Microsoft.
Macro Assembler

for the MS-DOS-: Operating System

User’s Guide

Microsoft Corporation

Information in this document is subject to change without notice and does not
represent a commitment on the part of Microsoft Corporation. The software de-
scribed in this document is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance with the terms
of the agreement. It is against the law to copy this software on magnetic tape, disk,
or any other medium for any purpose other than the purchaser’s personal use.

© Copyright Microsoft Corporation, 1984, 1985

If you have comments about the software, complete the Software Problem Report at
the back of this manual and return it to Microsoft Corporation.

If you have comments about the software documentation, complete the Documen-
tation Feedback reply card at the back of this manual and return it to Microsoft
Corporation.

Microsoft, the Microsoft logo, MS-DOS, MS, and XENIX are registered trademarks of Microsoft
Corporation. The High Performance Software is a trademark of Microsoft Corporation.

IBM is a registered trademark of International Business Machines Corporation.

Intel is a registered trademark of Intel Corporation.

Document Number 410610001-400-R01-1285
Part Number 016-014-023

Contents

1 Introduction 1

Overview 3
What You Need 3
What You Should Know Before You Begin
Books on Assembly Language 5
How To Begin 7
New Features 7
Compatibility with Assemblers
and Compilers 9
1.8 Notational Conventions 10

it ot b ok ot ok ok
IO UV WD =

2 MASM: A Macro Assembler 13

1 Introduction 15

2 Starting and Using MASM 15

3 Using MASM Options 20

4 Reading the Assembly Listing 32

3 LINK: A Linker 43

3.1 Introduction 45

3.2 Starting and Using LINK 45
3.3 Using Link Options 55

3.4 How LINK Works 68

4 SYMDEB:
A Symbolic Debug Utility 73

Introduction 77

Setting Up for Symbolic Debugging 77
Starting SYMDEB 82

Using SYMDEB Options 87

Specifying Parameters for Commands 91
Using SYMDEB Commands 99

Sample SYMDEB Session 163

B R
SNO U W=

Contents

5 CREF:
A Cross-Reference Utility 175

Introduction 177

5.1
5.2 Using CREF 177
5.3 Cross-Reference Listing Format 180

6 LIB: A Library Manager 183

6.1 Introduction 185
6.2 Starting and Using LIB 186
6.3 Creating a New Library 192
6.4 Checking a Library’s Consistency 193
6.5 Creating a Library-Reference Listing 194
6.6 Maintaining Libraries 195

7 MAKE:

A Program Maintainer 201

7.1 Introduction 203
7.2 Using MAKE 203
7.3 Maintaining a Program: An Example 211

Appendixes 213

A Error Messages 215

A.1 Introduction 217

A.2 MASM Error Messages 217

A.3 LINK Error Messages 231

A.4 SYMDEB Error Messages 238
A.5 MAPSYM Error Messages 240
A.6 CREF Error Messages 241

A.7 LIB Error Messages 242

A.8 MAKE Error Messages 245

A9 EXEPACK Error Messages 247
A.10 EXEMOD Error Messages 248

Contents

B Exit Codes 251

1 Introduction 253
2 Exit Codes with Make 253
3 Exit Codes with MS-DOS Batch Files 253
4 Exit Codes for Programs
in the Macro Assembler Package 254

B.
B.
B.
B.

C Using EXEPACK and EXEMOD 259

C.1 Introduction 261
C.2 The EXEPACK Utility 261
C.3 The EXEMOD Utility 262

Index 265

Tables

Table 2.1
Table 2.2
Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.5
Table 6.1

vi

/X Option and Directives 30
Special Characters in Listings 34
Radixes for SYMDEB 93

Unary Operators 98

Binary Operators 98

SYMDEB Commands 99

Flag Values 144

LIB Commands 185

Chapter 1

Introduction

1.1 Overview 3

1.2 What You Need 3

1.3 What You Should Know Before You Begin 4
1.4 Books on Assembly Language 5

1.5 How To Begin 7

1.6 New Features 7

1.7 Compatibility with Assemblers

1.8

and Compilers 9
Notational Conventions 10

Introduction

1.1 Overview

The Microsofts Macro Assembler User’s Guide explains how to create and
debug assembly-language programs using the Microsoft Macro Assembler
(MASM) and the other utilities in the macro assembler package.

The macro assembler package consists of the following programs and files:

Filename Description
MASM.EXE Microsoft Macro Assembler
LINK.EXE Microsoft 8086 Object Linker

SYMDEB.EXE Microsoft Symbolic Debug Utility
MAPSYM.EXE Microsoft Symbol File Generator

CREF.EXE Microsoft Cross-Reference Utility
LIB.EXE Microsoft Library Manager
MAKE.EXE Microsoft Program Maintenance Utility

EXEPACK.EXE Microsoft EXE File Compression Utility
EXEMOD.EXE Microsoft EXE File Header Utility
COUNT.ASM Sample source file for SYMDEB session

README.DOC Updated information obtained after the manual
was printed

The function of each program and an explanation of how to invoke and
operate the programs is given in the remaining chapters of this guide.

Sections 1.2-1.8 explain what you need to create assembly-language pro-
grams, what steps you need to take to create these programs, and documen-
tation conventions followed in this guide.

1.2 What You Need

The Microsoft Macro Assembler creates programs that can be executed
under the 8086/80186 /80286 family of microprocessors. It provides a logi-
cal program syntax ideally suited for the segmented architecture of these
processors. Using MASM you can assemble programs for computers hav-
ing the 8086, 8088, 80186, and 80286 microprocessors, and programs for
computers with 8087 and 80287 math coprocessors.

Microsoft Macro Assembler User’s Guide

In addition to a computer with one of the microprocessors listed above, you
must have Version 2.0 or later of the MS-DOSe or PC-DOS operating sys-
tem. Since these two operating systems are essentially the same, this
manual uses the term MS-DOS to include both variations. Your computer
system should also have at least 128K of memory. (The Shell command (!)
of SYMDEB may require more memory.) While it is possible to operate
the Macro Assembler with one double-sided disk drive, two disk drives or
one disk drive and a hard disk are recommended.

To create assembly-language source files, you need a text editor capable of
producing ASCII (American Standard Code for Information Interchange)
format files with no control codes. Many text editors that normally use
control codes or other special formats for documents also provide a pro-
gramming or non-document mode for producing ASCII files.

1.3 What You Should Know Before You Begin

In order to use the Macro Assembler, you should be familiar with the fol-
lowing:

e How to use both the assembler itself, and the other programs pro-
vided with the Microsoft Macro Assembler package. This informa-
tion is covered in the Microsoft Macro Assembler User’s Guide
(sometimes abbreviated User’s Guide).

e How to program in assembly language. This information is covered
partially in the Microsoft Macro Assembler Reference Manual (some-
times abbreviated Reference Manual). The directives, operands,
operators, expressions, and other language features understood by
MASM are explained in the reference manual. However, the refer-
ence manual is not designed to teach novice users how to program
in assembly language.

e How to use the instruction sets for the 8086,/80186 /80286 micropro-
cessors (and the 8087 /80287 instruction set if you have a math
coprocessor). This information is not covered in either the user’s
guide or the reference manual. The instruction set for the 8086
family of microprocessors is listed in Appendix A of the Microsoft
Macro Assembler Reference Manual. Also, the Intele Corporation
pocket reference manual for the instruction sets is included with the
Macro Assembler package. However, you need to have some
knowledge of the instruction sets in order to use these reference
tools.

Introduction

In addition, you may need to know about MS-DOS structure and function

calls, and about the basic input and output systems (BIOS) of the comput-
ers that will run your programs. This information is not covered in either

the Microsoft Macro Assembler User’s Guide or the Microsoft Macro Assem-
bler Reference Manual.

If you are updating from a previous version of the Microsoft or IBM Macro
Assembler, or if you will be using the assembler with a Microsoft or IBM
high-level language, make sure you read Sections 1.6 and 1.7 for a summary
of new features and potential compatibility problems.

Note

Many IBM languages are produced for IBM by Microsoft. Among the
IBM languages that are the same or very similar to the corresponding
Microsoft languages are IBM Personal Computer Macro Assembler, IBM
Personal Computer FORTRAN, IBM Personal Computer Pascal, and
IBM Personal Computer BASIC Compiler. These languages are com-
patible with the Microsoft Macro Assembler Version 4.0 except as noted
in Section 1.7.

1.4 Books on Assembly Language

The following books may be useful in helping you learn how to program in
assembly language:

Lafore, Robert, Assembly Language Primer for the IBM PC & XT. New
York: Plume/Waite, 1984.
An introduction to assembly language including some information on
DOS function calls and IBM-type BIOS.

Willen, David, and Jeffrey Krantz, 8088 Assembler Language Programmaing:
The IBM PC. Indianapolis: Howard W. Sams & Co. Inc, 1983.

An introduction to assembly language including some information on
DOS function calls and IBM-type BIOS.

Microsoft Macro Assembler User’s Guide

Bradley, David J., Programming for the IBM Personal Computer. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1983.

Intermediate discussion of assembly language including information on
macros, the 8087, MS-DOS (prior to Version 2.0), and IBM BIOS.

Sargent, Murray, III, and Richard L. Shoemaker, The IBM Personal Com-
puter from the Inside Out. Menlo Park: Addison-Wesley Publishing
Company, 1984.

An introduction to assembly language with an emphasis on using IBM-
type hardware features.

Scanlon, Leo J., IBM PC Assembly Language: A Guide for Programmers.
Bovie, MD: Robert J. Brady Co., 1983.
An introduction to assembly language including information on
MS-DOS function calls.

Schneider, Al, Fundamentals of IBM PC Assembly Language. Blue Ridge
Summit, PA: Tab Books Inc., 1984.
An introduction to assembly language including information on
MS-DOS function calls.

Rector, Russel and George Alexy, The 8086 Book. Berkeley:
Osborne/McGraw Hill, 1980.
Reference book on 8086 instruction set and architecture.

Norton, Peter, The Peter Norton Programmer’s Guide to the IBM PC.
Bellevue, WA: Microsoft Press, 1985.
Information on using IBM-type BIOS and MS-DOS function calls.

Morgan, Christopher and the Waite Group, Bluebook of Assembly Routines
for the IBM PC. New York: New American Library, 1984.
Sample assembly routines that can be integrated into assembly or
high-level-language programs.

tAPX 286 Programmer’s Reference Manual. Santa Clara, CA: Intel Corpora-
tion, 1984.
Reference manual for all 8086-family instruction sets.

Microsoft MS-DOS Programmer’s Reference Manual. Bellevue, WA:
Microsoft Corporation.
Reference manual for MS-DOS.

Introduction

These books are listed for your convenience only. Microsoft Corporation
does not endorse these books (with the exception of those published by
Microsoft Press) or recommend them over others on the same subjects.

1.5 How To Begin

You begin by creating an assembly-language source file, then carrying out
the following four steps needed to make an executable program:

Use a text editor to create an assembly-language source file.
Use MASM to assemble the source file.
Use LINK to link the assembled file with other assembled files or

with routines from libraries.
4. Use SYMDERB to test the resulting program.

You can automate these steps by using MAKE to create a description file
containing the commands needed to invoke each step. You can simplify
debugging by using CREF to make a cross-reference listing of all symbols
in your program. You can use LIB to construct the program libraries you
may need to create your executable programs.

Once you have tested the program, you can invoke it from the MS-DOS
command line at any time. Programs that you create, like other MS-DOS
programs, can accept command parameters, can be copied to other systems,

and can be invoked from batch files or MAKE description files.

1.6 New Features

New features have been added to several of the programs in the Macro
Assembler Package.

Version 4.0 of the Microsoft Macro Assembler (MASM) has been optimized
to improve performance. It now assembles code two to three times faster
than any prior release. In addition, the input/output buffers and macro
text have been moved out of the symbol space, allowing assembly of larger
source files.

Microsoft Macro Assembler User’s Guide

Conditional error directives are another new feature of MASM 4.0. These
directives allow you to check parameters, boundaries, and other assembly-
time values, and generate an error if predefined conditions are not true.
Conditional error directives are explained in Section 7.3 of the Microsoft
Macro Assembler Reference Manual.

The following new options have been added to MASM:

Option Action

/Bnumber Sets the file buffer to any size between 1K and 63K in
order to minimize disk access.

/C Creates a cross-reference file.

/L Creates an assembly listing.

/Dsymbol Defines a symbol (for conditional directives) from the
command line or from prompts when starting
MASM.

/Ipath Sets path by which assembler will search for files
specified with an INCLUDE directive.

/N Suppresses symbol table in listing.

/P Checks for impure code that would cause problems in
80286 protected mode.

/T Suppresses all messages if no errors are encountered.

/v Displays extra statistics to the screen after assembly.

/Z Displays source lines containing errors on the screen

without the option, only the error message is shown).
revious versions of MASM always showed both
source line and error message.

The /O (Octal) option is no longer supported. MASM options are dis-
cussed in more detail in Section 2.3.

The format of the listing files produced by MASM has changed in several
ways. See the example and description in Section 2.4. Several new exit
codes have been added. See the list of exit codes in Appendix B.

LINK has two new options: the /EXEPACK option allows you to pack
executable files during linking, while the /HELP option allows you to see a
list of LINK options (see Sections 3.3.1 and 3.3.3). In addition, LINK has
been optimized to make linking faster.

Introduction

Several options have been added to SYMDEB since the version released
with the Microsoft Macro Assembler, Version 3.0. The new options are
listed below:

Option Action

/K Enables SCROLL LOCK or BREAK key as an interactive
break-point key.

/N Enables non-maskable interrupt break systems for
non-IBM computers.

/S Enables screen swapping between a SYMDEB screen
and a program screen.

/" commands" Executes the specified commands on start-up.
SYMDERB options are discussed in detail in Section 4.4.

CREF now uses all available memory space, allowing the program to pro-
cess larger cross-reference files.

Two new capabilities and several options have been added to the MAKE
utility. MAKE now supports macro definitions and inference rules. These
features and the new MAKE options are described in Chapter 7.

The Macro Assembler Package now includes the EXEPACK utility, which
allows you to pack executable files, and the EXEMOD utility, which
allows you to modify the MS-DOS file header of .EXE files. These utilities
are described in Appendix C.

1.7 Compatibility with Assemblers
and Compilers

If you are upgrading from a previous version of the Microsoft or IBM Macro
Assembler, you may need to make some adjustments before assembling
source code developed with previous versions. The potential compatibility
problems are listed below:

e Some previous versions of the IBM Macro Assembler wrote segments
to object files in alphabetical order. The current version writes seg-
ments to object files in the order encountered in the source file. You

Microsoft Macro Assembler User’s Guide

can use the /A option to order segments alphabetically if this seg-
ment order 1s crucial in your previous source code. See Section 2.3.1
in this User’s Guide.

o Some early versions of the Macro Assembler did not have strict type
checking. Source code developed with these assemblers may pro-
duce error messages when assembled with newer versions. In some
cases, listings in magazines and books are developed with the older
assemblers. The source code can easily be made compatible using
the PTR operator. Section 5.6 in the Microsoft Macro Assembler
Reference Manual describes strict type checking and how to modify
source code developed without this feature.

The Microsoft Macro Assembler is compatible with Microsoft (and most
IBM) high-level languages. An exception occurs when LINK is used with
IBM COBOL 1.0, IBM FORTRAN 2.0, or IBM Pascal 2.0. If source code
developed with these compilers has overlays, you must use the linker pro-
vided with the compiler. Do not use the Microsoft linker.

When using SYMDEDB, symbols may not be interpreted correctly in pro-
grams developed with old versions of FORTRAN and Pascal (Microsoft ver-
sions prior to 3.3 or IBM versions prior to 2.0). You can use the Symbol Set
command (Z) to correct the symbol addresses (see Section 4.6.28).

1.8 Notational Conventions

This manual uses the following notational conventions in defining
assembly-language syntax, and in presenting examples:

Convention Meaning

Bold type Bold type indicates commands, parameter names,
or symbols that must be typed as shown. In most
cases, upper- and lowercase letters can be freely
intermixed. One exception is text within double
quotation marks ("tezt"). Text in quotation
marks is usually case-sensitive.

Examples

[displacement] [DI]
[DI—I— displacement]
[DI].displacement

[DI]+displacement

10

Ttalics

M

Introduction

Note that in the examples above, the brackets must
be typed as shown. The register name DI must also
be typed as shown, though you could use lowercase
letters. The plus sign (+) in both the second and
fourth examples, and the period (.) in the third
example must be typed as shown.

Italics indicate a placeholder: a name that you
must replace with the value or file name required
by the program.

Example
/Ipath

In the example above, the slash (/) and the letter I
must be entered as shown (except that the I could
be lowercase). However, path is a placeholder
representing a path name supplied by the user.
You could enter any path name such as B:\ or
\MASM\PROJECT1. When a placeholder is used in
a syntax example at the start of a section, the text
below usually describes the types of values that can
replace the placeholder.

Double brackets indicate that the enclosed item is
optional. Don’t confuse double brackets with single
brackets ([]), which must be typed as shown.

Example
BP [number] address [passcount] ["commands"]

In the example above, you must enter BP as
shown. You must also enter a value for the address
placeholder. Values for the placeholders number,
passcount, and commands can be entered if you
wish, or they can be left blank. If you enter a value
for commands, you must enclose the value in quota-
tion marks ("").

A series of commas indicates that you can repeat
the preceding item type if you separate each of the
items with commas.

Example
[name] recordname <[initialvalue,,,] >

In the example above, you may provide a name and

11

Microsoft Macro Assembler User’s Guide

12

Special
typeface for
examples

you must provide a recordname. You may provide
more than one initielvalue as long as you separate
the values with commas. Note that you must type
the angle brackets even if you do not provide any
initialvalue.

A vertical bar between items indicates that only
one of the separated items can be used. You must
make a choice between the items.

Example
D [address | range]

In the example above, you must enter the letter D.
You may enter either an address or a range (but not

both).

Example text in this manual is shown in a special
typeface so that it will look more like listings on
the screen or produced with a printer.

Examples that represent source code follow these
conventions:

e Lowercase letters for symbols, labels, instruc-
tions, and registers

o Uppercase letters for reserved words

e Uppercase letters for hexadecimal digits

e Lowercase letters for radix indicators

e Upper- and lowercase letters for comments

These are documentation conventions, not
language requirements. Your source code can gen-
erally use any combination of upper- and lowercase
letters, though your code will be clearer if you
choose a convention and use it consistently.

Examples
count DB o}
mov ax,bx

ASSUME cs:_text, ds:DGROUP
print PROC near

Chapter 2
MASM: A Macro Assembler

2.1 Introduction 15

2.2 Starting and Using MASM 15

2.2.1 Assembly Using Prompts 15

2.2.2 Assembly Using a Command Line 17

2.3 Using MASM Options 20

2.3.1 Writing Segments in Alphabetical Order 21
2.3.2 Writing Segments in Source-Code Order 22
2.3.3 Setting the File Buffer Size = 22

2.3.4 Creating a Pass 1 Listing 23

2.3.5 Defining Assembler Symbols 23

2.3.6 Setting a Search Path for Include Files 24
2.3.7 Preserving Case-Sensitivity in Names 25

2.3.8 Preserving Case-Sensitivity
in Public and External Names 26

2.3.9 Converting Names to Uppercase 26

2.3.10 Suppressing the Tables in the Listing File 27
2.3.11 Checking for Impure Code 27

2.3.12 Creating Code for a Floating-Point Processor 28
2.3.13 Creating Code for a Floating-Point Emulator 28
2.3.14 Displaying Extra Assembly Statistics 29

2.3.15 Listing False Conditionals 29

2.3.16 Displaying Error Lines on the Screen 31

2.3.17 Specifying a Cross-Reference File 31

2.3.18 Specifying a Listing File 32

13

2.3.19 Suppressing Messages for Successful Assembly
2.4 Reading the Assembly Listing 32

2.4.1
2.4.2
2.4.3
244
2.4.5
2.4.6

14

Reading Code in the Listing 33

Reading a Macro Table 36

Reading a Structure and Record Table 36
Reading a Segment and Group Table 37
Reading a Symbol Table 39

Reading a Pass 1 Listing 41

32

MASM: A Macro Assembler

2.1 Introduction

The Microsoft Macro Assembler (MASM) assembles 8086, 80186, and
80286 assembly-language source files and creates relocatable object files
that can be linked and executed under the MS-DOS operating system. This
chapter explains how to invoke MASM and describes the format of assem-
bly listings generated by MASM. For a complete description of the syntax
of assembly-language source files, see the Microsoft Macro Assembler Refer-
ence Manual.

2.2 Starting and Using MASM

Sections 2.2.1 and 2.2.2 explain how to start and use MASM to assemble
your program source files. You can assemble source files with MASM using
two different methods: by responding to a series of prompts, or with an
MS-DOS command line.

Once you have started MASM, it either processes the files you have
specified, or prompts for additional files. You can terminate MASM at any
time by pressing CONTROL-C.

2.2,1 Assembly Using Prompts

You can direct MASM to prompt you for the files it needs by starting
MASM with just the command name. Follow these steps:

1. Type
MASM

and press the RETURN key at the MS-DOS command level. MASM
displays the following prompt:

Source filename [.ASM]:

2. Type the name of the file you wish to assemble and press the
RETURN key. Include a drive and path name if the file is not in the
current directory. If you do not give an extension, the assembler
supplies the extension .ASM. The assembler requires a source file,
S0 you cannot press just the RETURN key at this prompt as you can
at other prompts.

16

Microsoft Macro Assembler’s User Guide

Once you have pressed the RETURN key, MASM displays this
prompt:

Object filename [source.OBJ]:

3. Note that source is the name of the file specified at the “Source
filename” prompt. Type the name of the file to receive the relocat-
able object code and press the RETURN key. If you do not give a
file-name extension, the assembler uses .OBJ by default. If you
want to use the default file name (represented by source), do not
type a file name. Just press the RETURN key.

Once you have pressed the RETURN key, MASM displays this
prompt:

Source listing [NUL.LST]:

4. If you want the assembler to create a file listing, type the name of
the file to receive the listing and press the RETURN key. If you do
not give a file-name extension, the assembler uses .LIST by default.
If you do not want to create an assembly listing, do not type a file
name. Just press the RETURN key.

Once you have pressed the RETURN key, MASM displays this
prompt:

Cross-reference [NUL.CRF]:

5. If you want the assembler to create a cross-reference file, type the
name for the file and press the RETURN key. If you do not supply a
file-name extension, the assembler uses .CRF by default. If you do
not want a cross-reference listing, do not type a file name. Just
press the RETURN key.

Once you have pressed the RETURN key, MASM assembles the given source
file.

You can specify one or more options at the end of each prompt line. Each
option must be preceded by a forward slash (/) or a dash (-). MASM

options are described in section 2.3.

You must use an appropriate path name for any file that is not in the
current drive and directory.

At any prompt, you can type the rest of the file names in the command line
format. For example, you can choose the default responses for all remain-
ing prompts by typing a semicolon (;) after any prompt (as long as you have
supplied a source-file name), or you can type commas {,) to indicate several

16

MASM: A Macro Assembler

files, as described in Section 2.2.2. When MASM encounters a semicolon, it
immediately chooses the default responses and processes the remaining files
without displaying any more prompts.

Examples
MASM

Source filename [.ASM]: file

Object filename ([file.OBJ]: b:file
Source listing [NUL.LST]: PRN /D
Cross-reference [NUL.CRE]: b:\cref\file

This example directs MASM to assemble the source file file.asm on the
current drive and place the relocatable object code in file.obj on the
current directory of Drive B. The device name and the /D option at the
“Source listing” prompt direct MASM to send a listing (including a Pass 1
listing) to the line printer (the /D option is described in Section 2.3.1).
MASM also sends cross-reference data to file.cr f in the \cref direc-
tory of Drive B.

MASM

Source filename [.ASM]: file
Object filename [file.OBJ]: £123;

The example above directs MASM to assemble the source file file.asm
and place the relocatable object code in the object file £123.0bj. The
semicolon (;) after the object-file name directs the assembler to select the
default file names for the remaining prompts. This means the assembler
creates no assembly listing or cross-reference listing.

2.2.2 Assembly Using a Command Line

You can assemble a program source file by typing the MASM command
name and the names of the files you wish to process. The command line has
the following form:

MASM sourcefile [,[objectfile] [,[listingfile] [,[crossreferencefile]]]] [options] [5]

The sourcefile must be the name of the source file to be assembled. If you
do not supply a file-name extension, MASM supplies the extension .ASM.

17

Microsoft Macro Assembler’s User Guide

The options can be any combination of MASM options described in Section
2.3. Options may be placed anywhere on the command line.

The optional objectfile is the name of the file to receive the relocatable
object code. If you do not supply a name, MASM uses the source-file name,
replacing the extension with .OBJ.

The optional listingfile is the name of the file to receive the assembly listing.
The assembly listing shows the assembled code for each source statement
and the names and types of symbols defined in the program. If you do not
supply a file-name extension, MASM supplies the extension .LST.

The optional crossreferencefile is the name of the file to receive the cross-
reference output. The resulting cross-reference file can be processed with
CRET, the Microsoft Cross-Reference Utility, to create a cross-reference
listing of the symbols in the program for use in program debugging. If you
do not supply a file-name extension, MASM supplies .CRF by default.

You can use a semicolon (;) in the command line to select defaults for the
remaining file names. A semicolon after the source-file name selects a
default object-file name and suppresses creation of the assembly listing and
cross-reference files. A semicolon after the object-file name suppresses just
the listing and cross-reference files. A semicolon after the listing-file name
suppresses only the cross-reference file.

All files created during the assembly will be written to the current drive
and directory unless you specify a different drive for each file. You must
separately specify the alternate drive and path for each file that you do not
want to go on the current directory.

You can also specify a device name instead of a file name. For example,
INUL for no file or PRN for the printer.

Note

Unless a semicolon (;) is used, all the commas in the command line are
required. If you want the file name for a given file to be the default (the
file name of the source file), place the commas that would ctherwise
separate the file name from the other names side by side (,,).

Spaces in a command line are optional. If you make an error entering
any of the file names, MASM displays an error message and prompts
for new file names, using the method described in the previous section.

18

MASM: A Macro Assembler

Examples

MASM file.asm, file.obj, file.lst, file.crf
The example above is equivalent to:

MASM file,,,:

The source file file.asm is assembled. The generated relocatable code is
copied to the object file file.obj. MASM also creates an assembly list-
ing and a cross-reference file. These are written to file.1lst and
file.crf, respectively.

MASM startup,,stest;

The example above directs MASM to assemble the source file
startup.asm. The assembler then writes the relocatable object code to
the default object file, startup.obj. MASM creates a listing file named
stest.lst, but the semicolon keeps the assembler from creating a cross-
reference file.

MASM startup, ,stest, ;

The example above is exactly the same as the previous example except that
the assembler creates a cross-reference file startup.cr f. This is because
the semicolon follows a comma marking the place of the cross-reference file
instead of following the file name of the list file.

MASM B:\src\build;

The example above directs MASM to find and assemble the source file
build.asn in the directory \src on Drive B. The semicolon causes the
assembler to create an object file named build.obj in the current direc-
tory, but prevents MASM from creating an assembly listing or cross-
reference file. Note that the object file is placed on the current drive, not
the drive specified for the source file.

19

Microsoft Macro Assembler’s User Guide

2.3 Using MASM Options

The MASM options control the operation of the assembler and the format
of the output files it generates.

MASM has the following options:

Option Action

JA Writes segments in alphabetical order

/S Writes segments in source-code order

/Bnumber Sets buffer size

/C Specifies a cross-reference file

/L Specifies an assembly listing file

/D Creates Pass 1 listing

/Dsymbol Defines assembler symbol

/Ipath Sets include file search path

/ML Preserves case sensitivity in names

/MX Preserves case sensitivity in public and external names
/ MU Converts names to uppercase

/N Suppresses tables in listing file

/P Checks for impure code

/R Creates code for real floating-point instructions

JE Creates code for emulated floating-point instructions
/T Suppresses messages for successful assembly

/v Displays extra statistics to screen

/X Includes false conditionals in listings

/Z

Displays error lines on screen

You can place options anywhere on a MASM command line. An option
affects all relevant files in the command line even if the option appears at
the end of the line. Options can be specified with either a forward slash (/)
or a dash (-), and with either upper- or lowercase letters. The options /A,
/a, -A, and -a are equivalent.

20

MASM: A Macro Assembler

Note

You should not use source-file names containing dashes. Although the
dash is a legal character for MS-DOS file names, the assembler will
interpret a dash as the beginning of an assembler option. For example,
the file name £ile-c will be interpreted by the assembler as file fol-
lowed by the invalid option -c. An error message will result.

2.3.1 Writing Segments in Alphabetical Order

Syntax
/A
The /A option directs MASM to place the assembled segments in alpha-

betical order before copying them to the object file. If this option is omit-
ted, MASM copies the segments in the order encountered in the source file.

Note

Some previous versions of the macro assembler ordered segments alpha-
betically by default. Listings in books and magazines may be written
with these early versions in mind. If you have trouble assembling and
linking a listing taken from a book or magazine, try using the /A
option.

Example
MASM file /A;

This example creates an object file, FILE . OBJ, whose segments are
arranged in alphabetical order. Thus, if the source file FILE . ASM contains
segments with the class types 'DATA', 'CODE', and 'STACK', the as-
sembled segments in the object file have the order 'CODE', 'DATA', and
"STACK'. The significance of segment order and class type are discussed in
more detail in Sections 3.4.2 and 3.4.3 in this manual, and in Section 3.4.3
of the Microsoft Macro Assembler Reference Manual.

21

Microsoft Macro Assembler’s User Guide
2.3.2 Writing Segments in Source-Code Order

Syntax

/S
The /S option tells MASM to place the assembled segments in the object

file in the same order in which they appear in the source file. This is the
default order. The /S option is provided for compatibility with XENIXe.

2.3.3 Setting the File Buffer Size

Syntax

/Bnumber

The /B option directs the assembler to change the size of the file buffer
used for the source file. The number is the number of 1024-byte (1K)
memory blocks allocated for the buffer. You can set the buffer to any size
from 1K to 63K (but not 64K). The default size of the buffer is 32K.

A buffer larger than your source file allows you to do the entire assembly in
memory, greatly increasing assembly speed. However, you may not be able
to use a large buffer if your computer does not have enough memory or if
you have too many resident programs using up memory. If you get an error

message indicating insuflicient memory, you can decrease the buffer size and
try again.

Examples

MASM file,,/Bl6;

The example above decreases the bufler size to 16K.
MASM file,, /B63;

The example above increases the buffer size to 63K.

22

MASM: A Macro Assembler

2.3.4 Creating a Pass 1 Listing

Syntax
/D

The /D option tells MASM to add a Pass 1 listing to the assembly-listing
file, making the assembly listing show the results of both assembler passes.
A Pass 1 listing is typically used to locate program phase errors. Phase
errors occur when the assembler makes assumptions about the program in
Pass 1 that are not valid in Pass 2.

The /D option does not create a Pass 1 listing unless you also direct
MASM to create an assembly listing. It does direct the assembler to
display error messages for both Pass 1 and Pass 2 of the assembly, even if
no assembly listing is created. See Section 2.4.6 for more information
about Pass 1 listings.

Example
MASM file,, /D;

This example directs the assembler to create a Pass 1 listing for the source
file file.asm. The listing is placed in the file file. lst.

2.3.5 Defining Assembler Symbols

Syntax
/Dsymbol

The /Dsymbol option directs MASM to define a symbol that can be used
during the assembly as if it were defined in the source file. The specified
symbol is defined as a null-text string. This is similar to using the EQU
directive within the source file to define a string.

The /Dsymbol option can be used to define symbols that can be evaluated
by the IFDEF and IFNDEF conditional-assembly directives. These direc-
tives are explained in Section 7.2.3 of the Microsoft Macro Assembler Refer-
ence Manual.

23

Microsoft Macro Assembler’s User Guide

Example
MASM file,,/Dwide;

This example defines the symbol wide and gives it a null value. The sym-
bol could then be used in the following conditional-assembly block:

IFDEEF wide
PAGE 50,132
ENDIF

When the symbol is defined in the command line, the listing file is for-
matted for a 132-column printer. When the symbol is not defined in the
command line, the listing file is given the default width of 80 (see the
description of the PAGE directive in Section 9.8 of the Microsoft Macro
Assembler Reference Manual).

2.3.6 Setting a Search Path for Include Files

Syntax

/Ipath

The /T option is used to set search paths for include files. You can set up
to 10 search paths by using the option for each path. The order of search-
ing is the order in which the paths are listed in the command line. The

INCLUDE directive and include files are discussed in Section 9.2 of the
Microsoft Macro Assembler Reference Manual.

Example

MASM file,, /Ib:\lo /I\macro ;

This command line might be used if the source file contains the following
statement:

INCLUDE dos.mac
In this case, MASM would search for file dos .mac first in directory \io

on Drive B, then in directory \macro on the current drive, and finally in
the current directory.

24

MASM: A Macro Assembler

You should not specify a path name with the INCLUDE directive if you
plan to specify search paths from the command line. For example, if the
source file contained the statement

INCLUDE a:\macro\dos.mac
MASM would search path a:\macro and would ignore any search paths
specified in the command line.

2.3.7 Preserving Case-Sensitivity in Names

Syntax
/ML

The /ML option directs the assembler to preserve lowercase letters in
label, variable, and symbol names. All names that have the same spelling,
but use letters of different cases are considered different. For example, with
the /ML option, DATA and data are different. Without the option, the
assembler automatically converts all lowercase letters in a name to upper-
case.

The /ML option is typically used when object modules created with
MASM are to be linked with object modules created by a case-sensitive
compiler.

Example

MASM file /ML, ,:

This example directs the assembler to preserve lowercase letters in any
names defined in the source file file.asm.

2b

Microsoft Macro Assembler’s User Guide

2.3.8 Preserving Case-Sensitivity
in Public and External Names

Syntax
/MX

The /MX option directs the assembler to preserve lowercase letters in pub-
lic and external names. MASM converts all other names to uppercase.

Public and external names include any label, variable, or symbol names
defined using the EXTRN directive or the PUBLIC directive. See
Chapter 6 of the Microsoft Macro Assembler Reference Manual for more
information on global directives. If the /MX option is specified, the assem-
bler writes public and external names to the object file in exactly the form
in which they appear in the source file. The names DATA and Data would
be different if written to the object file with the /MX option.

The /MX option is used to ensure that the names of routines or variables
copied to the object module have unique spelling regardless of whether they
are spelled with upper- or lowercase letters. The option is used with any
source file to be linked with object modules created by a case-sensitive com-
piler.

Example

MASM file /MX,.,:

The preceding example directs MASM to preserve lowercase letters in any
public or external names defined in the source file file.asm.

2.3.9 Converting Names to Uppercase

Syntax
/MU
The /MU option causes the assembler to convert lowercase letters to

uppercase in public and external names. This is the default. The /MU
option is provided for compatibility with XENIX.

26

MASM: A Macro Assembler
2.3.10 Suppressing the Tables in the Listing File

Syntax
/N

The /NN option tells the assembler to omit all tables from the end of the
listing file. If this option is not chosen, MASM will include tables of mac-
ros, structures, records, segments and groups, and symbols. The code por-
tion of the listing file is not changed by the /N option.

Example

MASM file,, /N:
2.3.11 Checking for Impure Code

Syntax

/P

The /P option directs MASM to check for impure code in the 80286 pro-
tected mode. This option has no effect unless assembly is being controlled
by the .286p directive. The .288p and other instruction-set directives are
explained in Section 3.3 of the Microsoft Macro Assembler Reference
Manual.

Code that moves data into memory with the CS: override instruction is
acceptable in nonprotected 286 mode and in 8086 and 80186 mode. How-
ever, such code may cause problems in protected mode. When the /P mode
is in effect, the assembler checks for these situations and generates error
100 if it encounters them.

Example
MASM file /P;

This example instructs MASM to check for impure code where instruction
data are moved directly into memory through a CS: override instruction.

27

Microsoft Macro Assembler’s User Guide
2.3.12 Creating Code for a Floating-Point Processor

Syntax
/R

The /R option directs the assembler to generate floating-point instruction
code that can be executed by an 8087 or 80287 coprocessor. Programs
created using the /R option can run only on machines having an 8087 or
80287 coprocessor.

Example
MASM file/R,,:

This example directs MASM to assemble the source file file.asm and
create actual 8087 or 80287 instruction code for floating-point instructions.

2.3.13 Creating Code for a Floating-Point Emulator

Syntax
J/E

The /E option directs the assembler to generate floating-point instruction
code that emulates the 8087 or 80287 coprocessor. This option is for the
convenience of programmers who already own a math-emulation library
such as the ones provided with Microsoft C, Pascal, and FORTRAN. The
Ngcrosoft Macro Assembler package does not include a math-emulation
library.

If you intend to execute a program that uses 8087 or 80287 instructions on
machines that do not have an 8087 or 80287 coprocessor, you must use the
/E option during assembly, and then link the resulting object file with a
math-emulation library. The library contains routines that emulate 8087
and 80287 floating-point instructions.

28

MASM: A Macro Assembler

Example

MASM file /E:
LINK file,,,math.lib

This example directs MASM to create emulation code for any floating-
point instructions it finds in the program. Note that the object file is
linked with a2 math-library file in the second command line. If you try to
use the /E option without a math library, you will be able to assemble the
file successfully, but you will get error messages when you try to link the
object file.

2.3.14 Displaying Extra Assembly Statistics

Syntax
/V

The /V option directs the assembler to send additional statistics to the
screen at the end of assembly. In addition to the normal data on errors and
symbol space, MASM reports the number of lines and symbols processed.
(The V in the option name is mnemonic for verbose.)

Example

MASM file/V;
2.3.15 Listing False Conditionals

Syntax
/X

The /X option directs MASM to copy to the assembly listing all state-
ments forming the body of an IF directive whose expression (or condition)
evaluates to false. If you do not give the /X option in the command line,
MASM suppresses all such statements. The /X option lets you display
conditionals that do not generate code. This option applies to all “if” direc-
tives: IF, IFE, IF1, IF2, IFDEF, IFNDEF, IFB, IFNB, IFIDN, and
IFDIF. Conditional-assembly directives are explained in Section 7.2 of the
Microsoft Macro Assembler Reference Manual.

29

Microsoft Macro Assembler’s User Guide

The .SFCOND, .LFCOND, and .TFCOND directives modify the effect
of the /X option. A .SFCOND in the source file suppresses false condi-
tionals while a .LFFCOND directive restores listing of false conditionals.
Both these directives work regardless of whether the /X option is given on
the command line. A .TFCOND directive in the source file reverses the
normal meaning of the /X option. When the /X option has been given and
the assembler encounters a . TFCOND directive in a source file, subse-
quent false conditionals are suppressed. The next . TFCOND directive
restores the listing.

The following table illustrates the effect of the TFCOND, .SFCOND,
and .LFCOND directives on the /X option:

Table 2.1
/X Option and Directives

Source File Directive: /X Option Action:

.SFCOND Has no effect; false conditionals not listed

.LFCOND Has no effect; false conditionals listed

JTFCOND Toggles between listing & suppressing false conditionals
No directive Lists false conditionals

The /X option does not affect the assembly listing unless you direct the
assembler to create an assembly-listing file. See Section 9.10 in the Micro-
soft Macro Assembler Reference Manual for more information about direc-
tives that control listing of false conditionals.

Example

MASM file, , /X;

If the source file, file.asm contains two .TFCOND directives, the
assembler will start listing false conditionals at the first directive and con-

tinue until it reaches the second. It will continue to toggle between listing
and suppressing each time it encounters a new .TFCOND directive.

30

MASM: A Macro Assembler
2.3.16 Displaying Error Lines on the Screen

Syntax

/Z

The /Z option directs MASM to display lines containing errors on the
screen. Normally when the assembler encounters an error, it displays only
an error message describing the problem. When you use the /Z option in
the command line, the assembler displays the source line that produced the
error in addition to the error message. MASM assembles faster without
the /Z option, but you may find the convenience of seeing incorrect source
lines worth the slight cost in processing speed.

Previous versions of MASM always showed both the source line and the
error message.
Example

MASM file/Z;
2.3.17 Specifying a Cross-Reference File

Syntax
/C

The /C option directs MASM to create a cross-reference file even if one
was not specified in the command line or in response to prompts. A cross-
reference file specified with the /C option always has the base name of the
source file plus the extension .CRF. You cannot specify a file name with
this option. The /C option is provided for compatibility with XENIX.

81

Microsoft Macro Assembler’s User Guide
2.3.18 Specifying a Listing File

Syntax

/L

The /L option directs MASM to create an assembly-listing file even if one
was not specified in the command line or in response to prompts. An
assembly-listing file specified with the /L option always has the base name
of the source file plus the extension .LST. You cannot specify a file name
with this option. The /L option is provided for compatibility with XENIX.

2.3.19 Suppressing Messages for Successful Assembly

Syntax
/T

The /T option suppresses all messages if the source file is assembled
without any warning errors or severe errors. The copyright message and
information about errors and symbol space appear only if at least one error
is encountered. This option may be useful in batch files if the user does not
want the output cluttered with unnecessary messages. (The T in the option
name is mnemonic for terse.)

2.4 Reading the Assembly Listing

MASM creates an assembly listing of your source file whenever you give an
assembly-listing file name on the MASM command line or in response to
the MASM prompts. The assembly listing contains both the statements in
the source-program file, and the object code generated for each statement.
The listing also shows the names and values of all labels, variables, and
symbols in your source file.

The assembler creates tables for macros, structures, records, segments,
groups, and other symbols. These tables are placed at the end of the
assembly listing (unless you suppress them with the /N option). MASM
lists only the types of symbols encountered in the program. If your pro-
gram has no macros, there will be no macro section in the symbol table.

32

MASM: A Macro Assembler

The assembly listing also contains error messages if errors occurred during
assembly. MASM places each message below the statement that caused
the error. At the end of the listing, the assembler tells how many error and
warning messages it issued.

Sections 2.4.1-2.4.6 explain the format of assembly listings and the mean-
ings of special symbols used in listings.

2.4.1 Reading Code in the Listing

The assembler lists the code generated from the statements of a source file.
Each line has the form:

[linenumber] offset code statement

The optional linenumber is the number of the line starting from the first
statement in the assembly listing. Line numbers are produced only if you
request a cross-reference file. Line numbers in the listing do not always
correspond to the same lines in the source file.

The offset is the offset from the beginning of the current segment to the
code. The code is the actual instruction code or data generated for the
statement. MASM gives the actual numeric value of the code in hexa-
decimal if possible. Otherwise, it indicates what action is necessary to com-
pute the value. The statement is the source statement shown exactly as it
appears in the source file, or as expanded by a macro.

If any errors occur during assembly, each error message and error number
will be printed directly below the statement where the error occurred.
Refer to Appendix A for a list of MASM errors. Error messages show the
source-file name, the source-line number, the error number, and an error
message as shown below:

28 nov ds, ax
work.ASM(22) : error 10: Syntax error

Note that the 22 in the error message is the line number in the source file.
The 28 on the code line is the line number of the listing file, which may not
be the same as the source line. Line numbers in the listing file are produced
only if you request a cross-reference file.

The assembler uses the special characters shown in Table 2.2 to indicate

addresses that need to be resolved by the linker or values that were gen-
erated in a special way:

33

Microsoft Macro Assembler’s User Guide

Table 2.2

Special Characters in Listings

Character Meaning

R Relocatable address; linker must resolve

E External address; linker must resolve

-—-- Segment/group address; linker must resolve

= EQU or equal-sign (=) directive

nn: Segment override in statement

nn/ REP or LOCK prefix instruction

nn [xx| DUP expression; nn copies of the value xx

n Macro expansion nesting level (+ if more than nine)
C Line from INCLUDE file

Example

Microsoft MACRO Assembler Version 4.00

1 quit
2

3

4

5

6 = FFFF max

7

8

9
10 0000 stack
11 0000 0100[
lz ??

13]
14

15 0100 stack
16
17 0000 data
18 0000 0064[buffer
19 ????

34

9/25/85 13:58:46

Page
MACRO
mov
int
ENDM
EQU

EXTRN

1-1

ah, 4Ch
21h

65535

work :NEAR

SEGMENT para public 'STACK'

DB

ENDS

256 DUP (?)

SEGMENT public 'DATA'

DW

100 DUP (?)

test .ASM(22)
29 0003
30
31 0006
32 0008
33 OOCA
34

data

code

B8 ---- R start:

error 10: Syntax error
E8 0000 E

B4 4C 1
CDh 21 1
code

Microsoft MACRO Assembler Version 4.00

Macros:
Name Lines
QUIT 2
Segments and Groups:
N ame Size Align
CODE O00A PARA
DATA . oocs PARA
STACK 0100 PARA
Symbols:
Name Type Value
BUFFER L WORD
MAX Number FFEF
START L NEAR 0OCQO
WORK . L NEAR OOQO
26 Source Lines
28 Total Lines
29 Symbols

50002 Bytes symbol space free

O Warning
1 Severe

Errors
Errors

MASM: A Macro Assembler

ENDS

SEGMENT public 'CODE'

ASSUME

mov
nov

call
quit
mov
int
ENDS
END

cs:code, ds:data

ax,data
ds,ax

work

ah, 4Ch
21h

start

9/25/85 13:58:46

Symbol

Combine
PUBLIC

PUBLIC
PUBLIC

Attr

0000

CODE

s-1

Class

'CODE'
'DATA'
'STACK'

DATA Length = 0064

External

3b

Microsoft Macro Assembler’s User Guide

The line numbers referencing the sample source file indicate that a cross-
reference file was requested when the file was assembled. Source and refer-
ence files for this sample listing are shown in Section 5.3.

2.4.2 Reading a Macro Table

The table at the end of a listing file shows the names and sizes of all macros
defined in the source file. The list has two columns with the headings Name
and Lines, as shown in the following example:

N ame Lines

BIOSCALL .
DISPLAY
DOSCALL .
KEYBOARD .
LOCATE .
SCROLL .

[©2RRN I Y OV)

The Name column lists the names of all macros. The names are listed in
alphabetical order and are spelled exactly as given in the source file except
that lowercase letters are converted to uppercase (unless conversion is
suppressed with the /ML option). Names longer than 31 characters are
truncated. The L.ines column lists the number of lines in the macro.

2.4.3 Reading a Structure and Record Table

The table at the end of a listing file shows the names and dimensions of all
structures and records in the source file.

The Name column lists the name of the structure or record, and this is fol-
lowed on succeeding indented lines by the names of the fields within the
structure or record. The names are listed in alphabetical order and are
spelled exactly as given in the source file, except that lowercase letters are
converted to uppercase (unless conversion is suppressed with the /ML
option). Names longer than 31 characters are truncated.

36

MASM: A Macro Assembler

The following example shows the format for structures:

Name Width # fields
Shift Width Mask Initial
STRUCL Q01A 0003
COUNT 0000
VALUE 0001
NAME 0015

For a structure, the Width column lists the size (in bytes) of the structure.
The # fields column lists the number of fields in the structure., Both
values are in hexadecimal.

For a record, the Width column lists the size (in bits) of the record. The #
fields column lists the number of fields in the record.

For fields of structures, the Shi ft column lists the offset (in bytes) from
the beginning of the structure to the field. This value is in hexadecimal.
The other columns are not used.

The following example shows the format for records:

Name Width # fields
Shift Width Mask Initial

RECO 000B 0002

FL1 0003 0008 O7E8 0400

FL2 0000 0003 0007 Q002
RECL 0O00A 0003

FL1 0006 0004 03CO 0000

FL2 0003 0003 0038 0000

FL3 0000 0003 0007 C000

For fields in a record, the Shi ft column lists the offset Sin bits) from the
low-order bit of the record to the low-order bit in the field. The Width
column lists the number of bits in the field. The Mask column lists the
maximum value of the field, expressed in hexadecimal. The Initial
column lists the initial value of the field, if any. For each field, the table
shows the mask and initial values as if they were placed in the record and
all other fields were set to 0.

2.4.4 Reading a Segment and Group Table

The following example of a table at the end of a listing file shows the
names, sizes, and attributes of all segments and groups in the source file:

37

Microsoft Macro Assembler’s User Guide

N ame Size Align Combine Class

DGROUP GROUP

DATA 0024 WORD PUBLIC '"DATA'

STACK 0014 WORD STACK 'STACK'

CONST 0000 WORD PUBLIC 'CONST'

HEAP 0000 WORD PUBLIC '"MEMORY '

MEMORY 0CCO WORD PUBLIC 'MEMORY '
FIRST 0037 WORD PUBLIC 'CODE’
MAIN_STARTUP OO7E PARA NONE 'MEMORY '

The table has five columns: Name, Size, Align, Combine, and Class.

The Name column lists the names of all segments and groups. The names in
the list are given in alphabetical order, except that the names of segments
belonging to a group are placed under the group name. Names are spelled
exactly as given in the source file; lowercase letters are converted to upper-
case (unless the /ML option is used). Names longer than 31 characters are
truncated.

The Size column lists the byte size (in hexadecimal) of each segment.
Since a group has no size, only the word GROUP is shown.

The Align column lists the align type of the segment. The types can be
any of the following:

byte
word
para
page
at

If the segment is defined with no explicit align type, MASM lists the
default align type for that segment.

The Combine column lists the combine type of the segment. The types can
be any one of the following:

none
public
stack

mermory

38

MASM: A Macro Assembler

comimon

address (for at combine type)

If no explicit combine type is defined for the segment, the listing shows
NONE, representing the private combine type. If the Al1ign column con-
tains AT, the Combine column contains that hexadecimal address of the
beginning of the segment.

The Class column lists the class name of the segment. The name is
spelled exactly as given in the source file except that lowercase letters are
converted to uppercase (unless the /ML option is used). If no name is
given, none is shown.

For a complete explanation of the align and combine types, and class
names, see Section 3.4 of the Microsoft Macro Assembler Reference Manual.

2.4.5 Reading a Symbol Table

The following example of a table at the end of a listing file shows the
names, types, values, and attributes of all symbols in the source file:

Symbols:
Name Type Value Attr
SYMO L Number 0005
SYM1I Text 1.234
SymM2o L L L Number 0008
SYM3 Lo Alias SYM4
SYM4 0L Text S[BP] (DI}
SYMS L L oL Opcode
sYyMe L BYTE 0002 DATA
SYM7 L WORD 0012 DATA Global
SymMg oL L DWORD 0022 DATA
SYM9 L QWORD Q00O External
LABO L FAR 0000 External
LABL L NEAR 0010 CODE

The table has four columns: Name, Type, Value, and Attr.

The Name column lists the names of all symbols. The names in the list are
given in alphabetical order and are spelled exactly as given in the source
ﬁle, except that lowercase letters are converted to uppercase (unless conver-
sion is suppressed with the /ML option for all names or with the /MX
option for public and external names). Names longer than 31 characters
are truncated.

39

Microsoft Macro Assembler’s User Guide

The Type column lists each symbol’s type. A type is given as one of the
following:

Type Definition

L NEAR A near label

L FAR A far label

N PROC A near procedure label

F PROC A far procedure label

Number An absolute label

Alias An alias for another symbol

Opcode An instruction opcode

Text A memory operand, string, or other value

If the symbol is defined by an EQU directive or an equal-sign (=) direc-
tive, the Type column will show either Number, Opcode, Alias, or Text.
If the symbol represents a variable, label, or procedure, the Type column
will show the symbol’s length if it is known. A length is given as one of the
following:

Type Length

BYTE One byte (8-bits)

WORD One word (16-bits)

DWORD Doubleword (2 words)

QWORD quadword (4 words)

TBYTE Ten-bytes (5 words)

number Length in bytes of a structure variable

If the symbol represents an absolute value defined with an EQU or equal-
sign i)=) directive, the Value column shows the symbol’s value. The value
may be another symbol, a string, or a constant numeric value (in hexa-
decimal), depending on whether the type is Alias, Text, or Number. If
the type is Opcode, the Value column will be blank. If the symbol
represents a variable, label, or procedure, the Value column shows the
symbol’s hexadecimal offset from the beginning of the segment in which it
is defined.

40

MASM: A Macro Assembler

The Attr column shows the attributes of the symbol. The attributes
include the name of the segment (if any) in which the symbol is defined, the
scope of the symbol, and the code length. A symbol’s scope is given only if
the symbol is defined using the EXTRN and PUBLIC directives. The
scope can be External or Global. The code length (in hexadecimal) is
given only for procedures. The Attr column is blank if the symbol has no
attribute.

2.4.6 Reading a Pass 1 Listing

When you specify the /D option in the MASM command line, the assem-
bler puts a Pass 1 listing in the assembly-listing file, making the listing file
show the results of both assembler passes. The listing is intended to help

locate the sources of phase errors.

The following examples illustrate the Pass 1 listing for a source file that
assembled without error. Although an error was produced on Pass 1,
MASM corrected the error on Pass 2 and completed assembly correctly.

During Pass 1, the j1e instruction to a forward reference produces an error
message:

0017 7E 00 jle smlstk
PASS_CMP.ASM(20) : error 9 : Symbol not defined SMLSTK

0019 BB 1000 mov bx, 4096

oc1cC smlstk:

MASM displays this error since it has not yet encountered the definition
for the symbol smlstk.

By Pass 2, smlstk has been defined and the assembler can fix the instruc-
tion, so no error occurs:

0017 7E O3 jle smlstk
0019 BB 1000 mov bx, 4096
001C smlstk:

The jle instruction’s code now contains 03 instead of 00. This is a jump
of 3 bytes.

Since MASM generated the same amount of code for both passes, there

was no phase error. If a phase error had occurred, the assembler would
have displayed an error message.

41

Microsoft Macro Assembler’s User Guide

In the following program fragment, a mistyped label creates a phase error:

0000 code segment

0000 E9 0000 U jmp go
PASS_TST.ASM(2) : error 9: Symbol not defined GO

0003 go label byte

0003 B8 0001 mov ax, 1

0006 code ends

In Pass 1, the label go is used in a forward reference and creates a Symbol
not defined error. The assembler assumes that the symbol will be
defined later and generates 3 bytes of code, reserving 2 bytes for the
symbol’s actual value.

In Pass 2, the label go is known to be a label of BYTE type, which is an
illegal type for the JMP instruction. As a result, MASM produces only 2
bytes of code in Pass 2, 1 byte less than in Pass 1. The result is a phase
error:

0000 code segment
0003 R Jmp go
PASS_TST.ASM(2) : error 57: Illegal size for item
0003 go label byte
PASS_TST.ASM(3) : error 6: Phase error between passes
0003 B8 0001 mov ax, 1
0006 code ends

Most Pass 1 errors are resolved in Pass 2, so they are not counted as either
warning or severe errors in the error count. However, there are five Pass 1
errors that cannot be resolved during Pass 2. They are counted in the error
count and listed on the first page of the listing file even if no Pass 1 listing
is requested. The following five Pass 1 errors will be included in the listing:

Code Message

2 Register already defined

5 Redefinition of symbol

13 Must be declared in pass 1

17 Forward reference 1is illegal
85 End of file, no END directive

42

Chapter 3
LINK: A Linker

3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.3.9
3.3.6
3.3.7
3.3.8
3.3.9
3.3.10
3.3.11
3.3.12
3.3.13
3.3.14

Introduction 45
Starting and Using LINK 45

Using Prompts to Specify LINK Files 45
Using a Command Line to Specify LINK Files
Using a Response File to Specify LINK Files

Giving Search Paths with Libraries 52
The Map File 53

The Temporary Disk File - VML TMP 54

Using Link Options 55
Viewing the Options List 56
Pausing to Change Disks 56
Packing Executable Files 58
Producing a Public-Symbol Map 58
Copying Line Numbers to the Map File
Preserving Lowercase 60
Ignoring Default Libraries 61
Setting the Stack Size 62
Setting the Maximum Allocation Space
Setting a High Start Address 64
Allocating a Data Group 64
Removing Groups from a Program 65
Setting the Overlay Interrupt 66
Setting the Maximum Number of Segments

99

63

48
90

67

43

3.3.15 Using DOS Segment Order
3.4 How LINK Works 68

3.4.1
3.4.2
3.4.3
3.44
3.4.5
3.4.6

44

Alignment of Segments 69
Frame Number 69

Order of Segments 70
Combined Segments 70
Groups 71

Fixups 71

LINK: A Linker

3.1 Introduction

The Microsoft 8086 Object Linker, (LINK), creates executable programs
from object files generated by the Microsoft Macro Assembler (MASM) or
by high-level-language compilers, such as C or Pascal. The linker copies
the resulting program to an executable (.EXE) output file. The user can
then run the program by typing the file’s name on the MS-DOS command
line.

To use LINK, you must create one or more object files, then submit these
files, along with any required library files, to the linker for processing.
LINK combines code and data in the object files and searches the named
libraries to resolve external references to routines and variables. It then
copies a relocatable execution image and relocation information to the exe-
cutable file. Using the relocation information, MS-DOS can load the exe-
cutable image at any convenient memory location and execute it. LINK
can process programs that contain up to one megabyte of code and data.

Section 3.2 explains how to use the linker to create executable programs.
Section 3.3 defines each of the options you can use in a LINK command
line to control the linking process. Section 3.4 explains how LINK creates

programs.

3.2 Starting and Using LINK

This section explains how to start and use the linker to create executable
programs. You can use LINK in three different ways: by answering a series
of prompts, by supplying an MS-DOS command line, or by using a response
file. The three methods can also be mixed.

Once you start LINK, it will either process the files you supplied or prompt
you for additional files. You can stop the linker at any time by pressing the
CONTROL-C key combination.

3.2.1 Using Prompts to Specify LINK Files

When you type the command name LINK at the MS-DOS prompt, the
linker will prompt you for the information it needs. Follow these steps:

45

Microsoft Macro Assembler User’s Guide

46

Type
LINK

and press the RETURN key. LINK prompts you for the object files
you wish to link by displaying the following message:

Object Modules [.OBJ]:

Type the name or names of the object files you wish to link. If you
do not supply file-name extensions, LINK supplies .OBJ by
default. If you have more than one name, make sure you separate
them with spaces or plus signs (+). If you have more names than
can fit on one line, type a plus sign (+) as the last character on the
line and press the RETURN key. LINK prompts for additional
object files.

Once you have given all object-file names, press the RETURN key.
The linker displays the following prompt:

Run File [filename.EXE]:

Note that filename is the same as the first file name entered at the
“Object Modules” prompt. Type the name of the executable file
you wish to create, and press the RETURN key. If you do not give an
extension, LINK supplies .EXE by default. If you want LINK to
supply a default executable-file name, just press the RETURN key.
The file name will be the same as the first object file, but the file
will have the extension .EXE.

Once you have pressed the RETURN key, LINK displays the prompt:
List File [NUL.MAP]:

Type the name of the map file you wish to create, then press the
RETURN key. If you do not supply a file-name extension, the linker
uses .MAP by default. If you do not want a map file, do not type a
file name. Just press the RETURN key.

Once you have pressed the RETURN key, LINK displays the prompt:
Libraries [.LIB]:

Type the names of any library files containing routines or variables
referenced but not defined in your program. If you give more than
one name, make sure the names are separated by spaces or plus
signs (+). If you do not supply file-name extensions, the linker uses
.LIB by default. If you have more names than can fit on one line,
type a plus sign (4) as the last character on the line and press the
RETURN key. LINK prompts for additional file names.

LINK: A Linker

After entering all names, press the RETURN key. If you do not want
to search any libraries, do not enter any names. Just press the
RETURN key.

LINK now creates the executable file.

When entering file names, you must give a path name for any file that is
not on the current drive and directory. You can use LINK options by typ-
ing them after the file name at any prompt. If the linker cannot find an
object file, it displays a message and waits so that you can change disks if
necessary.

At any prompt, you can type the rest of the file names in the command line
format described in Section 3.2.2. FFor example, you can choose the default
responses for all remaining prompts by typing a semicolon (;) after any
prompt, or you can type commas (,) to indicate several files. (If you type a
semicolon at the “Object Modules” prompt, be sure to supply at least one
object-file name.) When the linker encounters a semicolon, it immediately
chooses the default responses and processes the remaining files without
displaying any more prompts.

Example

LINK

Object Modules [.0BJ]: moda+modb+

Object Modules {[.0BJ]: modct+startup/PAUSE
Run File [moda.EXE]:

List File [NUL.MAP]: abc

Libraries [.LIB]: b:\lib\math

This example links the object modules moda. obj, modb.obj, modc.obj,
and startup.obj. It searches the library file math.1ib on Drive B of
the \1ib directory for routines and data used in the program. It then
creates an executable file named moda . exe, and a map file named
abc.map. The /PAUSE option in the “Object Modules” prompt line
causes LINK to pause while you change disks. The linker then creates the
executable file (see Section 3.3.2).

47

Microsoft Macro Assembler User’s Guide

3.2.2 Using a Command Line to Specify LINK Files

You can create an executable program by typing LINK followed by the
names of the files you wish to process. The command line has the following
general form:

LINK objectfiles [,[ezecutablefile] [,[mapfile] [,[ltbraryfile]]]] [options] [5]

The objectfiles include the name or names of object files that you want to
link together. The files must have been created using MASM or a high-
level-language compiler. The linker requires at least one object file. If you
do not supply an extension, LINK provides the extension .OBJ.

The optional executablefile is a placeholder for the name you wish to give
the executable file LINK will create. If you do not supply an ezecutablefile,
LINK creates a file name by using the file name of the first object file in
the command line and appending the extension .EXE.

The optional mapfile is the name of the file to receive the map listing. If you
do not supply an extension, the linker provides the extension MAP. If you
specify the /MAP or /LINENUMBERS option, a map file will be created
even if no map file was specified in the command line.

The optional libraryfiles include the name or names of the libraries contain-
ing routines that you wish to link to create a program. If you do not sup-
ply an extension, LINK supplies the extension .LIB.

The options control the operation of LINK. You can use any of the
options listed in Section 3.3. You can put options anywhere on the com-
mand line.

The commas (,) separating file names for the different types of files are
required even if no file name is supplied. If you want the file name for a file
to be the default (the same as the base name of the first object file), you can
type the comma that would follow the file name without actually supplying
a file name. You can use a semicolon (;) anywhere after the object file to
terminate the command line. If you type the comma after the object file,
LINK will supply the default name for the executablefile and suppress the
mapfile and the libraryfiles.

If you do not supply all file names in the command line and do not end with
a semicolon, the linker will prompt for additional files, using the prompts
described in Section 3.2.1. If you give more than one object file or library
file, you must separate the names with spaces or with plus signs (+).

48

LINK: A Linker

If you do not specify a drive or directory for a file, LINK assumes the file
will be on the current drive and directory. You cannot specify the drive or
directory for the objectfile and expect LINK to supply the same drive and
directory for other files. The location of each file must be given specifically.

Note

When linking modules produced with a high-level-language compiler
that supports overlays, you must specify overlay modules by putting
them in parentheses. Since MASM has no overlay manager, you can
only specify overlays for object files linked with the run-time library of
a language compiler that supports overlays. For example, you can use
overlays with modules compiled with Microsoft FORTRAN, Version 3.2
and later, Microsoft Pascal, Version 3.2 and later, and Microsoft C,
Version 3.0 and later. See your language compiler manual for details on
specifying overlays.

Examples

LINK file.obj, file.exe, file.map, routine.lib

The first example is equivalent to the following line:

LINK file,,,routine

It uses the object file file.obj to create the executable file file.exe.
LINK searches the library file.1lib for routines and variables used

within the program. It also creates a file called file.map containing a list
of the program’s segments and groups.

LINK startuptfile,b:file,\map\file:

The second example uses the two object files startup.obj and
file.obj on the current drive to create an executable file named
file.exe on Drive B. LINK creates a map file on the \map directory of
the current drive, but does not search any libraries.

LINK moda modb modc startup/PAUSE, , abc,b:\lib\math

The final example links the object modules moda. obj, modb.obj,
modc.obj, and startup.obj. The linker searches through the library
file math.1lib in the \1ib directory on Drive B for routines and data used

49

Microsoft Macro Assembler User’s Guide

in the program. It then creates an executable file named moda.exe, and a
map file named abc.map. The PAUSE option in the command line causes
the linker to pause while you change disks before creating the executable
file (see Section 3.3.2).

3.2.3 Using a Response File to Specify LINK Files

You can create a program by listing, in a response file, the names of all the
files to be processed, and by giving the name of the response file on the
LINK command line. The simplest way to use a response file is with a com-
mand line having the following form:

LINK @ filename

A response file can also be specified at any prompt, or at any position in a
command line. The input from the response file will be treated exactly as
though it had been entered at prompts or in a command line, except that
carriage-return/line-feed combinations in the file are treated the same as
the RETURN key in response to a prompt, or a comma in a command line.

When specifying a response file, the filename must be the name of the
response file, and it must be preceded by an at sign (@). If the file is in
another directory or on another disk drive, a path name must be provided.

You can name the response file anything you like. The file content has the
following general form:

objectfiles
[ezecutablefile]
[mapfile]
[libraryfiles]

Elements that have already been provided at prompts or with a partial
command line can be omitted.

Each group of file names must be placed on a separate line. If you have
more names than can fit on one line, you can continue the names on the
next line by typing a plus sign (+) as the last character in the current line.
If you do not supply a file name for a group, you must leave an empty line.
Options can be given on any line.

You can place a semicolon (;) on any line in the response file. When LINK
encounters the semicolon, it automatically supplies default file names for all
files you have not yet named in the response file. The remainder of the
response file is ignored.

50

LINK: A Linker

When you create a program with a response file, the linker displays each
response from your response file on the screen in the form of prompts. If
the response file does not contain names for required files, LINK prompts
for the missing names and waits for you to enter responses.

Note

A response file should end with either a semicolon (;) or a carriage-
return/line-feed combination. If you fail to provide a final carriage-
return/line-feed in the file, the linker will display the last line of the
response file and wait for you to press the RETURN key.

Example

moda modb modc startup /PAUSE
abc
b:\1lib\math

The response file above tells the linker to link the four object modules
moda, modb, modc, and startup. LINK pauses to permit you to swap
disks before producing the executable file moda.exe. The linker also
creates a map file abc.map, and searches the library math.1ib in the
\1lib directory of Drive B.

The following procedure combines all three methods of supplying file
names. Assume you have a response file called 1ibrary that contains one
line:

1ibl1+1ib2+1ib3+1ib4

Now start LINK with a partial command line:

LINK objectl object2

LINK takes objectl.obj and object2.ob] as its object files, and
prompts for the next file:

Run File [objectl.EXE]: exec
List File [NUL.MAP]:
Libraries [.LIB]: @library

You enter exec so that the linker will name the executable file exec.exe.
You press the RETURN key to indicate that no map file is desired, and you

bl

Microsoft Macro Assembler User’s Guide

enter @l ibrary so that the linker will read in the response file containing
the four library-file names.

3.2.4 Giving Search Paths with Libraries

You can direct LINK to search directories and disk drives for the libraries
you have named in a command by specifying one or more search paths with
the library names, or by assigning the search paths to the environment
variable LIB before you invoke LINK. Environment variables are
explained under the SET command in the Microsoft MS-DOS User’s Guide.

A search path is the path specification of a directory or drive name. You
enter search paths along with library names on the LINK command line or
in response to the “Libraries” prompt. You can specify up to 16 search
paths. You can also assign the search paths to the LIB environment vari-
able, using the MS-DOS SET command. In the latter case, the search
paths must be separated by semicolons (;).

if a drive or directory name is included in the file name for a library in the
LINK command line, the linker searches there only. If no drive or direc-
tory is given, LINK searches for library files in the following order:

First the linker searches the current drive and directory.

2. If the library is not found and one or more search paths have been
given in the command line, the linker searches the specified search
paths in the order in which they were given.

3. If the library is still not found and a search path has been set with
the LIB environment variable, the linker searches there.

4. If the library is still not found, LINK prints an error message.

Examples

LINK file,, file,A:\altlib\math.lib+common+B:+D:\11ib\

In the first example, the linker will search only the \alt1lib directory on
drive A to find the library math. 1ib, but to find common. 1ib it will

search the current directory on the current drive, the current directory on
drive B, and finally, directory \1ib on drive D.

SET LIB=C:\1lib:;U:\system\1lib
LINK file,, file.map, math+common

b2

LINK: A Linker

In the second example, LINK will search the current directory, directory
\1lib on drive C, and directory \system\1lib on drive U to find the
libraries math.1ib and common. lib.

3.2.5 The Map File

The map file lists the names, load addresses, and lengths of all segments in
a program. Ii also lists the names and load addresses of any groups in the
program, the program start address, and messages about any errors it may
have encountered. If the /MAP option is used in the LINK command line,
the map file lists the names and load addresses of all public symbols.

Segment information has the general form shown in this example:

Start Stop Length Name Class
OOOOOH 0172CH O0172DH TEXT CODE
01730H OlE19H OO6EAH DATA DATA

The Start and Stop columns show the 20-bit addresses (in hexadecimal)
of the first and last byte in each segment. These addresses are relative to
the beginning of the load module, which is assumed to be address 0000H.
The operating system chooses its own starting address when the program is
actually loaded. The Length column gives the length of the segment in
bytes. The Name column gives the name of the segment, and the Class
column gives the segment’s class name.

Group information has the general form:

Origin Group
0000:0 IGROUP
0173:0 DGROUP

In this example, IGROUP is the name of the code (instruction) group and
DGROUP is the name of the data group.

At the end of the listing file, the linker gives you the address of the pro-
gram entry point.

If you have specified the /MAP option in the LINK command line, the
linker adds a public-symbol list to the map file. The symbols are presented
twice: once in alphabetical order, then in the order of their load addresses.
The list has the general form shown in the following example:

b3

Microsoft Macro Assembler User’s Guide

Address Publics by Name
0000:1567 BRK

0000:1696 CHMOD

0000:01DB CHKSTK
0000:131C CLEARERR
0173:0035 FAC

Address Publics by Value
0000:01DB CHKSTK
0000:131C CLEARERR
0000:1567 BRK

0000:1696 CHMOD

0000:0035 FAC

The addresses of the public symbols are in segment:offset format. They
show the location of the symbol relative to the beginning of the load
module, which is assumed to be at address 0000:0000.

When the /HIGH and /DSALLCCATE options are used (see Sections
3.3.10 and 3.3.11) and the program’s code and data combined do not exceed
64K, the map file may show symbols that have unusually large segment
addresses. These addresses indicate a symbol whose location is below the
actual start of the program code and data. For example, the symbol entry

FFFO:0A20 TEMPLATE

shows that TEMPLATE is located below the start of the program. Note that
the 20-bit address of TEMPLATE is 00920h.

3.2.6 The Temporary Disk File - VM.TMP

LINK normally uses available memory for the link session. If it runs out of
available memory, it creates a temporary disk file named VM. TMP in the
current working directory. When the linker creates this file, it displays the
following message:

VM.TMP has been created.
Do not change diskette in drive letter

Note that letter will be the proper drive name. After this message appears,
you must not remove the disk from the drive specified by letter until the
link session ends. The /PAUSE option cannot be used if a temporary file is
created. After LINK has created the executable file, it deletes the tem-
porary file automatically.

64

LINK: A Linker

Warning

Do not use the file name VM.TMP for your own files. When the linker
creates the temporary file, it destroys any previous file having the same

name.

3.3 Using Link Options

The linker options specify and control the tasks performed by LINK. All
options begin with the linker-option character, the forward slash (/). You
can use an option anywhere on a LINK command line.

LINK has the following options:

Option

/HELP

/PAUSE
/EXEPACK
/MAP
/LINENUMBERS

/NOIGNORECASE

/NODEFAULTLIBRARYSEARCH
/STACK
/CPARMAXALLOC

JHIGH
/DSALLOCATE
/NOGROUPASSOCIATION

Action

Shows options list

Pauses during linking
Packs executable file
Creates public symbol map

Copies line numbers to map
file

Preserves case sensitivity in
names

Overrides default libraries
Sets stack size

Sets maximum allocation
space

Sets high load address
Allocates data group

Sets group association over-
ride

b5

Microsoft Macro Assembler User’s Guide

/OVERLAYINTERRUPT Sets overlay interrupt

/SEGMENTS Sets maximum number of
segments

/DOSSEG Specifies MS-DOS segment
ordering

You can abbreviate option names as long as your abbreviations contain
enough letters to distinguish the specified option from other options.
Minimum abbreviations are listed for each option.

Many of the LINK options set values in the MS-DOS program header. You
will understand these options better if you understand how the header is

organized. The program header is described in the Microsoft MS-DOS
Programmer’s Reference Manual and in some reference books on MS-DOS.

3.3.1 Viewing the Options List

Syntax
/HELP
The /HELP option causes LINK to write a list of the available options to
the screen. This may be convenient if you need a reminder of the available

options. You should not give a file name when using the /HELP option.

Minimum abbreviation: /HE

Example

LINK /HELP

3.3.2 Pausing to Change Disks

Syntax

/PAUSE

The /PAUSE option causes LINK to pause before writing the executable

file to disk so that you can swap disks before the linker writes the execut-
able (.EXE) file to disk.

b6

LINK: A Linker

If the /PAUSE switch is given, the linker displays the following message
before creating the run file:

About to generate .EXE file
Change diskette in drive letter and press <ENTER>

Note that letter is the proper drive name. This message appears after the
linker has read data from the object files and library files, and after it has
written data to the map file, if one was specified. LINK resumes process-
ing when you press the RETURN key. After LINK writes the executable file
to disk, the following message appears:

Please replace original diskette
in drive letter and press <ENTER>

Minimum abbreviation: /P

Note

Do not remove the disk used for the VM.TMP file, if one has been
created. If the temporary disk message appears when you have specified
the /PAUSE option, you should press CONTROL-C to terminate the
LINK session. Rearrange your files so that the temporary file and the
executable file can be written to the same disk, then try again.

Example
LINK file/PAUSE, file, , \lib\math
This command causes the linker to pause just before creating the execut-

able file file.exe. After creating the executable file, LINK pauses again
to let you replace the original disk.

57

Microsoft Macro Assembler User’s Guide
3.3.3 Packing Executable Files

Syntax
JEXEPACK

The /EXEPACK option directs LINK to remove sequences of repeated
bytes (typically nulls})) and optimize the load-time relocation table before
creating the executable file. Executable files linked with the option may be
smaller, and thus load faster than files linked without the option. However,
the Microsoft Symbolic Debug Utility (SYMDEB) cannot be used with
packed files.

The /EXEPACK option will not always save a significant amount of disk
space (and may sometimes actually increase file size). Programs that have
a large number of load-time relocations (about 500 or more) and long
streams of repeated characters will usually be shorter if packed. If you’re
not sure if your program meets thesc conditions, try linking it both ways
and compare the results.

Minimum abbreviation: /E

Example
LINK program /E ;

This example creates a packed version of file program.exe.
3.3.4 Producing a Public-Symbol Map

Syntax
/MAP

The /MAP option causes LINK to produce a listing of all public symbols
declared in your program. This list is copied to the map file created by the
linker. For a complete description of the listing-file format, see Section
3.2.5. The /MAP option is required if you want to used SYMDEB for
symbolic debugging (see Section 4.2).

b8

LINK: A Linker

Note

If you do not specify a map file in a LINK command, you can use the
/MAP option to force the linker to create a map file. LINK gives the
forced map file the same file name as the first object file specified in the
command and the default extension .MAP.

Minimum abbreviation: /M

Example
LINK file,, /MAP;

This command creates a map of all public symbols in the file file.obj.
3.3.5 Copying Line Numbers to the Map File

Syntax
/LINENUMBERS

The /LINENUMBERS option directs the linker to copy the starting
address of each program source line to a map file. The starting address is
actually the address of the first instruction that corresponds to the source
line. The MAPSYM program can be used to copy line-number data to a
symbol file, which can then by used by SYMDEB.

The linker copies the line-number data only if you give a map-file name in
the LINK command line, and only if the given object file has line-number
information. Line numbering is available in some high-level-language com-
pilers, including Microsoft FORTRAN and Pascal, versions 3.0 and later,
and Microsoft C Version 2.0 and later.

MASM does not copy line-number information to the object file. If an

object file has no line-number information, the linker will ignore the

JLINENUMBERS option.

69

Microsoft Macro Assembler User’s Guide

Note

If you do not specify a map file in a LINK command, you can still use
the /LINENUMBERS option to force the linker to create a map file.
Just place the option at or before the “List File” prompt. LINK gives
the forced map file the same file name as the first object file specified in
the command and gives it the default extension .MAP.

Minimum abbreviation: /LI

Example
LINK file/LINENUMBERS, ,em+slibfp

This example causes the line-number information in the object file
file.obj to be copied to the map file file.map.

3.3.6 Preserving Lowercase

Syntax
/NOIGNORECASE

The /NOIGNORECASE option directs LINK to treat upper- and lower-
case letters in symbol names as distinct letters. Normally, LINK considers
upper- and lowercase letters to be identical, treating the names TWO, two,
and Two as the same symbol. When you use the / NOIGNORECASE
_option, the linker treats TWO, Two, and two as different symbols.

The /NOIGNORECASE option is typically used with object files created
by high-level-language compilers. Some compilers treat upper- and lower-
case letters as distinct letters and assume the linker will do the same.

If you are linking modules created with MASM to modules created with a
case-sensitive language such as C, make sure public symbols have the same
sensitivity in both modules. For example, you could make all variables in C
distinctive by spelling, regardless of case, and then link without the

60

LINK: A Linker

/NOIGNORECASE option. Another alternative would be to use the
ML or MX option to make public variables in MASM case-sensitive.
hen link with the /NOIGNORECASE option.

Minimum abbreviation: /NOI

Example

LINK filel+file2/NOI,,, emt+mlibfp

This command causes the linker to treat upper- and lowercase letters in
symbol names as distinct letters. The object file file.ob7 is linked with
routines from the standard C language library \S1ibc.1ib located in the

\1lib directory. The C language expects upper- and lowercase letters to be
treated as distinct.

3.3.7 Ignoring Default Libraries

Syntax
/NODEFAULTLIBRARYSEARCH

The /NODEFAULTLIBRARYSEARCH option directs the linker to
ignore any library names it may find in an object file. A high-level-
language compiler may add a library name to an object file to ensure that a
default set of libraries is linked with the program. Using this option over-
rides these default libraries and lets you explicitly name the libraries you
want by including them on the LINK command line.

Minimum abbreviation: /NOD

Example

LINK startuptfile/NOD,, ,emtslibfptslibc

This example links the object files startup.obj and file.obj with rou-

tines from the libraries em, s1ibfp, and s1ibc. Any default libraries that
may have been named in startup.objor file.obj are ignored.

61

Microsoft Macro Assembler User’s Guide
3.3.8 Setting the Stack Size

Syntax

/STACK:size

The /STACK option sets the program stack to the number of bytes given
by size. The linker usually calculates a program’s stack size automatically,
basing the size on the size of any stack segments given in the object files. If
/STACK is given, the linker uses the given size in place of any value it
may have calculated.

The stze can be any positive integer value in the range 1 to 65535. The
value can be a decimal, octal, or hexadecimal number. Octal numbers must
begin with a zero. Hexadecimal numbers must begin with a leading zero
followed by a lowercase x. For example, Ox1B.

The stack size can also be changed after linking with the EXEMOD util-
ity. See Appendix C.

Minimum abbreviation: /ST

Examples

LINK file/STACK:512,,:

The first example sets the stack size to 512 bytes.

LINK moda+modb, run/ST:0xFF, ab, \1lib\start:;

The second example sets the stack size to 255 (FFh) bytes.
LINK startup+file/ST:030,,:

The final example sets the stack size to 24 (30 octal) bytes.

62

LINK: A Linker
3.3.9 Setting the Maximum Allocation Space

Syntax
/CPARMAXALLOC:number

The /CPARMAXALLOC option sets the maximum number of 16-byte
paragraphs needed by the program when it is loaded into memory. This
number is used by the operating system when allocating space for the pro-
gram prior to loading it.

LINK normally sets the maximum number of paragraphs to 65535. Since
this represents all addressable memory, the operating system always denies
the request and allocates the largest contiguous block of memory it can
find. If the /CPARMAXALLOC option is used, the operating system
will allocate no more space than given by this option. This means any
additional space in memory is free for other programs.

The number can be any integer value in the range 1 to 65535. It must be a
decimal, octal, or hexadecimal number. Octal numbers must begin with a
zero. Hexadecimal values must begin with a leading zero followed by a
lowercase x. For example, Ox2B.

If number is less than the minimum number of paragraphs needed by the
program, LINK ignores your request and sets the maximum value equal to
the minimum needed. The minimum number of paragraphs needed by a
program is never less than the number of paragraphs of code and data in
the program.

You can also change the maximum allocation after linking with the EXTE-
MOD utility. See Appendix C.

Note

The /CPARMAXALLOC option can be used to link files before
debugging so that the SYMDEB Shell command (!) can be used. See
Section 4.6.26.

Minimum abbreviation: /C

63

Microsoft Macro Assembler User’s Guide

Examples

LINK file/C:15,,;

The first example sets the maximum allocation to 15 paragraphs.

LINK moda+modb, run/CPARMAXALLOC:Oxff, ab:;

The second example sets the maximum allocation to 255 (FFh) paragraphs.
LINK startuptfile, /C:030, ;

The final example sets the maximum allocation to 24 (30 octal) paragraphs.
3.3.10 Setting a High Start Address

Syntax

JHIGH

The /HIGH option sets the program’s starting address to the highest pos-
sible address in {ree memory. If the /HIGH option is not given, the

program’s starting address is set as low as possible in memory.

Minimum abbreviation: /H

Example
LINK startuptfile/HIGH, ,:

This example sets the starting address of the program in file.exe to the
highest possible address in free memory.

3.3.11 Allocating a Data Group
Syntax
/DSALLOCATE

The /DSALLOCATE option directs the linker to reverse its normal pro-
cessing when assigning addresses to items belonging to the group named

64

LINK: A Linker

DGROUP. Normally, LINK assigns the offset 0000h to the lowest byte in a
group. If /DSALLOCATE is given, LINK assigns the offset FFFFh to
the highest byte in the group. The result is data that appear to be loaded
as high as possible in the memory segment containing DGROTUP.

The /DSALLOCATE option is typically used with the /HIGH option to
take advantage of unused memory before the start of the program. The
linker assumes that all free bytes in DGROUP occupy the memory
immediately before the program. To use the group, a segment register
must be set to the start address of DGROUP.

Minimum abbreviation: /D

Example
LINK startup+file/HIGH/DSALLOCATE, , , em+mlibfp
This example directs the linker to place the program as high in memory as

possible, then adjust the offsets of all data items in DGROUP so that they
are loaded as high as possible within the group.

3.3.12 Removing Groups from a Program

Syntax
/NOGROUPASSOCIATION
The /NOGROUPASSOCIATION option directs LINK to ignore group

assoclations when assigning addresses to data and code items.

Note

This option exists strictly for compatibility with older versions of FOR-
TRAN and Pascal (Microsoft version 3.13 or earlier, or any IBM version
prior to 2.0). The /NOGROUPASSOCIATION option should never
be used except to link with object files produced by those compilers, or
with the run-time libraries that accompany the old compilers.

Minimum abbreviation: /NOG

65

Microsoft Macro Assembler User’s Guide
3.3.13 Setting the Overlay Interrupt

Syntax
/OVERLAYINTERRUPT:number

The /OVERLAYINTERRUPT option sets the interrupt number of the
overlay loading routine to number. This option overrides the normal over-
lay interrupt number (03Fh).

The number can be any integer value in the range 0 to 255. It must be a
decimal, octal, or hexadecimal number. Octal numbers must have a leading
zero. Hexadecimal numbers must start with a leading zero followed by a
lowercase x. For example, Ox3B.

MASM does not have an overlay manager. Therefore this option can only
be used if you are linking with a run-time module from a language compiler
that does support overlays. Check your compiler documentation, as this
option is not appropriate for use with some compilers.

Note

You should not use interrupt numbers that conflict with the standard
MS-DOS interrupts.

Minimum abbreviation: /O

Examples

LINK file/0:255,,,87+slibfp

The first example sets the overlay interrupt number to 255.
LINK moda+modb, run/OVERLAY:0xff,ab.map,em+mlibfp

The second example sets the overlay interrupt number to 255 (FFh).

66

LINK: A Linker

LINK startuptfile, /0:0377,,emtmlibfp

The final example sets the overlay interrupt number to 255 (377 octal).
3.3.14 Setting the Maximum Number of Segments

Syntax

/SEGMENTS:number

The /SEGMENTS option directs the linker to process no more than
number segments per program. If it encounters more than the given limit,
the linker displays an error message, and stops linking. The option is used
to override the default limit of 128 segments.

If /SEGMENTS is not given, the linker allocates enough memory space to
process up to 128 segments. If your program has more than 128 segments,
you will need to set the segment limit higher to increase the number of seg-
ments LINK can process. If you get the following LINK error message:
Segment limit set too high

you should set the segment limit lower.

The number can be any integer value in the range 1 to 1024. It must be a
decimal, octal, or hexadecimal number. Octal numbers must have a leading
zero. Hexadecimal numbers must start with a leading zero followed by a
lowercase x. For example, 0x4B.

Minimum abbreviation: /SE

Example

LINK file/SE:192,,;

The first example sets the segment limit to 192.

LINK moda+modb, run/SEGMENTS:0xff, ab,em+mlibfp;

The second example sets the segment limit to 255 (FFh).

67

Microsoft Macro Assembler User’s Guide
3.3.15 Using DOS Segment Order

Syntax
/DOSSEG

The /DOSSEG option causes LINK to arrange all segments in the execut-
able file according to the MS-DOS segment-ordering convention. This con-
vention has the following rules:

1. All segments having the class name 'CODE ' are placed at the
beginning of the executable file.

2. Any other segments that do not belong to the group named
"DGRCUP ' are placed immediately after the 'CODE ' segments.

3. All segments belonging to 'DGROUP ' are placed at the end of the
file.

The normal segment order when the /DOSSEG option is not used is
explained in Section 3.4.3.

Minimum abbreviation: /DO

Example
LINK start+test/DOSSEG, , ,math+common

This command causes the linker to create an executable file, named
file.exe, whose segments are arranged according to the MS-DOS
segment-ordering convention. The segments in the object files
start.obj and test.obj, and any segments copied from the libraries
math.lib and common. 1ib are arranged in the order specified above.

3.4 How LINK Works

LINK creates an executable file by concatenating a program’s code and
data segments according to the instructions supplied in the original source
files. These concatenated segments form an “executable image” which is
copied directly into memory when you invoke the program for execution.
Thus the order and manner in which the linker copies segments to the

68

LINK: A Linker

executable file defines the order and manner in which the segments will be
loaded into memory.

You can tell the linker how to link a program’s segments by giving segment
attributes with a SEGMENT directive or by using the GROUP directive
to form segment groups. These directives define group associations, classes,
and align and combine types that define the order and relative starting
addresses of all segments in a program. This information works in addition
to any information you supply through command-line options.

The following sections explain the process LINK uses to concatenate seg-
ments and resolve references to items in memory.

3.4.1 Alignment of Segments

The linker uses a segment’s align type to set the starting address for the
segment. The align types are byte, word, para, and page. These
correspond to starting addresses at byte, word, paragraph, and page boun-
daries, representing addresses that are multiples of 1, 2, 16, and 256,
respectively. The default align type is para.

When the linker encounters a segment, it checks the align type before copy-
ing the segment to the executable file. If the align type is word, para, or
page, the linker checks the executable image to see if the last byte copied
ends at an appropriate boundary. If not, LINK pads the image with extra
null bytes.

3.4.2 Frame Number

The linker computes a starting address for each segment in a program. The
starting address is based on a segment’s align type and the size of the seg-
ments already copied to the executable file. The address consists of an
offset and a “canonical frame number”. The canonical frame number
specifies the address of the first paragraph in memory that contains one or
more bytes of the segment. A frame number is always a multiple of 16 %a
paragraph address). The offset is the number of bytes from the start of the
paragraph to the first byte in the segment. For byte and word align
types, the offset, may be nonzero. The offset is always zero for para and
page align types.

The frame number of a segment can be obtained from a LINK file. The
frame number is the first five hexadecimal digits of the “start” address
specified for the segment.

69

Microsoft Macro Assembler User’s Guide

3.4.3 Order of Segments

LINK copies segments to the executable file in the same order that it
encounters them in the object files. This order is maintained throughout
the program unless the linker encounters two or more segments having the
same class name. Segments having identical class names belong to the
same class type, and are copied to the executable file as contiguous blocks.

Segment loading order and methods of controlling loading order by assign-
ing class types are discussed in more detail in Section 3.4.3 of the Microsoft
Macro Assembler Reference Manual.

3.4.4 Combined Segments

LINK uses combine types to determine whether or not two or more seg-
ments sharing the same segment name should be combined into a single,
large segment. The combine types are public, stack, common, memory,
at, and private. Combine types are also described in Section 3.4.2 of the
Microsoft Macro Assembler Reference Manual.

If a segment has combine type public, the linker will automatically com-
bine it with any other segments having the same name and belonging to the
same class. When LINK combines segments, it ensures that the segments
are contiguous and that all addresses in the segments can be accessed using
an offset from the same frame address. The result is the same as if the seg-
ment were defined as a whole in the source file.

The linker preserves each individual segment’s align type. This means that
even though the segments belong to a single, large segment, the code and
data in the segments retain their original align type. If the combined seg-
ments exceed 64K, LINK displays an error message.

If a segment has combine type stack, the linker carries out the same com-
bine operation as for public segments. The only difference is that stack
segments cause LINK to copy an initial stack-pointer value to the execut-
able file. This stack-pointer value is the offset to the end of the first stack
segment (or combined stack segment) encountered. If you use the stack
type for stack segments, you do not need to give instructions that load the
segment into the S8 register.

If a segment has combine type common, the linker automatically combines
it with any other segments having the same name and belonging to the

70

LINK: A Linker

same class. When LINK combines common segments, however, it places
the start of each segment at the same address, creating a series of overlap-
ping segments. The result is a single segment which is no larger than the
largest of the combined segments.

The linker treats segments with combine type memory exactly like seg-
ments with combine type public. MASM provides combine type memory
for compatibility with linkers that support a separate combine type for
memory segments.

A segment has combine type private only if no explicit combine type is
defined for it in the source file. LINK does not combine private segments.

3.4.5 Groups

Groups permit non-contiguous segments that do not belong to the same
class to be addressable relative to the same frame address. When LINK
encounters a group, it adjusts all memory references to items in the group
so that they are relative to the same frame address.

Segments in a group do not have to be contiguous, do not have to belong to
the same class, and do not have to have the same combine type. The only
requirement is that all segments in the group fit within 64K.

Groups do not affect the order in which the segments are loaded. Unless you
use class names and enter object files in the right order, there is no guaran-
tee that the segments will be contiguous. In fact, the linker may place seg-
ments that do not belong to the group in the same 64K of memory.
Although LINK does not explicitly check that all segments in a group fit
within 64K of memory, the linker is likely to encounter a “fixup-overflow”
error if this requirement is not met.

Groups, and how to define them, are discussed in Section 3.6 of the Micro-
soft Macro Assembler Reference Manual.

3.4.6 Fixups

Once the starting address of each segment in a program is known, and all
segment combinations and groups have been established, the linker can “fix
up” any unresolved references to labels and variables. To fix up unresolved
references, the linker computes an appropriate offset and segment address
anld replaces the temporary values generated by the assembler with the new
values.

71

Microsoft Macro Assembler User’s Guide

LINK carries out fixups for four different references:

e Short
e Near self-relative
o Near segment-relative

o Long

The size of the value to be computed depends on the type of reference. If
LINK discovers an error in the anticipated size of a reference, it displays a
fixup-overflow message. This can happen, for example, if a program
attempts to use a 16-bit offset to reach an instruction in a segment having a
different frame address. It can also occur if all segments in a group do not
fit, within a single 64K block of memory.

A short reference occurs in JMP instructions that attempt to pass control
to labeled instructions that are in the same segment or group. The target
instruction must be no more than 128 bytes from the point of reference.
The linker computes a signed, 8-bit number for this reference. It displays
an error message if the target instruction belongs to a different segment or
group (has a different frame address), or if the target is more than 128
bytes distant (in either direction).

A near self-relative reference occurs in instructions which access data rela-
tive to the same segment or group. The linker computes a 16-bit offset for
this reference. It displays an error message if the data are not in the same
segment or group.

A near segment-relative reference occurs in instructions which attempt to
access data in a specified segment or group, or relative to a specified seg-
ment register. LINK computes a 16-bit offset for this reference. It
displays an error message if the offset of the target within the specified
frame is greater than 64K or less than 0, or if the beginning of the canoni-
cal frame of the target is not addressable.

A long reference occurs in CALL instructions that attempt to access an
instruction in another segment or group. LINK computes a 16-bit frame
address and 16-bit offset for this reference. The linker displays an error
message if the computed offset is greater than 64K or less than 0, or if the
beginning of the canonical frame of the target is not addressable.

72

Chapter 4

SYMDEB:
A Symbolic Debug Utility

4.1 Introduction 77
4.2 Setting Up for Symbolic Debugging 77

4.2.1 Setting Up for Symbolic Debugging
when Using MASM 78

4.2.2 Setting Up for Symbolic Debugging
when Using a Language Compiler 79

4.2.3 Creating a Symbol File
with the MAPSYM Program 81

4.3 Starting SYMDEB 82

4.3.1 Starting SYMDEB with Only an Executable File
4.3.2 Starting SYMDEB for Symbolic Debugging 84
4.3.3 Passing Arguments to a Loaded Program 85
4.3.4 Starting SYMDEB without a File 86

4.4 Using SYMDEB Options 87

4.4.1 Designating IBM-Compatible Mode 87

4.4.2 Enabling the Interactive Breakpoint Key 88

4.4.3 Enabling Non-Maskable Interrupts
for Non-IBM Hardware 89

4.4.4 Enabling Screen Swapping 89

4.4.5 Specifying Start-Up Commands 90

4.5 Specifying Parameters for Commands 91
4.5.1 Symbols 91

4.5.2 Numbers 93

83

73

4.5.3
4.54
4.5.5
4.5.6
4.5.7
4.5.8

Addresses 94
Address Range 94
Object Range 95
Line Numbers 96
Strings 97
Expressions 97

4.6 Using SYMDEB Commands 99

4.6.1
4.6.2
4.6.2.1
4.6.2.2
4.6.2.3
4.6.2.4
4.6.2.5
4.6.3
4.6.4
4.6.5
4.6.6
4.6.6.1
4.6.6.2
4.6.6.3
4.6.6.4
4.6.6.5
4.6.6.6
4.6.6.7
4.6.6.8
4.6.7
4.6.7.1

74

Assemble Command 100
Breakpoint Commands 103
Breakpoint Set Command 103
Breakpoint Clear Command 105
Breakpoint Disable Command 105
Breakpoint Enable Command 106
Breakpoint List Command 107
Comment Command 108
Compare Command 108
Display Command 109
Dump Commands 110
Dump Command 110
Dump ASCII Command 112
Dump Bytes Command 113
Dump Words Command 114
Dump Doublewords Command 115
Dump Short-Reals Command 116
Dump Long-Reals Command 117
Dump Ten-Byte Reals Command 118
Enter Commands 119
Enter Command 119

4.6.7.2
4.6.7.3
4.6.7.4
4.6.7.5
4.6.7.6
4.6.7.7
4.6.7.8
4.6.8
4.6.9
4.6.10
4.6.11
4.6.12
4.6.13
4.6.14
4.6.15
4.6.16
4.6.17
4.6.18
4.6.19
4.6.20
4.6.21
4.6.22
4.6.23
4.6.24
4.6.25
4.6.26
4.6.27
4.6.28

Enter Bytes Command 120
Enter ASCHI Command 122
Enter Words Command 122
Enter Doublewords Command 123
Enter Short-Reals Command 124
Enter Long-Reals Command 125
Enter Ten-Byte Reals Command 126

Examine Symbol Map Commands 126

Fill Command 129

Go Command 130

Help Command 132

Hex Command 132

Input Command 133

Load Command 133

Move Command 135

Name Command 136

Open Map Command 137

Output Command 139

PTrace Command 139

Quit Command 141

Redirection Commands 141

Register Command 143

Screen Swap Command 147

Search Command 147

Set Source Mode Command 148

Shell Escape Command 150

Source Line Command 152

Stack Trace Command 152

75

4.6.29 Symbol Set Command 154

4.6.30 Trace Command 155

4.6.31 Unassemble Command 157

4.6.32 View Command 160

4.6.33 Write Command 161

4.7 Sample SYMDEB Session 163

4.7.1 Assembling and Loading 165
4.7.2 Examining a Program with SYMDEB

76

166

SYMDEB: A Symbolic Debug Utility

4.1 Introduction

The Microsoft Symbolic Debug Utility (SYMDEB) is a debugging program
that helps you test executable files. You can display and execute program
code, set “breakpoints” that stop the execution of your program, examine
and change values in memory, and debug programs that use the floating-
point emulation conventions used by Microsoft languages.

SYMDERB lets you refer to data and instructions by name rather than by

address. SYMDEB can access program locations through addresses, gio-

bal symbols, or line-number references, making it easy to locate and debug
specific sections of code.

You can debug C, Pascal, and FORTRAN programs at the source-file level
as well as at the machine level. You can display the source statements of a
program, the disassembled machine code of the program, or a combination
of source statements and disassembled machine code. SYMDEDB accepts
source line numbers as arguments to commands for displaying and chang-
ing data, setting breakpoints, and tracing execution.

This chapter explains how to use SYMDEB. In particular, it explains
how to prepare and use symbol (.SYM) files, how to start SYMDEB, and
how to use SYMDEB commands to debug programs.

4.2 Setting Up for Symbolic Debugging

SYMDERB is a useful tool even without its symbolic-debugging features. If
you wish to use it as a nonsymbolic debugger, no setup is necessary. Sim-
ply start SYMDEB without a symbol file, as described in Section 4.3.
However, if you wish to take full advantage of SYMDEB’s symbolic
features during program development, you must first set up a symbol file
that can be used by SYMDEB.

The steps for setting up a symbol file vary depending on whether you are
developing your program with the Microsoft Macro Assembler (MASM) or
with a compatible high-level language such as Microsoft Pascal, Microsoft
C, or Microsoft FORTRAN. This chapter concentrates on the techniques
for debugging programs prepared with MASM, but it also briefly covers
the SYMDERB features that apply only to high-level-language programs.

77

Microsoft Macro Assembler User’s Guide

All symbols to be used during debugging must be declared public. This is
done automatically by most high-level-language compilers. However, you
must do it yourself when developing programs with MASM.

4.2.1 Setting Up for Symbolic Debugging
when Using MASM

The following assemblers are compatible with SYMDEB, and can be used
for symbolic debugging:

Microsoft Macro Assembler, Version 1.0 and later

IBM Personal Computer Macro Assembler, Version 1.0 and later

To prepare symbol files when developing programs with a compatible
assembler, follow these steps:

1. Declare public any symbols that you may wish to use in SYMDEB.
Symbols that you may want to declare include procedure names,
variable names, and labels. Segment and group names should not
be declared public. They are automatically included in the map file
and can be used during debugging.

You may want to insert symbols in your program to use as break-
points in SYMDEB, even though these symbols are not actually
used by your program. For example, you could put a label in the
code segment at a key point, even though that label is never used by
a control instruction such as JMP or LOOP.

For example, you could include the following lines in your source file
before assembly:

public prompt, namebuf, fname,buffer :;Data variables
public entry,get_file,open_file,ok ;Code labels

2. Assemble your source file with MASM. You should probably
specify a list file in the MASM command line and then print a copy
of it. This is not necessary, but debugging is usually easier if you
can refer to a listing. For example, type:

MASM test,,:

3. Link the object file to produce an executable version of the pro-
gram. Include a map (.MAP) file and the /MAP option in the
LINK command line. It is not enough to specify a map file. You
must also use the /MAP option. If you do not, you will get an
error message when you try to create a symbol file with the

MAPSYM program. For example, type:

78

SYMDEB: A Symbolic Debug Utility

LINK test,,/MAP;

4. Use the MAPSYM program to create a symbol file, as described in
Section 4.2.3. For example, type:

MAPSYM test

SYMDERB is now ready for symbolic debugging as described in Section
4.3.2.

4.2.2 Setting Up for Symbolic Debugging
when Using a Language Compiler

The following compilers are compatible with SYMDEB and can be used
for symbolic debugging;:

Microsoft FORTRAN, Version 3.0 and later

Microsoft Pascal, Version 3.0 and later

Microsoft C, Version 2.0 and later

Microsoft, Macro Assembler, Version 1.0 and later

Microsoft BASIC Compiler, Version 1.0 and later

Microsoft Business BASIC Compiler, Version 1.0 and later

IBM Personal Computer FORTRAN, Version 2.0 and later

IBM Personal Computer Pascal, Version 2.0 and later

IBM Personal Computer Macro Assembler, Version 1.0 and later
IBM Personal Computer BASIC Compiler, Version 1.0 and later

However, not all these compilers support the source-line display capabilities
of SYMDEB. Compilers that can generate the needed source-line informa-
tion for MAPSYM and SYMDERB include:

Microsoft FORTRAN, Version 3.0 and later

Microsoft Pascal, Version 3.0 and later

Microsoft C, Version 2.0 and later

IBM Personal Computer FORTRAN, Version 2.0 and later
IBM Personal Computer Pascal, Version 2.0 and later

79

Microsoft Macro Assembler User’s Guide

If you have a compatible compiler, follow these steps to prepare a symbol

file:

1.

Compile your source file. If your compiler has an optimization
feature, debugging will be easier if you use the option that disables
optimization. If your compiler can write line-number information
to the object file, you may need to use an option in the command
line to enable line numbers.

Link the object file to produce an executable version of the pro-
gram. Use the /MAP option in the LINK command line. If your
compiler supports source-line display, you should also use the
/LINENUMBERS option.

Use the MAPSYM program to produce a symbol file as described
in Section 4.2.3.

Start SYMDEB for symbolic debugging as described in Section
4.3.2.

Use the SYMDEB Go command (G) to execute the program up to
the first procedure or function. This takes you past the start-up
routine from the standard library of the high-level language you are
using. Normally you will not want to trace through this initial rou-
tine. You can usually start debugging at the start of your program.

In C programs, the first function is always _main (C adds a lead-
ing underscore to procedure names such as main). In FORTRAN,
the first procedure is MAIN. In Pascal the first procedure is the one
that names the program (the first procedure in the source code).

Examples

MSC /Zd /0d test.c:

LINK test,,/MAP/LINE:
MAPSYM test

SYMDEB test.sym test.exe
-G _main

The first example shows how to prepare a program for symbolic debugging
using Microsoft C, Version 3.0 or later. The /Zd option directs the com-
piler to write line-number information to the object file, and the /Od
option turns off optimization.

PAS1 /L test.pas:;

PAS2
PAS3

LINK test,,/MAP/LINE;

80

SYMDEB: A Symbolic Debug Utility

MAPSYM test
SYMDEB test.sym test.exe
-G test

The preceding example shows how to prepare a program for symbolic
debugging using Microsoft Pascal, Version 3.3 or later. The /L option
directs the compiler to write line-number information to the object file.
After starting SYMDEB, you will usually want to “Go” to the first pro-
cedure in the source code (the one that names the program).

FOR1l test.for:

PAS2

PAS3

LINK test,./MAP/LINE:;
MAPSYM test

SYMDEB test.sym test.exe
-G MAIN

The final example shows how to prepare a program for symbolic debugging
using Microsoft FORTRAN, Version 3.3 or later. The compiler automati-
cally writes line-number information to the object file. After starting
SYMDEDB, you will usually want to “Go” to the MAIN procedure.

4.2.3 Creating a Symbol File
with the MAPSYM Program

Symbol files containing data for symbolic debugging can be created with
the Microsoft Symbol File Utility (MAPSYM). The program converts the
contents of the program’s symbol (.MAP) file into a form suitable for load-
ing with SYMDEB. Symbol files created with MAPSYM can contain up
to 10000 symbols per segment and as many segments as are allowed by
machine memory.

The MAPSYM command line has the form:

MAPSYM [/L}-L] mapfilename

The mapfilename is the file name (and optionally, the path name) for a sym-
bol (.MAP) file created during linking. If you do not specify a file name
extension, .MAP will be assumed.

The symbol-map file can be created by specifying a map file and the /MAP

option when linking. If your compiler writes line-number information to
the object file, you should also use the /LINENUMBERS option.

81

Microsoft Macro Assembler User’s Guide

The /L option is the only one available with MAPSYM. It directs

SYM to display information on the screen about the conversion. The
information includes the names of groups defined in the program, the pro-
gram start address, the number of segments, and the number of symbols
per segment. The /L option can also be specified as -L, /1, or -1.

Example
MAPSYM /L file

MAPSYM takes data from file.map to create file.sym on the
current drive and directory. Information about the conversion is sent to
the screen.

Note

The symbol (.SYM) file is always created on the current drive and
directory. You cannot specify a destination in the command line, and
you should not give a drive or directory for the map file. If you wish to
place the symbol and map files on one drive while the MAPSYM pro-
gram is on another, you should call the MAPSYM program from the
drive with the map file. For example, to create test.sym on Drive B
when the MAPSYM program is on Drive A and test.map is on Drive
B, type:

A>B:
B>A:MAPSYM test

4.3 Starting SYMDEB

To start SYMDEB, enter the SYMDEB command line at the MS-DOS
command prompt. The SYMDEB command line has the following form:

SYMDEB [options] [symbolfiles] [ezecutablefile] [arguments]

The options are one or more of the options described in Section 4.4. The
symbolfiles are the names of symbol files. The executablefile is the name of a

82

SYMDEB: A Symbolic Debug Utility

binary or executable file to be loaded by SYMDEB. The arguments are
parameters that you want to pass to the executablefile.

Once started, SYMDEB displays a start-up message. The message is fol-
lowed by the SYMDEB command prompt (—). When you see the prompt
you can enter SYMDEB commands.

4.3.1 Starting SYMDEB with Only an Executable File

You can direct SYMDEB to load an executable file ((EXE, . HEX, .COM,
or .BIN) by giving the name of the file on the SYMDEB command line.
You can do this if you do not need to use symbol files, or if you are examin-
ing a program for which you do not have source code.

Whenever you load an executable file, SYMDEB prepares a 256-byte pro-
gram header in the lowest available segment in memory, then copies the
contents of the file to the free memory immediately following the header.
SYMDEB copies the size of the program (in bytes) to the BX:CX register
pair. It then adjusts the segment and other registers to the initial values
defined in the file.

Note

If the file is an .EXE or .HEX file, the MS-DOS executable file header
will be stripped off during loading. Therefore, the program size will not
match the file size, as it will for .COM and .BIN files.

Example

SYMDEB snap.com

Microsoft Symbolic Debug Utility

Version 4.00

(C) Copyright Microsoft Corp 1984, 1985

Processor is [8086]

-R

AX=0000 BX=0000 CX=2975 DX=0000 SP=FFFE BP=0000 SI=0000 DI=0000
DS=2110 ES=2110 S8=2110 (S=2110 IP=0100 NV UP EI PL NZ NA PO NC
2110:0100 E91F29 JMP 2A22

83

Microsoft Macro Assembler User’s Guide

In the example above, SYMDEB is started with a .COM file. Notice the
line Processor is [8086] in the start-up message. This indicates that
the system running SYMDEB has the 8086 (or the similar 8088) processor.
The message would show 80186 or 80286 if the system had one of those pro-
cessors.

The Register command (R) has been entered after start-up to show the ini-
tial status of the registers. Notice that CX contains 2975 (10613 decimal),
indicating that the length of the program is 10613 bytes. You can confirm
this by leaving SYMDEB and checking the file length with the MS-DOS
DIR command. File length will match for .COM files, but not for .EXE
files.

4.3.2 Starting SYMDEB for Symbolic Debugging

When developing and debugging programs, you may want to load symbol
information along with an executable file so that you can refer to data and
instructions by name rather than by address. Start SYMDEB for sym-
bolic operation by specifying one or more symbol files on the command line.
Specifying a symbol file directs SYMDEB to load the named file and
allows you use the symbols defined by that file in SYMDEB commands.

You may specify more than one symbol file. Multiple symbol files are typi-
cally used with programs that consist of several separate executable files
(such as programs that call overlays, execute other programs, or use device
drivers). You must make sure that all symbol files are specified before the
executable file. Any files specified after the executable file are assumed to
be program arguments.

If you load multiple symbol files, only one of them will be opened initially.
If one of the symbol files has the same name as the executable file, it will be
opened. Otherwise, the first symbol file specified in the command line will
be opened. During the SYMDEB session, you may use the Open Map com-
mand (XO) to open a different symbol file. The previous symbol file will be
closed, since only one can be open at a time. See Section 4.6.17 for more
information on opening symbol files.

You need not specify an executable file when you load symbols. You might
load symbols without an executable file to debug a resident program, or if
you wished to load the executable file later in the session using the Name
command (N) and Load command (L).

84

SYMDEB: A Symbolic Debug Utility

Note

Do not rename symbol files and then attempt to load them in the
SYMDEB command line. Renamed symbol files will have the wrong
address when loaded.

Example

SYMDEB count.sym count.exe

-R

AX=0000 BX=0000 CX=0900 DX=0000 SP=0100 BP=0000 SI=0000 DI=0000
DS=2125 ES=2125 8S8=21C5 C(S=2135 IP=0000 NV UP EI PL NZ NA PO NC
2135:0000 B84021 MOV AX,DATA

In the example above, SYMDEB copies symbolic information from
count.sym into memory, prepares the program header, then loads
count.exe.

The R command has been entered to show the initial status of the registers.
Notice that the CX register contains 0900 (2304 decimal). This is the
length of the executable file minus the MS-DOS file header, which was
stripped off during loading. (The SYMDEB start-up message would nor-
mally appear, but is omitted from this and other examples in the rest of the
chapter.)

SYMDEB testl.sym test.sym test.exe

In the example above, SYMDEB copies symbolic information from the files
testl.sym and test.sym into memory, prepares the program header,
then loads test.exe. The symbol file test.sym is opened instead of
testl.sym because it has the same name as the executable file.

4.3.3 Passing Arguments to a Loaded Program

You can pass one or more arguments to a program by typing the arguments
immediately after the executable-file name on the SYMDEB command
line. SYMDERB will copy all arguments to the program header in exactly
the form you type them.

856

Miecrosoft Macro Assembler User’s Guide

Example

SYMDEB ptest.exe paraml param?2 param3 paramé

-D 5D 9f

23B6:0050 50 41 52 PAR
23B6:0060 41 4D 31 20 20 20 20 20-00 OO0 00 OO0 OO 50 41 52 AMi1I PAR

23B6:0070 41 4D 32 20 20 20 20 20-00 OO0 OO0 00 OO0 0O OO OO AM2
23B6:0080 1C 20 70 61 72 61 6D 31-20 70 61 72 61 6D 32 20 . paraml param2
23B6:0090 70 61 72 61 6D 33 20 70-61 72 61 6D 34 OD OO OD param3 param4...

In the example, the Dump command (D) has been entered to show the
status of the program header after loading. The first and second parame-
ters are parsed as file names into the default file control blocks. These
blocks start at bytes 5Dh and 6Dh of the program header. The length of the
parameter list is in the byte at 80h. An exact copy of the parameter list
starts at byte 81h of the header. The program header is described in more
detail in Section 4.6.16.

4.3.4 Starting SYMDEB without a File

You can start SYMDEB without a file by typing SYMDEB. When you
start SYMDEB without a file name, it creates a program header, but does
not attempt to load a program. You can then either create a program with
the Assemble command (A) or Enter command (E), or you can use the
Name command (N) and Load command (L) to name and load whatever
files you wish.

When you start SYMDEB without a file, it sets the segment registers to
the bottom of free memory, sets the Instruction Pointer (IP) to 0100h,
clears all flags, and sets the remaining registers to zero.

Example

SYMDEB

-R

AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=23B2 ES=23B2 SS=23B2 C(S=23B2 IP=0100 NV UP EI PL NZ NA PO NC
23B2:0100 8AES MOV AH, CH

In the example, the Register command (R) is entered after the start-up
message to indicate the initial status of the registers.

86

SYMDEB: A Symbolic Debug Utility

4.4 Using SYMDEB Options

The following options can be entered on the SYMDEB command line:

Option Effect

/IBM Enable IBM-compatible mode
/K Enable break key

/N Enable non-masked interrupt
/S Enable screen flip

/" commands" Designates start-up commands

Options should be entered before the executable file on the command line so
that SYMDEDB will not interpret them as parameters. The option designa-
tor can be either a slash (/) or a dash (=), and the option letter can be
specified with either upper- or lowercase letters.

Note

Files containing a dash in the file name must be renamed before use
with SYMDEB. Otherwise, SYMDEB will interpret the dash as an
option designator.

4.4.1 Designating IBM-Compatible Mode

Syntax

/1! -1

The /I or /IBM option directs SYMDEB to use features available on
IBM-compatible computers. The /I option is not necessary if you have an

IBM Personal Computer since S EB automatically checks the
hardware on start-up. If SYMDEB does not find that the hardware is an

87

Microsoft Macro Assembler User’s Guide

IBM Personal Computer, it assumes that the hardware is a generic MS-DOS
machine, unless the /I option is used. Without the option, SYMDEB can-
not take advantage of special hardware features such as the 8259 Interrupt
Controller, IBM-style video display, and other capabilities of the IBM basic
input and output system (BIOS).

Example

SYMDEB /I file.sym file.exe
4.4.2 FEnabling the Interactive Breakpoint Key

Syntax
/K ! -K

The /K option enables the scroll-lock (break) key on IBM and compatible
computers as an interactive breakpoint key. If the key is enabled, you can
usually stop program execution by pressing it. For example, you could use
the breakpoint key to get out of an endless loop started with the Go com-
mand (G).

The interactive breakpoint key acts like a hardware-activated interrupt key
(as described in Section 4.4.3), except that it is less reliable. The interac-
tive breakpoint key does not work in certain situations, such as when inter-
rupts are turned off. If the program is waiting for input, press CONTROL-C
rather than the BREAK key to interrupt program execution.

Note

If you have an IBM Personal Computer AT, the system request (SYS
REQ) key can be used as an interactive break key even if you do not use
the /K option.

88

SYMDEB: A Symbolic Debug Utility

Example

SYMDEB /K file.sym file.exe

4.4.3 FEnabling Non-Maskable Interrupts
for Non-IBM Hardware

Syntax
/N -N

The /NN option enables you to use non-maskable interrupt break systems on
non-{BM computers. To use non-maskable interrupts, your system must be
equipped with the proper hardware. For example, you can use the /N
option with these products:

o IBM Professional Debug Utility

o Software Probe (Atron Corp.)
SYMDERB only requires the hardware provided with these products; no
additional software is needed. If you are using one of these products with a
non-IBM system, you must use the /N option to take advantage of the
break capability. You do not need to use the option if you are using an
IBM Personal Computer. Using a non-maskable interrupt break system is

more reliable than the interactive break key because its operation is
independent of the state of interrupts and other conditions.

4.4.4 FEnabling Screen Swapping

Syntax
/81-8

The /S option allows you to flip back and forth between a screen showing
the debugger and a screen showing the program being debugged. This

89

Microsoft Macro Assembler User’s Guide

feature is particularly useful for graphics and other programs that send
changing data to the screen. However, using the /S option does use up an
additional 32K of system memory.

This option works only with IBM computers and some compatible comput-
ers. To use it with a compatible computer, you must also use the /I option

in the command line. The /S option cannot be used with graphics modes
that use more than 32K of memory.

Example
SYMDEB /I/S file.sym file.exe

The example above assumes an IBM-compatible computer. If you have an
IBM Personal Computer, you do not need the /I option.

4.4.5 Specifying Start-Up Commands

Syntax
/" commands" | =" commands"

The start-up command option directs SYMDEDB to execute the commands
contained within double quotation marks on start-up. This feature can be
used to start SYMDEB from a batch file or to execute a series of com-
mands that you use at the beginning of every SYMDEB session. A semi-
colon (;) separates each command from other commands in the list.

Examples

SYMDEB /"d40;u:r" file.exe

In the first example, SYMDEB loads file.exe, dumps the program
header starting at 40h, unassembles the first few instructions, and shows
the start-up status of the registers.

SYMDEB /"s+:g _main;v" cprog.sym cprog.exe

In the second example, SYMDEB loads the symbol file cprog.sym and

the executable file (written in C) cprog.exe. Next, it sets the display
mode to show source lines, executes the program up to the start of the

90

SYMDEB: A Symbolic Debug Utility

_main function (always the first function in C programs), and displays the
first few source lines. If the program were written in Pascal or FORTRAN,
you would use the Go command (G) in the quoted commands to execute up
to the first procedure of the program.

4.5 Specifying Parameters for Commands

SYMDEB commands have always have the following general form:

commandname parameters

Note that commandname is a one- or two-character command name, and
parameters are numbers, symbols, or expressions that represent values or
addresses to be used by the command. Any combination of upper- and
lowercase letters may be used in commands and parameters. In most cases
the first parameter can be placed immediately after commandname with no
space between them.

The number of parameters used with each command depends on the com-
mand. If a command takes two or more parameters, you must separate
them with commas (,) or with spaces.

Examples

DS _avg L 10

U .22

F ds:100,110 ff, fe, 01,00

Sections 4.5.1-4.5.8 describe the different kinds of command parameters in
detail.

4.5.1 Symbols

Syntax
name

A symbol is a name that represents a register, an absolute value, a segment
address, or a segment offset. A symbol consists of one or more characters,

91

Microsoft Macro Assembler User’s Guide

but always begins with a letter, an underscore (—), a question mark (?), an
at sign (@), or a dollar sign ().

When using SYMDEB to debug high-level-language programs, you should
familiarize yourself with any conventions your compiler uses for designating
symbols. For example, the Microsoft C Compiler automatically adds a
leading underscore to the beginning of every global name.

Symbols are only available for debugging when the symbol file that defines
their names and values has been loaded.

Notes

SYMDERB is case-insensitive; it treats corresponding upper- and lower-
case letters as the same letter. Symbols whose spellings differ only in
case are treated as the same symbol. If a symbol file has two such sym-
bols, only one of the symbols will be recognized by SYMDEB. Any
attempt to access information about the other symbol will always
return information about the first. Symbols that have the same spelling
as registers are ignored. Register names always take precedence. Be
careful to give symbols unique names that do not mimic or conflict with
instructions, register names, or hexadecimal numbers.

Examples

_main
next_loop
DGROUP
startup
code_seg

The symbols above are valid. Avoid using symbols such as the following,
because they will cause problems, either during assembly or with

SYMDEB:

AX : Don't use register name
faa : Don't use hexadecimal number
ADD ; Don't use instruction name

92

SYMDEB: A Symbolic Debug Utility
4.5.2 Numbers

Syntax

digitsY
digitsO
digitsQ
digitsT
digitsi

A number represents an integer number. It is a combination of binary,
octal, decimal, or hexadecimal digits plus an optional radix. The digits can
be one or more digits of the specified radix: Y, O, Q, T, or H. If no radix
is specified, H (hexadecimal) is assumed. The radix can be specified with
either an upper- or lowercase letter (lowercase is used as a convention in
examples). The following table lists the digits that can be used with each
radix:

Table 4.1
Radixes for SYMDEB

Radix Type Digits

Y Binary 01

OorQ Octal 01234567

T Decimal 0123456789

H Hexadecimal 0123456789ABCDEF

Hexadecimal numbers have precedence over symbols. Thus EAA is always
interpreted as a hexadecimal number. Be careful not to give such ambigu-
ous names to symbols.

Examples

0111111y 77q 63t O3Fh 3F
01001010100101y 112450 4773t 12A5h 12A5

938

Microsoft Macro Assembler User’s Guide
4.5.3 Addresses

Syntax
segmentsoffset

An address is a combination of two 16-bit values, one representing a seg-
ment address, the other a segment offset. When combined, the values
specify a unique memory location.

A full address has both a segment address and an offset, separated by a
colon (:). A partial address is just an offset. In both cases, the segment or
offset can be any number, register name, or symbol. For most commands,
the default segment address is the current contents of the DS register.
However, for the Assemble (A),), Load (L), PTrace (P), Trace (T),
Unassemble (U), and erte commands, the default segment address is
the contents of the CS reglster

Addresses can be specified as a positive or negative offset of a symbol. For
example, the byte 5 bytes beyond the symbol print can be specified as
print+5.

Examples

CS:0100
O4BA: 1P
CS:_main
pixel-10
DGROUP : count
buffer_1

4.5.4 Address Range

Syntax
startaddress endaddress
A range is a pair of memory addresses that bound a sequence of contiguous

memory locations. Note that the span of the range is from startaddress to
endaddress, inclusive.

94

SYMDEB: A Symbolic Debug Utility

If a command takes a range, but you do not supply a second address,
SYMDEB usually assumes a range of 128 bytes. If a command takes a
range followed immediately by a third parameter, you must supply a second
address. If you do not, SYMDEDB uses the third parameter as the second

address.

Examples

_main _main+20
CS:100 110
get_out-30 get_out
bufferl buffer2
14D stop

4.5.5 Object Range

Syntax
startaddress L count

An object range is a combination of a memory address and a count of
“objects” that specifies a range of contiguous bytes, words, instructions, or
other objects in memory. The startaddress specifies the address of the first
object in the list and L count specifies the number of objects in the list.

An object range can be used with the Dump (D), Fill (F'), Search (S), and
Unassemble (U) commands only. Each command determines the size and
type of objects in the list: the Dump Bytes command (DB) has byte objects,
the Dump Words command (DW) has words, the Unassemble command has
instructions, and so on.

Examples

segl:table L 10

If you specified the sample range above with the Dump Bytes command,
SYMDEB would dump the first 10 bytes beginning at segl:table. If

you specified the same range with the Unassemble command, SYMDEB
would unassemble the next 10 instructions starting at segl:table.

96

Microsoft Macro Assembler User’s Guide
4.5.6 Line Numbers

Syntax

«+numberl—number
[filename:Jnumber
.symbol[+numberl—number]

A line number is a combination of decimal numbers, file names, and sym-
bols that specifies a unique line of text in a program source file. Line
number designations always start with a dot(.). Line numbers can only be
used with programs developed with compilers that copy line-number data
to the object file. See Section 4.2.2. Programs developed with MASM or
an incompatible compiler cannot use line numbers.

In the first form shown in the syntax above, the combination specifies a
relative line number. The number is an offset (in lines) from the current
source line to the new line. If the plus sign (+) is specified, the new line is
closer to the end of the source file. If the minus sign (-) is specified, the new
line is closer to the beginning. SYMDEB displays an error message if
there is no current line number, or if no source line exists for the specified
line number.

In the second form shown in the syntax, the combination specifies an abso-
lute line number. If a filename is specified, the specified line is assumed to
be in the source file corresponding to the symbol file identified by filename.
If no filename is specified, the current instruction address (the current
values of the CS and IP registers) determines which source file contains the
line. SYMDERB displays an error message if filename does not exist, or if
no source line exists for the specified line number.

In the third form, the combination specifies a symbolic line number. The
symbol can be any instruction or procedure label. If number is specified, the
number is an offset (in lines) from the specified label or procedure name to
the new line. If the plus sign (+) is specified, the new line is closer to the
end of the source file. If the minus sign S—) is specified, the new line is
closer to the beginning. SYMDEB displays an error message if the symbol
does not exist, or if no source line exists for the specified line number.
Examples

.+5 : 5th line down from current line
.10 s 10th line in the current source file

96

SYMDEB: A Symbolic Debug Utility

.sample:10 ; 10th line in the source file named by 'sample'
._main : First line in the routine '_main'
._maint+5 ; 5th line in the routine '_main’

A symbol such as _main can also be used to specify a line number. The
symbol _main is equivalent to ._main. Note, however, that _main+3
specifies an address that is 3 bytes from _main, but ._main+3 specifies a
source line that is 3 lines from _main.

4.5.7 Strings

Syntax

\ &’characters’
" 1"
characters

A string represents a list of ASCII values. It can be any combination of
characters enclosed in single (’) or double (") quotation marks. The start-
ing and ending quotation marks must be the same type. If a matching quo-
tation mark appears as part of the string, it must be specified twice, to
prevent SYMDEB from ending the string too soon.

Examples

'This is a string.'

"This is a string."

'This ''string'' is okay.'
"This ""string"" is okay."
'This "string" is okay.'
"This 'string' is okay."

4.5.8 Expressions

An expression is a combination of parameters and operators that evaluates
to an 8-, 16-, or 32-bit value. Expressions can be used as values in any com-
mand. An expression can combine any symbol, number, or address with
any of the unary operators in Table 4.2, or binary operators in Table 4.3.

Unary address operators assume DS as the default segment for addresses.
Expressions are evaluated in order of operator precedence. If adjacent
operators have equal precedence, the expression is evaluated from left to
right. Parentheses can be used to override this order.

97

Microsoft Macro Assembler User’s Guide

Table 4.2

Unary Operators

Operator Meaning Precedence
+ Unary plus Highest
- Unary minus

NOT 1’s complement

SEG Segment address of operand

OFF Address offset of operand

BY Low-order byte from specified address

WO Low-order word from specified address

DwW Double word from specified address

POI Pointer from specified address (same as DW)

PORT 1 byte from specified port

WPORT Word from specified port Lowest
Table 4.3

Binary Operators

Operator Meaning Precedence
* Multiplication Highest
K/[Integer division

oD Modulus
: Segment override
+ Addition
- Subtraction
AND Bitwise Boolean AND
XOR Bitwise Boolean exclusive OR
OR Bitwise Boolean OR Lowest
Examples
4+2*3 : Equals 10 (OAh)
SEG 0001:0002 ; Equals 1
OFF 0001:0002 ; Equals 2
4+ (2*3) : Equals 10 (OAh)
(4+2)*3 : Equals 18 (12h)

98

SYMDERB: A Symbolic Debug Utility

4.6 Using SYMDEB Commands

The following table lists all SYMDEB commands.

Table 4.4
SYMDEB Commands

Command Command Name Command Command Name

? Display Values, Display Help H Hex

! Shell Escape | Input

Source Line Display K Stack Trace

< | Redirect Input L Load

>} Redirect Output M Move

=" Redirect Input and Output N Name

* Comment o Output

A Assemble P PTrace

BC Breakpoint Clear Q Quit

BD Breakpoint Disable(s) R Register

BE Breakpoint Enable S Search, Set Source
Mode

BL Breakpoint List T Trace

BP Breakpoint Set U Unassemble

C Compare v View

D Dump w Write

E Enter X Examine Symbol
Map

F Fill X0 Open Symbol Map

G Go Z Set Symbol Value

99

Microsoft Macro Assembler User’s Guide

When entering SYMDEB commands, you can use any of the special edit-
ing keys described in the Microsoft MS-DOS User’s Guide. You can also
press CONTROL-C to abort execution of a SYMDEB command, or press
CONTROL-S to suspend execution of a SYMDEB command.

CONTROL-C and CONTROL-S can abort or suspend execution of the Go com-
mand (G) if the program being debugged is engaged in input or output. If
the program is not engaged in input or output, the only way to stop execu-
tion is with the break key if the /K option was used, or with a hardware
interrupt device if one is installed on your system. See Section 4.4.2 for
more information on the /K option and Section 4.4.3 for information on
hardware interrupt devices.

4.6.1 Assemble Command

Syntax
Aladdress]

The Assemble command (A) assembles 8086-family (8086, 8087, 8088,
80186, 80287, 80286-unprotected) instruction mnemonics and places the
resulting instruction codes into memory at the specified address. The only
8086-family mnemonics that cannot be assembled are 80286 protected-
mode mnemonics. If no address is specified, the assembly starts at the
address specified by the current values of the CS and IP registers.

When you type the Assemble command, the specified address is displayed.
SYMDERB then waits for you to enter a new instruction in the standard
8086-family instruction-mnemonic form. You can enter instructions in
either upper- or lowercase, or both (the examples use lowercase for instruc-
tions and data, and uppercase for reserved words).

To assemble a new instruction, type the desired mnemonic and press the
RETURN key. SYMDEB assembles the instruction into memory and
displays the next available address. To conclude assembly and return to
the SYMDEB prompt, press the RETURN key only.

If an instruction you enter contains a syntax error, SYMDEB displays the

message Error, redisplays the current assembly address, and waits for you
to enter a correct instruction.

100

SYMDEB: A Symbolic Debug Utility

The following rules govern entry of instruction mnemonics:

The far return mnemonic is RETF.

2. String manipulation mnemonics must explicitly state the string size.
For example, use MOVSW to move word strings and MOVSB to
move byte strings.

3. SYMDEB automatically assembles short, near, or far jumps and
calls, depending on byte displacement to the destination address.
These may be overridden with the NEAR or FAR prefix, as shown

in the following examples:

Jjmp 502
Jmp NEAR 505
Jmp FAR 50A

The NEAR prefix can be abbreviated to NE, but the FAR prefix
cannot be abbreviated.

4. SYMDEB cannot tell whether some operands refer to a word
memory location or to a byte memory location. In these cases, the
data type must be explicitly stated with the prefix WORD PTR or
BYTE PTR. Acceptable abbreviations are WO and BY. Two

examples are shown below:

mov WORD PTR [bp].1
mov BYTE PTR [si-1],symbol

5. SYMDEB cannot tell whether an operand refers to a memory loca-
tion or to an immediate operand. SYMDEDB uses the convention
that operands enclosed in square brackets refer to memory. Two
examples are shown below:

mov ax, 21
mov ax, [21]

The first statement moves 21h into AX, The second statement
moves the data at offset 21h into AX.

6. The DB opcode assembles byte values directly into memory. The
DW opcode assembles word values directly into memory, as shown
in the following examples:

DB 1,2,3,4,"This is an example."
DB 'This is a double quote: "'
DB "This is a single quote: '"
DW 1000, 2000, 3000, "Bach"

101

Microsoft Macro Assembler User’s Guide

7.

SYMDEB supports all forms of register-indirect commands, as
shown in the following examples:

add bx, 34 [bp+2] . [si-1]

pop [op+di]

push [si]

All opcode synonyms are also supported, as shown in the following
examples:

loopz 100
loope 100
ja 200
jnbe 200

If you examine instructions with the Unassemble command (U),
SYMDEB may show a synonymous instruction or opcode, rather
than the one you entered.

Do not assemble and execute 8087 or 80287 instructions if your sys-
tem is not equipped with one of these math coprocessors. The
WAIT instruction, for example, will cause your system to hang up
if you try to execute it without the appropriate chip.

Examples

-A

42BE:
42BE:
42BE:
42BE:
42BE:
42BE:

0100 mov ah, 2
0102 mov d1l,7
0104 int 21
0106 mov ah, 4C
0108 int 21
O10A

The first example assembles a short program that beeps and returns to
MS-DOS. Section 4.6.33 shows how to save this program to disk as a file

called

bell.com.

-U test L 2

CODE:
39B0O:

TEST:
0040 89C3 MOV BX, AX

-A test

39B0O:
39B0O:

0040 mov cx,ax
0042

-U test L 2

CODE:
39BO:

102

TEST:
0040 89C1 MOV CX,AX

SYMDEB: A Symbolic Debug Utility

The second example modifies the instruction at address test so that it
moves data into the CX register instead of the BX register. The Unas-
semble command (U} is used to show the instruction before and after the
assembly.

4.6.2 Breakpoint Commands

SYMDERB allows you to set and use “sticky” breakpoints. The five follow-
ing commands govern breakpoint manipulation:

Command Command Name
BP Breakpoint Set
BC Breakpoint Clear
BD Breakpoint Disable
BE Breakpoint Enable
BL Breakpoint List

These commands are discussed in logical, rather than alphabetical, order in
Sections 4.6.2.1-4.6.2.5.

4.6.2.1 Breakpoint Set Command

Syntax
BP [number] address [passcount] ["commands"]

The Breakpoint Set command (BP) creates a “sticky” breakpoint at
address. When encountered during program execution, sticky breakpoints
stop the program execution and cause SYMDEB to display the current
values of all registers and flags in the Register command (R) format (see
Section 4.6.22). Sticky breakpoints, unlike breakpoints created by the Go
command (G), remain in the program until removed using the Breakpoint
Clear command (BC), or temporarily disabled using the Breakpoint Disable
command (BD).

SYMDEB allows up to 10 sticky breakpoints (0 through 9). The number
specifies which breakpoint is to be created. Spaces between BP and number
are not allowed. If no number is specified, the first available breakpoint
number is used. The address can be any valid instruction address (that is,
it must be the first byte of an instruction opcode). The passcount specifies

103

Microsoft Macro Assembler User’s Guide

the number of times the breakpoint is to be ignored before being taken. It
can be any 16-bit value. The commands are an optional list of commands
to be executed each time the breakpoint is taken. Each SYMDEB com-
mand in the list can include parameters, and is separated from the next
command by a semicolon (j).

Examples

-BP do_again

The first example creates a sticky breakpoint at do_again.

-BP .19 3

The second example creates a sticky breakpoint at line 19 of the source file
(or if there is no executable statement at line 19, at the first executable
statement after line 19). The breakpoint is ignored three times before
being taken.

-BP8 add

The third example creates breakpoint 8 at address add.

-BP 100 10

The fourth example creates a breakpoint at address 100 in the current CS
segment. This breakpoint is ignored 16 (10h) times before being taken.

-BP 3206:2A02 "rdi dit+l;g"

The final example increments the contents of the DI register by one when-
ever address 3206:2A02 is reached. Since neither the Register command
(R) nor the Go command (G) stops to request input, the program will
appear to execute normally, although program speed will decrease while the
command is being executed.

104

SYMDEB: A Symbolic Debug Utility

4.6.2.2 Breakpoint Clear Command

Syntax
BC list)
The Breakpoint Clear command (BC) permanently removes one or more
previously set breakpoints. If list is specified, the command removes the

breakpoints named in the list. The list can be any combination of integer
values from 0 to 9. If * is specified, the command removes all breakpoints.

Examples

-BC 0 4 8

The first example removes breakpoints 0, 4, and 8.

_BC *

The second example removes all breakpoints.
4.6.2.3 Breakpoint Disable Command

Syntax

BD listi

The Breakpoint Disable command (BD) temporarily disables one or more
breakpoints from a program. The breakpoints are not deleted. They can
be restored at any time by using the Breakpoint Enable command (BE).
If list is specified, the command disables the breakpoints named in the list.

The list can be any combination of integer values from 0 to 9. If * is
specified, the command disables all breakpoints.

1056

Microsoft Macro Assembler User’s Guide

Examples

-BD O 4 8

The first example disables breakpoints 0, 4, and 8.

_BD *

The second example disables all breakpoints.
4.6.2.4 Breakpoint Enable Command

Syntax
BE list!*

The Breakpoint Enable command (BE) restores one or more breakpoints
temporarily disabled by a Breakpoint Disable command (BD).

If list is specified, the command enables the breakpoints named in the list.
The list can be any combination of integer values from 0 to 9. If * is
specified, the command enables all previously disabled breakpoints.

Examples

-BE 0 4 8

The first example enables breakpoints 0, 4, and 8.

_BE *

The second example enables all disabled breakpoints.

106

SYMDEB: A Symbolic Debug Utility
4.6.2.5 Breakpoint List Command

Syntax
BL

The Breakpoint List command (BL) lists current information about all
breakpoints created by the Breakpoint Set command (BP). The BL com-
mand displays the breakpoint number, the enabled status, the address of
the breakpoint, the number of passes remaining, and the initial number of
passes (in parentheses). If you are in source-line mode (see Section 4.6.25),
the line number for each breakpoint is also shown.

The enable status can be e for enabled, d for disabled, or v for virtual. A
virtual breakpoint is a breakpoint set at a symbol whose .EXE file has not
yet been loaded.

If no breakpoints are currently defined, nothing is displayed.

Example

-BL

O e 11BC:0036 [IGROUP:_main+OB (0036)] main.c:8

4 d 11BC:0100 [IGROUP:__cropzeros+08 (0100)] 0010 (OOOQA)
8 e 11BC:0002 [IGROUP:_add] add.c:2 "DW;G"

The example above is taken from a C program in order to illustrate line
numbers. Breakpoint 0 is enabled at address IGROUP: _main+OB (seg-
ment 11BC, offset 36). This address is at line 8 of source file main.c.

Breakpoint 4 is disabled at address TGROUP:__cropzeros+08. Since
the breakpoint is disabled, the source line is not shown. This breakpoint
initially had a pass count of 16 (10h) and now has 10 (0Ah) remaining
passes to be taken before the breakpoint.

Breakpoint 8 is enabled at address TGROUP:_add. This address is at line

2 of source file add.c. It has no initial pass count. Whenever breakpoint 8
is reached, the command list DW; G (Dump Word and Go) is executed.

107

Microsoft Macro Assembler User’s Guide
4.6.3 Comment Command

Syntax

*comment

The Comment command is an asterisk (*) followed by text. SYMDEB
echoes the text of the comment to the screen (or other output device). This
command is useful in combination with the redirection commands to save
or print commented copies of 2 SYMDEB session.

Example

-RCX 80
-* Change the count in CX to 80
Change the count in CX to 80

4.6.4 Compare Command

Syntax
C range address

The Compare command (C) compares the bytes in the memory locations
specified by range with the corresponding bytes in the memory locations
beginning at address. If all corresponding bytes match, SYMDEB displays
its prompt and waits for the next command. If one or more corresponding
bytes do not match, each pair of mismatched bytes is displayed.

Examples

-C 100,01FF 300
39BB:102 OA OO 39BB:302
39BB:108 OA 01 39BB:308

The first example compares the block of memory from 100h to 1FFh with
the block of memory from 300h to 3FFh. It indicates that the second and
eighth bytes are different in the two areas of memory.

108

SYMDEB: A Symbolic Debug Utility

-C test L 100 test+100

The second example compares the 256 (100h) bytes starting at symbol
test with the 256 bytes starting at the address 256 bytes beyond test.
SYMDEB produces no output, so the bytes are the same.

4.6.5 Display Command

Syntax

? expression

The Display command (?) displays the value of expression. The command
evaluates the expression, then displays the value in a variety of formats.
The formats include a full address, a 16-bit hexadecimal value, a full 32-bit
hexadecimal value, a decimal value (enclosed in parentheses), and a string

value (enclosed in double quotation marks). The string characters will be
shown as dots if their value is less than 32 (20h) or greater than 126 (7Eh).

The ezxpression can be any combination of numbers, symbols, addresses, and
operators. For a list of operators, see Section 4.5.8.

Examples

-? 9*8

0048h 00000048 (72) "H"

The first example displays the value of the expression 9*8.
-? .19

39E0:0017h OO039E17 (237079) "."

The second example displays the address in memory of line 19 in the source
file. The Display command is a convenient way to find addresses for source
code.

-? CS:_main

39E0:0002h OO039E02 (237058) "."

The third example displays the value of the symbolic address CS:_main.

109

Microsoft Macro Assembler User’s Guide

-2 WO DGROUP:_environ
2E36h OOOO2E36 (11830) ".6"

The final example displays the word at the symbolic address
DGROUP:_environ.
4.6.6 Dump Commands

SYMDERB has several commands for dumping data from memory to the
screen (or other output device). The dump commands are listed below:

Command Command Name

D Dump

DA Dump ASCII

DB Dump Bytes

DW Dump Words

DD Dump Doublewords
DS Dump Short Reals
DL Dump Long Reals
DT Dump Ten-Byte Reals

Sections 4.6.6.1-4.6.6.8 discuss these commands in logical, rather than
alphabetical, order.

4.6.6.1 Dump Command

Syntax
D [address|range]

The Dump command (D) displays the contents of memory at the specified
address or in the specified range of addresses. The Dump command dumps

110

SYMDEB: A Symbolic Debug Utility

data in the format of the most recently entered dump command (as
described in the next seven sections). If no other dump command has been
entered, the default dump format is the format of the Dump Bytes com-
mand (DB).

The Dump command displays one or more lines, depending on the address
or range specified. Each line displays the address of the first item
displayed. The command always displays at least one value. If a range is
specified, SYMDEB displays all values in the range. If neither eddress nor
range is specified, SYMDEB dumps memory starting at the byte after the
last byte dumped by a previous dump command. If no previous dump com-
mand has been used, SYMDEB dumps data starting from the current loca-
tion of the instruction pointer (IP). If no segment is specified in an initial
dump command, SYMDEB uses the DS register value as the default seg-
ment.

The Dump command name must be separated by at least one space from
any address or range value.

Examples

-DA ds:100
0O4BA:0100 A string..
-D

04BA:010B Text...

In the first example, the Dump command displays the ASCII string at the
address immediately following the string displayed by the Dump ASCII
command. The Dump command uses the ASCII format because the last
dump command was DA (Dump ASCII).

-DW ds:100 101
04BA:0100 2041
-D ds:324 325
04BA:0324 FE31

In the second example, the Dump command displays the word at the
address ds:324. The format is words because the last dump command
was Dump Words (DW).

111

Microsoft Macro Assembler User’s Guide

4.6.6.2 Dump ASCI Command

Syntax
DA [address|range]

The Dump ASCII command (DA) displays the ASCII characters at a
specified address or in a specified range of addresses. The command
displays one or more lines of characters, depending on the address or range
specified. Up to 48 characters per line are displayed. Unprintable charac-
ters, such as carriage returns and line feeds, are displayed as dots (.).
ASCII characters below 32 (20h) and above 126 (7Eh) are unprintable.

If an address is specified, the command continues to display ASCII charac-
ters until the first null byte is encountered, or until 128 bytes have been
displayed. If a range is specified, the command continues to display ASCII
characters until the end of the range. If neither address nor range is
specified, the command displays all characters up to the first null byte, or
until 128 bytes have been displayed. This display begins at the current
dump address: the address immediately after the last byte previously
displayed. If the L option is used in a range, the Dump ASCII command
continues to display characters until the specified number of characters has
been displayed.

Examples

-DA DS:100 110
04BA:0100 A string..Text..

The first example displays the ASCII values of the bytes from DS: 100 to
DS:110. Unprintable characters are shown as dots.

-DA

04BA:0111 Some letters

The second example displays characters at the current dump address. If
the last byte in the previous Dump ASCII command was 04BA:0110, this
command displays the bytes starting at 04BA:0111.

-DA prompt
294A:0000 Enter file name: $.

112

SYMDEB: A Symbolic Debug Utility
The final example displays the characters at the symbolic address prompt.
4.6.6.3 Dump Bytes Command

Syntax
DB [addressirange]

The Dump Bytes command (DB) displays the hexadecimal and ASCII
values of the bytes at the specified address or in the specified range of
addresses. The command displays one or more lines, depending on the
address or range supplied.

Each line displays the address of the first byte in the line, followed by up to
16 hexadecimal byte values. The byte values are immediately followed by
the corresponding ASCII values. The hexadecimal values are separated by
spaces, except the eighth and ninth values, which are separated by a dash
(-). ASCII values are printed without separation. Unprintable ASCII
values (lower than 20h or higher than 7Eh) are displayed as dots (.). No
more than 16 hexadecimal values are displayed in a line. The command
displays values and characters until the end of the range or until the first
128 bytes have been displayed.

Examples

-DB cs:100 110
O4BA:0100 41 20 73 74 72 69 6E 67-04 01 05 54 65 78 OD OA A string...Text..
O4BA:0110 2E

The first example displays the byte values from cs:100 to 110. ASCII
characters are shown on the right.

-DB

The second example displays 128 bytes starting at the current dump
address. If the last byte in the previous dump command was 04BA:0110,
this command displays the bytes starting at 04BA:0111. The dumped bytes
are not shown in this example.

-DB buffer buffer+f
2145:0020 -66 75 6E 63 74 69 6F 6E function
2145:0030 OD OA 20 20 20 20 20 20 ..

113

Microsoft Macro Assembler User’s Guide

The final example displays the first 16 (OFh) bytes starting at the symbolic
address buf fer.

4.6.6.4 Dump Words Command

Syntax
DW [address|range]

The Dump Words command (DW) displays the hexadecimal values of the
words (2-byte values) at address or in the specified range of addresses. The
command displays one or more lines, depending on the address or range
specified. Each line displays the address of the first word in the line, fol-
lowed by up to 8 hexadecimal word values. The hexadecimal values are
separated by spaces. The command displays values until the end of the
range or until the first 64 words have been displayed.

Examples

-DW cs:100 110
04BA:0100 2041 7473 6972 676E 0104 5405 7865 OAOD
0O4BA:0110 OO2E

The first example displays the word values from cs:100 to cs:110. No
more than eight values per line are displayed.

-DW
The second example displays 64 words starting at the current dump
address. If the last byte in the previous dump command was 04BA:0110,

this command displays the words starting at 04BA:0111. The dumped
bytes are not shown in this example.

-DW buffer buffer+f
2145:0028 7566 636E 6974 6E6F OAOD 2020 2020 2020

The final example displays the first eight words (0Fh bytes) starting at the
symbolic address buf fer.

114

SYMDEB: A Symbolic Debug Utility
4.6.6.5 Dump Doublewords Command

Syntax
DD [address|range]

The Dump Doublewords command (DD) displays the hexadecimal values of
the doublewords (4-byte values) at address or in the specified range of
addresses. The command displays one or more lines, depending on the
address or range specified. Each line displays the address of the first dou-
bleword in the line, followed by up to four hexadecimal doubleword values.
The words of each doubleword are separated by a colon. The values are
separated by spaces. The command displays values until the end of the
range or until the first 32 doublewords have been displayed.

Examples

-DD cs:100 110
04BA:0100 7473:2041 676E:6972 5405:0104 OAQOD:7865
04BA:0110 0000:002E

The first example displays the doubleword values from cs:100 to cs:110.
No more than four doubleword values per line are displayed.

-DD

The second example displays 32 doublewords starting at the current dump
address. If the last byte in the previous dump command was 04BA:0110,
this command displays the doublewords starting at 04BA:0111. The
dumped bytes are not shown in this example.

-DD buffer buffer+f
2145:0028 636E:7566 6E6F:6974 2020:0A0D 2020:2020

The final example displays the first four doublewords (OFh bytes) starting
at the symbolic address buffer.

1156

Microsoft Macro Assembler User’s Guide

4.6.6.6 Dump Short-Reals Command

Syntax
DS [address|range]

The Dump Short-Reals command (DS) displays the hexadecimal and
decimal values of the short (4-byte) floating-point numbers at address or in
the specified range of addresses.

The command displays one or more lines, depending on the address or
range specified. Each line displays the address of the floating-point number
in the first column. Next, the hexadecimal values of the bytes in the
number are shown, followed by the decimal value of the number. The hexa-
decimal values are separated by spaces.

The decimal value has the form:

+1—0.decimaldigitsE+—mantissa

The sign of the number is followed by a 0 and a decimal point (.). Next
come as many as 16 decimaldigits (although only 7 of these digits are
significant). The decimal digits are followed by the letter E, which marks
the start of the mantissa. Next comes the sign of the mantissa followed by

the digits of the mantissa.

The command displays at least one value. If a range is specified, all values
in the range are displayed.

Examples
-DS ds:100
04BA:0100 A3 68 21 A3 -0.8749985175576769E-17

The first example displays the short-real floating-point number at the
address ds:100. Only one value per line is displayed.

-DS pi
210C:0140 DB OF 49 40 +0.3141592741012573E+1

116

SYMDEB: A Symbolic Debug Utility

The second example displays the short-real floating-point number at the
symbolic address pi.

4.6.6.7 Dump Long-Reals Command

Syntax
DL [addressrange]

The Dump Long-Reals command (DL) displays the hexadecimal and
decimal values of the long (8-byte) floating-point numbers at the specified
address or in the specified range of addresses.

The command displays one or more lines, depending on the address or
range specified. Each line displays the address of the floating-point number
in the first column. Next, the hexadecimal values of the bytes in the
number are shown, followed by the decimal value of the number. The hexa-
decimal values are separated by spaces.

The decimal value has the form:
+1—0. dectmaldigitsIE4+|—mantissa

The sign of the number is followed by a 0 and a decimal point (.). Next
come as many as 16 decimaldigits. The decimal digits are followed by the
letter E, which marks the start of the mantissa. Next comes the sign of the
mantissa, followed by the digits of the mantissa.

The command displays at least one value. If a range is specified, all values
in the range are displayed.

Examples

-DL DS:100
0O4BA:0100 04 C6 06 10 1F 01 33 CO -0.1900438022771233E+2

The first example displays the long-real floating-point number at the
address DS: 100. Only one value per line is displayed.

-DL pi
210C:0120 11 2D 44 54 FB 21 09 40 +0.314159265358979E+1

117

Microsoft Macro Assembler User’s Guide

The second example displays the long-real floating-point number at the
symbolic address pi.

4.6.6.8 Dump Ten-Byte Reals Command

Syntax
DT [address|range]

The Dump Ten-Byte Reals command (DT) displays the hexadecimal and
decimal values of the 10-byte floating-point numbers at the specified
address or in the specified range of addresses.

The command displays one or more lines, depending on the address or
range specified. Fach line displays the address of the floating-point number
in the first column. Next, the hexadecimal values of the bytes in the
number are shown, followed by the decimal value of the number. The hexa-
decimal values are separated by spaces.

The decimal value has the form:
+|—0.decimaldigitsE+—mantissa

The sign of the number is followed by a 0 and a decimal point (.). Next
come as many as 16 decimaldigits. The decimal digits are followed by the
letter B}, which marks the start of the mantissa. Next comes the sign of the
mantissa followed by the digits of the mantissa.

The command displays at least one value. If a range is specified, all values
in the range are displayed.

Examples

-DT DS:100
04BA:0100 66 21 A3 06 2B A3 04 2B A3 OE +0.5145365070468582E-3804

The first example displays the 10-byte real floating-point number at the
address DS: 100. Only one number per line is displayed.

-DT pi
210C:0100 DE 87 68 21 A2 DA OF C9 00 40 +0.314159265358979E+1

118

SYMDEB: A Symbolic Debug Utility

The second example displays the 10-byte floating-point number at the sym-
bolic address pi.

4.6.7 Enter Commands

SYMDEB has several commands for entering data from the keyboard (or
other input device) to memory. The enter commands are listed below:

Command Command Name

E Enter

EA Enter ASCII

EB Enter Bytes

EW Enter Words

ED Enter Doublewords
ES Enter Short Reals
EL Enter Long Reals
ET Enter Ten-Byte Reals

The next sections discuss these commands in logical, rather than alphabeti-
cal, order.

4.6.7.1 Enter Command

Syntax
E address [list]

The Enter command (E) enters one or more values into memory at address.
The size of the value which may be entered depends on the most recently
used Enter command. If no Enter command has been used, the Enter Bytes
command (EB) is assumed.

If an error occurs while entering a value, the value remains unchanged. If
you do not supply a list of values to be entered, SYMDEB prompts for a
new value at address by displaying the address and its current value fol-
lowed by a dot (.). You can then replace the value by typing the new value
after the current value. The command ignores extra trailing digits or other
characters.

119

Microsoft Macro Assembler User’s Guide

To exit the Enter command, press the RETURN key. You can exit the com-
mand at any time.

The different variations of the Enter command are explained in the next
seven sections.

4.6.7.2 Enter Bytes Command

Syntax
EB address [list]

The Enter Bytes command (EB) enters one or more byte values into
memory at address. If the optional list is specified, the command replaces
the byte at the specified address and the bytes at each subsequent address
until all values in the list have been used.

If you do not supply a list, SYMDEB prompts for a new value at address
by displaying the address and its current value followed by a dot (.). You
can then replace the value, skip to the next value, return to a previous
value, or exit the command.

e To replace the byte value, type the new value after the current
value.

o To skip to the next byte, press the SPACE bar. Once you have
skipped to the next byte, you can change its value or skip to the
next byte. If you skip beyond an 8-byte boundary, SYMDEB
starts a new display line by displaying the new address and value.

e To return to the preceding byte, type a hyphen (). When you
return to the preceding byte, SYMDEB starts a new display line
with the address and value of that byte.

e To stop entering bytes and return to the SYMDEB prompt, press
the RETURN key. You can exit the command at any time.

Examples

-EB C5:100 01 2B E5

The first example replaces the 3 bytes at CS:100, CS:lOl, and CS:102 with
01, 2B, and E5, respectively.

120

SYMDEB: A Symbolic Debug Utility

-EB C5:100

The second example causes SYMDEB to display the current value on the
line following the command and wait for you to enter a new value. In the
examples below an underscore represents the cursor:

-EB CS:100
2344:0100 F3._

You can then change the value F 3 to the new value 5E by typing 5E as
shown below

-EB C5:100
2344:0100 FE3.5e_

You can then skip to the next byte value by pressing the SPACE bar.

-EB CS:100
2344:0100 FE3.5e 10. _

Then type the next value:

-EB C5:100
2344:0100 F3.5e 10.76_

Press the SPACE bar:

-EB CS5:100
2344:0100 E3.5e 10.76 BO._

You could then return to the previous value to correct a mistake by typing
a minus sign:

-EB CS:100

2344:0100 F3.5e 10.76 BO. -
2344:0100 76._

Type the correct value:

-EB C5:100
2344:0100 F3.5e 10.76 BO. -
2344:0100 76.77_

121

Miecrosoft Macro Assembler User’s Guide
Press the RETURN key to stop entering bytes. After you press the RETURN
key, the SYMDEB prompt reappears as shown below:

-EB CS:100
2344:0100 FE3.5e 10.76 BO. -
2344:0100 76.77

4.6.7.3 Enter ASCII Command

Syntax

EA address [list]

The Enter ASCII command (EA) works exactly the same as the Enter Bytes
command (EB), described in the previous section.

Example

-EA data_seg:msg2 "Can't open file"

In the example above, the string Can't open file is entered starting at
the symbolic address data_seg:msg2. You could use the Enter Bytes
command to do the same thing, or you could enter nonstring values as
shown in Section 4.6.7.2 using the Enter ASCII command.

4.6.7.4 Enter Words Command

Syntax
EW address [value]

The Enter Words command (EW) enters a word value into memory. The
optional value consists of a single word value.

122

SYMDEB: A Symbolic Debug Utility

If no value is specified, the command displays the word at address and
prompts for a replacement. If a value is specified, the command replaces
the word at the specified address, then displays the next word and prompts
for a replacement.

The Enter Words command continues to display words and prompt for
replacement values until you exit the command by pressing the RETURN
key.

Example

-EW CS:400 4e3a
2344:0402 ED32.8ad8
2344:0404 1D3C.

In the example above, the word at CS:400 is replaced with 04E3A. SYM-
DEB displays the next word (ED32) and prompts for a replacement. The
number 8ADS is supplied as the next word, and the RETURN key is pressed
to stop entering words.

4.6.7.5 Enter Doublewords Command

Syntax
ED address [valuc]

The Enter Doublewords command (EDP enters a doubleword value into
memory. The optional value consists of one doubleword value. Double-
words must be typed as two words separated by a colon (:).

If no value is specified, the command displays the doubleword at address
and prompts for a replacement. If a value is specified, the command
replaces the doubleword at the specified address, then displays the next
doubleword and prompts for a replacement.

The Enter Doublewords command continues to display doublewords and

prompt for replacement values until you exit the command by pressing the
RETURN key.

123

Microsoft Macro Assembler User’s Guide

Example
-ED CS:100 12EF:CDO1

2344:0104 440E:1234.1234:5678
2344:0108 8ED9:1234.

In the example above, the doubleword at CS:100 is replaced with
12EF:CD01. SYMDEB displays the next doubleword (440E:1234) and
prompts for a replacement. The number 1234:5678 is supplied as the next
doubleword, and the RETURN key is pressed to stop entering doublewords.

4.6.7.6 Enter Short-Reals Command

Syntax
ES address [value]

The Enter Short-Reals command (ES) enters a short-real value into
memory. The optional value consists of one short-real value.

If no value is specified, the command displays the short-real value at the
specified address and prompts for a replacement. If a value is specified, the
command replaces the short-real value at the specified address, then
displays the next short-real value and prompts for a replacement.

The Enter Short-Reals command continues to display short-real values and

prompt for replacement values until you exit the command by pressing the
RETURN key.

Example

~ES pi 3.1415926

The example above enters 3.1415926 at the symbolic address pi. The
same number could also be entered as shown below:

-ES pi

210C:0130 -0.1256210825216E+16 +0.31415926e+1
210C:0134 -0.4309309980615894E-31

If you used the Dump Short-Reals command (DS) to examine the value just

124

SYMDEB: A Symbolic Debug Utility

entered (as shown below), up to 16 digits would be displayed, but the last
nine digits would not be significant:

-DS pi
210C:0130 DA OF 49 40 +0.3141592502593994E+1

4.6.7.7 Enter Long-Reals Command

Syntax
EL address [value]

The Enter Long-Reals command (EL) enters a long-real value into memory.
The optional velue consists of one long-real value.

If no value is specified, the command displays the long-real value at the
specified address and prompts for a replacement. If a value is specified, the
command replaces the long-real value at the specified address, then displays
the next long-real value and prompts for a replacement.

The Enter Long-Reals command continues to display long-real values and
prompt for replacement values until you exit the command by pressing the
RETURN key.

Example

-EL pi 3.141592653589793

The example above enters 3.141592653589793 at the symbolic address pi.
The same number could also be entered as shown below:

-EL 170
210C:0170 +0.1343280735843091E+65299 +0.3141592653589793e+1
210C:0178 -0.1040230032441619E-71

126

Microsoft Macro Assembler User’s Guide

4.6.7.8 Enter Ten-Byte Reals Command

Syntax
ET address [value]

The Enter Ten-Byte Reals command (ET) enters a 10-byte real value into
memory. The optional value consists of a single 10-byte real value,

If no value is specified, the command displays the 10-byte real value at the
specified address and prompts for a replacement. If a value is specified, the
command replaces the 10-byte real value at the specified address, then
displays the next 10-byte real value and prompts for a replacement.

The Enter Ten-Byte Reals command continues to display 10-byte real
values and prompt for replacement values until you exit the command by
pressing the RETURN key.

Example

-ET pi 3.141592653589793

The example above enters 3.141592653589793 at the symbolic address pi.
The same number could also be entered as shown below:

-ET pi
210C:0150 +0.0204654128113587E+7898 +0.3141592653589793e+1
210C:015A +0.5976239733286124E+3896

4.6.8 Examine Symbol Map Commands

Syntax

X [+]

X? [mapname!] [segmentname:] [symbolname]

The Examine Symbol Map commands (X or X?) display the names and
addresses of the symbols in the current symbol maps. SYMDEB creates a
symbol map for each symbol-file name specified in the SYMDEB command
line. The Examine Symbol Map commands can then be used to examine the
contents of the maps.

126

SYMDEB: A Symbolie Debug Utility

The X form of the Examine Symbol Map command displays the name and
load segment addresses of the current symbol map and the segments in that
map. If the asterisk (*) is specified, the command displays the names and
load segment addresses for all currently loaded symbol maps.

The X? form of the Examine Symbol Map command displays the names
and addresses of one or more symbols in the symbol map. If a maepname! is
specified, the command displays information for that symbol map. The
mapname must be the file name (without extension) of the corresponding
symbol file. The file name must by followed by an exclamation point (!).

If segmeniname: is specified, the command displays the name and load seg-
ment address for that segment. The segmentname must be the name of a
segment named within the explicitly specified or currently open symbol
map. The segmentname must be followed by a colon (:).

If a symbolname is specified, the command displays the segment address
and segment offset, for that symbol. The symbolname must be the name of
a symbol in the specified segment.

To display information about more than one segment or symbol, enter a
partial segmentname or symbolname ending with an asterisk (*). The aster-
isk acts as a wildcard character. SYMDEB displays information about all
segments or symbols whose names start with the same characters with
which segmentname or symbolname start. For example, F*: matches all
segment names that start with F. Similarly, _* matches all symbols that
start with an underscore (_).

In the examples, assume that SYMDEB was started with the following
command line:

SYMDEB resident.sym count.sym count.exe

This command line instructs SYMDEB to load two symbol files and one
executable file: resident.sym, count.sym, and count.exe. Only one
symbol map can be open at a time, so SYMDEB opens the one whose
name matches the name of the executable file (count.sym). If none of the
symbol file names matched, SYMDEB would open the first symbol file in
the command line.

127

Microsoft Macro Assembler User’s Guide

Examples

-X

[2154 COUNT]
2164 DATA
[21E8 CODE]

The example above displays the name of the currently open symbol map
and the names and load-segment addresses of the segments in that map.
Brackets indicate that a symbol map or segment is open. An open segment
will be searched first if you give a command that accesses a symbol. The
example indicates that the segment code is open, so symbols in the code
segment will be accessed slightly faster than symbols in the data segment.

-X*

0000 COUNT
0010 DATA
0O1A3 CODE

[2154 Resident]
2164 DATA
[21E8 CODE]

In the second example above, all currently loaded symbol maps are
displayed. Brackets indicate the open map and segment.

-X?resident!
0000 RESIDENT

The third example displays the load-segment address of the symbol map file
resident.

-X?resident!code:

CODE: (O1A3)

The fourth example displays the start address of segment code in the map
file resident.

-X?resident!data:c*

CODE: (O1A3)
O1E2 CYCLE 04D1 CLEAR

The fifth example displays the addresses of all symbols beginning with c in
the data segment of symbol file resident.

128

SYMDEB: A Symbolic Debug Utility

—x?*

CODE: (21E8)

0016 GET_FILE 002C OPEN_FILE 0044 OK 0050 BUFF_READ 0069 DONE

0071 CONV_HEX 0075 ROTATE OOSF QUIT 0095 WORD_C ~ OOA4 NEXT_CHAR

OOAA NEW_WORD OOAB OUT_WORD OOB6 IN_WORD

DATA: (2164)

0000 PROMPT 0011 NAMEBUF

0013 ENAME 0028 BUFFER 0828 ERR1 083C ERR2 0848 COUNT

The final example displays the addresses of all symbols in the currently
open map file (count).

4.6.9 TI'ill Command

Syntax

F range list

The Fill command (F') fills the addresses in the specified range with the
values specified in list. If the range specifies more bytes than the number of
values in the list, the list is repeated until all bytes in the range are filled.
If the list has more values than the number of bytes in the range, the com-
mand ignores any extra values.

Examples

-F CS:100 L 100 EF

The first example fills 255 (100h) bytes of memory starting at CS:100 with
the value FFh.

-F DGROUP:table L 64 42 79 74 65 73

The second example fills the 100 (64h) bytes starting at DGROUP: table
with the following byte values: 42h, 79h, 74h, 65h, and 73h. These five
values are repeated until all 100 bytes are filled.

129

Microsoft Macro Assembler User’s Guide
4.6.10 Go Command

Syntax
G [=startaddress] [breakaddresses]

The Go command (G) passes execution control to the program at the
optional sierladdress. HExecution continues to the end of the program or
until the optional breakaddress is encountered. The program also stops at
any breakpoints set using the Breakpoint Set command (BP).

If no startaddress is specified, the command passes execution control to the
address specified by the current values of the CS and IP registers. The
equal sign (=) indicates that the value is a start address. Any values
specified without the equal sign are assumed to be break addresses.

If a break address is specified, it must specify an instruction address (that
is, the address must contain the first byte of an instruction opcode). Up to
10 addresses can be specified at one time. The addresses can be specified in
any order. If you attempt to set more than 10 breakpoints, SYMDEB
displays an error message. Only the first address encountered during execu-
tion will cause a break. All others are ignored. If you want execution to
stop at more than one breakaddress, use the Breakpoint Set command.

When program execution reaches a breakpoint, SYMDEB displays the
current values of all registers and flags. It also displays the next instruc-
tion to be executed. The display has the same form as the Register com-
mand (R).

130

SYMDEB: A Symbolic Debug Utility

Notes

The Go command (G) uses an IRET instruction to pass control to a
program. To do so, it must set the user stack pointer and push the user
flags, CS register, and IP registers onto the user stack. If the user
stack does not have at least 6 bytes available or is in invalid memory,
the Go command may cause an operating system crash.

To create a breakpoint, SYMDEB places an INT instruction (inter-
rupt code 0CCh) at each breakpoint address, then restores these
addresses to their original instructions when a breakpoint is encoun-
tered. If execution continues to the end of the program, however, or is
halted by some other means, SYMDEB does not replace the interrupt
code. For this reason, you should reload the program with the Name
command (N) and Load command (L) before attempting to run the pro-
gram again.

SYMDERB displays the message Program terminated normally
whenever execution reaches the program end. SYMDEB stops execu-
tion and displays the current values of registers and flags.

Examples
-G =_main _add

In the first example, SYMDEB starts program execution at the instruction
named by the symbolic address _main. Execution continues until the
address _add is reached (or until the end of the program if _add is not
encountered).

-G
The second example passes control to the instruction pointed to by the
current values of the CS and IP registers. SYMDEB will continue execu-

tion until it reaches either the end of the program or a breakpoint defined
with the Breakpoint Set command (BP).

-G =CS:0 C5:7550
The final example passes execution control to the program at address CS:0.

If the instruction at breakpoint address CS:7550 is encountered, SYMDEB
stops execution and displays the current values of registers and flags.

131

Microsoft Macro Assembler User’s Guide
4.6.11 Help Command

Syntax

?

The Help command (?) displays a list of all SYMDEB commands and
operators with the syntax for each.

4.6.12 Hex Command

Syntax

H valuel value?

The Hex command (H) displays the sum and difference of two hexadecimal
numbers. SYMDEB adds valuel to valueZ and displays the result. It then
subtracts value?2 from value! and displays that result. The results are
displayed on one line and are always in hexadecimal.

To evaluate more general expressions, use the Display command (D) (see
Section 4.6.5).

Examples

-H 3 4
0007 FEFF

The first example displays the results of 3 + 4 (7) and 3 ~ 4 (FFFF).

-H afd 2ec
ODE9 0811

The second example displays the results of 0AFD + 02EC (0DE9) and 0AFD
- 02EC (0811).

132

SYMDEB: A Symbolic Debug Utility

4.6.13 Input Command

Syntax
I port

The Input command (I) reads and displays a byte from the specified port.
The input port can be any 16-bit port address.

Example

-1 2F8
E8

The preceding example reads input port number 2F'8 and displays the result
(E8h).

4.6.14 Load Command

Syntax

L [address [drive record count]]

The Load command (L) copies the contents of a named file or the contents
of a specified number of logical disk records into memory. The contents are
copied to the specified address or to a default address, and the BX:CX
register pair is set to the number of bytes loaded.

To load a file, a file name must be supplied before the Load command can
be used. You can give a name by using the Name command (N) (Section
4.6.16), or by passing it as a program argument when you start S DEB
(Section 4.3.3). If you do not supply a name, Load uses whatever name is
currently at location DS:5C, where DS is the current value of the DS regis-
ter. This is the location of the default file control block that receives any
file name specified with the Name command or any file name passed as a
program argument.

If an address is specified, the command places the contents of the file or sec-
tors at the memory locations starting at the specified address. Otherwise,
it places the contents at the address specified by CS:100, where CS is the
current value of the CS register.

133

Microsoft Macro Assembler User’s Guide

To load logical records from a disk, the explicit values for address, drive,
record, and count must be specified. The drive must name the drive to be
read. It can be any number in the range 0 to 3, representing Drives A (0), B
El), C (2), or D (3). The record names the first logical record to be rea

rom the drive. It can be any 1- to 4-digit hexadecimal number. The count
specifies the number of records to be read from the disk. It can be any 1- to
4-digit hexadecimal number.

Notes

If the named file has an .EXE extension, the Load command (L)
adjusts the load address to the address specified in the .EXE file
header. This means that the address parameter is always ignored for

EXE files.

Since the Load command strips any header information from an .EXE
file before loading, the number of bytes actually loaded will differ from
the number of bytes in the .EXE file.

If the named file has a .HEX extension, the Load command adds that
file’s start address to address before loading the file. If no address is
specified, the file is loaded at its start address.

Examples

-N file.exe
-L

The first example loads the file named file.exe into memory at the
address CS:100. The number of bytes loaded (the length of file.exe
minus its program header) is copied to the BX:CX register pair.

-L DGROUP:table

The second example loads a file into the memory locations starting at the
symbolic address DGROUP : table. The command uses whatever file name
is currently at location DS:5C.

134

SYMDLIB: A Symbolic Debug Utility

-L workspace 2 34 3

The final example loads three logical records from Drive C (02), beginning
with logical record number 34h, into memory at the symbolic address
workspace.

4.6.15 Move Command

Syntax
M range address

The Move command (M) moves the block of memory specified by range to
the location starting at address.

All moves are guaranteed to be performed without data loss, even when the
source and destination blocks overlap. The destination block is always an
exact duplicate of the original source block. If the destination block over-
laps some portion of the source block, the original source will be changed.

To prevent data loss, the Move command copies data starting at the source
block’s lowest address whenever the source is at a higher address than the
destination. If the source is at a lower address, the Move command copies
data beginning at the source’s highest address.

Examples

-M CS:100 110 CS:500

The first example moves all bytes in the range CS:100 to CS:110 to the
memory locations starting at CS:500.

-M DS:table L 100 workspace

The second example copies the 256 (100h) bytes at the symbolic address
DS:table to the symbolic address workspace.

135

Microsoft Macro Assembler User’s Guide
4.6.16 Name Command

Syntax

N [filename] [arguments]

The Name command (N) sets the file name for a subsequent Load command
(1) or Write command (W), or sets program arguments for subsequent exe-
cution of a loaded program.

If filename is specified, all subsequent Load and Write commands will use
this name when accessing disk files.

If arguments are specified, the command copies all arguments, including
spaces, to the memory location starting at DS:81 and sets the byte at DS:80
to a count of the total number of characters copied. In both cases, DS is
the current value of the DS register. Once copied, the arguments are avail-
able for access by the program being debugged.

Notes

If the first two arguments are also file names, the command creates file
control blocks (FCBs) at addresses DS:5C and DS:6C and copies the
names (in proper format) to these blocks. The FCBs can then be used
by the program being debugged.

The Name command also treats filename as an argument, copying it to
DS:81 and creating an FCB for it at DS:5C. Therefore, setting a new
file name for the Load and Write commands destroys any previous pro-
gram arguments.

Each Name command changes one or more of the following memory
locations:

Address Contents

DS:5C FCB for file 1
Ds:6C FCB for file 2
DS:80 Count of characters
DS:81 All characters typed

136

SYMDERB: A Symbolic Debug Utility

Examples

~-N filel.exe
-D 80 8f
2BB2:0080 OA 20 66 69 6C 65 31 2E-65 78 65 OD 20 63 3A 43 . filel.exe. c:C

The first example sets the file name filel.exe for use by subsequent,
Load and Write commands. The Dump command (D) is entered to show
the result. The Name command copies the length of the name (0Ah or 10
decimal including the initial space) to byte 80 of the data segment and
copies the file name to the bytes starting at 81.

-N filel.dat file2.dat /m /b

-D 50 9f

2BB2:0050 CD 21 CB 00 00 OO0 OO 00-00 00 OO0 OO0 00 46 49 4C M!K.......... FIL
2BB2:0060 45 33 20 20 20 44 41 54-00 00 00 OO OO 20 20 20 E1 DAT.....
2BB2:0070 20 20 20 20 20 20 20 20-00 OO OO OO OO OO OO OO
2BB2:0080 1A 20 66 69 6C 65 32 2E-64 61 74 20 66 69 6C 65 . filel.dat file
2BB2:0090 33 2E 64 61 74 20 2F 6D-20 2F 62 OD 4E 54 2E 65 2.dat /m /b.NT.e

The second example sets the program arguments for the program being
debugged. The Dump command has been entered to show the results. The
Name command creates a File Control Block (FCB) for file file2.dat at
DS:5C. It also copies the entire command line (except the command letter
N), to memory starting at DS:81. The characters following the last letter
of the command line are simply data left over from previous commands.

4.6.17 Open Map Command

Syntax
XO [mapname!] [segmentname]

The Open Map command (XO) sets the active symbol map and/or seg-
ment. If mapname is specified, the command sets the active symbol map to
the specified map. The mapname must be the file name (without extension)
of one of the symbol files specified in the SYMDEB command line. If seg-
mentname is specified, the command sets the active segment to the named
segment. The segmentname must be the name of a segment in the specified
symbol map. All segments in an open map are accessible, but the open seg-
ment is searched first. A map file can be opened only if it was loaded by
providing its name in the SYMDEB command line.

137

Microsoft Macro Assembler User’s Guide

The examples below assume that SYMDEB was started with the following
command line. The Examine Symbol-Map command is also entered to show
the initial status:

SYMDEB resident.sym count.sym count.exe

_X*

0000 RESIDENT
0010 DATA
01A3 CODE

[2154 COUNT]

2164 DATA
[21E8 CODE]
Examples

-X0 resident!

_X*

[O000 RESIDENT]
[0010 DATA]
01A3 CODE

2154 COUNT
2164 DATA
21E8 CODE

The first example opens the symbol map resident.

-X0 count!data

-X*

0000 RESIDENT
0010 DATA
0O1A3 CODE

[2154 COUNT]
[2164 DATA]
21E8 CODE

The second example opens the segment data in the symbol map count.

-X0 code

X

0000 RESIDENT
0010 DATA
O1A3 CODE

[2154 COUNT]
2164 DATA
[21E8 CODE]

1388

SYMDEB: A Symbolic Debug Utility

The final example activates the segment code in the current symbol map
(count).

4.6.18 Output Command

Syntax
O port byte

The Output command (O) sends the specified byte to the specified port.
The output port can be any 16-bit port address.

Examples

-0 2f8 4f

The first example sends the byte value 4Fh to output port 2F8h.

-0 3 21

The second example sends the byte value 21h to output port 3.
4.6.19 PTrace Command

Syntax
P [==startaddress] [count]

The PTrace command (P) executes the instruction at the specified startad-
dress, then displays the current values of all registers and flags. The display
has the same format as the Register command (R) (see Section 4.6.22).

If the optional startaddress is specified, the command starts execution at
the specified address. Otherwise, it starts execution at the instruction
pointed to by the current CS and IP registers. The equal sign (=) is neces-
sary to indicate a startaddress. I a number is specified without an equal
sign, SYMDEDB assumes that the number is a count.

139

Microsoft Macro Assembler User’s Guide

If the optional count is specified, the command executes count number of
instructions before stopping. The command displays the current values of
the registers and flags for each instruction before executing the next.

In source-only mode (S+), PTrace operates directly on source lines. In this
mode, PTrace steps over function or procedure calls. The source-only mode
is only available for programs developed with high-level-language com-
pilers. See Section 4.6.25 for more information about setting the source
mode.

Note

The PTrace command is identical to the Trace command (T), except
that it automatically executes and returns from any calls or software
interrupts it encounters, leaving execution control at the next instruc-
tion after the called routine. The Trace command always stops after
executing the call or interrupt, leaving execution control inside the
called routine. One exception to this rule is that neither the Trace nor
the PTrace command enters interrupt 21h, the MS-DOS function
request interrupt.

Examples

-P =work

AX=0800 BX=0005 CX=0800C DX=002E SP=00FE BP=0000 SI=0017 DI=0000
DS=2BED ES=2BD2 8S=2C72 CS=2BE2 IP=008C NV UP EI PL NZ NA PE NC
2BE2:008C BEZEOO MOV SI,002E

The first example executes the instruction at work, then displays the
current values of the registers and flags, and the next instruction to be exe-
cuted.

-T

AX=0800 BX=0005 CX=0800 DX=002E 8P=01C0 BP=0000 S8I=0017 DI=0000
DS=2BED ES=2BD2 SS=2C72 CS=2BE2 IP=004D NV UP EI PL NZ NA PE NC

2BEZ2:004D E83B0OO CALL WORD_C

-P

AX=0800 BX=0005 CX=0378 DX=002E 8SP=0100 BP=0000 SI=084E DI=0000
DS=2BED ES=2BD2 SS=2C72 CS=2BE2 IP=0050 NV UP EI PL NZ NA PO NC

2BE2:0050 EBED JMP OK+05 (OO3F)

140

SYMDEB: A Symbolic Debug Utility

In the second example, the first instruction is executed with the Trace com-
mand, but the second is executed with the PTrace command so that the
CALL instruction will be executed instead of traced.

4.6.20 Quit Command

Syntax

Q

The Quit command (Q) terminates SYMDEB execution and returns con-
trol to MS-DOS.

Example
-Q
This example terminates SYMDEB.

4.6.21 Redirection Commands

Syntax

< devicename
> devicename
= devicename
{ devicename
} devicename
~ devicename

The Redirection commands redirect the command input and output to the
device named by devicename. The << command causes SYMDEB to read
all subsequent command input from the specified device. The > command
causes SYMDEDB to write all subsequent command output to the specified
device. The =command causes SYMDEB to both read from, and write
to, the specified device.

141

Microsoft Macro Assembler User’s Guide

The | command reads all input for the debugged program from the
specified device. The | command writes all output from the debugged pro-
gram to the specified device. The ™ command causes the debugged program
to both read from, and write to, the specified device.

The devicename can be any MS-DOS device or file name. If COML1 or
COMS2 is specified, the port’s baud rate and other modes must be properly
set for the attached terminal. If redirection does not appear to work
correctly, check your MS-DOS manual and hardware manuals to make sure
the lines are set up correctly.

The Redirection commands are typically used to debug programs that
require full use of the console screen. For example, you might redirect out-
put from a graphics program to a color graphics monitor while reading the
SYMDERB output on a monochrome monitor.

Note

If input is redirected to COM1 or COM2, the CONTROL-S and
CONTROL-C keystroke combinations are unavailable and will be ignored.
Make sure the device you specify is available before using a redirection
command.

Examples

->COoM1

The first example redirects SYMDEB command output to the COM1 dev-

ice.
-=COM1

The second example redirects command input from, and output to, COML1.
->outfile.txt

The third example redirects command output to the file outfile.txt.
The cursor disappears. Any keystrokes you type will not be echoed to the
screen, but they will be sent to the file. Make sure you know exactly what

commands you want to send to the file before you begin. To close the file,
enter the command >CON or Q.

142

SYMDEB: A Symbolic Debug Utility

-<infile.txt

The final example redirects command input from file infile. txt to
SYMDERB. If the file contains a series of SYMDEB commands (separated
by carriage returns), SYMDEB will execute the commands to the end of
the file. The last command in the file should be either Q or <CON. If you
fail to place one of these commands at the end of the file, you will have to
do a warm boot since there will be no way to tell SYMDEB to end the ses-
sion.

4.6.22 Register Command

Syntax
R [registername[[=]value]]

The Register command (RB displays the contents of the central processing
unit (CPU) registers and allows the contents to be changed to new values.

If no registername is specified, the command displays all registers, flags, and
the instruction at the address pointed to by the current CS and IP register
values.

The register display shows the next statement to be executed and attempts
to evaluate it, if that is appropriate. If an operand of the instruction con-
tains memory expressions or immediate data, SYMDEB will evaluate
operands. If the instruction is an MS-DOS call, the function number will be
shown. If the CS and IP registers are currently at a breakpoint or a
memory location, the register display will indicate the symbol or break-
point. Examples are shown at the end of this section.

The Trace command (T) and PTrace command (P) show registers in the
same format as the Register command.

If registername is specified, the command displays the current value of the
register and prompts for a new value. If both registername and value are
specified, the command changes the register to the specified value.

The register name can be any of the following names: AX, BX, CX, DX,
CS, DS, SS, ES, SP, BP, SI, DI, IP, PC, or F.

143

Microsoft Macro Assembler User’s Guide

IP and PC name the same register: the instruction pointer. F is a special
name for the flags register. The other registers are discussed in Section
5.2.5 of the Microsoft Macro Assembler Reference Manual.

To change a register value, supply the name of the register when you enter
the Register command. If you do not also supply a value, the command
displays the name of the register, its current value, and a prompt consisting
of a colon. Type the new value and press the RETURN key. If you do not
want to change the value, just press the RETURN key. If you type an illegal
register name, SYMDEB displays a Bad Register! message.

To change a flag value, supply the register name F when you enter the
Register command. The command displays the current value of each flag as
a two-letter name. The flag values are shown below:

Table 4.5

Flag Values

FLAG SET ' CLEAR
Overflow ov NV
Direction DN (decrement) UP (increment)
Interrupt EI (enabled) DI (disabled)
Sign NG (negative) PL (positive)
Zero ZR NZ
Auxiliary Carry AC NA

Parity PE (even) PO (o0dd)
Carry CcY NC

At the end of the list of values, the command displays a dash (-). Enter
new values after the dash for the flags you wish to change, then press the
RETURN key. You can enter flag values in any order. Spaces between values
are not required. Flags for which new values are not entered remain
unchanged. If you do not want to change any flags, simply press the
RETURN key.

If more than one value is entered for a flag, a Double flag! message will
be displayed. If you enter names other than those shown above, the com-
mand returns a Bad Flag! message. In both cases, the flags up to the
error are changed; flags at and after the error are not.

144

SYMDEB: A Symbolic Debug Utility

Examples
-R

The first example displays all register and flag values, as well as the instruc-
tion at the address pointed to by the CS and IP registers. In S+ or S&
mode, the display might look like this:

-R

AX=0008 BX=0A68 CX=0034 DX=0000 SP=0OA64 BP=0OA70 SI=00E6 DI=OA7A
DS=151B ES=151B SS=151B (S=151B IP=0036 NV UP EI PL NZ NA PE NC
8: a = add(f, q):

11BC:0036 B83EC08 SUB sSp, +08 ;BR2

Notice the comment at the right of the last line showing that the current
address is at breakpoint 2.

In S— mode, the display might look like this:

-R

AX=4A00 BX=4500 CX=0000 DX=CDOO SP=FFEE BP=0000 SI=0000 DI=0000
DS=2382 ES=2382 S5=2382 (S=2382 1IP=0104 NV UP EI PL NZ NA PO NC
2382:0104 CD21 INT 21 ;Modify Allocated Memory

The instruction is shown last. Notice the comment indicating the MS-DOS
function number about to be executed. The function number is taken from
the AH register.

-R

AX=4A00 BX=4500 CX=0000 DX=CDOO SP=FFEE BP=0000 SI=0000 DI=0000
DS=2382 ES=2382 $S85=2382 (S=2382 IP=0100C NV UP EI PL NZ NA PO NC
CODE : START:

2382:0100 B745 MOV BH, 45 J'E!

In the second example immediately above, notice the words CODE : START :
indicating that the next instruction is at the symbol START in the CODE
segment. The ; 'E' to the right of the instruction indicates that 45 evalu-
ates to the ASCII code for E. This may not always be relevant to the pur-
pose of the instruction, but often it is useful.

-R

AX=4A00 BX=4500 CX=0000 DX=CDOO SP=FFEE BP=0000 SI=0000 DI=0000
DS=2382 ES=2382 8SS=2382 (S=2382 IP=0102 NV UP EI PL NZ NA PO NC
2382:0102 8A34 MOV DH, {SI] DS : 00C0=CD

In the third example immediately above, the memory operand [SI] in the
instruction is evaluated on the right side of the screen as DS :0000=CD.
This means that the byte pointed to by SI is at offset 0 in the DS segment,

146

Microsoft Macro Assembler User’s Guide

and that it contains the value CDh.

-RIP 100

The fourth example changes the IP register to the value 100h (256
decimal).

-R AX

The fifth example displays the current value of the AX register and
prompts for a new value. The display will look like this (the underscore
represents the SYMDEB cursor):

-R AX
AX OEOO

You can now type any 16-bit value after the colon E}) For example, to
change the AX value to 100h, enter 100 as shown below:

-R AX
AX OEOO
:100

You could also press the RETURN key if you decided not to change the regis-
ter value.

-R F

The final example displays the current flag values and prompts for changes.
The display should look like this (the underscore represents the SYMDEB

cursor):

-R F
NV UP DI NG NzZ AC PE NC -_

You must use the prompt method to change flag values; any value in the
command line is ignored. For example, to set the carry flag, enter CY as
shown below:

-R F
NV UP DI NG NZ AC PE NC -CY

146

SYMDEB: A Symbolic Debug Utility
4.6.23 Screen Swap Command

Syntax

\

The Screen Swap command (\) allows you to switch from the debugging
screen to the program screen. This command is convenient for programs
that update the screen frequently, or for graphics programs in which the
program output cannot be shown on the SYMDEDB screen. After you enter
a backslash (\), the program screen immediately replaces the SYMDEB
screen. After you inspect the current status of the program screen, you can
press any key to return to the SYMDEDB screen.

This command is only available if you use the /S option when starting
SYMDEB and your computer is an IBM Personal Computer or a close
compatible. If your computer is an IBM compatible, you must also use the
/I option.

4.6.24 Search Command

Syntax
S range list

The Search command (S) searches the specified range of memory locations
for the byte values specified in list. If the bytes are found, the command
displays the addresses of each occurrence of the bytes in the list. Other-
wise, it displays nothing.

The list can have any number of bytes. Each byte value must be separated
from the others by a space or comma (,). If the list contains more than one
byte, the Search command does not display an address unless the bytes
beginning at that address exactly match the value and order of the bytes in
the list. Examples

-S buffer 1 1500 "error"
2BBA: 040A
2BBA:0O5E3
2BBA: 0604

147

Microsoft Macro Assembler User’s Guide

The first example displays the address of each memory location containing
the string error. The command searches the first 1500h bytes at the
address specified by buffer. The string was found at the three addresses
shown by SYMDEB.

-S DS:100 200 OA
3CBA:0132
3CBA:01C2

The second example displays the address of each memory location in the
range DS:100 to DS:200 containing the byte value 0Ah. The value was
found at the two addresses shown by SYMDEB.

4.6.25 Set Source Mode Command

Syntax
S—&!+

The Set Source Mode command (S) sets the display mode for commands
that display instruction code. If the plus sign (+) is specified, SYMDEB
displays the actual program source line corresponding to the instruction to
be displayed. If the minus sign (~) is specified, SYMDEB disassembles and
displays the instruction code in memory. If the ampersand (&) is specified,
SYMDERB displays both the program source line and the disassembled
code.

Initially, SYMDEB displays intermingled source lines and disassembled
code (the S& setting).

The Set Source Mode command is only meaningful if you are debugging
executable files produced with high-level-language compilers. Since MASM
cannot send line numbers to the object file, you cannot create a map file
that SYMDEB can use to relate assembler instructions to source-code
lines. All three source modes work as if the setting were S— when you
debug programs created with MASM or an incompatible compiler.

If no symbol file is loaded, or the symbol file does not contain line-number
information, SYMDEB ignores subsequent requests to display source lines.
If the S& command is specified, SYMDEB displays source lines only when
the current instruction address specified by CS:IP matches a line number.
The Set Source Mode command affects instructions displayed by the
Unassemble command (U) (see Section 4.6.2). When the source mode is set

148

SYMDEB: A Symbolic Debug Utility

to S—, the Unassemble command displays only disassembled instruction
code. When the source mode is S+ or S&, the Unassemble command inter-
mingles disassembled instructions with program source lines.

The Set Source Mode command also affects the Register SR), Trace (T),
and PTrace (P) commands. In S+ mode, these commands process one
source line at a time (which may correspond to more than one line of
disassembled instructions). In S— mode disassembled instructions are
shown, but not source lines. In S& mode disassembled instructions and
line numbers are shown.

Source lines have the form:
linenumberisource
Source lines are always displayed before any disassembled instructions. If

SYMDEB must change the current source file to display a requested line,
it displays the name of the new source file before displaying the line.

Note

Whenever SYMDEB must access a source file for the first time, it
searches the current working directory for a source file with the same
base name as the symbol file. If the source file is not found, SYMDEB
displays the following prompt:

Source file name for mapname (cr for none)?

Note that mapname is the file name of the symbol file. To display
source lines, you must type the name of the corresponding source file.
The file name must include the file-name extension. If SYMDEB can-
not find the named file, it prompts for a new name.

At times, you may wish to suppress display of source lines. In such
cases, just press the RETURN key when SYMDEB prompts for the file
name. SYMDEB will suppress the actual source lines and display a
map name and line number instead.

One case in which you must suppress display of source lines is with
early versions of Pascal and FORTRAN (prior to 3.31). The run-time
object files of these compilers contain line-number information. When
SYMDESB tries to access these lines, it will prompt you for the source-
file name. Press the RETURN key to ignore this request, since you will
not have access to the run-time source files.

149

Microsoft Macro Assembler User’s Guide

Examples

__S+

The first example sets SYMDEB to source-line display mode.

-S&

The second example sets SYMDEB to combined source-line and disassem-
bly display mode. On subsequent commands, SYMDEB displays both the
source line and disassembled instruction code.

4.6.26 Shell Escape Command

Syntax

! [command]

The Shell Escape command (!) allows you to execute COMMAND.COM
and MS-DOS commands from within SYMDEB. The Shell command by
itself executes COMMAND.COM with no arguments, saving the current
debugging context. After you are finished executing DOS commands, type
the MS-DOS command EXIT and you will return to SYMDEB at the
point where you left off.

In addition, you can type an MS-DOS command or an executable program

file name directly after the Shell Escape command. The command will exe-
cute automatically, and, when it is completed, return control to SYMDEB.

150

SYMDEB: A Symbolic Debug Utility

Note

In order to use the Shell Escape command, the executable file being
debugged must release the memory it does not need. A program can do
this by using MS-DOS function call 4Ah (Modify Allocate Memory).
This gives MS-DOS space to load the new COMMAND.COM. The
same thing can be accomplished by linking with the / CPARMAXAL-
LOC option.

Programs developed with Version 3.0 or later of Microsoft C do this
automatically if they have been executed up to function _main. Pro-
grams developed with Version 3.30 or later of Microsoft Pascal or
Microsoft FORTRAN also release memory if they have been executed
up to the first procedure. SYMDEB, when loaded by itself, also frees
memory. However, programs developed with MASM or an incom-
patible compiler must contain code to adjust memory if the Shell
Escape command is to be used.

SYMDEB will print the message Not enough memory if memory
has not been released.

The SYMDEB statement connector (;) cannot be used after the Shell
Escape command, since all text encountered after the command is passed to
COMMAND.COM will be interpreted as an MS-DOS command line.
SYMDEB uses the COMSPEC environment variable to locate a copy of
COMMAND.COM.

Examples
-1dir b:*.asm

In the first example, the MS-DOS internal command dir is executed, its
output is shown on the screen, and control is returned to SYMDEB.

-!chkdsk b:
In the second example, the MS-DOS external command chkdsk is exe-
cuted, the status of the disk in Drive B is displayed, and control is returned

to SYMDEB. The file name specified could be for any executable file, not
just for MS-DOS external programs.

151

Microsoft Macro Assembler User’s Guide
4.6.27 Source Line Command

Syntax

A single period (.) displays the current source code line. This command
works regardless of the current source mode. The command has ne effect if
you are debugging a program created with MASM or an incompatible com-
piler.

Example

for (i = O; i <= SIZE; i++):

The example above shows the current source line of the current source file
(from a C program, in this case).

4.6.28 Stack Trace Command

Syntax
K [number]

The Stack Trace command (K) allows you to display the current stack
frame. The first line of the display shows the name of the current pro-
cedure, arguments to the procedure, and the file name and line number of
the call to the procedure. The succeeding lines (if any) trace the call. For
example, the next line displays the name of, and arguments to, the pro-
cedure that called the current procedure, and so on.

SYMDERB only displays the arguments to a procedure if it is able to deter-
mine the number of arguments. By specifying the optional number, you can
force SYMDERB to display number words of arguments. For example, if
the number of arguments to a procedure varies and SYMDEB cannot
determine the exact number of actual arguments, no arguments will be
displayed unless you give some value as the number argument.

1562

SYMDEB: A Symbolic Debug Utility

Note

The Stack Trace command only works on procedures that follow the
calling conventions used by Microsoft high-level languages. If a pro-
gram proeduced with MASM does not follow these conventions, the
command will be ignored. An example of a procedure call that follows
these conventions is shown in Section 3.10 of the Microsoft Macro
Assembler Reference Manual. The procedure shown in Section 5.2.9 of
the same manual does not follow the conventions and would not work
with the Stack Trace command.

Example

-K

IGROUP:_fact (0003) from .fact.c:12
IGROUP: _fact (0004) from .fact.c:12
IGROUP:_fact (O005) from .fact.c:12
IGROUP:_fact (0006) from .fact.c:3
IGROUP: _main (?)

In the example above, the first line of output indicates that the current pro-
cedure _fact (actually a function, since the example is in C), has one argu-
ment with a current value of 3. The procedure was called from line 12 of
source file fact.c. The other output lines indicate that _fact is recur-
sive and has called itself three times. The procedure was originally called
from line 3 of the source file.

The procedure _main was also called, but SYMDEB could not determine
how many arguments it had. You can force SYMDEB to give you the
value for the first argument of _main, as shown below:

-K 1

IGROUP:_fact (0003) from .fact.c:12
IGROUP: _fact (0004) from .fact.c:12
IGROUP: _fact (0005) from .fact.c:12
IGROUP:_fact (0006) from .fact.c:3
IGROUP: _main (0001)

The last output line now indicates that the first argument of _main has a
value of 1. This information may not always be relevant, depending on
nature of the code being examined.

153

Microsoft Maecro Assembler User’s Guide
4.6.29 Symbol Set Command

Syntax

Z symbol value

The Symbol Set command (Z) sets the address of the specified symbol to
the specified value.

Note

One specific situation in which you must set a symbol to a specific value
is with old versions of FORTRAN and Pascal (Microsoft versions prior
to 3.3 or IBM versions prior to 2.0). After starting SYMDEB and going
to the first procedure of the program, use the Symbol Set command to
set the address of DGROUP to the current value of the DS register.
This enables you to access symbolic variable names within DGROUP.
The correct address is set automatically with later versions of FOR-
TRAN and Pascal.

Examples

-Z close 4C

The first example sets the address of the symbol close to the value 4Ch.

SYMDEB fortprog.sym fortprog.exe
-G main
-Z DGROUP DS

The second example starts SYMDEB with an early-version FORTRAN
program, goes to the first procedure (main), and sets the value of the vari-
able DGROUP to the current value of the DS register. You could do the
same with early versions of Pascal, except. that the first procedure would be
the procedure having the program name. After this sequence of commands,
synlllbols in DGROUP will have the correct addresses and can be accessed nor-
mally.

164

SYMDEB: A Symbolic Debug Utility

4.6.30 Trace Command

Syntax
T [=startaddress] [count]

The Trace command (T) executes the instruction at startaddress, then
displays the current values of all registers and flags. The display has the
same format as the Register command (R).

If the optional startaddress is specified, the command starts execution at
the specified address. Otherwise, it starts execution at the instruction
pointed to by the current CS and IP registers. The equal sign (=) indi-
cates a startaddress. If a number is specified without an equal sign, SYM-
DEB assumes the number is a count.

If the optional count is specified, the command continues to execute count
number of instructions before stopping. The command displays the current
values of the registers and flags for each instruction before executing the
next instruction.

Use the Trace command if you want to trace through calls and interrupts.
If you want to execute interrupts or calls without tracing through them,
you should use the PTrace command (P) instead. Both commands execute
DOS function calls (interrupt 21h) without tracing through them.

In source-only mode (S+), the Trace command operates directly on source
lines. In this mode, the Trace command executes function or procedure
calls while the PTrace command steps over them. This applies only to pro-
grams developed with high-level languages. Tracing through source lines
works better if you turn off optimization when you compile the program
(see Section 4.2.2).

Notes

The Trace command uses the hardware trace mode of the 8086, 8088,
80186, or 80286 microprocessor. Consequently, you may also trace
instructions stored in ROM (read-only memory).

155

Microsoft Macro Assembler User’s Guide

Examples

-T 2

AX=0924 BX=0000 CX=0900 DX=0017 SP=0100 BP=0000 SI=0000 DI=0000
DS=39E7 ES=39CC SS=3A6C (S=39DC IP=000F NV UP EI NG NZ AC PE CY
39DC:000F B4OA MOV AH,OA

AX=0A24 BX=0000 CX=0900 DX=0017 SP=0100 BP=0000 SI=0000 DI=0000
DS=39E7 ES=39CC $SS8=3A6C (S=39DC IP=0011 NV UP EI NG NZ AC PE CY
39DC:0011 CD21 INT 21 ;Buffered Keyboard Input

The first example executes the next two executable source lines, and
displays them.

-T _open

AX=0A24 BX=0000 CX=0900 DX=0019 SP=0100 BP=0000 SI=0000 DI=0000
DS=39E7 ES=39CC 8S=3A6C (CS=39DC IP=0025 NV UP EI NG NZ AC PE CY
39DC:0025 32C0 XOR AL,AL

The second example executes the instruction at _open, then displays the
current values of the registers and flags. It also displays the next instruc-
tion to be executed. If you are in source-only mode (S+), this example exe-
cutes the instruction at _open, then displays the next source line.

-T

AX=0A00 BX=0000 CX=0900 DX=0019 §SP=01CO BP=0000 SI=0000 DI=0000
DS=39E7 ES=39CC SS=3A6C (S=39DC IP=0027 NV UP EI PL ZR NA PE NC
39DC:0027 B43D MoV AH, 3D ;=

The third example executes the instruction pointed to by the current CS
and IP register values.

- -T =013
AX=0A00 BX=0000 CX=0900 DX=0019 SP=0100 BP=0000 SI=0019 DI=0000
DS=39E7 ES=39CC SS=3A6C CS=39DC IP=0015 NV UP ET PL ZR NA PE NC
39DC:0015 8AS5COL MOV BL, [SI+01] DS :001A=00

The fourth example executes the instruction at 013h in the current CS seg-
ment.

_S+

-T 7

3: printf ("%dO, fact (6)) :

7 int 1i:

9: if (L= 1)

12: return(i * fact(i-1)):
7: int i;

9: if (1 == 1)

12: return(i * fact(i-1)):

156

SYMDEB: A Symbolic Debug Utility

The final example sets the source-line mode to source only and traces
through seven source lines. In source-only mode, no registers are shown,
only source lines.

4.6.31 Unassemble Command

Syntax
U [range]

The Unassemble command (U) displays the instructions and /or statements
of the program being debugged. The format of the display depends on the
current display mode set by the Set Source Mode command (S), and on
whether the program was developed with a high-level language. The
different display modes all work as if the source-mode setting was S- when
you debug programs developed with MASM or an incompatible compiler.

When you use the either the S+ or S& mode on programs with a compati-
ble compiler, SYMDEB displays source lines mixed with disassembled
instructions. One source line is shown for each corresponding group of
assembly-language statements. Source lines are read from the source file.
Assembly-language statements are translated from memory bytes. The S+
and S& modes work the same with the Unassemble command (they are
different for the Trace command (T) and the PTrace command (P).

For both source and mixed modes, SYMDEDB requires that a symbol map
be loaded with the program and that line-number information for the
source file be in the map. If no line-number information exists for a
specified portion of a program, SYMDEB will not display source text.

If the optional range is specified, the command displays instructions gen-
erated from code within the specified range. If no range is specified, the
command displays the instructions generated from the first eight lines of
code at the current unassemble address. The current unassemble address is
the address of the first byte (line) after the last byte (line) displayed by the
previous Unassemble command.

SYMDEB displays both the hexadecimal and ASCII value of 8-bit immedi-
ate operands. The hexadecimal value is shown as part of the instruction;
the ASCII value is shown as a comment (following a semicolon) on the same
display line.

80286 protected-mode mnemonics cannot be displayed.

167

Microsoft Macro Assembler User’s Guide

Examples

- S+

-U .19

19: i=1;

2492:00CC B81300 MOV AX,0013

2492:00CF 50 PUSH AX

2492:00D0 9A82001126 CALL DEBEQQ_CODE : LNTEQQ
2492:00D5 C7066A000100 MOV Word Ptr [OO6A],0001
20: notprime := false;

2492:00DB B81400 MOV AX,0014

2492:00DE 50 PUSH AX

The first example displays line 19 in the source code, followed by the
disassembled instruction code for the statement at line 19 and part of the
instructions for line 20. The source code in this example is in Pascal.

-S&

-U .18 L 10

18: 103 CONTINUE

294E:007C A1B200 MOV AX, [00OB2]
294E:007F 40 INC AX
294E:0080 A3B200 MOV [0O0B2],AX
294E:0083 3DOAOO CMP AX,O00A
294E:0086 7EAS JLE MAIN+2C (002D)
19: CALL BUBBLE (R, 10)

294E:0088 B86000 MOV~ AX,0060
294E:008B 1E PUSH DS

294E:008C 50 PUSH AX
294E:008D B88COB MOV AX,OBSC
294E:0090 1E PUSH DS
294E:0091 50 PUSH AX

294E:0092 9A35014E29 CALL MAIN_:BUBBLE
20: WRITE (*,002)

294E:0097 33CO XOR AX,AX

The second example displays 10 lines of disassembled instruction code and
program-source lines beginning at the address line 18. The source code is in
FORTRAN in this example.

-U CS:02AD

4:{

IGROUP:_main:

1156:02AD 55 PUSH BP

1156 :02AE 8BEC MOV BP, SP

1156:02BC B80200 MOV AX, 0002

1156:02B3 E893FF CALL chkstk

7: for (i='a'; i<'z'; i++)

1156:02B6 C746FE6100 MOV Word Ptr [BP-02],0061

158

SYMDEB: A Symbolic Debug Utility

The third example displays eight lines of disassembled instruction code and
program source code beginning at CS:02AD. Eight lines is the default if
no range is specified. The source code is in C in this example.

-U conv_hex
CODE : CONV_HEX:

29D2:0071 B104 MOV CL,04
29D2:0073 B504 MOV CH,04

CODE : ROTATE :

29D2:0075 D3C3 ROL BX,CL

29D2:0077 8AD3 MOV DL,BL

29D2:0079 8OE20F AND DL,OF

29D2:007C 80C230 ADD DL, 30 ;0!
-U

29D2:007F 8OFA3A CMP DL,3A P
29D2:0082 7CO3 JL ROTATE+12 (0087)

29D2:0084 80C207 ADD DL,O7

29D2:0087 B402 MOV AH,02

29D2:0089 CD21 INT 21

29D2:008B FECD DEC CH

29D2:008D 75E6 JNZ ROTATE

CODE : QUIT:

The fourth example shows the effect of the Unassemble command when
SYMDERB is used on a sample program produced by MASM. The com-
mand disassembles eight lines of code beginning at the symbolic address
conv_hex, then unassembles the next eight lines. No source-mode com-
mand is entered since the display will be the same regardless of the current
mode.

S
-U _main L OA
IGROUP: _main:

1156:02AD 55 PUSH BP

1156 :02AE 8BEC MoV BP, SP

1156 :02BO B80200 MoV AX,0002

1156 :02B3 E893FF CALL chkstk

1156:02B6 C746FE6100 MoV Word Ptr [BP-02],0061
1156 :02BB FFOEECOS5 DEC Word Ptr [O5EC]
1156:02BF 833EECOS500 CMP Word Ptr [O5EC], +00
1156:02C4 7C1l1 JL _main+2A (02D7)
1156:02C6 8A46FE MOV AL, [BP-02]

1156:02C9 8B1EEAOS MOV BX, [O5EA]

1569

Microsoft Macro Assembler User’s Guide

The final example displays 10 (0Ah) lines of disassembled code starting at
the address _main. The program in this example is written in C, but since
no source lines are shown, the format of the symbols is the only indication
of the source.

4.6.32 View Con_nnand

Syntax
V address

The View command (VB displays source lines beginning at the specified
address. The symbol file must contain line-number information for source
lines to be displayed. This means that the View command has no effect on
programs developed with MASM or an incompatible compiler.

With compatible compilers, this command always shows source lines,
regardless of the current source mode (S—, S&, or S+).

Example

-V _func

4:{

5: int i;

6:

7: for (i='a'; i<'z'; i++t)
8: putchar (1) ;

9: for (i='A'; i<'z'; i++)
10: putchar (i) :

11: for (i='0'; 1<'9'; i++)

The example above displays eight source lines beginning at the address
specified by _ func. The example shows C code, but FORTRAN or Pascal
code would be displayed in the same way.

160

SYMDERB: A Symbolic Debug Utility
4.6.33 Write Command

Syntax
W [address [drive record count]]

The Write command (W) writes the contents of a specified memory loca-
tion to a named file, or to a specified logical record on disk.

To write to a file, the file name must be previously set with a Name com-
mand (N), and the BX:CX register pair must be set to the number of bytes
to be written. If no address is specified, the command copies bytes starting
from the address CS:100, where CS is the current value of the CS register.
If address is specified, the command copies bytes starting at that address.

To write to a logical record on disk, the address, drive, record, and count
must be specified. The drive must name the drive to be written to. It can
be any number in the range 0 to 3, representing Drive A (0), B (1), C (2), or
D (3). The record specifies the first logical record to receive the data. It
can be any 1- to 4-digit hexadecimal number. The count specifies the
number of records to be written to the disk. It can be any 1- to 4-digit hex-
adecimal number.

Warning

Do not write data to an absolute disk sector unless you are sure the sec-
tor is free. Writing to reserved or occupied sectors can destroy the con-
tents of a file or even the entire disk.

If the file you are debugging is a .COM or .BIN file, you can make changes

to the program with SYMDEDB and then write the program to a file.

When you load the file, the file length, starting address, and file name will

be set correctly for writing. However, if you use the Go (G), Ptrace (P), or

Trace (T) commands during debugging, or if you change the BX:CX regis-

(tfrkvalues, you must reset each of these conditions before writing the file to
isk.

You cannot use the Write command to write .EXE or .HEX files to disk.
However, it is possible to modify these files with SYMDEB. The steps are

161

Microsoft Macro Assembler User’s Guide

outlined below. This is an advanced technique that may require some
experimentation.

1. Start SYMDEB with the executable file and note the hexadecimal
values of the first few instructions of the program.

2. Quit SYMDEB and rename the file so that its extension is not .EXE
or HEX. For example, change file.exe to file.e.

3. Start SYMDEB with the renamed executable file. SYMDEB will not
strip off the MS-DOS file header as it normally does with .EXE and
.HEX files. Therefore, the first instructions will be an attempt by
SYMDEB to make sense of the data in the file header. They will not
be the initial instructions of the program. (Don’t load symbol files,
since all symbolic data will be incorrect.)

4. Use the Search command (S) and the value of the first instructions to
find the start of the program. This may take some trial and error. The
starting address will vary, depending on the order of segments and
other factors.

5. Once you have found the start of the program, you can find the instruc-
tions that need to be modified and make the appropriate changes.

6. Set the parameters for the Write command and write the whole file,
including the file header, to disk. Make sure you include the file header
in the program length entered to the BX:CX register pair.

7. Quit SYMDEB and rename the file back to its original name.

Examples

-N b:bell.com
-R BX 00

~-R CX OA

-W 100

The first example writes 10 (OAh) bytes to the file named bell.comon
Drive B. The bytes to be written start at address 100. The program
bell.com is shown in section 4.6.1.

-W workspace 2 34 3

The example above writes three logical records to Drive C, starting at
record number 34h. The bytes to be written start at the address

workspace.

162

SYMDEB: A Symbolic Debug Utility

4.7 Sample SYMDEB Session

This sample session gives examples of commonly used SYMDEB com-
mands. The assembly-language program used in the session is called
count.exe. It prompts for a file name, opens the specified file, counts the
words in the file, and prints the total on the screen. The source code for
the program is shown on the next few pages. In order to keep the code as
short as possible, the program has minimal error checking and prints the
total in hexadecimal. This source file is included on your distribution disk.

Note the following points about the source file:

e The first line, after the macros, in the source file declares public
each of the variable names used to store program data.

o The next two lines declare public some of the labels used in the pro-
gram code. Only labels at key points that might be accessed by
SYMDERB are declared.

o Several labels declared in the code are not used by any statement in
the code. For example, get_file, open_file, and conv_hex
are not used by any jump or loop instructions. They are placed at
important points in the code so that SYMDEDB can access those
addresses by name.

When developing your own programs, you may want to temporarily
place symbols at problem areas. Declare these labels public for test-
ing, and then remove them when the program is debugged.

o All numbers in the source code are specified in hexadecimal. This
makes it easier to compare the code to SYMDEB displays, which
always show hexadecimal numbers.

o The source code contains a bug that will be identified and corrected
during the sample session.

dosint MACRO function ;; Call the DOS interrupt
mov ah, function ;; Put function number in AH
int 21h
ENDM
error MACRO errnum ;; Display error and exit
mov dx,OFFSET err&errnum;; Load address of error message
dosint OSh ;. Display string function
mov al,errnum ;3 Exit with return code of errnum
dosint 4Ch ;0 Quit
ENDM
PUBLIC prompt,namebuf, fname,buffer,errl,err2, count,new_flag
PUBLIC get_file,open_file,ok,buff _read, done, conv_hex, rotate
PUBLIC quit,word_c,next_char,new_word, old_word, cut_word, get_out

163

Microsoft Macro Assembler User’s Guide

stack
stack

data
prompt
namebu f
fname
buf fer
errl
err2
count
new_flag
data

code

start:

get_file:

open_file:

access:
ok:

io_loop:

buff read:

lo_err:

done:

conv_hex:

rotate:

show:

164

SEGMENT word stack

DB
ENDS

SEGMENT word public 'DATA'

DB
DB
DB
DB
DB
DB
DW
DB
ENDS

SEGMENT byte public 'CODE'

ASSUME

mov
mov

mov
dosint
mov
dosint
mov
mov
mov

mov
dosint

mov
xor
dosint
jnc
error

mov
mov
mov
dosint
jc

cmp

je
call
jmp
error

dosint

mov
mov
mov
rol
mov
and
add
cmp

jl

add
dosint
dec

100h DUP (?)

'Enter file name:
15h,?

15h DUP (?)

800h DUP (?)

'STACK'

.
‘.

.

Maximum length of file name
is 15h (21d)
Buffer size is 800h (2048d)

'Can''t access file',ODh,OAh,'s'
'1/0 error',ODh,OAh, 's'

o]
1

cs:code,ds:data

ax,data
ds, ax

dx,OFFSET prompt
0OSh

dx,OFFSET namebuf
OAh

si,dx

bl,BYTE PTR [si+1]

BYTE PTR [si+bx+2],0

dl,0Ah
O2h

dx,QOFFSET fname
al,al

3Dh

ok

1

bx, ax

dx,OFFSET buffer
cx,800h

3Fh

io_err

ax,0

done

word_c

SHORT io_loop

2

3Eh

bx, count
cl,4
ch,4
bx,cl
dl,bl
dl,OFh
dl, 30h
dh, 3Ah
show
dl,07h
O2h

ch

.

Initialize word count to O
Initialize new word to true (1)

Load data segment address

Load address of prompt string

Display it

Load address for file name buffer

Get file name string

Set SI to start of file name buffer

Put the number of bytes read in BL

Put O at end to make ASCIIZ string
(O overrides CR from prompt)

Load linefeed character

Print it

Load offset of ASCIIZ string

Set code O - open for reading

Try to open the file

If opened, then process file
else error macro

Move file handle to BX

Give address to dump file contents

Set buffer size

Read a buffer of data from file

If there's a read error, then quit
else see if we read anything

If not, we're done
else count what we read

Do it again

Error macro

Close (file handle already in BX)

Put count in BX for processing

Load number of bits to rotate

Lead count for digits

Rotate left digit to right

Move to DL for processing

Mask off left digit

Convert to ASCII digit

Is it greater than 9?7

If not, display character
else convert hex letter

Display character function

Decrement the digit count

quit:

word_c

next_char:

new_word:
old_word:

out_word:

get_out:

word_c

code

jnz

xor
dosint

PROC
push
mov
mov
mov
mov

inc
mov
cmp
jle
cmp
je

jmp

inc
xor
loop
Jmp
mov
loop

add
mov
pop
ret
ENDP

ENDS
END

rotate

al,al
4Ch

NEAR

bx

si,OFFSET buffer-1
bx,0

cx,ax

ah,new_flag

si

al, {si]
al, 20h
out_word
ah, 1
new_word
old_word

bx

ah, ah
next_char
get_out
ah,1
next_char

count, bx

new_flag, ah
bx

start

SYMDERB: A Symbolic Debug Utility

If count isn't zero, do it again

else set O for return code
Return to DOS function

Procedure to count words in buffer
Save BX - it has file handle

Load address one byte before buffer
Set BX to O for word count

Put number of characters read in CX
Set new word flag (AH)

Bump index (adjust on first pass)

Get next character

Compare to space

If less, we're not in a word
else is new word flag TRUE?

If flag is TRUE, it's a new word
else it's an old word

Bump word count

Set new word flag to FALSE (O)
Get next character

Fall through at end of buffer
Set new word flag to true (1)
Get next character

Add buffer count to variable
Save current flag status
Restore file handle

4.7.1 Assembling and Loading

The steps for assembling and loading count . exe are shown below. The
example assumes that all files are on the same drive.

1. Assemble the program. You may want to print a listing file for

comparison, as shown below:

MASM count, ,:
2. Link the object file using the /MAP option:
LINK count,, /MAP:

3. Create a symbol file:
MAPSYM count

4. Start SYMDEB with the symbol file, the executable file, and any
options you wish to use:

SYMDEB /S/K/"R;X?*" count.sym count.exe

165

Microsoft Macro Assembler User’s Guide

In the example, the /S option is used so that the program screen will be
separate from the S EB screen. The /K option is used so that we can
escape if we accidentally get into an endless loop. The start-up command
option is used to start with a register display and a list of symbols.

The example assumes you have an IBM Personal Computer. If you have an

IBM-compatible computer, you should add the /I option so that the /S and

KK options will be functional. If your computer is not an IBM or compati-
ble, you can leave out the /S and /K options, since they will have no cffect.

4.7.2 FExamining a Program with SYMDEB

In the following session, hexadecimal numbers are used except where noted.
When you start SYMDEB with the command line shown in the previous
section, the following display appears:

Microsoft Symbolic Debug Utility

Version 4.00

(C)Copyright Microsoft Corp 1984, 1985

Processor is [8086]

AX=0000 BX=0000 CX=0A09 DX=0000 SP=0100 BP=0000 SI=0000 DI=0000
DS=292A ES=292A SS=293A (CS=29CE IP=000C NV UP EI PL NZ NA PO NC

29CE :000C B84A29 MOV AX,DATA
CODE: (29CE)

0018 GET_FILE OO2E OPEN_FILE 0046 OK 0052 BUEF_READ 006B DONE

0073 CONV_HEX 0077 ROTATE 0091 QUIT 0097 WORD_C ~ OOA4 NEXT_CHAR
OOB3 NEW_WORD OOB& OLD_WORD OOBB OUT_WORD OOBE GET_OUT

DATA: (294A)

0000 PROMPT

0012 NAMEBUF 0014 FNAME 0029 BUFFER 0829 ERR1 083D ERR2

0849 COUNT 084B NEW_FLAG

The first lines after the start-up message show the register status. These
lines are produced with the first command (R) specified with the start-up
command option. Notice that the stack pointer (SP register) is at 100h,
the number of bytes assigned to the stack.

The second command (X?*) specified with the start-up command option
displays all the symbols loaded from the symbol file.

The first few instructions load the segment and display a prompt. We’ll

skip them and start by going directly to the instructions that get a file
name for processing:

166

SYMDEB: A Symbolic Debug Utility

-G get_file

AX=0924 BX=0000 CX=0A09 DX=0000 SP=0100 BP=0000C SI=0000 DI=0000
DS=294A ES=292A SS=293A CS=29CE I1P=0018 NV UP EI PL NZ NA PO NC
CODE:GET_FILE:

29CE : 0018 BA1200 MOV DX, 0012

According to the symbol display shown when SYMDEB was started, the
symbol get_file is at address 18h. The register display confirms that
after going to get_file, the instruction pointer (IP) is at address 18h.

Note

If you did not start SYMDEB with the /S option, the prompt Enter
file name: will appear at this point. This session includes informa-
tion about the double-screen display available with IBM and compatible
computers. If your computer doesn’t have this capability, all the
prompts and displays described for the program screen will actually
appear on the SYMDEB screen.

Now take a look at the next few instructions using the Unassemble com-

mand (U):

-u
29CE:001B B4OA MOV AH,OA

29CE:001D CD21 INT 21

29CE:001F S8BF2 MoV SI,DX

29CE:0021 8A5CO1 MoV BL, [SI+01]

29CE:0024 C6400200 MoV Byte Ptr [BX+SI+02],00
29CE :0028 B20A MOV DL,OA

29CE :002A B402 MOV AH,02

29CE :002C CD21 INT 21

Notice that an Unassemble command with no argument starts at the next
instruction after the current address (1Bh, in this case{s Step through the
next few instructions with the Trace (T) and PTrace (P) commands:

-T

AX=0924 BX=0000 CX=0A09 DX=0012 SP=0100 BP=0000 SI=0000 DI=0000
DS=294A ES=292A SS=293A CS=29CE IP=001B NV UP EI PL NZ NA PO NC
29CE :001B B40OA MOV AH, OA

-T

AX=0A24 BX=0000 CX=0A09 DX=0012 SP=0100 BP=0000 SI=0000 DI=0000
DS=294A ES=292A SS=293A CS=29CE 1IP=001D NV UP EI PL NZ NA PO NC
29CE : 001D CD21 INT 21 ;Buffered Keyboard Input

167

Microsoft Macro Assembler User’s Guide

-P

AX=0A00 BX=0000 CX=0A09 DX=0012 SP=0100 BP=0000 SI=0000 DI=0000
DS=294A ES=292A SS=293A (CS=29CE IP=00lF NV UP EI PL NZ NA PO NC
29CE:001F 8BF2 MOV SI,DX

Notice how the registers change with each instruction. The PTrace instruc-
tion is not strictly necessary for skipping over interrupt 21h, but it is a
good idea to get in the habit of using it, since SYMDEDB will trace through
any interrupt except 21h. Tracing interrupts is sometimes useful, but usu-
ally you will want to execute them.

After you execute MS-DOS function 0Ah, SYMDEB waits for you to enter
a file name. If you started SYMDEB with the /S option, the program
screen will temporarily replace the SYMDEDB screen at this point. In this
session, count.exe is used to count the words in count.asm. Enter
count.asm at the file-name prompt.

The results can be examined with the Dump command (D):

-D namebuf fname-1

294A:0010 15 09

-D fname buffer-1

294A:0010 63 6F 75 6E-74 2E 61 73 6D OD OO 00O count.asm. ..
294A:0020 00 OO0 OO OO OO OO OO OO-O0O .

The dump is in the Dump Bytes (DB) format (the default when you start
SYMDEB). The first byte of namebuf contains the maximum number of
bytes available for the file name as set in the source code (15h). The second
byte contains the actual number of characters entered (09h). The dump of
fname confirms that the variable is indeed 15h bytes long and that 09h
ASCII bytes and a carriage return (0Dh) were entered. You can check the
Microsoft MS-DOS Programmer’s Reference Manual or some other MS-DOS
reference book to confirm that this is the proper format for strings entered
with MS-DOS function 0Ah.

The next few instructions change fname to the ASCIIZ format (a String
terminated by a null) used by the file functions of MS-DOS Version 2.0 and
later:

-T

AX=0A00 BX=0000 CX=0A09 DX=0012 8SP=0100 BP=0000 8I=0012 DI=0000
DS=294A ES=292A SS=293A C(S=29CE IP=0021 NV UP EI PL NZ NA PO NC
29CE:0021 8AS5CO1 MoV BL, [SI+01] DS:0013=09

168

SYMDEB: A Symbolic Debug Utility

-T

AX=0A00 BX=0009 CX=0A09 DX=0012 SP=0100 BP=0000 SI=0012 DI=0000
DS=294A ES=292A SS5=293A C(S=29CE IP=0024 NV UP EI PL NZ NA PO NC
29CE : 0024 €6400200 MoV Byte Ptr [BX+SI+02],00 DS :001D=0D
-T

AX=OA00 BX=0009 CX=0A09 DX=0012 SP=0100 BP=0000 SI=0012 DI=0000
DS=294A ES=292A SS=293A CS=29CE IP=0028 NV UP EI PL NZ NA PO NC

29CE :0028 B20A MOV DL, OA

Notice how memory locations in operands are expanded on the far right of
the screen. For example, the operand [BX+SI+02] evaluates to

DS :001D=0D, which means that memory offset 1Dh (09+12+02) of the
data segment contains ODh (line feed). The instruction

MoV Byte Ptr [BX+SI+02],00

replaces the line feed with a zero as illustrated by the dump below. Com-
pare the tenth byte of this dump with the same byte in the earlier dump of
fname.

-D fname buffer-1
294A:0010 63 6F 75 6E-74 2E 61 73 6D 00 0O 0O count.asm. ..
294A:0020 00 OO0 OO0 OO OO OO OO OCO-OCO oo

If you started SYMDEB with the /S option, you can enter a backslash (\)
to see the current status of the program screen. If you do this, notice that
the cursor is at the start of the first line. This is because a carriage return
was provided without a line feed. The next two instructions solve this
problem by printing a line feed.

Now execute the next few instructions and examine the status of the regis-
ters after opening a file and reading a buffer full of data:

-G buff_read

AX=0800 BX=0005 CX=0800 DX=0029 SP=0100 BP=0000 SI=0012 DI=0000
DS=294A ES=292A SS=293A C(S=29CE IP=0052 NV UP EI PL ZR NA PE NC
CODE : BUFF_READ:

29CE:0052 720A JB BUFF_READ+OC (QOS5E)

At this point CX still contains the size of the file input buffer, BX contains
the file handle (05h, in the example), and DX contains the offset of the
input buffer. Interrupt 3Fh has just been used to read the first 800h ([2048
decimal) bytes of text from the file to the buffer. The following ASCI
dump shows the contents of the buffer:

-DA buffer L 100

294A:0029 dosint MACRO function ;, Call t
294A:0059 he DOS interrupt .. mov ah, functio
294A:0089 n ;2 Put function number in AH ..

169

Microsoft Macro Assembler User’s Guide

294A:07A9 1i+1] ; Put the number of bytes read in BL..
294A:07D9 mov BYTE PTR [si+bx+2],0; Put O at en
294A:0809 d to make ASCIIZ string ..

When you enter the DA command, several screens full of data scroll past.
Notice the double dots scattered throughout the text. These are carriage-
return/line-feed combinations, as you can confirm if you dump bytes
instead of ASCII characters. If you typed the source code yourself, you may
see dots representing tab characters instead of series of spaces (depending
on how your editor handles tabs).

Next, set some breakpoints to examine different parts of the program:

-BP next_char "DA ds:si+l1 L 1;R"
~-BP new_word
-BP buff_read "DW count count+1;R"

These breakpoints are chosen because they represent three levels within the
program. Two of them have quoted commands that will be executed each
time the breakpoint is reached. To execute to the first break, enter the Go
command (G):

-G

294A:0029 d

AX=0100 BX=0000 CX=0800C DX=0029 SP=COFC BP=0000 SI=0028 DI=0000
DS=294A ES=292A 8SS=293A C(S=29CE IP=00A4 NV UP EI PL NZ NA PE NC
CODE :NEXT_CHAR :

29CE :00A4 46 INC ST ;BRO

The program stops each time it reads in a new character. The quoted com-
mand DA ds:si+1 L 1 displays the character that is about to be read
and the quoted command R displays the registers. Enter the Go command
again. This takes you to the second breakpoint:

-G

AX=0164 BX=0000 CX=0800 DX=0029 §SP=00FC BP=0000 SI=0029 DI=0000
DS=294A [ES=292A SS=293A (CS=29CE IP=00B3 NV UP EI PL ZR NA PE NC
CODE :NEW_WORD:

29CE:00B3 43 INC BX ;BR1

If you enter the Go command several times, you will stop at the first break-
point for each new character and at the second breakpoint every time you
start a new word. Notice how BX, which contains the word count, is

170

SYMDEB: A Symbolic Debug Utility

incremented every time you reach the second breakpoint (BR1). Reading
in every character is a slow process. You can speed things up by disabling
the first breakpoint (BRO):

-BD O

Now when you enter the Go command a few times, you move through the
buffer faster, stopping only when you reach a new word. You can speed
things up more by disabling the second breakpoint. The example display
also shows a breakpoint list:

-BD 1

-BL

O d 29CE:00A4 [CODE:NEXT_CHAR] "DA DS:SI+1 L 1;R"

1 d 29CE:COB3 [CODE:NEW_WORD]

2 e 29CE:0052 [CODE:BUFF_READ] "DW COUNT COUNT+1;R"

-G

294A:0849 OCEl

AX=0800 BX=0005 CX=0800 DX=0029 B8SP=0100 BP=0000 8SI=0828 DI=0000
DS=294A ES=292A 8S=293A C(S=29CE IP=0052 NV UP EI PL NZ NA PE NC
CODE : BUFE_READ:

29CE:0052 720A JB BUFE_READ+OC (OOSE) ;BR2

From the breakpoint list, you can see that breakpoints 0 and 1 are still in
memory. You can turn them back on with the Breakpoint Enable com-
mand (BE) any time you want.

When you enter the Go command, execution now stops after reading a
whole buffer. The quoted command DW count count+1 shows the vari-
able where the current word total is stored. The word count is E1h (225
decimal) after reading the first buffer.

The sample file contains only a few buffers of text, so after you enter the Go
command several times, the program will terminate without finding the
breakpoint. You will see the following message:

-G

Program terminated normally (O)

When the program terminates, use the Quit command (Q) to return to
DOS. If you started SYMDEB with the /S option, the program screen
should look like this:

Enter file name: count.asm
02,8

171

Microsoft Macro Assembler User’s Guide

The total shown (02; 8) is not a valid hexadecimal number. (If you typed
count . asm yourself with different comments or spacing, you might not see
this problem, but it will become obvious if you try counting the words in
other text files.) The bug is probably in the routine that converts binary
numbers to hexadecimal. To find and correct it, restart SYMDEB. (Don’t
try to run the program without quitting SYMDEB and restarting.) Then
enter the following command:

-G conv_hex
AX=0004 BX-02B8
DS=294A ES=292A
CODE : CONV_HEX:
29CE: 0073 B104

CX=0800 DX=0029 8SP=0100 BP=0000 8I=0775 DI=0000

SS=293A (CS=29CE

MOV CL

IP=0073

,04

NV UP EI PL ZR NA PE NC

This shows the status of the registers the first time through the conversion
loop. Notice that BX contains the total word count taken from the vari-
able count. This is the number we want to print. To examine processing
of the digit that prints incorrectly, set a breakpoint with a passcount of

three:

-BP rotate 3

-G

AX=0232 BX=B802
DS=294A ES=292A
CODE :ROTATE :
29CE:0077 D3C3

CX=0204 DX=0032 SP=0100 BP=0000 8I=0775 DI=0000

SS=293A CS=29CE

ROL BX

IP=0077

,CL

NV UP EI PL NZ NA PO CY

;BRO

Notice that the register containing the loop count (CH) contains 2. The
loop has already been executed twice and this is the third pass. Trace
through the next four instructions:

-T 4

AX=0232 BX=802B
DS=294A ES=292A
29CE:0079 8AD3
AX=0232 BX=802B
DS=294A ES=292A
29CE:007B 8OE20F
AX=0232 BX=802B
DS=294A ES=292A
29CE:007E 80C230
AX=0232 BX=802B
D3=294A ES=292A
29CE: 0081 8OFE3A

CX=0204 DX=0032
88=293A CS8=29CE
MOV DL
CX=0204 DX=002B
S8=293A CS=29CE
AND DL
CX=0204 DX=000B
SS=293A (8=29CE
ADD DL
CX=0204 DX=003B
SS=293A (CS=29CE
CMP DH

SP=0100
IP=0079
,BL
SP=0100
IP=007B
,OF
SP=0100
IP=007E
.30
SP=0100
IP=0081
,3A

BP=0000 SI=0775 DI=0000
NV UP EI PL NZ NA PO CY

BP=0000 SI=0775 DI=0000
NV UP EI PL NZ NA PO CY

BP=0000 SI=0775 DI=0000

NV UP EI PL NZ NA PO NC
,.lol

BP=0000 8I=0775 DI=0000

NV UP EI PL NZ NA PO NC
P

The first instructions seem all right. The number in BX is rotated and its
lower byte moved to BL. The second digit is masked off and 30h is added
to convert to an ASCII digit. But then 3Ah (the ASCII code for the

172

SYMDEB: A Symbolic Debug Utility

character one above the digit 9) is compared to DH (which contains zero).
The number we want to compare is in DL, not DH. That’s probably the
bug. Usec the Assemble command (A) to fix it:

-A
29CE:0081 cmp dl, 3A
29CE : 0084

You don’t need to supply an address since the Assemble command assumes
the current IP address if none is specified. Enter the correct instruction on
the first line, then press the RETURN key on the next line to indicate you
don’t want to assemble any more instructions. Now trace through the next
three instructions:

-T 3

AX=0232 BX=802B C(X=0204 DX=C03B SP=01C0 BP=0C000C 8SI=0775 DI=00C0O
DS=294A ES=292A S8S=293A C(S=29CE IP=0084 NV UP EI PL NZ NA PO NC

29CE:0084 7C0O3 JL ROTATE+12 (0089)

AX=0232 BX=802B CX=0204 DX=003B SP=0100 BP=0000 SI=0775 DI=0000
DS=294A EBS=292A SS8=293A C(S=29CE IP=0086 NV UP EI PL NZ NA PO NC

29CE : 0086 80C207 ADD DL, 07

AX=0232 BX=802B C(X=0204 DX=0042 §SP=0100 BP=0000 SIi=0775 DI=0000
DS=294A ES=292A SS=293A C(S=29CE IP=0089 NV UP EI PL NZ AC PE NC

29CE: 0089 B402 MOV AH, 02

The digit is now adjusted from a semicolon (ASCII 3Bh) to a C (ASCII 42h).
If the instruction hadn’t been changed, the program would have jumped
over the adjustment instruction. Use the Go command (G) twice to run the
rest of the program. It should print the word count correctly now.

You can now fix the bug in the source code and reassemble. This type of
minor bug is the kind that is often difficult to spot from reading source
code. SYMDEB lets you see what is happening inside the processor so that
you can examine operations and locate bugs easily.

173

Chapter 5

CREF:
A Cross-Reference Utility

5.1 Introduction 177
5.2 Using CREF 177
5.2.1 Creating a Cross-Reference File 177

5.2.2 Creating a Cross-Reference Listing
Using Prompts 178

5.2.3 Creating a Cross-Reference Listing
Using a Command Line 179

5.3 Cross-Reference Listing Format 180

176

CREF: A Cross-Reference Utility

5.1 Introduction

The Microsoft Cross-Reference Utility (CREF), creates a cross-reference
listing of all symbols in an assembly-language program. A cross-reference
listing is an alphabetical list of symbols in which each symbol is followed by
a series of line numbers. The line numbers indicate the lines in the source
program that contain a reference to the symbol.

CREF is intended for use as a debugging aid to speed up the search for
symbols encountered during a debugging session. The cross-reference list-
ing, together with the symbol table created by the assembler, can make
debugging and correction of a program easier.

5.2 Using CREF

CREF creates a cross-reference listing for a program by converting a non-
ASCII cross-reference file, produced by the assembler, into a readable ASCII
file. You create the cross-reference file by supplying a cross-reference file
name when you invoke the assembler. You create the cross-reference listing
by invoking CREF and supplying the name of the cross-reference file.

Sections 5.2 and 5.3 explain how to create a cross-reference file for CREF
and how to use CREF to create a cross-reference listing.

5.2.1 Creating a Cross-Reference File

You can create a cross-reference file by supplying a cross-reference file name
when you invoke MASM. MASM offers two ways to name this file: in
response to a command prompt, or on the command line with other file
names.

To create a cross-reference file using a prompt, enter MASM, then supply the
file name in response to the fourth command prompt. For example, to
create a cross-reference file test.cr £ for the program test.asm, type

MASM
Source filename [.ASM]: test
Object filename [test.OBJ]: test

Source listing [NUL.LST]: test
Cross-Reference [NUL.CRF]: test

177

Microsoft Macro Assembler User’s Guide

If you do not type a file name after the “Cross-Reference” prompt, the
assembler will not create a cross-reference file. If you do not supply an
extension, MASM uses the extension .CRF. This is the extension
expected by CREF and is recommended for all cross-reference files.

To create a cross-reference file from a command line, place the name as the
fourth parameter in the MASM command line. For example, to create a
cross-reference file (test.cr£) for the source file (test.asm), type:

MASM test, test, test, test

This command also creates object and listing files for the program while the
program is being assembled. MASM parameters must be separated by
commas. Even if you do not supply a name for a given parameter, you still
must supply a comma. See Section 2.2.1 for more information.

5.2.2 Creating a Cross-Reference Listing
Using Prompts

You can direct CREF to prompt you for file names when it starts by typ-
ing just the CREF command name. CREF displays a series of prompts
asking for the file names. To start CREF with prompts, follow these
steps:

1. From the MS-DOS prompt, type

CREF

and press the RETURN key. Once CREF starts, it displays the
prompt

Cross-Reference [.CRF]:

2. Type the name of the cross-reference file that you wish to convert to
a cross-reference listing, then press the RETURN key. You need not
supply a file-name extension if your cross-reference file already has
the extension .CRF. If your cross-reference file does not have this
extension, you must supply the correct extension at this time.

Once you supply a file name, CREF displays the following prompt:
Listing [filename.REF]:

Note that filename is the default file name for the cross-reference
listing.

178

CREF': A Cross-Reference Utility

3. Press the RETURN key if you wish to use the default name for the
cross-reference listing. Otherwise, type the file name you want and
then press the RETURN key. If you do not supply a file-name exten-
sion, CREF uses .REF.

Once you have supplied the file names, CREF reads the cross-reference file
and creates the new listing. It also displays the number of symbols in the
cross-reference file.

Example

CREF
Microsoft Cross Reference Utility Version 3.50
(C) Copyright Microsoft Corp 1981, 1983, 1984, 1985

Cross reference [.CRE]: test
Listing [test.REF]:

8 Symbols

In the example above, CREF creates reads test.crf and processes it to
produce test.ref. Eight symbols were cross-referenced.

5.2.3 Creating a Cross-Reference Listing
Using a Command Line

You can create a cross-reference listing by typing CREF followed by the
names of the files you want to process. The command line has the form:

CREF crossreferencefile [crossreferencelisting] [5]

The crossreferencefile is the name of the cross-reference file created by
MASM, and the crossreferencelisting is the name of the readable ASCII file
you wish to create.

If you do not supply file-name extensions when you name the files, CREF
will automatically provide .CRF for the cross-reference file and .REF for
the cross-reference listing. If you do not want these extensions, you must
supply your own.

You can select a default file name for the listing file by typing a semicolon
immediately after crossreferencefile. The default file name has the same file
. name as the cross-reference file, but uses the extension .REF instead of

.CRF.

179

Microsoft Macro Assembler User’s Guide

You can specify a directory or disk drive for either of the files. You can
also name output devices such as CON (display console) and PRN (printer).

Examples
CREF test.crf,test.ref

The first example uses the cross-reference file test.crf to create a cross-
reference listing test.ref. It is equivalent to

CREE test, test
or
CREF test:

The following example directs the cross-reference listing to the screen. No
file is created.

CREEF test,con

5.3 Cross-Reference Listing Format

The cross-reference listing contains the name of each symbol defined in
your program. Each name is followed by a list of line numbers representing
the line or lines in the program listing file in which a symbol is defined or
used. Line numbers in which a symbol is defined are marked with a pound

sign (#).

Each page in the listing begins with the title of the program. The title is
the name or string defined by the TITLE directive in the source file. See
Section 9.6 in the Microsoft Macro Assembler Reference Manual.

For example, assume that the following source program is in the file
test.asm:

quit MACRO ; Return to DOS
mov ah,4Ch ;:DOS exit function
int 21h
ENDM

max EQU 65535

EXTRN work :NEAR

180

stack
stack
data
buffer
data

code

start:

code

SEGMENT
DB
ENDS

SEGMENT
DW
ENDS

SEGMENT
ASSUME

mov
mov
call
quit
ENDS
END

para public 'STACK'
256 DUP (?)

public 'DATA'
100 DUP (?)

public 'CODE'
cs:code,ds:data

CREF: A Cross-Reference Utility

ax,data ; Load address

ds, ax

work ; Call procedure
; Call macro

start

To assemble the program and create a cross-reference file, type:

MASM test, test, test, test

The listing file test. 1st produced by this assembly will look like the fol-
lowing listing (the tables at the end of the listing are not shown):

Microsoft MACRO Assembler

VCOIOUNd wN R

= FFEF

0000
0C00

0100
0100

0000
0000

0064 [
oocs

0000

0000 B8 --

0003 E8 00

Version 4.00

quit

max

stack

??

stack

data

buffer
??7??

data

code

-- R start:

00 E

9/25/85 13:58:46

Page 1-1

MACRO

mov ah, 4Ch

int 21h

ENDM

EQU 65535

EXTRN work : NEAR
SEGMENT para public 'STACK'
DB 256 DUP (?)
ENDS

SEGMENT public 'DATA'
DW 100 DUP (?)
ENDS

SEGMENT public 'CODE'

ASSUME c¢s:code,ds:data
mov ax,data

mov ds, ax

call work

quit

181

Microsoft Macro Assembler User’s Guide

31 0006 B4 4C 1 mov ah, 4ch
32 0008 CD 21 1 int 21h

33 OOOA code ENDS

34 END start

To create a cross-reference listing of the file test.crf, type:

CREF test, test

The resulting cross-reference listing in the file test.ref will have the fol-

lowing format:

Microsoft Cross-Reference Version 4.00 Wed Sep 25 12:12:40 1985

Symbol Cross-Reference (# is definitlion) Cref-1
BUFFER 18 184
CODE 24 244 24 25 33
DATA 17 174 17 22 25 27
MAXo 6 6#
QUIT 30
STACK 10 104 10 15
START 27 274 34
WORK 8 84 29
8 Symbols

Compare the line numbers in the cross-reference listing to the listing file.
Don’t try to count lines in the source file, since line numbers there usually
won’t match line numbers in the listing and cross-reference listing files.

182

Chapter 6
LIB: A Library Manager

6.1 Introduction 185

6.2 Starting and Using LIB 186

6.2.1 Starting LIB with Prompts 186

6.2.2 Starting LIB with a Command Line 188
6.2.3 Starting LIB with a Response File 189
6.2.4 Setting the Library-Page Size 191

6.3 Creating a New Library 192

6.4 Checking a Library’s Consistency 193
6.5 Creating a Library-Reference Listing 194
6.6 Maintaining Libraries 195

6.6.1 Adding a Module to a Library 195
6.6.2 Deleting Library Modules 196

6.6.3 Replacing Library Modules 197

6.6.4 Copying Library Modules 198

6.6.5 Moving Library Modules 198

6.6.6 Combining Libraries 199

183

LIB: A Library Manager

6.1 Introduction

The Microsoft Library Manager (LIB) creates, organizes, and maintains
program libraries. A program library is a collection of one or more “object
modules.” Object modules are assembled or compiled instructions and data
that are ready for linking. A library stores object modules that other pro-
grams may need for execution. Libraries are used by the program linker to
include routines and variables used, but not defined, in the source code of a
program.

LIB creates a library by copying the contents of one or more object files
into a library file. An object file contains a single object module, created by
MASM or a high-level-language compiler. When LIB adds an object
module to a library, it places the module’s name in the library’s table of
contents. When LINK searches the library for the names of routines and
variables used in a program, it checks the table of contents. When it finds
the routine, it extracts a copy of the module containing that routine and
links the module to the program. Thus, only modules containing routines or
variables used by the program are extracted and linked.

LIB can perform the following four tasks with library files:

e Create a new library
e Check an existing library for consistency
e Print a library-reference listing

e Maintain libraries

The last task, maintaining libraries, is the most common. The command
symbols in Table 6.1 are used in library maintenance. They are discussed
in detail in Section 6.6.

Table 6.1
LIB Commands

Symbol Meaning
+ Add

- Delete
—+ Replace

* Copy

—% Move

1856

Microsoft Macro Assembler User’s Guide

Each of the four kinds of LIB tasks can be done with prompts, a command
line, a response file, or a combination of the three methods.

This chapter first describes in a general way the three methods of starting
and using LIB. It then describes in detail each of the four tasks you can
perform with LIB. LIB commands are discussed in connection with the
fourth task, maintaining library files.

6.2 Starting and Using LIB

You can give the names of files for LIB to work on, and the commands
specifying what you want LIB to do, in three ways: by answering a series of
prompts, by entering a command line, or by supplying a response file. You
can stop LIB at any time by pressing CONTROL-C.

6.2.1 Starting LIB with Prompts

You can let LIB prompt you for the information it needs by typing LIB at
the MS-DOS command level. Follow these steps:

1. Type
LIB
and press the RETURN key. LIB starts and displays the prompt:
Library name:

2. Type the name of the library you wish to work on. If you do not
supply a file-name extension, LIB supplies the extension .LIB. If
you wish to create a new library, type the new name and press the
RETURN key.

LIB now looks for the specified library file. If it finds the file, LIB
displays the next prompt. If it does not find the file, LIB displays
the prompt:

Library file does not exist. Create?

Type v to create the library file or type n to return to the MS-DOS
command level.

186

LIB: A Library Manager

If you want to change the default page size, you can specify the
option:

/PAGESIZE:number

after entering the library name. The number is the desired page
size. See Section 6.2.4.

Once the library is ready for work, LIB displays the prompt:
Operations:

Type the command or commands you wish to perform on the given
library and press the RETURN key. If you have more commands than
can fit on one line, type an ampersand (&) as the last character on
the line and press the RETURN key. LIB will then prompt for
further commands.

Once you have typed all commands, press the RETURN key. If you
only want LIB to check the consistency of the library, do not type
any commands—just press the RETURN key.

Once you have pressed the RETURN key, LIB displays the prompt:
List file: ’

Type the name of the new library-reference listing file and press the
RETURN key. Make sure the file name has the extension you want.
LIB will not provide a default extension. If you do not want a
library-reference listing file, do not type a name-—just press the
RETURN key.

If you did not give commands to modify the library, LIB creates the
list file and returns to DOS at this point. If you did give commands
at the “Operations” prompt, LIB displays the following prompt:

Output library:

Type the name of the output file you wish to create and press the
RETURN key. If you do not supply a file-name extension, LIB sup-
plies the extension .LIB. You can press the RETURN key without
giving a file name if you want LIB to use the name of the old
library file. In this case, LIB saves a backup copy of the current
library by replacing its .LIB extension with the extension .BAK.

LIB now carries out the commands you have requested.

You can direct LIB to select the default responses to all remaining prompts
by typing a semicolon (;) at any prompt line after the “Library name”
prompt. At any prompt, you can fill in the rest of the file names and com-
mands in the command-line format {see Section 6.2.2). You must supply a
path name for any file that is not on the current drive and directory.

187

Microsoft Macro Assembler User’s Guide

Example
LIB

Library name: math
Operations: +sin +cos &
Operations: +atan +exp
List file: math

Output library: mathl

This example creates a new library called mathl.1ib from the contents of
the old library math.1ib. LIB also adds the modules in the object files
sin.obj, cos.obj, atan.obj, and exp.obj to the new library. A
library-reference listing file called math (with no extension) is created.

6.2.2 Starting LIB with a Command Line

You can start LIB and also give all the commands and files to be processed
on a single MS-DOS command line. The LIB command line has the form:

LIB oldlibrary [/PAGESIZE:number] [commands][,[listfile] [,[newlibrary]]] [5]

The oldizbrary names the library file to be worked on. If you do not supply
a file-name extension, LIB supplies .LIB.

The /PAGESIZE option defines the page size of the library. The default
page size is 16 bytes. This option is discussed in detail in Section 6.2.4.

The commands are LIB commands from among those listed in Section 6.6.
They specify what tasks are to be performed on the given library. If you do
not specify any commands, LIB will create a library cross-reference listing
without doing any operations.

The optional listfile is the name of the library-reference listing file. If no file
name is given, LIB does not create a listfile.

The optional newltbrary is the name of the new library file to which you
wish to copy the modified library. If no file name is given, LIB uses the
oldlibrary file name and renames the oldlibrary file by giving it the extension
.BAK.

If one of the files specified in the command line is in another directory or on
a different drive, you must supply an appropriate path name.

188

LIB: A Library Manager

If you give a listfile, you must separate it from the last command with a
comma (,). If you give a newlibrary, you must separate it from the listfile
with a comma (,) or from the last command with two commas (,,).

You can use a semicolon (;) after any entry except the oldlibrary to direct
LIB to use the default responses for the remaining entries. If used, the
semicolon should be the last character on the command line.

Examples
LIB lang +heap:

The first example instructs LIB to add the module heap to the library
lang.lib. The semicolon at the end of the command line tells LIB to use
the default responses for the library-reference listing and the new library
file. This means that no reference listing is created and that the changes
are written back to the original library file. The old library file is renamed
to lang.bak.

LIB lang +heap,lang.lst, langl.lib

The second example creates a new library named langl.1lib by modifying
the library 1ang.1lib. The new library is identical to the old one, except
that the module heap has been added. LIB also creates a listing file for
the library named lang.lst.

6.2.3 Starting LIB with a Response File

You can direct LIB to read commands and file names from a response file
by supplying the name of the response file when you invoke LIB. The sim-
plest form of the command line has the form

LIB @ responsefile

A response file can also be specified at any prompt, or at any position in a
command line. The input from the response file will be treated exactly as if
it had been entered at prompts or in a command line. However, note that
carriage-return/line-feed combinations in the response file are treated the
same as the RETURN key entered in response to a prompt, or a comma used
in a command line.

189

Microsoft Macro Assembler User’s Guide

When starting LIB, the responsefile must be the name of the response file,
and it must be preceded by an at sign (@). If the file is in another direc-
tory or on another disk drive, a path name must be provided.

You can name the response file anything you like. The file has the follow-
ing form:

library [/PAGESIZE:number]
lcommands]

[listfile]

[output-file]

Elements that have already been provided at prompts or with a partial
command line can be left out.

Each file name must appear on a separate line. Any number of commands
may be placed on a line. If you have more commands than can fit on one
line, you can extend the line by typing an ampersand (&) at the end of the
line.

You can place a semicolon (;) on any line in the response file. When LIB
encounters the semicolon, it automatically supplies default file names for all
files you have not yet named in the response file. The remainder of the file
is ignored.

When you create a program with a response file, LIB displays each response
from your response file on the screen in the form of prompts. If the
response file does not contain names for required files, LIB prompts for the
missing names and waits for you to enter responses.

Note

A response file should end with a semicolon () or a carriage-
return/line-feed combination. If you fail to provide a final carriage-
return/line-feed in the file, LINK will display the last line of the
response file and wait for you to press the RETURN key.

190

LIB: A Library Manager

Example

plib
tcursor theap tstack
cross.lst

This response file causes LIB to work on the library plib.1ib. The com-
mands in the second line instruct LIB to add the modules cursor, heap,
and stack to the new library file. A library-reference listing called
cross.lst is created. Since no name is specified for the output library,
the new library file will have the same name as the old. The old version will
be renamed to plib.bak.

6.2.4 Setting the Library-Page Size

You can set the library-page size by adding a page-size option after the
library-file name in the LIB command line or after the new library-file
name at the “Library name” prompt. The option has the form:

/PAGESIZE:number

The number specifies the new page size. It must be an integer value
representing a power of 2 between the values 16 and 32768. The option
name can be abbreviated to /P:number.

The page size of a library affects the alignment of modules stored in the
library. Modules in the library are aligned to always start at a position
that is a multiple of the page size (in bytes), calculated from the beginning
of the file. The default page size is 16 bytes for a new library or the current
page size for an existing library.

Note

Because of the indexing technique used by LIB, a library with a large
page size can hold more modules than a library with a smaller page size.
However, for each module in the library, an average of number/2 bytes
of storage space is wasted (where number is the page size). In most
cases, a small page size is advantageous; you should use a small page
size unless you need to put a very large number of modules in a library.

191

Microsoft Macro Assembler User’s Guide

Examples

LIB

Library name: math /PAGESIZE:256
Operations: +tangent

List file: mathtan.lst

Output library: mathtan

This examnple creates a new library file named mathtan. 1ib from the old
library file math.1ib. The page size is set to 256 bytes. The module
tangent is added to the new library file and a library-reference listing
called mathtan. 1st is created.

The example below shows how the same library would be created with a
command line:

LIB math/P:256, +tangent, mathtan. lst,mathtan

6.3 Creating a New Library

You can create a new library by giving the name of the new library file
when you invoke LIB. The name of the new library must not be the name
of an existing file, or LIB will assume you want to modify the existing file.

When you give the name of a library file in response to the “Library name”
prompt, LIB searches for that file. If the specified library file does not
exist, LIB displays the following prompt:

Library file does not exist. Create?

Type y to create the file or n to abort the library session.

If no file exists for a library name given in a command line, LIB creates the
library, processes the commands, and fills in the rest of the command line.
If you give the new library name in a command line without additional

commands or files, LIB changes to prompt mode and asks if you want to
create the new library.

192

LIB: A Library Manager

Examples
LIB

Library name: display /PAGESIZE:64
Library does not exist. Create? y
Operations: tcursor +scroll +position
List file:

In the example above, a library called display.1ib is created from the
object files cursor.obj, scroll.obj, and position.obj. The new
library is created with a page size of 64 bytes.

You could create the same library with the following command line:

LIB display /P:64 +cursor +scroll +position:

6.4 Checking a Library’s Consistency

You can check to make sure a library’s contents are consistent and usable
by running LIB without commands. Type a semicolon (;) at the “Opera-
tions” prompt or after the file name at the “Library name” prompt. You
can also type a command line with the name of the library you wish to
check followed by a semicolon. LIB then makes sure all entries in the
library can be accessed. If any problems are discovered, LIB displays an
error message. Otherwise, it displays nothing.

Consistency checks are typically used to verify that the contents of existing
libraries are usable. For example, if you copied a library from another disk,
you can run a consistency check to verify that the copied library is intact.
Note that LIB automatically checks object modules for consistency before

adding them to the library, so you do not need to check the library each
time you add a module.

Examples
LIB

Library name: math;

This example checks to make sure all modules in math.1ib are valid and
usable. You can do the same thing with the following command line:

LIB math:

193

Microsoft Macro Assembler User’s Guide

6.5 Creating a Library-Reference Listing

You direct LIB to create a library-reference listing whenever you give a file
name at the “List file” prompt or in the listfile position of a LIB command
line. A library-reference listing consists of two lists: a list of all public sym-
bols in the library, and a list of all modules in the library.

In the first list, all symbols are listed alphabetically. Each symbol name is
followed by the name of the module in which it is referenced. The list has
the form:

START main
SsuM add
SUM2 add
EXIT error

In the second list, all modules are listed alphabetically. The module name
is followed by an alphabetical listing of the public symbols referenced in
that module. The list has the form:

main Offset: 0O0000200H Code and data size: 20H
START

add Offset: 00000400H Code and data size:. 20H
SUM SUM2

error Offset: O0000600H Code and data size: CH
EXIT

You can get a listing of an existing file by pressing the RETURN key at the
“Operations” prompt and entering a file name at the “List file” prompt.
The same thing can be done in a command line by typing a comma (,) after
the library name and then typing the name of the file containing the
library-reference listing.

Examples
LIB
Library name: math

Operations:
List file: math

194

LIB: A Library Manager

The example above creates a library-reference listing file called math (with
no extension). The following command line does the same thing except
that the library-reference listing is shown on the screen instead of being
sent to a file:

LIB math, con

6.6 Maintaining Libraries

The LIB commands specify the maintenance tasks to be carried out on a
given library. The commands are used to add, delete, and replace modules
in a given library. They can also copy and move modules to new libraries.

Commands can be given on the LIB command line, in response to the LIB
“Operations” prompt, or in a response file.

Make sure you have sufficient disk space to do the commands you specify.
LIB may need additional space for a listing file and for a new library file.
LIB will save the old version of a library file with the extension .BAK if
you specify that the modified library file should have the same name as the
original. You may get an error message if there is not enough space on the
disk for both the new library file and the backup library file.

6.6.1 Adding a Module to a Library

Syntax
+objectfile

The Add command (+) adds the object module in the specified objectfile to
the current library. The objectfile must be the file name of an object file. If
you do not specify a file-name extension, LIB supplies .OBJ by default. If
the file is in another directory or on a different disk, you must supply an
appropriate path name. There must be no spaces between the plus sign (+)
and the name.

LIB searches for the file you have named, and adds the object file’s con-
tents to the current library. LIB then strips the drive name, path name,
and the file-name extension (if a,ny? from the object-file name and places the
resulting name in the library’s table of contents. LIB always appends
object modules to the end of the library file.

1956

Microsoft Macro Assembler User’s Guide

Examples
LIB math +sin.obj:

The first example adds the module in the file sin.obj to the library
math.lib. No list file is created.

LIB \lib\math t+cos, math;

The second example adds the module in the file cos.obj to the library
math.1lib in the \1ib directory. A list file math (with no extension) is
created.

LIB math +A:\src\atan:;

The final example adds the module in the file atan.obj to the library

math.lib. The object file is in the \src directory on Drive A. No list file
is created.

6.6.2 Deleting Library Modules

Syntax
—modulename

The Delete command (—) deletes the object module identified by the place-
holder modulename from the current library. The module name must be
spelled exactly as it appears in the library’s table of contents. Case is not
significant when specifying module names.

Note

LIB carries out all Delete commands before attempting to carry out
any Add commands (4) regardless of the order in which the commands
appear in the command line. This order of execution prevents confu-
sion in LIB when a new version of a module replaces an existing version
in the library file.

196

LIB: A Library Manager

Examples
LIB math —sin:

The first example deletes the module sin from the library math.lib. No
list file is created.

LIB \lib\math —cos, math:

The second example deletes the module cos from the library math.1ib in
the \1ib directory. The list file math (with no extension) is created.

LIB math +A:\src\atan —atan;

The final example deletes module atan.obj from library math.lib. It
then adds the module in the object file A:\src\atan.obj to the library.
Note that the Delete command is carried out before the Add (—I—) command
even though the Add command comes first on the command line.

6.6.3 Replacing Library Modules

Syntax
—+modulename

The Replace command (—+) replaces the module identified by modulename
with the module in an object file having the same name. The modulename
must have exactly the same spelling as the name in the library’s table of
contents (case is not significant). LIB first deletes this module, then
searches the current working directory for a file having the same file name
and the file-name extension .OBJ.

If the file is found, LIB adds it to the library file. If LIB cannot find the

file containing the replacement module, it displays an error message.

Example
LIB math — +cos;
This example deletes the module cos. obj then finds the file cos.obj in

the current directory and adds the contents to the library file. No listing is
created.

197

Microsoft Macro Assembler User’s Guide
6.6.4 Copying Library Modules

Syntax
*modulename

The Copy command (*) extracts from the library a copy of the module
identified by medulename, and copies it to an object fiie having the same
name. The modulename must have exactly the same spelling as the name in
the library’s table of contents (case is not significant). If the module is not
in the library file, LIB displays an error message.

When LIB copies the module to an object file, it creates a file whose file

name is the same as that of the module, but whose file-name extension is
.OBJ. The file is placed in the current working directory.

Example
LIB math *cos:
This example creates a file named cos.obj in the current working direc-

tory. The file contains the object module copied from the math.1ib
library. The module cos remains unchanged in the library file.

6.6.5 Moving Library Modules

Syntax
—*modulename

The Move command (—#) moves the module identified by modulename from
the current library to an object file having the same name as the module.
The modulename must be spelled exactly as it appears in the library’s table
of contents (case is not significant). If the module is not in the library file,
LIB displays an error message.

The move is equivalent to copying the module to an object file, as described
above, then deleting the module from the library.

198

LIB: A Library Manager

Example
LIB math — *cos
This example moves the module cos into an object file named cos.obj in

the current working directory. The module is deleted from the library
math. No list file is created.

6.6.6 Combining Libraries

Syntax

+libraryname

The Add command (+) can also be used to add the contents of another
library to the current library. The libraryname must be the name of the
library file you wish to add. You must give the file-name extension of the
file. Otherwise, LIB assumes the file is an object file.

LIB appends the modules of the named library to the end of the current
library without destroying the named library or deleting any modules.

Note

LIB can be used to add the contents of XENIX and Intel-style libraries
to MS-DOS libraries.

Example
LIB mathl +math.lib:;

This example adds the modules contained in the library math.1ib to the
modules in the library mathl.1lib.

199

Chapter 7
MAKE:

A Program Maintainer

7.1

7.2

7.2.1
7.2.2
7.2.3
7.24
7.2.5
7.2.6
7.2.7

Introduction 203
Using MAKE. 203

Creating a MAKE Description File
Starting MAKE 205

Using MAKE Options 206
Using Macro Definitions 207
Nesting Macro Definitions 208
Using Special Macros 209
Inference Rules 210

7.3 Maintaining a Program: An Example

203

211

201

MAKE: A Program Maintainer

7.1 Introduction

The Microsoft Program Maintenance Utility SMA_KE) automates the pro-
cess of maintaining assembly- and high-level-language programs. MAKE
automatically carries out all tasks needed to update a program after one or
more of its source files has changed.

Unlike other batch-processing programs, MAKE compares the last
modification date of the file or files that may need updating with the
modification dates of files on which these target files depend. MAKE then
carries out the given task only if a target file is out of date. MAKE does
not assemble, compile, and link all files just because one file has been
updated. This can save much time when creating programs that have many
source files or take several steps to complete.

The following sections explain how to use MAKE and illustrate how to
maintain a sample assembly-language program.

7.2 Using MAKE

To use MAKE, you must create a MAKE description file that defines the
tasks you wish to accomplish and specifies the files on which these tasks
depend. Once the description file exists, you invoke MAKE and supply
the file name as a parameter. MAKE then reads the contents of the file
and carries out the requested tasks. The following sections explain how to
create a MAKE description file and how to start MAKE.

7.2.1 Creating a MAKE Description File

You can create a MAKE description file with a text editor. A MAKE
description file consists of one or more target/dependent descriptions.
Each description has the following general form:

targetfile + dependentfiles
commandl
[command?]

The targetfile is the name of a file that may need updating, dependentfile is
the name of a file on which the target file depends, and the commands are
the names of executable files or MS-DOS internal commands. 203

Microsoft Macro Assembler User’s Guide

The targetfile and dependenifile must be valid file names. A path name
must be provided for any file that is not on the same drive and directory as
the description file.

Any number of dependent files can be given, but only one target name is
allowed. Dependent-file names must be separated by at least one space. If
you have more dependent files than can fit on one line, you can continue the
names on the next line by typing a backslash (\) followed by a new line.

The command can be any valid MS-DOS command line consisting of an
executable-file name or an MS-DOS internal command. Any number of
commands can be given, but each must begin on a new line and must be
preceded by a TAB, or by at least one space. The commands are carried out
only if one or more of the dependent files has been modified since the target
file was created.

One way to remember the MAKE format is to think of it as an “if-then”
statement in the following format:

If a dependentfile is older than the fargetfile, or
If a dependentfile does not exist,
Then do commands.

You can give any number of target/dependent descriptions in a description
file. You must make sure, however, that the last line in one description is
separated from the first line of the next by at least one blank line.

The pound character (#) is a comment character. All characters after the
comment character on the same line are ignored. When comments appear
in a command lines section, the comment character (#) must be the first
character on the line (no leading white space). On any other lines, the com-
ment character can appear anywhere.

Note

The order in which you place the target/dependent descriptions is
important. MAKE examines each description in turn and makes its
decision to carry out a given task based on the file’s current
modification date. If a command in a later description modifies a file,
MAKE has no way to return to the description in which that file is a
target.

204

MAKE: A Program Maintainer

Example

startup.obj: startup.asm
MASM startup, startup,nul,nul

print.obj: print.asm
MASM print,print,print,print

print.ref: print.crf
CREF print,print

print.exe: startup.obj print.obj \lib\syscal.lib
LINK startup+print,print,print/map,\lib\syscal;

print.sym: print.map #imake a symbol file for debugging
#use the -1 option to print information
MAPSYM -1 print.map

This example defines the actions to be carried out to create five target files.
Each file has at least one dependent file and one command. The target
descriptions are given in the order in which the target files will be created.
Thus, startup.objand print.obj are examined and created, if neces-
sary, before print.exe.

Note that a comment appears on the same line as the target description for
print.sym. However, in the command lines section, the comment appears
on a separate line, since the comment character (#) must be the first char-

acter on the line.

7.2.2 Starting MAKE

MAKE must be started with a command line. You cannot use prompts.
The MAKE command line has the form:

MAKE [options] [macrodefinitions] filename

The options are one or more of the options described in section 7.2.3. The
macrodefinitions are one or more macro definitions as described in Section
7.2.4. The filename is the name of a MAKE description file. A MAKE
description file, by convention, has the same file name (but with no exten-
sion) as the program it describes. Although any file name can be used, this
convention is preferred.

Once you start MAKE, it examines each target description in turn. If a
given target file is out of date with respect to its dependent file or if the file
does not exist, MAKE executes the given command or commands. Other-
wise, it skips to the next target description.

2056

Microsoft Macro Assembler User’s Guide

When MAKE finds an out-of-date dependent file, it displays the command
or commands from the target/dependent description, then executes the
commands. If MAKE cannot find a specified file, it displays a message
informing you that the file was not found. If the missing file is a target file,
MAKE continues execution, since the missing file will in many cases be
created by subsequent commands.

If the missing file is a dependent or command file, MAKE stops execution

of the description file. MAKE also stops execution and displays the exit
code if the command returns an error.

When MAKE executes a command, it uses the same environment used to
invoke MAKE. Thus, environment variables such as PATH are available
for these commands.

7.2.3 Using MAKE Options

The options available with the MAKE command modify its behavior as
described below.

Option Action

/D This option causes MAKE to display the last modification
date of each file as the file is scanned.

/1 This option causes MAKE to ignore exit codes (also called
return or “errorlevel” codes) returned by programs called by
the MAKE description file. MAKE will continue execution
of the next lines of the description file despite the errors.

/N When this option is given, MAKZE displays commands that
would be executed by a description file, but does not actually
execute the commands.

/S This option causes MAKE to execute in “silent” mode. That
is, lines are not displayed as they are executed.

Examples
MAKE /N test

The first example directs MAKE to display commands from the MAKE

description file named test without executing them.

MAKE /D test

206

MAKE: A Program Maintainer

The second example directs MAKE to execute the instructions from
test, displaying the last modification time of each file as it is scanned.

7.2.4 Using Macro Definitions

Macro definitions let you associate a symbolic name with a particular value.
By using macro definitions, you can change values used in the description
file without having to edit every line that uses a particular value.

The form of a macro definition is:

name=—=value

The form for using a previously defined macro definition is:
$(name)

Occurrences of the pattern $ (name) in the description file are replaced with
the specified value. The name is converted to uppercase; flags and
FLAGS are equivalent. If you define a macro name but leave the value
blank, the value will be a null string.

Macro definitions can be placed in the MAKE description file or given on
the MAKE command line. A name is also considered defined if it has a
definition in the current environment. For example, if the environment
variable PATH is defined in the current environment, occurrences of

$ (PATH) in the description file will be replaced with the PATH value.

In the MAKE description file, each macro definition must appear on a
separate line. Any white space (tab and space characters) between name
and the equal-sign (=) or between the equal-sign and value is ignored. Any
other white space is considered part of value. To include white space in a
macro definition on the command line, enclose the entire definition in

"

double quotation marks (").

If the same name is defined in more than one place, the following order of
precedence applies:

1. Command line definition
2. Description file definition

3. Environment definition

207

Microsoft Macro Assembler User’s Guide

Example

base=abc
buf=/B63

$ (base) .obj: $ (base) .asm
MASM $ (base) $(buf),s (base),$ (base),$ (base)

$ (base) .exe: $ (base) .obj \lib\math.lib
LINK 3 (base), $ (base),$ (base) /map,\lib\math

The sample MAKE description file above shows macro definitions for the
names base and buf. MAKE replaces each occurrence of $ (base)

with abc. If the description file is called assemble, you can give the fol-
lowing command:

MAKE base=def assemble

This command line enables you to override the definition of base in the
description file, causing def to be assembled and linked instead of abc.

If you want to override the 63K buffer size specified by the macro buf in
the MAKE description file and instead use the MASM default buffer size
of 32K, you could start MAKE with the following command line:

MAKE buf= assemble

Since the value for buf is blank, it will be treated as a null string. How-
ever, since the null string was given from the command line, which has
higher precedence than the definition in the description file, buf will be

expanded to a null string and no option will be passed in the MASM com-
mand line.

7.2.5 Nesting Macro Definitions

Macro definitions can be nested. In other words, a macro definition can
include another macro definition. For example, you might have the follow-
ing macro definition in the MAKE description file picture:

LIBS=¢$ (DLIB)\math.lib $ (DLIB)\graphics.lib

You could then start MAKE with the following command line:

MAKE DLIB=d:\lib

208

MAKE: A Program Maintainer

In this case, every occurrence of the macro LIBS would be expanded to:
d:\lib\math.1lib d:\lib\graphics.lib
Be careful to avoid infinitely recursive macros such as the following:

A
B
C

i
U 0
~—~—

B)
<)
A)
7.2.6 Using Special Macros

MAKE recognizes three special macro names and will automatically sub-
stitute a value for each. The special names and their values are:

Name Value Substituted

e Base name portion of the target (without the extension)
f@ Complete target name

ek Complete list of dependencies

These macro names can be used in description files, as shown in the follow-
ing example:
Example
test.exe: modl.obj mod2.obj mod3.obj
link $**, $@:
mapsym $*
The example above is equivalent to the following:
testiexe: modl.obj mod2.o0bj mod3.ob]

link modl.obj mod2.obj mod3.obj, test.exe;
mapsym test

209

Microsoft Macro Assembler User’s Guide

7.2.7 Inference Rules

MAKE allows you to create inference rules that specify commands for
target/dependent descriptions even when there is no explicit command in
the MAKE description file. An inference rule is a way of telling MAKE
how to produce a file with one type of extension from a file with the same
base name and a second type of extension.

For example, if you define a rule for producing .OBJ files from .ASM files,
the actual commands do not have to be repeated in the description file for
each target/dependent description. Inference rules take the following form:

.dependentextension.targetextension s
commandl
[command?]

For lines that do not have explicit commands, MAKE looks for a rule that
matches both the target’s extension and the dependent’s extension. If it
finds such a rule, MAKE performs the commands given by the rule.

MAKE looks first for dependency rules in the current description file, but
if it does not find an appropriate rule, it will search for the tools-
initialization file, tools.ini. MAKE looks for tools.ini in the
current drive and directory (or in any directories specified with the MS-DOS
PATH command).

If MAKE finds tools. ini, it looks through the file for a line beginning
with the tag [make], which must come at the beginning of the line. Infer-
ence rules following this line will be applied if appropriate.

Example

.asm.obj:
MASM $*.asm,,;

testl.obj: testl.asm

test2.0bj: test2.asm
MASM test2.asm:

In the sample description file above, an inference rule is defined in the first
line. The file name in the rule is specified with the special macro name $ *

210

MAKE: A Program Maintainer

so that the rule will apply to any base name. When MAKE encounters the
dependency for files testl.obj and testl.asmn, it looks first for com-
mands on the next line. When it does not find any, MAKE checks for a
rule that may apply and finds the rule defined in the first lines of the
description file. MAKE applies the rule, replacing the $* macro with
testl when it executes the command:

MASM testl.asm,, ;

When MAKE reaches the second dependency for the test?2 files, it does
not search for a dependency rule, since a command is explicitly stated for
this target/dependent description.

7.3 Maintaining a Program: An Example

MAKE is especially useful for programs in development, because it offers a
quick way to recreate a modified program after small changes.

Consider a test program name test.asm that is being used to debug the
routines in a library file named math.lib. The purpose of test.asmis
to call one or more routines in the library so a study of their interaction can
be made. Each time test.asm is modified, it has to be assembled, a
cross-reference listing has to be created, the assembled file has to be linked
to the library, and finally, a symbol file has to be created to use with the
Microsoft Symbolic Debug Utility (SYMDEB).

The following target/dependent descriptions copied to the MAKE descrip-
tion file test will carry out all of these tasks:

test.obj: test.asm
MASM test, test, test, test

test.ref: test.crf
CREF test, test

test.exe: test.obj \lib\math.lib
LINK test, test, test/map,\lib\math

test.sym: test.map
MAPSYM /L test.map

These lines define the actions to be carried out to create four target files:

test.obj, test.ref, test.exe, and test.sym. Each file has at
least one dependent file and one command. The target/dependent

211

Microsoft Macro Assembler User’s Guide

descriptions are given in the order in which the target files will be created.
Thus, test.sym depends on test.map, which is created by LINK;
test.exe depends on test.obj, which is created by MASM; and
test.ref depends on test.cr f, which is also created by MASM.

Once the description file is in place, you can create test.asm using a text
editor, then invoke MAKE to create all other required files. The command
line should have the following form:

MAKE test
MAKE carries out the following steps:

1. MAKE compares the modification date of test.asm with
test.obj. If test.obj is out of date (or does not exist),
MAKE executes the following command:

MASM test, test, test, test
Otherwise, it skips to the next target description.

2. MAKE compares the dates of test.ref and test.crf. If
test.ref is out of date, it executes the following command:

CREF test, test

3. MAKE compares test.exe with the dates of test.obj and
the library file math.1ib. If test.exe is out of date with
respect to either file, MAKE executes the following command:

LINK test, test, test/map,\lib\math.lib

4. MAKE compares the dates of test.sym and test.map. If
test.sym is out of date, MAKE executes the following command:

MAPSYM /L test.map

When test.asmis first created, MAKE will execute all commands, since
none of the target files exists. If you invoke MAKE again without chang-
ing any of the dependent files, it will skip all commands. If you change the
library file math.1ib, but make no other changes, MAKE will execute
the LINK command, since test.exe is now out of date with respect to
E?IEI?{ lib. It will also execute MAPSYM, since test.map is created by

212

Appendixes

A Error Messages 215
B Exit Codes 251
C Using EXEPACK and EXEMOD 259

213

Appendix A

Error Messages

A.1 Introduction 217

A.2 MASM Error Messages 217

A.3 LINK Error Messages 231

A.4 SYMDEB Error Messages 238
A5 MAPSYM Error Messages 240
A.6 CREF Error Messages 241

A7 LIB Error Messages 242

A.8 MAKE Error Messages 245

A9 EXEPACK Error Messages 247
A.10 EXEMOD Error Messages 248

215

Error Messages

A.1 Introduction

This appendix lists and explains the error messages that can be generated
by the programs in the Microsoft Macro Assembler package.

A.2 MASM Error Messages

This section lists and explains the messages displayed by the Microsoft
Macro Assembler, MASM. The assembler displays a message whenever it
encounters an error during processing. It displays a warning message when-
ever it encounters an instance of questionable statement syntax.

An end-of-assembly message is displayed at the end of processing, even if no
errors occurred. The message tells how many bytes of symbol space are free
and gives a count of the error and warning messages it displayed during the
assembly. If the /V option is used, the number of source lines, the total
number of lines (including macro expansions), and the number of symbols
are also shown.

1108 Source Lines
1286 Total Lines
215 Symbols

44814 Bytes symbol space free

O Warning Errors
O Severe Errors

The first three lines of the message are only shown on the screen if the /V
option is used. The entire message is copied to the end of the source list-
ing, whether the /V option is used or not.

MASM error messages are listed in numerical order in this section with a
short explanation where necessary. References to sections of the Microsoft
Macro Assembler User’s Guide (User’s Guide) and sections of the Microsoft
Macro Assembler Reference Manual (Reference Manual) are included where
appropriate.

217

Microsoft Macro Assembler User’s Guide

Code

0

218

Message

Block nesting error

Nested procedures, segments, structures, macros, IRC,
IRP, or REPT are not properly terminated. An example of
this error is closing an outer level of nesting with inner
level(s) still open.

Extra characters on line

This occurs when sufficient information to define the
instruction directive has been received on a line and
superfluous characters beyond the line are received.

Register already defined

This message indicates an internal error. If you get this
message, notify Microsoft Corporation using the Software
Problem Report at the end of the Reference Manual.

Unknown symbol type

MASM does not recognize the size type specified in a label
or external declaration. For example,

here LABEL. Dbite

Rewrite with a valid type such as BYTE, WORD, NEAR,
etc.

Redefinition of symbol

If a symbol is defined in two places, this error occurs in Pass

1 on the second declaration of the symbol. See errors 5 and
26.

Symbol is multi-defined

If a symbol is defined in two places, this error occurs in Pass
2 on each declaration of the symbol. See errors 4 and 26.

Phase error between passes

The program has ambiguous instruction directives such that
the location of a label in the program changed in value
between Pass 1 and Pass 2 of the assembler. An example of
this is a forward reference coded without a segment override
where one is required. There would be an additional byte

10

11

12

13

14

15

Error Messages

(the code segment override) generated in Pass 2, causing the
next label to change. You can use the /D option to produce
a Pass 1 listing to aid in resolving phase errors between
passes. See Sections 2.3.4 and 2.4.6.

Already had ELSE clause

Attempt to define an ELSE clause within an existing ELSE
clause (you cannot nest ELSE without nesting
IF...ENDIF).

Not in ceonditional block

An ENDIF or ELSE is specified without a previous
conditional-assembly directive being active.

Symbol not defined

A symbol is used without being defined. One potential
source of this error is shown in Section 2.4.6.

Syntax error

The syntax of the statement does not match any recogniz-
able syntax.

Type illegal 1in context

The type specified is of an unacceptable size.

Should have been group name

Expecting a group name, but something else was given.

Must be declared in pass 1

An item was referenced before it was defined in Pass 1. For
example, IF DEBUG is illegal if the symbol DEBUG is not
previously defined. See Section 7.2.1 in the Reference
Manual.

Symbol type usage illegal

Illegal use of a PUBLIC symbol. See Section 6.2 of the
Reference Manual.

Symbol already different kind

Attempt to define a symbol differently from a previous
definition.

219

Microsoft Macro Assembler User’s Guide

16

17

18

19

20

21

22

23

24

220

Symbol is reserved word

Attempt to use an assembler reserved word illegally. For
example, to declare MOV as a variable.

Forward reference is illegal

Attempt to reference something before it is defined in Pass
1. For example, the following-lines produce an error:

DB count DUP (?)
count EQU 10

The statements would be legal if the lines were reversed.

Must be register

Register expected as operand, but you furnished a symbol.

Wrong type of register

Directive or instruction expected one type of register, but
another was specified. For example, INC CS; you cannot
increment the code segment.

Must be segment or group

Expecting segment or group, but something else was
specified.

Symbol has no segment

Trying to use a variable with SEG, but the variable has no
known segment.

Must be symbol type

Must have type WORD, DW, QW, BYTE, or similar
designation, but received something else.

Already defined locally

Tried to define a symbol as EXTRN that had already been
defined locally.

Segment parameters are changed

List of arguments to SEGMENT was not identical to the
list the first time this segment was used.

25

26

27

28

29

30

31

32

Error Messages

Not proper align/combine type

SEGMENT parameters are incorrect. Check the align and
combine types to make sure you have entered valid types
from among those discussed in Section 3.4 of the Reference
Manual.

Reference to mult defined

The instruction references a symbol that has been multi-
defined. See errors 4 and 5.

Operand was expected

Assembler is expecting an operand but an operator was
received.

Operator was expected

Assembler was expecting an operator but an operand was
received.

Division by O or overflow

An expression is given that results in a division by 0 or a
number larger than can be represented.

Shift count is negative

A shift expression is generated that results in a negative
shift count.

Operand types must match

Assembler gets different kinds or sizes of arguments in a
case where they must match. For example, mov ax,bhis
illegal; either both operands must be word or both must be
byte. See Section 5.5 of the Reference Manual.

Illegal use of external

Use of an external in some illegal manner. For example,
DB count DUP (?)

is illegal if count is declared external. See Section 6.3 of
the Reference Manual.

221

Microsoft Macro Assembler User’s Guide

33

34

35

36

37

38

39

40

41

42

222

Must be record field name

Expected a record field name but got something else.

Must be record or field name

Expecting a record name or field name and received some-
thing else.

Operand must have size

Expected operand to have a size, but it did not. Often this
error can be remedied by using the PTR operator to specify
a size type.

Must be var, label or constant

Expecting a variable, label, or constant but received some-
thing else.

Must be structure field name

Expecting a structure field name but received something
else.

Left operand must have segment

Used something in right operand that required a segment in
the left operand. For example, :symbolis illegal; use
seg:symbol.

One operand must be const

This is an illegal use of the addition operator. See Section
5.3.1 of the Reference Manual.

Operands must be same or 1 abs

Illegal use of the subtraction operator. See Section 5.3.1 in
the Reference Manual.

Normal type operand expected
Received STRUC, BYTE, WORD, or some other invalid

operand when expecting a variable label.
Constant was expected

Expecting a constant and received an item that does not
evaluate to a constant. For example, a variable name or

43

44

45

46

47

48

Error Messages
external. See Section 7.2.5 in the Reference Manual for one
example of how this can happen.

Operand must have segment

Illegal use of SEG directive. See Section 5.3.12 in the
Reference Manual for valid use of the SEG operator.

Must be associated with data

Use of code-related item where data-related item was
expected. For example:

here: mov ax,LENGTH ds:here

This line attempts to address an item through DS when the
item is actually addressable to CS.

Must be associated with code

Use of data-related item where code-related item was
expected. For example

jmp test
if the symbol test was declared in the data segment.

Already have base register

More than one base register was used in an operand. For
example:

mov ax, [bx+bp]

Already have index register

More than one index register was used in an operand. For
example:

mov ax, [si+di]

Must be index or base register

Instruction requires a base or index register and some other
register was specified in square brackets ([]). For example:

mov ax, [bxtax]

223

Microsoft Macro Assembler User’s Guide

49

50

51

52

53

54

55

56

224

Illegal use of register

Use of a register with an instruction where no valid register
is possible.

Value is out of range

Value is too large for expected use. For example,

vvvvvvv

is illegal; you must use a byte value for a byte register.

Operand not in IP segment

An operand cannot be accessed because it is not in the
current IP segment.

Improper operand type

Use of an operand in a way that prevents opcode generation.

Relative jump out of range

Conditional jumps must be within the range -128 to +127
bytes of the current instruction, and the specific jump is
beyond this range. You can usually correct the problem by
reversing the condition of the conditional jump and using an
unconditional jump (JMP) to the out-of-range label.

Index displ. must be constant

llegal use of index displacement.

Illegal register value

The register value specified does not fit into the "reg" field
(the value is greater than 7).

No immediate mode

Immediate data were supplied as an operand for an instruc-
tion that cannot use immediate data. For example, the fol-
lowing statement is illegal:

mov ds,data

You must move the segment address into a general register
and then move it from that register to DS.

57

58

59

60

61

62

63

64

Error Messages

Illegal size for item

Size of referenced item is illegal. For example, shift of a
doubleword. One example of an illegal size error is shown in
Section 2.4.6. The error also frequently occurs when you try
to assemble source code written for assemblers that have
less strict type checking than the Microsoft Macro Assem-
bler (such as early versions of the IBM assembler). Usually
you can solve the problem by changing the size of the item
with the PTR operator. See Section 5.5 of the Reference
Manual.

Byte register is illegal

Use of one of the byte registers in context where it is illegal.
For example, PUSH AL is illegal; use PUSH AX.

CS register illegal usage

Trying to use the CS register illegally. For example, XCHG
Cs, AX is illegal.

Must be AX or AL

Specification of some register other than AX or AL where
only these are acceptable. For example, the IN instruction
requires AX or AL as its right operand.

Improper use of segment reg

Specification of a segment register where this is illegal. For
example, an immediate move to a segment register.

No or unreachable CS

Attempt to jump to a label that is unreachable.

Operand combination illegal

Specification of a two-operand instruction where the combi-
nation specified is illegal.

Near JMP/CALL to different CS

Attempt to do a NEAR jump or call to a location in a code
segment defined with a different ASSUME:CS.

2256

Microsoft Macro Assembler User’s Guide

65

66

67

68

69

70

72

73

74

75

226

Label can't have seg. override

Illegal use of segment override. See Section 5.3.7 of the
Reference Manual for examples of valid use of the segment
override operator.

Must have opcode after prefix

Use of a REPE, REPNE, REPZ, or REPNZ instruction
without specifying any opcode after it.

Can't override ES segment

Trying to override the ES segment in an instruction where
this override is not legal. For example, STOS
DS:TARGET is illegal.

Can't reach with segment reg

No ASSUME directive makes the variable reachable.

Must be in segment block

Attempt to generate code when not in a segment.

Can't use EVEN on BYTE segment

The EVEN directive was used, even though the segment
was declared to be a byte segment. See Section 3.9 of the
Reference Manual.

Illegal value for DUP count

The DUP count must be a constant that evaluates to a
positive Integer greater than zero.

Symbol already external

Attempt to define a symbol as local that is already external.

DUP is too large for linker

Nesting of DUP operators was such that too large a record
was created for the linker. See Section 4.3.6 of the Refer-
ence Manual.

Usage of ? (indeterminate) bad

Improper use of the undefined operand (?). For example,
?7+5 is illegal.

76

77

78

79

80

81

82

83

84

85

Error Messages

More values than defined with

Too many initial values given when defining a variable using
a REC or STRUC type.

Only initialize list legal

Attempt to use STRUC name without angle brackets
(<>)

Directive illegal in STRUC

All statements within STRUC blocks must either be com-
ments preceded by a semicolon (3), or one of the define direc-
tives (DB, DW, etc.).

Override with DUP is illegal

In a STRUC initialization statement, you tried to use
DUP in an override.

Field cannot be overridden

In a STRUC initialization statement, you tried to give a
value to a field that cannot be overridden.

Override is of wrong type

In a STRUC initialization statement, you tried to use the
wrong size on override. For example, you tried to use a
string such as HELLO for DW field when you should use
DB for strings.

Register can't be forward ref

An attempt was made to forward reference a segment.

Circular chain of EQU aliases
An alias EQU eventually points to itself.

8087 opcode can't be emulated

Either the 8087 opcode or the operands you used with it
produce an instruction that the emulator cannot support.

End of file, no END directive

You forgot an end statement or there is a nesting error.

227

Microsoft Macro Assembler User’s Guide

86 Data emitted with no segment

Code that is not located within a segment attempted to gen-
erate data. An example is shown below:

code SEGMENT

code ENDS
push ax

test DW ?
END

Either of the two statements near the end of the sample
would generate the error. Any statement that generates
code or allocates data must be in a segment.

87 Forced error - passl
You forced an error with the .ERR1 directive.

88 Forced error - pass2
You forced an error with the .ERR2 directive.

89 Forced error
You forced an error with the .ERR directive.

90 Forced error - expression equals O
You forced an error with the . ERRE directive.

91 Forced error - expression not equal O
You forced an error with the ERRNZ directive.

92 Forced error - symbol not defined

You forced an error with the ERRNDEF directive.

93 Forced error - symbol defined

You forced an error with the ERRDEF directive.

94 Forced error - string blank
You forced an error with the .ERRB directive.

228

95

96

97

98

99

100

Error Messages

Forced error - string not blank
You forced an error with the . ERRNB directive.

Forced error - strings identical

You forced an error with the .ERRIDN directive.

Forced error - strings different

You forced an error with the . ERRDIF directive.

Override value is wrong length

The override value for a structure field is too large to fit in
the field. An example is shown below:

X STRUC

x1 DB "AM

X ENDS

y X <"AB">

The override value is a string consisting of two bytes, while
the structure declaration only provided room for one.

Line to long expanding symbol

A symbol defined by an EQU or equal-sign (=) directive is
so long that expanding it will cause the assembler’s internal
buffers to overflow. This message may indicate a recursive
text macro.

Impure memory reference

The code contains an attempt to store data into the code
segment when the .826p directive and the /P option are in
eflect. An example of storing code to the code segment is
shown below:

code SECMENT

ASSUME cs:code
c_word DW ?

mov cs:c_word, data
code ENDS

229

Microsoft Macro Assembler User’s Guide

The /P option checks for such statements, which are
acceptable in nonprotected mode, but can cause problems in
protected mode.

101 Missing data; zero assumed

An operand is missing from a statement. For example:
mov ax,

The code is assembled as if 1t were:
mov ax, 0

This is a warning error, and the object file is not deleted as
it is with severe errors.

In addition to the numbered error messages listed above, MASM may gen-
erate the following unnumbered error messages:

Out of Memory

All available memory has been used, either because the source file is too
long, or because there are too many symbols defined in the symbol
table. There are several things you can do to resolve this problem.
First, try assembling with only an object file. If this works, you can
reassemble specifying a null object file to get a listing or cross-reference
file. You can also rewrite the source file to take up less symbol space.
Techniques for reducing symbol space include: minimizing use of mac-
ros, structures, and the EQU and equal-sign (=) directives; using short
symbol names; using tab characters in macros rather than series of
spaces; using macro comments (5;) rather than normal comments (3);
purging macro definitions after the last use.

Internal Error

230

Note the conditions when the error occurs and contact Microsoft Cor-
poration using the Software Problem Report at the end of the Reference
Manual.

Error Messages

A.3 LINK Error Messages

This section lists the error messages that can occur when linking programs
with the Microsoft 8086 Object Linker, LINK. The messages are in alpha-
betical order.

Ambiguous switch error: "option"
User did not enter a unique option name after the option indicator (/).
For example, the command
LINK /N main;

will generate this error, since LINK can’t tell which of the three
options beginning with the letter “N” you intended to use. See Section
3.3 for more information on LINK options.

Array element size mismatch

A far communal array has been declared with two or more different
array-element sizes (for example, declared once as an array of charac-
ters and once as an array of real numbers). This error cannot occur
with object files produced by MASM. It only occurs with Microsoft C
and any other compiler that supports far communal arrays.

Attempt to put segment mame in more than one group
in file filename
A segment was declared to be a member of two different groups.
Correct the source and recreate the object files.

Bad value for cparMaxAlloc

The number specified using the /CPARMAXALLOC option is not in
the range 1 to 65535. See Section 3.3.9.

Cannot find library: filename.lib. Enter new file spec:

The linker cannot find filename. 1ib. The user should respond to the
prompt with a new file name, a new path specification, or both.

Cannot open list file

The disk or the root directory is full. Delete or move files to make
space.

2381

Microsoft Macro Assembler User’s Guide

Cannot open response file

LINK cannot find the response file specified by the user. This usually
indicates a typing mistake.

Cannot nest response files

User named a response file within a response file.
Cannot open run file

The disk or the root directory is full. Delete or move files to make
space.

Cannot open temporary file

The disk or the root directory is full. Delete or move files to make
space.

Cannot reopen list file

User did not actually replace the original disk when asked to. Restart
the linker.

Common area longer than 65536 bytes

User’s program has more than 64K of communal variables. This error
cannot appear with object files generated by MASM. It can only occur
with programs produced by Microsoft C or other compilers that support
communal variables.

Data record too large

LEDATA record (in an object module) contains more than 1024 bytes
of data. This is a translator error. Note the translator (compiler or
assembler) that produced the incorrect object module and the cir-
cumstances. Notify Microsoft Corporation using the Software Problem
Report at the end of the Reference Manual. LEDATA is an MS-DOS
term. It is explained in the MS-DOS Programmer’s Reference Manual
and some other MS-DOS reference books.

Dup record too large

LIDATA record (in an object module) contains more than 512 bytes of
data. Most likely, an assembly module contains a structure definition
that is very complex, or a series of deeply nested DUP operators. For
example:

array DB 10 DUP(11 DUP (12 DUP (13 DUP (...))))

232

Error Messages

Simplify and reassemble. LIDATA is an MS-DOS term. It is explained
in the MS-DOS Programmer’s Reference Manual and in some other MS-
DOS reference books.

filename is not a valid library
The file specified as a library file is invalid. LINK will abort.

Fixup overflow near number in segment name in filename
of fset number

Some possible causes are: 1) A group is larger than 64K; 2) the user’s
program contains an inter-segment short jump or inter-segment short
call; 3) the user has a data item whose name conflicts with that of a
subroutine in a library included in the link; or 4) the user has an
EXTRN declaration inside the body of a segment, for example:

code SEGMENT public 'CODE'
EXTRN main: far

start PROC far
call main
ret

start ENDP

code ENDS

The following construction is preferred:

EXTRN main: far
code SEGMENT public 'CODE'

start PROC far
call main
ret

start ENDP

code ENDS

Revise the source and recreate the object file.

Incorrect DOS version, use DOS 2.0 or later

LINK will not run on versions of MS-DOS or PC-DOS prior to 2.0.
Reboot your system with a valid version, and try linking again.

Insufficient stack space

There is not enough memory to run the linker.

2338

Microsoft Macro Assembler User’s Guide

Interrupt number exceeds 255

A number greater than 255 has been given as a value for the /OVER-
LAYINTERRUPT option. Try again with a number in the range 0
to 255. See Section 3.3.13.

Invalid numeric switch specification

An incorrect value was entered for one of the linker switches (options).
For example, a character string was entered for an option that requires
a numeric value.

Invalid object module

One of the object modules is invalid. Try recompiling. If the error per-
sists, contact Microsoft Corporation using the Software Problem Report
form at the end of the Reference Manual.

NEAR/HUGE conflict

Conflicting near and huge definitions for a communal variable. This
error cannot appear with object files generated by MASM. It can only
occur with programs produced by Microsoft C or other compilers that
support communal variables.

Nested left parentheses

User has made a typing mistake while specifying the contents of an
overlay on the command line. See your compiler manual for instruc-
tions on specifying overlays for LINK. MASM does not have an over-
lay manager, so this problem can only occur if you are linking with a
library from a high-level language that supports overlays.

No object modules specified

User failed to supply the linker with any object-file names.

Out of space on list file
Disk on which list file is being written is full. Free more space on the
disk and try again.

Out of space on run file

Disk on which .EXE file is being written is full. Free more space on the
disk and try again.

234

Error Messages

Out of space on scratch file

Disk in default drive is full. Delete some files on that disk, or replace
with another disk, and restart the linker.

Overlay manager symbol already defined: name

User has defined a symbol name that conflicts with one of the special
overlay manager names. Change the incorrect name and relink. See
your compiler manual for instructions on specifying overlays for LINK.
MASM does not have an overlay manager, so this problem can only
occur if you are linking with a library from a high-level language that
supports overlays.

Relocation table overflow

More than 32768 long calls, long jumps, or other long pointers in the
user’s program. Rewrite program, replacing long references with short
references where possible, and recreate object module. Note: Pascal
and FORTRAN users should first try turning off the debugging option.

Segment limit set too high

The limit on the number of segments allowed was set too high (over
1024) using the /SEGMENTS option. See Section 3.3.14.

Segment 1limit too high

There is insufficient memory for the linker to allocate tables to describe
the number of segments requested (the default of 128 or the value
specified with the /SEGMENTS option). Try linking again using the

SEGMENTS option to select a smaller number of segments (for
example, 64 if the default was used previously), or free some memory by
eliminating resident programs or shells.

Segment size exceeds 64K

User has a small-model program with more than 64K of code, or user
has a middle-model program with more than 64K of data. Try compil-
ing and linking middle- or large-model.

Stack size exceeds 65536 bytes

The size specified for the stack using the /ST ACK option is more than
65536 bytes. See Section 3.3.8.

235

Microsoft Macro Assembler User’s Guide

Symbol table overflow

The user’s program has more than 256K of symbolic information (pub-
lics, externals, segments, groups, classes, files, etc.). Combine modules
and/or segments and recreate the object files. Eliminate as many public
symbols as possible.

Terminated by user

The user entered CONTROL-C.

Too many external symbols in one module
User’s object module specified more than the limit of 1023 external
symbols. Break up the module.

Too many group-, segment-, and class-names

in one module
User’s program contains too many group, segment, and class names.
Reduce the number of groups, segments, or classes, and recreate the
object files.

Tco many groups
User’s program defines more than nine groups. Reduce the number of
groups.

Too many GRPDEEFs in one module

LINK encountered more than nine group definitions (GRPDEFSs) in a
single module. Reduce the number of GRPDEF's or split up the
module. The term GRPDETF is explained in the MS-DOS

Programmer’s Reference Manual and in some other reference books on
MS-DOS.

Too many libraries
User tried to link with more than 16 libraries. Combine libraries, or use
modules that require fewer libraries.

Too many overlays
User’s program defines more than 63 overlays. Reduce the number of
overlays.

Too many segments

The user’s program has more than the maximum number of segments as

specified by the default of 128 or by the SEGMENTS option. Relink

236

Error Messages

using the /SEGMENTS option with an appropriate number of seg-
ments. See Section 3.3.14.

Too many segments in one module

The user’s object module has more than 255 segments. Split the
modules or combine segments.

Too many TYPDEEs

An object module contains too many TYPDEF records. These records
describe communal variables. This error cannot appear with object files
generated by MASM. It can only occur with programs produced by
Microsoft C or other compilers that support communal variables.
TYPDEF is an MS-DOS term. It is explained in the MS-DOS
Programmer’s Reference Manual and in some other reference books on

MS-DOS.

Unexpected end-of-file on library
The disk containing the library has probably been removed. Replace
the disk with the library and try again.

Unexpected end-of-file on scratch file
Disk with VML.TMP was removed. See Section 3.2.6.

Unmatched left parenthesis

User has made a typing mistake while specifying the contents of an
overlay on the command line. See your compiler manual for instruc-
tions on specifying overlays for LINK. MASM does not have an over-
lay manager, so this problem can only occur if you are linking with a
library from a high-level language that supports overlays.

Unmatched right parenthesis

User has made a typing mistake while specifying the contents of an
overlay on the command line. See your compiler manual for instruc-
tions on specifying overlays for LINK. MASM does not have an over-
lay manager, so this problem can only occur if you are linking with a
library from a high-level language that supports overlays.

Unrecognized switch error: option

User entered an unrecognized character after the option indicator (/).
For example:

LINK /ABCDEF main;

237

Microsoft Macro Assembler User’s Guide

Unresolved externals

A symbol was declared external in one module, but it was not declared
public in the module in which it was defined. A symbol must be defined
and declared public (using the PUBLIC directive) in one and only one
module before it can be used as an external symbol (using the EXTRN
directive) by other modules.

VM.TMP is an illegal file name and has been ignored

User has specified VM.TMP as an object file name. Rename file and
link again.

Warning: no stack segment

User’s program contains no stack segment specified with stack combine
type. Normally, every program should have a stack segment with the
combine type specified as stack. You can ignore this message if you
have a specific reason for not defining a stack or for defining one
without the stack combine type.

Warning: too many public symbols

The /MAP option was used to request a sorted listing of public sym-
bols 1n the map file, but there are too many symbols to sort. The linker
will produce an unsorted listing of the public symbols.

A.4 SYMDEB Error Messages

The Microsoft Symbolic Debug Utility, SYMDEDB, displays an error mes-
sage whenever it detects a command 1t cannot complete. SYMDEB
displays the command that caused the error, followed by the message
Error. A caret (") points to the approximate location of the error in the
command line. For example, the following display appears on the screen
when you enter too many arguments for the Dump command (D).

DO12
~ Error

At other times SYMDEB may display error messages to let you know more
about the error. You may see any of the following error messages. Each
error terminates the SYMDEB command under which it occurred, but
does not terminate SYMDEB itself.

238

Error Messages

Bad breakpoint number!

You typed an invalid breakpoint number (the number must be in the
range 0 to 9).

Bad Flag!

You attempted to alter a flag, but the characters typed were not among
the acceptable pairs of flag values. See the Register command (R) in
Section 4.3.5 for the list of acceptable flag entries.

Breakpoint error!
You typed BP without giving an address, or there are no more free
breakpoints (all 10 have been set).

Can't debug packed files!

Files which have been packed with the /EXEPACK option of the
linker, or with the EXEPACK program, cannot be debugged. See Sec-
tion 3.3.3 for more information on the /EXEPACK option, or Section
8.1 for information on the EXEPACK utility.

COMMAND.COM not found!

You typed the Shell Escape command (!), but the shell cannot be
created because COMMAND.COM was not found.

No program to debug!
You tried to redirect program I/O (input/output) when there was no
program to debug.

Not enough memory!
You typed the Shell Escape character (!), but there is not enough free
memory to execute COMMAND.COM. See Section 4.6.26.

Too many breakpoints!

You specified more than 10 breakpoints as parameters to the Go com-
mand (G). Retype the Go command with 10 or fewer breakpoints.

Bad register!

You typed the Register command (R) with an invalid register name.
See the Register command (Section 4.6.22) for the list of valid register
names.

239

Microsoft Macro Assembler User’s Guide

Double flag!
You typed two values for one flag. You may specify a flag value only
once. See the Register command (R) in Section 4.6.22.

Breakpoint list or '*' expected!

You typed a Breakpoint Clear (BC), Breakpoint Disable (BD), or
Breakpoint Enable (BE) command without giving a list of breakpoints
to act on.

Error reading .SYM file!

The symbol file you requested in the SYMDEB command line cannot
be read. The file may be empty, or a disk error may have occurred.

A.5 MAPSYM Error Messages

The Microsoft Symbol File Generator, MAPSYM, terminates operation
and displays one of the following messages whenever it encounters an error:
Can't create: mapname

Can’t create a symbol map for the file specified by mapname.

Can't open MAP file: mapfile

Usually indicates that the map file specified by mapname does not exist.

mapsym: out of memory
MAPSYM cannot find enough system memory to process the symbol
map. Get rid of resident programs or add memory.

mapsym: segment table (number) exceeded
More than 1024 segments used in the map file. The number indicates
the number of segments requested.

No public symbols

Re-1link with /M switch!

You did not use the /M option when linking. This option must be
specified in order to include public symbols in the map file.

240

Error Messages

Unexpected eof reading: mapfile
The specified mapfile is not in a valid format. This could mean that the
file is corrupted. Try linking again to create a new map file.

usage: MAPSYM [/1] maplist
You entered the command line incorrectly. Re-enter the command with
the syntax shown. The single brackets ([]) in the error message indicate
that your choice of the item within them is optional.

Write fail on: symbolfile

The specified symbolfile cannot be written. The disk is full or some
other file error occurred.

A.6 CREF Error Messages

The Microsoft Cross-Reference Utility, CREF, terminates operation and
displays one of the following messages when it encounters an error:
can't open cross-reference file for reading
The .CRF file is not found. Make sure the file is on the specified disk
and that the name is spelled correctly in the command line.
can't open listing file for writing
May indicate that the disk is full or write protected, that a file with the
specified name already exists, or the specified device is not available.
cref has no switches
You specified an option in the command line with the slash (/) or dash
(-) character, but CREF has no options.
extra file name ignore
You specified more than two files in the file name. CREF will create
the reference file using only the first two files given.
line invalid, start again

No .CRF file was provided in the command line or at the prompt.
CREF will display this message followed by a prompt asking for a
.CRF file.

241

Microsoft Macro Assembler User’s Guide

out of heap space
CREF cannot find enough memory to process the files. Try again with
no resident programs or shells, or add more memory.

premature eof

You specified a file that is not a valid .CRF file, or the file is damaged.

- 1

read error on stdlo

(4
This error only occurs if the program receives a CONTROL-Z from the
keyboard or from a redirected file.

A.7 LIB Error Messages

The following error messages may be displayed by the Microsoft Library
Manager, LIB:
cannot create extract file filename

The disk or root directory is full, or the extract file specified by filename
already exists with read-only protection. Make space on the disk or
change the protection of the extract file.

cannot create new library

The disk or root directory is full, or the library file already exists with
read-only protection. Make space on the disk or change the protection
of the library file.

cannot open response file

The given response file was not found.

cannot open VM.TMP

The disk or root directory is full. Delete or move files to make space.

cannot read from VM

Note the circumstances of the failure and notify Microsoft Corporation
using the Software Problem Report form at the end of the Reference
Manual.

242

Error Messages

cannot rename old library
LIB could not rename the old library to have a .BAK extension
because the .BAK version already existed with read-only protection.
Change the protection on the old .BAK version.

cannot reopen library
The old library could not be reopened after it was renamed to have a
.BAXK extension.

cannot write to VM

Note the circumstances of the failure and notify Microsoft Corporation
using the Software Problem Report form at the end of the Reference
Manual.

comma or newline expected

A comma or carriage return was expected in the command line, but did
not appear. This may indicate an inappropriately placed comma, as in
the line:

LIB math.lib, -modl+mecd2;
The line should have been entered as:
LIB math.lib -modl+mod2:

error writing to cross reference file

The disk or root directory is full. Delete or move files to make space.

error writing to new library

The disk or root directory is full. Delete or move files to make space.

Free: not allocated

Note the circumstances of the failure and notify Microsoft Corporation
using the Software Problem Report form at the end of the Reference
Manual.

insufficient memory

LIB does not have enough memory to run. Remove any shells or
resident programs and try again, or add more memory.

243

Microsoft Macro Assembler User’s Guide

internal failure
Note the circumstances of the failure and notify Microsoft Corporation
using the Software Problem Report form at the end of the Reference
Manual.
invalid library
The library does not conform to the format expected by LIB.
Invalid object module name near location
in file ltbraryname

The module specified by name is not a valid object module.

Mark: not allocated
Note the circumstances of the failure and notify Microsoft Corporation
using the Software Problem Report form at the end of the Reference
Manual.

missing terminator
The response to an Output library: prompt was not terminated by
a carriage return.

no more virtual memory

Note the circumstances of the failure and notify Microsoft Corporation
using the Software Problem Report form at the end of the Reference
Manual.

page size too small
Page size specified with the /PAGESIZE option must be 16 or greater.

too many symbols

The maximum number of symbols allowed in a library file is 4609.

syntax error
The given command did not follow correct LIB syntax as specified in
Chapter 6.

syntax error (bad input)

The given command did not follow correct LIB syntax as specified in
Chapter 6.

244

Error Messages

syntax error (bad file spec)
A command operator such as a minus sign (-) was given without a fol-
lowing module name.

syntax error (switch name expected)

A forward slash (/) was given without the PAGESIZE option.

syntax error (switch val expected)
The /PAGESIZE option was given without a following value.

unexpected EOF on command input
An end-of-file character was received prematurely in response to a
prompt.

unknown switch
An unknown option was given. The /PAGESIZE option is the only
one currently recognized by LIB.

write to extract file failed

The disk or root directory is full. Delete or move files to make space.

write to library file failed

The disk or root directory is full. Delete or move files to make space.

A.8 MAKE Error Messages

Most error messages displayed by the Microsoft Program Maintenance Util-
ity, MAKE, have the following form:

filename linenumber + message

The filename is the MAKE description file. The linenumber is the line
where the error occurred. Il an error occurs after MAKE has finished read-
ing through the file, the linenumber will be listed as 1 even though this will
not be the correct line number. The message is one of the error messages
listed below:

245

Microsoft Macro Assembler User’s Guide

Exec not available on DOS 1.x

MAXKE requires MS-DOS or PC-DOS Version 2.0 or later.

expansion too big
A line with macros expands to longer than 512 bytes. Try rewriting the
make file to use two short lines instead of one long one.

line too long
A line in the make file is longer than 128 characters. Try rewriting the
make file to use two short lines instead of one long one.

make: command - errorcode

One of the programs or commands called in the make file was not able
to execute correctly,. MAKE terminates and displays the command fol-
lowed by the code of the error that caused it to fail. Error codes are
described in Appendix B of this User’s Guide.

make: colon missing in filename

A line that should be a target-dependent line lacks a colon indicating
the separation between target and dependent. MAKE expects any line
following a blank line to be a target-dependent line.

make: dependent 'filename' does not exist,
target 'filename' not built

MAKE could not continue because a required dependent file did not
exist. Make sure all named files are present and that they are spelled
correctly in the MAKE description file.

make: infinitely recursive macro

A circular chain of macros was defined. For example:

$ (B)
s (C)
$ (A)

make: multiple source

T

An inference ruler has been defined more than once.

make: out of memory

MAKE has run out of memory for processing the make file. Try to
reduce the size of the make file by reorganizing or splitting it.

246

Error Messages

make: out of space
MAKE has run out of memory for processing the make file. Try to
reduce the size of the make file by reorganizing or splitting it.
make: syntax error

The make file has a line beginning with an equal sign (=).

make: target does not exist 'filename'

This usually does not indicate an error. It warns the user that the tar-
get file did not exist. MAKE executes any commands given in the
target/dependent description since in many cases the target file will be
created by a later command in the MAKE description file.

Stack overflow
Recursive macros have used up all available memory. Reduce the
number or levels of nested macros.

usage: make [/n] [/d] [/i] [/s] [name=value ...] file

MAKE has not been invoked correctly. Try entering the command line
again with the syntax shown in the message.

A.9 EXEPACK Error Messages

The Microsoft EXE File Compression Utility, EXEPACK, generates the
following error messages:
exepack: can't change load-high program
When the minimum allocation value and the maximum allocation value
are both zero, the file cannot be compressed.
exepack: error reading relocation table

The file cannot be compressed because the relocation table cannot be
found or is invalid.

exepack: invalid .EXE file (actual length < reported)

The second and third fields in the file header indicate a file size greater
than the actual size.

247

Microsoft Macro Assembler User’s Guide

exepack: invalid .EXE file (bad header)

The given file is not an executable file or has an invalid file header.

exepack: filename: No such file or directory

The file specified by filename cannot be found.

exepack: filename: Permission denied

The file specified by filename is a read-only file.

exepack: out of memory
The EXEPACK utility does not have enough memory to operate.

Out of space on output file

The disk or root directory is full. Delete or move files to make space.

exepack: too many segments in relocation table
The given file is too large to be compressed in the available system
memory.

usage: exepack <infile> <outfile>
The EXEPACK command line was not specified properly. Try again
using the syntax shown.

You may also encounter MS-DOS error messages if the EXEPACK pro-
gram cannot read from, write to, or create a file.

A.10 EXEMOD Error Messages

The Microsoft EXE File Header Utility, EXEMOD, generates the following
€rror messages:

exemod: can't change load-high program

When the minimum allocation value and the maximum allocation value
are both zero, the file cannot be modified.

248

Error Messages

exemod: file not .EXE
EXEMOD automatically appends the .EXE extension to any file name
without an extension; in this case, no file with the given name and an
EXE extension could be found.

exemod: 1invalid .EXE file (actual length < reported)
The second and third fields in the file header indicate a file size greater
than the actual size.

exemod: invalid .EXE file (bad header)

The specified file is not an executable file or has an invalid file header.

exemod: min > max (correcting max)

If the minimum allocation value is greater than the maximum alloca-
tion value, the maximum allocation value is adjusted. This is a warn-
ing message only; the modification is still performed.

exemod: min < stack (correcting min)

If the minimum allocation value is not enough to accommodate the
stack (either the original stack request or the modified request), the
minimum allocation value is adjusted. This is a warning message only;
the modification is still performed.

exemod: filename: No such file or directory

The file specified by filename cannot be found.

exemod: filename: Permission denied

The file specified by filename is a read-only file.

exemod: (warning) packed file

The given file is a packed file. This is a warning only. EXEMOD will
still modify the file. The values shown if you ask for a display of MS-
DOS header values will be the values after the packed file 1s expanded.

usage:exemod file [-/h] [-/stack n] [-/max n] [-/min n]

The EXEMOD command line was not specified properly. Try again
using the syntax shown. Note that the option indicator can be either a
slash (/) or a dash (=). The single brackets ([]) in the error message
indicate that your choice of the item within them is optional.

249

Microsoft Macro Assembler User’s Guide

The EXEMOD utility also produces error messages when the file header is
not in recognizable .EXE format, or if errors occur in reading from, or
writing to, a file.

2560

Appendix B
Eixit Codes

B.1 Introduction 253
B.2 Exit Codes with Make

B.3 Exit Codes with MS-DOS Batch Files

B.4 Exit Codes for Programs

in the Macro Assembler Package

B.4.1 MASM Exit Codes

B.4.2 LINK Exit Codes 255

B.4.3 SYMDEB Exit Codes
B.4.4 MAPSYM Exit Codes

B.4.5 CREF Exit Codes 256
B.4.6 LIB LExit Codes 256

B.47 MAKE Exit Codes
B.4.8 EXEPACK Exit Codes
B.4.9 EXEMOD Exit Codes

251

Exit Codes

B.1 Introduction

All the programs in the Microsoft Macro Assembler package return a code
sometimes called an “errorlevel” code) that can be used by MS-DOS batch
les or other programs such as MAKE. If the program finishes without

errors, it returns a code of 0. The code returned varies if the program

encounters an error. This appendix lists the numbers returned when a pro-
gram encounters an error.

B.2 Exit Codes with Make

MAKE automatically stops execution if a program executed by one of the
commands in the MAKE description file encounters an error. The exit
code is displayed as part of the error message.

For example, assume the MAKE description lile test contains the follow-
ing lines:

test.obj : test.asm

MASM test:
If the source code in test.asm contains an assembly error, you would see
this message the first time you use MAKE with the file test:

make: MASM test; - error 7

This error message indicates that the command MASM test; in the
MAKE description file returned code 7.

B.3 Exit Codes with MS-DOS Batch Files

If you prefer to use MS-DOS batch files instead of MAKE, you can test the
code returned with the IF ERRORLEVEL command. The sample batch
file below, called ASMBI. . BAT, illustrates how:

MASM %1

IF NOT ERRORLEVEL 1 LINK %1;
IF NOT ERRORLEVEL 1 %1

263

Microsoft Macro Assembler User’s Guide

If you execute this sample batch file with the command ASMBL test,
MS-DOS first executes the command MASM test; and returns a code of 0
if MASM is successful, or a higher code if MASM encounters an error. In
the second line, MS-DOS tests to see if the code returned by the previous
line is 1 or higher. If it is not (that is, if the code is 0), MS-DOS executes
the command LINK test; and again returns a code which will be tested
by the third line.

B.4 Exit Codes for Programs
in the Macro Assembler Package

An exit code of 0 always indicates execution of the program with no fatal
errors. Warning errors also return exit code 0. Some programs can return
various codes indicating different kinds of errors, while other programs
return only 1 to indicate that an error occurred. The exit codes for each
program are listed in Sections B.4.1-B.4.9.

B.4.1 MASM Exit Codes

Code Meaning

No error

Argument error

Unable to open input file

Unable to open listing file

Unable to open object file

Unable to open cross-reference file
Unable to open include file

Assembly error

W ~IT & U dx W N = O

Memory allocation error

f—
=)

Error defining symbol from command line

[
[a—y

User interrupted

264

Exit Codes

Note that if the exit code is 7, MASM automatically deletes the invalid

object file.

B.4.2 LINK Exit Codes

Code

0

1
16
32
33
66
96
144
145
146

147
148
149
150
151
177

Meaning

No error

All LINK fatal errors not listed below
Data record too large

No object modules specified

Cannot open list file

Common area longer than 65536 bytes
Too many libraries

Invalid object module

Too many TYPDEFs

Too many group-, segment-, and/or class-names in one
module

Too many segments, or too many segments in one module
Too many overlays

Segment size exceeds 64K

Too many groups or too many GRPDEF's in one module
Too many external symbols in one module

Group larger than 64K

B.4.3 SYMDEB Exit Codes

SYMDEB does not return exit codes. However, it does display return
codes returned by programs run within SYMDEB. For example, if you
run LINK from within SYMDEB and it encounters an error that returns

1, you will see the following line:

Program terminated normally (1)

266

Microsoft Macro Assembler User’s Guide

B.4.4 MAPSYM Exit Codes

Code Meaning

0 No error
1 Write failure, can’t create symbol file, or no such map file.
4 Unexpected end-of-file (usually invalid map file), out of

memory, too many segments, or no public symbols.

B.4.5 CREF Exit Codes

Code Meaning

0 No error
1 Any CREF fatal error

B.4.6 LIB Exit Codes
Code Meaning

0 No error

1 All LIB fatal errors not listed below
4 Internal error

13 Too many symbols

16 Page size too small

B.4.7 MAKE Exit Codes

Code Meaning

0 No error
1 Any MAKE fatal error

If a program called by a command in the MAKE description file produces
an error, the exit code will be displayed in the MAKE error message.

2b6

Exit Codes

B.4.8 EXEPACK Exit Codes

Code Meaning

0 No error
1 Any EXEPACK fatal error

B.4.9 EXEMOD Exit Codes
Code Meaning

0 No error
1 Any EXEMOD f{atal error

2b7

Appendix C
Using EXEPACK and EXEMOD

C.1 Introduction 261
C.2 The EXEPACK Utility 261
C.3 The EXEMOD Utility 262

269

Using EXEPACK and EXEMOD

C.1 Introduction

The Microsoft EXE File Compression Utility, EXEPACK, and the Micro-
soft EXE File Header Utility EXEMOD, supplied with the Microsoft
Macro Assembler package, allow you to modify executable program files.

EXEPACK compresses executable files by removing sequences of repeated
characters from the file and by optimizing the relocation table. EXEMOD
allows you to examine and modify file header information. The following

sections explain how to use the EXEPACK and EXEMOD programs.

C.2 The EXEPACK Utility

EXEPACK compresses sequences of identical characters from a specified
executable file and optimizes the relocation table. Using EXEPACK, you
can significantly reduce the size of some files and decrease the time required
to load them.

EXEPACK will not always give a significant savings in disk space (and
may sometimes actually increase file size). Programs that have a large
number of load-time relocations (about 500 or mor? and long streams of
repeated characters will usually be shorter if packed.

The EXEPACK program has exactly the same function as the LINK
/EXEPACK option except that EXEPACK works on files that have
already been linked. One use for this utility is to pack the files provided
with the Microsoft Macro Assembler package. The savings in disk space is
insignificant for most of these programs, but the size of MAPSYM.EXE
can be reduced significantly.

The EXEPACK command line format is:
EXEPACK ezecutablefile packedfile
The executablefile is the file to be packed and packedfile is the name for the

packed file. The packedfile should have a different name or be on a different
disk since EXEPACK will not pack a file onto itself.

261

Microsoft Macro Assembler User’s Guide

Do not try to get around the limitation against packing = file onto itself by
specifying the same file in a different way. You may be able to fool EXE-
PACK, but the result will be a damaged file. If you want the packed file
to replace the original, you should use a separate name for the packed file,
then delete the original and rename the packed copy.

When using EXEPACK to pack an executable overlay file or a file that
calls overlays, the packed file should be always be renamed back to the
original name.

C.3 The EXEMOD Utility

EXEMOD modifies fields in the MS-DOS file header. In order to use this
utility, you need to understand the MS-DOS conventions for file headers.
They are explained in the Microsoft MS-DOS Programmer’s Reference
Manual and in some other reference books on MS-DOS.

Some of the options available with EXEMOD are the same as LINK
options except that they work on files that have already been linked.
Unlike the LINK options, the EXEMOD options require that values be
given in hexadecimal.

To display the current status of the header fields, type:
EXEMOD ezecutablefile

To modify one or more of the fields in the file header, type:

EXEMOD ezecutablefile [/H] | [/STACK number] [/MIN number] [/MAX number]

EXEMOD expects the executablefile to be the name of an existing file with
the .EXE extension. If the filename is given without an extension, EXE-
MOD appends .EXE and searches for that file. If you supply a file with an
extension other than .EXE, EXEMOD displays an error message.

The options in examples are shown with the forward slash (/) option desig-
nator, but a dash (~) may also be used. Options can be given in either
upper- or lowercase, but they cannot be abbreviated. The options and their
effects are described in the following list:

262

Option
/STACK number

/MIN number

/MAX number

/H

Using EXEPACK and EXEMOD

Effect

Sets the initial SP (stack pointer) value to
number, where number is a hexadecimal value
setting the number of bytes. The minimum allo-
cation value is adjusted upward, if necessary.
This option has the same effect as the LINK
/STACK option.

Sets the minimum allocation value to number,
where number is a hexadecimal value setting the
number of paragraphs. The actual value set may
be different from the requested value if adjust-
ments are necessary to accommodate the stack.

Sets the maximum allocation to number, where
number is a hexadecimal value setting the
number of paragraphs. The maximum allocation
value must be greater than, or equal to, the
minimum allocation value. This option has the

same effect as the LINK /CPARMAXALLOC
option.

This option displays the current status of the
MS-DOS program header. Its effect is the same
as entering EXEMOD with an ezecutablefile,
but no options. The /H option should not be
used with other options.

Note

The /STACK option can be used on programs assembled with MASM
or programs compiled with the Microsoft C Compiler Version 3.0 or
later, the Microsoft Pascal Compiler Version 3.3 or later, or the Micro-
soft FORTRAN Compiler Version 3.3 or later. Use of the /STACK
option on programs developed with other compilers may cause the pro-
grams to fail, or EXEMOD may return an error message.

EXEMOD works on packed files. When it recognizes a packed file, it will
print the following message:

exemod: (warning) packed file

It will then continue to modify the file header.

263

Microsoft Macro Assembler User’s Guide

When packed files are loaded, they are expanded to their unpacked state in
memory. If the EXEMOD /STACK option is used on a packed file, the
value changed is the value that SP will have after expansion. If either the
/MIN or /STACK option is used, the value will be corrected as necessary
to accommodate unpacking of the modified stack. The /MAX option
operates as it would for unpacked files.

If the header of a packed file is displayed, the CS:IP and SS:SP values are
displayed as they will be after expansion, which is not. the same as the

actual values in the header of the packed file.

Examples

EXEMOD test.exe

test.exe (hex) (dec)
Minimum load size (bytes) 419D 16797
Overlay number 0 0
Initial CS:IP 0403:0000

Initial SS:SP 0000 : 0000 ¢}
Minimum allocation (para) 0 0
Maximum allocation (para) FFFF 65535
Header size (para) 20 32
Relocation table offset 1E 30
Relocation entries 1 1

The first example shows the file header for file test.exe. The following

command line shows how to modify the header:

EXEMOD test.exe /STACK FF /MIN FF /MAX FEF

The second example shows a display of values after the modification:

EXEMOD test.exe

test.exe (hex) (dec)
Minimum load size (bytes) 528D 20877
Overlay number 0 0
Initial CS:IP 0403:0000

Initial SS:SP 0000: 0CFF 256
Minimum allocation (para) FF 256
Maximum allocation (para) FFF 4095
Header size (para) 20 32
Relocation table offset 1E 30
Relocation entries 1 1

264

Index (User’s Guide)

10-byte reals

dumping, 118

entering, 126
.286p directive, 27
8086,/80186,/80286 instruction set, 3, 4
8087 or 80287 instruction set, 28
8087/80287 instruction set, 3, 4

/A option, MASM, 21

Absolute disk sector, 161

Add (+) command, LIB, 195

Address ranges, SYMDEB parameters,
94

Addresses, SYMDEB parameters, 94

Align type, 69

Argument passing, SYMDEB, 85, 136

Arguments to commands, 77, 83

ASCIIZ format, 168

Assemble command, 100, 173

Assembler, described, 15

Assembler. See MASM

Assemblers, compatible with SYMDEB,
78

Assembly language, learning, 5

Assembly listing, Pass 1, 23

B option, MASM, 22
ackslash, Screen-Swap Command,
147
Batch files, 253
Binary operators, SYMDEB, 97
BIOS (basic input/output system), 5
BIOS, SYMDESB, 88
Breakpoint address, 130
Breakpoint commands in SYMDEB
Breakpoint Clear, 105
Breakpoint Disable, 105, 171
Breakpoint Enable, 106
Breakpoint List, 107, 171
Breakpoint Set, 103
Breakpoint display with register, 145
Breakpoint set, 170, 172

C language with SYMDEB, 80, 90, 92,
151, 159, 160
/C option, MASM, 31
Calling conventions, 153
Case-sensitive compilers, 25, 26
Case-sensitivity options
options for LINK, 26
options for MASM, 25
Class type, LINK, 70
.COM files, modifying with SYMDEB,
161
Combine (+) command, LIB, 199
Combine types
at, 70
common, 70
memory, 71
private, 71
public, 70
stack, 70
Combining segments, 70
Command lines
with CREF, 179
with LIB, 188
with LINK, 48
with MASM,, 17
Comment command, 108
Comments, in SYMDEB, 108
Compare command, SYMDEB, 108
Compatibility
IBM languages, 5
language compilers, 10
other assemblers, 5, 9
with SYMDEB, 78, 79
Compilers
compatible with SYMDERB, 59, 79
overlays, 49, 66
Compressing executable files, 261
COMSPEC environment variable, 151
Conventions, notational, 10
Coprocessors
instruction sets for, 4
Copy (*) command, LIB, 198
/CPARMAXALLOC option, LINK, 63,
151

2656

Index (User’s Guide)

CREF
command line, 179
cross-reference file, 177
described, 177
error messages, 241
exit codes, 256
invoking, 178, 179
prompts, 178
Cross-reference file, 18
Cross-reference files
comparing with listing, 33
creating, 16, 31, 177
Cross-reference utility. See CREF
Cross-reference
converting to listing, 178, 179
listing format, 180
CS: override directive, 27

/D option, MAKE, 206

D option, MASM, 23

ebug utility. See SYMDEB
Description file, MAKE, 203
Disassembly mode, SYMDEB, 157
Disk swapping, 56
Display command, SYMDEB, 109
Display modes in SYMDEB

disassembly, 157

mixed, 157

source, 157
/DOSSEG option, LINK, 68
/DSALLOCATE option, LINK, 64
/Dsymbol option, MASM, 23
Dump Commands in SYMDEB

Dump 10-Byte Reals, 118

Dump, 110, 168

Dump ASCII, 112, 169, 170

Dump Bytes, 113

Dump Doublewords, 115

Dump Long Reals, 117

Dump Short Reals, 116

Dump Words, 114

/E option, MASM, 28

Enter Commands in SYMDEB
Enter 10-Byte Reals, 126
Enter, 119
Enter ASCII, 122
Enter Bytes, 120

266

Enter Commands in SYMDEB
(continued)
Enter Doublewords, 123
Enter Long-Reals, 125
Enter Short-Reals, 124
Enter Words, 122
Environment variables
LIB, 52
EQU directive, 23

Error message format, 33

Error messages
CREF, 241
EXEMOD, 248
EXEPACK, 247
LIB, 242
LINK, 231
MAKE, 245
MAPSYM, 240
MASM, 217
SYMDEB, 238
Errorlevel codes. See Exit codes
Examine Symbol-Map command,
SYMDEB, 126, 166
EXE files, modifying with SYMDEB,
161
Executable files, modifying, 262
Executable files
compressing, 261
creating, 45
Executable image, 68
EXEMOD, 262
EXEMOD
described, 9, 262
error messages, 248
exit codes, 257
/H option, 263
/MAX option, 263
/MIN option, 263
STACK option, 263
é PACK option, LINK, 58
XEPACK
described, 9, 261
error messages, 247
exit codes, 257
Exit codes, 8, 253
Expression evaluation with SYMDEB,
97, 109
External address, 34
External names, 26

False conditionals, 29

File control blocks, 86, 133, 136

File handle, 169

File header, MS-DOS, 56, 83, 85, 162

Files on distribution disk, 3

Fill command, SYMDEB, 129

Fixups, LINK, 71

Flags register, SYMDEB, 144

Floating-point emulator, 28

Floating-point processor, 28

FORTRAN, with SYMDEB, 81, 91,
149, 151, 154, 158

Forward references, MASM, 42

Frame number, canonical, 69

Function calls, tracing with SYMDEB,
140, 155, 168

Go command with SYMDEB, 130, 167,
169, 170, 172
Groups
assembly listing, 37
linking, 71

H option, EXEMOD, 263

ardware interrupt devices, 89, 100
Help command, SYMDEB, 132
/HELP Option, LINK, 56
Hex command, SYMDEB, 132

HIGH option, LINK, 64, 65

igh start address, setting, 64, 65
High-level-language compilers

source mode, SYMDEB, 148

/1 option
MAKE, 206
MASM, 24
IBM languages, compatibility, 5
/IBM option, SYMDEB, 87, 90, 147,
166
IBM-compatible mode, SYMDEB, 87
IF directives, 29
Impure code, checking for, 27
Include files, 24
Inference rules, 210
Input command, SYMDEB, 133
Interactive breakpoint key, 88, 100,
166

Index (User’s Guide)

/K option, SYMDEB, 88, 166

/L option (MAPSYM), 82
/L option, MASM, 32

Language compiler compatibility, 10

Learning assembly language, 5
LIB commands
Add (+), 195
Combining (+), 199
Copy (*), 198
listed, 195
Move (-*), 198
Remove (-), 196
Replace (-+), 197
LIB
checking consistency, 193
command line, 188
creating a library, 192
described, 185
environment variable, 52
error messages, 242
exit codes, 256
library files, 186, 188
library-reference listing, 194
/PAGESIZE option, 188, 191
prompts, 186
Libraries. See LIB
Libraries
combining, 199
consistency, 193
creating, 192
library-reference listing, 194
managing, 185
page size, 191
Library files, 46, 48, 186, 188
LIB
response file, 189
Line numbers
MASM listings, 33
SYMDEB parameters, 96

JLINENUMBERS option, LINK, 59,

80, 81

LINK options
/CPARMAXALLOC, 63, 151
/DOSSEG, 68
/DSALLOCATE, 64
/EXEPACK, 58
/HELP, 56
/HIGH, 64, 65

267

Index (User’s Guide)

LINK options (continued)
LINE ERS, 59, 80, 81
isted, 55
/MAP, 58, 80, 81, 165
/NODEFAULTLIBRARYSEARCH,

61

/NOGROUPASSOCIATION, 65
/NOIGNORECASE, 60
/OVERLAYINTERRUPT, 66
/PAUSE, 56
/SEGMENTS, 67

STACK, 62
LIQK

align type, 69
command line, 48
described, 45
error messages, 231
exit codes, 255
groups, 71
Linking
described, 45, 68
LINK
invoking, 45
library files, 46, 48
library search, 61
map file, 46, 48, 53, 58, 59
operation, 68
overlays, 49, 66
preserving case-sensitivity, 60
prompts, 45
response file, 50
search paths, 52
temporary file, 54
Listing-file format, MASM, 8
Load command, SYMDERB, 133
Logical record, loading with SYMDEB,
134
Logical record writing, SYMDEB, 161
Long reals
dumping with SYMDERB, 117
entering with SYMDEB, 125

Macro Assembler. See MASM
Macros

assembly listing, 36

macro definitions, MAKE, 207

macro expansion, MASM, 34
MAKE description file, 203
MAKE options

268

MAKE options (continued)
/D, 206
/1,206
/N, 206
/S, 206
MAKE

dependent file, 204
described, 203
description file, 203
error messages, 245
example, 211
exit codes, 253, 256
inference rules, 210
invoking, 205
macro definitions, 207
messages, 206
special macro names, 209
target file, 204
Map file, required for SYMDEB, 78
Map files
creating, 46, 59
format, 48
including line numbers, 59
including public symbols, 53
/MAP option, LINK, 58
MAP option, SYMDEB, 80, 81, 165
SYM

/L option, 82

creating symbol maps, 79, 80, 81, 165

drive and directory specification, 82

error messages, 240

exit, codes, 256
MASM options

/A, 21

/B, 22

/C, 31

/D, 23

/Dsymbol, 23

/E, 28

/1, 24

/L, 32

/ML, 25

/MU, 26

/MX, 26

/N, 27

/P, 27

/R, 28

/8, 22

/T, 32

using, 16, 17, 20

MASM options (continued)
/V, 29
/X, 29
/Z, 31
MASM
additional statistics, 29
assembly listing, 32
checking for impure code, 27
command line, 17
converting to uppercase, 26
cross-reference file, 16, 18, 31, 177
defining assembler symbols, 23
described, 15
displaying error lines, 31
error messages, 217
exit codes, 254
false conditionals, 29
floating-point emulator, 28
floating-point processor, 28
group table, 37
invoking, 15
macro listing, 36
options
/V, 217
Pass 1 listing, 23, 41
phase errors, 41
preserving case-sensitivity, 25, 26
prompts, 15
record table, 36
segment ordering, 21, 22
segment table, 37
setting file buffer, 22
setting search paths, 24
structure table, 36
suppressing unnecessary tables, 27
symbol table, 39
/MAX option, EXEMOD, 263
Maximum memory allocation,
controlling, 263
Maximum memory allocation,
controlling, LINK, 63
Memory release for SYMDEB, 151
Memory requirements, 4
MIN option, 263
inimum allocation value, controlling,
263
Mixed mode, SYMDERB, 157
/ML option, MASM, 25
Modify allocate memory function,

MASM, 151

Index (User’s Guide)

Modifying executable files, 262
Move (-#) command, LIB, 198
Move command, SYMDEB, 135
MS-DOS, version requirements, 4
MS-DOS
file header, SYMDERB, 83, 85, 162
function calls, 5
Program header, 263
/MU option, MASM, 26
/MX option, MASM, 26

/N option, MAKE, 206
/N option, MASM, 27
N option, SYMDEB, 89
ame command, SYMDEB, 136
New features, 7
/NODEFAULTLIBRARYSEARCH
option, LINK, 61
/NOGROUPASSOCIATION option,
LINK, 65
NOIGNORECASE option, LINK, 60
onmaskable interrupts, SYMDEB; 89
Numbers, SYMDEB parameters, 93

Object ranges, SYMDEB parameters,
95

Octal option not supported, 8

Open Map command, 137

Operators

SYMDEB, 97, 98

Order of segments, 70

Output command, SYMDEB, 139

/OVERLAYINTERRUPT option,
LINK, 66

Overlays, LINK, 49, 66

P option, MASM, 27
acking executable files, 58
PAGESIZE option, LIB, 188, 191
arameters for commands, SYMDEB,
91
Pascal with SYMDEB, 81, 90, 149, 151,
154, 158
Pass 1 listing, 41
PATH command, MS-DOS, 210
/PAUSE Option, LINK, 56
PC-DOS. See MS-DOS

269

Index (User’s Guide)

Phase errors, MASM, 23, 41
Ports, accessing, 133, 139
Procedure calls, tracing, 140, 155
Program header, inspecting, 263
Program header, SYMDERB, 83, 86
Program maintainer. See MAKE
Programs on distribution disk, 3
PTrace command, 139, 167
Public, declaring symbols for
SYMDERB, 78, 163
Public names, 26

Quit command, SYMDEB, 141
Quoted commands option, SYMDEB,
90, 166

/R option, MASM, 28

Radixes in SYMDEB, 93

Records, assembly listing, 36
Redirection command, SYMDEB, 141
Register command, SYMDEB, 143, 166
Relocatable address, 34

Remove (-) command, LIB, 196
Replace (-+) command, LIB, 197
Return codes. See Exit Codes

/S option, MAKE, 206
/S option, MASM, 22
/S option, SYMDERB, 89, 147, 166, 167
Sample session, SYMDEB, 163
Screen-Swap command, SYMDEB, 89,
147, 169

Search command, SYMDEB, 147, 162
Search paths, LINK, 52
Segment number, setting maximum, 67
Segment order

compatibility, 9

MS-DOS convention, 68
/SEGMENTS option, LINK, 67
Segments

assembly listing, MASM,, 37
SET command, LINK, 52
Set Source-Mode command, 148
SFCOND directive, MASM, 30
Shell Escape command, SYMDEB, 150
Short reals

dumping, with SYMDERB, 116

270

Short reals (continued
entering, with S EB, 124
Source file
specifying with SYMDEB, 149
SYMDERB, 96
Source lines
compatible compilers, 79
tracing, 149
Source-Line command, SYMDEB, 152
Source-Mode command, SYMDEB, 148
Source-mode example, 157
Special macro names, MAKE, 209
Spelling of symbol names, 92
Stack frame, 152
/STACK option, EXEMOD, 263
/STACK option, LINK, 62
Stack size, controlling, 263
Stack size
controlling with LINK, 62
Stack Trace command, SYMDEB, 152
Start-up commands option, SYMDEB,
90, 166
Start-up routine, executing with
SYMDEB, 80
Statement evaluation, SYMDEB, 143,
145
Sticky breakpoints, SYMDEB, 103
Strict type checking, 10
Strings in SYMDEB parameters, 97
Structures, assembly listing, 36
Suppressing messages, MASM, 32
Symbol maps
examining, 126
opening, 137
Symbol space, 7
Symbolic debugger. See SYMDEB
Symbolic debugging, 77, 84
Symbol-map files
creating, 81
format, 53
loading, 84
multiple, 84
opening, 84
Symbols, assembly listing, 39
Symbols in SYMDEB parameters, 91
Symbol Set command, 154
SYMDEB command parameters
address range, 94
addresses, 94
described, 91

SYMDEB command parameters
(continued)

line numbers, 96

numbers, 93

object range, 95

strings, 97

symbols, 91

SYMDEB commands

Assemble, 100, 173
Breakpoint Clear, 105
Breakpoint Disable, 105, 171
Breakpoint Enable, 106
Breakpoint List, 107, 171
Breakpoint Set, 103, 170, 172
Comment, 108

Compare, 108

Display, 109

Dump 10-Byte Reals, 118
Dump, 110, 168

Dump ASCII, 112, 169, 170
Dump Bytes, 113

Dump Doublewords, 115
Dump Long Reals, 117
Dump Short Reals, 116
Dump Words, 114

Enter 10-Byte Reals, 126
Enter, 119

Enter ASCII, 122

Enter Bytes, 120

Enter Doublewords, 123
Enter Long Reals, 125
Enter Short Reals, 124
Enter Words, 122

Examine Symbol Map, 126, 166

Fill, 129

Go, 130, 166, 169, 170, 172
Help, 132

Hex, 132

Input, 133

listed, 99

Load, 133

Move, 135

Name, 136

Open Map, 137
Output, 139

PTrace, 139, 167
Quit, 141
Redirection, 141
Register, 143, 166
Screen Swap, 147, 169

Index (User’s Guide)

SYMDEB commands (continued)
Search, 147, 162
Set Source Mode, 148
Shell Escape, 150
Source Line, 152
Symbol Set, 154
Trace, 152, 155, 167, 172, 173
Unassemble, 157, 167
View, 160
Write, 161
SYMDEB options
/IBM, 87, 90, 147, 166
/K, 88, 166
/N, 89
/S, 89, 147, 166, 167
start-up commands, 90, 166
SYMDEB
argument passing, 85, 136
assembly rules, 101
breakpoint instructions explained,
131
case-insensitivity, 92
declaring symbols public, 78, 163
described, 77
editing keys, 100
error messages, 238
exit codes, 255
expressions, 97
flags register, 144
function calls, 140, 155, 168
operators, 97, 98
procedure calls, 140, 155
processor line, 84
program files, 83
program header, 83, 86
radixes, 93
sample session, 163
source file, 96
starting, 82
starting without a file, 86
statement evaluation, 143, 145
symbol-map file, 81, 84

/T option, MASM, 32

Target/dependent descriptions,
MAKE, 203

Text editor, 4

Text string, MASM, 23

.TFCOND directive, MASM, 30

271

Index (User’s Guide)

TOOLS.INI file, MAKE, 210

Trace command, SYMDEB, 155, 167,
172,173

Type checking, strict, 10

Unary operators, SYMDEB, 98
Unassemble command, SYMDEB, 157,
167
Utilities
EXEMOD, 262
EXEPACK, 261

/V option, 217

/V option, MASM, 29

View command, SYMDEB, 160
Virtual breakpoint, SYMDEB, 107
VM.TMP file, LINK, 54

Write command, SYMDEB, 161
/X option, MASM, 29

/Z option, MASM, 31

272

Microsoft.
Macro Assembler

for the MS-DOS: Operating System

Reference Manual

Microsoft Corporation

Information in this document is subject to change without notice and does not
represent 2 commitment on the part of Microsoft Corporation. The software de-
scribed in this document is furnished under a license agreement or nondisclosure
agreement. The software may be used or copied only in accordance with the terms
of the agreement. It is against the law to copy this software on magnetic tape, disk,
or any other medium for any purpose other than the purchaser’s personal use.

® Copyright Microsoft Corporation, 1984, 1985

If you have comments about the software, complete the Software Problem Report at
the back of this manual and return it to Microsoft Corporation.

If you have comments about the software documentation, complete the Documen-
tation Feedback reply card at the back of this manual and return it to Microsoft
Corporation.

Microsoft, the Microsoft logo, MS-DOS, MS, and XENIX are registered trademarks of Microsoft
Corporation. The High Performance Software is a trademark of Microsoft Corporation.

IBM is a registered trademark of International Business Machines Corporation.

Intel is a registered trademark of Intel Corporation.

Document Number 410610002-400-R00-1285

Contents

1 Introduction 1

1.1 Overview 3
1.2 About This Manual 3
1.3 Notational Conventions 4

2 Elements of the Assembler 9

1 Introduction 11

2 Character Set 11

3 Integers 11

4 Real Numbers 13

5 Encoded Real Numbers 13

.6 Packed Decimal Numbers 14

7 Character and String Constants 15
8 Names 15
9 Reserved Names 16
.10 Statements 17
1

1

.12 COMMENT Directive 19

3 Program Structure 21

1 Introduction 23

2 Source I'iles 23

3 Instruction-Set Directives 25

4 SEGMENT and ENDS Directives 27
5 END Directive 35

.6 GROUP Directive 36

7 ASSUME Directive 39

8 ORG Directive 40

.9 EVEN Directive 41

.10 PROC and ENDP Directives 41

see
111

Contents

4

.
v

Types and Declarations 45

Introduction 47

Label Declarations 47

Data Declarations 48

Symbol Declarations 54

Type Declarations 56

Structure and Record Declarations 60

B
O O QW DN

Operands and Expressions 65

5.1 Introduction 67

5.2 Operands 67

5.3 Operators and Expressions 78

5.4 Expression Evaluation and Precedence 92
5.5 Forward References 93

5.6 Strong Typing for Memory Operands 95

Global Declarations 97

Introduction 99
PUBLIC Directive 99
EXTRN Directive 100
Program Example 101

[W o o]
W QO DD

Conditional Directives 103

7.1 Introduction 105

7.2 Conditional-Assembly Directives 105
7.3 Conditional Error Directives 110
Macro Directives 115

8.1 Introduction 117

8.2 Macro Directives 117

8.3 Macro Operators 128

File Control Directives 133

9.1 Introduction 135
9.2 INCLUDE Directive 136

3 .RADIX Directive 137

4 9%OUT Directive 138

5 NAME Directive 138

.6 TITLE Directive 139

7 SUBTTL Directive 140

8 PAGE Directive 140

9 .LIST and .XLIST Directives
.10 .SFCOND, .LFCOND,

and .TFCOND Directives

Contents

142

9.11 .LALL, .XALL, and .SALL Directives 144

9.12 .CREF and .XCRET Directives

Appendixes 147

A Instruction Summary 149

Introduction 151

8086 Instructions 152
8087 Instructions 159
80186 Instruction Mnemonics

>
IO U WD =

80287 Instruction Mnemonics

B Directive Summary 167

B.1 Introduction 169
B.2 MASM Directives 169
B.3 MASM Operators 177

C Segment Names
for High-Level Languages

Introduction 185

Text Segments 186

Data Segments — Near 188
Data Segments — [Far 189
BSS Segments 190
Constant Segments 191

QQQ00Q
S U W

Index 193

80286 Nonprotected Instructions
80286 Protected Instruction Mnemonics 165
166

145

163

164

183

Contents

Figures

Figure 3.1 LINK Program Loading Order 34
Figure 3.2 LINK Segment Loading Order 38

vi

Tables

Table 2.1
Table 2.2
Table 5.1
Table 5.2
Table 5.3
Table 5.4
Table 5.5
Table 5.6
Table 5.7
Table 7.1
Table A.1
Table B.1
Table B.2

Digits Used with Each Radix 12
Reserved Names 17

Register Operands 70

Flag Positions 71

Arithmetic Operators 79
Relational Operators 81

Logical Operators 82

.TYPE Operator and Variable Attributes
Operator Precedence 93
Conditional Error Directives 110
Syntax Abbreviations 151
Directives 169

Operator Precedence 177

89

vii

Chapter 1
Introduction

1.1 Overview 3
1.2 About This Manual 3
1.3 Notational Conventions 4

Introduction

1.1 Overview

This reference manual describes the syntax and structure of assembly
language for MASM, the Microsofte® Macro Assembler. MASM is an
assembler for the Intele 8086/80186/80286 family of microprocessors. It
can assemble the instructions of the 8086, 8088, 80186, and 80286
microprocessors, and the 8087 and 80287 floating-point coprocessors. It
has a powerful set, of assembly-language directives that gives you complete
control of the segmented architecture of the 8086, 80186, and 80286
microprocessors. MASM instruction syntax allows a wide variety of
operand data types, including integers, strings, packed decimals, floating-
point numbers, structures, and records.

The assembler produces 8086, 8088, 80186, or 80286 relocatable object
modules from assembly-language source files. The relocatable object
modules can be linked, using LINK, the Microsoft 8086 Object Linker, to
create executable programs for the MS-DOSe operating system.

MASM is a macro assembler. It has a full set of macro directives that let
you create and use macros in a source file. The directives instruct MASM
to repeat common blocks of statements, or replace macro names with the
blocks of statements they represent. MASM also has conditional directives
that provide for selective exclusion of portions of a source file from assem-
bly, or inclusion of additional program statements by simply defining a
symbol.

MASM carries out strict syntax checking of all instruction statements,
including strong typing for memory operands, and detects questionable
operand usage that could lead to errors or unwanted results.

MASM produces object modules compatible with object modules created
by many high-level-language compilers. Thus, programs can be constructed
by combining MASM object modules with object modules created by C,
Pascal, FORTRAN, or other language compilers.

1.2 About This Manual

This reference manual supplements the Microsoft Macro Assembler User’s
Guide, which explains program operation and the steps required to create
executable programs from source files.

Microsoft Macro Assembler Reference Manual

This reference manual does not teach assembly-language programming, nor
does it give detailed descriptions of the 8086, 80186, and 80286 instruction
sets. For further information on these topics, other references are avail-
able. Some of these are listed in the introduction to the Microsoft Macro
Assembler User’s Guide.

Chapter 1 concludes with an explanation of notational conventions used
throughout the Microsoft Macro Assembler Reference Manual. Chapter 2
discusses the elements of the assembler, reserved words, characters that can
be used in a program, and how to form numbers, names, statements and
comments compatible with the assembler. Chapter 3 details the program-
structure directives, which allow definition of code and data organization,
and the instruction-set directives used for specifying which instruction set
or sets will be used during assembly. Chapter 4 explains generating data
for programs, declaration of labels, variables and other symbols, and type
definition for data blocks. Chapter 5 deals with combining operators and
operands into expressions for assembly-language statements and directives.
Chapter 6 covers the global-declaration directives that allow transforma-
tion of local symbols into global symbols available to all program modules.
Chapters 7 and 8 discuss the uses of, and relationship between, conditional-
assembly directives and macro directives. Chapter 9 explains the file-
control directives and how to use them to control source files and the files
read and created by MASM during assembly.

Appendix A provides a list of the instruction names and syntax for the
8086/80186/80286 family of processors. For quick reference, the Microsoft
Macro Assembler package also includes a copy of Intel Corporation’s
8086,/8088/8087/80186/80188 Programmer’s Pocket Reference Guide.
Appendix B lists the directives you can use in MASM source files, while
Appendix C gives some guidance on linking MASM object files to object
files from high-level-language compilers.

1.3 Notational Conventions

This manual uses the following notational conventions in defining
assembly-language syntax, and in presenting examples:

Convention Meaning

Bold type Bold type indicates commands, parameter names,
or symbols that must be typed as shown. In most
cases, upper- and lowercase letters can be freely
intermixed. One exception is text within double

Italics

Introduction

quotation marks ("text"). Text in quotation
marks is usually case-sensitive.

Examples

[displacement] [D]]
[DI4displacement]
[DI].displacement

[DI]+displacement

Note that in the examples above, the brackets must
be typed as shown. The register name DI must
also be typed as shown, though you could use
lowercase letters. The plus sign (+) in the second
and fourth examples, and the period (.) in the third
example must be typed as shown.

Italics indicate a placeholder: a name that you
must replace with the value or file name required
by the program,

Example
/Ipath

In the example above, the slash (/) and the letter I
must be entered as shown (except that the I could
be lowercase). However, path is a placeholder
representing a path name supplied by the user.
You could enter any path name such as B:\ or
\MASM\PROJECT1. When a placeholder is used in
a syntax example at the start of a section, the text
below usually describes the types of values that can
replace the placeholder.

Double brackets indicate that the enclosed item is
optional. Don’t confuse double brackets with single
brackets ([]), which must be typed as shown.

Example
BP [number] address [passcount] ["commands"]

In the example, above, you must enter BP as
shown. You must also enter a value for the address
placeholder. Values for the placeholders number,
passcount, and commands can be entered if you
wish, or they can be left blank. If you enter a value
for commands, it must be enclosed in quotation
marks ("").

Microsoft Macro Assembler Reference Manual

bR

Special
typeface for
examples

A series of commas indicates that you can repeat
the preceding item type if you separate each of the
items with commas.

Example

[name] recordname < [initialvalue,,,] >

In the example above, you may provide a name and
you must provide a recordname. You may provide
more than one initialvalue as long as you separate
the values with commas. Note that you must type
the angle brackets even if you do not provide any
initialvalue.

A vertical bar between items indicates that only
one of the separated items can be used. You must
make a choice between the items.

Example
D [address | range]

In the example above, you must enter the letter D.
You may enter either an address or a range (but not
both).

Example text in this manual is shown in a special
typeface so that it will look more like listings on
the screen or listings produced with a printer.

Examples that represent source code follow these
conventions:

o Lowercase for symbols, labels, instructions, and
registers

o Uppercase for reserved words

o Uppercase for hexadecimal digits

o Lowercase for radix indicators

o Upper- and lowercase for comments

These are conventions, not requirements. Your
source code can use any combination of upper- and
lowercase letters, though your code will be clearer
if you choose a convention and use it consistently.

Introduction

Examples
count DB 0
mov ax, bx

print PROC near

Chapter 2
Elements of the Assembler

2.1 Introduction 11

2.2 Character Set 11

2.3 Integers 11

2.4 Real Numbers 13

2.5 Encoded Real Numbers 13
2.6 Packed Decimal Numbers 14
2.7 Character and String Constants 15
2.8 Names 15

2.9 Reserved Names 16

2.10 Statements 17

2.11 Comments 18

2.12 COMMENT Directive 19

Elements of the Assembler

2.1 Introduction

All assembly-language programs consist of one or more statements and
comments. A statement or comment is a combination of characters,
numbers, and names. Names and numbers are used to identify values in
instruction statements. Characters are used to form the names or numbers,
or to form character constants.

Section 2.2 lists the characters that can be used in a program and Sections
2.3-2.12 describe how to form numbers, names, statements, and comments.

2.2 Character Set

MASM recognizes the following character set:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
0123456789

P@ - F: 1) <> 1

b BU T\ =,

2.3 Integers

Syntax

digits

digitsB
digitsQ
digitsO
digitsD
digitsH
digitsR

An integer is an integer number: a combination of binary, octal, decimal, or
hexadecimal digits plus an optional radix. The digits are combinations of

11

Microsoft Macro Assecmbler Reference Manual

one or more digits of the specified radix: B, Q, O, D, or H. The real
number designator R can also be used. If no radix is given, the assembler
uses the current default radix (decimal, unless you have changed it with the
.RADIX directive). The radix specifier can be either upper- or lowercase;
sample code in this manual uses lowercase. Table 2.1 lists the digits that
can be used with each radix.

Table 2.1
Digits Used with Each Radix

Radix Type Digits

B Binary 01

Qor O Octal 01234567

D Decimal 01234567889

H Hexadecimal 0123456789ABCDEF
R Real Number 0123456789ABCDEF

Hexadecimal numbers must always start with a decimal digit (0 to 9). If
necessary, put a leading 0 at the left of the number to distinguish between
hexadecimal numbers that start with a letter, and symbols. For example,
OABCh is interpreted as a hexadecimal number, but ABCh is interpreted as
a symbol. The hexadecimal digits A through F can be either upper- or
lowercase. Sample code in this manual uses uppercase.

The real number designator (R) can only be used with hexadecimal
numb(;rs consisting of 8, 16, or 20 significant digits (a leading 0 can be
added).

The maximum number of digits in an integer depends on the instruction or
directive in which the integer is used. The default radix can be specified by
using the RADIX directive (see Section 9.3).

Examples
01011010b 132q 5Ah 904
01111b 170 OFh 15d

12

Elements of the Assembler

2.4 Real Numbers

Syntax
[+—] digits. digits[E[-+—] digits]

A real number is a number consisting of an integer, a fraction, and an
exponent. The digits can be any combination of decimal digits. Digits
before the decimal point (.) represent the integer. Those following the point
represent the fraction. The digits after the exponent mark (E) represent
the exponent, which is optional. If an exponent is given, a plus (+) or
minus (—) sign may be used to indicate its sign.

Real numbers can be used only with the DD, DQ, and DT directives. The
maximum number of digits in the number and the maximum range of
exponent values depend on the directive. See Sections 4.3.3, 4.3.4, and
4.3.5 in this reference manual.

Examples

25.23
2.523E1
2523.0E-2

2.5 Encoded Real Numbers

Syntax
digitsR.

An encoded real number is an 8-, 16-, or 20-digit hexadecimal number that
represents a real number in encoded format. An encoded real number has a
sign, a biased exponent, and a mantissa. These values are encoded as bit
fields within the number. The exact size and meaning of each bit field de-
pends on the number of bits in the number. The digits must be hexadeci-
mal digits. The number must begin with a decimal digit (0-9) and must be
followed by the real number designator (R).

13

Microsoft Macro Assembler Reference Manual

Encoded real numbers can be used only with the DD, DQ, and DT direc-
tives. The number of digits for the encoded numbers used with DD, DQ,
and DT must be 8, 16, and 20 digits, respectively. (If a leading 0 is sup-
plied, the number must be 9, 17, or 21 digits.) See Sections 4.3.3, 4.3.4,
and 4.3.5.

Examples
DD 3E800000r ; 1.0 for DD
DQ 3EEO0000000000000r . ; 1.0 for DQ

2.6 Packed Decimal Numbers

Syntax
[+—]digits

A packed decimal number represents a decimal integer to be stored in
packed decimal format. Packed decimal storage has a leading-sign byte
and 9 value bytes. Each value byte contains two decimal digits. The high-
order bit of the sign byte is 0 for positive values, and 1 for negative values.

Packed decimals have the same format as other decimal integers, except
that they can take an optional plus (4) or minus (-) sign and can be
defined only with the DT directive. A packed decimal must not have more
than 18 digits.

Examples
DT 1234567890 ;s Encoded as 00000000001234567890h
DT -1234567890 ; Encoded as 80000000001234567890h

14

Elements of the Assembler

2.7 Character and String Constants

Syntax

‘characters’
“characters"

A character constant consists of a single ASCII (American Standard Code
for Information Interchange) character. A string constant consists of two
or more ASCII characters. Constants must be enclosed in right single quo-
tation marks or double quotation marks. String constants are case-
sensitive.

Single quotation marks must be encoded twice when used literally within
constants that are also enclosed by single quotation marks. Similarly,
double quotation marks must be encoded twice when used in constants that
are also enclosed within double quotation marks.

Examples

1 a 1

] ab 1

n" a "

"This is a message."

'Can''t find file.' ; Can't find file.

"Can't find file." ; Can't find file.

"This ""value"" not found." ; This "value'" not found.
'This "value" not found.' ; This "value" not found.
2.8 Names

Syntax

characters

A name is a combination of letters, digits, and special characters used as a
label, variable, or symbol in an assembly-language statement. Names have
the following formatting rules:

16

Microsoft Macro Assembler Reference Manual

e A name must begin with a letter, an underscore (-), a question
mark (?), a dollar sign (%), or an at sign (@).

¢ A name can have any combination of upper- and lowercase letters.
All lowercase letters are converted to uppercase by the assembler,
unless the /ML option is used during assembly, or unless the name
is declared with a PUBLIC or EXTRN directive and the /MX

option is used during assembly.

e A name can have any number of characters, but only the first 31
characters are used. All other characters are ignored.

Examples

subrout3
Array
_main

2.9 Reserved Names

A reserved name is any name with a special, predefined meaning to the
assembler. Reserved names include instruction and directive mnemonics,
register names, and operator names. These names can be used only as
defined and must not be redefined.

All upper- and lowercase combinations of these names are treated as the
same name. For example, the names Length and LENGTH are the same
name for the LENGTH operator.

Table 2.2 lists all reserved names except instruction mnemonics. For a
complete list of instruction mnemonics, see Appendix A.

16

Table 2.2

Reserved Names

Elements of the Assembler

.186
.286¢c
.286p
287
.8080
8087
AH
AL
AND
ASSUME
AX
BH
BL
BP
BX
BYTE
CH
CL
COMMENT
.CREF
CS
CcX
DB
DD
DH

DI

DL

DQ

DS

DT

Dw
DWORD
DX

ELSE
END
ENDIF
ENDM
ENDP
ENDS
EQ

EQU
ERR
ERR1
.ERR2
.ERRB
.ERRDEF
.ERRDIF
.ERRE
.ERRIDN
.ERRNB
.ERRNDEF

.ERRNZ
ES
EVEN
EXITM
EXTRN
FAR

GE
GROUP
GT
HIGH

IF

IF1

12

IFB
IFDEF
IFDIF
IFE
IFIDN
IFNB
IFNDEF
INCLUDE
IRP
IRPC
LABEL
.LALL
LE

LENGTH
.LFCOND
.LIST
LOCAL
LOW
LT
MACRO
MASK
MOD
NAME
NE
NEAR
NOT
OFFSET
OR
ORG
%OUT
PAGE
PROC
PTR
PUBLIC
PURGE
QWORD
.RADIX
RECORD
REPT

SALL
SEG
SEGMENT
.SFCOND
SHL
SHORT
SHR

SI

SIZE

SP

SS
STRUC
SUBTTL
TBYTE
.TFCOND
THIS
TITLE
TYPE
TYPE
WIDTH
WORD
XALL
XCREF
XLIST
XOR

2.10 Statements

Syntax

[name] mnemonic [operands] [scomment]

A statement is a combination of an optional name, a mandatory instruction
or directive mnemonic, one or more optional operands, and an optional
comment. A statement represents an action to be taken by the assembler,
such as generating a2 machine instruction or generating 1 or more bytes of

data.

17

Microsoft Macro Assembler Reference Manual

Statements are formed according to the following rules:

o A statement can begin in any column.

o A statement must not have more than 128 characters and must not
contain an embedded carriage-return/line-feed combination. In
other words, continuing a statement on multiple lines is not
allowed.

[i]

All statements except the last one in the file must be terminated by
a carriage-return/line-feed combination.

Examples
count DB 0
mov ax,bx

ASSUME cs:_text, ds:DGROUP
print PROC near

2.11 Comments

Syntax

3 text

A comment is any combination of characters preceded by a semicolon (;)
and terminated by an embedded carriage-return/line-feed combination.
Comments describe the action of a program at the given point, but are
otherwise ignored by the assembler and have no effect on assembly.

Comments can be placed anywhere in a program, even on the same line as a
statement. However, if the comment shares the line with a statement, it
must be to the right of all names, mnemonics and operands. A comment
following a semicolon must not continue past the end of the line on which it
begins; that is, it must not contain any embedded carriage-return/line-feed
combination characters. For very long comments, the COMMENT direc-
tive can be used.

18

Elements of the Assembler

Examples

; This comment is alone on a line.
mov ax, bx : This comment follows a statement.
; Comments can contain reserved words like PUBLIC.

2.12 COMMENT Directive

Syntax

COMMENT delimater
text
delimiter [texzi]

The COMMENT directive causes the assembler to treat all text between
delimiter and delimiter as a comment. The delimiter character must be the
first nonblank character after the COMMENT keyword. The text is all
remaining characters up to the next occurrence of the delimiter. The text
must not contain the delimiter character.

The COMMENT directive is typically used for multiple-line comments.
Although text can appear anywhere on the same line as the last delimiter,
all text on the same line as the last delimiter is ignored by the assembler.

Examples

comment *
This comment continues until the

next asterisk.
*

The preceding and following examples illustrate how blocks of text can be
designated as comments.

comment +

The assembler ignores the statement
following the last delimiter

+ mov ax, 1

19

-~

Chapter 3

Program Structure

3.1
3.2
3.3
3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.5
3.6
3.7
3.8
3.9
3.10

Introduction 23
Source Files 23
Instruction-Set Directives 25
SEGMENT and ENDS Directives
Align Type 28
Combine Type 28
Class Type 30
Program Example 32
Segment Nesting 35
END Directive 35
GROUP Directive 36
ASSUME Directive 39
ORG Directive 40
EVEN Directive 41

PROC and ENDP Directives 41

27

21

Program Structure

3.1 Introduction

The program-structure directives let you define the organization that a
program’s code and data will have when loaded into memory. The
program-structure directives include the following:

Directive Meaning

SEGMENT Segment definition

ENDS Segment end

END Source-file end
GROUP Segment groups
ASSUME Segment registers
ORG Segment origin
EVEN Segment alignment
PROC Procedure definition
ENDP Procedure end

Section 3.2 and Sections 3.4-3.10 describe these directives in detail. Sec-
tion 3.3 describes the instruction-set directives, which let you specify the
instruction set or sets to be used during assembly.

3.2 Source Files

Every assembly-language program is created from one or more “source”
files: text files that contain statements defining the program’s data and
instructions. MASM reads source files and assembles the statements to
create object modules. LINK, the Microsoft 8086 Object Linker, can then
be used to prepare these object modules for execution.

Source files must be in standard ASCII format: they must not contain con-
trol codes, and each line must be separated by a carriage-return/line-feed
combination. Statements can be entered in upper- or lowercase. Sample
code in this manual uses uppercase letters for MASM reserved words and
for class types, but this is a convention, not a requirement.

28

Microsoft Macro Assembler Reference Manual

All source files have the same form: zero or more program segments fol-
lowed by an END directive (a source file containing only macros, struc-
tures, or records might have zero segments). The END directive, required
in every source file, signals the end of the source file. The END directive
?Iso pr)ovides a way to define the program entry point or starting address
if any).

The following example illustrates the source-file format. It is a complete
assembly-language program that uses MS-DOS functions (or system calls)
to print the message Hello world on the screen.

Example

data SEGMENT : Program Data Segment
string DB "Hello world",13,10,"s"

data ENDS

code SEGMENT : Program Code Segment

ASSUME cs:code,ds:data

start: : Program Entry Point
mov ax,data ; Load data segment location
mov ds, ax ; into DS register
mov dx,OFESET string ; Load string location
mov ah, O%h ; Call string display
int 21h
mov ah, 4Ch : Call terminate function
int 21h

code ENDS

stack SECGMENT stack : Program Stack Segment
DW 64 DUP (?) ; Define stack space

stack ENDS

END start : Mark end and define start
The following main features of this source file should be noted:

1. The SEGMENT and ENDS statements, which define segments

named data, code, and stack.

2. The variable string in the data segment, which defines the string
to be displayed. The variable data are defined in the data seg-
ment. They include the quoted dollar sign ("' $") required by the
MS-DOS display-string function, as well as the ASCII codes for a
carriage-return/line-feed combination.

24

3.3

Program Structure

The instruction label start in the code segment, which marks the
start of the program instructions.

The DW statement in the stack segment, which defines the unini-
tialized data space to be used for the program stack.

The ASSUME statement for the data and code segments, which
specifies which segment registers will be associated with the labels,
variables, and symbols defined within the segments. An assume
statement is not needed for the stack segment since the combine
type stack tells MASM that the segment is associated with the
SS register. See Section 3.4.2 for more information on combine
types.

The first two code instructions, which load the address of the data
segment into the DS register. These instructions are not necessary
for the code and stack segments because the code-segment address
is always loaded into the CS register and the stack-segment address
is automatically loaded into the SS register when you use the stack
combine type.

The last two instructions in the code segment, which use MS-DOS
function 4Ch to return to DOS. While there are other techniques
for returning to DOS, this is the one recommended for most
assembly-language programs.

The END directive, which indicates the end of the source file, and
specifies start as the program entry point.

Instruction-Set Directives

Syntax

.8086
.8087
186
.286¢
.286p
.287

The instruction-set directives enable the instruction sets for the given
microprocessors. When a directive is given, MASM will recognize and
assemble any subsequent instructions belonging to that microprocessor.

2b

Microsoft Macro Assembler Reference Manual

The instruction-set directives, if used, must be placed at the beginning of
the program source file to ensure all instructions in the file are assembled
using the same instruction set.

The .8086 directive enables assembly of instructions for the 8086 and 8088
microprocessors. It also disables assembly of the instructions unique to the
80186 and 80286 processors. Similarly, the .8087 directive enables assem-
bly of instructions for the 8087 floating-point coprocessor and disables
assembly of instructions unique to the 80287 coprocessor.

Since MASM assembles 8086 and 8087 instructions by default, the .8086
and .8087 directives are not required if the source files contain 8086 and
8087 instructions only. Using the default instruction sets ensures that your
programs will be usable on all processors in the 8086,/80186 /80286 family.
However, they will not take advantage of the more powerful instructions
available on the 80186, 80286, and 80287 processors.

The .186 directive enables assembly of the 8086 instructions plus the addi-
tional instructions for the 80186 microprocessor. This directive should be
used for programs that will be executed only by an 80186 microprocessor.

The .286¢ directive enables assembly of 8086 instructions and nonpro-
tected 80286 instructions (identical to the 80186 instructions). The .286p
directive enables assembly of the protected instructions of the 80286 in
addition to the 8086 and nonprotected 80286 instructions. The .286¢
directive should be used with programs that will be executed only by an
80286 microprocessor, but do not use the protected instructions of the
80286. The .286p directive can be used with programs that will be exe-
cuted only by an 80286 processor using both protected and nonprotected
instructions.

The .287 directive enables assembly of instructions for the 80287 floating-

point coprocessor. This directive should be used with programs that have

ﬂqating-point instructions and are intended for execution only by an 80286
microprocessor.

Even though a source file may contain the .8087 or .287 directive, MASM
also requires the /R or /E option in the MASM command line to define
how to assemble floating-point instructions. The /R option directs the
assembler to generate the actual instruction code for the floating-point
instruction. The /E option enables the assembler to generate code that
can be used by a floating-point-emulator routine. See Sections 2.3.12 and
2.3.13 of the Microsoft Macro Assembler User’s Guide.

26

Program Structure

3.4 SEGMENT and ENDS Directives

Syntax

name SEGMENT [align] [combine] [class’]
name ENDS

The SEGMENT and ENDS directives mark the beginning and end of a
program segment. A program segment is a collection of instructions and/or
data whose addresses are all relative to the same segment register.

The name defines the name of the segment. This name can be unique or be
the same name given to other segments in the program. Segments with
identical names are treated as the same segment.

The optional align, combine, and class types give the linker instructions on
how to set up segments. They should be specified in order, but it is not
necessary to enter all types, or any type, for a given segment.

Note

Don’t confuse the byte and word align types with the BYTE and
WORD reserved words used to specify data type with operators such
as THIS and PTR. Also, the page align type and the public combine
type should not be confused with the PAGE and PUBLIC directives.
The distinction should be clear from context since the align and com-
bine types are only used on the same line as the SEGMENT directive.
To make the difference even clearer, align and combine types are shown
with lowercase letters in this manual, although you can actually enter

them in either case.

Sections 3.4.1-3.4.4 describe the three program-loading options and give an
example program. Segment nesting is also explained in Section 3.4.5.
Some of the information in this section is also discussed in Section 3.4 of

the Microsoft Macro Assembler User’s Guide.

27

Microsoft Macro Assembler Reference Manual

3.4.1 Align Type

The optional align type defines the alignment of the given segment. The
alignment defines the range of memory addresses from which a starting
address for the segment can be selected. The align type can be any one of
the following:

Align Type Meaning

byte Use any byte address

word Use any word address (2 bytes/word)

para Use paragraph addresses (16 bytes/paragraph)
page Use page addresses (256 bytes/page)

If no align type is given, para is used by default. The actual start address
is not computed until the program is loaded. The linker ensures that the
address will be on the given boundary.

3.4.2 Combine Type

The optional combine type defines how to combine segments having the
same name. The combine type can be any one of the following:

Combine Type Meaning

public Concatenates all segments having the same name
to form a single, contiguous segment. All instruc-
tion and data addresses in the new segment are
relative to a single segment register, and all offsets
are adjusted to represent the distance from the
beginning of the new segment.

stack Concatenates all segments having the same name
to form a single, contiguous segment. This com-
bine type is the same as the public combine type,
except that all addresses in the new segment are
relative to the SS segment register. The stack
pointer (SP) register is initialized to the ending
address of the segment. Stack segments should
normally use the stack type, since this automati-
cally initializes the SS register. If you create a
stack segment and do not use the stack type, you
must give instructions to load the segment address
into the SS register.

28

Program Structure

common Creates overlapping segments by placing the start
of all segments having the same name at the same
address. The length of the resulting area is the
length of the longest segment. All addresses in the
segments are relative to the same base address. If
data are declared in more than one segment having
the same name and common type, the most
recently declared data replace any previously
declared data.

memory Is treated by the Microsoft 8086 Object Linker
(LINK) exactly like a public segment. MASM
allows you to define segments with memory type
even though LINK does not support a separate
memory type. This feature is provided for com-
patibility with other linkers that may support a
combine type conforming to the Intel definition of
memory type.

at address Causes 2all label and variable addresses defined in
the segment to be relative to the given address.
The address can be any valid expression, but must
not contain a forward reference, that is, a reference
to a symbol defined later in the source file. An at
segment typically contains no code or initialized
data. Instead, it represents an address template
that can be placed over code or data already in
memory, such as the screen buffer. The labels and
variables in the at segments can then be used to
access the fixed instructions and data.

If no combine type is given, the segment is not combined. Instead, it
receives its own physical segment when loaded into memory.

Note

Normally you should provide at least one stack segment in a program.
If no stack segment is declared, LINK will display a warning message.
You can ignere this message if you have a specific reason for not declar-
ing a stack segment.

29

Microsoft Macro Assembler Reference Manual

3.4.3 Class Type

The optional class type defines which segments are to be loaded in contigu-
ous memory. Segments having the same class name are loaded into
memory one after another. All segments of a given class are loaded before
segments of any other class. The class name must be enclosed in single quo-
tation marks (’). Class names are not case-sensitive unless the /ML or
/MX option is used during assembly, or the /NOIGNORECASE option

1s used when linking.

Note

The names assigned for class types of segments should not be used for
other symbol definitions in the source file. For example, if you give a
segment the class name 'CONSTANT', you should not give the name
constant to any variable or labels in the source file. If you do, the
error Symbol already different kind will be generated.

If class types are not specified, LINK copies segments to the executable file
in the same order they are encountered in the object files. This order is
maintained throughout the program unless LINK encounters two or more
segments having the same class name. Segments having identical class
names belong to the same class, and are copied as contiguous blocks to the
executable file.

Example

DATAX segment 'DATA'
DATAX ends

TEXT segment 'CODE'
TEXT ends

DATAZ segment 'DATA'
DATAZ ends

In the preceeding example-program fragment, the segments DATAX and

DATAZ both have class type 'DATA'. As a result, both segments are copied
to the executable file before the TEXT segment.

80

Program Structure

All segments belong to a class. Segments for which no class name is expli-
citly stated have the null-class name, and will be loaded as contiguous
blocks with other segments having the null-class name. LINK imposes no
restriction on the number or size of segments in a class. The total size of
all segments in a class can exceed 64K.

Since LINK processes modules in the order in which it receives them on the
command line, you may not always be able to easily specify the order in
which you want segments to be loaded. For example, assume your program
has four segments that you want loaded in the following order: CODE,
DATA, CONST, STACK. The CODE, CONST, and STACK segments are
defined in the first module of your program, but the DATA segment is
defined in the second module. LINK will not put the segments in the
proper order because it will first load the segments encountered in the first
module.

You can avoid this problem by creating and assembling a dummy program
file containing empty segment definitions in the order in which you wish to
load your real segments. Once this file is assembled, you can give it as the
first object file in any invocation of LINK. The linker will automatically
load the segments in the order given.

For example, the following dummy program file defines the loading order of
segments in a program having segments named CODE, DATA, CONST, and
STACK.

CODE segment para public 'CODE'
CODE ends
DATA segment para public 'DATA’
DATA ends
CONST segment para public 'CONST'
CONST ends
STACK segment para stack 'STACK'
STACK ends

The dummy program file must contain definitions for all classes to be used
in your program. If it does not, LINK will choose a default loading order
which may or may not correspond to the order you desire. When linking
your program, the dummy program must be the first object file specified in
the LINK command line.

Do not use a dummy program file with Microsoft C, Pascal, FORTRAN, or
compiled BASIC. These languages follow the MS-DOS segment-ordering
convention described in Section 3.3.15 of the Microsoft Macro Assembler
User’s Guide. This loading order must not be modified.

381

Microsoft Macro Assembler Reference Manual

Another way to control segment order is with the MASM /A option. This
option directs MASM to write segments to the object file in alphabetical
order. You can give segments names with alphabetical order that matches
the order in which you want them loaded and then use the /A option. To
make this strategy work with multiple-module programs, you should define
all segments in the first module specified in the LINK command line. Some
of the definitions may be dummy segments. See Section 2.3.1 of the Micro-
soft Macro Assembler User’s Guide for more information on the /A option.

Note

Some previous versions of the assembler ordered segments alphabeti-
cally by default. If you have trouble assembling and linking source-
code listings from books or magazines, try using the /A option. List-
ings written for the old version assemblers may not work without this
option.

3.4.4 Program Example

The following source code illustrates one way in which the align and com-
bine types can be used. Figure 3.1 (following the example below) shows the
way LINK would load the given program into memory. The memory
combine type is not shown since it is the same as public. The class types
are not used in the sample program, but they are illustrated in Section
3.4.3 and in the example in Section 3.6.

Note

Although a given segment name can be used more than once in a source
file, each segment definition using that name must have either exactly
the same attributes, or attributes that do not conflict.

32

Example

seg_a
start:

seg_a

seg_b

seg_b

seg_c

seg_c

seg_d

seg_d

seg_a

seg_a

seg_b

seg_b

seg_c

seg_c

NAME module_1

SEGMENT word public

ENDS

SEGMENT page stack

ENDS

SEGMENT para common

ENDS

SEGMENT at OB80Oh

ENDS
END start

NAME module_2

SEGMENT word public

ENDS

SEGMENT page stack

ENDS

SEGMENT para common

ENDS
END

Program Structure

338

Microsoft Macro Assembler Reference Manual

High
g
— seg_d SEGMENT at OB8OOh
0B800h |
o seg.c SEGMENT para common
in module_ 2
First available seg_c SEGMENT para common
para address a in module_1
— seg_b SEGMENT page stack
L in module. 2
First available —— seg_b SEGMENT page stack
page address | | in module_1
ss register initialized to this address
— seg_a SEGMENT word public
in module_ 2
First available — seg_a SEGMENT word-public
word address a in module_1
Low

Figure 3.1 LINK Program Loading Order

34

Program Structure

3.4.5 Segment Nesting

Segments can be nested. When MASM encounters a nested segment, it
temporarily suspends assembly of the enclosing segment and begins assem-
bly of the nested segment. When the nested segment has been assembled,
MASM continues assembly of the enclosing segment. Overlapping seg-
ments are not permitted.

Example

sample SEGMENT word public 'CODE' ; outside segment
main PROC far

const SEGMENT word public 'CONST' : nested segment

array DW array_data

const ENDS ; end nesting
RET

main ENDP
sample ENDS

This example-code fragment contains two segments: a code segment called

sample and a data segment called const. The const segment is nested
within the sample segment.

3.5 END Directive

Syntax
END [ezpression]

The END directive marks the end of a module. The assembler ignores any
statements following this directive.

The optional expression defines the program entry point, the address at
which program execution is to start. If the program has more than one
module, only one of these modules can define an entry point. The module
with the entry point is called the “main module”. If no entry point is
given, none is assumed.

35

Microsoft Macro Assembler Reference Manual

Note

If you fail to define an entry point for the main module, your program
may not be able to initialize correctly. The program will assemble and
link without error messages, but it may crash when you attempt to run
it. Remember, one (and only one) module must define an entry point.

Examples

end
end start

3.6 GROUP Directive

Syntax
name GROUP segmentname,,,

The GROUP directive associates a group name with one or more seg-
ments, and causes all labels and variables defined in the given segments to
have addresses relative to the beginning of the group rather than to the
beginning of the segments in which they are defined. The segmentname
must be the name of a segment defined using the SEGMENT directive, or
a SEG expression (see Sections 3.4 and 5.3.12). The name must be unique.

The GROUP directive does not affect the order in which segments of a
group are loaded. Loading order depends on each segment’s class, or on the
order in which object modules are given to the linker. Section 3.4.5 of the
Microsoft Macro Assembler User’s Guide also discusses groups and how they
are handled by the linker.

Segments in a group need not be contiguous. Segments that do not belong
to the group can be loaded between segments that do. The only restriction
is that the distance (in bytes) between the first byte in the first segment of
the group and the last byte in the last segment must not exceed 65535.
Therefore, if the segments of a group are contiguous, the group can occupy
up to 64K of memory.

36

Program Structure

Group names can be used with the ASSUME directive (Section 3.7) and as
an operand prefix with the segment override operator (:) (Section 5.3.7).

Note

A group name must not be used in more than one GROUP directive in
any source file. If several segments within the source file belong to the
same group, all segment names must be given in the same GROUP
directive.

Example

dgroup GROUP aseg, bseg
ASSUME ds:dgroup

aseg SEGMENT byte public 'DATAl'
sym_a: '

aseg ENDS

bseg SEGMENT byte public 'DATA2'
sym_b: .

bseg EﬁDS

cseqg SEGMENT byte public 'DATAl'
sym_c: '

cseg ENDS
END

The order in which LINK will load these segments is shown in Figure 3.2.
LINK loads aseq first because it occurs first in the source file. Next,
LINK loads cseg because it has the same class type as aseqg. LINK
loads bseg last. However, aseqg and bseg are declared part of the same
group, despite their separation in memory. This means that the symbols
sym_a and sym_b have offsets from the beginning of the group, which is
also the beginning of aseqg. The offset of sym_c is from the beginning of
cseqg. This sample is intended to illustrate the way LINK organizes seg-
ments in a group, rather than to show a typical use of a group.

37

Microsoft Macro Assembler Reference Manual

 —

high
sym_b
sym.c
offset
sym_c
offset
sym_b
sym_a
offset
sym_a
low

a8

bseg SEGMENT byte public 'DATA2'
(part of dgroup)

cseg SEGMENT byte public 'DATALl'
(not part of dgroup)

aseg SEGMENT byte public 'DATALl'
(part of dgroup)

Figure 3.2 LINK Segment Loading Order

Program Structure

3.7 ASSUME Directive

Syntax

ASSUME segmentregister:segmentname,,,
ASSUME NOTHING

The ASSUME directive specifies segmentregister as the default segment
register for all labels and variables defined in the segment or group given by
segmentname. Subsequent references to the label or variable will automati-
cally assume the selected register when the effective address is computed.

The ASSUME directive can define up to four selections: one for each of the
four segment registers. The segmentregister can be any one of the segment
register names: CS, DS, ES, or SS. The segmentname must be one of the

following:

e The name of a segment that was previously defined with the SEG-
MENT directive

e The name of a group that was previously defined with the GROUP
directive

e The keyword NOTHING

The keyword NOTHING cancels the current segment selection. The
statement ASSUME NOTHING cancels all register selections made by a pre-
vious ASSUME statement.

Note

The segment-override operator (:) can be used to override the current
segment register selected by the ASSUME directive.

39

Microsoft Macro Assembler Reference Manual

Examples
ASSUME cs:CODE

ASSUME cs:cgroup,ds:dgroup, ss:nothing, es:nothing
ASSUME NOTHING

3.8 ORG Directive

Syntax
ORG eaxpression

The ORG directive sets the location counter to expression. Subsequent
instruction and data addresses begin at the new value.

The expression must resolve to an absolute number. In other words, all
symbols used in the expression must be known on the first pass of the
assembler. The location-counter symbol ($) can also be used.

Examples
ORG 120h
mov ax,dx

In the first example, the statement mov ax, dx begins at byte 120h in the
current segment.

ORG $+2
array DW 100 dup (O)

In the second example, the variable array is declared to start at the

address 2 bytes beyond the current address. See Section 5.2.4 for more
information on the location-counter symbol ().

40

Program Structure

3.9 EVEN Directive

Syntax
EVEN

The EVEN directive aligns the next data or instruction byte on a word
boundary. If the current value of the location counter is odd, the directive
increments the location counter to an even value and generates one NOP
(no operation) instruction. If the location counter is already even, the
directive does nothing.

Note
The EVEN directive must not be used in byte-aligned segments.

Example
ORG 0]
testl DB 1
EVEN
test2 DW 513

In this example, the EVEN directive tells MASM to increment the loca-
tion counter, and generates a single NOP instruction (90h). This means
the offset of test2 is 2, not 1, as it would be without the EVEN directive.

3.10 PROC and ENDP Directives

Syntax

name PROC [distance]
statements

name ENDP

The PROC and ENDP directives mark the beginning and end of a pro-
cedure. A procedure is a block of instructions that forms a program sub-
routine. Every procedure has a name with which it can be called.

41

Microsoft Macro Assembler Reference Manual

The name must be a unique name, not previously defined in the program.
The optional distance can be either NEAR or FAR. NEAR is assumed if
no distance is given. The name has the same attributes as a label, and can
be used as an operand in a jump, call, or loop instruction.

Any number of statements can appear between the PROC and ENDP
statements. The procedure should contain at least one RET directive to
return control to the point of call. Nested procedures are allowed.

Example

Push third parameter
Push second parameter
Push first parameter
Call the procedure

push ax
push bx
push cx
call addup

e Ne Ne Ne e

add sp. 6 ; Destroy the pushed parameters
addup PROC near : Return address for near call
H takes two bytes
push bp ; Save base pointer - takes two more

so parameters start at 4th byte
Load stack into base pointer
Get first parameter

4th byte above pointer

mov bp, sp
mov ax, [bp+4]

add ax, [bp+6] ; Get second parameter

: 6th byte above pointer
add ax, [bp+8] ; Get third paramter

; 8th byte above pointer
pop bp ; Restore base
RET ; Return

addup ENDP
In this example, three numbers are passed as parameters for the procedure

addup. Parameters are often passed to procedures by pushing them before
the call so that the procedure can read them off the stack.

42

Program Structure

Note

The parameter-passing method in this example conforms to the stan-
dard used in Microsoft high-level languages. As a result, this procedure
could be traced using the Stack Trace command (K) of the Microsoft
Symbolic Debug Utility SSYMDEB), described in Section 4.6.28 of the
Microsoft Macro Assembler User’s Guide.

43

Chapter 4

Types and Declarations

4.1 Introduction 47

4.2 Label Declarations 47

4.2.1 Near-Label Declarations 47
4.2.2 Procedure Labels 48

4.3 Data Declarations 48

4.3.1 DB Directive 49

4.3.2 DW Directive 50

4.3.3 DD Directive 50

4.3.4 DQ Directive 51

4.3.5 DT Directive 92

4.3.6 DUP Operator 53

4.4 Symbol Declarations 54

4.4.1 Equal-Sign (=) Directive 54
4.4.2 EQU Directive 55

4.4.3 LABEL Directive 56

4.5 Type Declarations 56

4.5.1 STRUC and ENDS Directives 57
4.5.2 RECORD Directive 58

4.6 Structure and Record Declarations 60
4.6.1 Structure Declarations 60
4.6.2 Record Declarations 62

45

Types and Declarations

4.1 Introduction

This chapter explains how to generate data for a program; how to declare
labels, variables, and other symbols that refer to instruction and data loca-
tions; and how to define types that can be used to generate data blocks con-
taining multiple fields, such as structures and records.

4.2 Label Declarations

Label declarations create “labels.” A label is a name that represents the
address of an instruction. Labels can be used in jump, call, and loop
instructions to direct program execution to the instruction at the address of
the label.

4.2.1 Near-Label Declarations
Syntax
names:

A near-label declaration creates an instruction label that has NEAR type.
The label can be used in subsequent instructions in the same segment to
pass execution control to the corresponding instruction.

The name must be unique, not previously defined, and it must be followed
by a colon (:). Furthermore, the segment containing the declaration must
be associated with the CS segment register (see Section 3.7 for information
on the ASSUME directive). The assembler sets the name to the current
value of the location counter.

A near-label declaration can appear on a line by itself or on a line with an

instruction. Labels must be declared with the PUBLIC or EXTRN direc-
tive if they are located in one module but called from another module (see

Chapter 6).

Examples
start:
cycle: inc si

47

Microsoft Macro Assembler Reference Manual

4.2.2 Procedure Labels

Syntax
name PROC [distance]

The PROC directive creates a label name and optionally assigns it a des-
tance. The distance can be NEAR or FAR. The label then represents the
address of the first instruction of a procedure. The label can be used in a
CALL instruction (or in a jump or loop instruction) to direct execution
control to the first instruction of the procedure. If you do not specify the
type for a procedure, the assembler assumes NEAR. as the default.

When the PROC label definition is encountered, the assembler sets the
label’s value to the current value of the location counter and sets its type to
NEAR or FAR. If the label has FAR type, the assembler also sets its seg-
ment value to that of the enclosing segment.

NEAR labels can be used with jump, call, or loop instructions to transfer
program control to any address in the current segment. F AR labels can be
used to transfer program control to an address in any segment outside the
current segment.

Labels must be declared with the PUBLIC and EXTRN directive if they
are located in one module but called from another module (see Chapter 6).

4.3 Data Declarations

The data-declaration directives let you generate data for a program. The
directives translate numbers, strings, and expressions into individual bytes,
words, or other units of data. The encoded data are copied to the object

file.

48

Types and Declarations

The data-declaration directives are listed below:

Directive Meaning

DB Define byte

DW Define word

DD Define doubleword
DQ Define quadword
DT Define ten bytes

Sections 4.3.1-4.3.5 describe these directives in detail.

4.3.1 DB Directive
Syntax
[name] DB initialvalue,,,

The DB directive allocates and initializes a byte (8 bits) of storage for each
initialvalue. The initialvalue can be an integer, a character string constant,
a DUP operator, a constant expression, or a question mark (?). The ques-
tion mark represents an undefined initial value. If two or more initial
values are given, they must be separated by commas (,).

The name is optional. If name is given, the directive creates a variable of
type BYTE whose offset value is the current location-counter value.

A string constant can have any number of characters, as long as it fits on a
single line. When the string is encoded, the characters are stored in the
order given, with the first character in the constant at the lowest address
and the last at the highest.

Examples

integer DB 16

string DB 'ab'

message DB "Enter your name: "
constantexp DB 4*3

empty DB ?

multiple DB 1,2,3,'s!

duplicate DB 10 dup (?)

high_byte DB 255

49

Microsoft Macro Assembler Reference Manual

4.3.2 DW Directive
Syntax
[name] DW initialvalue,,,

The DW directive allocates and initializes a word (2 bytes) of storage for
each initialvalue. The initialvalue can be an integer, a one- or two-character
string constant, a DUP operator, a constant expression, an address expres-
sion, or a question mark (?). The question mark represents an undefined
initial value. If two or more expressions are given, they must be separated
by commas (,).

The name is optional. If name is given, the directive creates a variable of
type WORD whose offset value is the current location-counter value.

String constants must not consist of more than two characters. The last
(or only) character in the string is placed in the low-order byte. Either 0 or
the first character is placed in the high-order byte.

Examples

integer DW 16728
character DW 'a'
string DW 'be!
constantexp DW 4*3
addressexp DW string
empty DW ?
multiple DW 1,2,3,'s!
duplicate DW 10 dup(?)
high_word DW 65535
arrayptr DW array
arrayptr2 DW offset DGROUP:array

4.3.3 DD Directive

Syntax

[name] DD initialvalue,,,

The DD directive allocates and initializes a doubleword (4 bytes) of storage
for each initialvalue. The initialvalue can be an integer, a real number, a

one- or two-character string constant, an encoded real number, a DUP
operator, a constant expression, an address expression, or a question mark

50

Types and Declarations

(?). The question mark represents an undefined initial value. If two or
more initial values are given, they must be separated by commas (,).

The name is optional. If name is given, the directive creates a variable of
type DWORD whose offset value is the current location-counter value.

String constants must not consist of more than two characters. The last
}ior only) character in the string is placed in the low-order byte, and the

rst character (if there are two in the string) is placed in the next byte.
Zeroes are placed in all remaining bytes.

Examples

integer
character
string

real
encodedreal
constantexp
aDDsegexp
empty
multiple
duplicate
high_double

4.3.4 DQ Directive

Syntax

[name] DQ initialvalue,,,

16728

la|

lbcl

1.5
3F000000Tr
4*3

real

?
1,2,3,'s!
10 dup(?)
4294967295

The DQ directive allocates and initializes a quadword (8 bytes) of storage
for each nitialvalue. The initialvalue can be an integer, a real number, a
one- or two-character string const:-nt, an encoded real number, a DUP
operator, a constant expression, or a question mark (?). The question mark
represents an undefined initial value. If two or more initial values are
given, they must be separated by commas (,).

The name is optional. If name is given, the directive creates a variable of
type QWORD whose offset value is the current location-counter value.

String constants must not consist of more than two characters. The last
(or only) character in the string is placed in the low-order byte, and the
first character (if there are two in the string) is placed in the next byte.
Zeroes are placed in all remaining bytes.

51

Microsoft Macro Assembler Reference Manual

Examples

integer DQ 16728

character DQ ta'

string DQ 'be!

real DQ 1.5

encodedreal DQ 3E00000000000000r
constantexp DQ 4*3

empty DQ ?

multiple DQ 1,2,3,'s'
duplicate DQ 10 dup(?)
high_quad DQ 18446744073709551615

4.3.5 DT Directive
Syntax
[name] DT initialvalue,,,

The DT directive allocates and initializes 10 bytes of storage for each ini-
tialvalue. The initialvalue can be an integer expression, a packed decimal, a
one- or two-character string constant, an encoded real number, a DUP
operator, or a question mark (?). The question mark represents an
undefined initial value. If two or more initial values are given, they must
be separated by commas (,).

The name is optional. If name is given, the directive creates a variable of
type TBYTE whose offset value is the current location-counter value.

String constants must not consist of more than two characters. The last
%or only) character in the string is placed in the low-order byte, and the

rst character (if there are two in the string) is placed in the next byte.
Zeroes are placed in all remaining bytes.

Note

The DT directive assumes that constants with decimal digits are
packed decimals, not integers. If you want to specify a 10-byte integer,
you must follow the number with the letter that specifies the number
system you are using (for example, “D” or “d” for decimal or “H” or
“h” for hexadecimal).

b2

Types and Declarations

Examples

packeddecimal DT 1234567890

integer DT 16728d

character DT 'a'

string DT 'be'!

real DT 1.5

encodedreal DT 3F000000000000000000r
empty DT ?

multiple DT 1,2,3,'s!

duplicate DT 10 dup(?)

high_tbyte DT 12089258196146291747061754d

4.3.6 DUP Operator

Syntax
count DUP (initialvalue,,,)

The DUP operator is a special operator that can be used with the data-
declaration directives and other directives to specify multiple occurrences
of one or more initial values. The count sets the number of times to define
witialvalue. The initial value can be any expression that evaluates to an
integer value, a character constant, or another DUP operator. If more
than one initial value is given, the values must be separated by commas (,).
DUP operators can be nested up to 17 levels. The initial value (or values
must always be placed within parentheses.

Examples
DB 100 DUP (1)

The first example generates 100 bytes with initial value 1.
DW 20 DUP(1,2,3,4)

The second example generates 80 words of data. The first four words have
the initial values 1, 2, 3, and 4, respectively. This pattern is duplicated for
the remaining words.

DB 5 DUP(5 DUP(5 DUP (1)))

The third example generates 125 bytes of data, each byte having the initial
value 1.

b3

Microsoft Macro Assembler Reference Manual

DD 14 DUP(?)

The final example generates 14 doublewords of uninitialized data.

4.4 Symbol Declarations

The symbol-declaration directives let you create and use symbols. A sym-
bol is a descriptive name representing a number, text, an instruction, or an
address. Symbols make programs easier to read and maintain by using
descriptive names to represent values. A symbol can be used anywhere its
corresponding value is allowed.

The symbol declaration directives are listed below:
Directive Meaning

= Assign absolutes
EQU Equate absolutes, aliases, or text symbols
LABEL Create instruction or data labels

Sections 4.4.1-4.4.3 describe the directives in detail.

4.4.1 Equal-Sign (=) Directive
Syntax
name=—exrpression

The equal-sign (=) directive creates an absolute symbol by assigning the
numeric value of expression to name. An absolute symbol is simply a name
that represents a 16-bit value. No storage is allocated for the number.
Instead, the assembler replaces each subsequent occurrence of name with
the value of expression. The value is variable during assembly, but is a con-
stant at run time.

The expression can be an integer, a one- or two-character string constant, a
constant expression, or an address expression. Its value must not exceed
65535. The name must be either a unique name, or a name previously
defined using the equal-sign (=) directive.

Absolute symbols can be redefined at any time.

b4

Types and Declarations

Examples

integer = 16728
string = 'ab'
constantexp = 3 * 4
addressexp = string

4.4.2 EQU Directive
Syntax
name EQU ezpression

The EQU directive creates absolute symbols, aliases, or text symbols by
assigning expression to name. An absolute symbol is a name that
represents a 16-bit value; an alias is a name that represents another sym-
bol; and a text symbol is a name that represents a character string or other
combination of characters. The assembler replaces each subsequent
occurrence of the name with either the text or the value of the expression,
depending on the type of expression given.

The name must be a unique name, one which has not been previously
defined. The expression can be an integer, a string constant, a real number,
an encoded real number, an instruction mnemonic, a constant expression,
or an address expression. Expressions that evaluate to values in the range
0 to 65535 create absolute symbols and cause MASM to replace the name
with a value. All other exp