlpe calls are typically used in
cases where the number of arguments is known in advance. The argO argu­
ment is usually a pointer to pathname. The arguments argl through argn
are pointers to the character strings forming the new argument list. Fol­
lowing argn there must be a NULL pointer to mark the end of the argu­
ment list.

The spawnv, spawnve, spawnvp, and spawnvpe calls are useful when
the number of arguments to the child process is variable. Pointers to the
arguments are passed as an arraY

t
argv. The argument argv[O] is usually a

pointer to the pathname and argv 1] through argv[n] are pointers to the

369

spawnl - spawnvpe

character strings forming the new argument list. The argument argv[n+ 1]
must be a NULL pointer to mark the end of the argument list.

Files that are open when a spawn call is made remain open in the child
process. In the spawnl, spawnlp, spawnv, and spawnvp calls, the child
process inherits the environment of the parent. The spawnle, spawnlpe,
spawnve, and spawnvpe calls allow the user to alter the environment for
the child process by passing a list of environment settings through the envp
argument. The argument envp is an array of character pointers, each ele­
ment of which (except for the final element) points to a null-terminated
string defining an environment variable. Such a string usually has the form

NAME=value

where NAME is the name of an environment variable and value is the
string value to which that variable is set. (Note that value is not enclosed
in double quotes.) The final element of" the envp array should be NULL.
When envp itself is NULL, the child process inherits the environment set­
tings of the parent process.

• Return Value

The return value is the exit status of the child process. The exit status is 0
if the process terminated normally. The exit status can also be set to a
nonzero value if the child process specifically calls the exit routine with a
nonzero argument. If not set, a positive exit status indicates an abnormal
exit with an abort or an interrupt.

A return value of -1 indicates an error (the child process is not started),
and errno is set to one of the following values:

Value

E2BIG

EINVAL

ENOENT
ENOEXEC

ENOMEM

360

Meaning

The argument list exceeds 128 bytes, or the space
required for the environment information exceeds
32K.

Invalid modeflag argument.

File or path name not found.

The specified file is not executable or has an invalid
executable file format.

Not enough memory is available to execute the
child process.

spawnl - spawnvpe

Note

The spawn calls do not preserve the translation modes of open files. If
the child process must use files inherited from the parent, the setmode
routine should be used to set the translation mode of these files to the
desired mode.

Signal settings are not preserved in child processes created by calls to
spawn routines. The signal settings are reset to the default in the child
process.

• See Also

abort, execl, execle, execlp, execlpe, execv, execve, execvp, execvpe,
exit, _ exit, onexit, system

361

spawnl - spawnvpe

• Example

#include <stdio.h>
#include <process.h>

extern char **environ;

char *args[4J;
int result;

args [OJ
args [lJ
args [2J
args [3J

"child";
"one";
"two";
NULL;

/* All of the following statements attempt to spawn a
** process called "child.exe" and pass it three arguments.
** The first three suspend the parent, and the last three
** overlay the parent with the child.
*/

result

result

result

result
result
result

362

= spawnl (P_WAIT,"child.exe", "child", "one", "tv.:o" ,
NULL) ;

= spawnle(P_WAIT,"child.exe", "child", "one",
"two",NULL,environ):

= spawnlp(P_WAIT,"child.exe", "child", "one",
"two",NULL) ;
spawnv(P_OVERLAY,"child.exe",args):
spawnve(P_OVERLAY,"child.exe",args,environ);
spawnvp(P_OVERLAY,"child.exe",args) :

sprintf

• Summary

include <stdio.h>

int sprintf(buffer, format-string[, argument ...]);
char * buffer; Storage location for output
char * format-string; Format-con trol string

• Description

The sprintf function formats and stores a series of characters and values in
buffer. Each argument (if any) is converted and output according to the
corresponding format specification in the format-string. The format-string
consists of ordinary characters and has the same form and function as the
format-string argument for the printf function; see the printf reference
page for a description of the format-string and arguments.

• Return Value

The sprintf function returns the number of characters stored in buffer.

• See Also

fprintf, printf, sscanf

• Example

#include <stdio.h>

char buffer[200J;
int L j;
double fp;
char *s = "computer";
char c;

/* Format and print various data. */

j = sprintf (buffer, "%s\n", s) ;
j += sprintf(buffer+j/ "%c\n",c);
j += sprintf(buffer+j, "%d\n",i);
j += sprintf (buffer+j, "%f\n", fp) ;

363

sqrt

• Summary

inelude <math.h>

double sqrt(x);
double x;

• Description

Non-negative floating-point value

The sqrt function calculates the square root of x.

• Return Value

The sqrt function returns the square root result. If x is negative, the func­
tion prints a DOMAIN error message to stderr, sets errno to EDOM,
and returns O.

Error handling can be modified by using the matherr routine.

• See Also

exp, log, matherr, pow

• Example

#include <math.h>
#include <stdlib.h>

double x, y, z;

if ((z = sqrt(x+y» == 0.0)
if ((x+y) < 0.0)

perror("sqrt of a negative number");

364

• Summary

include <stdlib.h>

void srand(seed);
unsigned seed;

• Description

srand

Required only for function declarations

Seed for random-number generation

The srand function sets the starting point for generating a series of pseu­
dorandom integers. To reinitialize the generator, use 1 as the seed argu­
ment. Any other value for seed sets the generator to a random starting
point.

The rand function is used to retrieve the pseudorandom numbers
generated.

• Return Value

There is no return value.

• See Also

rand

• Example

#include <stdlib.h>
#include <stdio.h>

int x, ranvals[20];

/* Initialize the random-number generator and save the
** first 20 random numbers generated in an array.
*/

srand(17) ;
for (x = 0; x < 20; ranvals[x++] rand (»

365

88canf

• Summary

include <stdio.h>

int sscanf(buffer, format-string[, argument ...]);
char * buffer; Stored data
char * format-string; Format control string

• Description

The sscanf function reads data from buffer into the locations given by
arguments: Each argument must be a pointer to a variable with a type that
corresponds to a type specifier in the format-string. The format-string con­
trols the interpretation of the input fields and has the same form and func­
tion as the format-string argument for the scanf function; see the scanf
reference page for a description of the format-string.

• Return Value

The sscanf function returns the number of fields that were successfully
converted and assigned. The return value does not include fields which were
read but not assigned.

The return value is EOF for an attempt to read at end-of-string. A return
value of 0 means that no fields were assigned.

• See Also

fscanf, scanf, sprintf

366

• Example

#include <stdio.h>

char *tokenstring
int i;
float fp;
char s[81J;
char c;

"15 12 14 ... ";

/* Input various data:
*/

sscanf(tokenstring, "%s" s)'
sscanf (tokenstring, "o%c;' &~).
sscanf (tokenstring, "%d", &i) ; ,
sscanf (tokenstring, "%f", &fp) ;

sscanf

367

stackavail

• Summary

inelude <maIloc.h> Required only for function declarations

unsigned int stackavail();

• Description

The stackavail function returns the approximate size in bytes of the stack
space available for dynamic memory allocation with alloca.

• Return Value

The stackavail function returns the size in bytes as an unsigned integer
value.

• See Also

alloca, freect, memavl

• Example

#include <malloc.h>

main ()

{
char *ptr;

printf("Stack memory available before alloca = %u\n" ,
stackavai 1 (»;

ptr = alloca(1000*sizeof(char»;
printf("Stack memory available after alloca = %u\n",

stackavai 1 (»;
}

Sample output:

Stack memory available before alloca = 1682
Stack memory available after alloca = 678

368

stat

• Summary

include <sys\ types.h >
include <sys\ stat.h>

int stat(pathname, buffer);
char *pathname;
struct stat * buffer;

• Description

Path name of existing file
Pointer to structure to receive results

The stat function obtains information about the file or directory specified
by pathname and stores it in the structure pointed to by buffer. The stat
structure, defined in sys \ stat.h, contains the following fields:

Field

st_mode

st_dev

st_rdev

st_nlink

st_size

st_atime

st_mtime

st_ctime

Value

Bit mask for file mode information. S_ IFDIR
bit set if pathname specifies a directory;
S_ IFREG bit set if pathname specifies an ordi­
nary file. User read/write bits set according to
the file's permission mode; user execute bits set
using the file-name extension.

Drive number of the disk containing the file.

Drive number of the disk containing the file
(same as st_ dev).

Always 1.

Size of the file in bytes.

Time of last modification of file.

Time of last modification of file (same as
st_atime).

Time of last modification of file (same as
st_ atime and st_ mtime).

There are three additional fields in the stat structure type that do not con­
tain meaningful values under MS-DOS.

369

stat

• Return Value

The stat function returns the value 0 if the file-status information is
obtained. A return value of -1 indicates an error, and errno is set to
ENOENT, indicating that the file name or path name could not be found.

• See Also

access, fstat

Note

If the given pathname refers to a device, the size and time fields in the
stat structure are not meaningful.

• Example

#include <sys\types.h>
#include <sys\stat.h>
#include <stdio.h>

struct stat buf;
int result;
char *args[4J;

result = stat("c hild.exe",&buf);

if (result == 0)

370

if (buf.st_mode & S_IEXEC)
execv(" child.exe", args);

_status87

• Summary

include <float.h>

unsigned int _ statusS7(); Get floating-point status word

• Description

The _ status87 function gets the floating-point status word. The floating­
point status word is a combination of the 8087/80287 status word and
other conditions detected by the 8087/80287 exception handler, such as
floating-point stack overflow and underflow.

• R,eturn Value

The bits in the value returned indicate the floating-point status. See the
float.h include file for a complete definition of the bits returned by
_status87.

Note

Many of the math library functions modify the 8087/80287 status word,
with unpredictable results. Return values from _ clear87 and
_ status87 become more reliable as fewer floating-point operations are
performed between known states of the floating-point status word.

• See Also

_ clear87, _ control87

371

_status87

• Example

#include <stdio.h>
#include <float.h>

double a 1e-40, b;
float x,y;

main ()
{

372

printf(" s tatus = %.4x - clear\n",_status87(»;

/* store into y is inexact and underflows */
y = a;
printf("status = %.4x - inexact, underflow\n",

_status87 (»;

/* y is denormal */
b = y;
printf("status = %.4x - inexact, underflow, denormal\n",

_status87 (»;
/* clear user 8087 status */
_clear87();
}

• Summary

include <string.h>

char *strcat(stringl, string2);
char *stringl;
char *string2;

char *strchr(string, c);
char *string;
int c;

int strcrnp(stringl, string2);
char *stringl;
char *string2;

int strcrnpi(stringl, string2);
char *stringl;
char *string2;

char strcpy(stringl, string2);
char *stringl;
char *string2;

int strcspn(stringl, string2);

char *stringl;
char *string2;

char *strdup(string);
char *string;

int stricrnp(stringl, string2);
char *stringl;
char * s tring2;

strcat - strdup

Required only for function declarations

Append string2 to stringl
Destination string
Source string

Search for first occurrence of c in string
Source string
Character to be located

Compare strings

Compare strings without regard to case

Copy string2 to stringl
Destination string
Source string

Find first substring in stringl
of characters not in string2
Source string
Character set

Duplicate string
Source string

Compare strings without regard to case

373

strcat - strdup

• Description

The strcat, strchr, strcmp, strcmpi, strcpy, strcspn, strdup, and
stricmp functions operate on null-terminated strings. The string argu­
ments to these functions are expected to contain a null character ('\ 0')
marking the end of the string. No overflow checking is performed when
strings are copied or appended.

The strcat function appends string2 to stringl, terminates the resulting
string with a null character, and returns a pointer to the concatenated
string (stringl).

The strchr function returns a pointer to the first occurrence of c in string.
The character c may be the null character ('\ 0'); the terminating null char­
acter of string is included in the search. The function returns NULL if the
character is not found.

The strcmp function compares stringl and string2 lexicographically and
returns a value indicating their relationship, as follows:

Value

Less than 0

o
Greater than 0

Meaning

stringl less than string2

stringl identical to string2

stringl greater than string2

The strcmpi and stricmp functions are case-insensitive versions of
strcmp. The two arguments stringl and string2 are compared without
regard to case, meaning that the uppercase and lowercase forms of a letter
are considered equivalent.

The strcpy function copies string2, including the terminating null charac­
ter, to the location specified by stringl, and returns stringl.

The strcspn function returns the index of the first character in stringl that
belongs to the set of characters specified by string2. This value is
equivalent to the length of the initial substring of stringl that consists
entirely of characters not in string2. Terminating null characters are not
considered in the search. If stringl begins with a character from string2,
strcspn returns o.

The strdup function allocates storage space (with a call to malloc)
for a copy of string and returns a pointer to the storage space contain­
ing the copied string. The function returns NULL if storage could not be
allocated.

374

strcat - strdup

• Return Value

The return values for these functions are described above.

• See Also

strncat, strncmp, strncpy, strnicmp, strrchr, strspn

• Example

#include <string.h>

char string[lOO] , template [100] , *result;
int numresult;

/* Construct the string "computer program" using strcpy
** and strcat.
*/

strcpy(string,"computer");
result = strcat(string, " program"):

/* Search a string for the first occurrence of 'a'.
*/

result = strchr(string, 'a');

/* Determine whether a string is less than, greater
** than, or equal to another.
*/

numresult = strcmp(string,template):

/* Compare two strings without regard to case. */

numresult = strcmpi("hello", "HELLO");

/* Make a copy of a string.
*/

result strcpy(template, string) ;

/* result is 0 */

376

strcat - strdup

/* Search for a's, b's, or c's in a string. */

strcpy(string,"xyzabbc");
result = strcspn(string,"abc"); /* result is 3 */

/* Make new string point to a duplicate of string.
*/

result strdup(string);

376

strerror

• Summary

include <string.h> Required only for function declarations

char *strerror(string);
char *string;

int errno;
int sys_ nerr;
char sys_ errlist[sys_ nerr];

• Description

User-supplied message

Error number
Number of system messages
Array of error messages

If string is equal to NULL, the strerror function returns a pointer to a
string containing the system error message for the last library call that fro­
duced an error; this string is terminated by the new-line character (,\n' .

If string is not equal to NULL, then strerror returns a pointer to a string
containing, in order, your string message, a colon, a space, the system error
message for the last library call producing an error, and a new-line charac­
ter . Your string message can be a maximum of 94 bytes long.

Unlike perror, strerror alone does not print any messages. To print the
message returned by strerror to stderr, your program will need a printf
statement, as shown in the following lines:

if ((access("datafile",2)) == -1)
printf(strerror(NULL)) ;

The actual error number is stored in the variable errno, which should be
declared at the external level. The system error messages are accessed
through the variable sys_ errlist, which is an array of messages ordered by
error number. The strerror function accesses the appropriate error mes­
sage by using the errno value as an index to sys_ err list. The value of the
variable sys_ nerr is defined as the maximum number of elements in the
sys_ errlist array.

To produce accurate results, strerror should be called immediately after a
library routine returns with an error. Otherwise, the errno value may be
overwritten by subsequent calls.

377

strerror

• Return Value

The strerror function returns no value.

• See Also

clearerr, ferror, perror

Note

Under MS-DOS, some of the errno values listed in errno.h are not
used. See Appendix A, "Error Messages," for a list of errno values
used on MS-DOS, and the corresponding error messages. The strerror
function prints an empty string for any errno value not used under
MS-DOS.

• Example

#include <fcntl.h>
#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>
#include <stdlib.h>

int fh1, fh2;

fh1 = open("data1",O_RDONLY);
i f (fh1 == -1)

strerror("open failed on input file");

fh2 = open ("data2", O_WRONLYI O_TRUNC IO_CREAT,
S_IREADIS_IWRITE);

if (fh2 == -1)
strerror("open failed on output file");

378

• Summary

include <string.h>

int strlen(string);
char *string;

• Description

strlen

Required only for function declarations

Null-terminated string

The strlen function returns the length in bytes of string, not including the
terminating null character ('\ 0').

• Return Value

The strlen function returns the string length. There is no error return.

• Example

#include <string.h>

char *string = "some space";
int result;

/* Determine the length of a string.
*/

result strlen(string); /* result 10 */

379

strlwr

• Summary

include <string.h>

char strlwr(string);
char *string;

• Description

Required only for function declarations

String to be converted

The strlwr function converts any uppercase letters in the given null­
terminated string to lowercase. Other characters are not affected.

• Return Value

The strlwr function returns a pointer to the converted string. There is no
error return.

• See Also

strupr

• Example

#include <string.h>

char string [100] , *copy:

/* Make a copy of a string in lowercase.
*/

copy = strlwr(strdup(string»;

380

• Summary

include <string.h>

char *strncat(stringl, string2, n);
char *stringl;
char *string2;
unsigned int n;

int strncmp(stringl, string2, n);
char *stringl;
char *string2;
unsigned int n;

int strnicmp(stringl, string2, n);

char *stringl;
char *string2;
unsigned int n;

char *strncpy(stringl, string2, n);
char *stringl;
char *string2;
unsigned int n;

char *strnset(string, c, n);
char *string;
int C;
unsigned int n;

• Description

strncat - strnset

Required only for function declarations

Append n characters of string2 to stringl
Destination string
Source string
Number of characters appended

Compare first n characters of strings

Number of characters compared

Compare first n characters of strings
without regard to case

Number of characters compared

Copy n characters of string2 to stringl
Destination string
Source string
Number of characters copied

Initialize first n characters of string
String to be initialized
Character setting
Number of characters set

The strncat, strncmp, strnicmp, strncpy, and strnset functions
operate on, at most, the first n characters of null-terminated strings.

The strncat function appends, at most, the first n characters of string2 to
stringl, terminates the resulting string with a null character ('\ 0'), and
returns a pointer to the concatenated string (stringl). If n is greater than
the length of string2, the length of string2 is used in place of n.

381

strncat - strnset

The strncmp function compares, at most, the first n characters of stringl
and string2lexicographically and returns a value indicating the relationship
between the substrings, as listed below:

Value

Less than 0

o
Greater than 0

Meaning

substringl less than substring2

substringl equivalent to substring2

substringl greater than substring2

The strnicmp function is a case-insensitive version of strncmp; strnicmp
compares the two strings stringl and string2 without regard to case, which
means that the uppercase (capital) and lowercase forms of a letter are con­
sidered equivalent.

The strncpy function copies exactly n characters of string2 to stringl and
returns string1. If n is less than the length of string2, a null character ('\ 0')
is not appended automatically to the copied string. If n is greater than the
length of string2, the stringl result is padded with null characters ('\ 0') up
to length n.

The strnset function sets, at most, the first n characters of string to the
character c and returns a pointer to the altered string. If n is greater than
the length of string, the length of string is used in place of n.

• See Also

strcat, strcmp, strcpy, strset

382

strncat - strnset

• Example

#include <string.h>

char string[30] = {"12345678901234567890"};

main ()
{
char copy [100] , suffix [100] , *result;
int numresult;
unsigned int nresult;

/* Combine string with not more than 10 characters (30 minus
** the length of the initial string) of suffix. (If more
** than 10 characters were used, the example below would write
** over other values in memory.)
*/

result = strncat(string,suffix,10);

/* Determine the ordering of a string with respect to
** "program", but do not consider more than 7
** characters. So if string contains the prefix
** "program", strncmp will return O.
*/

strcpy(string,"programmer");
numresult = strncmp(string,"program",7): /* numresult is 0 */

/* Compare four characters of two strings without regard
** to case.
*/

strcpy(string,"PROGRESS");
nresult = strnicmp(string,"program",4);

/* Copy at most 99 characters of a string.
*/

result = strncpy(copy, string, 99) ;

/* nresult is 0 */

/* Set the first four characters of a string to the
** character 'x'.
*/

result strnset("computer", 'x',4); /* result is "xxxxuter" */
}

383

strpbrk

• Summary

include <string.h>

char *strpbr k(stringl, string2);
char *stringl;
char *string2;

• Description

Required only for function declarations

Find any character from string2 in stringl
Source string
Character set

The strpbrk function finds the first occurrence in stringl of any character
from string2. The terminating null character ('\ 0') is not included in the
search.

• Return Value

The strpbrk function returns a pointer to the first occurrence of any char­
acter from string2 in stringl. A NULL pointer indicates that stringl and
strz'ng2 have no characters in common.

• See Also

strchr, strrchr

• Example

#include <string.h>

char string[lOO] , *result;

/* Return a pointer to the first occurrence of either
** 'a' or 'b' in string.
*/

result strpbrk(string,"ab");

384

strrchr

• Summary

include <string.h> Required only for function declarations

char *strrchr(string, c);
char *string;
int c;

• Description

Find last occurrence of c in string
Searched string
Character to be located

The strrchr function finds the last occurrence of the character c in string.
The string's terminating null character ('\ 0') is included in the search.
(Use strchr to find the first occurrence of c in string.)

• Return Value

The strrchr function returns a pointer to the last occurrence of c in string.
A NULL pointer is returned if the given character is not found.

• See Also

strchr, strpbrk

• Example

#include <string.h>

char string [100] I *result;

/* Search a string for the last occurrence of 'a'.
*/

result = strrchr(string, 'a');

386

strrev

• Summary

inelude <string.h>

char *strrev(string);
char * string;

• Description

Required only for function declarations

String to be reversed

The strrev function reverses the order of the characters in the given string.
The terminating null character ('\ 0') remains in place.

• Return Value

The strrev function returns a pointer to the altered string. There is no
error return.

• See Also

strcpy, strset

• Example

#include <string.h>

char string[lOO];
int result;

/* Determine if a string is a palindrome (reads the same
** forward or backward) .
*/

result = strcmp(string,strrev(strdup(string»);

/* If result == 0, the string is a palindrome.
*/

386

strset

• Sum.m.ary

include <string.h>

char *strset(string, c};
char *string;
int c;

• Description

Required only for function declarations

String to be set
Character setting

The strset function sets all characters of the given string, except the ter­
minating null character ('\ 0'), to c.

• Return Value

The strset function returns a pointer to the altered string. There is no
error return.

• See Also

strnset

• Exam.ple

#include <string.h>

char string[lOO] , *result;

/* Set a string to be all blanks.
*/

result strset (str ing, , ');

387

strspn

• Summary

include <string.h>

int strspn(stringl, string2);
char *stringl;
char *string2;

• Description

Required only for function declarations

Searched string
Character set

The strspn function returns the index of the first character in stringl that
does not belong to the set of characters specified by string2. This value is
equivalent to the length of the initial substring of stringl that consists
entirely of characters from string2. The null character ('\ 0') terminating
string2 is not considered in the matching process. If stringl begins with a
character not in string2, strspn returns O.

• Return Value

The strspn function returns an integer value specifying the position of the
first character in stringl not in string2.

• See Also

strcspn

• Example

#include <string.h>

char *string="cabbage";
int result;

/* Determine the length of the prefix consisting of
** a's, b's, and CIS.

*/

result strspn(string,"abc"); /* result 5 */

388

strstr

• Summary

include <string.h> Required only for function declarations

char oIcstrstr (s tringl, s tring2);
char oIcstringl;
char *string2;

• Description

Searched string
String to search for

The strstr function returns a pointer to the first occurrence of string1 in
string2.

• Return Value

The strstr function returns a pointer to string1 if it finds string1, and
NULL if it does not find string1.

• See Also

strcspn

• Example

#include <string.h>

main ()

Output:

haystack

{
char *stringl = "needle in a haystack";
char *string2 = "hay";

printf("%s\n",strstr(stringl,string2»;
}

389

strtod - strtol

• Summary

include <stdlib.h>

double strtod(nptr, endptr);

char *nptr;
char **endptr;

long strtol{ nptr, endptr, base);

char *nptr;
char * * endptr;
int base;

• Description

Convert the string pointed to by nptr
to double
Pointer to string
Pointer to end of scan

Convert string to long decimal integer
equivalent of number in given base

Number base to use

The functions strtod and strtol convert a character string to a double­
precision value or a long-integer value, respectively. The input string is a
sequence of characters that can be interpreted as a numerical value of the
specified type. These functions stop reading the string at the first character
they cannot recognize as part of a number (which may be the null character
at the end of the string); with strtol this terminating character could also
be the first numeric character greater than or equal to the base. If endptr is
not NULL, lie endptr points to the character that stopped the scan.

The strtod function expects nptr to point to a string with the following
form:

[whitespace] [sign] [digits] [.digits] [{ d : D: e: E} [sign]digits]

The first character that doesn't fit this form stops the scan.

The strtol function expects nptr to point to a string with the following
form:

[whitespace] [sign] [0] [x] [digits]

If base is between 2 and 36, then it is used as the base of the number. If base
is 0, the initial characters of the string pointed to by nptr are used to deter­
mine the base: if the first character is '0' and the second character is a digit
'1' - '7', then the string is interpreted as an octal integer; if the first char­
acter is '0' and the second character is 'x' or 'X', then the string is

390

strtod - strtol

interpreted as a hexadecimal integer; if the first character is '1' - '9', then
the string is interpreted as a decimal integer.

• Return Value

The strtod function returns the value of the floating-point number, except
when the representation would cause an overflow or underflow, in which
case it returns ± HUGE.

The strtol function returns the value represented in the string, except
when the representation would cause an overflow or underflow, in which
case it returns LONG_ MAX or LONG_ MIN.

In both functions errno is set to ERANGE.

• See Also

atof, atol

391

strtod - strtol

• Example

#include <stdlib.h>

main ()

{
char *string, *stopstring;
double x;
long 1;
int bs;

string = "3.1415926This stopped it";
x = strtod(string,&stopstring);
printf ("string = %s\n", string) ;
printf(" strtod = %f\n",x);
printf(" Stopped scan at %s\n\n", stopstring);

string = "10110134932";
printf("string = %s\n",string);
for (bs = 2; bs <= 8; bs *= 2) {

}

1 = strtol(string,&stopstring,bs);
printf(" strtol = %ld (base %d)\n", 1, bs);
printf(" Stopped scan at %s\n\n", stopstring);
}

Output:

string = 3.1415926This stopped it
strtod = 3.141593
Stopped scan at This stopped it

string = 10110134932
strtol = 45 (base 2)
Stopped scan at 34932

strtol = 4423 (base 4)
Stopped scan at 4932

strtol = 2134108 (base 8)
Stopped scan at 932

392

• Summary

include <string.h>

char *strtok(stringl, string2);
char *stringl;
char *string2;

• Description

strtok

Required only for function declarations

Find token in stringl
String containing token(s)
Set of delimiter characters

The strtok function reads stringl as a series of zero or more tokens and
string2 as the set of characters serving as delimiters of the tokens in stringl.
The tokens in stringl may be separated by one or more of the delimiters
from string2. The tokens are broken out of stringl by a series of calls to
strtok.

In the first call to strtok for a given stringl, strtok searches for the first
token in stringl, skipping leading delimiters. A pointer to the first token is
returned.

To read the next token from stringl, call strtok with a NULL value for
the stringl argument. The NULL stringl argument causes strtok to
search for the next token in the previous token string. The set of delimiters
may vary from call to call, so string2 can take any value.

Note

Calls to strtok will modify stringl, since each time strtok is called, it
inserts a null value ('\ 0') after the token in string1.

• Return Value

The first time strtok is called, it returns a pointer to the first token in
string1. In later calls with the same token string, strtok returns a pointer
to the next token in the string. A NULL pointer is returned when there
are no more tokens. All tokens are null terminated.

393

strtok

• See Also

strcspn, strspn

• Example

#include <string.h>
#include <stdio.h>

char *string="a string, of , ,tokens ";

/* The following loop gathers tokens (separated by
** blanks or commas) from a string until there are none
** left:
*/

token = strtok(string, " ,");

while (token != NULL) {
/* insert code to process the token here
*/

token strtok(NULL," ,"); /* get next token */
}

/* Tokens returned are "a", "string", "of",
** and "tokens". The next call to strtok returns
** NULL and the loop terminates.
*/

394

strupr

• Summary

include <string.h>

char *strupr(string);
char *string;

• Description

Required only for function declarations

String to be capitalized

The strupr function converts any lowercase letters in the given string to
uppercase. Other characters are not affected.

• Return Value

The strupr function returns a pointer to the converted string. There is no
error return.

• See Also

strlwr

• Example

#include <string.h>

char string[lOO] , *copy;

/* The following statement makes a copy of a string in
** uppercase:
*/

copy = strupr(strdup(string));

395

swab

• Summary

inelude <stdlib.h> Required only for function declarations

void swab(source, destination, n);
char *source; Data to be copied and swapped
char * destination; Storage location for swapped data
int n; Number of bytes copied

• Description

The swab function copies n bytes from source, swaps each pair of adjacent
bytes, and stores the result at destination. The integer n should be an even
number to allow for swapping. The swab function is typically used to
prepare binary data for transfer to a machine that uses a different byte
order.

• Return Value

There is no return value.

• See Also

fgetc, fputc

• Example

#include <stdlib.h>
#define NBYTES 1024

char from [NBYTES], to[NBYTES]:

/* Copy n bytes from one location to another,
** swapping each pair of adjacent bytes.
*/

swab(from,to,NBYTES):

396

system

• Surnrnary

include <process.h>
include <stdIib.h>

int system(string);
char *string;

• Description

Required only for function declarations
Use either process.h or stdIib.h

Command to be executed

The system function passes the given string to the command inter­
preter and executes the string as an MS-DOS command. The systern
function refers to the COMSPEC and PATH environment variables to
locate the MS-DOS file COMMAND.COM, which is used to execute the
string command.

• Return Value

The systern function returns the value 0 if string is successfully executed.
A return value of -1 indicates an error, and errno is set to one of the fol­
lowing values:

Value

E2BIG

Meaning

The argument list for the command exceeds 128
bytes, or the space required for the environment
information exceeds 32K.

COMMAND.COM cannot be found. ENOENT

ENOEXEC The COMMAND.COM file has an invalid format
and is not executable.

ENOMEM Not enough memory is available to execute the
command; or the available memory has been cor­
rupted; or an invalid block exists, indicating that
the process making the call was not allocated
properly.

397

system

• See Also

execl, execle, execlp, execv, execve, execvp, exit, _ exit, spawnl,
spawnle, spawnlp, spawnv, spawnve, spawnvp

• Example

#include <process.h>

int result;

/* The following statement appends a copy of the DOS
** version number to a log file:
*/

result system("ver » result.log");

398

tan - tanh

• Summary

include <math.h>

double tan(x); Calculate tangent of x

double tanh(x); Calculate hyperbolic tangent of x

double x; Radians

• Description

The tan and tanh functions return the tangent and hyperbolic tangent of
x, respectively.

• Return Value

The tan function returns the tangent of x. If x is large, a partial loss of
significance in the result may occur. In such cases, tan sets errno to
ERANGE and generates a PLOSS error, but no message is printed. If x is
so large that a total loss of significance occurs, tan prints a TLOSS error
message to stderr, sets errno to ERANGE, and returns o.

The tanh function returns the hyperbolic tangent of x. There is no error
return.

• See Also

acos, asin, atan, atan2, cos, cosh, sin, sinh

• Example

#include <math.h>

pi = 3.1415926535;
x = tan{pi/4.0); /* x is 1.0 */

y = tanh{x); /* y is 1.6 */

399

tell

• Summary

include <io.h>

long tell(handle);
int handle;

• Description

Required only for function declarations

Handle referring to open file

The tell function gets the current position of the file pointer (if any) associ­
ated with handle. The position is expressed as the number of bytes from
the beginning of the file.

• Return Value

The tell function returns the current position. A return value of -1L indi­
cates an error, and errno is set to EBADF to indicate an invalid file­
handle argument. On devices incapable of seeking (such as terminals and
printers), the return value is undefined.

• See Also

ftell, lseek

• Example

#include <io.h>
#include <stdio.h>
#include <fcntl.h>

int fh;
long position;

fh = open ("data" , O_RDONLY) ;

position tell (fh) ; /* remember current position */

lseek(fh, position, 0); /* seek to previous position */

400

tempnam - tmpnam

• Summary

include <stdio.h>

char *tmpnam(striny);
char *striny;

char *tempnam(dir, prefix);
char *dir;
char * prefix;

• Description

Pointer to temporary name

The tmpnam function generates a temporary file name that is usable as a
temporary file. This name is stored in string. If string is NULL, then
memory is allocated for the string using malloc. It is the user's responsi­
bility to free memory when using malloc.

The character string created by tmpnam consists of the digit characters
'0' through '9'; the numerical value of this string can range from 1 to
65535.

The tempnam function allows the user to create a temporary file in
another directory. The prefix is the prefix to the file name. The tempnam
function looks for the file with the given name in the following directories,
listed in order of precedence:

Condition

TMP environment variable is
set, and directory specified by
TMP exists.

TMP environment variable
not set, or directory specified
by TMP does not exist.

The dir argument is NULL, or
dir is name of nonexistent
directory.

P _ tmpdir does not exist.

Directory Used by tempnam

Directory specified by TMP

The dir argument to ternpnarn

P _ tmpdir in stdio.h

\tmp

If all this fails, tempnam returns the value NULL.

401

tempnam - tmpnam

• Return Value

The tmpnam and tempnam functions both return a pointer to the name
generated, unless it is impossible to create this name, or the name is not
unique. If the name cannot be created or if it already exists, tmpnam and
tempnam return the value NULL.

• See Also

tmpfile

• Example

#include <stdio.h>

main ()
{
char *namel, *name2;

if ((narnel = trnpnam(NULL)) != NULL)
printf("%s is safe to use as a temporary file.\n", namel);

else
printf("cannot create a unique file narne\n");

if ((name2 = tempnam("a:\\tmp", "stq"» != NULL)
printf("%s is safe to use as a temporary file.\n", name2);

else
printf("cannot create a unique file name\n");

}

402

time

• Summary

include <time.h>

long time(timeptr);
long * timeptr;

• Description

Required only for function declarations

Storage location for time

The time function returns the number of seconds elapsed since 00:00:00
Greenwich mean time, January 1, 1970, according to the system clock. The
return value is also stored in the location given by timeptr; timeptr may be
NULL, in which case the return value is not stored.

• Return Value

The time function returns the time in elapsed seconds. There is no error
return.

• See Also

asctime, ftime, gmtime, localtime, utime

• Example

#include <time.h>
#include <stdio.h>

long ltime;

time(<ime);
printf("the time is %s\n",ctime(<ime»;

403

tmpfile

• Summary

include <stdio.h>

FILE * tmpfile{); Pointer to file structure

• Description

The tmpfile function creates a temporary file and returns a pointer to that
file. If the file cannot be opened, tmpfile returns a NULL pointer.

This temporary file is automatically deleted when the program terminates
normally, or when rmtmp is called, assuming that the current working
directory does not change. The temporary file is opened in "w+" mode.

• Return value

The tmpfile function returns a stream pointer, unless it cannot open the
file, in which case it returns a NULL pointer.

• See Also

tmpnam, tempnam, rmtmp

• Example

#include <stdio.h>

FILE *stream;
char tmpstring[] = "String to be temporarily written";

main ()

404

{
if ((stream = tmpfile(» == NULL)

perror("Couldn't make temporary file");
else

fprintf(stream, "%s", tmpstring);
}

toascii - _ toupper

• Summary

include < ctype.h >

int toascii(c); Convert c to ASCII character

int tolower(c); Convert c to lowercase if appropriate

int_ tolower(c); Convert c to lowercase

int toupper(c); Convert c to uppercase if appropriate

int_ toupper(c); Convert c to uppercase

int c; Character to be converted

• Description

The toascii, tolower, _ tolower, toupper, and _ toupper macros convert
a single character as specified.

The toascii macro sets all but the low order 7 bits of c to 0, so that the
converted value represents a character in the ASCII character set. If c
already represents an ASCII character, c is unchanged.

The tolower macro converts c to lowercase if c represents an uppercase
letter. Otherwise, c is unchanged.

The _ tolower macro is a version of tolower to be used only when c is
known to be uppercase. The result of _ tolower is undefined if c is not an
uppercase letter.

The toupper macro converts c to uppercase if c represents a lowercase
letter. Otherwise, c is unchanged.

The _ toupper macro is a version of toupper to be used only when c is
known to be lowercase. The result of _ toupper is undefined if c is not a
lowercase letter.

406

toascii - _ toupper

• Return Value

The toascii, tolower, _ tolower, toupper, and _ toupper macros return
the possibly converted character c. There is no error return.

• See Also

isalnum, isalpha, isascii, iscntrl, isdigit, isgraph, islower, isprint,
ispunct, isspace, isupper, isxdigit

Note

These routines are implemented as macros. However, tolower and
toupper are also implemented as functions, because the macro versions
do not correctly handle arguments with side effects. The function ver­
sions can be used by removing the macro definitions through # undef
directives or by not including ctype.h. Function declarations of
tolower and toupper are given in stdlib.h.

• Example

#include <stdio.h>
#include <ctype.h>

int ch;

/* The following statements analyze all characters
** between code OxO and code Ox7f. The toupper and tolower
** macros are applied to all codes. _Toupper and _tolower are
** applied to codes for which they make sense. */

for (ch = 0; ch <= Ox7f; ch++) {

406

printf(" toupper=%#04x",toupper(ch));
printf(" tolower=%#04x",tolower(ch);

if (islower(ch)
printf (" _toupper=%#04x", _toupper (ch» ;

if (isupper(ch)
printf(" _tolower=%#04x",_tolower(ch»;

putchar ('\n') ;
}

tzset

• Summary

include <time.h>

void tzset();

int daylight;
long timezone;
char *tzname[2] I

• Description

Required only for function declarations

Daylight saving time flag
Difference in seconds from GMT
Three-letter time-zone strings

The tzset function uses the current setting of the environment variable TZ
to assign values to three variables: daylight, timezone, and tzname.
These variables are used by the ftime and localtime functions to make
corrections from Greenwich mean time (GMT) to local time.

The value of the environment variable TZ must be a three-letter time-zone
name, such as PST, followed by an optionally signed number giving the
difference in hours between Greenwich mean time and local time. The
number may be followed by a three-letter daylight saving time zone, such
as PDT. For example, "PST8PDT" represents a valid TZ value for the
Pacific time zone.

The following values are assigned to the variables daylight, timezone,
and tzname when tzset is called:

Variable

timezone

daylight

tzname[O]

tzname[l]

Value

The difference in seconds between Greenwich
mean time and local time

Nonzero value if a daylight saving time zone is
specified in the TZ setting; otherwise, 0

The string value of the three-letter time-zone
name from the TZ setting

The string value of the daylight saving time
zone, or an empty string if the daylight saving
time zone is omitted from the TZ setting

If TZ is not currently set, the default is "PST8PDT", which corresponds to
the Pacific time zone. The default for daylight is 1; for timezone, 28800;
for tzname[O], "PST"; and for tzname[l], "PDT".

407

tzset

• Return Value

There is no return value.

• See Also

asctime, ftime, localtime

• Example

#include <time.h>

int daylight:
long timezone;
char *tzname[];

putenv("TZ=EST5");
tzset ();

408

/* daylight is 0,
** timezone is 18000,
** tzname[O] is "EST",
** tzname[l] is empty
*/

ultoa

• Summary

include <stdlib.h> Required only for function declarations

char ultoa(value, string, radix);
unsigned long value;
char *string;
int radix;

• Description

Number to be converted
String result
Base of value

The ultoR function converts the digits of the given value to a null­
terminated character string and stores the result in string. No overflow
checking is performed. The radix argument specifies the base of value; it
must be in the range 2-36.

• Return Value

The ultoa function returns a pointer to string. There is no error return.

• See Also

itoa,ltoa

Note

The space allocated for string must be large enough to hold the
returned string. The function can return up to 33 bytes.

• Example

#include <stdlib.h>

int radix = 16;
char buffer[40];
char *p;

/* p will be "501d9138 */
p = ultoa(1344115000L,buffer,radix);

409

umask

• Summary

include <sys\ types.h>
include <sys\ stat.h>
include <io.h> Required only for function declarations

int umask(pmode};
int pmode;

• Description

Default permission setting

The ulllask function sets the file-permission mask of the current process to
the mode specified by pmode. The file permission mask is used to modify
the permission setting of new files created by creat, open, or sop en. If a
bit in the mask is 1, the corresponding bit in the file's requested permission
value is set to ° (disallowed). If a bit in the mask is 0, the corresponding bit
is left unchanged. The permission setting for a new file is not set until the
file is closed for the first time.

The argument pmode is a constant expression containing one or both of the
manifest constants S_IWRITE and S_IREAD, defined in sys\stat.h.
When both constants are given, they are joined with the bitwise-OR opera­
tor (:). The meaning of the pmode argument is as follows:

Value

S_IWRITE

S_IREAD

Meaning

Writing not allowed (file is read only)

Reading not allowed (file is write only)

For example, if the write bit is set in the mask, any new files will be read
only.

Note

Under MS-DOS, all files are readable-it is not possible to give write­
only permission. Therefore, setting the read bit with urnask has no
effect on the file's permissions.

410

umask

• Return Value

The umask function returns the previous value of pmode. There is no
error return.

• See Also

chmod, creat, mkdir, open

• Example

#include <sys\types.h>
#include <sys\stat.h>
#include <io.h>

int oldmask;

oldmask = umask(S_IWRITE); /* create read-only files */

411

ungetc

• Summary

include <stdio.h>

int ungete(c, stream);
int c;
FILE *stream;

• Description

Character to be pushed
Pointer to file structure

The ungetc function pushes the character c back onto the given input
stream. The stream must be buffered and open for reading. A subse­
quent read operation on the stream starts with c. An attempt to push
EOF onto the stream using ungetc is ignored. The ungetc function
returns an error value if nothing has yet been read from stream or if c
cannot be pushed back.

Characters placed on the stream by ungetc may be erased if an fseek or
rewind function is called before the character is read from the stream.

• Return Value

The ungete function returns the character argument c. The return value
EOF indicates a failure to push back the specified character.

• See Also

getc, getchar, putc, putchar

412

• Example

#include <stdio.h>
#include <ctype.h>

FILE *stream;
int ch;
int result = 0;

/* The following statements gather a decimal integer
** from a stream:
*/

while ((ch = getc(stream)) != EOF && isdigit(ch))
result = result * 10 + ch - '0';

if (ch != EOF)
ungetc(ch,stream); /* put nondigit back */

ungetc

413

ungetch

• Summary

inelude <conio.h>

int ungetch(c);
int c;

• Description

Required only for function declarations

Character to be pushed

The ungetch function pushes the character c back to the console, causing c
to be the next character read. The ungetch function fails if it is called
more than once before the next read.

• Return Value

The ungetch function returns the character c if it is successful. A return
value of EOF indicates an error.

• See Also

cscan~getch,getche

414

• Example

#include <conio.h>
#include <ctype.h>

char buffer[lOO];
int count = 0;
int ch;

ungetch

/* The following code gets a token, delimited by blanks or
** new lines, from the keyboard:
*/

ch = getche();

while (isspace(ch»
ch = getche();

while (count < 99) {
if (isspace(ch»

break;

buffer [count++]
ch = getche();
}

ungetch(ch);
buffer [count] '\0' ;

/* skip preceding white space */

/* gather token */
/* end of token */

ch;

/* put back delimiter */
/* null terminate the token */

415

unlink

• Summary

include <io.h>
include <stdio.h>

int unlink{pathname);
char * pathname;

• Description

Required only for function declarations
Use either io.h or stdio.h

Path name of file to be removed

The unlink function deletes the file specified by pathname.

• Return Value

The unlink function returns the value 0 if the file is successfully deleted. A
return value of -1 indicates an error, and errno is set to one of the follow­
ing values:

Value

EACCES

ENOENT

• See Also

close, remove

• Example

#include <io.h>
#include <stdlib.h>

int result;

Meaning

Path name specifies a directory or a read-only file.

File or path name not found.

result = unlink("tmpfile");
if (result == -1)

perror("couldn't delete tmpfile");

416

utime

• Summary

include <sys\ types.h >
include <sys\ utime.h>

int utime(pathname, times);
char * pathname;
struct utimbuf * times;

• Description

File path name
Pointer to stored time values

The utime function sets the modification time for the file specified by
pathname. The process must have write access to the file; otherwise, the
time cannot be changed.

Although the utimbuf structure contains a field for access time, under
MS-DOS only the modification time is set. If times is a NULL pointer, the
modification time is set to the current time. Otherwise, times must point to
a structure of type utimbuf, defined in sys \ utime.h. The modification
time is set from the modtime field in this structure.

• Return Value

The utime function returns the value 0 if the file modification time was
changed. A return value of -1 indicates an error, and errno is set to one of
the following values:

Value

EACCES
EMFILE

ENOENT

• See Also

Meaning

Path name specifies directory or read-only file.

Too many open files (the file must be opened to
change its modification time).

File or path name not found.

asctime, ctime, fstat, ftime, gmtime, localtime, stat, time

417

utime

• Example

#include <sys\types.h>
#include <sys\utime.h>
#include <stdio.h>
#include <stdlib.h>

/* Set a file modification time to the current time:
*/

if (utime{"/tmp/data",NULL) == -1)
perror{"utime failed");

418

• Summary

include <varargs.h>

include <stdarg.h>

void VR- start(arg-ptr);

void VR- start(arg-ptr, pl'ev-param);

type VR- arg(arg-ptr, type);

void VR- end(arg-ptr);

VR-Iist arg-ptr;
type

prev-param

vR-alist

VR- del

• Description

V3....- arg - V3....- start

Required for compatibility with
UNIX V
Required for compatibility with
proposed ANSI 0 standard

Macro to set arg-ptr to beginning of list
of optional arguments (varargs.h version
only)

Macro to set arg-ptr to beginning of list
of optional arguments (stdarg.h version
only)

Macro to retrieve current argument

Macro to reset arg-ptr

Pointer to list of arguments
Type of argument to be retrieved
Parameter preceding first optional
argumen t (stdarg.h version only)
Name of parameter to called function
(varargs.h version only)
Declaration of VR- alist (varargs.h
version only)

The va_ start, va_ arg, and va_ end macros provide a portable way to
access the arguments to a function when the function takes a variable
number of arguments. Two versions of the macros are available: the mac­
ros defined in varargs.h are compatible with the UNIX System V
definition, and the macros defined in stdarg.h conform to the proposed
ANSI C standard.

Both versions of the macros assume that the function takes a fixed number
of required arguments, followed by a variable number of optional argu­
ments. The required arguments are declared as ordinary parameters to the
function and can be accessed through the parameter names. The optional
arguments are accessed through the varargs.h or stdarg.h macros, which

419

va- arg - va- start

set a pointer to the first optional argument in the argument list, retrieve
arguments from the list, and reset the pointer when argument processing is
completed.

The UNIX System V macros, defined in varargs.h, are used as follows:

1. Any required arguments to the function can be declared as parame­
ters in the usual way.

2. The last (or only) parameter to the function represents the list of
optional arguments. This parameter must be named va_ alist (not
to be confused with va_list, which is defined as the type of
va_alist).

3. The va_ del macro appears after the function definition and before
the opening left brace of the function. This macro is defined as a
complete declaration of the va_ alist parameter, including the ter­
minating semicolon; therefore, no semicolon should follow va_ del.

4. Within the function, the va_ start macro sets arg-ptr to the begin­
ning of the list of optional arguments passed to the function. The
va_ start macro must be used before va_ arg is used for the first
time. The argument arg-ptr must have va_list type.

5. The va_ arg macro does the following:

• Retrieves a value of the given type from the location given by
arg-ptr

• Increments arg-ptr to point to the next argument in the list,
using the size of type to determine where the next argument
starts

The va_ arg macro can be used any number of times within the
function to retrieve the arguments from the list.

6. After all arguments have been retrieved, va_ end resets the pointer
to NULL.

The proposed ANSI C standard macros, defined in stdarg.h, operate in a
slightly different manner, as follows:

1. All required arguments to the function are declared as parameters
in the usual way. The V8_ del macro is not used with the stdarg.h
macros.

2. The va_ start macro sets arg-ptr to the first optional argument in
the list of arguments passed to the function. The argument arg-ptr
must have va_list type. The argument prev-param is the name of
the required parameter immediately preceding the first optional

420

va- arg - va- start

argument in the argument list. The va_ start macro must be used
before va_ arg is used for the first time.

3. The va_ arg macro does the following:

• Retrieves a value of the given type from the location given by
arg-ptr

• Increments arg-ptr to point to the next argument in the list,
using the size of type to determine where the next argument
starts

The V8_ arg macro can be used any number of times within the
function to retrieve arguments from the list.

4. After all arguments have been retrieved, va_ end resets the pointer
to NULL.

• Return Value

The va_ arg macro returns the current argument; va_ start and va_ end
do not return values.

• See Also

vfprintf, vprintf, vsprintf

421

va- arg - va- start

• Example

Program listing using varargs.h for compatibility with UNIX V:

#include <stdio.h>
#include <varargs.h>

main ()
{

}

int n'

/* Call function with 4 arguments; last argument is
** -1 to mark end of argument list:
*/
n = average (2, 3 , 4, -1);
printf ("Average is: %d\n" 1 n);

/* Call function with 5 arguments; last argument is
** -1 to mark end of argument list:
*/
n = average (5, 7, 9 , 11, -1);
printf ("Average is: %d\n" 1 n);

average (va_alist)
va dcl
{

}

422

int i 0 , count = 0 , sum 0;
va list arg_marker;

/* Retrieve arguments and add to sum until last
** argument I -1 , is reached:
*/
for (; (i = va_arg(arg_marker/int» >= 0; su.m+=i, count++)

return (count? (sum/cou.nt) : count);

V3- arg - V3- start

A similar program, rewritten for compatibility with the ANSI C standard:

#include <stdio.h>
#include <stdarg.h>

main ()
{

}

int n;

/* Call function with 4 arguments; last argument is
** -1 to mark end of argument list:
*/
n = average (2, 3, 4, -1);
printf ("Average is: %d\n", n);

/* Call function with 5 arguments; last argument is
** -1 to mark end of argument list:
*/
n = average (5, 7, 9, 11, -1);
printf ("Average is: %d\n", n);

average (first)
int first;
{

int i = 0, count = 0, sum;
va list arg_marker;

va_start (arg_marker, first);

/* Add first argument to sum and increment count;
** return if first argument is -1:
*/
if (first != -1)

sum = first;
else

return (0);
count++;
/* Retrieve additional arguments and add to sum until
** last argument, -1, is reached:
*/
for (; (i = va_arg (arg_marker , int)) >= 0; sum+=i, count + +)

return (sum/count);
}

423

vfprintf - vsprintf

• Summary

include <stdio.h>
include <varargs.h>

include <stdarg.h>

Required for compatibility with
UNIX V
Required for compatibility with
proposed ANSI C standard

int vfprintf(stream, format-string, arg-ptr);

int vprintf(Jormat-string, arg-ptr);

int vsprintf(buffer, format-string, arg-ptr);

FILE *stream;
char * buffer;
char * format-string;
VB-list arg-ptr;

• Description

Pointer to file structure
Storage location for output
Format control
Pointer to list of arguments

The vfprintf, vprintf, and vsprintf functions format and output data to
stream, the standard output, or buffer, respectively. These functions are
similar to their counterparts fprintf, printf, and sprintf, but vfprintf,
vprintf, and vsprintf accept a pointer to a list of arguments rather than a
list of arguments.

The format-string has the same form and function as the format-string argu­
ment for the printf function; see the printf reference page for a description
of the format-string.

The arg-ptr parameter has type va_list, which is defined in varargs.h and
stdarg.h. The arg-ptr parameter points to a list of arguments that are
converted and output according to the corresponding format specifications
in the format-string.

• Return Value

The return value is the number of characters written.

424

vfprintf - vsprintf

• See also

fprintf, printf, sprintf, V8_ 8rg, V8_ end, va_ start

• Example

Program listing using varargs.h for compatibility with UNIX V:

#include <stdio.h>
#include <varargs.h>

main ()
{

int line = 1;
char *filename "EXAMPLE";

error ("Error: line %d, file %s\n", line, filename);

error ("Syntax error\n");
}

error (va_alist)
va del
{

}

char *fmt;
va_list arg_ptr;

va_start (arg_ptr) ;
/* arg_ptr now points to format string */
fmt = va_arg(arg_ptr, char *);
/* arg_ptr now points to argument after format string */
vprintf(fmt, arg_ptr);
va_end (arg_ptr) ;

Output:

Error: line 1, file EXAMPLE
Syntax error

426

vfprintf - vsprintf

A similar program, rewritten for compatibility with the ANSI C standard:

#include <stdio.h>
#include <stdarg.h>

main ()
{

int line = 1;
char * filename "EXAMI?LE";

error ("Error: line %d, file %s\n", line, filename);

error("Syntax error\n");
}

error (fmt)
char *fmt;
{

}

va_list arg_ptr;
va_start (arg_ptr, fmt);
/* arg_ptr now points to argument after format string */
vprintf(fmt, arg_ptr);
va_end(arg_ptr);

Output:

Error: line I, file EXAMI?LE
Syntax error

426

write

• SUUlUlary

include <io.h>

int write(handle, buffer, count);
int handle;

char '" buffer;
unsigned int count;

• Description

Required only for function declarations

Handle referring to open file
Data to be written
Number of bytes

The write function writes count bytes from buffer into the file associated
with handle. The write operation begins at the current position of the file
pointer (if any) associated with the given file. If the file is open for append­
ing, the operation begins at the current end of the file. After the write op­
eration, the file pointer (if any) is increased by the number of bytes actually
written.

• Return Value

The write function returns the number of bytes actually written. The
return value may be positive but less than count (for example, when run­
ning out of space on a disk before count bytes are written). A return value
of -1 indicates an error, and errno is set to one of the following values:

Value

EACCES

EBADF
ENOSPC

Meaning

File is read only or locked against writing.

Invalid file handle.

No space left on device.

If you are writing more than 32K (the maximum size for type int) to a file,
the return value should be of type unsigned into (See the example that fol­
lows.) However, the maximum number of bytes that can be written to a file
is 65534, since 65535 (or OxFFFF) is indistinguishable from -1, and so
would return an error.

If the given file was opened in text mode, each line-feed character (LF) is
replaced with a carriage-return-line-feed pair (CR-LF) in the output. The
replacement does not affect the return value.

427

write

• See Also

fwrite, open, read

Note

When writing to files opened in text mode, a character is treated as the
logical end-or-file. When writing to a device, a character in the buffer
causes output to be terminated.

• Example

#include <io.h>
#include <stdio.h>
#include <fcntl.h>

char buffer[60000J;

main ()
{

428

int fh;
unsigned int nbytes = 60000, byteswritten;

if ((fh = open ("c:/data/conf . datil ,O_WRONLY)) -1) {
perror("open failed on output file");
exit(l);
}

if ((byteswritten = write (fh,buffer,nbytes)) == -1)
perror("II);

else
printf("Wrote %u bytes to file\n", byteswritten);

}

Appendixes

A Error Messages 431
B A Common Library for XENIX and MS-DOS 437

429

Appendix A

Error Messages

A.1 Introduction 433
A.2 errno Values 433
A.3 Math Errors 436

431

Error Messages

A.I Introduction

This appendix lists and describes the values to which the errno variable
can be set when an error occurs in a call to a library routine. Note that
only some routines set the errno variable. The reference pages for the rou­
tines that set errno upon error explicitly mention the errno variable. (The
reference pages are located in Part 2 of this manual.) If no mention of
errno occurs, the routine does not set errno.

An error message is associated with each errno value. This message, along
with a user-supplied message, can be printed by using the perror function.

The value of errno reflects the error value for the last call that set errno.
The errno value is not automatically cleared by later successful calls.
Thus, to obtain accurate results, you should test for errors and print error
messages, if desired, immediately after a call.

The include file errno.h contains the definitions of the errno values. How­
ever, not all of the definitions given in errno.h are used under MS-DOS.
The full set of values is provided in the include file to maintain compati­
bility with the XENIX and UNIX include files having the same name.

This appendix lists only the errno values used under MS-DOS. For the
complete listing of errno values, see the errno.h include file.

Also listed in this appendix are the errors produced by math routines when
an error occurs. These errors correspond to the exception types defined in
math.h and returned by the matherr function when a math error occurs.

A.2 errno Values

Table A.I gives the errno values used on MS-DOS, the system error mes­
sage corresponding to each value, and a brief description of the circum­
stances that cause the error.

433

Microsoft C Compiler Run-Time Library Reference

Table A.I

errno Values and Their Meanings

Value

E2BIG

EACCES

EBADF

EDEADLOCK

EDOM

EEXIST

434

Message

kg list too long.

Permission denied.

Bad file number.

Resource deadlock
would occur.

Math argument.

File exists.

Description

The argument list exceeds 128 bytes,
or the space required for the
environment information exceeds
32K bytes.

Access denied: the file's permission
setting does not allow the specified
access. This error can occur in a
variety of circumstances; it signifies
that an attempt was made to access
a file (or, in some cases, a directory)
in a way that is incompatible with
the file's attributes.

For example, the error can occur
when an attempt is made to read
from a file that is not open, to open
an existing read-only file for writing,
or to open a directory instead of a
file. Under MS-DOS 3.0 and later,
EACCES may also indicate a
locking or sharing violation.

The error can also occur in an
attempt to rename a file or directory
or to remove an existing directory.

The specified file handle is not a
valid file-handle value or does not
refer to an open file; or an attempt
was made to write to a file or device
opened for read-only access (or vice
versa).

Locking violation: the file cannot be
locked after 10 attempts (MS-DOS
Version 3.0 and later only).

The argument to a math function is
not in the domain of the function.

The 0_ CREAT and 0_ EXCL
Hags are specified when opening a
file, but the named file already
exists.

Table A.I (continued)

Value

EINVAL

EMFILE

ENOENT

ENOEXEC

ENOMEM

ENOSPC

ERANGE

EXDEV

Message

Invalid argument.

Too many open files.

No such file or
directory.

Exec format error.

Not enough core.

No space left on
device.

Result too large.

Cross-device link.

Error Messages

Description

An invalid value was given for one
of the arguments to a function. For
example, the value given for the
origin when positioning a file pointer
is before the beginning of the file.

No more file handles are available,
so no more files can be opened.

The specified file or directory does
not exist or cannot be found. This
message can occur whenever a
specified file does not exist or a
component of a path name does not
specify an existing directory.

An attempt is made to execute a file
that is not executable or that has an
invalid executable file format.

Not enough memory is available.
This message can occur when
insufficient memory is available to
execute a child process or when the
allocation request in an sbrk or
getcwd call cannot be satisfied.

No more space for writing is
available on the device (for example,
the disk is full).

An argument to a math function is
too large, resulting in partial or total
loss of significance in the result.
This error can also occur in other
functions when an argument is
larger than expected (for example,
when the path-name argument to
the getcwd function is longer than
expected).

An attempt was made to move a file
to a different device (using the
rename function).

436

Microsoft C Compiler Run-Time Library Reference

A.3 Math Errors

The following errors can be generated by the math routines of the C run­
time library. These errors correspond to the exception types defined in
math.h and returned by the matherr function when a math error occurs;
see the matherr reference page in Part 2 of this manual for details.

Error

DOMAIN

OVERFLOW

PLOSS

SING

TLOSS

UNDERFLOW

436

Description

An argument to the function is outside the
domain of the function.

The result is too large to be represented in the
function's return type.

A partial loss of significance occurred.

Argument singularity: an argument to the
function has an illegal value (for example,
passing the value 0 to a function that requires
a nonzero value).

A total loss of significance occurred.

The result is too small to be represented.
(This condition is not currently supported.)

Appendix B
A Common Library
for XENIX and MS-DOS

B.1 Introduction 439
B.2 Common Run-Time Routines 439
B.2.1 Common Routines

for MS-DOS and XENlX 439
B.2.2 Common Routines

for MS-DOS and UNIX System V 441
B.2.3 Routines Specific to MS-DOS 441
B.3 Common Global Variables 442
B.3.1 Common Variables

for MS-DOS and XENlX 442
B.3.2 Common Variables

for MS-DOS and UNIX System V 443
B.3.3 Variables Specific to MS-DOS 443
B.4 Common Include Files 443
B.4.1 Common Include Files

for MS-DOS and XENlX 443
B.4.2 Common Include Files

for MS-DOS and UNIX System V 444
B.4.3 Include Files Specific to MS-DOS 444
B.5 Differences Between Common Routines 444
B.5.1 abort 445
B. 5.2 access 445
B.5.3 chdir 445
B.5.4 chmod 445

437

B.5.5 creat 446

B.5.6 exec 446

B.5.7 fopen, freopen 447

B.5.8 fread 448

B.5.9 fseek 448

B.5.10 fstat 448

B.5.11 ftell 449

B.5.12 ftime 449

B.5.13 fwrite 450

B.5.14 getpid 450

B.5.15 locking 450

B.5.16 lseek 451

B.5.17 open 451

B.5.18 read 451

B.5.19 signal 451

B.5.20 stat 452

B.5.21 system 453

B.5.22 umask 453

B.5.23 unlink 453

B.5.24 utime 453

B.5.25 write 454

438

A Common Library for XENIX and MS-DOS

B.I Introduction

This appendix lists and describes routines from the Microsoft C Run-Time
Library for MS-DOS that operate compatibly with C library routines on
XENIX systems. The routines provide an identical interface to a set of
operations useful on both XENIX and MS-DOS.

The XENIX and MS-DOS common library routines operate compatibly with
UNIX library routines as well. In addition, the Microsoft C Compiler Run­
Time Library for MS-DOS contains several routines that are compatible
with UNIX System V routines but that are not currently implemented on
XENIX.

With the exception of error returns, the math functions in the Microsoft C
Compiler Run-Time Library for MS-DOS operate compatibly with the
XENIX routines of the saine names. Error returns for most math routines in
the MS-DOS library have been upgraded for compatibility with UNIX Sys­
tem V math-error handling.

B.2 Common Run-Time Routines

The sections below list routines from the MS-DOS C library that are com­
patible with XENIX and UNIX System V routines. Routines specific to the
MS-DOS environment are also listed.

B.2.1 Common Routines
for MS-DOS and XENIX

The following is a list of the common routines for MS-DOS and XENIX.
The MS-DOS routines are compatible with the XENIX routines of the same
names, except that routines marked by an asterisk (*) have a slightly
different operation or meaning in the MS-DOS environment than they do
under XENIX. These differences are fully described in later sections of this
appendix. Math routines marked with a dagger (-I) implement UNIX Sys­
tem V-style error returns on MS-DOS.

439

Microsoft C Compiler Run-Time Library Reference

abort*
abs

* access
acosi'
asctime
asini'
assert
atan2i'
atani'
atof
atoi
atol
besseli', i'i'
bsearch
cabs
calloc
ceil
chdir*
chmod*
chsize
clearerr
close
cosi'
coshi'
creat*
ctime
difftime
dup
dup2
ecvt
execl*
execle*
execlp*
execlpe*

* execv
* execve
* execvp *

execvpe
exit
exp
fabs
fclose
fcvt
fdopen
feof
ferror
fHush
fgetc
fgets
file no
floor
fmod
fopen*
fprintf
fputc
fputs
fread*
free
freopen*
frexp
fscanf
fseek*
fstat*
ftell*
ftime*
fwrite*
gcvt
getc

getchar
getcwd
getenv
getpid*
gets
getw
gmtime
hypot
isalnum
isalpha
isascii
iscntrl
is digit
isgraph
islower
isprint
ispunct
isspace
issupper
isxdigit
ldexpi'
Hind
localtime
locking*
loglOi'
logi'
longjmp
lsearch
lseek*
malloc
Illktemp
Illodf
onexit

* open

perror
powi'
printf
putc
putchar
puts
putw
qsort
rand
read*
realloc
rewind
rmtmp
sbrk
scanf
setbuf
setjmp
setvbuf
signal*
sini'
sinhi'
sprintf
sqrti'
srand
sscanf
stat*
strcat
strchr
strcmp
strcpy
strcspn
strdup
strerror
strlen

strncat
strncmp
strncpy
strpbrk
strrchr
strspn
strtod
strtok
strtol
swab
system*
tan'r
tanhi'
tempnam
time
tmpfile
tmpnam
toascii
tolower
_tolower
toupper
_toupper
tzset
umask*
ungetc
unlink*
utime*
vfprintf
vprintf
vsprintf
write*

* Operates differently or has different meaning under MS-DOS than under XENIX

t Implements UNIX System V-style error returns

t t The bessel routine does not correspond to a single function, but to six functions named jO,
jl, jn, yO, yl, and yn,

440

A Common Library for XENIX and MS-DOS

B.2.2 Common Routines
for MS-DOS and UNIX System V

The XENIX-compatible routines listed in the previous section are also com­
patible with the routines of the same names in UNIX System Venviron­
ments. In addition, the following MS-DOS routines are compatible with
UNIX System V routines by the same name. These routines are not imple­
mented on XENIX.

alloca
matherr
memccpy

memchr
memcmp
memcpy

memicmp
memset
putenv

Note that most of the math functions in the MS-DOS library implement
error handling in the same manner as the UNIX System V routines of the
same name. The math routines marked with a dagger el") in the list of com­
mon routines for MS-DOS and XENIX (see Section B.2.1) implement Sys­
tem V-style error handling.

B.2.3 Routines Specific to MS-DOS

The routines listed below are available only in the MS-DOS C library. Pro­
grammers who are writing code to be ported to XENIX systems should
avoid using these routines.

FP_OFF flushall labs spawnlp
FP_SEG _fmalloc Itoa spawnlpe
bdos fmsbintoieee _memavl spawnv
cgets Jmsize mkdir spawnve
_clear87 Jpreset movedata spawnvp
_control87 fputchar _msize spawnvpe
cprintf _freect _nfree stackavail
cputs getch _nmalloc _status87
cscanf getche _nmsize strcmpi
dieeetombs bin halloc outp strlwr
bmsbintoieee hfree putch strncmpi
dosexterr inp remove strnicmp
eof int86 rename strnset
_exit int86x rmdir strrev
fcloseall intdos segread strset

441

Microsoft C Compiler Run-Time Library Reference

_ft'ree
fgetchar
fieeetoms bin
filelength

intdosx
isatty
itoa
kbhit

setmode
sopen
spawnl
spawnle

B.3 Common Global Variables

strupr
tell
ultoa
ungetch

The sections below list global variables used in the MS-DOS C library that
are also used in XENIX and UNIX environments. The variables specific to
the MS-DOS environment are also listed.

B.3.1 Common Variables
for MS-DOS and XENIX

The following is a list of global variables used in the run-time library and
available in both the MS-DOS and XENIX environments:

daylight
environ
errno
sys_err list
sys_nerr
timezone
tzname

Note

Not all values of errno available on XENIX are used by the MS-DOS
run-time library.

442

A Common Library for XENIX and MS-DOS

B.3.2 Common Variables
for MS-DOS and UN1X System V

The XENIX-compatible global variables listed in the Section B.3.1 are also
available in UNIX System V environments. There are no additional com­
mon variables for MS-DOS and UNIX System V.

B.3.3 Variables Specific to MS-DOS

The following global variables are available only in the MS-DOS C library.
Programmers who are writing code to be ported to XENIX systems should
avoid using these variables.

_doserrno
_osmajor
_psp
Jmode
_osminor

B.4 Common Include Files

Structure definitions, return value types, and manifest constants used in
the descriptions of some of the common routines may vary from environ­
ment to environment and are therefore fully defined in a set of include files
for each environment. Include files provided with the MS-DOS C library
are compatible with include files of the same name on XENIX and UNIX
systems. Some additional include files are compatible with include files of
the same name in UNIX System V environments.

Sections BA.1 and BA.2 list the MS-DOS include files that are compatible
with XENIX and UNIX System V. The include files that apply only to MS­
DOS environments are listed in Section BA.3.

B.4.1 Common Include Files
for MS-DOS and XEN1X

The following MS-DOS include files are compatible with the XENIX (and
UNIX) include files of the same name:

443

Mierosoft C Compiler Run-Time Library Referenee

assert.h
ctype.h
errno.h
fcntl.h

math.h
setjmp.h
signal.h

stdio.h
sys \ locking.h
sys\stat.h

B.4.2 Common Include Files
for MS-DOS and UNIX System V

sys \ timeb.h
sys \types.h
time.h

The XENIX-compatible include files listed in Section B.4.1 are also com­
patible with the include files of the same names in UNIX System Venviron­
ments. In addition, the names of the following MS-DOS include files
correspond to UNIX System V include files; however, the MS-DOS include
files may not contain all the constants and types defined in the correspond­
ing UNIX System V include files.

malloc.h
string.h
memory.h
varargs.h
search.h

B.4.3 Include Files Specific to MS-DOS

The following include files are used only in MS-DOS environments and do
not have counterparts on XENIX and UNIX systems:

conio.h
direct.h
dos.h
io.h

process.h
share.h
stdarg.h
stdlib.h

sys \ utime.h
v2tov3.h

B.5 Differences Between Common Routines

Sections B.5.1 through B.5.25 explain how the MS-DOS routines in the
common library for XENIX and MS-DOS differ from their XENIX counter­
parts. These descriptions are intended to be used in conjunction with the
more detailed descriptions of MS-DOS functions provided in the reference
section (Part 2 of this manual) and with the descriptions of the XENIX rou­
tines in the appropriate XENIX manual.

444

A Common Library for XENIX and MS-DOS

B.5.1 abort

The MS-DOS version of the abort routine terminates the process by a call
to an exit routine rather than through a signal. Control is returned to the
parent (calling) process with an exit status of 3 and the following message
is printed to standard error:

Abnormal program termination

No core dump occurs on MS-DOS.

B.5.2 access

The access routine checks the access to a given file. Under MS-DOS, the
real and effective user IDs are nonexistent. The permission (access) setting
can be any combination of the following values:

Value

04

02

00

Meaning

Read

Write

Check for existence

The "Execute" access mode (01) is not implemented.

In case of error, only the EACCES and ENOENT values may be
returned for errno on MS-DOS.

B.5.3 chdir

In case of error, only the ENOENT value may be returned for errno on
MS-DOS.

B.5.4 chmod

The chrnod routine can set the "owner" access permissions for a given file,
but all other permission settings are ignored. The mode argument can be
anyone of the constant expressions shown in the left-most column below;
the equivalent XENIX value is shown in the right-most column.

446

Microsoft C Compiler Run-Time Library Reference

Constant Expression

SJREAD

SJWRITE

SJREAD I SJWRITE

Meaning

Read by owner

Write by owner

Read and write by owner

XENIXValue

0400

0200

0000

The SJREAD and SJWRITE constants are defined in the sys\stat.h
include file. Note that the OR operator (I) is used to combine these con­
stants to form read and write permission.

If write permission is not given, the file is treated as a read-only file. Giving
write-only permission is allowed, but has no effect; under MS-DOS, all files
are readable.

In case of error, only the ENOENT value may be returned for errno on
MS-DOS.

B.5.5 creat

The creat routine creates a new file or prepares an existing file for writing.
If the file is created, the access permissions are set as defined by the mode
argument. Only "owner" permissions are allowed (see chmod above).

In case of error, only the EACCES, EMF1LE, and ENOENT values may
be returned for err no on MS-DOS.

Use of the open routine is preferred over creat when creating or opening
files in both MS-DOS and XENIX environments.

B.5.B exec

The MS-DOS versions of the execl, execle, execlp, execlpe, execv,
execve, execvpe, and execvp routines overlay the calling process, as in
the XENIX environment. If there is not enough memory for the new pro­
cess, the exec routine will fail and return to the calling process. Otherwise,
the new process begins execution.

446

A Common Library for XENIX and MS-DOS

Under MS-DOS, the exec routines do not perform the following functions:

• Use the close-on-exec flag to determine open files for the new
process.

• Disable profiling for the new process (profiling is not available under
MS-DOS).

• Pass signal settings to the child process. Under MS-DOS, all signals
(including signals set to be ignored) are reset to the default in the
child process.

The combined size of all arguments (including the program name) in an
exec routine under MS-DOS must not exceed 128 bytes.

In case of error, the E2BIG, EACCES, ENOENT, ENOEXEC, and
ENOMEM values may be returned for errno on MS-DOS. In addition, the
EMFILE value may be used; under MS-DOS, the file must be opened to
determine whether or not it is executable.

B.5.7 fopen, freopen

The MS-DOS versions of the fopen and freopen routines open stream files
just as they do in the XENIX environment. However, under MS-DOS the
following additional values for the type string are available:

Value

t

b

Meaning

Opens the file in text mode. Opening a file in this mode
causes translation of carriage-return-line-feed (CR-LF) char­
acter combinations into a single line feed (LF) on input.
Similarly, on output, line feeds are translated into CR-LF
combinations.

Opens the file in binary mode. This mode suppresses
translation.

See the MS-DOS reference pages (in Part 2 of this manual) for the fopen
and freopen routines to obtain more information on the default mode
setting.

The MS-DOS and XENIX versions of these routines also differ in their
interpretation of append mode ("a" or "a+"). When append mode is
specified in the MS-DOS version of fopen or freopen, the file pointer is
repositioned at the end of the file before any write operation. Thus all write
operations take place at the end of the file.

447

Microsoft C Compiler Run-Time Library Reference

In the XENIX versions, all write operations take place at the current posi­
tion of the file pointer. In append mode, the file pointer is initially posi­
tioned at the end of the file, but if the file pointer is later repositioned,
write operations take place at the new position rather than at the end of
the file.

B.5.S fread

The MS-DOS fread routine uses the low-level read function to carry out
read operations. If the file has been opened in text mode, read replaces
each CR-LF pair read from the file with a single LF character. The number of
bytes returned is the number of bytes remaining after the CR-LF pairs have
been replaced. Thus the return value may not always correspond to the
actual number of bytes read. This is considered normal and has no implica­
tions for detecting the end of the file.

B.5.9 fseek

The MS-DOS version of the fseek routine moves the file pointer to the
given position, just as in the XENIX environment. However, for streams
opened in text mode, fseek has limited use because carriage-return­
line-feed translations can cause fseek to produce unexpected results. The
only fseek operations guaranteed to work on streams opened in text mode
are: seeking with an offset of 0 relative to any of the origin values, or seek­
ing from the beginning of the file with an offset value returned from a call
to ftell.

B.5.10 fstat

MS-DOS does not make as much information available for file handles as it
does for full path names; thus the MS-DOS version of fstat returns less use­
ful information than does the stat routine. The MS-DOS fstat routine can
detect device files, but it must not be used with directories.

The structure returned by fstat contains the following members:

Member

448

Meaning

User read and write bits reflect the file's permission
setting. The SJFCHR bit is set for a device;
otherwise, the SJFREG bit is set.

st-8id

stJDtime

A Common Library for XENIX and MS-DOS

Not used.

Either the drive number of the disk containing the
file, or the file handle in the case of a device.

Either the drive number of the disk containing the
file, or the file handle in the case of a device.

Always 1.

Not used.

Not used.

Size, in bytes, of the file.

Time of last modification of file.

Time of last modification of file (same as
st_atime).

Time of last modification of file (same as st_atime
and st_mtime).

In case of error, only the EBADF value may be returned for errno on
MS-DOS.

B.5.11 ftell

The MS-DOS version of the ftell routine gets the current file pointer posi­
tion, just as in the XENIX environment. However, for streams opened in
text mode, the value returned by ftell may not reflect the physical byte
offset, since text mode causes carriage-return-line-feed translation. The
ftell routine can be used in conjunction with the fseek routine to
remember and return to file locations correctly.

B.5.12 ftime

Unlike the system time on XENIX systems, the MS-DOS system time does
not include the concept of a default time zone. Instead, ftime uses the
value of an MS-DOS environment variable named TZ to determine the time
zone. The user can set the default time zone by setting the TZ variable. If
TZ is not explicitly set, the default time zone corresponds to the Pacific
time zone. See the reference page for tzset in Part 2 of this manual for
details on the TZ variable.

449

Microsoft C Compiler Run-Time Library Reference

B.5.13 fwrite

The MS-DOS fwrite routine uses the low-level write function to carry out
write operations. If the file was opened in text mode, every line-feed (LF)
character in the output is replaced by a carriage-return-line-feed (CR-LF)
pair before being written. This does not affect the return value.

B.5.14 getpid

The getpid routine returns a process-unique number. Although the
number may be used to uniquely identify the process, it does not have
the same meaning as the process ID returned by getpid in the XENIX
environment.

B.5.15 locking

The MS-DOS and XENIX versions of the locking routine differ in several
respects, as listed below:

1. Under MS-DOS, it is not possible to lock a file only against
write access; locking a region of a file prevents both reading and
writing in that region. This means that setting LK_RLCK in the
locking call is equivalent to setting LK-.LOCK, and setting
LK_NBRLCK is equivalent to setting LK_NBLCK.

2. On MS-DOS, specifying LK-.LOCK or LK_RLCK will not cause a
program to wait until the specified region of a file is unlocked.
Instead, up to ten attempts are made to lock the file (one attempt
per second). If the lock is still unsuccessful after 10 seconds, the
locking function returns an error value.

On XENIX, if the first attempt at locking fails, the locking process
"sleeps" (suspends execution) and periodically "wakes" to attempt
the lock again. There is no limit on the number of attempts, and
the process can continue indefinitely.

3. On MS-DOS, locking of overlapping regions of a file is not allowed.

4. On MS-DOS, if more than one region of a file is locked, only one
region can be unlocked at a time, and the region must correspond to
a region that was previously locked. You cannot unlock more than
one region at a time, even if the regions are adjacent.

460

A Common Library for XENIX and MS-DOS

B.5.16 lseek

In case of error, only the EBADF and EINV AL values may be returned
for errno on MS-DOS.

B.5.17 open

The open routine opens a file handle for a named file, just as in the XENIX
environment. However, two additional oflag values (O_BINARY and
O_TEXT) are available and the O_NDELA Y and O_SYNCW values
are not available.

The O_BINARY flag causes the file to be opened in binary mode, regard­
less of the default mode setting. Similarly, the O_TEXT flag causes the
file to be opened in text mode.

In case of error, only the EACCES, EEXIST, EMFILE, and ENOENT
values may be used for errno on MS-DOS.

B.5.1S read

The MS-DOS version of the read routine reads characters from the file
given by a file handle, just as in the XENIX environment. However, if the
file has been opened in text mode, read replaces each CR-LF pair read from
the file with a single LF character. The number of bytes returned is the
number of bytes remaining after the CR-LF pairs have been replaced. Thus
the return value may not always correspond to the actual number of bytes
read. This is considered normal and has no implications for detecting an
end-of-file condition.

In case of error, only the EBADF value may be used for errno on
MS-DOS.

B.5.19 signal

The MS-DOS version of the signal routine can only handle the SIGINT
and SIGFPE signals. In MS-DOS, SIGINT is defined to be INT 23H (the
signal), while SIGFPE corresponds to floating-point exceptions that are
not masked.

451

Microsoft C Compiler Run-Time Library Reference

On MS-DOS, child processes executed through the exec or spawn routines
do not inherit the signal settings of the parent process. All signal settings
(including signals set to be ignored) are reset to the default settings in the
child process.

The MS-DOS version of signal uses only EINV AL for errno.

B.5.20 stat

The stat routine returns a structure defining the current status of the given
file or directory. The structure members returned by stat have the follow­
ing names and meanings on MS-DOS:

Value

stJdev

stJllink

st--8id

Meaning

User read and write bits reflect the file's permission set­
ting. The SJFDIR bit is set for a device; otherwise,
the SJFREG bit is set.

Not used.

Drive number of the disk containing the file.

Drive number of the disk containing the file.

Always 1.

Not used.

Not used.

Size, in bytes, of the file.

Time of last modification of file.

Time of last modification of file (same as st_atime).

Time of last modification of file (same as st_atime and
st_mtime).

In case of error, only the ENOENT value may be returned for err no on
MS-DOS.

462

A Common Library for XENIX and MS-DOS

B.5.21 system

The system routine passes the given string to the operating system for exe­
cution. For MS-DOS to execute this string, the full path name of the direc­
tory containing must be assigned to the environment variable. The system
call returns an error if cannot be found using these variables.

In case of error, only the E2BIG, ENOENT, ENOEXEC, and
ENOMEM values may be returned for errno on MS-DOS.

B.5.22 umask

The umask routine can set a mask for "owner" read and write access per­
missions only. All other permissions are ignored. (See the discussion of the
access routine above for details.)

B.5.23 unlink

The MS-DOS version of the unlink routine always deletes the given file.
Since MS-DOS does not implement multiple "links" to the same file, unlink­
ing a file is the same as deleting it.

In case of error, only the EACCES and ENOENT values may be
returned for errno on MS-DOS.

B.5.24 utime

The MS-DOS utime routine sets the file modification time only; MS-DOS
does not maintain a separate access time.

In case of error, the EACCES and ENOENT values may be returned for
errno on MS-DOS. In addition, the EMF~E value may be used; under
MS-DOS, the file must be opened to set the modification time.

453

Microsoft C Compiler Run-Time Library Reference

B.5.25 write

The write routine writes a specified number of characters to the file named
by the given file handle, just as in the XENIX environment. However, if the
file has been opened in text mode, every line-feed (LF) character in the out­
put is replaced by a carriage-return-line-feed (CR-LF) pair before being writ­
ten. This does not affect the return value.

In case of error, only the EBADF and ENOSPC values may be returned
for errno on MS-DOS.

464

Index

/ (forward slash), as path-name
delimiter, 21

abort, 91
XENIX version, differences from, 445

abs, 71
abs function, 93
abs macro, 88
Absolute value

abs function, 93
cabs function, 115
fabs function, 160
labs function, 257

access, 45, 94
Access mode, 165, 188, 205
access, XENIX version, differences

from, 445
acos, 26, 58, 96
alloca, 60, 98
Allocation. See Memory allocation
_ amblksiz variable, 31
Appending, 166, 188, 205,298, 354
Arc

cosine function, 96
sine function, 102
tangent function, 106

argO, MS-DOS considerations, 25
Argument

lists, variable, 419, 424
singularity, 274
type checking, 5, 17, 18
type lists, 17

Arguments
macros, with side effects, 15
notational conventions, 8
variable number, 18, 71
variable-length number, 419, 424

asctime, 70, 100
asin, 58, 102

floating-point support, 26
assert, 71, 104
assert.h, 72
assert.h, contents, 76
Assertions, 104

atan, 58, 106
atan

floating-point support, 26
atan2, 58, 106

floating-point support, 26
atof, 44, 107

floating-point support, 26
atoi, 44, 107
atol, 44, 107

Backslash (\) as
escape character, 22
path-name delimiter, 21

bdos, 63, 109
bessel, 58, 111
bessel

floating-point support, 26
Bessel functions, 111
Binary

format, conversion to IEEE
double precision, 141
floating point, 179

int
reading, 232
writing, 319

mode, 23, 34, 166, 189, 206, 299, 346,
355

search, 113, 259
BINMODE.OBJ, 23, 34
Bold capitals, use of, 8
Bold font, use of, 8
Break value, 334
bsearch, 67, 113
Buffer manipulation

include file, 42
memccpy, 41, 277
memchr, 41, 278
memcmp, 41, 279
memcpy, 41,280
mcmicmp, 41, 281
memset, 41,283
movedata, 41, 288

Buffering, 46, 51
preopened streams, 51

455

Index

Buffers
assigning, 343
comparing, 279, 281
copying, 277, 280, 288

overlapping moves, 280
flushing, 52, 171, 183
searching, 278
setting characters in, 283

BUFSIZ constant, 49, 84
Byte order, swapping, 396
BYTEREGS type, 78

cabs, 58, 115
floating-point support, 26

calloc, 60, 116
Carriage-return-line-feed translation.

See Binary mode; Text mode
Carry flag, 109, 241, 243, 246, 248
Case sensitivity

C language, 20
MS-DOS, 20
XENIX, 20

ceil, 117
floating-point support, 26

Ceiling function, 117
cgets, 56, 118
Character conversion. See Character,

classification and conversion
Character

classification and conversion
include files, 43
isalnum, 42, 250
isalpha, 250
isascii, 250
iscntrl, 253
isdigit, 253
isgraph, 42, 253
islower, 42, 253
isprint, 42, 253
ispunct, 42, 253
isspace, 42, 253
isupper, 42, 253
isxdigit, 42, 253
toascii, 42, 405
_ tolower, 42, 405, 421
tolower, 42, 405, 421
_toupper, 42, 405, 421
toupper, 42, 405, 421

device, 252

456

Characters
conversion to

ASCII, 405
lowercase, 405
uppercase, 405

reading, 175, 222, 324
reading from console, 224

with echo, 225
reading from port, 240
ungetting, 412, 414
writing, 196, 313, 427
writing to console, 315
writing to port, 302

chdir, 44, 120
XENIX version, differences from, 445

Child process, 151, 358
effects on floating-point state of

parent, 192
signal settings, 153, 358
translation mode, 153, 358

chmod, 45,121
XENIX version, differences from, 445

chsize, 45, 123
_ clear87, 58, 125
clearen, 20, 47, 127
Clearing

end-of-file, streams, 127
errors, 127

close, 53, 128
Command interpreter. See

COMMAND.COM
COMMAND.COM, 412
Common library

common routines listed, 439, 441
global variables, 442
include files, 443
run-time routine, differences, 444

Compatibility
differences listed, 444
global variables, 442
include files, 443
math routines, 439
mode, 354
run-time routines, 439
UNIX, 139
XENIX, 439

complex type, 36, 80
conio.h,57
conio.h, contents, 76
Console, ungetting characters from,

414

_ control87, 58, 129
Conventions, notational, 8
Conversion

characters to ASCII, 405
characters to lowercase, 405
characters to uppercase, 405
floating-point numbers to integers

and fractions, 287
floating-point numbers to strings,

148, 163, 221
IEEE double to MS binary double,

141
IEEE floating point to MS binary

floating point, 179
integers to strings, 255
long integers to strings, 272, 409
MS binary double to IEEE double,

141
MS binary floating point to IEEE

floating point, 179
strings to floating-point values, 107
strings to lowercase, 380
strings to uppercase, 395

cos, 58, 131
floating-point support, 26

cosh, 58, 131
floating-point support, 26

Cosine, 131
cprintf, 56, 132
cprintf

See also printf family
argument-type-checking limitations,

18
cputs, 57, 134
creat, 53, 135

XENIX version, differences from, 446
CR-LF translation. See Binary mode;

Text mode
cscanf, 57, 137
cscanf

See also scanf family
argumen t- type-checking limitations,

18
ctime, 70, 139
Ctype routines, 250, 254
_ ctype variable, 77
ctype.h,43
ctype.h, contents, 76

Index

Data conversion
See also Conversion
atof, 44, 107
atoi, 44, 107
atol, 44, 107
ecvt, 44, 148
fcvt, 44, 163
gcvt, 44, 221
include files, 44
itoa, 44, 255
ltoa, 44, 272,
strtod, 44, 390
strtol, 44, 390
ultoa, 44, 409

Data items
reading, 199
writing, 219

Data type limits, 80
Date routines. See Time routines
daylight variable, 32, 407
Deallocating memory, 173, 201, 237,

292
Declarations, function. See Function

declarations
Default translation mode, 23, 34, 299,

346, 354
changing, 23
child process, used in, 153, 358
overriding, 24

Delimiters for path-name components.
See Path names

dieeetomsbin, 141
difftime, 70, 142
direct.h, 45
direct.h, contents, 77
Directories

changing, 120
creating, 284
current working directory, getting,

226
deleting, 332
renaming, 329

Directory control
chdir, 44, 120
chmod, 121
getcwd, 44, 226
include files, 45
mkdir, 44, 284
remove, 328
rmdir,44
unlink, 416

467

Index

Directory names, notational
conventions, 8

dmsbintoieee, 141
DOMAlN, 274,436
_ doserrno variable, 33
DOSERROR type, 36, 78, 144
dosexterr, 63, 144

MS-DOS considerations, 24
dos.h, 63
dos.h, contents, 77
Double brackets, use of, 9
dup, 24,53, 146
dup2, 53, 146

MS-DOS cosiderations, 24
Dynamic allocation. See Memory

allocation

\ (backslash) as
escape character, 22
path-name delimiter, 21

E2BIG, 434
EACCES, 434
EBADF, 434
Echoing characters, 225
ecvt, 44, 148
EDEADLOCK, 434
ED OM, 434
EEXIST, 434
EINVAL, 435
Ellipsis dots, use of, 9
EMFILE, 435
End-of-file condition, 20
End-of-file

low-level I/O, 150
stream I/O, 168

clearing, 127, 331
ENOENT, 435
ENOEXEC, 435
ENOMEM, 435
ENOSPC, 435
environ variable, 35, 228, 317
Environment table, 35, 72, 228, 316
Environment variable names,

notational conventions, 8
Environment variables, 228, 316
eof, 20, 53, 150
EOF constant, 49, 84
ERANGE, 435
errno variable, 19, 20, 33, 56, 72, 78, 83,

303, 377, 433

458

errno.h, 433
errno.h, contents, 78
Error

handling, 19
logic errors, 104
MS-DOS error codes, 33
MS-DOS system calls, 144
perror, 303
stream operations, 20
strerror, 377

indicator, 20, 53, 127, 169
messages, 433

user supplied, 303, 377
returns, 19

Euclidean distance, 239
exception type, 36, 80, 274
EXDEV, 435
exec family, 64, 151

exec routines, differences between, 66
MS-DOS considerations, 25
path-name delimiters, 22
XENIX version, differences from, 446

execl, 64, 151
execl

See also exec family
argument-type-checking limitations,

19
XENIX version, differences from, 446

execle, 64, 151
execle

See also exec family
argumen t- type-checking limitations,

19
XENIX version, differences from, 446

execlp, 64, 151
execlp

See also exec family
argumen t- type-checking limitations,

19
XENIX version, differences from, 446

execlpe, 64, 151
See also exec family
argument-type-checking limitations,

19
Executing programs from within

programs, 151, 358
execv, 64, 151

See also exec family
XENIX version, differences from, 446

execve, 64, 151
See also exec family

execve (continued)
XENtx version, differences from, 446

execvp, 64, 151
See also exec family
XENIX version, differences from, 446

execvpe, 64, 151
See also exec family

_ exit, 65, 155
exit, 64, 155
Exiting processes, 155
exp, 58, 157

floating-point support, 26
_ expand, 60, 158
Exponential functions

exp, 157
frexp, 208
ldexp, 258
log, 266
log10, 266
pow, 305
sqrt, 364

fabs, 58, 160
floating-point support, 26

Far pointers, 191
fclose, 47, 161
fcloseall, 47, 161
fcntl.h, contents, 79
fcvt, 44, 163
fdopen, 48, 165
feof, 20, 48, 168
ferror, 20, 48, 169
£Hush, 48, 171
_ ffree, 60, 173
fgetc, 48, 175
fgetchar, 48, 175
fgets, 48, 177
fieeetomsbin, 179
File handles, 54

duplication, 146
predefined, 54
stream, used with, 181

File handling
access, 45, 94
chmod,45
chsize, 45, 123
filelength, 45, 180
fstat, 45, 213
include files, 45
isatty, 45

Index

File handling (continued)
locking, 45, 263
mktemp, 45, 285
remove, 45
rename, 45, 329
setmode, 45, 346
stat, 45, 369
umask, 45, 410
unlink, 45

File-name conventions, 20
File names, notational conventions, 8
File permission mask. See Permission

mask
File pointer, 52, 55

positioning, 211, 215, 270, 331, 400
File status information, 213, 369
FILE

pointer, 46, 49
structure, 49
type, 36, 84

filelength, 45, 180
fileno, 48, 55, 181
Files

changing size of, 123
closing, 56, 128
creating, 135, 298, 354
deleting, 328, 416
file pointer, positioning, 270, 400
length, determination of, 180
locking, 263
modification time, setting of, 417
opening, 54, 135, 298, 354
reading characters from, 324
renaming, 329
status information, 213, 369
temporary, 285
writing characters to, 427

float.h, contents, 79
Floating point not loaded, 27
Floating-poin t

control word, getting and setting,
129

errors, recovery from, 192
exceptions, 79, 350
math package

_ clear87, 125
_ con trol87, 129
_ fpreset, 192
reinitialization, 192
_ status87, 371

459

Index

Floating-point (continued)
numbers, conversion to strings, 148,

163, 221
ranges, 79
status word, 125, 371
support, 26

floor, 59, 182
floating-point support, 26

flushall, 48, 183
Flushing buffers, 52, 171, 183
_ fmalloc, 60, 185
fmod, 59, 186
fmod

floating-point support, 26
_ fmode variable, 23, 34
fmsbintoieee, 179
_ fmsize, 60, 187
fopen, 48, 188

default translation mode, changing,
23

default translation mode, overriding,
24

XENIX version, differences from, 447
Formatted I/O, 132, 137, 194, 209, 306,

336,363,366,424
Forward slash U), as path-name

delimiter, 21
FP _ OFF, 63, 191
_ fpreset, 59, 192
fprintf, 48, 194
fprintf

See also printf family
argumen t- type-checking limitations,

18
FP _ SEG, 63, 191
fputc, 48, 196
fputchar, 48, 196
fputs, 48, 198, 318
fread, 48, 199

XENIX version, differences from, 448
free, 60, 201
_ freect, 60, 203
Freeing memory blocks, 173, 201, 237,

292
freopen, 48, 205

XENIX version, differences from, 447
frexp, 59, 208

floating-point support, 26

460

fscanf, 48, 209
See also scanf family
argument-type-checking limitations,

18
fseek, 48, 211

XENIX version, differences from, 448
fstat, 45, 213

XENIX version, differences from, 448
ftell, 48, 215

XENIX version, differences from, 449
ftime, 70, 217

XENIX version, differences from, 449
Function declarations, 17, 75
Functions, advantages over macros, 14
fwrite, 48, 219

XENIX version, differences from, 450

gcvt, 44, 221
getc, 48, 222
getch, 57, 224
getchar, 48, 222
getche, 57, 225
getcwd, 44, 226
getenv, 72, 228
getpid, 65, 230

XENIX version, differences from, 450
gets, 48, 231
getw, 48, 232
gmtime, 70, 234
Goto, nonlocal, 72, 267, 344
Greenwich mean time, 70, 234

halloc, 60, 236
Handle. See File handle
hfree, 60, 237
Huge arrays, use in library functions,

27
Huge pointers, use in library functions,

27
HUGE, 81
HUGE_ VAL, 81
Hyperbolic cosine, 131
Hyperbolic sine, 353
Hyperbolic tangent, 399
hypot, 59, 239

floating-point support, 26
Hypotenuse, 239

Identifiers, notational conventions, 8
IEEE, converting to Microsoft binary

double precision, 141
floating point, 179

Include files
assert.h, 76
buffer manipulation routines, used

with, 42
character classification and

conversion, 43
common library, use in, 443
conio.h, 76
console and port I/O, 57
ctype.h,76
data conversion, 44
direct.h, 77
directory control, 45
dos.h,77
errno.h, 78
fcntl.h, 79
file handling, 45
float.h, 79
function declarations, 75
io.h,79
limits.h, 80
low-level I/O, 54
malloc.h, 80
math routines, 59
math.h,80
memory allocation, 61
memory.h, 81
miscellaneous routines, 72
MS-DOS interface routines, 63
naming conventions, 6
notational conventions, 8
process control, 66
process.h, 81
search.h, 82
searching and sorting, 67
setjmp.h,82
share.h,82
signal.h, 82
stdarg.h, 83
stddef.h, 83
stdio.h,83
stdlib.h, 85
stream I/O, 49
string manipulation, 69
string.h, 85
sys\ locking.h, 86
sys\ stat.h, 86

Index

Include files (continued)
sys\ timeb.h, 86
sys\ types.h, 86
sys\ utime.h, 87
time routines, 70
time.h, 87
v2tov3.h, 87
varargs.h, 87

Initializing buffers. See Buffers, setting
characters in

inp, 56, 240
Input and output. See I/O
Input/Output. See I/O
int86, 63, 241
int86x, 63, 243
intdos, 63, 246
intdosx, 63, 248
Integers

conversion to strings, 255
long, conversion to strings, 272, 409

Interrupt signals, 350
Interrupts. See MS-DOS interrupts
_ iob array, 84
io.h, 45, 54
io.h, contents, 79
isalnum, 42, 250
isalpha, 250
isascii, 250
isatty, 45, 252
iscntrl, 253
isdigit, 42, 253
isgraph, 42, 253
islower, 42, 253
isprint, 42, 253
ispunct, 42, 253
isspace, 42, 253
isupper, 42, 253
isxdigit, 42, 253
itoa, 44, 255, 409
I/O

buffered, 46
console and port, 47

cgets, 56, 118
cprintf, 56, 132
cputs, 56, 134
cscanf, 56, 137
getch, 56, 224
getche, 56, 225
include files, 57
inp, 56, 240
kbhit, 57, 256

461

Index

console and port (continued)
outp, 56, 302
putch, 56, 315
ungetch, 56, 414

low level, 47
use of errno, 20
close, 53, 128
creat, 53, 135
dup, 53, 146
dup2, 53, 146
eof, 53,150
error handling, 20, 56
include files, 54
lseek, 53, 270
open, 53, 298
read, 53, 324
sopen, 53, 354
tell, 53, 400
write, 53, 427

stream, 46, 47
Italics, use of, 8

jO. See Bessel functions
j1. See Bessel functions
jmp_ buf type, 36
jn. See Bessel functions

kbhit, 56, 256
Keys, key sequences, notational

conventions, 10
Keystroke, testing for, 256
Keywords, notational conventions, 8

labs, 71, 257
ldexp, 59, 258

floating-point support, 26
Length of

files, 180
strings, 379

lfind, 67, 259
limits.h, contents, 80
Lines

reading, 177, 231
writing, 318

LINT_ARGS, 5, 18,75
Local time corrections, 32, 261, 407
localtime, 70, 261
locking, 45, 263

462

locking (continued)
MS-DOS considerations, 24
XENIX version, differences from, 450

locking.h. See sys\ locking.h
log function, 59, 266

floating-point support, 26
log10 function, 59, 266

floating-point support, 26
Logarithmic functions

log, 266
logl0, 266

Long integers, conversion to strings,
272

Long pointers, 191
longjmp, 71, 267
lsearch, 68, 259
lseek, 53, 270

XENIX version, differences from, 451
ltoa, 44, 272

Macros
advantages over functions, 14
arguments with side effects, 15, 43
notational conventions, 8
restrictions on use, 14

malIoc, 60, 273
malloc.h, 61
malloc.h, contents, 80
Manifest constants, notational

conventions, 8
Mask. See Permission mask
Math errors, 436
matherr, 19, 59, 274
math.h, 44, 59
math.h, contents, 80
max macro, 88
_ memavl, 61, 276
memccpy, 41, 277
memchr, 41, 278
memcmp, 41, 279
memcpy, 41, 280
memicmp, 41, 281
Memory

allocation, 31
alloca, 60
available, determination of, 203
calloc, 60, 116
_ expand, 60, 158
_ ffree, 60, 173
_ fmanoe, 60, 185

allocation (continued)
_ fmsize, 60, 187
free, 60, 201
_ freect, 60, 203
halloc, 60, 236
hfree, 60, 237
include files, 61
malloc, 61, 273
_ memavl, 61, 276
_ msize, 61, 290
_ nfree, 61, 292
_ nmalloc, 61, 294
_ nmsize, 61, 295
realloc, 61, 326
sbrk, 61, 334
stackavail, 61, 368

models, use of with huge arrays and
huge pointers, 27

memory.h, 42
memory.h, contents, 81
memset, 41, 283
min macro, 88
mkdir, 44, 284
mktemp, 45, 285
modf, 59, 287

Hoating-point support, 26
Modification time, 417
movedata, 41, 288
MS-DOS

commands, execution of from within
programs, 397

considerations, 24
error codes, 33
version number, detection of, 34

interface routines
bdos, 63, 109
dosexterr, 63, 144
FP_OFF,63
FP_SEG,63
include files, 63
int86, 63, 241
int86x, 63, 243
intdos, 63, 246
intdosx, 63, 248
segread, 63, 342

interrupts
invoking, 241, 243
SICINT, 350

system calls
error handling, 144
invoking, 109, 246, 248

MS-DOS (continued)
version number, 34

_ msize, 61, 290

NDEBUG, 72, 76, 104
_ NFILE constant, 84
_ nfree, 61, 292
_ nmalloc, 61, 294
_ nmsize, 61, 295
Nonlocal goto, 72, 267, 344
Notational conventions, 8
Null pointer, 84
NULL, 83
NULL

constant, 84
pointer, 49

0_ BINARY, 23, 34
oHag. See Open Hag
onexit, 65, 296
open, 53,298, 346

Index

argumen t-type-checking limitations,
18

default translation mode, changing,
23

default translation mode, overriding,
24

XENIX version, differences from, 451
Open Hag, 298, 354
Optional arguments, notational

conven tions, 9
_ osmajor variable, 25, 34
_ osminor variable, 25, 34
0_ TEXT, 24
outp, 57, 302
Output. See I/O
OVERFLOW, 274, 436
Overlapping moves, 280
Overlay of parent process, 359

Parameters
variable-length number, 419, 424
variable number, 71

Parent process, 152, 358
overlay, 359
suspension, 358

Path names
delimiters, 20, 21

463

Index

Path names (continued)
notational conventions, 8

Path-name conventions, 20
Permission mask, 410
Permission setting, 135, 298, 354

access, 94
changing, 121
umask, 410

perror, 19, 71, 303
PLOSS, 274, 436
Port I/O. See I/O, console and port
Portability, 20

See also Compatibility
Positioning file pointer, 211, 215, 270,

331,400
pow, 59,305

Hoating-point support, 26
Predefined

handles, 54
stream pointers, 50

printf, 48, 306
argument-type-checking limitations,

18
printf family

Hoating-point support, 26
Printing. See Write operations
Process, defined, 65
Process control

abort, 64, 91
exec family, 64
execl, 64, 151
execle, 64, 151
execlp, 64, 151
execlpe, 64, 151
execv, 64, 151
execve, 64, 151
execvp, 64, 151
execvpe, 64, 151
_ exit, 155, 159
exit, 64, 155, 159
getpid, 65, 230
include files, 66
onexit, 65, 296
signal, 65, 350
spawn family, 65
spawnl, 65, 358
spawnle, 65, 358
spawnlp, 65, 358
spawnlpe, 65, 358
spawnv, 65, 358
spawnve, 65, 358

464

Process control (continued)
spawnvp, 65, 358
spawnvpe, 65, 358
system, 65, 397

Process ID, 230
process.h, 66
process.h, contents, 81
Program segment prefix, 35
Programming examples, notational

conventions, 9
Pseudorandom integers, 323, 365
_ psp variable, 35
PSP. See Program segment prefix
ptrdifL t, 83
putc, 48, 313
putch, 57, 315
putchar, 48, 313
putenv, 71, 316
puts, 48
putw, 48, 319

qsort, 68, 321
Quick sort, 321

rand, 71, 323
Random access, 211, 215, 270, 331, 400
Random-number generator, 323, 365
read, 53, 324

end-of-file condition, 20
XENIX version, differences from, 451

Read access. See Permission setting
Read operations

binary int value from stream, 232
character from stdin, 175, 222
character from stream, 175, 222
characters from file, 324
data items from stream, 199
formatted, 137, 209, 336, 366
from console, 118, 137, 224

checking for keystroke, 256
with echo, 225

from port, 240
line from stdin, 231
line from stream, 177

realloc, 61, 326
Reallocation

_ expand, 158
realloc, 326

Redirection, 51, 55, 205

Register, segment. See Segment
registers

REGS type, 36, 78
Remainder function, 186
remove, 45, 328
rename, 45, 329
Return value on error. See Error

returns
Reversing strings, 386
rewind, 49, 331
rmdir, 44, 332
rmtmp, 49, 333
Routines

argument lists, variable-length
V3.- arg, 71, 419
V3.- end, 71, 419
V3.- start, 71, 419
vfprintf, 424
vprintf, 424
vsprintf, 424

math
acos, 58, 96
asin, 58, 102
atan, 58, 106
atan2, 58, 106
bessel, 58, 111
cabs, 58
ceil, 58, 117
_ clear87, 58
_ con trol87, 58
cos, 58, 131
cosh, 58, 131
dieeetomsbin, 58
dmsbintoieee, 58
errno, use of, 19
error handling, 5, 19, 60
exp, 58, 157
fabs, 58, 160
fieeetomsbin, 59
floor, 59, 182
fmod, 59, 186
fmsbintoieee, 59
_ fpreset, 59
frexp, 59, 208
hypot, 59, 239
include files, 59
ldexp, 59, 258
log, 59, 266
log10, 59, 266
matherr, 59, 274
modf, 59, 287

math (continued)
pow, 59, 305
sin, 59, 353
sinh, 59, 353
sqrt, 59, 364
_ status87, 59
tan, 59, 399
tanh, 59, 399

miscellaneous
abs, 71
assert, 71, 104
getenv, 71, 228
include files, 72
labs, 71
longjmp, 71, 267
perror, 71, 303
putenv, 71, 316
rand, 71, 323
setjmp, 71, 344
srand, 71, 365
strerror, 377
swab, 71, 396

Routines by category, 41

sbrk, 61, 334
scanf, 49, 336

See also scanf family

Index

argumen t- type-checking limitations,
18

scanf family
floating-point support, 26

Scanning. See Read operations
search.h, 68
search.h, contents, 82
Searching and sorting

bsearch, 67, 113
include files, 68
lfind, 67, 259
lsearch, 68, 259
qsort, 68, 321

Seed, 365
Segment registers, obtaining values,

342
segread, 63, 342
setbuf, 49, 51, 343
setjmp, 71, 344
setjmp.h, 72, 82
setmode, 24, 45, 346
setvbuf, 49, 51, 348
share.h,82

465

Index

shflag. See Flag, sharing
Side effects in macro arguments, 15, 43
SIGFPE, 79, 350
SIGINT, 350
signal, 65, 350

settings, child process, 153, 358
XENIX version, differences from, 451

signal.h, 66, 82
sin, 59, 353

floating-point support, 26
Sine, 353
SING, 274, 436
sinh, 59, 353

floating-point support, 26
size_ t, 83
Small capitals, use of, 10
sopen, 53, 354

argument-type-checking limitations,
18

MS-DOS considerations, 24
Sorting. See Searching and sorting
spawn family, 65, 358

MS-DOS considerations, 25
path-name delimiters, 22
spawn routines, differences between,

66
spawnl, 65, 358

See also spawn family
argument-type-checking limitations,

19
spawnle, 65, 358

See also spawn family
argumen t- type-checking limitations,

19
spawnlp, 65, 358
See also spawn family

argumen t- type-checking limitations,
19

spawnlpe, 65, 358
See also spawn family
argumen t- type-checking limitations,

19
spawnv, 65, 358

See also spawn family
spawnve, 65, 358

See also spawn family
spawnvp, 65, 358

See also spawn family
spawnvpe, 65, 358

See also spawn family
sprintf, 47, 363

466

sprintf (continued)
See also printf family
argument-type-checking limitations,

18
sqrt, 59, 364

floating-point support, 26
Square-root function, 364
srand, 71, 365
SREGS type, 36, 78
sscanf, 366

See also scanf family
argumen t- type-checking limitations,

18
Stack environment

restoring, 267
saving, 344

stackavail, 61, 368
Standard auxiliary. See stdaux
Standard error. See stderr
Standard input. See stdin
Standard output. See stdout
Standard print. See stdprn
Standard types

complex, 36, 80
DOSERROR, 36, 78, 144
exception, 36, 79, 274
FILE, 36, 84
jmp_ buf, 36
listed, 36
REGS, 36, 78
SREGS, 36, 78
stat, 37, 86, 213, 369
timeb, 37, 217
time_ t, 142
tm, 37,87,234
utimbuf, 37, 87, 417

stat, 45, 369
XENIX version, differences from, 452

stat type, 37, 86, 213, 369
stat.h. See sys\ stat.h
_ status87, 59, 371
stdarg.h, contents, 83
stdaux,50

buffering, 51
default translation mode, overriding,

24
file handle, 54
translation mode, changing, 346

stddef.h, contents, 83
stderr,50

buffering, 51

stderr (continued)
default translation mode, overriding,

24
file handle, 54
translation mode, changing, 346

stdin, 50
buffering, 51
default translation mode, overriding,

24
file handle, 54
translation mode, changing, 346

stdio.h,49
stdio.h, contents, 83
stdlib.h, 43, 44, 72
stdlib.h, contents, 85
stdout,50

buffering, 51
default translation mode, overriding,

24
file handle, 54
translation mode, changing, 346

stdprn, 50
buffering, 51
default translation mode, overriding,

24
file handle, 54
translation mode, changing, 346

strcat, 68, 373
strchr, 68, 373
strcmp, 68, 373
strcmpi, 68, 373
strcpy, 68, 373
strcspn, 68, 373
strdup, 68, 373
Stream I/0, 46, 47

See also I/O, console and port
buffering, 51
clearerr, 47, 127
error handling, 20, 53
fclose, 47, 161
fcloseall, 47,161
fdopen, 48, 165
feof, 48, 168
ferror, 48, 169
fflush, 48, 171
fgetc, 48, 175
fgetchar, 48, 175
fgets, 48, 177
fileno, 48, 181
Hushall, 48, 183
fopen, 48, 188

Stream I/O (continued)
fprintf, 48, 194
fputc, 48, 196
fputchar, 48, 196
fputs, 48, 198, 318
fread, 48, 199
freopen, 48, 205
fscanf, 48, 209
fseek, 48, 211
ftell, 48,215
fwrite, 48, 219
getc, 48, 222
getchar, 48, 222
gets, 48, 231
getw, 48, 232
include files, 49
printf, 48, 306
putc, 48, 313
putchar, 48, 313
puts, 48
putw, 48, 319
rewind, 49, 331
rmtmp, 49
scanf, 49, 336
setbuf, 49, 343
setvbuf, 49
sprintf, 49, 363
sscanf, 49, 366
tempnam,49
tmpfile,49
tmpnam,49
ungetc, 49, 412
vfprintf, 49, 424
vprintf, 49, 424
vsprintf, 49, 424

Stream pointer, 46
Streams

appending, 166, 188,205
buffering, 343
clearing errors, 127
closing, 52, 161
file handles for, 181

Index

file-pointer positioning, 211, 215, 331
formatted I/O, 194, 209, 306, 336,

363,366,424
opening, 49, 165, 188
reading

binary int value, 232
characters, 175, 222
data items, 199
lines, 177, 231

467

Index

Streams (continued)
reopemng, 205
rewinding, 331
stdaux,50
stderr, 50
stdin, 50
stdout, 50
stdprn, 50
translation mode, 166, 189, 206
ungetting characters, 412
writing

binary int value, 319
characters, 196, 313
data items, 219
lines, 318
strings, 198

strerror, 19, 68, 377
stricmp, 68, 373
String manipulation

include files, 69
strcat, 68, 373
strchr, 68, 373
strcmp, 68, 373
strcmpi, 68, 373
strcpy, 68, 373
strcspn, 68, 373
strdup, 68, 373
strerror, 68
stricmp, 68, 373
strlen, 68, 379
strlwr, 68, 380
strncat, 68, 381
strncmp, 68, 381
strncpy, 68, 381
strnicmp, 68, 381
strnset, 69, 381
strpbrk, 69, 384
strrchr, 69, 385
strrev, 69, 386
strset, 69, 387
strspn, 69, 388
strstr, 69, 389
strtok, 69, 393
strupr, 69, 395

string.h, 69
string.h, contents, 85
Strings, 22

comparing, 373
comparing parts of, 381
concatenating, 373, 381

468

Strings (continued)
conversion to

floating-point values, 107
lowercase, 380
uppercase, 395

copying, 373
copying parts of, 381
initialization, 381, 387
length of, 379
reading from console, 118
reversing, 386
searching, 373, 384, 385, 388, 389
searching for tokens, 393
writing, 198
writing to console, 132, 134

strlen, 68, 379
strlwr, 68, 380
strncat, 68, 381
strncmp, 68, 381
strncpy, 68, 381
strnicmp, 68, 381
strnset, 69, 381
strpbrk, 69, 384
strrchr, 69, 385
strrev, 69, 386
strset, 69, 387
strspn, 69, 388
strstr, 69, 389
strtod, 44, 390
strtok, 69, 393
strtol, 44, 390
strupr, 69, 395
Subdirectory conventions, 20, 21
swab, 71, 396
Syntax conventions. See Notational

conventions
sys subdirectory, 21
sys\ locking.h, contents, 86
sys\ stat.h, contents, 86
sys\ timeb.h, 70
sys\ timeb.h, contents, 86
sys\ types.h, 70
sys\ types.h, contents, 86
sys\ utime.h, 70
sys\ utime.h, contents, 87
sys_ enlist, 33
sys_ errlist variable, 78, 303, 377
sys_ nerr, 33
sys_ nerr variable, 303, 377
sysat.h,45
system, 65, 397

system (continued)
path-name delimiters, 22
XENIX version, differences from, 453

System calls. See MS-DOS system calls
System time. See Time

tan, 59, 399
floating-point support, 26

Tangent, 399
tanh, 59, 399

floating-point support, 26
tell, 53, 400
tempnam, 49, 401
Terminal capabilities, 252
Text mode, 23, 34, 166, 189, 206, 299,

346, 355
time, 70, 403
Time

computing time differences, 142
conversion from

long integer to string, 139
long integer to structure, 234, 261
structure to string, 100

correcting for local time, 261
global variables, setting, 407
obtaining, 217, 403
routines

asctime, 70, 100
ctime, 70, 139
difftime, 70, 142
ftime, 70, 217
gmtime, 70, 234
include files, 70
localtime, 70, 261
time, 70, 403
tzset, 70, 407
utime, 70, 417

timeb type, 37, 217
timeb.h. See sys\ timeb.h
time.h,70
time.h, contents, 87
time_ t type, 142
timezone variable, 32, 407
TLOSS, 274, 436
tm type, 37, 87, 234
tmpfile, 49, 404
tmpnam, 49, 401
toascii, 42, 405
Tokens, finding in strings, 393
_ tolower, 42, 405, 421

Index

tolower, 42, 405, 421
function version, use of, 43
side effects, 43

_toupper, 42, 405, 421
toupper, 42,405,421

function version, use of, 43
side effects, 43

Translation mode. See Binary mode;
Text mode

Trigonometric functions
acos,96
asin, 102
atan, 106
atan2, 106
cos, 131
cosh, 131
hypot, 239
sin, 353
sinh, 353
tan, 399
tanh, 399

Type checking, arguments. See
Argumen t type checking

types.h. See sys\ types.h
Types, predefined. See Standard types
TZ environment variable, 32
TZ variable, 261, 407
tzname variable, 32, 407
tzset, 70, 407

ultoa, 44, 409
umask, 45, 410

XENIX version, differences from, 453
UNDERFLOW, 274, 436
ungetc, 49, 412
ungetch, 57, 414
UNIX operating system, 439
unlink, 45, 416

XENIX version, differences from, 453
Update, 166, 188, 205
utimbuf type, 37, 87, 417
utime, 70, 417

XENIX version, differences from, 453
utime.h. See sys\ utime.h

v2tov3.h, contents, 87
V<L- arg, 71, 419
V<L- end, 71, 419
varargs.h, contents, 87

469

Index

Variable
global, 31

_ amblksiz, 31
common library, use in, 442
daylight, 32,407
_ doserrno, 33
environ, 35, 228, 317
errno, 33,78,303,377,433
_ fmode, 34
_ osmajor, 34
_ osminor, 34
_ psp, 35
sys_ errlist, 33, 78, 303, 377
sys_ nerr, 33, 303, 377
timezone, 32, 407
tzname, 32, 407

va- start, 71, 419
Version number (MS-DOS), 34
vfprintf, 49, 424
vprintf, 49, 424
vsprintf, 49, 424

Word. See Binary int
WORDREGS type, 78

470

write, 53, 427
Write access. See Permission setting

XENIX version, differences from, 454
Write operations

binary int value to stream, 319
character to

console, 414
file, 427
stdout, 196, 313
stream, 196, 313, 412

consok, to, 132, 134, 315
data items from stream, 219
formatted, 132, 194, 306, 363, 424
line to stream, 318
port, to, 302
string to stream, 198

XENIX operating system, 439

yO. See Bessel functions
yl. See Bessel functions
yn. See Bessel functions

MICR=== ==SOFT®
16011 NE 36th Way, Box 97017, Redmond, WA 98073-9717

Software
Problem Report

Name __ __

Street __ _

City ____________________ State _____ Zip ______ _

Phone _______________ Date ______ __

Instructions

Use this form to report software bugs, documentation errors, or suggested
enhancements. Mail the form to Microsoft.

Category

__ Software Problem

__ Software Enhancement

__ Documentation Problem
(Document# ________ _

__ Other

Software Description

Microsoft Product __

Rev. ___ _ Reg istration # ____________ _

Operating System

Rev. ______ _ _ Supplier ____________________________ _

Other Software Used _________________________________ _

Rev. ______ Suppl ier ___________________________ _

Hardware Description

Manufacturer _______ CPU _________ Memory _____ KB

Disk Size ___ " Density: Sides:

Single__ Single __

Double __ Double __

Peripherals __ _

Problem Description

Describe the problem. (Also describe how to reproduce it, and your
diagnosis and suggested correction.) Attach a listing if available.

