LLETE % Ware"

INCORPORATED

High C ™

Programmer’s Guide

Version 1.2 for Concurrent DOS

- by MetaWare™ Incorporated

High C ™

Programmer’s Guide
Version 1.2 for Concurrent DOS 286

© 1983-86, MetaWare™ Incorporated, Santa Cruz, CA
All rights reserved

NOTICES

The software described in this guide is licensed, not sold. Use of the soft-
ware constitutes agreement by the user with the terms and conditions of the
End-User License Agreement packaged with the software. Read the Agreement
carefully. Use in violation of the Agreement or without paying the license
fee is unlawful.

Every effort has been made to make this guide as accurate as possible. How-
ever, MetaWare Incorporated shall have no liability or responsibility to any
person or entity with respect to any liability, loss, or damage caused or
alleged to be caused directly or indirectly by this guide, including but not
limited to any interruption of service, loss of business or anticipated
profits, and all direct, indirect, and consequential damages resulting from
the use of this guide and the software that it describes.

Metaware Incorporated reserves the right to change the specifications and
characteristics of the software described in this guide, from time to time,
without notice to users. Users of this guide should read the file named
“README” contained on the distribution media for current information as to
changes in files and characteristics, and bugs discovered in the software.
Like all computer software this program is susceptible to unknown and un-
discovered bugs. These will be corrected as soon as reasonably possible but
cannot be anticipated or eliminated entirely. Use of the software is subject
to the warranty provisions contained in the License Agreement.

A. M. D. G.
Trademark Acknowledgments
The temasz is a trademark of
1g1tal Research Digrtal Research Inc.
Concurrent, CP/M Digital Research Inc.
High C, HetaWare HetaWare Incorporated

Hicrosoft Corporation (registered ta.)
Professional Pascal HetaWare Incorporated
ATET Bell Laboratories

v.09.15.85 © 1983-85 MetaWare Incorporated

Contents: Programmer's Guide page(s)

for The MetaWare High C™ Compiler...... total 226 pp.
Cover, Title, Contents, Feedbackc........... 9 pp.
Sections 1-20ccvveiieiiiiiiiinsnnnnnnnn. total 193 pp.
1 Introductioncoiiiiiiiiiiiiiiiiiiiiiiiiciaa... 6 pp.
2 Invoking the Compiler.......c.coeevvvevnnnnannnnn.. 3 pp.
2.1 TheCompileCommandc.ceevveevinviiniinnnnnn. 21
2.2 Search PathsforlnputFiles........ccccevveeeviiiinnnne, 2-2
2.3 Disk Storage Requirements for Temporary Files 2-3
2.4 MemoryRequirementsccoceeiieiiieniiiieninann. 2-3
3 Linking a Compiled Program 10 pp.
3.1 Compilation Units or “Modules”c.ccevieenen. 3-1

3.2 Run-Time Libraries; LiInKErrors.........c.ccccvvuennnn. 3-1

3.3 Linking under Concurrent: LINK86 and LINK 3-3
3.4 Linking for Embedded Applications 3-6
3.5 Linking High C and Professional Pascal................ 3-6
3.6 Post-Mortem Call-ChainDumpccceviiininne 3-8
3.7 Post-Mortem HeapDump......ccoceveviiicieninnnnnnes 3-8
3.8 Case Sensitivity in Linkingccocooveieiiiinenne. 3-9
3.9 Minimizing Program Size..........cccvvveiiineicinnnnans 3-9
4 Running a Program..; 5 pp.
4.1 The Run Command under MS-DOS 41
4.2 Command-Line Parametersccceveeivnnenninnnnn. 4-2
5 CompilerControlscccceeeiiiniiiinnncnnnes 15 pp.
5.1 Command-Line Options (Qualifiers) 5-1
5.2 Profiles....cccooiiiiiiiiiiiiiiiiiiiiiiiiiiirce 5-10
5.3 “lpaths”: Input File Search Facility..................... 5-11
5.4 Configuring the Compiler..........c.ccocvvieiiiniiinnen. 5-14

v.0§.15.85 © 1983-85 Metaware Incorporated

Contents: Programmer's Guide page(s)

NN N o000 o

WN -

N =

7.3

om o
WN -

Compiler Pragmas cereeens Ceereeeans 6 pp.
Syntax of Pragmas........ccccveieiiiiiiiiiiiiiiiieenee, 6-1
Compiler Pragma Summariesc...ceecvvvinieennes.. 6-2
Include Pragmas: Inclusion of Source Files6-4
Compiler Toggles...........c........... ceeeenee.. 12 pp.
Toggle Pragmas........ Ceereerrreeeieiieaeans Y Al
System-Independent Togglescccceeeiernnnnnn... 7-2
Asm Default: Off

Callee pops_when_possible —---- Default: Off

Check_stack Default: Off (configurable)7-3
Int_function warnings -------- Default: On

List Default: Off

Make_externs_global —-----we-—- Default: OFf 7-4
Optimize_for_space-----eec--- Default: Off

Parm_warnings Default: On

Pointers_compatible - —ceccee-— Default: Offcocet. 7-5
Pointers_compatible with_ints - Default: Off

Public var_warnings -—-———--——- Default: On

Quiet Default: Off 7-6
Summarize Default: Off

warn Default: On

System-Dependent Togglescccceveieeierennnnnn.. 7-6
186 Default: Off (configurable)

286 Default: On (configurable)7-7
Emit_line records -----e-———- Default: off

Emit_line table ————————- —-— Default: Off (configurable)

Emit_names ------ ~Default:OPf 7-8 .
Floating_point --- - Default: On or Off per the host

Literals_in_code - - Default: Off (configurable) 7-9
Read_only_strings —eeeeeeeao- Default: Off (configurable) ... 7-11
Segmented pointer_ operations -- Default: On

Floating-Point Supportcccceeeeen.... ...4 pp.
The 8087 or 80287 Co-Processorc.ccceueunenen. 8-1
Floating-Point Evaluation and Run-Time Libraries 8-1
Detecting the Presence of an 8087c.......... 8-3

v.09.15.85 © 1983-85 Metaware Incorporated

Contents: Programmer's Guide page(s)

10

12.3

13

13.1
13.2
13.3
13.4
13.5

Memory Models............ccciiiiiiiiiiiiiinna.. 10 pp.
The 8086 Memory Architecturecceeeeee.. 9-1
Small-Code versus Large-Code Models 9-2
Small- versus Medium- versus Large- Data Models9-3
Small Model: Small-Code, Small-Data............ 9-4
Compact Model: Small-Code, Medium-Data 9-5
Medium Model: Large-Code, Small-Data............ 9-6
Big Model: Large-Code, Medium-Data......... 9-7
Large Model: Large-Code, Large-Data............ 9-8
Pragma Memory_model - Default: Small99
Using a Fixed-Size Stackccceeevvvnvenienenn...:.99
Storage Mappingcccccviiiiiiiiiiiiieiennnn.. 4 pp.
Data Types in Storage.......c.ccveeeieiieenienneannnnns 10-1
Storage Classesccccevvieiiiciiiiiiiiiniiinnnnns 10-3
The StackFramecceevieiiiiiiiiiiiininn.n. 104
Run-Time Organizationc..ccccevvennnnn.. 6 pp.
Stack FrameLayoutcccoeiiiiiiiniiiiiiannnnn. 111
Prologues and Epiloguescccovviiiniinnnen.e. 11-3
Parameter Passingcccceeeiieiiiiiieiininnnnaans 11-5
FunctionResultscccceviiieiiiiiiiiiiiiann.n. 11-6
Debuggingccceiiiiiiiiiiiiiiiiiiiiiiiiinenaias 5 pp.
Post-Mortem Call-Chain Dump.......cccceeviinnenn... 12-1
Post-Mortem Heap Dump........cccevveviiiennnnnneas. 122
MS-D0S Assembly Language Debugging 12-3
Externalsccoevveiiiiiiniiiiiiiiiiiinnnnnans 17 pp.
Interfacing to Other Languagescc.......... 13-1
AliasingPragmascccceiiiiiiiiiiiiiiiiinneanns 13-4
Code Segmentation: the Code Pragma (Not on wn1x.) 13-7
Data Segmentation: the Data Pragma............... 139

Data Segmentation: the Static_segment Pragma 13-14

v.09.15.85 © 1983-85 Metaware Incorporated

Contents: Programmer's Guide page(s)

13.6
13.7

14

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8

14.9

-t

2
3
4

15

15.1
15.2
16.3
15.4
15.5
16.6
15.7
15.8
15.9

16

16.1
16.2
16.3
16.4
16.5
16.6

Specifying a Literals Segment........................ 13-15
Group Names: Pragmas Cgroup and Dgroup........ 13-16
Inter-Language Communication 30 pp.
Communication between HC, PP, and Asm.......... 14-1

Example: PPand C with C Main Program....... 14-2
Example: PP and HC with PP Main Program 144

Example: HC and Asm with HC Main Program 14-6
Example: PP and Asm with PP Main Program...... 14-8
Data Type Correspondencesccceeeeueeeens. 14-12
Parameter Correspondence...........c.eevveneeenns 14-14
Calling Routines in Other Languages................ 14-17
External Name Communication...................... 14-18
Plain C Naming Conventionsc.c.ccvvueeen. 14-20
High C Naming Conventionsc.ccccceveeeiiaeeen. 14-20
Professional Pascal Naming Conventions 14-23
Assembly Language Naming Conventions.......... 14-26
Utility Packagescccceeeiivniiininnnecnnanenns 6 pp.
Utility Packages: “.CF” Interface Files 15-1
DEBUGAIDS — Run-Time Debugging Aids 15-2
Not relevant to Concurrent 15-2
LANGUAGE - Calling Conventions for C, Pascal,... .. 15-4
LINETERM --Line Terminator Convention 15-5
SORTS - Sorting Algorithmsccceveeeeen. 15-56
STATUS - Valuesfor “errno”cccvveneennnnns 15-6
SYSTEM - Operating System Services 15-6
MSDOS -- Direct Access to MS-D0S INT 21 15-6
Embedded Applicationsc.cceeaaeee. 10 pp.
MS-D0S-Dependent Modules........cccoeevvinnnnn.... 16-1
INIT - Environment Initialization 16-2
TERM - Environment Termination 16-3
EXIT - Functions exit, _exit, and abort....... 16-4
SYSTEM - System Servicesccevvveeennenn. 16-4
Not relevant to Concurrent 16-8

v.09.15.85 © 1983-85 MetaWare Incorporated

Contents: Programmer's Guide page(s)

16.7 Not relevant to Concurrent _ ' 16-8
16.8 ALLOC -~ Memory Allocatorcccoeeenene 16-9
16.9 CONSOLE - Console Input/Output.................. 16-10
17 Listings coovviviiiiiiiiiiiiiiiiiiiiiiiiiieiiie e 8 pp.
17.1 .Pragmas Page(n), Skip(n), and Title(T)............... 17-1
17.2 Formatof ListingS....c.ccovviiiiiiiiiiiiiiiiiinnnannes 171
18 Diagnostic Messagescocveeiiiennnnnns .18 Pp.
18.1 Filel/OEMOrS....ciiiieiiiieiiiieiiiieeaeeiaenas 18-1
18.2 SysStemEIMOrscoooviiiiiiiiiiiiiiiiiiiiiiceeene, 18-2
18.3 UserErrorsand Warningscceeeivvvivneennnn 18-4
18.4 Error and Warning Messages, Explanations......... 18-5
-19 Making Cross References 10 pp.
19.1 Features of the Cross Reference 19-1
- 19.2 How to Make a Cross Reference...................... 19-2
19.3 Cross-Referencer Pragmasccccccveeenienne. 194
19.4 Cross-Referencer “Command Files” 19-5
19.5 Cross-Reference Format...........cccevvivviiiiinnnnn. 19-6
19.6 Cross-ReferencerToggles........ccoevvieinnnnnnnn. 19-9
19.7 Distinction of File Namescccciveiiiiiiaee. 19-9
20 System SpecificsSccvivniiiiiiiiiiiiiiiiiiiinn -5 pp.-
20.1 ArthmetiC.....coveiiiiiiiiiiiiiii i iiieiccnaeens 201
20.2 Not refevant to Concurrent 20-1
20.3 Addressing Limitationsc.ccccciiiiiiiiiiiiiniiiene, 20-2
20.4 InputLinelength ..ccccvvnnnmiriiiiiiiiiiiiiiiiieneen, 20-2
20.5 Heap-tem Size....cccuiiiiiiiiiiiiiiiiiiienineen, 20-2
20.6 Default Segment Names: Pragma Code 20-3
20.7 Not relevant to Concurrent 20-3
20.8 Some ANSI-Required Specifics.......c.cccevvninrnnne. 20-4
[T 1= G 20 pp
Feedback, Acknowledgments, End 4 pp
v.0§ .15.85 4 © 1983-85 MetaWare Incorporated

Feedback, Please

(Upon first reading.)

We would greatly appreciate your ideas regarding im-
provement of the language, its compiler, and its documen-
tation. Please take time to mark up the manual on your first
reading and make corresponding notes on this page (front and
back) and on additional sheets as necessary. Then mail the
resulits to:

MetaWare™ Incorporated
412 Liberty Street
Santa Cruz, CA 95060

MetaWare may use or distribute any information you supply
in any way it believes appropriate without incurring any obli-
gation whatever. You may, of course, continue to use that
information. If you wish a reply, please provide your name and
address. Thank you in advance, The Authors.

Page Comment

v.09.15.85 © 1983-85 Metaware Incorporated

Feedback, Please

Page Comment

v.09.15.85 © 1983-85 Metaware Incorporated

Preface page 0-1
Preface

This is a guide to the operation of the High C compiler as
implemented for the Concurrent DOS 286 1.2 or later operat-
ing system — hereafter abbreviated to just “Concurrent® per
Digital Research custom — running on the Intel 80286 micro-
pracessor and using the Intel Object-Module Format (OMF).
The compiler generates code for any of the Intel 8086/88/186/
188/286 family of microprocessors.

Due to the time delay required for typesetting, this is a
“beta” Programmer's Guide derived from the Programmer’s
Guide for High C running under MS-DOS on the 8086. As such,
occurrences of MS-DOS-isms remain in sections where we
have merely reproduced the typeset MS-DOS pages rather than
dot-matrix-print the Concurrent equivalent. In these cases
the Concurrent equivalent is almost identical to the MS-DOS
version, except for minor name replacements.

Therefare, please bear in mind that:

* occurrences of “MS-DOS” should be replaced by “Concur-
rent”;

* gceurrences of “.EXE” should be replaced by “.286%;
* occurrences of “.LIB” should be replaced by “.L86";

= there is no AUTOCFIG program for Concurrent that sets
the number of tree pages for the compiler (see the Options
section);

* the page numbers in the Table of Contents are not always
exact, but are close:

* the index has not been updated;
* options cram and tmpi3 are not applicable;

» documentation for use with embedded applications has been
retained, although there are no tools we know of that take
Concurrent’s .286 load format and down-load it to an em-
bedded system. If embedded applications are desirable we

v.04.09.86 1983-86 MetaWare Incorporated

Preface page 0-2

recommend instead linking under MS-DOS. Tools are avail-
able for down-loading MS-DOS .EXE files.

MS-DOS compatibility. Programs can be compiled under
Concurrent and the object modules transferred for linking un-
der any PC/MS-DOS 2.0 or later operating system. Similarly.
programs can be compiled under MS-DOS and the object mod-
ules transferred for linking under Concurrent. As long as no
use is made of operating-system-specific facilities, programs
link properly under either operating system.

This document does not treat linking under MS-DOS; see the
High C Programmer's Guide for PC/MS-DOS for such inform-
ation. Also note that the Concurrent-resident compiler gener-
ates 80286-specific code by default; such code will not run on
MS-DOS systems not hosted on an 80286 — the 80286 code can
be turned off by turning Off the toggle 286.

v.04.09.86 © 1983-86 MetaWare Incorporated

Introduction page 1-1

1
Introduction

This is a guide to the operation of the High C compiler as
implemented for PC/MS-D0S 2.0 or later operating systems
running on the Intel 8086/88/186/188/286 family of micro-
processors using the Intel Object-Module Format (OMF).

Unless otherwise stated, any reference to “8086” through-
out this guide applies equally to all of those processors. Like-
wise, any reference to “8087" applies equally to the 80287
numeric Co-processor.

Thus, the guide applies to the Victor 9000, IBM PC (XT,
AT), HP 150, Wang Professional Computer, Tl Professional
Computer, Compagq, and others.

Embedded applications. Programs may be linked on an
MS-DO0S machine and down-loaded to an “embedded applica-
tion”, i.e. an 8086-family processor without MS-D0S. The code
may even be placed in ROM.

The source code of the initialization module that establish-
es the High C environment is provided and may be tailored for
specialized applications. To bring up High C’s /O facilities for
the embedded application, a few well-defined modules must
be rewritten. See Section Embedded Applications.

High C is designed to facilitate serious professional pro-
gramming on the 8086 — with or without the 8087 or 80287
numeric co-processor. It is both true to ANSI standard C (still
under development at this writing) as a subset and somewhat
extended.

C is a mixed-level systems language designed by Dennis
Ritchie at AT&T’s Bell Laboratories. It grew in popularity be-
cause of its use in implementing UNIX, its elegant (and decep-
tive) simplicity, and its close-to-the-machine features. As its

v.09.15.85 , © 1983-85 Metaware Incorporated

Introduction page 1-2

popularity grew, many software developers have used it for
“real-world” applications as well as for systems software.

Later implementations of C were extended to add enumer-
ation types and a few other features. More recently many
extensions have been proposed to make C a safer language
while still being consistent with the philosophy of the original
language. Today there is a core language being standardized
by the American National Standards Institute (ANSI) and many
C compilers with divergent extensions.

High C includes (what most likely will be) ANSI standard C
and also provides extensions that were carefully designed to
be consistent with the philosophy of C. Generally some of the
best features of such other languages as (MetaWare’s Profes-
sional) Pascal, Modula, and Ada, were borrowed as exten-
sions. Incompatibilities were minimized by introducing a mini-
mum of new key words and by not otherwise modifying the
original syntax. Yet the extensions are such that they will be
flagged by any standard-conforming compiler.

Portability. Standard C programs can be compiled with an
ANSI option that turns off the extensions and reduces the
compiler to the standard core. Or such programs can be grad-
ually up-graded by not choosing the ANSI option and adding
more and more extensions; a minimum of program modifica-
tions are needed to start with because the extensions gener-
ally do not conflict with the standard.

Furthermore, High C is hosted on, and cross-compiles con-
sistently among, mainframes, (super-)minis, and micros, with
function and quality paramount throughout the implementa-
tions. That is, it is without the typical limitations found on other
implementations of C on microcomputers — and even main-
frames — that defeat serious professional programming.

Safety, efficiency. While the close-to-the-machine fea-
tures of C are available, High C supplies all of the new strong
type-checking specified in ANSI C. In addition, the compiler
provides many checking features that are usually available
only in a separate “lint” program. Thus one gets both efficiency

v.09.15.85 © 1983-85 MetaWare Incorporated

Introduction page 1-3

and reliability. It is an excellent language for both applications
and systems programming. We regard only Professional
Pascal as being superior in this regard.

Other important features and extensions include:

e nested functions complete with up-level references as in
Pascal;

e nested functions passable as parameters to other functions
as in Pascal;

e support for the entire 8086 family: 8086, 8088, 80186,
80188, 80286, and the 8087 and 80287 co-processors;

e support for ROM-able code for “embedded applications”;

e a full set of memory models: Small, Compact, Medium,
Big, and Large;

e three Integer ranges, and three IEEE Real precisions;

® intrinsic functions such as _abs, _min, _max, _fill _char,
etc., for efficiency;

¢ many compiler controls and options, including one for strict
ANSI standard checking; and

e many optimizations, some of which are normally found only
in mainframe compilers. These include:

common subexpression elimination,

retention and reuse of register contents,

dead-code elimination,

jump-instruction size minimization,

constant folding,

short-circuit evaluation of Boolean expressions,

numerous strength reductions,

fast procedure calls, and

automatic allocation of variables to registers (except on
the 8086, where it does more harm than good).

Thus, High C generates better code than most C compilers.

v.09.15.85 © 1983-85 Metaware Incorporated

Introduction page 1-4

Guide. This guide contains all MS-D05/8086-specific.infor-
mation necessary for using the compiler effectively. The major
components of the product are listed below.

The reader who is new to the product should scan the Table
of Contents to get an overview of the guide. Briefly, there is a
section each on how to compile, link, and run. Then there are
three sections on how to use the compiler controls: options,
profiles, “ipaths”, configurations, pragmas, and toggles.

Then there are sections on machine specifics, such as
floating-point, memory models, storage mapping, machine
architecture, and debugging. Then there are sections on
external naming conventions and communicating among
modules written in MetaWare’s High C, plain C, MetaWare's
Professional Pascal, and assembly language.

The final sections are on the large library of utilities that are
provided, on embedded applications, listings, error messages,
cross-references, and defaults and limits.

An extensive index is also provided for quick reference to
all subsections that discuss or significantly relate to each topic.

Some sections of this guide are also used as sections of
guides for High C and other MetaWare compilers on other
machines and operating systems, most particularly in cross -
compilers to the 8086 family. Thus, in those sections there are
occasionally references to UNIX and DEC’s VMS, e.g.

This guide does not explain the High C language or its ex-
tensions. They are treated in the MetaWare High C Lan-
guage Reference Manual. Nor does the guide or the manual
attempt to teach C programming; consult the Reference
Manual for references to several standard-C textbooks. The
Library provided with High C is described in the High C Library
Reference Manual. For further information on the 8086
consult:

Morse, S. P. The 8086/8088 Primer, Second Edition,
Hayden Book Company, Inc., 1982.

v.09.15.85 © 1983-85 MetaWare Incorporated

Introduction page 1-5

Components. The High C software package has five
parts:

1. the compiler,

2. the run-time libraries necessary for producing an execut-
able program from the output of the compiler,

3. a set of source-code “header” files used to access various
utilities, some of which are target-dependent,

4. a cross-reference mechanism that will work on several
program “modules” at one time to produce a cross refer-
ence and optionally an annotated cross-reference listing of
the program, and

5. a set of useful UNIX™-like utility programs that make MS-
DOS more livable. Included among the utilities are pro-
grams to recursively list directories (1s) and to search for
strings (fgrep). fgrep is an attractive alternative to a bulky
printed paper cross-reference, since it is very fast. Another
utility (find) is used by the INSTALL program to load the
compiler. The utilities are described in the on-line docu-
mentation.

Requirements. The memory and disk requirements of
High C are given in the next chapter.

Installation. An Installation Guide is on the distribution
media — see the file named INSTALL .DOC — in addition to being
in the typeset documentation. The compiler is essentially self-
installing.

The distribution media also contain several benchmark and
demonstration programs; see the Installation Guide. And
the file named README contains last minute notes and release
information.

v.09.15.85 © 1983-85 MetaWare Incorporated

Introduction page 1-6

Key Words and Phrases. Following most subsection
headers, in brackets and small typeface, is a collection of [key
words and phrases] related to that subsection. They give a quick
idea of what the section is about.

v.09.15.85 © 1983-85 Metaware Incorporated

Invoking the Compiler page 2-1

2
Invoking the Compiler

2.1 The Compile Command
[.C; .08J]
The compiler is named HC.EXE, so it is invoked with the he
command. The syntax of the command is illustrated next:
hc path_name [options]
where “path_name” is the path name of the file containing the

module to be compiled. The file name extension may be
omitted, in which case the defauit extension “.C” is assumed.

The “options” activate various compiler options, which are
summarized in the table below. A detailed description of each
is presented in Section Compiler Controls.

Command Option Default

-[nolansi -noansi

~{noJasm -noasm

-[no]debug -nodebug

-define Macros

-ipath Path

-lines_per page nn -lines_per_page 60
-list File -list @

-mm Model -mm Small

-[noJobject [File]
-off Toggles
-on Toggles
-[no]profile [File]
-tmpil File
-tmpi2 File

-tmptp File
~-tpages nn
—[no]xref File

v.09.15.85

-object source.0BJ

-profile HC.PRO

-noxref

© 1983-85 MetaWware Incorporated

Invoking the Compiler page 2-2

If no errors are detected, the compiler produces a relocat-
able obiject file in the current working directory with the same
name as the input file but with the extension “.08J".

The default extensions “.C” and “.0BJ” are configurable;
see Subsection Configuring the Compiler, Section Compiler
Controls.

Examples:

The following command compiles the program in file
My_DIR/SORT.C and generates an object file named SORT.0BJ in
the current working directory:

hc my_dir/sort

To indicate that input should come from the standard input,
use “@ in place of the input file name. Likewise, to direct any
output to the standard output rather than a file, use “@” in place
of the output file name. For example, to compile a (presumably
short) program directly from the keyboard, type

hc @

followed by the program to be compiled. “Z terminates key-
board input.

2.2 Search Paths for Input Files
[option ipath]

The compiler has the ability to search a list of directories for
an input file, such as an Include file. The list of directories to be
searched is specified by the various “ipath” environment
symbol, -ipath option, and Ipath pragma. See Section
Compiler Controls for details.

v.09.15.85 © 1983-85 MetaWare Incorporated

Invoking the Compiler page 2-3
2.3 Disk Storage Requirements for Temporary Files
[Ms-DOS: options tpages, tmptp] (MS—DUS only.)

The compiler requires storage for temporary files during
compilation. When a program exceeds a certain size, depend-
ing upon the memory available and the setting of certain para-
meters (see -tpages in Section Compiler Controls), the compil-
er’s internal representation of the program is placed in a file
that is randomly accessed. Since floppy disk access is slow, a
hard disk is highly recommended for the temporary file; see
the -tmptp option in Section Compiler Controls.

2.4 Memory Requirements (Concurrent only.)
[Concurrent: options ansi, tpages]

Because of the large amount of function in the compiler, it
is large — almost 1/2 megabyte of object code — and should be
run from a hard disk.

The distribution comes with two versions of the compiler.
The first version loads slowly due to Concurrent's slow loader,
but uses minimum memory since it is overlayed; it occupies
??7?7K of code. The second version loads very quickly but
occupies 453K of code space. The compiler needs a minimum
of 100K of data space to operate, even with tpages set to 40
(this is small). We recommend a tpages setting of at least
100 for reasonabe-size compilations; 200 or more is prefer-
able for large compilations. Each tree page costs 768 bytes.

See Section Compiler Control/s under the -tpages option
for more information about space needs.

NOTE: At this writing, the overlayed version of the com-
piler is not available. ‘

v.d9.15.85 © 1983-85 MetaWare Incorporated

Linking a Compiled Program page 3-1
3
Linking a Compiled Program

3.1 Compilation Units or “Modules”

{object modules, load module]

A High C program consists of one or more compilation units
or “modules” that are compiled separately to produce object
modules. Exactly one of these modules is a “main (program)”
module; the rest are “non-main” modules.

The main module is that module containing a definition of
the function “main”. This function is called after the High C
run-time environment has been established.

To execute the program, one or more object modules must
be linked with various functions from one of the High C Run-
Time Libraries to form a load module.

3.2 Run-Time Libraries; Link Errors

[memory models: Small, Compact, Medium, Big, Large; 8087

co-processor or emulator; linkage errors: unresolved external;

“SMALL?”, “COMPACT?”, “MEDIUM?”, “BIG?”, “LARGE?”; library names]

There are two Run-Time Libraries for each of the five 8086

“memory models” supported: one that contains an 8087
floating-point emulator and one that does not; see Sections
Floating-Point Support and Memory Models. Thus there are
ten libraries in all.

v.09.15.85 © 1983-85 MetaWare Incorporated

Linking a Compiled Program page 3-2

Each Run-Time Library contains functions that set up the
environment, perform 1/O, manage the heap, provide floating-
point support, etc. See Section Ulility Packages.

Library Names. The naming convention of the libraries is
as follows. The first two characters are HC. The next is the first
letter of the model name: Small, Compact, Medium, Big, or
Large. Finally, if the library contains the 8087 emulator its
name ends with “E”, but if the library is for use only with an
8087 co-processor then “cn.

Memory Model Library Name with 8087/80287

emulator CO-processor
Small HCSE.LIB HCSC.LIB
Compact HCCE.LIB HCCC.LIB
Medium HCME.LIB HCMC.LIB
Big HCBE.LIB HCBC.LIB
Large HCLE.LIB HCLC.LIB

Small is the default model so either HCSC(M) or HCSE(M) is
used if no explicit memory model is specified.

Link errors. Object modules compiled for different mem-
ory models are incompatible so should not be linked together.
To prevent such an error the compiler emits external symbol .
references that are resolved only if like object modules are
linked. The names of the symbols are:

SMALL?, COMPACT?, MEDIUM?, BIG?, and LARGE?.

The main module defines the appropriate symbol and all non-
main modules reference it.

Thus if the linker diagnoses LARGE? as being unresolved, for

example, then one or more of the object modules being linked
were compiled with the Large model, but the main program

v.09.15.85 © 1983-85 MetaWare Incorporated

Linking a Compiled Program page 3-3

3.3 Linking under Concurrent: LINK86 and LINK
{segment class restrictions]

VAX/VHMS cross. Programs compiled on the VAX that are
to be run under Concurrent may be linked under Concurrent
using the standard linkers. This requires that the object mad-
ules be down-loaded from the VAX to the Concurrent machine
prior to linking.

The Concurrent version of the run-time libraries must
reside on the Concurrent system in order to link a program.
These libraries may be down-loaded from the distribution sup-
plied with the cross compiler. Or, if the Concurrent-resident
compiler is available, its libraries may be used.

Concurrent-resident. Two linkage editors available under
Concurrent are Digital Research’'s LINK86 and MetaWare's
modification of that linker, LINK. For detailed information
on LINK86 consult the Programmer’s Utilities Guide for
the CP/M-86 Family of Operating Systems and Concur-
rent DOS-286 by Digital Research, Inc. The modifications
that MetaWare has made to that linker are presented below.
Here we present a brief summary of how to use the linkers in
conjunction with MetaWare compilers.

Linking with L INKE6

Create a load module and symbol table file from Meta-
Ware object modules by invoking 1ink86 as follows:

1ink86 <Load_module>[1i, ma]=<Object_list), HC??7.L86(se]

{Load_module> is the name to be assigned to the resultant
load-module file. Its default extension is . CMD.

[1i, ma] causes the inclusion of symbols from the
' library in the symbol table file (1i), and the
generation of a map (ma). The symbol table file

has extension . SYHM and the map file .MAP. The

symbol table file can be used for symbolic de-

bugging in conjunction with Digital Research's

v.04.09.86 1983-86 Hetallare Incorporated

Linking a Compiled Program page 3-4

SID-286 symbolic debugger. See the Pro-
grammer’s Utilities Guide for the CP/M-
86 Family of Operating Systems and Con-
current DOS-286 for more information on
SID-286.

«Object_list> is a list of object-module or library file names
separated by plus signs or blanks. The file name
extensions may be omitted, in which case .08J
is assumed. For libraries, the extension . L86
must be supplied, and the [se] option given to
cause a library search (as opposed to inclusion
of the entire library in the link).

HC??.L86[se] indicates searching ([se]) of the appropriate

' High C Run-Time Library. The “]“ can be
omitted if it is the last character on the line.

Lengthy link specifications can be placed in a linker ~input”
file suffixed with . INP. Such a file can be specified only last on
the command line.

Exarnples:
1ink86 SORT[ma]=SORT, HCSC.L86[se

links the object module SORT.08J to produce the ioad module
SORT. CMD and the load map SORT. MAP.

1ink86 GAMMA=ALPHA, BETA, DELTA.L86[se], HCSC.LB6[se

links the two files ALPHA.0BJ and BETA.0BJ with the user
library DELTA.L86 to produce the load module GAMMA. CHD.

1ink86 GAMMA=INPUTS[in]
where file INPUTS. INP contains
ALPHA, BETA, DELTA.LB6[se], HCSC. L86[se
does the same. You can also use
1ink86 INPUTS[in]
where file INPUTS. INP contains
GAMMA=ALPHA, BETA, DELTA.L86[se], HCSC. L86(se

v.04.09.86 © 1983-86 Hetavare Incorporated

Linking a Compiled Program page 3-5
Linking with L INK

MetaWare's modification of LINK86, LINK, operates the
same way as LINK86 does, with the following additional
features:

« LINK takes full path names as input.

* Unlike LINK86 “[se” is unnecessary after .L86 files for
LINK, which assumes this by default. Specify “[nose”
(" [nosearch®) to include the entire libraray rather than
to search it for needed objects only.

* The default output file extension is . 286 instead of .CMD,
reflecting standard usage under Concurrent.

= There is no limitation of 2048 characters on the length
of a.INP file.

» _INP files can be nested.

* _INP files can appear anywhere a file can appear on the
command line, not just at the end of the command line.

* More than one comma can separate file names. This
permits the building of a convenient batch file that
links up to nine object modules:

link X1=%1, %2, X3, %4, X5, %6, %7, X8, X9, hcsc. 186
When only three parameters (e.g. f1. f2. and f3) are

supplied to this batch file, the result is illegal to
LINK86 but legal to LINK:

link f1=f1,f2,f3,,,..., hesc. 186

* A new option “pubcode” treats all private code seg-
ments as public.

Segment class restrictions

Although Intel OMF supports any segment class names, the
Concurrent’s linkers and Concurrent itself supports only four
class names: CODE, DATA, HEAP, and STACK. Do not use the com-
piler options Dclass and Cclass to change those class names;

. the linker will produce an invalid executable without warning.

v.04.09.86 1983-86 MetaWare Incorporated

Linking a Compiled Program page 3-6

3.4 Linking for Embedded Applications
[MS-LINK]

Under Concurrent. Programs that are to run within em-
bedded applications may be linked under Concurrent. However,
we know of no tools that can load a Concurrent executable file
in an embedded system. We recommend instead using Micro-
soft's MS-LINK linker; there are tools that support the loading
of MS-DOS executables in an embedded system.

Prior to linking, system-dependent modules of the run-
time libraries must be modified as required for the embedded
application. See Section £mbedded App/lications.

‘3.5 Linking High C and Professional Pascal

High C and Professional Pascal modules can be linked
together, and nearly the full resources of each language can be
used in this mode. Generally linking consists in supplying &oth
Pascal and C libraries to the linker, and sometimes in supply-
ing certain additional “.0BJ” modules, as is described in the
Notes below.

Two questions must be answered to determine the appro-
priate link command.

1. In which language is the main program written (where
execution begins)?

2. Does any module written in the other language use the
I/0 system of that language? For example, do the Pascal
routines call the intrinsics Writeln and Readln, or do the C
functions call the library functions “printf” and “scanf*?

After these two questions are answered, the HC/PP Link
Table below can be used to determine how to link the pro-
gram. We assume that "main.obj” is the object module
corresponding to the main program. The library suffix letters
“xx* in the table stand for one of the appropriate memory
models and co-processor/emulator options; “xx* must be the
same for both the Pascal and C libraries. For example, the C

v.04.09.86 © 1983-86 HetaWare Incorporated

Linking a Compiled Program page 3-7

library “HCME.LIB” (Medium model, Emulator library) must be
used with the Pascal library “PPME.LIB".

HC/PP Link Table.

. Main program language is C; no |/0 done by Pascal:

link prog=main, {other objects>, hcxx, ppxx

. Main program language is C; 1/0 done by Pascal:

link prog=main, {other objects), finit, system1, hexx, ppxx
See Notes 3 and 4 below.

. Main program language is Pascal; no I/0 done by C:
link prog=main, {other objects>, ppxx, hcxx
. Main program language is Pascal; /0 done by C:
1link prog=main, <other objects>, cfinit, ppxx, hcxx

See Notes 3 and 5 below.
Notes:

1. If the main program is written in High C, the Profes-
sional Pascal command-line argument package in ARG.PF
cannot be used. If the main program is written in Professional
Pascal, the High C variables “argc* and “argv” are unavail-
able. In short, modules in only one language can access the
arguments on the command line.

2. Pascal and C share the same global variable “errno® (or
ErrNo, in Pascal documentation). In C, this variable is de-
fined in the header file “stdio.h®, and in Pascal, in the inter-
face file STATUS.PF. Any modifications made to “errno” in
modules in one language affect modules in the other language.

3. Normally in C “errno” is never cleared by library func-
tions; it is instead the responsibility of the user to check and
clear “errno”. However, when Pascal I/0 is used in combina-
tion with a C program, “errnc” is cleared upon successful
Pascal 1/0 completion. '

v.04.09.86 - © 1983-86 Hetalare Incorporated

Linking a Compiled Program page 3-8

4, FINIT.08J is provided for each memory model in the
Professional Pascal distribution. Its inclusion overrides a
“dummy” version ‘in the HCXX libraries and permits the
initialization of the Pascal I/0 system.

5. CFINIT.08J is provided for each memory model in the
High C distribution. Its inclusion overrides a “dummy® version
in the PPXX libraries and permits the initialization of the
Pascal 1/0 system.

6. When the Pascal Run-Time Library is linked before the
C Library, any C functions registered with the C Library func-
tion “onexit” are sof called at program termination.
Furthermore, after any successful call to Concurrent, the
variable “errno” is cleared. Such calls are made by the C I/0
system; when dealing with High C only, “errno” is never
cleared by the library.

3.6 Post-Mortem Call-Chain Dump

When the run-time system detects a fatal error and aborts,
a dump of functions currently active may be obtained if the
program is linked with the object module STKDMP.0BJ that is
provided for each memory model. By default a dummy dump
function is linked in that instead of producing a dump prints a
message that the dump is unavailable. See Section DOebugging
for more information.

When linking in STKDHP. 0BJ, the Run-Time Library PTOC. L86
must be specified; it is supplied for each memory model.
Specify PTOC.L86 beforeall other libraries in the list.

3.7 Post-Mortem Heap Dump

When the run-time heap manager detects an error, a dump
of the current contents of the heap may be obtained if the
program is linked with the object module HEAP1.0BJ that is
provided for each memory model. By default a dummy dump
function is linked in that instead of producing a dump prints a

v.04.09.86 1983-86 MetaWare Incorporated

Linking a Compiled Program page 3-9

message that the dump is unavailable. See Section Jebugging
for more information.

When linking in HEAP1.0BJ, the Run-Time Library PTOC. L86
must be specified; it is supplied for each memory model.
Specify PTOC. L86 beforeall other libraries in the list.

3.8 Case Sensitivity in Linking

C is a case-sensitive language. For example, the identifiers
Paycheck and paycheck are regarded as distinct in a C program.
In addition, since Concurrent linkers always respect case, one
must observe case across compilations.

3.9 Minimizing Program Size

toggle Optimize for space: dummy argument processor _mwset_up_args:
¥1xed-sxze heap C_HEAP_C: dummy file close C_CLOSE. Oﬂ]?udmny
C_SCANF.08), C_| C_PRINTF. 06]
Many applications require minimal program size. There
are several options provided the pragrammer for reducing the
size of a program.

First. the toggle Optimize_for_space should be turned on in
source modules for whrch code density is preferred over
execution speed. Use “pragma On(Optimize_for_space); ”; see
Section 7agg/es.

- Second, some facilities provided by default for use at run-
time can be eliminated. This removes the program code that
implements the facilities, thus saving space. In general the
facility is removed by providing a dummy function that does
nothing. The facilities are:

* The argument processor.

This code is used to compute the values for argc and argv to
be passed to the main program. |f “argc” and “argv” are not
used, the cade for processing them can.be eliminated by sup-
plying a dummy function named “_mwset_up_args”. The dum-

v.04.09.86 © 1983-86 Hetaware Incorporated

Linking a Compiled Program page 3-10

my function gets called instead of the one that sets up “argc”
and “argv”, for a savings of around 300 bytes. Here is a sample
declaration of such a.dummy function:

_mwset_up_args() {return 0}
/* To suppress argument processing: */
/* the returned 0 gets put into argc. */

* The heap manager.

If little or no heap is used, the heap manager can be essen-
tially eliminated: link in the object produced from compiling
C_HEAP.C, supplied with the distribution. This simple heap
manager provides a heap whose fixed size is specified in the
source. See the source for more information.

* The 170 file close functions.

If the program does no 1/0 other than to the terminal, the
functions that close any open disk files can be eliminated: link
in C_CLOSE.0BJ. This object file is supplied for each memory
model.

» “scanf” for real numbers.

If the program does not use “scanf” to scan literals of
types float, double, and long double, the functions that
convert their source representations to (internal) real
numbers can be eliminated: link in C_SCANF.0BJ. This object
file is supplied for each memory model.

* “printf” for real numbers.

If the program does not use “printf” to print values of
types float, double, and long double, the functions that
convert real numbers to their printed representations can be
eliminated: link in C_PRINTF.0BJ. This object file is supplied
for each memory maodel.

v.04.00.86 ' © 1083-86 HetaWare Incorporated

Linking a Compiled Program page 3-11

3.6 Post-Mortem Call-Chain Dump

When the run-time system detects a fatal error and aborts,
a dump of functions currently active may be obtained if the
program is linked with the object module STKDMP.0BJ that is
provided for each memory model. By default a dummy dump
function is linked in that instead of producing a dump prints a
message that the dump is unavailable. See Section
Debugging for more information.

When linking in STKDMP.0BJ, the Run-Time Library PTOC.LIB
must be specified; it is supplied for each memory model.
Specify PTOC.L1B before all other libraries in the list.

3.7 Post-Mortem Heap Dump

When the run-time heap manager detects an error, a dump
of the current contents of the heap may be obtained if the
program is linked with the object module HEAP1.08J that is
provided for each memory model. By default a dummy dump
function is linked in that instead of producing a dump prints a
message that the dump is unavailable. @ See Section
Debugging for more information.

When linking in HEAP1.0BJ, the Run-Time Library PTOC.LIB
must be specified; it is supplied for each memory model.
Specify PTOC.L18B before all other libraries in the list.

3.8 Case Sensitivity in Linking

C is a case-sensitive language. For example, the identifiers
Paycheck and paycheck are regarded as distinct in a C program.

MetaWare

v.09.15.85 ' © 1983-85 MetawWare Incorporated

Running a Program ' page 4-1
4
Running a Program

4.1 The Run Command under MS-D0S

[load module; I/0 redirection]

After a composite program has been linked together it may
be run. The load module is invoked simply by typing its name.

For example assume the file HELLO.EXE contains the Ioad
module correspondmg to the following program.

main() {
printf("Hello.\n");
}

Then typing the command line:
hello

causes the line “Hello.” to be displayed on the terminal and
typing
hello > output.fil

redirects the output of the program to file QUTPUT.FIL.

v.09.15.85 © 1983-85 MetaWare Incorporated

Running a Program page 4-2

4.2 Command-Line Parameters -
[argc, argv; minimizing program size]

It is possible to send data to the program about to be run by
supplying parameters on the command line that executes the
program. Parameters are supplied positionally; what separates
parameters on a command line is described later.

The parameters are passed to the main program as an
array of strings. To access the parameters declare the main
program as follows:

main(ArgC,ArgV)

int ArgC; char *Argv[];
{
}

ArgC is the number of arguments, numbered 0 through ArgC
- 1. ArgVis an array of pointers to the arguments: ArgVv[i]
points to the it" argument, 0 < i < ArgC. Each argument is re-

presented by a C NUL-terminated string. In addition, Argv[ArgC]
is defined and always points to an empty string.

The zeroth argument is the name of the running program.

The other arguments consist of the text appearing on the
line used to invoke the program, where each argument is
separated from another by a sequence of blanks or tabs. In
addition, if an argument begins with the double-quote char-
acter ", then it should end with ”, and ” can be denoted within
such an argument by using the two-character sequence \”.
The enclosing quotes are stripped off and each \” is com-
pressed to just ”.

For example, the following program prints out all its argu-
ments, including the program name if made avaiiable:

v.09.15.85 © 1983-85 MetaWare Incorporated

Running a Program page 4-3

main(ArgC,ArgV)
int ArgC; char *Argv[];
{
int j;
for (j = 0; j < ArgC; j++) {
printf("Argument #%d is ¥s\n", j,ArgV[jl);
} ol »

When invoked via, for example,
myprog first second "third\" arg" last

the program prints

Argument #0 is C:/CC/MYPROG.EXE
Argument #1 is first

Argument #2 is second

Argument #3 is third" arg
Argument #4 is last

assuming the full path name of the program executable is
C: /CC/MYPROG.EXE. :

If ArgC and ArgV are not used, the code for processing them
can be eliminated. See Subsection Minimizing Program Size
of the prior section.

v.09.15.85 © 1983-85 MetaWare Incorporated

Compiler Controls page 5-1

5
Compiler Controls

MetaWare compilers support many controls that direct
compilation and cause various information to be produced by
the compiler. There are two classes: “command-line options”
(or “command qualifiers” on VAX / VMS) and “pragmas”.

Pragmas are described in Section Compiler Pragmas.
Some of them can revise what is specified in the command
line.

The first two subsections here apply to both Professional
Pascal and High C. The few places where the distinction of
languages is relevant are clearly delineated.

5.1 Command-Line Options (Qualifiers)

[compiler-execution environment; toggle options, non-toggle options; ansi = standard;
asm = machine_code - assembly listing; cram - 8086 memory requirement reduction;
debug - symbol-line-type records; Emit line_records, Emit line table; define -
#define macros; ipath - initial value, Tines_ _per_page - ‘set the number; 1ist -
file-name; mam = memory_model; object - file-name; off, on - toggles; profile -
file-name; tmpil-2-3 - 8086 temporary intermediate fne-nane; tmptp - 8086 tree page
file-name; tpages - 8086 number of tree pages; xref = cross_reference - listing,
file-nane]

Command-line “options” or “qualifiers” are given to the
compiler in the execution environment. They apply for the
entire compilation unless they are overridden (where allowed)
by pragma options within the program being compiled. How-

ever, mmis unusual in that it supersedes pragma Memory_model.

The command-line options are all “directives”. Two of
them, on and off, can be used to set the initial value of any
compiler “toggle”. Toggles can also be turned On or Off in
program source via pragmas. All toggles are documented in
Section Compiler Toggles.

Some toggles that are typically used when running the
compiler are List — produce a listing, Quiet — do not

v.09.15.85 © 1983-85 Metaware Incorporated

Compiler Controls page 5-2

announce each compiler phase as compilation progresses,
Summarize — produce a statistics summary, and 186 (286) —
generate code that uses the special instructions of the 80186
(80286) processor.

The other options specify such things as the “ ANSI mode”,
getting a (pseudo-) assembler listing, and the names of listing,
intermediate, paging, debug, and object files.

Options are given to the compiler on the command line by
preceding each by a hyphen “-” and following it by parameters
where applicable. Most option names may be truncated to just
a few leading characters. In addition, many options may be
negated by prefixing the name with “no”, as in “noansi”.

The table below gives the name of each option, its mini-
mum truncation, whether it is negatable, a short summary of
the option’s effect, and the default value of the option. More
detailed explanations follow the table.

Most of the options have a fixed default value, but for some
this default value may be configurable with the config
program; see Subsection 5.4. In the table, “Default: ddd”
indicates that the default is fixed and is ddd. The phrase
“Default (configurable): ddd” indicates that the default value is
configurable, but as the compiler is distributed, the default is
ddd. No default value is given when such would be irrelevant,
e.g. for an option that has no effect unless it is present. As a
final wrinkle the autocfig program may change the values of
the options cram and tpages, when the compiler is installed,
depending upon available memory.

In general the compiler interprets the character “@” as
denoting the standard input when it appears where an input file
name is expected, and standard output in an output position.

Examples: (Replace pp with hc for High C.)

pp input -obj obj.fil -tpages 150
concoct | pp @ -obj concoct.obj -asm > list.fil

v.09.15.85 © 1983-85 MetaWare Incorporated

Compiler Controls

page 5-3

The second example shows the compiler taking its input from
the standard input (“@"), as produced by a hypothetical pro-
gram concoct.

Maximum truncation

Negatable?
Option name, parameters

an Y
as Y
cr Y
debug Y
def N
ip N
lin N
lis N
mm N
v.09.15.85

ansi

asm

cram

debug

define Mdefs

ipath Path

Effect, Default

Accept only ANSI standard programs.
Default (configurable): noansi.

Produce a (pseudo-) assembler list-
ing to the listing file. Default: noasm.

Try to conserve memory, which is
limited. Default (configurable):
nocram, but the configuration may be
changed automatically by autocfig;
see Subsection 5.4. (Not on ws.)

Produce Intel OMF debug records.
Default: nodebug.

#define the listed Mdefs — macro
definitions — before processing the
source file. ‘

Supply an initial value for the Ipath
pragma.

lines_per_page nn

list File

mm Model

Specify the number of lines per page
to be nn. Default: lines_per_page
60.

Specify the listing file name to be
File. Default: 1ist @.

Specify the memory Model: Small,
Compact, Medium, Big, or Large.
Default (configurable): mm Small.

© 1983-85 Metaware Incorporated

Compiler Controls

ob Y
off N
on N
pT Y
tmpil N
tmpi2 N
tmpt N
XT Y
v.09.15.85

object File

off Togglés
on Toggles

profile File

tmpil File

tmpi2 File

tmptp File

xref File

page 5-4

Specify the object file name to be
File. Default (configurable): object
source.0BJ.

Turn the Toggles off; see Section
Compiler Toggles. '

Turn the Toggles on; see Section
Compiler Toggles.

Specify the profile file name to be

File. Default (configurable) for PP:
profile pp.pro (for HC: hc.pro).

Specify the instruction file name to
be File. (Not onwMs.)

Specify the intermediate-language
file name to be File. (Not on wMs.)

Specify the tree paging file name to
be File. (Not onwMs.)

Produce a cross reference listing.
Specify File as the cross-reference
file name, suffixed by .XRF if no
extension is given. Default: noxref.

© 1983-85 MetaWare Incorporated

Compiler Controls page 5-5

ansi. Specifying ansi causes only ANSI standard
programs to be accepted by the compiler. For this to work the
compiler must have access to the files PPANSI.ST and PPANSI
.PT (for High C: HCANSI.ST, HCANSI.PT, and HCANSIP.PT) in its
search path; see Subsection 5.3. These files contain tables
used for scanning and parsing programs that must obey ANSI
restrictions; the files are included on the distribution media.
(Also known as STANDARD on VMS.) .

Notes: The Pascal standard is specified in ANSI docu-
ment X3J11-85-102, August, 1985. The ANSI standard for C
is currently under development; the ansi option reflects the
draft standard as of the publication date of this guide. The
main use of this option is to turn off MetaWare extensions.

asm. Specifying asm causes a (pseudo-) assembiler listing of
the generated code to be put in the listing file. The assembler
listing is annotated with lines from the compiled source file —
but not with lines from any other (included) files, for technical
reasons. These lines appear as comments just preceding the
corresponding assembler instructions. (vs: called MACHINE_CODE.)

debug. Specifies that Intel OMF debug records are to be
produced in the object file, i.e. Intel symbol. line. and type
records. This information can be used by debuggers on Intel
development systems, but Concurrent does not support a
debugger that can take advantage of any of the records.

v.09.15.85 ’ © 1983-85 MetaWare Incorporated

Compiler Controls page 5-6

tmpi3. The compiler normally sends certain debug infor-
mation to a default temporary sequentially-accessed file.
This directive specifies an alternate file name. It can be
used when there is not enough room on the current drive to
hold the file. (not on ws.)

on Emit_line_records. This toggle is off by default. Itis a
part of the debug directive and as such is active when debug
is. It specifies that only the line records are to be produced.
Emit_line_records can be turned on independently of
debug.

on Emit_line_table. This toggle is on by default. It causes
line numbers to be emitted in the object file for use in
cali-chain stack dumping, such as during debugging and
when a program aborts at run time. The line table takes up
no more than one byte per source line; it does not affect
the speed of the compiled code.

define. Supplies initial definitions of macros. One or more
definition may be specified after define. Each definition takes
the form

name
or "name expression" (including the ” quote marks).

These two forms “turn into” the lines

#define name
and #define name expression

respectively, and are processed by the compiler as its first
input, even before reading the profile.

ipath. Sets the initial value of the Ipath pragma. Note:
when the Ipath pragma is specified in the source program, the
ipath option is overridden from that point on. See Subsection
5.3 for an explanation of “ipaths”.

lines_per_page nn. Every nnlines on a listing, a page eject
is issued. The default (60) is appropriate for most 6-lines-
per-inch printers, which have a total of 66 lines per page. The

v.09.15.85 © 1983-85 MetaWare Incorporated

Compiler Controls page 5-7

setting of lines_per page is intended to allow some blank
space at page boundaries. When using 8-lines-per-inch mode
on some printers, typically there are 88 lines per page and so
lines_per_page should be set to 80 or 82.

If lines_per_page is set to zero, the number of lines per
page is assumed infinite, so the periodic page ejects are
eliminated.

list. The compiler normally sends all output to the listing
file which is by default the standard output. To re-direct the
output to a file, use MS-DO0S output redirection, e.g. “pp xyz >
output.fil” (or hc). Alternatively the 1list directive tells the
compiler to send the listing output to a specified file. If the file
name specified after list has no extension, “.LST” is
appended to it. Note that this option does not turn on the
listing of the compiled source; use on List for that (List is also
the name of a toggle; see Section Compiler Toggles).

mm. Specifies the memory model for which the compiler is
to target its generated code. The five memory models sup-
ported are Small, Compact, Medium, Big, and Large. This option
overrides any Memory_model pragma appearing in the program.

See Section Memory Models for a description of the models.
(Known as MEMORY_MODEL on VMS.)

object. The object file name defaults to the name of the
input file with “.0BJ3" as the extension, and with any directory-.
path prefix removed. The compiler’s default object file name
may be changed with the object option. If the name after
object has no extension, “.08J" is appended. noobject
specifies that no object code is to be emitted; this is a good
way to obtain syntax checking or a cross-reference without the
expense of code generation.

The defauit extension “.083° may be changed by configur-
ing the compiler; see Subsection 5.4.

on, off. Turns On or Off various compiler toggles. All
toggles are documented in Section Compiler Toggles. Follow-

v.09.15.85 © 1983-85 MetaWare Incorporated

Compiler Controls page 5-8

ing on or off are one or more toggle names, as in “on List
Emit_line_records”.

profile. Specifies a profile. A profile is a file that is read by
the compiler prior to reading the source file. The default profile
is named “PP.PRO” (“HC.PRO"). noprofile specifies that no
profile is to be read. See Subsection 5.2 for details.

tmpil, tmpi2. The instruction file and intermediate-
language file are sequentially-accessed temporary files used
by the code generator phases. If the current drive does not
have enough room for them, the tmpil and tmpi2 options may
be used to re-specify their locations. Although each of these
files can be on a floppy drive since each is sequential, they are
both accessed at the same time so they shouid be on separate
floppies if not on a hard disk. (Not on WMS: irrelevant; nor is tmpi3.)

tmpi3. See the paragraph after the debug paragraph
above.

tmptp. The drive and file name of the tree paging file can
be specified by using the tmptp parameter. The paging file is
randomly accessed so it should be on a hard disk — that is,
unless there is sufficient memory for a tpages setting large
enough that no tree paging is necessary, in which case the file
will not be used at all. (Not on WMs: irrelevant.)

tpages. The compiler constructs a tree representation of
the source program during compilation. Only portions of the
tree are needed in memory at any given time; unneeded tree
portions are paged to disk. Disk traffic can be reduced and
compilation speed increased by increasing the number of page
buffers in memory. (Not on vMs: irrelevant.)

That increase happens automatically up to the maximum
specified with the tpages option. The default is set by
autocfig based on available memory at installation time; see
Subsection 5.4. Generally the maximum should be set as high
as possible short of mortgaging all remaining memory to the
tree pager and thus leaving no memory for other compiler data
structures.

v.09.15.85 © 1983-85 MetaWare Incorporated

Compiler Controls page 5-9

If compilation aborts due to lack of memory, the tpages
parameter should be reduced. However if the abort occurs
during compiler initialization, the new value must be below 250
to have any effect. This “magic number” is due to an optimi-
zation in the implementation of the tree pager.

In particular, page buffers allocated when the compiler is
started up are more efficiently accessed than all buffers are
later. The reduction in efficiency occurs when the first addi-
tional buffer is allocated or when the first buffer is paged to the
tree page file, whichever is first. The optimization is imple-
mented for at most 250 buffers due to hardware limitations.

Thus it is advantageous at start-up time to allocate as many
page buffers as possible up to 250 so that compilation can
proceed for as long as possible before a new page must be
allocated or a page must go to disk. Thus the compiler initially
allocates either 250 or nn, whichever is smaller, where nn is
the tpages parameter.

In summary the tpages parameter nn not only specifies the
maximum number of page buffers that will ever be allocated
but, if it is less than 250, it also specifies the initial number of
buffers to be allocated; otherwise the initial number is 250.

Each page buffer holds 64 tree nodes of 12 bytes each for a
total of 768 bytes per buffer. Thus 100 buffers (the default)
requires 76,800 bytes of memory and the maximum initial
number of 250 requires 192,000 bytes.

The paging file uses a single 1024-byte disk block to store
each 768-byte page buffer (1/0 is most efficient on 512-byte
boundaries). When the program being compiled requires more
tree pages than reside in memory, the paging file is used to
hold some of the pages. The compiler aborts if for any reason
there is insufficient space available for that file.

xref. See Section Cross References for details.
(Known as CROSS_REFERENCE on VMS.)

Ve

v.09.15.85 © 1983-85 Metaware Incorporated

Compiler Controls \ page 5-10
5.2 Profiles ‘

[compiler-execution environment; source file prefix; HC.PRO, PP.PRO, .PRO)

A profile is a file that is treated as a prefix to the source file.
Its purpose is to provide a way to customize the compiler to
particular needs.

The default profile name is “PP.PRO” (“HC.PRO”) but an
alternate name may be specified with the profile option; see
Subsection 5.1. noprofile means not to search for a profile.

One can use a profile to initialize toggles as desired, specify
the desired memory model, #define some macros, and set
any other pragma option. Then these new “defaults” can be
applied to several or all source modules in a global fashion. In
other words, the profile can be used to effectively alter com-
piler defaults.

The profile can also be used to “predefine” new identifiers
and to change the meaning of existing predefined names.

Example. The profiles illustrated below would cause:
(1) the apparent default to be that one does get a listing,
(2) the memory model to be Big rather than Small, and
(3-HC) some “standard” definitions to be provided —
(3-PP) the type Integer to behave exactly like LongInt:

High C: Professional Pascal:

pragma On(List); pragma On(List);

pragma Memory model(Big); pragma Memory model(Big);

#define UNIX package; — Unnamed so that

typedef -—- no open is necessary.
enum{False,True} Boolean; type Integer = Longlnt;

const MaxInt = MaxLong;
const MaxInt = MaxLong;
end;

Implementation. The compiler reads the profile immedi-
ately prior to reading the source file. It opens the profile in the
same manner that it opens an include or other input file,
searching “ipaths” if necessary; see Subsection 5.3. If the
profile is found, the programmer is notified; if the profile is not

v.09.15.85 © 1983-85 Metaware Incorporated

Compiler Controls page 5-11

found, the compiler immediately proceeds to read the source
file without notice — even if profile was specified on the
command line.

The latter is because profile only changes the name to
look for, but does not “demand” that the file be found.

5.3 “Ipaths”: Input File Search Facility

[define compiler-execution logical name; #include and pragmas Ipath,
nclude; AUTOEXEC.BAT = LOGIN. COM]

Input files. When the compiler must access an input file,
there are three strategies for searching for the file.

(1) This strategy is used when the input file was specified
via any of the three forms

#include "F"
pragma R_Include("F");
pragma RC_Include("F");

Strategy 1. The compiler first attempts to open file F
relative to the directory containing the file that contains the
include. If the file open fails, Strategy 3 is then used.

(2) This strategy is employed when the input file was
specified via a #include <F> directive, a “ < >-include”:

Strategy 2. The compiler iterates through a list of string
prefixes specified by an < >-include “ipath” (see below for
how to set it). It appends F to each prefix in turn, until the
result is the path name of a file that can be opened
successfully. If no open succeeds, Strategy 3 is used.

(3) This strategy is employed when (1) or (2) fails, and when
an open request is not due to either form of #include directive
or either of the relative-include pragmas, such as when the
compiler attempts to open the primary source file, the profile,
or a file specified by pragma Include or C_include:. -

Strategy 3. The compiler attempts to open the file in the
current working directory. [f the open fails, the compiler
then proceeds to iterate through a list of string prefixes. It

v.09.15.85 © 1983-85 MetaWare Incorporated

Compiler Controls page 5-12

appends the specified file name to each prefix in turn, until
the result is the path name of a file that can be opened
successfully. These prefixes are taken first from any speci-
fied by the programmer via pragma Ipath, and then from a
Concurrent “logical name” normally called IPATH, a value
for which is established by the Concurrent define com-
mand; see below.

Ipath specification. There are three distinct “ipaths” the
compiler uses when opening an input file. Each uses the same
syntax — a list of strings separated by “;” as illustrated below.

(1) The < >-include “ipath” can be specified only by con-
figuring the compiler, and should be done when the compiler is
installed and the decision is made where to put the standard
“.h” header files provided in the distribution. The < >-include
“ipath” typically references just the directory containing those
files, but can be made to reference any sequence of
directories. See Subsection 5.4 on configuring the compiler.

(2) Pragma Ipathcan be set anywhere and changed any
number of times. Typically, though, it is set in a profile.

(3) An appropriate place to set the Concurrent environ-
ment IPATH is in the Concurrent AUTOEXEC. BAT file. One of the
string prefixes might be the directory path of the “standard
include library®”, where the standard ”. h" header files provided
in the distribution are put.

Examples. Inthe profile or a source file

pragma Ipath("A:/INC/;C:/INC/;C:/USR/INC/");
or equivalently the Concurrent command

define IPATH=A:/INC/:C:/INC/:C: /USR/INC/
sets up three input-file prefixes. (The absence of blanks is

significant.) If the compiler should subsequently encounter the
statement:

#include "QSORT.CF"

v.09.15.85 © 1983-85 MetaWare Incorporated

Compiler Controls page 5-13

it would try to open “QSORT.CF” in the directory that contains the
file containing the #include. Were that to fail, the compiler
would then try to open “QSORT.CF” in the current working
directory (the directory in which the compiler was invoked).
Were that to fail, it would try to open “A:/INC/QSORT.CF”, then
“C:/INC/QSORT.CF”, and finally “C:/USR/INC/QSORT.CF”, until it
has a successful open. Were all attempts to fail, the compiler
would abort with a “File not found.” message.

(We have assumed used-defined header files have the
extension “.CF” rather than “.H’ so as to eliminate any possible
conflict with any ANSI-standard header file names.)

Note that the name of the Concurrent logical name IPATH
can be changed by configuring the compiler; see the next
subsection. Far example, the name could be changed to INCLUDE
(or perhaps CIPATH so as not to conflict with the IPATH name of
another MetaWare compiler, if it is in use, too). Then, the
Ipath specification would be set by:

define INCLUDE=A:/INC/:C:/INC/.C: /USR/INC/

v.09.15.85 © 1983-85 MetaWare Incorporated

Compiler Controls page 5-14

5.4 Configuring the Compiler

[configuring file extensions, global aliasing convention; configuring IPATH names:
MS-DOS = OCL, <>-include, pragma Ipath; configuring options ansi, cram on 8086,
ipath, s = memory i lodel tpages on 8086; configuring Check ¢ staok 186, 286;
configuring Emit_line table, Literals in code; config, autocfig)

MetaWare compilers are provided with a program named
CONFIG that permits the programmer to change certain compil-
er defaults. That is possible because one can modify the
compiler executable file without damaging its contents. Some
of the defaults are neither options nor toggles and can
therefore be changed only by configuring the compiler.

The configurable defaults are:

¢ The source program file extension when none is suppli-
ed. “.C” is the default for the distributed compiler, but
users may change it to “.SEA”, “ .SEE”, or “.HC”, e.g.

¢ The extension for the object file output of the compiler.
“.0BJ” is the default for the distributed compiler.

* The global aliasing convention; see Section Externals.

* The name of the Concurrent “Ipath” logical name. It is
normally “IPATH” but can be changed to something else,
e.g. "INCLUDE”, to agree with conventions used by other

compilers.

e The < >-include “ipath” value; see the prior
subsection.
Options:

® ansi: Enforce ANSI standards?

® cram Assume limited memory?

. ipéth: The initial value of pragma Ipath.

° mm The compiler memory model.

* tpages: The number of tree pages.

v.09.15.85 © 1983-85 MetaWare Incorporated

Compiler Controls page 5-15
Toggles — see Section Compiler Toggles:

® Check_stack: Emit stack checking code?
s 186 Generate code for the Intel 801867
s 286 Generate code for the Intel 802867

e Emit_line_table: Emit line numbers in the object file
for use by the post-mortem Stackbump
facility?

e Literals_in_code: Place literalsincode?

The CONFIG program is self-documenting and users may run
it (in the same directory as the compiler) for a complete
explanation of how to configure the compiler:

config

Another supplied program AUTOCFIG sets the tpages option
based on available memory and may set the cram option. This
program is executed automatically during installation and it
should be re-executed when memory resources are changed:

autocfig

This command must be given when in the directory containing
the compiler.

v.09.15.85 © 1983-85 MetaWare Incorporated

Compiler Pragmas page 6-1

6
Compiler Pragmas

High C compilers provide a myriad of “pragmas” (the term
comes from Ada) that direct compiler operations. Further-
more, a “profile” file can be supplied to override the defaults for
those pragmas and thereby customize the compiler to a local
environment; see Section Compiler Controls.

Pragmas control the inclusion and listing of source text, the
production of object code files, the generation of optional
additional program and debugging information, and so on.

6.1 Syntax of Pragmas

Compiler pragmas take one of the following general forms:

pragma <Pragma_name>(<Pragma_parameters>);

or
pragma <Pragma_name>;

where <Pragma_parameters> is a list of constant expressions
separated by commas. The number and nature of the expres-
sions are dependent upon the particular <Pragma_name>. A
pragma can appear anywhere a statement or declaration can
appear; see the High C Language Reference Manual for a
specification of the precise placement of pragmas.

v.09.15.85 © 1983-85 MetaWare Incorporated

Compiler Pragmas page 6-2

6.2 Compiler Pragma Summaries

[on, OFf, Pop; Alias, Calling convention; Cgroup, Code, Data,
Dgroup; Global_aliasing_convcention, Literals, Static_segment;
Memory model ; Include, C_Include, R_Include, RC_lncluHe, Ipath]
The following pragmas, listed alphabetically within logical
groups, are available:

Pragma Its Purpose

-—=> Toggles — see Section Compiler Toggles:

on, Off, Pop Turn On or Off, or reinstate a prior status of,
various compiler switches or “toggles”.

-—=> Externals — see Section Externals:

Alias Specify the external object module name for an

internal identifier.

Calling_convention

Cgroup
Code

Data

Dgroup

v.09.15.85

Control the way linkage to subroutines is done.
Allows calling other language such as Pascal,
PL/M, or FORTRAN from C.

Specify the code group name for small-code
memory models.

Specify the segment into which generated code
is to be placed. Useful for overlaying code.

Specify the use of named common for data stor-
age allocation. Can be used for overlaying data
but its primary purpose is to provide another way
of sharing data between compilation units.

Specify the data group name for small- and
medium-data memory models.

© 1983-85 MetaWare Incorporated

Compiler Pragmas page 6-3

Global aliasing_convention
Specify automatic construction of external object
module names for internal identifiers.

Literals Specify the name of the segment to contain
literals.

Static_segment Specify the segment into which defined
variables go. Useful for overlaying data.

-—=> Models — see Section Memory Models:
Memory_model Specify the 8086 memory model.

- Source File Inclusions — see Subsection 6.3:
Include Include the source of another file in the compil-
ation unit.

C_include Conditionally include the source of another file in
the compilation unit.

R_include Include the source of another file in the compil-
ation unit treating the path name as Relative to
the directory containing the file containing the
include.

RC_include Conditionally include the source of another file in
the compilation unit treating the path name as
Relative to the directory containing the file con-
taining the include.

Ipath Specify a search path for the include pragmas.

v.09.15.85 © 1983-85 Metaware Incorporated

Compiler Pragmas page 6-4

6.3 Include Pragmas: Inclusion of Source Files

(pragmas Include, C_Include, R_Include, RC_Include, and Ipath;
conditional source File 1nc1usion directory search for input files;
include file search path]

The Include pragma is used to include source from other
files while the compilation unit is being compiled. The pragma
operates slightly differently from the standard C #include
directive. There are four forms of the include pragma:

pragma Include(<File_name>);
pragma C include((Flle _name>);
pragma R Include((Flle name>);
pragma RC_. include((File _name>);

where “<File_name>” is a string constant denoting the name of
afile. Examples:

pragma Include("a_lot");
pragma R Include("dclns"),
pragma C_include("math.h");

The Include pragma directs the compiler to unconditionally
include a file. The C_include pragma causes the file to be in-
cluded only if it has not been included before — “conditionally
included”. The R_Include pragma has exactly the same effect
as the standard C #include directive. The RC_include does
likewise except that the file is conditionally included.

The difference between the R ("Relative”) include prag-
mas, R_Include and RC_Include, and the pragmas Include and
C_ include is that for the latter two, the directory containing the
file containing the pragmas is not searched for the included
file, whereas in for relative includes, it is. See Section
Compiler Controls for more information about the compiler
searches for an include file.

An Include pragma may not be followed by anything
else on the line containing the pragma. After the
Include-d file is processed, processing resumes on the
line after the one containing the Include pragma. In effect
the rest of the line is a comment!

v.09.15.85 © 1983-85 Metaware Incorporated

Compiler Pragmas page 6-5

Ipath. The compiler is able to search up to three different
lists of directories for an include or input file. These lists are
specified by (a) pragma Ipath; (b) the “ipath” environment
symbol; and (c) the configurable < >-include “ipath”. The
syntax of (a) is illustrated by:

On MS-D0S, or UNIX or Xenix if “:” replaces “;":
pragma Ipath("/usr/jones/;/usr/jones/inc/");

On VAX/VMS:

pragma Ipath("[DIR1]|DISK1:[DIR1]|DISK1:[DIR2]");

See Section Compiler Controls for more information about
how all the different Ipaths are specified and in what order the
compiler searches them.

Identity of file names. For the C_include and RC_include
pragmas, file names, including path, are considered the same
on some systems only if they are textually identical. Thus, the
following two pragmas may cause two includes to occur:

On MS-D0S or UNIX or Xenix:

pragma C_include("string.h");
pragma C_include("../inc/string.h");
On VAX/VMS:

pragma C_include("STRINGS.H");

pragma C_include("HCLIB:STRINGS.H");
even though both includes may really refer to the same file.

This can happen if one of the Ipath directory lists contains
“..linc/” on MS-DOS or “HCLIB” on VMS. The problem is that
host operating systems do not always provide a method for
determining whether two file names describe the same file;
e.g. neither MS-D0S nor VMS has the ability, but UNIX does.

Also for the purposes of textual comparison, file name cas-
ing is significant only on operating systems that support such.
On UNIX casing is significant; on MS-D0S and VMS it is not.

v.09.15.85 © 1983-85 Metaware Incorporated

Compiler Pragmas page 6-6

Methodology. The primary utility of conditional includes
lies in supporting modularity. Assume file “trees.cf” is merely
a collection of declarations defining the interface to a trees
module. Suppose further that trees.cf makes reference to a
typedef Symbol in another module defined in “symbols.cf”. Ifa
standard “#include "symbols.cf"” were placed within trees
.cf, a duplicate declaration of Symbol would occur in any com-
pilation unit that #include-d both trees.cf and symbols.cf. If,
instead, a conditional include were used in both trees.cf and
in any compilation unit including symbols.cf, at most one copy
of symbols.cf would be included.

(We have assumed used-defined header files have the
extension “.CF” rather than “ .H” so as to eliminate any possible
conflict with any ANSI-standard header file names.)

With conditional includes, each interface file F can condi-
tionally include all other interface files F’ that are necessary for
the definition of the resources in F. Therefore any user of F
can simply include F and will automatically get other resources
that are needed, without duplication.

v.09.15.85 © 1983-85 Metaware Incorporated

Compiler Toggles page 7-1

7
Compiler Toggles

7.1 Toggle Pragmas
(On, Off, Pop, compiler switches or toggles]

One of the purposes of pragmas is to turn On and Off vari-
ous compiler switches or “toggles”. In such cases, the pragma
syntax is simply

pragma <{Pragma_name> (<Pragma_parameter>)

The <Pragma_name> is either On, Off, or Pop, and the single
{Pragma_parameter> is the name of the toggle to be affected.
All compiler toggles are described in Sections 7.2 and 7.3.

“On” turns the toggle on; “Off” turns it off; and “Pop”
reinstates it to a prior value. Toggles operate in a stack-like
fashion, where each On or Off is a “push” of on or off, and a
Pop “pops” the stack. The stack for each toggle is at least 16
elements deep, but no diagnostic is given if the stack overflows
or underflows. Examples:

pragma On (List); /* Turns on the source listing. */
pragma Off(Check_stack); /* Turns off the run-time */
pragma Off(List); /* stack overflow checks. */
pragma On (List); /* Turns on the source listing. */
pragma Pop(List); /* Back to off for the listing. */
pragma Pop(List); /* Back to on for the listing. */

Recall that toggles can also be initialized on the command
line, with on and off. See Section Compiler Controls.

Below we present the default values, names, and meanings
of the compiler toggles. The presentation is divided into two
categories: system-independent and system-dependent tog-
gles. In each category the toggles are alphabetized.

v.09.15.85 . © 1983-85 MetaWare Incorporated

Compiler Toggles page 7-2

The default value of some toggles can be changed by con-
figuring the compiler; see Subsection Configuring the Compil-
er of Section Compiler Controls. Configurable toggles are
indicated by “(configurable)” after the specification of the
default value; the stated default is that provided in the com-
piler as configured for distribution.

7.2 System-independent Toggles
Asm -- Default: Off
[assembly listing]

When On, causes a (pseudo-) assembly listing to be gener-
ated, annotated with source code as assembly comments. To
get the listing for just the body of a given non-level-one routine,
be careful to place the “pragma On(Asm);” just after the body's
{ and place the corresponding “ pragma Pop(Asm);” just before
the corresponding }.

Callee_pops_when_possible -- Default: Off

To allow varying numbers of parameters to a function F, the
standard C calling convention has F's callers pop F’s argu-
ments from the stack after F returns. That is less efficient than
having F pop the parameters, since the code for the pop is
replicated at each call rather than occurring exactly once at
the epilogue of F.

When this toggle is On, the more efficient scheme is used
when possible. In particular, each non-exported function that
is never passed as a parameter pops its parameters, and its
callers do not.

This is a safe optimization only if the number and sizes of
parameters passed in each call to such a function matches the
number and sizes of parameters in the declaration of F.
Otherwise, unpredictable and sometimes disastrous results
may occur. By contrast, if the toggle is Off, incorrect para-
meter passing will generally only cause F to access garbage in

v.09.15.85 © 1983-85 MetawWare Incorporated

Compiler Toggles page 7-3

its parameters, but the stack will be restored properly after the
call.

This toggle is not applicable on target machines with auto-
matic parameter popping such as the VAX, nor machines with-
out an explicit stack, such as the IBM 370, but applies to such
machines as the intel 8086, MC68000, and NS32000.

Check_stack -- Default: Off (configurable)
[stack overflow]

When On, causes code to be emitted to check for stack
overflow. Note: this toggle does not apply to (cross) compilers
targetting to machines with automatic stack expansion, such
as the VAX, MC68010, and NS32000.

Int_function_warnings -- Default: On

When Off, suppresses warning messages normally gener-
ated when (a) a function returning int has no “return
(expression);” statement within it; and (b) a function returning
int contains a “return;” within it.

This is to remove frequent warnings for old C source that
did not use the reserved word void to indicate a function re-
turning no resulit, since such functions return int, by default.

List —— Default: Off
[compiler or source listing]

When On, causes the compiler to produce a listing. It is
typically given when starting the compilation but may appear in
the source file to turn the listing On or Off around a particular
section of source.

v.09.15.85 © 1983-85 Metaware Incorporated

Compiler Toggles page 7-4
Make_externs_global -- Default: Off B '

When On, any local declaration of an object with storage
class extern is made global if there does not already exist a
global declaration of the object. Early C compilers sloppily
promoted an extern declaration within a function to the global
scope. This toggle supports programs depending upon that
“feature”.

Optimize_for_space -- Default: Off
[code optimization]

When On, causes the generation of more space-efficient
but potentially less time-efficient code. An example of this is
using a multiply rather than a sequence of adds and shifts to
compute array subscripts: multiply is much more expensive
than shifts on an 8086/88, for example.

Parm_warnings -- Default: On

In C it is permissible to pass arbitrary arguments to a non-
prototype (old-style) function F, without any type checking to
ensure that the passed arguments match in type with the
declared formal parameters of F. High C compilers produce a
warning whenever just such an inconsistency is detected.
Frequently this inconsistency is a source of disastrous or
difficult-to-find bugs:

double square(x) double x; {return x*x;}

printf("¥1f \n", square(3));

The call to square passes the integer 3, not the double 3.0, and
the compiler complains. The C language definition prohibits
the compiler from casting 3 to a double before passing it.

To eliminate the compiler warnings, turn Off the toggle
Parm_warnings. We recommend, however, that the program
text be repaired to eliminate the offending function calls rather
than eliminating the potentially useful feedback from the com-
piler.

v.09.15.85 © 1983-85 MetaWware Incorporated

Compiler Toggles page 7-5

Pointers_compatible -- Default: Off
{pointer compatibility]

When On, allows pointers of any type to be compatible with
each other. Although this is violation of the ANSI standard and
High C specifications, many old C programs improperly assign
pointers of different types to each other. This toggle allows
such programs to be compiled without modification.

Pointers_compatible_with_ints —- Default: Off

When On, allows pointers of any type to be compatible with
ints. Although this is violation of the ANSI standard and High
C specifications, many old C programs improperly assign
pointers and ints back and forth. This toggle allows such pro-
grams to be compiled without modification.

ANSI and High C disallow this dangerous practice because
pointers are not necessarily the same size as ints. The pro-
grammer should ensure that intermixed pointer and int types
have the same size; otherwise a pointer stored in an int may
not be retrieved as expected later.

Public_var_warnings -- Default: On

When Off, suppresses the warning messages “Variable
used before set.”, “Variable set before used.”, and “Variable
not used.” for all variables exported, i.e. those non-automatic
variables not declared static or extern.

Such warning messages only occur for such variables that
are not within an #include-d. If one adheres to the discipline
that all imported variables are defined in included files, the
message will not occur.

v.09.15.85 © 1983-85 Metaware Incorporated

Compiler Toggles page 7-6

Quiet -- Default: Off

[compilation phase announcements]

When On, causes each compilation phase to be an-
nounced in turn as the compilation progresses.

Summarize -~ Default: Off
[compilation statistics and summary]

When On, causes the production of summaries of compil-
ation activities. The summaries are produced at various stages
of compilation.

Warn —- Default: On
When On, causes warning messages to be suppressed.

7.3 System-Dependent Toggles

186 -- Default: Off (configurable)
[Intel 80186/80286 processors]

When On, causes the generation of 80186 instructions.
The 8086/88 code generator is capable of generating code for
any of the 8086/88/186/188/80286 family. The 80186 has a
few more instructions than the 8086/88, which can increase
the efficiency of programs; the 80286 has those and even
more instructions, but the latter are for operating system appli-
cations.

The 80186 instructions include: Push immediate, multiply
immediate, shift left/right immediate, and the procedure
“leave” instruction. The procedure “enter” instruction is not
used unless it will save space and toggle Optimize_for_spaceis
On because the code the compiler normally generates to enter
a procedure is faster than the “enter” instruction.

v.09.15.85 © 1983-85 MetaWare Incorporated

Compiler Toggles page 7-7

286 -- Default: On (configurable)

[Intel 80186/80286 processors]

When On, causes the generation of 80186 and 80286
instructions. The only difference between this and the 186
toggle is that the FWAIT instruction that synchronizes the 8086
/88 and the 8087 is omitted, since the 80286 and 80287 auto-
matically synchronize.

Emit_line_records -- Default: Off
[emitting debugging information]
When On, causes the Intel OMF line-number records that

associate line numbers with addresses within code segments
to be emitted. No debuggers under Concurrent use line records.

Emit_line_table — Default: Off (configurable)

[emitting debugging information; call-chain stack dump]

When On, causes information to be emitted that allows the
determination of the line number of a given code address A,
given the entry point of the routine containing A. This is used
by the run-time call-chain stack dump mechanism to produce
line numbers for the dump rather than code addresses.

v.09.15.85 © 1983-85 MetaWare Incorporated

Compiler Toggles page 7-8

Emit_line_table causes consumption of code space in the
code segment containing the routines for which the line num-
ber table is emitted. Usually the overhead is small: a little less
than one byte per source line. No speed loss occurs.

Emit_names — Default: Off
[call-chain stack dump; run-time error]

When On, causes the prologue of each routine R to be
preceded with R’s name so the StackDump routine can find the
name should a run-time error occur while R is active. The
name used is the “internal” name, the one relevant to source-
code programming, rather than any “external” name specified
via pragma Alias for the sake of a linker. Also, each code
segment begins with its name. Thus, in large-code models,
displaying the current CS at offset zero yields the name of the
current code segment.

Floating_point -- Default: On or Off per the host
[native floating-point instructions; Intel 8087 support]

When On, causes the compiler to emit “native” 8087
floating-point code rather than library calls. It is set On if the
machine on which the compiler is running has an 8087, and Off
otherwise. This is dynamically determined by the compiler at
start-up.

Care must be taken with the exercise of this option. If code
_is being prepared that will be run on many machines, some of
- which have no numeric processor chip, emitting native code
can be harmful even if users are warned that “not all software
features will work” with the omission of the chip. For example,
on the 8086/88, most floating-point instructions are preceded
by a WAIT opcode, which may hang the CPU if no 8087 is
present. Thus software containing native 8087 code may hang
on machines without an 8087.

v.09.15.85 © 1983-85 MetaWare Incorporated

Compiler Toggles page 7-9

The MetaWare co-processor Run-Time Libraries include a
call interface to all 8087 functions. Code compiled with Float-
ing_point Off goes through the Library to access the 8087.
The co-processor Libraries check for the presence of the 8087
before any floating-point operation is attempted and aborts if
the 8087 is not present.

The MetaWare Run-Time Libraries with the floating-point
emulators does not need the 8087 chip, although it will make
use of one if present. Code linked with this library will run on
any machine. The emulator Libraries closely simulates the
8087. See Section Floating-Point Support for more informa-
tion, and for a way to “turn off” the 8087 so that the library does
not use it.

The 8086-resident compiler itself is linked with the emu-
lator library; therefore, it does not need an 8087 to compile
floating-point expressions.

Literals_in_code -~ Default: Off (configurable)

[ROM-able code, literals in data vs. code space, pragma Literals;

8086 extended memory; post-mortem call trace call-stack dump]

Lengthy literals in a program are normally be placed in the
program’s data space. Such literals include string and floating-
point constants. With the Literals_in_code toggle On, they are
placed instead in the code space (but see the first and second
notes below). This can be beneficial where dynamic code load-
ing is performed by the operating system. In such circumstan-
ces code is most often read-only so literals can be swapped
out of memory without the need to write them to the paging
medium used by the operating system.

Literals_in_code should be tumed On when “ROM-able”
code is desired and the memory model is not small-data. ROM-
able code is destined to be burned into a ROM. In such appli-
cations typically the RAM contents are undefined when the pro-
gram begins execution. Therefore all the literals must exist in
the code space and are therefore also burned into ROM. See

v.09.15.85 © 1983-85 MetawWare Incorporated

Compiler Toggles page 7-10

Subsection Storage Classes in Section Storage Mapping for a
different method for smali-data.

NOTE: This toggle is ignored if the program is using a
small-data model. By definition all data and literals must be
addressable from the DS segment register in a small-data
model. See Section Storage Mapping.

NOTE: C string literals cannot normally be placed in code,
since they are writeable data items. For example, the 80286
processor forbids writing to code when running in protected
mode. Hence, Literals_in_code normally has no effect for
string literals. However, if f the toggle Read _only_stringsis On,
C string literals are assumed not writeable and turning On
Literals_in_code will cause them to be placed in code. See
the descnptlon for toggle Read_only_strings for more.

We recommend the combination of Read_only_strings and
Literals_in_code for Large memory model modules that have
no local static variables declared. Under these circumstances
it is not necessary for the compiler to dedicate the DS register
to point to the module’s static segment, since it has none.
Therefore DS can "float”, and much better pointer-derefer-
ence code can be generated when both the DS and ES regis-
ters are available.

See also pragma Literals for a way to specify the data
segment into which all literals not placed in code are put.

NOTE: Alternatively, on some machines it is necessary to
place the literals in the data space. For example, some 8086
systems make use of a signal from the chip that indicates
whether the memory reference is from the CS register versus
other segment registers. System designers can take advan-
tage of this and cause the CS memory references to go to a
separate one-megabyte memory bank, thus effectively obtain-
ing a two-megabyte memory for the 8086. However, this
requires that code running on such a system not try to access
data in code memory with the DS or ES register, or data in data
memory with the CS register. If literals are placed in code
memory, the compiler will sometimes reference them with the

v.09.15.85 - ©1983-85 MetawWare Incorporated

Compiler Toggles: Addenda page 7-11x
7x
Compiler Toggles

7.3 System-Dependent Toggles: Addenda

... (After toggle Literals_in_code:)
NEC -~ Default: Off

When On, the compiler generates instructions recognized
by the NEC 8086-compatible V20 and V30 processors —
these include the TEST1, CLR1, and SET1 instructions. Further-
more, instructions recognized by the Intel 80186 processor are
generated, since the NEC processors recognize them also.

For example, for the Pascal program fragment

var I: Integer;
Primes: 0..8190;
begin

if I in Primes then ...

the code

mov si,@sieve+24
mov cx,si

shr si,3

and «cl,7

mov al,l

shl al,cl

test @sieve[si],al
Jjz

is generated with the NeC toggle Off and 186 On, and

mov ix,@sieve+24
mov Cw,1X

shr ix,3
testl byte ptr @sievef[ix],cl
bz .

with NEC and NECasm (see next) On — 6 bytes shorter, for a 27%
savings in space. '

v.10.15.85

Compiler Toggles: Addenda page 7-11x

NECasm -~ Default: Off

When On, the compiler generates NEC instruction
mnemonics and register names rather than the standard Intel
mnemonics and names. For example, the Intel instruction
“adc ax,-10[bp+si]” is known in NEC conventions as “addc
aw,-10[bp+ix]”. The setting of this toggle in no way affects the
object module generated by the compiler. Turning it On
makes sense only if an assembly listing is requested.

v.10.15.85

Compiler Toggles page 7-11

DS or ES register, so the Literals_in_code pragma should be
Off. Note also that on such a two-bank memory system, the
post-mortem call-chain stack dump facility will not be able to
print the names of the modules and routines in the dynamic
call chain at the time of any error, because the textual names
for those routines are in the code space and there is no way to
reference them.

Read only strings —- Default: Off
[ROM-able code, literals in data vs. code space]

C string literals are not true literals, since they are writeable
data items. This means that they cannot be placed in code
space, since many processors — the 80286 is an example —
can protect against writing to code. Furthermore, two identical
string literals must be duplicated in a program’s object code,
since one might be modified and the other not.

With the toggle Read_only strings On, string literals are
considered true literals. Identical string literals are written to
object code only once, and the Literals_in_code toggle (see
above) takes effect for string literals, causing them to be
placed in code. With data space at a premium on an 8086, this
is a useful way to shift potentially large amounts of program
from data to code. Furthermore, with string literals in code, an
overlaying linker will automatically overlay string literals with
the code of an overlayed module.

Segmented_pointer_operations -- Default: On

On the 8086/88, when comparing two pointers with the
relational operators >, <, >=, and <=, the comparison
generally does not make sense if the segment portions of the
compared pointers differ. This is because MetaWare’s 8086
compilers restrict data objects to the architecture-imposed
limitation of 64KB. Therefore, by default, only the 16-bit offset
portion of such 32-bit pointers is compared for >, <, >=, and

v.09.15.85 , © 1983-85 MetaWare Incorporated

Compiler Toggles page 7-12

= (for equality and inequality, a full 32-bit comparison is
used).

For programmers that are managing pointers to individual
objects that span more than 64KB, this toggle can be turned
Off to force 32-bit comparisons.

In addition to comparisons, differences of pointers are done
with respect to offset only if the toggle is On. For example,

diff = pl - p2

does a 16-bit subtraction of the offset portions of “p1” and “p2”,
dividing the result by the pointed-to size to determine “diff”.
The subtraction becomes 32-bit if the toggle is turned Off.

The addition (subtraction) of an integer value to (from) a
pointer is always done in 16-bit arithmetic: MetaWare's 8086
compilers do not support 32-bit operations here. For example,

gq=p+si /* p's offset, plus i, into g's offset. */
q=p-1 /* p's offset, less i, into g's offset. */

The Segmented_pointer_operations toggle has no effect here.
If you want 32-bit pointer arithmetic you must provide functions
to increment and decrement pointers.

v.09.15.85 © 1983-85 MetaWare Incorporated

Floating-Point Support page 8-1

8
Floating-Point Support

8.1 The 8087 or 80287 Co-Processor

The 8087 is a fast floating-point processor that runs as a
“slave” to the 8086 CPU. The 8087 has its own set of
instructions that it “intercepts” from the host CPU.

On 80286 processors, the equivalent of the 8087 is the
80287 chip. Any reference to the 8087 in this section applies
equally to the 80287 unless an exception is made.

Since not all 8086 machines come with an 8087 co-
processor, the compiler provides two methods for evaluating
floating-point expressions.

8.2 Floating-Point Evaluation and Run-Time Libraries
[toggles Floating_point, 286; 8087 emulation libraries]

The compiler generates code to evaluate floating-point
expressions according to the setting of a toggle named Float-
ing_point.

If Floating_point is Off, calls are emitted to library func-
tions that closely emulate the 8087 instruction set.

If Floating_point is On, native 8087 instructions are gen-
erated. Additionally, if the 286 toggle is On, 80287 instruc-
tions are emitted. (The 286 toggle is never automatically
activated by the compiler, e.g. by detecting that it is running on
a 286, but must be configured On or set by the user via pragma
On in the program or profile.) The only difference between
8087 and 80287 instructions is that the 80287 instructions
need not be preceded by the 8086 FWAIT instruction that is
used by the 8086 and 8087 to synchronize; the 80287 syn-
chronizes with the 80286 automatically.

v.09.15.85 © 1983-85 MetaWare Incorporated

Floating-Point Support page 8-2

The setting of Floating_point during compilation deter-
mines which Run-Time Libraries can be linked with the pro-
gram, as described next.

For each “memory model” two sets of functions are
provided for evaluating floating-point expressions: the 8087-
natives and the emulators. The 8087-native functions simply
invoke the appropriate 8087 instructions and abort with a
diagnostic message if no 8087 is present. The emulation func-
tions can run on a machine with or without an 8087. if the 8087
is present, it is used; otherwise, it is emulated. The emulators
are, of course, bigger than the 8087-natives. But as long as
memory can be afforded, the emulation functions are an
excellent choice in obtaining speed when the 8087 is present
and emulation when it is not.

Code compiled with Floating_point On can only be linked
with 8087-native functions. This achieves the fastest possible
floating-point arithmetic, and also the smallest program size.
Code compiled with Floating point Off can be linked with
either Library. The reason that such code can be linked with
the native functions is that the natives support all the entry
points to the emulator, but merely invoke the 8087 rather than
emulating. However, even when linked with the 8087-natives,
such code runs slower than that compiled with Floating_point
On, due to the overhead of the calls.

In summary, for maximum speed and minimum space,
compile with Floating_point On and link with the native func-
tions. For maximum flexibility, compile with Floating_point
Off and link with the emulators.

A word of caution: if code is being developed that is to run
on a multitude of 8086 machines, Floating_point should be
exphcntly turned Off in every module that contains real-type
expressions — or the toggle can be explicitly turned Off in the
profile; see Section Compiler Controls. If code containing
8087 instructions is executed on a machine without an 8087,
the machine may hang. This is only a hazard with user func-

v.09.15.85 © 1983-85 MetaWare Incorporated

Floating-Point Support page 8-3

tions: the Run-Time Libraries ensure that the 8087 is present
before using i, i.e. they were compiled with the toggle Off.

See Section Linking a Compiled Program, Subsection Run-
Time Libraries; Link Errors, for the library names and other
details. See Section Memory Models for descriptions of the
models.

8.3 Detecting the Presence of an 8087

[toggle Floating_point; N687 environment variable; MS-DOS
set-command]

At start-up time for the 8086-host compiler, a run-time
intialization routine performs a test to determine if the host
machine contains an 8087 co-processor. If the 8087 is present,
the Floating_point toggle is initialized to On, otherwise Off, so
code is generated accordingly unless specifically overridden in
the profile, e.g.

Cross compilers from all other machines have the toggle
Off by default. That default may be configurable: use the
config command to find out for the machine of interest; see
Section Compiler Controls, on configuring the compiler.

Compiled programs use the same run-time intialization
routine at start-up time. If the 8087 is not present, the 8087-
native library functions abort with a diagnostic message the
first time a floating-point library function is called. The emu-
lation functions use the 8087 if |t is present and emulate it
otherwise.

v.09.15.85 © 1983-85 MetaWare Incorporated

Floating-Point Support page 8-4

NO87. Under Concurrent, users can disable the use of the
8087 by using the logical name “N0O87%. When NO87 is defined
(as anything), the run-time support acts as though there is no
8087: the 8087-native library functions abort upon attempt-
ed use, and the emulation functions emulate only. On pro-
grams linked with the emulators, this feature can be used to
determine how much slower the program runs without using
the 8087 (if the computer has one). On programs linked with
the 8087-natives, the feature can be used to determine wheth-
er library functions requiring the 8087 are ever called.

At run-time initialization the string value that NO87 is
defined as is printed on the standard output, unless the value is
all blanks. For example, the Concurrent command

define NO87=Use of co-processor disabled.

causes the message “Use of co-processor disabled.” to appear
at the beginning of execution of any program, including the
compiler. On the other hand,

.define NO87= (One or more blanks.)

;auses no message to be displayed, but the 8087 to be disabled.
inally,

define NOBT7= (Immediate ENTER: no blanks)

“undefines® the NO87 variable so that the 8087 is made
availaable for use. One can determine which logical names are
defined simply by typing “define”.

v.09.15.85 © 1983-85 MetaWare Incorporated

Memory Models page 9-1

9
Memory Models

9.1 The 8086 Memory Architecture

[code, data, run-time stack and extra segments; CS, DS, SS, ES;
dynamic versus static registers; data areas in one segment; memory
models; Small, Compact, Medium, Big, Large]

The 8086 family of processors reference memory through a
set of four “segment registers”: a code segment (CS), a data
segment (DS), a stack segment (SS), and an extra segment
(ES). Up to 64K bytes can be addressed with a single segment
register.

The compiler supports five so-called “memory models” on
the 8086 family that differ from each other in whether these
registers stay fixed or vary during the execution of the
program, and if fixed, whether the data areas reside in a single
64K-byte segment. If a given register stays fixed, the related
addressing capability is of course limited to 64K bytes.

We describe the five memory models below first according
to how they treat code and then how they treat data. In the
next two subsections we define five adjectives to capture the
essence: small-code versus large-code, then small-, medium-,
and large-data. Then we detail the five models: Small,
Compact, Medium, Big, and Large, each of which is described
by a code-data pair of these adjectives. (The sixth pair seems
not to resuit in a sufficiently useful model to bother implement-
ing. Perhaps the present reader will provide the impetus for us
to support it by finding an important application that just fits this
sixth niche.)

v.09.15.85 © 1983-85 MetaWare Incorporated

Memory Models page 9-2

9.2 Small-Code versus Large-Code Models
[static versus dynamic CS; short versus long calls]

The code of a program can be modeled in two ways. A
small-code model requires all code to reside in a single
segment referenced by the CS register. The content of the CS
register does not change during the program’s execution.
Thus the code may not exceed 64K bytes in length.

In a large-code model program code may be scattered
across several code segments. However the code of any
given routine (function) must reside in a single code segment.
With this scheme the CS register is dynamically modified to
reflect the currently active code segment.

The chief advantage of a large-code model is that it permits
programs to execute that have more than 64K bytes of code.
On the other hand a small-code model is more efficient in code
space and execution time than a corresponding large-code
model.

Small-code models employ a short call instruction to per-
form routine (function) calls. The instruction is three bytes long
and it uses a self-relative displacement. In contrast large-code
models use the long call instruction which is five bytes long
and is not self-relative. Self-relative displacements require no
relocation fix-ups so the overhead of loading a small-code
program is substantially smaller than that of a large-code
program.

v.09.15.85 © 1983-85 MetaWare Incorporated

Memory Models page 9-3
9.3 Small- versus Medium- versus Large- Data Models

{pointer and address sizes; memory reference costs]

The compiler also supports three schemes for referencing
data.

A small-data model incorporates a single data segment
(=64K) in which the stack, heap, and static storage are all
located. The segment registers DS, SS, and ES are all perma-
nently set to reference that one data segment. With this
scheme, pointers and addresses are only two bytes long,
consisting of a 16-bit displacement within the data segment,
but they cannot refer to code or indeed any memory outside
the data segment.

A large-data model employs multiple data segments: one
for the stack, one or more for the static data, and one or more
for the heap. With this scheme, pointers and addresses are
four bytes long, consisting of a 16-bit displacement followed by
a 16-bit “paragraph address” of a segment (a paragraph is 16
bytes). Thus all of memory can be referenced.

Memory references in a large-data model are significantly
more expensive than in a small-data model. To “dereference”
a pointer in a large-data model, the DS or ES register must be
loaded with the paragraph address of the segment being refer-
enced. To access static data, e.g. variables in a Common
block, the DS or ES register must also be loaded with the
paragraph address; but since the address is a constant, two
instructions are required to load the segment register because
immediate values can not be directly loaded into a segment
register.

A medium-data model is like a large-data model in that
pointers are four bytes long. It differs, however, in that all static
data reside in a single data segment permanently referenced
by the DS register. This scheme permits static data to be
referenced as cheaply as with the small-data scheme. Thus,
only explicit pointer dereferences in C, and references through

v.09.15.85 © 1983-85 Metaware Incorporated

Memory Models page 9-4

pointer and address variables and parameters passed by re-
ference in Pascal, require the expense of 32-bit dereferences.

9.4 Small Model: Small-Code, Small-Data

The Small model can be described as small-code, small-
data. All logical code segments are grouped into a single,
physically contiguous code segment by the linker. Likewise all
logical data segments are grouped into a single data segment.
All segment registers stay fixed throughout program execu-
tion. The CS references the code segment and the DS, SS,
and ES, all reference the data segment, i.e. they each have
the same content; the stack pointer (SP) dynamically refer-
ences the top of the run-time stack at the opposite end of the
data segment:

By default the linker specifies that the data segment should
be as large as possible. This can be changed; see the linker
documentation on the command file option parameters ABSO-
LUTE, ADDITIONAL, and HAXIMUM. Segment size specifications as
set by linker defaults or by these option parameters are writ-
ten to a simple header at the beginning of the load module and
can be “poked” after the fact if desired, although there is no
standard utility to modify the header.

The stack is carved out of the top of the data segment.‘
Reducing the data segment size therefore also reduces the
possible maximum size of the stack.

v.09.15.85 © 1983-85 MetaWare Incorporated

Memory Models ' page 9-4a

Diagram of the Small Memory Model

Small High | | o
-Data | Stack | A
------------- |<—SP |
| (Stack grows downward.) | |
| (Heap grows upward.) | Data |
R | Segment <64K
N
| Static variables | |
R | |
| Literals | v
Low | | <--DS,SS,ES —
Small High | |
-Code | Code Segment (<64K) |
Low | | <—-CS

v.04.09.86 ' © 1993-86 HetaWare Incorporated

Memory Models page 9-5

9.5 Compact Model: Small-Code, Medium-Data

Compact can be described as small-code, medium-data.
Unlike the previous model (and the Medium model, Subsection
9.6), this model has four-byte pointers and addresses.

The static variables and literals together form a single
data segment. The stack segment's address and size is deter-
mined by the loader. The heap is dynamically allocated from
Concurrent and may consume all of memory (up to 16MB). It
does not necessarily occupy contiguous memory as implied by
the picture below.

The stack size is fixed at link time, and is by default 2,000
bytes, as defined in the run-time initializer (the source of
which is supplied). This can be changed; see the linker docu-
mentation on the command file option parameters ABSOLUTE,
ADDITIONAL, and HAXIMUM. Segment size specifications as set by
linker defaults or by these option parameters are written to a
simple header at the beginning of the load madule and can be
“poked” after the fact if desired, although there is no standard
utility to modify the header.

v.09.15.85 © 1983-85 Metaware Incorporated

Memory Modgis

page 9-5a

Diagram of the Compact Memory nodg;'

Hedium High

-Data

Small
-Code

v.04.09.86

Low
High

Low

High

Low

High

Low
High

Low

(Stack grows downward.)

A
- - -|¢<--sP <64K|
v

¢S5 ---

Hultiple Heap

Heap Segment #n (<64K) |(<-ES is dynamic)

Heap Segment #1 ($64K)

Static Variables

Literals

Code Segment (£64K)

Segments
| (<-ES)
.}
--- <64K|
v
<{--DS —-—-
<{--CS

© 1983-86 MetaWare Incorporated

Memory Models page 9-6
9.6 Medium Model: Large-Code, Small-Data

The Medium model can be described as large-code, small-
data. The code resides in multiple code segments. The CS
register changes dynamically to reference the active code
segment.

Perhaps a good way to remember the name Medium is that
the average of Large(-code) and Smali(-data) is Medium.
(There seems to be little demand for the sixth combination of
small-code, large-data.)

Diagram of the Medium Memory Model

Small High | |
-Data | Data Segment -
| Same as Small model |
Low | | <--DS,SS,ES
Large High | |
~Code | Code Segment #n (£64K) | Multiple
I
. .(<-CS is dynamic)
I I
| Code Segment #1 (<64K) | Code Segments
Low | |

v.09.15.85 © 1983-85 MetaWare Incorporated

Memory Models page 9-7

9.7 Big Model: Large-Code, Medium-Data

The Big model can be described as large-code, medium-
data. This scheme is like the Compact model except that the
code occupies multiple segments.

Diagram of the Big Memory Model

Medium High

I I
-Data | Data Segments | Multiple
| Same as Compact model | Data Segments
Low | | <--DS
Large High | |
-Code | Code Segments | Multiple
| Same as Medium model | Code Segments
Low | |

v.09.15.85 © 1983-85 MetaWare Incorporated

Memory Models page 9-8
9.8 Large Model: Large-Code, Large-Data

- The Large model can be described as large-code, large-
data. It is the most general of all the models in that it permits
multiple data segments for mapping static variables and
multiple code segments.

The SS register is the only segment register that stays fixed
in the Large model. The DS and ES change dynamically to
reference various data segments, but the DS is fixed per
module, referencing a default data segment containing static
variables for the module (compilation unit).

Section Run-Time Organization describes how the DS
register is maintained for large-data.

Diagram of the Large Memory Model

Large High -—
-Data Stack (<-ES) A
------------- <--spP |64K
(Stack grows downward.) Vv
Low {--SS —
High Hultiple Heap
Heap Segment #n (£64K) |(<-ES is dynamic)
Low Segments
High | (<-ES)
Heap Segment #1 (<64K) |
Low | |
Hultiple
High | Data Segments
Data Segment #n | Static
Lov | | Variables
. , * and Literals
High | (<-ES)
L Data Segment #1 =((-DS is dynamic)
ow

v.09.15.85 © 1983-85 MetaWare Incorporated

Memory Models page 9-9

9.9 Pragma Memory_model; Default Model: Small
[Small, Compact, Medium, Big, Large]

Pragma Memory model is used to specify a model by its
name:

pragma Memory model(<Model name>)

where <{Model_name> is one of the foIIowmg names: Small,
Compact, Medium, Big, or Large. (Casing is not sugmflcant) The
pragma may appear anywhere syntactically allowed in the
source file. If more than one is specified, only the last has
effect; if the mm option (/MEMORY_MODEL qualifier on VMS) is
used on the command line that invokes the compiler, it over-
rides any Memory_model pragmas in the program or profile.

The default model is Small. If some other model is to be
used, the desired model must be specified by a pragma for
every compilation unit or “module”. For example, the pragma
could be placed in the profile; see Section Compiler Controls.

Linking. There are two run-time libraries for each memory
model: one that contains an 8087 floating-point emulator and
one that does not; see Section Floating-Point Support. Thus
there are ten libraries in all. Their names and how to link to the
appropriate library are discussed in Section Linking a Com-
piled Program, Subsection Run-Time Libraries; Link Errors.

9.10 Using a Fixed-Size Stack
[Small, Compact, Medium, Big, Large; toggle Check_stack]

For Concurrent, the stack size is fixed for all but small-
data memory models. MetaWare compilers provide the option
of arranging memory in those models so that the stack is of a
fixed size, determined at the time the program is linked. The
stack resides immediately above the program’s static data,
and the heap resides above the stack. This different arrange-
ment is illustrated below for the Small memory model.

v.09.15.85 . © 1983-85 MetaWare Incorporated

Memory Models page 9-10

Small
-Data

Small
-Code

Diagram of the Small Memory Model
with Fixed-Size Stack

High | : | ——
| (Heap grows upward.) | A
R |
! Heap I =
| Stack | Data I

SPed|= e e e e e e e - - - - | Segment <64K
| (Stack grows downward.) | |

I
| Static Variables | l
|- - - - s e e - - | |
| Literals I v

Low | — | <~-DS,SS,ES —-

High | l
| Code Segment (464K) |

Low | | <--CS

This alternative memory arrangement is available for
small-data memory models (Small and Medium), but only by
changing the run-time initializer INIT.ASM provided in the
compiler distribution. A variable Stack_size is provided in
INIT.ASH that, if defined, causes the alternative memory ar-
rangement to be used. For example, one might write “Stack_-
size = 2000” to obtain a 2000-byte stack. Re-assembling the
initializer requires an assembler compatible with Concur-
rent's RASM.

v.09.15.85 © 1983-85 MetaWare Incorporated

Storage Mapping page 10-1

10
Storage Mapping

10.1 Data Types in Storage
[data type alignments and sizes, struct padding, bit fields]

The table below summarizes the sizes and alignments of
various C data types. “Alignment” means that when an object
of the type is declared, its storage address modulo its align-
ment is zero. This does not apply to declarations within struc-
tures: fields are never aligned so that structures can be tightly
packed.

The char and int types have the same size regardless of
whether they are signed; therefore the table does not mention
the sign.

Data Type Size (bytes) Alignment
char 1 1 (bytes)
short int 2 2
int 2 2
long int 4 2
float 4 2
double 8 2
long double 10 2
pointer to T where 2 (Small-data) 2
T is not a 4 (Medium-data) 2
function type 4 (Large-data) 2
pointer to T where 2 (Small-code) 2
Tisa 4 (Large-code) 2
function type
Extended-function 4 (Small-code) 2
type 6 (Large-code) 2
struct Sum of field sizes §
union Biggest field §
T[E] sizeof (T)*E - Same as T

where § means 1 if the size is 1, otherwise 2.

v.09.15.85 © 1983-85 MetaWare Incorporated

Storage Mapping page 10-2

Bit-fields. Only bit fields of type unsigned int and
unsigned long int are supported. Any other type draws a
diagnostic and is changed to either unsigned int or unsigned
long int, according to whether the field size is 16 bits or less
or not.

A bit field may not exceed 32 bits and is packed in each
consecutive byte from right to left. A bit field of size 16 bits or
less may not cross more than one byte boundary, i.e. it must
be contained within two consecutive bytes. A bit field of size
17 bits or more may not cross more than three byte boun-
daries, i.e. it must be contained within four consecutive bytes.

A bit field of length zero causes alignment to occur at the
next byte boundary.

A bit field that is byte-aligned and one or two bytes long is
treated as if it were type unsigned char or unsigned int,
respectively. These are more efficiently accessed than the
corresponding bit fields.

Structure alignment and padding. No padding is
supplied within structures, with two exceptions: (1) when a bit
field does not fit starting at the current bit position (because it
would cross more than one byte boundary, for fields of size 16
bits or less, or more than three byte boundaries, for fields of 17
bits or more), the bit field is aligned to the next byte; and (2)
when a non-bit-field member follows a bit-field member, the
former starts on the next byte boundary.

The choice of no padding was made so that structures
could be packed tightly. The programmer who wants greater
efficiency from, say ints, should align them on an even-byte
boundary when running programs on the 8086 or 80286. Such
alignment makes no difference on the 8088, which has an
eight-bit bus.

For example, the structure definition
struct {unsigned x:3,y:9,z:13,w:1; char c; int i;}
is mapped to memory as follows:

v.09.15.85 © 1983-85 MetawWare Incorporated

Storage Mapping page 10-3

76543210 76543210 76543210 76543210
¢(---Byte 0 —> <-—8yte 1 ——> <(—--Byte 2 ——-> <---Byte 3 --->
YYYYYyXXxX YYYY zZzzz22122 wz2z2z2z2

76543210 76543210 76543210
¢(---Byte 4 -—-> <(-—Byte 5 —> <(---Byte 6 —->
cccecececce 141411114 1414411114

Note that i is not aligned on an even byte boundary, and that
four bits in the second byte are wasted due to the size of z.
The structure size is 7 bytes, and an n-element array of such
structures occupies exactly 7*n bytes.

Enumeration types. A type specifier of the form “enum
{...}" denotes signed char, signed short int, signed int,
or signed long int, depending upon the size of the explicit or
implicit signed constants within the specifier. Thus the storage
size for an enum object is that of the denoted type. For
example:

enum {Red, Green, Blue} x; /* type: signed char */
enum {Red, Green, Blue = -130} x; /* signed int */
enum {Red, Green=65_000, Blue} x; /* signed long int */

10.2 Storage Classes
[_MWLITERALS, toggle Literals_in code, ROMable code]

Associated with each module (compilation unit) is a private
data segment where local static variables are mapped. The
name of this data segment is ? followed by the file-name
“stem”, i.e. without any “.C’. For example, for file “z.C” it
would be “?2". In a large-data model literals are also mapped
there (unless the Literals_in code toggle is turned On; see
Section Compiler Toggles); in a small-data model literals are
placed in a public segment called _MWLITERALS so they can be
manipulated by linker commands.

Note: in small- and medium-data models such data seg-
ments are “grouped” into a single physical data segment by
the linker and referenced by the DS segment register by
MS-D0S. Thus in such a case the sum total of all data
segments may not exceed 64K bytes.

v.09.15.85 © 1983-85 Metaware Incorporated

Storage Mapping page ;0-4

10.3 The Stack Frame

[BP, addressing locals and parameters]

By default, variables declared within a function are mapped
at consecutive negative offsets within the function’s “stack
frame”. A stack frame is an area of storage allocated on the
stack when a function is invoked. The BP register references
the stack frame of the function currently executing.

A local variable is addressed by some negative displace-
ment off of the BP register. Parameters are addressed with a
positive displacement off of the BP.

See Section Run-Time Organization for a description of
the stack frame for various code models.

v.09.15.85 © 1983-85 Metaware Incorporated

Run-Time Drganization page 11-1

11
Run-Time Organization

11.1 Stack Frame Layout

[local variable addressing, parameter alignment; small-code,
large-code; static link, up-level addressing; stack growth; saving
registers; DS altered by some functions in large-data models]
The stack frame of a C function has one of the following
formats under the assumption of reverse parameter layout (the
default).

Stack Frame in a Small-Code Model

+.. | Second parameter
+4 | First parameter
+2 | Caller's return address
0 | Caller's BP == BP
-2 | Static Link (if nested)
-4 | Local variables

| and

| Temporaries | {== SP

Stack Frame in a Large-Code Model

+.. | Second parameter

+6 | First parameter

+4 | Caller's return address

+2 (segment _and offset)

4] Caller's BP == BP

-2 | Static Link (Optional)
-2 or -4 | Local variables

' and

Temporaries
| Saved DS | (Opt.) <== SP

v.09.15.85 © 1983-85 MetaWare Incorporated

Run-Time Organization page 11-2

The BP register points to the base of the local stack frame
and is used to address the function’s parameters and its local
variables. The value in the word pointed to by BP is the value
of the caller's BP and is used for restoring BP upon exit. Just
above this (in increasing memory address) is the return ad-
dress where execution resumes after the function is finished.
Above the return address are the parameters to the function.

Parameters. Each parameter to a function takes an even
number of bytes on the stack. For example a character value
that is normally stored as a single byte is pushed as two bytes
on the stack.

By default, parameters are pushed in reverse order so the
first parameter in the formal parameter list has the least
displacement off of BP. However see Subsection!l.3 below.

Saving registers. A function that is nested within another
function is passed a “static link” in the BX register. The static
link is the displacement, relative to the stack segment, of the
stack frame of the immediately enclosing function. The link is
used to reference “up-level” variables, i.e. locals of containing
procedures. It is saved at -2 off the BP. Note that nested func-
tions are an extension over standard C, so that the static link
will never be encountered in standard-C programming.

If no static link must be saved, local variables and tempor-
aries begin at offset -2 in the stack frame. Otherwise they
begin at offset 4.

DS altered by some functions in large-data models. In
a large-data model, any function that is exported or passed as
a parameter and that is contained within a module having a
non-empty local data segment saves the DS register on the
stack after the local variables and temporaries have been allo-
cated. In addition, such a function then sets up the DS register
to reference the local data segment for the module. When the
function returns, the previous content of the DS register is
restored. (Recall that in small- and medium-data models the
DS register is fixed throughout program execution.)

v.09.15.85 © 1983-85 MetaWare Incorporated

Run-Time Organization page 11-3

Likewise, any function R containing a label L that is the
target of a goto in a contained function C similarly saves and
restores the DS register, whether or not it is contained within a
module that has a non-empty local data segment. But if it is,
the DS register is likewise set up after being saved. The rea-
son for saving and restoring DS even if there is no local data
segment is that C could be passed as a parameter to an ex-
ternal function R’ that sets up DS for its own purpose. If, when
R’ calls C, C jumps to L, control has been returned to R, but
with DS now changed. R must therefore restore DS upon
return.

Currently, High C does not allow a goto from a contained
function to its parent; this can be done only by using the library
function “setjmp”. However, this extension is a likely one,
since it is an important facility, and “set jmp” is a very low-level
way of achieving the same thing.

11.2 Prologues and Epilogues
[Small, Compact, Medium, Big, Large]

The instructions used to set up a function’s stack frame
differ depending on the memory model being used and wheth-
er the function is nested, exported, or passed as a parameter.

Prologue/Epilogue for Small, Compact Memory Models

PUSH B8P ;Save caller's BP at offset O.

Mov BP,SP ;Set up new stack frame address.
;First parameter is at 4[BP].

PUSH BX ;Store static link at offset -2.

; (Omitted if level 1).
SUB SP,Frame_size ;Allocate (link and) locals.
;Locals start at -4[BP],
; or if no link at -2[BP].
;Body of the subroutine.

MOV SP,BP ;Deallocate link and locals.

; (Omitted if Frame_size = 0.)
POP BP ;Restore caller's BP.
RETS ;Short return to caller.

;Caller must pop parameters.

v.09.15.85 © 1983-85 MetaWare Incorporated

Run-Time Organization page 11-4

n is the number of bytes occupied by the parameters. By
default the caller must pop the parameters from the stack.
However with the use of the Calling_convention pragma the C
user may specify that the callee is to pop the parameters; this
convention is used in Professional Pascal, for example,
because it generates smaller code. Thus with the proper use

of the Calling convention pragma, High C modules can
communicate with Professional Pascal routines.

Prologue/Epilogue for Medium and Big Memory Models

PUSH
MOV

PUSH

suB
MOV

POP
RETF

BP ;Save caller's BP at offset O.
BP,SP ;Set up new stack frame address.
;First parameter is at 6[BP].
BX ;Store static link at offset -2.
; (Omitted if level 1).
SP,Frame_size ;Allocate (link and) locals.

;Locals start at -4[BP],
; or if no link at -2[BP].
;Body of the function.

SP,BP ;Deallocate link and locals.
; (Omitted if Frame size =0.) (
BP ;Restore caller's BP. =

;Far return to caller.

The code for Medium and Big models is the same as that
for the Small and Compact models except that a far return is
executed instead of a near return and the formal parameters
begin at 6|BP] instead of 4[BP].

v.09.15.85

© 1983-85 MetaWare Incorporated

Run-Time Organization page 11-5
Proloque/Epilogue for Large-Model Exported Function

PUSH BP ;Save caller's BP at offset 0.

MOV BP,SP ;Set up new stack frame address.
;First parameter is at 6[BP].

PUSH BX ;Save caller's static link.

; (Omitted if level 1).
SuB SP,Frame_size ;Allocate locals.
;Locals start at -4[BP],
; or if no link -2[BP].
; See paragraphs above on Large-data model and DS
; for when the next four instructions are applicable.

PUSH DS ;Save caller's DS register.

MOV AX,Static_seg ;Load address of static segment.
MOV DS,AX ;Store into DS register.

e ;Body of the function.

POP DS ;Restore caller's DS.

MOV SP,BP ;Deallocate locals.

POP B8P ;Restore caller's BP.

RETF ;Far return to caller.

Pro-/Epilogue for Large-Model Passed, Nested Function

(Same as the latter, except for one place.)
(Add just before the SUB SP,Framesize)

PUSH BX ;Save caller's static link.
(Now the locals start at -4[BP]:)
(the static link is saved.)

11.3 Parameter Passing
[parameters passed by value in reverse order]
Actual parameters are pushed on the stack in reverse order
by defauit (but see the Calling_convention pragma in Section
Externals). Since the stack grows backwards, the parameters

appear in ascending order on the callee side. As stated
before, all parameters occupy an even number of bytes.

All parameters are passed by value. That means that the
called function may modify its parameters without affecting the

v.09.15.85 © 1983-85 MetaWare Incorporated

Run-Time Organization page 11-6

values on the calling side. When a structure is passed by value
the entire structure is pushed.

11.4 Function Results
[_RETURN_POINTERS_IN_ES_BX]

Function results are returned to the caller in a variety of
ways depending on the function’s return type. In what follows,
“scalar” denotes int, char, long int, short int, and their
signed/unsigned variants. “Record” denotes struct or union

types.

1) Scalar or record type occupying a byte: AL register. (AH is
not set.)

2) Scalar or record type occupying a word: AX register.

3) Scalar or record type occupying two words: DX : AX register
pair with the most significant two bytes in DX and the least
significant two bytes in AX.

4) Pointer type — in a small-data model: AX; in a large-data
model: paragraph address in DX; displacementin AX. How-
ever, if the calling convention attribute _RETURN_POINTERS_
IN_ES BX is used, the function returns a small-data pointer
inBXanda large-data pointer with paragraph address in ES
and displacement in BX.

5) Extended lambda type “()!” — if it occupies two words,
then as in 3) above; otherwise (three words) as in 7) below.

6) float: DX:AX register pair with the most significant two
bytes in DX and the least significant two bytes in AX.

7) The following are returned in a temporary whose address is
implicitly passed by the caller as the first parameter:

record types occupying three bytes or fonger than four
bytes;

double and long double.

v.09.15.85 © 1983-85 Metaware Incorporated

Debugging page' 12-1
12
Debugging

12.1 Post-Mortem Call-Chain Dump

{run-time error; producing a call-chain stack dump; FStackDump
library function; line number debugging; toggles Emit_line_table,
Emit_line_records; STKDMP.0BJ, DEBUGAIDS.CF]

When the run-time system detects an error, the typical
action is to abort the program. Itis possible to arrange that the
abort is accompanied by a dump of active routines (functions)
at the time of the error.

The first line of the dump names the most recently called
routine. Each subsequent line names the caller of the routine
named on the preceding line. The dump has this format:

ROUTINE AT IN MODULE ~ WAS CALLED NEAR WITH ACTUAL PARAMETERS
Rtne_name Line#lll Mod_name: Line#lll - XXXX | XXXX [XXXX | XXXX | XXXX
or: seg:off seg:off

Rtne_name is the name of the called routine; Mod_name is the
module in which it resides. Beneath “AT” is the line number
of the routine within Mod_name, or entry-point address of the
routine. For small-code memory models, Mod_name is
always the name of the first module in memory, so it is not
very useful.

“WAS CALLED NEAR” gives the line number of the call in the
module of the caller (mentioned on the next line) or the
address of the call. The line numbers are produced only for
those modules that were compiled with the toggle Emit_
line_table On; see Section Compiler Toggles.

Actual parameters are divided into 16-bit quantities and are
listed with the first parameter first. [Each “xxxx” is
hexadecimal for a 16-bit quantity. Because the 8086
reverses the byte ordering on integers the bytes in “xxxx”
must be reversed before the value can be read. For

v.09.15.85 © 1983-85 MetaWare Incorporated

Debugging page 12-2

example, “050D” is the 8086 internal representation of
hexadecimal “0D05", or 3333.

This post-mortem dump can actually be invoked at any time
during the execution of a program. See the description of the
interface file DEBUGAIDS.CF in Section Ultility Packages or read
the on-line version of the file.

The dump facility is not available unless the object file
STKDMP.0BJ, provided in the distribution for each memory
model, is linked with the program. By default a dummy dump
routine is linked in that instead of producing a dump pnnts a
message that the dump is unavailable.

12.2 Post-Mortem Heap Dump
[heap corruption, HEAP1.08J]

If the run-time heap manager detects an error, the typical
action is to abort the program. It is possible to arrange that the
abort is accompanied by a dump of the contents of the heap at
the time of the error. The dump identifies each heap (there
may be several), prints a portion of the contents of each item
allocated in the heap, and prints the heap’s free chain.

Heap corruption can occur when a pointer is mistakenly
used after it is freed. The heap manager places free-chain
information at the location of the pointer when the storage is
freed. At the next call to “malloc” or “free” the free chain may
be found to be corrupt, and the heap dump invoked. Corrup-
tion also occurs when a program stores into memory past an
allocated area, damaging links in the list of allocated areas.

To make the heap dump of value in finding out why the pro-
gram is corrupting the heap, change all calls to “malloc” in the
program to call a function that calls “malloc” and prints out the
address returned: use the “%p” format directive with “printf”
to print out a pointer. Similarly, change all calls to “free” in the
program to first print the address freed before calling “free”.
This produces a record of the pointers (de-) allocated.

v.09.15.85 © 1983-85 MetaWare Incorporated

Debugging page 12-3

The heap dump pinpoints the heap area whose links are
corrupt. Determine if any pointers were overrun or used after
they were freed, thus clobbering the links.

This determination is difficult since writing arbitrary
information on top of the links can thoroughly confuse the heap
manager and sometimes produce confusing dumps. This
dump should be used only as a last resort; instead, take care
in using pointers and avoid the problem altogether.

The heap dump facility is not available unless the object file
HEAP1.0BJ, provided in the distribution for each memory model,
is linked in with your program. By default a dummy dump
routine is linked in which, instead of producing a dump, printsa
message that the dump is unavailable.

12.3 Concurrent Assembly Language Debugging

[toggles Emit_nanes, Emit_line_records]

Concurrent provides the symbolic debugger SID. Here we
give some additional information about the run-time environ-
ment to get the programmer started debugging. We do not
explain how to use SID; for detailed information on SID consult
the Programmer’s Utilities Guide for the CP/M-86
Family of Operating Systems and Concurrent DOS-286 by
Digital Research, Inc. SID is invoked by typing:

sid prog prog $t <{parameters to prog)

where PROG. 286 is the file resuiting from linking a program,
and PROG. SYH is the symboils file. $t signifies that the following
{parameters to prog> are to be passed to prog as if it were
executed with the command “prog <parameters to prog>”.

If there is no .SYM file, start SID with

. v.09.15.85 © 1983-85 MetaWare Incorporated

Debugging page 12-4
sid prog $t <{parameters to prog> ‘

Single-step the first instruction with the “T” command,
- and then display the first few instructions with the “L* com-
mand. The result is something like this:

jmp .

call <user_main> -- Start tracing here.

call .

ret

The jmp instruction transfers control to run-time initiali-
zation, including initializing the user stack. heap. and the BO-
87/80287 chip. The initialization returns to the call instruc-
tion following the jmp. Therefore one should go to this call
instruction with the “G” command and trace thereafter.

Each function is preceded by its name if toggle Emit_names
is turned On (by default it is Off). Thus, to find out which
function is being called just display memory preceding the call
address. Doing this for the target of the second call above
produces “main”, the name of the user-written C function that
the initializer calls. By using this display one can keep track of
the execution flow path without much difficulty. This is unne-
cessary, of course, if a. SYH file is used.

If the program is being run with a large-code model, the

name of each code segment is within the first 16 bytes of the
segment.

For more information on how the architecture is used see
Section Aun-7ime Organization..

v.09.15.85 © 1983-85 MetaWare Incorporated

Externals page 13-1

13
Externals

13.1 Interfacing to Other Languages

[interfacing to Pascal, FORTRAN, PL/M; pragma Calling_convention,
pass-by-reference parameters; parameter passing]

To facilitate using software written in languages other than
High C, High C compilers provide means of specifying a variety
of calling conventions for functions. This allows the user to link
High C code with programs written in various other languages,
such as FORTRAN, Pascal, and PL /M.

The responsibility for getting data communicated properly
is left to the programmer, since different languages and
compilers map data in different ways, but allowing compatible
calling conventions solves the most difficult problem. See Sec-
tions Inter-Language Communication and Storage Mapping.

The two forms of this pragma are as follows:

pragma Calling_convention(Expression); /* and */
pragma Calling_convention(Expression, DEFAULT);

The Expression must be of a scalar type and is interpreted
as the calling convention. The second form not only sets the
current calling convention but also sets the default calling
convention. Note: _DEFAULT must be spelled exactly that way,
including UPPER case.

The calling convention is a bit pattern where each bit spe-
cifies a particular calling convention attribute. In writing the
Expression certain pre-defined constants may be used to
obtain the bits to be combined. Here are the constant names
and their meanings:

v.09.15.85 © 1983-85 Metaware Incorporated

Externals page 13-2
Name Semantics -

_BY REF Parameters are passed by reference, as in FOR-
TRAN, so they must be declared as pointer types.

_CALLEE_POPS_STACK .
The called function pops its parameters off the
stack upon return. Otherwise the caller must pop
the stack. (Not applicable for High C on ma-
chines with automatic parameter popping, such
as the VAX, or that do not support an explicit
stack, such as the IBM 370 series.)

_INTERRUPT Specifies that the function is an interrupt handier.
On some machines this is required because a
hardware interrupt may use a different calling se-
quence than for a normal call; for example, the
machine status is typically saved and restored
across interrupts. Interrupt (handling) functions
are supported by the Interrupts package docu-
mented in Section Utility Packages. (On ma-
chines/operating systems in which interrupts are
not supported, this package does not exist.)

_REVERSE_PARMS

Push the parameters in reverse order on the
stack. (The first parameter is pushed last.)

_RETURN_POINTERS_IN ES BX

Applicable to the 8086 architecture only. Speci-
fies an efficient retum convention for functions
returning type “pointer-to-...": the result is
returned in the ES :BX pair if it is a 32-bit pointer,
and BX if it is 16-bits. See Section Run-Time Or-
ganization for information about function return
conventions.

In addition, two other pre-defined names indicate the cur-
rent convention being used and the default calling convention
(to which the current calling convention is initially set):

" v.09.15.85 © 1983-85 MetaWare Incorporated

Externals page 13-3

_CALLING_CONVENTION /* Current convention. */
DEFAULT CALLING CONVENTION /* Default. */

The calling convention has an effect on all function declara-
tions, whether the declaration is a definition or not. The defauit
convention for C is _REVERSE_PARMS.

By contrast, for Professional Pascal it is (_REVERSE_PARMS |
_CALLEE_PoPS_STACK). The C convention is less efficient than
the Pascal convention, but the former permlts passing varying
numbers of arguments to a function, since in the former the
caller pops the arguments from the stack. However, if varying
numbers of arguments is not needed, the more efficient con-
vention may be chosen. See also toggle Callee pops_when_
possible for a way to direct the compiler to choose the Pascal
convention when possible.

For example, the following may be used to communicate
with Pascal:

#define Pascal (_REVERSE_PARMS | _CALLEE_POPS_STACK)
#define C _REVERSE_PARMS

pragma Calling convention(Pascal);
extern void In Pascal(int i, int j);
pragma Calling conventmn(C), /* Return to C convention. */

main () {
In_Pascal(2,3);
}

A suggested way of using this facility is to use macros as
above to define the calling convention for each language of
interest, and thereafter use only the macros.

Undeclared functions. C permits calling undeclared func-
tions. High C compilers supply the declaration of such a func-
tion at the global level, and its calling convention is always the
default calling convention.

Such undeclared functions are denerally used for two
purposes: to call an externally defined function such as
“printf” without bothering to define it, and to call a function

v.09.15.85 © 1983-85 MetaWare Incorporated

Externals page 13-.4

declared later in the current module. If the default convention
is unsatisfactory for such functions, the programmer must
explicitly declare them; the explicit declarations can be
encompassed by Calling_conventionpragmas.

If there is any question as to the effect of a calling conven-
tion pragma in terms of the code sequence generated for a
call, the answer may be found by compiling any High C pro-
gram with the calling convention in question set as desired and
looking at the compiler’s generated code listing. See the com-
mand-line option -asm (command qualifier /MACHINE_CODE on
VMS) in Section Compiler Controls.

13.2 Aliasing Pragmas

[external name clashes: linker limitations; aliasing variable,
function names; pragmas Alias, Global aliasing_convention; case
shifting in aliasing conventions]

The names of variables and functions that are communicat-
ed across module boundaries are normally made public in the
resultant object module. In large programs there may be hun-
dreds or even thousands of such names, so name conflicts
are likely to occur.

Unfortunately neither C nor most linkers provide for a
structured name space — for named packages of resources,
for example. Worse yet linkers often put low limits on the
number of characters per name. Thus the well-chosen “inter-
nal” names in a program may not also be useable as “external”
names (those known to the linker) as they should be. Thus
some, preferably automatic, method of aliasing internal names
to externals is needed, and High C provides it.

It is important to be able to alias such names to avoid con-
flicts in the linker's external symbol dictionary, rather than
being forced to pervert the internal names themselves. It is the
internal names that are most important to be well-chosen
“containers of meaning”, for program maintainability.

v.09.15.85 © 1983-85 MetaWare Incorporated

Externals page 13-5

(The external names are also important in that respect, but
we feel that the proper solution there is a “module intercon-
nection language” and associated linker with a structured dic-
tionary to match the overall structure of the program.)

Global_aliasing_convention. This convention has effect
everywhere unless specifically overridden. It specifies the
automatic aliasing of names. Its syntaxis

pragma Global_aliasing_convention(<Form>);

where <Form> is a constant string expression with value F that
specifies the way each resource’s external name X is to be
derived from its internal name R. Specifically, X is the actual
text of F except for the following substitutions for substrings
within F: “%r” (resource) denotes R; “%%” denotes just “%".

In addition “¥r” can be followed by substring designators of
the following form: “:Start:Len” denotes the substring start-
ing at character Start and going for Len characters. The char-
acter positions are numbered starting at one. If Start is nega-
tive, it denotes the starting position from the right end of the
string where the last character is numbered -1. If “:Len” is
omitted, it means “to the end of the string”.

For example, if the Global_aliasing_conventionwere set to
“ %r”, a function named “printf” would be known as “_printf”
in the object module.

The Global_aliasing_convention can be turned off by spe-
cifying no parameter:
pragma Global aliasing_convention();

When the above pragma is given, the compiler does not supply
any aliasing; i.e. each resource is known externally by its
internal name.

By default, the Global aliasing conventionis turned off. It
is also configurable. See Section Compiler Controls, Subsec-
tion Configuring the Compiler.

v.09.15.85 © 1983-85 Metaware Incorporated

Externals page 13-6

The Global aliasing_convention can be overridden by a
programmer-specified Alias pragma for a given name — i.e.
the Alias pragma takes precedence. See the discussion below.

Case shifting in aliasing conventions. In addition to
“¥r”: “%C”, “%c”, and “%a”are allowed in aliasing-conven-
tion specifications. “%C” means to convert subsequent letters
in the external name to upper Cs Case. “%c” means to convert
them to lower case. “%a” means not to convert subsequent
letters at all, but to use them as is, each with its given case;
this mode holds at the beginning of the specification.

Alias pragma. This pragma specifies for a specific internal
name another name for external or public purposes. It is the
alternate name that appears in the object module.

The form of the Alias pragma is as follows:
pragma Alias(<Internal_name>,<External name>);

where <Internal_name> is the function or variable identifier
being aliased and - <External_name> is a constant string expres-
sion whose value denotes the alternate or external name.

The Alias pragma must appear in the scope of the declar-
ation of the internal name. Example:

void Initialize();

pragma Alias(Initialize,"x 1n1t1allze")

/* The function Initialize is referenced in the */

/* object-module symbol table as "x_initialize". */
int A;

pragma Alias(A,"_A");

/* "A" is referenced in the 0-M ST as "_A". */

v.09.15.85 © 1983-85 MetaWare Incorporated

Externals page 13-7
13.3 Code Segmentation: the Code Pragma - (ot on unIx.)

[naming code segments, code overlays, pragma Code]

“Code segmentation” means grouping code into named
units that are manipulated by a linker. The concept of seg-
menting generated code is useful whether or not a program is
modularized and separately compiled. However, it is irrelevant
on some systems, such as UNIX.

The concept applies only to top-level or “level-one” func-
tions: level-two and greater functions must be in the same
code segment as their containing level-one function; code for
one function cannot be split across segments. Note that level-
two and greater functions are a High C extension; standard C
permits only level-one functions.

By default, compiler-generated code is placed in a segment
whose name is the name of the file being compiled. The
default code segment name can be overridden by using the
Code pragma.

The Code pragma explicitly specifies the name of the code
segment in which the code of the subsequent functions is to
reside. The pragma has two forms that must be used in pairs
to bracket the relevant source code:

pragma Code(<Segment_name>);
.. —Affected source code goes here.
pragma Code();

where <Segment_name> is a constant string expression that
denotes the name of the code segment. The second form is
used to terminate the effect of the previously specified Code
pragma so that subsequent code will be placed in the default
segment. The pragma applies only at the outer level of the
program so the pairs are not nestable. Examples:

v.09.15.85 © 1983-85 Metaware Incorporated

Externals page 13-8
/* Assume default segment "MAIN". */

void A() {.}
/* A's code is placed in segment "MAIN". */
pragma Code("SEG1");
void B() {.}]
/* B's code is placed in segment "SEG1". */
pragma Code; . /* Ends pragma Code("SEG1"). */
void C() {.}
/* C's code is placed in segment "MAIN"., */

Note: The Code pragma that is active over the body of a
function applies to the function’s code. The Code pragma active
at any prior declaration for the function is irrelevant.

Rationale

An overlaying loader may be employed to reduce the mem-
ory requirements of a program. Then only the parts of the
program that are actually necessary need be in memory at any
given time. Virtual memory operating systems, such as Berke-
ley UNIX, provide this facility for all programs, but many
primitive systems, such as MS-D0S and CP/M, do not.

Overlaying loaders typically allow one to specify the object
files to be loaded in any given overlay. Good overlaying load-
ers automate the loading of overlays so that the source code in
no way contains, or reflects the existence of, any calls to an
overlay manager.

One way to achieve the desired effect is to break up a
program into separate source modules, thus producing
separate object modules, and instruct an overlaying loader to
place certain object modules in certain overlays. Similarly, a
large module might be further sub-divided into more modules.

Breaking up a module is not always appropriate, however.
As an example, a string-table module may contain “initializa-
tion” and “working” code. The initialization code should be
loaded in a first overlay, and the working code in another over-

v.09.15.85 © 1983-85 MetaWare Incorporated

Externals page 13-9

lay that replaces the first. If the module is small enough, it may
be a nuisance to break it up and manage more source and
object files.

Therefore High C provides fine-grained control over the
placement of code. The Code pragma directs generated code
into distinct, specified code segments, even though all that
code goes into a single object file. Overlaying loaders can then
be instructed to include code segments in various overlays.

13.4 Data Segmentation: the pata Pragma

[global and automatic data; data communication in separately
compiled modules; segment names; Common segments]

Audience. Read this section only if interested in either (a)
communicating with programs written in Professional Pascal
or (b) using a data communication convention different from
that of standard C.

Communication between separately-compiled modules is
achieved by using the extern storage class in C. On non-UNIX
systems, we follow the ANSI standard requirement for declara-
tions that there be exactly one defining declaration of each
variable. On UNIX systems, multipie defining declarations of a
variable x are allowed, as long as at most one of them
initializes x (thus the extern storage class is not required).

(In the UNIX scheme, omission of the keywod staticin a
declaration may cause an accidental “merging” of one variable
with another. For example, if two distinct modules contain
“int x;”, and the intent in each was to have a local, private x,
the keyword static is necessary. If accidentally omitted, the
two x’s denote the same object.)

The High C pata pragma provides an aiternative method
of shanng data, using named common segments Its general
usage is illustrated by:

v.09.15.85 © 1983-85 Metaware Incorporated

Externals page 13-10

pragma Data(... specify "Common" here ...);

int X,Y,2: ...,

... /*0ther normal C declarations may appear here. */
pragma Data; /*"Turns off" the prior Data pragma.*/

Scope. Each Data pragma must be terminated or “turned
off” as illustrated above in the same scope that it is turned on.
The storage class specification applies only to variable declar-
ations between the specification and its termination but not to
any inside contained (lower-level) functions. That is, variables
declared at lower levels — local to surrounded (nested) func-
tion declarations — are not affected: at a function declaration,
any active Data pragma temporarily becomes inactive and the
default applies through the end of the function.

A compile-time warning is issued if a Data pragma is
specified when a prior Data pragma is still active (in which case
the subsequent pragma applies), or if a Data pragma is active
at the end of a function declaration or at the end of a
compilation unit. Thus Data pragmas cannot be nested within
a single function, though they can be nested if they apply to the
local variables of distinct functions.

Parameters. The specifying Data pragma takes as para-
meters the storage class designator Common and an optional
segment name. The segment name, if specified, must be a
constant expression whose value is a string: the desired
segment name. The ending Data pragma has no parameters.

The two forms of the specifying Data pragma, with and
without the optional segment name, differ essentially in the
number of names made known to the linker. Without it, the
names of all the affected variables are made known individual-
ly. With it, only the given segment name is made known: each
variable is addressed at a fixed offset within the segment.

v.09.15.85 © 1983-85 MetaWare Incorporated

Externals page 13-11

For example, in the following program fragment:

pragma Data(Common); --Multi-segment form.
int Tables_are_ loaded: Boolean;

struct {..} Tables;

pragma Data;

both names, Tables and Tables_are_loaded, are made known
to the linker and each variable goes into a distinct segment in
the linked program: the first is named Tables and the second
Tables_are_loaded. Butin the next fragment:

pragma Data(Common,"Tabs"); --Single-segment form.
int Tables are loaded: Boolean;

struct {..} Tables;

pragma Data;

neither name is made known to the linker. Rather both go into
a segment named Tabs in the linked program.

On UNIX systems, “pragma Data(Common);” is of little use,
since by default each unitialized, non-extern variable (e.g.
“int x;") is treated as if that pragma were in effect. Unnamed
common is the standard practice on UNIX.

Multi-segment form. A desirable aspect of the first
illustrated form is that the order of variable declarations does
not matter. One can swap the two declarations above and not
need to re-compile all the source referencing them. Such
named references make the declarations position-independ-
ent.

An undesirable aspect of this form is the number of names
known to the linker. A program with a large number of external
names can have linker name clashes, especially if the linker
imposes an unreasonably low limit on the lengths of names.

Single-segment form. The alternative form, with the
optional segment name N, causes each affected variable to be
addressed by a unique offset within the named segment. Thus
the variable names do not appear in the external symbol dic-
tionary. So in the second program fragment above Tables_

v.09.15.85 © 1983-85 Metaware Incorporated

Externals page 13-12

are_loaded is at offset zero in segment Tabs, and Tables is at
offset two. The generated code contains these offsets. The
linker knows only of the name Tabs and its length.

Use of this single-segment form of the pragma also means
that, if two declarations were swapped, all source files refer-
ring to those declarations must be re-compiled. And if the data
types used in the declarations are changed in such a way that
the sizes of the variables are changed then re-compilation is
necessary.

In summary, the Data pragma offers extra control and a
trade-off. Without the optional segment name, affected vari-
able declarations may be re-ordered or changed with regard to
sizes, or new declarations may be added or old ones deleted,
without necessarily recompiling all source files referring to the
declarations.

Of course, if a size is changed, all the users of that par-
ticular variable must be re-compiled. The price to be paid is
the potentially large number of external names, which in turn
may cost in terms of linker name clashes.

On the other hand, with the optional segment name, the
order and sizes of declarations are significant: changes require
all source files referring to the declarations to be re-compiled.
But one is protected from name clashes on linkers with limited
name lengths.

Storage Allocation. Storage for Common variables is
allocated in a static region of memory by the linkage editor.
Common areas with the same name occupy the same address. If
pragma Data(Common, "N") is used, all the pragma-bracketed
variables go into a single segment named N. If pragma Data
(Common) is used, each variable goes into a separate segment
named by the variable name.

. Common variables can be used in the following simple man-
ner. A single copy of the declarations of Common variables may
be placed in a single include file. Each module that references

v.09.15.85 © 1983-85 MetaWare Incorporated

Externals page 13-13

these variables simply includes this file. This scheme reliably
prevents inconsistent declarations of the same Common vari-
able. Example:

File main.c: File sub.c: File d.cf:
#include "d.cf" #include "d.cf" pragma Data(Common);
main () { sub () { int v;

v=1; printf(s,v); char *s;

s = "¥%d"; } pragma Data;

sub();

}

Name clashes can be a minor problem with Common. Dis-
tinct Common declarations can be mapped to the same storage
location by a linker that recognizes only limited name lengths.
This may happen even if the two Common areas have different
sizes, although some linkers will complain. Thus, the two
declarations

pragma Data(Common); pragma Data(Common);

int Much_big; int Much_bigger[500];

pragma Data; pragma Data;

may resolve to the same memory address under an eight-
character limitation, even though the two Much_big's are
entirely different. Thus, care must be taken in using the Common
storage class.

Rationale

The notion of Common permits a single declaration of a
shared data resource, increasing program reliability. It aiso
facilitates porting UNIX programs to non-UNIX environments,
since standard UNIX C compilers permit duplicate defining
declarations of a resource — implementing such via Common.

To remain compatible with ‘standard C and avoid the labor
of having to modify each and every declaration when its Common
is used, the bracketing Data pragma was chosen. Thus normal
declarations need not be modified to assign the variables to a

v.09.15.85 © 1983-85 MetaWare Incorporated

Externals page 13—14

different storage class. This allows for greater program port-
ability and ease of modification.

The two Data-pragma forms — with and without the optional
segment name — were provided to give better control over
linker name space. With the segment name, linker name
space is reduced considerably at the cost of more re-compila-
tion when changing the contents of the segment, because the
compiler’s references into the segment are by position, not by
name. Without the segment name, compilation is reduced but
linker name space is increased.

13.5 Data Segmentation: the Static_segment Pragma
[overlaying data, pragma Static_segment]

In all cases but the Large memory model, all variables de-
fined in a compilation unit are placed in a public data segment
whose name S is constructed from the name of the file being
compiled by prefixing it with “@”. In all but small-data models,
literals also go into S.

S can be changed with the Static_segment pragma:
pragma Static_segment(<{Seg_name>);

where <Seg_name> is a constant string expression with value S

that is the name of the segment into which defined variables
will be placed.

In addition, if literals were going into the same segment as
variables, they will subsequently go into S. The Literals prag-
ma in the next subsection can change where literals are
placed.

By assigning a different segment to variables, they can be
easily overlayed. In addition, a single compilation unit can
have some variables that are overlayed and some that are not
by simply changing the static segment and instructing the
overlaying linker to overlay the desired segments. Example:

v.09.15.85 © 1983-85 Metaware Incorporated

Externals page 13-15

pragma Static_segment("overlayl");
int x,y,z;

static a,b,c;

pragma Static_segment("no_overlay");
static char q,r,s;

Here an overlaying linker such as PLINK86 can be instruct-
ed to overlay the segment “overlayl” but not overlay “no_
overlay”.

Note: In the Large memory model each exported variable
is assigned its own segment. Thus in the example above, only
the variables of static storage class (a,b,c,q,r,s) are affected by
the Static_segment pragma.

13.6 Specifying a Literals Segment
[overlaying literals, pragma Literals, toggle Literals_in_code]

Normally, the compiler places all literals, consisting of
floating-point constants and quoted strings, in a data segment
of the compiler’s invention. In small-data models the segment
is _mwLITERALS. In medium- and large-data models the literals
join all variables defined in the compilation unit in a segment
whose name is constructed from the name of the source file by

preceding it with an “@”. In both cases the segment is public.

The toggle Literals_in_code directs the compiler to place
all non-string literals in code for non-small-data models; it has
no effect for small-data models. While this toggle helps by
allowing literals to be overlayed along with code in large
programs, in and of itself it still does not allow string literals to
be overlayed, since string literals are not placed in code —

v.09.15.85 . © 1983-85 MetaWare Incorporated

Externals page 13-16

they are by default writeable in C and hence must be data. But
see Section Compiler Toggles for the Read only strings
toggle, which causes string literals to be treated the same as
floating-point literals, and thus potentially placed in code.

Pragma Literals specifically directs the compiler where to
place literals:

pragma Literals(<Seg_name>);

where < Seg_name> is a constant string expression with value
S, causes the placement of any subsequently encountered
literals in a public data segment known as S.

After separating out literals from other variables in a com-
pilation unit, the literals can be overlayed while the variables
can remain non-overlayed. This is important if the variables
are modified between calls to the overiay. But if the values of
the variables do not need to be retained between calls to the
overlay, the Literals pragma need not be used: the single
data segment into which all literals and variables go can then
itself be overlayed.

13.7 Group Names: Pragmas Cgroup and Dgroup

To enforce the 64KB code and data restrictions on small-
code and small- and medium-data memory models, intel OMF
uses the notion of "group”. The code group is where all code
goes in small-code models; the data group is where all static
data goes in small- and medium-data models. For more infor-
mation on groups, consult intel’'s OMF manual 8086 Relocat-
able Object Module Formats, part number 121748-001.

The compiler uses code group name CGROUP and data group
name DGROUP. This is reflected both in the code generated for
user programs and in the object modules in the Run-Time
libraries. Other compilers may use different conventions. To
change the group names to conform to external conventions,
the pragmas Cgroup and Dgroup are provided:

v.09.15.85 © 1983-85 MetaWare Incorporated

Externals page 13-17
pragma Cgroup("Group_name");
pragma Dgroup("Group_name");

Do not use these pragmas unless you are experienced with
OMF and its design. For example, no code with groups named
other than CGROUP and DGROUP will work correctly with the
Run-Time Libraries (except for memory model Large, which
has no groups). Use the pragmas for stand-alone applications
or for compiling code that will be linked with programs and
libraries supplied by others.

v.09.15.85 © 1983-85 MetaWare Incorporated

Inter-Language Communication page 14-1

14

Inter-Language
Communication

14.1 Communication between HC, PP, and Asm

This section shows how to share data and code between
MetaWare’s Professional Pascal (PP), MetaWare’s High C
(HC), “plain” C, and assembly language (Asm) modules. By
“plain C” we mean the language implemented by other C
compilers — typically just Kernighan and Ritchie C or a subset
of it. The term “C” alone will include both plain C and High C,
since High C is a superset of plain C.

In all of the languages mentioned, modules can be sepa-
rately prepared and later linked to form a composite program.
Separate modules share data and code by means of using
extern in C data declarations, or the Data pragmas of High C,
or the packages and Data pragmas of Professional Pascal.

This section is organized as follows. First, a complete
example of communication for each of three pairs of
languages is presented: Pascal and C, C and Assembler, and
Pascal and Assembler. In each example both code and data
originating in one language are used in the other. Brief notes
on critical details in the communication are given after each
example. Second, a general description is presented in
several additional sections.

The Pascal and C languages make slightly different uses of
the machine architecture. Therefore in their case we present
two examples: one with C as the main program and the other
with Pascal as the main program. In the first we force the
Pascal program to adhere to plain C.conventions; thus this
example is suitable for both plain C and High C. In the second
we force the C program to adhere to Pascal conventions; thus
this example is suitable for High C only, since the conventions

v.09.15.85 © 1983-85 Metaware Incorporated

Inter-Language Communication page 14-2

of plain C are unchangeable. This illustrates how both High C
and Professional Pascal are flexible in using the conventions
of other languages.

The reader should first read the example for the particular
language pair of interest. If that is not enough to answer rele-
vant questions, continue on the rest of the chapter where we
discuss in detail: (1) how the data types of the three languages
correspond, (2) the naming conventions of each language, (3)
how to communicate data between the languages, (4) the
parameter type correspondences in function/routine declara-
tions, and (5) how to call one language from the other.

14.2 Example: PP and C with C Main Program

High C or plain C:
int cvar = 5; /* Defined in C, value 5. */
extern int pvar; /* Defined in Pascal, value 10.%*/
extern int pfen();/* No argument checking here. */

int cfen (Multiplier,Adder) int Multiplier,Adder; {
return (cvar+pvar)*Multiplier + Adder;

void main () {
int sum_times 4 plus 6;
sum_times_4_plus 6 = pfcn(2,3);
[* Prints 66. */
printf("%d\n",sum_times_4 plus 6);
}

Professional Pascal:
Export (Pascal_package);
pragma C_include('Language.pf');
package Pascal_package;

— Override default convention:
pragma Routine_aliasing_convention('%r');

—— Adhere to C calling conventions:
pragma Calling convention(Language.C);

v.09.15.85 © 1983-85 MetaWare Incorporated

Inter-Language Communication page 14-3

function PFcn(Mult,Add:Integer):Integer;External;
pragma Calling_convention();

pragma Data(Export); -- Export to C.
var Pvar: Integer;
pragma Data;

end; — Pascal_package;
program Pascal_subroutine;

pragma Data(Import); - Import from C.
var Cvar: Integer; -
pragma Data;

pragma Calling convention(Language.C);
function cfcn(Mult,Add:Integer):Integer; External;
pragma Calling convention();

value Pvar := 10;

function Pfcn(Mult;Add:Integer):Integer;
begin
Pfen := (Cvar+Pvar)*Mult + Add + cfcn(Mult,Add);
end;

Notes:

1. Pascal is case-insensitive: the compiler maps all iden-
tifiers to lower-case. Thus the C program was written with
identifiers in lower-case, in case case-sensitive linking is used.

2. The Pascal and C calling conventions are different: InC
the caller pops the parameters off the stack. The Pascal
program was made to conform to the C calling conventions.

3. The Pascal and C conventions for allocating data are
different. Pascal was made to conform to C’s conventions.

4. There may be only one main program: either Pascal or
C. As the C program is the main program, one should link with
the C Run-Time Library specified ahead of the Pascal Run-
Time Library. In this particular example there is no need at all

v.09.15.85 © 1983-85 MetaWare Incorporated

Inter-Language Communication page ;4-—4

for the Pascal Library. See Section Linking a Compiled Pro-
gram for more information on linking Pascal with C.

5. Plain C does not allow the specification of the para-
meters of external functions. See the next example where we
assume High C and obtain the protection of such parameter
specification.

14.3 Example: PP and HC with PP Main Program
High C:

/* Adhere to the Pascal data-definition convention: */
pragma Data(Common,"?from c");

int cvar = 5; ~ I* Defined in C, value 5. */
pragma Data() ;

pragma Data(Common,"?pascal_package");
extern int pvar; /* Defined in Pascal, value 10.*/
pragma Data();

/* Adhere to the Pascal calling convention: */
pragma Calling convention
(_DEFAULT_CALLING CONVENTION | _CALLEE POPS_STACK);

extern int pfcn(int Multiplier, int Adder);
int cfen (int Multiplier, int Adder) {
return (cvar+pvar)*Multiplier + Adder +
pfen(Multiplier, Adder);

pragma Calling convention
(_DEFAULT_CALLING CONVENTION),

Professional Pascal:
Export (Pascal_package);

package Pascal_package;
-- Override default convention:
pragma Routine aliasing convention('%r');
function Pfcn(Mult,Add:Integer):Integer;External;
var Pvar: Integer;
end;

v.09.15.85 © 1983-85 Metaware Incorporated

Inter-Language Communication page 14-5

package From C;
-- Override default convention:
pragma Routine_aliasing_convention('%r');
function Cfen(Mult,Add:Integer):Integer;External;
var Cvar: Integer;
end;

program Pascal_main_program;

value Pvar := 10;
function Pfcn(Mult Add:Integer): Integer

begin
Pfcn := (From_C.Cvar+Pvar)*Mult + Add;
end;

var Sum_times 4 plus 6: Integer;

begin

Sum_times_4 plus 6 := From_C.Cfcn(2,3);
erteln(Sum times a_plus 6),
end;

Notes:

1. Pascal is case-insensitive: the compiler maps all iden-
tifiers to lower-case. Thus the C program was written with
identifiers in lower-case, in case case-sensitive linking is used.

2. The Pascal and C calling conventions are different: InC
the caller pops the parameters off the stack. The C program
was made to conform to the Pascal calling conventions.

3. The Pascal and C conventions for allocating data are
different. C was made to conform to Pascal’s conventions.

4. There may be only one main program: either Pascal or
C. Asthe Pascal program is the main program, one should link
with the Pascal Run-Time Library specified ahead of the C
Run-Time Library. In this particular example there is no need
at all for the C Library. See Section Linking a Compiled Pro-
gram for more information on linking Pascal with C.

5. When the Pascal Run-Time Library is linked ahead of
the C Library, any C functions registered with the C Library
function onexit are not called at program termination. Also,

v.09.15.85 © 1983-85 Metaware Incorporated

Inter-Language Communication page 14-6

library, /0O calls may clear the C Library variable “errno”,
whereas with C alone “errno” is always “sticky”: the user must
explicitly clear it to zero after an error has occurred. See
Section Linking a Compiled Program for more information on
linking Pascal with C.

14.4 Example: HC and Asm with HC Main Program

High C: '
int cvar = 5; /* Defined in C, value 5. */
extern int avar; /* Defined in Assembly, value 10.*/
extern int afen(int .Multiplier, int Adder); '

int cfen (int Multiplier, int Adder) {
return (cvar+avar)*Multiplier + Adder;

}

void main () {
int sum times 4 plus 6;
sum_times 4 plus_6 = afcn(2,3);
/* Prints 66. */
printf("%d\n",sum_times 4 plus 6);
1

Assembly:
extrn SHALL?: word
extrn cfcn: near

public avar
ADATA cseg word

extrn cvar: word
avar dw 10

DGROUP group ADATA

ASH cseg vord
CGROUP group ASH

v.09.15.85 © 1983-85 MetaWare Incorporated

Inter-Language Communication page 14-7

public afcn

db ‘afen’,4 . For StackDump.
afcn: push bp

mov bp. sp

push 6[bp] ; Parameter Add.

push 4[bp] > Parameter Mult.

call cfen

add sp, 4 . Pop the parameters.

mov CX, ax . Save the fcn result.

mov ax, cvar

add ax, avar

imul word ptr 4[bpl

add ax, cx ; Add cfen(Mult, Add).

add ax, 6[bp]

mov sp, bp

pop bp

ret ; Pop no parameters.

end ‘

Notes:

1. In C the caller pops the parameters off the stack. Thus
the assembly language program pops the parameters after
calling “cfcn”, and does not pop its own parameters at return.
However, in this case the pop after the call to “cfcn” could be
eliminated since SP is restored at the return of the assembly
subroutine.

2. Arguments are pushed on the stack in reverse order of
appearance in an argument list, since the stack grows down in
memory. Therefore the arguments appear in ascending order
on the callee side.

3. The insertion of the name of the assembly language
subroutine in ASCII text just preceding the subroutine body is
for the use of the post-mortem call-chain dump facility. It can
be omitted, but then the subroutine will not be identified in the

v.09.15.85 © 1983-85 MetaWare Incorporated

Inter-Language Communication page 14-8

trace. For the call-chain dump to work, the BP register must
be pushed in the location indicated.

4. This example is for the Small memory model, hence
the use of near in and “extrn cfcn:near”. Para-
meters start at 4|BP], and the assembly language program
must group code and data into groups CGROUP and DGROUP,
respectively. The C external “cfcn” must be declared within a
code segment that is CGROUP-ed.

5. The Pascal and C compilers assume the direction bit is
clear at all times. Therefore the assembly subroutine should
not leave it set. See the CLD and STD instructions in any 8086
instruction set description.’

6. The assembly language code and data segments are
word-aligned following the practice of the Professional Pascal
and High C compilers. Although this is not strictly necessary in
Intel OMF, some cross-linkers complain if shared segments do
not agree in their alignment. Word alignment permits tight
allocation of segments in a memory image. Byte alignment,
although affording tighter allocation, frustrates the compiler’s
attempts at aligning variables occupying more than a byte on a
word boundary for greater efficiency with the 8086 16-bit
memory bus.

14.5 Example: PP and Asm with PP Main Program
Professional Pascal:

Export (Pascal_package);

package Pascal ._package;

— Override default convention:
pragma Routine_aliasing_convention('¥r');
function Pfcn(Mult,Add:Integer):Integer;External;
var Pvar: Integer;
end;

v.09.15.85 © 1983-85 MetaWare Incorporated

Inter-Language Communication page 14-9

package From_assembly;
—-- Override default convention:
pragma Routine_aliasing_convention('%r');
function Afcn(Mult,Add:Integer):Integer;External;
var Avar: Integer;
end;

program Pascal_main program,

value Pvar := 5;
function Pfcn(Mult, Add:Integer): Integer;

begin
Pfen := (From_assembly.Avar+Pvar)*Mult + Add;
end;

var Sum_times_4 plus_é6: Integer;

begin

Sum_times 4 plus 6 := From_assembly.Afcn(2,3);
~ Should print 66:
Writeln(Sum_times 4 plus 6);
end;
Assembly:
extrn BIG?:word

extrn pfon: far
7FROM_ASSEMBLY dseg common word

avar dw 10
7PASCAL_PACKAGE dseg common word
pvar Iw 1 > Reserve 1 word.
DGROUP group 7FROM_ASSEMBLY, 7PASCAL_PACKAGE
db 3, 'asm’,3 ,; For StackDump.
: ; 3 = Length(*asm').

ASM ocseg word

v.09.15.85 © 1983-85 Metaware Incorporated

Inter-Language Communication page 14-10

public afcn

db ‘afen’. 4 ; For StackDump.

afen proc far
push bp
mov bp, sp
push 8{bp] ; Parameter Add.
push 6[bp] ; Parameter Mult.
callf pfen
mov CX, ax > Save the fon result.
mov ax, cvar
add ax, avar
imul word ptr 6[bp]
add ax, ox ; Add pfen(Mult, Add).
add ax, 8[bp] . Add parameter Add.
mov sp. bp
pop bp
ret 4 ; Pop 4 bytes of parms.
end

Notes:

1. In Pascal the callee pops the parameters off the stack.
Thus the assembly program does not pop the parameters after
calling “pfen”, and pops its own parameters upon return.

2. Arguments are pushed on the stack in reverse order of
appearance in an argument list, since the stack grows down in
memory. Therefore the arguments appear in ascending order
on the callee side.

3. The insertion of the name of the assembly language
subroutine in ASCII text just preceding the subroutine body is
for the use of the post-mortem call-chain dump facility. It can
be omitted, but then the subroutine will not be identified in the
trace. Similarly, the name of the assembly language code seg-
ment is given at the beginning of the segment, along with the
length of the name both preceding and following it. For the
cali-chain dump to work, the BP register must be pushed in the
location indicated.

v.09.15.85 © 1983-85 MetaWare Incorporated

Inter-Language Communication page 14-11

4. This example is for the Big memory model. Hence the
use of far in and “extrn pfcn:near”. Parameters
start at 6[BP], and the assembly language program must group
data into DGROUP. The Pascal external “pfcn” must not be
declared within any code segment.

5. The Pascal and C compilers assume the direction bit is
clear at all times. Therefore the assembly subroutine should
not leave it set. See the CLD and STD lnstructlons in any 8086
instruction set description.

6. The assembly language code and data segments are
word-aligned following the practice of the Professional Pascal
and High C compilers. Although this is not strictly necessary in
Intel OMF, some cross-linkers complain if shared segments do
not agree in their alignment. Word alignment permits tight
allocation of segments in a memory image. Byte alignment,
although affording tighter allocation, frustrates the compilers’
attempts at aligning variables occupying more than a byte on a
word boundary for greater efficiency with the 8086 16-bit
memory bus.

v.09.15.85 © 1983-85 MetaWare Incorporated

Inter-Language Communication page 14-12

If it were left to us, however, “dw ?” and “dw 1 dup(?)” would
“mean exactly the same thing — no initial value supplied.

14.6 Data Type Correspondences
[storage mapping; padding; memory models; size of pointers]

In sharing data between languages it is necessary to know
how the languages represent data types. The table below
gives a brief sketch of corresponding data types. Read the two
columns that correspond to the two languages of interest. The
last few rows of the table inform of High C data types not
present in plain C.

C Data Type Pascal Data Type Assembly Type
char Char, or 0..255 rb 1
signed char -128..127 b 1
short Integer re 1
int Integer v 1
long int LongInt rd 1
unsigned

short int Cardinal v 1
unsigned int Cardinal w i
unsigned

long int See Note 1 below. rd 1
float Real rd 1
double LongReal rd 2
type * " type ru/rd 1 Note 2

or Address(type)
type [n] packed array[0..n-1] Note 3
of type

Note § array[0..n-1]of Zype Note 3
type (*) () Note 4(a) rd 1
struct .

{type a,b; } packed record Note 3

a, b: type end

Note 5 record a,b: typeend Note 3
Note 4(b) set of twe Note 3
High C only Pascal Data Type Assembly Type
type ()| function(): {ype rw/rd 1;rw 1 Noteb
void ()! procedure()
long double ExtReal v 5

v.09.15.85 © 1983-85 MetaWare Incorporated

Inter-Language Communication page 14-13

(type In the left column means a C type specifier; type in the
middle column means the corresponding Pascal type denoter.)

Notes:

1. There is no exact equivalent to C’'s unsigned long in
Professional Pascal. In C, unsigned long holds values from
0..MaxLong*2-1, where MaxLong is from Pascal. The Pascal
type 0..MaxLong approximates the C type: unsigned
operations are performed on variables of this type, but the
value of such a variable cannot exceed MaxLong unless range
checking is Off, in which case it may reach MaxLong*2-1.

2. The size of pointers in C and Pascal depend upon the
8086 memory model. Small-data models use 16-bit pointers
(rw 1); medium- and large-data models use 32-bit pointers
(rd 1), with the 16-bit offset preceding the 16-bit segment.

3. An array, record, or set in assembly language consists
of a series of declarations that constitute the contents of the
array, record, or set. However, alignment of records and array
elements must be observed and sufficient padding introduced
when necessary. See also Note 5. Bit mapping within Pascal
sets is described in Section Storage Mapping of the Profes-
sional Pascal Programmer’s Guide.

4. There is no correspondent. (a) C pointer-to-function
types are Pascal routine-types but without the environment
pointer (static link). (b) Pascal set types have no correspond-
entinC.

5. In Pascal unpacked records and unpacked arrays may
contain padding; packed records and arrays do not. There-
fore, there is no array type correspondent in C for a Pascal
array containing padding. For a Pascal record containing
. padding, the corresponding C struct must contain extra
declarations to provide the padding. Pascal padding is defined -
relative to the alignment of Pascal types; see Section Storage
Mapping of the Professional Pascal Programmer’s Guide.

6. The Pascal routine type and the High C “extended-
lambda” type “()!” are comprised of a function address and -

v.09.15.85 © 1983-85 MetaWare Incorporated

Inter-Language Communication page 14-14

an environment pointer (static link). The address is 16 or 32
bits long depending upon the memory model: small- versus
large-code. The environment pointer is always 16 bits.

14.7 Parameter Correspondence
[function prototypes; padding]

HC-Asm or PP-Asm communication. |f communication
between HC and Asm or PP and Asm is desired, consult
Section Run-Time Organization of the Programmer’s Guide
for the appropriate high-level language. Described there are
the parameter passing conventions for the high-level language
that effect proper communication of parameters and function
results to and from assembly language subroutines.

Some of these details are given in the examples at the
beginning of this section and in the general assembly language
templates specified in the previous Subsection.

C-PP communication. In the rest of this section we cite
the differences between the C and Pascal parameter-passing
conventions.

Passing parameters between Pascal routines and C func-
tions requires an understanding of how the data types of the
two languages correspond to one another, as specified in Sub-
section 14.6. In this subsection “corresponding (data) types”
means as defined in the table in Subsection 14.6.

In C all parameters are passed by value. Arrays cannot be
passed at all; instead, the address of the first element of the
array is passed. Pascal allows not only passing arrays as para-
meters but also both by-reference and by-value parameter
passing techniques. The remainder of this discussion treats
Pascal by-reference and by-value excluding arrays, and finally
arrays as a special case.

Pascal by-reference. A Pascal var or const parameter
of type T corresponds to a C parameter of type *T’ (pointer to
T'), where T and T’ are corresponding types.

v.09.15.85 © 1983-85 MetaWare Incorporated

Inter-Language Communication page 14-15

Pascal by-value. Passing parameters by value is done
differently depending on whether one uses the plain C function
declaration that does not specify the parameter types of
external functions or the new function-prototype declaration
that does.

Plain C. Consider a plain-C-style function header. Argu-
ments of C types char and short are widened to int, and
those of type float are widened to double. C arguments of
all other non-array types are passed as such. Therefore,
Pascal function headers must be written with the data type
corresponding to int when the parameter to be passed is
char or short, with the data type corresponding to double
when the parameter to be passed is float, and otherwise
with the corresponding data type in all other non-array
cases.

High C prototypes. Assume that the external C function
is specified via a function-prototype declaration. Here C
parameter passing semantics agrees exactly with Pascal in
that parameters are passed as if by assignment to a vari-
able of the type of the formal parameter. Thus, for scalar
types and structure types — pointers, integers, characters,
reals, and struct/unions — the type declared in the C
prototype and in the corresponding Pascal routine header
must correspond.

Pascal arrays. Because C cannot pass an array by value,
a Pascal value parameter of an array type is never appropriate
in communicating with C. There are three progressively lower-
level approaches for by-reference arrays, each applying only to
certain situations.

High-level approach. High-level Pascal arrays can be used
by declaring the array on the Pascal side as passed by
reference (var or const), but only when there is no padding in
the Pascal array. In this case, the address of the first element
is passed, as in C. Example:

v.09.15.85 © 1983-85 MetaWare Incorporated

Inter-Language Communication page 14-16

C: Pascal:

type T = array[1l..10] of Integer;
int Pfen(),a[10]; function Pfcn(var A:T)..;
Pfcn(a); « A[I] :=3

C arrays on the 8086 are never padded. If type T above
were “var A:array[l..10] of record I:Integer; B:Boolean;
end;”, Pascal would use four bytes per array element to align
each Integer on an even boundary. But in 8086 C, “struct
{int I; char B;} A[10];" uses three bytes per element, so an
extra byte of padding in the C struct type is necessary if the C
array is to be shared with Pascal.

Note that structure padding for C is machine-dependent.

Mid-level approach. Rather than use the Pascal var para-
meter, one can explicitly declare the parameter as a pointer-to
or address-of the array. Use pointer-to if the array is on the
heap, and address-of otherwise. Example:

C: Pascal:
type T = array[1..10] of Integer;
type PT = T; —Array in heap.
or: type PT = Address(T), —Not in heap.
int Pfen(),a[10]; function Pfcn(A PT)...;
Pfen(a); w R [I7:

Professional Pascal compilers can sometimes generate better
code when told, via rather than Address, that an object is in
the heap instead of anywhere in memory.

Low-level approach. Alternatively, since Professional Pas-
cal supports C pointer arithmetic, one can model communi-
cated arrays in the low-level way C models arrays: as pointers
to the elements. Thus, we effectively abandon the idea of
declaring the communicated parameter as an array in Pascal.
Once again, use pointer-to if the array is on the heap, and
address-of otherwise. Example:

C: Pascal:
type PT = " Integer; ~-In heap.
or: type PT = Address(Integer); —-Not.
int Pfen(),a[10]; function Pfcn(A:PT)).;
Pfen(a); v (A+I) = 3; —— A[I] :=

v.09.15.85 © 1983-85 Metaware Incorporated

Inter-Language Communication page 14-17

14.8 Calling Routines in Other Languages
[pragma Calling_convention; direction bit]

To call a routine in a different language, both parameter
conventions and routine calling conventions must be
observed. Parameter conventions were treated in the previous
section; here we treat calling conventions.

Pascal-C communication. The only difference between
the C and Pascal calling conventions is that the caller of a C
function F is responsible for popping the arguments passed to
F, whereas in Pascal the callee pops the arguments. While the
C convention permits the flexibility of passing a varying
number of arguments to functions, it is more expensive in code
space and time.

The PP and HC compilers provide control of calling conven-
tions through the Calling_convention pragma. Each language
can adhere to the convention of the other. For a discussion of
how to specify calling conventions see Section Externals. Also
see Subsections 14.2 and 14.3 above where one example
shows a Pascal routine using the C calling convention, and
vice-versa.

PP-Asm and C-Asm communication. All issues invoived
here are treated by examples in Subsections 14.4 and 14.5.
Furthermore, since the communication intimately involves
naming conventions, Subsection 14.9.4 below presents tem-
plates for preparing assembly language subroutines that com-
municate code with Pascal and C. Therefore we present only
a summary of the issues here.

¢ In Pascal, the callee pops parameters from the stack,
and in C the caller does.

e The parameters must be pushed on the stack in reverse
order of appearance in an argument list. The parame-
ters therefore appear in ascending sequence on the
stack on the callee side.

v.09.15.85 © 1983-85 Metaware Incorporated

Inter-Language Communication page 14-18

e Parameters start at 4[BP] in small-code and 6[BP] in
large-code memory models.

¢ Any segment register modified in an assembly subrou-
tine must be restored before returning to the caller,
except that in a large- or medium-data model the ES
register need not be restored.

e PP and HC code is compiled assuming that the
direction bit is clear at all times, so that if the direction
bit is set in an assembly language subroutine called
from PP or HC, it must be cleared before returning to
the Pascal or HC environment; see the CLD and STD
instructions in any 8086 instruction set description.

e Data must be grouped in a group called DGROUP in small-
and medium-data memory models.

¢ Code must be grouped in a group called CGROUP in small-
code memory models.

e Never place in CGROUP any extrn declarations of code
entry points.

14.9 External Name Communication

[Routine_aliasing_convention; Data_aliasing_convention; pragma

Alias; Named Common, Common, Export, Import, module interface;

underscore prefix] R

A resource R — data object or routine (C function or Pascal

function, procedure, or iterator) — shared across modules
must have information provided to the linker that associates a
name with the address of R. This is done by causing the
placement of a corresponding name in the name table of the
object module with an attribute that informs the linker that the
name may be shared across modules.

This name need not be the same as the name of R in the
source program text containing R's declaration; it need only

v.09.15.85 © 1983-85 MetaWare Incorporated

)

Inter-Language Communication page 14-19

be derivable from it in a unique way. We refer to such a name
as the external name.

For modules in different languages to communicate, they
must agree on how they specify the external name of a shared
resource. Therefore we now consider how external names are
constructed from names within modules.

Sample declarations illustrating general forms. There
are four general forms for declaring external data and two for
declaring external routines in each language. Below we
illustrate the four data forms for each language, called: (E)
Export, (I) Import, (C) Common, and (N) Named common.

Plain C uses E and I only. High C and Professional Pascal
can use all four, but High C defaults to E and I. Each
language supports both importing (FI) and exporting (FE)
functions, and both cases are illustrated for each language.

Suppose we wish to export a variable from one module so it
can be imported into another module, whatever the language
on either end. There are three choices: E, C, and N. If we
choose form N for exportation, we must use N also to import
the variable into the other module; similarly, form C requires
form C. However, form E requires I, independent of the lan-
guage used in any case.

The E/I combination carries with it protection against
multiple exports of any given variable. Such protection is
provided by the linker. No such protection is available for the C
and N forms.

Warning: You may not initialize an exported variable
declared using cases E, C, and N more than once. The results
depend upon the linker and are unpredictable. Initializing an
imported variable — case I — is illegal and draws a diagnostic
from the compiler.

Below are the forms available in each language, organized
by language. Please ignore the section on any language that
is not of interest.

v.09.15.85 © 1983-85 Metaware Incorporated

Inter-Language Communication page 14-20

14.9.1 Plain C Naming Conventions

In plain C, the external name associated with R is lexically
exactly the same as that appearing in the declaration of the
function, with a leading underscore added or not depending
upon which plain C compiler is used. The table below gives the
results for the Lattice 2.14 and Microsoft 3.00 C compilers.

External names, using:

Declaration Lattice Microsoft
Case E: Exporting data:

int i,j; i,j i, 3
Case I: Importing data:

extern int i, j; i,j A, J
Case FE: Exporting a function:

int fcn(a,b) int a,b;{ fen _fen

return a+b;

}
Case FI: Importing a function:
extern int fen(); fen _fen

14.9.2 High C Naming Conventions

In High C the external name associated with R is determin-
ed by one of two aliasing mechanisms, the Alias pragma and

the Global_aliasing_convention; see Section Externals of the
High C Programmer’s Guide.

The Alias pragma specifies a literal replacement for the
external name. If no Alias pragma is used for a particular
name, the Global_aliasing_convention applies. The default
value of this convention is that the external name is lexically
exactly the same as that appearing in the declaration of R.

In addition the Data pragma can be used to group declara-
tions in a segment such that only the segment’s name is

v.09.15.85 © 1983-85 Metaware Incorporated

Inter-Language Communication page 14-21

known externally. Then there are no extenal names for the
variables and the aliasing mechanisms discussed above do not
apply.

P The table below runs the gamut of High C declarations and
illustrates the corresponding applicable aliasing mechanism
and external Names. The Mechanism column indicates the
aliasing mechanism that applies: Global or Alias for Global_
aliasing_convention or Alias pragma; and None for cases
where the resources themselves have no external names.

Declaration ——————ceeeeeaeao Mechanism: Names
Case E: Exporting data:

int i,; ——mmmmmm e Global: 1i,j

or, equivalently,

int X,¥; - Alias: 1,j

- pragma Alias(x,"i");
pragma Alias(y,"j");
/* (No further examples of Alias are given.) */

Case I: Importing data:
extern int i,j; - Global: i,j
Case C: Unnamed common data:

pragma Data(Common);

int i,3; ---Global: 1,]
pragma Data;

Case N: Named common data:

pragma Data(Common,"?block");

int i,3; None
pragma Data;

Note: The High C Data pragma totally overrides speci-
fied storage classes, i.e. storage classes are irrelevant.

Case FE: Exporting a function:

int fen(int a,int b) { -—--- Global: fcn
return a+b;

}

v.09.15.85 © 1983-85 Metaware Incorporated

Inter-Language Communication page 14-22
Case FI: Importing a function:
extern int fen(int a,int b); -- Global: fen

ANSI-standard declarations. In implementing High C de-
clarations we chose to follow the ANSI standard requirement
for declarations that there be exactly one defining declaration
of each variable, rather than support the UNIX practice of
allowing multiple defining declarations. This ANSI requirement
is followed by other popular C compilers for the 8086.

However, since forms N and C do not require a single de-
fining declaration, they can be used to support UNIX practice.
The advantage of forms N and C is that they require only a
single textual declaration of a declared variable, which can be
placed in a file and included by each user of the variable:

File main.c: File sub.c: File d.h:
#include "d.h" ¢#include "d.h" pragma Data(Common);
main () { sub () { int v;

v=1; printf(s,v); char *s;

s = "%d"; } pragma Data;

sub();

}

The disadvantage of this scheme arises only when a shared
variable is to be initialized. If “int v" were replaced with “int v
= 17, for example, the compilation of either main.c or sub.c
produces an object module that specifies the initialization of v
to 1. Now if later the initial value of v should instead be 2, both
“sub.c” and “main.c” need recompilation. [f both are not
recompiled, one would specify initialization to 1 and the other
to 2. The linker may arbitrarily choose which initialization to
obey, with no warning message. By contrast, were the strict
ANSI C conventions obeyed, only the exporter of v could
initialize it, so that only a single module need be recompiled
should the initial value change.

In short, the trade-off is between convenience and reliabil-
ity. As usual, we chose reliability through discipline over con-
venience that can lead to bugs that are difficult to find later.

v.09.15.85 © 1983-85 MetaWare Incorporated

Inter-Language Communication page 14-23

14.9.3 Professional Pascal Naming Conventions

In Professional Pascal every resource has an applicable
aliasing mechanism that specifies the computation of its
external name, if it has one. These mechanisms are the Alias
pragma, the Routine_aliasing_convention, the Data_aliasing_
convention, and the Global_aliasing convention. All but the
last are explained in the Professional Pascal Language
Extensions manual, Section Externals, Subsection Aliasing
Pragmas for Interface Packages.

The Global_aliasing_convention applies everywhere the
other mechanisms do not. Under MS-DOS this convention
specifies no transformation of the name, but that default can
be configured into the compiler should the user want to change
it. See Section Compiler Controls, Subsection Configuring the
Compiler.

All identifiers in Pascal are converted to lower case, despite
the use of any aliasing mechanism: Pascal is not a case-
sensitive language. However when the Alias pragma is used
to specify a string literal L as the external name, the internal
lower-casing is irrelevant since exactly L is used as the ex-
ternal name of the resource. However the aliasing conventions
derive the external from the internal, lower-cased name.

In addition the Data pragma can be used to group declara-
tions in a segment such that only the segment’s name is ex-
ternal. Then there are no external names for the variables and
the aliasing mechanisms discussed above do not apply.

The table below runs the gamut of Professional Pascal
declarations and gives the corresponding applicable aliasing
mechanism and external Names. The Mechanism column
indicates the aliasing mechanism that applies: Routine, Data,
Global, or Alias for Routine_aliasing_convention, Data_ali-
asing_convention, Global_aliasing_convention; Alias prag-
ma; and None for cases where the resources themselves have
no external names. The listed external names are based on

v.09.15.85 © 1983-85 Metaware Incorporated

Inter-Language Communication page 1a-2a

the default values for the Routine_and Data_aliasing_conven-
tions of ‘¥r@P’ and '%r@%P’ respectively, and the default for
Global_aliasing_conventionof '%r’.

Declaration - Mechanism: Names
Case E: Exporting data:

pragma Data(Export);

var 1,J: Integer; —-—-eeeee- Global: i,j
pragma Data;

or, equivalently,

pragma Data(Export);

var X,Y: Integer; ——-—ec—eme—un Alias: 1i,j
pragma Alias(X,'i');

pragma Alias(Y,'j');

— (No further examples of Alias are given.)
pragma Data;

Case I: Importing data:

pragma Data(Import);
var 1,J: Integer; ——e————e——- Global: 1i,j
pragma Data;

Case C: Unnamed common data:

pragma Data(Common);

var 1,J: Integer; ——-————-wu- Global: 1i,j
pragma Data;

Case N: Named common data:

pragma Data(Common, '?block');

var 1,3: Integer; ————eeeee-o None
pragma Data;

(Note: “?block” Names the segment into which i and j
are placed. Any user-defined string is acceptable there:
“?block” was chosen to match what Professional Pas-
cal form as the external name of the package below:)

v.09.15.85 © 1983-85 Metaware Incorporated

Inter-Language Communication page 14-25

or, equivalently, in an interface package,

package Block;
var I,J: Integer; ———-——ee—-- None
-- But note use of Data_aliasing_convention:
pragma Data(Common);
var X,Y: Integer; Data: x@block, y@block
pragma Data;
end; — Block;

(Note: Enclosing declarations in a Professional Pascal
interface package declaration, as above, is equivalent
to using form N where the common segment name is
the character “?” followed by the package name.)

Case FE/FI: Exporting/Importing a routine, before the
program header, using an interface package:

package Block;
function Fen(A,B:Integer):Integer;

External; ~—=—=—-- Routine: fcn@block
end;--Block;

or, using a specific Routine_aliasing convention:

package Block;
pragma Routine_aliasing convention('¥r');
function Fcn(A,B:Integer):Integer;
External; ~————--- Routine: fcn
end; -—Block;

Case FE: Exporting a routine, after the program header:

function Fcn(A,B:Integer):Integer; External;
function Fcn(A,B:Integer);Integer;

-------------------- Global: fcn
begin
Return(A+B);
end;

Case FI: Importing a function, after the program header:

function Fcn(A,B:Integer): Intfeger;
External; -—-—e—e——e- Global: fecn

v.09.15.85 © 1983-85 Metaware Incorporated

Inter-Language Communication page 14-26

14.9.4 Assembly Language Naming Conventions

Here we assume usage of the Digital Research AASHM-86
assembler. For detailed information on RASM-86 consult the
Programmer's Utilities Guide for the CP/M-86 Family
of Operating Systems and Concurrent DOS-286 by Digital
Research, Inc.

There are two classes of external names: (a) segment,
group, and segment-class names and (b) names referenced in
assembly public and extrn statements, such as the names of
variables and subroutines.

Due to limitations of Microsoft software, and for staying
compatible with MS-DOS, the names in class (a) must be pre-
sented in ypgper casein assembly programs when communica-
ting with High C or Professional Pascal programs. The names -
in class (b) must agree exactly in case with any other program
sharing the name, if any. In C, names are typically in lower
case and so class (b) names must be all lower case in assembly
programs. In Professional Pascal, all names are lower-cased
by the compiler so they must appear in lower case in assembly
programs.

RASM-86 normally upper-cases all names. To avoid this,
run AASM-86 with the “Snc* option. This preserves the case
of the names as presented in the program:

rasm sample. aB6 $nc

Not only does the table below give the proper declarations
for communication of resources between assembly language
and Pascal and C, but sample assembly language usage of the
communicated resources are provided. :

The illustrations assume the use of the High C compiler or
Professional Pascal compiler and do not necessarily reflect
conventions used by other Pascal or C compilers for MS-D0S.

v.09.15.85 © 1983-85 Metaware Incorporated

Inter-Language Communication page 14-27

Case E: E\por{/‘ng aata:

public 1i,)
DUMYY dseg .
I Ie 1
J e 1

. If not large-data memory model:
DGROUP group DUMMY

; If large-data memory model, nothing to add.

Case I: Importing data:

;> If not large-data memory model:
DUMHMY dseg :
extrn i:word, j: word

DGROUP group ouMHy
mov ax 1
. add ax, j

. If large-data memory model:
extrn i: word, j: word
;> Do not enclose the above line in a data segment.

mov ax, seg i

mov es, ax

mov ax, word ptr es:0
mov bx, seg j

mov es, bx

add ax, word ptr es:0

case C: Unnamed common data:

I dseg common
ivar Iv o1
J dseg common
jvar 1w 1

- If not large-data memory model:
- DGROUP group i}
mov ax, ivar > References i.
add ax, jvar ; References jJ.

v.09.15.85 © 1983-85 MetaWare Incorporated

Inter-Language Communication - page 14-28
; If large-data memory model: '

mov ax, I

mov es, ax

mov ‘ax, es:ivar ; References I.
mov bx, J

mov es, bx

add ax, es: jvar ; References J.

Case N: Named common data:

7BLOCK dseg common
i ™ 1
J TV 1

> If not large-data memory model:
DGROUP group 7BLOCK

mov ax i
add ax, j
; If large-data memory model:
mov ax, 7BLOCK
mov es, ax
mov ax es:i
add ax, es: j

Case FE: Exporting a subroutine:

Small-code case: (Small or Compact memory model.)
extrn SMALL?:word ; Or COMPACT?.
CODESEG cseg word
. 'CODESEG' is a name chosen freely.
CGROUP group CODESEG

public fcn
db ‘fen’, 3 ; Used by StackDump.
fon: push bp :
mov bp, sp
sub sp, stack_frame_length: f necessary.

Boay of fen goes here)

; Formal parameters start at [bp+4].
mov sp, bp

pop bp

v.09.15.85 © 1983-85 Metaware Incorporated

Inter-Language Communication page 14-29

; Choose one of the next two lines depending upon
: whether called from Pascal or C.

Pascal: ret n :Number of bytes in arguments.
L ret ;Callee does not pop arguments.
end

Large-code case: (Medium, Big. or Large memory model.)

extrn MEDIUM?:word ; Or BIG?, or LARGE?.
CODESEG cseg word
; 'CODESEG® is a name chosen freely.
; Next line, if present is used by StackDump
db - 1, 'codeseg’, 7
> 'codeseg® is 7 letters.

public fen

db *fcn', 3;Used by StackDump if present.
fen: push bp

moy bp, sp

sub sp, stack_frame_length ; |f necessary.

{Body of fcn goes here>
; Formal parameters start at [bp+6].

mov sp, bp
pop bp
2 Choose one of the next two lines depending
2 upon whether called from Pascal or C.
Pascal: rtetf n ;Number of bytes in arguments.
A retf .Callee does not pop arguments.
end

Case FI: Importing a routine:

Small-code case: (Small or Compact memory model.)
extrn SHALL?:word ; Or COMPACT?.
; Do not enclose the next line within a code segment.
extrn fcn: near

CODESEG cseg word
; 'CODESEG' is a name chosen freely.
CGROUP group CODESEG

; function fcn(L J: Integer):Integer; External;
;or extern int fon(int I, int J):

v.09.15.85 . © 1983-85 MetaWare Incorporated

Inter-Language Communication page 14-30

: fen(5, 10) : Called: :

mov ax. 10 2 or "push 10" on a 80286.
push ax

mov T ax. 5 2 or "push 5" on a 80286.
push ax

call fen

; Add the next line only if calling a C function:

add sp. 4 : Pop parameters.

Large-code case: (Medium, Big, or Large memory model.)

extrn MEDIUM?:word ; Or BIG?, or LARGE?.
. Do not enclose the next line within a code segment.
extrn fon: far

. function fon(1, J: Integer):Integer; External;
.cor extern int fen(int I, int J);

; . ;‘cn(s, 10) called:

mov ax, 10 ; or "push 10" on an 80286.
push ax '
mov ax, 5 > or “push 5™ on an 60286,
push ax
callf fen

; Add the next line only if calling a C function:
add sp, 4 . Pop parameters.

v.09.15.85 © 1983-85 MetaWare Incorporated

Utility Packages page 15-1

15
Utility Packages

Supplied with each High C compiler are the standard C
library “.h” header files that specify the interfaces to collec-
tions of functions, macros, constants, and variables, along with
their corresponding object modules. For a specification of the
contents of those header files see the MetaWare High C
Library Reference Manual. In this section we present addi-
tional library facilities that are non-standard in that they are
unrelated to the ANSI-standard specification of the C run-time
library.

15.1 Utility Packages: “.CF” Interface Files

Supplied with each High C compiler is a collection of “inter-
face” text files, called “packages”, that may be included in a
compilation to get access to certain functions supplied in the
Run-Time Library. The files have the extension .CF for C inter-
Face. The names of the files and a brief description of their
contents are given below in alphabetical order.

The interface files may change, and new ones may be add-
ed, as updates and new releases are installed. Thus, although
the information presented here may be considered reliable, it
is necessarily general, so the programmer should consult the
interface file actually distributed for possible new information
or modifications and for further detailed documentation.

Embedded applications. The utility packages run under
all Ms-D0S systems (Release 2.0 or greater) without modifica-
tion. Most of the packages may also be ported to a non-MS-D0S
system, i.e. an “embedded application”, straightforwardly. A
note concerning the adaptation of each relevant package to an
embedded application is provided following the package's

v.09.15.85 © 1983-85 Metaware Incorporated

Utility Packages page 15-2

description below. Also consult the Section Embedded Appli-
_cations.

15.2 DEBUGAIDS — Run-Time Debugging Aids
void stackdump(int F);

“stackdump(F)” produces a call-chain stack dump of the
currently active functions on file F: 1 indicates standard output
and 2, standard error. Other run-time debugging functions
may be added in the future.

To obtain the stack dump facility, file STKDMP.0BJ must be
specifically linked in; see Section Linking a Compiled Program.

Embedded application note. This package relies on the
STDIO0.H package to perform all I/O operations. STDIO.H, in turn,
relies on the SYSTEM package to perform low-level I/O. Thus, if
the SYSTEM package is implemented appropriately, this
package should work without modification.

v.09.15.85 © 1983-85 MetaWare Incorporated

\

Utility Packages page 15-3

Not relevant to Concurrent

v.09.15.85 © 1983-85 MetaWare Incorporated

Utility Packages page 15-4

15.4 LANGUAGE - Calling Conventions for C, Pascal,
PL/M

This package provides the typical calling conventions for
various languages such as C, Pascal, and PL/M. See Section
Externals, for a discussion of the Calling_convention pragma.

v.09.15.85 © 1983-85 Metaware Incorporated

Utility Packages page 15-5

15.5 LINETERM-- Line Terminator Convention

struct {short Length; char S[2];}
LTconv_in,LTconv_out;

This package provides access to the line terminator defini-
tions used by the High C Run-Time Library. The line termi-
nators for both input and output are specified, and may be dy-
namically altered by the programmer. This allows conversion
from one line terminator convention to another by setting the
desired line terminator for input and output and simply using
High C 1/O or calling the STDIO.H functions to read and write
files.

For example the UNIX line terminator convention is a single
character: LF. Under MS-DOS CR,LF is required. UNIX files
could be converted to MS-DQS files by setting the input line
terminator to LineFeed (LF) and the output line terminator to
CR,LF and executing roughly the following code:

LineTerm.LTConv_in.Length = 1;
LineTerm.LTConv_in.C[0] = 10; /* Input ends with LF.*/
while (gets(S) != 0) puts(S);

15.6 SORTS — Sorting Algorithms

/* Quicksort items L..H given a < relation and */
I* " a swap procedure: */
void gsort(

unsigned L, unsigned H,

int Less_than(unsigned,unsigned)!,

void Swap (unsigned,unsigned)!

);

This package is to contain sorting algorithms. For now it
contains just one: a generic quick sort algorithm that sorts
anything. '

v.09.15.85 © 1983-85 MetaWare Incorporated

Utility Packages page 15-6

156.7 STATUS -- Values for “errno”

This package provides a list of all the possible values for the
standard library variable “errno”.

15.8 SYSTEM - Operating System Services

— The interface package is over 100 lines long;
— see the distributed file: SYSTEM.CF. '

This package provides access to low-level /0O functions
and other system-dependent services.

Embedded application note. This package is referenced
from various sources throughout the Run-Time Library. It
must be implemented if any /O function or heap-management
function is referenced directly or indirectly.

15.9 CCDOSIF -- Access to Concurrent Functions

This package provides a method of invoking all of the over
S50 Concurrent services documented in Digital Research's
Concurrent DOS Programmer’s Guide. The compiler dis-
tribution additionally contains the source to the implementa-
tion of this package — one .C file per function.

Embedded application note. This package is used in the
implementation of the System package.

v.09.15.85 © 1983-85 MetaWare Incorporated

Embedded Applications page 16-1

16
Embedded Applications

This section explains how to modify the source code of
various MS-D0S-dependent modules of the High C 8086 Run-
Time Libraries for use within non-MS-D0S environments.

Unless otherwise indicated below, the object version of
each function is aliased to the source name preceded by “_mw"
to avoid conflict with standard C library and likely user-coined
names. For example, INIT is known externally, i.e. to the
linker, as _mwINIT.

The reader should also consult Section Utility Packages for
additional embedded application considerations for each of
the packages.

16.1 MS-D0S-Dependent Modules
[INIT, TERM, EXIT, SYSTEM, INTRUP, ALLOC, CONSOLE]

Few modules in the Run-Time Libraries are directly depen-
dent upon MS-D0S. Some dependent modules are esoteric to
MS-DOS, e.g. ENV, and are not referenced elsewhere in the
Run-Time Libraries; such modules are not dealt with here.

The initialization module (INIT) must be implemented on
any non-MS-D0OS system to establish the run-time environ-
ment. Five ‘other modules must be ported if any significant
portion of any Run-Time Library is used by the application.
These five modules are:

TERM terminates the environment by closing files, etc.
EXIT provides the C functions exit, _exit, and abort.
SYSTEM provides low-level system services.

INTRUP provides interrupt handling.

ALLOC allocates and frees memory in 1K increments.
CONSOLE provides input/output from a console.

v.09.15.85 © 1983-85 MetaWare Incorporated

Embedded Applications ‘ page 16-2

The source of the Concurrent implementations of these
modules is provided with the distribution. The reader should
study these files and use them as a guide. Non-assembly source
is written in either MetaWare's Professional Pascal ™ or High
C language; therefore a user who wishes to modify the source
may need both compilers.

16.2 INIT - Environment Initialization
[arge, argv, and I/0 initialization; main program termination]

INIT is an assembly language module that contains the
function INIT which is the initial entry point of each linked
program. INIT establishes the environment in which High C
programs are to run. More specifically, it:

e sets up the stack,

initializes public variables as required,

initializes the 8087 or 80287 floating-point processor,
calls a function to set up interrupt vectors,

calls a function to initialize 1/0 for High C,

calls the main program,

calls a function to close any open files, and
terminates the program.

Minimum environment. The MS-D0OS version of this
module is much more involved than is typically required for an
embedded application. The stack is placed at the high end of
memory and is allowed to grow downward until it collides with
the heap. For an embedded application, a fixed-size stack
may be adequate. The module provides an option to use a
fixed-size stack by setting the variable Stack_size.

If the application is completely independent of Library
support, INIT need only set up a stack, invoke the main
program, and then terminate.

I/0O initialization. If the High C STDI0 module is used, the
function “cfinit” must be invoked as part of the initialization
process to set up various control blocks and buffers. The

v.09.15.85 © 1983-85 MetawWare Incorporated

Embedded Applications page 16-3

function “cfterm” closes all open files and frees up buffers; this
function is called from the TERM module.

Main program. The name of the main program of any
linked program is main.

argc, argv support. If “argc” and “argv” are to be used,
the public variables “arglen” and “argp” must be initialized and
the function “set_up_args” within INIT must be called prior to
calling “main”. “arglen” is a word that is set to the length of the
parameter string. “argp” is set to the address of the first byte of
the parameter string.

Program termination. The MS-DOS version of INIT calls a
function named “endd” (alias “_mwend") to terminate a program.
“endd” is in the TERMmodule; see the next subsection.

This function closes open files, calls a function to restore
interrupt vectors, and then invokes the “dos_exit” function to
terminate the process. endd is also called by the exit library
function. “dos_exit”, which is called by “endd”, is in the SYSTEM
module.

Line terminator convention. The INIT module initializes
the common block that establishes the default line-terminating
convention for the host system. See Subsection LINETERM in
Section Ultility Packages.

Under MS-D0S, lines are terminated with the two charac-
ters CR(13) and LF (10).

16.3 TERM — Environment Termination

The TERM module implements the Pascal “halt” library
_routine, called by the C “exit” function, and the program
termination function “endd” (alias “_mwend") which is invoked
from INIT, at least in the MS-DOS version.

“halt” simply calls “endd” but contains code to prevent
infinite recursion if a severe error should occur while “endd” is
active. .

v.09.15.85 © 1983-85 Metaware Incorporated

Embedded Applications page 16-4

“endd” calls “cfterm” to close all open files, restores
interrupt vectors to their prior condition, and then calls
“dos_exit” to terminate. “dos_exit” is in the SYSTEM module.

16.4 EXIT - Functions “exit”, “_exit”, and “abort”

The EXIT module implements the C functions “exit”,
“ exit”, and “abort”. “exit” is implemented by calling the
Professional Pascal ™ routine “halt”. “_exit” calls a routine to
restore interrupts and calls “dos_exit” (in SYSTEM), avoiding a
call to “cfterm” to terminate the file system. “abort” is a
synonym for “_exit(-1)", which produces a return code of 255
under MS-DOS since return codes are limited to 0..255.

In simpler environments, the TERM module can be eliminat-
ed by implementing “exit”, “_exit”, and “abort” in the INIT
module and back-substituting the call to “endd”.

16.5 SYSTEM — System Services

[source files, I/0 model, file-system-less; close, create, c_create,
c_create_text; dos_exit; fileclass; lseek, lseek ; open, c_open,
c_open_text; read, write, write_; c_unlink]

The SYSTEM module typically takes the most work in porting
to another system. Of course only those functions in SYSTEM
that are explicitly referenced elsewhere in the Run-Time Libra-
ries need be ported. Details of only those functions are des-
cribed here.

Source files. The implementation of the SYSTEM module
under MS-D0S occupies seven source files: SYSTEML.P through
SYSTEM7.P. . '

I/0 model. The SYSTEMmodule models I/O in the same way
MS-D0S and UNIX do: files are treated as unformatted streams
of bytes. Open files are referenced through so-called file
handles. A file handle is a small integer value within the range
zero to MaxFiles, where MaxFiles+1 is the maximum number of
files that can be opened at one time. An arbitrary number of

v.09.15.85 © 1983-85 MetaWare Incorporated

Embedded Applications page 16-5

bytes may be read from or written to a file with the read and
write functions.

I/0 is device independent. Devices are accessed in exactly
the same way as disk files.

No file system. Many embedded applications do not
support a file system. In such cases, /0 functions within the
module can be made to access ports. The “file name” can be
used to designate a port address when an open or create oper-
ation is performed. Alternatively, file handles can be perma-
nently assigned to specific ports.

Standard input/output. File handles 0, 1, and 2 are pre-
initialized to standard input, standard output, and standard
error output, respectively. The STDIO module relies on this
convention in supplying the FILE* variables stdin, stdout, and
stderr.

Function descriptions. Described below is each function
of the SYSTEM module that is referenced elsewhere by other
modules in the Run-Time Libraries. No other function in the
SYSTEM module need be implemented unless the user’s pro-
gram has an explicit reference to it.

c_close(F)

Closes the file associated with file handle F. The value of F
may then be subsequently reassigned in a call to “c_open”
or “c_create”.

c_create (Name ,Mode)
c_create_text(Name,Mode)

Creates the file named Name if it does not exist, otherwise
the file is truncated to zero bytes. Mode is the set of attri-
butes to be assigned to the file; the interpretation of Mode is
system dependent. If Mode is the empty set, a default mode
is used that is appropriate for the host system. A file handle
is returned that may be used to reference the file.

“c_create_text” is called to create an file ASCII-formatted
file. On systems that make no distinction between ASCII

v.09.15.85 © 1983-85 Metaware Incorporated

Embedded Applications page 16-6

and non-ASCI1 files these two functions can be considered
synonymous.

dos_exit(RC)

Terminates the program with a return code RC. This
function is referenced only from the TERM module and need
not be implemented if the application has an alternate way
of terminating a program.

fileclass(F)

Returns the type of file associated with file handle F:
Console_input, Console_output, or Disk _file.

This function is called by the STDIO module to determine
whether a file should be buffered. 1/0 to the console is
unbuffered so that prompting is possible.

get_date(Day,Month, Year)
get_time(Hrs,Mins,Secs)
clock()

These are used by the functions implementing the standard
C library functions in header file “time.h”. “get_date”
returns 1-31 in Day, 1-12 in Month, and 1980-2099 in Year.

“get_time” returns elapsed wall-clock time: 0-23in Hrsand
0-59 in Mins and Secs. “clock” returns elapsed wall-clock
time in hundredths of a second.

1seek (F,Loc,Method)
lseek_(F,Loc,Method)

“lseek” repositions the file pointer associated with file
handle F so that the next read or write operates on the n-th
byte of the file (origined at zero) where n is computed as
follows:

n = Loc if Method = From_beginning
n = Loc+“current position” if Method = From current
n = Loc+“file size” if Method = From_end

“lseek " performs the same function as “lseek” but
“1seek_" also returns the new file pointer position.

v.09.15.85 ' ©1983-85 MetaWare Incorporated

Embedded Applications page 16-7

“l1seek/1lseek_” need not be implemented unless random
file access is performed via the STDIO function “fseek”.

c_open (Name,Method)
c_open_text (Name,Method)

Opens the file named Name for input output, or updating. If
the file is not found, “errno” is set to Error_file not_
found; otherwise a file handle is returned that may be used
to reference the open file. The “c_open_text” function is
used to open a file that is to be interpreted as an ASCI11 file
with embedded end-of-line characters. On systems that
make no distinction between ASCII and non-ASCII files
these two functions can be considered synonymous.

Text files need not be supported for updating.
read(F,BufP,Cnt)

Reads Cnt bytes from the file or device associated with file
handle F into the buffer with address BufP. Returns the
number of bytes actually read, which may be less than Cnt
if fewer than Cnt bytes remain in the file or if reading from a
line-at-a-time device, e.g. a keyboard.

When end-of-file is encountered, “read” returns zero.

write (F,BufP,Cnt)
write_(F,BufP,Cnt)

Writes Cnt bytes to the file or device associated with file
handie F from the buffer with address BufP. The procedure
“write” sets “errno” to “error_write failed” if fewer than
Cnt bytes were written (often caused by a disk overflow).
The function “write_” returns the number of bytes actually
written and does not indicate an error condition if fewer
than Cnt bytes are written.

c_unlink(Name)

Deletes the file named Name. This function is called when
temporary High C files are closed.

v.09.15.85 © 1983-85 Metaware Incorporated

Embedded Applications page 16-8

16.6 INTRUP - Interrupt Handling

Not relevant to Concurrent

16.7 INTERRUPTS — Generalized Interrupt Handling

Not relevant to Concurrent

v.09.15.85 © 1983-85 MetaWare Incorporated

Embedded Applications page 16-9

16.8 ALLOC - Memory Allocator

[sysalloc, sysfree, allocated, least_ free_memory]

~ The ALLOC module serves as the foundation of the heap
manager (HEAP module). It organizes available memory into an
array of 1024-byte pages. There follows a description of each
function of the module:

sysalloc(Len)

Allocates as many consecutive free pages as necessary to
accommodate Len bytes. The address of the allocated

memory is returned. (The heap manager always requests
an integral number of pages).

sysfree(A, Len)

Frees the allocated page(s) addressed by A. Len rounded
up to a multiple of 1024 determines how many pages are to
be freed. Memory not allocated by sysalloc may not be
freed.

allocated(A, Len)
Is periodically called by the heap manéger when heap-
integrity checking is On. It returns 1 (TRUE) if the pages

indicated by address A and byte-length Len are allocated; 0
(FALSE) otherwise.

v.09.15.85 . © 1983-85 MetaWare Incorporated

Embedded Applications page 16-10

If heap-integrity checking is not important, this function can
be implemented to unconditionally return 1 (TRUE).

least_free_memory()

Returns the the least number of bytes available in memory
thus far. This function need not be implemented because it
is not used by the Run-Time Libraries.

16.9 CONSOLE - Console Input/Output

[console gets, puts, newline]

The CONSOLE module reads strings from the keyboard and
writes strings to the screen.

Source files. The CONSOLE module under MS-DOS com-
prises two source files: kB1.P and kB2.P. For historical reasons
the names are not CONSOLE1.P and CONSOLE2.P.

By string S below we mean a Professional Pascal string:
two bytes of length followed by “length” characters. Such a
string is passed by address to “gets” and “puts”.

gets(string S) reads a line from the keyboard and stores
it in string S. If the line is too long to fit in S, the result is un-
predictable. This is in accordance with the standard C gets
function which is inherently dangerous in this respect.

puts(string S) writes the string S to the screen, without
terminating the line.

newline() writes out the necessary characters to the
screen to terminate the current line.

Under MS-DO0S, file handle two is always directed to the
screen for output. Thus “puts” and “newline” simply write to
file handle two via the SYSTEMfunction “write”.

Since standard input is not necessarily from the keyboard,
the first call to “gets” opens the keyboard for input and in-
vokes “read” from the SYSTEMmodule. The terminating CR,LF is
then stripped from the string read in.

v.09.15.85 © 1983-85 MetaWare Incorporated

Listings page 17-1

17
Listings

17.1 Pragmas Page(n), Skip(n), and Title(T)
To cause n page ejects at some point in the listing, insert:
pragma Page(n); - where n is the number of ejects.

To cause n lines to be blank at some point in the listing,
insert:

pragma Skip(n); - where n is the number of blanks.

To cause a title T to appear at the top of each successive
page, place the following pragma in the source:

pragma Title(T); — where T is a string constant.

Each successive Title pragma changes the title for the next
pages. The only way to title the first page is to place the Title
pragma in the profile, and not use the -on List command line
option (llist command quallfler on VMS) but to use “pragma
On(List);” at the end of the profile or wherever the listing
should start in the source file; the command line form causes
the listing to start too early. See Section Compiler Controls.

17.2 Format of Listings
(listing ruler, line-numbers, scope-level, nesting-level; include file])
Ruler. The first line after any header and title lines on each
page is a “ruler” that defines three fields for each line. The
fields are for: (1) three level numbers, (2) the line number, and
(3) the line contents. The ruler is as follows:

Levels LINE # | + 1. + 2 + 3 + 4 5.

[

Level numbers can be used to find a missing } or com-
ment terminator when a message such as “Unexpected end-

v.09.15.85 © 1983-85 Metaware Incorporated

Listings page 17-2

of-file.” is produced by the compiler. All three level numbers
are initially zero, but they are printed as blank rather than “0”.

The first level number indicates the scope nesting level for
declarations. It is incremented at entry to each function,
struct, or union declaration. It is decremented at the corre-
sponding end-of-construct.

The second level number indicates the statement nesting
level. Itis incremented at each { and decremented at the cor-
responding }.

The third level number indicates the structure initialization
nesting level. It is incremented at each { and decremented at
the corresponding }.

Include files. A first-level include file named File_name is
indicated as starting after a line containing “+(File_name” in
the line number field, and ending just before a matching

“+)File_name” line. The included lines have “+” in the leftmost
column of the line-number field, and they are numbered
independently of the main source file.

An included file inside an include file has an extra “+” on
each of its lines for each level of inclusion, except that the line
numbers take precedence over “+”s in the line-number field if

and when the “+"s would otherwise intrude into the line number
field.

The profile, if any, is listed as an include file when a listing
has been requested.

Example. Since in this area a picture is worth a thousand
words, we present a sample program listing on the next two
pages, enhanced with boldface reserved words and followed
by the optional (pseudo-)assembly listing requested by -asm
(on VMS: /machine_code) on the following compile command
line:

hc queens.c -on List -asm (OR:)

hc queens.c /list /machine_code (WS form.)

v.09.15.85 © 1983-85 MetaWare Incorporated

Listings page 17-3
MetaWare High C Compiler, V. 1.2 27-Jun-85 08:51:20 queens.c Page 1

Copyright (C) 1983-85 Metaware Incorporated. Serial 0-000000 INTERNAL ONLY
Target processor: 18086/88/186/286 (Code generator 2.5)
Scanner C_lexicon(15-May-85 07:29:16)

Parser

anmm=)

HEENWWERPOMUVMESESUWUWUWNNE-
HFERNWWEUVMUVEEWWUWNNE -

Levels

C_phrase_structure(22-Jun-85 14:22:54)
Profile hc.pro included in this compilation.

LINE # | + 1 + 2 + 3 + 4 5 +

+(hc.pro

+ 1 |pragma Off(Emit_names);

+ 2 |pragma Off(Check_stack);

+ 3 |pragma Off(Emit_line_table);

+)he.pro
1 |/* From Wirth's Algorithms+Data Structures = Programs. *
2 |/* This program is suitable for a code-generation benchmark, */
3 |/* especially given common sub-expressions in array indexing. */
4 |/* See the Programmer's Guide for how to get a machine code */
5 |/* interlisting. *
6 |
g }pragma Title("Eight Queens problem.");
9 |typedef enum{False,True} Boolean;

10 |typedef int Integer;

I .
12 |#define Asub(l) A[(I)-1] /* C's restriction that array

13 |#define Bsub(I) B[(I)-2] /* indices start at zero

14 |#define Csub(I) C{(I)+7] /* prompts definition of

15 |#define Xsub(I) X[(I)-1] /* macros to do subscripting.

16 | /* Pascal equivalents:

17 |Boolean A[8 /* 1.. 8 */]; /* A:array[l1.. 8] of Boolean
18 |Boolean B[15 /* 2..16 */]; /* B:array[2..16] of Boolean
19 |Boolean C[15 /*-7.. 7 */]; /* C:array[-7.. 7] of Boolean
20 |Integer X(8 /* 1.. 8 */]; /* X:array[1.. 8] of Integer

5 & 3 & . & 3 % =

!
22 |void Try(Integer I, Boolean *Q) {
23 | Integer J = O;
26 | do {
25 | J++; *Q = False;
26 | if (Asub(J) &% Bsub(I+J) && Csub(I-J)) {
27 | Xsub(I) = J;
28 | Asub(J) = False; Bsub(I+J) = False; Csub(I-J) = False;
29 | if (I < 8) {
30 | Try(1+1,Q);
31 | if (1*Q) {
32 | Asub(J) = True; Bsub(I+J) = True; Csub(I-J) = True;
33 |]
34 |
35 | else *Q = True;
36 |
37 | } ’
38 | while (!(*Q || J==8));
39 |
40 |pragma Page(l); /* Page eject requested. */

v.09.15.85 © 1983-85 Metaware Incorporated

Listings
Metaware High C Compiler, V. 1.2 27-Jun-85 08:51:20 queens.c Page 2

Levels LINE #

a4l
11 42
11 43
11 44
11 45
11 46
11 47
11 48
11 49
11 50
22 51
22 52
11 53
11 54
w L43/C4:

Eight Queens problem.

page 17-4

1 + 2 + 3. + O +

v
9

void main () {
Integer I; Boolean Q;
printf("%¥s\n","go");
for (I= 1; I <= 8; Asub(I++) = True);
for (I = 2; I <= 16; Bsub(I++) = True);
for (1 = -7; I <= 7; Csub(I++) = True);
Try(1,8Q);

pragma Skip(3), /* Skip three lines. */

ir (@
for (I =1; I <= 8;) {
printf("%¥4d",Xsub(I++));

}
printf("\n");
}

printf: Routine called but not defined.

If the —asm option (/machine_code qualifier on VMS) is speci-
fied, the source-annotated assembly listing on the next few
pages is produced (the page boundaries have been adjusted to
fit the present page sizes).

v.09.15.85

© 1983-85 MetaWare Incorporated

Listings page 17-5

MetaWare High C Compiler, V. 1.2 27-Jun-85 08:51:20 queens.c Page 3
Eight Queens problem.
Addr Ob ject Source Program and Assembly Listing
extrn mw_INIT,printf
MODEL segment 'DATA'

0000 53 db 83
H b From wirth's Algorithms+Data Structures = Programs. */
;/* This program is suitable for a code-generation benchmark, */
;I' especially given common sub-expressions in array indexing.*/
;/* See the Programmer's Guide for how to get a machine code */
;/* interlisting. */
;pragma Title("Eight Queens problem.");
;typedef enum{False,True} Boolean;
;typedef int Integer;
;#define Asub(l) A[(I)-1] /* C's restriction that array */

;#define Bsub(I) B([(I)-2] /* indices start at zero */
;#define Csub(I) C[(I)+7] /* prompts definition of */
;#define Xsub(I) X[(I)-1] /* macros to do subscripting. */
; /* Pascal equivalents: */

‘Boolean A[8 /* 1.. 8 */]; /* A:array[l.. 8] of Boolean */
;Boolean B[15 /* 2..16 */]; /* B:array(2..16] of Boolean */

;Boolean C[15 /*-7.. 7 */]; /* C:array{-7.. 7] of Boolean */
;Integer X[8 /* 1.. 8 */]; /* X:array[1.. 8] of Integer */
,void Try(lnteger I, Boolean *Q) {
MODEL ends
QUEENS segment 'CODE'
0000 .L000O:
public Try
Try proc near
0000 55 push bp
0001 8b ec mov bp,sp
0003 83 ec 06 sub sp,6
; Integer J = O;
0006 c7 46 fe 0000 mov word ptr -2{bp],0
; do{
; J++; *Q = False;
000b .L000b:
000b ff 46 fe inc word ptr -2[bp]
000e 8b 76 06 mov si,6[bp]
0011 c6 04 00 mov byte ptr [si],0
B ; if (Asub(J) && Bsub(I+J) && Csub(I-3)) {
0014 8b 5e fe mov bx,-2[bp]
0017 82 bf ffffr 00 cmp byte ptr @QUEENS-1(bx],0
00lc 75 03 Jre 0021
00le e9 0077 Jmp 0098
0021 8b 7e 04 mov di,afbp]
0024 03 fb add di,bx
0026 82 bd 0006r 00 cmp byte ptr @QUEENS+6[di],0
002b 74 6b Je 0098
002d 8b 46 04 mov ax,a[bp]
0030 2b c3 sub ax,bx
0032 96 xchg ax,si
0033 82 bc 001fr 00 cmp byte ptr @QUEENS+31(si],0
0038 74 Se 0098
; XSub(I) = J;

v.09.15.85 © 1983-85 MetaWare Incarporated

Listings page 17-6

Metaware High C Compiler, V. 1.2 27-Jun-85 08:51:20 queens.c Page 4
Eight Queens problem.

Addr Object Source Program and Assembly Listing
B03a 8b 46 U4 mov_ ax,4[bp]
003d dl e0 shl ax,1
003f 93 xchg ax,bx
0040 8b 46 fe mov ax,-2[bp]
0043 89 87 0026r mov OQUEENS+38[bx] ,ax
H Asub(J)= False; Bsub(1+J)= False; Csub(I-J)= False;
0047 93 xchg ax,bx
0048 c6 87 fPffr 0O mov byte ptr @QUEENS-1{bx],0
004d c6 85 0006r 0O mov byte ptr ®QUEENS+6[di],0
0052 c6 84 001fr OO mov byte ptr @QUEENS+31([si],0
H it (1 <8) {
0057 8b 46 04 mov ax,4[bp]
005a 3d 0008 cmp ax,8
005d 7d 33 Jge 0092
’ Try(I+1,Q);
005f ff 76 06 push word ptr 6[bp]
0062 40 inc ax
0063 50 push ax
0064 89 76 fc mov -4[bp],si
0067 89 7e fa mov -6[bp],di
006a e8 ff93 ' call 0000
H ir (1*Q) {
006d 83 c4 04 add sp,4
0070 8b 76 06 mov si,6[bp]
0073 82 3c 00 cmp byte ptr [si],0
0076 75 20 Jjne 0098
; Asub(J)=True;Bsub(1+J)=True;Csub(I-3)=True;
0078 8b 76 fe mov si,-2[bp]
007b c6 84 ffffr O1 mov byte ptr @QUEENS-1[si],1
0080 8b 76 fa mov si,-6[bp]
0083 c¢6 84 0006r 01 mov byte ptr @QUEENS+6[si],1
0088 8b 76 fc mov si,-4[bp]
008b cé6 84 0OLfr Ol mov byte ptr OQUEENS+31(si],1
0090 eb 06 Jmp 0098 .

; }

}
H else *Q = True;

0092 .L0092:
0092 8b 76 06 mov si,6[bp]
0095 ¢6-04 01 mov byte ptr (si],1

}
)
Ovhile (1("Q || J==8));

e we ws

0098 .Lo098

0098 8b 76 06 mov si,é[bp]

00% 82 3c 00 cmp byte ptr [si],0
009e 75 09 jne 00as9

00a0 83 7e fe 08 cmp word ptr -2[bp],8
00a4 74 03 Je 00a%

00a6 e9 ff62 Jjmp 000b

00a9 .L00a9:

00a9 8b e5 mov sp,bp

v.09.15.85 © 1983-85 MetaWare Incorporated

Listings

Metaware High C Compiler, V. 1.2

page 17-7

27-Jun-85 08:51:20 queens.c Page 5

Eight Queens problem.

Addr 0Object Source Program and Assembly Listing
00ab 5d pop bp
OO0ac c3 . ret
Try endp
;pragma Page(l); /* Page eject requested. */
;vold main () {
00ad .L0Oad:
public main
main proc near
00ad 55 push bp.
O0ae 8b ec mov bp,sp
00b0 83 ec 04 sub sp,4
; Integer I; Boolean Q;
; printf("%s\n","go");
00b3 b8 0000r mov ax,offset mw_LITERALS
00bé 50 push ax
00b7 b8 0004r mov ax,offset mw_LITERALS+4
00ba 50 : push ax
00bb €8 ——-e call printf
7 for (I = 1; 1 <= 8; Asub(I++) = True);
OCbe c7 46 fe 0001 mov word ptr -2[bp],1
00c3 83 c4 4 add sp,4
00c6 .L00c6:
00c6 8b 46 fe mov ax,-2[{bp]
00c9 3d 0008 cmp ax,8
00cc 7f Ob Jg 00d9
00ce ff 46 fe inc word ptr -2[bp]
00dl 96 xchg ax,si
00d2 cé6 84 ffffr 01 mov byte ptr @QUEENS-1(si],l
00d7 eb ed Jmp 00cé
; for (I = 2; I <= 16; Bsub(I++) = True);
00d9 .L00d9:
00d9 c7 46 fe 0002 mov word ptr -2(bp],2
00de .LOCde:
0O0de 8b 46 fe mov ax,-2(bp]
00el 3d 0010 cmp ax, 16
00e4 7f Ob Jja 00f1
00e6 ff 46 fe . inc word ptr -2[bp]
00e9 96 ' xchg ax,si
OCea c6 84 0006r 01 mov byte ptr @QUEENS+6(si],1
O0ef eb ed Jmp 00de
;7 for (I =-7; I & 7; Csub(I++) = True);
00f1 .LOOFL: '
00f1 c7 46 fe PPP9 mov word ptr -2[bp],-7
00fé .LO0f6:
00f6 8b 46 fe mov ax,-2[bp]
00f9 3d 0007 cmp ax,7
00fc 7f Ob Ja 0109
00fe ff 46 fe inc word ptr -2{bp]
0101 96 xchg ax,si
0102 c6 84 001fr O1 mov byte ptr 8QUEENS+31([si],1
0107 eb ed Jmp 00f6
v.09.15.85 © 1983-85 MetaWware Incorporated

Listings
MetaWare High C Compiler, V.

1.2

Eight Queens problem.

Addr Object

27-Jun-85 08:51:20

page 17-8

queens.c Page 6

Source Program and Assembly Listing

?

Try(1,4Q);
109

0109
0109 8d 46 fd lea ax,~3[bp]
010c 50 push ax
010d ba 0001 mov dx,1
0110 52 push dx
0111 e8 feec call 0000
;pragma Skip(3); /* Skip three lines. */
HE S N ()]
0114 83 c4 04 add sp,4
0117 82 7e fd 00 cmp byte ptr -3[bp],0
Ollb 74 24 Je 0141
; for (1 =1;1 4= 8;) {
011d c¢7 46 fe 0001 mov word ptr -2[bp],1
0122 .L0122: .
0122 8b 46 fe mov ax,-2[bp]
0125 3d 0008 cmp ax,8
0128 7f 17 Ja 0141
; printf ("%4d",Xsub(I++));
012a ff 46 fe inc word ptr -2[bp]
012d 8b fO mov si,ax
012f dl e6 shl si,1
0131 ff b4 0026r push word ptr @QUEENS+38(si)
0135 b8 0008r mov ax,offset mw_LITERALS+8
0138 50 push ax
0139 e8 -—-e call printf
0Ol13c 83 c4 04 add sp,4
013f eb el Jmp 0122
: . }
; printf("\n");
0141 .L0141:
0141 b8 000cr mov ax,offset mw_LITERALS+12
0144 50 push ax
0145 e8 -—-e call printf
0148 8b e5 mov sp,bp
Ol4a 5d pop bp
0l4b c3 ret
main endp
QUEENS ends
mw_LITERALS segment public 'DATA'
0000 676f do 'go’
0002 00 db 0
0004 org 4
0004 25730a db '%s',0aH'
0007 00 db 0
0008 253464 db '%4d’
000b 00 db 0
000c Oa db OaH'
000d 00 db 0
000e mw_LITERALS ends
No user errors 1 warning 107K of memory unused.

End of processing, 27-Jun-85 08:51:41

v.09.15.85

queens.c

© 1983-85 MetaWare Incorporated

i

Diagnostic Messages page 18-1

18
Diagnostic Messages

Messages from the High C compiler report

(a) file 1O errors,
(b) system errors, and
(c) user errors and warnings.

18.1 File I/O Errors

File VO errors are fatal. They can occur in attempting to
open a non-existent file or in writing a compiler output file when
not enough disk is available. The errors that are likely to be
seen are:

Unable to open file fff: file not found.

This message is produced when any input source file, such
as that specified on the compiler invocation line or in an
Include pragma, cannot be found. In addition, when run-
ning the compiler in ANSI mode, the three files HCANSI.ST,
HCANSI.PT, and HCANSIP.PT must be available. The compiler
‘searches various “ipaths” for any input files, so the HCANSI

files may be anywhere in the search paths. See Section
Compiler Controls.

This message is produced twice: it is written once to stan-
dard output and once to standard error. [f standard output
is not redirected, the message appears on the screen
twice.

##2frror occurred on writing instruction file: ...
s#*grror occurred on writing object file:

8086 resident compiler. Same as next message below.

Cross compiler to 8086. These messages are followed
by a system message explaining the cause of the problem.

v.09.15.85 © 1983-85 MetaWare Incorporated

Diagnostic Messages page 18-2
=+syrite error occurred during tree paging.

8086 resident only. Usually caused by too little space on
the disk. Remove unnecessary disk files and try again.

NOTE: Fatal errors may result in compiler temporary files
being left on the disk. You should remove them. They are files
with a «. TMP” suffix.

18.2 System Errors

System errors are fatal and should rarely occur. Their diag-
nostic messages take the following form:

MDIW>SYSTEM ERROR n <KL, in Module:Function
Error message text.

where n numbers the occurrences of system errors, Module is
the module name, and Function is the function name. The
only system error messages that the user should be concerned
with are:

Dynamic array allocation/reallocation failed.
Out of memory.

8086 resident compiler. In both of these cases, there was
too little memory to compile the program. Adding more
memory to the computer can solve this problem. Alterna-
tively the -tpages and the -cram options can be used to
direct the compiler to use less memory; see Section Com-
piler Controls.

Cross compiler to the 8086. In both of these cases,
the system failed to supply sufficient virtual memory to
compile the program.

Exceeded Card_char_limit.

The input line was too long. Line length is normally limited
to 2,000 characters (and to 256 with the -cram option
specified: 8086 resident only). Shorten the line.

v.09.15.85 © 1983-85 MetaWare Incorporated

Diagnostic Messages ; page 18-3

Recover: Exceeded the following limit: Limit.
In repairing a syntax error, a table overflowed. The table
limit is fixed, so no increase in memory can improve the
situation. Repair the syntax error.

There are many other system error messages that the
compiler could produce, but they are associated with internal
compiler errors or inconsistencies that should not occur.

Stack dump. Compiler system errors are always accom-
panied by a callstack dump. The dump can usually be
ignored, but when reporting a problem to the support staff, the
_history of called functions can be helpful; .include a listing of
the dump in any written correspondence. The following is a
sample dump for the compiler residing on the Intel 8086
processor.

Call stack dump:

ROUTINE AT IN MODULE WAS CALLED NEAR WITH ACTUAL PARAMETERS
. 51C:0718 1E9C:0292 1C07 |9C1E |6407 |9C1E |0000
read_parse_tab 1E9C:0259 ptread 1E9C:0669 0100 |EAD2 |80FF |4700 |EB1D
51C:0BE3 1DEB:0047 F6C5 |E302 {0100 |ESFF |2£03
init_analyser 1DEB:001A analdrvr 1D24:032E 0100 |A4ACS |E302|F6CS |E302
51C:04CF 4D8:02CF F6FF [1103 |DBO4 |0000 {0000
doit 4DB:02C2 skel 4D8:0311 0000 |0000 {2500 (€022 | 5800
main 4DB:0306 skel 22C0:0025 5800 {2825 |0000 |000C |0000

Error was severe. Program terminated.

The “ROUTINE” and “IN MODULE” columns are the same for all
host architectures, and in general are all that is relevant when
reporting a problem to support personnel. Consult Section
Debugging for how to interpret such dumps.

System errors due to a bug in the compiler’s code genera-
tor are accompanied by a line “Code was being generated for
program text near Ln/Cm.” following the call-stack dump. This
helps isolate the program text causing the problem and may
facilitate reducing the problem program to a few lines, which
then can be easily sent to compiler support personnel.

NOTE: When code generator errors occur, they can
frequently be “cured” by inserting a label before the line
causing the problem. Even if this cures the problem, please
still report the problem to support personnel!

v.09.15.85 © 1983-85 Metaware Incorporated

Diagnostic Messages page 18-4

NOTE: Fatal errors may result in compiler temporary files
being left on the disk. They should be removed. They are files
with a “. TMP” suffix.

18.3 User Errors and Warnings

User error messages are grouped in the three categories:
(1) lexical, (2) syntactic, and (3) constraint. Warnings do not
terminate compilation; errors always do. Also, some diagnos-
tic messages that are warnings become errors when running
the compiler in ANSI mode.

All user diagnostics are accompanied by a line number n
and column number m in the form Ln/Cm, and optionally the
file containing the text where the error was detected. In addi-
tion, lexical and syntactic errors are generally accompanied by
the erroneous line with a carat beneath it at the point of error
detection. Errors begin with “E” and warnings with “w” and
usually occupy a single line.

Lexical error messages are produced when an improperly
formed High C word is detected, such as a string with a miss-
ing closing quote. Example:

Levels LINE # 1 + 2t 3 4

[]
[void main() {
| char *S;

v

11 2
11 3| S = "Hello;_
C15
E L3/C15: (lexil.cal)] Unexpected end-of-line encountered.
11 4

Syntactic error messages are produced for High C
programs that are ill-formed on the phrase level, such as a
missing “;” or inserted spurious symbol. The message is
accompanied by a statement of the REPAIR that the compiler

effected so that it could keep processing input. Example:

Levels LINE # | + + 2 + 3 + 4 + 5 +
=T |void main() {

11 2 | printf "Hello");
Cll cme e

11 31 3

E L2/C11: (syntactic) unexpected symbol:'<STRING>':"Hello"
REPAIR: '(' was inserted before '<{STRING>':"Hello"@L2/Cll

v.09.15.85 © 1983-85 Metaware Incorporated

Diagnostic Messages page 18-5

Constraint error and warning messages diagnose more
subtle problems, such as an undeclared identifier or type mis-
match. There are over 160 such diagnostic messages, each of
which is generally meant to be self-explanatory. Most of them
prevent the generation of object code, but some are merely
warnings and are intended to assist the programmer. Some
warnings become errors when compiling in ANSI mode.

Messages that report errors terminate compilation after the
phase issuing the diagnostic message, so errors that would
otherwise have been detected by later phases are not reported
until the earlier error is repaired and the compiler re-invoked.

As examples of these diagnostics:

Levels LINE # | + 2 + St 4 +
T |void maln() {

11 2| int §;

11 31 1= mdeclated_identifier;

11 4)

E L3/c8: Undeclared identifier: This is undeclared.

1 user error No warnings 453K of memory unused.

\n

Levels LINE # 1 + 2 + 3 + 4 +

\n
3

|

T 1 |void main() {
11 2 | int i, Unused;
11 31 1 /=0
11 41 1}
w L2/C8: i: variable is set but is never referenced.
E L2/C11: Unused: variable is never used.
E L3/C6: Division by zero.
2 user errors 1 warning 457K of memory unused.

18.4 Error and Warning Messages, Explanations

The remainder of this section is a collection of all compiler
diagnostic messages, presented in alphabetical order. Where
appropriate an explanation is given. Often an explanation uses
an example of the general case, for simplicity, rather than
attempting to explain in detail the general case.

v.09.15.85 © 1983-85 Metaware Incorporated

Diagnostic Messages page 18-6

“=" used where “==" may have been intended.
“=" was detected as an operator in a Boolean expres-
sion, such as “if(x = y) ..”. Often this is a mistake, as
“if (x == y)..” was intended.

“auto” must appear within a function.
Storage class auto cannot be given for declarations that
do not appear within a function.

“break” must appear within while, do, for, or switch.
“case” must appear within a “switch”.

“continue” must appear within while, do, or for. -
“default” must appear within a “switch”.

“pragma Data” active at end of module.

“pragma Data” active at end of function.
A “pragma Data(...);” was given in a module or function,
with no terminating “pragma Data;”. This is permitted
but the programmer may have forgotten to supply the
terminating pragma, thus perhaps including more data
declarations in a data segment than intended.

“register” is the only allowable storage class for a parameter.
Ignored.
In a function definition or declaration, a storage class
other than register was given, such asin
int f(i) static i; {..].

“register” must appear within a function.
Storage class register cannot be given for declara-
tions that do not appear within a function definition.

“void’ isillegal here.

A bit field is not valid as an argument to &.
One cannot take the address of a bit field, since such a
field is not necessarily on a byte boundary.

A bit field is not valid as an argument to sizeof.
Since bit fields need not occupy an integral number of
bytes, taking their sizeof is prohibited.

v.09.15.85 © 1983-85 MetaWare Incorporated

Diagnostic Messages page 18-7

A function may not return a function (but may return a pointer
thereto).

A function may not return an array (but may return a pointer
thereto).

A function may not return an incomplete type.
A function cannot return a struct or union type whose
fields have not yet been specified. For example,
“struct s; struct s *f() (..}" is legal since f returns
a pointer to an incomplete struct type, but
“struct s; struct s g() {..} isillegal.

A functionality typedef cannot be used in a function definition.
“typedef int £(); f g {return 3;}"isillegal: the type
definition for f cannot be used to specify that g is a
function.

A parameter may not be a function (but may be a pointer
thereto).

A parameter name must be given here.
For function definitions, parameter names must be sup-
plied. Thus, forexample, “void f(int, float g) {..}”is
illegal because the first parameter lacks a name.

A register-class function makes no sense.
For example, “register f() {..}" isillegal.

An array may not contain functions (but may contain pointers
thereto).

An array must have a positive number of elements.

An array of objects of an incomplete type is illegal.
An array cannot contain a struct or union type whose
fields have not yet been specified. For example,
“struct s; struct s *a[10];” is legal since “a”
contains pointers to an incomplete struct type, but
“struct s; struct s b[10];" isillegal.

An interrupt function may not be called.
A function with the _INTERRUPT calling convention
attribute cannot be called directly.

v.09.15.85 © 1983-85 Metaware Incorporated

Diagnostic Messages page 18-8
An object of type ttt cannot be initialized.
Argument to “include” must be a string.

Argument type ttt is not compatible with formal parameter type
ttt'.

An attempt was made to pass an argument of a wrong
type to a function, such as passing a float for a para-
meter that is a struct. When using standard C function
definitions, this is a warning only, since C permits such
mismatches; but when using prototype syntax, it is an
error. This warning provides the security of Pascal func-
tion call semantics. ‘

Array size exceeds addressability limits.

Bit field is byte-aligned and of the same size as ttt and so is
being converted to that type for efficiency.
It so happens that a bit field is aligned on a byte boun-
dary and is the same size as an integral type ttt, so it
may as well be declared as such for efficiency.

Bit fields must fit in a register or register pair.

Cannot dereference a pointer to void.
Type *void was introduced as a means of defining a
“generic pointer” compatible with other pointers. But
there is no such thing as an object of type void. There-
fore, dereferencing a pointer to voidis illegal.

Cannot initialize a typedef.
Something like “typedef int T = 1;” was attempted.

Cannot initialize an imported variable.
Something like “extern int T = 1;” was attempted. A
variable may be initialized only by its defining module.

Cannot pass this by address in a small-data model.
Cannot take sizeof a function type.

Cannot take sizeof an incomplete type.
The sizeof a struct or union type whose fields have
not yet been specified is not known. For example, what

v.09.15.85 © 1983-85 MetaWare Incorporated

Diagnostic Messages page 18-9
follows is illegal since the size of the structure is un-
known: “struct s; ... sizeof(struct s)..".

Cannot take sizeof type void.
There are no objects of type void, therefore taking
sizeof void makes no sense.

Cannot take the address of a register variable.

Current calling convention requires pointer parameters only.
The current calling convention contains “_BY_REF”,
requiring that all parameters be of pointer types.

Declared type is never referenced.

Divide by zero.
This was detected in a constant expression at compile
time.

Enclosing function’s return type is “void”; therefore nothing
may be returned.
“return E;” for some expression E was found in a
function whose return type is void.

End of file encountered within #if construct.

End of file encountered within arguments to a macro. Probably
a missing right parenthesis.

End of file encountered within macro definition.
End of file encountered within macro formal parameter list.

Expression has no side effect and has been deleted.
An expression used in a statement context has no side
effect; therefore the expression is useless. For exam-
ple, “2+3;".

External function is never referenced.
Fewer arguments given than function has parameters.

Field offset exceeds addressability limit.
The size of structs can be limited by the target archi-
tecture, e.g. 64KB on an 8086.

v.09.15.85 © 1983-85 MetaWare Incorporated

Diagnostic Messages page 18-10
for loop will never execute.

Function called but not defined.

Any function that was called but not defined is noted as
a warning. Although such practice is permissible in C,
especially useful when calling library functions, a com-
mon error is to misspell a function name. The error
goes undetected until link-time without this warning.
Furthermore, errors in parameter linkage can occur
when acall is made to an undefined function. We
recommend that the library “.h” header files always be
included to get parameter checking, and that function
prototypes be used for external function declarations,
rather than making use of the “feature” of C for calling
undefined functions.

Function expected.
The expression preceding the arguments (...) in a func-
tion call must denote a function.

Function parameter names are allowed only on function
definitions, not declarations.
“int f(a,b,c);" is a function declaration that names the
parameters (a,b,c). This is illegal unless function
prototype syntax is used for the definition, as in
“int f(int a, int b, int c);".

Function return value never specified within function.
A function with a non-void return type contains no
return statement. This typically happens with “old” C
programs that did not use void to indicate that a
function returns nothing.

Functions may not be nested.
In ANSI-standard C, functions cannot be declared
within functions. In High C they can. This message is
produced when the compiler is doing ANSI checking.

Identifier required after #ifdef or #ifndef.
Identifier required. Pragma ignored.

v.09.15.85 © 1983-85 Metaware Incorporated

Diagnostic Messages page 18-11

Incompatible tag reference: The ttt tag class does not match
the tag class ttt’ defined at Ln/Cm.
Something like “struct s; union s {int x;};” was
encountered. The tag s cannot simuitaneously be the
tag for a struct, union, and/or enum.

Incomplete type: the struct/union type at Ln/Cm must be
completed before it can be used here.
A reference has been detected to a field of a struct or
union type whose fields have not yet been specified.

Incorrect number of parameters to macro. Macro invocation
ignored.
The number of arguments to a macro must agree
exactly with the number of parameters in its #def ine.

Integer constant exceeds largest signed number.
Integer constant exceeds largest unsigned number.

Invalid calling-convention identifier.
An argument to the Calling_convention pragma must be
one of the predefined calling-convention identifiers,
such as _CALLEE_POPS_STACK.

Invalid digit in non-decimal number: X.

Local function is never referenced; no code will be generated
for it.
A function of storage class static is not called any-
where in the compilation unit. Since it is not exported,
there can be no reference to the function and it is essen-
tially deleted.

Local stack frame exceeds addressability limit.
The stack frame size for a function exceeds the capabil-
ities of the target architecture, e.g. 64KB for the 8086.

Lower bound of range is greater than upper bound.
This can only happen in High C case statements where
range expressions are allowed as labels (an extension).

v.09.15.85 © 1983-85 MetaWware Incorporated

Diagnostic Messages page 18-12

Macro name must be an identifier.
Macro parameter must be an identifier.

Members cannot be of an incomplete type.
A struct or union cannot contain a struct or union
type whose fields have not yet been specified. For ex-
ample, “struct s; struct t {struct s *p;}” is legal
since p is a pointer to an incomplete struct type, but
“struct s; struct t {struct s p;}”isillegal.

M'emory model must be Small, Compact, Medium, Big, or
Large. E

Mismatched #if-#elif-gelse-#endif.
More arguments given than function has parameters.

Must be a compile- or load-time computable expression.
The initializers for a static variable must be determin-
able when a program is loaded.

Must be a compile-time computable constant.
Must be a pointer.

Must be a scalar (int, char, floating, or pointer) type.
Must be a static variable reference.

Must be a string.

Must be a struct or union.

Must be a type.

Must be an identifier.

Must be an integral (int or char) type.

Must be of a pointer type.

Must be of an extended-function type.

Named parameter association is prohibited for this function
since its declaration near Ln/Cm does not name all para-
meters.

An attempt was made to call a function F using named
parameter association, but F’s declaration did not name
all of its parameters. For example,

void F(int a,float); ..F(a=>37, 3.3);/*Illegal.*/
void F(int a,float b);.F(a=>37,b=>3.3); /*Fine.*/

v.09.15.85 © 1983-85 Metaware Incorporated

Diagnostic Messages ~ page 18-13

No “pragma Data” is active.
“pragma Data;” was encountered without a preceding,
and matching, “pragma Data(...);".

No member is declared here.
A declaration with no declared object was found within a
struct or union. For example,
struct s {int; float; struct t {int y};}

contains three declarations, none of which declare an
object. However, this construct is not entirely vacuous
because the declaration of struct t is visible outside of
struct s and therefore can be used to declare objects
of type structt.

No object may be of type void.

No parameter declarations may be given here.
In defining a function using prototype syntax, where the
parameter types were specified in the parameter list, an
attempt was made to re-declare the parameters follow-
ing the parameter list. For example, “int x,y;” isillegal
in“void f(int x, int y) int x,y; { ... }".

Non-decimal constant exceeds largest unsigned number.

Only a parameter may be declared here.
Preceding a function definition’s {, only the function’s
parameters may be declared.

Only fields of type “unsigned int” or “unsigned long int” are
supported.
Bit fields may be only of these two types. Any bit field of
another type is coerced to one of them, depending upon
the size of the bit field.

Only one “default” is permitted ina “switch”.

Operand type inappropriate for operator.
An inappropriate operand was detected for a built
-in operator such as &, |, , etc. For example,
“Ploat f1,f2; ... f1 = f1 & f2;” is illegal: & requires
integral operands.

v.09.15.85 © 1983-85 Metaware Incorporated

Diagnostic Messages page 18-14

Parameter not found or specified more than once.
In a function call using named parameter association, a
parameter was named twice, or a non-existent parame-
ter was referenced.

Parameter ppp not supplied.
In a function call using named parameter association,
parameter ppp was not given an argument value.

Parameter separator must be a comma.
In a #define of a macro with parameters, parameter
names must be separated by a comma. .For example,
“#define M(a b) c” isillegal; “a,b” is required.

Pointer dereferencing disallowed in static context.

“pragma Code” may not occur within a function.
The Code pragma must appear only at the outermost
declaration level — outside of all functions.

Pragma has too few parameters.
Pragma has too many parameters.

Previous “pragma Data” is still active.
“pragma Data(..);” was given in the context of an al-
ready active “pragma Data(...)”. Insert “pragma Data();”
preceding the offending pragma to “turn off” the active
pragma.

Real constant has too many digits.

Result of comparison never varies.
An expression was found whose operands, while they
are not all constants, are such that the value of the ex-
pression is always the same. For example, an expres-
sion of type unsigned int is always less than zero.

- Right operand of shift operator is negative.

Since the first parameter was specified by the type “void”,
there may be no other parameters.

The special syntax exemplified by “int f(void);”

denotes a function f taking no parameters. Because of

. v.09.15.85 © 1983-85 Metaware Incorporated

Diagnostic Messages page 18-15

this, no parameter can be specified after “void™:
“int f(void, float, int);”isillegal.

Size change in cast involving pointer type: casted-to type ttt is
not the same size as casted-from type ttt'.

Size of data segment exceeds addressability limit.

Size of local static storage exceeds addressability limit.

The size of a data segment exceeds an architecture-
imposed limitation, e.g. 64K on an 8086. This can arise
when there is too much global data declared in a com-
pilation unit. Break up the unit into several, or use prag-
ma Data to give different names to distinct sections of
data. But note that on the 8086, only the Large memory
model supports more than 64KB of static data.

Size of stack frame exceeds half of the addressability limit.
This is a warning that a function’s local variable storage
is close to an architecture-imposed limitation.

Size of stack frame exceeds quarter of the addressability limit.
This is a warning that a function’s local variable storage
is close to an architecture-imposed limitation.

Specified storage class for this declaration is unnecessary and
was ignored.
In a declaration such as “static struct s{int x;};",
the storage class “static” is useless since no object
was declared. '

Static initialization of bit fields is not supported.

Storage-class nonsensical for function definition.

String too long for initialized array.

Structure has no contents (is of size zero).

Subscripted expression must be an array or pointer.

The 2nd and 3rd operands of a conditional expression must be
both arithmetic, or of the same type, or one a pointer and
the other zero.

v.09.15.85 © 1983-85 MetaWare Incorporated

Diagnostic Messages page 18-16

The declarator must be a function. This declaration has been
discarded.

A declaration such as “int f {..};” was encountered,

where a function body {...} was given for a non-function.

The rest of this line is extraneous.

The sign (signed/unsigned) has been specified more than
once. ,

The storage-class (auto, extern, etc.) has been specified
more than once.

The width (1ong/short) has been specified more than once.

This “return” should return a value of type ttt since the
enclosing function returns this type.

This can be of an incomplete type only if it is “extern” or has
an initializer supplying its size.

This code will never be executed.

This construct would have been deleted as an optimization had
it contained no labels.
A construct such as “while (0) {..}"” was detected but
cannot be deleted due to the presence of one or more
labels within {..}. This is questionable programming
practice at best.

This function declaration is inconsistent with the “int”-
returning function declaration imputed at Ln/Cm.

A function called before it is declared is assumed to be a
function returning int, and any subsequent declaration
of the function must declare it to be so. For example,
“main () { .. f(3);.. } void f() {.}" is illegal since f
was called before being defined and therefore assumed
to return int.

This function declaration is inconsistent with the declaration at
Ln/Cm.

This is already defined as a macro. Redefinition ignored.
A redefinition of a macro is permitted only if the rede-
finition agrees exactly with the previous definition. To

v.09.15.85 © 1983-85 Metaware Incorporated

Diagnostic Messages page 18-17

otherwise redefine a macro, use #undef to explicitly
undefine the macro before re-defining it.

This is multiply declared.

This is permissible only in conjunction with “int” or “char”.

This is permissible only in conjunction with “int” or “double”.

This is permissible only in conjunction with “int”.

This is undeclared.

This may not be a pointer to a function (but may be a pointer to
an object).

This tag name is more than 80 characters long.

This type lacks a tag and hence cannot be used.
A declaration such as “struct {int x;};” was encoun-
tered. Without a tag the struct cannot be referenced
and hence is useless.

Toggle name required. Pragma ignored.
Too many initializers here.

Type ttt is not assignment compatible with type ttt’.
(a) In an assignment expression, the right operand, of
type ttt, may not be assigned to the left operand, of type
ml

(b).ln a function call, an argument, of the type ttt, may
not be passed to a function that expects a parameter of
type ttt'.

Type ttt is not compatibie with type ttt’.
In a comparison, the left operand, of type ttt, may not be
compared with the right operand, of type ttt'.

Unexpected symbol in expression. Line ignored.

Unknown preprocessing directive.

Unrecognizable Data class. Static assumed.

Unrecognizable Data class. Static assumed.

Unrecognizable field name.

Unrecognizable pragma name. Pragma ignored.
Unrecognizable toggle name. Pragma ignored.

Up-level addressing to a register-class variable is not allowed.
Variable is never used.

v.09.15.85 © 1983-85 Metaware Incorporated

Diagnostic Messages page 18-18

Variable is referenced but is never set.

Variable is set but is never referenced.

Variable referenced before set.

Variable required.
In this context a so-called “Ivalue” is required but was not
found. An lvalue is something whose address can be taken,
and is required on the left side of an assignment expression
and as an operand to &, ++ and —. The rules of C require
the automatic conversion of some objects into non-lvalues.
For example, an Ivalue of type array-of-T is always convert-
ed to a (non-l)value of type pointer-to-T, so it is never
allowable to take the address of an array. So, “int a[10];
.. f(&a);" produces the “Variable required.” diagnostic due
to the application of & to “a”, which has been converted to
the address of the first element. Remove the &.

Warnings have been completely disabled.

Define a “clean compile” as one containing no diagnostics
from the compiler. A clean compile is a laudable goal for
every compilation unit. To try to make the compile ciean by
turning Off warnings is “cheating”, so the compiler pro- .
duces this warning when the toggle Wamn has been turned
Off. This means that if the output of the compiler contains
no diagnostics, the compile was truly clean.

Zero-length bit fields may not be named.
A declaration such as “struct {int i:0, j:2};” was en-
countered. “i” must be omitted. As is, it is possible to
refer to the field. Such a reference would be illegal.

{...} inappropriate here for initializing a scalar.

v.09.15.85 © 1983-85 MetaWare Incorporated

Cross References page 19-1

19
Making Cross References

PP and HC. This section explains cross references and
how to get them. The presentation is for both Professional
Pascal and High C. Compile commands for the former are
used in illustrations, so each occurrence of pp must be replac-
ed by hc for High C programming. There are only ten such
occurrences, all at the beginning of the second subsection.

On VAX/VMS. Command syntax is presented here for both
VMS and non-VMS systems. Where VMS commands differ from
non-VMS systems, a specific notation is made.

Cross compilers. To make this section work for a cross
compiler simply replace pp with the appropriate command
name. For examples, to make a cross reference using the
High C VAX-t0-8086 compiler use hc8é6 in place of pp below,
or for Professional Pascal from VAX to an MC68000 use ppé68.

19.1 Features of the Cross Reference
{annotated multi-modular, inter-modular, inter-lingual cross reference)

Cross-references have the following features:

* References to source files. All cross reference information
refers to line numbers within files compiled, as opposed to
line numbers within a listing. Therefore no listing is nece-
sary to use the cross reference.

¢ Include files. Included source files are handled properly.
That is, they do not interfere with the process, and their
names are included correctly in the resulits.

* Assignments versus uses. References that assign values
into variables are distinguished from references that use
values of variables.

v.09.15.85 i © 1983-85 Metaware Incorporated

Cross References page 19-2

e Annotated listing. It is possible to generate an annotated
source listing of one or more program files. The listing con-
tains cross-reference information to the right of the source
text listed.

e Multi-module cross references. A cross reference can
span multiple compilation units by cross referencing many
modules at once and showing references from one module
into the other. Thus, a single cross reference can be
produced for a program that is broken up into separately
compiled modules.

¢ Inter-module usage summaries. A list of the names that
one module uses that are located in other files can be
produced, organized by file. This helps one understand the
module interconnectivity of a large program.

19.2 How to Make a Cross Reference

Cross references are produced by a two-stage operation:
First, the compiler produces cross-reference information in an
intermediate file. Second, a separate cross-reference process-
or reads the intermediate file and produces the actual cross-
reference listing.

One module. To compile a single source module named
“M.P” (“M.C" and hc below for High C) and produce its cross
reference in file “XLISTM.XRL” (“XRL” = “XRef Listing”), use the
two commands:

pp m -xref WS: pp m /cross
xref m > xlistm wMS: xref m /output=xlistm

This produces object code as well as a cross reference list-
ing. To avoid the former and therefore speed up the process,
add -noobj (/noobjon VMS) to the command line.

To use the cross-referencer options described below for a
single module, one should use the multi-module, “command
file” approach described next.

v.09.15.85 © 1983-85 MetaWare Incorporated

Cross References page 19-3

. Several modules. To compile and produce the cross refer-

ence for more than one source file, say modules M1.P, M2.P,
and M3.P (“.C” and hc below for High C), first compile each
module with cross referencing on:

pp ml -xref WS: pp ml /cross
pp ml -xref WS: pp m2 /cross
pp ml -xref WS: pp m3 /cross

Again, add -noobj (/noobj) to each line to avoid code genera-
tion. Then enter the following pragmas in a file called, say,
MS.CMD:

pragma Include('M1.XRF');
pragma Include('M2.XRF');
pragma Include('M3.XRF');

This gets the effect of concatenating the three “.XRF” files.
Finally, to get the cross reference in file MS.XRL, type

pp ml1 -xref wWMS: pp ml /cross (or hc)
xref ms > ms wMS: xref ms /output=ms

The General Case. The -xref (/cross) of the compile
command tells the compiler to produce a “.XRF” cross-refer-
ence information file. That file, or the concatenation of several
such files, is then processed by the cross referencer per se.

The xref command has the format:
xref info [-on Toggle...] [-off Toggle...] [> list]
“oron VMS:

xref info [/on=(Toggle,...)] [/off=(Toggle,...)]
[/output=list]

where “info” is the name of an “ . XRF” intermediate cross-refer-
ence information file or “.cMD” “command file” as illustrated
above. Any ons and offs turn On and Off various Toggles
described below. The cross reference is produced on the stan-
dard output unless redirected (>), in which case “list.XRL" is
the file to which the listing is to be written (on VMS standard
output is SYS$OUTPUT and redirection is specified via /output).

v.09.15.85 © 1983-85 Metaware Incorporated

Cross References page 19-4

19.3 Cross-Referencer Pragmas
[cross referencer pragmas On, Off, Pop, Columns, Include]

The cross referencer is capable of producing other forms of
output besides the standard alphabetically-sorted list of
names. Communication to the cross reterencer is done via
pragmas placed in the “.cMD” file that have the same form as
Professional Pascal pragmas, which is also the same as High
C pragmas except that strings are specified with single-quotes
(") rather than double-quotes (”).

pragma <Pragma_name> (<Pragma _parameters)) ;
The <Pragma_name>s supported are:

* 0n, Off, and Pop. These act identically to those of the source
language; see Section Compiler Pragmas. In this case
there may only be one <Pragma_parameter>, which may be
any one of the following names:

Annotate_includes
Annotated | listing
List_module_usage
L].St unused includes
Statistics

See Subsection 19.6 for a description of what these toggles
do. They can also be entered on the xref command line
using the onand of f syntax. Example:

xref whatever -on Annotated_listing Statistics
wMs: xref whatever /on=(Annotated listing,Statistics)

® (Columns (Declared name, Info, Refs, Right margin). In
this case the four parameters are integers. The values
define the columns in which certain information is placed in
the cross reference. The first specifies the column in which
the declared name is placed; the second the column for
related information; the third the column for the references
to the Declared name, and the last the right margin of the
page. The defaultis Columns(12,60,90,132).

v.09.15.85 © 1983-85 MetaWare Incorporated

Cross References page 19-5

® Include('File_name'). Here the parameter is a string
denoting a file to be included. This works exactly like the
Include pragma of Professional Pascal (and High C, except
that the file name is enclosed in single, not double, quotes).

19.4 Cross-Referencer “Command Files”

[multi-module cross reference)

These pragmas can be edited right into the “.XRF” files
produced by the compiler. But it is usually more convenient to
make a small “.cMD” file containing the desired pragmas,
together with an Include pragma specifying the name of each
“ . XRF” file of interest. Example:

pragma On(Annotated listing);

pragma Columns(15,60,80,256);

pragma Include('PROG.XRF');

— One Include for each .XRF file, if several modules..
— Hyphenated comments are allowed as input to xref,
— as illustrated by these latter three lines.

If file PROG.CMO contains the above lines, typing
xref PROG.CMD

produces the cross reference of PROG.XRF with an annotated
listing and the columns as specified, all on the standard output.

Using such a “command file” is the preferred mode of
operation when obtaining a multi-module cross reference.- All
of the .XRF files can be cross-referenced at once by construct-
mg a command file that Include-s all the .XRF files, and xref-
ing the command file.

Recall the several-module example above with modules
M1.C, M2.C, and M3.C. Compile each one of them to obtain files
M1.XRF, M2.XRF, and M3.XRF. Obtain a cross-reference for all
three simultaneously by xref-ing a file containing

pragma Columns(15,60,80,256); — For example.
pragma Include('M1.XRF'); — See "Distinction of
pragma Include('M2.XRF'); — File Names":

pragma Include('M3.XRF'); — Subsection 19.7.

v.09.15.85 © 1983-85 MetaWare Incorporated

Cross References page 19-6

Caveat. Do not confuse the Include pragma for the cross-
referencer with that for the source language. They have the
same effect — that of including source text — but the former is
directed to the cross-referencer and the latter to the compiler.
Below we refer to files included in a compilation as “compiled
include files” to avoid any confusion with files included in the
input to the cross-referencer.

19.5 Cross-Reference Format
{components of cross-reference listings; Annotated listing, List module usage]

Components. Each cross reference is self-documenting
and consists of the following four items:

(1) An alphabetized list of all names declared in the program
together with an ordered list of all the references to each
name.

(2) An alphabetized table of all files used in the program and a
file reference number for each.

(3) A list arranged by file of ali the names declared in other files
that each module uses — if requested.

(4) An annotated cross reference for each module — if
requested.
When the components are produced:
Item (1) is always produced.

ltem (2) is produced if the cross reference involves more
than one file; this happens if either more than one module is
cross referenced, or any compiled include files were involved
in the modules being cross referenced.

Item (3)is produced if the List_module_usage toggle is On.
Item (4) is produced if the Annotated_listingtoggle is On.

v.09.15.85 © 1983-85 Metaware Incorporated

Cross References page 19-7

What each component consists of:
Item (1) presents the following information for each distinct

name in the program:

The line and column number of the declaration of the
name. [f the name occurs in a compiled include file, or if
several modules are being cross-referenced, the file num-
ber is also given.

The declared name N, and its owner: the name of the High
C function, or the name of the Professional Pascal pack-
age, routine, or program, that contains N’s declaration.

Information about the named object, such as,

in Professional Pascal, its “mode” (type, const, var,
procedure, function, etc.), and in some cases the object’s
type or its value, such as a const’s value.

in High C, its storage class (static, extern, typedef,
register, etc.), and in some cases the object’s type.

The numbers of any lines containing references to the
name. [f the references are not in the module being cross-
referenced, such as in an include file, or if several modules
are being cross referenced, the line numbers are presented
in the format “in<...>” where n is the number of the file
containing the references and “...” are the line numbers.
Occasionally the entry in this field is of the form “resolved at
ref” where ref is a line number or fn<... > reference as just
described; this means that the name was introduced by a
forward or external declaration whose actual definition was
given at ref.

References that assign or may assign a value to a variable
are marked with the character “*”.

item (2) presents the correspondence between file num-

bers and file names. References in items (1) and (3) use only
the file number rather than file names to keep the listing brief.
Use item (2) to determine the corresponding file name.

v.09.15.85 © 1983-85 Metaware Incorporated

Cross References page 19-8

ltem (3) is optional. It is requested by turning on the toggle
List_module_usage. The output produced is a listing for each
module M of the names used by M that are declared in other
files. The list is organized by file. This is useful for determin-
ing the interconnectivity between modules. For example, if
module M1 refers to no function names within module M2, it may
be possible to overlay the code of M1 and M2.

In ltems (1) and (3) a reference to a name N declared at
reference point P is changed to a reference to a point P, if the
definition at P’ resolves the declaration at P. Typically this will
happen when Nis declared in an interface file F, is used from a
module M, and is defined at P’ in a module M. The module
usage in item (3) will show that Mrefers to P’ in module M, not P
in interface file F. That is, one gets references to the imple-
mentations rather than the interfaces through which they were
supplied.

ltem_(4) is optional and is requested by turning on the
toggle Annotated_listing. The resultis a line-numbered listing
of the source of the program compiled, with each line anno-
tated on the right with the line numbers where the names used
on the line were defined.

If n names were used on the line, n line numbers appear to
the right of the line, corresponding positionally. A line number
alone is a reference into the file being listed. If the letter “i”
appears instead, the name referenced is an intrinsic such as
Integer or Writelnin Pascal or “_find_char” or “_abs” in High
C. Finally, a line number followed by “f” and another number
means that the name was declared in a file other than the one
being listed; the file number can be used to discover that file's
name in Item(2). “Line#fFile#” was used instead of
“Filefi<Line#>” as in ltem (1) for brevity.

v.09.15.85 © 1983-85 MetaWare Incorporated

Cross References page 19-9

19.6 Cross-Referencer Toggles '

[Annotate_includes, Annotated listing, List_mne;usaqe. List_unused _includes,
Statistics)
Annotate_includes. Turn On this toggle to get an annota-
ted listing of all files involved, not just files that are modules.

Annotated_listing. Turn On this toggle to get an anno-
tated listing of all modules, but not “interface” or “header” files.
See the description of ltem (4) in the previous section.

List_module_usage. Turn On this toggle to get a listing for
each module M of the names used by M that are declared in
other files. See the description of Item (3) in the prior section.

List_unused_includes. Normally the cross referencer
does not list any names found in compiled include files that
were never referenced. This default can be overridden by turn-
ing On toggle List_unused_includes. The cross referencer also
never lists unused intrinsic names. That cannot be overridden.

Statistics. Turning On this toggle causes a summary of
cross-referencer statistics to be produced at the end.

19.7 Distinction of File Names

[sameness of include files for cross references]

In a multi-module cross reference, a particular interface file
may have been included by several modules because each of
the modules being cross referenced needs the resources in
that file. The cross-referencer assumes that a repeated
declaration of a name in a compiled include file is the same
declaration if it appears at the same line and column number of
the same include file.

For purposes of determining “sameness of include files”
the cross referencer uses the text of the file name including the
path, with casing ignored if the operating system ignores case
in file names. Therefore to cross reference several modules
successfully, avoid different names for one include file.

v.09.15.85 © 1983-85 MetawWare Incorporated

Cross References page 19-10

For example, if module M1 includes “../Utils/Trees.pf”
and M2 includes “/Prog/Utils/Trees.pf” (“.cf” or “.n” in High
C), and if these two references denote the same file, the cross
referencer will not recognize them as the same. (On VMS:
“[-.UTIL]Trees.pf” and “[PROG.UTIL]Trees.pf".)

v.09.15.85 © 1983-85 MetaWare Incorporated

System Specifics page 20-1

20
System Specifics

In this section are given some of the specific aspects of the
8086 implementation of High C.

20.1 Arithmetic

int arithmetic is much more efficient than long int arith-
metic. int arithmetic is directly supported by the hardware,
generally requiring one instruction per operation. 1long int
addition and subtraction require several machine instructions
per operation; long int multiplication requires a subroutine
that uses three int multiplies; 1long int division requires an
expensive subroutine that emulates division bit-by-bit.

Floating point is supported in the three formats of the 8087
numeric data co-processor.

floats are 32-bit values with an 8-bit exponent and a 23-bit
mantissa. The absolute values of the representable numbers
lie in the range 8.43x10-%7 .. 3.37x10+%8,

doubles are 64-bit values with an 11-bit exponent and a
52-bit mantissa. The absolute values of the representable
numbers lie in the range 4.19x10-397 _, 1.67x10+308,

long doubles are 80-bit values with a 15-bit exponent and
a 64-bit mantissa whose first bit is always 1. The absolute
values of the representable numbers lie in the range
3.4x10-4932 1,2x10+4932,

20.2 MS-DOS I/O
Not relevant te Concurrent

v.09.15.85 © 1983-85 MetaWware Incorporated

System Specifics page 20-2

20.3 Addressing Limitations

Due to the 8086 hardware design, no single data structure
may exceed 64K bytes in size. Therefore no aggregate vari-
able, such as an array or structure, may exceed 64K bytes.
Languages that support larger arrays on the 8086 “simulate”
them with arrays of arrays (one can program the same in C).

Similarly, the run-time stack may not exceed 64K bytes,
and no function may exceed 64K bytes of code. There are
additional restrictions imposed by some memory models; see
Section Memory Models.

20.4 Input Line Length

The default input line length for the compiler is 2,000
characters. When the -cramoption is specified, it is reduced to
256 (not on the VMS cross compiler: irrelevant).

20.5 Heap-ltem Size

Each item allocated on the heap incurs an overhead of ten
bytes in small-data memory models and eight bytes in large-
data models. Yes, those numbers are correct: the heap is
protected, not a “cheap heap” without protection — but see
C_HEAP.C in Subsection Minimizing Program Size of Section
Linking a Compiled Program.

v.09.15.85 © 1983-85 MetaWare Incorporated

System Specifics page 20-3

20.6 Default Segment Names: Pragma Code

The default code segment for each module is named by the
file-name “stem”, i.e. without any “.C”. For example, if the
module in file “x/Y/z.C” (“[X.Y]Z.C” on VMS) is compiled, the
code segment is named “Z°. Pragma Code can be used to
specify another name. See Section Externals.

The default data segment for each module is named by the
file-name “stem” preceded by “@.- This data segment is public
so that it can be moved into an overlay via an overlaying linker.

20.7 Overlays under PLINK86: Pragma Code

Not relevant ta Concurrent

v.09.15.85 © 1983-85 Metaware Incorporated

System Specifics page 20-4
20.8 Some ANSI-Required Specifics

Here are some additional system specifics that the ANSI
document (numbered X3J11/84-161 at this writing) requests
that each C implementation provide.

char. The type specifier char, when not accompanied by
an adjective, denotes type unsigned char.

Case of identifiers in generated object modules. Iden-
tifiers are emitted in object modules with exactly the same
spelling as in the program text, including case. See Section
Linking a Program about linking with respect to case.

Shift by a negative number. Shifting by a negative num-
ber produces unpredictable results and is flagged as an error
by the compiler if detected at compile-time.

Sign of division remainder. The sign of the remainder
from division is always the same as the sign of the dividend.

Signed right shift. A right shift of a signed integral type is
an arithmetic shift, i.e. the sign bit is propagated from the most
significant bit.

Truncation of a negative floating-point number. When a
negative floating-point number is truncated, by virtue of
converting it to an integral type, the truncation is toward zero.
Thus -2.7 is truncated to -2 and -1.2to -1.

Precision of floating-point arithmetic. Floating-point
arithmetic is done in float precision unless one of the oper-
ands is double or long double, in which case the precision is
double or long double, respectively. (Some C implementa-
tions do all floating-point arithmetic in double precision.)

Type of sizeof. The type of sizeof(E) is unsigned int,
since no data structure can be longer than 64K bytes.

Pointer-integer casts. Pointer-to-integer and integer-to-
pointer conversions act just like integer-to-integer conversions.
That is, the integrity of the data involved is preserved only if the
sizes of the involved pointer and integer types are the same.

v.09.15.85 © 1983-85 MetaWare Incorporated

System Specifics page 20-5

For the sizes of data types, see Section Storage Mapping. If a
pointer or integer value V is stored into a variable of a larger
size, V may be retrieved intact from that variable.

Bit fields. A bit field may be only of type unsigned int or
unsigned long int. The values 0..2**n-1 may be stored in a
bit field of width n. Bit fields may straddle a single byte boun-
dary and are allocated from right to left. For more information,
see Section Storage Mapping.

Maximum number of cases. There may be at most about
5300 cases in a switchstatement.

v.09.15.85 © 1983-85 Metaware Incorporated

More Feedback, Please

(After some use.)

We would greatly appreciate your ideas regarding im-
provement of the language, its compiler, and its documen-
tation. Please take time to jot down your ideas on this page
(front and back) and on additional sheets as necessary as you
use the software. Then, after you have some significant
experience with the software, please mail the results to:

MetaWare™ Incorporated
412 Liberty Street
Santa Cruz, CA 95060

MetaWare may use or distribute any information you supply
in any way it believes appropriate without incurring any obli-
gation whatever. You may, of course, continue to use that
information. If you wish a reply, please provide your name and
address. Thank you in advance, The Authors.

Page Comment

v.09.15.85 © 1983-85 Metaware Incorporated

More Feedback, Please

Page Comment

v.09.15.85 © 1983-85 MetaWare Incorporated

Index: MetaWare High C ™ Programmer’s Guide page I-1
Index

Starting on the next page is a “permuted key word in
context” index for this document. In the center column is the
particular key word W being indexed, in the context of a phrase
or sentence containing W. The phrase appears to the left and
right of W.

Occasionally the text of the phrase preceding W does not fit
in the space to the left of W. In that case the index entry looks
like ' '

is text that was too long to precede the WORD being indexed. This 7.4

where the first word “This” of the sentence did not fit on the
left. Similarly the text to the right of W can be crowded:

the right. This WORD is followed by too much text on 7.4
where “the right” did not fit on the right.

If the texts both to the left and right do not fit, or the left
(right) text cannot be completely wrapped around to the right
(left), the entry is continued on another line. For example:

but not too much text on the left. This WORD is followed by far too much text on...
Lutheright i it i et 7.4

After locating an entry, proceed directly to the referenced
section(s). If a reference is to Section X.Y, look on page X-Y
first and you will usually be within a page of the desired
referent.

v.09.15.85 . © 1983-85 MetawWare Incorporated

Index: MetaWare High C ™ Programmer’s Guide page I1-2

- text to left

configuring Check_stack,

MSDOS -~ Direct Access to MS-DOS INT
configuring Check stack, 186,
toggles Floating point,

Intel

The 8087 or

ipath, sa-memory_sodel, tpages on
cram on 8086,

The
cram -
tpages -
tmpil-2-3 -
taptp -
options ansi = standard, cras on
... tpages on 8086. configuring
Detecting the Presence of an

The

Intel

configuring IPATH names: MS-DOS/DCL,
code, data, heap,

EXIT — exit, _exit, and

MSDOS — Direct

pointer and

static link, up-level

BP,
local variable

DEBUGAIDS — Run-Time Debugging
SORTS — Sorting

pragma

pragmas

configuring file extensions, global

local variable addressing, parameter
fields. data type

INIT, TERM, EXIT, SYSTEM, INTS,
sysalloc, sysfree,

ALLOC — Memory

models. DS

inter-lingual cross reference.

Statistics. Anmnotate_includes,
..List_unused includes,
List_unused_includes, Statistics.
...List_module_usage,

compilation phase

v.09.15.85

WORD text to right _............ Section
186 — Default. R 7.3
186, 286.ciiinnnne. Ceteeireerens 5.4
2. Ceeceseenesencstsannannna 15.9
286, ciiiiiiiiiiinieeeanas eesiaenen 5.4
26, iiieiiiniinns erianas ceesee.. 8.2
286 — Default. feeeaes - . 1.3
80186/80286 ProCeSSOIS. «ovvevnvevsnannn 7.3
80287 Co-PTOCESSOT.vvevvevnnarnaas 8.1
8086. configuring options ansisstandard, ...
.................................. 5.4
8086 extended memoTy.co0i0unnn 1.3
8086 Memory Architecture. 9.1
8086 memory requirement reduction. 5.1
8086 number of tree pages............... 5.1
8086 temporary intermediate file-name I |
8086 tree page file-name. 5.1
8086, ipath, ma = memory_model,
Ceeeteeestceceatatreestcetaraannnns 5.4
1 8.3
8087 co-processor or emulator. 3.2
8087 esulation libraries. ceeeens 8.2
8087 or 80287 Co-Processor.ecevveves 8.1
8087 support.0ih00ninnn e 7.3
O-include, pragma Ipath RN 5.4
THEAP segment OTder.viihniinnen 3.3
abort Functions........... Ceeeeenaee 16.4
Access to MS-DOS INT 21, 15.9
address sizes.ccciiiiiiiienns 9.3
addressing. iiieiiiiiiinnen, 1.1
Addressing Limitations. veees 203
addressing locals and parameters. 10.3
addressing, parameter alignment......... 11.1
Aids. e ereeeeieeteaeat e 15.2
Algorithms.ccevviiiuiann.n. 15.6
L0 T 14.9
Aliss, Calling convention.......... vees. 6.2
Alias, Global aliasing convention. 13.2
aliasing convention.00000nnn 5.4
Aliasing Pragmas.c.ccnueeensn 13.2
aliasing variable, function names. 13.2
alignment. it 1.1
alignments and sizes, struct padding, bit. 10.1
ALLOC — Memory Allocator.............. 16.8
ALLOC, CONSOLE.cocvvvuvronnns 16.1
allocated, least free memory. 16.8
Allocator.cccvveienninnnannns 16.8
altered by some functions in large-data .. 11.1
annotated multi-modular, inter-modular, .. 19.1
Annotated_listing, List module usage. 19.5
Annotated | listing, List | “module_ _usage,..
............................... .. 19.6
Annotate_includes, Annotated listing,
................................. 19.6
announcements.cecieiinneenanen 7.2
ansi = standard. 5.1

© 1983-85 MetaWare Incorporated

Index: MetaWare High C ™ Programmer’s Guide page I-3

tpages on 8086. configuring options

++. AR = memory model,
MS-D0S: chkdsk utility, options
Some

Embedded

Linking for Embedded
embedded

The 8086 Memory

data

dumay
arge,
arge,

Communication between HC, PP, and

Example: HC and
Example: PP and
Microtec

Microtec ASM186 cross
MS-DOS

asm = machine_code -
config,

global and
Communication

Small, Compact, Medium,

memory models: Small, Compact, Medium,
Small, Compact, Medium,

SMALL?, COMPACT?, MEDIWM?,

direction

type alignments and sizes, struct padding,

Linking High

Example: PP and C with

Plain

High

Example: PP and

LANGUAGE — Calling Conventions for

. post-mortem
Post-Mortea

producing a

post-mortem call trace
LANGUAGE —
pragma

Alias,
parameters. pragma

v.09.15.85

ansi = standard, cram on 8086, ipath,
.................................. 5
ansi = standard, tpages. 2
ANSI-Required Specifics. vees 2.
Applications.c.cvvuiunn. Ceeeeaee 1
Applications. NP .3
applications: INT186 Smulator 4,
Architecture.ccv0nveen e . 9.
areasinonesegnent............. .9
ArgC, ALGV. v evevnsrnanonnsonannanons 4.
arge, argv, and 1/0 initiallzatlon ceens 160
atgunent processor _mwset_up_args. 3
ATGV. cevveennvrocorannscnsnanns R B
argv and 1/0 1nitialization veiaes vees 16
Arithmetic.0..n.
Asm.
Asm — Default: Off.
ase = machine code - assembly listing.
Asm with HC Maln Program.
Asm with PP Main Program.
ASM186 cross assembler, L186 cross linker. .
assembler, L186 cross linker.
Assembly Language Debugging. 12,
Assembly Language Naming Conventions. ... 14.9.
assembly listing.c00us
assembly listing.
autocfig.ciiiiiiiiiiiiiiiea, A N
AUTOEXEC.BAT = LOGIN.COM.
automatic data. Ceeeeeeeaas 13.
between HC, PP, and Asm.0e000us 14
Big Model: Large-Code, Medium-Data.
Big, Large...... Ceerieeeas cereens RS |
Big, Large.cve0ns e teeseceaanns
Big, Large.ovviviiiiann,
BIG?, LARGE?.
bit.

.

.............

........................

C Main Program. :
C Naming Conventions.

call trace call-stack dutp. 1.
Call-Chain Dump. veees 12,13,
call-chain stack dump. Cersaeanes 12,
call-chain stack dump. 7
call-stack dump.coiiiinnnn 7.
Callee pops_when possible — Default: Off. . 7.
Calling Conventions for C, Pascal, PL/M. . 15.
Calling Routines in Other Languages......)
Calling_convention. 4
Calling convention. 6
Calling convention, pass-by-reference.... 13.

...................

N DD BN H U~ AN ER R =RV WSO ORNN NP WPRNHEWEPUBERN - EFRNNVNN I~ WEO® s &

© 1983-85 MetaWare Incorporated

Index: MetaWare High C ™ Programmer’s Guide page I-4

short versus long

Utility Packages: .
Group Names: Pragmas

toggle

configuring

ansi = standard, tpages. MS-00S:
external name

Storage

dumay file

The 8087 or 80287

8087

toggle Literals in_code, ROM-able
code segments, code overlays, pragma
Default Segment Names: Pragma
Overlays under PLINKBS: Pragma

naning code segments,
Code Segmentation: the

naming
ROM-able code, literals in data vs.
ROM-able code, literals in data vs.

Cgroup,

segments.
ROM-able

pragma Literals. ROM-able
cross referencer pragmas On, Off, Pop,
Intel MDS, up-load, Microtec

Intel MDS, up-load, Microtec COM200 and -

The Compile
The Run
Cross-Referencer

interface. Named
Named Common,
Inter-Language
External Name

modules. data

Small,

memory models: Small,
Small,

SMALL?,

The
data communication in separately

v.09.15.85

CallS. tiiiii ittt o9
Case Sensitivity in Linking. 3.
CF Interface Files. eses

Cgroup and DQroup.ccevuvuennnn

Cgroup, Code, Data, Dgroup.
Check stack.covveinienan.,

Check _ stack — Default.
Check stack, 186, 286.
chkdsk utility, options
clashes: linker limitations.

Classes.
close C_CLOSE.08).
close, create, c_create, c_create text . 16,
Co-Processor
co-processor or emulator.
code. MWLITERALS,

—
\00\\"\)‘
—

...............

L R

...................

.
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
.
:
.~'.3.3.............
N.—'b.—‘i—'bbuuuD—‘\JN\M\HW\N\HUM\IO\\NMNHU\ONN&&NQN\‘H@N

code optimizatim
code overlays, pragna Code.
Code PIagma.cocevvunnnnnnnns
Code Segmentation: the Code Pragma.
code segments, code overlays, pragma Code.
€O SPACE. o+ v vvevvvrrressaccncsnncnns
code space, pragma Literals.
Code, Data, Dgroup.coeenen.
code, data, heap, ?7HEAP segment order. ...
code, data, run-time stack and extra......
code, literals in data vs. code space.
code, literals in data vs. code space, ...
Columns, Include.ccvevvencnens
CDM200 and COMB0D, Paragon MT100.

et et ot e

.
—

.............................

Command Files.ccvveevinnennn
Command-Line Options (Qualifiers).
Command-Line Parameters.
Common segments.covvnvenenne 13
Common, Common, Export, Import, module ... 14.
Common, Export, Import, module interface.. 14.
Communication. Crerereseieseneannn 1
Communication.ccovvinnnn
Communication between HC, PP, and Asnm. ...
communication in separately compiled.....
Compact Model: Small-Code, Medium-Data. .

Compact, Medium, Big, Large. 11.
Compact, Medium, Big, Large.
Compact, Medium, Big, Large. 9.19.10
COMPACT?, MEDIUM?, BIG?, LARGE?..........
mmpilation phase announcements.
compilation statistics and summary.
Compilation Units or Modules.

—

| arll =

......

PO NNONMNONE—OS OO

compiled modules.c 0000t

[

© 1983-85 MetaWare Incorporated

Index: MetaWare High C ™ Programmer’s Guide page I-5

Linking a
Invoking the
Configuring the

On, Off, Pop,

set

Literals_in_code.

aliasing convention,

¢>-include, pragma Ipath.

ipath, mm=memory_model, tpages on 8086.
. cram on 8086,)

INIT, TERM, EXIT, SYSTEM, INTS, ALLOC,

CONSOLE —

stack overflow, divide-by-zero,
Compiler

LINETERM — Line Terminator
file extensions, glebal aliasing
Plain C Naming

High C Naming

Professional Pascal Naming
Assembly Language Naming
LANGUAGE — Calling

Parameter

Data Type

heap

memory reference

configuring options ansi = standard,
. tpages on 8086.

close,

Microtec ASM186

Microtec ASM186 cross assembler, L186

debugger/simulator. Microtec L186

Features of the

inter-modular, inter-lingual

How to Make a

multi-module

Columns, Include.

Making

sameness of include files for

components of

v.09.15.85

Compiled PrOQram.covvvvveunvennns A
Compiler.civiiiinennrinnnnnnns veea2
Compiler. Ceteeseriereriienanes 5.4
Compiler Controls.coivivevennnnnn 5
compiler or source listing. 7.2
Compiler Pragma Summaries............... 6.2
Compiler Pragmas.coveevveennannns 6
compiler switches or toggles. 7.1
Compiler Toggles.cc0nn.. I |
compiler-execution environment........ 5.152
compiler-execution environment symbol. 5.3
components of cross-reference listings. .. 19.5
conditional source file inclusion. 6.3
config, autocfig. heenes Cieeenaaes 5.4
configuring Check stack, 186, 286. 5.4
configuring Emit . Tine table, 5.4
configuring file extensions, global 5.4
configuring IPATH names: MS-DOS/OCL, 5.4
configuring options ansi = standard,
.................................. 5.4
Configuring the Compiler. 5.4
CONSOLE. ..vvivrnninrnnrnroaennnanans 16.1
CONSOLE — Consale Input/Output. 16.9
console gets, puts, newline. 16.9
Console Input/Output.................. 16.9
control/C interrupts. 16.6
Controls. Ceereiseerianee eeeeen 5
Convention...... et rseecttabtaseneens 15.5
convention. configuring 5.4
Conventions.oovvvivernninennnns 14.9.1
Conventions.oovvivvnnnnernnns 14.9.2
Conventions.ovviiiernvennnnnns 14.9.3
Conventions.cu0uen eerenes 14.9.4
Conventions for C, Pascal, PL/M . 15.4
Correspondence. eeesesaes 1.7
COTTespondenCeS. ... covvasrenssnennans 14.6
corruption, HEAP1.0BJ.t 12.2
Lo 4] 4 9.3
cram - 8086 memory requirement reduction. . 5.1

cram on 8086, ipath, sasaemory model,
create, c_create, ¢ create text......... 1
cross assembler, L186 cross linker.

cross linker. .

Cross Linker and INT186
Cross Reference.vevveeenenonns
cross reference. annotated wlti—mdular, .
Cross Reference. .
CTOSS IeferenCl. .ooovvveerenencaronss
cross referencer pragmas On, Off, Pop, ...
Cross References. Ceeeerreans . |
cross references.
Cross-Reference Format.
cross-reference listings.
Cross-Referencer Command Files..........
Cross-Referencer Pragmas. .

WEMUVMNdOUWEN~&&EWNS

© 1983-85 MetaWare Incorporated

Index: MetaWare High C ™ Programmer’s Guide page I-6

xref =
static versus dynamic

dumny file close

close, create,

close, create, c_create,
fixed-size heap

Ipath. pragmas Include,

Include,

dummy interrupt handlers
open,

open, C_open,

dummy C_SCANF.08J,

global and automatic

rodules.
Small- versus Medium- versus Large-
Data Segmentation: the

Pragma.
padding, bit fields.

ROM-gble code, literals in
ROM-gble code, literals in

Cgroup, Code,
code

overlayiné
code,

configuring IPATH names: MS-DOS =

STKOMP. 0B,
Microtec L186 Cross Linker and INT186

lire number

MS-DOS Assembly Language
DEBUGAIDS — Run-Time
emitting

Check stack —

286 —

186 —
Enit_line_table —
l.lterals in) code —

List —
Optimize for_space —
Quiet —
Asm -
Make_externs_global —
Pointers compatible with ints —

v.09.15.85

—

Cross-Referencer Toggles.
cross_reference - listing, file-name. ...

................................

s s sess e

..........................

c_create, c_create_text.
c¢_create BEXE. vvvverienrnneneeanens
c lnclude R_ lnclude RC_Include, and.....
C_Include, R_ {_Include, RC_| " Include, Ipath
C_INTRUP. c
C > open, c_open text.
copen text. Ceeneereaaaas
c PRINTF.0BJ.
C SCANF.0B), C_PRINTF.08J. Cheeesenns
c unlink
data.
data areas in one segment.
data communication in separately muplled
Data Models. Ceserecatateanns
Data Pragma.coveevenrennnnnnns
Data Segmentation: the Data Pragma.
Data Segmentation: the Static_segment
data type aligrwents and sizes, struct ...
Data Type Correspondemes
Data Types in Storage. .
data vs. code space.
data vs. code space, pragma Literals
Data, DgToup.c.cceiiiiiiennnnnn
data, heap, ?7HEAP segment order.
data, pragma Static segment.
data, run-time stack and extra segments. ..
Data aliasing convention.
OCL, O-include, pragma Ipath.
debug - symbol-line-type records.
DEBUGAIDS — Run-Time Debugging Aids.
DEBUGAIDS.CF .

ssesssssns “oe

(o]

lgl f

ﬂ
—

.

.

.

.

.

.

.

.

.

—

WL OV OV OV O WO Oh W10 20 W 0

PRV U P CR R I U P S S P S P RV RV TR TRV S TR WEV- S TR RV TR

........................

——

..... P R N IR

—

bt bt ft et st

[)

.......

...................

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
e pt e e

ORI RIR R RO 0N el ot A R B R RO B N

..........................

ng.
Debugging Aids.

.....................

Default.
Default.vvvriiiiiiieiei it
Default Segment Names: Pragma Code.
Default: Off.
Default:
Default:
Default:
Default:
Default:

.....

.........................
.........................

.........................

© 1983-85 MetaWare Incorporated

Index: MetaWare High C ™ Programmer’s Guide page I-7

Summarize —
Callee_pops_when possible —
Pointers_compatible —
Emit_names —

Read only sfrings —
Emit_line_records —

Public var_warnings —
Parm_warnings —

Warn —

Int_function warnings —
Segmented _pointer operations —
loating point —

Pragaa Memory model —

define -

Group Names: Pragmas Cgroup and
Cgroup, Code, Data,

MSDOS —

Files — MS-DOS Only.

stack overflow,

models.
cs,

Post-Mortem Call-Chain

producing a call-chain stack
Post-Mortem Heap

Post-Mortem Call-Chain
Post-Mortem Heap

call-chain stack

post-mortem call trace call-stack
static versus

Linking for

toggles Emit_line table,
toggles Emit_names,
Emit_line records,

toggles
configuring

toggles

v.09.15.85

Default:
Default:
Default:
Default:
Default:
Default: Off.ccoiiiinivnnnnnnn
Default: 0N, vovvevnnernnennnnnnnnnns

Default: On.
Default: 0N, Loovveniinnnninneneenens
Default: On.
Default: ON. ...ovveiiinnnenecnnnnnenn
Default: On or Off per the host
Default: Small.
define - cdafina mcros. cheeees ceeeaae
#define macros...... Ceeeri e
Detecting the Presence of an 8087.
DOTOUD. « v vvtvvrnencnnevsscennnnnnns

(=3
-~
-
.
.
.
.
.
.
.
~ N~~~
P

Coieses et sttt e

.......

—
WO VWO NN NN~
© e e s e e e w_ e »

s or — h
LV = 1= 00 W0 = i~ B 10V L 000 I = 0 W R R N W N NN

DQTOUD. «vvvvveenarnnnaens Cetreaeeees
Diagnosticnessages
Direct Access to MS-DOS INT 21....... ... 15,
direction bit.o 14,
directory search for input files. 6
Disk Storage Requirements for Temporary ... 2
Distinction of File Names. 19
divide-by-zero, control/C interrupts. 16.
dos exit. iiiiiiiiieeee, 16
Dovm-mading to a Targt System. [}
DS altered by some functions in large-data 1l.
oS, SS, ES...... Chrersersear e 9
dummy argument processor mwset up args. .. 3
dummy C_SCANF.0BJ, C_PRINTF.08J. 3
dummy file close C CLOSE.08J. 3.
dtmy interrupt handlers C_INTRWP.C. 3.
2
2
2
3
3
7
7
9
9

.............................

dynamic versus static reglsters
Embedded Applications. 1
Embedded Applications.
embedded applications: INT186 Simulator. ..
emitting debugging information...........
Emit_line_records.
Emit_11n€ TECOTOS. ..ouvvurrnrennnnnns

Enit_line records — Default: Off.
Emit_line records, Emit line table.
Emit line table..................anln,
Emit_line table — Default.
Enmit_ line table, Emit_line records.
Emit_line”| table, Literals_In_code.
Em!t names — Default: OfF. _............
Emit_nases, Emit_line records.

®sssssssecss s tance

.............

.......

RV S P PP P (VPR PR VI S PR R R W W)

© 1983-85 MetaWare Incorporated

Index: MetaWare High C ™ Programmer’s Guide page I-8

8087

8087 co-processor or
compiler-execution
INIT -

set compiler-execution
TERM —

NOB7

Prologues and

STATUS — Values for
Tun-time

File I1/0
System

Link

User

linkage

cs, 0s, SS,
Floating-Point

EXIT — exit,

EXIT —

INIT, TERM,

Error and Warning Messages,
Named Common, Common,

8086

configuring file

linkage errors: unresolved

code, data, run-time stack and
Ipaths: Input File Search

alignments and sizes, struct padding, bit
include

dumy
convention. configuring

conditional source

Distinction of

source

Ipaths: Input

include

object -

list -

profile -

tmptp - 8086 tree page

xref = cross_reference - listing,
tmpil-2-3 - 8086 temporary intermediate
source files, 1/0 model,

Utility Packages: .CF Interface

v.09.15.85

emulation libraries. Ceerereeans 8.2
emulator. eeseeneitesenreeanna 3.2
environment. 00 iiiiinnas 5.15.2
Environment Initialization............. 16.2
environment symbol. Cieeresreeans 5.3
Envirorment Termination. 16.3
environment variable..............0.0nn 8.3
Epilogues.eiiiiiiiieiniienes 11.2
BITNO. c v vevonensessnncrsonanosanse 15.8
BITOT. ..o vevecrnnccanncsoananann 12.17.3
Error and Warning Messages, Explanations.. 18.4
(239 1) o T PPN ... 18,1
Errors. feteseecensaeiatenaans 18.2
2 () U 3.2
Errors and Warnings.000.nn 18.3
errors: unresolved extemal Cetieenraees 3.2
2P 9.1
Evaluation and Run-Time Libraris 8.2
Example: HC and Asm with HC Main Program. . 14.4
Example: PP and Asm with PP Main Program. . 14.5
Example: PP and C with C Main Program. ... 14.2
Example: PP and HC with PP Main Program. . 14.3
EXIT — exit, _exit, and abort Functions.. 16.4
_exit, and abort Functions. 16.4
exit, exit, and abort Functions. 16.4
EXIT, SYSTEM, INTS, ALLOC, CONSOLE. 16.1
Explanations Ceeenetciieerearaaas ... 18.4
Export, Import, module interface. 14.9
extended MEMOTY.covveiennnennnns 7.3
extensions, global aliasing convention. ... 5.4
external.iiiiiiiiiaeiiiiiinannn 3.2
external name clashes: linker lmtatinns 13.2
External Name Communication. 14.9
Externals. et hecteaenseracan 13
extra segments.c.cciivienennn 9.1
Facility. ...ovvvviinneninieinnrnnensn 5.3
Features of the Cross Reference. 19.1
fields. data typecovuvenenns 10.1
flle., ..iiiiiii ittt ieeea 17.2
file close C CLOSE.0BJ. 3.9
file extensions, global aliasing......... 5.4
File IJOEITOTS. . oovvve v ianenrennnns 18.1
file inclusion.cvivieiiiiinann 6.3
File Names.cue tecesesacas 19.7
filleprefix.ocoviiiiiiinieninens 5.2
File Search Facility................... 5.3
file search path.ccovvvnnnn 6.3
file-name. et etttencasenna 5.1
file-name.ccvevvnerececncnns 5.1
file-name.ocvvivnecnnnnennns 5.1
file-name.coieerinenncnnsonan 5.1
file-name. Ceresisteesaenaas 5.1
file-name.cicivrieernnnnnnnnn 5.1
file-system-less.ovvvnnvnnnn 16.5
fileclass. ..vviveiiiiirieaiinennanns 16.5
Flles. .. vviiiennineneernnnneans veee 151

© 1983-85 MetaWare Incorporated

Index: MetaWare High C ™ Programmer’s Guide page I-9

Search Paths for Input

directory search for input

Include Pragmas: Inclusion of Source
Disk Storage Requirements for Temporary
sameness of include

source

Using a
Libraries.
native

toggle
the host.

toggles

Cross-Reference

interfacing to Pascal,
The Stack
Stack

FStackDump library
aliasing variable,

EXIT — exit, _exit, and abort
DS altered by some

INTERRUPTS -

console

configuring file extensions,

Static_segment.
pragmas Alias,

stack

dummy interrupt

INTRUP — Interrupt

INTERRUPTS - Generalized Interrupt
Example:

Example: HC and Asm with

) Example: PP and
Communication between

fixed-size
Post-Mortem
code, data,

heap corruption,
Linking

Simulation on a VAX
— Default: On or Off per the

MS-D0S
File

v.09.15.85

files for cross references.
files, I/0 model, file-system-less.
fixed-size heap C_HEAP.C.
Fixed-Size Stack.covvuuns 9.1
Floating-Point Evaluation and Rm-Time
floating-point instructions.
Floating-Point Support.
Floating point.
Floating point — Default: On or Off per ..
Floating point toggle.
Floating point, 286.
Format.
Format of Listings.
FORTRAN, PL/M.

.....

2
é
[
Files — MS-DOS Only........... PR ';’
6
3

..............

-~ OO
o .

R RNUHN VNV HCNORNRN I WE B NV RN D W=D TR L R W R W W W R O W0 W~ LW R

............

.

u\“u'\)\ﬂh’99‘&'?\0’\\""‘\"\"9\\"“O\O\HO\H&UNNWOUM\O?#N‘?,
S e e e e e . . AR . o .

......................

..................

............................

.
.
.
.
.
.

............... sesas s

Frame Layout.ccvvvninnnn,
FStackDump library function.
function.
function names.
function prototypes.
Function Results.
Functions.cieiviiiniinrniinsenens
functions in large-data models...... e
Generalized Interrupt Handling..........
gets, puts, newline.
global aliasing convention.
global and automatic data..............

Global_aliasing convcention, Literals, .
Global_aliasing convention.
Group Names: Pragmas Cgroup and Dgroup.
4] 0L 44 TR
handlers C_INTRUP.C.

.....................

B I A N R

bt bt et ft ot et Bt pt Gt et Pt et et Pt

.................

ottt -

.
.
.
.
.
.
.
.
.
.
.

..........................

HC and Asm vith HC Main Program.........
HC Main Program.c.ceveeennnen
HC with PP Main Program.
HC, PP, and ASM. .. .vvvveneninennnenns

[~~~

[

..............

[

heap corruption, HEAP1.0BJ.
heap C_HEAP.C.
HeBD DUMD. v vvvvvvavvennernnanns 12.2
heap, 7MHEAP segment order
Heap-Item Size. eteecsencaniees

HEAP].08J.
High C and Professional Pascal...........
High C Naming Conventions............. 14
Host.
host. Floating Epnini:
How to Make a Cross Reference.
1/0.
I/0 Errors.ovvns

—

.......................

.........................

..................
.........

..............................

© 1983-85 MetaWare Incorporated

Index: MetaWare High C ™ Programmer’s Guide page I-10

argc, argv, and
source files,

Named Common, Common, Export,
referencer pragmas On, Off, Pop, Columns,
include and pragmas Ipath,

sameness of

Files.

and Ipath pragmas
Ipath.

conditional source file
Include Pragmas:

enmitting debugging

CONSOLE.

ipath -

INIT — Environment
arge, argv, and 1/0
Ipaths:

Search Paths for
directory search for

CONSOLE — Console

native floating-point

MSDOS — Direct Access to MS-DOS
Microtec L186 Cross Linker and
embedded applications:

COMB00, Paragon MT100.

annotated multi-modular, inter-modular,
reference. annotated multi-modular,
Common, Common, Export, Import, module
Utility Packages: .CF

tapil-2-3 - 8086 temporary
dusmy

INTRDP —

INTERRUPTS - Generalized

INTERRUPTS — Trap

stack overflow, divide-by-zero, control/C
Handling.

INIT, TERM, EXIT, SYSTEM,

option

names: MS-DOS/OCL, <>-include, pragma
Include, C_Include, R_Include, RC_Include,
C_Include, R_Include, RC_Include, and

v.09.15.85

1/0 initialization. .
1/0 model, file-system-less.

1/0 redirection.coiieieieennnn
Import, module interface.
Include, CTOSS c.vevereveroseonsns .

Include.cvvveiennnninennns e
include and pragmas Ipath Include.
include file.cciiiiiiiiinnnnn

include file search path.
include files far cross references.

Include Pragmas: Inclusion of Source......
Include, C_Include, R Include, RC_Incl
Include, C _Include, R Include RC Incl
ANCIUSION. vt v et aeaas
Inclusion of Source Files..... ceseesaenn
information.c i it
INIT — Environment Initlalization
INIT, TERM, EXIT, SYSTEM, INTS, ALLOC,
initial value.
Initialization.00t

initialization. N

Input File Search Facility.
Input Files.ovvvveniiiiinnennnes
input files.cviiiiriiiiiiiiins
Input Line Length.co0vnnen
Input/Output. fereeernan
instructions.
INT 21.
INT186 debugger/simulator..............
INT186 Simulator.ccvnvevennenns
Intel 80186/80286 processors.
Intel 8087 support.coviiiiniiinns
Intel MDS, up-load, Microtec COM200 and ..
Inter-Language Communication. 1
inter-lingual cross reference.

inter-modular, inter-lingual cross

interface. Named.....................

Interface Files.............cicouvun.s

Interfacing to Other Languages..........

interfacing to Pascal, FORTRAN, PL/M.

intermediate file-name.
interrupt handlers C_ INRUP.C.
Interrupt Handling.
Interrupt Handling.
Interrupts.ovviiiiiiiiiiiiiies
interrupts.ot e
INTERRUPTS - Generalized Interrupt
INTERRUPTS — Trap Interrupts.
INTRUP — Interrupt Handling.

.
.
.
.
.
.
.
.
.
.
.
.
[

NOONONONAA VNNV UNOEBONO
e e e e s e e e @

...
PR R S L S R SR U R SR R TR PR PR VR LR P PRUR R TR PR R PRV R PR

.............

s bt

-

&8

.
.
.
.
.
—

.
[

ANV UNONO

N e el e e

.
.
.
.
.
.
.
.
.
.
.
.
.
.
. .
.
.

=N —

R A

...........

bt bt ot et et et
(U RS RERV RN YN
Nt

......

..........

[Nl e el

\40\0\!.}!0\.0\.\)\0\0\ iy o
o e e .
N SN NN = OV SO S ONND b b = b= O = = 8 B

Int_function_wamings — Default: On.
Invoking the Compiler.
ipath. ... e 2.
Ipath. configuring IPATH 5.

© 1983-85 MetaWare Incorporated

Index: MetaWare High C ™ Programmer’s Guide page I-11

pragma Ipath. configuring
include and pragmas

configuring options ...
... ansi = standard, cram on 8086,

Microtec ASM186 cross assembler,
debugger/simulator. Microtec

Pascal, PL/M.

MS-D0S Assembly

Assembly

Interfacing to Other

Calling Routines in Other

Small, Compact, Medium, Big,
models: Small, Compact, Medium, Big,
Small, Compact, Medium, Big,

Small- versus Medium- versus
small-code,

Smail-Code versus

Large Model:

Big Model:

Medium Model:

Large Model: Large-Code,

DS altered by some functions in
SMALL?, COMPACT?, MEDIUM?, BIG?,
Stack Frame

sysalloc, sysfree, allocated,
Input Line

Run-Time

8087 emulation

Floating-Point Evaluation and Run-Time
FStackDump

external name clashes: linker
Addressing
Input

LINETERM —
listing ruler,

static
ASM186 cross assembler, L186 cross
Microtec L186 Cross

external name clashes:
Case Sensitivity in

asa = machine_code - assembly

v.09.15.85

ipath - initial value.
IPATH names: MS-DOS/DCL, <>-include,......
Ipath, Include.

WV A

seesere e

ipath, sm=semory_model, tpages on 8086. .
Ipaths: Input File Search Facility.
L186 cross linker.cvvvvvennnnnnn
L186 Cross Linker and INT186

LANGUAGE — Calling Conventions for C,
Language Debugging. heeenn
Language Naming Cunventinns e
Languages.

Large.

. |l o=l <
EFEWEYwwww oo wEEELRERwnw

o . o e e . o e . . . by o e e . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
—

g
w
by
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
— s

D A R R Y ss e DR

LaIgB. oveeeeeennrencnnnns 9.1 9.10
Large Model: Large-Code, Large-Data.
Large- Data Models. cee
large-code. Chieieaans Ceeereaaes .
Large-Code Models.ccevveunenns
Large-Code, Large-Data.
Large-Code, Medium-Data.
Large-Code, Small-Data.
Large-Data..........cieniineneneannnn
large-data models.c00uunns
LARGE?. v vvviviiennennonenanennsannns
Layout. ciiiiii i i
least free memory.cveeeunnn
Length. ...viiieiiiiiiiiiiiiiieen, 20
Libraries. 3
libraries. 8
Libraries. 8.
library function. Ceeeen 12.
3
13
20
20

—

—

—

..........................

..........................

library names.
limitations.
Limjtations.
Line Length. . .
line number debugging. Cheaaee 12.
Line Terminator Convention. 5.
line-numbers, scope-level, nesting-level.. 17.
lines per_page - set the number. 5.
LINETERM — Line Terminator Convention. .. 15.
3
1
3
3.

........................
........................

.......................

Link Errors.
link, up-level addressing.............. 1
linkage errors: unresolved external. .

linker. Microtec...... Neesenrernracnas
Unker and INT186 debugger/simulator. 12.
linker limitations. 13,
Unking. ...vvvieniiiiiieninienenn, .. 3.
Linking a Cmplled Program Ceteececaaaanns
Linking for Embedded Applications.
Linking High C and Professional Pascal. ... 3.
Linking under MS-DOS: MS-LINK and PLIM(86 . 3.
list - file-name. 5
List — Default: Off...........cceuvtn. 7.
lsting, ...ocvvvviiiennnnne, N 5

....................

© 1983-85 Metaware Incorporated

Index: MetaWare High C ™ Programmer’s Guide page I-12

assembly

compiler or source
nesting-level.

xref = cross_reference -

Format of

components of cross-reference

Amotated_listing,

Annotate_includes, Amotated listing,
..Statistics.

Annotate > includes, ...

. Annotated_listing, List module usage,

literals in data vs. code space, pragea

ROM-able code,

Literals. ROM-able code,

Specifying a

Literals in code. overlaying

Global aliasing convcention,

overlaying literals, pragma

literals, pragma therals, toggle

configuring Emit_line table,

_MALITERALS, toggle
object modules,

alignment.

BP, addressing
AUTOEXEC.BAT =
short versus

1seek,

ask =

define - gdefine

Example: PP and C with C
Example: PP and HC with PP
Example: HC and Asm with HC
Example: PP and Asm with PP

How to

Storage
Paragon MT100. Intel

Small, Compact,

memory models: Small, Compact,
Small, Compact,

Small- versus

Compact Model: Small-Code,
Big Model: Large-Code,

SMALL?, COMPACT?,

8086 extended

ALLOC —

The 8086

Big, Large.

v.09.15.85

" Listings.

listing., ..oovvvvvnnnnen Ceeearaaens ..
listing.
listing ruler, llne—mmers scope-level, . 17.
listing, file-name.

...................

.
.
.
.
.
.
.
:
.
.
:
.
:
.
.
.
SN

listings.
List module usage.
List module | » usage, List_unused includes,.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
bt et

0~
P
w N

List unused includes, Statistics.
Literals. ROM-able code,
literals in data vs. code space.
literals in data vs. code space, pragma ..

Literals Segment.cc0vvnnn. 1
literals, pragma Literals, toggle 1
Literals, Static_segment.
Literals, toggle Literals in (cocb
Literals_in code. overlaylng

Literals incode.unns.
Literals in code — Default.
Literals_in code, ROM-able code.
load module.
load module.

.
.
.
.
.

.........................

local variable addressing, parameter..... 1
locals and parameters. 10.
LOGIN.COM.

...........................

macros.

.............................

14
Main Program.c.veevernn.. 14
Main Program.coviveenineenns 14
Main Program. Ceneserieenans 14,
Main program termination. 16
Make a Cross Reference. 19
Make_externs_global — Default: Off....... 7
Making Cross References.
Mapping.ciiiiiiiiiiiiiins 10 1
MDS, up-load, Microtec COM200 and COMS0O, . .

Medium Model: Large-Code, Small-Data.

Medium, Big, Large.
Medium, Big, Large.
Medium, Big, Large.
Medium- versus Large- Data Models.
Medium-Data.
Medium-Data.

.
.
.
.
.
.
.
.
.
.
.
o e e e e e e e e e e o e . & e . o e e e e e e w e e
N.—‘i—‘@\dh’\JUW\ONNO\bO\GNNNU‘DUNHH\HMM\NMHH'—‘NU&O\O\NO\O\U\AW

...................

.................

.............................

memory
Memory Allocator.ccovvvvenn, 16.
Memory Architecture.
memory models. 14.6 9
memory models: Small, Compact, Medium,

© 1983-85 MetaWare Incorporated

Index: MetaWare High C ™ Programmer’s Guide page I-13

cram - 8086
AR =

Pragma
configuring options ansi = standard,

... cram on 8086, ipath, sm =
Diagnostic

Error and Warning

cross linker.

Intel MDS, up-load,
debugger/simulator.

configuring options ansi = standard, ...
.. cram on 8086, ipath,
source files, I/0
Large
Big
Medium
Compact
Small
DS altered by some functions in large-data
memory
Small-Code versus Large-Code
Small- versus Medium- versus Large- Data
Large. memory
object modules, load
load
Named Common, Common, Export, Import,
data communication in separately comptiéte‘g
Compilation Units or
object
The Run Command under
configuring IPATH names:

MSDOS -- Direct Access to
Requirements for Temporary Files —
Memory Requirements —

standard, tpages.
Linking under
Linking under MS-DOS:

Microtec COM200 and COM80O, Paragon
inter-lingual cross reference. annotated

ROM-able code.

dummy argument processor
external

External

v.09.15.85

memory reference costs. NP |
memory requirement reduction. 5.1
Memory Requirements — MS-00S Only. 2.4
memory sodel. Ceeerreetesaeeeean 5.1
Memory model.viniiiinnianian., 6.2
Memory model — Default: Small...........

senory model, tpages on 8086. .
Messages.
Messages, Explanations. P 18
Microtec ASM186 cross assembler, L186..... 3
Microtec COM200 and COM80O, Paragon MT100. . 4.
Microtec L186 Cross Linker and INT186 . 12

[

5

.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

—

~FNPPBPEES

Minimizing Program Size.
sa = memory model....................

sa = mesory_model, tpages on 8086.
model, file-system-less.
Model: Large-Code, Large-Data.
Model: Large-Code, Medium-Data...........
Model: Large-Code, Small-Data.
Model: Small-Code, Medium-Data...........
Model: Small-Code, Small-Data.
models.

........................

..........

..............................

............................

module.
module.

.............................

............................

HS—DOS
MS-00S/DCL, {-include, pragma Ipath.
MS-00S Assenbly Language Debugging.

my-

...................

MS-D0S-Dependen

MS-DOS: chkdsk utility, options ansi = ...
MS-D0S: MS-LINK and PLINKBG.
MS-00S: options tpages, t-ptp.
MS-LINK and PLINKBS.c000nnnn
MSDOS — Direct Access to MS-DOS INT 21.
MT100. Intel MDS, up-load,
multi-modular, inter-modular, vee
multi-module cross reference.
_MWLITERALS, toggle Literals in_code,
“mwset_up args.
name clashes: linker limitations.
Name Communication. 18,

.........

......................

N ON P - P O AN NN B WP WONWE R~ HEORFRNWNRRSLOANEWL S

© 1983-85 MetaWare Incorporated

index: MetaWare High C ™ Programmer’s Guide page I-14

module interface.
aliasing variable, function
segment

Distinction of File
library

Ipath. configuring IPATH
Default Segment

Group

pragma Code.

Plain C

High C

Professional Pascal
Assembly Language

listing ruler, line-numbers, scope-level,
console gets, puts,

toggle options,
lines_per_page - set the
line

tpages - 8086

On,
cross referencer pragmas On,

’

cross referencer pragmas

toggles.

data areas in

Requirements for Temporary Files — MS-DOS
Memory Requirements — MS-DOS

SYSTEM —
code

toggle

Command-Line
toggle options, non-toggle
tpages on 8086. configuring
... ipath, mm = memory_model,
MS-DOS: chkdsk utility,
MS-DOS:
toggle
parameters passed by valuve in reverse
code, data, heap, ??HEAP segment
Run-Time
Interfacing to
Calling Routines in
stack
interrupts. stack

toggle Literals in_code.

v.09.15.85

Named Common, Common, Export, Inport,.... 14,9
ces . el 1322

names: MS-DOS/DCL, <¢>-include, pragma
Names: Pragma (:ode ceee
Names: Pragmas Cgroup and Dgroup 13.
naming code segments, code overlays,.....
Naming Conventions. 1
Naming Conventions. Ceesaenaane 1
1
1

—

VMWV R UVWLD DG~ 0000 W

YR

Naming Conventions.
Naming Conventions.
native floating-point instructions.
nesting-level.
newline.ciiiiieiiiannns ceen
NO87 environment variahle. eireesssanaas
non-toggle options.
number.

number debugging. iieiiennnn
number of tree pages............ Ceeeeas
1.
object - file-name.......... Ceeeaaiens
object modules, load module.
off, on - toggles.
off, Pop.
off, Pop, Columns, Include.
off, Pop, compiler switches or toggles.

On, Off, POP. ...coiiiiinrininnannasnns
On, Off, Pop, Columns, Include.......... 19.
On, Off, Pop, compiler switchesor
one segment. iiiciiiienianaas
Only. Disk Storagecovcvneunnn
Only.
open, c_open, c open text.............. 1
Operating System Services.............. 15.
optimization.
Optimize for_space.
Dptimize for . _space — Default: Off.
option fpath.coocvieiiian...
Options (Qualifiers).....
options.

esseesssssrsasscsssnn

|

...................

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

[

.
.
.
.
.
.
.
.
.
.
.
.
.
.

......

..............

............................

options ansi = standard, tpages.
options tpages, tmptp.
options, non-toggle options. ceeenes
OTOBT. .o v vvevnaescasonaassanssonns

- H
WUV W

. S e e e e e
mumwmwwuut—nubb

Organization. Cereeiraieraeaees
Other Languages.coeunes Ceeeens 1
Other Languages.ccvveeervecancsn 1
overflow.oiiiiiiiiiiiiiinians
overflow, divide.by-zero control/C
overlaying data, pragma Static_segment.
overlaying literals, pragna Literals,

© 1983-85 MetaWare Incorporated

naning code segments, code
Utility

data type alignments and sizes, struct
" Pragmas

taptp - 8086 tree

tpages - 8085 number of tree

MDS, up-load, Microtec COM200 and COMSOO,

local variable addressing,

B8P, addressing locals and
Calling_convention, pass-by-reference
Conmand-Line

order.

Linking High C and Professional
Professional

interfacing to

LANGUAGE — Canlng Conventions for C,
pragma Calling_convention,
parameters

Parameter

include file search

Search

Floating point — Default: On or Off
compilation

interfacing to Pascal, FORTRAN,

— Calling Conventions for C, Pascal,

Linking under MS-DOS: MS-LINK and
Overlays under

size of

ofe.

oOn, off,

cross referencer pragmas On, Off,
oOn, Off,

Example:

Example:

Example:

Example: PP and HC with

Example: PP and Asm with
Comsunication between HC,

HC.PRO,

Code Segmentation: the Code

Data Segmentation: the Data

Data Segmentation: the Static_segment

pass-by-reference parameters.

v.09.15.85

Index: MetaWare High C ™ Programmer’s Guide page I-15

Overlays under PLINK8S: Pragma Code. 20.7
overlays, pragma Code. cireerans 13.3
Packages: .CF Interface Files. 15.1
Padding.oiiiiiiiiieneenl.. 14,6 14,7
padding, bit fields. ceees 1001
Page, Skip, and Title. 17.1
page file-name. Ceeeaen .. 51

PABES. vt tunenricaornnranans e 5.1
Paragon MT100. Intel Ceeann .48
parameter aligment. e 11
Parameter Correspondence. 14.7
Parameter Passing. 11.3 13.1
parameters. esrestanannaas 10.3
parameters. pragmd seseee 131
Parameters.ocovnnennieanas veees 42
parameters passed by value in reverse.... 11.3
Parm warnings — Default: On. 7.2
Pascal.ciiiiiiiiiiit i 3.5
Pascal Naming Conventions............. 14.9.3
Pascal, FORTRAN, PL/M.cciveennnn 13.1
Pascal, PL/IM.ccvinineiennns ... 15,4
pass-by-reference parameters. 13.1
passed by value in reverse order. 11.3
Passing vees 1131301
1 P 6.3
Paths for Input Files........... P . 2.2
per the host. e eaeseaiaenas 7.3
phase announcements.c000000. 7.2
T 13.1
PL/IM. LANGUAGEoovnvnvrnnannns 15.4
Plain C Naming Conventions. 14.9.1
PLINKBE. . .vvvvvrnerrnnncnacronnannns 3.3
PLINK86: Pragma Code. Cereaenes 20.7
pointer and address sizes............... 9.3
pointers.coiiiiiiiiiiiiiannas 14.6
Pointers_compatible — Default: Off....... 1.2
Pointers_compatible with ints — Default:.. 7.2
2 6.2
Pop, Columns, Include. 193
Pop, cwpiler switches or toggles. 7.1
post-mortem call trace call-stack dump. ... 7.3
Post-Mortem Call-Chain Dump. 12.1 3.6
Post-Mortem Heap Dump. 12.2 3.7
PP and Asm with PP Main Program. 14.5
PP and C with C Main Program. 14.2
PP and HC with PP Main Program.......... 14.3
PP Main Progras........... eesesans .. 143
PP Main Program. cereseceens 14.5
PP, and ASM.covvennrnsennn ool 1401
PP.PRO, .PRO. ...covvvnienninnnnnenn .. 5.2
Pragma. Cerieseeaiieas ceeran 13.3
Pragma.ocoeveveenninnsanenannns 13.4
Pragma.cccevvieieninterioneanns 13.5
pragma AlIas.cciiiiiiienannns 14.9
pragma Calling convention.............. 14.8
pragna Calling convention, PPN 13.1

© 1983-85 Metaware Incorporated

Index: MetaWare High C ™ Programmer’s Guide page I-16

naming code segments, code overlays,
Default Segment Names:

Overlays under PLINKBG:

IPATH names: MS-DOS/DCL, <>-include,
code, literals in data vs. code space,
overlaying literals,

overlaying data,
Compiler
Aliasing
Cross-Referencer
Conpiler

Syntax of

Toggle

Group Names:
RC_Include, and Ipath.
include and

cross referencer

Include
underscore
source file
Detecting the
HC.PRO, PP.PRO,
dummy argument
Intel 80186/80286

Linking High C and

Example: PP and C with C Main
Example: PP and HC with PP Main
Example: HC and Asm with HC Main
Example: PP and Asm with PP Main
Linking a Compiled

Running a

Minimizing

main

function

console gets,
Command-Line Options

pragmas Include, C_Include, R_Include,
Include, C_Include, R_Include,

debug - symbol-line-type
1/0

cram - 8086 memory requirement
Features of the Cross
inter-modular, inter-lingual cross
How to Make a Cross

v.09.15.85

pragma Code.c.vcvnsesvrcnscocens 13.3
Pragma Code.oovvnenvinaenneness 20.6
Pragma Code.cvvvueenennnnnenass 20.7
pragma Ipath. configuring ceirercetecens 5.4
pragma Literals. ROM-able 7.3
pragma Literals, toggle Literals in code 13.6
Pragma Memory | mdel — Default: Small. . 9.9
pragma Static > segment.l 13.5
Pragma Summaries. tereeesnsss 6.2
Pragmas. ...coeevnvscccenersonesnans 13.2
Pragmas.coeeeveenocavrrosnannas 19.3
Pragmas. Ceieseeaan Ceeereesseas .. 6
Pragmas.coceeneeciireceninnns 6.1
Pragmas.coveeenvevenvrnnnnnones 7.1
pragmas Alias Global aliasing_convention 13.2
Pragmas Cgroup and Dgroup. 13.7
pragmas Include, C_Include, R_Include, 6.3
pragmas Ipath, Include. vessees 9.3
pragmas On, Off, Pop, Columns, Include. .. 19.3
Pragmas Page, Skip, and Title.o 17,1
Pragmas: Inclusion of Source Files. 6.3
prefix, ..coeeiiiieienans Checeneean 14.9
prefix. ...oiciiiiiann ceeens [5.2
Presence of an 8087,cc000nn 8.3
PRO. c.ivvviennnnnnn. cetirresteenes 5.2
processor Mmwset up args. 3.9
processors. et steaesseacriereeraanann 7.3
producing a call-chain stack dump. 12.1
Professional Pascal. 3.5
Professional Pascal Naming Conventions. .14.9.3
profile - file-name............. R 5.1
Profiles.c.ccvieiiinnn RN 5.2
Program. Chetreenerateasaeens 14.2
Program. cerres ettertrecanaes 14.3
Program.cccvviinvncnrisnenennns 14.4
Program. Ceeeesesesasnans 14.5
Program.cccvvveennnnnans Ceeeanan 3
Program.cov0uenens eereeseaenas 4
Program Size.coivvuuinnn 3.94.2
program termination. eee. 16.2
Prologues and Epilogues. 11.2
prototypes.ciiiiiii i, 14.7
Public_var_warnings — Default On. 7.2
puts, newlire. eteesreenrenaaas 16.9
(Qualifiers).covveeeieennnnnnnns 5.1
Quiet — Default: OFf. 1.2
RC_Include, and Ipath. 6.3
RC_Include, Ipath. 6.2
read, \rrite, wiitel . 16.5
Read_only strings — Default: Off. . 1.3
TBCOTOS. oo vvvevnnoncenronnoraancans 5.1
redirection. Cetiesrtaastasacane 4.1
reduction. il 5.1
Reference.cceeviivnennenns 19.1
reference. annotated multi-modular, 19.1
Reference.evveeevuenn ceenes 19.2

© 1983-85 MetaWare Incorporated

multi-module cross
memory

Include. cross
Making Cross
sameness of include files for cross
saving

dynamic versus static
cram - 8086 memory
Memory

Only. Disk Storage
Function

parameters passed by value in
_MWLITERALS, toggle Literals_in code,
space.

space, pragma Literals.

Calling

nesting-level. listing
The
DEBUGAIDS —

Floating-Point Evaluation and
code, data,

pragmas Include, C_Include,
Include, C " Include,
references.

listing ruler, line-numbers,
Ipaths: Input File
directory

include file

Specifying a Literals
data areas in one

' Default
code, data, heap, ??HEAP
Code

Data

Data

On.

Common

code, data, run-time stack and extra
naming code

Case

data communication in
SYSTEM — Operating System
SYSTEM — System

lines_per_page -
MS-D0S

v.09.15.85

Index: MetaWare High C ™ Programmer’s Guide page I-17

reference.coc0... eeeeeena. 19.
reference COStS.iitiiiiiiinnan .
referencer pragmas On, Off, Pop, Columns, . 19.
REfEIBNCES. oot vvivveenenernnrenasnnns 1

registers.
Tegisters. iiiiiiiiiiiiiiiiina,
requirement reduction. ..
Requirements — MS-00S Only.
Requirements for Teuporary Files - MS-DOS .
Results. . .vvivrnriirernnrananans e 1
_RETURN POINTERS | INESBX P §
Teverse Order. eresians 1
ROM-able code.ccovvvnnenrnnnnn 1
ROM-able code, literals 1n data vs. code ..
ROM-able code, literals in data vs. code ..
Routines in Other Languages. eesen 1
Routine aliasing convention. 14.
ruler, Tine-numbers, scope-level, 1
Run Command under MS-DOS.
Run-Time Debugging Aids.
run-time error.cc000000n 12.1
Run-Time Libraries. Crriereeeen
Run-Time Libraries.cecvvnevennnn
Run-Time Organization. eenaens 1
run-time stack and extra segments. 9.
Running @ Program. Cerreees
R_Include, RC_Include, and Ipath. 6
R Include RC_| " Include, Ipath. 6
sameness of include files for cross 19
saving registers. ceeeneas 11.
scope-level, nesting-level. 17
Search Facility........ Ceseterseanne .5
search for input files. 6.
é
2
3
9
3

.

.....

search path.

segment OTdeT.ccovvvrnenanens Ceee
Segmentation: the Code Pragma.
Segmentation: the Data Pragma
Segmentation: the Static segment Pragma.
Segmented_pointer_ operatims Default:
segments.
segments.
segments, code overlays, pragma cOde veee 130
Sensitivity in Linking. [P
separately compiled modules.

Services.
Services.
set compiler-execution envirenment symbol. .
set the number.
set-command.

short versus long calls.

ces e

..........

o«
.
— [ergreopye—

..':"“‘9‘5"'?"‘?‘“‘2"5“?‘?‘5“??‘...... w2 >3 H bl ¢
NUF U YD DU WL DWW E = 0N W LN = R W B == N R W R = N0 0 W N WS o 0 W

ssessescecsssssssesese e

............. veesssscssane

— e

..........................

vesersess s seses e e

N-N--]

© 1983-85 MetaWare Incorporated

Index: MetaWare High C ™ Programmer’s Guide page I-18

embedded applications: INT186

Heap-Item
Minimizing Program

pointer and address

data type alignments and
Pragmas Page,

Pragma Memory model — Default:

mesory models:
Models.

Compact Model:

. Small Model:
Small Model: Small-Code,
Medium Model: Large-Code,
LARGE?.

0S altered by
SORTS —

conditional

Include Pragmas: Inclusion of

compiler or

ROM-able code, literals in data vs. code

ROM-able code, literals in data vs. code
System

Same ANSI-Required

cs, oS,

Using a Fixed-Size
code, data, run-time
producing a call-chain
call-chain

The

interrupts.
ansi =

dynamic versus

overlaying data, pragma

Global aliasing_convcention, Literals,

Data Segmentation: the

List_module usage, List unused includes,
..Anndtated_{isting,

compilation

v.09.15.85

Simulation on a VAX Host. cereacea. 4.3
Simulator. eteereaaas 4.3
L3 20.5
Size.evniinnn etecesanannn .. 3.94.2
size of pointers.cciihiiiiennn 14.6
L3 9.3
sizes, struct padding, bit fields. 10.1
Skip, and Title........... PN 17.1
£ 1) .. 9.9
Small Model: Smll-Code Snall-mta 9.4
Seall, Compact, Medium, Big, Large. .. 112
Small, Compact, Medium, Big, Lerge. 3.2
Small, Compact, Medium, Big, Large. 9.1 9.10 9.9
Snall- versus Medium- versus Large- Data .. 9.3
Ssall-Code versus Large-(:ode Models. 9.2
small-code, large-code. 11.1
Snall-Code, Medium-Data. 9.5
Small-Code, Ssall-Data. 9.4
Seall-Data....... P X |
Small-Data...... Ceetiederaiecrateraen 9.6
SMALL?, COMPACT?, MEDIUM?, BIG?, 3.2
Some ANSI-Required Specifics. 208
some functions in large-data models...... 11.1
Sorting Algorithes. 15.6
SORTS — Sorting Algorithes. 15.6
source file inclusion. seeees 6.3
source file prefix. ceeiesessanaas 5.2
Source Files.covvvieciiicnennnnns 6.3
source files, 1/0 model, file-system-less. 16.5
source listing. Certeiesaneans 7.2
SPACE. v e v e eennerenrennnceennenanaas 7.3
space, prama Literals. veees 1.3
Specifics.iiiiiiiiiiiiiiiiieanen 20
Speclfics 20.8
Specifying a Literals Segment. 13.6
TR 3 T 9.1
3 1 L. 9.10
stack and extra segments. 9.1
stack dump. Ceerereren e 12.1
stack dump. Ceesane veeeeees 1.3
Stack Frame.ceevene ereaean 10.3
Stack Frame Layout.00000 1.1
stack growth.coiivininn, 11.1
stack overflow.cvvuvevunann 1.2
stack overflow, divide-by-zero, control/C. 16.6
standard. - B §
static link, up-level addressing. 1.1
static registers., 9.1
static versus dynamic CS. 9.2
Static _segment. Ceeseseenne .. 13.5
Static segnent 6.2
Static segnent Pragma.ceeveeennns 13.5
Statistics. Annotate _includes, ...
......................... ceeea.. 19.6
statistics and SUMMATY. .. vvvvevecncnnns 7.2
STATUS — values for errmno. 15.8

© 1983-85 MetawWare Incorporated

Data Types in

- M5-00S Only. Disk
data type alignments and sizes,
Compiler Pragma

compilation statistics and

Intel 8087

Floating-Point

On, Off, Pop, compiler

set compiler-execution environment
debug -

least_free memory.
sysalloc,
Down-Loading to a Target

SYSTEM — Operating
SYSTEM —

INIT, TERM, EXIT,

Down-Loading to a
Disk Storage Requirements for
tmpil-2-3 - 8086

INIT,

main program

TERM — Environment
LINETERM — Line
Pragmas Page, Skip, and
file-name,

MS-DOS: options tpages,

Floating point

overlaying literals, pragma Literals,.

_MLITERALS,

Cross-Referencer

off, on -

Compiler

On, Off, Pop, compiler switches or
System-Independent
System-Dependent
Enit_line_records.

v.09.15.85

. toggle Optilize for ' SPACe. c..iiieaaann

“toggles.

Index: MetaWare High C ™ Programmer’s Guide page I-19

STKDMP.0BJ, DEBUGAIOS.CF.
Storage. ..
Storage Classes.eveevnvrevvannss
Storage Mapping...........cciieunnn 10
Storage Requirements for Temporary Files ..
struct padding, bit fields. 1
Summaries.
Summarize — Default Off Cieenes
summary.
747174) o Ceeeceareasseas
Support. e seasiesataeeennan
switches or toggles. 7
symbol. ..oeviiiiiiiiiiin.., Ceeasaan 5
symbol-line-type reoords 5
Syntax of Pragmas. Ceeranes 6
sysalloc, sysfree, allocated, 16
sysfree, allocated, least free memory. ... 16.
4
5
6
8
5
6

Ll = = o
NN~NoENESSR

..........

SYStem. L.ttt it
SYSTEM — Operating System Services. 1
SYSTEM — System Services. 16.
System Errors. 1
System Services...........cioivninns 1
System Services.......... Ceerereeaaas 1
System Specifics.cciiiiiiiiinns
SYSTEM, INTS, ALLOC, CONSOLE. 16.
System-Dependent Toggles. 7
System-Independent Toggles. 7
Target System. 4
Temporary Files — MS-D0S Only........... 2
temporary intermediate file-name. 5
TERM — Environment Termination. 16
TERM, EXIT, SYSTEM, INTS, ALLOC, CONSOLE.. 16
termination.eiiiiill 16
Termination. eeeteceresienaens 16.
15
17
5
2
5
4
9
8

U R U LB 00D = =00 R RN = WO\ R - =

B...

..............

.......................

Terminator Convention.
Ttle. . vienii i

tlp!1-2-3 8086 telnporary intermediate ..
taptp.
taptp - 8086 tree page file-name.
toggle. .. .ciiiiiiii it it
toggle Check stack.

toggle Floati: int.
toggle Literals in code.
toggle Literals in ¢ | code, ROM-able code.

.............................

toggle options, non-toggle options.
TogglePraws. Creesseerieasanaeennn .
Toggles. .

Toggles. ...cvvuvnennnns RN ceraeeee
toggles.nn Cerriieieaaes 7
Toggles Chreceseteereasentenns 7.

oggles. ...ttt 7
toggles Enit line_table,
toggles Emit | _names, Emit_line records. ... 1i2.
toggles Floating point, 286, 8.

© 1983-85 MetaWare Incorporated

options ansi = standard,

ipath, ma = memory_model,
. = standard, cram on 8086,

MS-DOS: options

post-mortem call

INTERRUPTS —

tmptp - 8086

tpages - 8086 number of

bit fields. data

Data

Data

The Run Command

Linking

Overlays

Compilation

linkage errors:

static link,

Paragon MT100. Intel MDS,

MS-DOS: chkdsk
ipath - initiael
parameters passed by
STATLS —

NO87 environment
local

aliasing

Debugging on a
Simulation on a

Error and

User Errors and
read,

read, write,
file-name.

v.09.15.85

Index: MetaWare High C ™ Programmer’s Guide page 1-20

tpages. MS-DOS: chkdsk utility,...... .. 2.4
tpages - 8086 number of tree pages. 5.1
tpages on 8086. configuring options ansi .
................... 5.6
tpages teptp. ...l 2.3
trace call-stack dunp R 7.3
Trap Interrupts..... Ceereceseseensnen 15.3
tree page file-name. et iesseen .. 5.1
Eree Pages. . ..ovvvviiiiiiir it 5.1
type alignments and sizes struct padding, 10.1
Type Correspondences. essssecannen 14.6
Types in Storage. Chiesecraesnnan 10.1
under MS-D0S. ...vvvenriinanrcnnnnnnas 4.1
under MS-DOS: MS-LINK and PLINKBE, 3.3
under PLINKB6: Pragma Code. 20.7
underscore Prefix.evevicnnenn 14.9
Units or Modules. covvvuernnnns 3.1
unresolved external. N 3.2
up-level addressing. 1.1
up-load, Microtec COM200 and COMBOO, 4.4
User Errors and Warnings. Ceeeenn 18.3
Using a Fixed-Size Stack. 9.10
Utility Packages: .CF Interface Flles 15.1
utility, options ansi = standard, tpages. 2.4
valve, ...oiiiiiiiiiiinns cereeesaes 5.1
value in reverse order. 11.3
Values for errno. ereeeeas 15.8
variable. iiiiiiiiiiieiae, 8.3
variable addressing, parameter alignment.. 11.1
variable, function names. ceeeen 13.2
VAX, tiveeenvncnnns feraeeas fereeeas 12.4
VAX Host.covviceennennnn eeeaas 4.3
Warn — Default: On. 1.2
Warning Messages, Explanations.......... 18.4
Warnings. ..coviveiineiniiinecnnans 18.3
write, writel 16.5
wiite 16.5
xref = cross_reference - listing, 5.1

© 1983-85 Metaware Incorporated

Acknowledgments

The authors of these manuals and designers of the High C
language would like to thank the C standards committee,
whose drafts of the C standard helped illuminate many dark
areas of the language and assisted greatly in “chunking” the
language concepts.

Paul Redmond’s feedback was invaluable as he put dBase
Il through High C for Ashton-Tate. In the process he helped us
polish the compiler in many ways.

David Shields’ efforts in working with us were also very
beneficial. He put tens of thousands of lines of C source code
through High C, transliterated from the SETL version of the
Ada-Ed compiler at New York University.

Professor William McKeeman and his research group at
the Wang Institute of Graduate Studies supplied us with a
collection of “gray expressions” that helped us verify the
compiler.

The support of others who must needs remain nameless at
this time is also appreciated.

Most of all we acknowledge that we are not self-made, but
God-made. And we thank God for building into us the talents
that made it possible for us to create High C. Praise God, from
whom all blessings flow.

Ad majorem Dei gloriam (A.M.D.G.).

v.09.15.85 © 1983-85 Metaware Incorporated

This ends the
MetaWare™ High C ™

Programmer’s Guide "

© Copyright 1983-85
MetaWare Incorporated
Santa Cruz, CA 95060

v.09.15.85 © 1983-85 MetaWare Incorporated

