
• • • • •
.. Microsoft ~ Macro Assembler
- Reference

Microsoft® Macro Assembler

Reference

Version 6.0

For MS® OS/2 and MS-DOS® Operating Systems

Microsoft Corporation

Information in this document is subject to change without notice and does not repre­
sent a commitment on the part of Microsoft Corporation. The software described in
this document is furnished under a license agreement or nondisclosure agreement.
The software may be used or copied only in accordance with the terms of the agree­
ment. It is against the law to copy the software on any medium except as
specifically allowed in the license or nondisclosure agreement. No part ofthis
manual may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying and recording, for any purpose without the
express written permission of Microsoft.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Techni­
cal Data and Computer Software clause at DFARS 252.227-7013 or subparagraphs
(c)(1) and (2) of Commercial Computer Software-Restricted Rights at 48 CFR
52.227-19, as applicable. Contractor/Manufacturer is Microsoft Corporation, One
Microsoft Way, Redmond, WA 98052-6399.

© Copyright Microsoft Corporation, 1987, 1991. All rights reserved.
Printed in the United States of America.

Microsoft, MS, MS-DOS, and Code View are registered trademarks and
Making it all make sense and Windows are trademarks of Microsoft Corporation.

U.S. Patent No. 4,955,066

Intel is a registered trademark and 386, 387, and 486 are trademarks of Intel
Corporation.

Timings and encodings in this manual are used with permission of Intel and come
from the following publications:

Intel Corporation. iAPX 86,88,186, and 188 User's Manual, Programmer's
Reference. Santa Clara, Calif. 1986.

Intel Corporation. iAPX 286 Programmer's Reference Manual including the iAPX
286 Numeric Supplement. Santa Clara, Calif. 1985.

Intel Corporation. 80386 Programmer's Reference Manual. Santa Clara, Calif.
1986.

Intel Corporation. 80387 80-bit CHMOS III Numeric Processor Extension. Santa
Clara, Calif. 1987.

Intel Corporation. i486 Microprocessor Data Sheet. Santa Clara, Calif. 1989.

Document No. LN06557 -0291
10 9 8 7 6 5 4 3 2 1

CONTENTS

Document Conventions .. 2

Tools
BIND .. 5
Microsoft® Code View® Debugger ... 5
CVPACK .. 7
EXEHDR .. 7
EXP ... 8
HELPMAKE .. 9
H2INC .. 10
IMPLIB ... 11
LIB ... 12
LINK .. 13
MASM .. 16
ML .. 17
NMAKE ... 20
PWB ... 22
PWBRMAKE ... 23
QuickHelp ... 24
RM .. 26
UNDEL ... 26

Directives
Directives ... 29

Symbols and Operators
Predefined Symbols .. 45
Operators .. 47
Run-Time Operators ... 51

Processor
Interpreting Processor Instructions ... 55
Instructions ... 67

Coprocessor
Interpreting Coprocessor Instructions .. 157
Instructions ... 161

Tables
DOS Program Segment Prefix (PSP) ... 191
ASCII Codes ... 192
Key Codes .. 194
Color Display Attributes ... 196
Hexadecimal-Binary-Decimal Conversion 196

CONTENTS 1

Document Conventions

KEY TERMS

placeholders

Examples

[optional itemsll

{choice} I choice2}

Repeating
elements ...

SHIFT+Fl

Bold type indicates text that must be typed
exactly as shown. This includes assembly­
language instructions, directives, symbols, and
operators, as well as keywords in other
languages.

Italics indicate variable information supplied
by the user.

This typeface indicates example programs,
user input, and screen output.

Double brackets indicate that the enclosed item
is optional.

Braces and a vertical bar indicate a choice
between two or more items. You must choose
one of the items unless double square brackets
surround the braces.

Three dots following an item indicate that
more items having the same form may be
typed.

Small capital letters indicate key names.

2 DOCUMENT CONVENTIONS

Tools

BIND
Command-Line Syntax
Options
Environment Variables

CodeView
Command-Line Syntax
Options
Environment Variables

CVPACK
Command-Line Syntax
Options

EXEHDR
Command-Line Syntax
Options

EXP
Command-Line Syntax
Options

HELPMAKE
Command-Line Syntax
Options

H21NC
Command-Line Syntax
Options
Environment Variables

IMPLIB

LIB

Command-Line Syntax
Options

Command-Line Syntax
Options
Commands

LINK
Command-Line Syntax
Options
Environment Variables

MASM

ML

Command-Line Syntax
Options
Environment Variables

Command-Line Syntax
Options
QuickAssembler Support
Environment Variables

NMAKE

PWB

Command-Line Syntax
Options
Environment Variable

Command-Line Syntax
Options
Environment Variables

PWBRMAKE
Command-Line Syntax
Options

QuickHelp

RM

Command-Line Syntax
Options
Environment Variables

Command-Line Syntax
Options

UNDEL
Command-Line Syntax
Options

BIND
The BIND utility converts an OS/2 program to run under both DOS
and OS/2.

Command-Line Syntax

BIND infile [libraries] [options]

Options

Option

/HELP

/MAP [mapfile]

/NAMES functions
/NAMES @filename

/NOLOGO

/Ooutfile

/?

Action

Option name: /HELP. Calls QuickHelp for help on
BIND.

Option name: /M[AP]. Generates a map of the DOS
part of the executable file.
Option name: /N[AMES]. Specifies functions
supported under OS/2 only. Use with a list of
functions separated by spaces or a file specification
preceded by @.

Option name: /NOLOGO. Suppresses the BIND
copyright message.
Option name: /O[UTFILE]. Specifies the name for
the bound application.
Option name: /? Displays a brief summary of BIND
command-line syntax.

Environment Variables

Variable

LID

LINK

TMPf

Description

Specifies search path for library files.
Specifies default command-line options for the
linker.
Specifies path for the VM.TMP file.

Microsoft® CodeView® Debugger
The Microsoft® Code View® debugger runs the assembled or compiled
program while simultaneously displaying the program source code,
program variables, memory locations, processor registers, and other
pertinent information.

CodeView 5

Command-Line Syntax

CV [options~ executablefile [arguments~

CVP [options~ executablefile [arguments~

Options

Option

/2
/25
/43
/50
/B
/Ccommands

/D[buffersize~

IE
/F

/G

/1[0 I III

IK

ILdli

/M

/N[O I l~

/0

/R

/S

rrSF

IX

6 CodeView

Action

Permits the use of two monitors.
Starts in 25-line mode.
Starts in 43-line mode.
Starts in 50-line mode.
Starts in black-and-white mode.
Executes commands on start-up.
Enables disk overlays (CV only).
Enables use of expanded memory (CV only).
Exchanges screens by flipping between video pages
(CV only).
Eliminates refresh snow on CGA monitors
(CV only).
Turns nonmaskable-interrupt and 8259-interrupt
trapping on (III) or off (110) (CV only).

Disables installation of keyboard monitors for the
program being debugged.
Loads symbolic information for the specified
dynamic-link library (CVP only).
Disables CodeView use of the mouse (use this
option when debugging an application that
supports the mouse).
/NO tells Code View to trap nonmaskable interrupts;
/NI tells it not to trap (CV only).
Enables debugging of multiple processes
(CVP only).
Enables 80386/486 debug registers (CV only).
Exchanges screens by changing buffers (primarily
for use with graphics programs) (CV only).
Toggles TOOLS.INI entry to read/not read the
CURRENT .STS file.
Enables use of extended memory (CV only).

Environment Variables

Variable

HELPFILES

INIT

CVPACK

Description

Specifies path of help files or list of help
filenames.
Specifies path for TOOLS.lNI and CURRENT.STS
files.

The CVP ACK utility reduces the size of an executable file that
contains Code View debugging information.

Command-Line Syntax

CVPACK [options] exefile

Options

Option

/HELP
/P
/?

EXEHDR

Action

Calls QuickHelp for help on CVPACK.
Packs the file to the smallest possible size.
Displays a brief summary of CVPACK command­
line syntax.

The EXEHDR utility displays and modifies the contents of an
executable-file header.

Command-Line Syntax

EXEHDR [options] filenames

Options

Option

/HEAP:number

/HELP

/MAX:number

Action

Option name: /HEA[P]. Sets the heap allocation
field to number bytes for segmented executable
files.
Option name: /HEL[P]. Calls QuickHelp for help on
EXEHDR.

Option name: /MA[X]. Sets the maximum memory
allocation to number paragraphs for DOS executable
files.

EXEHDR 7

/MIN:number

/NEW

/NOLOGO

/PM:type

!RESET

/ST ACK:number

N

/?

EXP

Option name: /MI[N]. Sets the minimum memory
allocation to number paragraphs for DOS executable
files.
Option name: /NE[WFILES]. Enables support for
HPFS.
Option name: /NO[LOGO]. Suppresses the EXEHDR
copyright message.
Option name: IP[MTYPE]. Sets the application type
for OS/2 or Microsoft WindowsTM, where type is
one of the following: PM (or WINDOW API),
VIO (or WINDOWCOMPAT), or NOVIa
(or NOTWINDOWCOMPAT).
Option name: /R[ESETERROR]. Clears the error bit
in the header of an OS/2 or Windows executable
file.
Option name: /S[T ACK]. Sets the stack allocation
to number bytes.
Option name: N[ERBOSE]. Provides more
information about segmented executable files,
including the default flags in the segment table, all
run-time relocations, and additional fields from the
header.
Option name: I? Displays a brief summary of
EXEHDR command-line syntax.

The EXP utility deletes all files in the hidden DELETED subdirectory
of the current or specified directory. EXP is used along with RM and
UNDEL to manage backup files.

Command-Line Syntax

EXP [options] [directoriesTI

Options

Option

/HELP

/Q
/R

/?

8 EXP

Action

Calls QuickHelp for help on EXP.
Suppresses display of deleted files.
Recurses into subdirectories of the current or
specified directory.
Displays a brief summary of EXP command-line
syntax.

HELPMAKE
The HELPMAKE utility creates help files and customizes the help
files supplied with Microsoft language products.

Command-Line Syntax

HELPMAKE {/E[n] I ID[c] I IH I/?} [optionsll sourcefiles

Options

Option

lAc

IC

ID
IDS

/DU

IE[n]

IH[ELP]

IKfilename

/L

/NOLOGO

IOoutfile

Action

Specifies c as an application-specific control
character for the help database, marking a line that
contains special information for internal use by the
application.
Indicates that the context strings are case sensitive
so that at run time all searches for help topics will
be case sensitive.
Fully decodes the help database.
Splits the concatenated, compressed help database
into its components, using their original names.
No decompression occurs.
Decompresses the database and removes all screen
formatting and cross-references.
Creates ("encodes") a help database from a specified
text file (or files). The optional n indicates the
amount of compression to take place. The value of
n can range from 0 to 15.
Calls the QuickHelp utility. If HELPMAKE cannot
find QuickHelp or the help file, it displays a brief
summary of HELPMAKE command-line syntax.
Specifies a file containing word-separator
characters. This file must contain a single line of
characters that separate words. ASCII characters
from 0 to 32 (including the space) and character
127 are always separators. If the IK option is not
specified, the following characters are also
considered separators:

!"#&' ()*+_,/:;<=>?@[\]A '{\}~

Locks the generated file so that it cannot be
decoded by HELPMAKE at a later time.
Suppresses the HELPMAKE copyright message.
Specifies outfife as the name of the help database.
The name outfile is optional with the ID option.

HELPMAKE 9

/Sn

rr

/V[n~

/Wwidth

/?

H21NC

Specifies the type of input file, according to the
following n values:

/S 1 Rich Text Format
/S2 QuickHelp Format
/S3 Minimally Formatted ASCII

During encoding, translates dot commands to
application-specific commands. During decoding,
translates application commands to dot commands.
The rr option forces /A:.
Sets the verbosity of the diagnostic and
informational output, depending on the value of n.
The value of n can range from 0 to 6.
Sets the fixed width of the resulting help text in
number of characters. The value of width can range
from 11 to 255.
Displays a brief summary of HELPMAKE command­
line syntax.

The H2INC utility converts C header (.H) files into MASM­
compatible include (.INC) files. It translates declarations and
prototypes, but does not translate code.

Command-Line Syntax

H2INC [options~ filename.H

Options

Option

/C
/Fa [filenamd

/Fc [filename~

!HELP

/Ht

/Mn

/Ni
/Zn string

10 H2INC

Action

Passes comments in the .H file to the .INC file.
Specifies that the output file contain only
equivalent MASM statements. This is the default.
Specifies that the output file contain equivalent
MASM statements plus original C statements
converted to comment lines.
Calls QuickHelp for help on H2INC.
Enables generation of text equates. By default, text
items are not translated.
Instructs H2INC to explicitly declare the distances
for all pointers and functions.
Suppresses the expansion of nested include files.
Adds string to all names generated by H2INC. Used
to eliminate name conflicts with other H2INC­
generated include files.

{ZU

/?
Makes all structure and union tag names unique.
Displays a brief summary of H2INC command-line
syntax.

Note: H2INC also supports the following options from Microsoft C,
version 6.0: lAC, IAH, IAL, lAM, lAS, IAT, /D, /F, /Fi, IGO, IGI,
IG2, IG3, IG4, IGc, IGd, IGr, /I, IJ, lTc, /U, lu, /WO, /WI, /W2, /W3,
/W4, IX, IZa, IZc, IZe, IZpl, IZp2, IZp4.

Environment Variables

Variable

CL

H2INC

INCLUDE

IMPLIB

Description

Specifies default command-line options.
Specifies default command-line options. Appended
after the CL environment variable.
Specifies search path for include files.

The IMPLIB utility creates import libraries used by LINK to link
dynamic-link libraries with applications.

Command-Line Syntax

IMPLIB [options] irnplibname {dllfile ... I deffile ... }

Options

Option

/HELP

/NOI

/NOLOGO

I?

Action

Option name: IH[ELP~. Calls QuickHelp for help on
IMPLIB.
Option name: /NOI[GNORECASE]. Preserves case
for entry names in DLLs.
Option name: /NOL[OGO~. Suppresses the IMPLIB
copyright message.
Option name: /? Displays a brief summary of
IMPLIB command-line syntax.

IMPLIB 11

LIB
The LIB utility helps create, organize, and maintain run-time libraries.

Command-Line Syntax

LIB inlibrary [optionsD [commandsD [, [list fileD [, [outlibraryD D D [;D

Options

Option

/HELP

/lGN

/NOE

/NOI

/NOLOGO

/P AGE:number

/?

Commands

Operator

+name

-name

-+name

*name

-*name

12 LIB

Action

Option name: /H[ELPD. Calls QuickHelp for help on
LIB.
Option name: /I[GNORECASED. Tells LIB to ignore
case when comparing symbols (the default). Use to
combine a library marked /NOI with an unmarked
library to create a new case-insensitive library.
Option name: NOE[XTDICTIONARYD. Prevents LIB
from creating an extended dictionary.
Option name: /NOI[GNORECASED. Tells LIB to
preserve case when comparing symbols. When
combining libraries, if any library is marked /NOI,
the output library is case sensitive, unless /IGN is
specified.
Option name: /NOL[OGOD. Suppresses the LIB
copyright message.
Option name: /P[AGESIZED. Specifies the page size
(in bytes) of a new library or changes the page size
of an existing library. The default for a new library
is 16.
Option name: /? Displays a brief summary of LIB
command-line syntax.

Action

Appends an object file or library file.
Deletes a module.
Replaces a module by deleting it and appending an
object file with the same name.
Copies a module to a new object file.
Moves a module out of the library by copying it to
a new object file and then deleting it.

LINK
The LINK utility combines object files into a single executable file or
dynamic-link library.

Command-Line Syntax

LINK objfiles [, [exefild [, [mapfild [, [libraries~ [, [deffile~ ~ ~ ~ ~ [;~

Options

Option

/ALIGN:size

/BATCH

/CO

/CPARM:number

jDOSSEG

jDSALLOC

/EXEPACK

IFARCALL

Action

Option name: /A[LIGNMENT~. Directs LINK to
align segment data in a segmented executable file
along the boundaries specified by size bytes, where
size must be a power of two.

Option name: /B[A TCH~. Suppresses prompts for
library or object files not found.

Option name: /CO[DEVIEW~. Adds symbolic data
and line numbers needed by the Microsoft CodeView
debugger. This option is incompatible with the
/EXEPACK option.
Option name: ICP[ARMAXALLOq. Sets the
program's maximum memory allocation to number
of 16-byte paragraphs.

Option name: IDO[SSEG~. Orders segments in the
default order used by Microsoft high-level
languages.
Option name: IDS[ALLOCA TE~. Directs LINK to
load all data starting at the high end of the data
segment. The IDSALLOC option is for assembly­
language programs that create DOS .EXE files.

Option name: /E[XEP ACK~. Packs the executable
file. The IEXEPACK option is incompatible with
either IINCR or /CO. Do not use /EXEPACK on a
Windows program.
Option name: IF[ARCALLTRANSLA TION~.
Optimizes far calls. The IFARCALL option is on
automatically when using /TINY. Use the IPACKC
option with IF ARCALL when linking for OS/2;
/p ACKC is not recommended with IF ARCALL when
linking for Windows.

LINK 13

/HELP Option name: /HE[LP~. Calls QuickHelp for help on
LINK.

/HIGH Option name: /HI[GH~. Places the executable file as
high in memory as possible. Use /HIGH with the
/DSALLOC option. This option is for assembly­
language programs that create DOS .EXE files.

/lNCR Option name: /lNC[REMENT AL~. Prepares for
incremental linking with ILINK. This option is
incompatible with /EXEPACK and /TINY.

/INFO Option name: /INF[ORMA TION~. Displays to the
standard output the phase of linking and names of

. object files being linked.
/LINE Option name: /LI[NENUMBERS~. Adds source-file

line numbers and associated addresses to the map
file. The object file must be created with line
numbers. This option creates a map file even if
map/ile is not specified.

/MAP Option name: /M[AP~. Adds public symbols to the
map file.

/NOD[:lihrarynamd Option name: /NOD[EFAULTLIBRARYSEARCH~.
Ignores the specified default library. Specify
without lihraryname to ignore all default libraries.

/NOE Option name: /NOE[XTDICTIONARY~. Prevents
LINK from searching extended dictionaries in
libraries. Use /NOE when redefinition of a symbol
causes error L2044.

/NOFARCALL Option name: /NOFl[ARCALLTRANSLATION~. Turns
off far-call optimization.

/NOI Option name: /NOI[GNORECASE~. Preserves case in
identifiers.

/NOLOGO Option name: /NOL[OGOll. Suppresses the LINK
copyright message

/NONULLS Option name: /NON[ULLSDOSSEGll. Orders
segments as with the /DOSSEG option, but with no
additional bytes at the beginning of the _TEXT
segment (if defined). This option overrides
/DOSSEG.

/NOPACKC Option name: /NOP[ACKCODEll. Turns off code
segment packing.

14 LINK

/PACKC[:numberll Option name: /PACKC[ODEll. Packs neighboring
code segments together. Specify number bytes to
set the maximum size for physical segments formed
by /PACKC.

/P ACKD[:numberll Option name: /p ACKD[A TAll. Packs neighboring
data segments together. Specify number bytes to set
the maximum size for physical segments formed by
/PACKD. This option is for OS/2 and Windows
only.

/pAUSE Option name: /PAU[SED. Pauses during the link
session for disk changes.

/PM:type Option name: /PM[TYPEll. Specifies the type of
Windows or OS/2 application where type is one
of the following: PM (or WINDOW API),
VIO (or WINDOWCOMPAT), or NOVIO
(or NOTWINDOWCOMPAT).

/STACK:number Option name: /ST[ACKll. Sets the stack size to
number bytes, from 1 byte to 64K.

/TINY Option name: /T[INYll. Creates a tiny-model DOS
program with a .COM extension instead of .EXE.
Incompatible with /INCR.

/? Option name: /? Displays a brief summary of LINK
command-line syntax.

Note: Several rarely used options not listed above are described in
online help.

Environment Variables

Variable

INIT

LIB
LINK
TMP

Description

Specifies path for the TOOLS.lNI file.
Specifies search path for library files.
Specifies default command-line options.
Specifies path for the VM. TMP file.

LINK 15

MASM
The MASM program converts command-line options from MASM
style to ML style, adds options to maximize compatibility, and calls
ML.EXE.

Note: MASM.EXE is provided to maintain compatibility with old
makefiles. For new makefiles, use the more powerful ML driver.

Command-Line Syntax

MASM [optionsTI sourcefile [, [objectfileTI [, [listingfileTI
[, [crossreferencefileTI TI TI TI [;TI

Options

Option

IA

IB
IC
ID
IDsymbo[[=valueTI

IE

/H
/HELP
/lpathname

/L
/LA
/ML
/MU
/MX

IN
IP

IS

rr
N
IWO

IWI

16 MASM

Action

Orders segments alphabetically. Results in a
warning. Ignored.
Sets internal buffer size. Ignored.
Creates a cross-reference file. Translated to IFR.
Creates a Pass 1 listing. Ignored.
Defines a symbol. Unchanged.
Emulates floating-point instructions. Translated to
IFPi.
Lists command-line arguments. Translated to Ihelp.
Calls QuickHelp for help on the MASM driver.
Specifies an include path. Unchanged.
Creates a normal listing. Translated to IFI.
Lists all. Translated to IFI and ISa.
Treats names as case sensitive. Translated to ICp.
Converts names to uppercase. Translated to ICu.
Preserves case on nonlocal names. Translated to
ICx.
Suppresses table in listing file. Translated to ISn.
Checks for impure code. Use OPTION
READONL Y. Ignored.
Orders segments sequentially. Results in a warning.
Ignored.
Enables terse assembly. Translated to Inologo.
Enables verbose assembly. Ignored.
Enables warning level O. Unchanged.
Enables warning level 1. Unchanged.

IW2

IX
IZ
{ZD

IZI

Enables warning level 2. Unchanged.
Lists false conditionals. Translated to ISx.
Displays error lines on screen. Ignored.
Generates line numbers for CodeView. Translated to
IZd.
Generates symbols for Code View. Translated to IZi.

Environment Variables

Variable

INCLUDE
MASM
TMP

ML

Description

Specifies default path for .INC files.
Specifies default command-line options.
Specifies path for temporary files.

The ML program assembles and links one or more assembly-language
source files. The command-line options are case sensitive.

Command-Line Syntax

ML [options~ filename [[options~ filenamd ... [/link linkoptions~

Options

Option

IAT

IBI filename

Ic
/Cp
ICu
ICx
IDsymbol[=valud

fEP

Action

Enables tiny-memory-model support. Enables error
messages for code constructs that violate the
requirements for .COM format files. Note that this
is not equivalent to the .MODEL TINY directive.
Selects an alternate linker.
Assembles only. Does not link.
Preserves case of all user identifiers.
Maps all identifiers to uppercase (default).
Preserves case in public and extern symbols.
Defines a text macro with the given name. If value
is missing, it is blank. Multiple tokens separated
by spaces must be enclosed in quotation marks.
Generates a preprocessed source listing (sent to
STDOUT). See ISf.

ML 17

/F hexnum

/Fb [filenameTI

/Fe filename

/FI [filenameTI

/Fm [filenameTI

/Fo filename

/FPi

/Fr [filenameTI

/FR [filenameTI

/Gc

/Gd

/H number

/help
/l path name

/nologo
/Sa
/Sf
/Sg
/Sl width

/Sn
/Sp length

ISs text

/St text

/Sx
{fa filename

/w
/Wlevel

18 ML

Sets stack size to hexnum bytes (this is the same as
/link /STACK:number). The value must be expressed
in hexadecimal notation. There must be a space
between /F and hexnum.

Creates a bound executable file.
Names the executable file.
Generates an assembled code listing. See /Sf.
Creates a linker map file.
Names an object file.
Generates emulator fixups for floating-point
arithmetic (mixed-language only).
Generates a source browser .SBR file.
Generates an extended form of a source browser
.SBR file.
Specifies use of FORTRAN- or Pascal-style function
calling and naming conventions. Same as OPTION
LANGUAGE:PASCAL.

Specifies use of C-style function calling and
naming conventions. Same as OPTION
LANGUAGE:C.
Restricts external names to number significant
characters. The default is 31 characters.
Calls QuickHelp for help on ML.
Sets path for include file. A maximum of 10 /1
options is allowed.
Suppresses messages for successful assembly.
Turns on listing of all available information.
Adds first-pass listing to listing file.
Turns on listing of assembly-generated code.
Sets the line width of source listing in characters
per line. Range is 60 to 255 or O. Default is O.
Same as PAGE, width.

Turns off symbol table when producing a listing.
Sets the page length of source listing in lines per
page. Range is 10 to 255 or O. Default is O. Same
as PAGE length.

Specifies text for source listing. Same as
SUBTITLE text.

Specifies title for source listing. Same as
TITLE text.

Turns on false conditionals in listing.
Assembles source file whose name does not end
with the .ASM extension.
Same as /WO.
Sets the warning level: level 0, 1, 2, or 3.

/WX
{Zd

/Zf

/Zi
/Zm

/Zp [alignment~

/Zs

/?

Returns an error code if warnings are generated.
Generates line-number information in object file.
Makes all symbols public.
Generates Code View information in object file.
Enables M510 option for maximum compatibility
with MASM 5.1.
Packs structures on the specified byte boundary. The
alignment may be I, 2, or 4.
Performs a syntax check only.
Displays a brief summary of ML command-line
syntax.

QuickAssembler Support

For compatibility with QuickAssembler makefiles, ML recognizes the
following options:

Option

/a

/CI
fEz

/PI

/P2

/s

/Sq

Action

Orders segments alphabetically. In MASM 6.0, the
.ALPHA directive must be used. Ignored.
Equivalent to /Cp.
Prints the source for error lines to the screen. This
option is no longer supported and is ignored by
MASM 6.0.
Performs one-pass assembly. MASM 6.0 always
performs a single pass through the source file. This
option is ignored by MASM 6.0.
Performs two-pass assembly. MASM 6.0 always
performs a single pass through the source file. This
option is ignored by MASM 6.0.
Orders segments sequentially. In MASM 6.0, the
.SEQ directive must be used. Ignored.
Equivalent to /SlO /SpO.

Environment Variables

Variable

INCLUDE
ML
TMP

Description

Specifies search path for include files.
Specifies default command-line options.
Specifies path for temporary files.

ML 19

NMAKE
The NMAKE utility automates the process of compiling and linking
project files.

Command-Line Syntax

NMAKE [options~ [macros~ [targets~

Options

Option

IA

IC

!D

IE

IF filename

/HELP
II

IN

/NOLOGO

20 NMAKE

Action

Executes all commands even if targets are not out­
of-date.
Suppresses the NMAKE copyright message and
prevents nonfatal error or warning messages from
being displayed.
Displays the modification time of each file when
the times of targets and dependents are checked.
Causes environment variables to override macro
definitions within description files.
Specifies filename as the name of the description
file to use. If a dash (-) is entered instead of a
filename, NMAKE reads the description file from
the standard input device.
If IF is not specified, NMAKE uses MAKEFILE as
the description file. If MAKEFILE does not exist,
NMAKE builds command-line targets using
inference rules.
Calls QuickHelp for help on NMAKE.
Ignores exit codes from commands in the
description file. NMAKE continues executing the
rest of the description file despite the errors.
Displays but does not execute commands from the
description file.
Suppresses the NMAKE copyright message.

IP

IQ

IR

IS

rr

IX filename

IZ

/?

Displays all macro definitions, inference rules,
target descriptions, and the .SUFFIXES list.
Checks modification times of command-line targets
(or first target in the description file if no
command-line targets are specified). NMAKE returns
a zero exit code if all such targets are up-to-date and
a nonzero exit code if any target is out-of-date.
Only preprocessing commands in the description
file are executed.
Ignores inference rules and macros that are defined
in the TOOLS.INI file or are predefined.
Suppresses display of commands as they are
executed.
Changes modification times of command-line
targets (or first target in the description file if no
command-line targets are specified) to the current
time. Only preprocessing commands in the
description file are executed. The contents of target
files are not modified.
Sends all error output to filename, which can be
either a file or a device. If a dash (-) is entered
instead of a filename, the error output is sent to the
standard output device.
Internal option for use by the Microsoft
Programmer's WorkBench (PWB).
Displays a brief summary of NMAKE command-line
syntax.

Environment Variable

Variable

INIT

Description

Specifies path for TOOLS.INI file, which may
contain macros, inference rules, and description
blocks.

NMAKE 21

PWB (Programmer's WorkBench)
The Microsoft Programmer's WorkBench (PWB) provides an integrated
environment for developing programs in assembly language. The
command-line options are case sensitive.

Command-Line Syntax

PWB [options~ [files~

Options

Option

ID[init~

Ie cmdstr

1m mark

IP[init~

Ir

22 PWB

Action

Prevents PWB from examining initialization files,
where init is one or more of the following
characters:

A Disable autoload extensions (including
language-specific extensions and online
help)

SIgnore CURRENT.STS
T Ignore TOOLS.INI

If the ID option does not include an init character,
it is equivalent to specifying IDAST (all files and
extensions ignored).

Executes the command or sequence of commands at
start-up. The entire cmdstr argument must be placed
in double quotation marks if it contains a space. If
cmdstr contains literal double quotation marks,
place a backslash (\) in front of each double
quotation mark. To include a literal backslash in the
command string, use double backslashes (\\).

Moves the cursor to the specified mark instead of
moving it to the last known position. The mark
can be a line number.
Specifies a program list for PWB to read, where init
can be

Ffile

L

Pfile

Read a foreign program list (one not
created using PWB).
Read the last program list. Use this
option to start PWB in the same state
you left it.
Read a PWB program list.

Starts PWB in no-edit mode. Functions that modify
files are disallowed.

[[/t]file ...]

I?

Loads the specified file at start-up. The file
specification can contain wildcards. If multiple files
are specified, PWB loads only the first file. When
the Exit function is invoked, PWB saves the current
file and loads the next file in the list. Files
specified with /t are temporary; PWB does not add
them to the file history on the File menu.
No other options can follow It on the command
line. Each temporary file must be specified in a
separate It option.
Displays a brief summary of PWB command-line
syntax.

Environment Variables

Variable

HELPFILES

INIT

TMP

Description

Specifies path of help files or list of help
filenames.
Specifies path for TOOLS.lNI and CURRENT.STS
files.
Specifies path for temporary files.

PWBRMAKE
PWBRMAKE converts the .SBR files created by the assembler into
database .BSC files that can be read by the Microsoft Programmer's
WorkBench (PWB) Source Browser. The command-line options are
case sensitive.

Command-Line Syntax

PWBRMAKE [options] sbrfiles

Options

Option

/Ei filename
/Ei (filename ...)

/Em

IEs

Action

Excludes the contents of the specified include files
from the database. To specify multiple filenames,
separate them with spaces and enclose the list in
parentheses.
Excludes symbols in the body of macros. Use /Em
to include only macro names.
Excludes from the database every include file
specified with an absolute pathname or found in an
absolute path specified in the INCLUDE
environment variable.

PWBRMAKE 23

/HELP

/Iu
In

10 filename

Iv
/?

QuickHelp

Calls QuickHelp for help on PWBRMAKE.

Includes unreferenced symbols.

Forces a non incremental build and prevents
truncation of .SBR files.

Specifies a name for the database file.

Displays verbose output.

Displays a brief summary of PWBRMAKE
command-line syntax.

The QuickHelp utility displays online help files. All MASM reserved
words and error messages can be used for topic.

Command-Line Syntax

QH [options~ [topid

Options

Option

/dfilename

/lnumber

Imnumber

/p filename

Ipa [filename~

/q

Ir command

24 QuickHelp

Action

Specifies either a specific database name or a path
where the databases are found.
Specifies the number of lines the QuickHelp window
should occupy.

Changes the screen mode to display the specified
number of lines, where number is in the range 25 to
60.
Sets the name of the paste file.

Specifies that pasting operations are appended to
the current paste file (rather than overwriting the
file).

Prevents the version box from being displayed
when QuickHelp is installed as a keyboard monitor.

Specifies the command that QuickHelp should
execute when the right mouse button is pressed. The
command can be one of the following letters:

I Display last topic
Display history of help topics

w Hide window
b Display previous topic
e Find next topic

Display contents

/s

/sgnumber

/t name

/u

Specifies that clicking the mouse above or below
the scroll box causes QuickHelp to scroll by lines
rather than by pages.

Specifies the number of screen groups that
QuickHelp should monitor, where number is in the
range 1 to 12. This option is valid only when
QuickHelp is detached from an OS/2 protected-mode
screen group.
Directs QuickHelp to copy the specified section of
the given topic to the current paste file and exit.
The name may be

All Paste the entire topic
Syntax Paste the syntax only
Example Paste the example only

If the topic is not found, QuickHelp returns an exit
code of 1.
Specifies that QuickHelp is being run by a utility.
If the topic specified on the command line is not
found, QuickHelp immediately exits with an exit
code of 3.

Environment Variables

Variable

HELPFILES

QH

TMP

Description

Specifies path of help files or list of help
filenames.

Specifies default command-line options.
Specifies directory of default paste file.

QuickHelp 25

RM
The RM utility moves a file to a hidden DELETED subdirectory of the
directory containing the file. Use the UNDEL utility to recover the file
and the EXP utility to expunge the hidden file.

Command-Line Syntax

RM [options~ [f'iles~

Options

Option

IF
/HELP

II
/K
/R directory

/?

UNDEL

Action

Deletes read-only files without prompting.
Calls QuickHelp for help on RM.
Inquires for permission before removing each file.
Keeps read-only files without prompting.
Recurses into subdirectories of the specified
directory.
Displays a brief summary of RM command-line
syntax.

The UN DEL utility moves a file from a hidden DELETED subdirectory
to the parent directory. UNDEL is used along with EXP and RM to
manage backup files.

Command-Line Syntax

UNDEL [{ option I files} ~

Options

Option

/HELP

/?

26 RM

Action

Calls QuickHelp for help on UNDEL.
Displays a brief summary of UNDEL command-line
syntax.

Directives

Topical Cross-Reference for Directives

Simplified Data Allocation Equates Conditional Error
Segment BYTE/SBYTE EQU .ERR
.MODEL WORD/SWORD .ERRE
.STARTUP DWORD/SDWORD TEXTEQU .ERRNZ
.EXIT FWORD .ERRB
.CODE QWORD Regeat Blocks .ERRNB
.STACK TBYTE

REPEAT
.ERRDEF

.DATA LABEL .ERRNDEF
ALIGN WHILE .ERRDIF/.ERRDIFI .DATA?
EVEN FOR .ERRIDN/.ERRIDNI .FARDATA
ORG FORC

.FARDATA? ENDM

.CONST REAL4 Processor
REAL8 GOTO

.DOSSEG
REALI0 .8086 .486

Conditional .186 .486P
Segment

Code Labels Control Flow .286 .8087
.286P .287 SEGMENT

ENDS LABEL .IF .386 .387
GROUP ALIGN .ELSE .386P .N087
ASSUME EVEN .ELSEIF

END ORG .ENDIF Procedures
.ALPHA .WHILE

.ENDW PROC .DOSSEG Scoge

.REPEAT ENDP .SEQ PUBLIC .UNTIL/ PROTO
EXTERNDEF .UNTILCXZ INVOKE

Conditional EXTERN .BREAK USES
Assembl~ COMM .CONTINUE
IF INCLUDELIB Miscellaneous
IFE

Structure
Listing Control OPTION

IFB/IFNB TITLE COMMENT
IFDEF/IFNDEF and Record SUBTITLE ECHO
IFDIF/IFDIFI RECORD PAGE .RADIX
IFIDN/IFIDNI STRUCT .LIST END
ELSE UNION .NOLIST PUSHCONTEXT
ENDIF ENDS .LISTIF POPCONTEXT

TYPEDEF .NOLISTIF INCLUDE
Macros .TFCOND INCLUDELIB

MACRO String .LISTMACROALL ASSUME

LOCAL CATSTR
.NOLISTMACRO

PURGE .LISTMACRO
SIZESTR .CREF GOTO SUBSTR

ENDM INSTR
.NOCREF

EXITM .LISTALL

Directives

name = expression

.186

. 286

. 286P

. 287

. 386

. 386P

. 387

.486

.486P

.8086

Assigns the numeric value of expression to name. The symbol
may be redefined later.

Enables assembly of instructions for the 80186 processor;
disables assembly of instructions introduced with later
processors. Also enables 8087 instructions .

Enables assembly of nonprivileged instructions for the 80286
processor; disables assembly of instructions introduced with later
processors. Also enables 80287 instructions .

Enables assembly of all instructions (including privileged) for
the 80286 processor; disables assembly of instructions
introduced with later processors. Also enables 80287
instructions .

Enables assembly of instructions for the 80287 coprocessor;
disables assembly of instructions introduced with later
coprocessors .

Enables assembly of nonprivileged instructions for the 80386
processor; disables assembly of instructions introduced with later
processors. Also enables 80387 instructions .

Enables assembly of all instructions (including privileged) for
the 80386 processor; disables assembly of instructions
introduced with later processors. Also enables 80387
instructions .

Enables assembly of instructions for the 80387 coprocessor.

Enables assembly of nonprivileged instructions for the 80486
processor.

Enables assembly of all instructions (including privileged) for
the 80486 processor.

Enables assembly of 8086 instructions (and the identical 8088
instructions); disables assembly of instructions introduced with
later processors. Also enables 8087 instructions. This is the
default mode for processors.

DIRECTIVES 29

.8087
Enables assembly of 8087 instructions; disables assembly of
instructions introduced with later coprocessors. This is the
default mode for coprocessors.

ALIGN [number]
Aligns the next variable or instruction on a byte that is a
multiple of number .

. ALPHA
Orders segments alphabetically.

ASSUME segregister:name [, segregister:name] .. .
ASSUME dataregister:type [, dataregister:type] .. .
ASSUME register:ERROR [, register:ERROR] ...
ASSUME [register:] NOTHING [, register:NOTHING] ...

Enables error-checking for register values. After an ASSUME is
put into effect, the assembler watches for changes to the values
of the given registers. ERROR generates an error if the register
is used at all. NOTHING removes register error-checking. You
can combine different kinds of assumptions in one statement.

.BREAK [.IF condition]
Generates code to terminate a . WHILE or .REPEA T block if
condition is true.

[name] BYTE initializer [, initializer] ...
Allocates and optionally initializes a byte of storage for each
initializer. Can also be used as a type specifier anywhere a type
is legal.

name CA TSTR [textiteml [, textitem2] ...]
Concatenates text items. Each text item can be a literal string, a
constant preceded by a %, or the string returned by a macro
function .

. CODE [name]
When used with .MODEL, indicates the start of a code segment
called name (the default segment name is _TEXT for tiny, small,
compact, and flat models, or module_TEXT for other models).

COMM definition [, definition] ...
Creates a communal variable with the attributes specified in
definition. Each definition has the following form:

[langtypell [NEAR I F AR~ label:type[:count~

The label is the name of the variable. The type can be any type
specifier (BYTE, WORD, etc.) or an integer specifying the
number of bytes. The count specifies the number of data objects
(one is the default).

COMMENT delimiter [text]
[text]

[text] delimiter [text]
Treats all text between or on the same line as the delimiters as a
comment.

30 DIRECTIVES

.CONST
When used with .MODEL, starts a constant data segment (with
segment name CONST). This segment has the read-only attribute .

. CONTINUE [.IF condition]
Generates code to jump to the top of a . WHILE or .REPEA T
block if condition is true .

. CREF
Enables listing of symbols in the symbol portion of the symbol
table and browser file .

. DATA
When used with .MODEL, starts a near data segment for
initialized data (segment name _DATA) .

. DATA?
When used with .MODEL, starts a near data segment for
uninitialized data (segment name _BSS) .

. DOSSEG
Orders the segments according to the DOS segment convention:
CODE first, then segments not in DGROUP, and then segments
in DGROUP. The segments in DGROUP follow this order:
segments not in BSS or STACK, then BSS segments, and finally
STACK segments. Primarily used for ensuring CodeView support
in MASM stand-alone programs. Same as DOSSEG.

DOSSEG
Identical to .DOSSEG, which is the preferred form.

DB
Can be used to define data like BYTE.

DD
Can be used to define data like DWORD.

DF
Can be used to define data like FWORD.

DQ
Can be used to define data like QWORD.

DT
Can be used to define data like TBYTE.

DW
Can be used to define data like WORD.

[name] DWORD initializer [, initialized ...
Allocates and optionally initializes a doubleword (4 bytes) of
storage for each initializer. Can also be used as a type specifier
anywhere a type is legal.

ECHO message
Displays message to the standard output device (by default, the
screen). Same as %OUT.

DIRECTIVES 31

.ELSE

ELSE

See .IF.

Marks the beginning of an alternate block within a conditional
block. See IF.

END [address]
Marks the end of a module and, optionally, sets the program
entry point to address .

. ENDIF
See .IF.

ENDIF
See IF.

ENDM
Terminates a macro or repeat block. See MACRO, FOR,
FORC, REPEAT, or WHILE.

name ENDP
Marks the end of procedure name previously begun with PROC.
See PROC.

name ENDS
Marks the end of segment, structure, or union name previously
begun with SEGMENT, STRUCT, UNION, or a simplified
segment directive .

. ENDW
See .WHILE.

name EQU expression
Assigns numeric value of expression to name. The name cannot
be redefined later.

name EQU <text>
Assigns specified text to name. The name can be assigned a
different text later. See TEXTEQU .

. ERR [message]
Generates an error.

.ERRB <textitem> [, message]
Generates an error if textitem is blank .

. ERRDEF name [, message]
Generates an error if name is a previously defined label, variable,
or symbol.

.ERRDIF[I] <textiteml>, <textitem2> [, message]
Generates an error if the text items are different. If I is given,
the comparison is case insensitive .

. ERRE expression [, message]
Generates an error if expression is false (0).

32 DIRECTIVES

.ERRIDN[I] <textiteml>, <textitem2> [, message]
Generates an error if the text items are identical. If I is given,
the comparison is case insensitive .

. ERRNB <textitem> [, message]
Generates an error if textitem is not blank .

. ERRNDEF name [, messagd
Generates an error if name has not been defined .

. ERRNZ expression [, messagd
Generates an error if expression is true (nonzero).

EVEN
Aligns the next variable or instruction on an even byte .

. EXIT [expression]
Generates termination code. Returns optional expression to
shell.

EXITM [expression]
Terminates expansion of the current repeat or macro block and
begins assembly of the next statement outside the block. In a
macro function, expression is the value returned.

EXTERN [langtype] name [(altid)] :type
[, [lang type] name [(altid)] :type] ...

Defines one or more external variables, labels, or symbols called
name whose type is type. The type can be ABS, which imports
name as a constant. Same as EXTRN.

EXTERNDEF [langtype] name:type [, [langtype] name:type] ...
Defines one or more external variables, labels, or symbols called
name whose type is type. If name is defined in the module, it is
treated as PUBLIC. If name is referenced in the module, it is
treated as EXTERN. If name is not referenced, it is ignored. The
type can be ABS, which imports name as a constant. Normally
used in include files.

EXTRN
See EXTERN .

. FARDATA [name]
When used with .MODEL, starts a far data segment for
initialized data (segment name FAR_DATA or name) .

. FARDATA? [name]
When used with .MODEL, starts a far data segment for
uninitialized data (segment name FAR_BSS or name).

FOR parameter [:REQ I :=default] , <argument [, argument] ... >
statements

ENDM
Marks a block that will be repeated once for each argument, with
the current argument replacing parameter on each repetition.
Same as IRP.

DIRECTIVES 33

FORe parameter, <string>
statements

ENDM
Marks a block that will be repeated once for each character in
string, with the current character replacing parameter on each
repetition. Same as IRPC.

[name] FWORD initializer [, initializer] ...
Allocates and optionally initializes 6 bytes of storage for each
initializer. Can also be used as a type specifier anywhere a type
is legal.

GOTO macrolabel
Transfers assembly to the line marked :macrolabel. GOTO is
permitted only inside MACRO, FOR, FORC, REPEAT, and
WHILE blocks. The label must be the only directive on the line
and must be preceded by a leading colon.

name GROUP segment [, segment] ...
Add the specified segments to the group called name .

. IF condition}
statements

[.ELSEIF condition2
statements]

[.ELSE
statements]

.ENDIF
Generates code that tests condition} (for example, AX > 7) and
executes the statements if that condition is true. If an .ELSE
follows, its statements are executed if the original condition was
false. Note: The conditions are evaluated at run time.

IF expression}
ifstatements

[ELSEIF expression2
elseiJstatements]

[ELSE
elsestatements]

ENDIF
Grants assembly of iJstatements if expression} is true (nonzero)
or elseiJstatements if expression} is false (0) and expression2 is
true. The following directives may be substituted for ELSEIF:
ELSEIFB, ELSEIFDEF, ELSEIFDIF, ELSEIFDIFI,
ELSEIFE, ELSEIFIDN, ELSEIFIDNI, ELSEIFNB, and
ELSEIFNDEF. Optionally, assembles elsestatements if the
previous expression is false. Note: The expressions are evaluated
at assembly time.

IFB textitem
Grants assembly if textitem is blank. See IF for complete
syntax.

34 DIRECTIVES

IFDEF name
Grants assembly if name is a previously defined label, variable,
or symbol. See IF for complete syntax.

IFDIF[I~ textiteml, textitem2
Grants assembly if the text items are different. If I is given, the
comparison is case insensitive. See IF for complete syntax.

IFE expression
Grants assembly if expression is false (0). See IF for complete
syntax.

IFIDN[I~ textiteml, textitem2
Grants assembly if the text items are identical. If I is given, the
comparison is case insensitive. See IF for complete syntax.

IFNB textitem
Grants assembly if textitem is not blank. See IF for complete
syntax.

IFNDEF name
Grants assembly if name has not been defined. See IF for
complete syntax.

INCLUDE filename
Inserts source code from the source file given by filename into
the current source file during assembly. The filename must be
enclosed in angle brackets if it includes a backslash, semicolon,
greater-than symbol, less-than symbol, single quotation mark, or
double quotation mark.

INCLUDELIB libraryname
Informs the linker that the current module should be linked with
library name. The libraryname must be enclosed in angle brackets
if it includes a backslash, semicolon, greater-than symbol, less­
than symbol, single quotation mark, or double quotation mark.

name INSTR [position,~ textiteml, textitem2
Finds the first occurrence of textitem2 in textiteml. The starting
position is optional. Each text item can be a literal string, a
constant preceded by a %, or the string returned by a macro
function.

INVOKE expression [, arguments~

IRP

IRPC

Calls the procedure at the address given by expression, passing
the arguments on the stack or in registers according to the
standard calling conventions of the language type. Each
argument passed to the procedure may be an expression, a
register pair, or an address expression (an expression preceded by
ADDR).

See FOR.

See FORe.

DIRECTIVES 35

name LABEL type
Creates a new label by assigning the current location-counter
value and the given type to name.

name LABEL [NEAR I FAR I PROC] PTR [type]
Creates a new label by assigning the current location-counter
value and the given type to name .

. LALL
See .LISTMACROALL.

.LFCOND
See .LISTIF .

. LIST
Starts listing of statements. This is the default.

.LISTALL
Starts listing of all statements. Equivalent to the combination of
.LIST, .LISTIF, and .LISTMACROALL.

.LISTIF
Starts listing of statements in false conditional blocks. Same as
.LFCOND .

. LISTMACRO
Starts listing of macro expansion statements that generate code
or data. This is the default. Same as .XALL.

.LISTMACROALL
Starts listing of all statements in macros. Same as .LALL.

LOCAL localname [, localname] ...
Within a macro, LOCAL defines labels that are unique to each
instance of the macro.

LOCAL label [[count]] [:typd [, label [[count]] [typd] ...
Within a procedure definition (PROC), LOCAL creates stack­
based variables that exist for the duration of the procedure. The
label may be a simple variable or an array containing count
elements.

name MACRO [parameter [:REQ I :=default I :VARARG]] ...
statements

ENDM [value]
Marks a macro block called name and establishes parameter
placeholders for arguments passed when the macro is called. A
macro function returns value to the calling statement.

.MODEL memorymodel [, langtypd [, ostype] [, stackoption]
Initializes the program memory model. The memorymodel may
be TINY, SMALL, COMPACT, MEDIUM, LARGE, HUGE,
or FLAT. The langtype may be C, BASIC, FORTRAN,
PASCAL, SYSCALL, or STDCALL. The ostype may be
OS DOS or OS OS2. The stackoption may be NEARST ACK
or FARSTACK~

36 DIRECTIVES

NAME modulename
Ignored in version 6.0 .

. NOS7
Disallows assembly of all floating-point instructions .

. NOCREF [name[, name] ...]
Suppresses listing of symbols in the symbol table and browser
file. If names are specified, only the given names are suppressed.
Same as .XCREF .

. NOLIST
Suppresses program listing. Same as .XLIST .

. NOLISTIF
Suppresses listing of conditional blocks whose condition
evaluates to false (0). This is the default. Same as .SFCOND .

. NOLISTMACRO
Suppresses listing of macro expansions. Same as .SALL.

OPTION optionlist
Enables and disables features of the assembler. Available options
include CASEMAP, DOTNAME, NODOTNAME,
EMULA TOR, NOEMULATOR, EPILOGUE, EXPR16,
EXPR32, LANGUAGE, LJMP, NOLJMP, M510,
NOM510, NOKEYWORD, NOSIGNEXTEND, OFFSET,
OLDMACROS, NOOLDMACROS, OLDSTRUCTS,
NOOLDSTRUCTS, PROC, PROLOGUE, READONLY,
NOREADONLY, SCOPED, NOSCOPED, and SEGMENT.

ORG expression
Sets the location counter to expression.

%OUT
See ECHO.

PAGE [[length], width]
Sets line length and character width of the program listing. If no
arguments are given, generates a page break.

PAGE +
Increments the section number and resets the page number to 1.

POPCONTEXT context
Restores part or all of the current context (saved by the
PUSH CONTEXT directive). The context can be ASSUMES,
RADIX, LISTING, CPU, or ALL.

label PROC [distance] [langtype] [visibility] [<prologuearg>]
[USES reglist] [, parameter [:tag]] ...

statements
label ENDP

Marks start and end of a procedure block called label. The
statements in the block can be called with the CALL instruction
or INVOKE directive.

DIRECTIVES 37

label PROTO ITdistance~ ITlangtype~ IT, [parameter~:tag~ ...
Prototypes a function.

PUBLIC ITlangtype~ name IT, ITlangtype~ name~ ...
Makes each variable, label, or absolute symbol specified as name
available to all other modules in the program.

PURGE macroname IT, macronamd ...
Deletes the specified macros from memory.

PUSHCONTEXT context
Saves part or all of the current context: segment register
assumes, radix value, listing and cref flags, or
processor/coprocessor values. The context can be ASSUMES,
RADIX, LISTING, CPU, or ALL.

[namd QWORD initializer [, initializer~ ...
Allocates and optionally initializes 8 bytes of storage for each
initializer. Can also be used as a type specifier anywhere a type
is legal.

.RADIX expression
Sets the default radix, in the range 2 to 16, to the value of
expression.

name REAL4 initializer [, initializer~ ...
Allocates and optionally initializes a single-precision (4-byte)
floating-point number for each initializer.

name REAL8 initializer [, initialized ...
Allocates and optionally initializes a double-precision (8-byte)
floating-point number for each initializer.

name REALIO initializer [, initializer~ ...
Allocates and optionally initializes a 10-byte floating-point
number for each initializer.

recordname RECORD fieldname:width [= expression~
[, fieldname:width [= expression~ ~ ...

Declares a record type consisting of the specified fieJds. The
fieldname names the field, width specifies the number of bits,
and expression gives its initial value .

. REPEAT
statements

. UNTIL condition
Generates code that repeats execution of the block of statements
until condition becomes true .. UNTILCXZ, which becomes true
when CX is zero, may be substituted for .UNTIL. The condition
is optional with .UNTILCXZ.

REPEAT expression
statements

ENDM
Marks a block that is to be repeated expression times. Same as
REPT.

38 DIRECTIVES

REPT
See REPEAT .

. SALL
See .NOLISTMACRO.

name SBYTE initializer [, initializer~ ...
Allocates and optionally initializes a signed byte of storage for
each initializer. Can also be used as a type specifier anywhere a
type is legal.

name SDWORD initializer [, initialized ...
Allocates and optionally initializes a signed doubleword
(4 bytes) of storage for each initializer. Can also be used as a
type specifier anywhere a type is legal.

name SEGMENT [READONLY~ [align~ [comhind [usd ['class'~
statements

name ENDS

. SEQ

Defines a program segment called name having segment
attributes align (BYTE, WORD, DWORD, PARA, PAGE),
combine (PUBLIC, STACK, COMMON, MEMORY,
AT address, PRIV ATE), use (USE16, USE32, FLAT), and
class .

Orders segments sequentially (the default order) .

. SFCOND
See .NOLISTIF.

name SIZESTR textitem
Finds the size of a text item .

. STACK [sizd
When used with .MODEL, defines a stack segment (with
segment name STACK). The optional size specifies the number
of bytes for the stack (default 1,024). The .STACK directive
automatically closes the stack statement.

.STARTUP
Generates program start-up code.

STRUC
See STRUCT.

name STRUCT [alignment~ [, NONUNIQUE~
fielddeclarations

name ENDS
Declares a structure type having the specified fielddeclarations.
Each field must be a valid data definition. Same as STRUC.

name SUBSTR textitem, position [, length~
Returns a substring of textitem, starting at position. The
textitem can be a literal string, a constant preceded by a %, or
the string returned by a macro function.

DIRECTIVES 39

SUBTITLE text
Defines the listing subtitle. Same as SUB TTL.

SUBTTL
See SUBTITLE.

name SWORD initializer [, initializer] ...
Allocates and optionally initializes a signed word (2 bytes) of
storage for each initializer. Can also be used as a type specifier
anywhere a type is legal.

[name] TBYTE initializer [, initialized ...
Allocates and optionally initializes 10 bytes of storage for each
initializer. Can also be used as a type specifier anywhere a type
is legal.

name TEXTEQU [textitem]
Assigns textitem to name. The text item can be a literal string, a
constant preceded by a %, or the string returned by a macro
function .

. TFCOND
Toggles listing of false conditional blocks.

TITLE text
Defines the program listing title.

name TYPEDEF type
Defines a new type called name, which is equivalent to type.

name UNION [alignment] [, NONUNIQUE]
fielddeclarations

[name] ENDS
Declares a union of one or more data types. The fielddeclarations
must be valid data definitions. Omit the ENDS name label on
nested UNION definitions .

. UNTIL
See .REPEA T .

. UNTILCXZ
See .REPEA T .

. WHILE condition
statements

.ENDW
Generates code that executes the block of statements while
condition remains true.

WHILE expression
statements

ENDM
Repeats assembly of block statements as long as expression
remains true.

40 DIRECTIVES

[namd WORD initializer [, initializer~ ...
Allocates and optionally initializes a word (2 bytes) of storage
for each initializer. Can also be used as a type specifier
anywhere a type is legal.

.XALL
See .LISTMACRO .

. XCREF
See .NOCREF .

. XLIST
See .NOLIST.

DIRECTIVES 41

Symbols and Operators

Predefined Symbols
Operators
Run-Time Operators

Topical Cross-Reference for Symbols

Segment Macro Date and Time Miscellaneous
Information Functions Information $
@code @CatStr @Date ?
@CodeSize @InStr @Time @@:
@CurSeg @SizeStr @B
@data @SubStr File Information @F
@DataSize @FileCur
@fardata Environment @FileName
@fardata? Information @Line
@Model @Cpu
@stack @Environ
@WordSize @Interface

@Version

Topical Cross-Reference for Operators

Arithmetic Logical IyQg Control Flow
+ MOD and Shift lllGH

AND HIGH WORD != >=
[] OR LOW && <=

XOR LOWWORD II >
NOT PTR & <

Macro SHL SHORT
SHR SIZE Miscellaneous <> % SIZEOF

& LENGTH ,
"

Record
LENGTH OF DUP "

MASK THIS
Relational WIDTH TYPE CARRY?

OPATTR OVERFLOW? EQ GE
Segment PARITY? NE LT SIGN'? GT LE

ZERO?
SEG
OFFSET
LROFFSET

Predefined Symbols

$

?

@@:

@B

The current value of the location counter.

In data declarations, a value that the assembler allocates but does
not initialize.

Defines a local code label. Overrides any previous @@: labels.
See @B and @F.

The location of the previous @@: label.

@CatStr(string1 [, string2 ...])
Macro function that concatenates one or more strings. Returns a
string.

@code
The name of the code segment (text macro).

@CodeSize

@Cpu

o for TINY, SMALL, COMPACT, and FLAT models, and 1
for MEDIUM, LARGE, and HUGE models (numeric equate).

A bit mask specifying the processor mode (numeric equate).

@CurSeg

@data

The name of the current segment (text macro).

The name of the default data group. Evaluates to DGROUP for all
models except FLAT. Evaluates to FLAT under the FLAT
memory model (text macro).

@DataSize
o for TINY, SMALL, MEDIUM, and FLAT models, 1 for
COMPACT and LARGE models, and 2 for HUGE model
(numeric equate).

@Date
The system date in the format mm/dd/yy (text macro).

@Environ(envvar)
Value of environment variable envvar (macro function).

@F
The location of the next @@: label.

@fardata
The name of the segment defined by the .F ARDA T A directive
(text macro).

PREDEFINED SYMBOLS 45

@fardata?
The name of the segment defined by the .FARDATA? directive
(text macro).

@FileCur
The name of the current file (text macro).

@FileName
The base name of the main file being assembled (text macro).

@InStr([position~, string 1, string2)
Macro function that finds the first occurrence of string2 in
string 1. The starting position within string 1 is optional.
Returns an integer (0 if string2 is not found).

@Interface
Information about the language parameters (numeric equate).

@Line
The source line number in the current file (numeric equate).

@Model
1 for TINY model, 2 for SMALL model, 3 for COMPACT
model, 4 for MEDIUM model, 5 for LARGE model, 6 for
HUGE model, and 7 for FLAT model (numeric equate).

@SizeStr(string)
Macro function that returns the length of the given string.
Returns an integer.

@SubStr(string, position [, length~)
Macro function that returns a substring starting at position.

@stack
DGROUP for near stacks or STACK for far stacks (text macro).

@Time
The system time in 24-hour hh:mm:ss format (text macro).

@Version
600 in MASM 6.0 (text macro).

@WordSize
2 for a 16-bit segment or 4 for a 32-bit segment (numeric
equate).

46 PREDEFINED SYMBOLS

Operators

expression1 + expression2
Returns expression] plus expression2.

expression1 - expression2
Returns expression] minus expression2.

expression1 * expression2
Returns expression] times expression2.

expression1 / expression2
Returns expression] divided by expression2.

-expression
Reverses the sign of expression.

[expression1~ [expression2]
Returns expression] plus [expression2].

segment: expression
Overrides the default segment of expression with segment. The
segment can be a segment register, group name, segment name,
or segment expression. The expression must be a constant.

expression. field [.field~ ...
Returns expression plus the offset of field within its structure or
union.

[register]. field [. field~ ...

<text>

"text"

'text'

Returns value at the location pointed to by register plus the
offset of field within its structure or union.

Treats text as a single literal element.

Treats "text" as a string.

Treats 'text' as a string.

!character

;text

;;text

Treats character as a literal character rather than as an operator or
symbol.

Treats text as a comment.

Treats text as a comment that will not be listed in expanded
macros.

% expression
Treats the value of expression in a macro argument as text.

OPERATORS 47

¶meter&
Replaces parameter with its corresponding argument value.

ADS
See the EXTERNDEF directive.

AD DR
See the INVOKE directive.

expression1 AND expression2
Returns the result of a bitwise Boolean AND done on
expression1 and expression2.

count DUP (initialvalue [, initialvalue] ...)
Specifies count number of declarations of initialvalue.

expression1 EQ expression2
Returns true (-1) if expression1 equals expression2, or returns
false (0) if it does not.

expression1 GE expression2
Returns true (-1) if expression1 is greater than or equal to
expression2, or returns false (0) if it is not.

expression1 GT expression2
Returns true (-1) if expression1 is greater than expression2, or
returns false (0) if it is not.

HIGH expression
Returns the high byte of expression.

HIGHWORD expression
Returns the high word of expression.

expression1 LE expression2
Returns true (-1) if expression1 is less than or equal to
expression2, or returns false (0) if it is not.

LENGTH variable
Returns the number of data items in variable created by the first
initializer.

LENGTH OF variable
Returns the number of data objects in variable.

LOW expression
Returns the low byte of expression.

LOWWORD expression
Returns the low word of expression.

LROFFSET expression
Returns the offset of expression. Same as OFFSET, but it
generates a loader resolved offset, which allows Windows to
relocate code segments.

expression1 L T expression2
Returns true (-1) if expression1 is less than expression2, or
returns false (0) if it is not.

48 OPERATORS

MASK {recordfleldname I record}
Returns a bit mask in which the bits in recordfieldname or record
are set and all other bits are cleared.

expression] MOD expression2
Returns the remainder of dividing expression] by expression2.

expression] NE expression2
Returns true (-1) if expression] does not equal expression2, or
returns false (0) if it does.

NOT expression
Returns expression with all bits reversed.

OFFSET expression
Returns the offset of expression.

OPATTR expression
Returns a word defining the mode and scope of expression. The
low byte is identical to the byte returned by • TYPE. The high
byte contains additional information.

expression] OR expression2
Returns the result of a bitwise OR done on expression] and
expression2.

type PTR expression
Forces the expression to be treated as having the specified type.

[distance] PTR type
Specifies a pointer to type.

SEG expression
Returns the segment of expression.

expression SHL count
Returns the result of shifting the bits of expression left count
number of bits.

SHORT label
Sets the type of label to short. All jumps to label must be short
(within the range -128 to + 127 bytes from the jump instruction
to label).

expression SHR count
Returns the result of shifting the bits of expression right count
number of bits.

SIZE variable
Returns the number of bytes in variable allocated by the first
ini tializer.

SIZEOF {variable I type}
Returns the number of bytes in variable or type.

THIS type
Returns an operand of specified type whose offset and segment
values are equal to the current location-counter value.

OPERATORS 49

· TYPE expression
See OPATTR.

TYPE expression
Returns the type of expression.

WIDTH {recordfieldname I record}
Returns the width in bits of the current recordfieldname or record.

expression] XOR expression2
Returns the result of a bitwise Boolean XOR done on
expression] and expression2.

50 OPERATORS

Run-Time Operators

The following operators are used only within .IF, . WHILE, or
.REPEA T blocks and are evaluated at run time, not at assembly
time:

expression1 == expression2
Is equal to.

expression1 != expression2
Is not equal to.

expression1 > expression2
Is greater than.

expression1 >= expression2
Is greater than or equal to.

expression1 < expression2
Is less than.

expression1 <= expression2
Is less than or equal to.

expression1 II expression2
Logical OR.

expression1 && expression2
Logical AND.

expression1 & expression2
Bitwise AND.

!expression
Logical negation.

CARRY?
Carry (C) processor flag.

OVERFLOW?
Overflow (0) processor flag.

PARITY?
Parity (P) processor flag.

SIGN?
Sign (S) processor flag.

ZERO?
Zero (Z) processor flag.

RUN-TIME OPERATORS 51

Processor

Interpreting Processor Instructions
Flags
Syntax
Examples
Clock Speeds

Timings on the 8088 and 8086 Processors
Timings on the 80286-80486 Processors

Interpreting Encodings
Interpreting 80386/486 Encoding Extensions

16-Bit Encoding
32-Bit Encoding
Address-Size Prefix
Operand-Size Prefix
Encoding Differences for 32-Bit Operations
Scaled Index Base Byte

Instructions

Topical Cross-Reference for Processor

Data Transfer String Coml2are Conditional Set
MOV MOVS CMP SETB/SETNAE§
MOVS LODS CMPS SET AE/SETNB §
MOVSX§ STOS TEST SETBE/SETNA§
MOVZX§ SCAS BT§ SET A/SETNBE§
XCHG CMPS BTC§ SETE/SETZ§
LODS INS* BTR§ SETNE/SETNZ§
STOS OUTS* BTS§ SETL/SETNGE§
LEA REP CMPXCHG# SETGE/SETNL§
LDS/LES REPE/REPZ SETLE/SETNG§
LFS/LGS/LSS§ REPNE/REPNZ Unconditional SETG/SETNLE§
XLAT/XLATB Transfer SETS§
BSWAP# Arithmetic SETNS§
CMPXCHG# CALL SETC§
XADD# ADD INT SETNC§

ADC IRET SETO§

Stack
INC RET SETNO§
SUB RETN/RETF SETP/SETPE§

PUSH SBB JMP SETNP/SETPO§
PUSHF DEC
PUSHA* NEG Lool2 BCD Conversion pop IMUL
POPF MUL LOOP AAA
POPA* DIV LOOPE/LOOPZ AAS
ENTER* IDIV LOOPNE/LOOPNZ AAM
LEAVE* XADD# JCXZ/JECXZ AAD

DAA
I nl2utlOutl2ut Bit Ol2erations Conditional DAS

IN AND Transfer
INS* OR JB/JNAE Processor
OUT XOR JAE/JNB Control
OUTS* NOT JBE/JNA NOP ROL JA/JNBE WAIT
Type ROR JE/JZ LOCK
Conversion RCL JNE/JNZ HLT RCR JL/JNGE
CBW SHL/SAL JGE/JNL

Process Control CWD SHR JLE/JNG
CWDE§ SAR JG/JNLE ARPLt
CDQ§ SHLD§ JS CLTSt
BSWAP# SHRD§ JNS LARt

BSF§ JC LGDTjLIDT ILLDTt

Flag BSR§ JNC LMSWt
BT§ JO LSLt

CLC BTC§ JNO LTRt
CLD BTR§ JP/JPE SGDT/SIDT/SLDTt
CLI BTS§ JNP/JPO SMSWt
CMC JCXZ/JECXZ STRt
STC INTO VERRt
STD BOUND* VERWt
STI MOV special§
POPF
PUSHF

INVD#
INVLPG#

LAHF WBINVD#
SAHF

* 80186-80486 only_ t 80286-80486 only_
§ 80386/486 only_ # 80486 only_

Interpreting Processor Instructions

This section provides an alphabetical reference to the instructions for
the 8086, 8088, 80286, 80386, and 80486 processors. Figure I gives a
key to each element of the reference.

Mnemonic Name Restriction (optional)

BSF/BSR
Bit Scan
80386/486 Only

Scans an operand to find the first set bit. If a set bit is found. the zero
flag is set and the destination operand is loaded with the bit index of the
first set bit encountered. If no set bit is found. the zero flag is cleared.
BSF (Bit Scan Forward) scans from bit 0 to the most significant bit.
BSR (Bit Scan Reverse) scans from the most significant bit of an
operand to bit O.

Flags

Description

I 00001111 I 10111100 I I lIIod.reR.r/1ll I I disp(O.J.2.or4) I Encoding

BSF reRl6.reRl6
BSF reN32.reR32

BSF re;::16,memJ6
BSF reg32.mem32

bsf ex. bx

bs f eex. bitmask

88/86
286
386 10+30
486 6-42

88/86
286
386 10+3n
486 7-43

---- ------1- --- -- -1----~--
Syntax Examples Clock Speeds

Figure 1 Instruction Key

Flags
The first row of the display has a one-character abbreviation for the flag
name. Only the flags common to all processors are shown.

o Overflow
D Direction
I Interrupt

T Trap
S Sign
Z Zero

A Auxiliary carry
P Parity
C Carry

The second line has codes indicating how the flag can be affected.

1
o
?
blank
±

Sets the flag
Clears the flag
May change the flag, but the value is not predictable
No effect on the flag
Modifies according to the rules associated with the flag

PROCESSOR INTRODUCTION 55

Syntax
Each encoding variation may have different syntaxes corresponding to
different addressing modes. The following abbreviations are used:

reg

segreg

accum

mem

label

src,dest

immed

A general-purpose register of any size

One of the segment registers: DS, ES, SS, or CS (also FS or
OS on the 80386/486)

An accumulator register of any size: AL or AX (also EAX on
the 80386/486)

A direct or indirect memory operand of any size

A labeled memory location in the code segment

A source or destination memory operand used in a string
operation

A constant operand

In some cases abbreviations have numeric suffixes to specify that the
operand must be a particular size. For example, reg16 means that only
a 16-bit (word) register is accepted.

Examples
One or more examples are shown for each syntax. Their position is not
related to the clock speeds in the right column.

Clock Speeds
Column 3 shows the clock speeds for each processor. Sometimes an
instruction may have more than one clock speed. Multiple speeds are
separated by commas. If several speeds are part of an expression, they
are enclosed in parentheses. The following abbreviations are used to
specify variations:

56 PROCESSOR INTRODUCTION

FA

b,w,d

pm

n

noj

m

W88,88

Effective address. This applies only to the 8088 and 8086
processors, as described in the next section.

Byte. word. or doubleword operands.

Protected mode.

Iterations. Repeated instructions may have a base number of
clocks plus a number of clocks for each iteration. For
example, 8+4n means eight clocks plus four clocks for each
iteration.

No jump. For conditional jump instructions, noj indicates
the speed if the condition is false and the jump is not taken.

Next instruction components. Some control transfer
instructions take different times depending on the length of
the next instruction executed. On the 8088 and 8086, m is
never a factor. On the 80286, m is the number of bytes in
the instruction. On the 80386/486, m is the number of
components. Each byte of encoding is a component, and the
displacement and data are separate components.

8088 exceptions. See "Timings on the 8088 and 8086
Processors. "

Clocks can be converted to nanoseconds by dividing one microsecond
by the number of megahertz (MHz) at which the processor is running.
For example, on a processor running at 8 MHz, one clock takes 125
nanoseconds (1000 MHz per nanosecond / 8 MHz).

The clock counts are for best-case timings. Actual timings vary
depending on wait states, alignment of the instruction, the status of the
prefetch queue, and other factors.

Timings on the 8088 and 8086 Processors

Because of its 8-bit data bus, the 8088 always requires two fetches to
get a 16-bit operand. Instructions that work on 16-bit memory operands
therefore take longer on the 8088 than on the 8086. Separate 8088
timings are shown in parentheses following the main timing. For
example, 9 (W88= 13) means that the 8086 with any operands or the
8088 with byte operands take 9 clocks, but the 8088 with word
operands takes 13 clocks. Similarly, 16 (88=24) means that the 8086
takes 16 clocks, but the 8088 takes 24 clocks.

PROCESSOR INTRODUCTION 57

On the 8088 and 8086, the effective address (EA) value must be added
for instructions that operate on memory operands. A displacement is
any direct memory or constant operand, or any combination of the two.
Below are the number of clocks to add for the effective address.

ComQonents EA Clocks ExamQles

Displacement 6 mov ax,stuff
mov ax,stuff+2

Base or index 5 mov ax, [bx]
mov ax, [di]

Displacement 9 mov ax, [bp+8]
plus base or index mov ax,stuff[di]

Base plus index 7 mov ax, [bx+si]
(BP+DI,BX+SI) mov ax, [bp+di]

Base plus index 8 mov ax, [bx+di]
(BP+SI,BX+DI) mov ax, [bp+si]

Base plus index 11 mov ax,stuff[bx+si]
plus displacement mov ax, [bp+di+8]
(BP+DI+disp,BX+SI+disp)

Base plus index 12 mov ax,stuff[bx+di]
plus displacement mov ax, [bp+si +20]
(BP+SI+disp,BX+DI+disp)

Segment override EA+2 mov ax,es:stuff
mov aX,ds: [bp+l0]

Timings on the 80286-80486 Processors

On the 80286-80486 processors, the effective address calculation is
handled by hardware and is therefore not a factor in clock calculations
except in one case. If a memory operand includes all three possible
elements-a displacement, a base register, and an index register-then
add one clock. On the 80486, the extra clock is not always used.
Examples are shown below.

mov
mov
mov

ax, [bx+di]
ax,array[bx+di]
ax, [bx+di+6]

;No extra
;One extra
;One extra

Note: 80186 and 80188 timings are different from 8088, 8086, and
80286 timings. They are not shown in this manual. Timings are also
not shown for protected-mode transfers through gates or for the virtual
8086 mode available on the 80386/486 processors.

58 PROCESSOR INTRODUCTION

Interpreting Encodings
Encodings are shown for each variation of the instruction. This section
describes encoding for all processors except the 80386/486. The
encodings take the form of boxes filled with Os and 1 s for bits that are
constant for the instruction variation, and abbreviations (in italics) for
the following variable bits or bitfields:

d Direction bit. If set, do memory to register or register to
register; the ref? field is the destination. If cleared, do
register to memory; the ref? field is the source.

w Word/byte bit. If set, use 16-bit or 32-bit operands. If
cleared, use 8-bit operands.

s Sign bit. If set, sign-extend 8-bit immediate data to 16 bits.

mod Mode. This two-bit field gives the register/memory mode
with displacement. The possible values are shown below.

mod Meaning

00 This value can have two meanings:

If rim is 110, a direct memory operand is used.

If rim is not 110, the displacement is a and an
indirect memory operand is used. The operand must
be based, indexed, or based indexed.

a 1 An indirect memory operand is used with an 8-bit
displacement.

lOAn indirect memory operand is used with a 16-bit
displacement.

1 1 A two-register instruction is used; the ref? field
specifies the destination and the rim field specifies
the source.

reg Register. This three-bit field specifies one of the general­
purpose registers:

ru
000
001
010
all
100
101
110
11 1

16/32-bit if W= 1

AX/EAX
CXIECX
DX/EDX
BXIEBX
SPIESP
BPIEBP
SIIESI
DIIEDI

8-bit if w=O
AL
CL
DL
BL
AH
CH
DH
BH

The ref? field is sometimes used to specify encoding
information rather than a register.

PROCESSOR INTRODUCTION 59

sreg Segment register. This field specifies one of the segment
registers.

sreg Register

000 ES

001 CS
010 SS
011 DS
100 FS
101 OS

rim Register/memory. This three-bit field specifies a register or
memory rim operand.

If the mod field is 11, rim specifies the source register using
the reg field codes. Otherwise, the field has one of the
following values:

rim 012erand Address

000 DS: [BX +SI +disp]
001 DS:[BX+DI+disp]

010 SS: [BP+SI+disp]
011 SS:[BP+DI+disp]
100 DS:[SI+disp]
101 DS:[DI+disp]
110 SS:[BP+disp]*

111 DS: [BX +disp]

disp Dis12lacement. These bytes give the offset for memory
operands. The possible lengths (in bytes) are shown in
parentheses.

data Data. These bytes gives the actual value for constant values.
The possible lengths (in bytes) are shown in parentheses.

If a memory operand has a segment override, the entire instruction has
one of the following bytes as a prefix:

Prefix
00101110
00111110
00100110
00110110
01100100
01100101

(2Eh)
(3Eh)
(26h)
(36h)
(64h)
(65h)

Segment
CS
DS
ES
SS
FS
OS

If mod is 00 and rim is 110, then the operand is treated as a direct memory operand. This means that
the operand [BP 1 is encoded as [BP+O 1 rather than having a short-form like otherregister indirect
operands. Encoding [BX 1 takes one byte, but encoding [BP 1 takes two.

60 PROCESSOR INTRODUCTION

Example

As an example, assume you want to calculate the encoding for the
following statement (where warray is a 16-bit variable):

add warray[bx+di],-3

First look up the encoding for the immediate to memory syntax of the
ADD instruction:

I lOOOOOsw I I mod,OOO,rlm disp (0, 1, or 2) data (0,1, or 2)

Since the destination is a word operand, the w bit is set. The 8-bit
immediate data must be sign-extended to 16 bits in order to fit into the
operand, so the s bit is also set. The first byte of the instruction is
therefore 10000011 (83h).

Since the memory operand can be anywhere in the segment, it must
have a 16-bit offset (displacement). Therefore the mod field is 10. The
reg field is 000, as shown in the encoding. The rim coding for
[bx+di+disp] is 001. The second byte is 10000001 (81h).

The next two bytes are the offset of warray. The low byte of the
offset is stored first and the high byte second. For this example,
assume that warray is located at offset 10EFh.

The last byte of the instruction is used to store the 8-bit immediate
value -3 (FDh). This value is encoded as 8 bits (but sign-extended to
16 bits by the processor).

The encoding is shown below in hexadecimal:

8381EF10FD

You can confirm this by assembling the instruction and looking at the
resulting assembly listing.

Interpreting 80386/486 Encoding Extensions

This book shows 80386/486 encodings for instructions that are
available only on the 80386/486 processors. For other instructions,
encodings are shown only for the 16-bit subset available on all
processors. This section tells how to convert the 80286 encodings
shown in the book to 80386/486 encodings that use extensions such as
32-bit registers and memory operands.

PROCESSOR INTRODUCTION 61

The extended 80386/486 encodings differ in that they can have
additional prefix bytes, a Scaled Index Base (SIB) byte, and 32-bit
displacement and immediate bytes. Use of these elements is closely tied
to the segment word size. The use type of the code segment determines
whether the instructions are processed in 32-bit mode (USE32) or
16-bit mode (USE16). Current versions of MS-DOS® and Microsoft
Windows and version 1.x of OS/2 use 16-bit mode only. Version 2.0
of OS/2 uses 32-bit mode.

The bytes that can appear in an instruction encoding are shown below.

16-Bit Encod ing

32-Bit Encoding

Additional bytes may be added for a segment prefix, a repeat prefix, or
the LOCK prefix.

Address-Size Prefix

The address-size prefix determines the segment word size of the
operation. It can override the default size for calculating the
displacement of memory addresses. The address prefix byte is 67h. The
assembler automatically inserts this byte where appropriate.

In 32-bit mode (USE32 or FLAT code segment), displacements are
calculated as 32-bit addresses. The effective address-size prefix must be
used for any instructions that must calculate addresses as 16-bit
displacements. In 16-bit mode the defaults are reversed. The prefix must
be used to specify calculation of 32-bit displacements.

Operand-Size Prefix

The operand-size prefix determines the size of operands. It can override
the default size of registers or memory operands. The operand-size
prefix byte is 66h. The assembler automatically inserts this byte where
appropriate.

62 PROCESSOR INTRODUCTION

In 32-bit mode, the default sizes for operands are 8 bits and 32 bits
(depending on the w bit). For most instructions, the operand-size prefix
must be used for any instructions that use 16-bit operands. In 16-bit
mode, the default sizes are 8 bits and 16 bits. The prefix must be used
for any instructions that use 32-bit operands. Some instructions use
16-bit operands, regardless of mode.

Encoding Differences for 32-Bit Operations

When 32-bit operations are performed, the meaning of certain bits or
fields are different than for 16-bit operations. The changes may affect
default operations in 32-bit mode, or 16-bit mode operations in which
the address-size prefix or the operand-size prefix is used. The following
fields may have a different meaning for 32-bit operations than the
meaning described in the "Interpreting Encodings" section:

w Wordlbyte bit. If set, use 32-bit operands. If cleared, use
8-bit operands.

s Sign bit. If set, sign-extend 8-bit or 16-bit immediate data
to 32 bits.

mod Mode. This field indicates the register/memory mode. The
value 11 still indicates a register-to-register operation with
rim containing the code for a 32-bit source register.
However, other codes have different meanings as shown in
the tables in the next section.

reg Register. The codes for 16-bit registers are extended to
32-bit registers. For example, if the reg field is 000, EAX
is used instead of AX. Use of 8-bit registers is unchanged.

sreg Segment register. The 80386 has the following additional
segment registers:

sreg Register

100 FS
101 OS

rim Register/memory. If the rim field is used for the source
register, 32-bit registers are used as for the reg field. If the
field is used for memory operands, the meaning is
completely different than for 16-bit operations, as shown in
the tables in the next section.

disp Displacement. This field is four bytes for 32-bit addresses.

data Data. Immediate data can be up to four bytes.

PROCESSOR INTRODUCTION 63

Scaled Index Base Byte

Many 80386/486 extended memory operands are too complex to be
represented by a single mod-reg-rlm byte. For these operands, a value
of 100 in the rIm field signals the presence of a second encoding byte
called the Scaled Index Base (SIB) byte. The SIB byte is made up of the
following fields:

ss

index

I ss index base I

Scaling Field. This two-bit field specifies one of the
following scaling factors:

ss Scale

00 1
01 2

10 4

11 8

Index Register. This three-bit field specifies one of the
following index registers:

index Register

000 EAX

001 ECX
010 EDX
all EBX
100 no index
101 EBP
110 ESI
111 EDI

Note that ESP cannot be an index register. If the index field
is 100, then the ss field must be 00.

base Base Register. This three-bit field combines with the mod
field to specify the base register and the displacement. Note
that the base field only specifies the base when the rim field
is 100. Otherwise, the rim field specifies the base.

64 PROCESSOR INTRODUCTION

The possible combinations of the mod, rim, scale, index, and base
fields are shown below:

Fields for 32-Bit Fields for 32-Bit
Nonindexed Operands Indexed Operands

mod rim Operand mod rim base Operand

00 000 OS: [EAX] 00 100 000 OS: [EAX +(scale*index)]
00 001 OS: [ECX] 00 100 001 OS: [ECX +(scale*index)]
00 010 OS:[EOX] 00 100 010 OS: [EOX+(scale*index)]
00 all OS:[EBX] 00 100 all OS: [EBX+(scale*index)]
00 100 SIB used 00 100 100 S S: [ESP+(scale* index)]
00 101 OS:disp32t 00 100 101 OS: [disp32+(scale*index)]t
00 110 OS:[ESI] 00 100 110 OS: [ESI+(scale*index)]
00 111 OS: [EDI] 00 100 111 OS: [EDI+(scale*index)]

01 000 OS: [EAX+disp8] 01 100 000 OS: [EAX +(scale*index)+disp8]
01 001 OS: [ECX+disp8] 01 100 001 OS: [ECX +(scale*index)+disp8]
01 010 OS: [EOX+disp8] 01 100 010 OS: [EOX+(scale*index)+disp8]
01 all OS: [EBX+disp8] 01 100 all OS: [EBX +(scale*index)+disp8]
01 100 SIB used • 01 100 100 SS: [ESP+(scale*index)+disp8]
01 101 SS:[EBP+disp8] 01 100 101 SS: [EBP+(scale*index)+disp8]
01 110 OS: [ESI +disp8] 01 100 110 OS: [ESI+(scale*index)+disp8]
01 III OS: [EDI+disp8] 01 100 III OS: [ED I +(scale* index)+disp8]

10 000 OS: [EAX+disp32] 10 100 000 OS: [EAX+(scale*index)+disp32]
10 001 OS: [ECX+disp32] 10 100 001 OS: [ECX +(scale*index)+disp32]
10 010 OS: [EOX+disp32] 10 100 010 OS: [EOX+(scale*index)+disp32]
10 011 OS: [EBX+disp32] 10 100 all OS: [EBX +(scale*index)+disp32]
10 100 SIB used • 10 100 100 SS: [ESP+(scaie*index)+disp32]
10 101 SS:[EBP+disp32] 10 100 101 S S: [EB P+(scale* index)+disp3 2]
10 110 OS: [ESI+disp32] 10 100 110 OS: [ESI+(scaie*index)+disp32]
10 1 11 OS: [EDI+disp32] 10 100 III OS: [EDI +(scale* index)+disp3 2]

t The operand [EBP 1 must be encoded as [EBP+O 1 (the 0 is an 8-bit displacement).
Similarly, [EBP +(scale*index) 1 must be encoded as [EBP +(scale*index)+ 0 1 . The
short encoding form available with other base registers cannot be used with EBP.

If a memory operand has a segment override, the entire instruction has
one of the prefixes discussed earlier in the "Interpreting Encodings"
section or one of the following prefixes for the segment registers
available only on the 80386/486:

Prefix
01100100 (64h)
01100101 (65h)

Segment
FS
OS

PROCESSOR INTRODUCTION 65

Example

Assume you want to calculate the encoding for the following statement
(where war ray is a 16-bit variable). Assume also that the
instruction is used in 16-bit mode.

add warray[eax+ecx*2],-3

First look up the encoding for the immediate to memory syntax of the
ADD instruction:

I lOOOOOsw I I mod,OOO,rim disp (0, 1, or 2) data (101'2)

This encoding must be expanded to account for 80386/486 extensions.
Note that the instruction operates on 16-bit data in a 16-bit mode
program. Therefore, the operand-size prefix is not needed. However, the
instruction does use 32-bit registers to calculate a 32-bit effective
address. Thus the first byte of the encoding must be the effective
address-size prefix, 01100111 (67h).

The opcode byte is the same (83h) as for the 80286 example described
in the "Interpreting Encodings" section.

The mod-reg-rlm byte must specify a based indexed operand with a
scaling factor of two. This operand cannot be specified with a single
byte, so the encoding must also use the SIB byte. The value 100 in the
rim field specifies an SIB byte. The reg field is 000, as shown in the
encoding. The mod field is 10 for operands that have base and scaled
index registers and a 32-bit displacement. The combined mod, reg, and
rim fields for the second byte are 10000100 (84h).

The SIB byte is next. The scaling factor is 2, so the ss field is 01. The
index register is ECX, so the index field is 001. The base register is
EAX, so the base field is 000. The SIB byte is 01001000 (48h).

The next four bytes are the offset of warray. The low bytes are
stored first. For this example, assume that warray is located at
offset 10EFh. This offset only requires two bytes, but four must be
supplied because of the addressing mode. A 32-bit address can be safely
used in 16-bit mode as long as the upper word is O.

The last byte of the instruction is used to store the 8-bit immediate
value -3 (FDh).

The encoding is shown below in hexadecimal:

67 83 84 48 00 00 EF 10 FD

66 PROCESSOR INTRODUCTION

AAA
ASCII Adjust after Addition

Adjusts the result of an addition to a decimal digit (0-9). The previous
addition instruction should place its 8-bit sum in AL. If the sum is
greater than 9h, AH is incremented and the carry and auxiliary carry
flags are set. Otherwise, the carry and auxiliary carry flags are cleared.

I 00110111 I
AAA aaa 88/86 8

286 3
386 4
486 3

AAD
ASCII Adjust before Division

Converts unpacked BCD digits in AH (most significant digit) and AL
(least significant digit) to a binary number in AX. This instruction is
often used to prepare an unpacked BCD number in AX for division by
an unpacked BCD digit in an 8-bit register.

I 11010101 I I 00001010 I
AAD aad 88/86 60

286 14
386 19
486 14

PROCESSOR INSTRUCTIONS 67

AAM
ASCII Adjust after Multiply

Converts an 8-bit binary number less than 100 decimal in AL to an
unpacked BCD number in AX. The most significant digit goes in AH
and the least significant in AL. This instruction is often used to adjust
the product after a MUL instruction that multiplies unpacked BCD
digits in AH and AL. It is also used to adjust the quotient after a DIV
instruction that divides a binary number less than 100 decimal in AX
by an unpacked BCD number.

I 11010100 I I 00001010

AAM aam

AAS
ASCII Adjust
after Subtraction

I
88/86 83

286 16
386 17
486 15

Adjusts the result of a subtraction to a decimal digit (0-9). The
previous subtraction instruction should place its 8-bit result in AL. If
the result is greater than 9h, AH is decremented and the carry and
auxiliary carry flags are set. Otherwise, the carry and auxiliary carry
flags are cleared.

I 00111111 I
AAS aas 88/86 8

286 3
386 4
486 3

68 PROCESSOR INSTRUCTIONS

ADC
Add with Carry

Adds the source operand, the destination operand, and the value of the
carry flag. The result is assigned to the destination operand. This
instruction is used to add the more significant portions of numbers that
must be added in multiple registers.

I 000 1 OOdw I I mod,reg,rlm I disp (0, 1, or 2)

ADC reg,reg adc dx,cx 88/86 3
286 2
386 2
486 1

ADC mem,reg adc WORD PTR m32[2l,dx 88/86 16+EA (W88=24+EA)
286 7
386 7
486 3

ADC reg,mem adc dx,WORD PTR m32[2] 88/86 9+EA (W88=13+EA)
286 7
386 6
486 2

I 100000sw I I mod,OIO,rlm I disp (0,1, or 2) data (lor 2)

ADC reg,immed adc dx,12 88/86 4
286 3
386 2
486 1

ADC mem,immed adc WORD PTR m32[2l,16 88/86 17+EA (W88=23+EA)
286 7
386 7
486 3

I 000 10 lOw I data (1 or 2)

ADC accum,immed adc ax,S 88/86 4
286 3
386 2
486 1

PROCESSOR INSTRUCTIONS 69

ADD
Add

Adds the source and destination operands and puts the sum in the
destination operand.

I OOOOOOdw I I mod,reg,rlm I disp (0, 1, or 2)

ADD reg,reg add ax,bx 88/86 3
286 2
386 2
486 1

ADD mem,reg add total, ex 88/86 16+EA (W88=24+EA)
add array[bx+di],dx 286 7

386 7
486 3

ADD reg,mem add ex,iner 88/86 9+EA (W88=13+EA)
add dx, [bp+6] 286 7

386 6
486 2

I 100000sw I I mod, OOO,rlm I disp (0, 1, or 2) data (1 or 2)

ADD reg,immed add bx,6 88/86 4
286 3
386 2
486 1

ADD mem,immed add amount, 27 88/86 17+EA (W88=23+EA)
add pointers [bx] [si],6 286 7

386 7
486 3

I 00000 lOw I data (lor 2)

ADD accum,immed add ax,10 88/86 4
286 3
386 2
486 1

70 PROCESSOR INSTRUCTIONS

AND
Logical AND

Perfonns a bitwise AND operation on the source and destination
operands and stores the result in the destination operand. For each bit
position in the operands, if both bits are set, the corresponding bit of
the result is set. Otherwise, the corresponding bit of the result is
cleared.

I OOIOOOdw I I mod,reg,rlm I disp (0,1, or 2)

AND reg,reg and dx,bx 88/86 3
286 2
386 2
486 1

AND mem,reg and bitmask,bx 88/86 16+EA (W88=24+EA)
and [bp+2],dx 286 7

386 7
486 3

AND reg,mem and bx,masker 88/86 9+EA (W88=13+EA)
and dx,marray[bx+di] 286 7

386 6
486 2

I 100000sw I I mod, 100, rim I disp (0, 1, or 2) data (lor 2)

AND reg,immed and dx,OF7h 88/86 4
286 3
386 2
486 1

AND mem,immed and masker,lOOlb 88/86 17+EA (W88=23+EA)
286 7
386 7
486 3

I 00 100 lOw I data (1 or 2)

AND accum,immed and ax,OB6h 88/86 4
286 3
386 2
486 1

PROCESSOR INSTRUCTIONS 71

ARPL
Adjust Requested
Privi lege Level
80286-80486 Protected Only

Verifies that the destination Requested Privilege Level (RPL) field (bits
o and 1 of a selector value) is less than the source RPL field. If it is
not, ARPL adjusts the destination RPL up to match the source RPL.
The destination operand should be a 16-bit memory or register operand
containing the value of a selector. The source operand should be a
16-bit register containing the test value. The zero flag is set if the
destination is adjusted; otherwise, the flag is cleared. ARPL is useful
only in 80286-80486 protected mode. See Intel documentation for
details on selectors and privilege levels.

I 01100011 I I mod,reg,r/m I disp (0,1, or 2)

ARPL reg,reg arpl ax,cx 88/86 -
286 10
386 20
486 9

ARPL mem,reg arpl selector,dx 88/86 -
286 11
386 21
486 9

72 PROCESSOR INSTRUCTIONS

BOUND
Check Array Bounds

80186-80486 Only

Verifies that a signed index value is within the bounds of an array. The
destination operand can be any 16-bit register containing the index to
be checked. The source operand must then be a 32-bit memory operand
in which the low and high words contain the starting and ending
values, respectively, of the array. (On the 80386/486 processors, the
destination operand can be a 32-bit register; in this case, the source
operand must be a 64-bit operand made up of 32-bit bounds.) If the
source operand is less than the first bound or greater than the last
bound, an interrupt 5 is generated. The instruction pointer pushed by
the interrupt (and returned by IRET) points to the BOUND instruction
rather than to the next instruction.

I 01100010 I I mod,reg, rim I disp(2)

BOUND reg16,mem32 bound di,base-4 88/86 -
BOUND reg32,mem64* 286 noj=13t

386 noj=lOt
486 noj=7

* 80386/486 only.
t See INT for timings if interrupt 5 is called.

PROCESSOR INSTRUCTIONS 73

BSF/BSR
Bit Scan
80386/486 Only

Scans an operand to find the first set bit. If a set bit is found, the zero
flag is set and the destination operand is loaded with the bit index of the
first set bit encountered. If no set bit is found, the zero flag is cleared.
BSF (Bit Scan Forward) scans from bit 0 to the most significant bit.
BSR (Bit Scan Reverse) scans from the most significant bit of an
operand to bit O.

I 00001111 I I 10111100 I I mod, reg, rim I
BSF reg16,reg16 bsf cX,bx
BSF reg32,reg32

BSF reg16,mem16 bsf ecx,bitmask
BSF reg32,mem32

I 00001111 I I 10111101 I I mod, reg, rim I
BSR reg16,reg16 bsr cx,dx
BSR reg32,reg32

BSR reg16,mem16 bsr eax,bitmask
BSR reg32,mem32

* n = bit position from 0 to 31
clocks = 6 if second operand equals 0

t Clocks = 8 +
4 for each byte scanned +
3 for each mbble scanned +
3 for each bit scanned in last nibble

or 6 if second operand equals 0
§ Same as footnote above, but add I clock.
n = bit position from 0 to 31

clocks = 7 if second operand equals 0

74 PROCESSOR INSTRUCTIONS

disp (0, 1,2, or4)

88/86 -
286 -

386 1O+3n*
486 6--42t

88/86 -
286 -
386 1O+3n*
486 7-43§

disp (0,1,2,0,.4)

88/86 -

286 -
386 1O+3n*
486 103 -3n#

88/86 -

286 -
386 1O+3n*
486 104 - 3n#

BSWAP
Byte Swap
80486 Only

Takes a single 32-bit register as operand and exchanges the first byte
with the fourth and the second byte with the third. This instruction
does not alter any bit values within the bytes and is useful for quickly
translating between 8086-family byte storage and storage schemes in
which the high byte is stored first.

I 00001111 I I 11001 reg I
BSWAP reg32 bswap eax 88/86 -

bswap ebx 286 -
386 -

486 1

PROCESSOR INSTRUCTIONS 75

BT IBTC/BTR/BTS
Bit Tests
80386/486 Only

Copies the value of a specified bit into the carry flag, where it can be
tested by a JC or JNC instruction. The destination operand specifies
the value in which the bit is located; the source operand specifies the
bit position. BT simply copies the bit to the flag. BTC copies the bit
and complements (toggles) it in the destination. BTR copies the bit
and resets (clears) it in the destination. BTS copies the bit and sets it in
the destination.

I 00001111 I I 10111010 I I mod, BBB* ,rim I disp (0,1,2, or4)

BT reg16,immed8t bt ax,4 88/86 -
286 -
386 3
486 3

BTC reg16,immed8t bts ax,4 88/86 -
BTR reg16,immed8t btr bx,17 286 -
BTS reg16,immed8t bte edi,4 386 6

486 6
BT mem16,immed8t btr DWORD PTR [si],27 88/86 -

bte eolor[dil,4 286 -

386 6
486 3

BTC mem16,immed8t bte DWORD PTR [bxl,27 88/86 -
BTR mem16,immed8t bte maskit,4 286 -

BTS mem16,immed8t btr eolor[dil,4 386 8
486 8

I 00001111 I I IOBBBOll* I I mod, reg, rim I disp (0, 1, 2, or4)

BT reg16,reg16t bt ax,bx 88/86 -
286 -
386 3
486 3

BTC reg16,reg16t bte eax,ebx 88/86 -
BTR reg16,reg16t bts bx,ax 286 -
BTS reg16,reg16t btr ex,di 386 6

486 6
BT mem16,reg16t bt [bx], dx 88/86 -

286 -

386 12
486 8

BTC mem16,reg16t bts flags [bxl , ex 88/86 -
BTR mem16,reg16t btr rotate, ex 286 -
BTS mem16,reg16t bte [bp+8l,si 386 13

486 13

* BBB is 100 for BT, 111 for BTC, 110 for BTR, and 101 for BTS.
t Operands can also be 32 bits (reg32 and mem32).

76 PROCESSOR INSTRUCTIONS

data (1)

CALL
Call Procedure

Calls a procedure. The instruction pushes the address of the next
instruction onto the stack and jumps to the address specified by the
operand. For NEAR calls, SP is decreased by 2, the offset (IP) is
pushed, and the new offset is loaded into IP.

For FAR calls, SP is decreased by 2, the segment (CS) is pushed, and
the new segment is loaded into CS. Then SP is decreased by 2 again,
the offset (lP) is pushed, and the new offset is loaded into IP. A
subsequent RET instruction can pop the address so that execution
continues with the instruction following the call.

I 11101000 I disp (2)

CALL label call upcase 88/86 19 (88=23)
286 7+m
386 7+m
486 3

I 10011010 I disp(4)

CALL label call FAR PTR job 88/86 28 (88=36)
call distant 286 13+m,pm=26+m *

386 17+m,pm=34+m*
486 18,pm=20*

I 11111111 I I mod,OlO,rlm I
CALL reg call ax 88/86 16 (88=20)

286 7+m
386 7+m
486 5

CALL mem16 call pointer 88/86 21+EA (88=29+EA)
CALL mem32t call [bx] 286 11+m

386 lO+m
486 5

I 11111111 I I mod,Oll,rlm I
CALL mem32 call far_table [di] 88/86 37+EA (88=53+EA)
CALL mem48t call DWORD PTR [bx] 286 16+m,pm=29+m *

386 22+m,pm=38+m*
486 17,pm=20*

* Timings for calls through call and task gates are not shown, since they are used primarily in
operatmg systems.

t 80386/486 32-bit addressing mode only.

PROCESSOR INSTRUCTIONS 77

CBW
Convert Byte to Word

Converts a signed byte in AL to a signed word in AX by extending the
sign bit of AL into all bits of AH.

I 10011000* I
CBW cbw 88/86 2

286 2
386 3
486 3

* CBW and CWDE have the same encoding with two exceptions: in 32-bit mode CBW is preceded by
the operand-si~e byte (66h) but CWOE IS not; in 16-bit mode CWOE is preceded by the operand-size
byte but CBW IS not.

COQ
Convert Double to Quad
80386/486 On Iy

Converts the signed doubleword in EAX to a signed quadword in the
EDX:EAX register pair by extending the sign bit of EAX into all bits
ofEDX.

I 10011001* I
CDQ cdq 88/86 -

286 -

386 2
486 3

* CWD and COQ have the sanle encoding with two exceptions: in 32-bit mode CWD is preceded by the
operand-size byte (66h) but COQ is not; in 16-bit mode CDQ is preceded by the operand-size byte
but CWO is not.

78 PROCESSOR INSTRUCTIONS

CLC
Clear Carry Flag

Clears the carry flag.

I 11111000 I
CLC clc 88/86 2

286 2
386 2
486 2

CLD
Clear Direction Flag

Clears the direction flag. All subsequent string instructions will
process up (from low addresses to high addresses) by increasing the
appropriate index registers.

I 11111100 I
CLD cld 88/86 2

286 2
386 2
486 2

PROCESSOR INSTRUCTIONS 79

ell
Clear Interrupt Flag

Clears the interrupt flag. When the interrupt flag is cleared, maskable
interrupts are not recognized until the flag is set again with the STI
instruction. In protected mode, eLI only clears the flag if the current
task's privilege level is less than or equal to the value of the IOPL
flag. Otherwise, a general-protection fault occurs.

I 11111010 I
eLi eli 88/86 2

286 3
386 3
486 5

80 PROCESSOR INSTRUCTIONS

CLTS
Clear Task Switched Flag

80286-80486 Privileged Only

Clears the task switched flag in the Machine Status Word (MSW) of
the 80286 or the CRO register of the 80386/486. This instruction can
be used only in systems software executing at privilege level O. See
Intel documentation for details on the task-switched flag and other
privileged-mode concepts.

I 00001111 I I 00000110 I
CLTS elts 88/86 -

286 2
386 5
486 7

CMC
Complement Carry Flag

Complements (toggles) the carry flag.

I 11110101 I
CMC erne 88/86 2

286 2
386 2
486 2

PROCESSOR INSTRUCTIONS 81

CMP
Compare Two Operands

Compares two operands as a test for a subsequent conditional-jump or
set instruction. CMP does this by subtracting the source operand from
the destination operand and setting the flags according to the result.
CMP is the same as the SUB instruction, except that the result is not
stored.

I 00lllOdw I I mod, reg, rIm I disp (0,1, or 2)

CMP reg,reg cmp di,bx 88/86 3
cmp dl,cl 286 2

386 2
486 1

CMP mem,reg cmp maximum,dx 88/86 9+EA (W88=13+EA)
cmp array[si],bl 286 7

386 5
486 2

CMP reg,mem cmp dx,minimum 88/86 9+EA (W88=13+EA)
cmp bh,array[si] 286 6

386 6
486 2

I 100000sw I I mod,lll,rlm I disp (0,1, or 2) data (1 or 2)

CMP reg,immed cmp ax,24 88/86 4
286 3
386 2
486 1

CMP mem,immed cmp WORD PTR [di],4 88/86 lO+EA (W88=14+EA)
cmp tester,4000 286 6

386 5
486 2

I 0011 1 lOw I data (1 or 2)

CMP accum,immed cmp ax,lOOO 88/86 4
286 3
386 2
486 1

82 PROCESSOR INSTRUCTIONS

CMPS/CMPSBI
CMPSW/CMPSD

Compare String

Compares two strings. DS:SI must point to the source string and
ES:DI must point to the destination string (even if operands are given).
For each comparison, the destination element is subtracted from the
source element and the flags are updated to reflect the result (although
the result is not stored). DI and SI are adjusted according to the size of
the operands and the status of the direction flag. They are increased if
the direction flag has been cleared with CLD or decreased if the
direction flag has been set with STD.

If the CMPS form of the instruction is used, operands must be
provided to indicate the size of the data elements to be processed. A
segment override can be given for the source (but not for the
destination). If CMPSB (bytes), CMPSW (words), or CMPSD
(doublewords on the 80386/486 only) is used, the instruction
determines the size of the data elements to be processed.

CMPS and its variations are normally used with repeat prefixes.
REPNE (or REPNZ) is used to find the first match between two
strings. REPE (or REPZ) is used to find the first nonmatch. Before the
comparison, CX should contain the maximum number of elements to
compare. After a REPNE CMPS, the zero flag will be cleared if no
match was found. After a REPE CMPS, the zero flag will be set if no
nonmatch was found. Otherwise, SI and DI will point to the element
after the first match or nonmatch.

I 10100llw I
CMPS [segreg:J src, [ES:J dest cmps source,es:dest 88/86 22 (W88=30)
CMPSB [[segreg:J src, [ES:J destJ repne cmpsw 286 8
CMPSW [[segreg:J src, [ES:J destJ repe cmpsb 386 10
CMPSD [[segreg:J src, [ES:J destJ repne cmpsd 486 8

PROCESSOR INSTRUCTIONS 83

CMPXCHG
Compare and Exchange
80486 Only

Compares the destination operand to the accumulator (AL, AX, or
EAX). If equal, the source operand is copied to the destination.
Otherwise, the destination is copied to the accumulator. The instruction
sets flags according to the result of the comparison.

I 00001111 I I 10 11 OOOb I I mod, reg, rim I disp (0, 1, or 2)

CMPXCHG mem,reg cmpxehg warr[bx] ,ex 88/86 -
cmpxehg string,bl 286 -

386 -

486 7-10
CMPXCHG reg,reg empxehg dl,el 88/86 -

cmpxehg bx,dx 286 -

386 -
486 6

CWO
Convert Word to Double

Converts the signed word in AX to a signed double word in the DX:AX
register pair by extending the sign bit of AX into all bits of DX.

I 10011001 * I
CWD ewd 88/86 5

286 2
386 2
486 3

* CWO and COQ have the same encoding with two exceptions: in 32-bit mode CWO is preceded by the
operand-s!ze byte (66h) but COQ is not; in 16-bit mode COQ is preceded by the operand-size byte
but cwo IS not.

84 PROCESSOR INSTRUCTIONS

CWDE
Convert Word to

Extended Double
80386/486 On Iy

Converts a signed word in AX to a signed doubleword in EAX by
extending the sign bit of AX into all bits of EAX.

I 10011000* I
CWDE cwde 88/86 -

286 -
386 3
486 3

* CBW and CWDE have the same encoding with two exceptions: in 32-bit mode CBW is preceded by
the operand-si~e byte (66h) but CWDE is not; in 16-bit mode CWDE is preceded by the operand-SIZe
byte but CBW IS not.

DAA
Decimal Adjust after Addition

Adjusts the result of an addition to a packed BCD number (less than
100 decimal). The previous addition instruction should place its 8-bit
binary sum in AL. DAA converts this binary sum to packed BCD
format with the least significant decimal digit in the lower four bits and
the most significant digit in the upper four bits. If the sum is greater
than 99h after adjustment, the carry and auxiliary carry flags are set.
Otherwise, the carry and auxiliary carry flags are cleared.

I 00100111 I
DAA daa 88/86 4

286 3
386 4
486 2

PROCESSOR INSTRUCTIONS 85

DAS
Decimal Adjust
after Subtraction

Adjusts the result of a subtraction to a packed BCD number (less than
100 decimal). The previous subtraction instruction should place its
8-bit binary result in AL. DAS converts this binary sum to packed
BCD format with the least significant decimal digit in the lower four
bits and the most significant digit in the upper four bits. If the sum is
greater than 99h after adjustment, the carry and auxiliary carry flags are
set. Otherwise, the carry and auxiliary carry flags are cleared.

I 00101111 I
DAS das 88/86 4

286 3
386 4
486 2

DEC
Decrement

Subtracts 1 from the destination operand. Because the operand is treated
as an unsigned integer, the DEC instruction does not affect the carry
flag. To detect any effects on the carry flag, use the SUB instruction.

I 111111lw I I mod,OOI,rlm I disp (0,1, or 2)

DEC reg8 dec cl 88/86 3
286 2
386 2
486 I

DEC mem dec counter 88/86 15+EA (W88=23+EA)
286 7
386 6
486 3

I 01001 reg I
DEC reg16 dec ax 88/86 3
DEC reg32* 286 2

386 2
486 I

* 80386/486 only.

86 PROCESSOR INSTRUCTIONS

DIV
Unsigned Divide

Divides an implied destination operand by a specified source operand.
Both operands are treated as unsigned numbers. If the source (divisor) is
16 bits wide, the implied destination (dividend) is the DX:AX register
pair. The quotient goes into AX and the remainder into DX. If the
source is 8 bits wide, the implied destination operand is AX. The
quotient goes into AL and the remainder into AH. On the 80386/486,
if the source is EAX, the quotient goes into EAX and the divisor into
EDX.

I llllOllw I I mod, llO,r/m I disp (0, J, or 2)

DIV reg div ex 88/86 b=80-90,w=144--162
div dl 286 b=14,w=22

386 b=14,w=22,d=38
486 b= 16, w=24,d=40

DIV mem div [bx] 88/86 (b=86-96,w=150-168)+EA*
div fsize 286 b=17,w=25

386 b=17,w=25,d=41
486 b=16,w=24,d=40

* Word memory operands on the 8088 take (l58-176)+EA clocks.

PROCESSOR INSTRUCTIONS 87

ENTER
Make Stack Frame
80186-80486 Only

Creates a stack frame for a procedure that receives parameters passed on
the stack. When immed16 is 0, ENTER is equivalent to push bp,
followed by mov bp, sp. The first operand of the ENTER
instruction specifies the number of bytes to reserve for local variables.
The second operand specifies the nesting level for the procedure. The
nesting level should be 0 for languages that do not allow access to
local variables of higher-level procedures (such as C, Basic, and
FORTRAN). See the complementary instruction LEAVE for a method
of exiting from a procedure.

I 11001000 I data (2) data (1)

ENTER immed16,O enter 4,0 88/86 -
286 II
386 10
486 14

ENTER immed16,1 enter 0,1 88/86 -

286 15
386 12
486 17

ENTER immed16,immed8 enter 6,4 88/86 -

286 12+4(n -I)
386 15+4(n - 1)

486 17+3n

88 PROCESSOR INSTRUCTIONS

HLT
Halt

Stops CPU execution until an interrupt restarts execution at the
instruction following HL T. In protected mode, this instruction works
only in privileged mode.

I 11110100 I
HLT hIt 88/86

286
386
486

2
2
5
4

IDIV
Signed Divide

Divides an implied destination operand by a specified source operand.
Both operands are treated as signed numbers. If the source (divisor) is
16 bits wide, the implied destination (dividend) is the DX:AX register
pair. The quotient goes into AX and the remainder into DX. If the
source is 8 bits wide, the implied destination is AX. The quotient goes
into AL and the remainder into AH. On the 80386/486, if the source is
EAX, the quotient goes into EAX and the divisor into EDX.

I l11lO11w I I mod, 111,rim I disp (0, 1, or 2)

IDiV reg idiv bx 88/86 b=101-112,w=165-184
div dl 286 b=17,w=25

386 b=19,w=27,d=43
486 b=19,w=27,d=43

IDIV mem idiv itemp 88/86 (b=107-118,w=171-190)+EA*
286 b=20,w=28
386 b=22, w=30,d=46
486 b=20,w=28,d=44

* Word memory operands on the 8088 take (175-194)+EA clocks.

PROCESSOR INSTRUCTIONS 89

IMUL
Signed Multiply

Multiplies an implied destination operand by a specified source
operand. Both operands are treated as signed numbers. If a single 16-bit
operand is given, the implied destination is AX and the product goes
into the DX:AX register pair. If a single 8-bit operand is given, the
implied destination is AL and the product goes into AX. On the
80386/486, if the operand is EAX, the product goes into the
EDX:EAX register pair. The carry and overflow flags are set if the
product is sign-extended into DX for 16-bit operands, into AH for 8-bit
operands, or into EDX for 32-bit operands.

Two additional syntaxes are available on the 80186-80486 processors.
In the two-operand form, a 16-bit register gives one of the factors and
serves as the destination for the result; a source constant specifies the
other factor. In the three-operand form, the first operand is a 16-bit
register where the result will be stored, the second is a 16-bit register or
memory operand containing one of the factors, and the third is a
constant representing the other factor. With both variations, the
overflow and carry flags are set if the result is too large to fit into the
16-bit destination register. Since the low 16 bits of the product are the
same for both signed and unsigned multiplication, these syntaxes can
be used for either signed or unsigned numbers. On the 80386/486, the
operands can be either 16 or 32 bits wide.

A fourth syntax is available on the 80386/486. Both the source and
destination operands can be given specifically. The source can be any
16- or 32-bit memory operand or general-purpose register. The
destination can be any general-purpose register of the same size. The
overflow and carry flags are set if the product does not fit in the
destination.

I 111lOl1w I I mod, lOl,rlm I disp (0, 1, or 2)

IMUL reg imul dx 88/86 b=80-98,w=128-154
286 b=13,w=21
386 b=9-14,w=9-22,d=9-38*
486 b=13-18,w=13-26,d=13-42

IMUL mem imul factor 88/86 (b=86-104,w=134-160)+EAt
286 b=16,w=24
386 b=12-17,w=12-25,d=12-41 *
486 b=13-18,w=13-26, d=13-42

* The 80386/486 processors have an early-out multiplication algorithm. Therefore, multiplying an
8-bit or 16-bit value in EAX takes the same time as multiplying the value in AL or AX.

t Word memory operands on the 8088 take (138-164)+EA clocks.

CONTINUED ...

90 PROCESSOR INSTRUCTIONS

I 01101Os1 I I mod, reg, rim I disp (0, I, or 2) data (1 or 2)

IMUL reg16,immed imul ex,25 88/86 -
IMUL reg32,immed* 286 21

386 b=9-14, w=9-22,d=9-38t
486 b= 13-18, w= 13-26,d= 13-42

IMUL reg16,reg16,immed imul dx,ax,18 88/86 -
IMUL reg32 ,reg32 ,immed* 286 21

386 b=9-14,w=9-22,d=9-38t
486 b=13-18,w= 13-26,d= 13-42

IMUL reg16,mem16,immed imul bx, [si],60 88/86 -
IMUL reg32,mem32,immed* 286 24

386 b=12-17,w=12-25,d=12-41 t
486 b= 13-18,w= 13-26,d= 13-42

I 00001111 I I 10101111 I I mod,reg,rlm I disp (0,1, or 2)

IMUL reg16,reg16 imul ex,ax 88/86 -
IMUL reg32,reg32* 286 -

386 w=9-22,d=9-38
486 b=13-18,w=13-26,d=13-42

IMUL reg16,mem16 imul dx, lsi] 88/86 -
IMUL reg32,mem32* 286 -

386 w=12-25,d=12-41
486 b=13-18,w=13-26,d=13-42

* 80386/486 only.
t The variations depend on the source constant size; destination size is not a factor.

PROCESSOR INSTRUCTIONS 91

IN
Input from Port

Transfers a byte or word (or double word on the 80386/486) from a port
to the accumulator register. The port address is specified by the source
operand, which can be DX or an 8-bit constant. Constants can only be
used for port numbers less than 255; use DX for higher port numbers.
In protected mode, a general-protection fault occurs if IN is used when
the current privilege level is greater than the value of the IOPL flag.

I II 100 !Ow I data (1)

IN accum.immed in ax,60h 88/86
286
386
486

I 11101 !Ow I
IN accum.DX in ax,dx 88/86

in al,dx 286
386
486

* First protected-mode timing: CPL ~ IOPL. Second timing: CPL > IOPL.
t Takes 27 clocks in virtual 8086 mode.

92 PROCESSOR INSTRUCTIONS

10 (W88=14)
5
12,pm=6,26*
14,pm=9,29*t

8 (W88=12)
5
13,pm=7,27*
14,pm=8,28*t

INC
Increment

Adds 1 to the destination operand. Because the operand is treated as an
unsigned integer, the INC instruction does not affect the carry flag. If a
signed carry requires detection, use the ADD instruction.

I lllllllw I I mod,OOO,rlm I disp (0,1, or 2)

INC reg8 inc cl 88/86 3
286 2
386 2
486 1

INC mem inc vpage 88/86 15+EA (W88=23+EA)
286 7
386 6
486 3

I 01000 reg I
INC reg16 inc bx 88/86 3
INC reg32* 286 2

386 2
486 1

* 80386/486 only.

PROCESSOR INSTRUCTIONS 93

I NS/I NSB/I NSW II NSD
Input from Port to String
80186-80486 Only

Receives a string from a port. The string is considered the destination
and must be pointed to by ES:DI (even if an operand is given). The
input port is specified in DX. For each element received, DI is adjusted
according to the size of the operand and the status of the direction flag.
DI is increased if the direction flag has been cleared with CLD or
decreased if the direction flag has been set with STD.

If the INS form of the instruction is used, a destination operand must
be provided to indicate the size of the data elements to be processed and
DX must be specified as the source operand containing the port
number. A segment override is not allowed. If INSB (bytes), INSW
(words), or INSD (doublewords on the 80386/486 only) is used, the
instruction determines the size of the data elements to be received.

INS and its variations are normally used with the REP prefix. Before
the repeated instruction is executed, CX should contain the number of
elements to be received. In protected mode, a general-protection fault
occurs if INS is used when the current privilege level is greater than
the value of the IOPL flag.

I 01 101 lOw I
INS [ES:] dest, DX ins es:instr,dx 88/86 -
INSB [[ES:] dest, DX] rep insb 286 5
INSW [[ES:I dest, DXI rep insw 386 15,pm=9,29*
INSD [[ES:] dest, DX] rep insd 486 17,pm=1O,32*

* First protected-mode timing: CPL $ IOPL. Second timing: CPL> IOPL.

94 PROCESSOR INSTRUCTIONS

INT
Interrupt

Generates a software interrupt. An 8-bit constant operand (0 to 255)
specifies the interrupt procedure to be called. The call is made by
indexing the interrupt number into the Interrupt Descriptor Table (lDT)
starting at segment 0, offset O. In real mode, the IDT contains 4-byte
pointers to interrupt procedures. In privileged mode, the IDT contains
8-byte pointers.

When an interrupt is called in real mode, the flags, CS, and IP are
pushed onto the stack (in that order) and the trap and interrupt flags are
cleared. STI can be used to restore interrupts. See Intel documentation
and the documentation for your operating system for details on using
and defining interrupts in privileged mode. To return from an interrupt,
use the IRET instruction.

I 11001101 I data(l)

INT immed8 int 25h 88/86 51 (88=71)
286 23+m,pm=(40,78)+m*
386 37,pm=59,99*
486 30,pm=44,71 *

I 11001100 I
INT 3 int 3 88/86 52 (88=72)

286 23+m,pm=(40,78)+m*
386 33,pm=59,99*
486 26,pm=44,71*

* The first protected-mode timing is for interrupts to the same privilege level. The second is for
interrupts to a higher privilege level. Timings for interrupts through task gates are not shown.

PROCESSOR INSTRUCTIONS 95

INTO
Interrupt on Overflow

Generates interrupt 4 if the overflow flag is set. The default DOS
behavior for interrupt 4 is to return without taking any action. You
must define an interrupt procedure for interrupt 4 in order for INTO to
have any effect.

I 11001110 I
INTO into 88/86 53 (88=73),noj=4

286 24+m,noj=3,pm=(40,78)+m*
386 35,noj=3,pm=59,99*
486 28,noj=3,pm=46,73*

* The first protected-mode timing is for interrupts to the same privilege level. The second is for
interrupts to a higher privilege level. Timings for interrupts througfi task gates are not shown.

INVD
Invalidate Data Cache
80486 Only

Empties contents of the current data cache without writing changes to
memory. Proper use of this instruction requires know ledge of how
contents are placed in the cache. INVD is intended primarily for
systems programming. See Intel documentation for details.

I 00001111 I I 00001000 I
INVD invd 88/86 -

286 -

386 -
486 4

96 PROCESSOR INSTRUCTIONS

INVLPG
Invalidate TLB Entry

80486 Only

Invalidates an entry in the Translation Lookaside Buffer (TLB), used by
the demand-paging mechanism for OS/2 and other virtual-memory
systems. The instruction takes a single memory operand and calculates
the effective address of the operand, including the segment address. If
the resulting address is mapped by any entry in the TLB, this entry is
removed. Proper use of INVLPG requires understanding the hardware­
supported demand-paging mechanism. INVLPG is intended primarily
for systems programming. See Intel documentation for details.

I 00001111 I I 00000001 I I mod, reg, rim I disp (2)

INVLPG invlpg pointer [bx] 88/86 -
invlpg es:entry 286 -

386 -
486 12*

* 11 clocks if address is not mapped by any TLB entry.

IRET/IRETD
Interrupt Return

Returns control from an interrupt procedure to the interrupted code. In
real mode, the IRET instruction pops IP, CS, and the flags (in that
order) and resumes execution. See Intel documentation for details on
IRET operation in privileged mode. On the 80386/486, the IRETD
instruction should be used to pop a 32-bit instruction pointer when
returning from an interrupt called from a 32-bit segment. The F suffix
prevents epilogue code from being generated when ending a PROC
block. Use it to terminate interrupt service procedures.

I 11001111 I
IRET iret 88/86 32 (88=44)
IRETD* 286 17+m,pm=(31,55)+mt
IRETF 386 22,pm=38,82t
IRETDF* 486 15,pm=20,36

* 80386/486 only.

t The first protected-mode timing is for interrupts to the same privilege level within a task. The
second is for interrupts to a higner privilege revel within a task. Timings for interrupts through task
gates are not shown.

PROCESSOR INSTRUCTIONS 97

Jcondition
Jump Conditionally

Transfers execution to the specified label if the flags condition is true.
The condition is tested by checking the flags shown in the table on the
following page. If the condition is false, no jump is taken and program
execution continues at the next instruction. On the 8086-80286
processors, the label given as the operand must be short (between -128
and + 127 bytes from the instruction following the jump).* The
80386/486 processors allow near jumps (-32,768 to +32,767 bytes).
On the 80386/486, the assembler generates the shortest jump possible,
unless the jump size is explicitly specified.

When the 80386/486 processors are in FLAT memory model, short
jumps range from -128 to + 127 bytes and near jumps range from -2 to
+2 gigabytes. There are no far jumps.

I 0111cond I disp (1)

Jcondition label jg bigger 88/86 16,noj=4
jo SHORT too_big 286 7+m,noj=3
jpe p_even 386 7+m,noj=3

486 3,noj=1

I 00001111 I I l000cond I disp(2)

Jcondition labelt je next 88/86 -

jnae lesser 286 -
js negative 386 7+m,noj=3

486 3,noj=1

* If a source file for an 8086-80286 program contains a conditional jump beyond the range of -128 to
+ 127 bytes, the assembler emits a revel 3 warning and generates two instructions (including an
unconditional jump') that are the equivalent of the desired instruction. This behavior can be enabled
and disabled with the OPTION LJMP and OPTION NOLJMP directives.

t Near labels are only available on the 80386/486. They are the default.

CONTINUED ...

98 PROCESSOR INSTRUCTIONS

JUMP CONDITIONS

Opcode Mnemonic Flags Checked Description

size 0010 JB/JNAE CF=I Jump if below/not above or equal
(unsigned comparisons)

size 001 I JAE/JNB CF=O Jump if above or equal/not below
(unsigned comparisons)

size 01 10 JBE/JNA CF=lorZF=1 Jump if below or equal/not above
(unsigned comparisons)

size 0111 JA/JNBE CF=O and ZF=O Jump if above/not below or equal
(unsigned comparisons)

size 0100 JE/JZ ZF=I Jump if equal (zero)

size 0101 JNE/JNZ ZF=O Jump if not equal (not zero)

size 1100 JL!JNGE SF~F Jump if less/not greater or equal (signed
comparisons)

size 1101 JGE/JNL SF=OF Jump if greater or equal/not less (signed
comparisons)

size 1110 JLE/JNG ZF=I or SF;t:OF Jump if less or equal/not greater (signed
comparisons)

size 1111 JG/JNLE ZF=O and SF=OF Jump if greater/not less or equal (signed
comparisons)

size 1000 JS SF=I Jump if sign

size 1001 JNS SF=O Jump if not sign

size 0010 JC CF=I Jump if carry

size 0011 JNC CF=O Jump if not carry

size 0000 JO OF=I Jump if overflow

size 0001 JNO OF=O Jump if not overflow

size 1010 JP/JPE PF=I Jump if parity/parity even

size 1011 JNP/JPO PF=O Jump if no parity/parity odd

Note: The size bits are 0111 for short jumps or 1000 for 80386/486 near jumps.

PROCESSOR INSTRUCTIONS 99

JCXZ/JECXZ
Jump if ex is Zero

Transfers program execution to the specified label if CX is O. On the
80386/486, JECXZ can be used to jump if ECX is O. If the count
register is not 0, execution continues at the next instruction. The label
given as the operand must be short (between -128 and + 127 bytes from
the instruction following the jump).

I 11100011 I disp (1)

JCXZ label jcxz not found 88/86 18,noj=6
JECXZ label* 286 8+m,noj=4

386 9+m,noj=5
486 8,noj=5

* 80386/486 only.

JMP
Jump Unconditionally

Transfers program execution to the address specified by the destination
operand. Jumps are near (between -32,768 and +32,767 bytes from the
instruction following the jump), or short (between -128 and + 127
bytes), or far (in a different code segment). Unless a distance is
explicitly specified, the assembler selects the shortest possible jump.
With near and short jumps, the operand specifies a new IP address.
With far jumps, the operand specifies new IP and CS addresses.

When the 80386/486 processors are in FLAT memory model, short
jumps range from -128 to + 127 bytes and near jumps range from -2 to
+2 gigabytes.

CONTINUED ...

100 PROCESSOR INSTRUCTIONS

I 11101011 I disp (1)

JMP label jmp SHORT exit 88/86 15
286 7+m
386 7+m
486 3

I 11101001 I disp (2*)

JMP lahel jmp close 88/86 15
jmp NEAR PTR distant 286 7+m

386 7+m
486 3

I 11101010 I disp (4*)

JMP label jmp FAR PTR close 88/86 15
jmp distant 286 II +m,pm=23+mt

386 12+m,pm=27 +m t
486 17,pm=19t

I 11111111 I I mod,IOO,rlm I disp (0 or 2)

JMP reg16 jmp ax 88/86 II
JMP reg32§ 286 7+m

386 7+m
486 5

JMP mem16 jmp WORD PTR [bx] 88/86 18+EA
JMP mem32§ jmp table [di] 286 l1+m

jmp DWORD PTR lsi] 386 10+m
486 5

I 11111111 I I mod,lOl,rlm I disp (4*)

JMP mem32 jmp fpointer [si] 88/86 24+EA
JMP mem48§ jmp DWORD PTR [bx] 286 15+m,pm=26+m

jmp FWORD PTR [di] 386 12+m,pm=27+m
486 13,pm=18

* On the 80386/486, the displacement can be four bytes for near jumps or six bytes for far jumps.
t Timings for jumps through call or task gates are not shown, since they are normally used only in

operatmg systems.
§ 80386/486 only. You can use DWORD PTR to specify near register-indirect jumps or FWORD PTR

to specify far register-indirect jumps.

PROCESSOR INSTRUCTIONS 101

LAHF
Load Flags into AH Register

Transfers bits 0 to 7 of the flags register to AH. This includes the
carry, parity, auxiliary carry, zero, and sign flags, but not the trap,
interrupt, direction, or overflow flags.

I 10011111 I
LAHF lahf

LAR
Load Access Rights
80286-80486 Protected 0 n Iy

88/86 4
286 2
386 2
486 3

Loads the access rights of a selector into a specified register. The source
operand must be a register or memory operand containing a selector.
The destination operand must be a register that will receive the access
rights if the selector is valid and visible at the current privilege level.
The zero flag is set if the access rights are transferred, or cleared if they
are not. See Intel documentation for details on selectors, access rights,
and other privileged-mode concepts.

I 00001111 I I 00000010 I I mod, reg, rim I disp (0, 1,2, or4)

LAR reg16,reg16 lar ax,bx 88/86 -
LAR reg32,reg32* 286 14

386 15
486 11

LAR reg16,mem16 lar ex, selector 88/86 -

LAR reg32,mem32* 286 16
386 16
486 11

* 80386/486 only.

102 PROCESSOR INSTRUCTIONS

Reads and stores the far pointer specified by the source memory
operand. The instruction moves the pointer's segment value into DS,
ES, FS, OS, or SS (depending on the instruction). Then it moves the
pointer's offset value into the destination operand. The LDS and LES
instructions are available on all processors. The LFS, LGS, and LSS
instructions are available only on the 80386/486.

I 11000101 I I mod, reg, rim I disp (2)

LDS reg,mem lds si,fpointer 88/86 16+EA (88=24+EA)
286 7,pm=21
386 7,pm=22
486 6,pm=12

I 11000100 I I mod, reg, rim I disp (2)

LES reg,mem les di,fpointer 88/86 16+EA (88=24+EA)
286 7,pm=21
386 7,pm=22
486 6,pm=12

I 00001111 I I 10110100 I I mod, reg, rim I disp (2 or4)

LFS reg,mem lfs edi,fpointer 88/86 -
286 -
386 7,pm=25
486 6,pm=12

I 00001111 I I 10110101 I I mod, reg, rim I disp (201'4)

LGS reg,mem 19s bx,fpointer 88/86 -
286 -
386 7,pm=25
486 6,pm=12

I 00001111 I I 10110010 I I mod, reg, rim I disp (2 01'4)

LSS reg,mem lss bp,fpointer 88/86 -

286 -

386 7,pm=22
486 6,pm=12

PROCESSOR INSTRUCTIONS 103

LEA
Load Effective Add ress

Calculates the effective address (offset) of the source memory operand
and stores the result in the destination register.

If the source operand is a direct memory address, the assembler encodes
the instruction in the more efficient MOV reg, immediate form
(equivalent to MOV reg, OFFSET mem).

I 10001101 I I mod, reg, rim I disp (2)

LEA reg16,mem lea bx,npointer
LEA reg32,mem*

* 80386/486 only.
t 2 if index register used.

LEAVE
High Level Procedure Exit
80186-80486 On Iy

88/86 2+EA
286 3
386 2
486 It

Terminates the stack frame of a procedure. LEAVE reverses the action
of a previous ENTER instruction by restoring SP and BP to the values
they had before the procedure stack frame was initialized. LEAVE is
equivalent to mov sp, bp, followed by pop bp.

I 11001001 I
LEAVE leave 88/86 -

286 5
386 4
486 5

104 PROCESSOR INSTRUCTIONS

See LDS.

LES/LFS/LGS
Load Far Pointer to Extra Segment

LGDT/LIDT/LLDT
Load Descriptor Table

80286-80486 Privileged 0 n Iy

Loads a value from an operand into a descriptor table register. LGDT
loads into the Global Descriptor Table, LIDT into the Interrupt
Descriptor Table, and LLDT into the Local Descriptor Table. These
instructions are available only in privileged mode. See Intel
documentation for details on descriptor tables and other protected-mode
concepts.

I 00001111 I I 00000001 I I mod,OlO,rlm I disp (2)

LGDT mem48 19dt descriptor 88/86 -
286 11
386 11
486 11

I 00001111 I I 00000001 I I mod,OII,rlm I disp (2)

LIDT mem48 lidt descriptor 88/86 -
286 12
386 11
486 11

I 00001111 I I 00000000 I I mod,OlO,rlm I disp (0,1, or 2)

LLDT reg16 lldt ax 88/86 -
286 17
386 20
486 11

LLDT mem16 lldt selector 88/86 -
286 19
386 24
486 11

PROCESSOR INSTRUCTIONS 105

LMSW
Load Machine Status Word
80286-80486 Privileged Only

Loads a value from a memory operand into the Machine Status Word
(MSW). This instruction is available only in privileged mode. See
Intel documentation for details on the MSW and other protected-mode
concepts.

I 00001111 I I 00000001 I I mod, 11O,r/m I disp (0, 1, or 2)

LMSW reg16 lmsw ax 88/86 -
286 3
386 10
486 13

LMSW mem16 lmsw machine 88/86 -

286 6
386 13
486 13

LOCK
Lock the Bus

Locks out other processors during execution of the next instruction.
This instruction is a prefix. It must precede an instruction that accesses
a memory location that another processor might attempt to access at
the same time. See Intel documentation for details on multiprocessor
environments.

I 11110000 I
LOCK instruction lock xchg ax,sem 88/86 2

286 0
386 0
486 1

106 PROCESSOR INSTRUCTIONS

LODS/LODSB/
LODSW/LODSD
Load String Operand

Loads a string from memory into the accumulator register. The string
to be loaded is the source and must be pointed to by DS:SI (even if an
operand is given). For each source element loaded, SI is adjusted
according to the size of the operands and the status of the direction flag.
SI is increased if the direction flag has been cleared with CLD or
decreased if the direction flag has been set with STD.

If the LODS form of the instruction is used, an operand must be
provided to indicate the size of the data elements to be processed. A
segment override can be given. If LODSB (bytes), LODSW (words), or
LODSD (double words on the 80386/486 only) is used, the instruction
determines the size of the data elements to be processed and whether the
element will be loaded to AL, AX, or EAX.

LODS and its variations are not normally used with repeat prefixes,
since there is no reason to repeatedly load memory values to a register.

I 101011011' I
LODS [segreg:ll src lods es:source 88/86 12 (W88=16)
LODSB [[segreg:ll srcll lodsw 286 5
LODSW [[segreg:ll srcll 386 5
LODSD [[segreg:ll srcll 486 5

PROCESSOR INSTRUCTIONS 107

LOOP/LOOPW/LOOPD
Loop

Loops repeatedly to a specified label. LOOP decrements CX (without
changing any flags) and, if the result is not 0, transfers execution to the
address specified by the operand. On the 80386/486, LOOP uses the
16-bit CX in 16-bit mode and the 32-bit ECX in 32-bit mode. The
default can be overridden with LOOPW (CX) or LOOPD (ECX). If CX
is 0 after being decremented, execution continues at the next
instruction. The operand must specify a short label (between -128 and
+ 127 bytes from the instruction following the LOOP instruction).

I 11100010 I disp (1)

LOOP label loop wend 88/86 17,noj=5
LOOPW label* 286 8+m,noj=4
LOOPD label* 386 11+m

486 7,noj=6

* 80386/486 only.

108 PROCESSOR INSTRUCTIONS

LOOPcondition
LOOPconditionW
LOOPconditionD

Loop Conditionally

Loops repeatedly to a specified label if condition is met and if CX is
not O. On the 80386/486, these instructions use the 16-bit CX in
16-bit mode and the 32-bit ECX in 32-bit mode. This default can be
overridden with the W (CX) or D (ECX) forms of the instruction. The
instruction decrements CX (without changing any flags) and tests
whether the zero flag was set by a previous instruction (such as CMP).
With LOOPE and LOOPZ (they are synonyms), execution is
transferred to the label if the zero flag is set and CX is not O. With
LOOPNE and LOOPNZ (they are synonyms), execution is transferred
to the label if the zero flag is cleared and CX is not O. Execution
continues at the next instruction if the condition is not met. Before
entering the loop, CX should be set to the maximum number of
repetitions desired.

I 11100001 I disp (1)

LOOPE label loopz again 88/86 18,noj=6
LOOPEW label* 286 8+m,noj=4
LOOPED label* 386 11+m
LOOPZ label 486 9,noj=6
LOOPZW label*
LOOPZD label*

I 11100000 I disp (1)

LOOPNE label loopnz for next 88/86 19,noj=5
LOOPNEW label* 286 8,noj=4
LOOPNED label* 386 11+m
LOOPNZ label 486 9,noj=6
LOOPNZW label*
LOOPNZD label*

* 80386/486 only.

PROCESSOR INSTRUCTIONS 109

LSL
Load Segment Limit
80286-80486 Protected On Iy

Loads the segment limit of a selector into a specified register. The
source operand must be a register or memory operand containing a
selector. The destination operand must be a register that will receive the
segment limit if the selector is valid and visible at the current privilege
level. The zero flag is set if the segment limit is transferred, or cleared
if it is not. See Intel documentation for details on selectors, segment
limits, and other protected-mode concepts.

I 00001111 I I 00000011 I I mod, reg, rim I disp (0,1, or 2)

LSL reg16,reg16 lsI aX,bx 88/86 -
LSL reg32,reg32* 286 14

386 20,2St
486 10

LSL reg16,mem16 lsI cx,seg_lim 88/86 -
LSL reg32,mem32* 286 16

386 21,26t
486 10

* 80386/486 only.
t The first value is for byte granular; the second is for page granular.

110 PROCESSOR INSTRUCTIONS

See LDS.

LSS
Load Far Pointer to Stack Segment

LTR
Load Task Register

80286-80486 Privileged Only

Loads a value from the specified operand to the current task register.
LTR is available only in privileged mode. See Intel documentation for
details on task registers and other protected-mode concepts.

I 00001111 I I 00000000 I I mod,Ol1,rim I disp (0, 1, or 2)

LTR reg16 ltr ax 88/86 -
286 17
386 23
486 20

LTR mem16 ltr task 88/86 -

286 19
386 27
486 20

PROCESSOR INSTRUCTIONS 111

MOV
Move Data

Moves the value in the source operand to the destination operand. If the
destination operand is SS, interrupts are disabled until the next
instruction is executed (except on early versions of the 8088 and 8086).

I 1000lOdw I I mod, reg, rIm I disp (0,1, or 2)

MOV reg,reg mov dh,bh 88/86 2
mov dx,cx 286 2
mov bp,sp 386 2

486 1
MOV mem,reg mov array[dil,bx 88/86 9+EA (W88=13+EA)

mov count, ex 286 3
386 2
486 1

MOV reg,mem mov bx,pointer 88/86 8+EA (W88=12+EA)
mov dx,matrix[bx+dil 286 5

386 4
486 1

I 1100011w I I mod, OOO,rlm I disp (0, 1, or 2) data (1 or 2)

MOV mem,immed mov [bxl,15 88/86 IO+EA (W88=14+EA)
mov eolor,7 286 3

386 2
486 1

I 1011w reg I data (1 or 2)

MOV reg,immed mov cx,256 88/86 4
mov dx,OFFSET string 286 2

386 2
486 1

I 101000dw I disp (2)

MOV mem,accum mov total, ax 88/86 10 (W88=14)
286 3
386 2
486 1

MOV accum,mem mov al,string 88/86 10 (W88=14)
286 5
386 4
486 1

CONTINUED ...

112 PROCESSOR INSTRUCTIONS

I lOoolldO I I mod,sreg, rim I disp (0, 1, or 2)

MOV segreg,reg16 mov ds,ax 88/86 2
286 2,pm=17
386 2,pm=18
486 3,pm=9

MOV segreg,mem16 mov es,psp 88/86 8+EA (88=12+EA)
286 5,pm=19
386 5,pm=19
486 3,pm=9

MOV reg16,segreg mov ax,ds 88/86 2
286 2
386 2
486 3

MOV mem16,segreg mov stack_save,ss 88/86 9+EA (88=13+EA)
286 3
386 2
486 3

PROCESSOR INSTRUCTIONS 113

MOV
Move to/from
Special Reg isters
80386/486 Only

Moves a value from a special register to or from a 32-bit general­
purpose register. The special registers include the control registers
CRO, CR2, and CR3; the debug registers DRO, DR1, DR2, DR3,
DR6, and DR7; and the test registers TR6 and TR7. On the 80486, the
test registers TR4, TR5, and TR7 are also available. See Intel
documentation for details on special registers.

I 00001111 I I 00 1 OOOdO I 111, reg*, rim I
MOV reg32, controlreg mov eax,cr2 88/86 -

286 -
386 6
486 4

MOV controlreg,reg32 mov crO,ebx 88/86 -
286 -
386 CRO= 10,CR2=4,CR3=5
486 4,CRO=16

I 00001111 I I 00 1 OOOd 1 I I 11, reg*, rim I
MOV reg32,debugreg mov edx,dr3 88/86 -

286 -
386 DR0-3=22,DR6-7= 14
486 10

MOV debugreg,reg32 mov drO,ecx 88/86 -
286 -
386 DR0-3=22,DR6-7= 16
486 11

I 00001111 I I 00100ldO I I 11 ,reg*, rim I
MOV reg32,testreg mov edx,tr6 88/86 -

286 -
386 12
486 4,TR3=3

MOV testreg, reg32 mov tr7,eax 88/86 -
286 -
386 12
486 4,TR3=6

* The reg field contains the register number of the special register (for example, 000 for CRO, Oil for
DR7, or 111 for TR7).

114 PROCESSOR INSTRUCTIONS

MOVS/MOVSBI
MOVSW/MOVSD

Move String Data

Moves a string from one area of memory to another. The source string
must be pointed to by DS:SI, and the destination address must be
pointed to by ES:DI (even if operands are given). For each element
moved, DI and SI are adjusted according to the size of the operands and
the status of the direction flag. They are increased if the direction flag
has been cleared with CLD, or decreased if the direction flag has been
set with STD.

If the MOVS form of the instruction is used, operands must be
provided to indicate the size of the data elements to be processed. A
segment override can be given for the source operand (but not for the
destination). If MOVSB (bytes), MOVSW (words), or MOVSD
(doublewords on the 80386/486 only) is used, the instruction
determines the size of the data elements to be processed.

MOVS and its variations are normally used with the REP prefix.

I 10 100 lOw I
MOVS [ES:ll dest, [segreg:ll src rep movsb 88/86 18 (W88=26)
MOVSB [[ES:ll dest, [segreg:ll srcll movs dest,es:source 286 5
MOVSW [[ES:ll dest, [segreg:ll srcll 386 7
MOVSD [[ES:ll dest, [segreg:ll srcll 486 7

PROCESSOR INSTRUCTIONS 115

MOVSX
Move with Sign-Extend
80386/486 Only

Moves and sign-extends the value of the source operand to the
destination register. MOVSX is used to copy a signed 8-bit or 16-bit
source operand to a larger 16-bit or 32-bit destination register.

I 00001111 I I 1011111w I I mod, reg, rim

MOVSX reg,reg movsx eax,bx
movsx ecx,bl
movsx bx,al

MOVSX reg,mem movsx cx,bsign
movsx edx,wsign
movsx eax,bsign

MOVZX
Move with Zero-Extend
80386/486 Only

I disp (0, 1,2, or 4)

88/86 -
286 -
386 3
486 3

88/86 -
286 -
386 6
486 3

Moves and zero-extends the value of the source operand to the
destination register. MOVZX is used to copy an unsigned 8-bit or
16-bit source operand to a larger 16-bit or 32-bit destination register.

I 00001111 I I 1011011w I I mod, reg, rim I disp (0,1,2, or 4)

MOVZX reg,reg movzx eax,bx 88/86 -
movzx ecx,bl 286 -
movzx bx,al 386 3

486 3
MOVZX reg,mem movzx cx,bunsign 88/86 -

movzx edx,wunsign 286 -
movzx eax,bunsign 386 6

486 3

116 PROCESSOR INSTRUCTIONS

MUL
Unsigned Multiply

Multiplies an implied destination operand by a specified source
operand. Both operands are treated as unsigned numbers. If a single
16-bit operand is given, the implied destination is AX and the product
goes into the DX:AX register pair. If a single 8-bit operand is given,
the implied destination is AL and the product goes into AX. On the
80386/486, if the operand is EAX, the product goes into the
EDX:EAX register pair. The carry and overflow flags are set if DX is
not 0 for 16-bit operands or if AH is not 0 for 8-bit operands.

I 111l01lw I I mod, 100,rlm I disp (0,1, or 2)

MUL reg mul bx 88/86 b=70-77,w=118-133
mul dl 286 b=13,w=21

386 b=9-14,w=9-22,d=9-38*
486 b=13-18,w=13-26,d=13-42

MUL mem mul factor 88/86 (b=76-83,w=124-139)+EAt
mul WORD PTR [bx] 286 b=16,w=24

386 b=12-17,w=12-25,d=12-41*
486 b=13-18,w=13-26,d=13-42

* The 80386/486 processors have an early-out multiplication algorithm. Therefore, multiplying an
8-bit or 16-bit value in EAX takes the same time as multiplying the value in AL or AX.

t Word memory operands on the 8088 take (l28-143)+EA clocks.

PROCESSOR INSTRUCTIONS 117

NEG
Two's Complement Negation

Replaces the operand with its two's complement. NEG does this by
subtracting the operand from O. If the operand is 0, the carry flag is
cleared. Otherwise, the carry flag is set. If the operand contains the
maximum possible negative value (-128 for 8-bit operands or -32,768
for 16-bit operands), the value does not change, but the overflow and
carry flags are set.

I 1111011w I I mod,OII,rlm I disp (0, 1, or 2)

NEG reg neg ax 88/86 3
286 2
386 2
486 I

NEG mem neg balance 88/86 16+EA (W88=24+EA)
286 7
386 6
486 3

118 PROCESSOR INSTRUCTIONS

NOP
No Operation

Performs no operation. NOP can be used for timing delays or
alignment.

I 10010000* I
NOP nop 88/86 3

286 3
386 3
486 3

* The encoding is the same as XCHG AX,AX.

NOT
One's Complement Negation

Toggles each bit of the operand by clearing set bits and setting cleared
bits.

I l11lOl1w I I mod,OlO,rlm I disp (0, 1, or 2)

NOT reg not ax 88/86 3
286 2
386 2
486 1

NOT mem not masker 88/86 16+EA (W88=24+EA)
286 7
386 6
486 3

PROCESSOR INSTRUCTIONS 119

OR
Inclusive 0 R

Performs a bitwise OR operation on the source and destination
operands and stores the result to the destination operand. For each
bit position in the operands, if either or both bits are set, the
corresponding bit of the result it set. Otherwise, the corresponding
bit of the result is cleared.

I OOOOlOdw I I mod, reg, rim I disp (0, 1, or 2)

OR reg,reg or ax,dx 88/86 3
286 2
386 2
486 1

OR mem,reg or bits,dx 88/86 16+EA (W88=24+EA)
or [bp+6l, ex 286 7

386 7
486 3

OR reg,mem or bx,masker 88/86 9+EA (W88=13+EA)
or dx,eolor[dil 286 7

386 6
486 2

I 100000sw I I mod,OOI, rim I disp (0, 1, or 2) data (1 or 2)

OR reg,immed or dx,llOllOb 88/86 4
286 3
386 2
486 1

OR mem,immed or flag_ree,8 88/86 (b= 17 ,w=25)+EA
286 7
386 7
486 3

I 00001 lOw I data (1 or 2)

OR accum,immed or ax,40h 88/86 4
286 3
386 2
486 1

120 PROCESSOR INSTRUCTIONS

OUT
Output to Port

Transfers a byte or word (or a doubleword on the 80386/486) to a port
from the accumulator register. The port address is specified by the
destination operand, which can be DX or an 8-bit constant. In protected
mode, a general-protection fault occurs if OUT is used when the current
privilege level is greater than the value of the IOPL flag.

I 1110011w I dilta (1)

OUT immed8,accum out 60h,al 88/86 10 (88=14)
286 3
386 1O,pm=4,24*
486 16,pm=11,31 *

I 1110111w I
OUT DX,accum out dX,ax 88/86 8 (88=12)

out dx,al 286 3
386 11,pm=5,25*
486 16,pm=1O,30*

* First protected-mode timing: CPL $ IOPL. Second timing: CPL > IOPL.

PROCESSOR INSTRUCTIONS 121

OUTS/OUTSBI
OUTSW/OUTSD
Output String to Port
80186-80486 Only

Sends a string to a port. The string is considered the source and must
be pointed to by DS:SI (even if an operand is given). The output port
is specified in DX. For each element sent, SI is adjusted according to
the size of the operand and the status of the direction flag. SI is
increased if the direction flag has been cleared with CLD or decreased if
the direction flag has been set with STD.

If the OUTS form of the instruction is used, an operand must be
provided to indicate the size of data elements to be sent. A segment
override can be given. If OUTSB (bytes), OUTSW (words), or OUTSD
(doublewords on the 80386/486 only) is used, the instruction
determines the size of the data elements to be sent.

OUTS and its variations are normally used with the REP prefix. Before
the instruction is executed, CX should contain the number of elements
to send. In protected mode, a general-protection fault occurs if OUTS is
used when the current privilege level is greater than the value of the
IOPL flag.

I OllOl11w I
OUTS DX, [segreg:] src rep outs dx,buffer 88/86 -
OUTSB [DX, [segreg:] src] outsb 286 5
OUTSW [DX, [segreg:] src] rep outsw 386 14,pm=8,28*
OUTSD [DX, [segreg:] src] 486 17,pm=1O,32*

* First protected-mode timing: CPL :-:; IOPL. Second timing: CPL > IOPL.

122 PROCESSOR INSTRUCTIONS

POP
Pop

Pops the top of the stack into the destination operand. The value at
SS:SP is copied to the destination operand and SP is increased by 2.
The destination operand can be a memory location, a general-purpose
16-bit register, or any segment register except CS. Use RET to pop
CS. On the 80386/486, 32-bit values can be popped by giving a 32-bit
operand. ESP is increased by 4 for 32-bit pops.

I 01011 reg I
POP reg16 pop ex 88/86 8 (88=12)
POP reg32* 286 5

386 4
486 1

I 10001111 I I mod, OOO,rlm I disp (2)

POP mem16 pop param 88/86 17+EA (88=25+EA)
POP mem32* 286 5

386 5
486 6

I 000,sreg,111 I
POP segreg pop es 88/86 8 (88=12)

pop ds 286 5,pm=20
pop ss 386 7,pm=21

486 3,pm=9

I 00001111 I I lO,sreg,OOl I
POP segreg* pop fs 88/86 -

pop gs 286 -
386 7,pm=21
486 3,pm=9

* 80386/486 only.

PROCESSOR INSTRUCTIONS 123

POPA/POPAD
Pop All
80186-80486 Only

Pops the top 16 bytes on the stack into the 8 general-purpose registers.
The registers are popped in the following order: DI, SI, BP, SP, BX,
DX, CX, AX. The value for the SP register is actually discarded rather
than copied to SP. POPA always pops into 16-bit registers. On the
80386/486, use POPAD to pop into 32-bit registers.

I 01100001 I
POPA popa 88/86 -

POPAD* 286 19
386 24
486 9

* 80386/486 only.

POPF/POPFD
POp Flags

Pops the value on the top of the stack into the flags register. POPF
always pops into the 16-bit flags register. On the 80386/486, use
POPFD to pop into the 32-bit flags register.

I 10011101 I
POPF pop£ 88/86 8 (88=12)
POPFD* 286 5

386 5
486 9,pm=6

* 80386/486 only.

124 PROCESSOR INSTRUCTIONS

PUSH/PUSHW/PUSHD
Push

Pushes the source operand onto the stack. SP is decreased by 2 and the
source value is copied to SS:SP. The operand can be a memory
location, a general-purpose 16-bit register, or a segment register. On
the 80186-80486 processors, the operand can also be a constant. On
the 80386/486, 32-bit values can be pushed by specifying a 32-bit
operand. ESP is decreased by 4 for 32-bit pushes. On the 8088 and
8086, PUSH SP saves the value of SP after the push. On the 80186-
80486 processors, PUSH SP saves the value of SP before the push.
The PUSHW and PUSHD instructions push a word (2 bytes) and a
doubleword (4 bytes), respectively.

I 01010 reg I
PUSH reg16 push dx 88/86 11 (88=15)
PUSH reg32* 286 3
PUSHW reg16 386 2
PUSHD reg16* 486 1
PUSHD reg32*

I 11111111 I I mod, 11O,rlm I disp (2)

PUSH mem16 push [diJ 88/86 16+EA (88=24+EA)
PUSH mem32* push fcount 286 5

386 5
486 4

I OO,sreg,110 I
PUSH segreg push es 88/86 10 (88=14)
PUSHW segreg push ss 286 3
PUSHD segreg* push cs 386 2

486 3

I 00001111 I I 10,sreg,000 I
PUSH segreg push fs 88/86 -
PUSHW segreg push gs 286 -
PUSHD segreg* 386 2

486 3

I OllOlOsO I data (J or 2)

PUSH immed push 'a' 88/86 -
PUSHW immed push 15000 286 3
PUSHD immed* 386 2

486 1

* 80386/486 only.

PROCESSOR INSTRUCTIONS 125

PUSHA/PUSHAD
Push All
80186-80486 Only

Pushes the eight general-purpose registers onto the stack. The registers
are pushed in the following order: AX, CX, DX, BX, SP, BP, SI, DI.
The value pushed for SP is the value before the instruction. PUSHA
always pushes 16-bit registers. On the 80386/486, use PUSHAD to
push 32-bit registers.

I 01100000 I
PUSHA pusha 88/86 -
PUSHAD* 286 17

386 18
486 11

* 80386/486 only.

126 PROCESSOR INSTRUCTIONS

PUSHF/PUSHFD
Push Flags

Pushes the flags register onto the stack. PUSHF always pushes the 16-
bit flags register. On the 80386/486, use PUSHFD to push the 32-bit
flags register.

I 10011100 I
PUSHF pushf 88/86 10 (88=14)
PUSHFD* 286 3

386 4
486 4,pm=3

* 80386/486 only.

PROCESSOR INSTRUCTIONS 127

RCL/RCR/ROL/ROR
Rotate

Rotates the bits in the destination operand the number of times
specified in the source operand. RCL and ROL rotate the bits left;
RCR and ROR rotate right.

ROL and ROR rotate the number of bits in the operand. For each
rotation, the leftmost or rightmost bit is copied to the carry flag as
well as rotated. RCL and RCR rotate through the carry flag. The carry
flag becomes an extension of the operand so that a 9-bit rotation is
done for 8-bit operands, or a 17 -bit rotation for 16-bit operands.

On the 8088 and 8086, the source operand can be either CL or 1. On
the 80186-80486, the source operand can be CL or an 8-bit constant.
On the 80186-80486, rotate counts larger than 31 are masked off, but
on the 8088 and 8086, larger rotate counts are performed despite the
inefficiency involved. The overflow flag is only modified by single-bit
variations of the instruction; for multiple-bit variations, it is undefined.

I 110lO00w I I mod, TIT* ,rim I disp (0, 1, or 2)

ROL reg,! ror ax,l 88/86 2
ROR reg,! rol dI,1 286 2

386 3
486 3

RCL reg,! reI dx,l 88/86 2
RCR reg,! rer bI,1 286 2

386 9
486 3

ROL mem,1 ror bits,l 88/86 15+EA (W88=23+EA)
ROR mem,1 rol WORD PTR [bx], I 286 7

386 7
486 4

RCL mem,l reI WORD PTR [si), I 88/86 15+EA (W88=23+EA)
RCR mem,l rer WORD PTR m32[O),1 286 7

386 lO
486 4

* TIT represents one of the following bit codes: 000 for ROL, 001 for ROR, OlO for RCL, or 011 for
RCR,

CONTINUED •••

128 PROCESSOR INSTRUCTIONS

I llOlOOlw I I mod, TTT*,rlm I disp (0, I, or 2)

ROL reg,CL ror ax,eI 88/86 8+4n
ROR reg,CL rol dx,eI 286 5+n

386 3
486 3

RCL reg,CL reI dx,eI 88/86 8+4n
RCR reg,CL rer bI,eI 286 5+n

386 9
486 8-30

ROL mem,CL ror eolor,el 88/86 20+EA+4n (W88=28+EA+4n)
ROR mem,CL rol WORD PTR [bp+6], el 286 8+n

386 7
486 4

RCL mem,CL rer WORD PTR [bx+di] , el 88/86 20+EA+4n (W88=28+EA+4n)
RCR mem,CL reI masker 286 8+n

386 10
486 9-31

I 1l00000w I I mod,TTT*,rlm I disp (0, I, or 2) data (1)

ROL reg,immed8 rol ax,13 88/86 -
ROR reg,immed8 ror bI,3 286 5+n

386 3
486 2

RCL reg,immed8 reI bx,5 88/86 -
RCR reg,immed8 rer si,9 286 5+n

386 9
486 8-30

ROL mem,immed8 rol BYTE PTR [bx],10 88/86 -
ROR mem,immed8 ror bits, 6 286 8+n

386 7
486 4

RCL mem,immed8 reI WORD PTR [bp+8],5 88/86 -
RCR mem,immed8 rer masker, 3 286 8+n

386 10
486 9-31

* TTT represents one of the following bit codes: 000 for ROL, 001 for ROR, 010 for RCL, or Oil for
RCR.

PROCESSOR INSTRUCTIONS 129

REP
Repeat String

Repeats a string instruction the number of times indicated by CX.
First, CX is compared to zero; if it equals zero, execution proceeds to
the next instruction. Otherwise, CX is decremented, the string
instruction is performed, and the loop continues with CX being
compared to zero. REP is used with MOVS and STOS. REP can also
be used with INS and OUTS on the 80186-80486 processors. On all
processors except the 80386/486, combining a repeat prefix with a
segment override can cause errors if an interrupt occurs.

I 11110011 I I 10 100 lOw

REP MOVS dest,src rep
REP MOVSB [dest,srcll rep
REP MOVSW [dest,srcll
REP MOVSD [dest,srcll

I 11110011 I I
REP STOS dest
REP STOSB [destll
REP STOSW [destll
REP STOSD [destll

I 11110011 I I
REP LODS dest
REP LODSB [destll
REP LODSW [destll
REP LODSD [destll

I 11110011 I I
REP INS dest,DX
REP INSB [dest,DXll
REP INSW [dest,DXll
REP INSD [dest,DXll

I 11110011 I I
REP OUTS DX,src
REP OUTSB [srcll
REP OUTSW [srcll
REP OUTSD [srcll

* 5 if n = 0, 13 if n = 1
t 5 ifn=O

1010101w

rep
rep

1010101w

rep
rep

01101 lOw

rep
rep

0110111w

rep
rep

I
movs source,dest 88/86
movsw 286

386
486

I
stosb 88/86
stos dest 286

386
486

I
lodsb 88/86
lods dest 286

386
486

I
insb 88/86
ins dest,dx 286

386
486

I
outs dx,source 88/86
outsw 286

386
486

§ First protected-mode timing: CPL S; IOPL. Second timing: CPL > IOPL.

130 PROCESSOR INSTRUCTIONS

9+ 17n (W88=9+25n)
5-t4n
7-t4n
12+3n*

9+1On (W88=9+14n)
4+3n
5+5n
7+4nt

-
-

-
7+4nt

-
5-t4n
13+6n,pm=(7,27)+6n§
16+8n,pm=(10,30)+8n§

-
5-t4n
12+5n,pm=(6,26)+5n§
17+5n,pm=(11,31)+5n§

REPcondition
Repeat String Conditionally

Repeats a string instruction as long as condition is true and the
maximum count has not been reached. REPE and REPZ (they are
synonyms) repeat while the zero flag is set. REPNE and REPNZ (they
are synonyms) repeat while the zero flag is cleared. The conditional­
repeat prefixes should only be used with SCAS and CMPS, since these
are the only string instructions that modify the zero flag. Before
executing the instruction, CX should be set to the maximum allowable
number of repetitions. First, CX is compared to zero; if it equals zero,
execution proceeds to the next instruction. Otherwise, CX is
decremented, the string instruction is performed, and the loop continues
with CX being compared to zero. On all processors except the
80386/486, combining a repeat prefix with a segment override may
cause errors if an interrupt occurs during a string operation.

I 11110011 I I IOI00llw I
REPE CMPS src,dest repz empsb 88/86 9+22n(W88=9+30n)
REPE CMPSB [src,destD repe emps src,dest 286 5+9n
REPE CMPSW [src,destD 386 5+9n
REPE CMPSD [src,destD 486 7+7n*

I 11110011 I I 1010111w I
REPE SCAS dest repe seas dest 88/86 9+15n (W88=9+19n)
REPE SCASB [destD repz seasw 286 5+8n
REPE SCASW [destD 386 5+8n
REPE SCASD [destD 486 7+5n*

I 11110010 I I 10 10011 w I
REPNE CMPS src,dest repne empsw 88/86 9+22n (W88=9+30n)
REPNE CMPSB [src,destD repnz emps src,dest 286 5+9n
REPNE CMPSW [src,destD 386 5+9n
REPNE CMPSD [src,destD 486 7+7n*

I 11110010 I I 1010111w I
REPNE SCAS dest repne seas dest 88/86 9+15n (W88=9+19n)
REPNE SCASB [destD repnz seasb 286 5+8n
REPNE SCASW [destD 386 5+8n
REPNE SCASD [destD 486 7+5n*

* 5 ifn=O

PROCESSOR INSTRUCTIONS 131

RET/RETN/RETF
Return from Procedure

Returns from a procedure by transferring control to an address popped
from the top of the stack. A constant operand can be given indicating
the number of additional bytes to release. The constant is normally
used to adjust the stack for arguments pushed before the procedure was
called. The size of a return (near or far) is the size of the procedure in
which the RET is defined with the PROC directive. RETN can be used
to specify a near return; RETF can specify a far return. A near return
pops a word into IP. A far return pops a word into IP and then pops a
word into CS. After the return, the number of bytes given in the
operand (if any) is added to SP.

I 11000011 I
RET ret 88/86 16 (88=20)
RETN retn 286 l1+m

386 10+m
486 5

I 11000010 I data (2)

RET immed16 ret 2 88/86 20 (88=24)
RETN immed16 retn 8 286 11+m

386 lO+m
486 5

I 11001011 I
RET ret 88/86 26 (88=34)
RETF retf 286 15+m,pm=25+m,55*

386 18+m,pm=32+m,62*
486 13,pm=18,33*

I 11001010 I data (2)

RET immed16 ret 8 88/86 25 (88=33)
RETF immed16 retf 32 286 15+m,pm=25+m,55*

386 18+m,pm=32+m,68*
486 14,pm=17,33*

* The first protected-mode timing is for a return to the same privilege level; the second is for a return
to a lesser privilege level.

132 PROCESSOR INSTRUCTIONS

ROL/ROR
Rotate

See RCL/RCR.

SAHF
Store AH into Flags

Transfers AH into bits 0 to 7 of the flags register. This includes the
carry, parity, auxiliary carry, zero, and sign flags, but not the trap,
interrupt, direction, or overflow flags.

I 10011110 I
SAHF sahf

See SHL/SHR/SAL/SAR.

88/86
286
386
486

4
2
3
2

SAL/SAR
Shift

PROCESSOR INSTRUCTIONS 133

see
Subtract with Borrow

Adds the carry flag to the second operand, then subtracts that value
from the first operand. This result is assigned to the first operand. SBB
is used to subtract the least significant portions of numbers that must
be processed in mUltiple registers.

I 00OllOdw I I mod, reg, rim I disp (0, 1, or 2)

SBB reg, reg sbb dx,cx 88/86 3
286 2
386 2
486 1

SBB mem,reg sbb WORD PTR m32[21,dx 88/86 16+EA (W88=24+EA)
286 7
386 6
486 3

SBB reg,mem sbb dx,WORD PTR m32[2] 88/86 9+EA (W88=13+EA)
286 7
386 7
486 2

I 100000sw I I mod,Oll, rim I disp (0, 1, or 2) data (1 or 2)

SBB reg,immed sbb dx,45 88/86 4
286 3
386 2
486 1

SBB mem,immed sbb WORD PTR m32[2],40 88/86 17+EA (W88=25+EA)
286 7
386 7
486 3

I 0OOl110w I data (lor 2)

SBB accum,immed sbb ax, 320 88/86 4
86 3

386 2
486 1

134 PROCESSOR INSTRUCTIONS

SCAS/SCASB/
SCASW/SCASD

Scan String Flags

Scans a string to find a value specified in the accumulator register. The
string to be scanned is considered the destination and must be pointed
to by ES:DI (even if an operand is specified). For each element, the
destination element is subtracted from the accumulator value and the
flags are updated to reflect the result (although the result is not stored).
DI is adjusted according to the size of the operands and the status of the
direction flag. DI is increased if the direction flag has been cleared with
CLD or decreased if the direction flag has been set with STD.

If the SCAS form of the instruction is used, an operand must be
provided to indicate the size of the data elements to be processed. No
segment override is allowed. If SCASB (bytes), SCASW (words), or
SCASD (doublewords on the 80386/486 only) is used, the instruction
determines the size of the data elements to be processed and whether the
element scanned for is in AL, AX, or EAX.

SCAS and its variations are normally used with repeat prefixes.
REPNE (or REPNZ) is used to find the first match of the accumulator
value. REPE (or REPZ) is used to find the first nonmatch. Before the
comparison, CX should contain the maximum number of elements to
compare. After a REPNE SCAS, the zero flag will be cleared if no
match was found. After a REPE SeAS, the zero flag will be set if no
nonmatch was found. Otherwise, ES:DI will point to the element past
the first match or nonmatch.

I 1010111w I
SCAS [ES:] dest repne seasw 88/86 15 (W88=19)
SCASB [[ES:] dest] repe seasb 286 7
SCASW [[ES:] dest] seas es:destin 386 7
SCASD [[ES:] dest] 486 6

PROCESSOR INSTRUCTIONS 135

SETcondition
Set Conditionally
80386/486 Only

Sets the byte specified in the operand to 1 if condition is true or to 0 if
condition is false. The condition is tested by checking the flags shown
in the table on the following page. The instruction is used to set
Boolean flags conditionally.

I 00001111 I I 100Icond I I mod,OOO,r/m I
SETcondition reg8 setc clh 88/86 -

setz al 286 -
setae bl 386 4

486 true=4, false=3
SETcondition mem8 seta BTYE PTR [ebxJ 88/86 -

set Ie flag 286 -
sete Booleans[diJ 386 5

486 true=3, false=4

CONTINUED ...

136 PROCESSOR INSTRUCTIONS

SET CONDITIONS

Opcode Mnemonic Flags Checked Description

10010010 SETB/SETNAE CF=I Set if below/not above or equal
(unsigned comparisons)

10010011 SET AE/SETNB CF=O Set if above or equal/not below
(unsigned comparisons)

10010110 SETBE/SETNA CF=lorZF=1 Set if below or equal/not above
(unsigned comparisons)

10010111 SET A/SETNBE CF=O and ZF=O Set if above/not below or equal
(unsigned comparisons)

10010100 SETE/SETZ ZF=I Set if equal/zero

10010101 SETNE/SETNZ ZF=O Set if not equal/not zero

10011100 SETL/SETNGE SF;t()F Set if less/not greater or equal (signed
comparisons)

10011101 SETGE/SETNL SF=OF Set if greater or equal/not less (signed
comparisons)

10011110 SETLE/SETNG ZF= 1 or SF;t:OF Set if less or equal/not greater or equal
(signed comparisons)

10011111 SETG/SETNLE ZF=O and SF=OF Set if greater/not less or equal (signed
comparisons)

10011000 SETS SF=I Set if sign

10011001 SETNS SF=O Set if not sign

10010010 SETC F=I Set if carry

10010011 SETNC CF=O Set if not carry

10010000 SETO OF=I Set if overflow

10010001 SETNO OF=O Set if not overflow

10011010 SETP/SETPE PF=I Set if parity/parity even

10011011 SETNP/SETPO PF=O Set if no parity/parity odd

PROCESSOR INSTRUCTIONS 137

SGDT/SIDT/SLDT
Store Descriptor Table
80286-80486 0 n I y

Stores a descriptor table register into a specified operand. SGDT stores
the Global Descriptor Table; SIDT, the Interrupt Descriptor Table; and
SLDT, the Local Descriptor Table. These instructions are generally
useful only in privileged mode. See Intel documentation for details on
descriptor tables and other protected-mode concepts.

I 00001111 I I 00000001 I I mod,OOO,rlm I disp (2)

SGDT mem48 sgdt descriptor 88/86 -
286 11
386 9
486 10

I 00001111 I I 00000001 I I mod,OOI,rlm I disp (2)

SIDT mem48 sidt descriptor 88/86 -
286 12
386 9
486 10

I 00001111 I I 00000000 I I mod, OOO,rlm I disp (0,1, or 2)

SLDT reg16 sldt ax 88/86 -
286 2
386 2
486 2

SLDT mem16 sldt selector 88/86 -

286 3
386 2
486 3

138 PROCESSOR INSTRUCTIONS

SHL/SHRISAL/SAR
Shift

Shifts the bits in the destination operand the number of times specified
by the source operand. SAL and SUL shift the bits left; SAR and SUR
shift right.

With SUL, SAL, and SUR, the bit shifted off the end of the operand is
copied into the carry flag and the leftmost or rightmost bit opened by
the shift is set to O. With SAR, the bit shifted off the end of the
operand is copied into the carry flag and the leftmost bit opened by
the shift retains its previous value (thus preserving the sign of the
operand). SAL and SUL are synonyms.

On the 8088 and 8086, the source operand can be either CL or 1. On
the 80186-80486 processors, the source operand can be CL or an 8-bit
constant. On the 80186-80486 processors, shift counts larger than 31
are masked off, but on the 8088 and 8086, larger shift counts are
performed despite the inefficiency involved. The overflow flag is only
modified by single-bit variations of the instruction; for multiple-bit
variations, it is undefined.

I llOlOOOw I I mod,TTT* ,rim I disp (0, 1, or 2)

SAR reg,l sar di,l 88/86 2
sar cl,l 286 2

386 3
486 3

SAL reg,l shr dh,l 88/86 2
SHL reg,l shl si,l 286 2
SHR reg,l sal bx,l 386 3

486 3
SAR mem,l sar count, 1 88/86 15+EA (W88=23+EA)

286 7
386 7
486 4

SAL mem,l sal WORD PTR m32[Ol,l 88/86 15+EA (W88=23+EA)
SHL mem,l shl index, 1 286 7
SHR mem,l shr unsign[dil,l 386 7

486 4

* TTT represents one of the following bit codes: 100 for SUL or SAL, 101 for SUR, or 111 for SAR.

CONTINUED ...

PROCESSOR INSTRUCTIONS 139

I 1101001w I I mod,TTT*,rlm I disp (0, 1, or 2)

SAR reg,CL sar bx,cl 88/86 8+4n
sar dx,cl 286 5+n

386 3
486 3

SAL reg,CL shr dx,cl 88/86 8+4n
SHL reg,CL shl di,cl 286 5+n
SHR reg,CL sal ah,cl 386 3

486 3
SAR mem,CL sar sign,cl 88/86 20+EA+4n CW88=28+EA+4n)

sar WORD PTR [bp+8], cl 286 8+n
386 7
486 4

SAL mem,CL shr WORD PTR m32[2],cl 88/86 20+EA+4n CW88=28+EA+4n)
SHL mem,CL sal BYTE PTR [di] ,cl 286 8+n
SHR mem,CL shl index,cl 386 7

486 4

I ll00000w I I mod,TTT*,rlm I disp (0, 1, or 2) data (1)

SAR reg ,immed8 sar bx,S 88/86 -
sar cl,S 286 5+n

386 3
486 2

SAL reg,immed8 sal cx,6 88/86 -
SHL reg,immed8 shl di,2 286 5+n
SHR reg,immed8 shr bx,8 386 3

486 2
SAR mem,immed8 sar sign_count, 3 88/86 -

sar WORD PTR [bx],5 286 8+n
386 7
486 4

SAL mem,immed8 shr mem16,11 88/86 -
SHL mem,immed8 shl unsign,4 286 8+n
SHR mem,immed8 sal array[bx+di],14 386 7

486 4

* TTT represents one of the following bit codes: 100 for SHL or SAL, 101 for SHR, or 111 for SAR.

140 PROCESSOR INSTRUCTIONS

SHLD/SHRD
Double Precision Shift

80386/486 On Iy

Shifts the bits of the second operand into the first operand. The number
of bits shifted is specified by the third operand. SULD shifts the first
operand to the left by the number of positions specified in the count.
The positions opened by the shift are filled by the most significant bits
of the second operand. SURD shifts the first operand to the right by the
number of positions specified in the count. The positions opened by
the shift are filled by the least significant bits of the second operand.
The count operand can be either CL or an 8-bit constant. If a shift
count larger than 31 is given, it is adjusted by using the remainder
(modulus) of a division by 32.

I 00001111 I I 10100100 I I mad,reg,rlm I disp (0, 1, or 2) data (1)

SHLD reg16,reg16,immed8 shld ax,dx,lO 88/86 -
SHLD reg32,reg32,immed8 286 -

386 3
486 2

SHLD mem16,reg16,immed8 shld bits,ex,S 88/86 -
SHLD mem32,reg32,immed8 286 -

386 7
486 3

I 00001111 I I 10101100 I I mad,reg,rlm I disp (0,1, or 2) data (1)

SHRD reg16,reg16,immed8 shrd ex,si,3 88/86 -
SHRD reg32,reg32,immed8 286 -

386 3
486 2

SHRD mem16,reg16,immed8 shrd [diJ ,dx,13 88/86 -

SHRD mem32,reg32,immed8 286 -
386 7
486 3

I 00001111 I I 10100101 I I mad,reg,rlm I disp (0, 1, or 2)

SHLD reg16,reg16,CL shld ax,dx,el 88/86 -
SHLD reg32,reg32,CL 286 -

386 3
486 3

SHLD mem16,reg16,CL shld masker,ax,el 88/86 -
SHLD mem32,reg32,CL 286 -

386 7
486 4

CONTINUED ...

PROCESSOR INSTRUCTIONS 141

I 00001111 I I 10101101 I I mod,reg,rlm

SHRD reg16,reg16,CL shrd bX,dx,cl
SHRD reg32,reg32,CL

SHRD mem16,reg16,CL shrd [bx],dx,cl
SHRD mem32,reg32,CL

SMSW
Store Machine Status Word
80286-80486 Only

I disp (0, 1, or 2)

88/86 -

286 -
386 3
486 3

88/86 -
286 -

386 7
486 4

Stores the Machine Status Word (MSW) into a specified memory
operand. SMSW is generally useful only in protected mode. See Intel
documentation for details on the MSW and other protected-mode
concepts.

I 00001111 I I 00000001 I I mod,100,rlm I disp (0, 1, or 2)

SMSW reg16 smsw ax 88/86 -
286 2
386 2
486 2

SMSW mem16 smsw machine 88/86 -
286 3
386 3
486 3

142 PROCESSOR INSTRUCTIONS

STC
Set Carry Flag

Sets the carry flag.

I 11111001 I
STC stc 88/86 2

286 2
386 2
486 2

STD
Set Direction Flag

Sets the direction flag. All subsequent string instructions will process
down (from high addresses to low addresses).

I 11111101 I
STD std 88/86 2

286 2
386 2
486 2

PROCESSOR INSTRUCTIONS 143

STI
Set Interrupt Flag

Sets the interrupt flag. When the interrupt flag is set, maskable
interrupts are recognized. If interrupts were disabled by a previous eLI
instruction, pending interrupts will not be executed immediately; they
will be executed after the instruction following STI.

I 11111011 I
STI sti 88/86 2

286 2
386 3
486 5

144 PROCESSOR INSTRUCTIONS

STOS/STOSBI
STOSW/STOSD

Store String Data

Stores the value in the accumulator in a string. The string to be filled
is the destination and must be pointed to by ES:DI (even if an operand
is given). For each source element loaded, DI is adjusted according to
the size of the operands and the status of the direction flag. DI is
increased if the direction flag has been cleared with CLD or decreased if
the direction flag has been set with STD.

If the STOS form of the instruction is used, an operand must be
provided to indicate the size of the data elements to be processed. No
segment override is allowed. If STOSB (bytes), STOSW (words), or
STOSD (doublewords on the 80386/486 only) is used, the instruction
determines the size of the data elements to be processed and whether the
element comes from AL, AX, or EAX.

STOS and its variations are often used with the REP prefix. Before the
repeated instruction is executed, CX should contain the number of
elements to store.

I 1010101w I
STOS [ES:] dest stos es:dstring 88/86 11 (W88=15)
STOSB [[ES:] dest] rep stosw 286 3
STOSW [[ES:] dest] rep stosb 386 4
STOSD [[ES:] dest] 486 5

PROCESSOR INSTRUCTIONS 145

STR
Store Task Register
80286-80486 Only

Stores the current task register to the specified operand. This
instruction is generally useful only in privileged mode. See Intel
documentation for details on task registers and other protected-mode
concepts.

I 00001111 I I 00000000 I I mod, 001, reg I disp (0,1, or 2)

STR reg16 str ex 88/86 -
286 2
386 2
486 2

STR mem16 str taskreg 88/86 -
286 3
386 2
486 3

146 PROCESSOR INSTRUCTIONS

SUB
Subtract

Subtracts the source operand from the destination operand and stores the
result in the destination operand.

I 00 10 lOdw I I mod, reg, rim I disp (0, 1, or 2)

SUB reg, reg sub ax,bx 88/86 3
sub bh,dh 286 2

386 2
486 1

SUB mem,reg sub tally,bx 88/86 16+EA (W88=24+EA)
sub array[di],bl 286 7

386 6
486 3

SUB reg,mem sub ex, discard 88/86 9+EA (W88=13+EA)
sub aI, [bxl 286 7

386 7
486 2

I 100000sw I I mod,lOl,rlm I disp (0, 1, or 2) data (lor 2)

SUB reg,immed sub dx,45 88/86 4
sub bl,7 286 3

386 2
486 1

SUB mem,immed sub total, 4000 88/86 17+EA (W88=25+EA)
sub BYTE PTR [bx+di],2 286 7

386 7
486 3

I 00101 lOw I data (lor 2)

SUB accum,immed sub ax,32000 88/86 4
286 3
386 2
486 1

PROCESSOR INSTRUCTIONS 147

TEST
Logical Compare

Tests specified bits of an operand and sets the flags for a subsequent
conditional jump or set instruction. One of the operands contains the
value to be tested. The other contains a bit mask indicating the bits to
be tested. TEST works by doing a bitwise AND operation on the
source and destination operands. The flags are modified according to the
result, but the destination operand is not changed. This instruction is
the same as the AND instruction, except the result is not stored.

I 10000 lOw I I mad, reg, rim I disp (0,1, ar 2)

TEST reg,reg test dx,bx 88/86 3
test bI,ch 286 2

386 2
486 1

TEST mem,reg test dx,fIags 88/86 9+EA (W88=13+EA)
TEST reg ,mem* test bI,bitarray [bx] 286 6

386 5
486 2

I 1111011w I I mad,OOO,rlm I disp (0,1, ar 2) data (1 ar 2)

TEST reg,immed test cx,30h 88/86 5
test el, lOl1b 286 3

386 2
486 1

TEST mem,immed test masker,l 88/86 l1+EA
test BYTE PTR [bx],03h 286 6

386 5
486 2

I 10 10 100w I data (1 ar 2)

TEST accum,immed test ax,90h 88/86 4
286 3
386 2
486 1

* MASM transposes TEST reg,mem; that is, it is encoded as TEST mem,reg.

148 PROCESSOR INSTRUCTIONS

VERR/VERW
Verify Read or Write

80286-80486 Protected Only

Verifies that a specified segment selector is valid and can be read or
written to at the current privilege level. VERR verifies that the selector
is readable. VERW verifies that the selector can be written to. If the
segment is verified, the zero flag is set. Otherwise, the zero flag is
cleared.

I 00001111 I I 00000000 I I mod, 100,rlm I disp (0, 1, or 2)

VERR reg16 verr ax 88/86 -
286 14
386 10
486 11

VERR mem16 verr selector 88/86 -
286 16
386 11
486 11

I 00001111 I I 00000000 I I mod, lOl,rlm I disp (0, 1, or 2)

VERW reg16 verw cx 88/86 -
286 14
386 15
486 11

VERW mem16 verw selector 88/86 -
286 16
386 16
486 11

PROCESSOR INSTRUCTIONS 149

WAIT
Wait

Suspends processor execution until the processor receives a signal that
a coprocessor has finished a simultaneous operation. It should be used
to prevent a coprocessor instruction from modifying a memory location
that is being modified simultaneously by a processor instruction.
WAIT is the same as the coprocessor FW AIT instruction.

I 10011011 I
WAIT wait 88/86 4

286 3
386 6
486 1-3

150 PROCESSOR INSTRUCTIONS

WBINVD
Write Back and Invalidate

Data Cache
80486 Only

Empties the contents of the current data cache but first writes changes
to memory. Proper use of this instruction requires knowledge of how
contents are placed in the cache. WBINVD is intended primarily for
systems programming. See Intel documentation for details.

I 00001111 I I 00001001

WBINVD wbinvd

I
88/86 -

286 -
386 -
486 5

XADD
Exchange and Add

80486 Only

Adds the source and destination operands and stores the sum in the
destination; simultaneously, the original value of the destination is
moved to the source. The instruction sets flags according to the result
of the addition.

I 00001111 I I ll00000b I I mod, reg, rim I disp (0,1, or 2)

XADD mem,reg xadd warr[bxl,ax 88/86 -
xadd string,bl 286 -

386 -
486 4

XADD reg,reg xadd dl,al 88/86 -
xadd bx,dx 286 -

386 -
486 3

PROCESSOR INSTRUCTIONS 151

XCHG
Exchange

Exchanges the values of the source and destination operands.

I 10000 11 w I I mod,reg,rlm I disp (0, 1, or 2)

XCHG reg,reg xchg cx,dx 88/86 4
xchg l,dh 286 3
xchg al,ah 386 3

486 3
XCHG reg,mem xchg [bx],ax 88/86 17+EA (W88=25+EA)
XCHG mem,reg xchg bx,pointer 286 5

386 5
486 5

I 10010 reg I
XCHG accum,reg16* xchg ax,cx 88/86 3
XCHG reg16,accum* xchg cX,ax 286 3

386 3
486 3

* On the 80386/486, the accumulator may also be exchanged with a 32-bit register.

XLAT/XLATB
Translate

Translates a value from one coding system to another by looking up
the value to be translated in a table stored in memory. Before the
instruction is executed, BX should point to a table in memory and AL
should contain the unsigned position of the value to be translated from
the table. After the instruction, AL contains the table value with the
specified position. No operand is required, but one can be given in order
to specify a segment override. DS is assumed unless a segment override
is given. XLATB is a synonym for XLA T. Either version allows an
operand, but neither requires one.

I 11010111 I
XLA T [[segreg:] mem] xlat 88/86 11
XLA TB [[segreg:] mem] xlatb es:table 286 5

386 5
486 4

152 PROCESSOR INSTRUCTIONS

XOR
Exclusive 0 R

Performs a bitwise exclusive OR operation on the source and
destination operands and stores the result in the destination. For each
bit position in the operands, if both bits are set or if both bits are
cleared, the corresponding bit of the result is cleared. Otherwise, the
corresponding bit of the result is set.

I OOllOOdw I I mod, reg, rim I disp (0, 1, or 2)

XOR reg,reg xor ex,bx 88/86 3
xor ah,al 286 2

386 2
486 1

XOR mem,reg xor [bp+1O),ex 88/86 16+EA (W88=24+EA)
xor masked,bx 286 7

386 6
486 3

XOR reg,mem xor ex, flags 88/86 9+EA (W88=13+EA)
xor bi,bitarray [di] 286 7

386 7
486 2

I 100000sw I I mod,llO,rlm I disp (0, 1, or 2) data (1 or 2)

XOR reg,immed xor bx,lOh 88/86 4
xor bi,l 286 3

386 2
486 1

XOR mem,immed xor Boolean, 1 88/86 17+EA (W88=25+EA)
xor switehes[bx],lOlb 286 7

386 7
486 3

I 001 10 lOw I data (1 or 2)

XOR accum,immed xor ax,OlOlOlOlb 88/86 4
286 3
386 2
486 1

PROCESSOR INSTRUCTIONS 153

Coprocessor

Interpreting Coprocessor Instructions
Syntax
Examples
Clock Speeds
Instruction Size

Architecture
Instructions

Topical Cross-Reference
for Coprocessor

Load Arithmetic Transcendental Processor
FLD/FILD/FBLD FADD/FIADD FPTAN Control
FXCH FADDP FPATAN FINIT IFNINIT
FLDCW FSUB/FISUB FSIN§ FFREE
FLDENV FSUBP FCOS§ FNOP
FRSTOR FSUBR/FISUBR FSINCOS§ FWAIT

FSUBRP F2XMl FDECSTP
Store Data FMULIFIMUL FYL2X FINCSTP

FMULP FYL2Pl FCLEX/FNCLEX FST/FIST FSCALE FPREM FSETPMt FSTP/FISTP/FBSTP FDIV/FIDIV FPREMl§ FDISI/FNDISI* FSTCW/FNSTCW FDIVP FENI/FNENI* FSTSW/FNSTSW FDIVR/FIDIVR Compare FSA VE/FNSA VE FSA VE/FNSA VE FDIVRP FLDCW FSTENV IFNSTENV FABS FCOM/FICOM
FRSTOR

FCHS FCOMP/FICOMP
FSTCW/FNSTCW Load Constant FRNDINT FCOMPP
FSTSW/FNSTSW

FSQRT FUCOM§
FSTENV IFNSTENV FLDI FUCOMP§

FLDL2E FPREM
FUCOMPP§

FLDL2T FPREMl§
FTST

FLDLG2 FXTRACT
FXAM

FLDLN2 FSTSW IFNSTSW
FLDPI
FLDZ

* 8087 only. t 80287 only. § 80387/486 only.

Interpreting Coprocessor Instructions

This section provides an alphabetical reference to instructions of the
8087, 80287, and 80387 coprocessors. The format is the same as the
processor instructions except that encodings are not provided.
Differences are noted below.

The 80486 has the coprocessor built in. This one chip executes all the
instructions listed in the previous section and this section.

Syntax
Syntaxes in Column 1 use the following abbreviations for operand
types:

reg

memreal

memint

membcd

A coprocessor stack register

A direct or indirect memory operand storing a real number

A direct or indirect memory operand storing a binary integer

A direct or indirect memory operand storing a BCD number

Examples
The position of the examples in Column 2 is not related to the clock
speeds in Column 3.

Clock Speeds
Column 3 shows the clock speeds for each processor. Sometimes an
instruction may have more than one possible clock speed. The
following abbreviations are used to specify variations:

FA Effective address. This applies only to the 8087. See the
Processor Section, "Timings on the 8088 and 8086
Processors," for an explanation of effective address timings.

s, l, t Short real long real. and lO-byte temporary real.

w,d,q Word. doubleword. and quadword binary integer.

to,fr To or from stack top. On the 80387 and 80486, the to
clocks represent timings when ST is the destination. The fr
clocks represent timings when ST is the source.

COPROCESSOR INTRODUCTION 157

Instruction Size

The instruction size is always two bytes for instructions that do not
access memory. For instructions that do access memory, the size is
four bytes on the 8087 and 80287. On the 80387 and 80486, the size
for instructions that access memory is four bytes in 16-bit mode or six
bytes in 32-bit mode.

On the 8087, each instruction must be preceded by the WAIT (also
called FW AIT) instruction, thereby increasing the instruction's size by
one byte. The assembler inserts WAIT automatically by default, or
with the .8087 directive.

Arch itecture
The 8087, 80287, and 80387 coprocessors, along with the 80486, have
several elements of architecture in common. All have a register stack
made up of eight 80-bit data registers. These can contain floating-point
numbers in the temporary real format. The coprocessors also have 14
bytes of control registers. Figure 2 shows the format of registers.

Coprocessor Data Registers

ST
ST(1)
ST(2)
ST(3)
ST(4)
ST(5)
ST(6)
ST(7)

79 63

I~\
Sign I

Exponent

Control Registers

Control Word
Status Word
Tag Word

Instruction pointer

Operand pointer

~ B

Mantissa

Figure 2 Coprocessor Registers

158 COPROCESSOR INTRODUCTION

o

The most important control registers are the control word and the status
word. Figure 3 shows the format of these registers.

Control Word
15 7 0

c'-x-x-x-r"7"IC-. j-"T/ -R-C-----,(~P-C-(r-IE.-(-r--r""T"pM-r-rU-M --r(o-M--'(z~M---'G"-M-rr-IM----"O

Status Word
15 7 a

7 7 7 7 7 7 7 7 7 7 7 J
[C2 ~1 [co ~S·rF*1 PE I UE ~E I ZE I DE liE I

Abbreviations for fields in Control Word and Status Word

IC - Infinity Control

o = Projective (default on 8087 and 80287)
1 = Affine
* 8087 and 80287 only; 80387
uses affine regardless of setting

RC - Rounding Control

00 = Round to nearest or even (default)
01 = Round down toward -infinity
10 = Round up toward +infinity
11 = Chop by truncating toward 0

PC - Precision Control

00 = 24-bit mantissa
10 = 53-bit mantissa
11 = 64-bit mantissa (default)

IE - Interrupt Enable Mask

* 8087 only; undefined on 80287
and 80387

SF - Stack Flag

* 80387 only; undefined on 8087
and 80287

Exception Masks and Flags

PM/PE - Precision
UM/UE - Underflow
OM/OE - Overflow
ZM/ZE - Zero Divide
DM/DE - Denormalized Operand
IM/IE - Invalid Operation
For masks,

1 = masked; 0 = unmasked
For exceptions,

1 = exceptions; 0 = no exception

B - Busy

(1 = exception control unit active)

C3 } C2 Condition Codes
Cl
CO

ST - Stack Top Pointer

(points to current top of stack)

ES - Error Summary (80287/387)

* IR - Interrupt Request on 8087

Figure 3 Control Word and Status Word

COPROCESSOR INTRODUCTION 159

Calculates Y = 2x - 1. X is taken from ST. The result, Y, is returned
in ST. X must be in the range 0 :::;; X :::;; 0.5 on the 8087/287, or in the
range -1.0 :::;; X :::;; + 1.0 on the 80387/486.

F2XMl f2xml 87 310--630
287 310--630
387 211-476
486 140--279

FABS
Absolute Value

Converts the element in ST to its absolute value.

87 10--17
287 10--17
387 22
486 3

COPROCESSOR INSTRUCTIONS 161

FADD/FADDP/FIADD
Add

Adds the source to the destination and returns the sum in the
destination. If two register operands are specified, one must be ST. If a
memory operand is specified, the sum replaces the value in ST.
Memory operands can be 32- or 64-bit real numbers or 16- or 32-bit
integers. If no operand is specified, ST is added to ST(1) and the stack
is popped, returning the sum in ST. For FADDP, the source must be
ST; the sum is returned in the destination and ST is popped.

FADD [reg,regE

FADDP reg,sT

F ADD memreal

FIADD memint

FBLD
Load BCD

See FLD.

fadd
fadd
fadd

faddp

fadd
fadd

fiadd
fiadd
fiadd

st,st(2)
st(5),st

st(6) ,st

QWORD PTR [bx]
short real

int16
war ray [di]
double

162 COPROCESSOR INSTRUCTIONS

87 70-100
287 70-100
387 to=23-31 ,fr=26-34
486 8-20
87 75-105

287 75-105
387 23-31
486 8-20
87 (s=90-120,s=95-125)+EA

287 s=90-120,1=95-125
387 s=24-32,1=29-37
486 8-20
87 (w=102-137,d=108-143)+EA

287 w=102-137,d=108-143
387 w=71-85,d=57-72
486 w=20-35,d=19-32

See FST.

Reverses the sign of the value in ST.

FBSTP
Store BCD and Pop

FCHS
Change Sign

87 10-17
287 10-17
387 24-25
486 6

FCLEX/FNCLEX
Clear Exceptions

Clears all exception flags, the busy flag, and bit 7 in the status word.
Bit 7 is the interrupt-request flag on the 8087 and the error-status flag
on the 80287, 80387, and 80486. The instruction has wait and no-wait
versions.

Note: The timings below reflect the no-wait version of the instruction.
The wait version may take additional clock cycles.

FCLEX fclex 87 2-8
FNCLEX 287 2-8

387 11
486 7

COPROCESSOR INSTRUCTIONS 163

FCOM/FCOMP/FCOMPP/
FICOM/FICOMP
Compare

Compares the specified source operand to ST and sets the condition
codes of the status word according to the result. The instruction
subtracts the source operand from ST without changing either operand.
Memory operands can be 32- or 64-bit real numbers or 16- or 32-bit
integers. If no operand is specified or if two pops are specified, ST is
compared to ST(1) and the stack is popped. If one pop is specified with
an operand, the operand is compared to ST. If one of the operands is a
NAN, an invalid-operation exception occurs (see FUCOM for an
alternative method of comparing on the 80387/486).

FCOM [reg] fcom st(2)
fcom

FCOMP [reg] fcomp st(7)
fcomp

FCOMPP fcompp

FCOM memreal fcom shortreals[diJ
fcom longreal

FCOMP memreal fcomp long real
fcomp shorts [diJ

FICOM memint ficom double
ficom warray [diJ

FICOMP memint ficomp WORD PTR [bp+6]
ficomp darray[diJ

Condition Codes for FCOM

C3 C2 Cl CO
o 0 ? 0
o 0 ? 1
1 0 ? 0

Meaning
ST> source
ST < source
ST = source

87 40--50
287 40--50
387 24
486 4
87 42-52

287 42-52
387 26
486 4
87 45-55

287 45-55
387 26
486 5
87 (8=60-70,1=65-75)+EA

287 8=60--70,1=65-75
387 8=26,1=31
486 4
87 (s=63-73,1=67-77)+EA

287 8=63-73,1=67-77
387 8=26,1=31
486 4

87 (w=72-86,d=78-91)+EA
287 w=72-86,d=78-91
387 w=71-75,d=56-63
486 w=I6-20,d=15-17
87 (w= 7 4-88 ,d=80--93)+ EA

287 w=74-88,d=80--93
387 w=71-75,d=56-63
486 w=16-20,d=15-17

II? 1 ST is not comparable to source

164 COPROCESSOR INSTRUCTIONS

FCOS
Cosine

80387/486 On Iy

Replaces a value in radians in ST with its cosine. If ISTI < 263, the C2
bit of the status word is cleared and the cosine is calculated. Otherwise,
C2 is set and no calculation is perfonned. ST can be reduced to the
required range with FPREM or FPREMI.

FCOS feas 87 -
287 -
387 123-772*
486 2S7-3S4t

* For operands with an absolute value greater than rc/4, up to 76 additional clocks may be required.
t For operands with an absolute value greater than rc/4, add n clocks where n = operand/(rc/4).

FDECSTP
Decrement Stack Pointer

Decrements the stack-top pointer in the status word. No tags or
registers are changed, and no data is transferred. If the stack pointer is 0,
FDECSTP changes it to 7.

FDECSTP fdeestp 87 6-12
287 6-12
387 22
486 3

COPROCESSOR INSTRUCTIONS 165

FDISI/FNDISI
Disable Interrupts
8087 Only

Disables interrupts by setting the interrupt-enable mask in the control
word. This instruction has wait and no-wait versions. Since the 80287,
80387, and 80486 do not have an interrupt-enable mask, the instruction
is recognized but ignored on these coprocessors.

Note: The timings below reflect the no-wait version of the instruction.
The wait version may take additional clock cycles.

IFDISI FNDISI
fdisi

FDIV IFDIVP/FI DIV
Divide

87 2-8
287 2
387 2
486 3

Divides the destination by the source and returns the quotient in the
destination. If two register operands are specified, one must be ST. If a
memory operand is specified, the quotient replaces the value in ST.
Memory operands can be 32- or 64-bit real numbers or 16- or 32-bit
integers. If no operand is specified, ST(1) is divided by ST and the
stack is popped, returning the result in ST. For FDIVP, the source
must be ST; the quotient is returned in the destination register and ST
is popped.

FDIV [reg,regD fdiv st,st(2) 87 193-203
fdiv st(5),st 287 193-203
fdiv 387 to=88,fr=91

486 73
FDIVP reg,ST fdivp st(6),st 87 197-207

287 197-207
387 91
486 73

FDIV memreal fdiv DWORD PTR [bx] 87 (s=215-225,1=220-230)+EA
fdiv short real [di] 287 s=215-225,1=220--230
fdiv longreal 387 s=89,1=94

486 73
FIDIV memint fidiv intl6 87 (w=224-238,d=230-243)+EA

fidiv warray[di] 287 w=224-238,d=230--243
fidiv double 387 W= 136-140,d= 120--127

486 w=85-89,d=84-86

166 COPROCESSOR INSTRUCTIONS

FDIVR/FDIVRP/FIDIVR
Divide Reversed

Divides the source by the destination and returns the quotient in the
destination. If two register operands are specified, one must be ST. If a
memory operand is specified, the quotient replaces the value in ST.
Memory operands can be 32- or 64-bit real numbers or 16- or 32-bit
integers. If no operand is specified, ST is divided by ST(l) and the
stack is popped, returning the result in ST. For FDIVRP, the source
must be ST; the quotient is returned in the destination register and ST
is popped.

FDIVR [reg,reg~ fdivr st,st(2) 87
fdivr st(5),st 287
fdivr 387

486
FDIVRP reg,ST fdivrp st(6) ,st 87

287
387
486

FDIVR memreal fdivr long real 87
fdivr short real [diJ 287

387
486

FIDIVR memint fidivr double 87
fidivr war ray [diJ 287

387
486

194-204
194-204
to=88,fr=91
73
198-208
198-208
91
73
(s=216-226,1=221-231)+EA
s=216-226,1=221-231
s=89,1=94
73
(w=225-239,d=231-245)+EA
w=225-239,d=231-245
w=135-141,d=121-128
w=85-89,d=84-86

FENI/FNENI
Enable Interrupts

8087 Only

Enables interrupts by clearing the interrupt-enable mask in the control
word. This instruction has wait and no-wait versions. Since the 80287,
80387, and 80486 do not have an interrupt-enable mask, the instruction
is recognized but ignored on these coprocessors.

Note: The timings below reflect the no-wait version of the instruction.
The wait version may take additional clock cycles.

IFENI FNENI
feni 87 2-8

287 2
387 2
486 3

COPROCESSOR INSTRUCTIONS 167

FFREE
Free Reg ister

Changes the specified register's tag to empty without changing the
contents of the register.

FFREE STU) ffree st (3)

FIADD/FISU B/FISU BRI
FI M U L/FI DIV IFI DIVR
Integer Arithmetic

87 9-16
287 9-16
387 18
486 3

See FADD, FSUB, FSUBR, FMUL, FDIV, and FDIVR.

FICOM/FICOMP
Compare Integer

See FCOM.

FILD
Load Integer

See FLD.

168 COPROCESSOR INSTRUCTIONS

FINCSTP
Increment Stack Pointer

Increments the stack-top pointer in the status word. No tags or registers
are changed, and no data is transferred. If the stack pointer is 7,
FINCSTP changes it to O.

FINCSTP fincstp 87 6-12
287 6-12
387 21
486 3

FINIT/FNINIT
Initialize Coprocessor

Initializes the coprocessor and resets all the registers and flags to their
default values. The instruction has wait and no-wait versions. On the
80387/486, the condition codes of the status word are cleared. On the
8087/287, they are unchanged.

Note: The timings below reflect the no-wait version of the instruction.
The wait version may take additional clock cycles.

FINIT finit 87 2-8
FNINIT 287 2-8

387 33
486 17

FIST/FISTP
Store Integer

See FST.

COPROCESSOR INSTRUCTIONS 169

FLD/FILD/FBLD
Load

Pushes the specified operand onto the stack. All memory operands are
automatically converted to temporary-real numbers before being loaded.
Memory operands can be 32-, 64-, or 80-bit real numbers or 16-, 32-,
or 64-bit integers.

FLD reg fld st (3) 87 17-22
287 17-22
387 14
486 4

FLD memreal fld longreal 87 (s=38-56,1=40-60,t=53-65)+EA
fld shortarray[bx+di] 287 s=3 8-56,1=40-60, t=53-65
fld temp real 387 s=20,l=25,t=44

486 s=3,1=3,t=6
FILD memint fild mem16 87 (w=46--54,d=52-60,q=60-68)+EA

fild DWORD PTR [bx] 287 w=46--54,d=52-60,q=60-68
fild quads [si] 387 w=61-65,d=45-52,q=56--67

486 w=13-16,d=9-12,q=10-18
FBLD membcd fbld packbcd 87 (290-31O)+EA

287 290-310
387 266--275
486 70-103

170 COPROCESSOR INSTRUCTIONS

FLD1/FLDZ/FLDPI/FLDL2EI
FLDL2T/FLDLG2/FLDLN2

Load Constant

Pushes a constant onto the stack. The following constants can be
loaded:

Instruction Constant
FLDI +1.0
FLDZ +0.0
FLDPI It

FLDL2E Log2(e)
FLDL2T Log2(l0)
FLDLG2 LoglO(2)
FLDLN2 Loge(2)

FLDI fldl 87 15-21
287 15-21
387 24
486 4

FLDZ fldz 87 11-17
287 11-17
387 20
486 4

FLDPI fldpi 87 16--22
287 16--22
387 40
486 8

FLDL2E fld12e 87 15-21
287 15-21
387 40
486 8

FLDL2T fld12t 87 16--22
287 16--22
387 40
486 8

FLDLG2 fldlg2 87 18-24
287 18-24
387 41
486 8

FLDLN2 fldln2 87 17-23
287 17-23
387 41
486 8

COPROCESSOR INSTRUCTIONS 171

FLDCW
Load Control Word

Loads the specified word into the coprocessor control word. The format
of the control word is shown in the "Interpreting Coprocessor
Instructions" section.

FLDCW mem16 fldcw ctrlword 87 (7-14)+EA
287 7-14
387 19
486 4

FLDENV IFLDENVW IFLDENVD
Load Environment State

Loads the 14-byte coprocessor environment state from a specified
memory location. The environment includes the control word, status
word, tag word, instruction pointer, and operand pointer. On the
80387/486 in 32-bit mode, the environment state is 28 bytes.

FLDENV mem fldenv [bp+l0] 87 (35-45)+EA
FLDENVW mem* 287 35-45
FLDENVD mem* 387 71

486 44,pm=34

* 80387/486 only.

172 COPROCESSOR INSTRUCTIONS

FMUL/FMULP/FIMUL
Multiply

Multiplies the source by the destination and returns the product in the
destination. If two register operands are specified, one must be ST. If a
memory operand is specified, the product replaces the value in ST.
Memory operands can be 32- or 64-bit real numbers or 16- or 32-bit
integers. If no operand is specified, ST(l) is multiplied by ST and the
stack is popped, returning the product in ST. For FMULP, the source
must be ST; the product is returned in the destination register and ST is
popped.

FMUL [reg,regll fmul st,st(2) 87 130-145 (90-105)*
fmul st(5),st 287 130-145 (90-105)*
fmul 387 to=46-54 (49),fr=29-57 (52)t

486 16
FMULP reg,ST fmulp st (6) ,st 87 134-148 (94-108)*

287 134-148 (94-108)*
387 29-57 (52)t
486 16

FMUL memreal fmul DWORD PTR [bx] 87 (s=110-125,1=154-168)+EA§
fmul short real [di+3] 287 s=110-125,1=154-168§
fmul longreal 387 s=27-35,1=32-57

486 s=11,1=14
FIMUL memint fimul int16 87 (w=124-138,d=130-144)+EA

fimul warray [di] 287 w=124-138,d=130-144
fimul double 387 w=76-87,d=61-82

486 w=23-27,d=22-24

* The clocks in parentheses show times for short values-those with 40 trailing zeros in their fraction
because they were loaded from a short-real memory operand.

t The clocks in parentheses show typical speeds.
§ If the register operand is a short value-having 40 trailing zeros in its fraction because it was loaded

from a snort-real memory operand-then the timing is (I 12-126)+EA on the 8087 or 112-126 on
the 80287.

FN instruction
No-Wait Instructions

Instructions that have no-wait versions include FCLEX, FDISI, FENI,
FINIT, FSAVE, FSTCW, FSTENV, and FSTSW. Wait versions of
instructions check for unmasked numeric errors; no-wait versions do
not. When the .8087 directive is used, the assembler puts a WAIT
instruction before the wait versions and a NOP instruction before the
no-wait versions.

COPROCESSOR INSTRUCTIONS 173

FNOP
No Operation

Performs no operation. FNOP can be used for timing delays or
alignment.

I fnor

FPATAN
Partial Arctangent

I 4; 387
486

10---16
10---16
12
3

Finds the partial tangent by calculating Z = ARCTAN(Y / X). X is
taken from ST and Y from ST(I). On the 8087/287, Y and X must be
in the range 0:::;; Y < X < 00. On the 80387/486, there is no restriction
on X and Y. X is popped from the stack and Z replaces Y in ST.

FPATAN fpatan 87 250---800
287 250---800
387 314--487
486 218-303

174 COPROCESSOR INSTRUCTIONS

FPREM
Partial Remainder

Calculates the remainder of ST divided by ST(1), returning the result in
ST. The remainder retains the same sign as the original dividend. The
calculation uses the following formula:

remainder = ST - ST(1) * quotient

The quotient is the exact value obtained by chopping ST / ST(1)
toward O. The instruction is normally used in a loop that repeats until
the reduction is complete, as indicated by the condition codes of the
status word.

FPREM fprem 87 15-190
287 15-190
387 74-155
486 70-138

Condition Codes for FPREM and FPREM1

C3 C2 Cl CO Meaning
? 1 ? ? Incomplete reduction
0 0 0 0 quotient MOD 8 = 0
0 0 0 1 quotient MOD 8 = 4
0 0 1 0 quotient MOD 8 = 1
0 0 1 1 quotient MOD 8 = 5
1 0 0 0 quotient MOD 8 = 2
1 0 0 1 quotient MOD 8 = 6
1 0 1 0 quotient MOD 8 = 3
1 0 1 1 quotient MOD 8 = 7

COPROCESSOR INSTRUCTIONS 175

FPREM1
Partial Remainder (IEEE Compatible)
80387/486 Only

Calculates the remainder of ST divided by ST(1), returning the result in
ST. The remainder retains the same sign as the original dividend. The
calculation uses the following formula:

remainder = ST - ST(l) * quotient

The quotient is the integer nearest to the exact value of ST / ST(I).
When two integers are equally close to the given value, the even
integer is used. The instruction is normally used in a loop that repeats
until the reduction is complete, as indicated by the condition codes of
the status word. See FPREM for the possible condition codes.

FPREMI fprernl 87 -
287 -
387 95-185
486 72-167

FPTAN
Partial Tangent

Finds the partial tangent by calculating Y / X = TAN(Z). Z is taken
from ST. Z must be in the range 0 ~ Z ~ It / 4 on the 8087/287. On
the 80387/486, Izi must be less than 263. The result is the ratio Y / X.
Y replaces Z, and X is pushed into ST. Thus, Y is returned in ST(1)
and X in ST.

FPTAN fptan 87 30-540
287 30-540
387 191-497*
486 200-273t

* For operands with an absolute value greater than 1t/4, up to 76 additional clocks may be required.
t For operands with an absolute value greater than 1t/4, add n clocks where n = operand/(1t/4).

176 COPROCESSOR INSTRUCTIONS

FRNDINT
Round to Integer

Rounds ST from a real number to an integer. The rounding control
(RC) field of the control word specifies the rounding method, as shown
in the introduction to this section.

FRNDINT frndint 87 16-50
287 16-50
387 66-80
486 21-30

FRSTOR/FRSTORW/FRSTORD
Restore Saved State

Restores the 94-byte coprocessor state to the coprocessor from the
specified memory location. In 32-bit mode on the 80387/486, the
environment state takes 108 bytes.

FRSTOR mem frstor [bp-94] 87 (197-207)+EA
FRSTORW mem* 287 t
FRSTORD mem* 387 308

486 131,pm=120

* 80387/486 only.
t Clock counts are not meaningful in detennining overall execution time of this instruction. Timing is

detennined by operand transfers.

COPROCESSOR INSTRUCTIONS 177

FSAVE/FSAVEW/FSAVEO
FNSA VE/FNSA YEW IFNSA VEO
Save Coprocessor State

Stores the 94-byte coprocessor state to the specified memory location.
In 32-bit mode on the 80387/486, the environment state takes 108
bytes. This instruction has wait and no-wait versions. After the save,
the coprocessor is initialized as if FINIT had been executed.

Note: The timings below reflect the no-wait version of the instruction.
The wait version may take additional clock cycles.

FSAVE mem fsave [bp-94] 87 (197-207)+EA
FSAVEW mem* fsave cobuffer 287 t
FSAVEDmem* 387 375-376
FNSAVE mem 486 I 54,pm= 143
FNSA YEW mem*
FNSA VED mem*

* 80387/486 only.
t Clock counts are not meaningful in determining overall execution time of this instruction. Timing is

determined by operand transfers.

FSCALE
Scale

Scales by powers of 2 by calculating the function Y = Y * 2x. X is the
scaling factor taken from ST(l), and Y is the value to be scaled from
ST. The scaled result replaces the value in ST. The scaling factor
remains in ST(1). If the scaling factor is not an integer, it will be
truncated toward zero before the scaling.

On the 8087/287, if X is not in the range _215 S; X < 215 or if X is in
the range 0 < X < 1, the result will be undefined. The 80387/486 have
no restrictions on the range of operands.

FSCALE fscale 87 32-38
287 32-38
387 67-86
486 30-32

178 COPROCESSOR INSTRUCTIONS

FSETPM
Set Protected Mode

80287 Only

Sets the 80287 to protected mode. The instruction and operand pointers
are in the protected-mode format after this instruction. On the
80387/486, FSETPM is recognized but interpreted as FNOP, since the
80386/486 processors handle addressing identically in real and protected
mode.

I FSETPM fsetpm 87
287 2-8
387 12
486 3

FSIN
Sine

80387/486 Only

Replaces a value in radians in ST with its sine. If ISTI < 263 , the C2
bit of the status word is cleared and the sine is calculated. Otherwise,
C2 is set and no calculation is performed. ST can be reduced to the
required range with FPREM or FPREMI.

FSIN fsin 87 -
287 -
387 122-771*
486 257-354t

* For operands with an absolute value greater than Tt/4, up to 76 additional clocks may be required.
t For operands with an absolute value greater than Tt/4, add n clocks where n = operand/(Tt/4).

COPROCESSOR INSTRUCTIONS 179

FSINCOS
Sine and Cosine
80387/486 Only

Computes the sine and cosine of a radian value in ST. The sine
re1?laces the value in ST, and then the cosine is pushed onto the stack.
If ISTI < 263, the C2 bit of the status word is cleared and the sine and
cosine are calculated. Otherwise, C2 is set and no calculation is
performed. ST can be reduced to the required range with FPREM or
FPREMI.

FSINCOS fsincos 87 -
287 -
387 194-809*
486 292-365t

* For operands with an absolute value greater than rt/4, up to 76 additional clocks may be required.
t For operands with an absolute value greater than rt/4, add n clocks where n = operand/(rt/4).

FSQRT
Square Root

Replaces the value of ST with its square root. (The square root of -0
is -0.)

FSQRT fsqrt 87 180-186
287 180-186
387 122-129
486 83-87

180 COPROCESSOR INSTRUCTIONS

FST/FSTP/FIST/FISTP/FBSTP
Store

Stores the value in ST to the specified memory location or register.
Temporary-real values in registers are converted to the appropriate
integer, BCD, or floating-point fonnat as they are stored. With FSTP,
FISTP, and FBSTP, the ST register value is popped off the stack.
Memory operands can be 32-, 64-, or 80-bit real numbers for FSTP or
16-, 32-, or 64-bit integers for FISTP.

FST reg fst st (6) 87 15-22
fst st 287 15-22

387 11
486 3

FSTP reg fstp st 87 17-24
fstp st (3) 287 17-24

387 12
486 3

FST memreal fst short real 87 (8=84-90,1=96-104)+EA
fst longs [bx] 287 8=84-90,1=96-104

387 8=44,1=45
486 8=7,1=8

FSTP memreal fstp long real 87 (8=86-92,1=98-106,t=52-58)+EA
fstp tempreals[bx] 287 8=86-92,1=98-106,t=52-58

387 8=44,1=45,t=53
486 8=7,1=8,t=6

FIST memint fist int16 87 (w=80-90,d=82-92)+EA
fist doubles [8] 287 w=80-90,d=82-92

387 w=82-95,d=79-93
486 w=29-34,d=28-34

FISTP memint fistp longint 87 (w=82-92,d=84-94,q=94-105)+EA
fistp doubles [bx] 287 w=82-92,d=84-94,q=94-105

387 w=82-95,d=79-93,q=80-97
486 29-34

FBSTP membcd fbstp beds [bx] 87 (520-540)+EA
287 520-540
387 512-534
486 172-176

COPROCESSOR INSTRUCTIONS 181

FSTCW/FNSTCW
Store Control Word

Stores the control word to a specified 16-bit memory operand. This
instruction has wait and no-wait versions.

Note: The timings below reflect the no-wait version of the instruction.
The wait version may take additional clock cycles.

FSTCW mem16 fstcw ctrlword 87 12-18
FNSTCW mem16 287 12-18

387 15
486 3

FSTENV IFSTENVW IFSTENVD
FNSTENV IFNSTENVW IFNSTENVD
Store Environment State

Stores the 14-byte coprocessor environment state to a specified
memory location. The environment state includes the control word,
status word, tag word, instruction pointer, and operand pointer. On the
80387/486 in 32-bit mode, the environment state is 28 bytes.

Note: The timings below reflect the no-wait version of the instruction.
The wait version may take additional clock cycles.

FSTENV mem fstenv [bp-14] 87 (40-50)+EA
FSTENVW mem* 287 40-50
FSTENVD mem* 387 103-104
FNSTENV mem 486 67,pm=56
FNSTENVW mem*
FNSTENVD mem*

* 80387/486 only.

182 COPROCESSOR INSTRUCTIONS

FSTSW/FNSTSW
Store Status Word

Stores the status word to a specified 16-bit memory operand. On the
80287, 80387, and 80486, the status word can also be stored to the
processor's AX register. This instruction has wait and no-wait versions.

Note: The timings below reflect the no-wait version of the instruction.
The wait version may take additional clock cycles.

FSTSW mem16 fstsw stat word 87 12-18
FNSTSW mem16 287 12-18

387 15
486 3

FSTSW AX fstsw ax 87 -
FNSTSW AX 287 10-16

387 13
486 3

FSUB/FSUBP/FISUB
Subtract

Subtracts the source operand from the destination operand and returns
the difference in the destination operand. If two register operands are
specified, one must be ST. If a memory operand is specified, the result
replaces the value in ST. Memory operands can be 32- or 64-bit real
numbers or 16- or 32-bit integers. If no operand is specified, ST is
subtracted from ST(1) and the stack is popped, returning the difference
in ST. For FSUBP, the source must be ST; the difference (destination
minus source) is returned in the destination register and ST is popped.

FSUB [reg,reg] fsub st,st(2) 87 70-100
fsub st(5),st 287 70-100
fsub 387 to=29-37,fr=26-34

486 8-20
FSUBP reg,ST fsubp st (6) ,st 87 75-105

287 75-105
387 26-34
486 8-20

FSUB memreal fsub long real 87 (8=90-1 20,8=95-1 25)+EA
fsub shortreals[dil 287 8=90-120,1=95-125

387 8=24-32,1=28-36
486 8-20

FISUB memint fisub double 87 (w=102-137,d=108143)+EA
fisub warray[dil 287 w=102-137,d=108-143

387 w=71-83,d=57-82
486 w=20-35,d=19-32

COPROCESSOR INSTRUCTIONS 183

FSUBR/FSUBRP/FISUBR
Subtract Reversed

Subtracts the destination operand from the source operand and returns
the result in the destination operand. If two register operands are
specified, one must be ST. If a memory operand is specified, the result
replaces the value in ST. Memory operands can be 32- or 64-bit real
numbers or 16- or 32-bit integers. If no operand is specified, ST(1) is
subtracted from ST and the stack is popped, returning the difference in
ST. For FSUBRP, the source must be ST; the difference (source
minus destination) is returned in the destination register and ST is
popped.

FSUBR [reg,regD fsubr st,st(2) 87 70-100
fsubr st(5),st 287 70-100
fsubr 387 to=29-37,fr=26-34

486 8-20
FSUBRP reg,ST fsubrp st(6),st 87 75-105

287 75-105
387 26-34
486 8-20

FSUBR memreal fsubr QWORD PTR [bx] 87 (8=90-120,8=95-125)+EA
fsubr shortreal[di] 287 8=90-120,1=95-125
fsubr longreal 387 8=25-33,1=29-37

486 8-20
FISUBR memint fisubr int16 87 (w=103-139,d=109-144)+EA

fisubr warray[di] 287 w= 103-139,d= 109-144
fisubr double 387 w=72-84,d=58-83

486 w=20-55,d=19-32

184 COPROCESSOR INSTRUCTIONS

FTST
Test for Zero

Compares ST with +0.0 and sets the condition of the status word
according to the result.

I ft,t
87 38-48

287 38-48
387 28
486 4

Condition Codes for FTST

C3 C2 Cl CO Meaning
0 0 ? 0 ST is positive
0 0 ? 1 ST is negative
1 0 ? 0 ST is 0
1 1 ? 1 ST is not comparable (NAN or projective

infinity)

COPROCESSOR INSTRUCTIONS 185

FUCOM/FUCOMP/FUCOMPP
Unordered Compare
80387/486 Only

Compares the specified source to ST and sets the condition codes of the
status word according to the result. The instruction subtracts the source
operand from ST without changing either operand. Memory operands
are not allowed. If no operand is specified or if two pops are specified,
ST is compared to ST(1). If one pop is specified with an operand, the
given register is compared to ST.

Unlike FCOM, FUCOM does not cause an invalid-operation exception
if one of the operands is NAN. Instead, the condition codes are set to
unordered.

FUCOM [reg! fucom st(2)

fucom

FUCOMP [regJ fucomp st (7)

fucomp

FUCOMPP fucompp

Condition Codes for FUCOM

C3 C2 Cl
0 0 ?
0 0 ?
1 0 ?
1 1 ?

FWAIT
Wait

CO Meaning
0 ST> source
1 ST < source
0 ST = source
1 Unordered

87 -
287 -
387 24
486 4
87 -

287 -
387 26
486 4
87 -

287 -
387 26
486 5

Suspends execution of the processor until the coprocessor is finished
executing. This is an alternate mnemonic for the processor WAIT
instruction.

fwait 87 4
287 3
387 6
486 1-3

186 COPROCESSOR INSTRUCTIONS

FXAM
Examine

Reports the contents of ST in the condition flags of the status word.

IFXAM I fx~ 87 12-23
287 12-23
387 30--38
486 8

Condition Codes for FXAM

C3 C2 Cl CO Meaning
0 0 0 0 + Unnormal*
0 0 0 1 + NAN
0 0 1 0 - Unnormal*
0 0 1 1 -NAN
0 1 0 0 + Normal
0 1 0 1 + Infinity
0 1 1 0 - Normal
0 1 1 1 - Infinity
1 0 0 0 +0
1 0 0 1 Empty
1 0 1 0 - 0
1 0 1 1 Empty
1 1 0 0 + Denormal
1 1 0 1 Empty*
1 1 1 0 - Denormal
1 1 1 1 Empty*

* Not used on the 80387/486. Unnonnals are not supported by the 80387/486. Also, the 80387/486 use
two codes instead of four to identify empty registers.

FXCH
Exchange Registers

Exchanges the specified (destination) register and ST. If no operand is
specified, ST and ST(1) are exchanged.

FXCH [regll fxch st (3) 87 10--15
fxch 287 10--15

387 18
486 4

COPROCESSOR INSTRUCTIONS 187

FXTRACT
Extract Exponent and Significand

Extracts the exponent and significand (mantissa) fields of ST. The
exponent replaces the value in ST, and then the significand is pushed
onto the stack.

FXTRACT

FYL2X
V log2(X)

fxtract 87
287
387
486

27-55
27-55
70--76
16-20

Calculates Z = Y log2(X). X is taken from ST and Y from ST(1). The
stack is popped, and the result, Z, replaces Y in ST. X must be in the
range 0 < X < 00 and Y in the range -00 < Y < 00.

FYL2X

FYL2XP1
V lo92(X+1)

fy12x 87 900--1100
287 900--1100
387 120--538
486 196-329

Calculates Z = Y log2(X + 1). X is taken from ST and Y from ST(1).
The stack is popped once, and the result, Z, replaces Y in ST. X must
be in the range 0 :::;; Ixi < (1 - (--./2 / 2». Y must be in the range
_00 < Y < 00.

FYL2XPl £y12xpl 87 700--1000
287 700--1000
387 257-547
486 171-326

188 COPROCESSOR INSTRUCTIONS

Tables

DOS Program Segment Prefix (PSP)
ASCII Chart
Key Codes
Color Display Attributes
Hexadecimal-Binary-Decimal Conversion

DOS Program Segment Prefix (PSP)

o 234 5 6 7 8 9 ABC D E F

OOh

10h

20h

30h

40h

50h

60h

70h

80h

90h

AOh

BOh

COh

DOh

EOh

FOh

1 2 13
1

6 7
cs IP I CS

9 I

~

Opcode for INT 20h

4 I f cs I
6

IP IP

I
0

3

10

10 11

11 3

13

2 Segment of first allocatable address following the program (useful for
memory allocation)

3 Reserved or used by DOS

4 Opcode for far call to DOS function dispatcher

5 Vector for tenninate routine

6 Vector for CTRL+BREAK routine

7 Vector for error routine

8 Segment of program's copy of the environment

9 Opcode for DOS INT 21 h and far return (you can do a far call to this
address to execute DOS calls)

10 First command-line argument (fonnatted as uppercase ll-character
file name)

11 Second command-line argument (fonnatted as uppercase II-character
file name)

12 Number of bytes in command-line argument

13 Unfonnatted command line and/or default Disk Transfer Area (DTA)

PROGRAM SEGMENT PREFIX 191

ASCII Codes

Ctrl Dec Hex Char Code Dec HexChar Dec HexChar Dec HexChar
A

000 NUL @
A

A 1 01 g SOH
32 20
33 21 !

64 40 @
65 41 A

96 60 ,
97 61 a

A

B 2 02 rJ STX 34 22 II 66 42 B 98 62 h
A

C 3 03 • ETX 35 23 • 67 43 C 99 63 C
A

0 4 04 • EOT 36 24 $ 68 44 D 100 64 d
A

E 5 05 f ENQ 37 25 Yo 69 45 E 101 65 e
A

F 6 06 t ACK 38 26 a 70 46 F 102 66 r
A

G 707 BEL • 39 27 ' 71 47 G 103 67 g
A

H 8 08 a BS 40 28 (72 48 H 104 68 h
A

I 9 09 0 HT 41 29) 73 49 I 105 69 i
A

] 10 OA [!] LF 42 2A * 74 4A J 106 6A J
A

K 11 OB ~ VT 43 2B + 75 4B K 107 6B k
A

L 12 OC 2 FF 44 2C , 76 4C L 108 6C 1
A

M 13 00 r CR 45 20 - 77 40 M 109 60 lit
A

N 14 OE n SO 46 2E , 78 4£ H 110 6£ n
A

0 15 OF ~ SI 47 2F I 79 4F 0 111 6F 0
A

P 16 10 ~ OLE 48 30 9 80 50 P 112 70 P
A

Q 17 11 ~ OCI 49 31 1 81 51 Q 113 71 q
A

R 18 12 * OC2 50 32 2 82 52 R 114 72 I'
A

S 19 13 !! OC3 51 33 3 83 53 S 115 73 S
A

T 20 14 , OC4 52 34 4 84 54 T 116 74 t
A

U 21 15 f NAK 53 35 5 85 55 U 117 75 U
A

V 22 16 • SYN 54 36 6 86 56 U 118 76 U
A

W 23 17 1 ETB
A

X 24 18 t CAN
55 37 7
56 38 8

87 57 W
88 58 X

119 77 W
120 78 X

A

Y 25 19 , EM 57 39 9 89 59 Y 121 79 Y
A

Z 26 lA ~ SUB 58 3A
, , 90 SA Z 122 7A Z

A

[27 IB f- ESC 59 3B
, , 91 5B [123 7B {

A

\ 28 lC L FS 60 3C (92 5C \ 124 7C I
I

A

29 10 .. GS
JA

30 IE • RS
61 3D --
62 3£)

93 50]
94 5£ it.

125 70 }
126 7£ #II

A

31 IF • US - 63 3F ? 95 SF - 127 7F tJt

t ASCII code 127 has the code DEL. Under DOS, this code has the same effect as ASCII 8 (BS).
The DEL code can be generated by the CTRL + BKSP key combination.

192 ASCII CODES

Dec HexChar Dec Hex Char Dec HexChar Dec HexChar

128 80 q
129 81 U

160 AO a
161 Al i

192 CO L
193 Cl l.

224 EO ex
225 El ,

130 82 e 162 A2 0 194 C2 T 226 E2 r
131 83 i 163 A3 U 195 C3 ~ 227 E3 11
132 84 a 164 A4 n 196 C4 - 228 E4 E
133 85 a 165 AS ii 197 C5 + 229 E5 r
134 86 1 166 A6 ! 198 C6 ~ 230 E6 JI
135 87 C;
136 88 i

167 A7 !
168 A8 i.

199 C7 Il
200 C8 ~

231 E7 T
232 E8 I

137 89 e 169 A9 r 201 C9 Ii 233 E9 e
138 8A e 170 AA , 202 CA :!! 234 EA n
139 8B 'i 171 AB ~ 203 CB ;; 235 EB 6
140 8C Y
141 80 i
142 8E ~

172 AC ~
173 AD i
174 AE «

204 CC I~
205 CD =
206 CE Jl

1r

236 EC •
237 ED -238 EE E

143 8F
I

A 175 AF » 207 CF :!: 239 EF n
144 90 E 176 BO

.','
:::: 208 DO .II 240 FO -

145 91 i 177 Bl I 209 01 ;: 241 Fl ±
146 92 II 178 B2 • 210 02 'If 242 F2 !
147 93 " 0 179 B3 I 211 03 11 243 F3 !
148 94 0 180 B4 ~ 212 04 i: 244 F4 r
149 95 0 181 B5 ~ 213 05 F 245 F5 J
150 96 U 182 B6 I 214 06 " 246 F6 I

i
151 97 U
152 98 ~
153 99 .~

183 B7 11

184 B8 ~
185 B9 ~I

215 D7 * 216 D8 +
217 D9 J

247 F7 :
248 F8 •
249 F9 I

154 9A ij
155 9B ¢

186 BA II
187 BB ;)

218 DA r
219 DB I

250 FA
251 FB i

156 9C t 188 BC :!J 220 DC • 252 FC I
157 9D ¥ 189 BD .u 221 OD I 253 FD l
158 9E 1\ 190 BE ::I 222 DE I 254 FE I

159 9F ! 191 BF , 223 OF • 255 FF

ASCII CODES 193

Key Codes

Key Scan ASCII or ASCII or ASCII or ASCII or
Code Extendedt Extendedt Extendedt Extendedt

with SHIff withCTRL with ALT

Dec Hex Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char
ESC 1 01 27 IB ESC 27 IB ESC 27 IB ESC 1 01 NUL§
1 ! 2 02 49 31 1 33 21 ! 120 78 NUL
2@ 3 03 50 32 2 64 40 @ 3 03 NUL 121 79 NUL
3# 4 04 51 33 3 35 23 .. 122 7A NUL
4$ 5 05 52 34 4 36 24 $ 123 7B NUL
5% 6 06 53 35 5 37 25 % 124 7C NUL
6 11 7 07 54 36 6 94 5E A 30 IE RS 125 70 NUL
7& 8 08 55 37 7 38 26 & 126 7E NUL
8* 9 09 56 38 8 42 2A * 127 7F NUL
9(10 OA 57 39 9 40 28 (128 80 NUL
0) 11 OB 48 30 0 41 29) 129 81 NUL

12 OC - 45 20 - 95 SF - 31 IF US 130 82 NUL
=+ 13 00 61 3D = 43 2B + 131 83 NUL
BKSP 14 OE 8 08 8 08 127 7F 14 OE NUL§
TAB 15 OF 9 09 15 OF NUL 148 94 NUL§ 15 A5 NUL§
Q 16 10 113 71 q 81 51 Q 17 11 DCl 16 10 NUL
W 17 11 119 77 w 87 57 w 23 17 ETB 17 11 NUL
E 18 12 101 65 e 69 45 E 5 05 ENQ 18 12 NUL
R 19 13 114 72 r 82 52 R 18 12 DC2 19 13 NUL
T 20 14 116 74 t 84 54 T 20 14 SO 20 14 NUL
Y 21 15 121 79 y 89 59 y 25 19 EM 21 15 NUL
U 22 16 117 75 u 85 55 U 21 15 NAK 22 16 NUL
I 23 17 105 69 i 73 49 I 9 09 TAB 23 17 NUL
a 24 18 111 6F 0 79 4F 0 15 OF SI 24 18 NUL
P 25 19 112 70 P 80 50 p 16 10 OLE 25 19 NUL
[{ 26 1A 91 5B [123 7B { 27 1B ESC 26 lA NUL§
II 27 IB 93 50] 125 70 } 29 1D GS 27 IB NUL§
ENTER 28 IC 13 00 CR 13 00 CR 10 OA LF 28 IC NUL§
ENTER£ 28 1C 13 00 CR 13 00 CR 10 OA LF 166 A6 NUL§
LCTRL 29 1D
RCTRL£ 29 1D
A 30 IE 97 61 a 65 41 A 1 01 SOH 30 IE NUL
S 31 IF 115 73 s 83 53 S 19 13 DC3 31 IF NUL
0 32 20 100 64 d 68 44 0 4 04 EaT 32 20 NUL
F 33 21 102 66 f 70 46 F 6 06 ACK 33 21 NUL
G 34 22 103 67 g 71 47 G 7 07 BEL 34 22 NUL
H 35 23 104 68 h 72 48 H 8 08 BS 35 23 NUL
J 36 24 106 6A j 74 4A J 10 OA LF 36 24 NUL
K 37 25 107 6B k 75 4B K 11 OB VT 37 25 NUL
L 38 26 108 6C]. 76 4C L 12 OC FF 38 26 NUL
,. 39 27 59 3B ; 58 3A : 39 27 NUL§ ,,,

40 28 39 27 , 34 22 " 40 28 NUL§
- 41 29 96 60 126 7E - 41 29 NUL§

LSHIFf 42 2A
\1 43 2B 92 5C \ 124 7C I 28 1C FS
Z 44 2C 122 7A z 90 5A Z 26 lA SUB 44 2C NUL
X 45 20 120 78 x 88 58 x 24 18 CAN 45 20 NUL
C 46 2E 99 63 c 67 43 C 3 03 ETX 46 2E NUL
V 47 2F 118 76 v 86 56 v 22 16 SYN 47 2F NUL
B 48 30 98 62 b 66 42 B 2 02 STX 48 30 NUL
N 49 31 110 6E n 78 4E N 14 OE SO 49 31 NUL
M 50 32 109 60 m 77 40 M 13 00 CR 50 32 NUL
,< 51 33 44 2C , 60 3C < 51 33 NUL§
.> 52 34 46 2E 62 3E > 52 34 NUL§
I? 53 35 47 2F / 63 3F ? 53 35 NUL§
GRAY 1£ 53 35 47 2F / 63 3F ? 149 95 NUL 164 A4 NUL

194 KEY CODES

Key Scan ASCII or ASCII or ASCII or ASCII or
Code Extendedt Extendedt Extendedt Extendedt

with SHIFf withCTRL with ALT

Dec Hex Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char

R SHIFf 54 36
* PRTSC 55 37 42 2A * PRTSC tt 114 72 0
LALT 56 38
RALT£ 56 38
SPACE 57 39 32 20 SPC 32 20 SPC 32 20 SPC 32 20 SPC
CAPS 58 3A
FI 59 38 59 38 NUL 84 54 NUL 94 5E NUL 104 68 NUL
F2 60 3C 60 3C NUL 85 55 NUL 95 5F NUL 105 69 NUL
F3 61 3D 61 3D NUL 86 56 NUL 96 60 NUL 106 6A NUL
F4 62 3E 62 3E NUL 87 57 NUL 97 61 NUL \07 68 NUL
F5 63 3F 63 3F NUL 88 58 NUL 98 62 NUL \08 6C NUL
F6 64 40 64 40 NUL 89 59 NUL 99 63 NUL 109 6D NUL
F7 65 41 65 41 NUL 90 5A NUL 100 64 NUL 110 6E NUL
F8 66 42 66 42 NUL 91 58 NUL 101 65 NUL III 6F NUL
F9 67 43 67 43 NUL 92 5C NUL 102 66 NUL 112 70 NUL
FlO 68 44 68 44 NUL 93 5D NUL 103 67 NUL 113 71 NUL
FII£ 87 57 133 85 EO 135 87 EO 137 89 EO 139 88 EO
F12£ 88 58 134 86 EO 136 88 EO 138 8A EO 140 8C EO
NUM 69 45
SCROLL 70 46
HOME 71 47 71 47 NUL 55 37 7 119 77 NUL
HOME£ 71 47 71 47 EO 71 47 EO 119 77 EO 151 97 NUL
UP 72 48 72 48 NUL 56 38 8 141 8D NUL§
UP£ 72 48 72 48 EO 72 48 EO 141 8D EO 152 98 NUL
PGUP 73 49 73 49 NUL 57 39 9 132 84 NUL
PGUP£ 73 49 73 49 EO 73 49 EO 132 84 EO 153 99 NUL
GRAY- 74 4A 45 2D
LEFf 75 48 75 48 NUL 52 34 4 115 73 NUL
LEFf£ 75 48 75 48 EO 75 48 EO 115 73 EO 155 98 NUL
CENTER 76 4C 53 35 5
RIGHT 77 4D 77 4D NUL 54 36 6 116 74 NUL
RIGHT£ 77 4D 77 4D EO 77 4D EO 116 74 EO 157 9D NUL
GRAY + 78 4E 43 28 +
END 79 4F 79 4F NUL 49 31 1 117 75 NUL
END£ 79 4F 79 4F EO 79 4F EO 117 75 EO 159 9F NUL
DOWN 80 50 80 50 NUL 50 32 2 145 91 NUL§
DOWN£ 80 50 80 50 EO 80 50 EO 145 91 EO 160 AO NUL
PGDN 81 51 81 51 NUL 51 33 3 118 76 NUL
PGDN£ 81 51 81 51 EO 81 51 EO 118 76 EO 161 Al NUL
INS 82 52 82 52 NUL 48 30 0 146 92 NUL§
INS£ 82 52 82 52 EO 82 52 EO 146 92 EO 162 A2 NUL
DEL 83 53 83 53 NUL 46 2E 147 93 NUL§
DEL£ 83 53 83 53 EO 83 53 EO 147 93 EO 163 A3 NUL

t Extended codes return 0 (NUL) or EO (decimal 224) as the initial
character. This is a signal that a second (extended) code is available in
the keystroke buffer.

§ These key combinations are only recognized on extended keyboards.
£ These keys are only available on extended keyboards. Most are in the

Cursor/Control cluster. If the raw scan code is read from the keyboard port
(60h), it appears as two bytes (EOh) followed by the normal scan code.
However, when the keypad ENTER and / keys are read through the BIOS
interrupt 16h, only EOh is seen since the interrupt only gives one-byte
scan codes.

tt Under DOS, SHIFT +PRTSCR causes interrupt 5, which prints the screen.

KEY CODES 195

Color Display Attributes

Background Foreground
Bits Num Color Bits* Num Color

E R Q H. IRQ H.
o 0 0 0 0 Black 000 0 0 Black
000 I I Blue 000 1 1 Blue
o 0 1 0 2 Green o 0 1 0 2 Green
o 0 1 1 3 Cyan o 0 1 1 3 Cyan
0 1 o 0 4 Red 0 1 o 0 4 Red
0 1 0 1 5 Magenta 0 1 0 1 5 Magenta
0 1 1 0 6 Brown 0 1 1 0 6 Brown
0 1 1 1 7 White 0 1 1 1 7 White
1 000 8 Black blink 1 000 8 Dark grey
1 o 0 1 9 Blue blink 1 o 0 1 9 Light blue
1 0 1 0 A Green blink 1 0 1 0 A Light green
1 0 1 1 B Cyan blink 1 0 1 1 B Light cyan
1 1 o 0 C Red blink 1 1 o 0 C Light red
1 1 0 1 D Magenta blink 1 1 0 1 D Light magenta
1 1 1 0 E Brown blink 1 1 1 0 E Yellow
1 1 1 1 F White blink 1 1 1 1 F Bright white

I Intensity bit G Green bit F Flashing bit
R Red bit B Blue bit

* On monochrome monitors, the blue bit is set and the red and green bits are cleared (001) for
underline; all color bits are set (111) for normal text.

Hexadeci mal-B i nary-Deci ma I Co nve rs ion

Hex Binary Decimal Decimal Decimal Decimal
Number Number Digit OOOX Digit OOXO Digit OXOO Digit XOOO

0 0000 0 0 0 0
1 0001 1 16 256 4,096
2 0010 2 32 512 8,192
3 0011 3 48 768 12,288
4 0100 4 64 1,024 16,384
5 0101 5 80 1,280 20,480
6 0110 6 96 1,536 24,576
7 0111 7 112 1,792 28,672
8 1000 8 128 2,048 32,768
9 1001 9 144 2,304 36,864
A 1010 0 160 2,560 40,960
B 1011 11 176 2,816 45,056
C 1100 12 192 3,072 49,152
D 1101 13 208 3,328 53,248
E 1110 14 224 3,584 57,344
F 1111 15 240 3,840 61,440

196 COLOR DISPLAY/CONVERSION CHART

Making itall make sense '·

-

-

-
-

-
-

0291 Part No. 06557 _

